
Clare Dixon
Marcelo Finger (Eds.)

 123

LN
AI

 1
04

83

11th International Symposium, FroCoS 2017
Brasília, Brazil, September 27–29, 2017
Proceedings

Frontiers of
Combining Systems

Lecture Notes in Artificial Intelligence 10483

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Clare Dixon • Marcelo Finger (Eds.)

Frontiers of
Combining Systems
11th International Symposium, FroCoS 2017
Brasília, Brazil, September 27–29, 2017
Proceedings

123

Editors
Clare Dixon
University of Liverpool
Liverpool
UK

Marcelo Finger
University of Sao Paulo
Sao Paulo
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-66166-7 ISBN 978-3-319-66167-4 (eBook)
DOI 10.1007/978-3-319-66167-4

Library of Congress Control Number: 2017950044

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2017
The chapter ‘Subtropical Satisfiability’ is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license informa-
tion in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

Preface

The 11th International Symposium on Frontiers of Combining Systems (FroCoS) was
held 27–29th September 2017 at the University of Brasília, Brazil. It was co-located
with the 26th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (Tableaux) and the 8th International Conference on
Interactive Theorem Proving (ITP). The symposium included both invited speakers and
contributed papers and the three co-located events shared a poster session and were
preceded by a number of workshops and tutorials.

The first FroCoS symposium was held in Munich, Germany, in 1996. Initially held
every two years, since 2004 it has been organised annually with alternate years forming
part of IJCAR. Like previous events in the FroCoS series, FroCoS 2017 offered a
forum for research in the general area of combination, modularisation, and integration
of systems, with an emphasis on logic-based ones and on their practical use. The
development of techniques and methods for the combination and integration of dedi-
cated formal systems, as well as for their modularisation and analysis, is crucial to the
development of systems in logic, computation, program development and verification,
artificial intelligence, knowledge representation, and automated reasoning.

FroCoS 2017 received 26 full paper submissions, with authors from 16 different
countries. These were reviewed and discussed by the Programme Committee and each
paper received at least three reviews. From these, 17 papers were selected for pre-
sentation at the symposium and publication. Their topics include description and
temporal logics, decision procedures, decidability and verification, SAT, SMT and
automated theorem proving, term rewriting, and properties and combinations of logics.
The proceedings also include papers from two of our invited speakers.

The FroCoS programme included two invited speakers:

– Cesare Tinelli (University of Iowa, USA) Designing Extensible Theory Solvers
– Renata Wassermann (University of São Paulo, Brazil) Revising System Specifi-

cations in Temporal Logic

with three additional invited speakers being shared between all conferences:

– Katalin Bimbó (University of Alberta, Canada) The Perimeter of Decidability (with
Sequent Calculi on the Inside)

– Jasmin Blanchette (Vrije Universiteit Amsterdam, The Netherlands) Foundational
(Co)datatypes and (Co)recursion for Higher-Order Logic

– Cezary Kaliszyk (University of Innsbruck, Austria) Locally Abstract, Globally
Concrete Semantics of Concurrent Programming Languages

We would like to thank all the people who worked hard to make the 2017 sym-
posium a success. In particular, we thank the invited speakers for their inspirational
talks and contributed papers, authors for submitting, revising and presenting their work,
and all the attendees for contributing to the symposium discussion. We also extend our

thanks to the Program Committee and external reviewers for their prompt, careful
reviewing and discussion of the submissions.

Finally we convey our gratitude and appreciation to everybody who contributed to
the organisation of the event, in particular to Cláudia Nalon, Daniele Nantes Sobrinho,
Elaine Pimentel, João Marcos and their team for taking care of all the local organisation
so expertly and making our life as co-chairs much easier. Particular thanks go to
Cláudia Nalon for bringing the symposium and co-located events to Brazil and for her
thorough organisation, enthusiasm, leadership and patience.

We acknowledge and thank a number of organisations for supporting the sympo-
sium. The Association for Automated Reasoning (AAR), the European Association for
Computer Science Logic (EACSL), and the Association for Symbolic Logic
(ASL) provided scientific support. We received financial support from the National
Council for Scientific and Technological Development (CNPq, ARC 03/2016). The
University of Brasília and the Federal University of Rio Grande do Norte have both
contributed to the organisation. We thank Springer for their continuing support with
publishing the proceedings and to EasyChair for allowing us to use their conference
management system. We are grateful for the support of all these organisations.

September 2017 Clare Dixon
Marcelo Finger

VI Preface

Organisation

Conference Chairs

Clare Dixon University of Liverpool, UK
Marcelo Finger University of São Paulo, Brazil

Local Organisation

Cláudia Nalon University of Brasília, Brazil
Daniele Nantes Sobrinho University of Brasília, Brazil
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
João Marcos Federal University of Rio Grande do Norte, Brazil

FroCoS Steering Committee

Franz Baader (President) TU Dresden, Germany
Silvio Ghilardi Università degli Studi di Milano, Italy
Pascal Fontaine Université de Lorraine, France
Silvio Ranise Fondazione Bruno Kessler, Italy
Renate Schmidt University of Manchester, UK
Viorica

Sofronie-Stokkermans
Universität Koblenz-Landau, Germany

Cesare Tinelli University of Iowa, USA

Program Committee

Carlos Areces FaMAF - Universidad Nacional de Córdoba, Argentina
Alessandro Artale Free University of Bolzano-Bozen, Italy
Mauricio Ayala-Rincon Universidade de Brasilia, Brazil
Franz Baader TU Dresden, Germany
Peter Baumgartner National ICT Australia
Christoph Benzmüller Freie Universität Berlin, Germany
Thomas Bolander Technical University of Denmark
Marcelo Coniglio University of Campinas, Brazil
Clare Dixon University of Liverpool, UK
François Fages Inria Paris-Rocquencourt, France
Marcelo Finger Universidade de Sao Paulo, Brazil
Pascal Fontaine Loria, Inria, University of Lorraine, France
Didier Galmiche Université de Lorraine - Loria, France
Vijay Ganesh University of Waterloo, Canada
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen, Germany

Laura Giordano DISIT, Università del Piemonte Orientale, Italy
Agi Kurucz King’s College London, UK
Till Mossakowski Otto-von-Guericke-University Magdeburg, Germany
Cláudia Nalon University of Brasília, Brazil
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
Silvio Ranise FBK-Irst, Italy
Christophe Ringeissen Loria-Inria, France
Uli Sattler University of Manchester, UK
Roberto Sebastiani DISI, University of Trento, Italy
Guillermo Simari Universidad del Sur in Bahia Blanca, Argentina
Viorica

Sofronie-Stokkermans
University Koblenz-Landau, Germany

Andrzej Szalas University of Warsaw, Poland
René Thiemann University of Innsbruck, Austria
Ashish Tiwari SRI International, USA
Christoph Weidenbach Max Planck Institute for Informatics, Germany

Additional Reviewers

Abraham, Erika
Almeida, Ariane Alves
Berzish, Murphy
Felgenhauer, Bertram
Flores-Montoya, Antonio
Gabbay, Murdoch
Gianola, Alessandro
Hutter, Dieter
Kaliszyk, Cezary
Khan, Muhammad
Kovtunova, Alisa

Kutsia, Temur
Kutz, Oliver
Kuznets, Roman
Li, Ian
Li, Yuan-Fang
Martelli, Alberto
Moyen, Jean-Yves
Nantes-Sobrinho, Daniele
Roland, Jérémie
Schmidt-Schauss, Manfred

VIII Organisation

Contents

Invited Talks

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic. 3
Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy,
Martin Desharnais, Mathias Fleury, Johannes Hölzl, Ondřej Kunčar,
Andreas Lochbihler, Fabian Meier, Lorenz Panny, Andrei Popescu,
Christian Sternagel, René Thiemann, and Dmitriy Traytel

Designing Theory Solvers with Extensions . 22
Andrew Reynolds, Cesare Tinelli, Dejan Jovanović, and Clark Barrett

Description and Temporal Logics

A New Description Logic with Set Constraints and Cardinality
Constraints on Role Successors . 43

Franz Baader

Metric Temporal Description Logics with Interval-Rigid Names 60
Franz Baader, Stefan Borgwardt, Patrick Koopmann,
Ana Ozaki, and Veronika Thost

Using Ontologies to Query Probabilistic Numerical Data 77
Franz Baader, Patrick Koopmann, and Anni-Yasmin Turhan

Pushing the Boundaries of Reasoning About Qualified
Cardinality Restrictions . 95

Jelena Vlasenko, Volker Haarslev, and Brigitte Jaumard

Rewriting

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 115
Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama

Complexity Analysis for Term Rewriting by Integer Transition Systems 132
Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs,
and Jürgen Giesl

http://dx.doi.org/10.1007/978-3-319-66167-4_1
http://dx.doi.org/10.1007/978-3-319-66167-4_2
http://dx.doi.org/10.1007/978-3-319-66167-4_3
http://dx.doi.org/10.1007/978-3-319-66167-4_3
http://dx.doi.org/10.1007/978-3-319-66167-4_4
http://dx.doi.org/10.1007/978-3-319-66167-4_5
http://dx.doi.org/10.1007/978-3-319-66167-4_6
http://dx.doi.org/10.1007/978-3-319-66167-4_6
http://dx.doi.org/10.1007/978-3-319-66167-4_7
http://dx.doi.org/10.1007/978-3-319-66167-4_8

SAT, SMT and Automated Theorem Proving

Solving SAT and MaxSAT with a Quantum Annealer: Foundations
and a Preliminary Report . 153

Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy,
Roberto Sebastiani, and Stefano Varotti

Superposition with Structural Induction . 172
Simon Cruanes

Subtropical Satisfiability . 189
Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan Tung Vu

Decision Procedures, Decidability and Verification

On Solving Nominal Fixpoint Equations . 209
Mauricio Ayala-Rincón, Washington de Carvalho-Segundo,
Maribel Fernández, and Daniele Nantes-Sobrinho

Decidable Verification of Decision-Theoretic GOLOG 227
Jens Claßen and Benjamin Zarrieß

The Bernays–Schönfinkel–Ramsey Fragment with Bounded
Difference Constraints over the Reals Is Decidable 244

Marco Voigt

Properties and Combinations of Logic

First-Order Interpolation of Non-classical Logics Derived
from Propositional Interpolation . 265

Matthias Baaz and Anela Lolic

Finitariness of Elementary Unification in Boolean Region
Connection Calculus . 281

Philippe Balbiani and Çiğdem Gencer

Merging Fragments of Classical Logic . 298
Carlos Caleiro, Sérgio Marcelino, and João Marcos

Interpolation, Amalgamation and Combination (The Non-disjoint
Signatures Case) . 316

Silvio Ghilardi and Alessandro Gianola

The Boolean Solution Problem from the Perspective of Predicate Logic. 333
Christoph Wernhard

Author Index . 351

X Contents

http://dx.doi.org/10.1007/978-3-319-66167-4_9
http://dx.doi.org/10.1007/978-3-319-66167-4_9
http://dx.doi.org/10.1007/978-3-319-66167-4_10
http://dx.doi.org/10.1007/978-3-319-66167-4_11
http://dx.doi.org/10.1007/978-3-319-66167-4_12
http://dx.doi.org/10.1007/978-3-319-66167-4_13
http://dx.doi.org/10.1007/978-3-319-66167-4_14
http://dx.doi.org/10.1007/978-3-319-66167-4_14
http://dx.doi.org/10.1007/978-3-319-66167-4_15
http://dx.doi.org/10.1007/978-3-319-66167-4_15
http://dx.doi.org/10.1007/978-3-319-66167-4_16
http://dx.doi.org/10.1007/978-3-319-66167-4_16
http://dx.doi.org/10.1007/978-3-319-66167-4_17
http://dx.doi.org/10.1007/978-3-319-66167-4_18
http://dx.doi.org/10.1007/978-3-319-66167-4_18
http://dx.doi.org/10.1007/978-3-319-66167-4_19

Invited Talks

Foundational (Co)datatypes and (Co)recursion
for Higher-Order Logic

Julian Biendarra1, Jasmin Christian Blanchette2,3(B), Aymeric Bouzy4,
Martin Desharnais5, Mathias Fleury3, Johannes Hölzl6, Ondřej Kunčar1,
Andreas Lochbihler7, Fabian Meier8, Lorenz Panny9, Andrei Popescu10,11,

Christian Sternagel12, René Thiemann12, and Dmitriy Traytel7

1 Fakultät für Informatik, Technische Universität München, Munich, Germany
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

j.c.blanchette@vu.nl
3 Max-Planck-Institut für Informatik, Saarland Informatics Campus,

Saarbrücken, Germany
4 InstantJob, Paris, France

5 Ludwig-Maximilians-Universität München, Munich, Germany
6 Carnegie Mellon University, Pittsburgh, USA

7 Institute of Information Security, Department of Computer Science,
ETH Zürich, Zurich, Switzerland

8 Google, Zurich, Switzerland
9 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

10 Middlesex University London, London, UK
11 Institute of Mathematics Simion Stoilow of the Romanian Academy,

Bucharest, Romania
12 Universität Innsbruck, Innsbruck, Austria

Abstract. We describe a line of work that started in 2011 towards
enriching Isabelle/HOL’s language with coinductive datatypes, which
allow infinite values, and with a more expressive notion of inductive
datatype than previously supported by any system based on higher-order
logic. These (co)datatypes are complemented by definitional principles
for (co)recursive functions and reasoning principles for (co)induction. In
contrast with other systems offering codatatypes, no additional axioms
or logic extensions are necessary with our approach.

1 Introduction

Rich specification mechanisms are crucial to the usability of proof assistants—in
particular, mechanisms for defining inductive datatypes, recursive functions, and
inductive predicates. Datatypes and recursive functions are inspired by typed
functional programming languages from the ML family. Inductive predicates are
reminiscent of Prolog.

Coinductive methods are becoming increasingly widespread in computer
science. Coinductive datatypes, corecursive functions, and coinductive predi-
cates are useful to represent potentially infinite data and processes and to

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-66167-4 1

4 J. Biendarra et al.

reason about them. Coinductive datatypes, or codatatypes, are freely gener-
ated by their constructors, but in contrast to datatypes, infinite constructor
terms are also legitimate values for codatatypes. Corecursion makes it possi-
ble to build such values. A simple example is the “lazy” (or coinductive) list
LCons 0 (LCons 1 (LCons 2 . . .)) that enumerates the natural numbers. It can
be specified via the corecursive equation enum n = LCons n (enum (n + 1)).

In 2011, we started an effort to enrich the Isabelle/HOL proof assistant with
definitional mechanisms for codatatypes and corecursion. Until then, Isabelle/
HOL and the other main systems based on higher-order logic (HOL4, HOL Light,
and ProofPower–HOL) provided at most (inductive) datatypes, recursive func-
tions, and (co)inductive predicates. Our aim was to support formalizations such
as Lochbihler’s verified compiler for a Java-like language [32] and his mathema-
tization of the Java memory model [33], both of which rely on codatatypes to
represent infinite traces.

Creating a monolithic codatatype package to supplement Isabelle/HOL’s
existing datatype package [4] was not an attractive prospect, because many
applications need to mix datatypes and codatatypes, as in the following nested
(co)recursive specification:

datatype α list = Nil | Cons α (α list)
codatatype α ltree = LNode α ((α ltree) list)

The first command introduces a polymorphic type of finite lists over
an element type α, freely generated by the constructors Nil : α list and
Cons : α → α list → α list. The second command introduces a type
of finitely branching trees of possibly infinite depth. For example, the infi-
nite tree LNode 0 (Cons (LNode 0 (Cons . . . Nil)) Nil) specified by t =
LNode 0 (Cons t Nil) is valid. Ideally, (co)datatypes should also be allowed to
(co)recurse through well-behaved nonfree type constructors, such as the finite
set constructor fset:

codatatype α ltreefs = LNodefs α ((α ltreefs) fset)

In this paper, we present the various new definitional packages for (co)datatypes
and (co)recursive functions that today support Isabelle users with their formal-
izations. The theoretical cornerstone underlying these is a semantic criterion we
call bounded natural functors (BNF, Sect. 3). The criterion is met by construction
for a large class of datatypes and codatatypes (such as list, ltree, and ltreefs) and
by bounded sets and bounded multisets. On the right-hand side of a datatype
or codatatype command, recursion is allowed under arbitrary type constructors
that are BNFs. This flexibility is not available in other proof assistants.

The datatype and codatatype commands construct a type as a solution
to a fixpoint equation (Sect. 4). For example, α list is the solution for β in the
equation β ∼= unit+ α × β, where unit is a singleton type, whereas + and × are
the type constructors for sum (disjoint union) and product (pairs), respectively.
To ensure that the new types are nonempty, the commands must also synthesize
a witness (Sect. 5).

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 5

The above mechanisms are complemented by commands for defining
primitively (co)recursive functions over (co)datatypes (Sect. 6). But primitive
(co)recursion is very restrictive in practice. For general (nonprimitive) well-
founded recursion, Isabelle/HOL already provided the fun and function com-
mands [29]; our new datatypes work well with them. For nonprimitive corecur-
sion, we designed and implemented a definitional mechanism based on the notion
of corecursion up to “friendly” operations (Sect. 7).

In nonuniform datatypes, the type arguments may vary recursively. They
arise in the implementation of efficient functional data structures. We designed
commands that reduce a large class of nonuniform datatypes, and nonuniform
codatatypes, to their uniform counterparts (Sect. 8).

We integrated the new (co)datatypes with various Isabelle tools, including
the Lifting and Transfer tools, which transfer definitions and theorems across
isomorphisms, the Nitpick counterexample generator, and the Sledgehammer
proof tool (Sect. 9). The new (co)datatypes are widely used, including in our
own work—codatatypes for their convenience, and the new datatypes for their
flexibility and scalability (Sect. 10).

Crucially, all our specification mechanisms follow the definitional approach,
as is typical in Isabelle/HOL and the HOL family of systems. This means that
the desired types and terms are explicitly constructed and introduced using more
primitive mechanisms and their characteristic properties are derived as theorems.
This guarantees that they introduce no inconsistencies, reducing the amount of
code that must be trusted. The main drawback of this approach is that it puts
a heavy burden on the mechanisms’ designers and implementers. For example,
the (co)datatype commands explicitly construct solutions to fixpoint equations
and nonemptiness witnesses, and the constructions must be performed efficiently.
Other approaches—such as the intrinsic approach, where the specification mech-
anism is built directly into the logic, and the axiomatic approach, where types
and terms are added to the signature and characterized by axioms—require less
work but do not guard against inconsistencies [4, Sect. 1].

The work described in this paper was first presented in conference and journal
publications between 2012 and 2017 [7,9,10,12,13,15–18,46,50,51]. The current
text is partly based on these papers. The source code consists of about 29 000
lines of Standard ML distributed as part of Isabelle and the Archive of Formal
Proofs [47]. It is complemented by Isabelle lemma libraries necessary for the
constructions, notably a theory of cardinals [15]. We refer to our earlier papers
[10,13,18,51] for discussions of related work.

2 Isabelle/HOL

Isabelle [39] is a generic proof assistant whose metalogic is an intuitionistic frag-
ment of polymorphic higher-order logic. The types τ are built from type variables
α, β, . . . and type constructors, written infix or postfix (e.g., →, list). All types
are inhabited. Terms t, u are built from variables x, constants c, abstractions
λx. t, and applications t u. Types are usually left implicit. Constants may be

6 J. Biendarra et al.

functions. A formula is a term of type prop. The metalogical operators are
∧

,
=�⇒, and ≡, for universal quantification, implication, and equality. The notation∧

x. t abbreviates
∧

(λx. t). Internally, λ is the only binder.
Isabelle/HOL is the instantiation of Isabelle with classical higher-order logic

(HOL) extended with type classes as its object logic, complete with a Boolean
type bool, an equality predicate (=), the usual connectives (¬, ∧, ∨, −�→, ←→)
and quantifiers (∀, ∃), and Hilbert’s choice operator. HOL formulas, of type
bool, are embedded in the metalogic. The distinction between prop and bool is
not essential to understand this paper.

Isabelle/HOL offers two primitive definitional mechanisms: The typedef
command introduces a type that is isomorphic to a nonempty subset of an
existing type, and the definition command introduces a constant as equal to
an existing term. Other commands, such as datatype and function, build on
these primitives.

Proofs are expressed either as a sequence of low-level tactics that manipulate
the proof state directly or in a declarative format called Isar [53]. Basic tactics
rely on resolution and higher-order unification. Other useful tactics include the
simplifier, which rewrites terms using conditional oriented equations, and the
classical reasoner, which applies introduction and elimination rules in the style of
natural deduction. Specialized tactics can be written in Standard ML, Isabelle’s
main implementation language.

3 Bounded Natural Functors

An n-ary bounded natural functor (BNF) [12,51,52] is an (n + k)-ary type con-
structor equipped with a map function (or functorial action), a relator, n set
functions (natural transformations), and a cardinal bound that satisfy certain
properties. For example, list is a unary BNF. Its relator rel : (α → β → bool) →
α list → β list → bool extends binary predicates over elements to binary predi-
cates over parallel lists: rel R xs ys is true if and only if the lists xs and ys have
the same length and the elements of the two lists are elementwise related by R.
Moreover, the cardinal bound bd constrains the number of elements returned by
the set function set; it cannot depend on α’s cardinality. To prove that list is a
BNF, the datatype command discharges the following proof obligations:

The operator ≤o is a well-order on ordinals [15], � denotes implication lifted
to binary predicates, �•�• denotes the relational composition of binary predicates,
fst and snd denote the left and right pair projections, and the horizontal bar
denotes implication (=�⇒).

The class of BNFs is closed under composition, initial algebra (for datatypes),
and final coalgebra (for codatatypes). The last two operations correspond to least

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 7

and greatest fixpoints, respectively. Given an n-ary BNF, the n type variables
associated with set functions, and on which the map function acts, are live; the
remaining k type variables are dead. For example, the function type α → β is
a unary BNF on β; the variable α is dead. Nested (co)recursion can only take
place through live variables.

Composition of functors is widely perceived as being trivial. Nevertheless, the
implementation must perform a carefully orchestrated sequence of steps to con-
struct BNFs and discharge the emerging proof obligations for the types occurring
on the right-hand sides of fixpoint equations. This is achieved by four operations:
Composition proper works on normalized BNFs that share the same live vari-
ables, whereas the other three operations achieve this normalization by adding,
killing, or permuting live variables.

4 Datatypes and Codatatypes

The datatype and codatatype commands [12] state and solve fixpoint equa-
tions. Then they define the constructor, discriminator, and selector constants
and derive various theorems involving the constructors. The command for intro-
ducing lazy lists follows:

codatatype α llist = lnull: LNil | LCons (lhd: α) (ltl: α list)

The constructors are LNil and LCons. The discriminator lnull tests whether a
lazy list is LNil. The selectors lhd and ltl return the head or tail of a non-LNil
lazy list.

The datatype command also introduces a recursor, which can be used to
define primitively recursive functions. The list recursor has type β → (α →
α list × β → β) → α list → β and is characterized by the following theorems:

rec n c Nil = n rec n c (Cons x xs) = c x (xs, rec n c xs)

In general, for a datatype equipped with m constructors, the recursor takes one
argument corresponding to each constructor, followed by a datatype value, and
returns a value of an arbitrary type β. The corresponding induction principle
has one hypothesis per constructor. For example, for lists it is as follows:

Recursive functions consume datatype values, peeling off constructors as they
proceed. In contrast, corecursive functions produce codatatype values, consisting
of finitely or infinitely many constructors, one constructor at a time. For each
codatatype, a corresponding corecursor embodies this principle. It works as fol-
lows: Given a codatatype τ with m constructors, m − 1 predicates sequentially
determine which constructor to produce. Moreover, for each argument to each
constructor, a function specifies how to construct it from an abstract value of
type α that captures the tuple of arguments given to the corecursive function.

8 J. Biendarra et al.

For corecursive constructor arguments, the function has type α → τ + α and
returns either a value (τ) that stops the corecursion or a tuple of arguments (α)
to a corecursive call. Thus, the corecursor for lazy lists has type

(α → bool) → (α → β) → (α → β llist + α) → α → β llist

and is characterized as follows, where Inl and Inr are the injections into the sum
type:

n a =�⇒ corec n h t a = LNil
¬ n a =�⇒ corec n h t a = LCons (h a) (case t a of Inl xs ⇒ xs | Inr a′ ⇒ corec n h t a′)

The coinduction principle can be used to prove equalities l = r. It is parame-
terized by a relation R that relates l and r and is closed under application of
destructors. Such a relation is called a bisimulation. For lazy lists, we have the
following principle:

5 Nonemptiness Witnesses

The typedef primitive requires a nonemptiness witnesses before it introduces
the desired type in HOL. Thus, the datatype and codatatype commands,
which build on typedef, must provide such a witness [18]. For datatype, this is
nontrivial. For example, the following inductive specification of “finite streams”
must be rejected because it would lead to an empty datatype, one without a
nonemptiness witness:

datatype α fstream = FSCons α (α fstream)

If we substituted codatatype fordatatype, the infinite value FSCons x (FSCons
x . . .) would be a suitable witness, given a value x of type α.

While checking nonemptiness appears to be an easy reachability test, nested
recursion complicates the picture, as shown by this attempt to define infinitely
branching trees with finite branches by nested recursion via a codatatype of
(infinite) streams:

codatatype α stream = SCons α (α stream)
datatype α tree = Node α ((α tree) stream)

The second definition should fail: To get a witness for α tree, we would need a
witness for (α tree) stream, and vice versa. Replacing streams with finite lists
should make the definition acceptable because the empty list stops the recursion.
So even though codatatype specifications are never empty, here the datatype
provides a better witness (the empty list) than the codatatype (which requires
an α tree to build an (α tree) stream).

Mutual, nested datatype specifications and their nonemptiness witnesses can
be arbitrarily complex. Consider the following commands:

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 9

datatype (α, β) tree = Leaf β | Branch ((α + (α, β) tree) stream)
codatatype (α, β) ltree = LNode β ((α + (α, β) ltree) stream)
datatype
t1 = T11 (((t1, t2) ltree) stream) | T12 (t1 × (t2 + t3) stream) and
t2 = T2 ((t1 × t2) list) and
t3 = T3 ((t1, (t3, t3) tree) tree)

The definitions are legitimate, but the last group of mutually recursive datatypes
should be rejected if t2 is replaced by t3 in the constructor T11.

What makes the problem interesting is the open-ended nature of our setting.
BNFs form a semantic class that is not syntactically predetermined. In particu-
lar, they are not restricted to polynomial functors (sums of products); the user
can register new type constructors as BNFs after discharging the BNF proof
obligations.

Our solution exploits the package’s abstract, functorial view of types. Each
(co)datatype, and more generally each functor (type constructor) that partic-
ipates in a definition, carries its own witnesses. Operations such as functorial
composition, initial algebra, and final coalgebra derive their witnesses from those
of the operands. Each computational step performed by the package is certified
in HOL.

The solution is complete: Given precise information about the functors partic-
ipating in a definition, all nonempty datatypes are identified as such. A corollary
is that the nonemptiness of open-ended, mutual, nested (co)datatypes is decid-
able. The proof relies on a notion of possibly infinite derivation trees, which can
be captured formally as a codatatype. We proved the key results in Isabelle/HOL
for an arbitrary unary functor, using the datatype and codatatype commands
to formalize their own metatheory.

6 Primitive Recursion and Corecursion

Primitively recursive functions can be defined by providing suitable arguments
to the relevant recursor, and similarly for corecursive functions. The primrec
and primcorec commands automate this process: From the recursive equations
specified by the user, they synthesize a (co)recursor-based definition [12,41]. For
example, the command

primrec length : α list → nat where
length Nil = 0

| length (Cons x xs) = 1 + length xs

synthesizes the definition length = rec 0 (λxxs n. 1+n) and derives the specified
equations as theorems, exploiting the recursor’s characteristic theorems (Sect. 4).

To qualify as primitive, recursive calls must be directly applied to construc-
tor arguments (e.g., xs in the second equation for length). Dually, primitive
corecursive calls must occur under exactly one constructor—and possibly some
‘if–then–else’, ‘case’, and ‘let’ constructs—as in the next example:

10 J. Biendarra et al.

primcorec lappend : α llist → α llist → α llist where
lappend xs ys = (case xs of LNil ⇒ ys | LCons x xs ⇒ LCons x (lappend xs ys))

With both primrec and primcorec, an interesting scenario arises for types
defined by (co)recursion through a BNF. The (co)recursive calls must then
appear inside the map function associated with the BNF. For example:

primrec height treefs : α treefs → nat where
height treefs (Nodefs x T) = 1 +

⊔
(fimage height treefs T)

Here, α treefs is the datatype constructed by Nodefs : α → (α treefs) fset →
α treefs,

⊔
N stands for the maximum of N , and the map function fimage gives

the image of a finite set under a function. From the specified equation, the
command synthesizes the definition height treefs = rec treefs (λx TN.
1 +

⊔
(fimage snd TN)). From this definition and treefs’s recursor theorems,

it derives the original equation as a theorem. Notice how the argument T :
(α treefs) fset becomes TN : (α treefs × nat) fset, where the second pair com-
ponents (extracted by snd) store the result of the corresponding recursive calls.

7 Corecursion up to Friendly Operations

Primitive corecursion is very restrictive. To work around this, Lochbihler and
Hölzl dedicated an entire paper [35] to ad hoc techniques for defining operations
on lazy lists; and when formalizing formal languages coinductively, Traytel [50]
needed to recast the nonprimitive specifications of concatenation and iteration
into specifications that can be processed by the primcorec command.

Consider the codatatype of streams (infinite lazy lists), with the constructor
SCons and the selectors shd and stl:

codatatype α stream = SCons (shd: α) (stl: α stream)

Primitive corecursion is expressive enough to define operations such as the com-
ponentwise addition of two streams of numbers:

primcorec ⊕ : nat stream → nat stream → nat stream where
xs ⊕ ys = SCons (shd xs + shd ys) (stl xs ⊕ stl ys)

Intuitively, the evaluation of ⊕ makes some progress with each corecursive
call, since the call occurs directly under the constructor, which acts as a guard
(shown underlined). The specification is productive and unambiguously charac-
terizes a function. Moreover, it is primitively corecursive, because the topmost
symbol on the right-hand side is a constructor and the corecursive call appears
directly as an argument to it.

Although these syntactic restrictions can be relaxed to allow conditional
statements and ‘let’ expressions, primitive corecursion remains hopelessly prim-
itive. The syntactic criterion for admissible corecursive definitions in Coq [5]

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 11

is more permissive in that it allows for an arbitrary number of construc-
tors to guard the corecursive calls, as in the following definition: oneTwos =
SCons 1 (SCons 2 oneTwos).

We designed and implemented a framework, code-named AmiCo, that can
be used to define such functions and reason about them [10,17]. It achieves
the same result as Coq by registering SCons as a friendly operation, or a friend.
Intuitively, a friend needs to destruct at most one constructor of input to produce
one constructor of output. For streams, such an operation may inspect the head
and the tail (but not the tail’s tail)—i.e., it may explore at most one layer
of its arguments before producing an SCons. Because the operation preserves
productivity, it can safely surround the guarding constructor.

But how can we formally express that operators such as SCons and ⊕ only
explore at most one layer? Inspired by “up to” techniques in category theory
[1,37], we require that the corecursor argument is a composition of an optional
destructor and a “surface” function that does not explore its codatatype argu-
ment. Formally, the surface must be polymorphic and relationally parametric
[43] in that argument.

Our corec command generalizes primcorec to allow corecursion under
friendly operations. The codatatype constructors are automatically registered
as friends. Other operations can be registered as friends either after their
definition—using the dedicated friend of corec command, which takes as input
either their definition or another proved equation—or at definition time, by pass-
ing the friend option to corec:

corec (friend) ⊕ : nat stream → nat stream → nat stream where
xs ⊕ ys = SCons (shd xs + shd ys) (stl xs ⊕ stl ys)

The command synthesizes the corecursor argument and surface functions, defines
⊕ in terms of the corecursor, and derives the user’s equation as a theorem. It
additionally checks that ⊕ meets the criteria on friends and registers it as such.

After registering friends, the corecursor becomes more expressive, allowing
corecursive calls surrounded by any combinations of friends. In other words,
the corecursor gradually grows to recognize more friends, going well beyond
the syntactic criterion implemented in Coq and other systems. For example,
the shuffle product ⊗ of two streams is defined in terms of ⊕, and already goes
beyond the corecursive definition capabilities of Coq. Shuffle product being itself
friendly, we can employ it to define stream exponentiation, which is also friendly:

corec (friend) ⊗ : nat stream → nat stream → nat stream where
xs ⊗ ys = SCons (shd xs × shd ys) ((xs ⊗ stl ys) ⊕ (stl xs ⊗ ys))

corec (friend) exp : nat stream → nat stream where
exp xs = SCons (2 ˆ shd xs) (stl xs ⊗ exp xs)

Friends also form a basis for soundly combining recursion with corecursion. The
following definition exhibits both recursion on the naturals and corecursion on
streams:

12 J. Biendarra et al.

corec cat : nat → nat stream where
catn = (if n > 0 then cat (n − 1) ⊕ SCons 0(cat(n + 1))

else SCons 1 (cat 1))

The call cat 1 computes the stream C1, C2, . . . of Catalan numbers, where
Cn = 1

n+1

(
2n
n

)
. The first self-call, cat (n − 1), is recursive, whereas the others

are corecursive. Both recursive and corecursive calls are required to appear in
friendly contexts, whereas only the corecursive calls are required to be guarded.
In exchange, the recursive calls should be terminating: They should eventually
lead to either a base case or a corecursive call. AmiCo automatically marks
unguarded calls as recursive and attempts to prove their termination using
Isabelle/HOL’s termination prover [19]. Users also have the option to discharge
the proof obligation manually.

8 Nonuniform Datatypes and Codatatypes

Nonuniform (co)datatypes are recursively defined types in which the type argu-
ments vary recursively. Powerlists and powerstreams are prominent specimens:

nonuniform datatype α plist = Nil | Cons α ((α × α) plist)
nonuniform codatatype α pstream = SCons α ((α × α) pstream)

The type α plist is freely generated by Nil : α plist and Cons : α → (α×α) plist →
α plist. When Cons is applied several times, the product type constructors (×)
accumulate to create pairs, pairs of pairs, and so on. Thus, any powerlist of
length 3 will have the form

Cons a (Cons (b1, b2) (Cons ((c11, c12), (c21, c22)) Nil))

Similarly, the type pstream contains only infinite values of the form

SCons a (SCons (b1, b2) (SCons ((c11, c12), (c21, c22)) . . .))

Nonuniform datatypes arise in the implementation of efficient functional data
structures such as finger trees [23], and they underlie Okasaki’s bootstrapping
and implicit recursive slowdown optimization techniques [40]. Agda, Coq, Lean,
and Matita allow nonuniform definitions, but these are built into the logic, with
all the risks and limitations that this entails [17, Sect. 1]. For systems based on
HOL, until recently no dedicated support existed for nonuniform types, probably
because they were widely believed to lie beyond the logic’s simple polymorphism.
Building on the BNF infrastructure, we disproved this folklore belief by showing
how to define a large class of nonuniform datatypes by reduction to their uniform
counterparts within HOL [13,36].

Our constructions allow variations along several axes for both datatypes
and codatatypes. They allow multiple recursive occurrences, with different type
arguments:

nonuniform datatype α plist′ = Nil | Cons1 α (α plist′) | Cons2 α ((α × α) plist′)

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 13

They allow multiple type arguments, which may all vary independently of
the others. Moreover, they allow the presence of uniform or nonuniform
(co)datatypes and other BNFs both around the type arguments and around
the recursive type occurrences:

nonuniform datatype α crazy = Node α (((((α pstream) fset) crazy) fset) list)

Once a nonuniform datatype has been introduced, users want to define
functions that recurse on it and carry out proofs by induction involving these
functions—and similarly for codatatypes. A uniform datatype definition gener-
ates an induction theorem and a recursor. Nonuniform datatypes pose a chal-
lenge, because neither the induction theorem nor the recursor can be expressed
in HOL, due to its limited polymorphism. For example, the induction principle
for plist should look like this:

∧
Q. Q Nil ∧ (∧

x xs. Q xs =�⇒ Q (Cons x xs)
)

=�⇒ ∧
ys. Q ys

However, this formula is not typable in HOL, because the second and third
occurrences of the variable Q need different types: (α × α) plist → bool versus
α plist → bool. Our solution is to replace the theorem by a procedure parame-
terized by a polymorphic property ϕα : α plist → bool. For plist, the proce-
dure transforms a proof goal of the form ϕα ys into two subgoals ϕα Nil and∧

x xs. ϕα×α xs =�⇒ ϕα (Cons x xs). A weak form of parametricity is needed to
recursively transfer properties about ϕα to properties about ϕα×α. Our approach
to (co)recursion is similar.

9 Tool Integration

Lifting and Transfer. Isabelle/HOL’s Lifting and Transfer tools [26] provide
automation for working with type abstractions introduced via the typedef com-
mand. Lifting defines constants on the newly introduced abstract type from con-
stants on the original raw type. Transfer reduces proof goals about the abstract
type to goals about the raw type. Both tools are centered around parametricity
and relators.

The BNF infrastructure serves as an abundant supply of relator constants,
their properties, and parametricity theorems about the constructors, ‘case’ com-
binators, recursors, and the BNF map, set, and relator constants. The inter-
action between Lifting, Transfer, and the BNF and (co)datatype databases is
implemented using Isabelle’s plugin mechanism. Plugins are callbacks that are
executed upon every update to the BNF or (co)datatype database, as well as for
all existing database entries at the moment of the registration of the plugin. The
Lifting and Transfer plugins derive and register properties in the format accepted
by those tools from the corresponding properties in the BNF and (co)datatype
databases.

To enable nested recursion through types introduced by typedef , we must
register the types as BNFs. The BNF structure can often be lifted from the raw
type to the abstract type in a canonical way. The command lift bnf automates

14 J. Biendarra et al.

this lifting based on a few properties of the carved-out subset: Essentially, the
subset must be closed under map f for any f , where map is the map function of
the raw type’s BNF. If the carved out subset is the entire type, the copy bnf
command performs the trivial lifting of the BNF structure. This command is par-
ticularly useful to register types defined via Isabelle/HOL’s record command,
which are type copies of some product type, as BNFs.

Size, Countability, Comparators, Show, and Hash. For each finitary data-
type τ , the size plugin generates a function size : τ → nat. The fun and function
commands [29] rely on size to prove termination of recursive functions on data-
types.

The countable datatype tactic can be used to prove the countability of many
datatypes, building on the countability of the types appearing in their definitions.

The derive command [46], provided by the Archive of Formal Proofs [47],
automatically generates comparators, show functions, and hash functions for
a specified datatype and can be extended to generate other operations. The
mechanism is inspired by Haskell’s deriving mechanism, with the important
difference that it also provides theorems about the operations it introduces.

Nitpick and Sledgehammer. Nitpick [6,8] is a counterexample generator for
Isabelle/HOL that builds on Kodkod [49], a SAT-based first-order relational
model finder. Nitpick supported codatatypes even before the introduction of a
codatatype command. Users could define custom codatatypes from first prin-
ciples and tell Nitpick to employ its efficient first-order relational axiomatization
of ω-regular values (e.g., cyclic values).

Sledgehammer integrates automatic theorem provers in Isabelle/HOL to pro-
vide one-click proof automation. Some automatic provers have native support
for datatypes [28,38,42]; for these, Sledgehammer generates native definitions,
which are often more efficient and complete than first-order axiomatizations.
Blanchette also collaborated with the developers of the SMT solver CVC4 to
add codatatypes to their solver [42].

10 Applications

Coinductive. Lochbihler’s Coinductive library [31] defines general-purpose
codatatypes, notably extended natural numbers (N � {∞}), lazy lists, and
streams. It also provides related functions and a large collection of lemmas about
these. Back in 2010, every codatatype was constructed manually—including its
constructors and corecursor—and operations were defined directly in terms of the
corecursor. Today, the codatatypes are defined with codatatype and most func-
tions with primcorec, leading to considerably shorter definitions and proofs [12].
The library is used in several applications, including in Hölzl’s formalization of
Markov chains and processes [24,25] and in Lochbihler’s JinjaThreads project
to verify a Java compiler and formalize the Java memory model [30,32,33].

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 15

Coinductive Languages. Rutten [44] views formal languages as infinite tries—
i.e., prefix trees branching over the alphabet with Boolean labels at the nodes
indicating whether the path from the root denotes a word in the language.
Traytel [50] formalized these tries in Isabelle as

codatatype α lang = Lang bool (α → α lang)

a type that nests corecursion through the right-hand side of the function space
arrow (→). He also defined regular operations on them as corecursive functions
and proved by coinduction that the defined operations form a Kleene algebra.

Completeness of First-Order Logic. Gödel’s completeness theorem [21] is a
central result about first-order logic. Blanchette, Popescu, and Traytel [9,14,16]
formalized a Beth–Hintikka-style proof [27] in Isabelle/HOL. It depends on a
Gentzen or tableau system and performs a search that builds either a finite
deduction tree yielding a proof (or refutation, depending on the system) or an
infinite tree from which a countermodel (or model) can be extracted.

Even in the most formalistic textbooks, potentially infinite trees are defined
rigorously (e.g., as prefix-closed sets), but the reasoning is performed infor-
mally, disregarding the definition and relying on the intuitive notion of trees. By
contrast, the formalization relies on α ltreefs (Sect. 1), a codatatype of finitely
branching, possibly infinite trees with nodes labeled by elements in a set α of
inference rules. One could argue that trees are intuitive and do not need a formal
treatment, but the same holds for the syntax of formulas, which is treated very
rigorously in most textbooks.

The core of the proof establishes an abstract property of possibly infinite
derivation trees, independently of the concrete syntax or inference rules. This
separation of concerns simplifies the presentation. The abstract proof can be
instantiated for a wide range of Gentzen and tableau systems as well as variants
of first-order logic.

IsaFoR and CeTA. The IsaFoR (Isabelle Formalization of Rewriting) formal
library, developed by Sternagel, Thiemann, and their colleagues, is a collection
of abstract results and concrete techniques from the term rewriting literature.
It forms the basis of the CeTA (Certified Termination Analysis) certifier [48]
for proofs of (non)termination, (non)confluence, and other properties of term
rewriting systems. Termination proofs are represented by complicated mutually
and nested recursive datatypes.

One of the benefits of the modular, BNF-based approach is its scalability.
The previous approach [4,22] implemented in Isabelle/HOL consisted in reducing
specifications with nested recursion to mutually recursive specifications, which
scales poorly (and only allows nesting through datatypes). After the introduction
of the new datatype command in 2014, Thiemann observed that the IsaFoR
session Proof-Checker compiled in 10 minutes on his computer, compared with
50 minutes previously.

Generative Probabilistic Values. Lochbihler [34] proposed generative prob-
abilistic values (GPVs) as a semantic domain for probabilistic input–output

16 J. Biendarra et al.

systems, which he uses to formalize and verify cryptographic algorithms. Con-
ceptually, each GPV chooses probabilistically between failing, terminating with
a result of type α, and continuing by producing an output γ and transitioning
into a reactive probabilistic value, which waits for a response ρ of the environ-
ment before moving to the generative successor state. Lochbihler modeled GPVs
as a codatatype (α, γ, ρ) gpv and defined a monadic language on GPVs similar
to a coroutine monad:

codatatype (α, γ, ρ) gpv = GPV (unGPV: (α + γ × (ρ → (α, γ, ρ) gpv)) spmf)

This codatatype definition exploits the full generality that BNFs provide as it
corecurses through the nonfree type constructor spmf of discrete subprobability
distributions and through the function space (→), products (×), and sums (+).

The definition of the ‘while’ loop corecurses through the monadic sequencing
operator >>=gpv and is accepted by corec after >>=gpv has been registered as a
friend (Sect. 7):

corec while : (σ → bool) → (σ → (σ, γ, ρ) gpv) → σ → (σ, γ, ρ) gpv where
while g b s =
GPV (mapspmf (map+ id (map× id (λx r. x r >>=gpv while g b))) (search g b s))

The auxiliary operation search g b s iterates the loop body b starting from
state s until the loop guard g is falsified or the first interaction is found. It
is defined as the least fixpoint of the recursive specification in the spmf monad
below. The search is needed to expose the constructor guard in while’s definition.
The recursion in search must be manually separated from the corecursion as
the recursion is not well founded, so search is not the only solution—e.g., it is
unspecified for g s = True and b s = GPV (returnspmf (Inl s)).

search g b s = (if g s then
unGPV (b s) >>=spmf (λx. case x of Inl s′ ⇒ search g b s′ | ⇒ returnspmf x)

else returnspmf (Inl s))

Nested and Hereditary Multisets. Blanchette, Fleury, and Traytel [7,11]
formalized a collection of results about (finite) nested multisets, as a case study
for BNFs. Nested multisets can be defined simply, exploiting the BNF structure
of multiset:

datatype α nmultiset = Elem α | MSet ((α nmultiset) multiset)

This type forms the basis of their formalization of Dershowitz and Manna’s
nested multiset order [20]. If we omit the Elem case, we obtain the hereditary
multisets instead:

datatype hmultiset = HMSet (hmultiset multiset)

This type is similar to hereditarily finite sets, a model of set theory without the
axiom of infinity, but with multisets instead of finite sets. Indeed, we can replace
multiset with fset to obtain the hereditarily finite sets.

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 17

It is easy to embed hmultiset in α nmultiset, and using the Lifting and Trans-
fer tools, we can lift definitions and results from the larger type to the smaller
type, such as the definition of the nested multiset order. Hereditary multisets
offer a convenient syntactic representation for ordinals below ε0, which can be
expressed in Cantor normal form:

α :: = ωα1 · c1 + · · · + ωαn · cn

where ci ∈ N
>0 and α1 > · · · > αn. The correspondence with hereditary multi-

sets is straightforward:

α :: = {α1, . . . , α1︸ ︷︷ ︸
c1 occurrences

, . . . , αn, . . . , αn︸ ︷︷ ︸
cn occurrences

}

The coefficients ci are represented by multiset multiplicities, and the ω exponents
are the multiset’s members. Thus, {} = 0; {0} = {{}} = ω0 = 1; {0, 0, 0} =
{{}, {}, {}} = ω0 · 3 = 3; {1} = {{{}}} = ω1 = ω; and {ω} = {{{{}}}} = ωω.

The hereditary multisets were used to represent syntactic ordinals in a proof
of Goodstein’s theorem [7,11], in an ongoing proof of the decidability of unary
PCF (programming computable functions) [7,11], and in a formalization of trans-
finite Knuth–Bendix orders [2,3].

11 Conclusion

It is widely recognized that proof automation is important for usability of a
proof assistant, but it is not the only factor. Many formalizations depend on
an expressive specification language. The axiomatic approach, which is favored
in some subcommunities, is considered unreliable in others. Extending the logic
is also a problematic option: Not only must the metatheory be extended, but
the existing tools must be adapted. Moreover, the developers and users of the
system must be convinced of the correctness and necessity of the extension.

Our challenge was to combine specification mechanisms that are both expres-
sive and trustworthy, without introducing new axioms or changing the logic. We
believe we have succeeded as far as (co)datatypes and (co)recursion are con-
cerned, but more could be done, notably for nonfree datatypes [45]. Our new
commands, based on the notion of a bounded natural functor, probably consti-
tute the largest definitional package to have been implemented in a proof assis-
tant. Makarius Wenzel [54], Isabelle’s lead developer, jocularly called it “one of
the greatest engineering projects since Stonehenge!”

Acknowledgments. We first want to acknowledge the support and encourage-
ment of past and current bosses: David Basin, Wan Fokkink, Stephan Merz, Aart
Middeldorp, Tobias Nipkow, and Christoph Weidenbach. We are grateful to the Fro-
CoS 2017 program chairs, Clare Dixon and Marcelo Finger, and to the program com-
mittee for giving us this opportunity to present our research. We are also indebted to
Andreas Abel, Stefan Berghofer, Sascha Böhme, Lukas Bulwahn, Elsa Gunter, Florian

18 J. Biendarra et al.

Haftmann, Martin Hofmann, Brian Huffman, Lars Hupel, Alexander Krauss, Peter
Lammich, Rustan Leino, Stefan Milius, Lutz Schröder, Mark Summerfield, Christian
Urban, Daniel Wand, and Makarius Wenzel, and to dozens of anonymous review-
ers (including those who rejected our manuscript “Witnessing (co)datatypes” [18] six
times).

Blanchette was supported by the Deutsche Forschungsgemeinschaft (DFG) projects
“Quis Custodiet” (NI 491/11-2) and “Den Hammer härten” (NI 491/14-1). He
also received funding from the European Research Council under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 713999,
Matryoshka). Hölzl was supported by the DFG project “Verifikation probabilistischer
Modelle in interaktiven Theorembeweisern” (NI 491/15-1). Kunčar and Popescu were
supported by the DFG project “Security Type Systems and Deduction” (NI 491/13-2
and NI 491/13-3) as part of the program Reliably Secure Software Systems (RS3, pri-
ority program 1496). Kunčar was also supported by the DFG project “Integration der
Logik HOL mit den Programmiersprachen ML und Haskell” (NI 491/10-2). Lochbihler
was supported by the Swiss National Science Foundation (SNSF) grant “Formalis-
ing Computational Soundness for Protocol Implementations” (153217). Popescu was
supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
starting grant “VOWS: Verification of Web-based Systems” (EP/N019547/1).
Sternagel and Thiemann were supported by the Austrian Science Fund (FWF): P27502
and Y757. Traytel was supported by the DFG program “Programm- und Modell-
Analyse” (PUMA, doctorate program 1480). The authors are listed alphabetically.

References

1. Bartels, F.: Generalised coinduction. Math. Struct. Comput. Sci. 13(2), 321–348
(2003)

2. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth–
Bendix orders for lambda-free higher-order terms. Archive of Formal Proofs (2016).
Formal proof development. http://isa-afp.org/entries/Lambda Free KBOs.shtml

3. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–
Bendix order for lambda-free higher-order terms. In: de Moura, L. (ed.)
CADE-26. LNCS, vol. 10395, pp. 432–453. Springer, Cham (2017). doi:10.1007/
978-3-319-63046-5 27

4. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999).
doi:10.1007/3-540-48256-3 3

5. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development–
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004). doi:10.1007/978-3-662-07964-5

6. Blanchette, J.C.: Relational analysis of (co)inductive predicates, (co)inductive
datatypes, and (co)recursive functions. Softw. Qual. J. 21(1), 101–126 (2013)

7. Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets,
and syntactic ordinals in Isabelle/HOL. In: Miller, D. (ed.) FSCD 2017. LIPIcs,
vol. 84, pp. 11:1–11:17 (2017). Schloss Dagstuhl—Leibniz-Zentrum für Informatik

8. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://dx.doi.org/10.1007/978-3-319-63046-5_27
http://dx.doi.org/10.1007/978-3-319-63046-5_27
http://dx.doi.org/10.1007/3-540-48256-3_3
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 19

9. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)

10. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with
benefits. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 111–140. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54434-1 5

11. Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hered-
itary multisets, and syntactic ordinals. Archive of Formal Proofs (2016). Formal
proof development. http://isa-afp.org/entries/Nested Multisets Ordinals.shtml

12. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). doi:10.1007/
978-3-319-08970-6 7

13. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for higher-order logic. In: Ouaknine, J. (ed.) LICS 2017. IEEE Com-
puter Society (2017)

14. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of For-
mal Proofs (2014). Formal proof development. http://isa-afp.org/entries/Abstract
Completeness.shtml

15. Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: Klein,
G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 111–127. Springer, Cham
(2014). doi:10.1007/978-3-319-08970-6 8

16. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol.
8562, pp. 46–60. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 4

17. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion–
a proof assistant perspective. In: Fisher, K., Reppy, J.H. (eds.) ICFP 2015, pp.
192–204. ACM (2015)

18. Blanchette, J.C., Popescu, A., Traytel, D.: Witnessing (co)datatypes. In: Vitek,
J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 359–382. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46669-8 15

19. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination
proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 38–53. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4 5

20. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. In: Mau-
rer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 188–202. Springer, Heidelberg
(1979). doi:10.1007/3-540-09510-1 15

21. Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, Universität
Wien (1929)

22. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In:
TPHOLs 1992. IFIP Transactions, vol. A-20, pp. 561–568. North-Holland/Elsevier
(1993)

23. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure. J.
Funct. Program. 16(2), 197–217 (2006)

24. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. J. Autom.
Reason. doi:10.1007/s10817-016-9401-5

25. Hölzl, J.: Markov processes in Isabelle/HOL. In: Bertot, Y., Vafeiadis, V. (eds.)
CPP 2017, pp. 100–111. ACM (2017)

26. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Cham (2013). doi:10.1007/978-3-319-03545-1 9

http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://isa-afp.org/entries/Abstract_Completeness.shtml
http://isa-afp.org/entries/Abstract_Completeness.shtml
http://dx.doi.org/10.1007/978-3-319-08970-6_8
http://dx.doi.org/10.1007/978-3-319-08587-6_4
http://dx.doi.org/10.1007/978-3-662-46669-8_15
http://dx.doi.org/10.1007/978-3-540-74591-4_5
http://dx.doi.org/10.1007/3-540-09510-1_15
http://dx.doi.org/10.1007/s10817-016-9401-5
http://dx.doi.org/10.1007/978-3-319-03545-1_9

20 J. Biendarra et al.

27. Kleene, S.C.: Mathematical Logic. Wiley, New York (1967)
28. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.

In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 260–270. ACM (2017)
29. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,

Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006). doi:10.1007/11814771 48

30. Lochbihler, A.: Jinja with threads. Archive of Formal Proofs (2007). Formal proof
development. http://isa-afp.org/entries/JinjaThreads.shtml

31. Lochbihler, A.: Coinductive. Archive of Formal Proofs (2010). Formal proof devel-
opment. http://afp.sf.net/entries/Coinductive.shtml

32. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11957-6 23

33. Lochbihler, A.: Making the Java memory model safe. ACM Trans. Program. Lang.
Syst. 35(4), 12:1–12:65 (2014)

34. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

35. Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topolo-
gies. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 341–357.
Springer, Cham (2014). doi:10.1007/978-3-319-08970-6 22

36. Meier, F.: Non-uniform datatypes in Isabelle/HOL. M.Sc. thesis, ETH Zürich
(2016)

37. Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modular treat-
ment of recursive definitions. Log. Methods Comput. Sci. 9(3), 1–52 (2013)

38. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

39. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/
3-540-45949-9

40. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1999)

41. Panny, L.: Primitively (co)recursive function definitions for Isabelle/HOL. B.Sc.
thesis, Technische Universität München (2014)

42. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. J. Autom. Reason. 58(3), 341–362 (2017)

43. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP 1983,
pp. 513–523 (1983)

44. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: San-
giorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218.
Springer, Heidelberg (1998). doi:10.1007/BFb0055624

45. Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 114–130. Springer, Cham
(2013). doi:10.1007/978-3-319-03545-1 8

46. Sternagel, C., Thiemann, R.: Deriving comparators and show functions in Isa-
belle/HOL. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 421–
437. Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 28

47. Sternagel, C., Thiemann, R.: Deriving class instances for datatypes. Archive of For-
mal Proofs (2015). Formal proof development. http://isa-afp.org/entries/Deriving.
shtml

http://dx.doi.org/10.1007/11814771_48
http://isa-afp.org/entries/JinjaThreads.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://dx.doi.org/10.1007/978-3-319-08970-6_22
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1007/978-3-319-03545-1_8
http://dx.doi.org/10.1007/978-3-319-22102-1_28
http://isa-afp.org/entries/Deriving.shtml
http://isa-afp.org/entries/Deriving.shtml

Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic 21

48. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

49. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

50. Traytel, D.: Formal languages, formally and coinductively. In: Kesner, D., Pientka,
B. (eds.) FSCD 2016. LIPIcs, vol. 52, pp. 31:1–31:17 (2016). Schloss Dagstuhl—
Leibniz-Zentrum für Informatik

51. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic—category theory applied to theorem proving.
In: LICS 2012, pp. 596–605. IEEE Computer Society (2012)

52. Traytel, D.: A category theory based (co)datatype package for Isabelle/HOL. M.Sc.
thesis, Technische Universität München (2012)

53. Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof docu-
ments. From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Stud-
ies in Logic, Grammar, and Rhetoric 10(23), 277–298 (2007). Uniwersytet w
Bia�lymstoku

54. Wenzel, M.: Re: [isabelle] “Unfolding” the sum-of-products encoding of data-
types (2015). https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/
msg00082.html

http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-540-71209-1_49
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/msg00082.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/msg00082.html

Designing Theory Solvers with Extensions

Andrew Reynolds1, Cesare Tinelli1(B), Dejan Jovanović1,3, and Clark Barrett2

1 Department of Computer Science, The University of Iowa, Iowa, USA
cesare-tinelli@uiowa.edu

2 Department of Computer Science, Stanford University, Stanford, USA
3 SRI International, Menlo Park, USA

Abstract. Satisfiability Modulo Theories (SMT) solvers have been
developed to natively support a wide range of theories, including linear
arithmetic, bit-vectors, strings, algebraic datatypes and finite sets. They
handle constraints in these theories using specialized theory solvers. In
this paper, we overview the design of these solvers, specifically focusing
on theories whose function symbols are partitioned into a base signature
and an extended signature. We introduce generic techniques that can be
used in solvers for extended theories, including a new context-dependent
simplification technique and model-based refinement techniques. We pro-
vide case studies showing our techniques can be leveraged for reasoning
in an extended theory of strings, for bit-vector approaches that rely on
lazy bit-blasting and for new approaches to non-linear arithmetic.

1 Introduction

A growing number of formal methods applications leverage SMT solvers as rea-
soning engines. To accommodate the unique requirements of these applications,
a number of new theories are now natively supported by SMT solvers, includ-
ing unbounded strings with length constraints [31,39], algebraic datatypes [33],
finite sets [5], and floating-point arithmetic [13]. Solvers for these theories share
functionalities, such as reporting conflicts and propagations based on theory rea-
soning. From both a formal and an engineering perspective, there is a need to
express the common features in these solvers.

This paper focuses on theories whose function symbols can be partitioned
into a base signature Σb and an extension signature Σe. We will refer to such
theories as extended theories. The motivation for considering extended theories
is two-fold:

1. Assume we have developed a constraint solving procedure for some Σb-theory,
and say we want to extend this procedure to handle additional symbols in
some signature Σe. Can we reuse our procedure for Σb-constraints in part to
develop a procedure for Σb ∪ Σe-constraints?

2. Assume we want to optimize a procedure for Σ-constraints. One way is to
partition its signature Σ into Σb ∪ Σe, where Σb contains the symbols that
are easier to reason about. Can we use a stratified approach that first uses
our existing procedure on Σb-constraints and reasons about Σe-constraints
only when needed?

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 22–40, 2017.
DOI: 10.1007/978-3-319-66167-4 2

Designing Theory Solvers with Extensions 23

We develop an approach for handling extended theories can be used for
answering both of these questions. This paper observes that the design of many
theory solvers for extended theories follows a similar pattern. First, we observe
that it is often possible to reduce extended constraints to basic ones by reasoning
modulo the equalities entailed by the current assignment. As a simple example,
in the context where y ≈ 2 is entailed by the current assignment, the non-linear
constraint x × y + y > 5 can be simplified to a linear one 2 × x > 3. We refer
to this technique as context-dependent simplification. Constraints that are not
reducible in this way can be handled by techniques that follow the common
paradigm of model-based abstraction refinement, where basic constraints can
be used to refine the abstraction of extended terms. The latter is an approach
followed used by several recent approaches to SMT solving [15,17].

In previous work, we showed that techniques based on simplification can
significantly improve the performance of DPLL(T)-based string solvers [34]. In
this work: we formalize the design of theory solvers with extensions, specifically:

– we introduce a generic technique, which we call context-dependent simplifi-
cation, which can reduce extended constraints to basic ones and propagate
equalities between extended terms;

– we define a generic approach for extended theories that leverages this tech-
nique and others to implement modular extensions for the theories of strings,
linear arithmetic and bit-vectors, showing that:

• context-dependent simplification techniques significantly improve the per-
formance and precision of our solver for an extended theory of strings;

• lightweight techniques based on context-dependent simplification and
model-based refinement can extend DPLL(T) linear arithmetic solvers
to handle non-linear arithmetic and have some advantages over state-of-
the-art solvers; and

• the performance of bit-vector solvers can be improved by delaying bit-
blasting of certain functions that require sophisticated propositional
encodings.

1.1 Formal Preliminaries

We assume the reader is familiar with the following notions from many-sorted
logic with equality: (sorted) signature, term, literal, formula, clause, free variable,
interpretation, and satisfiability of a formula in an interpretation (see, e.g., [11]
for more details). We consider only signatures Σ that contain an (infix) logical
symbol ≈ for equality. We write t �≈ s as shorthand for ¬t ≈ s. We write Lit(ϕ)
to denote the set of literals of formula ϕ. We extend these notations to tuples
and sets of terms or formulas as expected.

If ϕ is a Σ-formula and I a Σ-interpretation, we write I |= ϕ if I satisfies ϕ.
If t is a term, we denote by I(t) the value of t in I. A theory is a pair T = (Σ, I)
where Σ is a signature and I is a class of Σ-interpretations, the models of
T , that is closed under variable reassignment (i.e., every Σ-interpretation that

24 A. Reynolds et al.

differs from one in I only in how it interprets the variables is also in I). A Σ-
formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some (resp.,
no) interpretation in I. A set Γ of Σ-formulas entails in T a Σ-formula ϕ, written
Γ |=T ϕ, if every interpretation in I that satisfies all formulas in Γ satisfies ϕ
as well. Two Σ-formulas are equisatisfiable in T if for every model A of T that
satisfies one, there is a model of T that satisfies the other and differs from A
at most over the free variables not shared by the two formulas. We say that Γ
propositionally entails ϕ, written Γ |=p ϕ, if Γ entails ϕ when considering all
atoms as propositional variables.

2 Theory Solvers

In this paper, we are interested in the design of theory solvers. At an abstract level,
a theory solver for a Σ-theory T is a terminating procedure specialized in deter-
mining the satisfiability of sets of T -literals, interpreted conjunctively. For our pur-
poses, we summarize the interface for a theory solver in Fig. 1. We view a theory
solver as a procedure SolveT that takes as input a set of T -literals M, which we will
call a context, and outputs a value of the following algebraic datatype

type Response = Learn of Clause | Infer of Literal | Sat of Model | Unknown

where Clause, Literal and Model are types respectively for representing clauses,
literals and interpretations. If SolveT (M) = Sat(M) then M is a finitary repre-
sentation of a model of T that satisfies M, hence we will identity the two in the
rest of the paper. We assume that no input context contains both a literal and
its negation.

The value returned by SolveT can be used in various ways depending on
the overall search procedure. In most SMT solvers, this search procedure is
based on variants of the DPLL(T) procedure [32] where a theory solver for T
is used in combination with a CDCL propositional satisfiability (SAT) solver
to determine the satisfiability in T of quantifier-free formulas. In a nutshell,
given a quantifier-free formula ϕ, this procedure maintains a set of Σ-clauses F
equisatisfiable in T with ϕ, and tries to construct a context M that is satisfiable
in T and propositionally entails F. Such context, if it exists, is a witness of the
satisfiability of ϕ in T . Constructing M and checking its satisfiability in T is
done with the aid of a theory solver SolveT .

SolveT (M) : Return one of the following:
Learn(ϕ) where ϕ = �1 ∨ . . . ∨ �n, �1, . . . , �n ⊆ L, ∅ |=T ϕ, and M �|=p ϕ
Infer(�) where M |=T �, � �∈ M, and � ∈ L
Sat(M) where M |= M

Unknown

Fig. 1. Basic functionality of a theory solver.

Designing Theory Solvers with Extensions 25

As indicated in Fig. 1, calling a theory solver on a set M of literal may produce
one of four results. In the first case (Learn), the theory solver returns a lemma,
clause ϕ that is valid in T and not propositionally entailed by M. This clause
may consist of complements of literals in M, indicating that M is unsatisfiable
in T , or may contain atoms not in M, indicating to the rest of the DPLL(T)
procedure that M needs to be extended further. In the second case (Infer), the
theory solver returns a literal � that is entailed by the current context M. We
assume here that the literals returned by these calls are taken from a set L of
T -literals that ultimately depends on the original input formula ϕ. In DPLL(T),
this typically includes all literals over the atoms occurring in F, but may include
additional ones, for instance, for theory solvers that implement the splitting-on-
demand paradigm [10]. In the third case (Sat), the procedure returns a (finitary
representation) of a model of T that satisfies M. In the last case, the theory
solver simply returns Unknown, indicating that it is unable to determine the
satisfiability of M or suggest further extensions.

Using previous results on DPLL(T) [10,32], it can be shown that a DPLL(T)
procedure invoking a theory solver SolveT based on this interface is:

– refutation-sound (i.e., it says an input formula is unsatisfiable in T only if it
is so),

– model-sound (i.e., it says an input formula is satisfiable in T only if it is so),
– refutation-complete (i.e., it says an input formula is unsatisfiable in T when-

ever it is so) if SolveT never returns Unknown, and
– terminating if L is a finite set.

3 Theory Solvers with Extensions

In this section, we consider a Σ-theory T whose signature Σ is the union Σb∪Σe

of a basic signature Σb and an extention signature Σe where Σb and Σe have the
same sort symbols and share no function symbols. We will refer to the function
symbols in Σb as basic function symbols, and to those in Σe as extension function
symbols.

We are interested in developing a procedure for the T -satisfiability of a set F
of Σ-clauses based on the availability of a theory solver SolvebT , which implements
the interface from Fig. 1, for contexts M consisting of Σb-literals only. For the pur-
poses of the presentation, we assume that the variables in F are from some infi-
nite set X and we associate to every Σ-term t over X a unique variable zt not
from X which we call the purification variable for t. If e is a Σ-term or formula
possibly containing purification variables, we denote by X(e) the set {zt ≈ t |
zt is a purification variable in e}; we write �e� to denote the expression eσ where
σ is the substitution {zt �→ t | xt ≈ t ∈ X(e)}. We extend these notations to sets
of terms or formulas as expected.

Without loss of generality, we assume every extension function symbol f
in F occurs only in terms of the form f(x1, . . . , xn) where x1, . . . , xn are variables
from X. We let
F� be the result of replacing every term t of this form in F

26 A. Reynolds et al.

by its purification variable zt. It is not difficult to show that
F� ∪ X(
F�) is
equisatisfiable with F in T .

Example 1. Assume f ∈ Σe. Let F be the set {f(x5, x3) ≈ x4, x5 ≈ f(x1, x2)}.
After replacing f(x5, x3) and f(x1, x2) with their respective purification vari-
ables z1 and z2, say, we get
F� = {z1 ≈ x4, x5 ≈ z2} and X(
F�) = {z1 ≈
f(x5, x3), z2 ≈ f(x1, x2)}. Note that �
F�� = F. �

We are interested in developing extended theory solvers which take as input
extended contexts, that is, sets of literals of the form M∪X(M), where M a given
set of Σ-literals possibly with purification variables (coming from the purification
process for F). We discuss in the following two generic classes of techniques:
context-dependent simplification and model-based refinement that can be used
to develop extended theory solvers on top of a basic solver.

3.1 Context-Dependent Simplification

We first observe that many theory solvers already have several features of interest
handling extended contexts M ∪ X(M), namely they:

1. Compute an equivalence relation over terms T (M), where t1 and t2 are in the
same equivalence class if and only if M |=T t1 ≈ t2, and

2. Make use of simplified forms t↓ of Σ-terms t, where ∅ |=T t ≈ t↓.

Regarding the first point, a number of theory solvers [5,26,31,33] are devel-
oped as modular extensions of the standard congruence closure algorithm, which
builds equivalence classes over the terms in the current context.

Regarding the second point, computing simplified forms for T -literals is
advantageous since it reduces the number of cases that must be handled by the
procedure for T . Moreover, it reduces the number of unique theory literals for
a given input, which is highly beneficial for the performance of DPLL(T)-based
solvers since it allows the underlying SAT solver to abstract multiple T -literals as
the same propositional (Boolean) variable. For example, assuming (x × 2 > 8)↓
is x > 4, the set {x × 2 > 8, ¬(x > 4)} can be simplified to {x > 4, ¬(x > 4)},
which is already unsatisfiable at the propositional level. In most SMT solvers,
this is determined by simplification and does not require invoking a theory solver
that implements a procedure for arithmetic.

We argue that it is helpful to apply the same simplification technique
while taking into account the equalities that are entailed by M. In detail,
let y be a tuple of variables and s be a tuple of terms from T (M) where
M |=T y ≈ s. Let σ be the substitution {y �→ s} which we will refer to as
a derivable substitution (in M). For any term t, we have that M |=T t ≈ (tσ)↓
by definition of simplifications and derivable substitutions.

Designing Theory Solvers with Extensions 27

Reducing Extended Terms to Basic Terms. We may derive equalities between
extended terms and basic ones based on simplification. In particular, consider an
equality x ≈ t from the X(M) component of our context, recalling that t is a Σe-
term. If (tσ)↓ is a Σb-term, then it must be that M |=T (x ≈ t) ⇔ (x ≈ (tσ)↓).
Hence, we may discard x ≈ t and handle x ≈ (tσ)↓ using the basic procedure.

Example 2. Consider the extended theory A of (integer or rational) arith-
metic, whose basic signature Σb

A contains the symbols of linear arithmetic and
whose extension signature Σe

A contains the multiplication symbol ×. Let M =
{z ≈ x, y ≈ w + 2, w ≈ 1} and X(M) = {x ≈ y × y}. Since M |=A y ≈ 3, the
substitution σ = {y �→ 3} is a derivable substitution inM. Assuming the simplified
form linearizes multiplication by constants, we have that (y×y)σ↓ = (3×3)↓ = 9
where, observe, 9 is a Σb

A-term. Thus, we may infer the (basic) equality x ≈ 9 which
is entailed by M. �

Inferring Equivalence of Extended Terms. If two extended terms t1 and t2 can
be simplified to the same term under a derivable substitution, we can conclude
that they must be equivalent. This is regardless of whether their simplified form
is a basic term or not.

Example 3. LetM = {x1 �≈ x2, w ≈ 4·z, y ≈ 2·z} andX(M) = {x1 ≈ y×y, x2 ≈
w × z} where · denotes linear multiplication (i.e., 2 · z is equivalent to z + z in A).
We have that σ = {w �→ 4 ·z, y �→ 2 ·z} is a derivable substitution inM. Moreover,
(y × y)σ↓ = ((2 · z) × (2 · z))↓ = 4 · (z × z) = ((4 · z) × z)↓ = (w × z)σ↓. Thus, we
may infer that x1 ≈ x2 is entailed by M (which shows that M is unsatisfiable in A).
�

We call this class of techniques context-dependent simplification. For the-
ory solvers that build an equivalence relation over terms, a simple method for
constructing a derivable substitution is to map every variable in T (M) to the
representative of its equivalence class in the congruence closure of M. However,
more sophisticated methods for constructing derivable substitutions are possible,
which we will describe later.

3.2 Model-Based Refinement

Note that
F� is effectively a conservative abstraction of F. A complementary
approach to context-dependent simplification involves then refining this abstrac-
tion as needed to determine the satisfiability of F in T . We do that based on
the model that the basic solver finds for a context M, which consists of liter-
als from F. Generally speaking, other SMT theory approaches already rely on
some form of model-based refinement [15,17]. This section defines this notion
according to the terminology used here.

Consider an extended context M ∪ X(M) where context-dependent simplifi-
cation does not apply, and moreover the basic theory solver has found that M
is satisfied by some model M of T . If M |= X(M), then it is a model of our
context. On the other hand, if M �|= X(M), then the extended solver may be

28 A. Reynolds et al.

instrumented to return a clause that when added to F refines the abstraction by
eliminating the spurious model M. We generate such clauses from refinement
lemmas.

Definition 1. Let M∪X(M) be an extended context and let M be a model of T
satisfying M. A refinement lemma for (M,X(M),M) is a Σb-clause ϕ such that
X(M) |=T ϕ and M �|= ϕ. �

Example 4. Let M be the set {x �≈ 0} and X(M) be {x ≈ y × y}. Let M be a
model A satisfying M with M(x) = −1. A refinement lemma for (M,X(M),M)
is x ≥ 0. Observe that �x ≥ 0� = y × y ≥ 0 is valid in T . �

An extended solver that constructs a refinement lemma ϕ for an input context
M∪X(M) may return clause �ϕ� which by construction is valid in T , as one can
show.

The following definition will be useful when discussing how refinement lem-
mas are constructed for specific theories.

Definition 2. Let M be a model of T , let M a set of basic constraints. The set:

IX
M(M) = {x ≈ t | x ≈ t ∈ X(M), � ∈ M, x ∈ V(�), M �|= ���}

is the relevant inconsistent subset of X(M) with respect to M. �

To compute the relevant inconsistent subset of X(M) with respect to M, we
consider each literal � ∈ M, and check whether ��� is satisfied by M. For such
literal �σ, IX

M(M) contains the equalities x ≈ t for purification variables x that
occur the free variables of �. Relevant inconsistent subsets are useful because
they tell us which variables should likely appear in refinement lemmas.

Example 5. Let M = {x ≥ 0, y ≥ 0, z ≥ 0}, X(M) = {x ≈ y × z}, and let M be
the model of T satisfying M where M(x) = 3, M(y) = 2, and M(z) = 1. We have
that IX

M(M) = ∅ since �x ≥ 0� = y × z ≥ 0, which is satisfied by M. On the other
hand, if M is the set {x ≥ 3, y ≥ 0, z ≥ 0}, then IX

M(M) = {x ≈ y × z} since
�x ≥ 3� = y × z ≥ 3 which is not satisfied by M. Intuitively, this means the value
of x should be refined based on its definition in X(M), which is y × z. A possible
refinement lemma for (M,X(M),M) is then (y < 3 ∧ z ≈ 1) ⇒ x < 3. �

We will see examples of how refinement lemmas are constructed in Sects. 4
through 6, each of which learn Σb-formulas that state properties of extended
terms that appear in the relevant inconsistent subset of the current context.

3.3 A Strategy for Extended Theory Solvers

We summarize a strategy, given by SolveeT in Fig. 2, for designing a solver to
handle an extended theory. It first tries to apply context-dependent simplifi-
cation techniques based on the two kinds of inferences in Sect. 3.1. Otherwise,

Designing Theory Solvers with Extensions 29

Fig. 2. A strategy for an extended theory solver.

it invokes the basic procedure SolvebT on the basic portion M of our context.
If this determines that M is satisfied by model M, it uses model-based refine-
ment techniques, as described in Sect. 3.2. This will either determine that M is
also a model of X(M) in which case it returns Sat(M), construct a refinement
lemma for (M,X(M),M), or return Unknown. As mentioned, implementations of
model-based refinement vary significantly from theory to theory, and hence our
definition of how refinement lemmas are chosen is intentionally left underspeci-
fied here.

The next three sections considers examples of DPLL(T) theory solvers that
are designed according to Fig. 2. In each section, we provide details on how the
steps in SolveeT are specifically implemented for that theory. We consider an
extended theory of strings, a theory of bit-vectors with a partitioned signature,
and the theory of linear arithmetic extended with multiplication.

4 An Efficient Solver for an Extended Theory of Strings

Recently, SMT solvers have been extended with native support for the theory
unbounded strings and regular expressions. Implementations of these solvers
have significant improved in both performance and reliability in the past several
years [1,31,39]. This support has enabled a number of applications in security
analysis, including symbolic execution approaches that reason about strings as a
built-in type [34].

Consider the extended theory of strings whose signature ΣS contains a sort
Str for character strings and a sort Int for integers. We partition the function
symbols of this signature in two parts. The base signature Σb

S contains the
standard symbols of linear integer arithmetic, words constructed from a finite

30 A. Reynolds et al.

alphabet A, string concatenation con and string length len. The extension signa-
ture Σe

S contains four function symbols whose semantics are as follows in every
model of the theory. For all x, y, z, n,m, the term substr(x, n,m) is interpreted
as the maximal substring of x starting at position n with length at most m, or
the empty string if n is an invalid position; contains(x, y) is interpreted as true if
and only if string x contains string y; idof(x, y, n) is interpreted as the position
of the first occurrence of y in x starting from position n, or −1 if y is empty, n
is an invalid position, or if no such occurrence exists; repl(x, y, z) is interpreted
as the result of replacing the first occurrence in x of y by z, or x if x does not
contain y.

We describe our approach for this extended theory of strings in terms of the
three steps outlined in Fig. 2.

Procedure for Σb
S-constraints. In previous work [31], we developed an effi-

cient calculus for the satisfiability of quantifier-free strings with length con-
straints. The calculus handles Σb

S -constraints (but not Σe
S-constraints), and also

includes partial support for regular expressions. The calculus is implemented as
a theory solver in cvc4. At a high level, this solver infers equalities between
string variables based on a form of unification (e.g., it infers x ≈ z when
con(x, y) ≈ con(z, w) and lenx ≈ len z are both in M), returns splitting lem-
mas based on the lengths of string terms and derives conflicts for instance when
it can infer an equality between distinct character strings. The decidability of
strings constraints, even in the basic signature that includes length constraints, is
an open problem [24]. Nevertheless, the calculus from [31] is sound with respect
to models and refutations, and terminates often for constraints that occur in
applications.

Context-Dependent Simplification. Functions in the extended signature of strings
are a clear target for context-dependent simplification, due to the complexity
of their semantics and the multitude of simplifications that can be applied to
extended string terms. Examples of non-trivial simplifications for extended string
terms include:

contains(con(y, x, abc), con(x, a))↓ = � contains(abcde, con(d, x, a))↓ = ⊥
contains(con(a, x), con(b, x, a))↓ = ⊥ repl(con(a, x), b, c)↓ = con(a, repl(x, b, c))

idof(con(A, x, b), b, 0)↓ = 1 + idof(x,B, 0) repl(x, a, a)↓ = x

The method for computing the simplified form of extended string terms is around
2000 lines of C++ code in the cvc4 code base.1 Despite the complexity of the
simplifier, computing simplified forms often leads to significant performance ben-
efits, as we discuss later. In addition to using aggressive rewriting techniques
for extended string terms, it is often advantageous to use methods for con-
structing derivable substitutions based on flattening sequences of equalities that
involve string concatenation terms. For instance, if M contains x ≈ con(ab, y),
y ≈ con(c, z) and z ≈ con(de, u), where ab, c and de are string constants, then
our implementation computes {x �→ con(abcde, u)} as a derivable substitution
in M.
1 See [34] for more details.

Designing Theory Solvers with Extensions 31

Fig. 3. Reduction of ΣS-constraints to Σb
S -constraints for bounded length K, where z1, z2

are fresh variables. The operation n1−̇n2 denotes the maximum of n1 − n2 and 0.

Model-Based Refinement. If all string variables are known to have length bounded
above by some concrete natural number K, then reasoning about constraints in
the full signature ΣS of the extended theory of strings can be reduced to reasoning
about Σb

S -constraints. Concretely, for any equality of the form x ≈ f(x1, . . . , xn)
where f ∈ Σe

S, we write [[x ≈ f(x1, . . . , xn)]] to denote a formula equivalent to
x ≈ f(x1, . . . , xn) based on the recursive definition in Fig. 3. The size of [[x ≈
f(x1, . . . , xn)]] is finite since the reduction replaces extended terms with simpler
ones based on a well-founded ordering over extended string functions. Our model-
based refinement for the extended theory of strings chooses some x ≈ t in the
relevant inconsistent subset IX

M(M) and returns a lemma of the form (x ≈ t) ⇔
[[x ≈ t]]. The lemmas we learn by this form require us to fix a bound K on the
length of strings. Although not shown here, this can be done in an incremental
fashion by reasoning about bounded integer quantified formulas, that is formulas
of the form ∀k. 0 ≤ k ≤ t ⇒ ϕ, where t does not contain k and ϕ is quantifier-free.
Such formulas can be handled in an incomplete way by guessing upper bounds on
the value of t, and subsequently applying finite instantiation as needed [34].

Similar techniques are used in a number of approaches to the extended theory
of strings [12], which perform this reduction to basic constraints eagerly. In con-
trast to those approaches, we perform this reduction in a model-based manner,
and only when reasoning by context-dependent simplification does not suffice.

Example 6. Let M be {x ≈ ⊥, y ≈ abc, z ≈ con(b, w, a)} and X(M) be
{x ≈ contains(y, z)}, where a, b and abc are string constants. The substitution
σ = {y �→ abc, z ≈ con(b, w, b)} is a derivable substitution in M. Moreover,
contains(y, z)σ↓ = contains(abc, con(b, w, b))↓ = ⊥ with ⊥ a basic term. Thus,
using context-dependent simplification, we may infer that x ≈ contains(y, z) is
equivalent to x ≈ ⊥ in this context. This allows us to avoid constructing the refine-
ment lemma x ≈ contains(y, z) ⇔ [[x ≈ contains(y, z)]] according to Fig. 3. �

Evaluation. We considered 25,386 benchmarks generated by PyEx, an SMT-
based symbolic execution engine for Python programs which is a recent extension
of PyExZ3 [4]. These benchmarks heavily involve string functions in the extended

32 A. Reynolds et al.

PyEx-c (5557) PyEx-z3 (8399) PyEx-z32 (11430) Total (25386)
Solver # time # time # time # time
cvc4+sm 5485 52m 11298 2h33m 7019 1h43m 23802 5h8m
cvc4+m 5377 1h8m 10355 2h29m 6879 3h6m 22611 6h44m
z3 4695 2h44m 8415 5h18m 6258 3h30m 19368 11h33m
z3str2 3291 3h47m 5908 7h24m 4136 4h48m 13335 16h1m

Fig. 4. Table of results of running each solver over benchmarks generated by PyEx,
where all benchmarks were run with a 30 s timeout. The cactus plot shows the cumu-
lative runtime taken by each of the four configurations over all benchmarks from the
three sets.

signature. We compare our implementation in the SMT solver cvc4 [7] against
z3-str [39] and z3 [19], both of which use eager reductions to handle extended
string functions. We tested two configurations of cvc4. The first, cvc4+m uses
model-based refinement techniques (m) for reducing constraints over extended
string terms to basic ones. The second, cvc4+sm additionally uses context-
dependent simplification techniques (s) which, following Fig. 2, are applied with
higher priority than the model-based refinement techniques.2

The results are shown in Fig. 4 for three sets of benchmarks, PyEx-c,
PyEx-z3 and PyEx-z32. These benchmarks were generated by PyEx on func-
tions sampled from popular Python packages (httplib2, pip, pymongo, requests)
using cvc4, z3 and z3-str as a backend solver respectively. The results show that
cvc4+sm has better overall performance than the other solvers, solving 23,802
benchmarks while taking a total of 5 h and 38 min on benchmarks it solves. This
is 1,193 more benchmarks that cvc4 with context-dependent simplification dis-
abled, indicating that context-dependent rewriting is a highly effective technique
for this set. With respect to its nearest competitor z3, which took 11 h and 33 min
on the 19,368 benchmarks its solves, cvc4+sm solved its first 19,368 benchmarks
in 1 h and 23 min, and overall solves a total of 4,434 more benchmarks.

5 Lightweight Techniques for Non-linear Arithmetic

In this section, we consider an extended theory of (real or integer) arithmetic
A whose signature ΣA is partitioned so that Σb

A contains the basic symbols of
linear arithmetic, and Σe

A contains the variadic multiplication symbol ×. In the

2 For details on our experiments, see http://cvc4.stanford.edu/papers/
FroCoS2017-ext.

http://cvc4.stanford.edu/papers/FroCoS2017-ext
http://cvc4.stanford.edu/papers/FroCoS2017-ext

Designing Theory Solvers with Extensions 33

following, a monomial refers to a flattened application of multiplication x1 ×
. . . × xn, where x1, . . . , xn are (not necessarily distinct) variables. The obvious
motivation for this partitioning is that SMT solvers implement efficient decision
procedures for linear arithmetic, but their support for non-linear arithmetic is
limited (and is necessarily incomplete for integer arithmetic). We outline our
approach according to the steps in Fig. 2.

Basic Procedure for Σb
A-constraints. Many efficient solvers for linear arithmetic in

DPLL(T)-based SMT solvers are based on work by de Moura and Dutertre [22].
Approaches for linear arithmetic in our solver cvc4 are described in King’s the-
sis [29].

Context-Dependent Simplification. For arithmetic, context-dependent simplifi-
cation allows us to “linearize” non-linear terms by straightforward evaluation
of constant factors. To start, all literals are normalized to atoms of the form
p ∼ 0 where ∼ is a relational operator and p is a sum of terms of the form
c · x1 × . . . × xn with c a concrete integer or rational constant and x1 × . . . × xn

a monomial. Note a term in this sum is a basic if m ≤ 1. To construct derivable
substitutions for a given set of linear equalities M, we use a technique inspired
by Gaussian elimination that finds a set of variables that are entailed to be equal
to constants based on the equalities in M. For example, if M contains x + y ≈ 4
and y ≈ 3, then {x �→ 1, y �→ 3} is a derivable substitution in M.

Model-Based Refinement. Differently from the theory strings, there is no finite
reduction from extended constraints to basic ones for the theory of arithmetic.
Instead, our approach for model-based refinement technique for equalities x ≈ t
in our relevant inconsistent subset of X(M), where t is a monomial, adds lemmas
that help refine the value of x in future models by stating various properties of
multiplication. We see t as decomposed into the product t1×t2 of two monomials.
Figure 5 lists three basic templates we use for generating refinement lemmas
based on x ≈ t1 × t2. This list is not comprehensive, but represents the three
most commonly used lemma templates in our implementation.

Suppose we have a model M for our set of basic constraints M. Let ϕ be a for-
mula that is an instance of one of the templates in Fig. 5, meets the side conditions
in the figure (if any), and is such that �ϕ� = ϕ{x �→ t1 × t2} is a valid formula in
theoryA. Notice that ϕ is a refinement lemma for (M,X(M),M) if M �|= ϕ. For the
first two lemmas, ϕ is equivalent to a formula whose literals are either of the form
u1 ∼ u2, where ∼ is one of {≈, >,<,≤,≥}, and for i = 1, 2, the term ui is either

Fig. 5. Templates for model-based refinement lemmas for x ≈ t1×t2, where t1, t2, s1, s2
are monomials, p is a polynomial, ∼1, ∼2, ∼ ∈ {≈, >, <, ≤, ≥}, | t | is shorthand for the
if-then-else term ite(t > 0, t, −t), and deg(t) denotes the degree of t.

34 A. Reynolds et al.

0, or a monomial of the form x1 × . . . × xn, where for each j = 1, . . . , n, xj is a
variable from V(X(M)). Only a finite number of literals of this form exist. Thus, all
refinement lemmas generated using the first two templates are built from a finite
set of literals L. A more detailed argument can show that lemmas generated from
the third template are built from a finite set of literals as well. This fact suffices to
argue that our extended solver will generate only a finite number of refinement lem-
mas for a given context M which is enough for termination in DPLL(T). However,
it is not enough for refutation completeness in A since one may need refinement
lemmas that are not an instance of these templates.

Example 7. Let M = {x < 0, y > z} and X(M) = {x ≈ y×z}. Let M be a model
of M where M(x) = −1, M(y) = 3 and M(z) = 2. The relevant inconsistent
subset IX

M(M) contains x ≈ y × z. The formula ϕ = (y > 0 ∧ z > 0) ⇒ x > 0 is
an instance of first template in Fig. 5, and �ϕ� = (y > 0 ∧ z > 0) ⇒ y × z > 0
is valid in A. Since M |= y > 0 ∧ z > 0 but M �|= x > 0, we have that ϕ is a
refinement lemma for (M,X(M),M). Returning �ϕ� as a learned clause has the
effect of ruling out a class of models that includes M in subsequent states. �

Example 8. Let M = {y > 3, x > y, x < 3 · z − 1} and X(M) = {x ≈ y × z}. Let
M be a model of M where M(y) = 4, M(x) = 5 and M(z) = 3, where again
(x ≈ y×z) ∈ IX

M(M). The formula ϕ = (y > 3∧z > 0) ⇒ x > 3 ·z is an instance
of the third template in Fig. 5, and �ϕ� = (y > 3 ∧ z > 0) ⇒ y × z > 3 · z is
valid in A. Since M |= y > 3 ∧ z > 0 but M �|= x > 3 · z, we have that ϕ is a
refinement lemma for (M,X(M),M). Returning �ϕ� as a learned clause suffices
to show this context is unsatisfiable. �

Evaluation. We considered all benchmarks of the SMT-LIB library [9] that con-
tain non-linear real (QF NRA) and non-linear integer (QF NIA) quantifier-free
problems. We evaluated two configurations of cvc4: cvc4+sm and cvc4+m. The
first configuration implements both context-dependent simplification (based on
linearizing variables that are entailed to be equal to constants), and model-based
refinement lemmas (Fig. 5), whereas the second implements model-based refine-
ment only.

The results are presented in Fig. 6. On the QF NRA problems, we compared
cvc4 with z3, yices2 [21], and rasat [37]. rasat is an incomplete interval based
solver, while both z3 and yices2 are complete solvers based on NLSAT [28] (with
yices2 relying on the more recent variant called MCSAT [20]). Note that NLSAT
and the underlying algorithms are highly non-trivial and not based on DPLL(T),
making integration with DPLL(T)-based solvers such as cvc4 impossible.

Although our method is incomplete, overall cvc4 solves an impressive frac-
tion of SMT-LIB problems. The first interesting observation is that cvc4 solves
all instances in the hong problem set. These are problems that are know to
be hard for the methods underlying z3 and yices2, but easy for solvers based
on interval reasoning such as rasat. Note that cvc4 does not directly employ
any interval reasoning, and the extra deductive power comes as a side-effect of
model-based refinement. Another positive result is that cvc4 solves most prob-
lems in the lranker [30] and uauto problem sets. cvc’s performance on these

Designing Theory Solvers with Extensions 35

QF NIA aprove calypto lranker lctes leipzig mcm uauto ulranker Total
time # time # time # time # time # time # time # time # time

yices 8706 1761 173 83 98 102 0 0 92 30 4 32 7 0 32 11 9112 2021
z3 8253 7636 172 146 93 767 0 0 157 173 16 180 7 0 32 43 8730 8947
cvc4+m 8234 4799 164 43 111 52 1 0 69 589 0 0 6 0 32 84 8617 5569
cvc4+sm 8190 3723 170 61 108 57 1 0 68 375 3 107 7 1 32 86 8579 4413
AProVE 8028 3819 72 110 3 2 0 0 157 169 0 0 0 0 6 4 8266 4106

QF NRA hong hycomp kissing lranker mtarski uauto zankl Total
time # time # time # time # time # time # time # time

z3 9 16 2442 3903 27 443 235 1165 7707 370 60 175 87 23 10567 6098
yices 7 59 2379 594 10 0 213 3110 7640 707 50 210 91 61 10390 4744
raSat 20 1 1933 409 12 32 0 0 6998 504 0 0 54 52 9017 999
cvc4+sm 20 0 2246 718 5 0 623 8375 5434 3711 11 31 33 36 8372 12874
cvc4+m 20 0 2236 491 6 0 603 6677 5440 3532 10 33 31 25 8346 10761

Fig. 6. Results for benchmarks in the QF NIA and QF NRA logics of SMT-LIB. All
experiments are run with a 60 s timeout. Time columns give cumulative seconds on
solved benchmarks.

problems which come from invariant generation [18], show that our proposed
methods work well on practical problems. An example of a class of benchmarks
where cvc4 does not perform well are the mtarski benchmarks [2]. These bench-
marks come from the analysis of elementary real functions and, due to their high
degrees, solving them requires full support for algebraic reasoning. The results
show that our new method is positioned between the incomplete interval-based
methods like those implemented in rasat, and the complete methods like those
implemented in z3 and yices2, while performing well on practical problems.

On the QF NIA problems, we compare cvc4 with z3, yices2, and aprove
[25]. The aprove solver relies on bit-blasting [23], z3 relies on bit-blasting aided
with linear and interval reasoning, while yices2 extends NLSAT with branch-
and-bound [27]. Both versions of cvc4 perform well, especially considering that
we do not rely on bit-blasting or sophisticated non-linear reasoning. Again, on
the lranker and ulranker problem sets the new method in cvc4 excels, solv-
ing the highest number of problems. Overall, cvc4+m proves 812 problems
unsatisfiable, and cvc4+sm proves 825 problems unsatisfiable, while yices2,
z3, and aprove can show 975, 485 and 0 problems unsatisfiable, respectively.
Focusing on unsatisfiable problems, our results show that the new method is
positioned between the incomplete bit-blasting-based solvers like aprove, and
more sophisticated solvers like yices2.

6 Lazy Bit-Blasting for Bit-Vector Constraints

In this section, we present our preliminary work on a stratified approach for
solving bit-vector constraints. We consider the theory of fixed-width bit-vectors
whose signature contains a bit-vector sort BVn for each n > 0, and a variety of
functions that are used to encode bit-level arithmetic and other operations [8].

36 A. Reynolds et al.

A common method for constraints in this theory is to eagerly reduce bit-vector
constraints to propositional ones, where this method is often called bit-blasting.
However, certain bit-vector functions require fairly sophisticated propositional
encodings which may degrade the performance of the SAT solver that reasons
about the bit-blasted form of the problem. Thus, we consider a theory of bit-
vectors whose signature is partitioned such that its extended signature contains
the symbols for bit-vector multiplication (bvmul), unsigned and signed division
(bvudiv and bvsdiv), unsigned and signed remainder (bvurem and bvsrem), and
signed modulus (bvsmod). All other symbols are assumed to be in the basic
signature.

Procedure for Σb
BV-constraints. In previous work [26], Hadarean et al. developed

lazy techniques for a theory of fixed width bit-vectors. In their approach, the solver
resorts to bit-blasting only when algebraic approaches do not suffice to establish
satisfiability. The solver may use algebraic reasoning to infer additional equalities,
for instance based on specialized reasoning about inequalities, bit-shifting, or con-
catenation and extraction. If M is still satisfiable, then the solver resorts to bit-
blasting. In other words, for each � ∈ M∩L, the solver learns the formula � ⇔ B(�),
where B(�) is the propositional encoding of bit-vector literal �.

Context-Dependent Simplification. Competitive modern solvers including cvc4

use aggressive simplification techniques for the theory of bit-vectors which we
leverage in the first step of Fig. 2. Our technique for constructing derivable sub-
stitutions is based on mapping variables x to bit-vector constants that occur in
the same equivalence class as x in the congruence closure of M.

Model-Based Refinement. Our model-based refinement techniques chooses a
x ≈ t in IX

M(M) and learns x ≈ t ⇔ B(x ≈ t), where B(x ≈ t) is the propo-
sitional encoding of x ≈ t. In other words, we bit-blast constraints from X(M)
at lower priority than constraints in M, and only if they appear in our relevant
inconsistent subset.

Evaluation. We provide a preliminary evaluation of a new version cvc4+sm
whose signature is partitioned according to this section and that implements
both context-dependent simplification and model-based refinement techniques,
and compared this with the default configuration of cvc4 with lazy bit-blasting
from [26] that does not consider the partitioned signature. We ran both on the
sage2 family of benchmarks from the QF BV division of SMT LIB [9]. Over-
all, cvc4+sm solved 11415 benchmarks compared to 11256 solved by cvc4.
While these results are not competitive with state-of-the-art eager bit-blasting
techniques such as those in Boolector [14] which solves 13549, we believe these
results are encouraging due to the simplicity of the implementation and orthogo-
nality with eager bit-blasting approaches, as cvc4+sm solved 2171 benchmarks
in this set not solved by Boolector.

Designing Theory Solvers with Extensions 37

7 Related Work

A common way to support extensions of theories is to provide first-order axiom-
atizations of additional symbols in the signature of the extension. One can show
decision procedures for theory extensions exist, given a finite instantiation strat-
egy [6,35]. In contrast, the approaches we develop are specialized to particular
extensions, and thus have specific advantages over an axiomatic approach in
practice.

The idea of using inconsistent (partial) models that guide the learning of new
facts is not new. For example, the CDCL algorithm of modern SAT solvers learns
clauses to eliminate inconsistent assignments; branch-and-bound in integer pro-
gramming learns lemmas to eliminate real solutions; and the decision procedure
for the theory of arrays [15] generates expensive array lemmas based on the cur-
rent model. The MCSAT approach to SMT, as another example, [20] is based
entirely on the interplay of models and lemmas that refute them. Although our
approach is similar in spirit, our goals are different. All mentioned approaches
are targeting concrete theories where saturation with lemmas is complete and
the models are used to guide control the saturation. Our approach, on the other
hand, targets generic theories where a decision procedure is either not avail-
able or incompatible with DPLL(T). The advantage of the presented framework
is that reasoning in complex theories can be achieved by relying on existing
DPLL(T) technology supported by the majority of existing SMT solvers (solv-
ing the base theory, relying on equality reasoning and simplification), and very
little additional engineering effort to generate relevant refinement lemmas.

A number of SMT solvers support string reasoning [1,31,36,39]. Techniques
for extended string constraints [12,36,39] rely on eager reductions to a core lan-
guage of basic constraints. To our knowledge, no other string solvers leverage
context-dependent simplification. Recent lightweight approaches for non-linear
arithmetic constraints have been explored in [3,17]. Current state-of-the-art
approaches for bit-vectors rely on eager bit-blasting techniques with approaches.
An earlier approach for lazy bit-blasting was proposed by Bruttomesso et al. [16].
A recent approach for bit-vectors uses lazy bit-blasting based on the MCSAT
framework is given by Zeljic et al. [38].

8 Conclusion and Future Work

We have presented new approaches for handling constraints in the theories of
strings, bit-vectors, and non-linear arithmetic. The common thread in each of
these approaches is to partition the signatures of these signatures into a basic and
extended parts, and treat constraints in the extended signature using context-
dependent simplification and model-based refinement techniques. Our evaluation
indicates that these techniques are highly effective for an extended theory of
strings and give cvc4 some advantages with the state-of-the-art for non-linear
arithmetic. Our preliminary results suggest the approach may be promosing for
bit-vectors as well.

38 A. Reynolds et al.

We plan use these techniques in part to develop further theory extensions
that would be useful to support in SMT solvers. Other extensions of interest
worth pursuing include a stratified approach for floating-point constraints, com-
monly used type conversion functions (e.g. bv to int, int to str), and transcen-
dental functions.

Acknowledgments. We would like to thank Liana Hadarean and Martin Brain for
helpful discussion about bit-vectors, and Tim King for his support for arithmetic in
cvc4.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P., Sten-
man, J.: Norn: an SMT solver for string constraints. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham (2015).
doi:10.1007/978-3-319-21690-4 29

2. Akbarpour, B., Paulson, L.C.: Metitarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)

3. Avigad, J., Lewis, R.Y., Roux, C.: A heuristic prover for real inequalities. J. Autom.
Reason. 56(3), 367–386 (2016)

4. Ball, T., Daniel, J.: Deconstructing dynamic symbolic execution. In: Proceedings
of the 2014 Marktoberdorf Summer School on Dependable Software Systems Engi-
neering. IOS Press (2014)

5. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 82–98. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 7

6. Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local
theory extensions via e-matching. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 87–105. Springer, Cham (2015). doi:10.1007/
978-3-319-21668-3 6

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa (2015).
www.SMT-LIB.org

9. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

10. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 512–526. Springer, Heidelberg (2006). doi:10.1007/11916277 35

11. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, Chap. 26, vol. 185, pp. 825–885. IOS Press, February 2009

12. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00768-2 27

http://dx.doi.org/10.1007/978-3-319-21690-4_29
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://www.SMT-LIB.org
http://www.SMT-LIB.org
http://dx.doi.org/10.1007/11916277_35
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-00768-2_27

Designing Theory Solvers with Extensions 39

13. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Form. Methods Syst. Des.
45, 213 (2014)

14. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2 16

15. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisf. Boolean Model. Comput. 6, 165–201 (2009)

16. Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard industrial
verification problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 547–560. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 54

17. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking
of NRA transition systems via incremental reduction to LRA with EUF. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer, Hei-
delberg (2017). doi:10.1007/978-3-662-54577-5 4

18. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation
using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45069-6 39

19. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

20. Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 1

21. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 49

22. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11

23. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72788-0 33

24. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with
length constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC
2012. LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39611-3 21

25. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination
of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach, C.
(eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 184–191. Springer, Cham (2014).
doi:10.1007/978-3-319-08587-6 13

26. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9 45

27. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Cham (2017). doi:10.1007/978-3-319-52234-0 18

http://dx.doi.org/10.1007/978-3-642-00768-2_16
http://dx.doi.org/10.1007/978-3-540-73368-3_54
http://dx.doi.org/10.1007/978-3-662-54577-5_4
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-35873-9_1
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.1007/978-3-540-72788-0_33
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1007/978-3-319-08867-9_45
http://dx.doi.org/10.1007/978-3-319-08867-9_45
http://dx.doi.org/10.1007/978-3-319-52234-0_18

40 A. Reynolds et al.

28. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-31365-3 27

29. King, T.: Effective algorithms for the satisfiability of quantifier-free formulas over
linear real and integer arithmetic. Ph.D. thesis, Courant Institute of Mathematical
Sciences New York (2014)

30. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172–186. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8 12

31. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). doi:10.
1007/978-3-319-08867-9 43

32. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

33. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 197–213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 13

34. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up
DPLL(T) string solvers using context-dependent simplification. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427. Springer, Cham (2017). doi:10.
1007/978-3-319-63390-9 24

35. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005). doi:10.1007/11532231 16

36. Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Yung, M., Li, N. (eds.) Proceedings of the 21st
ACM Conference on Computer and Communications Security (2014)

37. Van Khanh, T., Ogawa, M.: SMT for polynomial constraints on real numbers.
Electron. Notes Theor. Comput. Sci. 289, 27–40 (2012)

38. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
249–266. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 16

39. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: Foundations of Software Engineering, ESEC/FSE 2013 (2013)

http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-54862-8_12
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-319-63390-9_24
http://dx.doi.org/10.1007/978-3-319-63390-9_24
http://dx.doi.org/10.1007/11532231_16
http://dx.doi.org/10.1007/978-3-319-40970-2_16

Description and Temporal Logics

A New Description Logic with Set Constraints
and Cardinality Constraints on Role Successors

Franz Baader(B)

Theoretical Computer Science, TU Dresden, Dresden, Germany
franz.baader@tu-dresden.de

Abstract. We introduce a new description logic that extends the well-
known logic ALCQ by allowing the statement of constraints on role
successors that are more general than the qualified number restrictions
of ALCQ. To formulate these constraints, we use the quantifier-free
fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA),
in which one can express Boolean combinations of set constraints and
numerical constraints on the cardinalities of sets. Though our new logic
is considerably more expressive than ALCQ, we are able to show that
the complexity of reasoning in it is the same as in ALCQ, both without
and with TBoxes.

1 Introduction

Description Logics (DLs) [2] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [9]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be Boolean combinations of atomic properties required for the
individual (expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restrictions). For
example, the concept of a man (i.e., a non-female human) that has a wife and
only daughters can be formalized by the concept description

Human � ¬Female � ∃spouse.Female � ∀child.Female,

which uses the concept names Human and Female and the role names spouse and
child as well as the concept constructors conjunction (�), negation (¬), value
restriction (∀r.C), and existential restriction (∃r.C). Number restrictions can
express to how many individuals, possibly with certain properties, an element of
the concept is related to for a given role. For example, the concept of a woman
that has two daughters, three sons, and no other children can be formalized as

Human � Female � (� 2 child.Female) � (� 3 child.¬Female) � (� 5 child).

Partially supported by DFG within the Research Unit 1513 Hybris.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 43–59, 2017.
DOI: 10.1007/978-3-319-66167-4 3

44 F. Baader

The first two number restrictions in this concept description are called qualified
since they restrict the number of role successors belonging to certain concepts,
whereas the last number restriction is unqualified since it is concerned with all
role successors. Number restrictions have been used as concept constructors for
DLs for a long time, but first only in the unqualified variant [4,11]. Qualified
number restrictions were first introduced and investigated in [10], but it took
almost a decade before the exact complexity of reasoning in the DL ALCQ,
which has all the concept constructors introduced in the above examples, could
be determined [18]. In fact, the tableau-algorithm for deciding the satisfiability
of an ALCQ concept described in [10] generates n new individuals to satisfy a
qualified at-least restriction �n r.C. If we assume binary rather than unary rep-
resentation of numbers (i.e., the size of n in a number restriction is assumed to be
log n rather than n), then this clearly generates exponentially many individuals,
and thus the algorithm needs exponential space. The PSpace algorithm described
in [18] does not keep n successors in memory at the same time. Instead, it uses
appropriate book-keeping of the number of successors (represented in binary)
and comparisons of numbers to determine a clash between at-least and at-most
restrictions. In order to improve the performance of reasoners for DLs with quali-
fied number restrictions, also more sophisticated numerical reasoning approaches
(such as linear integer programming) have been employed (see, e.g., [5,7,8]).

More expressive number restrictions have been introduced in [3]. On the
one hand, that paper considers number restrictions on complex roles, i.e., roles
that are constructed from role names using operations on binary relations such
as intersection and composition. For example, using role intersection within a
number restriction, one can describe presidents that employ at least one relative:

President � (� 1 related � employs).

On the other hand, the paper introduces symbolic number restrictions, in which
variables can be used in place of explicit numbers. This allows one to express,
e.g., that someone has more daughters than sons without specifying the actual
number of them:

Human � ↓α((� α child.Female) � ¬(� α child.¬Female)),

where ↓α says that there must exist such a cardinality α. Unfortunately, both
extensions on their own already lead to undecidability of reasoning if they are
added to a DL that is closed under all Boolean operations.

In the present paper, we propose a new DL strictly extending ALCQ, which
we call ALCSCC.1 Among other things, this DL can describe some of the concepts
expressible in the DLs introduced [3], but not in ALCQ. Nevertheless, reasoning
in our new DL is not only decidable, but of the same complexity as reasoning
in ALCQ. The basic idea underlying the definition of this logic is the following.
A DL concept expresses under what conditions an individual d belongs to the

1 The name ALCSCC for our new DL indicates that it extends the basic DL ALC with
set and cardinality constraints rather than just qualified number restrictions.

A New Description Logic with Set Constraints and Cardinality Constraints 45

concept. On the one hand, these conditions refer to concept names to which d
must or must not belong. On the other hand, they state conditions on the indi-
viduals that are related to d via some role. For example, the value restrictions
∀r.C says that the set of r-successors of d is contained in the set of elements
of C. Thus, such a value restriction states an inclusion constraint between sets.
Number restrictions enforce cardinality constraints on sets. For example, the
qualified number restriction � n r.C says that the cardinality of the set obtained
by intersecting the set of r-successors of d with the set of elements of C has
cardinality at least n. We now integrate into our DL a logic that can express
set constraints (such as inclusion constraints) and numerical constraints regard-
ing the cardinality of sets. This logic is called QFBAPA, which stands for the
quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. Basi-
cally, the Boolean algebra part of this logic can be used to build set expressions
and the Presburger arithmetic part can state numerical constraints. Both parts
are linked by the cardinality function. It has been shown in [12] that satisfia-
bility of QFBAPA formulae is an NP-complete problem. Our PSpace algorithm
for deciding the satisfiability of ALCSCC concept descriptions (see Sect. 5) and
our ExpTime algorithm for deciding satisfiability in ALCSCC w.r.t. TBoxes (see
Sect. 6) use the NP decision procedure for satisfiability of QFBAPA formulae as
subprocedure.

Ohlbach and Koehler [13] have introduced a DL that also allows for Boolean
set terms and arithmetic constraints on the cardinality of role successors. The
expressiveness of their logic is somewhat different from ours (see Sect. 7). The
major difference to our work is, however, that Ohlbach and Koehler give only
decidability results and no complexity results. In addition, they only consider
satisfiability of concept descriptions, whereas we also consider satisfiability w.r.t.
TBoxes consisting of general concept inclusions (GCIs). In fact, we show in
Sect. 6 that also w.r.t. GCIs the complexity of the satisfiability problem in
ALCSCC is the same as in ALCQ, i.e., ExpTime-complete.

2 Preliminaries

Before defining ALCSCC in Sect. 3, we briefly introduce ALCQ and QFBAPA.
Given disjoint finite sets NC and NR of concept names and role names,

respectively, the set of ALCQ concept descriptions is defined inductively:

– all concept names are ALCQ concept descriptions;
– if C,D are ALCQ concept descriptions, r ∈ NR, and n is a non-negative

integer, then ¬C (negation), C � D (disjunction), C � D (conjunction),
� n r.C and �n r.C (qualified number restrictions) are ALCQ concept descrip-
tions.

An ALCQ GCI is of the form C � D where C,D are ALCQ concept descrip-
tions. An ALCQ TBox is a finite set of ALCQ GCIs.

The semantics of ALCQ is defined using the notion of an interpretation. An
interpretation is a pair I = (ΔI , ·I) where the domain ΔI is a non-empty set,

46 F. Baader

and ·I is a function that assigns to every concept name A a set AI ⊆ ΔI and
to every role name r a binary relation rI ⊆ ΔI × ΔI . This function is extended
to ALCQ concept descriptions as follows:

– (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI , (¬C)I = ΔI \ CI ;
– (� n r.C)I = {x ∈ ΔI | there are at least n y ∈ ΔI with (x, y) ∈ rI and

y ∈ CI};
– (� n r.C)I = {x ∈ ΔI | there are at most n y ∈ ΔI with (x, y) ∈ rI and

y ∈ CI}.

The interpretation I is a model of a TBox T if it satisfies CI ⊆ DI for all
GCIs C � D ∈ T . Given an ALCQ concept description C, we say that C is
satisfiable if there is an interpretation I such that CI �= ∅. Analogously, C is
satisfiable w.r.t. the TBox T if there is a model I of T such that CI �= ∅. Two
ALCQ concept descriptions C,D are equivalent (written C ≡ D) if CI = DI

holds for all interpretations I. Other inference problems such as subsumption can
be reduced to satisfiability, which is why we concentrate on it. The introduced
notions (GCI, TBox, model, satisfiability, and equivalence) can of course also be
used for DLs other than ALCQ, and in particular for the DL ALCSCC introduced
in the next section.

The DL ALC differs from ALCQ in that it has existential restrictions (∃r.C)
and value restrictions (∀r.C) as constructors in place of qualified number restric-
tions. It is a sublogic of ALCQ since these two constructors can be expressed
using qualified number restrictions: ∃r.C ≡ � 1 r.C and ∀r.C ≡ � 0 r.¬C.

Let us now briefly introduce the logic QFBAPA (more details can be found
in [12]). In this logic one can build set terms by applying Boolean operations
(intersection, union, and complement) to set variables as well as the constants ∅
and U . Set terms s, t can then be used to state inclusion and equality constraints
(s = t, s ⊆ t) between sets. Presburger Arithmetic (PA) expressions are built
from integer variables, integer constants, and set cardinalities |s| using addition
as well as multiplication with an integer constant. They can be used to form
numerical constraints of the form k = �, k < �,N dvd �, where k, � are PA expres-
sions, N is an integer constant, and dvd stands for divisibility. A QFBAPA
formula is a Boolean combination of set and numerical constraints.

A solution σ of a QFBAPA formula φ assigns a finite set σ(U) to U , subsets
of σ(U) to set variables, and integers to integer variables such that φ is satisfied
by this assignment. The evaluation of set terms, PA expressions, and set and
numerical constraints w.r.t. σ is defined in the obvious way. For example, σ
satisfies the numerical constraint |s ∪ t| = |s| + |t| for set variables s, t if the
cardinality of the union of the sets σ(s) and σ(t) is the same as the sum of
the cardinalities of these sets. Note that this is the case iff σ(s) and σ(t) are
disjoint, which we could also have expressed using the set constraint s ∩ t ⊆ ∅.
A QFBAPA formula φ is satisfiable if it has a solution.

A New Description Logic with Set Constraints and Cardinality Constraints 47

3 Syntax and Semantics of ALCSCC
Basically, the DL ALCSCC has all Boolean operations as concept constructors
and can state constraints on role successors using the expressiveness of QFBAPA.

Given a finite set of set symbols T with {∅,U} ∩ T = ∅, set terms over T are
defined inductively as follows:

– the symbols ∅ and U are set terms;
– every set symbol is a set term;
– if s, t are set terms, then so are s ∪ t, s ∩ t, and sc.

Cardinality terms over T are also defined inductively:2

– every non-negative integer N is a cardinality term;
– if s is a set term, then |s| is a cardinality term;
– if k, � are cardinality terms, then so are k + � and N · � for every non-negative

integer N .

Set constraints over T are of the form s = t, s ⊆ t or their negation for set
terms s, t. Cardinality constraints over T are of the form k = �, k < �, k ≤ �,
N dvd � or their negation for cardinality terms k, � and a non-negative integer
N > 0.

Given a set ΔI and a mapping ·I that maps

– ∅ to ∅I = ∅,
– U to a finite subset UI of ΔI , and
– every symbol σ in T to a subset σI of UI ,

we extend this mapping to set terms and cardinality terms as follows:

– (s ∪ t)I = sI ∪ tI , (s ∩ t)I = sI ∩ tI , and (sc)I = UI \ sI ,
– |s|I = |sI |,
– (k + �)I = kI + �I and (N · �)I = N · �I .

This mapping satisfies

– the set constraint s = t if sI = tI , and its negation if sI �= tI ,
– the set constraint s ⊆ t if sI ⊆ tI , and its negation if sI �⊆ tI ,
– the cardinality constraint k = � if kI = �I , and its negation if kI �= �I ,
– the cardinality constraint k < � if kI < �I , and its negation if kI ≥ �I ,
– the cardinality constraint k ≤ � if kI ≤ �I , and its negation if kI > �I ,
– the cardinality constraint N dvd � if there is a non-negative integer M such

that N · M = �I , and its negation if there is no such M .

Given disjoint finite sets NC and NR of concept names and role names,
respectively, we define the set of ALCSCC concept descriptions by induction:

2 In contrast to PA expressions, we do not have integer variables here and numerical
constants must be non-negative.

48 F. Baader

– every concept name is an ALCSCC concept description;
– if C,D are ALCSCC concept descriptions, then so are C � D,C � D,¬C;
– if c is a set constraint or a cardinality constraint over a finite set of symbols

consisting of role names and ALCSCC concept descriptions, then succ(c) is an
ALCSCC concept description.

As usual, we will use � (top) and ⊥ (bottom) as abbreviations for A � ¬A
and A � ¬A, respectively.

An interpretation of NC and NR consists of a non-empty set ΔI and a
mapping ·I that maps

– every concept name A ∈ NC to a subset AI of ΔI ;
– every role name r ∈ NR to a binary relation rI over ΔI such that every

element of ΔI has only finitely many r-successors, i.e., the set

rI(d) := {e ∈ ΔI | (d, e) ∈ rI}

is finite for all d ∈ ΔI .

The interpretation function ·I is inductively extended to ALCSCC concept
descriptions as follows:

– (C � D)I := CI ∪ DI , (C � D)I := CI ∩ DI , and (¬C)I = ΔI \ CI ;
– succ(c)I := {d ∈ ΔI | the mapping ·Id satisfies c},

where ·Id maps ∅ to ∅I = ∅, U to UI = rsI(d), where

rsI(d) :=
⋃

r∈NR

rI(d),

and the concept descriptions and role names occurring in c to subsets of UI

as follows: CId := CI ∩ rsI(d) for concept descriptions C occurring in c and
rId := rI(d).

Note that ·Id is well-defined since we can assume by induction that CI is
already defined for concept descriptions C occurring in c. In addition, it indeed
maps U to a finite set since rsI(d) is finite due to the facts that (i) NR is finite,
and (ii) every element of ΔI has only finitely many r-successors for all role names
r ∈ NR.

Also note that top and bottom are interpreted as the whole interpretation
domain and the empty set, respectively, i.e. �I = ΔI and ⊥I = ∅.

4 Expressive Power

We claim that ALCSCC has the description logic ALCQ [10,18] as sublogic. For
this it is sufficient to show that qualified number restrictions �n r.C and � n r.C
can be expressed in ALCSCC.

A New Description Logic with Set Constraints and Cardinality Constraints 49

Lemma 1. For all interpretations I we have

(� n r.C)I = succ(|C ∩ r| ≥ n)I and (� n r.C)I = succ(|C ∩ r| ≤ n)I .

As an easy consequence we obtain that reasoning (e.g., subsumption, satisfia-
bility) in ALCSCC is at least as complex as reasoning in ALCQ, i.e., PSpace-hard
without a TBox and ExpTime-hard w.r.t. a TBox. The only thing to take care
of here is that the notion of interpretation defined above is more restrictive than
the one used for ALCQ since in ALCQ individuals are not required to have only
finitely many role successors. However, due to the fact that ALCQ has the finite
model property, we can assume without loss of generality that interpretations
of ALCQ satisfy the finite-role-successors property required in this paper for
interpretations.

We can, however, express things in ALCSCC that cannot be expressed in
ALCQ. For example, we can define the persons that have the same number of
sons as daughter by writing Person � succ(|child ∩ Male| = |child ∩ Female|).
Description Logics that can express such restrictions have been introduced in [3],
but due to the use of explicit variables for cardinalities of sets of role successors
in the logic defined in [3], this logic becomes undecidable.

In [3], also number restrictions on complex role expressions are considered,
but again the high expressiveness of the corresponding logics introduced in [3]
often leads to undecidability. We can express weaker versions of such restrictions
in ALCSCC. For example, Employer � succ(|related ∩ employs| ≤ 1) describes
employers that employ at most one relative, and

Employer � succ(2 · |related ∩ employs| < |employs|)

describes employers that employ more no-relatives than relatives. Using divisi-
bility cardinality constraints, we can for example express creatures that have an
even number of legs as Creature � succ(2 dvd |has-limb ∩ Leg |), without having
to specify how man legs the respective creature actually has.

As an example for an inexpressibility proof in ALCQ, we consider a simplified
version of our first example.

Lemma 2. The ALCSCC concept description succ(|r| = |s|) for distinct role
names r, s cannot be expressed in ALCQ.

Proof. Assume that C is an ALCQ concept description such that, for all inter-
pretations I, we have CI = succ(|r| = |s|)I . Let n be a non-negative integer
that is larger than the largest number occurring in a number restriction in C.
Consider an interpretation I with ΔI = {0, 1, 2, . . .} such that

rI = {(0, i) | 1 ≤ i ≤ n} and sI = {(0, n + i) | 1 ≤ i ≤ n}.

Then 0 ∈ succ(|r| = |s|)I and thus 0 ∈ CI . We change I to I ′ by giving 0 an
additional s-successor, i.e., ΔI′

= ΔI , rI′
= rI , and sI′

= sI ∪ {(0, 2n + 1)}.
Then 0 �∈ succ(|r| = |s|)I′

. However, since all the numbers occurring in number
restrictions in C are smaller than n, changing the number of s-successors of 0

50 F. Baader

from n to n + 1 has no impact on whether 0 belongs to C or not. Consequently,
we have 0 ∈ CI′

, and thus CI′ �= succ(|r| = |s|)I′
, which yields a contradiction

to our assumption that C expresses succ(|r| = |s|). ��

5 Satisfiability of ALCSCC Concept Descriptions

Recall that the ALCSCC concept description C is satisfiable if there is an inter-
pretation I and an element d ∈ ΔI such that d ∈ CI . We call I a model of C
and d a witness for the satisfaction of C in I.

Since ALCSCC can express ALCQ and thus also ALC, the satisfiability prob-
lem for ALCSCC concept descriptions is PSpace-hard [17]. In this section, we
use the ideas underlying the proof that satisfiability in QFBAPA is in NP [12]
to show a matching upper bound (assuming binary representation of numbers).
For ALCQ such an upper bound was first shown in [18].

A given ALCSCC concept description is a Boolean combination of atoms,
i.e., concept names A and successor constraints succ(c) for set or cardinality
constraints c. Viewing these atoms as propositional variables, we first guess which
of them are true and which are false. In case the guessed assignment does not
satisfy the propositional formula corresponding to C, we fail. Otherwise, the
assignment tells us that there is a way to assign concept names to an individual
such that the part of C that concerns atoms that are concept names is satisfied.
It remains to see whether such an individual can receive role successors such
that the part of C that concerns atoms that are successors constraints can be
satisfied as well. Before showing how this can be done in general, let us consider
a simple example.

Example 1. Let C := (¬A � ¬succ(2 dvd |r|)) � (¬B � succ(|r| = 2 · |s|)).
If we guess that the atoms A and B should be true, then we need to guess that
the atom succ(2 dvd |r|) is false and the atom succ(|r| = 2 · |s|) is true since
otherwise the propositional formula corresponding to C would become false,
leading to failure. Consequently, we need an individual that belongs to A and B
and whose role successors satisfy the constraints ¬(2 dvd |r|) and |r| = 2·|s|. If we
replace the role names r and s in these constraints by set variables Xr and Xs,
respectively, then we obtain the QFBAPA formula ¬(2 dvd |Xr|)∧|Xr| = 2 · |Xs|.
Obviously, this formula is not satisfiable since the second conjunct requires |Xr|
to be even, whereas the first one forbids this.

Now assume that we have guessed that the atom A is false and the atoms B,
succ(2 dvd |r|), and succ(|r| = 2 · |s|) are true. This yields the QFBAPA formula
2 dvd |Xr|∧ |Xr| = 2 · |Xs|, which can be satisfied by assigning the set {d1, d2} to
Xr and the set {d2} to Xs. Thus, if we build the interpretation I with domain
{d0, d1, d2} where d0 belongs to B, but not to A, and where d1, d2 are the rI-
successors of d0 and d2 is the only sI-successors of d0, then we have d0 ∈ CI .

When building the QFBAPA formula corresponding to an assignment, we
need to take the semantics of ALCSCC into account, which says that, when
evaluating the successors constraints of a given individual d, the set U must

A New Description Logic with Set Constraints and Cardinality Constraints 51

consist of exactly the role successors of this individual. Consequently, in addition
to the conjuncts induced by the successor constraints on the top-level of C, the
QFBAPA formula must contain the conjunct Xr1 ∪ . . . ∪ Xrn = U , where NR =
{r1, . . . , rn}. In the above example, the presence of this conjunct is irrelevant.
The following example shows why it is in general necessary to add this conjunct.

Example 2. Let C := succ(|U| ≥ 1) � succ(r ⊆ ∅) � succ(|s| = 0), where NR =
{r, s}. Then C is unsatisfiable according to our semantics, but the QFBAPA
formula |U| ≥ 1 ∧ Xr ⊆ ∅ ∧ |Xs| = 0 is satisfiable. However, this QFBAPA
formula becomes unsatisfiable if we add the conjunct Xr ∪ Xs = U .

Until now, we have considered examples where the successor constraints do
not contain (possibly complex) concept descriptions. If this is the case, an addi-
tional problem needs to be solved, as illustrated by the next example, which is
obtained by modifying Example 1.

Example 3. Let C := (¬A�¬succ(2 dvd |D|))� (¬B � succ(|D| = 2 · |E|)), where
D,E are (possibly complex) ALCSCC concept descriptions. Guessing that the
atom A is false and the atoms B, succ(2 dvd |D|), and succ(|D| = 2·|E|) are true,
we obtain the QFBAPA formula 2 dvd |XD| ∧ |XD| = 2 · |XE | ∧

⋃
r∈NR

Xr = U .
One solution of this formula is the one that assigns {d1, d2} to XD, {d2} to XE ,
and {d1, d2} to all the variables Xr for r ∈ NR.

In contrast to the case considered in Example 1, the existence of such a
solution does not yet show that C is satisfiable. In fact, this solution requires d1
to belong to D, but not to E, whereas d2 must belong to both D and E. This is
only possible if the concept descriptions D�¬E and D�E are satisfiable. Thus,
we need recursive calls of the satisfiability procedures for ALCSCC for these two
inputs. This recursion is well-founded (with a linear recursion depth) since the
nesting depth of successor constraints in D and E (and thus in D � ¬E and
D � E) is by at least one smaller than the nesting depth in C.

Now assume that these recursive calls yield the result that D � ¬E is satisfi-
able, but D�E is not. This does not mean that C is unsatisfiable. In fact, there is
also a solution of the above QFBAPA formula that assigns {d1, d2} to XD, {d3}
to XE , and {d1, d2, d3} to all the variables Xr for r ∈ NR. This solution requires
D � ¬E and ¬D � E to be satisfiable. Assuming that this is the case also for
the latter concept description, we can construct an interpretation I containing
an element d0 that has the individuals d1, d2, d3 as role successors for all roles
r ∈ NR. The rest of I is a disjoint union of two models of D � ¬E with a model
of ¬D � E, where the respective witnesses are identified with d1, d2, and d3.
By construction, this yields a model of C with witness d0.

Summing up, we have illustrated by the above examples that a guessed
assignment for the top-level atoms of C either leads to failure (if the propo-
sitional formula corresponding to C is not satisfied by the assignment) or it
yields a QFBAPA formula corresponding to the successor constraints under this
assignment. Unsatisfiability of this QFBAPA formula again leads to failure. A

52 F. Baader

solution for the QFBAPA formula creates recursive calls of the satisfiability pro-
cedure, where the inputs have a smaller nesting depth of successor constraints
than C. In case one of these recursive calls returns “unsatisfiable,” we cannot
conclude that C is unsatisfiable. In fact, it may be the case that another solu-
tion of the QFBAPA formula creates other recursive calls, which may all yield
“satisfiable.” The remaining question is now how to find such a solution in case
one exists.

A naive idea could be to add the information that a certain combination of
concepts (i.e., a conjunction of concepts and negated concepts) is unsatisfiable to
the QFBAPA formula. In Example 3, after finding out that D�E is unsatisfiable,
we could have added the conjunct |XD∩XE | = 0 to ensure that the next solution
does not require D �E to be satisfiable. The problem with this approach is that
the next solution may create another recursive call returning “unsatisfiable,”
and thus an additional conjunct needs to be added (e.g., if ¬D � ¬E turns out
to be unsatisfiable, we need to add |Xc

D∩Xc
E | = 0), etc. If the top-level successor

constraints of C contain k concept descriptions, then in the worst case a number
of conjuncts that is exponential in k may need to be added to the QFBAPA
formula. Since satisfiability of QFBAPA formulae is NP-complete, testing the
resulting exponentially large QFBAPA formula for satisfiability would require
non-deterministic exponential time and representing the formula would need
exponential space.

In order to stay within PSpace, we use a result from [12], which is the
main tool used there to show that satisfiability in QFBAPA is in NP. Assume
that φ is a QFBAPA formula containing the set variables X1, . . . , Xk. A Venn
region is of the form Xp1

1 ∩ . . . ∩ Xpk

k , where pi ∈ {0, 1} for i = 1, . . . , k and
X0

i = Xc
i and X1

i = Xi. It is shown in [12] that, given φ, one can easily compute
a number N whose value is polynomial in the size of φ such that the follow-
ing holds: φ is satisfiable iff it has a solution in which ≤ N Venn regions are
interpreted by non-empty sets. In [1] it is shown that this result can actually be
strengthened as follows.

Lemma 3. For every QFBAPA formula φ, one can compute in polynomial time
a number N whose value is polynomial in the size of φ such that the following
holds for every solution σ of φ: there is a solution σ′ of φ such that

– |{v | v Venn region and σ′(v) �= ∅}| ≤ N , and
– {v | v Venn region and σ′(v) �= ∅} ⊆ {v | v Venn region and σ(v) �= ∅}.

We can now continue with the description of our approach. Given a QFBAPA
formula φ induced by our assignment for the top-level atoms of C, we compute
the corresponding number N and then guess ≤ N Venn regions to be interpreted
as non-empty sets. For each of these Venn regions Xp1

1 ∩ . . . ∩ Xpk

k , we add the
conjunct |Xp1

1 ∩ . . .∩Xpk

k | ≥ 1 to φ. In addition, we add the conjunct that states
that the union of the guessed Venn regions is equal to U , and thus that all other
Venn regions are empty. The resulting QFBAPA formula ψ has a size that is
polynomial in the size of φ, and thus of C. We then

A New Description Logic with Set Constraints and Cardinality Constraints 53

1. test whether ψ is satisfiable using the NP satisfiability algorithm for
QFBAPA;

2. for every guessed Venn region, we consider the part that consists of set vari-
ables corresponding to concept descriptions, and recursively test the induced
concept descriptions for satisfiability.

If φ is satisfiable, then there is a solution in which ≤ N Venn regions are inter-
preted by non-empty sets, and thus the first test is successful for one of the guessed
sets of Venn regions. Due to the construction of ψ, the corresponding solution
interprets all other Venn regions as empty sets. Consequently, it is sufficient to test
the concept descriptions considered in 2. for satisfiability. If all tests are success-
ful then we can construct a model of C as illustrated in Example 3. Basically, this
model has a witness d0 whose role successors w.r.t. all roles in NR are determined
by the solutions for the set variables corresponding to roles. These successors are
witnesses for the concept descriptions considered in 2., where the respective mod-
els are made disjoint and reproduced as many times as needed.

Theorem 1. Satisfiability of ALCSCC concept descriptions is PSpace-complete.

Proof. Given an ALCSCC concept description C, the algorithm sketched above
proceeds as follows:

1. It views the atoms (concept names and successor constraints) on the top
level of C (i.e., atoms that are not nested within successor constraints) as
propositional variables, guesses a truth assignment for these variables, and
then checks whether this assignment satisfies the propositional formula cor-
responding to C (where the atoms are replaced by propositional variables).
If this test is negative, then this run of the algorithm fails. Otherwise, it
continues with the next step.

2. The truth assignment for the variables corresponding to successor constraints
induces a QFBAPA formula φ, as described above. We conjoin to this formula
the set constraint Xr1 ∪ . . . ∪ Xrn = U , where NR = {r1, . . . , rn}. For the
resulting formula φ′, we compute the number N that bounds the number of
Venn regions that need to be non-empty in a solution of φ′ (see Lemma 3).
Then we guess ≤ N Venn regions. For each of these Venn regions Xp1

1 ∩ . . . ∩
Xpk

k , we add the conjunct |Xp1
1 ∩ . . .∩Xpk

k | ≥ 1 to φ′. In addition, we add the
conjunct that states that the union of the guessed Venn regions is equal to
U . For the resulting formula ψ, we test whether ψ is satisfiable using the NP
satisfiability algorithm for QFBAPA. If this test is negative, then this run of
the algorithm fails. Otherwise, it continues with the next step.

3. For every guessed Venn region v, we consider the part that consists of set vari-
ables XD corresponding to concept descriptions D. We then build a concept
description Cv that contains a conjunct for every set variable XD occurring
in v, where this conjunct is D in case v contains XD and it is ¬D in case v
contains Xc

D. We then apply the algorithm recursively to Cv for each of the
guessed Venn regions v. If one of these applications fails, then this run of the
algorithm fails. Otherwise, this run of the algorithm succeeds.

54 F. Baader

This algorithm indeed runs in PSpace since

– guessing is harmless due to Savitch’s theorem, which says that PSpace is equal
to NPSpace [6];

– the recursion stack for the recursive calls has linear depth since the nesting
of successor restrictions decreases with each call, and for each concept to be
tested, only polynomially many such calls are creates (since the values of the
numbers N are polynomial in the size of the tested concepts);

– the satisfiability test for QFBAPA formulae is in NP and applied to formulae
of polynomial size.

Regarding soundness (i.e., if the algorithm succeeds, then the input concept
C is indeed satisfiable), we have already sketched above how a model of C can
be obtained from a successful run. Indeed, if Step 1 of the algorithm succeeds,
then we create a witness d0. The truth assignment for the propositional variables
corresponding to concept names tells us, for every concept name A, whether d0
needs to belong to A or not. Regarding the role successors of d0, we consider the
solution for the QFBAPA formula ψ found in Step 2 of the algorithm. Assume
that this solution assigns the finite set {d1, . . . , dm} to the set term U . Then d0
receives the role successors d1, . . . , dm, where the assignments for the set variables
Xr for r ∈ NR tell us which roles connect d0 with these new individuals. Finally,
each di belongs to one of the guessed non-empty Venn regions v, and the recursive
call of the algorithm with input Cv was successful. By induction, we can assume
that this implies the existence of a model Iv of Cv with a witness ev. We create
a disjoint copy of Iv where the witness is replaced by di. Our interpretation I
consists of the disjoint union of these copies, for i = 1, . . . , m, together with d0,
where d0 is linked by roles to the witnesses d1, . . . , dm as described above. A
simple induction proof over the nesting depth of successor restrictions in C can
be used to show that I is a model of C with witness d0.

To show completeness (i.e., if C is satisfiable, then the algorithm succeeds),
assume that I is a model of C with witness d0. Then the membership and non-
membership of d0 in the top-level atoms of C provides us with a truth assignment
that satisfies the propositional formula corresponding to C. Thus, the first step
of the algorithm succeeds if we guess this assignment. Let d1, . . . , dm be the
finitely many role successors of d0 in I. We can use the membership of these
successors in rI(d0) for r ∈ NR and in DI for concept descriptions D occurring
in successor restrictions on the top-level of C to obtain assignments of subsets of
{d1, . . . , dm} to the set variables Xr and XD. The fact that d0 ∈ CI implies that
the resulting assignment is a solution of the QFBAPA formula φ′ constructed in
Step 2 of the algorithm. However, this solution is not necessarily a solution of one
of the formulae ψ extending φ′ corresponding to the guesses of ≤ N non-empty
Venn regions. In fact, the assignment induced by I may make more than N Venn
regions non-empty. In this case, it cannot solve any of the formulae ψ constructed
in Step 2 of the algorithm. However, since φ′ is solvable, by Lemma 3 it also has
a solution that (i) makes ≤ N Venn regions non-empty, and (ii) only makes
Venn regions non-empty that are also non-empty w.r.t. the solution induced

A New Description Logic with Set Constraints and Cardinality Constraints 55

by I. Thus, we can guess the set of Venn regions that are non-empty in such a
solution. This ensures that the corresponding formula ψ has a solution. Because
of (ii), each of the guessed Venn regions v has a satisfiable concept Cv since these
Venn regions (and the corresponding concepts) are actually populated by one of
the elements d1, . . . , dm of I. ��

6 Satisfiability in ALCSCC w.r.t. GCIs

Recall that the ALCSCC concept description C is satisfiable w.r.t. a TBox T
if there is a model I of T and an element d ∈ ΔI such that d ∈ CI . We call
I a model of C w.r.t. T and d a witness for the satisfaction of C w.r.t. T
in I. ExpTime-hardness of satisfiability in ALCSCC w.r.t. a TBox is an obvious
consequence of the fact that satisfiability w.r.t. a TBox in the sublogic ALC of
ALCSCC is already ExpTime-complete [16]. Thus, it is sufficient to show that
satisfiability w.r.t. a TBox can be decided using only exponential time.

It is well-known that one can assume without loss of generality that the
TBox consists of a single GCI of the form � � D. In fact, the TBox {C1 �
D1, . . . , Cn � Dn} has obviously the same models as the TBox {� � (¬C1 �
D1)� . . .�(¬Cn�Dn)}. Thus, in the following we assume that C0 is an ALCSCC
concept description and T = {� � D0} an ALCSCC TBox. We want to test
whether C0 is satisfiable w.r.t. T .

A simple approach for showing that the satisfiability problem w.r.t. a TBox
in a given DL is in ExpTime is type elimination [14,15]. Basically, given a set
of concept descriptions S, the type of an individual in an interpretation consists
of the elements of S to which the individual belongs. If the set S contains the
concept descriptions C0,D0, then the type of any individual in a model of T
must contain D0. In addition, any witness for the satisfaction of C0 w.r.t. T
must contain C0 in its type. Finally successor constraints occurring in the type
of an individual imply that there exist other individuals whose types satisfy
these constraints. For example, if there is an individual whose type contains the
constraint succ(|r∩C| > 0), which corresponds to the existential restriction ∃r.C,
then there must be an individual in the interpretation whose type contains C.
Type elimination tries to find a collection of types that are exactly the types of a
model I of C0 w.r.t. T by starting with all possible types and eliminating those
that contain successor constraints that cannot be satisfied by the still available
types. For this to work correctly, the set S must contain sufficiently many concept
descriptions. We assume in the following, that S contains all subdescriptions of
C0 and D0 as well as the negations of these subdescriptions.

Definition 1. A subset t of S is a type for C0 and T if it satisfies the following
properties:

– D0 ∈ t;
– for every concept description ¬C ∈ S, either C or ¬C belongs to t;
– for every concept description C � D ∈ S, we have that C � D ∈ t iff C ∈ t

and D ∈ t;

56 F. Baader

– for every concept description C � D ∈ S, we have that C � D ∈ t iff C ∈ t or
D ∈ t.

Given a model I of T and an individual d ∈ ΔI , the type of d is the set

tI(d) := {C ∈ S | d ∈ CI}.

It is easy to show that the type of an individual in a model of T really satisfies
the conditions stated in the definition of a type.

Intuitively, these conditions take care of the TBox and of the semantics of
the Boolean operation. However, we must also take the successor constraints
into account. Given a type t, the (possibly negated) successor constraints in t
induce a QFBAPA formula φt in the obvious way.3 Obviously, if t = tI(d) for an
individual in a model of T , then the corresponding QFBAPA formula φt has a
solution in which the universal set U consists of all the role successors of d, and
the other set variables are assigned sets according to the interpretations of roles
and concept descriptions in the model. In order to do type elimination, however,
we also need to know which are the non-empty Venn regions in this solution.
Again, it is sufficient to look at solutions for which only a polynomial number
of Venn regions are non-empty.

To be more precise, given a type t, we consider the corresponding QFBAPA
formula φt, and conjoin to this formula the set constraint Xr1 ∪ . . . ∪ Xrn = U ,
where NR = {r1, . . . , rn}. For the resulting formula φ′

t, we compute the number
Nt that bounds the number of Venn regions that need to be non-empty in a
solution of φ′

t (see Lemma 3).

Definition 2. An augmented type (t, V) for C0 and T consists of a type t for C0

and T together with a set of Venn region V such that |V | ≤ Nt and the formula
φ′
t has a solution in which exactly the Venn regions in V are non-empty.

The existence of a solution of φ′
t in which exactly the Venn regions in V are

non-empty can obviously be checked (within NP) by adding to φ′
t conjuncts that

state non-emptiness of the Venn regions in V and the fact that the union of these
Venn regions is the universal set (see the description of the PSpace algorithm
in the proof of Theorem 1). Another easy to show observation is that there are
only exponentially many augmented types (see [1] for a proof of the following
lemma).

Lemma 4. The set of augmented types for C0 and T contains at most expo-
nentially many elements in the size of C0 and D0 and it can be computed in
exponential time.

Basically, type elimination starts with the set of all augmented types, and
then successively eliminates augmented types whose Venn regions are not real-
ized by the currently available augmented types. To make this more precise,

3 This is just like the QFBAPA formula φ obtained from a Boolean valuation in our
PSpace algorithm in the previous section.

A New Description Logic with Set Constraints and Cardinality Constraints 57

assume that A is a set of augmented types and that v is a Venn region. The
Venn region v yields a concept description Cv (see the description of the PSpace
algorithm in the proof of Theorem 1), and it is easy to see that Cv is actually
a conjunction of elements of S (modulo removal of double negation). We say
that v is realized by A if there is an augmented type (t, V) ∈ A such that every
conjunct of Cv is an element of t.

Theorem 2. Satisfiability of ALCSCC concept descriptions w.r.t. a TBox is
ExpTime-complete.

Proof. Given an ALCSCC concept description C0 and a TBox T = {� � D0},
the type elimination algorithm for deciding satisfiability of C0 w.r.t. T proceeds
as follows:

1. Compute the set S consisting of all subdescriptions of C0 and D0 as well as
the negations of these subdescriptions, and continue with the next step.

2. Based on S, compute the set A of all augmented types for C0 and T , and
continue with the next step.

3. If the current set A of augmented types is empty, then the algorithm fails.
Otherwise, check whether A contains an element (t, V) such that not all the
Venn regions in V are realized by A. If there is no such element (t, V) in A,
then continue with the next step. Otherwise, let (t, V) be such an element,
and set A := A \ {(t, V)}. Continue with this step, but now using the new
current set of augmented types.

4. If A contains an augmented type (t, V) such that C0 ∈ t, then the algorithm
succeeds. Otherwise, the algorithm fails.

This algorithm indeed runs in exponential time since

– Step 1 can obviously be performed in polynomial time;
– according to Lemma 4, Step 2 can be performed in exponential time;
– Step 3 can be iterated only an exponentially number of times since each time

one augmented type is removed, and there are only exponentially many to
start with. Every single execution of Step 3 takes exponential time since at
most exponentially many augmented types and Venn regions need to be con-
sidered when testing whether every Venn region occurring in an augmented
type of A is realized in A;

– in Step 4, at most exponentially many augmented types need to be checked
as to whether their first component contains C0.

Due to space constraints we cannot prove soundness and completeness of the
algorithm here. Complete proofs can be found in [1]. ��

7 Related Work and Future Work

The work most closely related to ours is the one by Ohlbach and Koehler [13],
which also allows for Boolean set terms and arithmetic constraints on the car-
dinality of role successors. On the one hand, this work is more general than

58 F. Baader

ours in that the authors allow also for bridging functions other than cardinality
from successors sets into the arithmetic domain. Actually, while the authors of
[13] use the cardinality function in most of their examples, the formal problem
specification (Definition 4 in [13]) only requires the bridging functions to satisfy
an additivity axiom (Definition 3 in [13]), which in the case of cardinality says:

If x ∩ y = ∅ then |x ∪ y| = |x| + |y|.

It is not clear whether reasoning is done w.r.t. all possible bridging func-
tions satisfying the additivity axiom or w.r.t. specific bridging functions such as
cardinality.

On the other hand, the set expressions in [13] can only contain roles and not
complex concept descriptions. However, a combination of value restrictions on
subroles and cardinality constraints on these subroles can simulate this expres-
siveness. For example, as pointed out in [13], a qualified number restriction such
as �n r.C can be expressed as succ(r′ ⊆ C) � succ(r′ ⊆ r) � succ(|r′| ≥ n),
where r′ is a newly introduced role name.4 Similarly, � n r.C can be expressed
as succ(r′ ⊆ C) � succ(r ∩ r′c ⊆ ¬C) � succ(r′ ⊆ r) � succ(|r′| ≤ n). More gener-
ally, one can replace the concept description C within a successor constraint by
the new role name r′ if one conjoins r′ ⊆ C and r′c ⊆ ¬C to this constraint.

The major difference to our work is, however, that Ohlbach and Koehler
[13] give only decidability results and no complexity results. Due to the fact
that they consider all Venn regions and also resolve Boolean reasoning on the
Description Logic side using disjunctive normal form, the complexity of their
decision procedures is considerably higher than the upper bounds we show. In
addition, they do not consider GCIs in their work. Even without GCIs, the
complexity of the unoptimized procedure in [13] is probably non-deterministic-
exponential since an NP procedure solving the arithmetic constraints is applied
to a potentially exponentially large constraint system.

The emphasis of the current paper was on showing worst-case optimal com-
plexity results, and thus the algorithms as described here cannot directly be
used for implementation purposes. To make the PSpace algorithm more prac-
tical, guessing would need to be replaced by SAT solving. Such an algorithm
would need to combine (similarly to SMT solvers) an efficient SAT solver with a
solver for QFBAPA and with a recursive application of itself. Type elimination
is exponential also in the best case since it first computes an exponential num-
ber of (augmented) types and only then starts the elimination process. Instead,
one could use an algorithm similar to the practically more efficient version of
the PSpace algorithm just sketched. However, due to the presence of GCIs, the
recursion depth of recursive calls is no longer bounded. Thus, one would need to
ensure termination by an appropriate blocking strategy, similar to what tableau-
based algorithms use. One could also try to design tablau-based satisfiability
algorithms, but then needs to be very careful to avoid the problems caused by
the “naive idea” sketched below Example 3 when backtracking.
4 Note that [13] actually uses a different syntax for cardinality restrictions on role

successors. To avoid having to introduce another syntax, we have translated this
into our syntax. The constraint succ(r′ ⊆ C) expresses the value restriction ∀r′.C.

A New Description Logic with Set Constraints and Cardinality Constraints 59

Acknowledgment. The author thanks Viktor Kuncak for helpful discussions regard-
ing the proof of Lemma 3.

References

1. Baader, F.: Concept descriptions with set constraints and cardinality constraints.
LTCS-Report 17–02, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, TU Dresden, Germany, 2017. http://lat.inf.tu-dresden.de/research/
reports.html

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York (2003)

3. Baader, F., Sattler, U.: Expressive number restrictions in description logics. J.
Logic Comput. 9(3), 319–350 (1999)

4. Borgida, A., Brachman, R.J., McGuinness, D.L., Alperin Resnick, L.: CLASSIC:
a structural data model for objects. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 59–67 (1989)

5. Faddoul, J., Haarslev, V.: Algebraic tableau reasoning for the description logic
SHOQ. J. Appl. Logic 8(4), 334–355 (2010)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability – A guide to NP-
Completeness. W.H. Freeman and Company, San Francisco (1979)

7. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated reasoning in ALCQ via SMT.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
283–298. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 22

8. Haarslev, V., Timmann, M., Möller, R.: Combining tableaux and algebraic methods
for reasoning with qualified number restrictions. In: Proceedings of DL 2001, CEUR
Workshop Proceedings, vol. 49. CEUR-WS.org (2001)

9. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological
and biomedical research: a functional perspective. Brief. Bioinform. 16(6), 1069–
1080 (2015)

10. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. In:
Proceedings of KR 1991, pp. 335–346 (1991)

11. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for concept
description languages. In: Proceedings of ECAI 1990, pp. 348–353. Pitman, London
(United Kingdom) (1990)

12. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for boolean algebra
with presburger arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol.
4603, pp. 215–230. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73595-3 15

13. Ohlbach, H.J., Koehler, J.: Modal logics, description logics and arithmetic reason-
ing. Artif. Intell. 109(1–2), 1–31 (1999)

14. Pratt, V.R.: Models of program logic. In: Proceedings of FOCS 1979, pp. 115–122
(1979)

15. Rudolph, S., Krötzsch, M., Hitzler, P.: Type-elimination-based reasoning for the
description logic SHIQbs using decision diagrams and disjunctive datalog. Logical
Methods Comput. Sci. 8(1), 1–38 (2012)

16. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proceedings of IJCAI 1991, pp. 466–471 (1991)

17. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

18. Tobies, S.: A PSpace algorithm for graded modal logic. CADE 1999. LNCS, vol.
1632, pp. 52–66. Springer, Heidelberg (1999). doi:10.1007/3-540-48660-7 4

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://dx.doi.org/10.1007/978-3-642-22438-6_22
http://dx.doi.org/10.1007/978-3-540-73595-3_15
http://dx.doi.org/10.1007/3-540-48660-7_4

Metric Temporal Description Logics
with Interval-Rigid Names

Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki(B),
and Veronika Thost

Institute of Theoretical Computer Science and cfaed,
TU Dresden, Dresden, Germany

{franz.baader,stefan.borgwardt,patrick.koopmann,
ana.ozaki,veronika.thost}@tu-dresden.de

Abstract. In contrast to qualitative linear temporal logics, which can
be used to state that some property will eventually be satisfied, met-
ric temporal logics allow to formulate constraints on how long it may
take until the property is satisfied. While most of the work on combin-
ing Description Logics (DLs) with temporal logics has concentrated on
qualitative temporal logics, there has recently been a growing interest in
extending this work to the quantitative case. In this paper, we comple-
ment existing results on the combination of DLs with metric temporal
logics over the natural numbers by introducing interval-rigid names. This
allows to state that elements in the extension of certain names stay in
this extension for at least some specified amount of time.

1 Introduction

Description Logics [8] are a well-investigated family of logic-based knowledge
representation languages, which provide the formal basis for the Web Ontology
Language OWL.1 As a consequence, DL-based ontologies are employed in many
application areas, but they are particularly successful in the medical domain
(see, e.g., the medical ontologies Galen and SNOMED CT2). For example, the
concept of a patient with a concussion can formally be expressed in DLs as
Patient� ∃finding.Concussion, which is built from the concept names (i.e., unary
predicates) Patient and Concussion and the role name (i.e., binary predicate)
finding using the concept constructors conjunction (�) and existential restric-
tion (∃r.C). Concepts and roles can then be used within terminological and
assertional axioms to state facts about the application domain, such as that
concussion is a disease (Concussion � Disease) and that patient Bob has a con-
cussion (Patient(BOB), finding(BOB,F1),Concussion(F1)).

This example, taken from [9], can also be used to illustrate a shortcom-
ing of pure DLs. For a doctor, it is important to know whether the concussed

Supported by DFG in the CRC 912 (HAEC), the project BA 1122/19-1 (GoAsQ)
and the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed).

1 https://www.w3.org/TR/2009/WD-owl2-overview-20090327/.
2 See http://www.opengalen.org/ and http://www.snomed.org/.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 60–76, 2017.
DOI: 10.1007/978-3-319-66167-4 4

https://www.w3.org/TR/2009/WD-owl2-overview-20090327/
http://www.opengalen.org/
http://www.snomed.org/

Metric Temporal Description Logics with Interval-Rigid Names 61

patient has lost consciousness, which is the reason why SNOMED CT contains
a concept for “concussion with no loss of consciousness” [19]. However, the
temporal pattern inherent in this concept (after the concussion, the patient
remained conscious until the examination) cannot be modeled in the DL used
for SNOMED CT.

To overcome the problem that pure DLs are not able to express such temporal
patterns, a great variety of temporal extensions of DLs have been investigated
in the literature.3 In the present paper, we concentrate on the DL ALC and
combine it with linear temporal logic (LTL), a point-based temporal logic whose
semantics assumes a linear flow of time. But even if these two logics are fixed,
there are several other design decisions to be made. One can either apply tempo-
ral operators only to axioms [9] or also use them within concepts [15,20]. With
the latter, one can then formalize “concussion with no loss of consciousness” by
the (temporal) concept

∃finding.Concussion � (Conscious U ∃procedure.Examination),

where U is the until -operator of LTL. With the logic of [9], one cannot formulate
temporal concepts, but could express that a particular patient, e.g., Bob, had
a concussion and did not lose consciousness until he was examined. Another
decision to be made is whether to allow for rigid concepts and roles, whose
interpretation does not vary over time. For example, concepts like Human and
roles like hasFather are clearly rigid, whereas Conscious and finding are flexible,
i.e., not rigid. If temporal operators can be used within concepts, rigid concepts
can be expressed using terminological axioms, but rigid roles cannot. In fact,
they usually render the combined logic undecidable [15, Proposition 3.34]. In
contrast, in the setting considered in [9], rigid roles do not cause undecidability,
but adding rigidity leads to an increase in complexity.

In this paper, we address a shortcoming of the purely qualitative temporal
description logics mentioned until now. The qualitative until-operator in our
example does not say anything about how long after the concussion that exam-
ination happened. However, the above definition of “concussion with no loss
of consciousness” is only sensible in case the examination took place in tempo-
ral proximity to the concussion. Otherwise, an intermediate loss of consciousness
could also have been due to other causes. As another example, when formulating
eligibility criteria for clinical trials, one needs to express quantitative temporal
patterns [12] like the following: patients that had a treatment causing a reaction
between 45 and 180 days after the treatment, and had no additional treatment
before the reaction:

Treatment � �(
(¬Treatment)U[45,180]Reaction

)
,

where � is the next-operator. On the temporal logic side, extensions of LTL by
such intervals have been investigated in detail [1,2,16]. Using the next-operator
of LTL as well as disjunction, their effect can actually be simulated within qual-
itative LTL, but if the interval boundaries are encoded in binary, this leads to
3 We refer the reader to [15,17] for an overview of the field of temporal DLs.

62 F. Baader et al.

an exponential blowup. The complexity results in [1] imply that this blowup
can in general not be avoided, but in [16] it is shown that using intervals of a
restricted form (where the lower bound is 0) does not increase the complexity
compared to the qualitative case. In [13], the combination of the DL ALC with
a metric extension of LTL is investigated. The paper considers both the case
where temporal operators are applied only within concepts and the case where
they are applied both within concepts and outside of terminological axioms. In
Sect. 2, we basically recall some of the results obtained in [13], but show that
they also hold if additionally temporalized assertional axioms are available.

In Sect. 3, we extend the logic LTLbin
ALC of Sect. 2 with interval-rigid names,

a means of expressiveness that has not been considered before. Basically, this
allows one to state that elements belonging to a concept need to belong to
that concept for at least k consecutive time points, and similarly for roles. For
example, according to the WHO, patients with paucibacillary leprosy should
receive MDT as treatment for 6 consecutive months,4 which can be expressed by
making the role getMDTagainstPB rigid for 6 time points (assuming that each
time point represents one month). In Sect. 4, we consider the effect of adding
interval-rigid concepts and roles as well as metric temporal operators to the
logic ALC-LTL of [9], where temporal operators can only be applied to axioms.
Interestingly, in the presence of rigid roles, interval-rigid concepts actually cause
undecidability. Without rigid roles, the addition of interval-rigid concepts and
roles leaves the logic decidable, but in some cases increases the complexity (see
Table 2). Finally, in Sect. 5 we investigate the complexity of this logic without
interval-rigid names, which extends the analysis from [9] to quantitative temporal
operators (see Table 3). An overview of the logics considered and their relations
is shown in Fig. 1. Detailed proofs of all results can be found in [7].

Fig. 1. Language inclusions, with languages investigated in this paper highlighted.
Dashed arrows indicate same expressivity.

Related Work. Apart from the above references, we want to point out work on
combining DLs with Halpern and Shoham’s interval logic [3,4]. This setting is
quite different from ours, since it uses intervals (rather than time points) as the
basic time units. In [6], the authors combine ALC concepts with the (qualitative)
operators ♦ (‘at some time point’) and � (‘at all time points’) on roles, but
do not consider quantitative variants. Recently, an interesting metric temporal
extension of Datalog over the reals was proposed, which however cannot express
interval-rigid names nor existential restrictions [11].
4 See http://www.who.int/lep/mdt/duration/en/.

http://www.who.int/lep/mdt/duration/en/

Metric Temporal Description Logics with Interval-Rigid Names 63

2 The Temporal Description Logic LTLbin
ALC

We first introduce the description logic ALC and its metric temporal extension
LTLbin

ALC [13], which augments ALC by allowing metric temporal logic opera-
tors [1] both within ALC axioms and to combine these axioms. We actually
consider a slight extension of LTLbin

ALC by assertional axioms, and show that this
does not change the complexity of reasoning compared to the results of [13].

Syntax. Let NC, NR and NI be countably infinite sets of concept names, role
names, and individual names, respectively. An ALC concept is an expression
given by

C,D : := A | � | ¬C | C � D | ∃r.C,

where A ∈ NC and r ∈ NR. LTLbin
ALC concepts extend ALC concepts with the

constructors �C and C UID, where I is an interval of the form [c1, c2] or [c1,∞)
with c1, c2 ∈ N, c1 ≤ c2, given in binary. We may use [c1, c2) to abbreviate
[c1, c2 − 1], and similarly for the left endpoint. For example, AU[2,5)B � ∃r.�A

is an LTLbin
ALC concept.

An LTLbin
ALC axiom is either a general concept inclusion (GCI) of the form

C � D, or an assertion of the form C(a) or r(a, b), where C,D are LTLbin
ALC

concepts, r ∈ NR, and a, b ∈ NI. LTLbin
ALC formulae are expressions of the form

φ, ψ ::= α | � | ¬φ | φ ∧ ψ | �φ | φ UIψ,

where α is an LTLbin
ALC axiom.

Semantics. A DL interpretation I = (ΔI , ·I) over a non-empty set ΔI , called
the domain, defines an interpretation function ·I that maps each concept name
A ∈ NC to a subset AI of ΔI , each role name r ∈ NR to a binary relation rI

on ΔI and each individual name a ∈ NI to an element aI of ΔI , such that
aIi
= bIi whenever a
= b, a, b ∈ NI (unique name assumption). As usual, we
extend the mapping ·I from concept names to ALC concepts as follows:

�Ii := ΔI, (¬C)Ii := ΔI\CIi , (C � D)Ii := CIi ∩ DIi ,

(∃r.C)Ii := {d ∈ ΔI | ∃e ∈ CIi : (d, e) ∈ rIi}.

A (temporal DL) interpretation is a structure I = (ΔI, (Ii)i∈N), where each
Ii = (ΔI, ·Ii), i ∈ N, is a DL interpretation over ΔI (constant domain assump-
tion) and aIi = aIj for all a ∈ NI and i, j ∈ N, i.e., the interpretation of
individual names is fixed. The mappings ·Ii are extended to LTLbin

ALC concepts
as follows:

(�C)Ii := {d ∈ ΔI | d ∈ CIi+1},

(C UID)Ii := {d ∈ ΔI | ∃k : k − i ∈ I, d ∈ DIk , and ∀j ∈ [i, k) : d ∈ CIj }.

The concept C UID requires D to be satisfied at some point in the interval I,
and C to hold at all time points before that.

64 F. Baader et al.

The validity of an LTLbin
ALC formula φ in I at time point i ∈ N (written

I, i |= φ) is inductively defined as follows:

I, i |= C � D iff CIi ⊆ DIi I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= C(a) iff aIi ∈ CIi I, i |= �φ iff I, i + 1 |= φ
I, i |= r(a, b) iff (aIi , bIi) ∈ rIi I, i |= φ UIψ iff ∃k : k − i ∈ I, I, k |= ψ,
I, i |= ¬φ iff not I, i |= φ and ∀j ∈ [i, k) : I, j |= φ.

As usual, we define ⊥ := ¬�, C � D := ¬(¬C � ¬D), ∀r.C := ¬(∃r.¬C),
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), α Uβ := α U[0,∞)β, ♦Iα := � UIα, �Iα := ¬♦I¬α,
♦α := � Uα, and �α := ¬♦¬α, where α, β are either concepts or formulae [8,15].
Note that, given the semantics of LTLbin

ALC , �α is equivalent to ♦[1,1]α.

Relation to LTLALC.The notation ·bin refers to the fact that the endpoints of the
intervals are given in binary. However, this does not increase the expressivity com-
pared to LTLALC [17], where only the qualitative U operator is allowed. In fact,
one can expand any formula φ U[c1,c2]ψ to

∨
c1≤i≤c2

(�iψ ∧
∧

0≤j<i �jφ), where
�i denotes i nested � operators, and similarly for concepts. Likewise, φ U[c1,∞)ψ

is equivalent to
(∧

0≤i<c1
�iφ

)
∧ �c1φ Uψ. If this transformation is recursively

applied to subformulae, then the size of the resulting formula is exponential: ignor-
ing the nested � operators, its syntax tree has polynomial depth and an exponen-
tial branching factor; and the �i formulae have exponential depth, but introduce
no branching. This blowup cannot be avoided in general [1,13].

Reasoning. We are interested in the complexity of the satisfiability problem in
LTLbin

ALC , i.e., deciding whether there exists an interpretation I such that I, 0 |= φ
holds for a given LTLbin

ALC formula φ. We also consider a syntactic restriction
from [9]: we say that φ is an LTLbin

ALC formula with global GCIs if it is of the form�T ∧ ϕ, where T is a conjunction of GCIs and ϕ is an LTLbin
ALC formula that does

not contain GCIs. By satisfiability w.r.t. global GCIs we refer to the satisfiability
problem restricted to such formulae.

First Results. The papers [13,17] consider the reasoning problems of concept
satisfiability in LTLbin

ALC w.r.t. TBoxes (corresponding to formulae with global
GCIs and without assertions) and satisfiability of LTLbin

ALC temporal TBoxes (for-
mulae without assertions). However, these results from [13,17] can be extended
to our setting by incorporating named types into their quasimodel construction to
deal with assertions (see also [20], our Sect. 3, and [15, Theorem 2.27]).

Theorem 1. Satisfiability inLTLbin
ALC is 2-ExpSpace-complete, and ExpSpace-

complete w.r.t. global GCIs. In LTLALC, this problem is ExpSpace-complete, and
ExpTime-complete w.r.t. global GCIs.

Note that ExpSpace-completeness for LTLALC with assertions has already
been shown in [20]; we only state it here for completeness. In [13], also the inter-
mediate logic LTL0,∞

ALC was investigated, where only intervals of the form [0, c] and
[c,∞) are allowed. However, in [16], it was shown for a branching temporal logic
that U[0,c] can be simulated by the classical U operator, while only increasing the

Metric Temporal Description Logics with Interval-Rigid Names 65

size of the formula by a polynomial factor. We extend this result to intervals of
the form [c,∞), and apply it to LTL0,∞

ALC .

Theorem 2. Any LTL0,∞
ALC formula can be translated in polynomial time into an

equisatisfiable LTLALC formula.

This reduction is quite modular; for example, if the formula has only global
GCIs, then this is still the case after the reduction. In fact, the reduction applies
to all sublogics of LTLbin

ALC that we consider in this paper. Hence, in the following
we do not explicitly consider logics with the superscript ·0,∞, knowing that they
have the same complexity as the corresponding temporal DLs using only U .

3 LTLbin
ALC with Interval-Rigid Names

In many temporal DLs, so-called rigid names are considered, whose interpretation
is not allowed to change over time. To formally define this notion, we fix a finite
set NRig ⊆ NC ∪ NR of rigid concept and role names, and require interpretations
I = (ΔI, (Ii)i∈N) to respect these names, in the sense that XIi = XIj should
hold for all X ∈ NRig and i, j ∈ N. It turns out that LTLbin

ALC can already express
rigid concepts via the (global) GCIs C � �C and ¬C � �¬C. The same does
not hold for rigid roles, which lead to undecidability even in LTLALC [15, Theo-
rem 11.1]. Hence, it is not fruitful to consider rigid names in LTLbin

ALC (they will
become meaningful later, when we look at other logics).

To augment the expressivity of temporal DLs while avoiding undecidability,
we propose interval-rigid names. In contrast to rigid names, interval-rigid names
only need to remain rigid for a limited period of time. Formally, we take a finite
set NIRig ⊆ (NC ∪ NR)\NRig of interval-rigid names, and a function iRig : NIRig →
N≥2. An interpretation I = (ΔI, (Ii)i∈N) respects the interval-rigid names if the
following holds for all X ∈ NIRig with iRig(X) = k, and i ∈ N:

For each d ∈ XIi , there is a time point j ∈ N such that i ∈ [j, j + k) and
d ∈ XI� for all � ∈ [j, j + k).

Intuitively, any element (or pair of elements) in the interpretation of an interval-
rigid name must be in that interpretation for at least k consecutive time points.
We call such a name k-rigid. The names in (NC ∪ NR)\(NRig ∪ NIRig) are called
flexible. For simplicity, we assume that iRig assigns 1 to all flexible names.

We investigate the complexity of satisfiability w.r.t. (interval-)rigid names (or
(interval-)rigid concepts if NIRig ⊆ NC / NRig ⊆ NC), which is defined as before,
but considers only interpretations that respect (interval-)rigid names. Note that
(interval-)rigid roles can be used to simulate (interval-)rigid concepts via existen-
tial restrictions ∃r.� (e.g., see [9]). Therefore, it is not necessary to consider the
case where only role names can be (interval-)rigid. The fact that NRig and NIRig

are finite is not a restriction, as formulae can only use finitely many names. We
assume that the values of iRig are given in binary.

66 F. Baader et al.

Table 1 summarizes our results for LTLbin
ALC . Since interval-rigid concepts A

can be simulated by conjuncts of the form
(
A � �[0,k)A

)
∧ �(

¬A � �(¬A � �[0,k)A)
)
,

Theorem 1 directly yields the complexity results in the right column (again, for
sublogics of LTLbin

ALC this is not always so easy). The GCI A � �[0,k)A that applies
only to the first time point does not affect the complexity results, even if we restrict
all other GCIs to be global.

Table 1. Complexity of satisfiability in LTLbin
ALC w.r.t. interval-rigid names. For (*), we

have 2-ExpTime-completeness for the temporal semantics based on Z (Theorem 5).

NIRig ⊆ NC ∪ NR NIRig ⊆ NC

LTLbin
ALC 2-ExpSpace ≤ [Theorem 4] 2-ExpSpace ≥ [13]

LTLbin
ALC ,

global GCIs
2-ExpTime-hard (*) ExpSpace ≥ [2], ≤ [Theorem 1]

LTLALC 2-ExpTime-hard ExpSpace ≥ [15], ≤ [20]

LTLALC ,
global GCIs

2-ExpTime-hard [Theorem 7] ExpTime ≥ [18], ≤ [Theorem 1]

The complexity of LTLbin
ALC with interval-rigid roles is harder to establish. We

first show in Sect. 3.1 that the general upper bound of 2-ExpSpace still holds, by
a novel quasimodel construction. For global GCIs, we show 2-ExpTime-hardness
in Sect. 4, by an easy adaption of a reduction from [9]. We show 2-ExpTime-
completeness if we modify the temporal semantics to be infinite in both direc-
tions, i.e., replace N by Z in the definition of interpretations (see Sect. 3.2). We
leave the case for the semantics based on N as future work. To simplify the proofs
of the upper bounds, we usually assume that NIRig ⊆ NR since interval-rigid con-
cepts can be simulated. Moreover, for this section we assume that NRig is empty,
as rigid concepts do not affect the complexity of LTLbin

ALC , and rigid roles make
satisfiability undecidable.

3.1 Satisfiability Is in 2-ExpSpace

For the 2-ExpSpace upper bound, we extend the notion of quasimodels from [13].
In [13], quasimodels are abstractions of interpretations in which each time point
is represented by a quasistate, which contains types. Each type describes the inter-
pretation for a single domain element, while a quasistate collects the information
about all domain elements at a single time point. Central for the complexity results
in [13] is that every satisfiable formula has a quasimodel of a certain regular form,
which can be guessed and checked in double exponential space. To handle interval-
rigid roles, we extend this approach so that each quasistate additionally provides
information about the temporal evolution of domain elements over a window of
fixed width, and show that under this extended notion, satisfiability is still cap-
tured by the existence of regular quasimodels.

Metric Temporal Description Logics with Interval-Rigid Names 67

We now formalize this intuition. Let ϕ be an LTLbin
ALC formula. Denote by

csub(ϕ)/fsub(ϕ)/ind(ϕ)/rol(ϕ) the set of all concepts/formulae/individuals/roles
occurring in ϕ, by clc(ϕ) the closure of csub(ϕ) ∪ {C UD | C U[c,∞)D ∈ csub(ϕ)}
under single negations, and likewise for clf(ϕ) and fsub(φ). A concept type for ϕ is
any subset t of clc(ϕ) ∪ ind(ϕ) such that

T1 ¬C ∈ t iff C
∈ t, for all ¬C ∈ clc(ϕ);
T2 C � D ∈ t iff C,D ∈ t, for all C � D ∈ clc(ϕ); and
T3 t contains at most one individual name.

Similarly, we define formula types t ⊆ clf(ϕ) by the following conditions:

T1’ ¬α ∈ t iff α
∈ t, for all ¬α ∈ clf(ϕ); and
T2’ α ∧ β ∈ t iff α, β ∈ t, for all α ∧ β ∈ clf(ϕ).

Intuitively, a concept type describes one domain element at a single time
point, while a formula type expresses constraints on all domain elements. If
a ∈ t ∩ ind(ϕ), then t describes an named element, and we call it a named type.

To put an upper bound on the time window we have to look at, we consider
the largest number occurring in ϕ and iRig, and denote it by �ϕ. Then, a (con-
cept/formula) run segment for ϕ is a sequence σ = σ(0) . . . σ(�ϕ) composed exclu-
sively of concept or formula types, respectively, such that

R1 �α ∈ σ(0) iff α ∈ σ(1), for all �α ∈ cl∗(ϕ);
R2 for all a ∈ ind(ϕ) an n ∈ (0, �ϕ], we have a ∈ σ(0) iff a ∈ σ(n);
R3 for all α UIβ ∈ cl∗(ϕ), we have α UIβ ∈ σ(0) iff (a) there is j ∈ I ∩ [0, �ϕ] such

that β ∈ σ(j) and α ∈ σ(i) for all i ∈ [0, j), or (b) I is of the form [c,∞) and
α, α Uβ ∈ σ(i) for all i ∈ [0, �ϕ],

where cl∗ is either clc or clf (as appropriate), and R2 does not apply to formula
run segments. A concept run segment captures the evolution of a domain element
over a sequence of �ϕ +1 time points, and a formula run segment describes general
constraints on the interpretation over a sequence of �ϕ + 1 time points.

The evolution over the complete time line is captured by (concept/formula)
runs for ϕ, which are infinite sequences r = r(0)r(1) . . . such that each subse-
quence of length �ϕ + 1 is a (concept/formula) run segment, and additionally

R4 α U[c,∞)β ∈ r(n) implies that there is j ≥ n + c such that β ∈ r(j) and
α ∈ r(i) for all i ∈ [n, j).

A concept run (segment) is named if it contains only (equivalently, any) named
types. We may write ra (σa) to denote a run (segment) that contains an individual
name a. For a run (segment) σ, we write σ>i for the subsequence of σ starting at
i + 1, σ<i for the one stopping at i − 1, and σ[i,j] for σ(i) . . . σ(j).

Since we cannot explicitly represent infinite runs, we use run segments to con-
struct them step-by-step. For this, it is important that a set of concept runs (seg-
ments) can actually be composed into a coherent model. In particular, we have to
take care of (interval-rigid) role connections between elements. A role constraint
for ϕ is a tuple (σ, σ′, s, k), where σ, σ′ are concept run segments, s ∈ rol(ϕ), and
k ∈ [1, iRig(s)], such that

68 F. Baader et al.

C1 {¬C | ¬∃s.C ∈ σ(0)} ⊆ σ′(0); and
C2 if σ′ is named, then σ is also named.

We write σ s
k σ′ as a shorthand for the role constraint (σ, σ′, s, k). Intuitively, σ s

k σ′

means that the domain elements described by σ(0), σ′(0) are connected by the
role s at the current time point, and also at the k − 1 previous time points. In
this case, we need to ensure that these elements stay connected for at least the
following iRig(s) − k time points. Condition C1 ensures that, if σ(0) cannot have
any s-successors that satisfy C, then σ′(0) does not satisfy C.

We can now describe the behaviour of a whole interpretation and its elements
at a single time point, together with some bounded information about the future
(up to �ϕ time points). A quasistate for ϕ is a pair Q = (RQ, CQ), where RQ is a
set of run segments and CQ a set of role constraints over RQ such that

Q1 RQ contains exactly one formula run segment σQ;
Q2 RQ contains exactly one named run segment σa for each a ∈ ind(ϕ);
Q3 for all C � D ∈ clf(ϕ), we have C � D ∈ σQ(0) iff C ∈ σ(0) implies D ∈ σ(0)

for all concept run segments σ ∈ RQ;
Q4 for all C(a) ∈ clf(ϕ), we have C(a) ∈ σQ(0) iff C ∈ σa(0);
Q5 for all s(a, b) ∈ clf(ϕ), we have s(a, b) ∈ σQ(0) iff σa

s
k σb ∈ CQ for some

k ∈ [1, iRig(s)]; and
Q6 for all σ ∈ RQ and ∃s.D ∈ σ(0), there is σ s

k σ′ ∈ CQ with D ∈ σ′(0) and
k ∈ [1, iRig(s)].

We next capture when quasistates can be connected coherently to an infinite
sequence. A pair (Q,Q′) of quasistates is compatible if there is a compatibility rela-
tion π ⊆ RQ × RQ′ such that

C3 every run segment in RQ and RQ′ occurs at least once in the domain and
range of π, respectively;

C4 each pair (σ, σ′) ∈ π satisfies σ>0 = σ′<�ϕ ;
C5 for all (σ1, σ

′
1) ∈ π and σ1

s
k σ2 ∈ Q with k < iRig(s), there is σ′

1
s

k+1 σ′
2 ∈ Q′

with (σ2, σ
′
2) ∈ π; and

C6 for all (σ1, σ
′
1) ∈ π and σ′

1
s

k+1 σ′
2 ∈ Q′ with k > 1, there is σ1

s
k σ2 ∈ Q with

(σ2, σ
′
2) ∈ π.

Such a relation makes sure that we can combine run segments of consecutive qua-
sistates such that the interval-rigid roles are respected. Note that the unique for-
mula run segments must be matched to each other, and likewise for the named run
segments. Moreover, the set of all compatibility relations for a pair of quasistates
(Q,Q′) is closed under union, which means that compatible quasistates always
have a unique maximal compatibility relation (w.r.t. set inclusion).

To illustrate this, consider Fig. 2, showing a sequence of pairwise compatible
quasistates, each containing two run segments. Here, �ϕ = iRig(s) = 3. The rela-
tions π0, π1, and π2 satisfy Conditions C3–C6, which, together with C1 and C2,
ensure that a run going through the types t1, t2, t3, and t4 can be connected to
another run via the role s for at least 3 consecutive time points.

Finally, a quasimodel for ϕ is a pair (S,R), where S is an infinite sequence of
compatible quasistates S(0)S(1) . . . and R is a non-empty set of runs, such that

Metric Temporal Description Logics with Interval-Rigid Names 69

Fig. 2. Illustration of role constraints and compatibility relations.

M1 the runs in R are of the form σ0(0)σ1(0)σ2(0) . . . such that, for every i ∈ N,
we have (σi, σi+1) ∈ πi, where πi is the maximal compatibility relation for the
pair (S(i), S(i + 1));

M2 for every σ ∈ RS(i), there exists a run r ∈ R with r[i,i+�ϕ] = σ;
M3 every role constraint in S(0) is of the form σ1

s
1 σ2; and

M4 ϕ ∈ σS(0)(0).

By M1, the runs σ0(0)σ1(0)σ2(0) . . . always contain the whole run segments
σ0, σ1, σ2, . . . , since we have σ1(0) = σ0(1), σ2(0) = σ0(2), and so on. Moreover,R
always contains exactly one formula run and one named run for each a ∈ ind(ϕ).

We can show that every quasimodel describes a satisfying interpretation for ϕ
and, conversely, that every such interpretation can be abstracted to a quasimodel.
Moreover, one can always find a quasimodel of a regular shape.

Lemma 3. An LTLbin
ALC formula ϕ is satisfiable w.r.t. interval-rigid names iff ϕ

has a quasimodel (S,R) in which S is of the form

S(0) . . . S(n)(S(n + 1) . . . S(n + m))ω,

where n and m are bounded triple exponentially in the size of ϕ and iRig.

This allows us to devise a non-deterministic 2-ExpSpace algorithm that
decides satisfiability of a given LTLbin

ALC formula. Namely, we first guess n and m,
and then the quasistates S(0), . . . , S(n+m) one after the other. To show that this
sequence corresponds to a quasimodel as in Lemma 3, note that only three quasi-
states have to be kept in memory at any time, the sizes of which are double expo-
nentially bounded in the size of the input: the current quasistate, the next qua-
sistate, and the first repeating quasistate S(n + 1). 2-ExpSpace-hardness holds
already for the case without interval-rigid names or assertions [13].

Theorem 4. Satisfiability in LTLbin
ALC with respect to interval-rigid names is 2-

ExpSpace-complete.

3.2 Global GCIs

For LTLbin
ALC formulae with global GCIs, we can show a tight (2-ExpTime) com-

plexity bound only if we consider a modified temporal semantics that uses Z

70 F. Baader et al.

instead of N. With a semantics over Z, every satisfiable formula has a quasimodel
in which the unnamed run segments and role constraints are the same for all qua-
sistates. This is not the case if the semantics is only defined for N, since then a
quasistate at time point 1 can have role constraints σ s

k σ′ with k > 1, whereas
one at time point 0 cannot (see M3).

Hence, interpretations are now of the form I = (ΔI, (Ii)i∈Z), where ΔI is a
constant domain and Ii are classical DL interpretations, as before. Recall that an
LTLbin

ALC formula with global GCIs is an LTLbin
ALC formula of the form �T ∧ φ,

where T is a conjunction of GCIs and φ is an LTLbin
ALC formula that does not con-

tain GCIs. In order to enforce our GCIs on the whole time line (including the time
points before 0), we replace �T with �−

+ in that definition, where �−
+T expresses

that in all models I, I, i |= T for all i ∈ Z. We furthermore slightly adapt some of
the notions introduced in Sect. 3.1. First, to ensure that GCIs hold on the whole
time line, we require (in addition to T1’ and T2’) that all formula types contain
all GCIs from T . Additionally, we adapt the notions of runs . . . r(−1)r(0)r(1) . . .
and sequences . . . S(−1)S(0)S(1) . . . of quasistates to be infinite in both direc-
tions. Hence, we can now drop Condition M3, reflecting the fact that, over Z, role
connections can exist before time point 0. All other definitions remain unchanged.

The complexity proof follows a similar idea as in the last section. We first
show that every formula is satisfiable iff it has a quasimodel of a regular shape,
which now is also constant in its unnamed part, in the sense that, if unnamed run
segments and role constraints occur in S(i), then they also occur in S(j), for all
i, j ∈ Z. This allows us to devise an elimination procedure (in the spirit of [17,
Theorem 3] and [13, Theorem 2]), with the difference that we eliminate run seg-
ments and role constraints instead of types, which gives us a 2-ExpTime upper
bound. The matching lower bound can be shown similarly to Theorem 7 in Sect. 4.

Theorem 5. Satisfiability in LTLbin
ALC w.r.t. interval-rigid names and global GCIs

over Z is 2-ExpTime-complete.

4 ALC-LTLbin with Interval-Rigid Names

After the very expressive DL LTLbin
ALC , we now focus on its sublogic ALC-LTLbin,

which does not allow temporal operators within concepts (cf. [9]). That is, an
ALC-LTLbin formula is an LTLbin

ALC formula in which all concepts are ALC con-
cepts. Recall that ALC-LTL, which has been investigated in [9] (though not with
interval-rigid names), restricts ALC-LTLbin to intervals of the form [0,∞). In this
section, we show several complexity lower bounds that already hold for ALC-LTL
with interval-rigid names. As done in [9], for brevity, we distinguish here the vari-
ants with global GCIs by the subscript ·|gGCI . In contrast to LTLbin

ALC , in ALC-LTL
rigid concepts cannot be simulated by GCIs and rigid roles do not lead to undecid-
ability [9]. Hence, we investigate here also the settings with rigid concepts and/or
roles.

The results of this section are summarized in Table 2. Central to our hard-
ness proofs is the insight that interval-rigid concepts can express the operator �

Metric Temporal Description Logics with Interval-Rigid Names 71

on the concept level. In particular, we show that the combination of rigid roles
with interval-rigid concepts already leads to undecidability, by a reduction from a
tiling problem. If rigid names are disallowed, but we have interval-rigid names, we
can only show 2-ExpTime-hardness. If only interval-rigid concepts are allowed,
then satisfiability is ExpSpace-hard. All of these hardness results already hold
for ALC-LTL, and some of them even with global GCIs.

Table 2. Complexity of satisfiability in ALC-LTLbin w.r.t. (interval-)rigid names.

NIRig ⊆ NC, NRig ⊆
NC ∪ NR

NIRig ⊆ NC ∪ NR,
NRig ⊆ NC or NRig = ∅

NIRig ⊆ NC, NRig ⊆
NC or NRig = ∅

ALC-LTLbin Undec. 2-ExpTime-hard ExpSpace ≤
[Theorem 1]

ALC-LTLbin
|gGCI Undec. 2-ExpTime-hard ExpSpace = [2]

ALC-LTL Undec. 2-ExpTime-hard ExpSpace ≥
[Theorem 8]

ALC-LTL|gGCI Undec. [Theorem 6] 2-ExpTime-hard
[Theorem 7]

ExpTime ≥ [18],
≤ [Theorem 1]

4.1 Rigid Roles and Interval-Rigid Concepts

We show that satisfiability of ALC-LTL with rigid roles and interval-rigid concepts
is undecidable, even if we only allow global GCIs. Our proof is by a reduction from
the following tiling problem.

Given a finite set of tile types T with horizontal and vertical compatibility
relations H and V , respectively, and t0 ∈ T , decide whether one can tile
N × N with t0 appearing infinitely often in the first row.

We define an ALC-LTL|gGCI formula φT that expresses this property. In our
encoding, we use the following names:

– a rigid role name r to encode the vertical dimension of the N × N grid;
– flexible concept names A0, A1, A2 to encode the progression along the horizon-

tal (temporal) dimension; for convenience, we consider all superscripts mod-
ulo 3, i.e., we have A3 = A0 and A−1 = A2;

– flexible concept names Pt, t ∈ T , to denote the current tile type;
– 2-rigid concept names N0

t , N1
t , N2

t , for the horizontally adjacent tile type;
– an individual name a denotes the first row of the grid.

We define φT as the conjunction of the following ALC-LTL|gGCI formulae.
First, every domain element must have exactly one tile type:

�(
� �

⊔

t∈T

(
Pt �

�

t′∈T, t	=t′
¬Pt′

))

72 F. Baader et al.

For the vertical dimension, we enforce an infinite rigid r-chain starting from a,
and restrict adjacent tile types to be compatible:

�(� � ∃r.�), �(
Pt �

⊔

(t,t′)∈V

∀r.Pt′
)

For each time point i, we mark all individuals along the r-chain with the con-
cept name A(imod 3), by using the following formulae, for 0 ≤ i ≤ 2:

A0(a), �(
Ai(a) → �Ai+1(a)

)
, �(Ai � ¬Ai+1 � ∀r.Ai)

To encode the compatibility of horizontally adjacent tiles, we add the following
formulae, for 0 ≤ i ≤ 2 and t ∈ T :

�(
Pt � Ai �

⊔

(t,t′)∈H

N i
t′

)
, �(N i

t � Ai+1 � Pt), �(Ai−1 � ¬N i
t)

These express that any domain element with tile type t (expressed by Pt) at a
time point marked with Ai must have a compatible type t′ at the next time point
(expressed by N i

t′). Since all N i
t′ are false at the previous time point (designated

by Ai−1) and iRig(N i
t′) = 2, any N i

t′ that holds at the current time point is still
active at the next time point (described by Ai+1), where it then implies Pt′ .

Finally, we express the condition on t0 via the formula �♦Pt0(a). We now
obtain the claimed undecidability from known results about the tiling prob-
lem [14].

Theorem 6. Satisfiability in ALC-LTL|gGCI w.r.t. rigid roles and interval-rigid
concepts is Σ1

1 -hard, and thus not even recursively enumerable.

4.2 Interval-Rigid Roles

Since rigid roles cause undecidability, we consider the case where instead only
interval-rigid roles (and concepts) are allowed, and obtain 2-ExpTime-hardness
by an easy adaptation of a result for ALC-LTL|gGCI with rigid roles from [9].

Theorem 7. Satisfiability in ALC-LTL|gGCI with respect to interval-rigid names
is 2-ExpTime-hard.

4.3 Rigid and Interval-Rigid Concepts

As the last setting, we consider the case where only concept names can be rigid
or interval-rigid, and show ExpSpace-completeness. For the upper bound, recall
from Sect. 3 that rigid concepts and interval-rigid concepts are expressible in
LTL0,∞

ALC via global GCIs, so that we can apply Theorem 1. The same observation
yields an ExpTime upper bound for satisfiability in ALC-LTL w.r.t. global GCIs,
which is tight since satisfiability in ordinary ALC is already ExpTime-hard [18].

Metric Temporal Description Logics with Interval-Rigid Names 73

We show theExpSpace lower bound by a reduction from satisfiability of ALC-
LTL�, the extension of ALC-LTL in which � can be applied to concepts, to sat-
isfiability of ALC-LTL w.r.t. interval-rigid concepts. It is shown in [15, Theo-
rem 11.33] that satisfiability in (a syntactic variant of) ALC-LTL� is ExpSpace-
hard. To simulate � using interval-rigid concept names, we use a similar construc-
tion as in Sect. 4.1, where we mark all individuals at time point i with A(imod 3),
and use 2-rigid concept names to transfer information between time points. More
precisely, we first define an ALC-LTL formula ψ as the conjunction of the following
formulae, where 0 ≤ i ≤ 2:

(� � A0), �((� � Ai) → �(� � Ai+1)), �(Ai � ¬Ai+1)

We now simulate concepts of the form �C via fresh, 2-rigid concept names
Ai�C

, 0 ≤ i ≤ 2. Given any ALC-LTL� formula α (resp., ALC-LTL� concept D),
we denote by α� (resp., D�) the result of replacing each outermost concept of the
form �C in α (resp., D) by

⊔

0≤i≤2

(Ai�C � Ai).

To express the semantics of �C, we use the conjunction ψ�C of the following for-
mulae (where the replacement operator ·� is applied to the inner concept C):

�(Ai�C � Ai+1 � C�), �(C� � Ai+1 � Ai�C), �(Ai−1 � ¬Ai�C)

As in Sect. 4.1, Ai�C
must either be satisfied at both time points designated by Ai

and Ai+1, or at neither of them. Furthermore, an individual satisfies �C iff it sat-
isfies Ai�C

�Ai for some i, 0 ≤ i ≤ 2. One can show that an ALC-LTL� formula φ

is satisfiable iff the ALC-LTL formula φ� ∧ ψ ∧
∧�C∈csub(φ) ψ�C is satisfiable.

Theorem 8. Satisfiability in ALC-LTL with respect to interval-rigid concepts is
ExpSpace-hard.

5 ALC-LTLbin Without Interval-Rigid Names

To conclude our investigation of metric temporal DLs, we consider the setting of
ALC-LTLbin without interval-rigid names. Table 3 summarizes the results of this
section, where we also include the known results about ALC-LTL for compari-
son [9]. Observe that all lower bounds follow from known results. In particular,
ExpSpace-hardness for ALC-LTLbin

|gGCI is inherited from LTLbin [1,2], while rigid
role names increase the complexity to 2-ExpTime in ALC-LTL|gGCI [9].

The upper bounds can be shown using a unified approach that was first pro-
posed in [9]. The idea is to split the satisfiability test into two parts: one for
the temporal and one for the DL dimension. In what follows, let φ be an ALC-
LTLbin formula. The propositional abstraction φp is the propositional LTLbin for-
mula obtained from φ by replacing every ALC axiom by a propositional variable

74 F. Baader et al.

Table 3. Complexity of satisfiability in ALC-LTLbin without interval-rigid names.

NRig ⊆ NC ∪ NR NRig ⊆ NC NRig = ∅
ALC-LTLbin 2-ExpTime ≤

[Theorem 10]
ExpSpace ≤
[Theorem 10]

ExpSpace

ALC-LTLbin
|gGCI 2-ExpTime ExpSpace ExpSpace ≥ [1]

ALC-LTL 2-ExpTime NExpTime [9] ExpTime ≤ [9]

ALC-LTL|gGCI 2-ExpTime ≥ [9] ExpTime ≤ [9] ExpTime ≥ [18]

in such a way that there is a 1:1 relationship between the ALC axioms α1, . . . , αm

occurring in φ and the propositional variables p1, . . . , pm in φp.
The goal is to try to find a model of φp and then use it to construct a model of φ

(if such a model exists). While satisfiability of φ implies that φp is also satisfiable,
the converse is not true. For example, the propositional abstraction p ∧ q ∧ ¬r of
φ = A � B ∧ A(a) ∧ ¬B(a) is satisfiable, while φ is not. To rule out such cases,
we collect the propositional worlds occurring in a model of φp into a (non-empty)
set W ⊆ 2{p1,...,pm}, which is then used to check the satisfiability of the original
formula (w.r.t. rigid names). This is captured by the LTLbin formula φp

W := φp ∧
φW , where φW is the (exponential) LTL formula

� ∨

W∈W

⎛

⎝
∧

p∈W

p ∧
∧

p∈W

¬p

⎞

⎠

in which W := {p1, . . . , pm}\W denotes the complement of W . The formula φp
W

states that, when looking for a propositional model of φp, we are only allowed to
use worlds from W.

Since satisfiability of φ implies satisfiability of φp
W for some W, we can proceed

as follows: choose a set of worlds W, test whether φp
W is satisfiable, and then check

whether a model with worlds from W can indeed be lifted to a temporal DL inter-
pretation (respecting rigid names). To check the latter, we consider the conjunc-
tion

∧
pj∈W αj ∧

∧
pj∈W ¬αj for every W ∈ W. However, the rigid names require

that all these conjunctions are simultaneously checked for satisfiability. To tell
apart the flexible names X occurring in different elements of W = {W1, . . . ,Wk},
we introduce copies X(i) for all i ∈ [1, k]. The axioms α

(i)
j are obtained from αj by

replacing every flexible name X by X(i), which yields the following conjunction
of exponential size:

χW :=
k∧

i=1

(∧

pj∈Wi

α
(i)
j ∧

∧

pj∈Wi

¬α
(i)
j

)
.

The following characterization from [9] can be easily adapted to our setting:

Lemma 9 (Adaptation of [9]). An ALC-LTLbin formula φ is satisfiable w.r.t.
rigid names iff a set W ⊆ 2{p1,...,pm} exists so that φp

W and χW are both satisfiable.

Metric Temporal Description Logics with Interval-Rigid Names 75

To obtain the upper bounds in Table 3, recall from Sect. 2 that there is an expo-
nentially larger LTL formula φp′ that is equivalent to the LTLbin formula φp. Since
φW is also an LTL formula of exponential size, satisfiability of the conjunction
φp′ ∧ φW can be checked in ExpSpace. Since the complexity of the satisfiabil-
ity problem for χW remains the same as in the case of ALC-LTL, we obtain the
claimed upper bounds from the techniques in [9]. This means that, in most cases,
the complexity of the DL part is dominated by the ExpSpace complexity of the
temporal part. The only exception is the 2-ExpTime-bound for ALC-LTLbin with
rigid names.

Theorem 10. Satisfiability in ALC-LTLbin is in 2-ExpTime w.r.t. rigid names,
and in ExpSpace w.r.t. rigid concepts.

6 Conclusions

We investigated a series of extensions of LTLALC and ALC-LTL with interval-rigid
names and metric temporal operators, with complexity results ranging from Exp-
Time to 2-ExpSpace. Some cases were left open, such as the precise complexity
of LTLbin

ALC with global GCIs, for which we have a partial result for the temporal
semantics based on Z. Nevertheless, this paper provides a comprehensive guide to
the complexities faced by applications that want to combine ontological reasoning
with quantitative temporal logics.

In principle, the arguments for ALC-LTLbin in Sect. 5 are also applicable if we
replace ALC by the light-weight DLs DL-Lite or EL, yielding tight complexity
bounds based on the known results from [5,10]. It would be interesting to investi-
gate temporal DLs based on DL-Lite and EL with interval-rigid roles and metric
operators.

References

1. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
3. Artale, A., Bresolin, D., Montanari, A., Sciavicco, G., Ryzhikov, V.: DL-lite and

interval temporal logics: a marriage proposal. In: Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), pp. 957–958. IOS Press (2014)

4. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval
temporal propositional and description logics. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015), pp. 1417–1423. AAAI Press
(2015)

5. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising
tractable description logics. In: Proceedings of the 14th International Symposium
on Temporal Representation and Reasoning (TIME 2007), pp. 11–22. IEEE Press
(2007)

6. Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Proceedings of the
20th International Joint Conference Artificial Intelligence (IJCAI 2007), pp. 218–
223 (2007)

76 F. Baader et al.

7. Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal
description logics with interval-rigid names (extended version). LTCS-Report 17-03
(2017). https://lat.inf.tu-dresden.de/research/reports.html

8. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

9. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Log. 13(3), 21:1–21:32 (2012)

10. Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015), pp. 2819–2825. AAAI Press (2015)

11. Brandt, S., Kalaycı, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev,
M.: Ontology-based data access with a horn fragment of metric temporal logic. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017),
pp. 1070–1076. AAAI Press (2017)

12. Crowe, C.L., Tao, C.: Designing ontology-based patterns for the representation of
the time-relevant eligibility criteria of clinical protocols. In: AMIA Summits on
Translational Science Proceedings 2015, pp. 173–177 (2015)

13. Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics.
In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI
2016), pp. 837–845. IOS Press (2016)

14. Harel, D.: Effective transformations on infinite trees, with applications to high unde-
cidability, dominoes, and fairness. J. ACM 33(1), 224–248 (1986)

15. Kurucz, A., Wolter, F., Zakharyaschev, M., Gabbay, D.M.: Many-dimensional
modal logics: theory and applications. Gulf Professional Publishing (2003)

16. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals:
PSPACE and below. Inf. Comput. 205(1), 99–123 (2007)

17. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In:
Proceedings of the 15th Symposium on Temporal Representation and Reasoning
(TIME 2008), pp. 3–14. IEEE Press (2008)

18. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI 1991), pp. 466–471. Morgan Kaufmann (1991)

19. Schulz, S., Markó, K., Suntisrivaraporn, B.: Formal representation of complex
SNOMED CT expressions. BMC Med. Inform. Decis. Mak. 8(Suppl 1), S9 (2008)

20. Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In: Frontiers of
Combining Systems, vol. 2, pp. 379–402. Research Studies Press/Wiley (2000)

https://lat.inf.tu-dresden.de/research/reports.html

Using Ontologies to Query Probabilistic
Numerical Data

Franz Baader(B), Patrick Koopmann(B), and Anni-Yasmin Turhan(B)

Institute of Theoretical Computer Science,
Technische Universität Dresden, Dresden, Germany

{franz.baader,patrick.koopmann,anni-yasmin.turhan}@tu-dresden.de

Abstract. We consider ontology-based query answering in a setting
where some of the data are numerical and of a probabilistic nature,
such as data obtained from uncertain sensor readings. The uncertainty
for such numerical values can be more precisely represented by contin-
uous probability distributions than by discrete probabilities for numer-
ical facts concerning exact values. For this reason, we extend existing
approaches using discrete probability distributions over facts by contin-
uous probability distributions over numerical values. We determine the
exact (data and combined) complexity of query answering in extensions
of the well-known description logics EL and ALC with numerical com-
parison operators in this probabilistic setting.

1 Introduction

Ontology-based query answering (OBQA) has recently attracted considerable
attention since it dispenses with the closed world assumption of classical query
answering in databases and thus can deal with incomplete data. In addition,
background information stated in an appropriate ontology can be used to deduce
more answers. OBQA is usually investigated in a setting where queries are
(unions of) conjunctive queries and ontologies are expressed using an appropriate
Description Logic (DL). Depending on the expressiveness of the DL, the com-
plexity of query answering may vary considerably, starting with data complexity
(i.e., complexity measured in the size of the data only) of AC0 for members of
the DL-Lite family [2,9] to P for DLs of the EL family [28], all the way up to
intractable data complexity for expressive DLs such as ALC and beyond [15].

In many application scenarios for OBQA, however, querying just symbolic
data is not sufficient. One also wants to be able to query numerical data. For
example, in a health or fitness monitoring application, one may want to use con-
cepts from a medical ontology such as SNOMED CT [14] or Galen [29] to express
information about the health status of a patient, but also needs to store and refer
to numerical values such as the blood pressure or heart rate of this patient. As an
example, let us consider hypertension management using a smartphone app [21].

Supported by the DFG within the collaborative research center SFB 912 (HAEC)
and the research unit FOR 1513 (HYBRIS).

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 77–94, 2017.
DOI: 10.1007/978-3-319-66167-4 5

78 F. Baader et al.

Fig. 1. Measured blood pressure as normal distribution.

What constitutes dangerously high blood pressure (HBP) depends on the mea-
sured values of the diastolic pressure, but also on other factors. For example, if a
patient suffers from diabetes, a diastolic blood pressure above 85 may already be
classified as too high, whereas under normal circumstances it is only considered
to be too high above 90. This could, for example, be modelled as follows by an
ontology:

∃diastolicBloodPressure.>90 � PatientWithHBP (1)
∃finding.Diabetes � ∃diastolicBloodPressure.>85 � PatientWithHBP (2)

Note that we have used a DL with concrete domains [6] to refer to numerical
values and predicates on these values within concepts. While there has been quite
some work on traditional reasoning (satisfiability, subsumption, instance) in DLs
with concrete domains [24], there is scant work on OBQA for such DLs. To the
best of our knowledge, the only work in this direction considers concrete domain
extensions of members of the DL-Lite family [3,4,17,31], and develops query
rewriting approaches. In contrast, we consider concrete domain extensions of EL
and ALC and determine the (combined and data) complexity of query answering.

However, the main difference to previous work is that we do not assume
the numerical values in the data to be exact. In fact, a value of 84.5 for the
diastolic pressure given by a blood pressure sensor does not really mean that
the pressure is precisely 84.5, but rather that it is around 84.5. The actual
value follows a probability distribution—for example a normal distribution with
expected value 84.5 and a variance of 2 as shown in Fig. 1—which is determined
by the measured value and some known variance that is a characteristic of the
employed sensor. We can represent this in the knowledge base for example as
follows:

finding(otto, f1) Diabetes(f1) diastolicBloodPressure(otto) ∼ norm(84.5, 2)

From this information, we can derive that the minimal probability for the patient
Otto to have high blood pressure is slightly above 36%, which might be enough
to issue a warning. In contrast, if instead of using a probability distribution we
had asserted 84.5 as the exact value for Otto’s diastolic blood pressure, we could
not have inferred that Otto is in any danger.

Using Ontologies to Query Probabilistic Numerical Data 79

Continuous probability distributions as used in this example also emerge in
other potential applications of OBQA such as in robotics [34], tracking of object
positions in video analytics [35], and mobile applications using probabilistic sen-
sor data [12], to name a few. The interest in continuous probability distributions
is also reflected in the development of database systems that support these [33].

In addition to using continuous probability distributions for sensor values, we
also consider discrete probability distributions for facts. For example, it might
be that the finding f1 for Otto is diabetes only with a certain probability. While
OBQA for probabilistic data with discrete probability distributions has been
considered before for DL-Lite and EL without concrete domains [19], OBQA for
probabilistic data with both discrete and continuous probability distributions is
investigated here for the first time. A rather expressive combination we consider
is the DL ALC extended with a concrete domain in which real numbers can be
compared using the (binary) predicates > and =. A less expressive combination
we consider is the DL EL extended with a concrete domain in which real numbers
can be compared with a fixed number using the (unary) predicates >r for r ∈ R.
Since OBQA for classical knowledge bases (i.e., without probabilities) in these
two DLs has not been investigated before, we first determine their (data and
combined) complexity of query answering. When considering probabilistic KBs
with continuous probability distributions (modelled as real-valued functions),
the resulting probabilities may be numbers without a finite representation. To
overcome this problem, we define probabilistic query entailment with respect
to a given precision parameter. To allow a reasonable complexity analysis, we
define a set of feasibility conditions for probability distributions, based on the
complexity theory of real functions [20], which capture most typical probability
distributions that appear in practical applications. For probabilistic KBs that
satisfy these conditions, we give tight bounds on the complexity of probabilistic
query answering w.r.t data and combined complexity for all considered DLs.
Detailed proofs for all results can be found in the long version of the paper [7].

2 Description Logics with Numerical Domains

We recall basic DLs with concrete domains, as introduced in [6], and give com-
plexity results for classical query answering.

A concrete domain is a tuple D = (ΔD, ΦD), where ΔD contains objects of the
domain, and ΦD contains predicates Pn with associated arity n and extension
PD

n ⊆ Δn
D. Let Nc, Nr, NcF and Ni be pair-wise disjoint sets of names for

concepts, roles, concrete features and individuals, respectively. Let NaF ⊆ Nr be
a set of abstract feature names. Concrete features are partial functions that map
individuals to a value in the concrete domain. Abstract features are functional
roles and their use in feature paths does not harm decidability [23]. A feature
path is an expression of the form u = s1s2 . . . sng, where si ∈ NaF , 1 ≤ i ≤ n,
and g ∈ NcF . ALC(D) concepts are defined as follows, where A ∈ Nc, s ∈ Nr,
u and u′ are feature paths, Pn ∈ ΦD is a predicate of arity n, and C1 and C2

are ALC(D) concepts:

C := 	 | A | ¬C1 | C1 � C2 | ∃s.C1 | ∃(u1, . . . , un).Pn | u↑.

80 F. Baader et al.

Additional concepts are defined as abbreviations: C1 � C2 = ¬(¬C1 � ¬C2),
∀s.C = ¬∃s.¬C, and ⊥ = ¬	. If a concept uses only the constructors 	, A,
C1 � C2, ∃s.C1 and ∃(u1, . . . , un).Pn and no abstract features, it is an EL(D)
concept. The restrictions for EL(D) concepts ensure polynomial time complexity
for standard reasoning tasks. Specifically, as done in [5], we disallow abstract
features, since axiom entailment in EL with functional roles is ExpTime-hard [5].

A TBox is a finite set of general concept inclusion axioms (GCIs), which are
of the form C � D, where C and D are concepts. A classical ABox is a finite set
of assertions, which are of the forms A(a), s(a, b) and g(a, d), where a, b ∈ Ni,
A ∈ Nc, s ∈ Nr, g ∈ NcF and d ∈ ΔD. We call GCIs and assertions collectively
axioms. A knowledge base (KB) K is a pair (T ,A) of a TBox T and an ABox A.
Given a KB K, we denote by sub(K) the subconcepts occurring in K. Let L be
a DL, then a TBox/KB that uses only L concepts is a L TBox/L KB.

The semantics of EL(D) and ALC(D) is defined in terms of interpretations.
An interpretation is a tuple I = (ΔI , ·I) consisting of a set of domain elements
ΔI and an interpretation function ·I . The interpretation function ·I maps indi-
vidual names to elements of ΔI , concept names to subsets of ΔI , concrete fea-
tures to partial functions ΔI → ΔD, and role names to subsets of ΔI × ΔI s.t.
for all s ∈ NaF , sI is a partial function. The extension of ·I to feature paths is
(s1 . . . sng)I = gI ◦ sI

n ◦ . . . ◦ sI
1 , and to (complex) concepts is:

	I = ΔI (¬C)I = ΔI \ CI (C1 � C2)I = CI
1 ∩ CI

2

(∃s.C)I = {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ sI ∧ y ∈ CI}
(∃(u1, . . . , un).P)I = {x ∈ ΔI | (uI

1 (x), . . . , uI
n(x)) is defined and in PD}

(u↑)I = {x ∈ ΔI | uI(x) is undefined }.

An axiom α is true in an interpretation I, in symbols I |= α, if α = C � D and
CI ⊆ DI , α = C(a) and aI ∈ CI , α = s(a, b) and (aI , bI) ∈ sI , or α = g(a, n)
and gI(a) = n. An interpretation I is a model of a TBox (an ABox), if all GCIs
(assertions) in it are true in I. An interpretation is a model of a KB K = (T ,A),
if it is a model of T and A. A KB is satisfiable iff it has a model. Given a KB
K and an axiom α, we say α is entailed in K, in symbols K |= α, iff I |= α in
all models I of K.

The particular concrete domain to be used needs to be selected carefully, in
order to obtain a decidable logic with reasonable complexity bounds. Specifi-
cally, axiom entailment with TBoxes already becomes undecidable if ΔD = N

and ΦD can express incrementation, as well as equality between numbers and
with 0 [25]. However, by restricting the predicates to basic comparison oper-
ators, decidability cannot only be retained, but an increase of complexity for
common reasoning tasks can be avoided when adding such concrete domains
to the logic. To pursue this as a goal, we concentrate on two concrete domains
that allow for standard reasoning in P and ExpTime, respectively. The first
concrete domain is R = {R, ΦR} investigated in [22], where ΦR contains the
binary predicates {<,=, >} with the usual semantics, and the unary predicates
{<r,=r, >r | r ∈ R}, where for ⊕ ∈ {<,=, >}, the extension is defined as

Using Ontologies to Query Probabilistic Numerical Data 81

⊕R
r = {r′ ∈ R | r′⊕r}. This concrete domain allows for axiom entailment in

ExpTime, while even small extensions lead to undecidability [22]. The second
concrete domain is R> = {R, ΦR>

}, where ΦR>
= {>r | r ∈ R}. Since polynomial

time reasoning requires the concrete domain to be convex [5], we consider this
convex concrete domain.

Example 1. The axioms in the introduction only use predicates from R> and are
in the logic EL(R>). Feature paths and the more expressive concrete domain R
allow to compare different values referred to by concrete features. The following
more flexible definition of HBP patients compares their diastolic blood pressure
(BP) with the maximal diastolic blood pressure assigned to their age group:

∃(diastolicBP, belongsToAgeGroup maxDiastolicBP).> � PatientWithHBP.

2.1 Queries

We recall atomic, conjunctive and unions of conjunctive queries. Let Nv be a set
of variables disjoint from Nc, Nr, NcF and Ni. An atom is of the form C(x) or
s(x, y), where C is a concept, s ∈ Nr, x, y ∈ Nv ∪Ni. A conjunctive query (CQ) q
is an expression of the form ∃x1, . . . , xn : a1 ∧ . . . ∧ am, where x1, . . . , xn ∈ Nv

and a1, . . . , am are atoms. The variables x1, . . . , xn are the existentially quantified
variables in q, the remaining variables in q are the free variables in q. If a CQ
contains only one atom, it is an atomic query (AQ). A union of conjunctive
queries (UCQ) is an expression of the form q1 ∨ . . . ∨ qn, where q1, . . . , qn are
CQs with pairwise-disjoint sets of variables. The existentially quantified/free
variables of a UCQ are the existentially quantified/free variables of its disjuncts.
We call AQs, CQs and UCQs collectively queries. A query is Boolean if it has
no free variables.

Given an interpretation I and a Boolean CQ q, q is true in I, in symbols
I |= q, iff there is a mapping π that maps variables in q to domain elements in I
and each a ∈ Ni to aI such that for every atom A(x) in q, π(x) ∈ AI , and for
every atom s(x, y) in q, (π(x), π(y)) ∈ sI . A Boolean UCQ is true in I iff one of
its disjuncts is true in I. Finally, given a KB K = (T ,A) and a Boolean query q,
q is entailed by K, in symbols K |= q, if I |= q in every model of K. The query
entailment problem is to decide whether a given Boolean query is entailed by a
given KB.

The query answering problem is to find a substitution from the free vari-
ables in the query to individual names such that the resulting Boolean query
is entailed by the KB. Because this problem can be polynomially reduced to
query entailment, it is typical to focus on the query entailment problem, which
is a decision problem, when analysing computational complexity. We follow the
same route in this paper.

Note that according to our definition, concrete features cannot be used out-
side of concepts in a query. Therefore, our queries can only express relations
between concrete features that can be captured by a concept in our language.
For example, the FOL formula

∃y1, y2, z1, z2 : s1(x, y1) ∧ g1(y1, z1) ∧ s2(x, y2) ∧ g2(y2, z2) ∧ z1 < z2.

82 F. Baader et al.

can be captured the query ∃(s1g1, s2g2).<(x), but only given s1, s2 ∈ NaF ,
g1, g2 ∈ NcF , and < is a predicate of the concrete domain.

Example 2. In a KB with patient records, the following query can be used to
retrieve a list of doctors who diagnosed their patients with high blood pressure.

∃y, z : hasPatient(x, y) ∧ finding(y, z) ∧ observed(x, z) ∧ HighBloodPressure(z)

2.2 Complexity of Classical Query Entailment

We give tight complexity bounds for query entailment for the introduced DLs.
To the best of our knowledge, the complexity of query answering for the log-
ics studied here has not been considered in the literature before. We focus on
the DLs EL(R>) and ALC(R), since EL(R) has the same expressive power as
ALC(R) [5], and ALC(R>) already has matching lower bounds from ALC to our
upper bounds for ALC(R). We further assume values from the concrete domain to
be represented in binary. Our complexity analysis only concerns knowledge bases
that have a finite representation, which by this assumption are those in which
each number can be represented with a finite number of bits. When analysing
complexity of query entailment, we distinguish between combined and data com-
plexity, where in combined complexity, the size of the complete input is taken
into consideration, while for data complexity, everything but the ABox is fixed.

Table 1. Complexity of classical query entailment.

EL(R>) ALC(R)

AQs UCQs AQs UCQs

Data complexity P P coNP coNP

Combined Complexity P NP ExpTime ExpTime

An overview of the complexities is shown in Table 1. Since the correspond-
ing lower bounds are the same for CQs as for UCQs, we do not include CQs.
Matching lower bounds are already known for the DLs EL and ALC [10,30,32],
so that adding the respective concrete domains does not increase the complex-
ity of query answering for these logics. We show in the extended version of the
paper how to reduce query entailment in EL(R>) to query entailment of EL KBs,
following a technique from [23, Sect. 2.4]. For ALC(R), the results are based on
and match results from [22], [23, Sect. 6.2], and [26], which concern the combined
complexities of SHIQ(R) TBox satisfiability and ALC(R) KB satisfiability, as
well as the combined complexity of query entailment in SHQ∩.

3 Probabilistic Knowledge Bases with Continuous
Probability Distributions

We want to represent both, discrete probabilities of assertions and continuous
probability distributions of values of concrete features. As we can simply assign a

Using Ontologies to Query Probabilistic Numerical Data 83

probability of 1 to assertions that are certain, there is no need to handle certain
assertions separately. A discrete probability assertion assigns a minimal proba-
bility to a classical assertion. This corresponds to the approach taken by tuple-
independent probabilistic database systems [11], where probabilities are assigned
to database and to ipABoxes introduced in [19]. For example, the fact that “Otto
has a finding that is Diabetes with a probability of at least 0.7” is expressed by
the two assertions finding(otto, f1) : 1 and Diabetes(f1) : 0.7.

Note that discrete probability assertions state a lower bound on the probabil-
ity, rather than the actual probability, and that statistical independence is only
assumed on this lower bound. This way, it is consistent to have the assertions
A(a) : 0.5, B(a) : 0.5 together with the axiom A � B in the knowledge base.
Under our semantics, the probability of B(a) is then higher than 0.5, since this
assertion can be entailed due to two different, statistically independent state-
ments in the ABox. Namely, we would infer that the probability of B(a) is at
least 0.75 (compare also with [19]).

While for symbolic facts, assigning discrete probabilities is sufficient, for
numerical values this is not necessarily the case. For example, if the blood pres-
sure of a patient follows a continuous probability distribution, the probability
of it to have any specific value is 0. For this reason, in a continuous probability
assertion, we connect the value of a concrete feature with a probability density
function. This way, the fact that “the diastolic blood pressure of Otto follows a
normal distribution with an expected value of 84.5 and a variance of 2” can be
expressed by the assertion diastolicBloodPressure(otto) ∼ norm(84.5, 2). In addi-
tion to a concrete domain D, the DLs introduced in this section are parametrised
with a set P of probability density functions (pdfs), i.e., Lebesgue-integrable func-
tions f : A → R

+, with A ⊆ R being Lebesgue-measurable, such that
∫

A
f(x) dx

= 1 [1].

Example 3. As a typical set of probability density functions [1], we define the
set Pex that contains the following functions, which are parametrised with the
numerical constants μ, ω, λ, a, b ∈ Q, with λ > 0 and a > b:

normal distribution with mean μ and variance ω:
norm(μ, ω) : R → R

+, x �→ 1√
2πω

e−(x−μ)2/2ω,
exponential distribution with mean λ:

exp(λ) : R+ → R
+, x �→ λe−λx,

uniform distribution between a and b:
uniform(a, b) : [a, b] → R

+, x �→ 1
b−a .

Next, we define probabilistic KBs, which consist of a classical TBox and a set of
probability assertions.

Definition 1. Let L ∈ {EL(R>),ALC(R)} and P be a set of pdfs. A probabilistic
LP ABox is a finite set of expressions of the form α : p and g(a) ∼ f , where α is
an L assertion, p ∈ [0, 1] ∩D,1 g ∈ NcF , a ∈ Ni, and f ∈ P. A probabilistic LP
1 Here, the set D ⊆ R denotes the dyadic rationals, that is, the set of all real numbers

that have a finite number of bits after the binary point.

84 F. Baader et al.

KB is a tuple K = (T ,A), where T is an L TBox and A is a probabilistic LP
ABox. If P = ∅, K and A are called discrete, and if P �= ∅, they are called
continuous.

3.1 Semantics of Probabilistic Knowledge Bases

As typical for probabilistic DLs and databases, we define the semantics using a
possible worlds semantics. In probabilistic systems that only use discrete prob-
abilities, the possible world semantics can be defined based on finite sets of
non-probabilistic data sets, the possible worlds, each of which is assigned a prob-
ability [11,19,27]. The probability that a query q is entailed then corresponds
to the sum of the probabilities of the possible worlds that entail q. If continuous
probability distributions are used, this approach is insufficient. For example, if
the KB contains the assertion diastolicBP(p) ∼ norm(84.5, 2), the probability of
diastolicBP(p, x) should be 0 for every x ∈ R. Therefore, we cannot obtain the
probability of diastolicBP(p) > 85 by just adding the probabilities of the possible
worlds that entail diastolicBP(p, x) for some x > 85. To overcome this problem,
we assign probabilities to (possibly uncountable) sets of possible worlds, rather
than to single possible worlds. Specifically, we define the semantics using contin-
uous probability measure spaces [1]. A measure space is a tuple M = (Ω,Σ, μ)
with Σ ⊆ 2Ω and μ : Σ → R such that

1. Ω ∈ Σ and Σ is closed under complementation, countable unions and count-
able intersections,

2. μ(∅) = 0, and
3. μ(

⋃
E∈Σ′) =

∑
E∈Σ′ μ(f) for every countable set Σ′ ⊆ Σ of pair-wise disjoint

sets.

If additionally μ(Ω) = 1, M is a probability measure space.
We define a probability measure space MA = (ΩA, ΣA, μA) that captures the

relevant probabilities in a probabilistic ABox A, similar to how it is done in [19]
for discrete probabilistic ABoxes. For this, we introduce the three components
ΩA, ΣA and μA one after another. For simplicity, we assume all pdfs f : A →
R ∈ P to be extended to the full real line by setting f(x) = 0 for all x ∈ R \ A.

Given a probabilistic ABox A, the set of possible worlds for A, in symbols ΩA,
consists of all classical ABoxes w such that for every g(a) ∼ f ∈ A, w contains
g(a, x) for some x ∈ R, and for every axiom α ∈ w, either α : p ∈ A, or α is
of the form g(a, x) and g(a) ∼ f ∈ A. For w ∈ ΩA, we write w |= g(a)⊕x,
x ∈ R, ⊕ ∈ {<,≤,=,≥, >}, iff w |= g(a, y) and y⊕x. We write w |= g(a)⊕h(b)
iff w |= g(a, y), h(b, z) and y⊕z. We abbreviate w |= g(a) ≥ x, g(a) ≤ y by
w |= g(a) ∈ [x, y]. The event space over ΩA, in symbols ΣA, is now the smallest
subset ΣA ⊆ 2ΩA that satisfies the following conditions:

1. ΩA ∈ ΣA,
2. for every α : p ∈ A, {w ∈ ΩA | α ∈ w} ∈ ΣA,
3. for every g(a) ∼ f ∈ A, x ∈ R, {w ∈ ΩA | w |= g(a) < x} ∈ ΣA,

Using Ontologies to Query Probabilistic Numerical Data 85

4. for every g1(a1) ∼ f1, g2(b) ∼ f2 ∈ A, {w ∈ ΩA | w |= g1(a) < g2(b)} ∈ ΣA,
and

5. ΣA is closed under complementation, countable unions and countable inter-
sections.

The conditions ensure that for every query q and TBox T , the set of possible
worlds w such that (T , w) |= q is included in ΣA. To complete the definition
of the measure space, we now assign probabilities to these sets via the measure
function μA. This function has to respect the probabilities expressed by the
discrete and continuous probability assertions in A, as well as the assumption
that these probabilities are statistically independent. We define μA explicitly for
sets of possible worlds that are selected by the assertions in them, and by upper
bounds on the concrete features occurring in continuous probability assertions.
By additionally requiring that Condition 3 in the definition of measure spaces is
satisfied for μA, this is sufficient to fix the probability for any set in ΣA.

Given a probabilistic ABox A, we denote by cl-ass(A) = {α | α : p ∈ A} the
classical assertions occurring in A. A bound set for A is a set B of inequations of
the form g(a) < x, x ∈ R, where g(a) ∼ f ∈ A and every concrete feature g(a)
occurs at most once in B. Given a set E ⊆ cl-ass(A) of assertions from A and
a bound set B for A, we define the corresponding set ΩE,B

A of possible worlds
in ΩA as

ΩE,B
A = {w ∈ ΩA | w ∩ cl-ass(A) = E , w |= B}.

The probability measure space for A is now the probability measure space MA =
(ΩA, ΣA, μA), such that for every E ⊆ cl-ass(A) and every bound set B for A,

μA(ΩE,B
A) =

∏

α:p∈A
α∈E

p ·
∏

α:p∈A
α�∈E

(1 − p) ·
∏

g(a)∼f∈A
g(a)<x∈B

∫ x

−∞
f(y) dy.

As shown in the extended version of the paper, this definition uniquely deter-
mines μA(W) for all W ∈ ΣA, including sets such as W = {w ∈ ΩA | w |=
g1(a) < g2(b)}. The above product is a generalisation of the corresponding defi-
nition in [19] for discrete probabilistic KBs, where in addition to discrete proba-
bilities, we take into consideration the continuous probability distribution of the
concrete features in A. Recall that if a concrete feature g(a) follows the pdf f ,
the integral

∫ x

−∞ f(y) dy gives us the probability that g(a) < x.
Since we have now finished the formal definition of the semantics of prob-

abilistic ABoxes, we can now define the central reasoning task studied in this
paper. As in Sect. 2.1, we concentrate on probabilistic query entailment rather
than on probabilistic query answering. The latter is a ranked search problem
that can be polynomially reduced to probabilistic query entailment as in [19].
Based on the measure space MA, we define the probability of a Boolean query q
in a probabilistic KB K = (T ,A) as PK(q) = μA({w ∈ ΩA | (T , w) |= q}). Note
that due to the open-world assumption, strictly speaking, PK(q) corresponds to
a lower bound on the probability of q, since additional facts may increase the
value of PK(q).

86 F. Baader et al.

Different to [19] and classical approaches in probabilistic query answering,
because P contains real functions, PK(q) is in general a real number, and as
such not finitely representable. In practice, it is typical and usually sufficient
to compute approximations of real numbers. To capture this adequately, we
take the required precision of the probability PK(q) as additional input to the
probabilistic query entailment problem. For a real number x ∈ R and n ∈ N,
we use the notation 〈x〉n to refer to an n-bit approximation of x, that is, a real
number such that |〈x〉n − x| < 2−n. Note that, while we do not enforce it,
generally n bits after the binary point are sufficient to identify 〈x〉n. We can
now state the main reasoning problem studied in this paper.

Definition 2. The probabilistic query entailment problem is the problem of
computing, given a probabilistic KB K, a Boolean query q and a natural number n
in unary encoding, a number x s.t. x = 〈PK(q)〉n.

Since the precision parameter n determines the size of the result, we assume
it in unary encoding. If we would represent it in binary, it would already take
exponential time just to write the result down.

4 Feasibility Conditions for PDFs

Up to now, we did not put any restrictions on the set P of pdfs, so that a given
set P could easily render probabilistic query entailment uncomputable. In this
section, we define a set of feasibility conditions on pdfs that ensure that proba-
bilistic query entailment is not computationally harder than when no continuous
probability distributions are used. We know from results in probabilistic data-
bases [11], that query-entailment over probabilistic data is #·P-hard. Note that
integration of pdfs over bounded intervals can be reduced to probabilistic query
answering. Namely, if g(a) ∼ f ∈ A, we have P(∅,A)((∃g.>r)(a)) =

∫ ∞
r

f(x) dy
for all r ∈ R. Our feasibility conditions ensure that the complexity of approxi-
mating integrals does not dominate the overall complexity of probabilistic query
entailment.

We first recall some notions from the complexity theory of real functions by
Ker-I Ko [20], which identifies computability of real numbers x ∈ R and functions
f : A → R, A ⊆ R, with the computability of n-bit approximations 〈x〉n and
〈f(x)〉n, where n is given in unary encoding. Since real function arguments have
no finite representation in general, computable real functions are modelled as
function oracle Turing machines Tφ(x), where the oracle φ(x) represents the
function argument x and can be queried for n-bit approximations 〈x〉n in time
linear in c + n, where c is the number of bits in x before the binary point.
Given a precision n in unary encoding on the input tape, Tφ(x) then writes a
number 〈f(x)〉n on the output tape. This formalism leads to a natural definition
of computability and complexity of real numbers and real functions. Namely, a
real number x ∈ R is P-computable iff there is a polynomial time Turing machine
that computes a function φ : N �→ D s.t. φ(n) = 〈x〉n. A function f : A → R,
A ⊆ R, is P-computable iff there is a function oracle Turing machine Tφ(x) as

Using Ontologies to Query Probabilistic Numerical Data 87

above that computes for all x ∈ A a function ψ : N �→ D with ψ(n) = 〈f(x)〉n in
time polynomial in n and the number of bits in x before the binary point.

An important property of P-computable functions f that we use in the next
section is that they have a monotone and polynomial modulus of continuity
(modulus), that is, a monotone, polynomial function ωf : N → N s.t. for all
n ∈ N and x, y ∈ [2−n, 2n], |x − y| < 2−ωf (n) implies |f(x) − f(y)| < 2−n [18,20,
Chap. 3].

Approximating integrals
∫ 1

0
f(x) dx of P-computable functions f : [0, 1] → R

is #·P-complete [20, Chap. 5]. To be able to integrate over unbounded integrals
in #·P, we introduce an additional condition.

Definition 3. A probability density function f is #·P-admissible iff it satisfies
the following conditions:

1. f is P-computable, and
2. there is a monotone polynomial function δf : N → N such that for all n ∈ N:

1 −
∫ 2δf (n)

−2δf (n)
f(x) dx < 2−n.

Condition 2 allows us to reduce integration over unbounded integrals to inte-
gration over bounded integrals: to obtain a precision of n bits, it is sufficient to
integrate inside the interval [−2δf (n), 2δf (n)]. Note that as a consequence of Con-
dition 1, there is also a polynomial ρf : N → N s.t. for all x ∈ [−2δf (n), 2δf (n)],
f(x) < 2ρf (n). Otherwise, approximations of f(x) would require a number of
bits that is not polynomially bounded by the number of bits in x before the
binary point, and could thus not be computed in polynomial time. We call δf

and ρf respectively bounding function and range function of f . In the following,
we assume that for any set P of #·P-admissible pdfs, their moduli, bounding
functions and range functions are known.

The above properties are general enough to be satisfied by most common pdfs.
Specifically, we have the following lemma for the set Pex defined in Example 3:

Lemma 1. Every function in Pex is #·P-admissible.

5 Complexity of Probabilistic Query Answering

We study the complexity of probabilistic query answering for KBs with #·P-
admissible pdfs. As often in probabilistic reasoning, counting complexity classes
play a central role in our study. However, strictly speaking, these are defined for
computation problems for natural numbers. To get a characterisation for prob-
abilistic query answering, we consider corresponding counting problems. Their
solutions are obtained by, intuitively, shifting the binary point of an approxi-
mated query probability to the right to obtain a natural number. We first recall
counting complexity classes following [16].

88 F. Baader et al.

Definition 4. Let C be a class of decision problems. Then, #·C describes the
class of functions f : A → N such that

f(x) =
∥
∥
{
y | R(x, y) ∧ |y| < p(|x|)

}∥
∥

for some C-decidable relation R and polynomial function p.

Relevant to this section are the counting complexity classes #·P, #·NP and
#·coNP. The class #·P is also called #P. The following inclusions are known:
#·P ⊆ #·NP ⊆ #·coNP ⊆ FPSpace [16].

In order to characterise the complexity of probabilistic query answering using
counting classes, we consider corresponding counting problems, inspired by [20,
Chap. 5] and [11]. For a function f : A → D, we call g : A → N a corresponding
counting problem if g(x) = 2p(x)f(x) for all x ∈ A, where p : A → N and p can
be computed in unary in polynomial time.2

For discrete probabilistic KBs, the above definition allows us to give a com-
plexity upper bound for a counting problem corresponding to probabilistic query
entailment in a quite direct way. Without loss of generality, we assume that
queries contain only concept names as concepts. If K = (T ,A) is discrete, the
probability measure space MA has only a finite set ΩA of possible worlds, and
each possible world w ∈ ΩA has a probability μA({w}) that can be repre-
sented with a number of bits polynomial in the size of the input. We use this
to define a relation R as used in Definition 4. Let bK be the maximal num-
ber of bits used by any probability μA({w}), w ∈ ΩA. Define the relation R
by setting R((K, q, n), (w, d)) for all w ∈ ΩA, d ∈ N s.t. (T , w) |= q and
d < 2bK · μA({w}), where K = (T ,A). One easily establishes that 〈PK(q)〉n =
2−bK · ‖{y | R((K, q, n), y)}‖ for any n ∈ N. (Note that our “approximation” is
always the precise answer in this case.) For discrete KBs, we thus obtain a com-
plexity upper bound of #·C for the corresponding counting problem defined by
g(K, q, n) = 2bK · PK(q), where C is the complexity of classical query entailment.

In order to transfer this approach to continuous probabilistic KBs, we define
a discretisation of continuous probability measure spaces based on the precision
parameter n and the TBox T . Namely, given a probabilistic KB K = (T ,A)
and a desired precision n, we step-wise modify the measure space MA into an
approximated measure space Ma

K,n = (Ωa
K,n, Σa

K,n, μa
K,n) such that (i) the size

of each possible world w ∈ Ωa
K,n is polynomially bounded by |K| + n, (ii) for

each w ∈ Σa
K,n, μa

K,n({w}) can be computed precisely and in time polynomial
in |K| + n, and (iii) it holds μa

K,n({w ∈ Ωa
K,n | (T , w) |= q}) = 〈PK(q)〉n for

every query q. Real numbers occur in MA in concrete feature values and in the
range of μA, and have to be replaced by numbers with a polynomially bounded
number of bits. We proceed in three steps: (1) we first reduce the number of
bits that occur before the binary point in any concrete feature value, (2) we
then reduce the number of bits that occur after the binary point in any concrete
feature value, and (3) we finally reduce the number of bits in the range of μA.
2 Note that the counting complexity classes considered here are all closed under this

operation. To see this, consider f and g characterized by the relations R and R′ s.t.
R′ = {(x, y#z) | R(x, y), z ∈ {0, 1}∗, |z| = p(x)}. Clearly, g(x) = 2p(x)f(x).

Using Ontologies to Query Probabilistic Numerical Data 89

We define C = {gi(ai) ∼ fi ∈ A} as the set of continuous probability asser-
tions in K and F = {fi | gi(ai) ∼ fi ∈ C} as the relevant pdfs in K. We also set
nv = ‖C‖ and nc as the number of unary concrete domain predicates in K.

Step 1: Reduce the number of bits before the binary point. Because
every function f ∈ F has a monotone polynomial bounding function, we can
obtain a function δ : N → N s.t. for every pdf f ∈ F and every n′ ∈ N, we have

1 −
∫ 2δ(n′)

−2δ(n′)
f(x) dx < 2−n′

.

The first step is to remove all possible worlds w in which for some g(a) ∼ f ∈ C,
we have w �|= g(a) ∈ [−2δ(nv+n), 2δ(nv+n)]. Note that for each g(a) ∼ f ∈ A, the
probability of g(a) to lay outside this interval is 2−nv−n. Based on this, one can
show that for the resulting measure space M1 = (Ω1, Σ1, μ1), we have |μA(ΩA)−
μ1(Ω1)| < 2−n−1. This restricts also the overall error on the probability of any
query. Therefore, we have a remaining error of 2−n−1 that we can make in
subsequent steps. Note that the number of bits before the binary point in any
concrete feature value is now polynomially bounded by the input.

Step 2: Reduce the number of bits after the binary point. Intuitively,
in this step we “replace” each possible world w ∈ Ω1 by a possible world w′

that is obtained by “cutting off” in all concrete feature values all digits after
a certain position after the binary point, preserving its probability. First, we
specify the maximum number m of digits after the binary point we keep. Similar
as for the bounding function δ, we can obtain a polynomial function ω that is
a modulus of all functions f ∈ F , and a polynomial function ρ that is a range
function of all functions f ∈ F . Let k = ρ(nv + n) be the highest number of
bits before the binary point in the range of any pdf in the remaining interval
[−2δ(n+nv), 2δ(n+nv)], and set l = nv + δ(nv + n) + 2 + n. Based on k, l and ω,
we define the maximal precision m by

m = �log2(nv(nv + nc)) + k + n + 3 + ω(l)� .

The motivation behind this definition will become clear in the following. For
now, just notice that m is polynomially bounded by |K| + n.

In the approximated measure space M2 = (Ω2, Σ2, μ2), Ω2 contains all worlds
from Ω1 in which each concrete feature value has at most m bits after the binary
point. To preserve the probabilities, we define a function Ω2→1 : Ω2 → 2Ω1 that
maps each possible world w ∈ Ω2 to the possible worlds in Ω1 that have been
“replaced” by w. Ω1→2 is defined as

Ω2→1(w) = {w′ ∈ Ω1 |w ∩ cl-ass(A) = w′ ∩ cl-ass(A),

∀g(a, x) ∈ w, g(a) ∼ f ∈ C : w′ |= g(a) ∈ [x, x + 2−m]}.

The measure function μ2 is now defined by

μ2({w}) = μ1(Ω2→1(w)).

90 F. Baader et al.

This transformation affects the probability of concepts such as ∃(g1, g2).> and
∃g.>r, because the probability that two concrete features have the same value,
or that a concrete feature has a value occurring in some unary domain predicate,
increases. One can show that this probability is bounded by nv(nv+nc)·2−m+k+1.
By definition, m > log2(nv(nv + nc)) + k + n + 3, so that the error created in
this step is bounded by 2−n−2.

Step 3: Reduce the number of bits in the probabilities. Each possible
world M2 can be finitely represented and has a size that is polynomially bounded
in the size of the input. However, the probabilities for each possible world are
still real numbers. We first explain how we approximate the probabilities for a
single concrete feature. For an assertion gi(ai) ∼ fi ∈ C, and a number x ∈ R

with m bits after the binary point, we have μ2({w ∈ Ω2 | w |= g(a) = x}) =
∫ x+2−m

x
fi(y) dy. To discretise this probability, we make use of the modulus ω

of the pdfs used in K. Recall that, by the definition of a modulus, for any
precision n′ ∈ N and two real numbers x, y ∈ [2−n′

, 2n′
], |x − y| < 2−ω(n′)

implies |fi(x) − fi(y)| < 2−n′
. By construction, we have m > ω(l), and hence,

for x ∈ [2−l, 2l] and y ∈ [x, x+2−m], we have |fi(x)−fi(y)| < 2−l. Consequently,

the integral
∫ x+2−m

x
fi(y) dy can be approximated by the product 2−m · 〈fi(x)〉l,

and we have
∣
∣
∣
∣
∣

∫ x+2−m

x

fi(y) dy − 2−m · 〈fi(x)〉l

∣
∣
∣
∣
∣

< 2−m−l.

There are 2δ(nv+n)+1+m different values per concrete feature in our measure
space, so that an error of 2−m−l per approximated interval introduces a maximal
error of 2−n−nv−1 for each concrete feature value (recall l = nv+δ(nv+n)+2+n).
If we approximate all pdfs this way, for similar reasons as in Step 1, we obtain
a maximal additional error of 2−n−2 for any query.

Based on these observations, we define the final discretised measure space.
Specifically, we define the measure space Ma

K,n = (Ωa
K,n, Σa

K,n, μa
K,n), where

Ωa
K,n = Ω2 and μa

K,n is specified by

μa
K,n({w}) =

∏

α:p∈A
α∈w

p ·
∏

α:p∈A
α�∈w

(1 − p) ·
∏

g(a)∼f∈A
g(a,x)∈w

2−m〈f(x)〉l.

Note that μa
K,n({w}) can be evaluated in polynomial time, and can be repre-

sented with at most 2 + na · nb + nv · (m + l) bits, where na is the number of
discrete probability assertions and nb the maximal number of bits in a discrete
probability assertion.

Given a probabilistic KB K and a precision n ∈ N, we call the measure space
Ma

K,n constructed above the n-approximated probability measure space for K. We
have the following lemma.

Using Ontologies to Query Probabilistic Numerical Data 91

Table 2. Complexities of counting problems corresponding to prob. query entailment.

EL(R>)P ALC(R)P
AQs UCQs AQs UCQs

Data complexity #·P #·P #·coNP #·coNP

Combined Complexity #·P #·NP ExpTime ExpTime

Lemma 2. Let K = (T ,A) be a probabilistic KB, q a query, n ∈ N and Ma
K,n

the n-approximated probability measure space for K. Then,

μa
K,n({w ∈ Ωa

K,n | (T , w) |= q}) = 〈PK(q)〉n.

Note that one can test in polynomial time whether a given possible world
is in Ωa

K,n, and compute its probability in polynomial time. Using the observa-
tions from the beginning of this section, together with the complexity results
in Table 1, we can establish the upper bounds for data and combined complex-
ity shown in Table 2 on counting problems corresponding to probabilistic query
answering, which already hold for discrete probabilistic KBs without concrete
domain. To the best of our knowledge, only the data complexity for query answer-
ing in probabilistic EL has been considered in the literature before [19], while the
other results are new. For the ExpTime upper bounds, note that the approx-
imated measure space has at most exponentially many elements, and can thus
be constructed and checked in exponential time.

Hardness for all complexities already holds for discrete probabilistic KBs,
so that continuous, #·P-admissible probability distributions do not increase the
complexity of probabilistic query answering. A general #·P-lower bound follows
from the corresponding complexity of probabilistic query entailment in probabilis-
tic databases [11], while for the combined complexities in ALC(R)P , the lower
bound follows from the non-probabilistic case. For the remaining complexities,
we provide matching lower bounds for the corresponding counting problems in
the extended version of the paper using appropriate reductions. Specifically, we
show #·NP-hardness w.r.t. combined complexity under subtractive reductions in
the case of UCQ entailment in EL, and #·coNP-hardness w.r.t data complexity
under parsimonious reductions in the case of AQ entailment in ALC [13].

6 Conclusion

When numerical data are of an uncertain nature, such as data obtained by sensor
readings or video tracking, they can often be more precisely represented using
continuous probability distributions than using discrete distributions. While
there is work on OBQA for discrete probabilistic KBs in DL-Lite and EL [19],
this is the first work that considers KBs with concrete domains and continuous
probability distributions. For our complexity analysis, we devised a set of feasi-
bility conditions for probability distributions based on the complexity theory of

92 F. Baader et al.

real functions, which captures most typical distributions one might encounter in
realistic applications. We show that under these conditions, continuous proba-
bility distributions do not increase the complexity of probabilistic query entail-
ment. Using a similar technique as in [20, Chap. 5], our results can likely be
extended to a wider class of probability distributions, where the requirement of
P-computability is weakened to polynomial approximability.

For light-weight description logics, it is often possible to rewrite queries w.r.t
the ontology, so that they can be answered directly by a corresponding data-
base system. As there are probabilistic database systems like Orion 2.0 that
support continuous probability distributions [33], query rewriting techniques
for continuous probabilistic KBs could be employed in our setting as well. For
more expressive DLs, a practical implementation could be based on a less fine-
grained representation of measure spaces, for which relevant intervals for each
concrete feature value are determined based on the concrete domain predicates
in the TBox. Probabilities could then be computed using standard algorithms for
numerical integration. It might also be worth investigating whether Monte-Carlo
approximations can be used for practical implementations. However, as observed
in [19], this might be hard to accomplish already for discrete probabilistic EL
KBs. Another basis for practical implementations could be approximation tech-
niques developed for other logical frameworks involving continuous probability
distributions, such as the one presented in [8].

References

1. Adams, M.R., Guillemin, V.: Measure Theory and Probability. Springer, Boston
(1996)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

3. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes.
In: Proceedings ECAI 2012, pp. 61–66. IOS Press (2012)

4. Baader, F., Borgwardt, S., Lippmann, M.: Query rewriting for DL-Lite with n-ary
concrete domains. In: Proceedings IJCAI 2017 (2017, to appear)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of
IJCAI 2005, pp. 364–369. Professional Book Center (2005)

6. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: Proceedings of IJCAI 1991, pp. 452–457 (1991)

7. Baader, F., Koopmann, P., Turhan, A.Y.: Using ontologies to query probabilistic
numerical data (extended version). LTCS-Report 17–05, Chair for Automata The-
ory, Technische Universität Dresden, Germany (2017). https://lat.inf.tu-dresden.
de/research/reports.html

8. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate proba-
bilistic inference in hybrid domains: an abridged report. In: Proceedings of IJCAI
2016, pp. 4115–4119 (2016)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reas. 39(3), 385–429 (2007)

10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

https://lat.inf.tu-dresden.de/research/reports.html
https://lat.inf.tu-dresden.de/research/reports.html

Using Ontologies to Query Probabilistic Numerical Data 93

11. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges.
In: Proceedings of SIGMOD 2007, pp. 1–12. ACM (2007)

12. Dargie, W.: The role of probabilistic schemes in multisensor context-awareness. In:
Proceedings of PerCom 2007, pp. 27–32. IEEE (2007)

13. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. Theoret. Comput. Sci. 340(3), 496–513
(2005)

14. Elkin, P.L., Brown, S.H., Husser, C.S., Bauer, B.A., Wahner-Roedler, D., Rosen-
bloom, S.T., Speroff, T.: Evaluation of the content coverage of SNOMED CT:
ability of SNOMED clinical terms to represent clinical problem lists. Mayo Clin.
Proc. 81(6), 741–748 (2006)

15. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. J. Artif. Intell. Res. (JAIR) 31, 157–204 (2008)

16. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: counting classes beyond
#P and other definitional adventures. ACM SIGACT News 26(1), 2–13 (1995)

17. Hernich, A., Lemos, J., Wolter, F.: Query answering in DL-Lite with datatypes: a
non-uniform approach. In: Proceedings of AAAI 2017 (2017)

18. Hoover, H.J.: Feasible real functions and arithmetic circuits. SIAM J. Comput.
19(1), 182–204 (1990)

19. Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL.
In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 182–197.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1 12

20. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
21. Kumar, N., Khunger, M., Gupta, A., Garg, N.: A content analysis of smartphone-

based applications for hypertension management. J. Am. Soc. Hypertens. 9(2),
130–136 (2015)

22. Lutz, C.: Adding numbers to the SHIQ description logic–first results. In: Pro-
ceedings KR 2001, pp. 191–202. Citeseer (2001)

23. Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis,
RWTH Aachen (2002)

24. Lutz, C.: Description logics with concrete domains–a survey. In: Advances in Modal
Logic 4, pp. 265–296. King’s College Publications (2002)

25. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM
Trans. Comput. Logic (TOCL) 5(4), 669–705 (2004)

26. Lutz, C.: The complexity of conjunctive query answering in expressive descrip-
tion logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 16

27. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Proceedings of KR 2010, pp. 393–403. AAAI Press (2010)

28. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proceedings of IJCAI 2009, pp.
2070–2075. IJCAI/AAAI (2009)

29. Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A., Rossi-Mori, A.: The GALEN
CORE model schemata for anatomy: towards a re-usable application-independent
model of medical concepts. In: Proceedings of MIE 1994, pp. 229–233 (1994)

30. Rosati, R.: On conjunctive query answering in EL. In: Proceedings of DL 2007,
pp. 451–458. CEUR-WS.org (2007)

31. Savković, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proceedings of
ECAI 2012, pp. 720–725 (2012)

http://dx.doi.org/10.1007/978-3-642-35176-1_12
http://dx.doi.org/10.1007/978-3-540-71070-7_16
http://dx.doi.org/10.1007/978-3-540-71070-7_16

94 F. Baader et al.

32. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of IJCAI 1991, pp. 466–471. Mor-
gan Kaufmann (1991)

33. Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S., Shah, R.: Orion
2.0: native support for uncertain data. In: Proceedings of SIGMOD 2008, pp. 1239–
1242. ACM (2008)

34. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping
and localization for mobile robots. Auton. Robots 5(3–4), 253–271 (1998)

35. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv.
(CSUR) 38(4), 13 (2006)

Pushing the Boundaries of Reasoning About
Qualified Cardinality Restrictions

Jelena Vlasenko, Volker Haarslev(B), and Brigitte Jaumard

Concordia University, Montreal, QC, Canada
haarslev@cse.concordia.ca

Abstract. We present a novel hybrid architecture for reasoning about
description logics supporting role hierarchies and qualified cardinality
restrictions (QCRs). Our reasoning architecture is based on saturation
rules and integrates integer linear programming. Deciding the numerical
satisfiability of a set of QCRs is reduced to solving a corresponding sys-
tem of linear inequalities. If such a system is infeasible then the QCRs
are unsatisfiable. Otherwise the numerical restrictions of the QCRs are
satisfied but unknown entailments between qualifications can still lead to
unsatisfiability. Our integer linear programming (ILP) approach is highly
scalable due to integrating learned knowledge about concept subsump-
tion and disjointness into a column generation model and a decompo-
sition algorithm to solve it. Our experiments indicate that this hybrid
architecture offers a better scalability for reasoning about QCRs than
approaches combining both tableaux and ILP or applying traditional
(hyper)tableau methods.

1 Introduction

The performance of the original ALCQ tableau algorithm [19] that is imple-
mented by most description logic (DL) reasoners covering qualified cardinality
restrictions1 (QCRs) is not optimal. To perform a concept satisfiability test,
the tableau algorithm creates role successors to satisfy at-least restrictions, e.g.,
≥ 20R.C. Given at-most restrictions, e.g., ≤ 10R.D, ≤ 10R.E, the algorithm
resolves each R-successor as either D or ¬D, and E or ¬E. If an at-most restric-
tion for R is violated (≤ 10R.D), the algorithm nondeterministically merges two
R-successors that are instances of D. This uninformed process is highly ineffi-
cient, especially when the algorithm has to deal with larger cardinalities and/or
large sets of related QCRs. In [11, Sect. 4.1.1] it was shown that if a set of QCRs
contains p at-least (≥ ni Ri.Ci) and q at-most restrictions (≤ mj R′

j .C
′
j), then

roughly 2qN
∏M−2

i=0

(
M−i
2

)
/(M − 1)! branches need to be explored in the worst

case by the standard ALCQ algorithm (assuming that M R′
j-successors exist in

C ′
j with M > mj and N =

∑p
i=1 ni).

In our previous work (inspired by [26]) we have shown that algebraic tableaux
can improve reasoning on QCRs dramatically for DLs such as SHQ [11], SHIQ
1 Also known as graded modalities in modal logics.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 95–112, 2017.
DOI: 10.1007/978-3-319-66167-4 6

96 J. Vlasenko et al.

[28], and SHOQ [9,10]. The basic idea in these calculi is to transform a set
of QCRs into a linear optimization problem that will be solved accordingly.
These algorithms need to explore 22

p+q

branches in the worst case but they are
independent of N,M . If there is a feasible solution to the problem then the
corresponding set of QCRs is satisfiable provided completion rules encounter
no logical clashes for the returned solution. The prototypes implementing the
above-mentioned approaches on algebraic tableaux [10,11,28] could demonstrate
runtime improvements by several orders of magnitude for reasoning about QCRs
(and nominals). However, we identified the following two disadvantageous char-
acteristics.

(i) Given n QCRs (and nominals) the naive encoding of the corresponding
system of inequalities requires n rows and 2m columns, where m is the cardinality
of the set P of all pairs of roles and their qualifications occurring in the n given
QCRs. Let us illustrate this with a small example: ≥ 2R.C � ≥ 2R.D � ≤ 2R.E.
In this case, P = {RC , RD, RE}, n = 3, m = 3. In order to represent the QCRs
as inequalities we create

∑
xCi

≥ 2,
∑

xDj
≥ 2, and

∑
xEk

≤ 2. For instance,
the variables xCi

represent the cardinalities of all elements in the power set
of P that contain RC . The same holds for the other variables respectively. As
an additional constraint we specify that all variables must have values in N.
Our objective function minimizes the sum of all variables. Intuitively speaking,
the above-mentioned concept conjunction is feasible and also satisfiable in this
trivial case if the given system of inequalities has a solution in N. It is easy to
see that the size of such an inequality system is exponential with respect to m.
Furthermore, in order to ensure completeness, in our previous work we required a
so-called choose rule that implements a semantic split that nondeterministically
adds for each variable x either the inequality x ≤ 0 or x ≥ 1. Unfortunately, this
uninformed choose-rule could fire 22

m

times in the worst case and cause a severe
performance degradation.

(ii) The employed integer linear programming (ILP) algorithms were best-
case exponential in the number of occurring QCRs due to the explicit represen-
tation of 2m variables. In [9,10] we developed an optimization technique called
lazy partitioning that tries to delay the creation of ILP variables but it cannot
avoid the creation of 2m variables in case m QCRs are part of a concept model.
Our experiments in [9–11] indicated that quite a few ILP solutions can cause
clashes due to lack of knowledge about known subsumptions, disjointness, and
unsatisfiability of concept conjunctions. This knowledge can help reducing the
number of variables and eliminating ILP solutions that would fail logically. For
instance, an ILP solution for the example presented in the previous paragraph
might require to create an R-successor as an instance of C � D. However, if C
and D are disjoint this ILP solution will cause a clash (and fail logically).

Characteristic (i) can be avoided by eliminating the choose-rule for variables.
This does not sacrifice completeness because the algorithms implementing our
ILP component are complete (and certainly sound) for deciding (in)feasibility.
In case a system is feasible (or numerically satisfiable), dedicated saturation
rules determine whether the returned solutions are logically satisfiable. In case of

Pushing the Boundaries of QCR Reasoning 97

logical unsatisfiability a corresponding unsatisfiable concept conjunction is added
to the input of the ILP component and therefore monotonically constrains the
remaining feasibility space. Consequently, previously computed solutions that
result in unsatisfiability are eliminated. For instance, the example above would
be deemed as infeasible once ILP knows that C, D are subsumed by E and C,
D are disjoint.

The avoidance of characteristic (ii) is motivated by the observation that only
a small number of the 2m variables will have non-zero values in the optimal
solution of the linear relaxation, i.e., no more variables than the number of con-
straints following the characteristics of the optimal solution of a linear program,
see, e.g., [6]. Moreover, in practice, only a limited number of variables have a
non-zero value in the integer optimal solution. In addition, linear programming
techniques such as column generation [7,13] can operate with as few variables
as the set of so-called basic variables in linear programming techniques at each
iteration, i.e., nonbasic variables can be eliminated and are not required for the
guarantee of reaching the conclusion that a system of linear inequalities is infea-
sible, or for reaching an optimal LP solution. Although the required number of
iterations varies from one case to another, it is usually extremely limited in prac-
tice, in the order of few times the number of constraints. The efficiency of the
branch-and-price method, which is required in order to derive an optimal ILP
solution, e.g., [3,23,31], depends on the quality of the integrality gap (i.e., how far
the optimal linear programming solution is from the optimal ILP solution in case
the system of inequalities is feasible, and on the level of infeasibility otherwise).
Furthermore, our new ILP approach considers known subsumptions, disjoint-
ness, and unsatisfiability of concept conjunctions and uses a different encoding
of inequalities that already incorporates the semantics of universal restrictions.
We delegate the generation of inequalities completely to the ILP component.

To summarize, the novel features of our architecture are (i) saturation rules
that do not backtrack to decide subsumption (and disjointness) [32]; (ii) feasi-
bility of QCRs is decided by ILP (in contrast to [4]); (iii) our revised encoding of
inequalities, which incorporates role hierarchies, the aggregation of information
about subsumption, disjointness, and unsatisfiability of concept conjunctions,
allows a more informed mapping of QCR satisfiability to feasibility and reduces
the number of returned solutions that fail logically; (iv) the best-case time com-
plexity of our ILP feasibility test is polynomial to the number of inequalities [24].
This work extends our previous research on the ELQ Avalanche reasoner [32].

2 Preliminaries

Description logics are a family of knowledge representation languages that form
a basis for the Web Ontology Language (OWL). The DL ALCHQ, which is a
core subset of OWL, allows role hierarchies (H) and the concept-forming con-
structors conjunction, disjunction, negation, at-least and at-most restriction (Q).
The semantics of ALCHQ concepts and roles is defined by an interpretation
I = (ΔI , ·I) that maps a concept C to CI ⊆ ΔI and a role R to RI ⊆ ΔI × ΔI .
For convenience we use the concepts � and ⊥ with �I = ΔI and ⊥I = ∅.

98 J. Vlasenko et al.

ALCHQ concepts are inductively defined from concept and role names using
the constructors as follows (n,m ∈ N, n ≥ 1, ‖ · ‖ denotes set cardinality,
FR,C(x) = {y ∈ CI | (x, y) ∈ RI}): (i) (C � D)I = CI ∩ DI ; (ii) (C � D)I =
CI ∪ DI ; (iii) (¬C)I = ΔI \ CI ; (iv) (≥ nR.C)I = {x | ‖FC,R(x)‖ ≥ n};
(v) (≤ mR.C)I = {x | ‖FC,R(x)‖ ≤ m}. The latter two constructors are called
QCRs. A concept C is satisfiable if there exists an I such that CI �= ∅.

An ALCHQ Tbox T is defined as a finite set of axioms of the form C � D
or R � S, where C,D are concepts and R,S roles, and such axioms are satisfied
by I if CI ⊆ DI or RI ⊆ SI . We call I a model of T if it satisfies all axioms in
T . A Tbox T entails an axiom if all models of T satisfy that axiom.

One of the main tasks of a DL reasoner is to classify a Tbox by comput-
ing all subsumptions between named concepts. Tableau-based algorithms [2] are
the most applied reasoning algorithms to date. Consequence-based or saturation-
based algorithms [4,30] are algorithms that accumulate or saturate entailed
knowledge in a bottom-up way while tableaux attempt to prove entailment in a
goal-oriented or top-down way. The idea of saturating knowledge comes from the
one-pass saturation algorithm for the DL EL++ [1]. EL only allows conjunction
and existential value restriction (∃R.C ≡ ≥ 1R.C). Different optimization tech-
niques exist for different types of tasks performed by DL reasoners. In this work,
we are interested in applying linear optimization in order to handle qualified num-
ber restrictions [9–11] in ontologies expressed in ELQ, which is a superset of EL
that additionally allows QCRs. It is well-known that ELQ is a syntactic variant
of ALCQ [1].

Atomic decomposition was initially proposed in [26] to reason about sets,
however it can also be used to reason about role fillers of qualified number
restrictions in description logics. This technique allows us to reduce the problem
of deciding feasibility of qualified number restrictions to solving a linear program.
The example below illustrates how to transform qualified number restrictions
into inequalities. Let us assume the following three qualified number restrictions
≥ 3 hasColor .Blue, ≥ 4 hasColor .Red , ≤ 5 hasColor .Green. We denote the par-
tition of the set {b, r, g} (b = blue, r = red , g = green) as {b, r, g, br , bg , rg , brg}
where the absence of a letter indicate the implied presence of its negation, e.g.,
b stands for the intersection of blue, not red, not green. Then, we get the corre-
sponding inequalities (| . | denotes set cardinality).

|b| + |br| + |bg| + |brg| ≥ 3
|r| + |br| + |rg| + |brg| ≥ 4
|g| + |bg| + |rg| + |brg| ≤ 5

In such a way we preserve the semantics of qualified number restrictions and
reduce a satisfiability problem to a feasibility problem, i.e., whether a 0–1 linear
program is feasible.

Pushing the Boundaries of QCR Reasoning 99

3 Column Generation and Branch-and-Price Methods

We discuss here how to check the feasibility of a 0–1 linear program with a col-
umn generation model, i.e., with an exponential number of variables. It consists
in first checking whether its linear relaxation, a linear program with an exponen-
tial number of variables, is feasible. We next provide a brief overview of linear
programming (LP for short) and column generation.

Linear Programming was recognized as one of the most important scientific
achievements of the 20th century. It allows the solution of complicated problems
that concern allocation of scarce resources with respect to various constraints
in a minimum amount of time. There exist different approaches to solve linear
programs. One of them is the simplex method that was proposed in 1947 by
George B. Dantzig. Although the simplex method requires an exponential num-
ber of iterations in the worst case, it performs very well in practice. In 1979
the ellipsoid method was proposed by Leonid Khachiyan, and could solve linear
programming problems in polynomial time. Nevertheless, the simplex method,
despite being worst-case exponential is more efficient in practice than the ellip-
soid method. The interior-point method is another polynomial-time algorithm
that was proposed in 1984 by Narendra Karmarkar and its recent refinements
[12] are competitive with the simplex algorithm.

The algorithms mentioned above have been integrated into different commer-
cial and open source solvers, e.g., CPLEX, Gurobi, XPRESS. These solvers are
capable of solving very large linear programming problems, i.e., with up to hun-
dreds of thousands of variables. When it comes to millions of variables, their per-
formance starts to deteriorate. We can then use the column generation method.
The idea behind this method is that only a subset of all variables (columns)
have non zero values in the optimal LP solution. Indeed, there are no more than
the number of constraints, i.e., the number of so-called basic variables in linear
programming. Numerous large-scale optimization problems are now using it [23].

Back to feasibility checking, column generation can easily detect infeasible
linear programs. However, infeasible integer linear programs do not necessarily
have an infeasible linear programming relaxation. In order to detect infeasibility
in such cases, it is then required to use a branch-and-price algorithm [3] (i.e., a
branch-and-bound algorithm [25] in which the linear relaxation is solved with a
column generation method).

In the context of our work, we create very large integer linear programs with
numerous variables. Therefore, we choose to solve the continuous relaxation with
the column generation method to address scalability issues, following the success
of using it for, e.g., deciding the consistency of a set of clauses in the context of
probabilistic logic [17,20]. In order to produce integer solutions, column gener-
ation is combined with a branch-and-price algorithm [3] to either conclude that
the model has no solution or to obtain an integer solution.

Column generation together with the branch-and-price method have been
implemented into a system that we decided to call QMediator. QMediator is a
middle layer or a mediator that facilitates communication between Avalanche and
CPLEX. This process will be described in detail in Sect. 5. In short, whenever

100 J. Vlasenko et al.

Avalanche needs to process qualified number restrictions it calls QMediator. QMe-
diator in turn creates a corresponding integer linear program based on the received
information and solves it by means of column generation and branch-and-price
methods. To actually solve the integer linear program QMediator calls CPLEX.

The example below illustrates how column generation works in practice, with-
out the need of a branch-and-price method for this particular example.

Consider the axiom D � ≥ 2R.A � ≥ 3R.B � ≤ 4R.C. Initially we assume
that there is no known subsumption relationship between the QCR qualifi-
cations A,B,C. Since we have only one role, we can ignore its name and
only focus on QD = Q≥

D ∪ Q≤
D, which is our base set for partitioning, with

Q≥
D = {A,B} and Q≤

D = {C}. The complete decomposition set (or partition) is
DD = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}} where each partition
element p represents the intersection of p’s elements plus the intersection of all
¬ei with ei ∈ QD\p. We denote the elements of DD by the variables xA, xB , xC ,
xAB , xAC , xBC , xABC . In the context of the ILP model, note that each variable
is associated with a column, so we may use either terms in the sequel.

First Example. The QCRs for concept D result in the following ILP problem.

min
∑

p∈DD

xp (1)

subject to:

xA + 0xB + 0xC + xAB + xAC + 0xBC + xABC ≥ 2 � ≥ 2R.A (2)
0xA + xB + 0xC + xAB + 0xAC + xBC + xABC ≥ 3 � ≥ 3R.B (3)
0xA + 0xB + xC + 0xAB + xAC + xBC + xABC ≤ 4 � ≤ 4R.C (4)

xp ∈ N, for p ∈ DD.

The optimal solution is xB = 1, xAB = 2, and all other variables are equal to
zero.

However, since the size of DD is exponential with respect to the size of QD,
in general one cannot afford to enumerate all variables. In order to use a col-
umn generation modelling, model (1)–(4) is decomposed into a restricted master
problem (RMP), made of a subset of columns, and the pricing problem (PP),
which can be viewed as a column generator. The RMP contains the inequalities
(rows) representing the QCRs, with a very restricted set of variables. Initially
one can start with an empty set P of variables xp, and a set of artificial vari-
ables hq, one for each constraint, i.e., for each element in QD (here n = 3) using
an arbitrarily large cost W (here W = 10). Those artificial variables define an
initial artificial feasible solution, however, in order to be feasible, the QCR set
must not use any of them in its solution.

The cost of a partition element p is defined as the number of elements
it contains. Consequently, the objective function of the RMPs is defined as∑

p∈P costpxp + W
∑n

i=1 hi. The choice of the cost is related to the selection of
partition elements of smaller sizes and thus of less restricted solutions. Indeed, it

Pushing the Boundaries of QCR Reasoning 101

promotes the reuse of nodes in Avalanche’s saturation graph. The optimal solu-
tion2 of (RMP 1) has a cost 50, and contains two non-zero artificial variables.

Minimize 10h1 + 10h2 + 10h3 subject to (RMP 1)
h1 ≥ 2
h2 ≥ 3
h3 ≤ 4

Solution: cost = 50;h1 = 2, h2 = 3; Dual: πA = 10, πB = 10

The objective of the PP is equal to the so-called reduced cost in linear pro-
gramming (see, e.g., Chvatal [6] if not familiar with linear programming). It uses
the dual price values as coefficients of the variables associated with a potential
partition element, i.e., binary variables bq, rq (q ∈ QD) to ensure the descrip-
tion logics semantics of QCRs. The variables bq indicate whether role successors
must be an instance of q and rq whether an R-successor that is an instance of
q must exist. For each at-least QCR with a role and its qualification, P must
contain a corresponding variable, e.g., for ≥ 2R.A if rA = 1 a variable b con-
taining A in its subscript must exist (rA − bA ≤ 0). If P contains a qualification
of an at-most QCR, then a corresponding variable must be present, e.g., if C
occurs in P (bC = 1), then a variable r containing C in its subscript must exist
(bC − rC ≤ 0). The objective function of the PP can then be written as

∑

q∈QD

bq −
∑

q∈Q
≥
D

πqrq −
∑

q∈Q
≤
D

ωqrq (5)

Based on this formula we can define (PP 1). In its objective function the only
non-zero dual price values (coefficients) are πA, πB due to (RMP 1).

Minimize bA + bB + bC − 10rA − 10rB subject to (PP 1)
rA − bA ≤ 0
rB − bB ≤ 0 (CPP1)
bC − rC ≤ 0

Solution: cost = −18, rA = 1, rB = 1, bA = 1, bB = 1.

Since the values of rA, rB are 1, we add the variable xAB to the next RMP
(P = {{A,B}}). The cost of its solutions is reduced, from 50 in (RMP 1) to 6
in (RMP 2).

Minimize 2xAB + 10h1 + 10h2 + 10h3 subject to: (RMP 2)
xAB + h1 ≥ 2
xAB + h2 ≥ 3

h3 ≤ 4
Solution: cost = 6, xAB = 3; Dual: πB = 2

2 The value of variables not listed in a solution are equal to zero.

102 J. Vlasenko et al.

In the objective of (PP 2) the only non-zero dual price value is πB (see
also (5)).

Minimize bA + bB + bC − 2rB subject to (CPP 1) (PP 2)
Solution: cost = −1, rB = 1, bB = 1

Since the value of rB is 1, we add the variable xB to the next RMP (P = {{B},
{A,B}}), whose cost is further reduced, from 6 in (RMP 2) to 5 in (RMP 3).

Minimize xB + 2xAB + 10h1 + 10h2 + 10h3 subject to (RMP 3)
xAB + h1 ≥ 2

xB + xAB + h2 ≥ 3
h3 ≤ 4

Solution: cost = 5, xB = 1,xAB = 2; Dual: πA = 1, πB = 1

In the objective of (PP 2) the only non-zero dual price values are πA, πB .

Minimize bA + bB + bC − rA − rB subject to (CPP 1) (PP 3)
Solution: cost = 0

At this point all variables hi in (RMP 3) and rq in (PP 3) are zero indicating
that we have reached a feasible solution. Moreover, since the reduced cost of the
problem is always positive no “improving” column can be added. This allows
us to conclude that we have reached the optimal solution of the LP. Lastly, as
this LP optimal solution is integer, we can also claim that it defines the optimal
set of partition elements. The inequality system (1) is feasible and the solution
in (RMP 3) results in creating one R-successor that is an instance of B with
cardinality 1 (xB = 1) and one R-successor that is an instance of A � B with
cardinality 2 (xAB = 2). Obviously, this solution satisfies the initial inequalities
since the successor A � B satisfies ≥ 2R.A and ≥ 2R.B. Thus, the B successor
together with the A � B successor will satisfy ≥ 3R.B.

Second Example. This example adds to the first example the axioms A � C
and B � C. The original inequality system (1) and (RMP 1) remain unchanged.
The new pricing problem below accommodates the added subsumptions, e.g.,
A � C is modelled as bA ≤ bC ⇐⇒ bA − bC ≤ 0.

Minimize bA + bB + bC − 10rA − 10rB subject to (PP 4)
rA − bA ≤ 0
rB − bB ≤ 0
bC − rC ≤ 0 (CPP4)
bA − bC ≤ 0
bB − bC ≤ 0.

Solution: cost = −17, rA = 1, rB = 1, rC = 1, bA = 1, bB = 1, bC = 1.

Pushing the Boundaries of QCR Reasoning 103

Since the values of rA, rB , rC are 1 we add the variable xABC to the next
version of our RMP (P = {{A,B,C}}), which reduces the cost from 50 to 9 in
(RMP 5).

Minimize 3xABC + 10h1 + 10h2 + 10h3 subject to (RMP 5)
xABC + h1 ≥ 2
xABC + h2 ≥ 3
xABC + h3 ≤ 4

Solution: cost = 9, xABC = 3; Dual: πB = 3

Minimize bA + bB + bC − 3rB subject to (CPP 4) (PP 5)
Solution: cost = −1, rB = 1, rC = 1, bB = 1, bC = 1

Since the values of rB , rC are 1 we add the variable xBC to the next version
of our RMP (P = {{B,C}, {A,B,C}}), which reduces the cost from 9 to 8 in
(RMP 6).

Minimize 2xBC + 3xABC+10h1 + 10h2 + 10h3 subject to (RMP 6)
xABC + h1 ≥ 2

xBC + xABC + h2 ≥ 3
xBC + xABC + h3 ≤ 4

Solution: cost = 8, xBC = 1, xABC = 2; Dual: πA = 1, πB = 2

Minimize bA + bB + bC − rA − 2rB subject to (CPP 4) (PP 6)
Solution: cost = 0

All variables rq are zero, so, no variable can be added to minimize (RMP 6)
further. The inequality system (1) is feasible and according to (RMP 6) we create
an R-successor that is an instance of B�C with cardinality 1 and an R-successor
that is an instance of A�B �C with cardinality 2. Since we have 3 R-successors
that instances of C, the QCR ≤ 4R.C is satisfied.

Third Example. This example adds to the second example the axiom A�B �
⊥. The original inequality system (1) and (RMP 1) remain unchanged. The new
pricing problem below accommodates the added disjointness, i.e., A � B � ⊥ is
modelled as bA + bB ≤ 1.

104 J. Vlasenko et al.

Minimize bA + bB + bC − 10rA − 10rB subject to (PP 7)
rA − bA ≤ 0
rB − bB ≤ 0
bC − rC ≤ 0 (CPP7)
bA − bC ≤ 0
bB − bC ≤ 0
bA + bB ≤ 1

Solution: cost = −8, rA = 1, rC = 1, bA = 1, bC = 1

Since the values of rA, rC are 1 we add the variable xAC to the next version
of our RMP (P = {{A,C}}), which reduces the cost from 50 to 34 in (RMP 8).

Minimize 2xAC+10h1 + 10h2 + 10h3 subject to (RMP 8)
xAC + h1 ≥ 2

h2 ≥ 3
xAC + h3 ≤ 4

Solution: cost = 34, xAC = 2, h2 = 3; Dual: πA = 2, πB = 10

Minimize bA + bB + bC − 2rA − 10rB subject to (CPP 7) (PP 8)
Solution: cost = −8, rB = 1, rC = 1, bB = 1, bC = 1

Since the values of rB , rC are 1 we add the variable xBC to the next version
of our RMP (P = {{B,C}, {A,C}}), which reduces the cost from 34 to 14 in
(RMP 9).

Minimize 2xAC + 2xBC+10h1 + 10h2 + 10h3 subject to (RMP 9)
xAC + h1 ≥ 2
xBC + h2 ≥ 3

xAC + xBC + h3 ≤ 4
Solution: cost = 14, xBC = 2, xAC = 2, h2 = 1; Dual: πA = 8, πB = 10,

ωC = −8

Minimize bA + bB + bC − 8rA − 10rB + 8rC subject to (CPP 7) (PP 9)
Solution: cost = 0

All variables rq are zero, so, no variable can be added to minimize (RMP 9)
further. However, the inequality system (1) is now infeasible because (RMP 9)
still contains the non-zero artificial variable h2. The infeasibility is caused by the
disjointness between the QCR qualifications A and B.

Pushing the Boundaries of QCR Reasoning 105

Fig. 1. Optimization chart

The process described above is summarized in Fig. 1. We first define RMP
and apply column generation to produce new columns until we obtain an optimal
solution. Then, if the solution is infeasible the submitted QCRs are infeasible
as well. Otherwise, if the solution is feasible then we proceed with applying the
branch-and-price method. If the problem is not feasible, then it will be detected
at some iteration in the branch-and-price, while solving the linear relaxation with
the column generation algorithm. Otherwise, if the problem is feasible, then the
branch-and-price will output a feasible solution.

4 Role Hierarchies

Role hierarchies can easily be mapped to ILP. We illustrate the methodology
first with a small example and later with one that entails role subsumption.
However, please note that they have not yet been integrated in the current
version of Avalanche.

Simple Example. Let A � ≥ 2S.B � ≥ 2U.C � ≤ 3R.� with S,U subroles
of R. The concept A is satisfiable and its least constrained model must have at
least one SU -successor that is an instance of B � C. Role hierarchies only need
to be considered if an at-most QCR referring to a superrole (R) is restricting
other QCRs referring to subroles (S,U) of R. The semantics of role hierarchies
is encoded in the inequalities generated for the corresponding at-most QCRs.

We define Q≥
A = {SB , UC} and Q≤

A = {R}. Since S,U are subroles of R,
any partition element containing a subrole and its superrole can be simplified by
removing the superrole because their intersection is equal to the subrole, e.g.,
{SB , R} is equal to {SB}. Additionally, R can be removed from QA because
no at-least QCR mentioning R exists. The complete decomposition set is DA =
{{SB}, {UC}, {SB , UC}}. We denote these partition elements by the variables
xSB

, xUC
, xSBUC

.

106 J. Vlasenko et al.

The QCRs for concept A result in the following ILP problem.

Minimize xSB
+ xUC

+ 2xSBUC
subject to (6)

xSB
+ 0xUC

+ xSBUC
≥ 2 � ≥ 2S.B

0xSB
+ xUC

+ xSBUC
≥ 2 � ≥ 2U.C

xSB
+ xUC

+ xSBUC
≤ 3 � ≤ 3R.�

with xSB
, xUC

, xSBUC
∈ N

The optimal solution is xSB
= 1, xUC

= 1, xSBUC
= 1. We create one SU -

successor that is an instance of B � C, one S-successor that is an instance of
B, and one U -successor that is an instance of C. All three successors have a
cardinality of 1.

Example with Entailed Role Subsumption. The combination of role hier-
archies and QCRs can be used to entail role subsumptions. Let us assume a
Tbox T = {� � ≤ 1R.�, ≥ 1S.� � C, C � ≥ 1U.�, A � ≥ 1S.B � ≤ 0U.B}
with S,U subroles of R. T entails that S is a subrole of U and thus A � ⊥. It is
easy to see that A is subsumed by C via the role S. Thus the QCRs applicable
to A are ≤ 1R.�,≥ 1S.B,≤ 0U.B, ≥ 1U.�.

We define Q≥
A = {SB , U} and Q≤

A = {R,UB}. After applying the simpli-
fications from above we get DA = {{U}, {SB}, {UB}, {U, SB}, {SB , UB}}. We
denote these partition elements by the variables xU , xSB

, xUB
, xUSB

, xSBUB
.

The QCRs for concept A result in the following ILP problem.

Minimize xU + xSB
+ xUB

+ 2xUSB
+ 2xSBUB

subject to (7)

0xU + xSB
+ 0xUB

+ xUSB
+ xSBUB

≥ 1 � ≥ 1S.B

xU + 0xSB
+ xUB

+ xUSB
+ xSBUB

≥ 1 � ≥ 1U.�
xU + xSB

+ xUB
+ xUSB

+ xSBUB
≤ 1 � ≤ 1R.�

0xU + 0xSB
+ xUB

+ xUSB
+ xSBUB

≤ 0 � ≤ 0U.B

with xU , xSB
, xUB

, xUSB
, xSBUB

∈ N

The system’s infeasibility is caused by the encoding of the entailed role sub-
sumption S � U (first three inequalities) and ≤ 0U.B (fourth inequality). If any
of these four inequalities is removed, the remaining system becomes feasible.

5 Communication of Avalanche with QMediator

Avalanche is a complex rule-based system that implements a consequence-based
reasoning algorithm presented in [32]. The algorithm manages the application
of rules to an input ontology by traversing the completion graph. A dedicated
module QMediator is called when a rule needs to expand the underlying graph or
when a clash has been detected in a node due to the presence of qualified number
restrictions. With the help of the module we can reduce the problem of deciding

Pushing the Boundaries of QCR Reasoning 107

satisfiability of qualified number restrictions to the feasibility of inequalities,
which gives us a clear advantage over other existing systems. To avoid circular
dependencies between the two systems (considered an anti-pattern in software
design) QMediator cannot call or access any data from Avalanche. Avalanche in
its turn cannot directly call CPLEX.

During the execution of the algorithm the rules are being applied to an input
ontology and a directed completion graph is constructed to store the inferred
information. There can be four types of nodes in the graph – identified nodes,
anonymous nodes, auxiliary nodes, and two types of cloned nodes – a positive
clone to test subsumption between concepts and a negative clone to test disjoint-
ness between concepts. If a positive/negative node becomes unsatisfiable then
the subsumption/disjointness holds. Each node in a given completion graph is
uniquely identified by its representative concept. A representative concept is
either a concept (a concept name) declared in the original ontology or a concept
created during the reasoning process. All nodes contain a set of subsumers and
only identified nodes contain a set of possible subsumers. Subsumers are other
concepts that subsume the representative concept of a node. Possible subsumers
are collected by a dedicated rule and are needed for subsumption testing. As
it can be guessed from their name, possible subsumers represent the subsumers
that can possibly subsume the representative concept of a node. Thus, we can
avoid performing unnecessary subsumption tests.

When a node is subsumed by qualified number restrictions it has to call the
graph expansion rule. The rule in its turn will call QMediator and pass the
corresponding information: the qualified number restrictions, the subsumers of
the qualifications and their unsatisfiable concept conjunctions. After that, the
mediator will transform this information into a linear program, and it will call
CPLEX to solve it or in other words to find a model. The result of this call is
returned to the rule. Thus, the rule will have all the necessary information to
expand the graph or to make the node unsatisfiable by adding ⊥ (bottom) to its

Fig. 2. Clash detection

108 J. Vlasenko et al.

subsumers. As a result, the expansion rule may create additional nodes in the
graph - the anonymous nodes. An anonymous node represents a situation when
a role filler is not a single concept (e.g., A) but rather an intersection of concepts
(A � B).

In Fig. 2 we show how the call to QMediator is integrated into the clash
detection process. If a node becomes unsatisfiable, then the cause of the unsat-
isfiability has to be identified. If there is a logical clash (e.g., A and ¬A are
present in the node) then the corresponding ancestors of the node will be made
unsatisfiable. However, if the clash is due to the presence of qualified number
restrictions then the mediator should be called and it should be asked to recom-
pute a more constrained model. If a new model was computed, the rules can
continue to be applied. If there is no model and the node is an identified node,
then the corresponding ancestors of the node should be made unsatisfiable. If the
node is an anonymous node this information will be recorded to avoid having the
QMediator recompute the same model. Otherwise, the node in question must
be a positive/negative cloned node. In this case it can be concluded that the
subsumption/disjointness holds and the node will be marked as unsatisfiable.

6 Performance Evaluation

We extended the test suite that we used in our previous work to evaluate the
performance of Avalanche [32]. The test suite is composed of three different col-
lections of test ontologies that will be presented below. We chose these ontologies

Ontology Name #A #C #R #QCRs
canadian-parliament-factions-1 48 21 6 19
canadian-parliament-factions-2 56 24 7 25
canadian-parliament-factions-3 64 27 8 30
canadian-parliament-factions-4 72 30 9 35
canadian-parliament-factions-5 81 34 10 40
canadian-parliament-factions-10 121 49 15 54
canadian-parliament-full-factions-1 51 22 6 22
canadian-parliament-full-factions-2 60 25 7 30
canadian-parliament-full-factions-3 69 28 8 36
canadian-parliament-full-factions-4 78 31 9 42
canadian-parliament-full-factions-5 87 34 10 48
canadian-parliament-full-factions-10 132 49 15 69
C-SAT-exp-ELQ 26 10 4 13
C-UnSAT-exp-ELQ 26 10 4 13
genomic-cds rules-ELQ-fragment-1 716 358 1 357
genomic-cds rules-ELQ-fragment-2 718 359 1 357
genomic-cds rules-ELQ-fragment-3 718 359 1 357
genomic-cds rules-ELQ-fragment-4 1691 2775 1 8172

Fig. 3. Metrics of benchmark ontologies (# = Number of . . . , A = Axioms, C =
Concepts, R = Roles)

Pushing the Boundaries of QCR Reasoning 109

to be classified to stress test the performance of Avalanche with respect to differ-
ent applications of qualified cardinality restrictions. Some metrics about the test
ontologies are shown in Fig. 3. The ontologies differ by the number of axioms,
concepts, roles, and qualified number restrictions.

The first test collection models the House of Commons of the Canadian par-
liament [5] (see top part of Fig. 4). It is our own collection of ELQ ontologies
where we represent a real-world situation. There are two versions of this bench-
mark - short and full, each consisting of six variants. The variants differ by the
number of included factions [5]. The only reasoners that can classify all variants
of the simplest of these ontologies within the given time limit are Avalanche
and Racer. Avalanche is the only reasoner that can classify all variants of these
ontologies.

The second test collection (see middle part of Fig. 4) uses synthetic concept
templates. The original ALCQ concepts are shown below the table. They were
manually rewritten into normalized ELQ. The concept templates use a vari-
able n that is increased exponentially. The numbers used in the template are
bounded by the value of 2n. The first template is satisfiable and the second one
is unsatisfiable. Only Avalanche and Racer can classify all variants of these small
ontologies within the time limit.

The third test collection (see bottom part of Fig. 4) uses four ELQ fragments
of a real world ontology, genomic-cds rules [29], which was developed for pharma-
cogenetics and clinical decision support. It contains many concepts using QCRs
of the form = 2 has.Ai. However, in these fragments the concepts (Ai) occurring
in the qualification of the QCRs do not interact with one another. This sim-
plifies reasoning and all reasoners except Racer perform well. Avalanche (with
the exception of the fourth fragment) and HermiT as well as FaCT++ and Kon-
clude have similar runtimes. These fragments are interesting because the concept
<#human> contains several hundred QCRs using the same role. This is one of the
reasons why Racer times out for all fragments. At the moment we can classify
only the above mentioned fragments of the ontology in question. Our ultimate
goal is classify the entire ontology. As we know, no other reasoner can do it yet.

As compared to our previous work [32], the performance of Avalanche has
already been greatly improved. However, we expect to achieve even better results
in future. Avalanche’s speed for the Canadian Parliament ontologies has been
improved by several orders of magnitude. Previously it could not classify the
version of Canadian Parliament with 10 factions within 10,000 s. The reason
for such a change is mainly due to the improved communication with QMedia-
tor. Previously we delegated all computations that concerned qualified number
restrictions to the dedicated module. After a scrupulous analysis of Avalanche’s
runtime we noticed that a lot of time is spent in the module to solve rather
simple cases. It appears that Linear Programming methods are typically used to
solve feasible problems. If a problem is infeasible then it should be considered as
erroneous and it has to be remodelled. However, in our case we do not consider
infeasible models to be erroneous. On the contrary, they help us to discover valu-
able knowledge about the ontology in question, e.g. subsumption or disjointness.

110 J. Vlasenko et al.

As a result, we identified several cases where feasibility/infeasibility information
can be discovered without CPLEX. For example, we do not need to call QMedi-
ator when we have only at-least or only at-most restrictions. In the former case
we simply connect with an edge the node that contains the number restrictions
and the nodes that contain role fillers as their representative concepts. In the
latter case we do not need to do anything because at-most inequalities do not
require us to create successors (remember that 0 will satisfy ≤ 5R.C). We have
a special treatment when we have a set of at-least and at-most inequalities and
all at-most inequalities are of cardinality 0. We also check if we can reduce all
at-least inequalities and all at-most inequalities to only one inequality. For exam-
ple, ≥ 3R.C and ≥ 5R.C could be replaced by ≥ 5R.C. Similarly, ≤ 0R.C and
≤ 6R.C could be replaced by ≤ 0R.C. Further, we have other ways to determine
early infeasibility. For example, ≤ 3R.C and ≥ 1R.D would be infeasible if C is
subsumed by D. Thus, QMediator is now called only when it cannot be avoided.

Although Racer can classify some of the test ontologies faster than Avalanche,
we are not discouraged by this fact because we know exactly how we have to
improve Avalanche in order to achieve comparable or even better results. In
particular, we will be working on a reimplementation of the strategy that is
used to apply rules to nodes.

Canadian Parliament
Factions only Full

#F Ava Fac Her Kon Rac Ava Fac Her Kon Rac
10 1.1 TO TO TO 0.12 1.4 TO TO TO TO
5 0.56 TO TO TO 0.12 0.73 TO TO TO TO
4 0.46 TO TO TO 0.11 0.58 TO TO TO TO
3 0.36 TO TO TO 0.07 0.43 TO TO TO TO
2 0.26 TO TO TO 0.07 0.33 TO TO TO 10.5
1 0.18 TO TO 7.3 0.05 0.24 TO TO TO 0.44

C-SAT-exp-ELQ C-UnSAT-exp-ELQ
n Ava Fac Her Kon Rac Ava Fac Her Kon Rac
40 1.3 TO TO TO 0.01 1.6 TO TO TO 0.01
20 1.3 TO TO TO 0.01 1.5 TO TO TO 0.01
10 1.2 TO TO TO 0.01 1.6 TO TO TO 0.01
5 0.95 6.3 4.4 0.91 0.01 1.8 TO TO 784 0.01
3 1.1 0.17 0.18 0.33 0.01 1.6 0.25 1.15 1.18 0.01

Sat: C � (≤ nR.¬A � ≤ n−1R.¬B) � ≥ 2nR.� � ≤ nR.A � ≤ nR.B
Unsat: C � (≤ n−1R.¬A � ≤ n−1R.¬B) � ≥ 2nR.� � ≤ nR.A � ≤ nR.B

Satisfiability of concept
Name Ava Fac Her Kon Rac
genomic-cds rules-ELQ-fragment-1 0.75 27.7 0.87 27.7 TO
genomic-cds rules-ELQ-fragment-2 1.2 28.2 1.14 28.3 TO
genomic-cds rules-ELQ-fragment-3 4.8 28.8 1.27 26.3 TO
genomic-cds rules-ELQ-fragment-4 26.7 28.8 4.4 29.4 TO

Fig. 4. Benchmark runtimes in seconds with a timeout of 1000 s (TO = timeout, #F =
Number of Factions, Ava = Avalanche, Fac = FaCT++, Her = HermiT, Kon = Kon-
clude, Rac = Racer)

Pushing the Boundaries of QCR Reasoning 111

The experiments were performed on a MacBook Pro (2.6 GHz Intel Core i7
processor, 16 GB memory). The comparison results (average of 3 runs) are shown
in Fig. 4. We compared Avalanche with major OWL reasoners: FaCT++ (1.6.4)
[8], HermiT (1.3.8) [18], Konclude (0.6.2) [22], and Racer (3.0) [14,15,27]. In
fact, Racer is the only other available OWL reasoner using an ILP component
for reasoning about QCRs in contrast to [21] where ILP is used in the context
of probabilistic reasoning. The algorithms implementing Racer’s ILP component
are in general best-case exponential with respect to the number of QCRs given
for one concept. Another reasoning approach for ALCQ [16] used SMT with a
theory that is a specific and computationally much cheaper subcase of Linear
Arithmetic under the Integers but this approach suffers from inefficiencies for
nested QCRs where reasoning involves backtracking. It would also not scale well
for role hierarchies and its extension to inverse roles is an open problem.

7 Conclusion

In this work we presented a hybrid architecture for reasoning about description
logics supporting role hierarchies and QCRs. It allows us to reduce the QCR sat-
isfiability problem to a feasibility problem. We tested our system and identified
ontologies that cannot be classified by other reasoners in a reasonable amount of
time. We almost finished extending the architecture to cover ALCHQ. Our ulti-
mate goal is to extend our architecture to the DL ALCHIQ by adding inverse
roles (I).

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceeding of IJCAI,
pp. 364–369 (2005)

2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Stud. Logica. 69(1), 5–40 (2001)

3. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46(3), 316–329 (1998)

4. Bate, A., Motik, B., Cuenca Grau, B., Simanč́ık, F., Horrocks, I.: Extending
consequence-based reasoning to SRIQ. In: Proceeding of KR, pp. 187–196 (2016)

5. Canadian Parliament: https://en.wikipedia.org/wiki/House of Commons of
Canada

6. Chvatal, V.: Linear Programming. Freeman, New York (1983)
7. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res.

8(1), 101–111 (1960)
8. FaCT++: http://owl.cs.manchester.ac.uk/tools/fact/
9. Faddoul, J., Haarslev, V.: Algebraic tableau reasoning for the description logic

SHOQ. J. Appl. Logic 8(4), 334–355 (2010)
10. Faddoul, J., Haarslev, V.: Optimizing algebraic tableau reasoning for SHOQ: First

experimental results. In: Proceeding of DL, pp. 161–172 (2010)

https://en.wikipedia.org/wiki/House_of_Commons_of_Canada
https://en.wikipedia.org/wiki/House_of_Commons_of_Canada
http://owl.cs.manchester.ac.uk/tools/fact/

112 J. Vlasenko et al.

11. Farsiniamarj, N., Haarslev, V.: Practical reasoning with qualified number restric-
tions: a hybrid Abox calculus for the description logic SHQ. AI Commun. 23(2–3),
334–355 (2010)

12. Freund, R., Mizuno, S.: Interior point methods: current status and future direc-
tions. Optima 51, 1–9 (1996)

13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Oper. Res. 9(6), 849–859 (1961)

14. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge repre-
sentation and reasoning system. Semant. Web 3(3), 267–277 (2012)

15. Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg
(2001). doi:10.1007/3-540-45744-5 59

16. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated reasoning in ALCQ via SMT.
In: Proceeding of CADE, pp. 283–298 (2011)

17. Hansen, P., Jaumard, B., de Aragão, M.P., Chauny, F., Perron, S.: Probabilistic
satisfiability with imprecise probability. Int. J. Approximate Reasoning 24(2–3),
171–189 (2000)

18. HermiT: http://www.hermit-reasoner.com/download.html
19. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. In:

Proceeding of KR, pp. 335–346 (1991)
20. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for prob-

abilistic logic. ORSA J. Comput. 3(2), 135–148 (1991)
21. Klinov, P., Parsia, B.: Pronto: a practical probabilistic description logic reasoner.

In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J.,
Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol.
7123, pp. 59–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0 4

22. Konclude: http://www.derivo.de/en/produkte/konclude/
23. Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53,

1007–1023 (2005)
24. Megiddo, N.: On the complexity of linear programming. In: Advances in Economic

Theory, pp. 225–268. Cambridge University Press (1987)
25. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,

New York (1988)
26. Ohlbach, H., Köhler, J.: Modal logics, description logics and arithmetic reasoning.

Artif. Intell. 109(1–2), 1–31 (1999)
27. Racer: https://www.ifis.uni-luebeck.de/index.php?id=385
28. Roosta Pour, L., Haarslev, V.: Algebraic reasoning for SHIQ. In: Proceeding of

DL, pp. 530–540 (2012)
29. Samwald, M.: Genomic CDS: an example of a complex ontology for pharmacoge-

netics and clinical decision support. In: 2nd OWL Reasoner Evaluation Workshop,
pp. 128–133 (2013)

30. Simanč́ık, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter
tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)

31. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Math. Program.
130(2), 249–294 (2011)

32. Vlasenko, J., Daryalal, M., Haarslev, V., Jaumard, B.: A saturation-based algebraic
reasoner for ELQ. In: PAAR@IJCAR, Coimbra, Portugal, pp. 110–124 (2016)

http://dx.doi.org/10.1007/3-540-45744-5_59
http://www.hermit-reasoner.com/download.html
http://dx.doi.org/10.1007/978-3-642-35975-0_4
http://www.derivo.de/en/produkte/konclude/
https://www.ifis.uni-luebeck.de/index.php?id=385

Rewriting

Parallel Closure Theorem for Left-Linear
Nominal Rewriting Systems

Kentaro Kikuchi1(B), Takahito Aoto2, and Yoshihito Toyama1

1 RIEC, Tohoku University, Sendai, Japan
{kentaro,toyama}@nue.riec.tohoku.ac.jp

2 Faculty of Engineering, Niigata University, Niigata, Japan
aoto@ie.niigata-u.ac.jp

Abstract. Nominal rewriting has been introduced as an extension of
first-order term rewriting by a binding mechanism based on the nominal
approach. In this paper, we extend Huet’s parallel closure theorem and
its generalisation on confluence of left-linear term rewriting systems to
the case of nominal rewriting. The proof of the theorem follows a previ-
ous inductive confluence proof for orthogonal uniform nominal rewriting
systems, but the presence of critical pairs requires a much more delicate
argument. The results include confluence of left-linear uniform nominal
rewriting systems that are not α-stable and thus are not represented by
any systems in traditional higher-order rewriting frameworks.

1 Introduction

Variable binding is ubiquitous in many expressive formal systems such as sys-
tems of predicate logics, λ-calculi, process calculi, etc. Every language containing
variable binding needs to deal with α-equivalence. Intuitively α-equivalence may
be dealt with implicitly, but much effort is required in formal treatment. To
overcome the difficulty, many studies have been made in the literature (e.g.
[5,18]), among which the nominal approach [9,17] is a novel one—unlike other
approaches, it incorporates permutations and freshness conditions on variables
(atoms) as basic ingredients.

To deal with equational logics containing variable binding, various rewriting
frameworks have been proposed (e.g. [12,13]). Nominal rewriting [8] has been
introduced as a new rewriting framework based on the nominal approach. A
distinctive feature of nominal rewriting is that α-conversion and capture-avoiding
substitution are not relegated to the meta-level—they are explicitly dealt with at
the object-level. In contrast, previous rewriting frameworks as in [12,13] employ
some meta-level calculus (e.g. the simply-typed λ-calculus) and accomplish α-
conversion and capture-avoiding substitution via the meta-level calculus.

Confluence and critical pairs are fundamental notions for systematic treat-
ment of equational reasoning based on rewriting. Some basic confluence results
such as Rosen’s criterion (orthogonal systems are confluent) and Knuth-Bendix’s
criterion (terminating systems with joinable critical pairs are confluent) have
been extended to the case of nominal rewriting [3,8,19,20].
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 115–131, 2017.
DOI: 10.1007/978-3-319-66167-4 7

116 K. Kikuchi et al.

In the present paper, we are concerned with Huet’s criterion [10] (left-linear
systems with parallel closed critical pairs are confluent, which is known as the
parallel closure theorem) in the setting of nominal rewriting. We are also aiming
to obtain its generalisation analysing overlaps at the root as in the case of term
rewriting [21]. These results extend the previous results of Rosen’s criterion in
the nominal rewriting setting [3,8,19], and include confluence of, in particular,
weakly orthogonal nominal rewriting systems, i.e. left-linear nominal rewriting
systems in which all critical pairs are α-equivalent.

The difficulties in proving confluence properties of nominal rewriting systems,
compared to the case of ordinary term rewriting, are threefold. First, rewriting is
performed via matching modulo α-equivalence, so that a redex is not necessarily
an instance of the LHS of a rule but a term that is α-equivalent to it. This
causes, among others, similar difficulties in proving the critical pair lemma to
those for E-critical pairs [11]. Secondly, rewrite rules have freshness contexts (or
constraints), and accordingly, critical pairs are also accompanied with freshness
contexts. This is analogous to the case of term rewriting with certain constraints
(e.g. [7]). Thirdly, as a characteristic feature of nominal rewriting, rewrite steps
involve permutations, or, in terms of [8], the set of rewrite rules is closed under
equivariance. Therefore, to keep finiteness of the representations, critical pairs
need to be parametrised by permutations.

Due to these difficulties, it is not obvious in nominal rewriting that a peak
with rewriting at a non-variable position of one of the rules is an instance of
a critical pair. This property is necessary in the proof of Lemma 13, where we
construct required permutations and substitutions using some lemmas and the
property of the most general unifier occurring in the critical pair.

The parallel closure theorem for left-linear nominal rewriting systems has
not been shown for years, while confluence by orthogonality and the critical pair
lemma has already been discussed in [3,8,19,20]: [3,8,19] deal with left-linear
systems without critical pairs, and [20] deals with terminating or left-and-right-
linear systems. We give an example of a nominal rewriting system whose conflu-
ence is shown by our criterion but cannot be shown by any of the criteria given
in the previous papers (see Example 1). Moreover, in the present paper, we do
not particularly assume α-stability [19] of nominal rewriting systems. This is in
contrast to [3,19,20] where confluence criteria are considered only for α-stable
rewriting systems. We give an example of a nominal rewriting system that is not
α-stable and that is shown to be confluent by our criterion (see Example 2).

The structure of our confluence proof follows the so-called inductive method
for first-order orthogonal term rewriting systems as explained, e.g. in Chap. 9
of [4, pp. 208–211], but much more complicated than the first-order case by
the above-mentioned difficulties. Our confluence proof also shows that such an
inductive method can be adapted to cases with critical pairs.

The paper is organised as follows. In Sect. 2, we recall basic notions of nominal
rewriting and critical pairs. In Sect. 3, we prove confluence for some classes of
nominal rewriting systems via the parallel closure theorem and its generalisation.
In Sect. 4, we conclude with discussion on related work.

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 117

2 Nominal Rewriting

Nominal rewriting [8] is a framework that extends first-order term rewriting by a
binding mechanism. In this section, we recall basic definitions on nominal terms
and nominal rewriting, following [19,20]. For further descriptions and examples,
see [8,19,20].

2.1 Nominal Terms

A nominal signature Σ is a set of function symbols ranged over by f, g, We fix
a countably infinite set X of variables ranged over by X,Y,Z, . . . , and a count-
ably infinite set A of atoms ranged over by a, b, c, . . . , and assume that Σ, X
and A are pairwise disjoint. Unless otherwise stated, different meta-variables for
objects in Σ, X or A denote different objects. A swapping is a pair of atoms, writ-
ten (a b). Permutations π are bijections on A such that the set of atoms for which
a �= π(a) is finite. Permutations are represented by lists of swappings applied
in the right-to-left order. For example, ((b c)(a b))(a) = c, ((b c)(a b))(b) = a,
((b c)(a b))(c) = b. We write Id for the identity permutation, π−1 for the inverse
of π, and π ◦ π′ for the composition of π′ and π, i.e., (π ◦ π′)(a) = π(π′(a)).

Nominal terms, or simply terms, are generated by the grammar

t, s:: = a | π·X | [a]t | f t | 〈t1, . . . , tn〉

and called, respectively, atoms, moderated variables, abstractions, function
applications and tuples. We abbreviate Id ·X as X if there is no ambiguity.
f 〈 〉 is abbreviated as f , and referred to as a constant. An abstraction [a]t is
intended to represent t with a bound. We write V (t)(⊆ X) for the set of variables
occurring in t. A linear term is a term in which any variable occurs at most once.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. For positions p, q, we write p � q if there exists a position o such
that q = po. We write p ‖ q for p �� q and q �� p. The set of positions in a
term t, denoted by Pos(t), is defined as follows: Pos(a) = Pos(π·X) = {ε};
Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)} ∪ {ε}; Pos(〈t1, . . . , tn〉) =

⋃
i{ip | p ∈

Pos(ti)} ∪ {ε}. The subterm of t at a position p ∈ Pos(t) is written as t|p. We
write s ⊆ t if s is a subterm occurrence of t, and write s ⊂ t if s ⊆ t and s �= t.
A position p ∈ Pos(t) is a variable position in t if t|p is a moderated variable.
The set of variable positions in t is denoted by PosX (t). The size |t| of a term t
is defined as the number of elements in Pos(t).

Next, two kinds of permutation actions π·t and tπ, which operate on terms
extending a permutation on atoms, are defined as follows:

π·a = π(a) aπ = π(a)
π·(π′·X) = (π ◦ π′)·X (π′·X)π = (π ◦ π′ ◦ π−1)·X
π·([a]t) = [π·a](π·t) ([a]t)π = [aπ]tπ

π·(f t) = f π·t (f t)π = f tπ

π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉 〈t1, . . . , tn〉π = 〈tπ1 , . . . , tπn〉

118 K. Kikuchi et al.

The difference between the two consists in the clause for moderated variables.
In particular, when π′ = Id , π is suspended before X in the first action as
π·(Id ·X) = (π ◦ Id)·X = π·X, while in the second action π has no effect as
(Id ·X)π = (π ◦ Id ◦ π−1)·X = Id ·X. Note also that the permutation actions do
not change the set of positions, i.e. Pos(π·t) = Pos(tπ) = Pos(t).

A context is a term in which a distinguished constant � occurs. Contexts
having precisely one � are written as C[]. The term obtained from a context C
by replacing each � at positions pi by terms ti is written as C[t1, . . . , tn]p1,...,pn

or simply C[t1, . . . , tn]. Similarly, the term obtained from a term s by replacing
each subterm at positions pi by terms ti is written as s[t1, . . . , tn]p1,...,pn

.
A substitution σ is a map from variables to terms. Substitutions act on vari-

ables, without avoiding capture of atoms, where substituting σ(X) for X of a
moderated variable π·X induces a permutation action π·(σ(X)). The applica-
tion of a substitution σ on a term t is written as tσ. For a permutation π and a
substitution σ, we define the substitution π·σ by (π·σ)(X) = π·(σ(X)).

The following properties hold.

Proposition 1. π·(π′·t) = (π ◦ π′)·t and (tπ)π′
= tπ

′◦π.

Proposition 2 ([8,22]). π·(tσ) = (π·t)σ.
Lemma 1. π·(tσ) = tπ(π·σ).

2.2 Freshness Constraints and α-Equivalence

A pair a#t of an atom a and a term t is called a freshness constraint. A finite
set ∇ ⊆ {a#X | a ∈ A,X ∈ X} is called a freshness context. For a freshness
context ∇, we define V (∇) = {X ∈ X | ∃a. a#X ∈ ∇}, ∇π = {aπ#X | a#X ∈
∇} and ∇σ = {a#σ(X) | a#X ∈ ∇}.

The rules in Fig. 1 define the relation ∇ � a#t, which means that a#t is
satisfied under the freshness context ∇.

∇ � a#b

∇ � a#[a]t

∇ � a#t

∇ � a#f t

∇ � a#t

∇ � a#[b]t

∇ � a#t1 · · · ∇ � a#tn

∇ � a#〈t1, . . . , tn〉
π−1·a#X ∈ ∇
∇ � a#π·X

Fig. 1. Rules for freshness constraints

The rules in Fig. 2 define the relation ∇ � t ≈α s, which means that t is α-
equivalent to s under the freshness context ∇. ds(π, π′) in the last rule denotes
the set {a ∈ A | π·a �= π′·a}. Note that if ∇ � t ≈α s then Pos(t) = Pos(s).

The following properties are shown in [8,22].

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 119

∇ � a ≈α a

∇ � t ≈α s

∇ � f t ≈α f s

∇ � t1 ≈α s1 · · · ∇ � tn ≈α sn

∇ � 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉

∇ � t ≈α s

∇ � [a]t ≈α [a]s

∇ � (a b)·t ≈α s ∇ � b#t

∇ � [a]t ≈α [b]s

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ � π·X ≈α π′·X

Fig. 2. Rules for α-equivalence

Proposition 3. 1. ∇ � a#t if and only if ∇ � π·a#π·t.
2. ∇ � t ≈α s if and only if ∇ � π·t ≈α π·s.
3. If ∇ � a#t and ∇ � t ≈α s then ∇ � a#s.
4. ∀a ∈ ds(π, π′).∇ � a#t if and only if ∇ � π·t ≈α π′·t.
Proposition 4. For any freshness context ∇, the binary relation ∇ � − ≈α −
is a congruence (i.e. an equivalence relation that is closed under any context).

In the sequel, � is extended to mean to hold for all members of a set (or a
sequence) on the RHS.

2.3 Nominal Rewriting Systems

Nominal rewrite rules and nominal rewriting systems are defined as follows.

Definition 1 (Nominal rewrite rule). A nominal rewrite rule, or simply
rewrite rule, is a triple of a freshness context ∇ and terms l and r such that
V (∇)∪V (r) ⊆ V (l) and l is not a moderated variable. We write ∇ � l → r for a
rewrite rule, and identify rewrite rules modulo renaming of variables. A rewrite
rule ∇ � l → r is left-linear if l is linear. For a rewrite rule R = ∇ � l → r and
a permutation π, we define Rπ as ∇π � lπ → rπ.

Definition 2 (Nominal rewriting system). A nominal rewriting system, or
simply rewriting system, is a finite set of rewrite rules. A rewriting system is
left-linear if so are all its rewrite rules.

Definition 3 (Rewrite relation). Let R = ∇ � l → r be a rewrite rule. For a
freshness context Δ and terms s and t, the rewrite relation is defined by

Δ � s →〈R,π,p,σ〉 t
def⇐⇒ Δ � ∇πσ, s = C[s′]p, Δ � s′ ≈α lπσ, t = C[rπσ]p

where V (l) ∩ (V (Δ) ∪ V (s)) = ∅. We write Δ � s
p→R t if there exist π and σ

such that Δ � s →〈R,π,p,σ〉 t. We write Δ � s →〈R,π〉 t if there exist p and σ
such that Δ � s →〈R,π,p,σ〉 t. We write Δ � s →R t if there exists π such that
Δ � s →〈R,π〉 t. For a rewriting system R, we write Δ � s →R t if there exists
R ∈ R such that Δ � s →R t.

Lemma 2. If Δ � s →〈R,π,p,σ〉 t then Δ � τ ·s →〈R,τ◦π,p,τ ·σ〉 τ ·t.

120 K. Kikuchi et al.

In the following, a binary relation Δ � −
� − (
� is →R, ≈α, etc.) with a
fixed freshness context Δ is called the relation
� under Δ or simply the relation

� if there is no ambiguity. If a relation
� is written using → then the inverse
is written using ←. Also, we write
�= for the reflexive closure and
�∗ for the
reflexive transitive closure. We use ◦ for the composition of relations. We write
Δ � s1
�1 s2
�2 . . .
�n−1 sn for Δ � si
�i si+1 (1 ≤ i < n).

2.4 Basic Critical Pairs

In this subsection, we define our notion of critical pairs, following [20].
First, we recall unification of nominal terms. Let P be a set of equations

and freshness constraints {s1 ≈ t1, . . . , sm ≈ tm, a1#u1, . . . , an#un} (where
ai and aj may denote the same atom). Then, P is unifiable if there exist a
freshness context Γ and a substitution θ such that Γ � s1θ ≈α t1θ, . . . , smθ ≈α

tmθ, a1#u1θ, . . . , an#unθ; the pair 〈Γ, θ〉 is called a unifier of P . It is shown
in [22] that the unification problem for nominal terms is decidable. Moreover,
if P is unifiable then there exists a most general unifier (mgu for short) of P ,
where an mgu of P is a unifier 〈Γ, θ〉 of P such that for any unifier 〈Δ,σ〉 of P ,
there exists a substitution δ such that Δ � Γδ and Δ � Xθδ ≈α Xσ for any
variable X.

Definition 4 (Basic critical pair). Let Ri = ∇i � li → ri (i = 1, 2) be
rewrite rules. We assume w.l.o.g. V (l1) ∩ V (l2) = ∅. Let ∇1 ∪ ∇π

2 ∪ {l1 ≈ lπ2 |p}
be unifiable for some permutation π and a non-variable position p such that
l2 = L[l2|p]p, and let 〈Γ, θ〉 be an mgu. Then, Γ � 〈Lπθ[r1θ]p, rπ

2 θ〉 is called a
basic critical pair (BCP for short) of R1 and R2. BCP(R1, R2) denotes the set
of all BCPs of R1 and R2, and BCP(R) denotes the set

⋃
Ri,Rj∈R BCP(Ri, Rj).

We remark that any BCP Γ � 〈Lπθ[r1θ]p, rπ
2 θ〉 of R1 and R2 forms a

peak, i.e., we have Γ � Lπθ[r1θ]p ←〈R1,Id,p,θ〉 Lπθ[lπ2 |pθ]p = (L[l2|p]p)πθ =
lπ2 θ →〈R2,π,ε,θ〉 rπ

2 θ.

2.5 Uniform Rewrite Rules

In the rest of the paper, we are concerned with confluence properties for partic-
ular classes of nominal rewriting systems. For this, we restrict rewriting systems
by some conditions. First we consider the uniformity condition [8]. Intuitively,
uniformity means that if an atom a is not free in s and s rewrites to t then a is
not free in t.

Definition 5 (Uniformity). A rewrite rule ∇ � l → r is uniform if for any
atom a and any freshness context Δ, Δ � ∇ and Δ � a#l imply Δ � a#r. A
rewriting system is uniform if so are all its rewrite rules.

The following properties of uniform rewrite rules are important and will be
used in the sequel.

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 121

Proposition 5 ([8]). Suppose Δ � s →R t for a uniform rewrite rule R. Then,
Δ � a#s implies Δ � a#t.

Lemma 3. Let ∇ � l → r be a uniform rewrite rule, and let Δ � C[lπσ]p ≈α

Ĉ[u]p. Then there exists a permutation π̂ such that Δ � lπσ ≈α π̂·u and Δ �
C[rπσ]p ≈α Ĉ[π̂−1·(rπσ)]p.

Proof. We prove the following generalised statement: if Δ � τ ·(C1[u]p)≈αC2[v]p
then there exists a permutation π satisfying

1. Δ � (π ◦ τ)·u ≈α v.
2. Let u′ and v′ be terms such that (i) ∀a ∈ A. Δ � a#u =⇒ Δ � a#u′, and

(ii) Δ � (π ◦ τ)·u′ ≈α v′. Then Δ � τ ·(C1[u′]p) ≈α C2[v′]p. ((i) is equivalent
to ∀a ∈ A. Δ � a#v =⇒ Δ � a#v′ under 1 and (ii).)

The lemma is obtained as a special case of this where τ = Id , C1 = Ĉ, C2 = C,
π = π̂, v = lπσ, v′ = rπσ and u′ = π̂−1·(rπσ). The proof of the above statement
is by induction on the context C1[]. ��
Lemma 4. Let R be a uniform rewrite rule. If Δ � s′ ≈α s →〈R,π,p,σ〉 t, then
there exist π′, σ′, t′ such that Δ � s′ →〈R,π′,p,σ′〉 t′ ≈α t.

Proof. Noting that Δ � s ≈α s′ implies Pos(s) = Pos(s′), we obtain the lemma
from Lemma 3 by taking π′ = π̂−1 ◦ π and σ′ = π̂−1·σ. ��

3 Confluence of Left-Linear Nominal Rewriting Systems

In this section, we study confluence properties of left-linear nominal rewriting
systems. Specifically, we prove a version of Huet’s parallel closure theorem [10]
in the setting of nominal rewriting. Huet’s parallel closure theorem states that
all left-linear parallel closed term rewriting systems are confluent, where a term
rewriting system is parallel closed if all its critical pairs are joinable in one-step
parallel reduction from left to right. (It is important to note that critical pairs
are ordered.) We also prove a generalisation of the theorem, analysing overlaps
at the root as in the case of term rewriting [21].

First we introduce, for precise treatment of α-equivalence, confluence prop-
erties modulo the equivalence relation ≈α in terms of abstract reduction
systems [14].

Definition 6. Let R be a nominal rewriting system.

1. s and t are joinable modulo ≈α under a freshness context Δ, denoted by
Δ � s ↓≈α

t, iff Δ � s (→∗
R ◦ ≈α ◦ ←∗

R) t.
2. →R is confluent modulo ≈α iff Δ � s (←∗

R ◦ →∗
R) t implies Δ � s ↓≈α

t.
3. →R is Church-Rosser modulo ≈α iff Δ � s (←R ∪ →R ∪ ≈α)∗

t implies
Δ � s ↓≈α

t.
4. →R is strongly locally confluent modulo ≈α iff Δ � s (←R ◦ →R) t implies

Δ � s (→=
R ◦ ≈α ◦ ←∗

R) t.

122 K. Kikuchi et al.

5. →R is strongly compatible with ≈α iff Δ � s (≈α ◦ →R) t implies Δ �
s (→=

R ◦ ≈α) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a strong-
er property than confluence modulo ∼ [14]. So in the rest of this section we aim
to show Church-Rosser modulo ≈α for some class of left-linear uniform nominal
rewriting systems through the theorems that can be seen as extensions of Huet’s
parallel closure theorem [10] and its generalisation [21].

3.1 Parallel Reduction

A key notion for proving confluence of left-linear rewriting systems is parallel
reduction. Here we define it inductively, using a particular kind of contexts.

Definition 7. The grammatical contexts, ranged over by G, are the contexts
defined by

G :: = a | π·X | [a]� | f � | 〈�1, . . . ,�n〉
Let R be a nominal rewriting system. For a given freshness context Δ, we define
the relation Δ � − −→� R − inductively by the following rules:

Δ � s1 −→� R t1 · · · Δ � sn −→� R tn
Δ � G[s1, . . . , sn] −→� R G[t1, . . . , tn]

(C)
Δ � s →〈R,π,ε,σ〉 t R ∈ R

Δ � s −→� R t
(B)

where n (≥ 0) depends on the form of G. We define Δ � σ −→� R δ by ∀X ∈ X .
Δ � Xσ −→� R Xδ.

The relation Δ � s −→� R t can also be defined by Δ � C[s1, . . . , sn]p1,...,pn
−→� R

C[t1, . . . , tn]p1,...,pn
for some context C, where Δ � si →Ri

ti for some Ri ∈ R,

and pi ‖ pj for i �= j. In that case, we write Δ � s
P−→� R t where P = {p1, . . . , pn}

(P is uniquely determined from the derivation of Δ � s −→� R t).

Lemma 5. 1. Δ � s −→� R s.
2. If Δ � s −→� R t then Δ � C[s] −→� R C[t].
3. If Δ � s →〈R,π,p,σ〉 t and R ∈ R then Δ � s −→� R t.
4. If Δ � s −→� R t then Δ � s →∗

R t.

Proof. 1. By induction on s.
2. By induction on the context C[].
3. By 2 and the rule (B).
4. By induction on the derivation of Δ � s −→� R t. ��
Lemma 6. If Δ � s −→� R t then Δ � π·s −→� R π·t.
Proof. By induction on the derivation of Δ � s −→� R t. If the last applied rule
in the derivation is (B), then we use Lemma 2. ��
Lemma 7. If Δ � σ −→� R δ then Δ � sσ −→� R sδ.

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 123

Proof. By induction on s. If s = π·X, then we use Lemma 6. ��
Lemma 8. Let R be a uniform nominal rewriting system. If Δ � a#s and
Δ � s −→� R t then Δ � a#t.

Proof. By Proposition 5 and Lemma 5(4). ��
We define the notions in Definition 6 for −→� R as well. Our aim is to prove

strong local confluence modulo ≈α (Theorems 1 and 2), which together with
strong compatibility with ≈α (Lemma 9) yields Church-Rosser modulo ≈α of
−→� R (and hence of →R).

Lemma 9 (Strong compatibility with ≈α). Let R be a uniform rewriting
system. If Δ � s′ ≈α s−→� R t then there exists t′ such that Δ � s′ −→� R t′ ≈α t.

Proof. By induction on the derivation of Δ � s −→� R t. If the last applied rule
in the derivation is (B), then the claim follows by Lemma 4. Among the other
cases, we treat the case where G = [a]�. Then the last part of the derivation
has the form

Δ � s1 −→� R t1
Δ � [a]s1 −→� R [a]t1

(C)

where [a]s1 = s and [a]t1 = t. Now we have two cases.

(a) s′ = [a]s′
1 and Δ � [a]s′

1 ≈α [a]s1.
Then Δ � s′

1 ≈α s1, and so by the induction hypothesis, there exists t′1 such
that Δ � s′

1 −→� R t′1 ≈α t1. Hence we have Δ � [a]s′
1 −→� R [a]t′1 ≈α [a]t1.

(b) s′ = [b]s′
1 and Δ � [b]s′

1 ≈α [a]s1.
Then Δ � s1 ≈α (a b)·s′

1 and Δ � a#s′
1. So by the induction hypothesis,

there exists t′1 such that Δ � (a b)·s′
1 −→� R t′1 ≈α t1. By taking π = (a b)

in Lemma 6, we have Δ � s′
1 −→� R (a b)·t′1, and by Lemma 8, we have

Δ � a#(a b)·t′1. Hence, we obtain the following derivations, from which the
claim follows.

Δ � t′1 ≈α t1 Δ � a#(a b)·t′1
Δ � [b](a b)·t′1 ≈α [a]t1

and
Δ � s′

1 −→� R (a b)·t′1
Δ � [b]s′

1 −→� R [b](a b)·t′1
(C)

The cases where G �= [a]� are simpler. ��
A key lemma to the parallel closure theorem is Lemma 11, which corresponds

to Lemma 9.3.10 of [4] in the first-order case. Here we employ a version of the
statement that can be adapted to cases where critical pairs exist. First we show
a lemma to address the separated case of moderated variables.

Lemma 10. Let R be a uniform rewriting system. Then, if Δ � ∇σ, Δ � s ≈α

π·Xσ and Δ � s −→� R t then there exists δ such that Δ � ∇δ, Δ � t ≈α π·Xδ,
Δ � σ −→� R δ and for any Y �= X, Y σ = Y δ.

124 K. Kikuchi et al.

Proof. From Δ � s ≈α π·Xσ, we have Δ � π−1·s ≈α Xσ, and from Δ �
s −→� R t, we have Δ � π−1·s −→� R π−1·t by Lemma 6. Hence by Lemma 9, there
exists t′ such that Δ � Xσ −→� R t′ ≈α π−1·t. We take δ defined by Xδ = t′ and
Y δ = Y σ for any Y �= X. Then we have Δ � t ≈α π·Xδ and Δ � σ−→� R δ. Since
R is uniform, it follows from Lemma 8 that if Δ � a#Xσ then Δ � a#t′(= Xδ).
Hence, from Δ � ∇σ, we have Δ � ∇δ. ��
Lemma 11. Let R be a uniform rewriting system. Then, for any linear term l,
if Δ � ∇πσ, Δ � s ≈α lσ and Δ � s

P−→� R t where ∀p ∈ P.∃o ∈ PosX (l). o � p
then there exists δ such that Δ � ∇πδ, Δ � t ≈α lδ, Δ � σ −→� R δ and for any
X /∈ V (l), Xσ = Xδ.

Proof. By induction on l. The case where l is a moderated variable π·X follows
from Lemma 10. For the other cases, since ∀p ∈ P.∃o ∈ PosX (l). o � p, the
last rule used in the derivation of Δ � s −→� R t must be (C). We proceed by
case analysis according to the form of l. Here we consider the cases where l =
〈l1, . . . , ln〉 and l = [a]l1.

1. l = 〈l1, . . . , ln〉. Since Δ � s ≈α lσ, s is of the form 〈s1, . . . , sn〉. Then the last
part of the derivation of Δ � s −→� R t has the form

Δ � s1 −→� R t1 . . . Δ � sn −→� R tn
Δ � 〈s1, . . . , sn〉 −→� R 〈t1, . . . , tn〉 (C)

and for each i ∈ {1, . . . , n}, Δ � si ≈α liσ. By the induction hypothesis,
there exist δi’s such that Δ � ∇πδi, Δ � ti ≈α liδi, Δ � σ −→� R δi and
∀X /∈ V (li). Xσ = Xδi. Since l is linear, we can take δ such that if X ∈ V (li)
then Xδ = Xδi and if X /∈ V (l) then Xδ = Xσ. It is easy to check that this
δ satisfies the required condition.

2. l = [a]l1. Since Δ � s ≈α [a]l1σ, we have two cases.
(a) s = [a]s1. Then Δ � s1 ≈α l1σ, and the last part of the derivation of

Δ � s −→� R t has the form

Δ � s1 −→� R t1
Δ � [a]s1 −→� R [a]t1

(C)

Then by the induction hypothesis, there exists δ such that Δ � ∇πδ,
Δ � t1 ≈α l1δ, Δ � σ −→� R δ and ∀X /∈ V (l1).Xσ = Xδ. By Δ �
t1 ≈α l1δ, we have Δ � [a]t1 ≈α [a]l1δ. Since V (l1) = V (l), we have
∀X /∈ V (l).Xσ = Xδ. Thus we see that the claim holds.

(b) s = [b]s1. Then Δ � (b a)·s1 ≈α l1σ, Δ � a#s1, and the last part of the
derivation of Δ � s −→� R t has the form

Δ � s1 −→� R t1
Δ � [b]s1 −→� R [b]t1

(C)

From Δ � s1−→� Rt1, we have Δ � (b a)·s1−→� R(b a)·t1 by Lemma 6. Since
R is uniform, it also follows Δ � a#t1 by Lemma 8. Hence Δ � b#(b a)·t1.

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 125

Thus, by the induction hypothesis, there exists δ such that Δ � ∇πδ,
Δ � (b a)·t1 ≈α l1δ, Δ � σ −→� R δ and ∀X /∈ V (l1).Xσ = Xδ. Then from
Δ � (b a)·t1 ≈α l1δ and Δ � a#t1, it follows that Δ � [b]t1 ≈α [a]l1δ.
Since V (l1) = V (l), we see that the claim holds. ��

3.2 Confluence of Left-Linear Parallel Closed Rewriting Systems

In this subsection, we prove the main theorems of the paper: the parallel closure
theorem (Theorem 1) and its generalisation (Theorem 2).

First, we state a lemma concerning substitutions.

Lemma 12 ([8]). Let σ and σ′ be substitutions such that ∀X ∈ X .Δ � Xσ ≈α

Xσ′. Then Δ � tσ ≈α tσ′ for any term t.

The following can be seen as a critical pair lemma for left-linear systems.

Lemma 13. Let R be a left-linear uniform rewriting system and let R ∈ R. If
Δ � s1

ε←R s
P−→� R s2 then one of the following holds:

1. There exists a term t such that Δ � s1 −→� R t ←R s2.
2. There exist p ∈ P , R′ ∈ R, Γ � 〈u, v〉 ∈ BCP(R′, R), s′, π and θ such that

Δ � s
p→R′ s′ P\{p}−→� R s2, Δ � Γπθ, Δ � s′ ≈α uπθ and Δ � s1 ≈α vπθ.

Proof. Let R = ∇ � l → r ∈ R, and suppose Δ � s1 ←〈R,π,ε,σ〉 s
P−→� R s2.

Then by the definition of rewrite relation, we have Δ � ∇πσ, Δ � s ≈α lπσ and
s1 = rπσ. Now we distinguish two cases.

– Case ∀p ∈ P.∃o ∈ PosX (l). o � p.
Then by Lemma 11, there exists δ such that Δ � ∇πδ, Δ � s2 ≈α lπδ and
Δ � σ −→� R δ. Hence we have Δ � s2 →〈R,π,ε,δ〉 rπδ, and by Lemma 7,
Δ � rπσ −→� R rπδ. Thus, part 1 of the claim holds.

– Case ∃p ∈ P.¬∃o ∈ PosX (l). o � p.

Then p ∈ Pos(l) \ PosX (l), and Δ � s →〈R′,π′,p,σ′〉 s′ P\{p}−→� R s2 for some
R′ = ∇′ � l′ → r′ ∈ R, π′, σ′ and s′. Let L be the context with l = L[l|p]p.
First we show claim I: the set ∇′ ∪ ∇π̆ ∪ {l′ ≈ lπ̆|p} is unifiable for some π̆.

(Proof of claim I) By the definition of rewrite steps, we have Δ �
∇′π′

σ′,∇πσ, s|p ≈α l′π
′
σ′, s ≈α lπσ. Thus, Δ � s[l′π

′
σ′]p ≈α s[s|p]p =

s ≈α lπσ. Hence, Δ � s[l′π
′
σ′]p ≈α Lπσ[lπ|pσ]p. Now, by Lemma 3, there

exists π̂ such that

Δ � l′π
′
σ′ ≈α π̂·(lπ|pσ) (3.1)

Δ � s[r′π′
σ′]p ≈α Lπσ[π̂−1·(r′π′

σ′)]p (3.2)

From Δ � ∇′π′
σ′,∇πσ and (3.1), we have

Δ � ∇′(π′−1·σ′),∇π′−1◦π̂◦π((π′−1 ◦ π̂)·σ)

Δ � l′(π′−1·σ′) ≈α lπ
′−1◦π̂◦π|p((π′−1 ◦ π̂)·σ) (3.3)

126 K. Kikuchi et al.

Now, let π̆ = π′−1 ◦ π̂ ◦ π and let σ̆ be the substitution such that σ̆(X) =
(π′−1·σ′)(X) for X ∈ V (l′), σ̆(X) = ((π′−1 ◦ π̂)·σ)(X) for X ∈ V (l), and
σ̆(X) = X otherwise, where we assume w.l.o.g. V (l′) ∩ V (l) = ∅. Then,
the statement (3.3) equals Δ � ∇′σ̆,∇π̆σ̆, l′σ̆ ≈α lπ̆|pσ̆.

(End of the proof of claim I)
Thus, ∇′ ∪∇π̆ ∪{l′ ≈ lπ̆|p} is unifiable. Hence we have Γ � 〈Lπ̆θ[r′θ]p, rπ̆θ〉 ∈
BCP(R′, R) where 〈Γ, θ〉 is an mgu and so there is a substitution δ such that

Δ � Γδ (3.4)
∀X ∈ X . Δ � Xθδ ≈α Xσ̆ (3.5)

Let u = Lπ̆θ[r′θ]p and v = rπ̆θ. In the following, we show claim II: with the
BCP Γ � 〈u, v〉, part 2 of the statement of the lemma holds.

(Proof of claim II) From the property (3.5) and Lemma 12, we have Δ �
rπ̆θδ ≈α rπ̆σ̆. Hence Δ � vδ ≈α rπ′−1◦π̂◦π((π′−1 ◦ π̂)·σ), which means Δ �
vπ̂−1◦π′

((π̂−1 ◦π′)·δ) ≈α rπσ. Now, let π̂′ = π̂−1 ◦π′ and δ′ = (π̂−1 ◦π′)·δ.
Then we have Δ � vπ̂′

δ′ ≈α rπσ = s1. Also, from the property (3.4), we
have Δ � Γ π̂′

δ′. It only remains to show Δ � uπ̂′
δ′ ≈α s′. Again, from the

property (3.5) and Lemma 12, we have Δ � Lπ̆[r′]pθδ ≈α Lπ̆[r′]pσ̆. Hence
Δ � uδ ≈α Lπ̆[r′]pσ̆ = Lπ̆σ̆[r′σ̆]p = Lπ′−1◦π̂◦π((π′−1 ◦ π̂)·σ)[r′(π′−1·σ′)]p.
Equivalently, Δ � uπ̂−1◦π′

((π̂−1 ◦ π′)·δ) ≈α Lπσ[π̂−1·(r′π′
σ′)]p. From this

and (3.2), we have Δ � uπ̂−1◦π′
((π̂−1 ◦ π′)·δ) ≈α s[r′π′

σ′]p, which means
Δ � uπ̂′

δ′ ≈α s[r′π′
σ′]p = s′. (End of the proof of claim II) ��

Before proceeding to Theorem 1, we state one more lemma.

Lemma 14. 1. If Γ � s ≈α t and Δ � Γπθ then Δ � sπθ ≈α tπθ.
2. If Γ � s →R t and Δ � Γπθ then Δ � sπθ →R tπθ.
3. If Γ � s −→� R t and Δ � Γπθ then Δ � sπθ −→� R tπθ.

Now we show the parallel closure theorem which states that −→� R is strongly
locally confluent modulo ≈α for a class of left-linear nominal rewriting systems.

Definition 8. A nominal rewriting system R is parallel closed if for any Γ �
〈u, v〉 ∈ BCP(R), Γ � u (−→� R◦ ≈α) v. A nominal rewriting system R is weakly
orthogonal if it is left-linear and for any Γ � 〈u, v〉 ∈ BCP(R), Γ � u ≈α v.

Theorem 1 (Parallel closure theorem). Let R be a left-linear parallel
closed uniform rewriting system. If Δ � t −→� R t1 and Δ � t −→� R t2 then
there exist t′1 and t′2 such that Δ � t1 −→� R t′1, Δ � t2 −→� R t′2 and Δ � t′1 ≈α t′2.

Proof. Suppose Δ � t
P1−→� R t1 and Δ � t

P2−→� R t2 where P1 = {p11, . . . , p1m}
and P2 = {p21, . . . , p2n}. We set subterm occurrences αi = t|p1i

(1 ≤ i ≤ m) and
βj = t|p2j

(1 ≤ j ≤ n), and let Red in = {αi | ∃βj . αi ⊂ βj} ∪ {βj | ∃αi. βj ⊆ αi}
and Redout = {αi | ∀βj . αi �⊂ βj} ∪ {βj | ∀αi. βj �⊆ αi}. We define |Red in | as∑

γ∈Redin
|γ|. The proof of the claim is by induction on |Red in |.

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 127

– Case |Red in | = 0.
Then we can write t = C[s11, . . . , s1m, s21, . . . , s2n]p11,...,p1m,p21,...,p2n

, t1 =
C[s′

11, . . . , s
′
1m, s21, . . . , s2n] and t2 = C[s11, . . . , s1m, s′

21, . . . , s
′
2n] where C is

some context, Δ � s1i →R s′
1i(1 ≤ i ≤ m) and Δ � s2j →R s′

2j(1 ≤ j ≤ n).
Hence, the claim follows by taking t′1 = t′2 = C[s′

11, . . . , s
′
1m, s′

21, . . . , s
′
2n].

– Case |Red in | > 0.
Suppose Redout = {s1, . . . , sh}. Then we can write t = C[s1, . . . , sh], t1 =
C[s11, . . . , sh1] and t2 = C[s12, . . . , sh2] where for each k with 1 ≤ k ≤ h,
Δ � sk −→� R sk1, Δ � sk −→� R sk2 and one of them is at the root. Now,
to prove the claim, it is sufficient to show that for each k with 1 ≤ k ≤ h,
there exist s′

k1 and s′
k2 such that Δ � sk1 −→� R s′

k1, Δ � sk2 −→� R s′
k2 and

Δ � s′
k1 ≈α s′

k2.

Let 1 ≤ k ≤ h, and suppose Δ � sk
{ε}−→� R sk1 and Δ � sk

P−→� R sk2. (The
symmetric case is proved similarly.) Then there exists R ∈ R such that Δ �
sk

ε→R sk1. Hence by Lemma 13, one of the following holds:
1. There exists a term ŝk such that Δ � sk1 −→� R ŝk ←R sk2.
2. There exist p ∈ P , R′ ∈ R, Γ � 〈u, v〉 ∈ BCP(R′, R), s′

k, π and θ such that

Δ � sk
p→R′ s′

k

P\{p}−→� R sk2, Δ � Γπθ, Δ � s′
k ≈α uπθ and Δ � sk1 ≈α vπθ.

If part 1 holds then the requirement is satisfied. So we treat the case where
part 2 holds. Since R is parallel closed, there exists w such that Γ � u −→� R
w ≈α v. Then by Lemma 14(1) and (3), we have Δ � uπθ −→� R wπθ ≈α

vπθ ≈α sk1. Hence by Lemma 9, there exists ŝk1 such that Δ � s′
k−→� R ŝk1 ≈α

wπθ ≈α sk1.
In the following, we intend to apply the induction hypothesis to the parallel

peak Δ � s′
k

Q−→� R ŝk1 and Δ � s′
k

P\{p}−→� R sk2.
Let P \ {p} = {p1, . . . , pn′−1} (n′ ≥ 1). We are now considering a case where
sk = αi for some i (1 ≤ i ≤ m), and a set of occurrences {βj1 , . . . , βjn′ } as
{βj | βj ⊆ αi}. Then, clearly

∑n′

l=1|βjl
| ≤ |Red in |. We also have sk|p = βjl′

for some l′ (1 ≤ l′ ≤ n′), and {sk|p1 , . . . , sk|pn′−1
} = {s′

k|p1 , . . . , s
′
k|pn′−1

} =
{βj1 , . . . , βjn′ } \ {βjl′ }. Now let Q = {q1, . . . , qm′}. Let γi′ = s′

k|qi′ (1 ≤ i′ ≤
m′) and ρj′ = s′

k|pj′ (1 ≤ j′ ≤ n′ − 1), and let Red ′
in = {γi′ | ∃ρj′ . γi′ ⊂ ρj′} ∪

{ρj′ | ∃γi′ . ρj′ ⊆ γi′}. Then, |Red ′
in | ≤ ∑n′−1

j′=1 |ρj′ | <
∑n′−1

j′=1 |ρj′ | + |βjl′ | =
∑n′

l=1|βjl
|. Hence we can apply the induction hypothesis to the parallel peak

Δ � s′
k

Q−→� R ŝk1 and Δ � s′
k

P\{p}−→� R sk2, and obtain ŝ′
k1 and s′

k2 such that
Δ � ŝk1−→� R ŝ′

k1, Δ � sk2−→� Rs′
k2 and Δ � ŝ′

k1 ≈α s′
k2. Since Δ � ŝk1 ≈α sk1,

we have, by Lemma 9, some s′
k1 such that Δ � sk1 −→� R s′

k1 ≈α ŝ′
k1 ≈α s′

k2

as required.

��
We are now ready to show that →R is Church-Rosser modulo ≈α.

Corollary 1 (Church-Rosser modulo ≈α). If R is a left-linear parallel
closed uniform rewriting system, then →R is Church-Rosser modulo ≈α. In
particular, if R is a weakly orthogonal uniform rewriting system, then →R is
Church-Rosser modulo ≈α.

128 K. Kikuchi et al.

Proof. By Lemma 9, −→� R is strongly compatible with ≈α, and by Theorem 1,
−→� R is strongly locally confluent modulo ≈α. Hence by the results in [14] (see
also [15, Sect. 2.5]), −→� R is Church-Rosser modulo ≈α. Since →R ⊆ −→� R ⊆
→∗

R by Lemma 5, we see that →R is Church-Rosser modulo ≈α. ��
As in the first-order term rewriting case [21], we can generalise the above

result by analysing overlaps at the root in the proof of Theorem 1.

Theorem 2. Suppose that R is a left-linear uniform rewriting system. Then,
R is Church-Rosser modulo ≈α if Γ � u (−→� R◦ ≈α) v for any Γ � 〈u, v〉 ∈
BCPin(R) and Γ � u (−→� R◦ ≈α ◦ ←∗

R) v for any Γ � 〈u, v〉 ∈ BCPout(R),
where BCPin(R) and BCPout(R) denote the sets of BCPs of R such that p �= ε
and p = ε in the definition of BCP (Definition 4), respectively.

Proof. To show that −→� R is strongly locally confluent modulo ≈α, we prove a
modified statement of Theorem 1 with Δ � t2 →∗

R t′2 instead of Δ � t2 −→� R t′2.
The proof proceeds in a similar way to that of Theorem 1. In the case where
Γ � 〈u, v〉 ∈ BCP(R′, R) in part 2 is at the root, we use the assumption on
BCPout(R). ��

We demonstrate Theorem 2 on two examples.

Example 1. Consider a nominal signature with function symbols f and g. Let
R1 be the following left-linear uniform rewriting system:

R1 =
{ � f 〈[a]X,Y 〉 → f 〈[a]X, [a]X〉 (1-1)

� f 〈[a]a, Y 〉 → g (1-2)

In the following, we write down all patterns of the BCPs of R1 and check whether
R1 satisfies the condition of Theorem 2.

First, consider BCPs induced by overlaps of (1-1) on its renamed variant,
which arise from the unification problem {f 〈[a]X,Y 〉 ≈ (f 〈[a]Z,W 〉)π|ε(=
f 〈[π(a)]Z,W 〉)}. If π(a) = a, then the BCP is � 〈f 〈[a]Z, [a]Z〉, f 〈[a]Z, [a]Z〉〉,
for which � f 〈[a]Z, [a]Z〉 ≈α f 〈[a]Z, [a]Z〉 holds. If π(a) = b, then the problem
{f 〈[a]X,Y 〉 ≈ f 〈[b]Z,W 〉} has an mgu 〈{a#Z}, {X := (a b)·Z, Y := W}〉.
Hence, the BCP in this case is a#Z � 〈f 〈[a](a b)·Z, [a](a b)·Z〉, f 〈[b]Z, [b]Z〉〉,
for which we have a#Z � f 〈[a](a b)·Z, [a](a b)·Z〉 ≈α f 〈[b]Z, [b]Z〉.

The BCP induced by overlaps of (1-2) on its renamed variant is only � 〈g, g〉,
for which we have � g ≈α g.

Next we consider BCPs induced by overlaps of (1-1) on (1-2) and vice versa.
The former arise from the unification problem {f 〈[a]X,Y 〉 ≈ (f 〈[a]a, Z〉)π|ε(=
f 〈[π(a)]π(a), Z〉)}. In either case of π(a) = a and π(a) = b, the BCP
is � 〈f 〈[a]a, [a]a〉, g〉, for which we have � f 〈[a]a, [a]a〉 −→� R1 g. BCPs induced
by overlaps of (1-2) on (1-1) arise from the unification problem {f 〈[a]a, Y 〉 ≈
(f 〈[a]X,Z〉)π|ε(= f 〈[π(a)]X,Z〉)}. If π(a) = a, then the problem has an mgu
〈∅, {X := a, Y := Z}〉. Hence, the BCP in this case is � 〈g, f 〈[a]a, [a]a〉〉, for
which we have � g ←∗

R1
f 〈[a]a, [a]a〉. If π(a) = b, then the problem has an mgu

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 129

〈∅, {X := b, Y := Z}〉. Hence, the BCP in this case is � 〈g, f 〈[b]b, [b]b〉〉, for
which we have � g ←∗

R1
f 〈[b]b, [b]b〉.

We have seen that R1 satisfies the condition of Theorem 2. Thus we conclude
that R1 is Church-Rosser modulo ≈α. ��

The reader may wonder why the case analyses according to permutations in
the above example are necessary. This is because there exist rewriting systems
where choice of bound atoms in the same two rewrite rules can vary joinability
of the induced critical pairs (cf. [20, Example 12]). That means that one has to
check all combinations of atoms in the rules to guarantee confluence properties
of nominal rewriting systems.

The next example demonstrates that our results can also be applied to
nominal rewriting systems that are not α-stable [19] (i.e., applying the same
rewrite step to two α-equivalent terms may result in terms that are not α-
equivalent). A typical example of a non-α-stable rewriting system is found in
[19, Example 19] (unconditional eta-expansion). See also [3, Example 4.3].

Example 2. Consider a nominal signature with function symbols f and g. Let
R2 be the following left-linear uniform rewriting system:

R2 =
{ � f X → f [a]〈X,X〉 (2-1)

� [a]X → g (2-2)

Since R2 is not α-stable, the confluence criterion by orthogonality in [19] cannot
be applied. In the following, we write down all patterns of the BCPs of R2 and
check whether R2 satisfies the condition of Theorem 2.

First, consider BCPs induced by overlaps of (2-1) on its renamed variant,
which arise from the unification problem {f X ≈ (f Y)π|ε(= f Y)}. If π(a) = a,
then the BCP is � 〈f [a]〈Y, Y 〉, f [a]〈Y, Y 〉〉, for which we have � f [a]〈Y, Y 〉 ≈α

f [a]〈Y, Y 〉. If π(a) = b, then the BCP is � 〈f [a]〈Y, Y 〉, f [b]〈Y, Y 〉〉, for which we
have � f [a]〈Y, Y 〉 →R2 f g ←R2 f [b]〈Y, Y 〉.

Next we consider BCPs induced by overlaps of (2-2) on its renamed variant,
which arise from the unification problem {[a]X ≈ ([a]Y)π|ε(= [π(a)]Y)}. If
π(a) = a, then the BCP is � 〈g, g〉, for which we have � g ≈α g. If π(a) = b,
then the problem {[a]X ≈ [b]Y } has an mgu 〈{a#Y }, {X := (a b)·Y }〉. Hence,
the BCP in this case is a#Y � 〈g, g〉, for which we have a#Y � g ≈α g.

We have seen that R2 satisfies the condition of Theorem 2. Thus we conclude
that R2 is Church-Rosser modulo ≈α. ��

4 Conclusion

We have presented proofs of Church-Rosser modulo ≈α for some classes of left-
linear uniform nominal rewriting systems, extending Huet’s parallel closure the-
orem and its generalisation on confluence of left-linear term rewriting systems.
In the presence of critical pairs, the proofs are more delicate than the previous
proofs for orthogonal uniform nominal rewriting systems. Our theorems can be

130 K. Kikuchi et al.

applied to nominal rewriting systems that are not α-stable, as we have seen in
an example.

In traditional higher-order rewriting frameworks (e.g. [12,13]), α-equivalent
terms are always identified in contrast to the framework of nominal rewriting.
This makes effects on confluence in the two approaches rather different. In addi-
tion to the difference revealed in [20], we have seen that our results on the
parallel closure theorem and its generalisation are incomparable with those in
traditional higher-order rewriting formalisms, since nominal rewriting systems
that are not α-stable cannot be represented by any systems in traditional re-
writing formalisms. Also, it is known that under explicit α-equivalence, conflu-
ence of β-reduction in λ-calculus is already quite hard to show (cf. [23]). Up to
our knowledge, there are no attempts to accomplish a similar effect in tradition-
al higher-order rewriting frameworks.

On the other hand, it is known that in the case of traditional higher-order
rewriting, results on confluence by parallel closed critical pairs can be extended
to those by development closed critical pairs [16]. However, a rigorous proof of
it becomes more complicated than the parallel case, and in the present paper,
we have not tried that extension for the case of nominal rewriting. We expect
that the extension is possible but it is not entirely an easy task.

Using the combination of all the methods of [19,20] and the present paper,
we have implemented a confluence prover [1]. We use an equivariant unification
algorithm [2,6] to check whether ∇1 ∪ ∇π

2 ∪ {l1 ≈ lπ2 |p} is unifiable for some
permutation π, for given ∇1,∇2, l1, l2|p. However, that is not enough to gener-
ate concrete critical pairs and check their joinability, parallel closedness, etc. It
is necessary to instantiate atom variables and permutation variables from con-
straints obtained as the solutions of equivariant unification problems, and this
process is not obvious. We refer to [1] for all details of the implementation and
experiments.

Acknowledgements. We are grateful to the anonymous referees for valuable com-
ments. This research was supported by JSPS KAKENHI Grant Numbers 15K00003
and 16K00091.

References

1. Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 12

2. Aoto, T., Kikuchi, K.: A rule-based procedure for equivariant nominal unification.
In: Proceedings of the 8th HOR (2016)

3. Ayala-Rincón, M., Fernández, M., Gabbay, M.J., Rocha-Oliveira, A.C.: Checking
overlaps of nominal rewriting rules. Electron. Notes Theoret. Comput. Sci. 323,
39–56 (2016)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

http://dx.doi.org/10.1007/978-3-319-40229-1_12
http://dx.doi.org/10.1007/978-3-319-40229-1_12

Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems 131

5. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34, 381–392 (1972)

6. Cheney, J.: Equivariant unification. J. Autom. Reasoning 45, 267–300 (2010)
7. Comon, H.: Completion of rewritie systems with membership constraints. Part I:

deduction rules. J. Symbolic Comput. 25, 397–419 (1998)
8. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inform. Comput. 205, 917–965

(2007)
9. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-

ing. Formal Aspects Comput. 13, 341–363 (2002)
10. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-

ing systems. J. ACM 27, 797–821 (1980)
11. Jounnaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations.

SIAM J. Comput. 15, 1155–1194 (1986)
12. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:

introduction and survey. Theoret. Comput. Sci. 121, 279–308 (1993)
13. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.

Comput. Sci. 192, 3–29 (1998)
14. Ohlebusch, E.: Church-Rosser theorems for abstract reduction modulo an equiva-

lence relation. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 17–31. Springer,
Heidelberg (1998). doi:10.1007/BFb0052358

15. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
doi:10.1007/978-1-4757-3661-8

16. van Oostrom, V.: Developing developments. Theoret. Comput. Sci. 175, 159–181
(1997)

17. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inform.
Comput. 186, 165–193 (2003)

18. Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of
binding. J. Autom. Reasoning 49, 185–207 (2012)

19. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Confluence of orthogonal nominal
rewriting systems revisited. In: Proceedings of the 26th RTA, vol. 36. LIPIcs, pp.
301–317 (2015)

20. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Critical pair analysis in nominal
rewriting. In: Proceedings of the 7th SCSS, vol. 39. EPiC, pp. 156–168. EasyChair
(2016)

21. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L.
(eds.) Programming of Future Generation Computers II, North-Holland, pp. 393–
407 (1988)

22. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoret. Comput. Sci.
323, 473–497 (2004)

23. Vestergaard, R., Brotherston, J.: A formalised first-order confluence proof for the
λ-calculus using one-sorted variable names. Inform. Comput. 183, 212–244 (2003)

http://dx.doi.org/10.1007/BFb0052358
http://dx.doi.org/10.1007/978-1-4757-3661-8

Complexity Analysis for Term Rewriting
by Integer Transition Systems

Matthias Naaf1, Florian Frohn1, Marc Brockschmidt2, Carsten Fuhs3,
and Jürgen Giesl1(B)

1 LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
matthias.naaf@rwth-aachen.de,florian.frohn@cs.rwth-aachen.de,

giesl@informatik.rwth-aachen.de
2 Microsoft Research, Cambridge, UK

mabrocks@microsoft.com
3 Birkbeck, University of London, London, UK

carsten@dcs.bbk.ac.uk

Abstract. We present a new method to infer upper bounds on the inner-
most runtime complexity of term rewrite systems (TRSs), which benefits
from recent advances on complexity analysis of integer transition systems
(ITSs). To this end, we develop a transformation from TRSs to a gener-
alized notion of ITSs with (possibly non-tail) recursion. To analyze their
complexity, we introduce a modular technique which allows us to use
existing tools for standard ITSs in order to infer complexity bounds for
our generalized ITSs. The key idea of our technique is a summarization
method that allows us to analyze components of the transition system
independently. We implemented our contributions in the tool AProVE,
and our experiments show that one can now infer bounds for significantly
more TRSs than with previous state-of-the-art tools for term rewriting.

1 Introduction

There are many techniques for automatic complexity analysis of programs
with integer (or natural) numbers, e.g., [1,2,4,11,13,14,16–18,23,26–28,34]. On
the other hand, several techniques analyze complexity of term rewrite systems
(TRSs), e.g., [7,8,12,19,20,24,29,32,36]. TRSs are a classical model for equa-
tional reasoning and evaluation with user-defined data structures and recur-
sion [9].

Although the approaches for complexity analysis of term rewriting support
modularity, they usually cannot completely remove rules from the TRS after
having analyzed them. In contrast, approaches for integer programs may regard
small program parts independently and combine the results for these parts to
obtain a result for the overall program. In this work, we show how to obtain
such a form of modularity also for complexity analysis of TRSs.

Supported by DFG grant GI 274/6-1 and the Air Force Research Laboratory
(AFRL).

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 132–150, 2017.
DOI: 10.1007/978-3-319-66167-4 8

Complexity Analysis for TRSs by ITSs 133

After recapitulating TRSs and their complexity in Sect. 2, in Sect. 3 we intro-
duce a transformation from TRSs into a variant of integer transition systems
(ITSs) called recursive natural transition systems (RNTSs). In contrast to stan-
dard ITSs, RNTSs allow arbitrary recursion, and the variables only range over
the natural numbers. We show that the innermost runtime complexity of the
original TRS is bounded by the complexity of the resulting RNTS, i.e., one can
now use any complexity tool for RNTSs to infer complexity bounds for TRSs.

Unfortunately, many existing techniques and tools for standard ITSs do not
support the non-tail recursive calls that can occur in RNTSs. Therefore, in Sect. 4
we develop an approach to infer complexity bounds for RNTSs which can use
arbitrary complexity tools for standard ITSs as a back-end. The approach from
Sect. 4 is completely modular, as it repeatedly finds bounds for parts of the
RNTS and combines them. In this way, our technique benefits from all advances
of any ITS tools, irrespective of whether they support non-tail recursion (e.g.,
CoFloCo [16,17]) or not (e.g., KoAT [13]). As demonstrated by our implementa-
tion in AProVE [22], our contributions allow us to derive complexity bounds for
many TRSs where state-of-the-art tools fail, cf. Sect. 5. All proofs can be found
in [5].

2 Complexity of Term Rewriting

We assume basic knowledge of term rewriting [9] and recapitulate innermost
(relative) term rewriting and its runtime complexity.

Definition 1 (Term Rewriting [8,9]). We denote the set of terms over a
finite signature Σ and the variables V by T (Σ,V). The size |t| of a term t is
defined as |x| = 1 if x ∈ V and |f(t1, . . . , tk)| = 1 +

∑k
i=1|ti|. A TRS R is a set

of rules {�1 → r1, . . . , �n → rn} with �i, ri ∈ T (Σ,V), �i �∈ V, and V(ri) ⊆ V(�i)
for all 1 ≤ i ≤ n. The rewrite relation is defined as s →R t iff there is a rule
� → r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s|π = �σ and
t = s[rσ]π. Here, �σ is called the redex of the rewrite step.

For two TRSs R and S, R/S is a relative TRS, and its rewrite relation
→R/S is →∗

S ◦ →R ◦ →∗
S , i.e., it allows rewriting with S before and after each

R-step. We define the innermost rewrite relation as s i→R/S t iff s →∗
S s′ →R

s′′ →∗
S t for some terms s′, s′′, where the proper subterms of the redexes of each

step with →S or →R are in normal form w.r.t. R ∪ S. We write i→R instead of
i→R/∅.

ΣR∪S
d = {root(�) | � → r ∈ R ∪ S} and ΣR∪S

c = Σ \ ΣR∪S
d are the defined

(resp. constructor) symbols of R/S. A term f(t1, . . . , tk) is basic iff f ∈ ΣR∪S
d

and t1, ..., tk ∈ T (ΣR∪S
c ,V). R/S is a constructor system iff � is basic for all

� → r ∈ R ∪ S.

In this paper, we will restrict ourselves to the analysis of constructor systems.

134 M. Naaf et al.

Example 2. The following rules implement the insertion sort algorithm.

isort(nil, ys) → ys (1)
isort(cons(x, xs), ys) → isort(xs, ins(x, ys)) (2)

ins(x, nil) → cons(x, nil) (3)
ins(x, cons(y, ys)) → if(gt(x, y), x, cons(y, ys)) (4)

if(true, x, cons(y, ys)) → cons(y, ins(x, ys)) (5)
if(false, x, cons(y, ys)) → cons(x, cons(y, ys)) (6)

gt(0, y) → false (7)
gt(s(x), 0) → true (8)

gt(s(x), s(y)) → gt(x, y) (9)

Relative rules are useful to model built-in operations in programming lan-
guages since applications of these rules are disregarded for the complexity of a
TRS. For example, the translation from RAML programs [27] to term rewriting
in [8] uses relative rules to model the semantics of comparisons and similar oper-
ations on RAML’s primitive data types. Thus, we decompose the rules above
into a relative TRS R/S with R = {(1), . . ., (6)} and S = {(7), (8), (9)}.1

In our example, we have ΣR∪S
d = {isort, ins, if, gt} and ΣR∪S

c = {cons, nil, s, 0,
true, false}. Since all left-hand sides are basic, R/S is a constructor system. An
example rewrite sequence to sort the list [2, 0] is

t = isort(cons(s(s(0)), cons(0, nil)), nil) i→R isort(cons(0, nil), ins(s(s(0)), nil)) i→R
isort(cons(0, nil), cons(s(s(0)), nil)) i→R isort(nil, ins(0, cons(s(s(0)), nil))) i→R
isort(nil, if(gt(0, s(s(0))), . . . , . . .)) i→S isort(nil, if(false, . . . , . . .)) i→R
isort(nil, cons(0, cons(s(s(0)), nil))) i→R cons(0, cons(s(s(0)), nil))

Note that ordinary TRSs are a special case of relative TRSs (where S = ∅).
We usually just write “TRSs” to denote “relative TRSs”. We now define the
runtime complexity of a TRS R/S. In Definition 3, ω is the smallest infinite
ordinal, i.e., ω > e holds for all e ∈ N, and for any M ⊆ N ∪ {ω}, supM is the
least upper bound of M , where sup ∅ = 0.

Definition 3 (Innermost Runtime Complexity [24,25,32,36]). The deri-
vation height of a term t w.r.t. a relation → is the length of the longest sequence
of →-steps starting with t, i.e., dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t →e t′}.
If t starts an infinite →-sequence, this yields dh(t,→) = ω. The innermost
runtime complexity function ircR/S maps any n ∈ N to the length of the longest
sequence of i→R/S-steps starting with a basic term whose size is at most n, i.e.,
ircR/S(n) = sup{dh(t, i→R/S) | t is basic, |t| ≤ n}.

1 In this way, the complexity of gt is 0, whereas comparisons have complexity 1 with
the slightly more complicated encoding from [8]. Since this difference does not affect
the asymptotic complexity of Example 2, we use the simpler encoding for the sake
of readability.

Complexity Analysis for TRSs by ITSs 135

Example 4. The rewrite sequence for t in Example 2 is maximal, and thus,
dh(t, i→R/S) = 6. So the i→S -step does not contribute to t’s derivation height.
As |t| = 9, this implies ircR/S(9) ≥ 6. We will show how our new approach
proves ircR/S(n) ∈ O(n2) automatically .

3 From TRSs to Recursive Natural Transition Systems

We now reduce complexity analysis of TRSs to complexity analysis of recursive
natural transition systems (RNTSs). In contrast to term rewriting, RNTSs offer
built-in support for arithmetic, but disallow pattern matching. To analyze TRSs,
it suffices to regard RNTSs where all variables range over N. We use the signa-
ture Σexp = {+, ·} ∪ N for arithmetic expressions and Σfml = Σexp ∪ {true, false,
<,∧} for arithmetic formulas (“constraints”). We will also use relations like =
in constraints, but these are just syntactic sugar. To extend the rewrite relation
with semantics for these symbols, let �.� evaluate all arithmetic and Boolean
expressions in a term. So for example, �gt(1 + 2, 5 + y)� = gt(3, 5 + y) and
�3 > 5 ∧ true� = false. We allow substitutions with infinite domains and call σ a
natural substitution iff σ(x) ∈ N for all x ∈ V.

Definition 5 (Recursive Natural Transition System). An RNTS over
a finite signature Σ with Σ ∩ Σfml = ∅ is a set of rules P = {�1

w1−→
r1 [ϕ1] , . . . , �n

wn−→ rn [ϕn]} with �i = f(x1, . . . , xk) for f ∈ Σ and pairwise
different variables x1, . . . , xk, ri ∈ T (Σ Σexp,V), constraints ϕi ∈ T (Σfml,V),
and weights wi ∈ T (Σexp,V). An RNTS P induces a rewrite relation m−→P on
ground terms from T (Σ Σexp, ∅), where s

m−→P t iff there are �
w−→ r [ϕ] ∈ P,

π ∈ Pos(s), and a natural substitution σ such that s|π = �σ, �ϕσ� = true,
m = �wσ� ∈ N, and t = �s[rσ]π�. We sometimes just write s →P t instead of
s

m−→P t. Again, let ΣP
d = {root(�) | �

w−→ r [ϕ] ∈ P} and ΣP
c = Σ \ ΣP

d .
A term f(n1, . . . , nk) with f ∈ Σ and n1, . . . , nk ∈ N is nat-basic, and its size

is ||f(n1, . . . , nk)|| = 1+n1 + . . .+nk. To consider weights for derivation heights,
we define dhw(t,→P) to be the maximum weight of any →P -sequence starting
with t, i.e., dhw(t0,→P) = sup{

∑e
i=1 mi | ∃t1, . . . , te ∈ T (Σ Σexp, ∅). t0

m1−−→P
. . .

me−−→P te}. Then ircP maps n ∈ N to the maximum weight of any →P -
sequence starting with a nat-basic term whose size is at most n, i.e., ircP(n) =
sup{dhw(t,→P) | t is nat-basic, ||t|| ≤ n}.

Note that the rewrite relation for RNTSs is “innermost” by construction, as
rules do not contain symbols from Σ below the root in left-hand sides, and they
are only applicable if all variables are instantiated by numbers.

The crucial idea of our approach is to model the behavior of a TRS by a
corresponding RNTS which results from abstracting constructor terms to their
size. Thus, we use the following transformation �·� from TRSs to RNTSs.

136 M. Naaf et al.

Definition 6 (Abstraction �·� from TRSs to RNTSs). For a TRS R/S,
the size abstraction �t� of a term t ∈ T (Σ,V) is defined as follows:

�x� = x for x ∈ V
�f(t1, . . . , tk)� = 1 + �t1� + . . . + �tk� if f ∈ ΣR∪S

c

�f(t1, . . . , tk)� = f(�t1�, . . . , �tk�) if f ∈ ΣR∪S
d

We lift �·� to rules with basic left-hand sides. For � = f(t1, . . . , tk) with
t1, . . . , tk ∈ T (ΣR∪S

c ,V) and w ∈ T (Σexp,V), we define

�� → r�w = f(x1, . . . , xk) w−→ �r�

[∧k

i=1
xi = �ti� ∧

∧

x∈V(�)
x ≥ 1

]

for pairwise different fresh variables x1, . . . , xk. For a constructor system R/S,
we define the RNTS �R/S� = {�� → r�1 | � → r ∈ R}∪{�� → r�0 | � → r ∈ S}.

Example 7. For the TRS R/S from Example 2, �R/S� corresponds to the fol-
lowing RNTS.

isort(xs, ys) 1→ ys [xs = 1 ∧ . . .] (1′)
isort(xs ′, ys) 1→ isort(xs, ins(x, ys)) [xs ′ = 1 + x + xs ∧ . . .] (2′)

ins(x, ys) 1→ 2 + x [ys = 1 ∧ . . .] (3′)
ins(x, ys ′) 1→ if(gt(x, y), x, ys ′) [ys ′ = 1 + y + ys ∧ . . .] (4′)
if(b, x, ys ′) 1→ 1 + y + ins(x, ys) [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (5′)
if(b, x, ys ′) 1→ 1 + x + ys ′ [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (6′)

gt(x, y) 0→ 1 [x = 1 ∧ . . .] (7′)
gt(x′, y) 0→ 1 [x′ = 1 + x ∧ y = 1 ∧ . . .] (8′)
gt(x′, y′) 0→ gt(x, y) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .] (9′)

In these rules, “∧ . . .” stands for the constraint that all variables have to be
instantiated with values ≥ 1. Note that we make use of fresh variables like x
and xs on the right-hand side of (2′) to simulate matching of constructor terms.
Using this RNTS, the rewrite steps in Example 2 can be simulated as follows.

t′ = isort(7, 1) 1→ isort(3, ins(3, 1)) 1→ isort(3, 5)
1→ isort(1, ins(1, 5)) 1→ isort(1, if(gt(1, 3), 1, 5)) 0→ isort(1, if(1, 1, 5))
1→ isort(1, 7) 1→ 7

For the nat-basic term t′, we have ||t′|| = 1 + 7 + 1 = 9. So the above
sequence proves dhw(t′,→P) ≥ 6 and hence, ircP(9) ≥ 6. Note that unlike
Example 2, here rewriting nat-basic terms is non-deterministic as, e.g., we also
have isort(7, 1) 1→ isort(2, ins(4, 1)). The reason is that �·� is a blind abstraction
[10], which abstracts several different terms to the same number.

Complexity Analysis for TRSs by ITSs 137

��·�� maps basic ground terms to nat-basic terms, e.g., ��ins(s(0), nil)�� =
�ins(1 + 1, 1)� = ins(2, 1). We now show that under certain conditions,
dh(t, i→R/S) ≤ dhw(��t��,→�R/S�) holds for all ground terms t, i.e., rewrite
sequences of a TRS R/S can be simulated in the RNTS �R/S� resulting from
its transformation. We would like to conclude that in these cases, we also have
ircR/S(n) ≤ irc�R/S�(n). However, irc considers arbitrary (basic) terms, but the
above connection between the derivation heights of t and ��t�� only holds for
ground terms t. For full rewriting, we clearly have dh(t,→R) ≤ dh(tσ,→R) for
any substitution σ. However, this does not hold for innermost rewriting. For
example, f(g(x)) has an infinite innermost reduction with the TRS {f(g(x)) →
f(g(x)), g(a) → a}, but f(g(a)) is innermost terminating. Nevertheless, we show
in Theorem 9 that for constructor systems R, dh(t, i→R) ≤ dh(tσ, i→R) holds for
any ground substitution σ.

However, for relative rewriting with constructor systems R and S,
dh(t, i→R/S) ≤ dh(tσ, i→R/S) does not necessarily hold if S is not innermost
terminating. To see this, consider R = {f(x) → f(x)} and S = {g(a) → g(a)}.
Now f(g(x)) has an infinite reduction w.r.t. i→R/S since g(x) is a normal form
w.r.t. R ∪ S. However, its instance f(g(a)) has the derivation height 0 w.r.t.
i→R/S , as g(a) is not innermost terminating w.r.t. S and no rule of R can ever
be applied. To solve this problem, we extend the TRS S by a terminating vari-
ant N .

Definition 8 (Terminating Variant). A TRS N is a terminating variant of
S iff i→N terminates and every N -normal form is also an S-normal form.

So if one can prove innermost termination of S, then one can use S as a
terminating variant of itself. For instance in Example 2, termination of S = {(7),
(8),(9)} can easily be shown automatically by standard tools like AProVE [22].
Otherwise, one can for instance use a terminating variant {f(x1, . . . , xk) →
tf | f ∈ ΣS

d } where for each f , we pick some constructor ground term tf ∈
T (ΣR∪S

c , ∅). Now one can prove that for innermost (relative) rewriting, the
derivation height of a term does not decrease when it is instantiated by a ground
substitution.

Theorem 9 (Soundness of Instantiation and Terminating Variants).
Let R, S be constructor systems and N be a terminating variant of S. Then
dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N)) holds for any term t where tσ is ground.

However, the restriction to ground terms t still does not ensure dh(t, i→R/S) ≤
dhw(��t��,→�R/S�). The problem is that i→R/S can rewrite a term t at position π
also if there is a defined symbol below t|π as long as no rule can be applied to that
subterm. So for Example 2, we have isort(nil, if(true, 0, nil)) i→R if(true, 0, nil), but
�R/S� cannot rewrite ��isort(nil, if(true, 0, nil))�� = isort(1, if(1, 1, 1)) since the if-
rules of �R/S� may be applied only if the third argument is ≥ 3, and the variables
in the isort-rule may be instantiated only by numbers (not by normal forms like
if(1, 1, 1)). This problem can be solved by requiring that R/S is completely defined,
i.e., that R∪S can rewrite every basic ground term. However, this is too restrictive

138 M. Naaf et al.

as we, e.g., would like gt(true, false) to be in normal form. Fortunately, (innermost)
runtime complexity is persistent w.r.t. type introduction [6]. Thus, we only need
to ensure that every well-typed basic ground term can be rewritten.

Definition 10 (Typed TRSs (cf. e.g. [21,37])). In a many-sorted (first-
order monomorphic) signature Σ over the set of types Ty, every symbol f ∈ Σ
has a type of the form τ1 × . . . × τk → τ with τ1, . . . , τk, τ ∈ Ty. Moreover, every
variable has a type from Ty, and we assume that V contains infinitely many
variables of every type in Ty. We call t ∈ T (Σ,V) a well-typed term of type τ
iff either t ∈ V is a variable of type τ or t = f(t1, . . . , tk) where f has the type
τ1 × . . . × τk → τ and each ti is a well-typed term of type τi.

A rewrite rule � → r is well typed iff � and r are well-typed terms of the same
type. A TRS R/S is well typed iff all rules of R ∪ S are well typed. (W.l.o.g.,
here one may rename the variables in every rule. Then it is not a problem if the
variable x is used with type τ1 in one rule and with type τ2 in another rule.)

Example 11. For any TRS R/S, standard algorithms can compute a type assign-
ment to make R/S well typed (and to decompose the terms into as many types
as possible). For the TRS from Example 2 we obtain the following type assign-
ment. Note that for this type assignment the TRS is not completely defined since
if(true, 0, nil) is a well-typed basic ground term in normal form w.r.t. R ∪ S.

isort :: List × List → List 0 :: Nat gt :: Nat × Nat → Bool
ins :: Nat × List → List s :: Nat → Nat true, false :: Bool
if :: Bool × Nat × List → List nil :: List cons :: Nat × List → List

Definition 12 (Completely Defined). A well-typed TRS R/S over a many-
sorted signature with types Ty is completely defined iff there is at least one
constant for each τ ∈ Ty and no well-typed basic ground term in R ∪ S-normal
form.

For completely defined TRSs, the transformation from TRSs to RNTSs is sound.

Theorem 13 (Soundness of Abstraction �·�). Let R/S be a well-typed,
completely defined constructor system. Then dh(t, i→R/S) ≤ dhw(��t��,→�R/S�)
holds for all well-typed ground terms t. Let N be a terminating variant of S such
that R/(S ∪ N) is also well typed. If R/(S ∪ N) is completely defined, then we
have ircR/S(n) ≤ irc�R/(S∪N)�(n) for all n ∈ N.

As every TRS R/S is well typed w.r.t. some type assignment (e.g., the
one with just a single type), the only additional restriction in Theorem13 is
that the TRS has to be completely defined. This can always be achieved by
extending S by a suitable terminating variant N of S automatically. Based on
standard algorithms to detect well-typed basic ground terms f(. . .) in (R ∪ S)-
normal form [30,31], we add the rules f(x1, . . . , xk) → tf to N , where again for
each f , we choose some constructor ground term tf ∈ T (ΣR∪S

c , ∅). As shown
by Theorem 9, we have dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N)) for any terminating
variant N , i.e., adding such rules never decreases the derivation height. So even

Complexity Analysis for TRSs by ITSs 139

if R/S is not completely defined and just R/(S ∪ N) is completely defined, we
still have ircR/S(n) ≤ ircR/(S∪N)(n) ≤ irc�R/(S∪N)�(n).

Example 14. To make the TRS of Example 2 completely defined, we add rules for
all defined symbols in basic ground normal forms. In this example, the only such
symbol is if. Hence, for instance we add if(b, x, xs) → nil to S. The resulting TRS
S ∪ {if(b, x, xs) → nil} is clearly a terminating variant of S. Hence, to analyze
complexity of the insertion sort TRS, we now extend the RNTS of Example 7
by

�if(b, x, xs) → nil�0 = if(b, x, xs) 0−→ 1 [b ≥ 1 ∧ x ≥ 1 ∧ xs ≥ 1] (10)

4 Analyzing the Complexity of RNTSs

Theorem 13 allows us to reduce complexity analysis of term rewriting to the
analysis of RNTSs. Our RNTSs are related to integer transition systems (ITSs),
a formalism often used to abstract programs. The main difference is that RNTSs
can model procedure calls by nested function symbols f(. . . g(. . .) . . .) on the
right-hand side of rules, whereas ITSs may allow right-hand sides like f(. . .) +
g(. . .), but no nesting of f, g ∈ Σ. So ITSs cannot pass the result of one function
as a parameter to another function. Note that in contrast to the usual definition
of ITSs, in our setting reductions can begin with any (nat-basic) terms instead
of dedicated start terms, and it suffices to regard natural instead of integer
numbers. (An extension to recursive transition systems on integers would be
possible by measuring the size of integers by their absolute value, as in [13].)

Definition 15 (ITS). An RNTS P over the signature Σ is an ITS iff symbols
from Σ occur only at parallel positions in right-hand sides of P. Here, π and π′

are parallel iff π is not a prefix of π′ and π′ is not a prefix of π.

Upper runtime complexity bounds for an ITS P can, for example, be inferred
by generating ranking functions which decrease with each application of a rule
from P. Then, the ranking functions are multiplied with the weight of the rules.

However, many analysis techniques for ITSs (e.g., [1,4,13,34]) cannot han-
dle the RNTSs generated from standard TRSs. Thus, we now introduce a new
modular approach that allows us to apply existing tools for ITSs to analyze
RNTSs. Our approach builds upon the idea of alternating between runtime and
size analysis [13]. The key insight is to summarize procedures by approximat-
ing their runtime and the size of their result, and then to eliminate them from
the program. In this way, our analysis decomposes the “call graph” of the RNTS
into “blocks” of mutually recursive functions and exports each block of mutually
recursive functions into a separate ITS. Thus, in each analysis step it suffices
to analyze just an ITS instead of an RNTS. We use weakly monotonic runtime
and size bounds from T (Σexp,V) to compose them easily when analyzing nested
terms.

140 M. Naaf et al.

Definition 16 (Runtime and Size Bounds). For any terms t1, . . . , tk, let
{x1/t1, . . . , xk/tk} be the substitution σ with xiσ = ti for 1 ≤ i ≤ k and yσ = y
for y ∈ V \{x1, . . . , xk}. Then rt : Σ → T (Σexp,V)∪{ω} is a runtime bound for
an RNTS P iff we have dhw(f(n1, . . . , nk),→P) ≤ �rt(f) {x1/n1, . . . , xk/nk}�
for all n1, . . . , nk ∈ N and all f ∈ Σ. Similarly, sz : Σ → T (Σexp,V) ∪ {ω} is a
size bound for P iff n ≤ �sz(f) {x1/n1, . . . , xk/nk}� for all n1, . . . , nk ∈ N, all
f ∈ Σ, and all n ∈ N with f(n1, . . . , nk) →∗

P n.

Example 17. For the RNTS {(1′), . . ., (9′), (10)} from Example 14, any function
rt with rt(isort) ≥ �x1−1

2 � · x2 + 1, rt(ins) ≥ x2, rt(if) ≥ x3 − 1, and rt(gt) ≥ 0 is
a runtime bound (recall that the gt-rules have weight 0). Similarly, any sz with
sz(isort) ≥ x1 + x2 − 1, sz(ins) ≥ x1 + x2 + 1, sz(if) ≥ x2 + x3 + 1, sz(gt) ≥ 1 is a
size bound.

A runtime bound clearly gives rise to an upper bound on the runtime complexity.

Theorem 18 (rt and irc). Let rt be a runtime bound for an RNTS P. Then
for all n ∈ N, we have ircP(n) ≤ sup{�rt(f) {x1/n1, . . . , xk/nk}� | f ∈ Σ,n1, ...,

nk ∈ N,
∑k

i=1 ni < n}. So in particular, ircP(n) ∈ O(
∑

f∈Σ�rt(f) {x1/n, . . . ,
xk/n}�).

Thus, a suitable runtime bound rt for the RNTS {(1′), . . . , (9′), (10)} yields
irc(n) ∈ O(n2), cf. Example 17. In Sect. 4.2 we present a new technique to infer
runtime and size bounds rt and sz automatically with existing complexity tools
for ITSs. As these tools usually return only runtime bounds, Sect. 4.1 shows how
they can also be used to generate size bounds.

4.1 Size Bounds as Runtime Bounds

We first present a transformation for a large class of ITSs that lets us obtain size
bounds from any method that can infer runtime bounds. The transformation
extends each function symbol from Σ by an additional accumulator argument.
Then terms that are multiplied with the result of a function are collected in the
accumulator. Terms that are added to the result are moved to the weight of the
rule.

Theorem 19 (ITS Size Bounds). Let P be an ITS whose rules are of the
form �

w→ u + v · r [ϕ] or �
w→ u [ϕ] with u, v ∈ T (Σexp,V) and root(r) ∈ Σ. Let

Psize =

{f ′(x1, ..., xk, z)
u·z−−→ g′(t1, ..., tn, v · z) [ϕ] | f(x1, ..., xk)

w→ u + v · g(t1, ..., tn) [ϕ] ∈ P}
∪ {f ′(x1, ..., xk, z)

u·z−−→ 0 [ϕ] | f(x1, ..., xk)
w→ u [ϕ] ∈ P}

for a fresh variable z ∈ V. Let rt be a runtime bound for Psize. Then sz with
sz(f) = rt(f ′){xk+1/1} for any f ∈ Σ is a size bound for P.

Theorem 19 can be generalized to right-hand sides like f(x) + 2 · g(y) with
f, g ∈ Σ, cf. [5]. However, it is not applicable if the results of function calls are
multiplied on right-hand sides (e.g., f(x) · g(y)) and our technique fails in such
cases.

Complexity Analysis for TRSs by ITSs 141

Example 20. To get a size bound for Pgt = {(7′), (8′), (9′)}, we construct Pgt
size:

gt′(x, y, z) z→ 0 [x = 1 ∧ . . .]
gt′(x′, y, z) z→ 0 [x′ = 1 + x ∧ y = 1 ∧ . . .]
gt′(x′, y′, z) 0→ gt′(x, y, z) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .]

Existing ITS tools can compute a runtime bound like rt(gt′) = x3 for Pgt
size.

Hence, by Theorem 19 we obtain the size bound sz for Pgt with sz(gt) =
rt(gt′){x3/1} = 1.

4.2 Complexity Bounds for Recursive Programs

Now we show how complexity tools for ITSs can be used to infer runtime and
size bounds for RNTSs. We first define a call-graph relation � to determine in
which order we analyze symbols of Σ. Essentially, f � g holds iff f(. . .) rewrites
to a term containing g.

Definition 21 (�). For an RNTS P, the call-graph relation � is the transitive
closure of {(root(�), g) | �

w→ r[ϕ] ∈ P, g ∈ Σ occurs in r}. An RNTS has nested
recursion iff it has a rule � w→ r [ϕ] with root(r|π) � root(�) and root(r|π′) �
root(�) for positions π < π′. As usual, π < π′ means that π is a proper prefix
of π′ (i.e., that π′ is strictly below π). A symbol f ∈ ΣP

d is a bottom symbol
iff f � g implies g � f for all g ∈ ΣP

d . The sub-RNTS of P induced by f is
Pf = {�

w→ r[ϕ] ∈ P | f � root(�)}, where � is the reflexive closure of �.

Example 22. For the RNTS P from Examples 14 and 17, we have isort � ins �
if � ins � gt. The only bottom symbol is gt. It induces the sub-RNTS Pgt =
{(7′), (8′), (9′)}, ins induces {(3′), . . . , (9′), (10)}, and isort induces the full
RNTS of Example 14.

Our approach cannot handle programs like f(. . .) → f(. . . f(. . .) . . .) with
nested recursion, but such programs rarely occur in practice. To compute bounds
for an RNTS P without nested recursion, we start with the trivial bounds rt(f) =
sz(f) = ω for all f ∈ ΣP

d . In each step, we analyze the sub-RNTS Pf induced by
a bottom symbol f and refine rt and sz for all defined symbols of Pf . Afterwards
we remove the rules Pf from P and continue with the next bottom symbol. By
this removal of rules, the former defined symbol f becomes a constructor, and
former non-bottom symbols are turned into bottom symbols.

To analyze the RNTS Pf , Theorem 27 will transform Pf into two ITSs Pf
sz

and Pf
rt,sz by abstracting away calls to functions which we already analyzed. Then

existing tools for ITSs can be used to compute a size resp. runtime bound for
Pf
sz resp. Pf

rt,sz. Our overall algorithm to infer bounds for RNTSs is summarized
in Algorithm 1. It clearly terminates, as every loop iteration eliminates a defined
symbol (since Step 3.8 removes all rules for the currently analyzed symbol f).

When computing bounds for a bottom symbol f ∈ ΣP
d , we already know

(weakly monotonic) size and runtime bounds for all constructors g ∈ ΣP
c .

Hence to transform RNTSs into ITSs, outer calls of constructors g in terms

142 M. Naaf et al.

Algorithm 1. Computing Runtime and Size Bounds for RNTSs
1 Let rt(f) := sz(f) := ω for each f ∈ ΣP

d and rt(f) := sz(f) := 0 for each f ∈ ΣP
c .

2 If P has nested recursion, then return rt and sz.
3 While P is not empty:

3.1 Choose a bottom symbol f of P and let Pf be the sub-RNTS induced by f .
3.2 Construct Pf

sz according to Thm. 27 and (Pf
sz)size according to Thm. 19 (resp.

its generalization) if possible, otherwise return rt and sz.
3.3 Compute a runtime bound for (Pf

sz)size using existing ITS tools and let szf be
this bound (cf. Thm. 19).

3.4 For each g ∈ ΣPf

d , let sz(g) := szf (g).
3.5 Construct Pf

rt,sz according to Thm. 27.

3.6 Compute a runtime bound rtf for Pf
rt,sz using existing ITS tools.

3.7 For each g ∈ ΣPf

d , let rt(g) := rtf (g).
3.8 Let P := P \ Pf .

4 Return rt and sz.

g(. . . f(. . .) . . .) can be replaced by sz(g). In Definition 23, while sz(t) replaces all
calls to procedures g ∈ Σ in t by their size bound, the outer abstraction aosz(t)
only replaces constructors g ∈ ΣP

c by their size bound sz(g), provided that they
do not occur below defined symbols f ∈ ΣP

d .

Definition 23 (Outer Abstraction). Let P be an RNTS with the size bound
sz. We lift sz to terms by defining sz(x) = x for x ∈ V and

sz(g(s1, . . . , sn)) =

{
sz(g) {xj/sz(sj) | 1 ≤ j ≤ n} if g ∈ Σ

g(sz(s1), . . . , sz(sn)) if g ∈ Σexp

The outer abstraction of a term is defined as aosz(x) = x for x ∈ V and

aosz(g(s1, . . . , sn)) =

⎧
⎪⎨

⎪⎩

sz(g) {xj/a
o
sz(sj) | 1 ≤ j ≤ n} if g ∈ ΣP

c

g(aosz(s1), . . . , a
o
sz(sn)) if g ∈ Σexp

g(s1, . . . , sn) if g ∈ ΣP
d

Example 24. Consider the following variant R× of AG01/#3.16.xml from the
TPDB2 and its RNTS-counterpart �R×�:

R× : �R×� :
f+(0, y) → y f+(x, y) 1→ y [x = 1 ∧ . . .] (11)
f+(s(x), y) → s(f+(x, y)) f+(x′, y) 1→ 1 + f+(x, y) [x′ = x + 1 ∧ . . .] (12)
f×(0, y) → 0 f×(x, y) 1→ 1 [x = 1 ∧ . . .] (13)
f×(s(x), y) → f+(f×(x, y), y) f×(x′, y) 1→ f+(f×(x, y), y) [x′ = x + 1 ∧ . . .] (14)

2 Termination Problems Data Base, the collection of examples used at the annual
Termination and Complexity Competition, see http://termination-portal.org.

http://termination-portal.org

Complexity Analysis for TRSs by ITSs 143

Assume that we already analyzed its only bottom symbol f+ and obtained
sz(f+) = x1 + x2 and rt(f+) = x1. Afterwards, (11) and (12) were removed.
Now Definition 23 is used to transform the sub-RNTS {(13), (14)} induced by
f× into an ITS. The only rule of �R×� that violates the restriction of ITSs
is (14). Thus, let (14′) result from (14) by replacing its right-hand side by
aosz(f+(f×(x, y), y)) = sz(f+) {x1/f×(x, y), x2/y} = f×(x, y)+y. Now {(13), (14′)}
is an ITS, and together with Theorem 19, existing ITS tools can generate a size
bound like sz(f×) = x1 · x2.

To finish the transformation of RNTSs to ITSs, we now handle terms like
f(. . . g(. . .) . . .) where f ∈ ΣP

d is the bottom symbol we are analyzing and we
have an inner call of a constructor g ∈ ΣP

c . We would like to replace g by
sz(g) again. However, f might behave non-monotonically (i.e., f might need less
runtime on greater arguments). Therefore, we replace all inner calls g(. . .) of
constructors by fresh variables x. The size bound of the replaced call g(. . .) is
an upper bound for the value of x, but x can also take smaller values.

Definition 25 (Inner Abstraction). Let P be an RNTS with size bound
sz, t be a term, and Postopc ⊆ Pos(t) be the topmost positions of ΣP

c -symbols
below ΣP

d -symbols in t. Thus, μ ∈ Postopc iff root(t|μ) ∈ ΣP
c , there exists a

π < μ with root(t|π) ∈ ΣP
d , and root(t|π′) ∈ Σexp for all π < π′ < μ. For

Postopc = {μ1, . . . , μk}, t’s inner abstraction is ai(t) = t[x1]μ1 . . . [xk]μk
where

x1, . . . , xk are pairwise different fresh variables, and its condition is ψi
sz(t) =∧

1≤i≤k xi ≤ sz(t|μi
).

Example 26. For the RNTS of Examples 14 and 17, we start with analyzing
Pgt which yields sz(gt) = 1 and rt(gt) = 0, cf. Example 20. After remov-
ing the gt-rules, the new bottom symbols are ins and if. The right-hand side
of Rule (4′) contains a call of gt below the symbol if. With the size bound
sz(gt) = 1, the inner abstraction of this right-hand side is ai(if(gt(x, y), x, ys ′)) =
if(x1, x, ys ′), and the corresponding condition ψi

sz(if(gt(x, y), x, ys ′)) is x1 ≤ 1,
since sz(gt(x, y)) = 1.

Theorem 27 states how to transform RNTSs into ITSs in order to compute
runtime and size bounds. Suppose that we have already analyzed the func-
tion symbols g1, . . . , gm, that f becomes a new bottom symbol if the rules for
g1, . . . , gm are removed, that Q is the sub-RNTS induced by f , and that P
results from Q by deleting the rules for g1, . . . , gm. Thus, if gi occurs in P, then
gi ∈ ΣP

c .
So in our leading example, we have g1 = gt (i.e., all gt-rules were analyzed

and removed). Thus, ins is a new bottom symbol. If we want to analyze it by
Theorem 27, then Q contains all ins-, if-, and gt-rules and P just contains all ins-
and if-rules.

Since we restricted ourselves to RNTSs Q without nested recursion, P has
no nested defined symbols. To infer a size bound for the bottom symbol f of P,
we abstract away inner occurrences of gi by ai (e.g., gt on the right-hand side
of Rule (4′) in our example), and we abstract away outer occurrences of gi by

144 M. Naaf et al.

aosz. So every right-hand side r is replaced by aosz(a
i(r)) and we add the condition

ψi
sz(r) which restricts the values of the fresh variables introduced by ai.

To infer runtime bounds, inner occurrences of gi are also abstracted by ai,
and outer occurrences of gi are simply removed. So every right-hand side r is
replaced by

∑
π∈Posd(r) a

i(r|π), where Posd(r) = {π ∈ Pos(r) | root(r|π) ∈ ΣP
d }.

However, we have to take into account how many computation steps would be
required in the procedures gi that were called in r. Therefore, we compute the
cost of all calls of gi in a rule’s right-hand side and add it to the weight of the
rule. To estimate the cost of a call gi(s1, . . . , sn), we “apply” rt(gi) to the size
bounds of s1, . . . , sn and add the costs for evaluating s1, . . . , sn.

Theorem 27 (Transformation of RNTSs to ITSs). Let Q be an RNTS
with size and runtime bounds sz and rt and let P = Q\ (Qg1 ∪ . . .∪Qgm), where
g1, . . . , gm ∈ Σ and Qgi is the sub-RNTS of Q induced by gi. We define

Psz = { � w→ aosz(a
i(r))

[
ϕ ∧ ψi

sz(r)
]

| � w→ r [ϕ] ∈ P }

Let sz′ be a size bound for Psz where sz′(f) = sz(f) for all f ∈ Σ \ΣP
d . If P does

not have nested defined symbols, then sz′ is a size bound for Q.
To obtain a runtime bound for Q, we define an RNTS Prt,sz′ . To this end,

we define the cost of a term as crt,sz′(x) = 0 for x ∈ V and

crt,sz′(g(s1, . . . , sn)) =

{∑
1≤j≤n crt,sz′(sj) + rt(g) {xj/sz

′(sj) | 1 ≤ j ≤ n} if g ∈ ΣP
c∑

1≤j≤n crt,sz′(sj) otherwise

Now Prt,sz′ = {�
w+crt,sz′ (r)−−−−−−−→

∑
π∈Posd(r) a

i(r|π)
[
ϕ ∧ ψi

sz′(r)
]

| �
w→ r [ϕ] ∈ P}.

Then every runtime bound rt′ for Prt,sz′ with rt′(f) = rt(f) for all f ∈ Σ \ ΣP
d is

a runtime bound for Q. Here, all occurrences of ω in Psz or Prt,sz′ are replaced
by pairwise different fresh variables.

If P does not have nested defined symbols, then Psz and Prt,sz′ are ITSs and
thus, they can be analyzed by existing ITS tools.

Example 28. We now finish analyzing the RNTS �R×� after updating sz as in
Example 24. The cost of the right-hand side of (14) is crt,sz(f+(f×(x, y), y)) =
rt(f+) {x1/x · y, x2/y} = x · y. So for the sub-RNTS P = {(13), (14)} induced by
f×, Prt,sz is

f×(x, y) 1→ 0 [x = 1 ∧ . . .] f×(x′, y)
1+x·y−−−−→ f×(x, y) [x′ = x + 1 ∧ . . .]

Hence, existing ITS tools like CoFloCo [16,17] or KoAT [13] yield a bound like
rt(f×) = x2

1 · x2. So by Theorems 13 and 18 we get ircR×(n) ≤ irc�R×�(n) ∈
O(n3).

Complexity Analysis for TRSs by ITSs 145

Example 29. To finish the analysis of the RNTS from Example 14, we continue
Example 26. After we removed Pgt, the new bottom symbols ins and if both
induce P ins = {(3′), . . . , (6′), (10)}. Constructing P ins

sz yields the rules (3′), (5′),
(6′), (10), and

ins(x, ys ′) 1→ if(x1, x, ys ′) [ys ′ = 1 + y + ys ∧ . . . ∧ x1 ≤ 1] (4′′)

Existing tools like CoFloCo or KoAT compute size bounds like 1 + x1 + x2 for
ins and 1 + x2 + x3 for if using Theorem 19. After updatingsz, we construct
P ins
rt,sz which consists of (4′′) and variants of (3′), (5′), (6′), (10) with unchanged

weights (as crt,sz(gt(x, y)) = rt(gt) = 0). ITS tools now infer runtime bounds like
2 ·x2 for ins and 2 ·x3 for if. After removing ins and if, we analyze the remaining
RNTS P isort = {(1′), (2′)}. Since the right-hand side of (2′) contains an inner
occurrence of ins below isort, (2′) is replaced by

isort(xs ′, ys) w→ isort(xs, ys ′) [xs ′ = 1 + x + xs ∧ ys ′ ≤ 1 + x + ys ∧ . . .]

where w = 1 in P isort
sz and w = 1+rt(ins){x1/x, x2/ys} = 1+2 ·ys in P isort

rt,sz . Using
Theorem 19, one can now infer bounds like sz(isort) = x1 + x2 and rt(isort) =
x2
1 + 2 · x1 · x2. Hence, by Theorem 18 one can deduce irc(n) ∈ O(n2).

Based on Theorem 27, we can now show the correctness of our overall analysis.

Theorem 30 (Algorithm 1 is Sound). Let P be an RNTS and let rt and sz
be the result of Algorithm1 for P. Then rt is a runtime bound and sz is a size
bound for P.

5 Related Work, Experiments, and Conclusion

To make techniques for complexity analysis of integer programs also applicable
to TRSs, we presented two main contributions: First, we showed in Sect. 3 how
TRSs can be abstracted to a variant of integer transition systems (called RNTSs)
and presented conditions for the soundness of this abstraction. While abstrac-
tions from term-shaped data to numbers are common in program analysis (e.g.,
for proving termination), soundness of our abstraction for complexity of TRSs is
not trivial. In [3] a related abstraction technique from first-order functional pro-
grams to a formalism corresponding to RNTSs is presented. However, there are
important differences between such functional programs and term rewriting: In
TRSs, one can also rewrite non-ground terms, whereas functional programming
only evaluates ground expressions. Moreover, overlapping rules in TRSs may
lead to non-determinism. The most challenging part in Sect. 3 is Theorem 9, i.e.,
showing that the step from innermost term rewriting to ground innermost rewrit-
ing is complexity preserving, even for relative rewriting. Mappings from terms to
numbers were also used for complexity analysis of logic programs [15]. However,
[15] operates on the logic program level, i.e., it does not translate programs to
ITSs and it does not allow the application of ITS-techniques and tools.

146 M. Naaf et al.

Our second contribution (Sect. 4) is an approach to lift any technique for run-
time complexity of ITSs to handle (non-nested, but otherwise arbitrary) recur-
sion as well. This approach is useful for the analysis of recursive arithmetic
programs in general. In particular, by combining our two main contributions we
obtain a completely modular approach for the analysis of TRSs. To infer runtime
bounds, we also compute size bounds, which may be useful on their own as well.

There exist several approaches that also analyze complexity by inferring both
runtime and size bounds. Wegbreit [35] tries to generate closed forms for the
exact runtime and size of the result of each analyzed function, whereas we esti-
mate runtime and size by upper bounds. Hence, [35] fails whenever finding such
exact closed forms automatically is infeasible. Serrano et al. [33] also compute
runtime and size bounds, but in contrast to us they work on logic programs, and
their approach is based on abstract interpretation. Our technique in Sect. 4 was
inspired by our work on the tool KoAT [13], which composes results of alternating
size and runtime complexity analyses for ITSs. In [13] we developed a “bottom-
up” technique that corresponds to the approach of Sect. 4.2 when restricting it to
ordinary ITSs without (non-tail) recursion. But in contrast to Sect. 4.2, KoAT’s
support for recursion is very limited, as it disregards the return values of “inner”
calls. Moreover, [13] does not contain an approach like Theorem19 in Sect. 4.1
which allows us to obtain size bounds from techniques that compute runtime
bounds.

RAML [26–28] reduces the inference of resource annotated types (and hence
complexity bounds) for ML programs to linear optimization. Like other tech-
niques for functional programs, it is not directly applicable to TRSs due to the
differences between ML and term rewriting.3 Moreover, RAML has two theo-
retical boundaries w.r.t. modularity [26]: (A) The number of linear constraints
arising from type inference grows exponentially in the size of the program. (B)
To achieve context-sensitivity, functions are typed differently for different invo-
cations. In our setting, a blow-up similar to (A) may occur within the used ITS
tool, but as the program is analyzed one function at a time, this blow-up is expo-
nential in the size of a single function instead of the whole program. To avoid
(B), we analyze each function only once. However, RAML takes amortization
effects into account and obtains impressive results in practice. Further leading
tools for complexity analysis of programs on integers (resp. naturals) are, e.g.,
ABC [11], C4B [14], CoFloCo [16,17], LoAT [18], Loopus [34], PUBS [1,2], Rank
[4], and SPEED [23].

Finally, there are numerous techniques for automated complexity analysis
of TRSs, e.g., [7,8,24,32,36]. While they also allow forms of modularity, the
modularity of our approach differs substantially due to two reasons:

(1) Most previous complexity analysis techniques for TRSs are top-down
approaches which estimate how often a rule g(. . .) → . . . is applied in reductions
that start with terms of a certain size. So the complexity of a rule depends on

3 See [29] for an adaption of an amortized analysis as in [27] to term rewriting. How-
ever, [29] is not automated, and it is restricted to ground rewriting with orthogonal
rules.

Complexity Analysis for TRSs by ITSs 147

the context of the whole TRS. This restricts the modularity of these approaches,
since one cannot analyze g’s complexity without taking the rest of the TRS into
account. In contrast, we propose a bottom-up approach which analyzes how the
complexity of any function g depends on g’s inputs. Hence, one can analyze g
without taking into account how g is called by other functions f .

(2) In our technique, if a function g has been analyzed, we can replace it by
its size bound and do not have to regard g’s rules anymore when analyzing a
function f that calls g. This is possible because we use a fixed abstraction from
terms to numbers. In contrast, existing approaches for TRSs cannot remove rules
from the original TRS after having oriented them (with a strict order �), except
for special cases. When other parts of the TRS are analyzed afterwards, these
previous rules still have to be oriented weakly (with �), since existing TRS
approaches do not have any dedicated size analysis. This makes the existing
approaches for TRSs less modular, but also more flexible (since they do not
use a fixed abstraction from terms to numbers). In future work, we will try to
improve our approach by integrating ideas from [3] which could allow us to infer
and to apply multiple norms when abstracting functional programs to RNTSs.

We implemented our contributions in the tool AProVE [22] and evaluated its
power on all 922 examples of the category “Runtime Complexity - Innermost
Rewriting” of the Termination and Complexity Competition 2016.4 Here, we
excluded the 100 examples where AProVE shows irc(n) = ω.

In our experiments, we consider the previous version of AProVE (AProVE
’16), a version using only the techniques from this paper (AProVE RNTS), and
AProVE ’17 which integrates the techniques from this paper into AProVE’s pre-
vious approach to analyze irc. In all these versions, AProVE pre-processes the
TRS to remove rules with non-basic left-hand sides that are unreachable from
basic terms, cf. [19]. AProVE RNTS uses the external tools CoFloCo, KoAT, and
PUBS to compute runtime bounds for the ITSs resulting from the technique
in Sect. 4. While we restricted ourselves to polynomial arithmetic for simplicity
in this paper, KoAT’s ability to prove exponential bounds for ITSs also enables
AProVE to infer exponential upper bounds for some TRSs. Thus, the capabilities
of the back-end ITS tool determine which kinds of bounds can be derived by
AProVE. We also compare with TcT 3.1.0 [7], since AProVE and TcT were the
most powerful complexity tools for TRSs at the Termination and Complexity
Competition 2016.

Note that while the approach of Sect. 4 allows us to use any existing (or
future) ITS tools for complexity analysis of RNTSs, CoFloCo can also infer com-
plexity bounds for recursive ITSs directly, i.e., it does not require the technique in
Sect. 4. To this end, CoFloCo analyzes program parts independently and uses lin-
ear invariants to compose the results. So CoFloCo’s approach differs significantly
from Sect. 4, which can also infer non-linear size bounds. Thus, the approach
of Sect. 4 is especially suitable for examples where non-linear growth of data
causes non-linear runtime. For instance, in Example 28 the quadratic size bound
for f× is crucial to prove a (tight) cubic runtime bound with the technique of

4 See http://termination-portal.org/wiki/Termination Competition/.

http://termination-portal.org/wiki/Termination_Competition/

148 M. Naaf et al.

Sect. 4. Consequently, CoFloCo’s linear invariants are not sufficient and hence it
fails for this RNTS. See [5] for a list of 17 examples with non-linear runtime
where Sect. 4 was superior to all other considered techniques in our experiments.
However, CoFloCo’s amortized analysis often results in very precise bounds, i.e.,
both approaches are orthogonal. Therefore, as an alternative to Sect. 4, AProVE
RNTS also uses CoFloCo to analyze the RNTSs obtained from the transformation
in Sect. 3 directly.

ircR(n) TcT AProVE RNTS AProVE ’16 AProVE & TcT AProVE ’17

O(1) 47 43 48 53 53

≤ O(n) 276 254 320 354 379

≤ O(n2) 362 366 425 463 506

≤ O(n3) 386 402 439 485 541

≤ O(n>3) 393 412 439 491 548

≤ EXP 393 422 439 491 553

The table on the
right shows the results
of our experiments. As
suggested in [8], we
used a timeout of 300
seconds per example
(on an Intel Xeon with
4 cores at 2.33 GHz each and 16 GB of RAM). AProVE & TcT represents the
former state of the art, i.e., for each example here we took the best bound found
by AProVE ’16 or TcT. A row “≤ O(nk)” means that the corresponding tools
proved a bound ≤ O(nk) (e.g., TcT proved constant or linear upper bounds in
276 cases). Clearly, AProVE ’17 is the most powerful tool, i.e., the contributions
of this paper significantly improve the state of the art for complexity analysis
of TRSs. This also shows that the new technique of this paper is orthogonal
to the existing ones. In fact, AProVE RNTS infers better bounds than AProVE
& TcT in 127 cases. In 102 of them, AProVE & TcT fails to prove any bound
at all. The main reasons for this orthogonality are that on the one hand, our
approaches loses precision when abstracting terms to numbers. But on the other
hand, our approach allows us to apply arbitrary tools for complexity analysis of
ITSs in the back-end and to benefit from their respective strengths. Moreover
as mentioned above, the approach of Sect. 4 succeeds on many examples where
non-linear growth of data leads to non-linear runtime, which are challenging for
existing techniques.

For further details on our experiments including a detailed comparison of
AProVE RNTS and prior techniques for TRSs, to access AProVE ’17 via a web
interface, for improvements to increase the precision of our abstraction from
TRSs to RNTSs, and for the proofs of all theorems, we refer to [5].

Acknowledgments. We thank A. Flores-Montoya for his help with CoFloCo and the
anonymous reviewers for their suggestions and comments.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reasoning 46(2), 161–203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sc. 413(1), 142–159 (2012)

Complexity Analysis for TRSs by ITSs 149

3. Albert, E., Genaim, S., Gutièrrez, R.: A transformational approach to
resource analysis with typed-norms. In: Gupta, G., Peña, R. (eds.) LOPSTR
2013. LNCS, vol. 8901, pp. 38–53. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-14125-1 3

4. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15769-1 8

5. AProVE. https://aprove-developers.github.io/trs complexity via its/
6. Avanzini, M., Felgenhauer, B.: Type introduction for runtime complexity analy-

sis. In: WST 2014, pp. 1–5 (2014). http://www.easychair.org/smart-program/
VSL2014/WST-proceedings.pdf

7. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In: Chechik,
M., Raskin, J.F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 24

8. Avanzini, M., Moser, G.: A combination framework for complexity. Inform. Com-
put. 248, 22–55 (2016)

9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge U. Press, Cam-
bridge (1998)

10. Baillot, P., Dal Lago, U., Moyen, J.Y.: On quasi-interpretations, blind abstractions
and implicit complexity. Math. Struct. Compt. Sci. 22(4), 549–580 (2012)

11. Blanc, R., Henzinger, T.A., Hottelier, T., Kovàcs, L.: ABC: Algebraic
bound computation for loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR
2010. LNCS, vol. 6355, pp. 103–118. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17511-4 7

12. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. J. Funct. Program. 11(1), 33–53 (2001)

13. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM TOPLAS 38(4), 13 (2016)

14. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: PLDI 2015, pp. 467–478 (2015)

15. Debray, S., Lin, N.: Cost analysis of logic programs. TOPLAS 15(5), 826–875
(1993)

16. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1 15

17. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs
expressed as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philip-
pou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48989-6 16

18. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Lower run-
time bounds for integer programs. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS, vol. 9706, pp. 550–567. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 37

19. Frohn, F., Giesl, J.: Analyzing runtime complexity via innermost runtime com-
plexity. In: LPAR 2017, pp. 249–268 (2017)

20. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for
runtime complexity of term rewriting. J. Autom. Reasoning 59(1), 121–163 (2017)

21. Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termi-
nation by dep. pairs and inductive theorem proving. JAR 47(2), 133–160 (2011)

https://doi.org/10.1007/978-3-319-14125-1_3
https://doi.org/10.1007/978-3-319-14125-1_3
http://dx.doi.org/10.1007/978-3-642-15769-1_8
https://aprove-developers.github.io/trs_complexity_via_its/
http://www.easychair.org/smart-program/VSL2014/WST-proceedings.pdf
http://www.easychair.org/smart-program/VSL2014/WST-proceedings.pdf
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-40229-1_37

150 M. Naaf et al.

22. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning 58, 3–31 (2017)

23. Gulwani, S.: SPEED: Symbolic complexity bound analysis. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 7

24. Hirokawa, N., Moser, G.: Automated complexity analysis based on the depen-
dency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 364–379. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71070-7 32

25. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989). doi:10.1007/3-540-51081-8 107

26. Hoffmann, J.: Types with Potential: Polynomial Resource Bounds via Automatic
Amortized Analysis. Ph.D. thesis, Ludwig-Maximilians-University Munich (2011)

27. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

28. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for
OCaml. In: POPL 2017, pp. 359–373 (2017)

29. Hofmann, M., Moser, G.: Multivariate amortised resource analysis for term rewrite
systems. In: TLCA 2015, pp. 241–256 (2015)

30. Kapur, D., Narendran, P., Zhang, H.: On sufficient completeness and related prop-
erties of term rewriting systems. Acta Informatica 24, 395–415 (1987)

31. Emmanuel, K.: Completeness in data type specifications. In: Caviness, B.F. (ed.)
EUROCAL 1985. LNCS, vol. 204, pp. 348–362. Springer, Heidelberg (1985). doi:10.
1007/3-540-15984-3 291

32. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. J. Autom. Reasoning 51(1), 27–56 (2013)

33. Serrano, A., López-Garćıa, P., Hermenegildo, M.: Resource usage analysis of logic
programs via abstract interpretation using sized types. Theory Pract. Logic Pro-
gram. 14(4–5), 739–754 (2014)

34. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of impera-
tive programs using difference constraints. J. Autom. Reasoning 59(1), 3–45 (2017)

35. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18, 528–539 (1975)
36. Zankl, H., Korp, M.: Modular complexity analysis for term rewriting. Logical Meth.

Comput. Sci. 10(1), 1–34 (2014)
37. Zantema, H.: Termination of term rewriting: interpretation and type elimination.

J. Symbol. Comput. 17(1), 23–50 (1994)

https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.1007/3-540-15984-3_291
http://dx.doi.org/10.1007/3-540-15984-3_291

SAT, SMT and Automated
Theorem Proving

Solving SAT and MaxSAT with a Quantum
Annealer: Foundations and a Preliminary Report

Zhengbing Bian1, Fabian Chudak1, William Macready1, Aidan Roy1(B),
Roberto Sebastiani2, and Stefano Varotti2

1 D-Wave Systems Inc., Burnaby, Canada
aroy@dwavesys.com

2 DISI, University of Trento, Trento, Italy

Abstract. Quantum annealers (QA) are specialized quantum comput-
ers that minimize objective functions over discrete variables by physically
exploiting quantum effects. Current QA platforms allow for the optimiza-
tion of quadratic objectives defined over binary variables, that is, they
solve quadratic unconstrained binary optimization (QUBO) problems.
In the last decade, QA systems as implemented by D-Wave have scaled
with Moore-like growth. Current architectures provide 2048 sparsely-
connected qubits, and continued exponential growth is anticipated.

We explore the feasibility of such architectures for solving SAT and
MaxSAT problems as QA systems scale. We develop techniques for effec-
tively encoding SAT and MaxSAT into QUBO problems compatible with
sparse QA architectures. We provide the theoretical foundations for this
mapping, and present encoding techniques that combine offline Satisfia-
bility and Optimization Modulo Theories with on-the-fly placement and
routing. Preliminary empirical tests on a current generation 2048-qubit
D-Wave system support the feasibility of the approach.

We provide details on our SMT model of the SAT-encoding problem
in the hopes that further research may improve upon the scalability of
this application of SMT technology. Further, these models generate hard
SMT problems which may be useful as benchmarks for solvers.

1 Introduction

Quantum Annealing (QA) is a specialized form of computation that uses quan-
tum mechanical effects to efficiently sample low-energy configurations of par-
ticular cost functions on binary variables. Currently, the largest QA system
heuristically minimizes an Ising cost function given by

E(z) def=
∑

i∈V

hizi +
∑

(i,j)∈E

Jijzizj (1)

argmin
z∈{−1,1}|V |

E(z). (2)

where G = (V,E) is an undirected graph of allowed variable interactions. Ising
models are equivalent to Quadratic Unconstrained Binary Optimization (QUBO)
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 153–171, 2017.
DOI: 10.1007/978-3-319-66167-4 9

154 Z. Bian et al.

problems, which use {0, 1}-valued variables rather than ±1-valued variables. 1

The decision version of the Ising problem on most graphs G is NP-complete.
Theory suggests that quantum annealing may solve some optimization prob-

lems faster than state-of-the-art algorithms [18]. Quantum effects such as tun-
neling and superposition provide QA with novel mechanisms for escaping local
minima, thereby potentially avoiding suboptimal solutions commonly found by
classical algorithms based on bit-flip operations (such as WalkSAT). Practical
QA systems are not guaranteed to return optimal solutions; however, the D-
Wave processor has been shown to outperform a range of classical algorithms
on certain problems designed to match its hardware structure [16,21]. These
results also provide guidance about the kinds of energy landscapes on which QA
is expected to perform well.

Our ultimate goal is to exploit QA as an engine for solving SAT and other
NP-hard problem instances which are relatively small but hard enough to be
out of the reach of state-of-the-art solvers (e.g., SAT problems coming from
cryptanalysis). SAT is the problem of deciding the satisfiability of arbitrary
formulas on atomic propositions, typically written in conjunctive normal form.
MaxSAT is an optimization extension of SAT, in which each clause is given a
positive penalty if the clause is not satisfied, and an assignment minimizing the
sum of the penalties is sought.

In principle, converting SAT to optimization of an Ising cost function is
straightforward. However, practical QA systems such as the D-Wave 2000Q
offer sparse connectivity between variables. The connectivity graph G of cur-
rent D-Wave processors is shown in Fig. 1, and is called the Chimera graph.
Further, because the Ising model is solved on a physical, analog device, it is sub-
ject to engineering limitations. The D-Wave 2000Q system currently requires
hi ∈ [−2, 2] and Jij ∈ [−1, 1] and there are limits on the precision to which
these parameters may be specified. Parameter imprecisions act as small additive
noise sources on parameter values, and arise from operating quantum mechanical
systems in real-world environments. These real-world practicalities necessitate a
carefully defined SAT-to-Ising encoding.

These practical constraints generate a challenging problem because the SAT
encoding must be done both effectively (i.e., in a way that uses only the limited
number of qubits and connections available within the QA architecture, while
optimizing performance of the QA algorithm), and efficiently (i.e., using a limited
computational budget for computing the encoding). In this paper, we formalize
this problem and provide practical algorithms.

A direct formulation of the encoding problem results in a large system of
linear inequalities over continuous- and Boolean-valued variables. This system
can be effectively addressed with Satisfiability or Optimization Modulo Theory
(SMT/OMT) [3,28] solvers. Satisfiability Modulo the Theory of Linear Ratio-
nal Arithmetic (SMT (LRA)) [3] is the problem of deciding the satisfiability of
arbitrary formulas on atomic propositions and constraints in linear arithmetic
over the rationals. Optimization Modulo the Theory of Linear Rational Arithmetic

1 The transformation between zi ∈ {−1, 1} and xi ∈ {0, 1} is zi = 2xi − 1.

Solving SAT and MaxSAT with a Quantum Annealer 155

Fig. 1. Example of the Chimera topology: the hardware graph for system of 72 qubits
in a 3-by-3 grid of tiles. (D-Wave 2000Q systems have 2048 qubits in a 16-by-16 grid.)
This topology consists of a lattice of strongly-connected components of 8 qubits, called
tiles. Each tile consists of a complete bipartite graph between two sets of four qubits.
One set, the “vertical” set, is connected to the tiles above and below; the other set,
the “horizontal” set, is connected to the tiles to the left and to the right. Notice that
each qubit is connected with at most six other qubits. In other words, each variable zi
in the Ising model (1) has at most 6 non-zero Jij interactions with other variables.

(OMT (LRA)) [28] extends SMT(LRA) by searching solutions which optimize
some LRA objective(s). Efficient OMT(LRA) solvers like OptiMathSAT [29]
allow for handling formulas with thousands of Boolean and rational variables [28].

This monolithic linear programming approach to encoding typically requires
the introduction of additional ancillary Boolean variables, and the resultant
SMT/OMT problem may be computationally harder than the original prob-
lem. In contrast, a large Boolean formula can be scalably converted into an
Ising model by decomposing it into subformulae, converting each subformula
into an Ising model (perhaps with introduction of additional fresh variables),
and linking variables from different subformulae. Unfortunately, in practice this
decomposition-based approach requires many auxiliary variables and connec-
tions, which are incompatible with the sparse connectivity restrictions imposed
by QA architectures.

To cope with these difficulties, we propose a mixed approach, which com-
bines (i) novel SMT/OMT-based techniques to produce off-line encodings of
commonly-used Boolean subfunctions, with (ii) the usage of function instantia-
tion and placement-and-routing techniques to combine and place on-the-fly the
encoded functionalities within the QA architecture.

156 Z. Bian et al.

We have implemented prototype encoders on top of the SMT/OMT tool
OptiMathSAT [29]. As a proof of concept, we present some preliminary empir-
ical evaluation, in which we have executed encoded SAT and MaxSAT problems
on a D-Wave 2000Q system. Although preliminary, the results confirm the fea-
sibility of the approach. We stress the fact that this paper does not present a
comparison with respect to state-of-the-art of classic computing. Rather, this is
intended as a preliminary assessment of the challenges and potential of QA to
impact SAT and MaxSAT solving.

The rest of the paper is organized as follows. Section 2 presents the theoretical
foundations of this work; Sect. 3 describes our mixed approach to cope with this
problem; Sect. 4 presents a preliminary empirical evaluation; Sect. 5 hints future
developments. A longer and more detailed version of this paper, including a
section that describes related work, is available online [7].

2 Foundations

Let F (x) be a Boolean function on a set of n input Boolean variables x def=
{x1, ..., xn}. We represent Boolean value ⊥ with −1 and � with +1, so that we
can assume that each xi ∈ {−1, 1}. Suppose first that we have a QA system with
n qubits defined on a hardware graph G = (V,E), e.g., G can be any n-vertex
subgraph of the Chimera graph of Fig. 1. Furthermore, assume that the state of
each qubit zi corresponds to the value of variable xi, i = 1, . . . , n = |V |. One
way to determine whether F (x) is satisfiable using the QA system is to find an
energy function as in (1) whose ground states z correspond with the satisfiable
assignments x of F (x). For instance, if F (x) def= x1 ⊕ x2, since F (x) = � if
and only if x1 + x2 = 0, the Ising model (z1 + z2)2 in a graph containing 2
qubits joined by an edge has ground states (+1,−1) and (−1,+1), that is, the
satisfiable assignments of F .

Because the energy E(z) in (1) is restricted to quadratic terms and graph
G is typically sparse, the number of functions F (x) that can be solved with
this approach is limited. To deal with this difficulty, we can use a larger QA
system with a number of additional qubits, say h, representing ancillary Boolean
variables (or ancillas for short) a def= {a1, ..., ah}, so that |V | = n+h. A variable
placement is a mapping of the n+h input and ancillary variables into the qubits
of V . Since G is not a complete graph, different variable placements will produce
energy functions with different properties. We use Ising encoding to refer to the
hi and Jij parameters in (1) that are provided to the QA hardware together
with a variable placement of the variables. The gap of an Ising encoding is the
energy difference between ground states (i.e., satisfiable assignments) and any
other states (i.e., unsatisfiable assignments). An important observation from [5]
is that the larger the gap the better the success rates of the QA process. The
encoding problem for F (x) is to find an Ising encoding with maximum gap.

The encoding problem is typically over-constrained. In fact, the Ising model
(1) has to discriminate between m satisfiable assignments and k unsatisfiable
assignments, with m+k = 2n, whereas the number of degrees of freedom is given

Solving SAT and MaxSAT with a Quantum Annealer 157

by the number of the hi and Jij parameters, which in the Chimera architecture
grows as O(n + h).

In this section, we assume that a Boolean function F (x) is given and that h
qubits are used for ancillary variables a.

2.1 Penalty Functions

Here we assume that a variable placement is given, placing x ∪ a into the
subgraph G. Thus, we can identify each variable zj representing the binary
value of the qubit associated with the jth vertex in V with either an xk or a�

variable, writing z = x ∪ a. Then we define penalty function PF (x,a|θ) as the
Ising model:

PF (x,a|θ) def= θ0 +
∑

i∈V

θizi +
∑

(i,j)∈E

θijzizj , (3)

with the property that ∀x min{a}PF (x,a|θ)

{
= 0 if F (x) = �
≥ gmin if F (x) = ⊥ (4)

where θ0 ∈ (−∞,+∞) (“offset”), θi ∈ [−2, 2] (“biases”) and θij ∈ [−1, 1]
(“couplings”), s.t. zi, zj ∈ z, and gmin > 0 (“gap”) are rational-valued parame-
ters. Notice that a penalty function separates models from counter-models by
an energy gap of at least gmin. We call PF (x,a|θ) an exact penalty function iff
it verifies a stronger version of (4) in which the condition “≥ gmin” is substi-
tuted with “= gmin”. To simplify the notation we will assume that θij = 0 when
(i, j)
∈ E, and use PF (x|θ) when a = ∅.

The QA hardware is used to minimize the Ising model defined by penalty
function PF (x,a|θ). By (4), a returned value of PF (x,a|θ) = 0 implies that
F is satisfiable. However, if PF (x,a|θ) ≥ gmin, since QA does not guarantee
optimality, there is still a chance that F is satisfiable. Nevertheless, the larger
gmin is, the less likely this false negative case occurs.

The following examples show that ancillary variables are needed, even when
G is a complete graph.

Example 1. The equivalence between two variables, F (x) def= (x1 ↔ x2), can be
encoded without ancillas by means of a single coupling between two connected
vertices, with zero biases: PF (x|θ) def= 1 − x1x2, so that gmin = 2. In fact,
PF (x|θ) = 0 if x1, x2 have the same value; PF (x|θ) = 2 otherwise. Notice that
PF (x|θ) is also an exact penalty function. Penalty PF (x|θ) is called a chain of
length 2.

Example 2. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2). If x1, x2, x3

could be all connected in a 3-clique, then F (x) could be encoded without ancillas
by setting PF (x|θ) = 3

2 − 1
2x1− 1

2x2+x3+ 1
2x1x2−x1x3−x2x3, so that gmin = 2.

Since the Chimera graph has no cliques, so that the above AND function needs

158 Z. Bian et al.

(a) x3 (x1 ∧ x2)
with one ancilla.

(b) x3 (x1 ⊕ x2)
with three ancillas.

(c) x4 (x3 ∧ (x1 ⊕ x2))
obtained by combining 2(b) and 2(a).

Fig. 2. Mappings within the Chimera graph, penalty functions use only colored edges.
(c) combines (a) and (b) using chained proxy variables y, y′. The resulting penalty
function is obtained by rewriting x4 ↔ (x3 ∧ (x1 ⊕x2)) into its equi-satisfiable formula
(x4 ↔ (x3 ∧ y′)) ∧ (y′ ↔ y) ∧ (y ↔ (x1 ⊕ x2)). (Color figure online)

(at least) one ancilla a to be encoded as: PF (x,a|θ) = 5
2 − 1

2x1 − 1
2x2 + x3 +

1
2x1x2 − x1x3 − x2a − x3a, which still has gap gmin = 2 and is embedded as in
Fig. 2(a).

Example 3. Consider the XOR function F (x) def= x3 ↔ (x1 ⊕ x2). Even within
a 3-clique, F (x) has no ancilla-free encoding. Within the Chimera graph, F (x)
can be encoded with three ancillas a1, a2, a3 as: PF (x,a|θ) = 5 + x3 + a2 − a3 +
x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3, which has gap gmin = 2
and is embedded as in Fig. 2(b).

2.2 Properties of Penalty Functions and Problem Decomposition

After determining a variable placement, finding the values for the θs implicitly
requires solving a set of equations whose size grows with the number of models of
F (x) plus a number of inequalities whose size grows with the number of counter-
models of F (x). Thus, the θs must satisfy a number of linear constraints that
grows exponentially in n. Since the θs grow approximately as 4(n + h), the
number of ancillary variables needed to satisfy (4) can also grow very rapidly.
This seriously limits the scalability of a solution method based on (3)–(4). We
address this issue by showing how to construct penalty functions by combining
smaller penalty functions, albeit at the expense of a reduced gap.

The following two properties can be easily derived from the definition.

Property 1. Let F ∗(x) def= F (x1, ..., xr−1,¬xr, xr+1, ..., xn) for some index r.
Assume a variable placement of x into V s.t. PF (x,a|θ) is a penalty function
for F (x) of gap gmin. Then PF ∗(x,a|θ) = PF (x,a|θ∗), where θ∗ is defined as
follows for every zi, zj ∈ x,a:

θ∗
i =

{−θi if zi = xr

θi otherwise; θ∗
ij =

{−θij if zi = xr or zj = xr

θij otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2] and
θij ∈ [−1, 1]) are symmetric, if θ is in range then θ∗ is as well.

Solving SAT and MaxSAT with a Quantum Annealer 159

Two Boolean functions that become equivalent by permuting or negating
some of their variables are called NPN-equivalent [14]. Thus, given the penalty
function for a Boolean formula, any other NPN equivalent formula can be
encoded trivially by applying Property 1. Notice that checking NPN equiva-
lence is a hard problem in theory, but it is fast in practice for small n (i.e., less
than 16 [20]).

Property 2. Let F (x) =
∧K

k=1 Fk(xk) be Boolean formula such that x = ∪kxk,
the xks may be non-disjoint, and each sub-formula Fk has a penalty function
PFk

(xk,ak|θk) with minimum gap gk
min where a = ∪kak and the aks are all

disjoint. Given a list wk of positive rational values such that, for every zi, zj ∈
x ∪ ⋃K

k=1 ak:

θi
def=

K∑

k=1

wkθk
i ∈ [−2, 2], θij

def=
K∑

k=1

wkθk
ij ∈ [−1, 1], (5)

then a penalty function for F (x) can be obtained as:

PF (x,a1...aK |θ) =
K∑

k=1

wkPFk
(xk,ak|θk). (6)

This new penalty function evaluates to zero if and only if all its summands
do, and otherwise it is at least gmin = minK

k=1 wkgk
min. Thus, in general, the

(weighted) sum of the penalty functions of a set of formulas represents a penalty
function for the conjunction of the formulas.

A formula F (x) can be decomposed (e.g., by a Tseitin transformation) into
an equivalently-satisfiable one F ∗(x,y):

F ∗(x,y) def=
m−1∧

i=1

(yi ↔ Fi(xi,yi)) ∧ Fm(xm,ym), (7)

where the Fis are Boolean functions which decompose the original formula F (x),
and the yis are fresh Boolean variables each labeling the corresponding Fi. By
Property 2, this allows us to decompose F (x) into multiple Fi(xi,yi) that can be
encoded separately and recombined. The problem is to choose Boolean functions
Fi(xi,yi) whose penalty functions are easy to compute, have a large enough gap,
and whose combination keeps the gap of the penalty function for the original
function as large as possible.

Summing penalty functions with shared variables may cause problems with
parameter ranges: penalty functions that share terms may sum up biases or
couplings resulting in out-of-range values. Using weights, Property 2 can help
to mitigate this, but also it is likely that the gmin of the final penalty function
becomes small.

160 Z. Bian et al.

We can cope with this problem by mapping shared variables into distinct
qubits and then linking them together. Consider again F (x) =

∧K
k=1 Fk(xk) as

in Property 2. We rewrite it into its equi-satisfiable formula

F ∗(x∗) def=
K∧

k=1

Fk(xk∗
) ∧

∧

xi∈xk∩xk′

k,k′∈[1..K], k<k′

(xi
k∗ ↔ xi

k′∗
) (8)

where x∗ = ∪kxk∗ and the xk∗ are all disjoint. Also, as in Property 2, assume
we have PFk

(xk∗
,ak|θk) for each k with disjoint ak. If there is an edge between

every two copies of the same variable xi, we can write a penalty function in the
following way (using the penalty of Example 1):

PF ∗(x∗,a|θ) =
K∑

k=1

PFk
(xk∗

,ak|θk) +
∑

xi∈xk∩xk′

k,k′∈[1..K], k<k

(1 − xi
k∗

xi
k′∗

), (9)

and the θs stay within valid range because the xk∗s are all disjoint. Thus, we can
represent a single variable xi with a series of qubits connected by strong couplings
(1−ziz

′
i). Figure 2(c) illustrates a simple example. Two observations are at hand.

First, the gap gmin of PF ∗(x∗,a|θ) is at least min(minK
k=1 wkgk

min, 2), since each
(1 − ziz

′
i) penalty has a gap of 2. Second, not all copies of xi need to be directly

adjacent to obtain this bound: it suffices to use the edges of a tree connecting
all copies. More generally, that tree may contain additional qubits to facilitate
connectedness. A tree connecting all the copies of a variable xi is called a chain
and is the subject of the next section.

2.3 Embedding into Chimera Architecture

The process of representing a single variable xi by a collection of qubits connected
in chains of strong couplings is known as embedding, in reference to the minor
embedding problem of graph theory [12,13]. More precisely, suppose we have a
penalty function based on graph G (so xi and xj are adjacent iff θij
= 0) and a
QA hardware graph H. A minor embedding of G in H is a function Φ : VG → 2VH

such that:

– for each G-vertex xi, the subgraph induced by Φ(xi) is connected;
– for all distinct G-vertices xi and xj , Φ(xi) and Φ(xj) are disjoint;
– for each edge (xi, xj) in G, there is at least one edge between Φ(xi) and Φ(xj).

The image Φ(xi) of a G-vertex is a chain, and the set of qubits in a chain are
constrained to be equal using (1 − ziz

′
i) couplings as in Fig. 2(c).

Embedding generic graphs is a computationally difficult problem [2],
although certain structured problem graphs may be easily embedded in the
Chimera topology [8,34] and heuristic algorithms may also be used [9]. A rea-
sonable goal in embedding is to minimize the sizes of the chains, as quantum
annealing becomes less effective as more qubits are included in chains [22].

Solving SAT and MaxSAT with a Quantum Annealer 161

A different approach to use QA for finding models for F , global embedding,
is based on first finding a penalty function on a complete graph G on n + h
variables, and secondly, embedding G into a hardware graph H using chains (e.g.,
using [8]). Following [5], global embeddings usually need fewer qubits than the
methods presented in this paper; however, the final gap of the penalty function
obtained in this way is generally smaller and difficult to compute exactly.

3 Solving the Encoding Problem

3.1 Encoding Small Boolean Functions

Computing Penalty Functions via SMT/OMT(LRA). Given x def=
{x1, ..., xn}, a def= {a1, ..., ah}, F (x) as in Sect. 2.1, a variable placement in a
Chimera subgraph s.t. z = x ∪ a, and some gap gmin > 0, the problem of
finding a penalty function PF (x,a|θ) as in (3) reduces to solving the following
SMT(LRA) problem:

Φ(θ) def=
∧

zi∈x,a

(−2 ≤ θi) ∧ (θi ≤ 2) ∧
∧

zizj∈x,a
i<j

(−1 ≤ θij) ∧ (θij ≤ 1) (10)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨

a∈{−1,1}h

(PF (x,a|θ) = 0) (11)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ 0) (12)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ gmin). (13)

Consequently, the problem of finding the penalty function PF (x,a|θ) that
maximizes the gap gmin reduces to solving the OMT(LRA) maximization prob-
lem 〈Φ(θ), gmin〉.

Intuitively: (10) states the ranges of the θ; (11) and (12) state that, for
every x satisfying F (x), PF (x,a|θ) must be zero for at least one “minimum” a
and nonnegative for all the others; (13) states that for every x not satisfying
F (x), PF (x,a|θ) must greater or equal than the gap. Consequently, if the values
of the θ in PF (x,a|θ) satisfy Φ(θ), then PF (x,a|θ) complies with (4).

Notice that Φ(θ) grows exponentially with |x| + |a|, and no longer contains
Boolean atoms. Notice also that, if a = ∅, the OMT(LRA) maximization prob-
lem 〈Φ(θ), gmin〉 reduces to a linear program because the disjunctions in (11)
disappear.

To force PF (x,a|θ) to be an exact penalty function, we conjoin to Φ(θ) the
following:

... ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ) = gmin). (14)

162 Z. Bian et al.

Here, (14) forces PF (x,a|θ) to be exactly equal to the gap for at least one “min-
imum” a. Exact penalty functions can be used to encode (weighted) MaxSAT
instances. Suppose we partition a formula into the conjunction of its soft con-
straints Ci each of weight wi ≥ 0. Then for each Ci we find an exact penalty
function of (10)–(14) for Ci imposing a gap gi proportional to wi, and we com-
bine the result as in Property 2.

Improving Efficiency and Scalability Using Variable Elimination.
As before, assume that the variable placement is fixed and consider the
SMT/OMT(LRA) formulation (10)–(13). Notice the exponential dependency on
the number of hidden variables h. For practical purposes, this typically implies
a limit on h of about 10. Here, we describe an alternative formulation whose
size dependence on h is O(h2tw), where tw is the treewidth of the subgraph of
G spanned by the qubits corresponding to the ancillary variables, Ga. For the
Chimera graph, even when h is as large as 32, tw is at most 8 and therefore still
of tractable size.

The crux of the reformulation is based on the use of the variable elimination
technique [15] to solve an Ising problem on Ga. This method is a form of dynamic
programming, storing tables in memory describing all possible outcomes to the
problem. When the treewidth is tw, there is a variable elimination order guar-
anteeing that each table contains at most O(2tw) entries. Rather than using
numerical tables, our formulation replaces each of its entries with a continuous
variable constrained by linear inequalities. In principle, we need to parametrically
solve an Ising problem for each x ∈ {−1, 1}n, generating O(2nh2tw) continuous
variables. However, by the sequential nature of the variable elimination process,
many of these continuous variables are equal, leading to a reduced (as much as
an order of magnitude smaller) and strengthened SMT formulation. See [5] for
more details.

Placing Variables & Computing Penalty Functions via SMT/
OMT(LRIA ∪ UF). The formula Φ(θ) in (10)–(14) can be built only after
a variable placement, so that each variable zj ∈ x ∪ a has been previously
placed in some vertex vj ∈ V . There are many such placements. For example, if
n + h = 8 and we want to encode the penalty function into a 8-qubit Chimera
tile, then we have 8! = 40320 candidate placements. Exploiting symmetry and
the automorphism group of G, one can show that most of these placements are
equivalent.

Alternatively, we can combine the generation of the penalty function with an
automatic variable placement by means of SMT/OMT(LRIA ∪ UF), LRIA ∪
UF being the combined theories of linear arithmetic over rationals and integers
plus uninterpreted function symbols. This works as follows.

Solving SAT and MaxSAT with a Quantum Annealer 163

Offline process

On-the-fly process

Standard cell
mapping

Library

PreprocessingSAT
problem

Pre-encodingBoolean
functions

Placement
and routing

Ising
model

D-Wave
QA Solution

Fig. 3. Graph of the encoding process.

Suppose we want to produce the penalty function of some relatively small
function (e.g., so n + h ≤ 8, which fits into a single Chimera tile). We index
the n + h vertices in the set V into which we want to place the variables as
V

def= {1, ..., n + h}, and we introduce a set of n + h integer variables v def=
{v1, ..., vn+h} s.t. each vj ∈ V represents (the index of) the vertex into which zj

is placed. (For example, “v3 = 5” means that variable z3 is placed in vertex #5.)
Then we add the standard SMT constraint Distinct(v1, ..., vn+h) to the formula
to guarantee the injectivity of the map. Then, instead of using variables θi and
θij for biases and couplings, we introduce the uninterpreted function symbols
b : V �−→ Q (“bias”) and c : V × V �−→ Q (“coupling”), so that we can rewrite
each bias θj as b(vj) and each coupling θij as c(vi, vj) s.t vi, vj ∈ [1, .., n + h]
and Distinct(v1, ..., vn+h).

This rewrites the SMT(LRA) problem (10)–(13) into the SMT/OMT
(LRIA ∪ UF) problem (15)–(26). Equation (19) must be used iff we need an
exact penalty function. (Notice that (22) is necessary because we could have
c(vi, vj) s.t. vi > vj .) By solving 〈Φ(θ0, b, c,v), gmin〉 we not only find the best
values of the biases b and couplers c, but also the best placement v of the
variables into (the indexes of) the qubits.

3.2 Encoding Larger Boolean Functions

As pointed out in Sect. 2.2, encoding large Boolean functions using the SMT
formulations of the previous section is computationally intractable, so other
methods must be used. One sensible approach is to pre-compute a library of
encoded Boolean functions and decompose a larger Boolean function F (x) into
a set of pre-encoded ones

∧K
k=1 Fk(xk). The penalty models PFk

(xk,ak|θk) for
these pre-encoded functions may then be combined using chains as described in
Sect. 2.3. This schema is shown in Fig. 3. This is not the only possible method,
but it is a natural choice for SAT and constraint satisfaction problems, and in
terms of QA performance it has been shown experimentally to outperform other
encoding methods for certain problem classes [6]. In this section, we describe
each of the stages in turn.

164 Z. Bian et al.

Φ(θ0, b, c,v)
def
= Range(θ0, b, c,v) ∧ Distinct(v) ∧ Graph() (15)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ 0) (16)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = 0) (17)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ gmin) (18)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = gmin) (19)

Range(θ0, b, c,v)
def
=

∧

1≤j≤n+h

(1 ≤ vj) ∧ (vj ≤ n + h) (20)

∧
∧

1≤j≤n+h

(−2 ≤ b(j)) ∧ (b(j) ≤ 2) (21)

∧
∧

1≤j≤n+h

(c(j, j) = 0) ∧
∧

1≤i<j≤n+h

(c(i, j) = c(j, i)) (22)

∧
∧

1≤i<j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (23)

Distinct(v1, ..., vn+h)
def
=

∧

1≤i<j≤n+h

¬(vi = vj) (24)

Graph()
def
= ∧

∧

1≤i<j≤n+h
〈i,j〉	∈E

(c(i, j) = 0) (25)

PF (x,a|θ0, b, c,v)
def
= θ0 +

∑

1≤j≤n+h

b(vj) · zj +
∑

1≤i<j≤n+h

c(vi, vj) · zi · zj . (26)

Pre-encoding. In this stage, we find effective encodings of common small
Boolean functions, using the SMT methods in Sect. 3.1 or by other means, and
store them in a library for later use. Finding these encodings may be computa-
tionally expensive, but this task may be performed offline ahead of time, as it is
independent of the problem input, and it need only be performed once for each
NPN-inequivalent Boolean function.

Preprocessing. Preprocessing, or Boolean formula minimization, consists of
simplifying the input formula F (x) to reduce its size or complexity in terms of
its graphical representation (typically and-inverter graphs). This is a well-studied
problem with mature algorithms available [23,25].

Standard cell mapping. In the standard cell mapping phase, F (x) is decom-
posed into functions

∧K
k=1 Fk(xk) that are available in the library. To minimize

the size of the final Ising model, K should be as small as possible. For SAT
or constraint satisfaction problems, this mapping may be performed näıvely:
given a set of constraints {Fk(xk)}K

k=1 on the variables, each Fk(xk) is found in
the library (possibly combining small constraints into larger ones [5]). However,
more advanced techniques have been devised in the digital logic synthesis liter-

Solving SAT and MaxSAT with a Quantum Annealer 165

ature. For example, technology mapping is the process of mapping a technology-
independent circuit representation to the physical gates used in a digital circuit
[17,24]. Usually technology mapping is used to reduce circuit delay and load, and
performs minimization as an additional step. Delay and load do not play a role
in the context of QA, but minimization is important to simplify the placement
and routing phase that follows.

Placement and routing. Once F (x) is decomposed into functions
∧K

k=1 Fk(xk)
with penalty models PFk

(xk,ak|θk), it remains to embed the entire formula onto
the QA hardware as in equation (9). This process has two parts: placement, in
which each PFk

(xk,ak|θk) is assigned to a disjoint subgraph of the QA hardware
graph; and routing, in which chains of qubits are built to ensure that distinct
qubits xi and x′

i representing the same variable take consistent values (using
penalty functions of the form 1−xix

′
i). Both placement and routing are very well-

studied in design of digital circuits [4]. Nevertheless, this stage is a computational
bottleneck for encoding large Boolean functions.

During placement, chain lengths can be minimized by placing penalty func-
tions that share common variables close together. Heuristic methods for doing
this include simulated annealing [31], continuous optimization [10], and recur-
sive min-cut partitioning [27]. These algorithms can be applied in the present
context, but require some modification as current QA architectures do not dis-
tinguish between qubits used for penalty functions and qubits used for chains.

During routing, literals are chained together using as few qubits possible.
Finding an optimal routing is NP-hard, but polynomial-time approximation algo-
rithms exist [19]. In practice, heuristic routing algorithms scale to problem sizes
much larger than current QA architectures [11,26,33].

4 Preliminary Experimental Evaluation

In this section, we offer preliminary empirical validation of the proposed meth-
ods for encoding [Max]SAT by evaluating the performance of D-Wave’s 2000Q
system in solving certain hard SAT and MaxSAT problems.

Remark 1. To make the results reproducible to those who have access to a D-
Wave system, we have set a website [1] where the problem files, translation files
and demonstration code can be accessed. We also provide contact information
for D-Wave 2000Q system access.

Due to the limitations in size and connectivity of current QA systems, we
require [Max]SAT problems that become difficult with few variables. To this
end we modified the tool sgen [30], which has been used to generate the smallest
unsolvable problems in recent SAT competitions. In particular, we modified sgen
to use 2-in-4-SAT constraints instead of at-most/at-least 1-in-5-SAT constraints,
as 2-in-4-SAT is particularly suitable to encoding with Ising models (see [7] for
details). We generated 100 problem instances for various problem sizes up to
80 variables, the largest embeddable with current hardware. At 260 variables,

166 Z. Bian et al.

these problems become unsolvable within 1000 seconds with state-of-the-art SAT
solvers on standard machines [7].

Another important consideration in solving [Max]SAT instances using QA is
that the QA hardware cannot be made aware of the optimality of solution; for
example, QA cannot terminate when all clauses in a SAT problem are satisfied.
In this way, QA hardware behaves more like an SLS [Max]SAT solver than a
CDCL-based SAT solver.

Propositional Satisfiability (SAT). To solve these SAT instances using QA,
we encode and embed them as in Sect. 3 and then draw a fixed number of samples
at an annealing rate of 10µs per sample. Table 1(a) shows the results from the
QA hardware. The QA hardware solves almost all problems within 50µs of
anneal time, and the rates of sampling optimal solutions remain relatively stable
at this scale of problem.

In order to evaluate the significance of the testbed, we solved the same prob-
lems with the UBCSAT SLS SAT solver using the best performing algorithm,
namely SAPS [32]. Table 1(b) shows that the problems are nontrivial despite the
small number of variables, and the run-times increase significantly with the size
of the problem.

Table 1. (a) Number of problem instances (out of 100) solved by the QA hardware
using 5 samples and average fraction of samples from the QA hardware that are opti-
mal solutions. Annealing was executed at a rate of 10µs per sample, for a total of
50µs of anneal time per instance. Total time used by the D-Wave processor includes
programming and readout; this amounts to about 150µs per sample, plus a constant
10 ms of overhead. (b) Run-times in ms for SAT instances solved by UBCSAT using
SAPS, averaged over 100 instances of each problem size. Computations were performed
using an 8-core IntelR© XeonR© E5-2407 CPU, at 2.20GHz.

D-Wave 2000Q

Problem size # solved
% optimal
samples

32 vars 100 97.4
36 vars 100 96.4
40 vars 100 94.8
44 vars 100 93.8
48 vars 100 91.4
52 vars 100 93.4
56 vars 100 91.4
60 vars 100 88.2
64 vars 100 84.6
68 vars 100 84.4
72 vars 98 84.6
76 vars 99 86.6
80 vars 100 86.0

(a)

UBCSAT (SAPS)
Problem size Avg time (ms)
32 vars 0.1502
36 vars 0.2157
40 vars 0.3555
44 vars 0.5399
48 vars 0.8183
52 vars 1.1916
56 vars 1.4788
60 vars 2.2542
64 vars 3.1066
68 vars 4.8058
72 vars 6.2484
76 vars 8.2986
80 vars 12.4141

(b)

Solving SAT and MaxSAT with a Quantum Annealer 167

Table 2. (a) Number of problem instances (out of 100) solved by the QA hardware
using 100 samples, and average fraction of samples from the QA hardware that are
optimal solutions. Annealing was executed at a rate of 10µs per sample, for a total
of 1 ms of anneal time per instance. (b) Time in ms taken to find an optimal solution
by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT instances of
each problem size. Classical computations were performed on an Intel i7 2.90GHz × 4
processor. The solvers gw2sat, rots, and novelty are as implemented in UBCSAT [32].
All classical algorithms are performed with the optimal target weight specified; in the
absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved
% optimal
samples

32 vars 100 78.7
36 vars 100 69
40 vars 100 60.2
44 vars 100 49.9
48 vars 100 40.4
52 vars 100 35.2
56 vars 100 24.3
60 vars 100 22.3
64 vars 99 17.6
68 vars 99 13
72 vars 98 9.6
76 vars 94 6.6
80 vars 93 4.3

(a)

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.02 0.018 0.034 0.039
36 vars 0.025 0.022 0.043 0.06
40 vars 0.039 0.029 0.056 0.119
44 vars 0.049 0.043 0.07 0.187
48 vars 0.069 0.054 0.093 0.311
52 vars 0.122 0.075 0.115 0.687
56 vars 0.181 0.112 0.156 1.319
60 vars 0.261 0.13 0.167 1.884
64 vars 0.527 0.159 0.207 4.272
68 vars 0.652 0.21 0.27 8.739
72 vars 0.838 0.287 0.312 14.118
76 vars 1.223 0.382 0.396 18.916
80 vars 1.426 0.485 0.43 95.057

(b)

Remark 2. The results shown are not intended as a performance comparison
between D-Wave’s 2000Q system and UBCSAT. It is difficult to make a reason-
able comparison for many reasons, including issues of specialized vs. off-the-shelf
hardware, different timing mechanisms and timing granularities, and costs of
encoding. Instead we aim to provide an empirical assessment of QA’s potential
for [Max]SAT solving, based on currently available systems.

Weighted MaxSAT sampling. One of the strengths of D-Wave’s processor is
its ability to rapidly sample the near-optimal solutions: current systems typically
anneal at a rate of 10µs or 20µs per sample and are designed to take thousands
of samples during each programming cycle. As a result, the first practical ben-
efits of QA will likely come from applications which require many solutions
rather than a single optimum. To demonstrate the performance of QA in this
regime, we generated MaxSAT instances that have many distinct optimal solu-
tions. These problems were generated from the 2-in-4-SAT instances described
above by removing a fraction of the constraints and then adding constraints on
single variables with smaller weight(details in [7]).

Table 2 summarizes the performance of the D-Wave processor in generating
a single optimal MaxSAT solution, as well as the run-times for various high-

168 Z. Bian et al.

Table 3. Number of distinct optimal solutions found in 1 second by various MaxSAT
solvers, averaged across 100 instances of each problem size. (a) “anneal only” accounts
for only the 10 ms per sample anneal time used by the D-Wave processor. “wall-clock”
accounts for all time used by the D-Wave processor, including programming and read-
out. (b) Classical computations were performed as in Table 2(b).

D-Wave 2000Q
Size anneal only wall-clock
32 vars 448.5 443.9
36 vars 607 579.9
40 vars 1007.9 922
44 vars 1322.6 1066.6
48 vars 1555.4 1111.8
52 vars 3229 1512.5
56 vars 2418.9 1147.4
60 vars 4015.3 1359.3
64 vars 6692.6 1339.1
68 vars 6504.2 1097.1
72 vars 3707.6 731.7
76 vars 2490.3 474.2
80 vars 1439.4 332.7

(a)

MaxSAT solvers
Size g2wsat rots maxwalksat novelty
32 vars 448.5 448.5 448.5 448.5
36 vars 607 606.9 606.9 606.8
40 vars 1007.7 1006.3 1005.3 1005
44 vars 1313.8 1307.1 1311.7 1255.5
48 vars 1515.4 1510.7 1504.9 1320.5
52 vars 2707.5 2813 2854.6 1616.2
56 vars 2021.9 2106.2 2186.6 969.8
60 vars 2845.6 3061.7 3289 904.4
64 vars 3100 4171 4770 570.6
68 vars 2742.2 3823.3 4592.4 354.8
72 vars 1841.1 2400.2 2943.4 212.6
76 vars 1262.5 1716 2059.2 116.4
80 vars 772.2 1111.1 1363.9 66.7

(b)

performing SLS MaxSAT solvers. The QA hardware solves almost all problems
within 1 ms of anneal time. (Remark 2 also applies here.)

Table 3 considers generating distinct optimal solutions. For each solver and
problem size, the table indicates the number of distinct solutions found in 1 s,
averaged across 100 problem instances of that size. For the smallest problems,
1 s is sufficient for all solvers to generate all solutions, while the diversity of
solutions found varies widely as problem size increases. Although the D-Wave
processor returns a smaller fraction of optimal solutions for MaxSAT instances
than for the SAT instances, it is still effective in enumerating distinct optimal
solutions because its rapid sampling rate.

5 Ongoing and Future Work

Future QA architectures will be larger and more connected, enabling more effi-
cient encodings of larger and more difficult SAT problems. Faster and more
scalable SMT-based encoding methods for small Boolean functions is currently
an important direction of research. The ability to increase the number of ancil-
lary variables can lead to larger gaps, which in turn can make QA more reliable.
Among the encoding challenges presented in this paper, a few are of particular
interest and relevance to SMT research:

– Variable placement. Methods for simultaneously placing variables and com-
puting penalty functions are currently less scalable, and have been less stud-
ied, than those for fixed variable placements.

Solving SAT and MaxSAT with a Quantum Annealer 169

– Augmenting penalty models. For large Boolean functions, generating penalty
models directly from SMT becomes difficult because the number of constraints
grows much more quickly than the number of available parameters. Function
decomposition and chains provide one way around this, but chains limit the
resulting energy gaps. There may be other methods of recombining a decom-
posed function that are not so restrictive. Alternatively, it may be possible to
augment an existing penalty model with additional qubits for the purposes of
increasing its energy gap. SMT formulations of these problems have not yet
been explored.

– Better function decompositions. While Boolean function decomposition and
minimization are mature classical subjects, those algorithms can probably be
improved by taking into consideration the specifics of the embedding (place-
ment and routing onto a QA hardware graph) that follow them.

Furthermore, we believe the problems presented here are not only practical,
but also complex enough to be used to challenge new SMT solvers. To encourage
the use of these problems as SMT benchmarks, we have provided example .smt
files on the website of supplementary material [1].

References

1. Experimental data, source code, and supplementary material. https://bitbucket.
org/aqcsat/frocos2017

2. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized
algorithms for minor containment. Theor. Comput. Sci. 412, 7018–7028 (2011)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo The-
ories. In: Handbook of Satisfiability (2009)

4. Betz, V., Rose, J.: Vpr: a new packing, placement and routing tool for FPGA
research. In: Field Programmable Logic Workshop (1997)

5. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy A.: Discrete
optimization using quantum annealing on sparse Ising models. Frontiers in Physics
(2014)

6. Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping
constrained optimization problems to quantum annealing with application to fault
diagnosis. In: Frontiers in ICT (2016)

7. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving
SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary
Report (2017). Extended version. https://bitbucket.org/aqcsat/frocos2017/raw/
HEAD/sat2ising extended.pdf

8. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit
connectivity graphs. Quant. Inf. Proc. 15, 495–508 (2016)

9. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors.
arXiv preprint (2014)

10. Chan, T., Cong, J., Kong, T., Shinnerl, J.: Multilevel optimization for large-scale
circuit placement. In: ICCAD (2000)

11. Chen, H.Y., Hsu, C.H., Chang Y.W.: High-performance global routing with fast
overflow reduction. In: ASPDAC, January 2009

https://bitbucket.org/aqcsat/frocos2017
https://bitbucket.org/aqcsat/frocos2017
https://bitbucket.org/aqcsat/frocos2017/raw/HEAD/sat2ising_extended.pdf
https://bitbucket.org/aqcsat/frocos2017/raw/HEAD/sat2ising_extended.pdf

170 Z. Bian et al.

12. Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter
setting problem. Quant. Inf. Proc. 7, 193–209 (2008)

13. Choi, V.: Minor-embedding in adiabatic quantum computation: II. minor-universal
graph design. Quant. Inf. Proc. 10, 343–353 (2011)

14. Correia, V.P., Reis A.I.: Classifying n-input boolean functions. In: VII Iberchip
(2001)

15. Dechter, R.: Bucket elimination: a unifying framework for reasoning. In: Proceed-
ings of the UAI (1996)

16. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V.,
Martinis, J., Neven, H.: What is the Computational Value of Finite-Range Tun-
neling? Ph.Rev.X (2016)

17. Een, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 26

18. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adi-
abatic evolution. arXiv preprint (2000)

19. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Bonnroute:
algorithms and data structures for fast and good VLSI routing. TODAES 18, 32
(2013)

20. Huang, Z., Wang, L., Nasikovskiy, Y., Mishchenko, A.: Fast boolean matching
based on NPN classification. In: ICFPT (2013)

21. King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., Hilton,
J.P., McGeoch, C.C.: Quantum Annealing amid Local Ruggedness and Global
Frustration. arXiv preprint (2017)

22. Lanting, T., Harris, R., Johansson, J., Amin, M.H.S., Berkley, A.J., Gildert, S.,
Johnson, M.W., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh,
T., Perminov, I., Chapple, E.M., Enderud, C., Rich, C., Wilson, B., Thom, M.C.,
Uchaikin, S., Rose, G.: Cotunneling in pairs of coupled flux qubits. Phys. Rev. B
82, 060512 (2010)

23. Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware aig rewriting: a fresh look
at combinational logic synthesis. In: DAC (2006)

24. Mishchenko, A., Chatterjee, S., Brayton, R., Wang, X., Kam T.: Technology map-
ping with boolean matching, supergates and choices (2005)

25. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: Fraigs: a unifying repre-
sentation for logic synthesis and verification. Technical report (2005)

26. Roy, J.A., Markov, I.L.: High-performance routing at the nanometer scale. TCAD
27, 1066–1077 (2008)

27. Roy, J.A., Papa, D.A., Adya, S.N., Chan, H.H., Ng, A.N., Lu, J.F., Markov, I.L.:
Capo: robust and scalable open-source min-cut floorplacer. In: ISPD (2005)

28. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
TOCL 16, 12 (2015)

29. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 27

30. Spence, I.: Sgen1: a generator of small but difficult satisfiability benchmarks. JEA
15, 1–2 (2010)

31. Sun, W.-J., Sechen, C.: Efficient and effective placement for very large circuits.
TCAD 14, 349–359 (1995)

http://dx.doi.org/10.1007/978-3-540-72788-0_26
http://dx.doi.org/10.1007/978-3-319-21690-4_27

Solving SAT and MaxSAT with a Quantum Annealer 171

32. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell,
D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005).
doi:10.1007/11527695 24

33. Xu, Y., Zhang, Y., Chu, C.: Fastroute 4.0: global router with efficient via mini-
mization. In: ASPDAC (2009)

34. Zaribafiyan, A., Marchand, D.J.J., Rezaei, S.S.C.: Systematic and deterministic
graph-minor embedding for cartesian products of graphs. CoRR (2016)

http://dx.doi.org/10.1007/11527695_24

Superposition with Structural Induction

Simon Cruanes(B)

University of Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
simon.cruanes@inria.fr

Abstract. Superposition-based provers have been successfully used to
discharge proof obligations stemming from proof assistants. However,
many such obligations require induction to be proved. We present a new
extension of typed superposition that can perform structural induction.
Several inductive goals can be attempted within a single saturation loop,
by leveraging AVATAR [1]. Lemmas obtained by generalization or theory
exploration can be introduced during search, used, and proved, all in the
same search space. We describe an implementation and present some
promising results.

1 Introduction

Superposition-based theorem provers and SMT (Satisfiability Modulo Theory)
solvers have considerably improved automation in some proof assistants thanks
to hammers [2,3]. However, because these proof assistants provide inductive
datatypes, many theorems are out of reach of the automated provers, which
are not able to perform inductive reasoning. Such theorems include basic prop-
erties of Peano arithmetic, reasoning about data structures such as lists and
trees, manipulating syntax trees (which are often represented as a recursive
datatype), etc.

Most state of the art theorem provers for first-order logic with equality
are based on superposition [4–7]. However, they often lack support for types
or (inductive) datatypes. Vampire [5] has recently gained some support for
datatypes [8] but does not perform induction yet.

Automatic inductive provers do exist [9–11] but they are usually not complete
(nor very efficient) on the classical first-order logic problems hammers rely on.
INKA [10] was based on resolution, but not superposition. A recent extension to
CVC4 [12] equips it with inductive reasoning, but so far no major superposition-
based theorem prover has inductive capabilities. Kersani and Peltier modified
Prover9 to handle induction [13], but only for natural numbers; it is unclear
how their technique could be extended to arbitrary datatypes. Otter-λ [14] can
use its (incomplete) higher-order unification algorithm to apply explicitly the
induction principle, but it does not try to introduce any lemma nor does it
handle defined functions or datatypes efficiently. Another superposition prover
able to prove some inductive properties is Pirate [15, unpublished], but in its
architecture each inductive property is solved in a separate saturation loop; it

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 172–188, 2017.
DOI: 10.1007/978-3-319-66167-4 10

Superposition with Structural Induction 173

resembles more an inductive prover that would use a superposition prover for
discharging subgoals.

In this work we propose a new architecture that permits a seamless integra-
tion of multiple induction attempts into the deduction process of a superposition
prover. All the proof attempts are performed in the same saturation loop [4]. This
has several advantages. First, if the problem does not actually need induction,
a regular first-order proof can be obtained as usual. Second, once a particular
inductive goal has been proved, it is considered as a normal first-order formula.
This means it can participate in all the usual inference and simplification rules
and contribute to the rest of the proof. Third, efforts are allocated to the various
inductive proof attempts using the same clause selection heuristics that drive the
first-order prover. This means the same elaborate heuristics can be reused for
inductive proofs.

Our approach relies on a variant of superposition with polymorphic types,
recursive functions, and inductive datatypes, as well as support for AVATAR [1]
for reasoning by case (Sect. 3). Regular splitting without backtracking [16] could
be used instead of AVATAR, but is less convenient and efficient. This richer
variant of superposition treats defined functions efficiently. The prover can han-
dle problems expressed in TIP [17] (“Thousands of Inductive Problems”). It
encodes the non-first-order constructs of TIP, such as pattern matching, during
a preprocessing step.

On top of this extension of superposition, we introduce a new rule to instanti-
ate the structural induction schema and prove a property by induction (Sect. 4).
Pursuing several inductive goals simultaneously is made possibly by introduc-
ing a cut rule on top of AVATAR (Sect. 5). The properties to prove by induction
come from several sources: the input goal, explicit lemmas requested by the user,
or subgoals needed in already ongoing proofs (Sect. 6). The numerous heuristics
for guessing relevant lemmas that have been developed for decades [9,18–21] can
be adapted to our framework. We also present a simple way to filter out invalid
potential lemmas (Sect. 7).

To show the practical feasibility of the approach, we implemented the exten-
sions of superposition and the inductive reasoning rules in Zipperposition, a
modular prover (Sect. 8). Comparisons with CVC4 on the TIP benchmarks show
that the implementation is reasonably competitive, and suggest that an imple-
mentation in E or Vampire could lead to excellent results.

2 Basic Definitions

We define some notions and notations that will be useful for the rest of the
paper. An atomic type is a type constructor applied to 0 or more atomic types.
A (polymorphic) type has the form Πα1 . . . αn. (τ1, . . . , τk) → τ where the αi’s
are type variables and each τi is an atomic type. By s, t, u, v we denote terms,
generated from variables x, y, z and function symbols f, g, h. By t we denote a
finite (possibly empty) sequence of terms. A term is ground if it contains no
variable. Given a term t and a position p, we write t|p for the subterm of t at p.

174 S. Cruanes

We write t � u if t is a (strict) subterm of u, i.e. if there is a non-empty position
p such that t = u|p. A substitution is a mapping σ from variables to terms such
that the set of variables dom(σ) def= {x | x �= xσ} is finite. We always implicitly
restrict ourselves to well-typed terms, substitutions, etc.

A literal is an equation s � t or disequation s �� t. Note that � is a logical
symbol, whereas = denotes syntactic equality. A proposition p is implicitly rep-
resented by p � �. A clause is a disjunction of literals, denoted by C or D. The
empty clause is the empty disjunction, equivalent to ⊥ (false). We sometimes
view clauses as multisets of literals. Ground literals and clauses are defined in
the obvious way.

We reuse some concepts from AVATAR [1]. A boolean mapping �·� is an
injective mapping from clauses (and more generally, in our case, of formu-
las) into the propositional literals of a SAT solver. A clause with assertion, or
A-clause, is a pair of a clause C and conjunction of boolean literals Γ , called the
trail, and noted C ← Γ . It holds in an interpretation if either C holds, or Γ does
not hold. We write � for boolean conjunction and ⊕ for exclusive disjunction.

An inductive (data)type is defined by a set of constructors, at least one of
which is non-recursive — we ignore mutually recursive datatypes, which can be
encoded into a single datatype. A term t is purely inductive if every subterm
of t whose type is inductive, has the form c(t1, . . . , tn) where c is a constructor
symbol. A constructor context C[
] is a term built from constructors, function
symbols of non-inductive type, and a unique occurrence of
; applying the context
to a term t, written C[t], means replacing the occurrence of
 by t. C[t] is only
defined if it is well typed. A Herbrand model is standard if (i) it satisfies the
axioms of datatypes: exhaustiveness and disjointness of constructors; (ii) every
(ground) term is equal to some purely inductive term; (iii) equivalence classes
of inductive types are acyclic, i.e. for every non-trivial constructor context C[
],
t �� C[t] is true in the model.

We seek to establish the satisfiability of formulas in standard models. To
achieve this, we will instantiate the induction schema over the inductive types.
The induction schema for an inductive type τ is a second order formula para-
meterized by a variable P : τ → bool, but we instantiate it into a first-order
formula that will be (dis)proved by superposition.

Example 1 (Natural Numbers). The type of natural numbers, nat, is a classic
inductive type whose constructors are {0, s}. Its inductive values are all the
natural numbers {0, s(0), . . . , sk(0), . . .}. The induction schema is ∀P : nat →
bool. P (0) ∧ (∀n : nat. P (n) ⇒ P (s(n))) ⇒ ∀n. P (n).

Example 2 (Lists). The type of polymorphic lists is list(α). Its constructors are
[] and (::) : α × list(α) → list(α). The purely inductive values of type list(τ) are
finite lists of purely inductive values of type τ . The induction schema on lists is

∀α. ∀P : list(α) → bool. P ([]) ∧ (∀x : α l : list(α). P (l) ⇒ P (x :: l)) ⇒ ∀l. P (l)

Superposition with Structural Induction 175

3 Superposition with Recursive Functions and Datatypes

Before considering induction, we need the theorem prover to be able to handle
problems that contain defined functions and datatypes. In addition, input prob-
lems can contain constructs that are outside of the realm of first-order terms,
such as pattern matching and boolean conditionals (“if–then–else”). The solution
we propose is multifold: (i) add some additional inference rules and simplifica-
tion rules for datatypes; (ii) a notion of rewriting that does not rely on the term
ordering; this is used to properly encode recursive functions; (iii) a preprocessing
algorithm that removes non-first-order constructs by introducing newly defined
functions and use them to encode the terms.

We adopt the notations and inference system of superposition from E [4] and
AVATAR [1], and recall the following notions: an inference rule (noted with a
single bar) infers the bottom clause(s) from the top clause(s); a simplification
rule (with a double bar) replaces the top clause(s) with the bottom ones.

3.1 Recursive Functions and Rewriting

Superposition relies on a term ordering for orienting equations. This usually
works well for first-order logic. However, recursive functions (on datatypes) are
difficult to orient properly with such term orderings. Often, a rule ∀x. f(t) � u
defining f will be oriented right-to-left because u will contain several occurrences
of variables, be heavier (in KBO), etc. whereas we would like it to be oriented
in the more natural left-to-right direction.

To unfold recursive functions efficiently, we translate them into rewrite rules.
By construction, the left-hand side of the rewrite rules that define f is of the
form f(t1, . . . , tn) where the ti are generated from variables and constructors.
Rules are also non-overlapping, ensuring that the resulting rewrite system is
confluent: at most one rule will apply to any tuple of arguments. Rewriting is
done left-to-right, regardless of the term ordering. This strategy is not complete
in general,1 but it guarantees that unfolding a function definition acts as an
efficient simplification step. Recursive predicates are defined analogously, using
rules of the form l � Ci (rewriting a positive literal into a set of clauses) and
¬l �

∧
i Ci (rewriting a negative literal into a set of clauses). This sort of

rewriting is known as deduction modulo [22] and, in our context, can be expressed
as polarized resolution [23].

Having a well-delimited set of rules that define a function also enables the
notion of argument position, defined below. This notion is useful because it pro-
vides some insight on which arguments influence the control flow of the function,
and which ones are just carried around passively or serve as accumulators. In
particular, it is pointless to try to perform induction on a passive argument,
because the constructors at such positions cannot be eliminated.

1 It might even induce rewriting loops in some cases where the term ordering used
by superposition and the rewrite system are not compatible. In our experience this
does not seem to happen often.

176 S. Cruanes

Definition 1 (Argument Positions). Given a function f with k arguments,
defined by rules

f(t1,1, . . . , t1,k) � u1, . . . , f(tn,1, . . . , tn,k) � un

we say that each i, for 1 ≤ i ≤ k, is an argument position of f . An argument
position i is passive if every occurrence of f in (uj)n

j=1 has ti,j as i th argument;
in other words, if f always calls itself with the same i th argument. A non-passive
argument position i is an accumulator if every (ti,j)n

j=1 is a variable; it is primary
otherwise. Intuitively, a primary position is one that the function might examine
for determining whether to recurse or not.

Example 3. (a) + with the definition 0 + x � x, s(x) + y � s(x + y): the
first argument is primary and the second one, passive. (b) ≤ defined by
(0 ≤ x) � �, (s(x) ≤ 0) � ⊥, (s(x) ≤ s(y)) � (x ≤ y): both positions are
primary. (c) qrev with the rules qrev([], x) � x, qrev(x :: y, z) � qrev(y, x :: z):
the first position is primary, the second is an accumulator.

3.2 Preprocessing the Input

Our prover can parse problems expressed in TIP [17], an extension of SMT-
LIB [24] with recursive functions, polymorphism, and datatypes. However, many
constructs in this language have no straightforward equivalent in a superposition
prover, in which there are only clauses and first-order terms. These constructs
are pattern matching, conditionals (“if–then–else”), lambda abstractions, and
let-bindings; let-bindings are expanded, conditionals and pattern matches are
either named, or become toplevel case distinction as a set of rewrite rules. Again,
the rewrite rules generated by our encoding are terminating and confluent; they
are also orthogonal to the other rewrite rules because their head symbol is a
fresh constant. We show a few examples of encodings in Fig. 1.

3.3 Inference Rules for Constructors

We consider the algebra of freely generated datatypes, such as Peano numbers,
lists, or binary trees. This fragment is general enough to express many classic
types and data structures, yet it is reasonably simple. Other theories such as
rational arithmetic can also be used (e.g. using Hierarchic superposition [25])
but no induction will be performed on variables of these types.

Even without considering induction, datatypes need dedicated inference rules
to account for acyclicity; other properties such as injectivity can be accounted for
by adding either rules or axioms. Some SMT solvers have decision procedures
for datatypes [26–28]. Similar work exists for superposition [8,15,29]. We use
a small set of rules, as presented in Fig. 2. In the rules, c and c′ are distinct
inductive constructors (e.g., the empty list [], the successor symbol, etc.). The
positive version of Acyclicity rule can also be used as a simplification when the
unifier σ is trivial. These rules are sound with respect to standard models, but
do not, by themselves, ensure completeness without induction.

Superposition with Structural Induction 177

dedocnelanigiro

(declare−datatype Nat ((z) (s Nat)))
(define−fun−rec leq ((x Nat)(y Nat)) Bool
(match x (case z true)
(case (s x2)
(match y (case z false)
(case (s y2) (leq x2 y2))))))

∀x. leq(z, x) � �
∀x. leq(s(x), z) � ⊥

∀x y. leq(s(x), s(y)) � leq(x, y)

(define−fun pred ((x Nat)) Nat
(match x
(case z z)
(case (s x2) x2)))

(define−fun−rec fact ((x Nat)) Nat
(let ((one (s z)))
(if (leq x one)
one
(mult x (fact (pred x)))))

pred(z) � z
∀x. pred(s(x)) � x

∀x. fact(x) � f(x, leq(x, s(z)))
∀x. f(x, �) � s(z)
∀x. f(x, ⊥) � mult(x,

f(pred(x),
leq(pred(x), s(z)))

where f is fresh

(declare−fun g (Nat Nat) Nat)
(define−fun h ((x Nat) (y Nat)) Bool
(let
((g2
(lambda ((x Nat)) (g y (s x)))))
(=> (= x y) (= (g2 x) (g2 y)))))

∀x y. h(x, y) � x � y ⇒ f2(y, x) � f2(y, y)
∀y z. f2(y, z) � g(y, s(z))

where f2 is fresh

Fig. 1. Encoding a few expressions and definitions

c(t) � c′(t′) ∨ D
Disjointness+

D

c(t) �� c′(t′) ∨ D
Disjointness-�

c(t1, . . . , tn) � c(t′
1, . . . , t

′
m) ∨ D

Injectivity∧n
i=1 (ti � t′

i ∨ D)

t � C[u] ∨ D tσ = uσ
Acyclicity+

Dσ

t �� C[t] ∨ D
Acyclicity-�

where C[] is a non-trivial constructor context

Fig. 2. Inference rules to deal with inductive constructors

4 Proving Formulas by Induction

Let us first look at a single proof by induction before we consider how to integrate
such proofs in the superposition machinery (Sect. 5). An inductive goal is a closed
formula ∀x1 . . . xn y1 . . . ym.

∧
j Cj where the variables xi have inductive types

and each Cj is a clause. To try and prove such a goal, we instantiate the structural

178 S. Cruanes

induction schema over a non-empty subset of x into a first-order formula F ,
and try to refute ¬F by the usual process of Skolemizing variables, reducing
¬F to conjunctive normal form (CNF), and performing inferences until ⊥ is
deduced. We can instantiate the induction schema for a goal ∀x1, . . . , xk. G on
the variables x1, x2, . . . , xk (k ≥ 1) by instantiating it on x1 first (taking P (x) =
∀x2 . . . xk. G), obtaining F , and then by applying the induction principle on
x2, . . . , xk to every occurrence of P in F .

4.1 Instantiating the Induction Schema

Before we explain how to instantiate the induction schema over a given set
of variables, we must first define the notions of inductive Skolem constant and
coverset.

Definition 2 (Coverset [30]). A coverset for an inductive type τ is a set of
terms built from inductive constructors and variables x1, . . . , xn such that each
variable xi occurs in exactly one position, and ∀t : τ.

⊕
u∈S ∃x1 . . . xn. t � u

is valid in standard models. The terms of a coverset are distinct in any model.

Definition 3 (Inductive Skolem constant). An inductive Skolem constant i
is a Skolem constant of inductive type.

Definition 4 (Ground Coverset). A ground coverset κ(i) for an inductive
Skolem constant i is a set of ground terms obtained by replacing all variables
in a coverset with fresh Skolem constants, such that

⊕
t∈κ(i) i � t holds in any

model. The elements of κ(i) represent all the possible “shapes” of i in any model.
If t, i : τ and there is some t′ ∈ κ(i) such that t � t′, we write sub(t, i). We define
κ↓(i) = {t ∈ κ(i) | ∃t′ � t. sub(t′, i)} — the set of recursive cases.

Example 4. The coversets of the type nat from Example 1 are of the form
{0, s(0), . . . , sk(0), sk+1(x)} for some k ≥ 0.

Example 5. The coversets of the type list(τ) from Example 2 are of the form
{[], x1 :: [], . . . , x1 :: . . . :: xm :: y} where m > 0, x1, . . . , xm : τ , and y : list(τ).

To prove an inductive goal F
def= ∀x1 . . . xn y1 . . . ym.

∧
i Ci by induction

over variables x1, . . . , xn, we start by skolemizing each xi with ii and each yj

with cj . Then, we map each inductive Skolem constant ii to a ground cover set
κ(ii). Our objective is to refute the following set of clauses:

⋃
t1∈κ(i1),...,tn∈κ(in)

(
cnf(¬ (∧

i Ci[x �→ t, y �→ c)]
) ← �n

j=1�ij � tj�
)

∪⋃
u1∈κ↓(i1),...,un∈κ↓(in)

(⋃
i

{
∀y. Ci[x �→ u] ← �n

j=1,sub(ti,ui)
�ij � tj�

})

∪⋃n
j=1

{⊕
t∈κ(ij)

�ij � t�
}

The first set of clauses comes from the negation of our goal, after skolemiza-
tion and case split (using a coverset to examine the possible shapes of these

Superposition with Structural Induction 179

Skolem constants (ij)j). The second set comes from inductive hypothesis: to
prove ⊥ from ¬(

∧
i Ci)[x �→ n0], in the case n0 � s(n1), we need the hypothe-

sis (
∧

i Ci)[x �→ n1]. The third set of boolean formulas, sent to the SAT solver,
forces each Skolem constant to be equal to exactly one member of its ground
coverset. We recall that �·� turns a literal or clause into a propositional atom.

Example 6 (Associativity of +). Let F
def= ∀x y z : nat. x+(y + z) � (x+ y)+ z.

To prove F , we perform induction on {x}, with Skolem symbols {x0, y0, z0} and
ground coverset κ(x0) = {0, s(x1)}. The resulting clauses are:

0 + (y0 + z0) �� (0 + y0) + z0 ← �x0 � 0�
s(x1) + (y0 + z0) �� (s(x1) + y0) + z0 ← �x0 � s(x1)�

∀y z. x1 + (y + z) � (x1 + y) + z ← �x0 � s(x1)�
�x0 � 0� ⊕ �x0 � s(x1)�

Now, superposition (and AVATAR) can prove ⊥ from these clauses:

1 induction(F).base 0 + (y0 + z0) �� (0 + y0) + z0 ← �x0 � 0�

2 def(+) 0 + x � x

3 rewrite(1,2) y0 + z0 �� y0 + z0 ← �x0 � 0�

4 eq-res(3) ⊥ ← �x0 � 0�

5 avatar(4) ¬�x0 � 0�

6 induction(F).hyp ∀y z. x1 + (y + z) � (x1 + y) + z ← �x0 � s(x1)�

7 induction(F).rec s(x1) + (y0 + z0) �� (s(x1) + y0) + z0 ← �x0 � s(x1)�

8 def(+) s(x) + y � s(x + y)

9 rewrite(7,8) s(x1 + (y0 + z0)) �� s((x1 + y0) + z0) ← �x0 � s(x1)�

10 sup(6,9) s(x1 + (y0 + z0)) �� s(x1 + (y0 + z0)) ← �x0 � s(x1)�

11 eq-res(10) ⊥ ← �x0 � s(x1)�

12 avatar(11) ¬�x0 � s(x1)�

13 induction(F).case-split �x0 � 0� � �x0 � s(x1)�

14 res(5,12,13) ⊥

The last inference is done by the SAT solver after the addition of the boolean
constraints ¬�x0 � 0� and ¬�x0 � s(x1)�, establishing unsatisfiability.

Example 7 (Transitivity of ≤). Let F
def= ∀x y z : nat. x ≤ y ∧ y ≤ z ⇒ x ≤

z, where ≤ is defined by the rules {∀x. 0 ≤ x, ∀x. ¬(s(x) ≤ 0), ∀x y. x ≤
y ⇐⇒ s(x) ≤ s(y)}. To prove F , we perform induction on {x, y, z}, with Skolem
symbols {x0, y0, z0} and ground coversets κ(x0) = {0, s(x1)}, κ(y0) = {0, s(y1)},
κ(z0) = {0, s(z1)}. We obtain the following set of clauses, which is first-order
refutable:

180 S. Cruanes

0 ≤ 0 ← �x0 � 0� �y0 � 0�
0 ≤ 0 ← �y0 � 0� �z0 � 0�

s(x1) ≤ 0 ← �x0 � s(x1)� �y0 � 0�
s(x1) ≤ s(y1) ← �x0 � s(x1)� �y0 � s(y1)�

s(y1) ≤ 0 ← �y0 � s(y1)� �z0 � 0�
s(y1) ≤ s(z1) ← �y0 � s(y1)� �z0 � s(z1)�

¬(0 ≤ 0) ← �x0 � 0� �z0 � 0�
¬(s(x1) ≤ 0) ← �x0 � s(x1)� �z0 � 0�

¬(s(x1) ≤ s(z1)) ← �x0 � s(x1)� �z0 � s(z1)�
¬(0 ≤ s(z1)) ← �x0 � 0� �z0 � s(z1)�

¬(x1 ≤ y1) ∨ ¬(y1 ≤ z1) ∨ (x1 ≤ z1) ← �x0 � s(x1)� �y0 � s(y1)� �z0 � s(z1)�
�x0 � 0� � �x0 � s(x1)�
�y0 � 0� � �y0 � s(y1)�
�z0 � 0� � �z0 � s(z1)�

Remark 1. Using AVATAR for keeping track of case splits allows an inductive
lemma, once proved, to become a normal axiom and participate in other proofs
using the following simplifications:

C ← Γ � a
AvatarSimp+

C ← Γ

C ← Γ � ¬a
AvatarSimp-�

if the SAT-solver has proved a (propagated at level 0)

4.2 Selecting the Induction Variables

We have seen how to prove an inductive goal by induction over a set of variables.
But how do we know which variables to choose? Going back to the case of
Example 6 (associativity of addition), there are three variables, but only the
leftmost one will lead to a successful induction.

The relevant notion here is that of primary positions under functions (Defin-
ition 1). Here we draw inspiration from Aubin’s work [21]. The heuristic is that
if a variable appears in at least one primary occurrence, it is a candidate for
induction. Let G

def= ∀x y.
∧

i Ci be an inductive goal, with variables x having
an inductive type. A primary occurrence in G is a position p in some clause Ci

such that (i) Ci|p does not occur directly under a constructor, and (ii) every
non-empty prefix of p occurs either below a constructor, an uninterpreted sym-
bol, or under a primary argument position of a defined function or predicate.
Intuitively, a subterm (such as a variable on which we might do induction) is a
primary occurrence in G if replacing this subterm by a constructor-headed term
has a chance of making G reducible by some rewrite rule. In Example 6, the goal
is ∀x y z : nat. x + (y + z) � (x + y) + z. Of all three variables, only x appears
in primary occurrences.

Now consider Example 7, where the goal is ∀x y z : nat. x ≤ y ∧ y ≤ z ⇒
x ≤ z. All variables occur in primary positions, because both positions of ≤
are primary. However, simply replacing x with a constructor-headed term will
not always suffice to reduce the (ground) goal negation; indeed s(x1) ≤ y0 and
¬(s(x1) ≤ z0) cannot be reduced. Therefore, we extend Aubin’s heuristic [21].

Superposition with Structural Induction 181

If two variables in primary positions in the goal G occur immediately under
the same defined symbol, both at primary argument positions, then we perform
induction on both of them simultaneously. For Example 7 that means that we
perform induction over {x, y, z}, which succeeds.

5 Performing Several Inductive Proofs with AVATAR

In practice, we need to carry out several proofs by induction. It is necessary
when such a proof depends on other properties that are themselves proved by
induction. One such case is nested induction: to prove ∀x y. x + y � y + x, the
lemmas ∀x. x+0 � x and ∀x y. x+s(y) � s(x+y) are required. We wish to carry
out all these proofs within a single saturation loop of the superposition prover,
to reuse the existing algorithms and main loop. Fortunately, AVATAR makes it
easy to introduce several lemmas and interleaving their proof with the main sat-
uration process. Given a (candidate) lemma F (a closed first-order formula), the
clauses {C ← �lemma F � | C ∈ cnf(F)} ∪ {D ← ¬�lemma F � | D ∈ cnf(¬F)}
are added to the saturation set. This corresponds to a boolean split over F ∨ ¬F ,
where the choice between F and ¬F is represented by the boolean valuation of
the propositional literal �lemma F �.

Definition 5 (Lemma Introduction). The introduction rule of a lemma F ,
where F is a first-order formula, is the following inference rule:

�
Lemma∧

C∈cnf(F) C ← �lemma F �

∧ ∧
D∈cnf(¬F) D ← ¬�lemma F �

Theorem 1. The inference rule Lemma is sound.

Proof. Lemma is similar to an AVATAR boolean split on F ∨ ¬F using the boolean
�F � (F , being closed, is either valid or unsatisfiable). Since �¬F �

def= ¬�F �, we
obtain the trivial constraint �F � � ¬�F � and the “A-formulas” F ← �F � and
¬F ← ¬�F � that can then be reduced to CNF. In essence, Lemma is using an adap-
tation of AVATAR splitting to formulas of the form F ∨ ¬F where F is closed.

In a part of the search space, inference with A-clauses of the form C ← �F �
will correspond to using the lemma F , assuming it has been proved; in another
part, inferences with A-clauses of the form D ← ¬�F � will possibly lead to
(conditional) proofs of F by reaching clauses of the form ⊥ ← ¬�F � � Γ (proof
of F under assumptions ¬Γ).

Remark 2. (Fairness and Lemmas). Using Lemma on a non-theorem formula F
does not prevent an unsatisfiable combined state from being reached. The proof
of each lemma is interleaved with the rest of the saturation process. Thanks to
this, it is possible to introduce several (candidate) lemmas even if they are not
all true or provable. However, it might take a longer time to find a solution,
because of the larger search space.

182 S. Cruanes

6 Finding Subgoals and Lemmas by Generalization

In this section, we examine several ways of guessing new inductive goals that
are likely to help existing proof attempts progress. There is a large amount of
literature dedicated to lemma guessing, either by generalizing a subgoal [9,15,
20,21] or by exploring an equational theory systematically to find formulas that
seem to hold based on testing [12,31]. In this paper we present simple, relatively
straightforward techniques that already yield good results; more sophisticated
heuristics can be added on top.

Even though lemmas can either be proved on the fly by introducing a cut, or
provided as axioms in the input file, they will be used in the same way in both
cases. A subgoal is never generalized and replaced by a lemma; rather, we intro-
duce a lemma which, if proved, will solve the subgoal by regular superposition.

6.1 Proving Subgoals by Induction

A superposition prover starts by reducing the input problem in CNF, in our case
with some additional transformations (Sect. 3.2). A clause C containing at least
one inductive Skolem constant can be negated, the constants replaced by fresh
variables, resulting in an inductive goal that can be tested and then proved.

Similarly, during the course of saturation with some induction attempts,
clauses of the form C ← ¬�lemma G� � Γ (where G is an inductive goal) are
clauses that need to be reduced to ⊥ if G is to be proved. Again, if C contains
at least one inductive Skolem constant, we can negate it, replace constants by
variables, and assess the resulting goal.

More precisely, to prove a goal
∧

i Ci by generalizing inductive Skolem con-
stants i1, . . . , in (n ≥ 1) occurring in the clauses Ci: (i) we replace each ij by
a fresh variable xj ; (ii) we negate every literal in the Ci and swap conjunc-
tions and disjunctions; (iii) we redistribute conjunction over disjunction to get
back to a CNF. Clauses in the result are quantified over {xj}j and a subset of⊎

i freevars(Ci). This generalization technique also applies to the original goal
after it has been negated and reduced to CNF during preprocessing. It makes it
possible to prove inductively goals that are not in CNF.

A subtlety here is that if an induction variable j is a sub-case of some other
constant (j ∈ κ↓(i)), there exist induction hypotheses (in other clauses) that
might be needed for nested induction. In this case we also try the inductive
goal where j is not replaced by a fresh variable, and run both proof attempts
simultaneously.2

2 Our framework allows attempting to prove several distinct inductive goals to solve
a single subgoal.

Superposition with Structural Induction 183

6.2 Generalizing Subgoals

An inductive goal G might not be provable by induction directly. For example,
doing induction on x to prove ∀x. x + (x + x) � (x + x) + x will not succeed: in
the recursive case x0 = s(x1), the clauses are

x1 + (x1 + x1) � (x1 + x1) + x1

s(x1) + (s(x1) + s(x1)) �� (s(x1) + s(x1)) + s(x1)

but even after reduction, the hypothesis cannot rewrite the negative clause in any
way because of successor symbols that appeared at passive positions. Following,
once more, Aubin [21], we generalize the primary occurrences of a variable in a
goal if it occurs at least twice in primary positions, and at least once in passive
positions. In this way, doing inference on the primary occurrences will have better
chances of succeeding. This generalization is only performed if the generalized
goal still passes tests successfully (see Sect. 7).

Similarly, if a non-variable, non constructor-headed term occurs at least twice
in primary positions, and is neither a variable nor constructor-headed, we can
generalize it the same way.

Heuristics for guessing relevant lemmas from a goal have been developed
for decades [9,18–21] and can be adapted to our framework. For those that
require to examine both the current subgoal and the induction hypothesis, more
bookkeeping would be needed, because these objects live in the unstructured set
of clauses, rather than in a sequent.

Remark 3. Speculating lemmas can be detrimental to the search space, by intro-
ducing many new clauses and performing arbitrary cuts. Therefore, the appli-
cation of this rule must be heuristically restricted. In our implementation, we
forbid deeply nested applications of generalization (beyond a small, user defin-
able limit). Developing more advanced heuristics is however necessary.

7 Testing Conjectures Before Trying to Prove Them

Heuristics, as useful as they are, can mislead a solver into trying to prove induc-
tive goals that are not valid. Attempting to prove an invalid goal with likely lead
to a non-terminating superposition saturation on its own, draining memory and
CPU resources away from the main proof effort. It pays to perform some limited
amount of computation to try and rule out invalid goals.

To test a goal G
def= ∀x.

∧
i Ci, we do a limited number of saturation step,

starting from {Ci}i. Clauses from the main saturation loop can be used in
inferences, emulating a set-of-support strategy. If ⊥ can be derived, the goal
is invalid and can be discarded. Many inductive goals, in practice, use com-
putable (recursive) functions. Testing tools such as (Lazy) SmallCheck [32]
and QuickCheck [33] are popular options for these properties; in our case, we
use narrowing [34] because it is readily adapted to rewriting-based functions:

184 S. Cruanes

C ∨ s ◦ t l � r Narrowing
(C ∨ s[r]p)σ

if lσ = s|pσ, ◦ ∈ {�, }�� ,
l � r is a rewrite rule

C ∨ t l �
∧

j Dj
Lit Narrowing∧

j(C ∨ Dj)σ

if lσ = tσ, t : bool,
l �

∧
j Dj is a rewrite rule

Fig. 3. Inference Rules Used for Testing

the resulting rules are listed in Fig. 3. In addition, not all goals contain only com-
putable functions — some functions or predicates might only occur in axioms,
not definitions — so we also need to perform the usual superposition inferences.

This mechanism for ruling out invalid goals works quite well in practice, even
with a relatively small number of saturation steps. The limit on saturation steps
is a trade-off between the usefulness of detecting invalid conjectures, and the
time spent on each candidate lemma.

8 Implementation and Experiments

To evaluate our approach, we implemented it in a superposition prover, Zipper-
position [35, chap. 3]. The prover is implemented in OCaml, available at https://
github.com/c-cube/zipperposition under a permissive BSD license. Thanks to its
modular architecture, many extensions of superposition have been added to it,
including (as of version 1.2) integer linear arithmetic [35, chap. 4], first-class
boolean terms [36], rewrite rules (used for evaluating recursive functions), a sim-
pler version of AVATAR [1], basic support for AC symbols [4], and the inductive
reasoning described in this paper. This allows the prover to solve such problems
as ∀(p : α → bool) (l : list(α)). length(l) ≥ length(filter(p, l)) by using a combina-
tion of arithmetic, booleans, and induction. The prover can parse its own native
format, TPTP [37], and TIP [17].

In Fig. 4, we compare Zipperposition with two variations of CVC43 on
TIP benchmarks.4 The first one, CVC4, corresponds to cvc4 --lang smt
--quant-ind to perform goal-directed induction [12]; the second one, CVC4-gen,
has the additional flag --conjecture-gen to generate lemmas by theory explo-
ration, like Hipspec [31]. We use https://github.com/tip-org/tools/ to convert
TIP problems into SMT-LIB by removing pattern matching (which is not sup-
ported by CVC4). The classical set of IsaPlanner benchmarks [38] are included
as a subset of TIP benchmarks. Solvers are given 30 s for each problem, which
is a reasonable amount of time a user might wait for automatic provers in a
proof assistant. The results are encouraging, since Zipperposition relies on quite
simple generalization techniques.
3 CVC4 1.5-prerelease r6317, see http://cvc4.cs.stanford.edu/web/ .
4 Commit 187b71af8d920d0634b2b8b34c4ac4834b2f6a94 at https://github.com/

tip-org/benchmarks.

https://github.com/c-cube/zipperposition
https://github.com/c-cube/zipperposition
https://github.com/tip-org/tools/
http://cvc4.cs.stanford.edu/web/
https://github.com/tip-org/benchmarks
https://github.com/tip-org/benchmarks

Superposition with Structural Induction 185

unsat (/86) time (s)

Zipperposition 64 4.2
CVC4 67 1.6
CVC4-gen 73 12.4

(a) Results on the IsaPlanner problems

unsat (/484) time (s)

Zipperposition 139 53.2
CVC4 138 8.2
CVC4-gen 160 27.7

(b) Results for TIP benchmarks

Fig. 4. Experiments on TIP benchmarks

However, our initial aim was to extend superposition provers to do induc-
tion, while retaining their efficiency in first-order reasoning. Figure 5 shows a
comparison of Zipperposition with some other provers, on TPTP 6.1, which con-
tains 15,853 first-order problems.5 CVC4, again, performs quite well; Prover9 is
included as a base reference, and E (version 1.9) is one of the best first-order

Fig. 5. Results on the first-order fragment of TPTP

5 Experiments on TPTP were run on a 2.20 GHz Intel Xeon� CPU with 30 s timeout
and a memory limit of 2 GB.

186 S. Cruanes

provers. This benchmark shows that Zipperposition keeps good performance on
first-order problems.

It is interesting to note that CVC4 is very versatile, and can play on many
boards, including first-order logic and inductive theorem proving, in addition to
more traditional SMT abilities such as ground reasoning with theories such as
arithmetic. We hope that superposition provers will also extend their domain
of competency to tackle more expressive logics. Having diverse techniques for
automated theorem proving means that portfolio approaches will work well, and
will benefit from complementary strengths of the solvers.

9 Conclusion

In this work, we show a practical integration of inductive reasoning into a super-
position prover. Such a combination is desirable because many problems fall
outside of either fragment: they might not be purely equational (or Horn), as
usually assumed by inductive provers, and yet they might require some inductive
reasoning. We introduce a simple inference rule for adding multiple cuts during
proof search. Inductive proofs are interleaved with the normal first-order proof
search, thanks to AVATAR and this new inference rule.

We also present some techniques for generating inductive subgoals during
the proof search, based on Aubin’s work [21]; other generalization heuristics,
including the ones that rely on theory exploration [31], are compatible with our
approach. User-provided lemmas can also be tried and used during proof search,
without compromising soundness if they are actually invalid.

Our approach should be relatively straightforward to port to existing state of
the art superposition provers. The unsophisticated implementation we describe
performs reasonably well on the IsaPlanner and TIP benchmarks. With the addi-
tion of more powerful generalization techniques, this suggests that superposition-
based first-order provers can become competitive with existing induction provers.
In particular, Vampire already supports inductive datatypes and AVATAR split-
ting, and performed very well in SMT-COMP 2016, suggesting superposition is
ready to be applied outside of pure first-order logic.

Acknowledgments. The author would like to thank Jasmin Blanchette, Gilles
Dowek, Guillaume Burel, Pascal Fontaine, and reviewers of previous versions of this
paper (one of them, in particular, for pointing out a lot of related works and limitations
in several occasions).

References

1. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9 46

2. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL 2010, EasyChair (2012)

http://dx.doi.org/10.1007/978-3-319-08867-9_46

Superposition with Structural Induction 187

3. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reason. 53(2), 173–213 (2014)

4. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15, 111–126 (2002)
5. Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Goré, R.,

Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 376–380. Springer,
Heidelberg (2001). doi:10.1007/3-540-45744-5 29

6. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol.
4603, pp. 514–520. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73595-3 38

7. Bachmair, L., Ganzinger, H.: On restrictions of ordered paramodulation with sim-
plification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441.
Springer, Heidelberg (1990). doi:10.1007/3-540-52885-7 105

8. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.
In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 260–270. ACM (2017)

9. Kaufmann, M., Moore, J.S.: ACL2: an industrial strength version of Nqthm. In:
Computer Assurance, COMPASS 1996, pp. 23–34. IEEE (1996)

10. Biundo, S., Hummel, B., Hutter, D., Walther, C.: The karlsruhe induction theorem
proving system. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 672–674.
Springer, Heidelberg (1986). doi:10.1007/3-540-16780-3 132

11. Stratulat, S.: A unified view of induction reasoning for first-order logic. In: Turing-
100, The Alan Turing Centenary Conference (2012)

12. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46081-8 5

13. Kersani, A., Peltier, N.: Combining superposition and induction: a practical real-
ization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS,
vol. 8152, pp. 7–22. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40885-4 2

14. Beeson, M.: Otter-lambda, a Theorem-prover with Untyped Lambda-unification.
In: Proceedings of the Workshop on Empirically Successful First Order Reasoning,
2nd International Joint Conference on Automated Reasoning (2004)

15. Wand, D., Weidenbach, C.: Automatic induction inside superposition (unpub-
lished), April 2017. http://people.mpi-inf.mpg.de/dwand/datasup/d.pdf

16. Riazanov, A., Voronkov, A.: Splitting without backtracking (2001)
17. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive

problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 333–337. Springer, Cham (2015). doi:10.1007/
978-3-319-20615-8 23

18. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: a
heuristic for guiding inductive proofs. Artif. Intell. 62(2), 185–253 (1993)

19. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook: Formerly Notes and
Reports in Computer Science and Applied Mathematics. Elsevier, San Diego (2014)

20. Kapur, D., Subramaniam, M.: Lemma discovery in automating induction. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 538–552.
Springer, Heidelberg (1996). doi:10.1007/3-540-61511-3 112

21. Aubin, R.: Strategies for mechanizing structural induction. In: IJCAI (1977)
22. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason.

31, 33–72 (2003)
23. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.

(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15205-4 15

http://dx.doi.org/10.1007/3-540-45744-5_29
http://dx.doi.org/10.1007/978-3-540-73595-3_38
http://dx.doi.org/10.1007/3-540-52885-7_105
http://dx.doi.org/10.1007/3-540-16780-3_132
http://dx.doi.org/10.1007/978-3-662-46081-8_5
http://dx.doi.org/10.1007/978-3-642-40885-4_2
http://people.mpi-inf.mpg.de/dwand/datasup/d.pdf
http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/3-540-61511-3_112
http://dx.doi.org/10.1007/978-3-642-15205-4_15
http://dx.doi.org/10.1007/978-3-642-15205-4_15

188 S. Cruanes

24. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). http://www.SMT-LIB.org

25. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstrac-
tion. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38574-2 3

26. Reynolds, A., Blanchette, J.C.: A decision procedure for (Co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
197–213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 13

27. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfia-
bility in the theory of inductive data types. J. Satisf. Boolean Model. Comput. 3,
21–46 (2007)

28. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

29. Horbach, M., Weidenbach, C.: Superposition for fixed domains. ACM Trans. Com-
put. Log. (TOCL) 11(4), 27 (2010)

30. Zhang, H., Kapur, D., Krishnamoorthy, M.S.: A mechanizable induction principle
for equational specifications. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS,
vol. 310, pp. 162–181. Springer, Heidelberg (1988). doi:10.1007/BFb0012831

31. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Hipspec: automating induc-
tive proofs of program properties. In: ATx/WInG@ IJCAR (2012)

32. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. ACM Sigplan Not. 44, 37–48 (2008)

33. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)

34. Lindblad, F.: Property directed generation of first-order test data. In: Trends in
Functional Programming, pp. 105–123, Citeseer (2007)

35. Cruanes, S.: Extending superposition with integer arithmetic, structural induction,
and beyond. Ph.D. thesis, École polytechnique, September 2015

36. Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The Vampire and the FOOL.
In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, pp. 37–48. ACM (2016)

37. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

38. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.
J. Autom. Reason. 47, 251–289 (2010)

http://www.SMT-LIB.org
http://dx.doi.org/10.1007/978-3-642-38574-2_3
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/BFb0012831

Subtropical Satisfiability

Pascal Fontaine1 , Mizuhito Ogawa2 , Thomas Sturm1,3(B) ,
and Xuan Tung Vu1,2

1 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France
{Pascal.Fontaine,thomas.sturm}@loria.fr

2 Japan Advanced Institute of Science and Technology, Nomi, Japan
{mizuhito,tungvx}@jaist.ac.jp

3 MPI Informatics and Saarland University, Saarbrücken, Germany
sturm@mpi-inf.mpg.de

Abstract. Quantifier-free nonlinear arithmetic (QF NRA) appears in
many applications of satisfiability modulo theories solving (SMT).
Accordingly, efficient reasoning for corresponding constraints in SMT
theory solvers is highly relevant. We propose a new incomplete but
efficient and terminating method to identify satisfiable instances. The
method is derived from the subtropical method recently introduced in
the context of symbolic computation for computing real zeros of single
very large multivariate polynomials. Our method takes as input conjunc-
tions of strict polynomial inequalities, which represent more than 40% of
the QF NRA section of the SMT-LIB library of benchmarks. The method
takes an abstraction of polynomials as exponent vectors over the natural
numbers tagged with the signs of the corresponding coefficients. It then
uses, in turn, SMT to solve linear problems over the reals to heuristi-
cally find suitable points that translate back to satisfying points for the
original problem. Systematic experiments on the SMT-LIB demonstrate
that our method is not a sufficiently strong decision procedure by itself
but a valuable heuristic to use within a portfolio of techniques.

1 Introduction

Satisfiability Modulo Theories (SMT) has been blooming in recent years, and
many applications rely on SMT solvers to check the satisfiability of numerous
and large formulas [2,3]. Many of those applications use arithmetic. In fact,
linear arithmetic has been one of the first theories considered in SMT.

Several SMT solvers handle also non-linear arithmetic theories. To be precise,
some SMT solvers now support constraints of the form p �� 0, where �� ∈ {=,
≤, <} and p is a polynomial over real or integer variables. Various techniques are
used to solve these constraints over reals, e.g., cylindrical algebraic decomposi-
tion (RAHD [23,24], Z3 4.3 [20]), virtual substitution (SMT-RAT [9], Z3 3.1),
interval constraint propagation [4] (HySAT-II [13], dReal [17,18], RSolver [25],

The order of authors is strictly alphabetic.

c© The Author(s) 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 189–206, 2017.
DOI: 10.1007/978-3-319-66167-4 11

http://orcid.org/0000-0003-4700-6031
http://orcid.org/0000-0002-8050-7228
http://orcid.org/0000-0002-8088-340X
http://orcid.org/0000-0002-2239-6574

190 P. Fontaine et al.

RealPaver [19], raSAT [28]), CORDIC (CORD [15]), and linearization (IC3-NRA-
proves [8]). Bit-blasting (MiniSmt [29]) and linearization (Barcelogic [5]) can be
used for integers.

We present here an incomplete but efficient method to detect the satisfiability
of large conjunctions of constraints of the form p > 0 where p is a multivariate
polynomial with strictly positive real variables. The method quickly states that
the conjunction is satisfiable, or quickly returns unknown. Although seemingly
restrictive, 40% of the quantifier-free non-linear real arithmetic (QF NRA) cate-
gory of the SMT-LIB is easily reducible to the considered fragment. Our method
builds on a subtropical technique that has been found effective to find roots of
very large polynomials stemming from chemistry and systems biology [12,27].
Recall that a univariate polynomial with a positive head coefficient diverges pos-
itively as x increases to infinity. Intuitively, the subtropical approach generalizes
this observation to the multivariate case and thus to higher dimensions.

In Sect. 2 we recall some basic definitions and facts. In Sect. 3 we provide
a short presentation of the original method [27] and give some new insights
for its foundations. In Sect. 4, we extend the method to multiple polynomial
constraints. We then show in Sect. 5 that satisfiability modulo linear theory is
particularly adequate to check for applicability of the method. In Sect. 6, we
provide experimental evidence that the method is suited as a heuristic to be
used in combination with other, complete, decision procedures for non-linear
arithmetic in SMT. It turns out that our method is quite fast at either detecting
satisfiability or failing. In particular, it finds solutions for problems where state-
of-the-art non-linear arithmetic SMT solvers time out. Finally, in Sect. 7, we
summarize our contributions and results, and point at possible future research
directions.

2 Basic Facts and Definitions

For a ∈ R, a vector x = (x1, . . . , xd) of variables, and p = (p1, . . . , pd) ∈ R
d

we use notations ap = (ap1 , . . . , apd) and xp = (xp1
1 , . . . , xpd

d). The frame F of a
multivariate polynomial f ∈ Z[x1, . . . , xd] in sparse distributive representation

f =
∑

p∈F

fpxp, fp �= 0, F ⊂ N
d,

is uniquely determined, and written frame(f). It can be partitioned into a posi-
tive and a negative frame, according to the sign of fp:

frame+(f) = {p ∈ frame(f) | fp > 0 }, frame−(f) = {p ∈ frame(f) | fp < 0 }.

For p, q ∈ R
d we define pq = {λp + (1 − λ)q ∈ R

n | λ ∈ [0, 1] }. Recall
that S ⊆ R

d is convex if pq ⊆ S for all p, q ∈ S. Furthermore, given any
S ⊆ R

d, the convex hull conv(S) ⊆ R
d is the unique inclusion-minimal convex

Subtropical Satisfiability 191

Fig. 1. An illustration of Example 3, where f = y + 2xy3 − 3x2y2 − x3 − 4x4y4

set containing S. The Newton polytope of a polynomial f is the convex hull of
its frame, newton(f) = conv(frame(f)). Figure 1a illustrates the Newton poly-
tope of

y + 2xy3 − 3x2y2 − x3 − 4x4y4 ∈ Z[x, y],

which is the convex hull of its frame {(0, 1), (1, 3), (2, 2), (3, 0), (4, 4)} ⊂ N
2. As

a convex hull of a finite set of points, the Newton polytope is bounded and thus
indeed a polytope [26].

The face [26] of a polytope P ⊆ R
d with respect to a vector n ∈ R

d is

face(n, P) = {p ∈ P | nT p ≥ nT q for all q ∈ P }.

Faces of dimension 0 are called vertices. We denote by V(P) the set of all vertices
of P . We have p ∈ V(P) if and only if there exists n ∈ R

d such that nT p > nT q
for all q ∈ P \ {p}. In Fig. 1a, (4, 4) is a vertex of the Newton polytope with
respect to (1, 1).

It is easy to see that for finite S ⊂ R
d we have

V(conv(S)) ⊆ S ⊆ conv(S). (1)

The following lemma gives a characterization of V(conv(S)):

Lemma 1. Let S ⊂ R
d be finite, and let p ∈ S. The following are equivalent:

(i) p is a vertex of conv(S) with respect to n.
(ii) There exists a hyperplane H : nT x + c = 0 that strictly separates p from

S \ {p}, and the normal vector n is directed from H towards p.

192 P. Fontaine et al.

Proof. Assume (i). Then there exists n ∈ R
d such that nT p > nT q for all

q ∈ S \ {p} ⊆ conv(S) \ {p}. Choose q0 ∈ S \ {p} such that nT q0 is maximal,
and choose c such that nT p > −c > nT q0. Then nT p + c > 0 and nT q + c ≤
nT q0+c < 0 for all q ∈ S\{p}. Hence H : nT p+c = 0 is the desired hyperplane.

Assume (ii). It follows that nT p+ c > 0 > nT q+ c for all q ∈ S \ {p}. If q ∈
S \ {p}, then nT p > nT q. If, in contrast, q ∈ (conv(S) \S) \ {p} = conv(S) \S,
then q =

∑
s∈S tss, where ts ∈ [0, 1],

∑
s∈S ts = 1, and at least two ts are greater

than 0. It follows that

nT q = nT
∑

s∈S

tss < nT p
∑

s∈S

ts = nT p. �	

Let S1, . . . , Sm ⊆ R
d, and let n ∈ R

d. If there exist p1 ∈ S1, . . . , pn ∈ Sm

such that each pi is a vertex of conv(Si) with respect to n, then the (unique)
vertex cluster of {Si}i∈{1,...,m} with respect to n is defined as (p1, . . . ,pm).

3 Subtropical Real Root Finding Revisited

This section improves on the original method described in [27]. It furthermore
lays some theoretical foundations to better understand the limitations of the
heuristic approach. The method finds real zeros with all positive coordinates of
a multivariate polynomial f in three steps:

1. Evaluate f(1, . . . , 1). If this is 0, we are done. If this is greater than 0, then con-
sider −f instead of f . We may now assume that we have found f(1, . . . , 1) < 0.

2. Find p with all positive coordinates such that f(p) > 0.
3. Use the Intermediate Value Theorem (a continuous function with positive and

negative values has a zero) to construct a root of f on the line segment 1p.

We focus here on Step 2. Our technique builds on [27, Lemma 4], which we are
going to restate now in a slightly generalized form. While the original lemma
required that p ∈ frame(f) \ {0}, inspection of the proof shows that this limita-
tion is not necessary:

Lemma 2. Let f be a polynomial, and let p ∈ frame(f) be a vertex of
newton(f) with respect to n ∈ R

d. Then there exists a0 ∈ R
+ such that for

all a ∈ R
+ with a ≥ a0 the following holds:

1. |fp anTp| > |∑q∈frame(f)\{p} fq anTq|,
2. sign(f(an)) = sign(fp). �	
In order to find a point with all positive coordinates where f > 0, the original
method iteratively examines each p ∈ frame+(f) \ {0} to check if it is a vertex
of newton(f) with respect to some n ∈ R

d. In the positive case, Lemma 2
guarantees for large enough a ∈ R

+ that sign(f(an)) = sign(fp) = 1, in other
words, f(an) > 0.

Subtropical Satisfiability 193

Example 3. Consider f = y+2xy3 −3x2y2 −x3 −4x4y4. Figure 1a illustrates the
frame and the Newton polytope of f , of which (1, 3) is a vertex with respect to
(−2, 3). Lemma 2 ensures that f(a−2, a3) is strictly positive for sufficiently large
positive a. For example, f(2−2, 23) = 51193

256 . Figure 1b shows how the moment
curve (a−2, a3) with a ≥ 2 will not leave the sign invariant region of f that
contains (2−2, 23).

An exponent vector 0 ∈ frame(f) corresponds to an absolute summand f0 in f .
Its above-mentioned explicit exclusion in [27, Lemma 4] originated from the false
intuition that one cannot achieve sign(f(an)) = sign(f0) because the monomial
f0 is invariant under the choice of a. However, inclusion of 0 can yield a normal
vector n which renders all other monomials small enough for f0 to dominate.

Given a finite set S ⊂ R
d and a point p ∈ S, the original method uses linear

programming to determine if p is a vertex of conv(S) w.r.t. some vector n ∈ R
d.

Indeed, from Lemma 1, the problem can be reduced to finding a hyperplane
H : nT x+ c = 0 that strictly separates p from S \ {p} with the normal vector n
pointing from H to p. This is equivalent to solving the following linear problem
with d + 1 real variables n and c:

ϕ(p, S,n, c) =̇ nT p + c > 0 ∧
∧

q∈S\{p}
nT q + c < 0. (2)

Notice that with the occurrence of a nonzero absolute summand the cor-
responding point 0 is generally a vertex of the Newton polytope with respect
to −1 = (−1, . . . ,−1). This raises the question whether there are other spe-
cial points that are certainly vertices of the Newton polytope. In fact, 0 is a
lexicographic minimum in frame(f), and it is not hard to see that minima and
maxima with respect to lexicographic orderings are generally vertices of the
Newton polytope.

We are now going to generalize that observation. A monotonic total preorder
� ⊆ Z

d × Z
d is defined as follows:

(i) x � x (reflexivity)
(ii) x � y ∧ y � z −→ x � z (transitivity)
(iii) x � y −→ x + z � y + z (monotonicity)
(iv) x � y ∨ y � x (totality).

The difference to a total order is the missing anti-symmetry. As an example in
Z

2 consider (x1, x2) � (y1, y2) if and only if x1 +x2 ≤ y1 + y2. Then −2 � 2 and
2 � −2 but −2 �= 2. Our definition of � on the extended domain Z

d guarantees
a cancellation law x + z � y + z −→ x � y also on N

d. The following lemma
follows by induction using monotonicity and cancellation:

Lemma 4. For n ∈ N \ {0} denote as usual the n-fold addition of x as n � x.
Then x � y ←→ n � x � n � y. �	
Any monotonic preorder � on Z

d can be extended to Q
d: Using a suitable

principle denominator n ∈ N \ {0} define
(x1

n
, . . . ,

xd

n

)
�

(y1

n
, . . . ,

yd

n

)
if and only if (x1, . . . , xd) � (y1, . . . , yd).

194 P. Fontaine et al.

This is well-defined.
Given x � y we have either y � x or y � x. In the former case we say that

x and y are strictly preordered and write x ≺ y. In the latter case they are not
strictly preordered, i.e., x ⊀ y although we might have x �= y. In particular,
reflexivity yields x � x and hence certainly x ⊀ x.

Example 5. Lexicographic orders are monotonic total orders and thus monotonic
total preorders. Hence our notion covers our discussion of the absolute summand
above. Here are some further examples: For i ∈ {1, . . . , d} we define x �i y if
and only if πi(x) ≤ πi(y), where πi denotes the i-th projection. Similarly, x �i y
if and only if πi(x) ≥ πi(y). Next, x �Σ y if and only if

∑
i xi ≤ ∑

i yi. Our
last example is going to be instrumental with the proof of the next theorem: Fix
n ∈ R

d, and define for p, p′ ∈ Z
d that p �n p′ if and only if nT p ≤ nT p′.

Theorem 6. Let f ∈ Z[x1, . . . , xd], and let p ∈ frame(f). Then the following
are equivalent:

(i) p ∈ V(newton(f))
(ii) There exists a monotonic total preorder � on Z

d such that

p = max≺(frame(f)).

Proof. Let p be a vertex of newton(f) specifically with respect to n. By our
definition of a vertex in Sect. 2, p is the maximum of frame(f) with respect
to ≺n.

Let, vice versa, � be a monotonic total preorder on Z
d, and let p =

max≺(frame(f)). Shortly denote V = V(newton(f)), and assume for a con-
tradiction that p /∈ V . Since p ∈ frame(f) ⊆ newton(f), we have

p =
∑

s∈V

tss, where ts ∈ [0, 1] and
∑

s∈V

ts = 1.

According to (1) in Sect. 2 we know that V ⊆ frame(f) ⊆ newton(f). It follows
that s ≺ p for all s ∈ V , and using monotony we obtain

p ≺
∑

s∈V

tsp =

(
∑

s∈V

ts

)
p = p.

On the other hand, we know that generally p ⊀ p, a contradiction. �	
In Fig. 1a we have (0, 1) = max�1(frame(f)), (3, 0) = max�2(frame(f)), and

(4, 4) = max�1(frame(f)) = max�2(frame(f)). This shows that, besides con-
tributing to our theoretical understanding, the theorem can be used to substan-
tiate the efficient treatment of certain special cases in combination with other
methods for identifying vertices of the Newton polytope.

Corollary 7. Let f ∈ Z[x1, . . . , xd], and let p ∈ frame(f). If p = max(frame(f))
or p = min(frame(f)) with respect to an admissible term order in the sense of
Gröbner Basis theory [7], then p ∈ V(newton(f)). �	

Subtropical Satisfiability 195

It is one of our research goals to identify and characterize those polyno-
mials where the subtropical heuristic succeeds in finding positive points. We
are now going to give a necessary criterion. Let f ∈ Z[x1, . . . , xd], define
Π(f) = { r ∈]0,∞[d | f(r) > 0 }, and denote by Π(f) its closure with respect
to the natural topology. In Lemma 2, when a tends to ∞, an will tend to some
r ∈ {0,∞}d. If r = 0, then 0 ∈ Π(f). Otherwise, Π(f) is unbounded. Con-
sequently, for the method to succeed, Π must have at least one of those two
properties. Figure 2 illustrates four scenarios: the subtropical method succeeds
in the first three cases while it fails to find a point in Π(f) in the last one.
The first sub-figure presents a case where Π(f) is unbounded. The second and
third sub-figures illustrate cases where the closure of Π(f) contains (0, 0). In
the fourth sub-figure where neither Π(f) is unbounded nor its closure contains
(0, 0), the method cannot find any positive value of the variables for f to be
positive.

Fig. 2. Four scenarios of polynomials for the subtropical method. The shaded regions
show Π(f).

4 Positive Values of Several Polynomials

The subtropical method as presented in [27] finds zeros with all positive coordi-
nates of one single multivariate polynomial. This requires to find a corresponding
point with a positive value of the polynomial. In the sequel we restrict ourselves
to this sub-task. This will allow us generalize from one polynomial to simulta-
neous positive values of finitely many polynomials.

196 P. Fontaine et al.

4.1 A Sufficient Condition

With a single polynomial, the existence of a positive vertex of the Newton poly-
tope guarantees the existence of positive real choices for the variables with a pos-
itive value of that polynomial. For several polynomials we introduce a more gen-
eral notion: A sequence (p1, . . . ,pm) is a positive vertex cluster of {fi}i∈{1,...,m}
with respect to n ∈ R

d if it is a vertex cluster of {frame(fi)}i∈{1,...,m} with
respect to n and pi ∈ frame+(fi) for all i ∈ {1, . . . , m}. The existence of a
positive vertex cluster will guarantee the existence of positive real choices of the
variables such that all polynomials f1, . . . , fm are simultaneously positive. The
following lemma is a corresponding generalization of Lemma 2:

Lemma 8. If there exists a vertex cluster (p1, . . . ,pm) of {frame(fi)}i∈{1,...,m}
with respect to n ∈ R

n, then there exists a0 ∈ R
+ such that the following holds

for all a ∈ R
+ with a ≥ a0 and all i ∈ {1, . . . , m}:

1. |(fi)pi
anTpi | > |∑q∈frame(fi)\{pi}(fi)q anTq|,

2. sign(fi(an)) = sign((fi)pi
).

Proof. From [27, Lemma 4], for each i ∈ {1, . . . , m}, there exist a0,i ∈ R
+ such

that for all a ∈ R
+ with a ≥ a0,i the following holds:

1. |(fi)pi
anTpi | > |∑q∈frame(fi)\{pi}(fi)q anTq|,

2. sign(fi(an)) = sign((fi)pi
).

It now suffices to take a0 = max{a0,i | 1 ≤ i ≤ m}. �	
Similarly to the case of one polynomial, the following Proposition provides a
sufficient condition for the existence of a common point with positive value for
multiple polynomials.

Proposition 9. If there exists a positive vertex cluster (p1, . . . ,pm) of the poly-
nomials {fi}i∈{1,...,m} with respect to a vector n ∈ R

d, then there exists a0 ∈ R
+

such that for all a ∈ R
+ with a ≥ a0 the following holds:

m∧

i=1

fi(an) > 0.

Proof. For i ∈ {1, . . . , m}, since pi ∈ frame+(fi), Lemma 8 implies fi(an) > 0.�	
Example 10. Consider f1 = 2−xy2z+x2yz3, f2 = 3−xy2z4 −x2z−x4y3z3, and
f3 = 4−z−y−x+4. The exponent vector 0 is a vertex of newton(f1), newton(f2),
and newton(f3) with respect to (−1,−1,−1). Choose a0 = 2 ∈ R

+. Then for
all a ∈ R with a ≥ a0 we have f1(a−1, a−1, a−1) > 0 ∧ f2(a−1, a−1, a−1) >
0 ∧ f3(a−1, a−1, a−1) > 0. �	

Subtropical Satisfiability 197

4.2 Existence of Positive Vertex Clusters

Given polynomials f1, . . . , fm, Proposition 9 provides a sufficient condition, i.e.
the existence of a positive vertex cluster of {fi}i∈{1,...,m}, for the satisfiability of∧m

i=1 fi > 0. A straightforward method to decide the existence of such a cluster
is to verify whether each (p1, . . . ,pm) ∈ frame+(f1) × · · · × frame+(fm) is a
positive vertex cluster by checking the satisfiability of the formula

∧

i∈{1,...,m}
ϕ(pi, frame(fi),n, ci),

where ϕ is defined as in (2) on p.5. This is a linear problem with d+m variables
n, c1, . . . , cm. Since frame(f1), . . . , frame(fm) are finite, checking all m-tuples
(p1, . . . ,pm) will terminate, provided we rely on a complete algorithm for linear
programming, such as the Simplex algorithm [10], the ellipsoid method [22],
or the interior point method [21]. This provides a decision procedure for the
existence of a positive vertex cluster of {fi}i∈{1,...,m}. However, this requires
checking all candidates in frame+(f1) × · · · × frame+(fm).

We propose to use instead state-of-the-art SMT solving techniques over linear
real arithmetic to examine whether or not {fi}i∈{1,...,m} has a positive vertex clus-
ter with respect to some n ∈ R

d. In the positive case, a solution for
∧m

i=1 fi > 0
can be constructed as an with a sufficiently large a ∈ R

+.
To start with, we provide a characterization for the positive frame of a single

polynomial to contain a vertex of the Newton polytope.

Lemma 11. Let f ∈ Z[x]. The following are equivalent:

(i) There exists a vertex p ∈ frame+(f) of newton(f) = conv(frame(f)) with
respect to n ∈ R

d.
(ii) There exists p′ ∈ frame+(f) such that p′ is also a vertex of

conv(frame−(f) ∪ {p′}) with respect to n′ ∈ R
d.

Proof. Assume (i). Take p′ = p and n′ = n. Since p is a vertex of newton(f)
with respect to n, nT p > nT p1 for all p1 ∈ frame(f) \ {p}. This implies that
nT p > nT p1 for all p1 ∈ frame−(f) \ {p} =

(
frame−(f) ∪ {p}) \ {p}. In other

words, p is a vertex of conv(frame−(f) ∪ {p}) with respect to n.
Assume (ii). Suppose V = V(newton(f)) ⊆ frame−(f). Then, p′ =

∑
s∈V tss

where ts ∈ [0, 1],
∑

s∈V ts = 1. It follows that

n′T p′ =
∑

s∈V

tsn′T s <
∑

s∈V

tsn′T p′ = n′T p′ ∑

s∈V

ts = n′T p′,

which is a contradiction. As a result, there must be some p ∈ frame+(f) which
is a vertex of newton(f) with respect to some n ∈ R

d. �	

198 P. Fontaine et al.

Thus some p ∈ frame+(f) is a vertex of the Newton polytope of a polynomial f
if and only if the following formula is satisfiable:

ψ(f,n′, c) =̇
∨

p∈frame+(f)

ϕ
(
p, frame−(f) ∪ {p},n′, c

)

≡
∨

p∈frame+(f)

⎡

⎣n′T p + c > 0 ∧
∧

q∈frame−(f)

n′T q + c < 0

⎤

⎦

≡
⎡

⎣
∨

p∈frame+(f)

n′T p + c > 0

⎤

⎦ ∧
⎡

⎣
∧

p∈frame−(f)

n′T p + c < 0

⎤

⎦ .

For the case of several polynomials, the following theorem is a direct conse-
quence of Lemma 11.

Theorem 12. Polynomials {fi}i∈{1,...,m} have a positive vertex cluster with
respect to n ∈ R

d if and only if
∧m

i=1 ψ(fi,n, ci) is satisfiable. �	
The formula

∧m
i=1 ψ(fi,n, ci) can be checked for satisfiability using combina-

tions of linear programming techniques and DPLL(T) procedures [11,16], i.e.,
satisfiability modulo linear arithmetic on reals. Any SMT solver supporting the
QF LRA logic is suitable. In the satisfiable case {fi}i∈{1,...,m} has a positive
vertex cluster and we can construct a solution for

∧m
i=1 fi > 0 as discussed

earlier.

Example 13. Consider f1 = −12 + 2x12y25z49 − 31x13y22z110 − 11x1000y500z89

and f2 = −23 + 5xy22z110 − 21x15y20z1000 + 2x100y2z49. With n = (n1, n2, n3)
this yields

ψ(f1,n, c1) =̇ 12n1 + 25n2 + 49n3 + c1 > 0 ∧ 13n1 + 22n2 + 110n3 + c1 < 0
∧ 1000n1 + 500n2 + 89n3 + c1 < 0 ∧ c1 < 0,

ψ(f2,n, c2) =̇ (n1 + 22n2 + 110n3 + c2 > 0 ∨ 100n1 + 2n2 + 49n3 + c2 > 0)
∧ 15n1 + 20n2 + 1000n3 + c2 < 0 ∧ c2 < 0.

The conjunction ψ(f1,n, c1) ∧ ψ(f2,n, c2) is satisfiable. The SMT solver CVC4
computes n = (− 238834

120461 , 2672460
1325071 ,− 368561

1325071) and c1 = c2 = −1 as a model. Theo-
rem 12 and Proposition 9 guarantee that there exists a large enough a ∈ R

+ such
that f1(an) > 0 ∧ f2(an) > 0. Indeed, a = 2 already yields f1(an) ≈ 16371.99
and f2(an) ≈ 17707.27. �	

5 More General Solutions

So far all variables were assumed to be strictly positive, i.e., only solutions
x ∈]0,∞[d were considered. This section proposes a method for searching over
R

d by encoding sign conditions along with the condition in Theorem 12 as a
quantifier-free formula over linear real arithmetic.

Subtropical Satisfiability 199

Let V = {x1, . . . , xd} be the set of variables. We define a sign variant of V
as a function τ : V �→ V ∪ {−x | x ∈ V } such that for each x ∈ V , τ(x) ∈
{x,−x}. We write τ(f) to denote the substitution f(τ(x1), . . . , τ(xd)) of τ into
a polynomial f . Furthermore, τ(a) denotes

(τ(x1)
x1

a, . . . , τ(xd)
xd

a
)

for a ∈ R. A
sequence (p1, . . . ,pm) is a variant positive vertex cluster of {fi}i∈{1,...,m} with
respect to a vector n ∈ R

d and a sign variant τ if (p1, . . . ,pm) is a positive vertex
cluster of {τ(fi)}i∈{1,...,m}. Note that the substitution of τ into a polynomial f
does not change the exponent vectors in f in terms of their exponents values,
but only possibly changes signs of monomials. Given p = (p1, . . . , pd) ∈ N

d and
a sign variant τ , we define a formula ϑ(p, τ) such that it is true if and only
if the sign of the monomial associated with p is changed after applying the
substitution defined by τ :

ϑ(p, τ) =̇
d⊕

i=1

(
τ(xi) = −xi ∧ (pi mod 2 = 1)

)
.

Note that this xor expression becomes true if and only if an odd number of its
operands are true. Furthermore, a variable can change the sign of a monomial
only when its exponent in that monomial is odd. As a result, if ϑ(p, τ) is true,
then applying the substitution defined by τ will change the sign of the monomial
associated with p. In conclusion, some p ∈ frame(f) is in the positive frame of
τ(f) if and only if one of the following mutually exclusive conditions holds:

(i) p ∈ frame+(f) and ϑ(p, τ) = false
(ii) p ∈ frame−(f) and ϑ(p, τ) = true.

In other words, p is in the positive frame of τ(f) if and only if the formula
Θ(p, f, τ) =̇

(
fp > 0 ∧ ¬ϑ(p, τ)

) ∨ (
fp < 0 ∧ ϑ(p, τ)

)
holds. Then, the positive

and negative frames of τ(f) parameterized by τ are defined as

frame+(τ(f)) = {p ∈ frame(f) | Θ(p, f, τ) },

frame−(τ(f)) = {p ∈ frame(f) | ¬Θ(p, f, τ) },

respectively. The next lemma provides a sufficient condition for the existence of
a solution in R

d of
∧m

i=1 fi > 0.

Lemma 14. If there exists a variant positive vertex cluster of {fi}i∈{1,...,m}
with respect to n ∈ R

d and a sign variant τ , then there exists a0 ∈ R
+ such that

for all a ∈ R
+ with a ≥ a0 the following holds:

m∧

i=1

fi

(
τ(a)n

)
> 0.

Proof. Since {τ(fi)}i∈{1,...,m} has a positive vertex cluster with respect to n,
Proposition 9 guarantees that there exists a0 ∈ R such that for all a ∈ R with
a ≥ a0, we have

∧m
i=1 τ(fi)(an) > 0, or

∧m
i=1 fi

(
τ(a)n

)
> 0. �	

200 P. Fontaine et al.

A variant positive vertex cluster exists if and only if there exist n ∈ R
d,

c1, . . . , cm ∈ R, and a sign variant τ such that the following formula becomes
true:

Ψ(f1, . . . , fm,n, c1, . . . , cm, τ) =̇
m∧

i=1

ψ
(
τ(fi),n, ci

)
,

where for i ∈ {1, . . . , m}:

ψ
(
τ(fi),n, ci

) ≡
⎡

⎣
∨

p∈frame+(τ(fi))

nT p + ci > 0

⎤

⎦ ∧
⎡

⎣
∧

p∈frame−(τ(fi))

nT p + ci < 0

⎤

⎦

≡
⎡

⎣
∨

p∈frame(fi)

Θ(p, fi, τ) ∧ nT p + ci > 0

⎤

⎦

∧
⎡

⎣
∧

p∈frame(fi)

Θ(p, fi, τ) ∨ nT p + ci < 0

⎤

⎦ .

The sign variant τ can be encoded as d Boolean variables b1, . . . , bd such
that bi is true if and only if τ(xi) = −xi for all i ∈ {1, . . . , d}. Then, the
formula Ψ(f1, . . . , fm,n, c1, . . . , cm, τ) can be checked for satisfiability using an
SMT solver for quantifier-free logic with linear real arithmetic.

6 Application to SMT Benchmarks

A library STROPSAT implementing Subtropical Satisfiability, is available on
our web page1. It is integrated into veriT [6] as an incomplete theory solver for
non-linear arithmetic benchmarks. We experimented on the QF NRA category
of the SMT-LIB on all benchmarks consisting of only inequalities, that is 4917
formulas out of 11601 in the whole category. The experiments thus focus on
those 4917 benchmarks, comprising 3265 sat-annotated ones, 106 unknowns,
and 1546 unsat benchmarks. We used the SMT solver CVC4 to handle the
generated linear real arithmetic formulas Ψ(f1, . . . , fm,n, c1, . . . , cm, τ), and we
ran veriT (with STROPSAT as the theory solver) against the clear winner of the
SMT-COMP 2016 on the QF NRA category, i.e., Z3 (implementing nlsat [20]),
on a CX250 Cluster with Intel Xeon E5-2680v2 2.80 GHz CPUs. Each pair of
benchmark and solver was run on one CPU with a timeout of 2500 s and 20 GB
memory. The experimental data and the library are also available on Zenodo2.

Since our method focuses on showing satisfiability, only brief statistics on
unsat benchmarks are provided. Among the 1546 unsat benchmarks, 200
benchmarks are found unsatisfiable already by the linear arithmetic theory rea-
soning in veriT. For each of the remaining ones, the method quickly returns
unknown within 0.002 to 0.096 s, with a total cumulative time of 18.45 s (0.014 s
1 http://www.jaist.ac.jp/∼s1520002/STROPSAT/.
2 http://doi.org/10.5281/zenodo.817615.

http://www.jaist.ac.jp/~s1520002/STROPSAT/
http://doi.org/10.5281/zenodo.817615

Subtropical Satisfiability 201

on average). This clearly shows that the method can be applied with a very small
overhead, upfront of another, complete or less incomplete procedure to check for
unsatisfiability.

Table 1 provides the experimental results on benchmarks with sat or
unknown status, and the cumulative times. The meti-tarski family consists
of small benchmarks (most of them contain 3 to 4 variables and 1 to 23 polyno-
mials with degrees between 1 and 4). Those are proof obligations extracted from
the MetiTarski project [1], where the polynomials represent approximations of
elementary real functions; all of them have defined statuses. The zankl family
consists of large benchmarks (large numbers of variables and polynomials but
small degrees) stemming from termination proofs for term-rewriting systems [14].

Table 1. Comparison between STROPSAT and Z3 (times in seconds)

Family STROPSAT Z3

sat Time unkown Time sat Time unsat Time

Meti-tarski
(sat - 3220)

2359 32.37 861 10.22 3220 88.55 0 0

Zankl
(sat - 45)

29 3.77 16 0.59 42 2974.35 0 0

Zankl
(unknown - 106)

15 2859.44 76 6291.33 14 1713.16 23 1.06

Although Z3 clearly outperforms STROPSAT in the number of solved bench-
marks, the results also clearly show that our method is a useful complement-
ing heuristic with little drawback, to be used either upfront or in portfolio with
other approaches. As already said, it returns unknown quickly on unsat bench-
marks. In particular, on all benchmarks solved by Z3 only, STROPSAT returns
unknown quickly (see Fig. 4).

When both solvers can solve the same benchmark, the running time of
STROPSAT is comparable with Z3 (Fig. 3). There are 11 large benchmarks (9
of them have the unknown status) that are solved by STROPSAT but time out
with Z3. STROPSAT times out for only 15 problems, on which Z3 times out as
well. STROPSAT provides a model for 15 unknown benchmarks, whereas Z3
times out on 9 of them. The virtual best solver (i.e. running Z3 and STROPSAT
in parallel and using the quickest answer) decreases the execution time for the
meti-tarski problems to 54.43 s, solves all satisfiable zankl problems in 1120 s,
and 24 of the unknown ones in 4502 s.

Since the exponents of the polynomials become coefficients in the linear for-
mulas, high degrees do not hurt our method significantly. As the SMT-LIB does
not currently contain any inequality benchmarks with high degrees, our exper-
imental results above do not demonstrate this claim. However, formulas like
in Example 13 are totally within reach of our method (STROPSAT returned
sat within a second) while Z3 runs out of memory (20 GB) after 30 s for the
constraint f1 > 0 ∧ f2 > 0.

202 P. Fontaine et al.

Fig. 3. STROPSAT returns sat or timeout (2418 benchmarks, times in seconds)

Fig. 4. STROPSAT returns unknown (2299 benchmarks, times in seconds)

Subtropical Satisfiability 203

7 Conclusion

We presented some extensions of a heuristic method to find simultaneous positive
values of nonlinear multivariate polynomials. Our techniques turn out useful to
handle SMT problems. In practice, our method is fast, either to succeed or to fail,
and it succeeds where state-of-the-art solvers do not. Therefore it establishes a
valuable heuristic to apply either before or in parallel with other more complete
methods to deal with non-linear constraints. Since the heuristic translates a
conjunction of non-linear constraints one to one into a conjunction of linear
constraints, it can easily be made incremental by using an incremental linear
solver.

To improve the completeness of the method, it could be helpful to not
only consider vertices of Newton polytopes, but also faces. Then, the value of
the coefficients and not only their sign would matter. Consider {p1,p2,p3} =
face(n,newton(f)), then we have nT p1 = nT p2 = nT p3. It is easy to see that
fp1x

p1 + fp2x
p2 + fp3x

p3 will dominate the other monomials in the direction
of n. In other words, there exists a0 ∈ R such that for all a ∈ R with a ≥ a0,
sign(f(an)) = sign(fp1 + fp2 + fp3). We leave for future work the encoding of
the condition for the existence of such a face into linear formulas.

In the last paragraph of Sect. 3, we showed that, for the subtropical method
to succeed, the set of values for which the considered polynomial is positive
should either be unbounded, or should contain points arbitrarily near 0. We
believe there is a stronger, sufficient condition, that would bring another insight
to the subtropical method.

We leave for further work two interesting questions suggested by a reviewer,
both concerning the case when the method is not able to assert the satisfiabil-
ity of a set of literals. First, the technique could indeed be used to select, using
the convex hull of the frame, some constraints most likely to be part of an unsat-
isfiable set; this could be used to simplify the work of the decision procedure to
check unsatisfiability afterwards. Second, a careful analysis of the frame can pro-
vide information to remove some constraints in order to have a provable satisfiable
set of constraints; this could be of some use for in a context of max-SMT.

Finally, on a more practical side, we would like to investigate the use of
the techniques presented here for the testing phase of the raSAT loop [28], an
extension the interval constraint propagation with testing and the Intermediate
Value Theorem. We believe that this could lead to significant improvements in
the solver, where testing is currently random.

Acknowledgments. We are grateful to the anonymous reviewers for their comments.
This research has been partially supported by the ANR/DFG project SMArT (ANR-
13-IS02-0001 & STU 483/2-1) and by the European Union project SC2 (grant agree-
ment No. 712689). The work has also received funding from the European Research
Council under the European Union’s Horizon 2020 research and innovation program
(grant agreement No. 713999, Matryoshka). The last author would like to acknowl-
edge the JAIST Off-Campus Research Grant for fully supporting him during his
stay at LORIA, Nancy. The work has also been partially supported by the JSPS

204 P. Fontaine et al.

KAKENHI Grant-in-Aid for Scientific Research(B) (15H02684) and the JSPS Core-
to-Core Program (A. Advanced Research Networks).

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)

2. Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: effi-
cient solvers for satisfiability modulo theories. Technical Report 3, London Mathe-
matical Society and Smith Institute for Industrial Mathematics and System Engi-
neering Knowledge Transfer Report(2014)

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885.
IOS Press, Amsterdam (2009)

4. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F.,
van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 571–604.
Elsevier, New York (2006)

5. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 27

6. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an
open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009.
LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02959-2 12

7. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Doctoral dissertation,
University of Innsbruck, Austria (1965)

8. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant check-
ing of NRA transition systems via incremental reduction to LRA with EUF. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54577-5 4

9. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant
nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31612-8 35

10. Dantzig, G.B.: Linear Programming and Extensions. Prentice University Press,
Princeton (1963)

11. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11

12. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detec-
tion of Hopf bifurcations in chemical reaction networks using convex coordinates.
J. Comput. Phys. 291, 279–302 (2015)

13. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1, 209–236 (2007)

http://dx.doi.org/10.1007/978-3-540-70545-1_27
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-662-54577-5_4
http://dx.doi.org/10.1007/978-3-642-31612-8_35
http://dx.doi.org/10.1007/978-3-642-31612-8_35
http://dx.doi.org/10.1007/11817963_11

Subtropical Satisfiability 205

14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 33

15. Ganai, M., Ivancic, F.: Efficient decision procedure for non-linear arithmetic con-
straints using CORDIC. In: Formal Methods in Computer-Aided Design, FMCAD
2009, pp. 61–68 (2009)

16. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 14

17. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Formal Methods
in Computer-Aided Design (FMCAD) 2013, pp. 105–112 (2013)

18. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

19. Granvilliers, L., Benhamou, F.: RealPaver: an interval solver using constraint sat-
isfaction techniques. ACM Trans. Math. Softw. 32, 138–156 (2006)

20. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 27

21. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (1984)

22. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Comput.
Math. Math. Phys. 20(1), 53–72 (1980)

23. Passmore, G.O.: Combined decision procedures for nonlinear arithmetics, real and
complex. Dissertation, School of Informatics, University of Edinburgh (2011)

24. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential
theory of the reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) CICM
2009. LNCS, vol. 5625, pp. 122–137. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02614-0 14

25. Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. ACM Trans. Comput. Log. 7, 723–748 (2006)

26. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
27. Sturm, T.: Subtropical real root finding. In: Proceedings of the ISSAC 2015, pp.

347–354. ACM (2015)
28. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial

constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp.
228–237. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 16

29. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (Ir)rational arithmetic. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6355, pp. 481–500.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 27

http://dx.doi.org/10.1007/978-3-540-72788-0_33
http://dx.doi.org/10.1007/978-3-540-27813-9_14
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-02614-0_14
http://dx.doi.org/10.1007/978-3-642-02614-0_14
http://dx.doi.org/10.1007/978-3-319-40229-1_16
http://dx.doi.org/10.1007/978-3-642-17511-4_27

206 P. Fontaine et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Decision Procedures, Decidability
and Verification

On Solving Nominal Fixpoint Equations

Mauricio Ayala-Rincón1(B), Washington de Carvalho-Segundo1,
Maribel Fernández2, and Daniele Nantes-Sobrinho1

1 Depts. de Matemática e Ciência da Computação,
Universidade de Braśılia, Braśılia, Brazil

ayala@unb.br
2 Department of Informatics, King’s College London, London, UK

Abstract. In nominal syntax, variable binding is specified using atom-
abstraction constructors, and alpha-equivalence is formalised using
freshness constraints and atom swappings, which implement variable
renamings. Composition of swappings gives rise to atom permutations.
Algorithms to check equivalence, match and unify nominal terms have
been extended to deal with terms where some operators are associative
and/or commutative. In the case of nominal C-unification, problems are
transformed into finite and complete families of fixpoint equations of
the form π.X ≈? X, where π is a permutation. To generate nominal
C-unifiers, a technique to obtain a sound and complete set of solutions
for these equations is needed. In this work we show how complete sets
of solutions for nominal fixpoint problems are built and discuss efficient
techniques to generate solutions based on algebraic properties of permu-
tations.

1 Introduction

Nominal syntax is an extension of first order syntax, where terms are built using
function symbols, abstractions, and two kinds of variables: atoms, which can
be abstracted, and unknowns (or simply variables), which behave like first-order
variables, except for the fact that they can have “suspended atom permutations”,
which act when the variable is instantiated by a term. Atom abstractions induce
an α-equivalence relation on nominal terms, which is axiomatised using a fresh-
ness relation between atoms and terms. Nominal unification [15] is unification
of nominal terms, and takes into account the α-equivalence relation. Extensions
of nominal unification include equivariant unification [1,8] and nominal narrow-
ing [5], which are useful tools in equational reasoning and confluence analysis of
nominal rewriting systems [2,9].

In many application domains, function symbols have equational properties,
such as associativity and commutativity, which must be taken into account dur-
ing the unification process. In previous work [3], we studied α-AC-equivalence
of nominal terms, and nominal C-unification [4], that is, nominal unification in

M. Ayala-Rincón—Partially supported by CNPq 307009/2013-0 and FAPDF
0193001369/2016 grants.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 209–226, 2017.
DOI: 10.1007/978-3-319-66167-4 12

210 M. Ayala-Rincón et al.

languages with commutative operators. It is well-known that C-unification is an
NP-complete problem (see Chap. 10 in [7]).

To solve nominal C-unification problems, we provided in [4] a set of simplifi-
cation rules that generates, for each solvable C-unification problem, a finite set of
fixpoint problems that are finite sets of fixpoint equations together with a fresh-
ness context and a substitution. Fixpoint equations have the form π.X ≈? X,
where X is a variable and π is a permutation.

Fixpoint problems are also generated in standard nominal unification algo-
rithms, but the presence of commutative operators in the signature complicates
their treatment. In nominal unification algorithms, fixpoint equations are solved
simply by requiring the support of the permutation to be fresh for the variable,
but that is not the only way to solve them if there are commutative operators.
In [4], the correctness and completeness of the rule-based algorithm to transform
a nominal C-unification problem into a finite set of fixpoint problems was for-
malised in Coq, and a sound method to generate solutions for fixpoint problems
was given, showing that infinite independent solutions are possible for a single
fixpoint equation. Thus, nominal C-unification is infinitary.

Sound and complete procedures to solve fixpoint problems modulo commu-
tativity are needed not only within nominal-C-unification algorithms, but also
in other application areas where formalisations of syntax with binders involve
commutativity axioms, such as the π-calculus. For example, fixpoint problems
modulo commutativity are generated when solving unification problems in exten-
sions of the λ-calculus with recursive definitions [10].

Contribution. The main result is a sound and complete procedure to solve
fixpoint problems. More specifically:

– We prove the completeness of the procedure to generate solutions for fix-
point problems described in [4]. The analysis is based on the feasibility of
combinations of the atoms in the domain of permutations used in the fix-
point equations in a fixpoint problem. Solutions for these problems are built
considering the combinatorial properties of atom permutations and by com-
bining atoms using the basic elements of the nominal syntax, that is, pairs,
abstractions and variables, as well as the function symbols in the signature.
The variables included in these feasible combinations are new, and the atoms
in the support of the permutations should be fresh for these variables. The
greedy generation of complete sets of solutions for a fixpoint equation is based
on the construction of the so called extended pseudo-cycles from permutation
cycles in the algebraic representation of permutations as products of permu-
tation cycles. Only permutation cycles of length (period) a power of two are
considered since permutation cycles of other lengths do not generate feasible
(commutative) combinations.

– Furthermore, we work out an interesting improvement that avoids the genera-
tion of feasible solutions for different fixpoint equations on the same variable.
It is based on the fact that the feasible combinations for permutation cycles of
the same length (a power of two) with the same domain, that are not algebraic
factors of each other would not give rise to feasible common solutions.

On Solving Nominal Fixpoint Equations 211

Organisation. Section 2 introduces the background about nominal syntax and
nominal C-unification. Section 3 proves the soundness and completeness of com-
binatorial solutions for fixpoint equations. Section 4 presents the improvements
of the generator of solutions. Section 5 concludes the paper with future work.

2 Nominal Syntax and Nominal (α-)C-Unification

2.1 Nominal Syntax

Consider countable disjoint sets of variables X := {X,Y,Z, · · · } and atoms A :=
{a, b, c, · · · }. A permutation π is a bijection on A with a finite domain, where
the domain (i.e., the support) of π is the set dom(π) := {a ∈ A | π · a �= a}.

We will assume as in [3] countable sets of function symbols with different
equational properties such as associativity, commutativity, idempotence, etc.
Function symbols have superscripts that indicate their equational properties;
thus, fC

k will denote the kth function symbol that is commutative and f∅
j the

jth function symbol without any equational property.

Definition 1 (Nominal grammar). Nominal terms are generated by the fol-
lowing grammar.

s, t := 〈〉 | ā | [a]t | 〈s, t〉 | fE
k t | π.X

〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term (that is a
name that plays the role of an object level variable), [a]t denotes an abstraction
of the atom a over the term t, 〈s, t〉 denotes a pair, fE

k t the application of fE
k to t

and, π.X a moderated or suspended variable, where π is an atom permutation.

Atom permutations are represented by finite lists of swappings, which
are pairs of different atoms (a b); hence, a permutation π has the form
(a1 b1) :: . . . :: (an bn) ::nil, where nil denotes the identity permutation.

Suspensions of the form nil.X will be represented just by X. The set of
variables occurring in a term t will be denoted as V ar(t). This notation extends
to a set S of terms in the natural way: V ar(S) =

⋃
t∈S V ar(t).

A substitution σ is a mapping from variables to terms such that X �= Xσ
only for a finite set of variables. This set is called the domain of σ and is denoted
by dom(σ). For X ∈ dom(σ), Xσ is called the image of X by σ. Define the image
of σ as im(σ) = {Xσ | X ∈ dom(σ)}. The set of variables occurring in the image
of σ is then V ar(im(σ)). A substitution σ with dom(σ) := {X0, · · · ,Xn} can
be represented as a set of binds in the form {X0/t0, · · · ,Xn/tn}, where for 0 ≤
i ≤ n, Xiσ = ti. We assume standard definitions for the action of permutations
and substitutions on nominal terms (see e.g. [11,15]). Since for our purposes the
algebraic combinatorial properties of permutations on atoms are relevant, in this
paper atom permutations are seen as products of permutation cycles (see [12]): for
instance, the nominal swapping permutation (a b) :: (a c) :: (a d) :: (e f) :: (e g) ::nil
is seen as the product of permutation cycles (a b c d) (e f g).

212 M. Ayala-Rincón et al.

2.2 The Relation ≈{α,C} and Nominal ≈{α,C}-Unification

In [3], the relation ≈α was extended to deal with associative and commutative
theories. Here we will consider α-equivalence modulo commutativity, denoted
≈{α,C}. This means that some function symbols in our syntax are commutative.

The inference rules defining freshness and ≈{α,C}-equivalence are given in
Figs. 1 and 2. The difference set between two permutations π and π′ is the set
of atoms where the action of π and π′ differs: ds(π, π′) := {a ∈ A | π ·a �= π′ ·a}.

The symbols ∇ and Δ are used to denote freshness contexts that are sets of
constraints of the form a#X, meaning that the atom a is fresh in X. The domain
of a freshness context dom(Δ) is the set of atoms appearing in it; Δ|X denotes
the restriction of Δ to the freshness constraints on X: {a#X | a#X ∈ Δ};
dom(π)#X and ds(π, π′)#X denote, respectively, the sets {a#X | a ∈ dom(π)}
and {a#X | a ∈ ds(π, π′)}.

(#〈〉)∇ � a # 〈〉 (#atom)∇ � a # b

∇ � a # t
(#app)∇ � a # fE

k t
(#a[a])∇ � a #[a]t

∇ � a # t
(#a[b])∇ � a #[b]t

(π−1 · a#X) ∈ ∇
(#var)∇ � a # π.X

∇ � a # s ∇ � a # t
(#pair)∇ � a # 〈s, t〉

Fig. 1. Rules for the relation #

(≈{α,C} 〈〉)∇ � 〈〉 ≈α 〈〉 (≈{α,C} atom)∇ � a ≈{α,C} a

∇ � s ≈{α,C} t
, E �= C or both s and t are not pairs (≈{α,C} app)∇ � fE

k s ≈{α,C} fE
k t

∇ � s0 ≈{α,C} ti, ∇ � s1 ≈{α,C} t(i+1) mod 2
, i = 0, 1 (≈{α,C} C)∇ � fC

k 〈s0, s1〉 ≈{α,C} fC
k 〈t0, t1〉

∇ � s ≈{α,C} t
(≈{α,C} [aa])∇ � [a]s ≈{α,C} [a]t

∇ � s ≈{α,C} (a b) · t ∇ � a # t
(≈{α,C} [ab])∇ � [a]s ≈{α,C} [b]t

ds(π, π′)#X ⊆ ∇
(≈{α,C}var)∇�π.X ≈{α,C} π′.X

∇�s0 ≈{α,C} t0 ∇�s1 ≈{α,C} t1
(≈{α,C}pair)∇ � 〈s0, t0〉 ≈{α,C} 〈s1, t1〉

Fig. 2. Rules for the relation ≈{α,C}

Key properties of the nominal freshness and α-equivalence relations have been
extensively explored in previous works [3,6,14,15]. In [4] we also have formalised
analogous properties for ≈{α,C}. Among them we have freshness preservation: If
∇ 	 a# s and ∇ 	 s ≈{α,C} t, then ∇ 	 a# t; equivariance: for all permutations
π, if ∇ 	 s ≈{α,C} t then ∇ 	 π · s ≈{α,C} π · t; and, equivalence: 	 ≈{α,C}
is an equivalence relation, indeed.

On Solving Nominal Fixpoint Equations 213

Definition 2 (Nominal unification problem). A nominal unification prob-
lem is a pair 〈Δ,P 〉, where Δ is a freshness context and P is a finite set of
equations and freshness constraints of the form s ≈? t and a#?s, respectively,
where ≈? is symmetric, s and t are terms and a is an atom. Nominal terms
in the equations preserve the syntactic restriction that commutative symbols are
only applied to tuples.

A formalised sound and complete rule-based algorithm was presented in [4],
that transforms a nominal unification problem, say 〈Δ,P 〉, with commutative
function symbols into a finite set of fixpoint problems that consist exclusively
of equations of the form π.X ≈? X. The transformation starts from the triple
P = 〈Δ, id , P 〉, where id denotes the substitution identity, and the rules act over
triples building a finite set of fixpoint problems of the form Qi = 〈∇i, σi, Qi〉,
for 0 ≤ i ≤ n, where for each i, ∇i is a freshness context, σi a substitution, and
Qi consists only of fixpoint equations.

For ∇ and ∇′ freshness contexts and σ and σ′ substitutions, ∇′ 	 ∇σ denotes
that ∇′ 	 a#Xσ holds for each (a#X) ∈ ∇; ∇ 	 σ ≈ σ′ denotes that ∇ 	
Xσ ≈{α,C} Xσ′ for all X (in dom(σ) ∪ dom(σ′)).

Definition 3 (Solution for a triple or problem). A solution for a triple
P = 〈Δ, δ, P 〉 is a pair 〈∇, σ〉, where the following conditions are satisfied:

1. ∇ 	 Δσ;
2. if a#?t ∈ P then ∇ 	 a# tσ;
3. if s ≈? t ∈ P then ∇ 	 sσ ≈{α,C} tσ;
4. there exists λ such that ∇ 	 δλ ≈ σ.

A solution for a unification problem 〈Δ,P 〉 is a solution for the associated
triple 〈Δ, id , P 〉. The solution set for a problem or triple P is denoted by UC(P).

Definition 4 (More general solution and complete set of solutions). For
〈∇, σ〉 and 〈∇′, σ′〉 in UC(P), we say that 〈∇, σ〉 is more general than 〈∇′, σ′〉,
denoted 〈∇, σ〉�̇〈∇′, σ′〉, if there exists a substitution λ satisfying ∇′ 	 σλ ≈ σ′

and ∇′ 	 ∇λ. A subset V of UC(P) is said to be a complete set of solutions of
P if for all 〈∇′, σ′〉 ∈ UC(P), there exists 〈∇, σ〉 in V that is more general than
〈∇′, σ′〉.
Example 1. Given the nominal unification problem P = 〈∅, id, {[a′]〈(a c).X �
(a b c).Y, (a b c d).X〉≈? [b′]〈X�Y,X〉}〉, the algorithm in [4] transforms it into the
fixpoint problems Q1=〈{a′#X, a′#Y }, id, {(a′ b′)(a c).X ≈? X, (a′ b′)(a b c d).X
≈?X, (a′ b′)(a b c).Y ≈? Y }〉 and Q2=〈{a′#Y, b′#Y }, {X/(a c)(a′ b′).Y }, {(a b).Y
≈? Y, (d c b a)(a′ b′).Y ≈?Y }〉. These fixpoint problems are generated by consid-
ering ‘�’ to be a commutative symbol and by inversions on the permutations in
the suspended variables.

The results in [4] include formalisations in Coq of theorems related with
the following properties: termination: there are no possible infinite chains of
applications of the unification transformation rules; soundness: for each possible

214 M. Ayala-Rincón et al.

transformation from P to Q, one has that UC(Q) ⊆ UC(P); unsolvability: if
Q = 〈Δ,σ,Q〉 cannot be simplified and Q contains non fixpoint equations or
freshness constraints then UC(Q) = ∅; and, completeness: if the unification
problem P = 〈∇, id , P 〉 is transformed into the finite set of fixpoint problems
Qi, for 1 ≤ i ≤ n, then UC(P) =

⋃n
i=1 UC(Qi).

Example 2 (Continuing Example 1). The unification algorithm requires a mech-
anism to enumerate solutions of fixpoint problems. Solutions in U(Q1) are built
using the substitution id and combining solutions for the singleton fixpoint prob-
lems 〈{a′#X}, {(a′ b′)(a c).X ≈? X}〉, 〈{a′#X}, {(a′ b′)(a b c d).X ≈? X}〉 and
〈{a′#Y }, id, {(a′ b′)(a b c).Y ≈? Y }〉. Solutions in U(Q2) are built with sub-
stitution {X/(a c)(a′ b′).Y } and combining solutions for the fixpoint problems
〈{a′#Y, b′#Y }, {(a b).Y ≈? Y }〉 and 〈{a′#Y, b′#Y }, {(d c b a)(a′ b′).Y ≈? Y }〉.

2.3 Solutions of Fixpoint Problems Through Extended
Pseudo-Cycles

The set of solutions of a singleton fixpoint problem 〈∇, {π.X ≈? X}〉 is built
according to the recursive definition of (unitary) extended pseudo-cycles below
[4]. The definition of extended pseudo-cycle given below is parametric on a set X
of variables. In this way, we take into account the fact that this fixpoint problem
could have been generated by a procedure to solve a problem P with a given set
of variables and freshness constraints.

Definition 5 (Extended Pseudo-cycle). Let π.X ≈? X and X a set of vari-
ables. The extended pseudo-cycles (for short, epc) κ for π relative to X are
inductively defined from the permutation cycles of π as follows:

1. κ = (Y), for any variable not occurring in X , is an epc for π;
2. κ = (a0 · · · ak−1) is an epc for (a0 · · · ak−1) a permutation cycle in π such

that k = 2l, for l > 0, called trivial extended pseudo-cycle of π.
3. κ = (A0 ... Ak−1), for a lengthk ≥ 1, is an epc for π, if the following condi-

tions are simultaneously satisfied:
(a) i. each element of κ is of the form Bi � Bj, where � is a commutative

function symbol in the signature, and Bi, Bj are different elements of
κ′, an epc for π; in this case, κ will be called a first-instance extended
pseudo-cycle of κ′ for π; or

ii. each element of κ is of the form Bi � Cj for any commutative symbol
�, where Bi and Cj are elements of κ′ and κ′′ epc’s for π, which
might both be the same, but κ is not a first-instance epc for π; or

iii. each element of κ is of the form 〈Bi, Cj〉, where Bi and Cj are ele-
ments of κ′ and κ′′ epc’s for π, which might both be the same; or

iv. either each element of κ is of the form g Bi or each element is of
the form [e]Bi, where g is a non commutative function symbol in the
signature and e /∈ dom(π), and each Bi is an element of κ′ an epc
for π; or

On Solving Nominal Fixpoint Equations 215

v. each element of κ is of the form [aj]Bi, where aj are atoms in κ′ =
(a0 · · · ak′−1) a trivial epc for π, and Bi elements of κ′′ an epc for π;
and

(b) for ∇′ = ∪Y ∈V ar(κ){dom(π)#Y },
i. it does not hold that ∇′ 	 Ai ≈{α,C} Aj for i �= j, 0 ≤ i, j ≤ k − 1;

and
ii. for each 0 ≤ i ≤ k − 1 one has that ∇′ 	 π(Ai) ≈{α,C} A(i+1)mod k.

Extended pseudo-cycles built using only items 2 and 3.a.i and 3.b are called
pseudo-cycles. Extended pseudo-cycles of length k = 1 are called unitary.

Remark 1. Pseudo-cycles are built just from atom terms in dom(π) and com-
mutative function symbols, while epc’s consider all nominal syntactic elements
including new variables, and also non commutative function symbols.

Example 3 (Continuing Example 2). Given the fixpoint equation
(a′ b′)(a b c d).X ≈? X. Let κ = (a b c d) and X = {X,Y }. Assume, � and ⊕
are commutative symbols, f and g non commutative symbols. The following are
pseudo-cycles relative to X : (a � d b � a c � b d � c), (a � c ⊕ b � d), etc. The fol-
lowing are epc’s relative to X : (f〈a, b〉 f〈b, c̄〉 f〈c, d〉 f〈d, a〉), ([e]a�c [e]b�d),
(g〈fa, [e]a〉 g〈fb, [e]b〉 g〈fc, [e]c〉 g〈fd, [e]d〉),
(〈t, f〈g〈fa, [e]b〉, Z〉⊕f〈g〈fc, [e]d〉, Z〉〉�〈t, f〈g〈fb, [e]c〉, Z〉⊕f〈g〈fd, [e]a〉, Z〉)〉),
etc.

A relevant aspect is that only case 3.a.i of Definition 5 allows generating epc’s
that might be shorter than the epc’s to which this case is applied. When this is
the case, the length of the generated epc is half of the original one [4].

Example 4 (Continuing Example 3). Applying case 3.a.i to the trivial epc
(a b c d) one obtains the epc (a � c b � d).

So, unitary epc’s can only be obtained from permutation cycles of length
a power of two. When a unitary epc is being generated, the last application
of 3.a.i transforms a length two epc of the form (A0 A1) into (A0 � A1). By
condition 3.b.ii, ∇ 	 π(A0) ≈{α,C} A1 and ∇ 	 π(A1) ≈{α,C} A0. Therefore,
∇ 	 π(A0 � A1) ≈{α,C} A0 � A1.

Another relevant aspect of this construction is that although, we are using
the relation ≈{α,C}, by the class of nominal terms involved in the generation of
epc’s, only ≈C would be necessary, except for considerations related with the
freshness constraints (on new variables); hence, the invariant 3.b.ii can be seen
as π(Ai) ≈C Ai+1, where i + 1 is read modulo the length of the epc.

3 Soundness and Completeness

As in the previous section, we consider fixpoint equations of the form π.X ≈? X
which occur in a fixpoint problem Q = 〈Δ,σ,Q〉 relative to a set of variables X .

216 M. Ayala-Rincón et al.

Definition 6 (Generated solutions of singleton fixpoint problems).
For Q and π.X ≈? X ∈ Q as above, the set of generated solutions for
〈Δ, {π.X ≈? X}〉, denoted as 〈Δ, {π.X ≈? X}〉SolG , consists of pairs of the
form 〈∇, {X/s}〉 where (s) is a unitary epc for π such that ∇ 	 dom(Δ|X)#s,
where ∇ = Δ ∪Y ∈V ar(s) (dom(Δ|X)#Y ∪ dom(π)#Y).

Theorem 1 (Soundness of solutions of singleton fixpoint problems).
Each 〈∇, {X/s}〉 in 〈Δ, {π.X ≈? X}〉SolG is a solution of 〈Δ, {π.X ≈? X}〉.
Proof. The proof follows the lines of reasoning used for non unitary epc’s.
By construction, the invariant that the elements of an epc of length l, κ′ =
(e0 . . . el−1), satisfy the property ∇′ 	 π(ei) ≈{α,C} ei+1, where i+1 abbreviates
i + 1 modulo l, and ∇′ = ∪Y ∈V ar(κ′)dom(π)#Y , holds. The only case in which
the length of an epc decreases is 3.a.i. Thus, when this case applies to a binary
epc, say (s0 s1), an unitary epc (s) is built, being this of the form (s0 ⊕ s1)
for a commutative function symbol ⊕. Since by the invariant we have that
∇′ 	 π(si) ≈{α,C} si+1, for i = 0, 1, we have that ∇′ 	 π(s0 ⊕s1) ≈{α,C} s0 ⊕s1;
thus, we have that ∇′ 	 π(s) ≈{α,C} s. In further steps in the construction
of epc’s, new unitary epc’s (t′) might be built from unitary epc’s (t) apply-
ing cases 3.a.ii, iii, iv and v, that, can easily be checked, preserve the property
∇′ 	 π(t′) ≈{α,C} t′, for ∇′ = ∪Y ∈V ar(t′)dom(π)#Y , if ∇′ 	 π(t) ≈{α,C} t, for
∇′ = ∪Y ∈V ar(t)dom(π)#Y . Therefore all unitary non-trivial epc’s give a correct
solution of the form 〈∇′, {X/s}〉 of the problem 〈∅, π.X ≈? X〉. Hence, if in
addition, we have that ∇′ ∪ Δ 	 dom(Δ|X)#s, then for ∇ := ∇′ ∪ Δ, the pair
〈∇, {X/s}〉 ∈ 〈Δ, {π.X ≈? X}〉SolG is a solution of 〈Δ, {π.X ≈? X}〉. ��

Assuming the symbols in the signature are denumerable, it is possible to
enumerate the unitary epc’s and thus the generated solutions. This can be done
as usual, enumerating first all possible unitary epc’s with an element of length
bounded by a small natural, say twice the length of π, and using only the first
|π| symbols in the signature and atoms in dom(π); then, this length is increased
generating all extended unitary epc’s with elements of length |π| + 1 and using
only the first |π + 1| symbols in the signature and atoms in dom(π) and so on.

The following result, proved by induction in the construction of the epc’s, is
used in the proof of completeness of generated solutions for fixpoint problems.

Lemma 1 (Extended pseudo-cycle correspondence for π and π2). For
k ≥ 1, (A0 · · · A2k−1) is an epc for π if, and only if, there exist (B0 · · · B2k−1−1)
and (C0 · · · C2k−1−1) epc’s for π2 with a substitution σ such that atoms in its
image belong to dom(π)\dom(π2), and for 0 ≤ j ≤ 2k−1 −1 one has Bjσ ≈{α,C}
A2j and Cjσ ≈{α,C} A2j+1.

Example 5. For (a b) and (c d e f), permutation cycles of π, one has that (a), (b),
(c e) and (d f) are permutation cycles of π2, and also, a, b ∈ dom(π)\dom(π2).
Therefore, supposing that ‘+’, ‘∗’ and ‘�’ are commutative function symbols,
((c∗e)+a)� ((d∗f)+ b) and ((c∗e)+Y)� ((d∗f)+Y ′) are respectively unitary
epc’s of π and π2. Then:

On Solving Nominal Fixpoint Equations 217

– 〈Δ, {X/((c ∗ e) + a) � ((d ∗ f) + b)}〉 ∈ 〈Δ,π.X ≈? X〉SolG iff
– 〈Δ′, {X/((c ∗ e) + Y) � ((d ∗ f) + Y ′)}〉 ∈ 〈Δ,π2.X ≈? X〉SolG ,

where Δ′ = Δ ∪ dom(π2)#Y, Y ′ ∪ dom(Δ|X)#Y, Y ′. So the σ of Lemma 1 will
be {Y/a, Y ′/b}, so that ((c ∗ e) + a (d ∗ f) + b) is an epcof π, ((c ∗ e) + Y) and
((d∗f)+Y ′) are epc’s of π2, with ((c∗e)+Y)σ = (c∗e)+a and ((d∗f)+Y ′)σ =
(d ∗ f) + b.

Example 6. Let π = (a b c d e f g h) then π2 = (a c e g)(b d f h). There are
solutions of 〈∅, π2 · X ≈? X〉 that are not solutions of 〈∅, π.X ≈? X〉:
– 〈∅,X/(a ⊕ e) ⊕ (c ⊕ g)〉, 〈∅,X/(b � f) ⊕ (d � h)〉 ∈ 〈∅, π2 · X ≈? X〉SolG ;
– 〈∅,X/((a ⊕ e) ⊕ (c ⊕ g)) ⊕ ((b � f) ⊕ (d � h))〉 ∈ 〈∅, π2 · X ≈? X〉SolG

but none of them is a solution for 〈∅, π.X ≈? X〉.
However there exist solutions in the intersection of both problems, for

instance, 〈∅,X/((a ⊕ e) ⊕ (c ⊕ g)) ∗ (X/(b ⊕ f) ⊕ (d ⊕ h))〉.
Theorem 2 (Completeness of solutions for singleton fixpoint prob-
lems). Let 〈Δ, {π.X ≈? X}〉 be a singleton fixpoint problem with a solution
〈∇, {X/s}〉. Then there exists 〈∇′, {X/t}〉 ∈ 〈Δ, {π.X ≈? X}〉SolG such that
〈∇′, {X/t}〉 � 〈∇, {X/s}〉.
Proof. Since 〈∇, {X/s}〉 is a solution of the problem, it follows that ∇ 	 Δ{X/s}
and ∇ 	 π(s) ≈{α,C} s. The proof is done by induction on the structure of s.
Base Case. This case will be split in two parts.

1. s = a.

The pair 〈∇, {X/a}〉 is a solution only if a /∈ dom(Δ|X) ∪ dom(π),
then ∅ 	 π · a = a. Let Y be a new variable and ∇′ = dom(Δ|X)#Y ∪
dom(π)#Y , then 〈∇′, {X/Y }〉 is a generated solution. Let σ = {Y/a}, notice
that ∇ 	 ∇′σ and Y σ = a. Therefore, 〈∇′, {X/Y }〉 � 〈∇, {X/a}〉.

2. s = π′.Y and dom(π)#π′.Y .
Notice that 〈∇, {X/π′.Y }〉 ∈ 〈Δ,π.X ≈? X〉SolC only if
∇ 	 dom(Δ|X)#π′.Y, dom(π)#π′.Y , that is, if ∇ 	 (π′)−1 · dom(Δ|X)#Y
and ∇ 	 (π′)−1 · dom(π)#Y , so that Δ ∪ ((π′)−1 · dom(Δ|X) ∪ (π′)−1 ·
dom(π))#Y ⊂ ∇.

Let 〈∇′, {X/Z}〉∈〈Δ,π.X ≈?X〉SolG with ∇′ =Δ ∪ dom(π) ∪ dom(Δ|X)#Z,
Consider the substitution σ = {Z/π′.Y }, then ∇ 	 Zσ ≈{α,C} π′.Y and
∇′σ=Δσ ∪ (dom(π) ∪ dom(Δ|X))#Zσ = Δ ∪ (π′)−1 · dom(π)#Y ∪ (π′)−1 ·
dom(Δ|X)#Y , so ∇ 	 ∇′σ. Therefore, 〈∇′, {X/Z}〉 � 〈∇, {X/π′.Y }〉.

Induction Step.

1. s = 〈s1, s2〉
In this case ∇ 	 π(〈s1, s2〉) ≈{α,C} 〈s1, s2〉, that is, ∇ 	 〈π(s1), π(s2)〉 ≈{α,C}
〈s1, s2〉, which implies in ∇ 	 π(si) ≈{α,C} si, for i = 1, 2.

218 M. Ayala-Rincón et al.

By i.h. and Definitions 5 and 6, there exist 〈∇′
1, {X/t1}〉, 〈∇′

2, {X/t2}〉 ∈
〈Δ,π · X ≈? X〉SolG s.t. (t1), (t2) and (〈t1, t2〉) are unitary epc’s w.r.t. π.
Furthermore 〈∇′

i, {X/ti}〉 � 〈∇, {X/si}〉, i.e., there exist substitutions λi

s.t. ∇ 	 ∇iλi and ∇ 	 tiλi ≈ si, for i = 1, 2. One can choose (t1) and
(t2) s.t. V ar(t1) ∩ V ar(t2) = ∅ and dom(λi) ∩ V ar(sj) = ∅, for i, j = 1, 2.
Then, ∇ 	 〈t1, t2〉λ1λ2 ≈{α,C} 〈s1, s2〉, and ∇ 	 (∇1 ∪ ∇2)λ1λ2, that is,
〈∇1 ∪ ∇2, {X/〈t1, t2〉}〉 � 〈∇, {X/〈s1, s2〉}〉.

2. s = fs′

Since ∇ 	 π · fs′ ≈{α,C} fs′, it follows that ∇ 	 f(π(s′)) ≈{α,C} fs′

and therefore, ∇ 	 π(s′) ≈{α,C} s′. By i.h. and Definitions 5 and 6, there
exist 〈∇′, {X/t′}〉 ∈ 〈Δ,π · X ≈? X〉SolG such that (t′) and (ft′) are uni-
tary epc’s w.r.t. π. Furthermore 〈∇′, {X/t′}〉 � 〈∇, {X/s′}〉, that is, there
exist a substitution σ such that ∇ 	 ∇′σ and ∇ 	 t′σ ≈{α,C} s′, and since
∇ 	 ft′σ ≈{α,C} f(t′σ) ≈{α,C} fs′ and adding f at the top of t′ does not
change the variables of t′, therefore, 〈∇′, {X/ft′}〉 ∈ 〈Δ,π ·X ≈? X〉SolG and
〈∇′, {X/ft′}〉 � 〈∇, {X/fs′}〉.

3. s = [e]s′.
(a) e /∈ dom(π)

Since ∇ 	 π([e]s′) ≈{α,C} [e]s′, it follows that ∇ 	 π(s′) ≈{α,C} s′, i.e.,
〈∇,X/s′〉 is a solution for 〈Δ,π ·X ≈? X〉. By i.h. and Definitions 5 and 6,
there exist 〈∇′, {X/t′}〉 ∈ 〈Δ,π · X ≈? X〉SolG such that (t′) and ([e]t′)
are unitary epc’s w.r.t. π. Furthermore 〈∇′, {X/t′}〉 � 〈∇, {X/s′}〉, i.e.,
there exist a substitution σ such that ∇ 	 ∇′σ and ∇ 	 t′σ ≈{α,C} s′,
therefore, 〈∇′, {X/[e]t′}〉 ∈ 〈Δ,π · X ≈? X〉SolG and 〈∇′, {X/[e]t′}〉 �
〈∇, {X/[e]s′}〉.

(b) e ∈ dom(π).
By hypothesis, ∇ 	 π([e]s′) ≈{α,C} [e]s′, i.e., ∇ 	 [π · e](π(s′)) ≈{α,C}
[e]s′, and ∇ 	 π(s′) ≈{α,C} (π ·e e)(s′) only if ∇ 	 (π ·e)#s′. Notice that
e occurs in s′ iff π · e occurs in s′. Therefore, for ∇ 	 e#s′, it follows that
∇ 	 π(s′) ≈{α,C} s′ and the result follows by induction hypothesis.

4. s = s1 ⊕ s2
This case has two parts:

(a) ∇ 	 π(s1) ≈{α,C} s1 and ∇ 	 π(s2) ≈{α,C} s2.
By i.h. and Definitions 5 and 6, there exist 〈∇′

1, {X/t1}〉, 〈∇′
2, {X/t2}〉 ∈

〈Δ,π · X ≈? X〉SolG s.t. (t1), (t2) and (t1 ⊕ t2) are unitary epc’s w.r.t.
π. Furthermore 〈∇′

i, {X/ti}〉 � 〈∇, {X/si}〉, i.e., there exist substitutions
λi s.t. ∇ 	 ∇iλi and ∇ 	 tiλi ≈ si, for i = 1, 2. One can choose (t1) and
(t2) s.t. V ar(t1) ∩ V ar(t2) = ∅ and dom(λi) ∩ V ar(sj) = ∅, for i, j = 1, 2.
Then, ∇ 	 (t1 ⊕ t2)λ1λ2 ≈{α,C} (s1 ⊕ s2), and ∇ 	 (∇1 ∪ ∇2)λ1λ2, that
is, 〈∇1 ∪ ∇2, {X/t1 ⊕ t2}〉 � 〈∇, {X/s1 ⊕ s2}〉.

(b) ∇ 	 π(s1) ≈{α,C} s2 and ∇ 	 π(s2) ≈{α,C} s1.
Notice that ∇ 	 π2(s1) ≈{α,C} π(s2) ≈{α,C} s1 and ∇ 	 π2(s2) ≈{α,C}
π(s1) ≈{α,C} s2. Therefore, 〈∇, {X/s1}〉 and 〈∇, {X/s2}〉 are solutions of
〈Δ,π2.X ≈? X〉. By IH, there exist 〈∇1, {X/t1}〉, 〈∇2, {X/t2}〉 ∈ 〈Δ,π2 ·

On Solving Nominal Fixpoint Equations 219

X ≈? X〉SolG such that 〈∇i, {X/ti}〉 � 〈∇, {X/si}〉. Then there exist
substitutions λi s.t. ∇ 	 ∇iλi and ∇ 	 tiλi ≈{α,C} si, for i = 1, 2.
One can choose (t1) and (t2) s.t. V ar(t1) ∩ V ar(t2) = ∅ and dom(λi) ∩
V ar(sj) = ∅, for i, j = 1, 2.

Therefore, 〈∇1 ∪ ∇2,X/t1 ⊕ t2〉 ∈ 〈Δ,π2.X ≈? X〉SolG and 〈∇1 ∪
∇2,X/t1 ⊕ t2〉 � 〈∇,X/s1 ⊕ s2〉, via substitution λ = λ1λ2.

Notice that ∇ 	 π(t1)λ ≈{α,C} π(s1) ≈{α,C} s2 ≈{α,C} t2λ and analo-
gously, ∇ 	 π(t2)λ ≈{α,C} t1λ. Hence, λ is a solution for the C-unification
problem {π(t1) =? t2, π(t2) =? t1}. Let 〈∇′, λ′〉 be a solution more general
than 〈∇, λ〉 such that the atoms in the image of λ′ are in dom(π)\dom(π2).
Since (t1) and (t2) are unitary epc’s of π2, it follows by Lemma 1, that
(t1λ′ t2λ

′) is an epc for π. By Definition 5, (t1λ′ ⊕ t2λ
′) is a unitary

epcfor π, such that 〈∇′, {X/t1λ
′ ⊕ t2λ

′}〉 ∈ 〈Δ, {π · X ≈? X}〉SolG and
〈∇′, {X/t1λ

′ ⊕ t2λ
′}〉 � 〈∇, {X/s1 ⊕ s2}〉. ��

Remark 2. Notice that to build just a most general set of C-unifiers, without
taking into account nominal equivalence, in the proof of Lemma2 (case 4.b)
and Definition 7 one can use the algorithm proposed by Siekmann [13], which
provides a finite, minimal and complete set of C-unifiers.

Definition 7 (General C-matchers). Let si, for i = 1..k, be nominal terms.
A most general C-matcher of these terms, if it exists, is a most general C-unifier
δ of the C-unification problem {si =? Z}i=1..k, where Z is a new variable for si,
with i = 1..k.

Remark 3. Alternatively, Definition 5 could be restricted to ground terms (by
removing the first case in the construction of epc’s), and then instead of com-
puting C-matchers via C-unification, one could use an α-C-equivalence checker
(for example, the one specified in [3]). This would also simplify case iv in Defi-
nition 5, since it would be sufficient to consider just one atom e′ not in dom(π).

Definition 8 (Generated solutions for a variable). Let the fixpoint prob-
lems for X in P be given by 〈∇, πi.X ≈? X〉, for πi ∈ ΠX , and such that
|ΠX | = k. If there exist

– solutions 〈∇i, {X/ti}〉 ∈ 〈∇, πi.X ≈? X〉SolG for each fixpoint problem and
– a most general C-matcher δ of the terms {ti}i=1..k with X as new variable

such that the problem 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, where ∇′′ := ∪k
i=1∇i, has a solu-

tion 〈∇′, ∅〉, then we say that 〈∇′, {X/Xδ}〉 is a generated solution for X. The
set of all generated solutions is denoted by [X]PG

.

Example 7. Let Pi := πi.X ≈? X, for i = 1..3, be fixpoint equations for π1 =
(a b c d), π2 = (a c) and π3 = (b d) and suppose that P := 〈∇, P 〉 is a fixpoint
problem where Pi for i = 1..3 are the fixpoint equations for X in P .

220 M. Ayala-Rincón et al.

1. 〈∇ ∪ a, b, c, d#Y, δ1 := {X/((a ∗ c) ∗ (b ∗ d)) ⊕ Y }〉 ∈ 〈∇, P1〉SolG ;
2. 〈∇ ∪ a, c#Y ′, Y ′′, δ2 := {X/((a ∗ c) ∗ Y ′) ⊕ Y ′′}〉 ∈ 〈∇, P2〉SolG ; and
3. 〈∇ ∪ b, d#Y ′

1 , Y ′′
1 , δ3 := {X/((b ∗ d) ∗ Y ′

1) ⊕ Y ′′
1 }〉 ∈ 〈∇, P3〉SolG .

Notice that δ = {X/((a∗c)∗(b∗d))⊕Y ′′, Y ′/(b∗d), Y ′
1/(a∗c), Y/Y ′′, Y ′′

1 /Y ′′}
is a most general C-unifier of terms {ti := Xδi} with variable X.

According to the definition, the set of initial freshness constraints is given as
∇′′ =∇∪{a, b, c, d#Y, a, c#Y ′, Y ′′, b, d#Y ′

1 , Y ′′
1 }. Notice that Y ′′ ∈ V ar(im(δ)),

have to satisfy the constraints on Y ′′
1 , Y and X, that is, a, b, c, d#Y ′′ is a new

constraint on Y ′′, inherited from the constraints of the variables in the domain
of δ. 〈∇′, ∅〉 is the solution of 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, and then it holds that
∇′ 	 dom(∇′′|Z)#Zδ, for all Z ∈ dom(δ). Thus, 〈∇′, {X/Xδ}〉 belongs to [X]PG

.

Example 8 (Continuing Example 3). Consider the singleton fixpoint problems
on the variable X in Q1 of Examples 1 and 2 relative to the variable set
X = {X,Y }: 〈{a′#X}, {Eq1 := (a′ b′)(a c).X ≈? X}〉 and 〈{a′#X}, {Eq2 :=
(a′ b′)(a b c d).X ≈?X}〉. Since a′#X is in the freshness context, there is no com-
binatory solution with occurrences of the atoms in the permutation cycle (a′ b′).
For the cycles (a c) and (a b c d), in equations Eq1 and Eq2, possible solutions
include, respectively:

– 〈∇, {X/(a + c) � Z}〉, 〈∇, {X/(fa + fc) � Z}〉, 〈∇, {X/([g]a + [g]c) � Z}〉, for
∇ = a, c, a′, b′#Z, a′#X;

– 〈∇′, {X/(a + c) � (b + d)}〉, 〈∇′, {(fa + fc) � (fb + fd)}〉, 〈∇′, {([g]a + [g]c) �
([g]b + [g]d)}〉, for ∇′ = a′#X.

Since the general C-matchers for pairs of these three solutions for Eq1 and
Eq2 are respectively {Z/b + d}, {Z/fb + fd} and {Z/[g]b + [g]d}, the combined
solutions for both singleton fixpoint problems are those given for Eq2.

Now, one proves that the set of solutions [X]PG
is correct and complete.

Corollary 1 (Soundness and completeness of generated solutions for
a variable). Let P = 〈Δ,P 〉 be a fixpoint problem. Any solution in [X]PG

is
a solution of each fixpoint equation for X in P. If 〈∇, {X/s}〉 is a solution for
each fixpoint equation for X in P then there exists 〈∇′, {X/Xδ}〉 ∈ [X]PG

such
that 〈∇′, {X/Xδ}〉 � 〈∇, {X/s}〉.
Proof. By Theorem 1 and Definition 6:
(Soundness) Each solution 〈∇i, {X/ti}〉 in 〈Δ, {πi.X ≈? X}〉SolG is a correct
solution for 〈Δ, {πi.X ≈? X}〉, for πi ∈ ΠX . Suppose 〈∇′, {X/Xδ}〉 belongs to
[X]PG

. Since δ is a C-unifier of terms ti with variable X, we have that Xδ ≈C tiδ,
and also that ∇i 	 π(ti) ≈{α,C} ti. Thus, ∇′ 	 π(ti)δ ≈{α,C} tiδ since by
definition we also have that ∇′ 	 dom(∇|X)#Xδ, because by construction for
all Y ∈ V ar(Xδ), ∇′ includes the freshness constraints dom(∇′′|X)#Y and ∇′′

is an extension of ∇.

(Completeness) For |ΠX | = k, i = 1..k, there are 〈∇i, {X/ti}〉 ∈ 〈Δ, {πi.X ≈?

X}〉SolG , solution of 〈Δ, {πi.X ≈? X}〉, such that 〈∇i, {X/ti}〉 � 〈∇, {X/s}〉.

On Solving Nominal Fixpoint Equations 221

Then, for each i, there exists a ∇i s.t. ∇ 	 ∇iλi and ∇ 	 {X/ti}λi ≈ {X/s}. One
can choose each ti in a way to satisfy ∩k

i=1V ar(ti) = ∅, and then for λ = λ1 · · · λk

and ∇′′ = ∪k
i=1∇i, one also has ∇ 	 ∇′′λ and ∇ 	 {X/ti}λ ≈ {X/s}.

Notice that 〈∇, λ〉 is a nominal C-unifier for the problem 〈∇i,∪k
i=1{ti ≈? X}〉.

Then, given δ, a most general C-unifier for {ti =? X}i=1..k, it holds that there
exists λ′ such that ∇ 	 δλ′ ≈ λ.

Let 〈∇′, ∅〉 be a solution of 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, then, by Definition 6, one
has that 〈∇′, {X/Xδ}〉 ∈ [X]PG

, and so, since ∇ 	 ∇′′λ, also that ∇ 	 ∇′′δλ′,
which is the same that ∇ 	 ∇′λ′. On the other hand, Xδ ≈C tiδ and then ∇ 	
s ≈{α,C} tiλ ≈{α,C} tiδλ

′ ≈C Xδλ′, which implies ∇ 	 {X/s} ≈ {X/Xδ}λ′.
Hence, 〈∇′, {X/Xδ}〉 � 〈∇, {X/s}〉. ��
Definition 9 (Generated Solutions for fixpoint problems). Let P be a
fixpoint problem. The set of generated solutions for P, denoted as [P]SolG , is
defined as the set that contains all solutions of the form〈

⋃

X∈V ar(P)

∇X ,
⋃

X∈V ar(P)

{X/sX}
〉

, where each 〈∇X , {X/sX}〉 ∈ [X]PG
.

Example 9 (Continuing Example 8). Consider the third singleton fixpoint prob-
lem on the variable Y in Q1 relative to X = {X,Y }: 〈{a′#Y }, {(a′ b′)(a b c).Y ≈?

Y }〉. There exists no possible combinatorial solution since a′#Y is in the fresh-
ness context and the length of permutation cycle (a b c) is not a power of two.
The only possible solution is given as 〈a, b, c, a′, b′#Y ′, {Y/Y ′}〉. Hence, using the
solutions in Example 8 for the fixpoint equations on X, one has the following
solutions for the fixpoint problem Q1, where Δ = a′, b′#X, a, b, c, a′, b′#Y ′:

– 〈Δ, {X/(a + c) � (b + d), Y/Y ′}〉
– 〈Δ, {X/(fa + fc) � (fb + fd), Y/Y ′}〉
– 〈Δ, {X/([g]a + [g]c) � ([g]b + [g]d), Y/Y ′}〉

A similar analysis can be done for the fixpoint problem Q2 in Example 1.
Also, for the fixpoint equations (a b).Y ≈? Y and (d c b a)(a′ b′).Y ≈? Y , the
permutation cycle (a′ b′) avoids any possible combinatorial solution with occur-
rences of the atoms a′ or b′. Cycles (a b) and (d c b a) will allow combinatorial
solutions for each of these equations, but we will see (Example 14) that they
cannot be combined.

Corollary 2 (Soundness and completeness of generated solutions for
fixpoint problems). Let P be a fixpoint problem. Any solution in the set of
solutions [P]SolG is a correct solution of P. For any 〈∇, δ〉 solution of P there
exist a pair 〈∇′, σ〉 ∈ [P]SolG such that 〈∇′, σ〉 � 〈∇, δ〉.
Proof. By Definition 9 and Corollary 1:

(Soundness) A solution of P is of the form
〈⋃

X∈V ar(P)∇X ,
⋃

X∈Var(P){X/sX}
〉
,

where each 〈∇X , {X/sX}〉 ∈ [X]PG
is a correct solution for all fixpoint equations

in P for the variable X, this completes the soundness proof.

222 M. Ayala-Rincón et al.

(Completeness) Let P = {〈Δ,∪k
i=1{πi1 .X1 ≈? X1}πi1∈ΠX1

}〉 and 〈∇, δ〉 be a
solution of P. There exist more general solutions 〈∇j , {Xj/tj}〉 ∈ [Xj]PG

, for
j = 1, . . . , k; i.e., 〈∇j , {Xj/tj}〉 � 〈∇, δ〉; hence, there is a solution for P of the
form 〈⋃j ∇j ,

⋃
j{Xj/tj}〉 is in [P]SolG and 〈⋃j ∇j ,

⋃
j{Xj/tj}〉 � 〈∇, δ〉. ��

A greedy procedure for the generation of solutions in [X]P proceeds as fol-
lows. Follow the construction of generated solutions in Definition 6 for each fix-
point problem 〈∇, πi.X ≈? X〉 in P , where πi ∈ ΠX , as given in Lemma 1;
for each generated solution 〈∇′, {X/s}〉 build the freshness context ∇′′ =
∇′ ∪⋃

Y ∈V ar(s) dom(∇|X)#Y ∪dom(ΠX)#Y and check whether 〈∇′′, {X/s}〉 is
a solution for all 〈∇, πi.X ≈? X〉, for πi ∈ ΠX . Here, dom(ΠX)#Y abbreviates
∪πi∈ΠX

dom(πi)#Y .

4 Improvements in the Generation of Solutions

The greedy procedure can be improved eliminating generation of solution of non
interesting permutation cycles in ΠX , according to the observations below.

In first place, notice that according to the theory of pseudo-cycles, we are
interested in building solutions with atoms that occur only in permutation cycles
of length a power of two in all permutations π ∈ ΠX .

In second place, notice that if there exist permutation cycles of length a power
of two κi ∈ πi and κj ∈ πj , for πi, πj ∈ ΠX , such that dom(πi) ∩ dom(πj) �= ∅,
dom(πi)\dom(πj) �= ∅ and dom(πj)\dom(πi) �= ∅, then there might not be pos-
sible solutions with occurrences of atom terms in the domain of πi and/or πj for
the fixpoint equations related with permutations πi and πj . The simplest exam-
ple is given by permutation cycles (a b) and (a c). The precise relation between
permutation cycles that allows for construction of solutions for all permutations
in ΠX is given in the next definition.

Definition 10 (Permutation factor). A permutation π is said to be an n-
factor of a permutation π′ whenever there exists n such that πn = π′.

Example 10. Let π = (a b c d e f g h). The odd powers of π, π1, π3 =
(a d g b e h c f), π5 = (a f c h e b g d) and π7 = (a h g f e d c b) are the only fac-
tors of π.

Remark 4. For a permutation cycle κ of length 2k, the factors corresponding to
permutation cycles of the same length are exactly the permutations cycles κp,
for p odd such that 0 < p < 2k; also, if λ is a p-factor of κ then λ is the q-factor
of κ, where q is the minimum odd number such that 0 < q < 2k and p · q = 1
modulo 2k. For instance, if κ is a permutation cycle of length 24, κ3, κ5, κ7, etc.,
are respectively the 11- 13- and 7-factors, etc., of κ.

The key observation about permutation cycles κ and λ, of respective lengths
2k and 2l, for k ≥ l ≥ 0, such that, κ2k−l

contains a permutation cycle, say ν,
that is a p-factor of λ, is that this happens if and only if regarding elements
in dom(λ), possible generated solutions from both permutation cycles coincide.

On Solving Nominal Fixpoint Equations 223

Indeed, first, notice that either l = 0 and then ν = λ or l > 0 and λ2l−1
consists

of 2l−1 permutation cycles of length two; second, observe that if l > 0, then
λ2l−1

= νp·2l−1
= ν2l−1

, since p is an odd number (such that 0 < p < 2l).
Moreover, notice that κ2k−l |dom(λ) = ν, that implies that κ2k−1 |dom(λ) = ν2l−1

.
Thus, the permutation cycles of length two generated from κ and λ, restricted
to dom(λ) are the same, which implies that commutative combinations built
(according to Definition 5) regarding to the elements in dom(λ) are the same.

Example 11. Consider κ = (a b c d e f g h) and λ = (a g e c). Notice that κ2 =
(a c e g)(b d f h) and λ is a 3-factor of ν = (a c e g). Then λ2 = ν3·2 = ν2 =
(a e)(c g). Also, notice that the unitary epc’s built from λ and ν are the same.

Definition 11 (Permutation cycles in the top of ΠX). Let ΠX be the set
of permutations for fixpoint equations on the variable X in a fixpoint problem. A
permutation cycle κ ∈ π ∈ ΠX is in the top of ΠX , whenever for all atoms a ∈
dom(κ) and all π′ ∈ ΠX , if a ∈ dom(π′), and a is an element in a permutation
cycle λ in π′, then there exists a natural m such that the permutation cycle of
the element a in π2m , say ν, is a factor of the permutation cycle λ.

Example 12. Consider the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f)
and π3 = (a e)(c g)(d h). The permutation cycle π1 is in the top of the set of per-
mutations; indeed, notice that all permutation cycles in all permutations appear
as a factor in powers of two of π1: π0

1 = (a b c d e f g h); π2
1 = (a c e g)(b d f h);

π4
1 = (a e)(c g)(b f)(d h); π8

1 = (a)(e)(c)(g)(b)(f)(d)(h).

Theorem 3 (Atoms of interest in fixpoint problems on a variable). Let
ΠX be the set of permutations for fixpoint equations on the variable X in a
fixpoint problem. Only the set of atoms in the domain of permutation cycles in
the top of ΠX might occur in solutions of all fixpoint equations on X.

Proof. Only atoms that are in permutation cycles of length a power of two in
all permutations π ∈ ΠX might occur in solutions of all fixpoint equations on
X. Suppose a is an atom that only occurs in permutation cycles of length a
power of two for all π ∈ ΠX and let κ be a permutation cycle in ΠX of maximal
length, say 2k, with a ∈ dom(κ). Suppose λ is a permutation cycle in φ, for some
φ ∈ ΠX , with a ∈ dom(λ) and let 2l be the length of λ. Only if λ is a factor
of a permutation cycle in π2k−l

, say ν such that νp = λ, the epc’s built from
λ (and from κ) will maintain the invariants required, restricted to the atoms in
dom(λ), that is for an epc built from λ of the form (A0 . . . A2m−1), where m ≤ l,
φ(Ai) ≈C Ai+1 and φ2l−m

(Ai) ≈C Ai, where i + 1 reads modulo 2m. This also
holds for λ. Hence, since ν is a p-factor of λ (and also, π2k−l |dom(λ) = ν), one has
that νp(Ai) ≈C Ai+1 and νp·2l−m

(Ai) ≈C Ai. If the epc is of length two, that
is it is of the form (A0 A1), we have m = 1 and νp·2l−1

(Ai) ≈C Ai, for i = 0, 1,
and since p is odd, this implies that ν2l−1

(Ai) ≈C Ai, for i = 0, 1. This condition
also holds for π, since (π2k−l |dom(ν))2

l−1
= (ν)2

l−1
; hence, π2k−1

(Ai) = Ai+1, for
i = 0, 1. If κ is not a permutation cycle in the top of ΠX , then there exists some

224 M. Ayala-Rincón et al.

permutation cycle λ ∈ φ ∈ ΠX , such that a ∈ dom(κ) ∩ dom(λ), 2l is the length
of λ, but the permutation cycle of length 2l in κ2k−l

, say ν, such that a ∈ dom(ν)
is not a factor of λ. Thus, since ν2l−1 �= λ2l−1

atoms in the domains of ν and λ
cannot be combined uniformly to build common solutions for κ and λ (i.e., for
π and ψ).

To finish we show how a common solution can be built when κ is in the top
of ΠX . Suppose that (A) is a unitary epc built from λ by successive appli-
cations of case 3.a.i. of Definition 5 halving in each step the length of the
epc. We have that λ(A) = A. It is possible to generate an epc for κ of the
form (Aκ(A)κ2(A) . . . κ2k−l−1(A)). From this epc it is possible to build a uni-
tary epc by successive applications of case 3.a.i. of Definition 5, first obtain-
ing (A �1 κ2K−l−1

(A) κ(A) �1 κ2k−l−1+1(A) . . . κ2k−l−1−1(A) �1 κ2k−l−1(A)), and
so on until a unitary epc of the form ((· · · ((A �1 B1) �2 B2) · · ·) �k−l Bk−l)
is obtained where the Bi’s, for 1 ≤ i ≤ k − l are adequate combinations of
the terms κ(A), . . . κ2k−l−1(A) according to the constructions of epc’s. From
this epc one has the solution for π.X ≈? X of the form 〈∅, {X/(· · · ((A �1
B1) �2 B2) · · ·) �k−l Bk−l}〉, where �j , for j = 1, . . . , l are commutative sym-
bols. Using the unitary cycle (A) for λ and cases 1 and 3.a.ii of Defini-
tion 5 one can generate the unitary epc ((· · · ((A �1 Y1) �2 Y2) · · ·) �k−l Yk−l)
which gives the solution 〈∇, {X/(· · · ((A �1 Y1) �2 Y2) · · ·) �k−l Yk−l}〉 for λ,
where ∇ = {dom(λ)#Yj |1 ≤ j ≤ l}. The C-unification problem 〈∇,X ≈?

(· · · ((A �1 B1) �2 B2) · · ·) �k−l Bk−l,X ≈? (· · · ((A �1 Y1) �2 Y2) · · ·) �k−l Yk−l}〉
unifies with solution 〈∅, {X/(· · · ((A �1 B1) �2 B2) · · ·) �k−l Bk−l}〉 which is a
common solution for π and φ.

Example 13 (Continuing Example 12). First, notice that the permutation cycle
π1 = (a b c d e f g h) is not in the top of (a d e b g h c f); also, π1 is neither in the
top of (a b c d) nor in the top of (a i). Since π1 is not a factor of π2, solutions
generated from the epc (ā d̄ ē b̄ ḡ h̄ c̄ f̄) might not be solutions built for π1; for
instance, consider the unitary epc built for π2, (((ā�ḡ)�(ē� c̄))⊕((d̄�h̄)�(b̄� f̄)),
which is not a solution for π1, since not π1((ā � ḡ) � (ē � c̄)) ≈C (d̄ � h̄) � (b̄ � f̄).
Also, for the epc (ā b̄ c̄ d̄): the permutation cycles in π2

1 are (a c e g) and (b d f h),
which give different solutions. For (ā ī), the permutation cycle (a e) in π4

i will
produce different solutions.

Now consider solutions of fixpoint equations πi.X ≈? X, for i = 1, 2, 3,
where ΠX consists of the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f)
and π3 = (a e)(c g)(d h). In this case, we have seen (Example 12) that π1 is a
permutation cycle in the top of ΠX . Among the solutions generated for πi.X ≈?

X, for i = 1, 2, 3 through epc’s we have, respectively:

〈∇1, {X/s1=((ā + ē) � (c̄ + ḡ)) ⊕ ((b̄ + f̄) � (d̄ + h̄)}〉,
〈∇2, {X/s2=((ā + ē) � (c̄ + ḡ)) ⊕ ((b̄ + f̄) � Y }〉 and
〈∇3, {X/s3=((ā + ē) � (c̄ + ḡ)) ⊕ (Z � (d̄ + h̄)}〉,

On Solving Nominal Fixpoint Equations 225

where ∇1 = ∅, ∇2 = {a#Y, b#Y, c#Y, e#Y, f#Y, g#Y } and ∇3 = {a#Z, c#Z,
d#Z, e#Z, g#Z, h#Z}, and the symbols ⊕, � and + are commutative. The C-
unification problem 〈∇1 ∪ ∇2 ∪ ∇3, {X ≈? s1,X ≈? s2,X ≈? s3}〉 has solution
{X/s1, Y/d̄+ h̄, Z/b̄+ f̄} with the respective freshness constraints; thus, restrict-
ing this solution to the freshness constraints on X we have the common solution
〈∅, {X/s1}〉.
Example 14 (Continuing Example 9). As we saw in Example 9, the fixpoint equa-
tions (a b).Y ≈? Y and (d c b a)(a′ b′).Y ≈? Y in the fixpoint problem Q2, have
no possible combinatorial solution with occurrences of the atoms a′ or b′. By
Theorem 3, cycles (a b) and (d c b a) will not give rise to possible combinatorial
solutions for both fixpoint equations. Hence, there is no feasible combinatory
solution for this fixpoint problem. Therefore, the unique possible solution for Q2

is 〈{a′, b′#X, a, b, c, d, a′, b′#Y }, {X/(a c)(a′ b′).Y }〉.
The greedy generation algorithm can then be improved by generating solu-

tions only for the atoms in permutation cycles in the top of ΠX .

5 Conclusions and future work

We presented a procedure to generate solutions of fixpoint nominal C-unification
problems modulo commutativity. The procedure is proved to be sound and com-
plete. This result is relevant to provide a sound and complete procedure to gen-
erate solutions of nominal C-unification problems, which consists of an initial
phase in which nominal C-unification problems are transformed into an equiva-
lent finite set of fixpoint problems, as described in [4], and a second phase that
generates a potentially infinite set of independent solutions, presented in this
paper, based on combinatorial properties of permutations.

Additional improvements of the generation procedure should be investigated
exhaustively, as well as possible extensions of nominal unification and matching,
and nominal narrowing modulo other equational theories of interest.

References

1. Aoto, T., Kikuchi, v: A rule-based procedure for equivariant nominal unification.
In: Pre-proceeding of Higher-Order Rewriting (HOR), pp. 1–5 (2016)

2. Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 12

3. Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: A
formalisation of nominal equivalence with associative-commutative function sym-
bols. ENTCS 332, 21–38 (2017). Post-proceeding of Eleventh Logical and Semantic
Frameworks with Applications (LSFA)

4. Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
Nominal C-Unification. Av (2017). http://ayala.mat.unb.br/publications.html

http://dx.doi.org/10.1007/978-3-319-40229-1_12
http://dx.doi.org/10.1007/978-3-319-40229-1_12
http://ayala.mat.unb.br/publications.html

226 M. Ayala-Rincón et al.

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In:
Proceedings of 1st International Conference on Formal Structures for Computation
and Deduction (FSCD), vol. 52 of LIPIcs, pp. 1–16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

6. Ayala-Rincón, M., Fernández, M., Rocha-oliveira, A.C.: Completeness in PVS of
a nominal unification algorithm. ENTCS 323, 57–74 (2016)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. CUP, Cambridge (1998)
8. Cheney, J.: Equivariant unification. J. Autom. Reason. 45, 267–300 (2010)
9. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965

(2007)
10. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of

higher order expressions with recursive let. CoRR, abs/1608.03771 (2016)
11. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.

186(2), 165–193 (2003)
12. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms,

and Symmetric Functions. Graduate Texts in Mathematics, vol. 203, 2nd edn.
Springer, New York (2001)

13. Siekmann, J.: Unification of commutative terms. In: Ng, E.W. (ed.) Symbolic and
Algebraic Computation. LNCS, vol. 72, pp. 22–22. Springer, Heidelberg (1979).
doi:10.1007/3-540-09519-5 53

14. Urban, C.: Nominal unification revisited. In: Proceedings of International Work-
shop on Unification (UNIF), vol. 42 of EPTCS, pp. 1–11 (2010)

15. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473497 (2004)

http://dx.doi.org/10.1007/3-540-09519-5_53

Decidable Verification
of Decision-Theoretic GOLOG

Jens Claßen1(B) and Benjamin Zarrieß2

1 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
classen@kbsg.rwth-aachen.de

2 Theoretical Computer Science, TU Dresden, Dresden, Germany
benjamin.zarriess@tu-dresden.de

Abstract. The Golog agent programming language is a powerful
means to express high-level behaviours in terms of programs over actions
defined in a Situation Calculus theory. Its variant DTGolog includes
decision-theoretic aspects in the form of stochastic (probabilistic) actions
and reward functions. In particular for physical systems such as robots,
verifying that a program satisfies certain desired temporal properties is
often crucial, but undecidable in general, the latter being due to the lan-
guage’s high expressiveness in terms of first-order quantification, range
of action effects, and program constructs. Recent results for classical
Golog show that by suitably restricting these aspects, the verifica-
tion problem becomes decidable for a non-trivial fragment that retains a
large degree of expressiveness. In this paper, we lift these results to the
decision-theoretic case by providing an abstraction mechanism for reduc-
ing the infinite-state Markov Decision Process induced by the DTGolog
program to a finite-state representation, which then can be fed into a
state-of-the-art probabilistic model checker.

1 Introduction

When it comes to the design and programming of an autonomous agent, the
Golog [12] family of action languages offers a powerful means to express high-
level behaviours in terms of complex programs whose basic building blocks
are the primitive actions described in a Situation Calculus [16] action theory.
Golog’s biggest advantage perhaps is the fact that a programmer can freely
combine imperative control structures with non-deterministic constructs, leaving
it to the system to resolve non-determinism in a suitable manner. Its extension
DTGolog [2,17] includes decision-theoretic aspects in the form of stochastic
(probabilistic) actions and reward functions, essentially expressing a form of
(infinite-state) Markov Decisions Process (MDP) [15].

In particular when Golog is used to control physical robots, it is often
crucial to verify a program against some specification of desired behaviour, for
example in order to ensure liveness and safety properties, typically expressed by
means of temporal formulas. Unfortunately, the general verification problem for
Golog is undecidable due to the language’s high expressivity in terms of first-
order quantification, range of action effects, and program constructs. For this
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 227–243, 2017.
DOI: 10.1007/978-3-319-66167-4 13

228 J. Claßen and B. Zarrieß

reason, there have recently been endeavours to identify restricted, but non-trivial
fragments of Golog where verification (and hence other reasoning tasks such as
projection) becomes decidable, while a great deal of expressiveness is retained. In
[20] we presented one such result for a class of action theories, called acyclic, that
allows for non-local effects, i.e. where actions may affect an unbounded number
of objects that are not explicitly mentioned as action parameters. Decidability of
verification is achieved by restricting dependencies between fluents in successor
state axioms, which allows for a wide range of applications that includes the
well-known briefcase domain [14].

So far, to the best of our knowledge, the verification of temporal properties of
decision-theoretic Golog programs has not received any attention, even though
in most practical applications one has to deal with uncertainty, e.g. in the form of
actions failing with a certain probability and not showing the desired effects. In
this paper, we lift the above mentioned decidability result on acyclic theories to
the decision-theoretic case by providing an abstraction mechanism for reducing
the infinite-state MDP induced by a DTGolog program to a finite-state rep-
resentation, which then can be fed into any state-of-the-art probabilistic model
checker such as PRISM [10] and STORM [4].

2 Preliminaries

2.1 The Logic ES
We use a fragment of the first-order action logic ES [11], a variant of the Situation
Calculus that uses modal operators instead of situation terms to express what
is true after a number of actions has occurred. Not only is the syntax of ES in
our view more readable, but its special semantics also makes proofs for many
semantic properties simpler, while retaining much of the expressive power and
main benefits of the original Situation Calculus. In particular, this includes the
usage of Basic Action Theories (BATs) [16] to encode dynamic domains.

As we aim at decidability, we further have to restrict ourselves to a decidable
fragment of FOL as base logic, as otherwise reasoning about theories not involv-
ing actions, programs and temporal properties would be undecidable already.
For this purpose we use C2, the two-variable fragment of FOL with equality and
counting, an expressive fragment that subsumes most description logics.

Syntax. There are terms of sort object, number and action. Variables of sort
object are denoted by symbols x, y, . . ., of sort number by p, r, and of sort action
by a. NO is a countably infinite set of object constant symbols, NN the count-
able set of rational numbers, and NA a countably infinite set of action function
symbols with arguments of sort object. We denote the set of all ground terms
(also called standard names) of sort object, number and action by NO, NN , and
NA, respectively.

Formulas are built using fluent predicate symbols (predicates that may vary
as the result of actions) with at most two arguments of sort object, and equal-
ity, using the usual logical connectives, quantifiers, and counting quantifiers.

Decidable Verification of Decision-Theoretic Golog 229

In addition we have the two special fluents Prob(as, an, p) (taking two actions
as, an and a number p as arguments), expressing that stochastic action as can
have outcome an with probability p, and Reward(r) (taking a number r as argu-
ment), saying that the reward in the current situation is r. Furthermore, there
are two modalities for referring to future situations: �φ says that φ holds after
any sequence of actions, and [t]φ means that φ holds after executing action t.

A formula is called fluent formula if it contains no �, no [·], no Prob and
no Reward (i.e. such formulas talk about the current state of the world and
do not involve dynamic or decision-theoretic aspects). A C2-fluent formula is a
fluent formula that contains no terms of sort action and at most two variables.
A sentence or closed formula is a formula without free variables.

Semantics. A situation is a finite sequence (history) of actions. Let Z := N ∗
A

be the set of all situations (including the empty sequence 〈〉) and PF the set
of all primitive formulas F (n1, ..., nk), where F is a regular k-ary fluent with
0 ≤ k ≤ 2 and the ni are object standard names, together with all expressions
of form Prob(t1, t2, c1) and Reward(c2), where t1, t2 ∈ NA and c1, c2 ∈ NN . A
world w then maps primitive formulas and situations to truth values:

w : PF × Z → {0, 1}.

The set of all worlds is denoted by W.

Definition 1 (Truth of Formulas). Given a world w ∈ W and a closed
formula ψ, we define w |= ψ as w, 〈〉 |= ψ, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;
4. w, z |= ¬ψ iff w, z �|= ψ;
5. w, z |= ∀x.φ iff w, z |= φx

n for all n ∈ Nx;
6. w, z |= ∃≤mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≤ m;
7. w, z |= ∃≥mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≥ m;
8. w, z |= �ψ iff w, z · z′ |= ψ for all z′ ∈ Z;
9. w, z |= [t]ψ iff w, z · t |= ψ.

Above, Nx refers to the set of all standard names of the same sort as x. Moreover
φx

n denotes the result of simultaneously replacing all free occurrences of x in φ
by n. Note that by rule 2, the unique names assumption for constants is part
of our semantics. We use the notation x and y for sequences of object variables
and v for a sequence of object terms. We understand ∨, ∃, ⊃, and ≡ as the usual
abbreviations.

2.2 Action Theories

Definition 2 (Basic Action Theories). A C2-basic action theory (C2-BAT)
D = D0 ∪ Dpost is a set of axioms that describes the dynamics of a specific
application domain, where

230 J. Claßen and B. Zarrieß

1. D0, the initial theory, is a finite set of C2-fluent sentences describing the
initial state of the world;

2. Dpost is a finite set of successor state axioms (SSAs), one for each fluent
relevant to the application domain, incorporating Reiter’s [16] solution to the
frame problem to encode action effects, of the form

∀a.∀x.�
((

[a]F (x)
)

≡ γ+
F ∨

(
F (x) ∧ ¬γ−

F

))

where the positive effect condition γ+
F and negative effect condition γ−

F are
fluent formulas that are (possibly empty) disjunctions of formulas of the form
∃y.

(
a = A(v) ∧ φ ∧ φ′) such that

(a) ∃y.
(
a = A(v) ∧ φ ∧ φ′) contains the free variables x and a and no other

free variables;
(b) A(v) is an action term and v contains y;
(c) φ is a fluent formula with no terms of sort action and the number of

variable symbols in it not among v or bound in φ is less or equal two;
(d) φ′ is a fluent formula with free variables among v, no action terms, and

at most two bound variables.
φ is called effect descriptor and φ′ context condition.

The restrictions 2a and 2b on SSAs are without loss of generality and describe
the usual syntactic form of SSAs. Intuitively, the effect descriptor φ defines a
set of (pairs of) objects that are added to or deleted from the relational flu-
ent F when A(v) is executed. If free occurrences of variables in φ that appear
as arguments of A(v) are instantiated, condition 2c ensures definability of the
(instantiated) effect descriptor in our base logic C2. In contrast to the effect
descriptor, the context condition φ′ only tells us whether A(v) has an effect on F ,
but not which objects are affected. Condition 2d again ensures that after instan-
tiation of the action, the context condition is a sentence in C2. The variables x
mentioned in 2a may hence have free occurrences in φ but not in φ′.

Note that for simplicity we do not include precondition axioms, again with-
out loss of generality: To ensure that action t only gets executed when precon-
dition φt holds, simply precede every occurrence of t in the program expression
(cf. Sect. 2.3) by a test for φt.

For representing the decision-theoretic aspects, we assume that action func-
tion symbols are subdivided into two disjoint subsets, deterministic actions and
stochastic actions. We then associate every stochastic action with a probability
distribution over a finite number of possible outcomes in the form of deterministic
actions. Moreover, (state-based) rewards are represented by assigning numeric
values to situations:

Definition 3 (Decision-Theoretic BATs). A C2-decision-theoretic action
theory (C2-DTBAT) DDT = D ∪Dprob ∪Dreward extends a BAT D over deter-
ministic actions by

1. Dprob, an axiom of the form �Prob(as, an, p) ≡ φ, where as and an are action
variables, p is a number variable, and φ is a disjunction of formulas of the
form

Decidable Verification of Decision-Theoretic Golog 231

∃x. as = A(x) ∧
∨

i

an = Ai(xi) ∧ p = ci,

where A is a stochastic action, the Ai are deterministic actions defined in D,
the xi are contained in x, and the ci are rational constants with 0 < ci ≤ 1
and

∑
i ci = 1. Furthermore, we assume that Prob is defined to be functional

in the sense that for any ground action terms ts and tn, there is at most one
c such that Prob(ts, tn, c).

2. Dreward, an axiom of the form �Reward(r) ≡ ψ, where ψ is a fluent formula
with free variable r, no terms of sort action and at most two bound variables.
Reward is assumed to be partially functional, i.e. in any situation there is at
most one r such that Reward(r) holds.

Example 1. Consider a warehouse domain with shelves holding boxes containing
items. The fluent Broken(x) denotes that a box or item x is currently broken,
On(x, y) says that box or item x is currently on shelf y, and Contains(x, y) is
true for a box x containing an item y.

The agent is a robot that can move a box v from shelf s to shelf s′ using
the action Move(v, s, s′). We also have actions with undesired effects: Drop(v, s)
stands for dropping a box v from shelf s to the ground, causing all fragile objects
in it to break if there is no bubble wrap in it. Finally, Repair(s) is an action by
means of which the robot can repair a box or an item that is not fragile.

Figure 2 exemplarily shows the effect conditions for Broken(x) and On(x, y).
Effect descriptors are underlined with a solid line, context conditions with a
dashed line. If for example the agent were to drop the box in an initial situation
incompletely described by the axioms in Fig. 1, everything in it will break if the
box contains no bubble wrap, i.e. the BAT entails

¬∃x
(
Contains(box , x) ∧ BubbleWrap(x)

)

⊃ [Drop(box)]
(
∀y.Contains(box , y) ⊃ Broken(y)

)
.

MoveS (v, s, s′) is a stochastic action that has the desired effect in 90% of the
cases, but there is a 10% chance to drop v from shelf s; having the unbroken
vase on shelf s1 gives a reward of 5, while on s2 it gives a reward of 10:

�Prob(as, an, p) ≡ ∃v, s, s′. as = MoveS (v, s, s′)∧
(
an = Move(v, s, s′) ∧ p = 0.9∨
an = Drop(v, s) ∧ p = 0.1

)

�Reward(r) ≡
(
On(vase, s1) ∧ ¬Broken(vase) ∧ r = 5∨
On(vase, s2) ∧ ¬Broken(vase) ∧ r = 10

)

2.3 DTGOLOG and the Verification Problem

In a Golog program over ground actions we combine actions, whose effects are
defined in a C2-BAT, and tests, using a set of programming constructs to define
a complex action.

232 J. Claßen and B. Zarrieß

On(box , s1),

∀x∃≤1y.On(x, y),

∀x.(BubbleWrap(x) ⊃ ¬Fragile(x)),

Contains(box , vase),

∀x.(Contains(box , x) ⊃ Fragile(x))

∀y∃≤1x.Contains(x, y),

Fig. 1. Example initial theory

γ+
Broken := ∃v, s. a = Drop(v, s) ∧ On(v, s) ∧ Contains(v, x) ∧ Fragile(x) ∧

¬∃y.Contains(v, y) ∧ BubbleWrap(y)
)
;

γ−
Broken := ∃s. a = Repair(s) ∧ s = x ∧ ¬Fragile(x)

)
;

γ+
On := ∃v, s, s′. a = Move(v, s, s′) ∧ y = s′ ∧ Contains(v, x) ∨ x = v

))
;

γ−
On := ∃v, s, s′. a = Move(v, s, s′) ∧ y = s ∧ Contains(v, x) ∨ x = v

)) ∨
∃v, s. a = Drop(v, s) ∧ y = s ∧ v = x ∨ Contains(v, x)

))

Fig. 2. Example effect conditions

Definition 4 (Programs). A program expression δ is built according to the
following grammar:

δ ::= t | ψ? | δ;δ | δ|δ | δ∗

A program expression can thus be a (deterministic or stochastic) ground action
term t, a test ψ? where ψ is a C2-fluent sentence, or constructed from sub-
programs by means of sequence δ;δ, non-deterministic choice δ|δ, and non-
deterministic iteration δ∗. Furthermore, if statements and while loops can be
defined as abbreviations in terms of these constructs:

if φ then δ1 else δ2 endIf
def
= [φ?; δ1] | [¬φ?; δ2]

while φ do δ endWhile
def
= [φ?; δ]∗;¬φ?

A Golog program G = (D, δ) consists of a C2-BAT D = D0 ∪ Dpost and
a program expression δ where all fluents occurring in D and δ have an SSA in
Dpost.

To handle termination and failure of a program we use two 0-ary fluents
Final and Fail and two 0-ary action functions ε and f and include the SSAs
�[a]Final ≡ a = ε ∨ Final and �[a]Fail ≡ a = f ∨ Fail in Dpost. Furthermore,
we require that ¬Final ∈ D0 and ¬Fail ∈ D0, and that the fluents Final, Fail
and actions ε and f do not occur in δ.

Decidable Verification of Decision-Theoretic Golog 233

Following [3] we define the transition semantics of programs meta-theoretically.
First, consider program expressions that only contain deterministic actions. A
configuration 〈z, ρ〉 consists of a situation z ∈ Z and a program expression ρ,
where z represents the actions that have already been performed, while ρ is the
program that remains to be executed. Execution of a program in a world w ∈ W
yields a transition relation w−→ among configurations defined inductively over
program expressions, given by the smallest set that satisfies:

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;
2. 〈z, δ1; δ2〉 w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉 w−→ 〈z · t, γ〉;
3. 〈z, δ1; δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 w−→ 〈z · t, δ′〉;
4. 〈z, δ1|δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉 or 〈z, δ2〉 w−→ 〈z · t, δ′〉;
5. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉.

The set of final configurations Fin(w) w.r.t. a world w is defined similarly as the
smallest set such that:

1. 〈z, ψ?〉 ∈ Fin(w) if w, z |= ψ;
2. 〈z, δ1; δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈ Fin(w);
3. 〈z, δ1|δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) or 〈z, δ2〉 ∈ Fin(w);
4. 〈z, δ∗〉 ∈ Fin(w).

The set of failing configurations w.r.t. a world w is given by

Fail(w) := {〈z, δ〉 | 〈z, δ〉 /∈ Fin(w), there is no 〈z · t, δ′〉 s.t. 〈z, δ〉 w−→ 〈z · t, δ′〉}.

We now turn to the decision-theoretic case. A DTGolog program G = (DDT , δ)
consists of a C2-DTBAT DDT = D ∪ Dprob ∪ Dreward and a program expression
δ that only contains stochastic actions,1 and where all fluents occurring in DDT
and δ have an SSA in Dpost. Given a world w ∈ W with w |= DDT , execution
of δ in w induces an infinite-state MDP w.r.t. w given by Mw

δ = 〈S, s0,A,P,R〉,
where

– the (infinite) set of states S is given by Reach(w, δdet), which denotes the set
of configurations reachable from 〈〈〉, δdet〉 via w−→, where δdet is the program
obtained by replacing every stochastic action A(v) in δ by the expression
(A1(v1)| · · · |Ak(vk)) such that the Ai(vi) are all deterministic actions for
which

w, z |= Prob(A(x), Ai(xi), p)xv ;

– the initial state is s0 = 〈〈〉, δdet〉;
– the (finite) set of actions A are all (stochastic) ground action terms occurring

in δ;

1 Note that we can always simulate a deterministic action by a stochastic one that
has only one outcome.

234 J. Claßen and B. Zarrieß

– the transition function P : S × A × S → R is such that

P(〈z, ρ〉, t, 〈z · t′, ρ′〉) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p, w, z |= Prob(t, t′, p)
and 〈z, ρ〉 w−→ 〈z · t′, ρ′〉

1, 〈z, ρ〉 ∈ Fin(w), t = t′ = ρ′ = ε

1, 〈z, ρ〉 ∈ Fail(w), t = t′ = ρ′ = f

0, otherwise

– the reward function R : S → R is given by

R(〈z, ρ〉) =

{
r, w, z |= Reward(r)
0, otherwise

In addition, final and failing configurations are absorbing states, i.e. if s is reached
by ε, then P(s, ε, s) = 1, and if s is reached by f, then P(s, f, s) = 1.

The non-determinism on the agent’s side is resolved by means of a policy σ,
which is a mapping σ : S → A such that P(s, σ(s), s′) > 0 for some s′ ∈ S. An
infinite path π = s0

a1−→ s1
a2−→ · · · is called a σ-path if σ(sj) = aj+1 for all j ≥ 0.

The j-th state sj of any such path is denoted by π[j]. The set of all σ-paths
starting in s is Pathsσ(s,Mw

δ).
Every policy σ induces a probability space Prσ

s on the sets of infinite paths
starting in s, using the cylinder set construction [8]: For any finite path prefix
πfin = s0

a1−→ s1
a2−→ · · · sn, we define the probability measure

Prσ
s0,fin = P(s0, a1, s1) · P(s1, a2, s2) · . . . · P(sn−1, an, sn).

This extends to a unique measure Prσ
s .

Definition 5 (Temporal Properties of Programs). To express temporal
properties of probabilistic systems represented by DTGolog programs, we use
a probabilistic variant of CTL called PRCTL [1], which extends PCTL [7]
with rewards. However, in place of atomic propositions, we allow for C2-fluent
sentences ψ:

Φ ::= ψ | ¬Φ | Φ ∧ Φ | PI [Ψ] | RJ [Φ] (1)

Ψ ::=XΦ | (Φ U Φ) | (Φ U≤k Φ) (2)

Above, I ⊆ [0, 1] and J are intervals with rational bounds. We call formulas
according to (1) state formulas, and formulas according to (2) path formulas.
Intuitively, PI [Ψ] expresses that the probability of the set of paths satisfying Ψ
lies in the interval I, while RJ [Φ] says that the expected reward cumulated before
reaching a state that satisfies Φ is in J . Rather than providing intervals explicitly,
we often use abbreviations such as P≥0.9[Ψ] to denote P[0.9,1][Ψ], P=1[Ψ] for
P[1,1][Ψ], or P>0[Ψ] for P]0,1][Ψ].

(Φ1U
≤k Φ2) is the step-bounded version of the until operator, expressing that

Φ2 will hold within at most k steps, where Φ1 holds in all states before. We use

Decidable Verification of Decision-Theoretic Golog 235

the usual abbreviations FΦ (eventually Φ) for (true U Φ) and GΦ (globally Φ)
for ¬F¬Φ, as well as their corresponding step-bounded variants.

Let Φ be a temporal state formula, Mw
δ the infinite-state MDP of a program

G = (D, δ) w.r.t. a world w with w |= DDT , and s = 〈z, ρ〉 ∈ S. Truth of Φ in
Mw

δ , s, denoted by Mw
δ , s |= Φ is defined as follows:

– Mw
δ , s |= ψ iff w, z |= ψ;

– Mw
δ , s |= ¬Φ iff Mw

δ , s �|= Φ;
– Mw

δ , s |= Φ1 ∧ Φ2 iff Mw
δ , s |= Φ1 and Mw

δ , s |= Φ1;
– Mw

δ , s |= PI [Ψ] iff for all policies σ, Prσ
s (Ψ) ∈ I;

– Mw
δ , s |= RJ [Φ] iff for all policies σ, ExpRewσ

s (Φ) ∈ J ,

where

Prσ
s (Ψ) = Prσ

s ({π ∈ Pathsσ(s,Mw
δ) |Mw

δ , π |= Ψ})

and ExpRewσ
s (Φ) is the expectation (wrt. measure Prσ

s) of the random variable
XΦ(π) : Pathsσ(s,Mw

δ) → R≥0 such that for any path π = s0
a1−→ s1

a2−→ · · · ,

XΦ(π) =

⎧
⎪⎨

⎪⎩

0, Mw
δ , s0 |= Φ

∞, Mw
δ , si �|= Φ ∀ i ∈ N

∑min{j | Mw
δ ,sj |=Φ}−1

i=0 R(si), otherwise

Let Ψ be a temporal path formula, Mw
δ and s = 〈z, ρ〉 as above, and π ∈

Pathsσ(s,Mw
δ) for some σ. Truth of Ψ in Mw

δ , π, denoted by Mw
δ , π |= Ψ , is

defined as follows:

– Mw
δ , π |= XΦ iff Mw

δ , π[1] |= Φ;
– Mw

δ , π |= (Φ1 U Φ2) iff ∃i ≥ 0 : Mw
δ , π[i] |= Φ2

and ∀j, 0 ≤ j < i : Mw
δ , π[j] |= Φ1;

– Mw
δ , π |= (Φ1 U

≤k Φ2) iff ∃i, k ≥ i ≥ 0 : Mw
δ , π[i] |= Φ2

and ∀j, 0 ≤ j < i : Mw
δ , π[j] |= Φ1.

Definition 6 (Verification Problem). A temporal state formula Φ is valid
in a program G = (DDT , δ) iff for all worlds w ∈ W with w |= DDT it holds
that Mw

δ , s0 |= Φ.

Example 2. Assume that due to the fact that the action may fail, the agent
decides to simply execute the MoveS (box , s1, s2) action repeatedly until the
desired situation is reached where the unbroken vase is on shelf s2:

δ = while ¬
(
On(vase, s2) ∧ ¬Broken(vase)

)
do MoveS (box , s1, s2) endWhile

Temporal properties one might want to verify for this program expression could
be whether it is very likely that this can be achieved within exactly one, at least
k, or an arbitrary number of steps:

P≥0.95[X
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (3)

P≥0.95[F≤k
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (4)

P≥0.95[F
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (5)

236 J. Claßen and B. Zarrieß

3 Decidability of Verification

We first note that in general:

Theorem 1. The verification problem for DTGolog is undecidable.

Proof. (sketch). In [20] it is shown that given a two-counter machine M, a Golog
program and BAT can be constructed where EFHalt is valid iff M halts, which
is undecidable. Since regular Golog programs are a subset of DTGolog, and
since the corresponding temporal property can be expressed as P]0,1][FHalt] in
PRCTL, we also get undecidability in the decision-theoretic case.

3.1 Fluent Dependencies and Acyclic Theories

One source of undecidability lies in cyclic dependencies between fluents in the
effect descriptors of SSAs.

Definition 7 (Fluent Dependencies). The fluent dependency graph GD for
a C2-BAT D consists of a set of nodes, one for each fluent in D. There is a
directed edge (F, F ′) from fluent F to fluent F ′ iff there is a disjunct ∃y.

(
a =

A(v) ∧ φ ∧ φ′) in γ+
F or γ−

F such that F ′ occurs in the effect descriptor φ. We
call D acyclic iff GD is acyclic. The fluent depth of an acyclic action theory D,
denoted by fd(D), is the length of the longest path in GD. The fluent depth of F
w.r.t. D, fdD(F), is the length of the longest path in GD starting in F .

While the BAT used in the construction for the undecidability proof has a cyclic
dependency graph, the one for Example 1 is acyclic (with fluent depth 2), as
shown in Fig. 3. Note that only effect descriptors are relevant. Important special
cases of acyclic action theories are the local-effect ones [18] (corresponding to
fluent depth 0) and the context-free [13] (fluent depth 1).

Broken

OnContains Fragile

Fig. 3. Example fluent dependencies

3.2 Decidable Verification with Acyclic Theories

Let us now restrict our attention to programs over ground actions with an acyclic
C2-DTBAT DDT . Let A denote the finite set of ground deterministic actions
(including ε and f) occurring in δdet. The goal is to construct a finite proposi-
tional abstraction of the infinite-state MDP Mw

δ with w |= DDT . Following the
construction for Golog programs presented in [20] and elaborated in [19], the
essential part is a compact representation of effects from executing a sequence
of such ground actions in a given world satisfying the BAT.

Decidable Verification of Decision-Theoretic Golog 237

First we simplify SSAs as follows. If F (x) is a fluent and t ∈ A, the grounding
of the SSA of F w.r.t. t is of the form

�[t]F (x) ≡
(
γ+

F

)a

t
∨ F (x) ∧ ¬

(
γ−

F

)a

t
.

The instantiated positive and negative effect conditions
(
γ+

F

)a

t
and

(
γ−

F

)a

t
then

are each equivalent to a disjunction

φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n

for some n ≥ 0, where the φeff
i (effect descriptors) are C2-fluent formulas with

x as their only free variables, and the φcon
i (context conditions) are C2-fluent

sentences. We often view
(
γ+

F

)a

t
and

(
γ−

F

)a

t
as sets and write (φeff

i , φcon
i) ∈

(
γ+

F

)a

t
to express that the corresponding disjunct is present. An effect function then
represents the effects of a ground action:

Definition 8 (Effects). Let F (x) be a fluent and φ a C2-fluent formula with
free variables x, where x is empty or x = x or x = (x, y). We call the expression
〈F+, φ〉 a positive effect on F , and the expression 〈F−, φ〉 a negative effect on F .
We use the notation 〈F±, φ〉 for an effect if we do not explicitly distinguish
between a positive or a negative effect on F . Let D be a C2-BAT, w a world with
w |= D, z ∈ Z and t ∈ A. The effects of executing t in (w, z) are defined as:

ED(w, z, t) :=

{〈F+, φeff〉 | ∃(φeff , φcon) ∈
(
γ+

F

)a

t
s. t. w, z |= φcon} ∪

{〈F−, φeff〉 | ∃(φeff , φcon) ∈
(
γ−

F

)a

t
s. t. w, z |= φcon}.

Intuitively, if 〈F+, φ〉 ∈ ED(w, z, t) and c is an instance of φ before executing t
in w, z, then F (c) will be true after the execution (similar for negative effects).
To accumulate effects of consecutively executed actions, we define a regression
operator applied to a C2-fluent formula given a set of effects. Without loss of
generality we assume that only variable symbols x and y occur.

Definition 9 (Regression). Let E be a set of effects and ϕ a C2-fluent for-
mula. The regression of ϕ through E, denoted by R[E, ϕ], is a C2-fluent formula
obtained from ϕ by replacing each occurrence of a fluent F (v) in ϕ by the formula

F (v) ∧
∧

〈F−,φ〉∈E

¬φx
v ∨

∨

〈F+,φ〉∈E

φx
v .

By appropriately renaming variables in the effect descriptors φ it can be ensured
that R[E, ϕ] is again a C2-fluent sentence.

The result of first executing effects E0 and afterwards E1 is a new set of effects
E0 � E1 given by:

{〈F±,R[E0, ϕ]〉 | 〈F±, ϕ〉 ∈ E1} ∪
{〈F+,

(
ϕ ∧

∧

〈F−,ϕ′〉∈E1

¬R[E0, ϕ
′]
)
〉 | 〈F+, ϕ〉 ∈ E0} ∪ {〈F−, ϕ〉 ∈ E0}.

238 J. Claßen and B. Zarrieß

It can be shown that for any C2-fluent sentence φ,

R[E0,R[E1, φ]] ≡ R[E0 � E1, φ].

Let w be a world with w |= D. To accumulate the effects of a sequence z =
t1t2 · · · tn ∈ A∗ of deterministic actions into a single set, let z[i] denote the
subsequence of the first i ≤ n elements of z. Then we set

E1 := ED(w, 〈〉, t1)
Ei := Ei−1 � ED(w, z[i − 1], ti) for i = 2, . . . , n

and say that En is generated by executing t1t2 · · · tn in w. Then, for the effects
Ez generated by z in w and a C2-fluent sentence ψ, it holds that

w, z |= ψ iff w, 〈〉 |= R[Ez, ψ].

For a givenDTGolog program G = (DDT , δ) with an acyclic BAT D and finitely
many deterministic ground actions A occurring in δdet we show that there are only
finitelymany possible effects that can be generated by action sequences from A.We
observe that for an effect 〈F±, ϕ〉 on fluent F with depth fdD(F) = i all fluents
occurring in ϕ have a depth that is strictly smaller than i. Thus, for regressing
the effect descriptor ϕ only effects on fluents with depth strictly smaller than i are
relevant. Using this argument we can define the set of all relevant effects as follows:
For a fluent F the set of all positive effect descriptors for F are given by

eff+
A(F) := {φeff | (φeff , φcon) ∈

(
γ+

F

)a

t
for some t ∈ A},

and analogous for the negative effect descriptors eff−
A(F). For an acyclic

BAT D and finite set of ground actions A the set of all relevant effects on
all fluents with depth ≤j with j = 0, . . . , fd(D) is denoted by ED,A

j and is given
in Fig. 4. We define ED,A := ED,A

n with fd(D) = n. For a given fluent F with
fdD(F) = 0 it holds that the effects on F can be described without referring to
any other fluent. Consequently, all effects on F generated by a ground action
sequence from A must be contained in ED,A

0 . For fluents F with fdD(F) = i
and i > 0 the fluents in the effect descriptors may also be subject to changes
but have a depth strictly smaller than i. To obtain all relevant effects on F it is
therefore sufficient to consider the effects in ED,A

i−1 .

Lemma 1. Let D and A be as above, z ∈ A∗, w |= D and Ez the effects
generated by executing z in w. For each 〈F±, ϕ〉 ∈ Ez there exists 〈F±, ϕ′〉 ∈
ED,A with ϕ ≡ ϕ′.

Using the finite representation of action effects we can construct a finite abstrac-
tion of the infinite-state MDP induced by a program with a C2-DTBAT and an
acyclic D. First, we identify a finite set of relevant C2-fluent sentences called
context of a program, denoted by C(G). It consists of

Decidable Verification of Decision-Theoretic Golog 239

ED,A
0 := {〈F−, ϕ〉 | fdD(F) = 0, ϕ ∈ eff−

A(F)} ∪
{〈F+, ϕ ∧

∧

ϕ′∈X

¬ϕ′〉 | fdD(F) = 0, ϕ ∈ eff+
A(F), X ⊆ eff−

A(F)};

ED,A
i :=ED,A

i−1 ∪ {〈F−, R[E, ϕ]〉 | fdD(F) = i, ϕ ∈ eff−
A(F), E ∈ 2E

D,A
i−1 } ∪

{〈F+, Ξ〉 | fdD(F) = i, φ ∈ eff+
A(F), E ∈ 2E

D,A
i−1 , X ⊆ eff−

A(F) × 2E
D,A
i−1 }

with Ξ := R[E, φ] ∧
∧

(ϕ,E′)∈X

¬R[E′, ϕ]
)

Fig. 4. Sets of all relevant effects with 1 ≤ i ≤ fd(D)

– all sentences in the initial theory,
– all context conditions in the instantiated SSAs,
– all instantiations ψr

c of the right-hand side of axiom Dreward for all occurring
numeric constants c,

– all C2-fluent subformulas in the temporal property, and
– all tests in the program.

Furthermore, the context is closed under negation.
Central for the abstraction is the notion of a type of a world, representing an

equivalence class over W. Intuitively, a type says which of the context axioms
are satisfied initially and in all relevant future situations of that world.

Definition 10 (Types). Let G = (DDT , δ) be a DTGolog program with an
acyclic BAT D = D0 ∪ Dpost w.r.t. a finite set of ground actions A (including ε
and f). Furthermore, let C(G) be the context of G and ED,A the set of all relevant
effects. The set of all type elements is given by

TE(G) := {(ψ,E) | ψ ∈ C(G),E ⊆ ED,A}.

A type w.r.t. G is a set τ ⊆ TE(G) that satisfies:

1. For all ψ ∈ C(G) and all E ⊆ ED,A either (ψ,E) ∈ τ or (¬ψ,E) ∈ τ .
2. There exists a world w ∈ W such that

w |= D0 ∪ {R[E, ψ] | (ψ,E) ∈ τ}.

The set of all types w.r.t. G is denoted by Types(G). The type of a world w ∈ W
w.r.t. G is given by

type(w) := {(ψ,E) ∈ TE(G) | w |= R[E, ψ]}.

The abstraction of a world state consisting of a world w ∈ W with w |= DDT
and an action sequence z ∈ A∗ is then given by type(w) and the set of effects
Ez ⊆ ED,A generated by executing z in w. Furthermore, the program only admits

240 J. Claßen and B. Zarrieß

finitely many control states. Here we use a representation similar to the char-
acteristic program graphs from [3] where nodes are the reachable subprograms
Sub(δ), each of which is associated with a termination condition Fin(δ′), and

where an edge δ1
t/ψ−−→ δ2 represents a transition from δ1 to δ2 via action t if test

condition ψ holds. Moreover, failure conditions are given by

Fail(δ′) := ¬
(
Fin(δ′) ∨

∨

δ′ t/ψ−−→δ′′

ψ
)
.

The abstract, finite MDP for a type τ can then be constructed using the Carte-
sian product of effect sets and subprograms as states, the same actions as
in the original MDP, and the context formulas as labels. Formally, Mτ

δ fin =
〈Sfin, s

0
fin,Afin,Pfin,Rfin, Lfin〉 consists of

– the set of states Sfin = 2E
D,A × Sub(δdet);

– the initial state s0fin = 〈∅, δdet〉;
– the set of actions Afin = A;
– the transition function Pfin such that

Pfin(〈E1, δ1〉, t, 〈E2, δ2〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c, Dprob |= Prob(t, t′, c),

δ1
t′/ψ−−−→ δ2, (ψ,E1) ∈ τ,

E2 = E1 � ED(τ,E1, t
′)

1, (Fin(δ1), E1) ∈ τ, t = t′ = δ2 = ε

1, (Fail(δ1), E1) ∈ τ, t = t′ = δ2 = f

0, otherwise

and all 〈E, ε〉 as well as all 〈E, f〉 are absorbing states;
– the reward function Rfin such that Rfin(〈E1, δ1〉) = c iff (ψr

c ,E1) ∈ τ ;
– and the labeling function Lfin(〈E1, δ1〉) = {ψ ∈ C(G) | (ψ,E1) ∈ τ}.

We can thus regard the finitely many context formulas as atomic propositions,
and hence apply propositional probabilistic model checking. The finitely many
world types can be computed using a decidable consistency check in C2, so this
yields a decision procedure for the verification problem:

Theorem 2. Let G = (DDT , δ) be a DTGolog program with an acyclic C2-
BAT and Φ a temporal state formula. It is decidable to verify whether Φ is valid
in G.

Example 3. In our running example we obtain two types, one for the case that
the box contains bubble wrap and one where it does not. This is due to the
fact that our initial theory (Fig. 1) does not say anything about the truth of the
context condition ¬∃y.Contains(box , y) ∧ BubbleWrap(y) for the Drop action in
γ+
Broken (Fig. 2).

The corresponding abstract MDPs are depicted in Figs. 5(a) and (b), respec-
tively, where m stands for the ground action MoveS (box , s1, s2). That is to say

Decidable Verification of Decision-Theoretic Golog 241

Table 1. Verification results for example properties

Φ1 Φ≤1 Φ≤2 Φ≤3 Φ∞

With bubble wrap false false true true true

Without bubble wrap false false false false false

when there is bubble wrap, a successful attempt of moving the box leads to
state s1, from where only successful termination of the program is possible, rep-
resented by entering absorbing state s3. Should the box be dropped, state s2 is
entered, and m may be retried indefinitely until it succeeds. On the other hand,
if the box does not contain any bubble wrap, the agent only has one attempt.
Should it fail, absorbing state s4 is reached, representing program failure.

We can now feed these finite MDPs into a probabilistic model checker such as
STORM [4] in order to verify (the propositionalized versions of) the example prop-
erties. Table 1 shows the corresponding results, where Φ1 stands for formula (3),
Φ≤k for (4) with k ∈ {1, 2, 3}, and Φ∞ for (5). None of the properties holds in both
types, i.e. none is valid. We can see that in order to obtain a 95% certainty that the
unbroken vase ends up on shelf s2, we need to allow for at least two move attempts
(hence bubble wrap is required). Intuitively, this is because the first one only has a
90% chance to succeed, but with two attempts we already get 0.9+0.1 ·0.9 = 99%
success probability, 99.9% with three, and so on. The desired situation is thus
reached eventually “almost surely”, meaning with a 100% probability.

s0

s1

s2

s3
0.9

0.1

m

ε : 1

0.9

0.1

m

ε : 1

(a) with bubble wrap

s0

s1

s2

s3

s4

0.9

0.1

m

ε : 1

: 1

ε : 1

: 1

(b) without bubble wrap

Fig. 5. Example abstract MDPs

4 Conclusion

In this paper we lifted recent results on the decidability of verification of temporal
properties of classical Golog programs to the decision-theoretic case. The class
of acyclic theories is very expressive in the sense that it subsumes many of
the popular classes, including the context-free and local-effect ones. Our result
not only enables us to employ recent advances in probabilistic model checking
[4,6,9] for the verification of DTGolog agents, variants of which have been used

242 J. Claßen and B. Zarrieß

e.g. for controlling soccer robots [5]. Our abstraction, which can be performed
as a preprocessing step, also opens the application range of methods normally
working on finite MDPs to a large class of infinite-state problems.

Acknowledgments. This work was supported by the German Research Founda-
tion (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Systems,
project A1.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-40903-8 8

2. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Kautz, H., Porter, B. (eds.) Pro-
ceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI
2000), pp. 355–362. AAAI Press (2000)

3. Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In:
Brewka, G., Lang, J. (eds.) Proceedings of the Eleventh International Confer-
ence on the Principles of Knowledge Representation and Reasoning (KR 2008),
pp. 589–599. AAAI Press (2008)

4. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Kuncak, V., Majumdar, R. (eds.) CAV 2017. The-
oretical Computer Science and General Issues, vol. 10427, pp. 592–600. Springer,
Heidelberg (2017). doi:10.1007/978-3-319-63390-9 31

5. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.
Robot. Auton. Syst. 56, 980–991 (2008)

6. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 3

7. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form.
Aspects Comput. 6(5), 512–535 (1994)

8. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Grad-
uate Texts in Mathematics, vol. 40. Springer, New York (1976). doi:10.1007/
978-1-4684-9455-6

9. Kwiatkowska, M., Parker, D.: Advances in probabilistic model checking. In:
Nipkow, T., Grumberg, O., Hauptmann, B. (eds.) Software Safety and Security -
Tools for Analysis and Verification, NATO Science for Peace and Security Series - D:
Information and Communication Security, vol. 33, pp. 126–151. IOS Press (2012)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

11. Lakemeyer, G., Levesque, H.J.: A semantic characterization of a useful fragment
of the situation calculus with knowledge. Artif. Intell. 175(1), 142–164 (2010)

12. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic
programming language for dynamic domains. J. Log. Program. 31(1–3), 59–83
(1997)

http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-1-4684-9455-6
http://dx.doi.org/10.1007/978-1-4684-9455-6
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Decidable Verification of Decision-Theoretic Golog 243

13. Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92(1–2), 131–167
(1997)

14. Pednault, E.P.D.: Synthesizing plans that contain actions with context-dependent
effects. Comput. Intell. 4, 356–372 (1988)

15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

16. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

17. Soutchanski, M.: An on-line decision-theoretic Golog interpreter. In: Nebel, B.
(ed.) Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI 2001), pp. 19–26. Morgan Kaufmann Publishers Inc. (2001)

18. Vassos, S., Lakemeyer, G., Levesque, H.J.: First-order strong progression for local-
effect basic action theories. In: Brewka, G., Lang, J. (eds.) Proceedings of the
Eleventh International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2008), pp. 662–672. AAAI Press (2008)

19. Zarrieß, B., Claßen, J.: Decidable verification of Golog programs over non-local
effect actions. LTCS-Report 15-19, Chair of Automata Theory, TU Dresden, Dres-
den, Germany (2015)

20. Zarrieß, B., Claßen, J.: Decidable verification of Golog programs over non-local
effect actions. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 1109–1115. AAAI
Press (2016)

The Bernays–Schönfinkel–Ramsey Fragment
with Bounded Difference Constraints

over the Reals Is Decidable

Marco Voigt(B)

Max Planck Institute for Informatics and Saarbrücken Graduate School of Computer
Science, Saarland Informatics Campus, Saarbrücken, Germany

mvoigt@mpi-inf.mpg.de

Abstract. First-order linear real arithmetic enriched with uninter-
preted predicate symbols yields an interesting modeling language. How-
ever, satisfiability of such formulas is undecidable, even if we restrict the
uninterpreted predicate symbols to arity one. In order to find decidable
fragments of this language, it is necessary to restrict the expressiveness
of the arithmetic part. One possible path is to confine arithmetic expres-
sions to difference constraints of the form x − y � c, where � ranges over
the standard relations <, ≤, =, �=, ≥, > and x, y are universally quan-
tified. However, it is known that combining difference constraints with
uninterpreted predicate symbols yields an undecidable satisfiability prob-
lem again. In this paper, it is shown that satisfiability becomes decidable
if we in addition bound the ranges of universally quantified variables. As
bounded intervals over the reals still comprise infinitely many values, a
trivial instantiation procedure is not sufficient to solve the problem.

Keywords: Bernays–Schönfinkel–Ramsey fragment · Linear arithmetic
constraints · Difference constraints · Combination of theories

1 Introduction

It has been discovered about half a century ago that linear arithmetic with addi-
tional uninterpreted predicate symbols has an undecidable satisfiability prob-
lem [15]. Even enriching Presburger arithmetic with only a single uninterpreted
predicate symbol of arity one suffices to facilitate encodings of the halting
problem for two-counter machines [5,10]. These results do not change substan-
tially when we use the reals as underlying domain instead of the integers. This
means, in order to obtain a decidable subfragment of the combination of lin-
ear arithmetic with uninterpreted predicate symbols, the arithmetic part has
to be restricted considerably. In this paper, two subfragments with a decidable
satisfiability problem are presented. Both are based on the Bernays–Schönfinkel–
Ramsey fragment (BSR) of first-order logic, which is the ∃∗∀∗ prefix class. Unin-
terpreted constant symbols and the distinguished equality predicate are allowed,

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 244–261, 2017.
DOI: 10.1007/978-3-319-66167-4 14

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 245

non-constant function symbols are not. The arity of uninterpreted predicate sym-
bols is not restricted. We extend BSR in two ways and call the obtained clause
fragments BSR modulo simple linear real constraints—BSR(SLR)—and BSR
modulo bounded difference constraints—BSR(BD).

The first clause class—defined in Definition 1 and treated in detail in Sect. 4—
adds constraints of the form s � t, x � t, and x � y to BSR clauses, where x
and y are real-valued variables that are implicitly universally quantified, s and t
are linear arithmetic terms that are ground, and � ranges over <,≤,=, �=,≥, >.
We allow Skolem constants in the ground terms s and t. Since their value is
not predetermined, they can be conceived as being existentially quantified. The
constraints used in this clause fragment are similar to the kind of constraints
that appear in the context of the array property fragment [4] and extensions
thereof (see, e.g., [7,9]). The main differences are that we use the real domain
in this paper instead of the integer domain, and that we allow strict inequalities
and disequations between universally quantified variables. In the presence of
uninterpreted function symbols, strict inequality or disequations can be used
to assert that some uninterpreted function f is injective. This expressiveness
prevents certain instantiation-based approaches to satisfiability checking from
being applicable, e.g. the methods in [4,9]. In the context of the array property
fragment, this expressiveness even leads to undecidability.

The BSR(BD) clause class—presented in Definition 2 and in Sect. 5—adds
constraints of the form x � c, x � y and x − y � c to BSR clauses, where x and
y are real-valued variables, c could be any rational number, and � ranges over
<,≤,=, �=,≥, > again. We refer to constraints of the form x− y � c as difference
constraints. Already in the seventies, Pratt identified difference constraints and
boolean combinations thereof as an important tool for the formalization of verifi-
cation conditions [14]. Applications include the verification of timed systems and
scheduling problems (see, e.g., [11] for references). As unrestricted combinations
of uninterpreted predicate symbols with difference constraints lead to an unde-
cidable satisfiability problem (once more, two-counter machines can be encoded
in a simple way [17]), we have to further confine the language. Every difference
constraint x − y � c has to be conjoined with four additional constraints cx ≤ x,
x ≤ dx, cy ≤ y, y ≤ dy, where cx, dx, cy, dy are rationals. This restriction seems
to weaken expressiveness severely. Indeed, it has to, since we aim for a decid-
able satisfiability problem. Yet, we show in Sect. 6 that BSR(BD) clause sets are
expressive enough to formulate the reachability problem for timed automata.
In [13] an encoding of the reachability problem for timed automata in difference
logic (boolean combinations of difference constraints without uninterpreted pred-
icate symbols) is given, which facilitates deciding bounded reachability, i.e. the
problem of reaching a given set of states within a bounded number of transition
steps. When using BSR(BD) as a modeling language, we do not have to fix an
upper bound on the number of steps a priori.

The main result of the present paper is that satisfiability of finite BSR(SLR)
clause sets and finite BSR(BD) clause sets is decidable, respectively (Theo-
rems 12 and 19). The proof technique is very similar for the two fragments. It is

246 M. Voigt

partially based on methods from Ramsey theory, which are briefly introduced in
Sect. 3. The used approach may turn out to be applicable to other fragments of
BSR modulo linear real arithmetic as well. Due to space limitations, most proofs
are only sketched. Detailed proofs can be found in [16].

2 Preliminaries and Notation

Hierarchic combinations of first-order logic with background theories build upon
sorted logic with equality [2,3,12]. We instantiate this framework with the BSR
fragment and linear arithmetic over the reals as the base theory. The base sort
R shall always be interpreted by the reals R. For simplicity, we restrict our
considerations to a single free sort S, which may be freely interpreted as some
nonempty domain, as usual.

We denote by VR a countably infinite set of base-sort variables. Linear arith-
metic (LA) terms are build from rational constants 0, 1, 1

2 ,−2,− 3
4 , etc., the

operators +,−, and the variables from VR. We moreover allow base-sort con-
stant symbols whose values have to be determined by an interpretation (Skolem
constants). They can be conceived as existentially quantified. As predicates over
the reals we allow the standard relations <,≤,=, �=,≥, >.

In order to hierarchically extend the base theory by the BSR fragment, we
introduce the free sort S, a countably infinite set VS of free-sort variables, a finite
set ΩS of free (uninterpreted) constant symbols of sort S and a finite set Π of
free predicate symbols equipped with sort information. Note that every predicate
symbol in Π has a finite, nonnegative arity and can be of a mixed sort over the
two sorts R and S, e.g. P : R × S × R. We use the symbol ≈ to denote the
built-in equality predicate on S. To avoid confusion, we tacitly assume that no
constant or predicate symbol is overloaded, i.e. they have a unique sort.

Definition 1 (BSR with simple linear real constraints—BSR(SLR)).
A BSR(SLR) clause has the form Λ ‖Γ → Δ, where Λ, Γ , Δ are multisets of
atoms satisfying the following conditions. (i) Every atom in Λ is an LA con-
straint of the form s � t or x � t or x � y where s, t are ground (i.e. variable-free)
LA terms, x, y ∈ VR, and � ∈{<,≤, =, �=,≥, >}. (ii) Every atom in Γ and Δ
is either an equation s ≈ s′ over free-sort variables and constant symbols, or
a non-equational atom P (s1, . . . , sm) that is well sorted and where the si range
over base-sort variables, free-sort variables, and free-sort constant symbols.

Definition 2 (BSR with bounded difference constraints—BSR(BD)).
A BSR(BD) clause has the form Λ ‖Γ → Δ, where the multisets Γ , Δ satisfy
Condition (ii) of Definition 1, and every atom in Λ is an LA constraint of the
form x � c, x � y, or x − y � c where c may be any rational constant (not a
Skolem constant), x, y ∈ VR, and � ∈{<,≤, =, �=,≥, >}. Moreover, we require
that whenever Λ contains a constraint of the form x−y � c, then Λ also contains
constraints cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy with cx, dx, cy, dy ∈ Q.

We omit the empty multiset left of “→” and denote it by � right of “→”
(where � at the same time stands for falsity). The introduced clause notation

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 247

separates arithmetic constraints from the free first-order part. We use the vertical
double bar “‖” to indicate this syntactically. Intuitively, clauses Λ ‖Γ → Δ can
be read as

(∧
Λ ∧

∧
Γ

)
→

∨
Δ, i.e. the multisets Λ, Γ stand for conjunctions

of atoms and Δ stands for a disjunction of atoms. Requiring the free parts Γ
and Δ of clauses to not contain any base-sort terms apart from variables does
not limit expressiveness. Every base-sort term t �∈ VR in the free part can safely
be replaced by a fresh base-sort variable xt when an atomic constraint xt = t is
added to the constraint part of the clause (a process known as purification or
abstraction [2,12]).

A (hierarchic) interpretation is an algebra A which interprets the base sort
R as RA = R, assigns real values to all occurring base-sort Skolem constants
and interprets all LA terms and constraints in the standard way. Moreover,
A comprises a nonempty domain SA, assigns to each free-sort constant symbol c
in ΩS a domain element cA ∈ SA, and interprets every sorted predicate symbol
P :ξ1 × . . . × ξm in Π by some set PA ⊆ ξA

1 × . . . × ξA
m. Summing up, A extends

the standard model of linear arithmetic and adopts the standard approach to
semantics of (sorted) first-order logics when interpreting the free part of clauses.

Given an interpretation A and a sort-respecting variable assignment β :
VR ∪ VS → RA ∪ SA, we write A(β)(s) to mean the value of the term s under
A with respect to the variable assignment β. The variables occurring in clauses
are implicitly universally quantified. Therefore, given a clause C, we call A a
(hierarchic) model of C, denoted A |= C, if and only if A, β |= C holds for every
variable assignment β. For clause sets N , we write A |= N if and only if A |= C
holds for every clause C ∈ N . We call a clause C (a clause set N) satisfiable if
and only if there exists a model A of C (of N). Two clauses C,D (clause sets
N,M) are equisatisfiable if and only if C (N) is satisfiable whenever D (M) is
satisfiable and vice versa.

Given a BSR(SLR) or BSR(BD) clause C, we use the following notation:
the set of all constant symbols occurring in C is denoted by consts(C). The set
bconsts(C) (fconsts(C)) is the restriction of consts(C) to base-sort (free-sort)
constant symbols. We denote the set of all variables occurring in a clause C by
vars(C). The same notation is used for sets of clauses.

Definition 3 (Normal form of BSR(SLR) and BSR(BD) clauses).
A BSR(SLR) or BSR(BD) clause Λ ‖Γ → Δ is in normal form if (1) all non-
ground atoms in Λ have the form x � c, x � y, or x − y � c where c is a rational
constant or a Skolem constant, and (2) every variable that occurs in Λ also
occurs in Γ or in Δ. A BSR(SLR) or BSR(BD) clause set N is in normal form
if all clauses in N are in normal form and pairwise variable disjoint. Moreover,
we assume that N contains at least one free-sort constant symbol.

For BSR(SLR) clause sets, we pose the following additional requirement.
N can be divided into two parts Ndef and N ′ such that (a) every clause in
Ndef has the form c �= t ‖ → � where c is a Skolem constant and t is some
ground LA term, and (b) any ground atom s � t in any constraint part Λ in any
clause Λ ‖Γ → Δ in N ′ is such that s and t are constants (Skolem or rational,
respectively).

248 M. Voigt

For every BSR(SLR) clause set N there is an equisatisfiable BSR(SLR) clause
set N ′ in normal form, such that N ′ |= N . The same holds for BSR(BD) clause
sets. Requirement (2) can be established by any procedure for eliminating exis-
tentially quantified variables in LA constraints (see, e.g., [6]). Establishing the
other requirements is straightforward.

For two sets R,Q ⊆ R we write R < Q if r < q holds for all r ∈ R and q ∈ Q.
Given a real r, we denote the integral part of r by �r�, i.e. �r� is the largest integer
for which �r� ≤ r. By fr(r) we denote the fractional part of r, i.e. fr(r) := r−�r�.
Notice that fr(r) is always nonnegative, e.g. fr(3.71) = 0.71, whereas fr(−3.71) =
0.29. Given any tuple r̄ of reals, we write fr(r̄) to mean the corresponding tuple of
fractional parts, i.e. fr

(
〈r1, . . . , rμ〉

)
:=

〈
fr(r1), . . . , fr(rμ)

〉
. We use the notation

�r̄� in a component-wise fashion as well.
We write [k] to address the set {1, . . . , k} for any positive integer k > 0.

Finally, P denotes the power set operator, i.e. for any set S, P(S) denotes the
set of all subsets of S.

3 Basic Tools from Ramsey Theory

In this section we establish two technical results based on methods usually
applied in Ramsey theory. We shall use these results later on to prove the
existence of models of a particular kind for finite and satisfiable BSR(SLR) or
BSR(BD) clause sets. These models meet certain uniformity conditions. In order
to construct them, we rely on the existence of certain finite subsets of R that are
used to construct prototypical tuples of reals. These finite subsets, in turn, have
to behave nicely as well, since tuples that are not distinguishable by BSR(SLR)
or BSR(BD) constraints are required to have certain uniformity properties.

A tuple 〈r1, . . . , rm〉 ∈ R
m is called ascending if r1 < . . . < rm. A coloring

is a mapping χ : S → C for some arbitrary set S and some finite set C. For the
most basic result of this section (Lemma 4), we consider an arbitrary coloring χ
of m-tuples of real numbers and stipulate the existence of a finite subset Q ⊆ R

of a given cardinality n such that all ascending m-tuples of elements from Q are
assigned the same color by χ.

Lemma 4. Let n,m > 0 be positive integers. Let χ : Rm → C be some coloring.
There is some positive integer n̂ such that for every set R ⊆ R with |R| ≥ n̂—i.e.
R needs to be sufficiently large— there exists a subset Q ⊆ R of cardinality n
such that all ascending tuples 〈r1, . . . , rm〉 ∈ Qm are assigned the same color
by χ.

Proof (adaptation of the proof of Ramsey’s Theorem on page 7 in [8]). For n < m
the lemma is trivially satisfied, since in this case Qm cannot contain ascending
tuples. Hence, we assume n ≥ m. In order to avoid technical difficulties when
defining the sequence of elements sm−1, sm, sm+1, . . . below, we assume for the
rest of the proof that R is finite but sufficiently large. This assumption does not
pose a restriction, as we can always consider a sufficiently large finite subset of
R, if R were to be infinite.

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 249

We proceed by induction on m ≥ 1. The base case m = 1 is easy, since χ
can assign only finitely many colors to elements in R and thus some color must
be assigned at least

⌊ |R|
|C|

⌋
times. Hence, if R contains at least n|C| elements, we

find a uniformly colored subset Q of size n. Suppose m > 1. At first, we pick the
m−2 smallest reals s1 < . . . < sm−2 from R and set Sm−2 := R\{s1, . . . , sm−2}.
Thereafter, we simultaneously construct two sufficiently long but finite sequences
sm−1, sm, sm+1, . . . and Sm−1, Sm, Sm+1, . . . as follows:
Given Si, we define si+1 to be the smallest real in Si.
Given Si and the element si+1, we define an equivalence relation ∼i on the set
S′

i := Si \ {si+1} so that s ∼i s′ holds if and only if for every sequence of indices
j1, . . . , jm−1 with 1 ≤ j1 < . . . < jm−1 ≤ i + 1, we have χ(sj1 , . . . , sjm−1 , s) =

χ(sj1 , . . . , sjm−1 , s
′). This equivalence relation partitions S′

i into at most |C|(
i+1

m−1)

equivalence classes. We choose one such class with largest cardinality to be Si+1.
By construction of the sequence s1, s2, s3, . . ., we must have χ(sj1 , . . . , sjm−1 ,

sk) = χ(sj1 , . . . , sjm−1 , sk′) for every sequence of indices j1 < . . . < jm−1 and
all indices k, k′ ≥ jm−1 + 1. Please note that this covers all ascending m-
tuples in {s1, s2, s3, . . .}m starting with sj1 , . . . , sjm−1, i.e. they all share the
same color. We now define a new coloring χ′ : {s1, s2, s3, . . .}m−1 → C so that
χ′(sj1 , . . . , sjm−1) := χ(sj1 , . . . , sjm−1 , sjm−1+1) for every sequence of indices
j1 < . . . < jm−1 (in case of jm−1 being the index of the last element in the
sequence s1, s2, s3, . . ., χ′(sj1 , . . . , sjm−1) shall be an arbitrary color from C). By
induction, there exists a subset Q ⊆ {s1, s2, s3, . . .} of cardinality n, such that
every ascending (m−1)-tuple r̄ ∈ Qm−1 is colored the same by χ′. The definition
of χ′ entails that now all ascending m-tuples r̄′ ∈ Qm are colored the same by
χ. Hence, Q is the sought set. ��

Based on Lemma 4, one can derive similar results for more structured ways of
coloring tuples of reals. We shall employ such a structured coloring when proving
that the satisfiability problem for finite BSR(SLR) clause sets is decidable. More
precisely, the proof of Lemma 10 will rely on such a result. The technical details
are elaborated in [16].

4 Decidability of Satisfiability for BSR(SLR) Clause Sets

For the rest of this section we fix two positive integers m,m′ > 0 and some
finite BSR(SLR) clause set N in normal form. For the sake of simplicity, we
assume that all uninterpreted predicate symbols P occurring in N have the sort
P : Sm′ × Rm. This assumption does not limit expressiveness, as the arity of a
predicate symbol P can easily be increased in an (un)satisfiability-preserving way
by padding the occurring atoms with additional arguments. For instance, every
occurrence of atoms P (t1, . . . , tm) can be replaced with P (t1, . . . , tm, v, . . . , v)
for some fresh variable v that is added sufficiently often as argument.

Given the BSR(SLR) clause set N , every interpretation A induces a partition
of R into finitely many intervals: the interpretations of all the rational and Skolem
constants c occurring in N yield point intervals that are interspersed with and
enclosed by open intervals.

250 M. Voigt

Definition 5 (A-induced partition of R). Let A be an interpretation and let
r1, . . . , rk be all the values in the set {cA | c ∈ bconsts(N)} in ascending order.

By JA we denote the following partition of R:
JA :=

{
(−∞, r1), [r1, r1], (r1, r2), [r2, r2], . . . , (rk−1, rk), [rk, rk], (rk,+∞)

}
.

The idea of the following equivalence is that equivalent tuples are indistin-
guishable by the constraints that we allow in the BSR(SLR) clause set N .

Definition 6 (JA-equivalence, ∼JA). Let A be an interpretation and let k be
a positive integer. We call two k-tuples r̄, q̄ ∈ R

k JA-equivalent if
(i) for every J ∈ JA and every i, 1 ≤ i ≤ k, we have ri ∈ J if and only if qi ∈ J
and
(ii) for all i, j, 1 ≤ i, j ≤ k we have ri < rj if and only if qi < qj.
The induced equivalence relation on tuples of positive length is denoted by ∼JA .

For every positive k the relation ∼JA induces only finitely many equivalence
classes on the set of all k-tuples over the reals. We intend to show that, if N is
satisfiable, then there is some model A for N which does not distinguish between
different JA-equivalent tuples. First, we need some notion that reflects how the
interpretation A treats a given tuple r̄ ∈ R

m. This role will be taken by the
coloring χA, which maps r̄ to a set of expressions of the form P ā, where P is
some predicate symbol occurring in N and ā is an m′-tuple of domain elements
from SA. The presence of P ā in the set χA(r̄) indicates that A interprets P in
such a way that PA contains the pair 〈ā, r̄〉. In this sense, χA(r̄) comprises all
the relevant information that A contains regarding the tuple r̄.

Definition 7 (A-coloring χA). Given an interpretation A, let Ŝ := {a ∈
SA | a = cA for some c ∈ fconsts(N)} be the set of all domain elements
assigned to free-sort constant symbols by A. The A-coloring of Rm is the mapping
χA : Rm → P{P ā | ā ∈ Ŝm′

and P is an uninterpreted predicate symbol in N}
defined such that for every r̄ ∈ R

m we have P ā ∈ χA(r̄) if and only if 〈ā, r̄〉 ∈ PA.

Having the coloring χA at hand, it is easy to formulate a uniformity property
for a given interpretation A. Two tuples r̄, r̄′ ∈ R

m are treated uniformly by A,
if the colors χA(r̄) and χA(r̄′) agree. Put differently, A does not distinguish r̄
from r̄′.

Definition 8 (JA-uniform interpretation). An interpretation A is JA-uni-
form if χA colors each and every ∼JA-equivalence class uniformly, i.e. for
all ∼JA-equivalent tuples r̄, r̄′ we have χA(r̄) = χA(r̄′).

We next show that there exists a JB-uniform model B of N , if N is satisfi-
able. Since such a model does not distinguish between JB-equivalent m-tuples,
and as there are only finitely many equivalence classes induced by ∼JB , only a
finite amount of information is required to describe B. This insight will give rise
to a decision procedure that nondeterministically guesses how each and every
equivalence class shall be treated by the uniform model.

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 251

Given some model A of N , the following lemma assumes the existence of
certain finite sets Qi with a fixed cardinality which are subsets of the open
intervals in JA. All JA-equivalent m-tuples that can be constructed from the
reals belonging to the Qi are required to be colored identically by χA. The
existence of the Qi is the subject of Lemma 10.

Lemma 9. Let λ be the maximal number of distinct base-sort variables in any
single clause in N . In case of λ < m, we set λ := m. Let A be a model of N .
Let J0, . . . , Jκ be an enumeration of all open intervals in JA sorted in ascending
order. Moreover, let r1, . . . , rκ be all reals in ascending order that define point
intervals in JA, i.e. J0 < [r1, r1] < J1 < . . . < [rκ, rκ] < Jκ. Suppose we are
given a collection of finite sets Q0, . . . , Qκ possessing the following properties:
(i) Qi ⊆ Ji and |Qi| = λ for every i.
(ii) Let Q :=

⋃
i Qi ∪ {r1, . . . , rκ}. For all JA-equivalent m-tuples q̄, q̄′ ∈ Qm we

have χA(q̄) = χA(q̄′).
Then we can construct a model B of N that is JB-uniform and that interprets
the free sort S as a finite set.

Proof sketch.
Claim I: Let μ be a positive integer with μ ≤ λ. Every ∼JA -equivalence class
over R

μ contains some representative lying in Qμ. ♦
Let Ŝ denote the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. We con-

struct the interpretation B as follows: SB := Ŝ; cB := cA for every constant
symbol c; for every uninterpreted predicate symbol P and for all tuples ā ∈ Ŝm′

and s̄ ∈ R
m we pick some tuple q̄ ∈ Qm with q̄ ∼JA s̄, and we define PB so that

〈ā, s̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA. By construction, B is JB-uniform.
It remains to show B |= N . Consider any clause C = Λ ‖ Γ → Δ in N

and let β be any variable assignment ranging over SB ∪ R. Starting from β, we
derive a special variable assignment β̂C as follows. Let x1, . . . , x� be all base-
sort variables in C. By Claim I, there is some tuple 〈q1, . . . , q�〉 ∈ Q� such
that 〈q1, . . . , q�〉 ∼JA

〈
β(x1), . . . , β(x�)

〉
. We set β̂C(xi) := qi for every xi. For

all other base-sort variables, β̂C can be defined arbitrarily. For every free-sort
variable u we set β̂C(u) := β(u).

As A is a model of N , we get A, β̂C |= C. By case distinction on why
A, β̂C |= C holds, one can infer B, β |= C. Consequently, B |= N . ��

In order to show that uniform models always exist for satisfiable clause sets
N , we still need to prove the existence of the sets Qi mentioned in Lemma 9.

Lemma 10. Let A be an interpretation. Let r1, . . . , rκ be all the reals defining
point intervals in JA and let J0, . . . , Jκ be all open intervals in JA such that
J0 < [r1, r1] < J1 < [r2, r2] < . . . < Jκ−1 < [rκ, rκ] < Jκ. Let λ be a positive
integer. There is a collection of finite sets Q0, . . . , Qκ such that Requirements (i)
and (ii) of Lemma 9 are met.

252 M. Voigt

Proof sketch. We employ a more sophisticated variant of the Ramsey result
stated in Lemma 4.
Claim I: There are sets Q0, . . . , Qκ satisfying Requirement (i) of Lemma 9 and
the following conditions. For every Qi, 0 ≤ i ≤ κ, let s〈i,1〉, . . . , s〈i,λ〉 be all
the values in Qi in ascending order. Moreover, we set s〈κ+i,1〉 := ri for every i
with 1 ≤ i ≤ κ. Then, for every mapping : [m] → {0, . . . , 2κ} × [m] we have
χA(s�(1), . . . , s�(m)) = χA(s′

�(1), . . . , s
′
�(m)). ♦

One can show that for every ∼JA -equivalence class S over R
m there is some

mapping : [m] → {0, . . . , 2κ} × [m] such that

(1) whenever (i) = 〈k, �〉 with k > κ + 1 then � = 1, and
(2) for all ascending tuples

s̄0 = 〈s〈0,1〉, . . . , s〈0,m〉〉 ∈ Jm
0 ; . . . ; s̄κ = 〈s〈κ,1〉, . . . , s〈κ,m〉〉 ∈ Jm

κ ;
s̄κ+1 = 〈r〈κ+1,1〉〉 = 〈r1〉; . . . ; s̄2κ = 〈s〈2κ,1〉〉 = 〈rκ〉
we have 〈s�(1), . . . , s�(m)〉 ∈ S, and

(3) for every tuple 〈q1, . . . , qm〉 ∈ S there exist ascending tuples s̄1, . . . , s̄2κ

defined as in (2) such that 〈q1, . . . , qm〉 = 〈s�(1), . . . , s�(m)〉.

Consider any q̄, q̄′ ∈ S. By (2), q̄ can be written into 〈s�(1), . . . , s�(m)〉 for appro-
priate values s〈k,�〉 and q̄′ can be represented by 〈s′

�(1), . . . , s
′
�(m)〉 for appropriate

s′
〈k,�〉. Claim I entails χA(q̄) = χA(〈s�(1), . . . , s�(m)〉) = χA(〈s′

�(1), . . . , s
′
�(m)〉) =

χA(q̄′). ��

Lemmas 9 and 10 together entail the existence of some JA-uniform model
A |= N with a finite free-sort domain SA, if N is satisfiable.

Corollary 11. If N has a model, then it has a model A that is JA-uniform and
that interprets the sort S as some finite set.

Given any interpretation A, the partition JA of the reals is determined by
the rational constants in N and by the values that A assigns to the base-sort
Skolem constants in N . Let d1, . . . , dλ be all the base-sort Skolem constants in N .
If we are given some mapping γ : {d1, . . . , dλ} → R, then γ induces a partition
Jγ , just as A induces JA. We can easily verify whether N has a model B that
is compatible with γ (i.e. B assigns the same values to d1, . . . , dλ) and that is
JB-uniform. Due to the uniformity requirement, there is only a finite number of
candidate interpretations that have to be checked.

Consequently, in order to show decidability of the satisfiability problem for
finite BSR(SLR) clause sets in normal form, the only question that remains to
be answered is whether it is sufficient to consider a finite number of assignments
γ of real values to the Skolem constants in N . Recall that since N is in normal
form, we can divide N into two disjoint parts Ndef and N ′ such that all ground
LA terms occurring in N ′ are either (Skolem) constants or rationals. Moreover,
every clause in Ndef constitutes a definition c = t of some Skolem constant c.
As far as the LA constraints occurring in N ′ are concerned, the most relevant
information regarding the interpretation of Skolem constants is their ordering
relative to one another and relative to the occurring rationals. This means, the

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 253

clauses in N ′ cannot distinguish two assignments γ, γ′ if
(a) for every Skolem constant di and every rational r occurring in N ′ we have
(a.1) γ(di) ≤ r if and only if γ′(di) ≤ r, and (a.2) γ(di) ≥ r if and only if
γ′(di) ≥ r, and
(b) for all di, dj we have that γ(di) ≤ γ(dj) if and only if γ′(di) ≤ γ′(dj).

This observation leads to the following nondeterministic decision procedure
for finite BSR(SLR) clause sets in normal form:

(1) Nondeterministically fix a total preorder � (reflexive and transitive) on the
set of all base-sort Skolem constants and rational constants occurring in N ′.
Define a clause set N� that enforces � for base-sort Skolem constants, i.e.
N� :=

{
c > c′ ‖ → �

∣
∣ c � c′ , either c or c′ or both are Skolem constants

}
.

(2) Check whether there is some mapping γ : {d1, . . . , dλ} → R such that γ is a
solution for the clauses in Ndef ∪N�. (This step relies on the fact that linear
arithmetic over existentially quantified variables is decidable.)

(3) If such an assignment γ exists, define an interpretation B as follows.
(3.1) Nondeterministically define SB to be some subset of fconsts(N), i.e. use

a subset of the Herbrand domain with respect to the free sort S.
(3.2) For every e ∈ fconsts(N) nondeterministically pick some a ∈ SB and set

eB := a.
(3.3) Set dB

i := γ(di) for every di.
(3.4) For every uninterpreted predicate symbol P occurring in N nondetermin-

istically define the set PB in such a way that B is JB-uniform.
(4) Check whether B is a model of N .

Theorem 12. Satisfiability of finite BSR(SLR) clause sets is decidable.

5 Decidability of Satisfiability for BSR(BD) Clause Sets

Similarly to the previous section, we fix some finite BSR(BD) clause set N in
normal form for the rest of this section, and we assume that all uninterpreted
predicate symbols P occurring in N have the sort P : Sm′ × Rm. Moreover, we
assume that all base-sort constants in N are integers. This does not lead to a loss
of generality, as we could multiply all rational constants with the least common
multiple of their denominators to obtain an equisatisfiable clause set in which
all base-sort constants are integers. We could even allow Skolem constants, if
we added clauses stipulating that every such constant is assigned a value that
is (a) an integer and (b) is bounded from above and below by some integer
bounds. Dropping any of these two restrictions leads to an undecidable satisfia-
bility problem. For the sake of simplicity, we do not consider Skolem constants
in this section.

Our general approach to decidability of the satisfiability problem for finite
BSR(BD) clause sets is very similar to the path taken in the previous
section. Due to the nature of the LA constraints in BSR(BD) clause sets,
the employed equivalence relation characterizing indistinguishable tuples has
to be a different one. In fact, we use one equivalence relation �̂κ on the

254 M. Voigt

unbounded space R
m and another equivalence relation �κ on the subspace

(−κ − 1, κ + 1)m for some positive integer κ. Our definition of the relations
�κ and �̂κ is inspired by the notion of clock equivalence used in the context of
timed automata (see, e.g., [1]).

Definition 13 (bounded region equivalence �κ). Let κ be a positive inte-
ger. We define the equivalence relation �κ on (−κ − 1, κ + 1)m such that we get
〈r1, . . . , rm〉 �κ 〈s1, . . . , sm〉 if and only if the following conditions are met:
(i) For every i we have �ri� = �si�, and fr(ri) = 0 if and only if fr(si) = 0.
(ii) For all i, j we have fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

The relation �κ induces only a finite number of equivalence classes over (−κ−1,
κ + 1)m. Over R

m, on the other hand, an analogous equivalence relation �∞
would lead to infinitely many equivalence classes. In order to overcome this
problem and obtain an equivalence relation over R

m that induces only a finite
number of equivalence classes, we use the following compromise.

Definition 14 (unbounded region equivalence �̂κ). Let κ be a positive
integer. We define the equivalence relation �̂κ on R

m in such a way that
〈r1, . . . , rm〉 �̂κ 〈s1, . . . , sm〉 holds if and only if
(i) for every i either ri > κ and si > κ, or ri < −κ and si < −κ, or the following
conditions are met: (i.i) �ri� = �si� and (i.ii) fr(ri) = 0 if and only if fr(si) = 0,
and (ii) for all i, j
(ii.i) if ri, rj > κ or ri, rj < −κ, then ri ≤ rj if and only if si ≤ sj,
(ii.ii) if −κ ≤ ri, rj ≤ κ, then fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

Obviously, the equivalence relations �κ and �̂κ coincide on the subspace
(−κ, κ)m. Over (−κ−1, κ+1)m the relation �κ constitutes a proper refinement
of �̂κ. Figure 1 depicts the equivalence classes induced by �κ and �̂κ in a two-
dimensional setting for κ = 1. We need both relations in our approach.

Fig. 1. Left: partition of the set (−2, 2)2 induced by �1. Right: partition of R2 induced
by �̂1. Every dot, line segment, and white area represents an equivalence class.

Definition 15 (�κ-uniform and �̂κ-uniform interpretations). Let κ be
a positive integer. Consider a interpretation A. We call A �κ-uniform if its
corresponding coloring χA (cf. Definition 7) colors each �κ-equivalence class
over (−κ − 1, κ + 1)m uniformly, i.e. for all tuples q̄, q̄′ ∈ (−κ − 1, κ + 1)m

with q̄ �κ q̄′ we have χA(q̄) = χA(q̄′). We call A �̂κ-uniform if χA colors each
�κ-equivalence class over R

m uniformly.

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 255

The parameter κ will be determined by the base-sort constant in N with
the largest absolute value. If κ is defined in this way, one can show that the
LA constraints occurring in N cannot distinguish between two �̂κ-equivalent
m-tuples of reals. This observation is crucial for the proof of Lemma 16.

In order to prove the existence of �̂κ-uniform models for satisfiable N , we start
from some model A of N and rely on the existence of a certain finite set Q ⊆ [0, 1) of
fractional parts. This set Q can be extended to a set Q̂ ⊆ (−κ−1, κ+1) by addition
of the fractional parts in Q with integral parts k from the range −κ − 1 ≤ k ≤ κ.
Hence, Q̂ contains 2(κ+1) · |Q| reals. We assume that all �κ-equivalent tuples s̄, s̄′

from Q̂m are treated uniformly by A. Put differently, we require χA(s̄) = χA(s̄′).
We choose to formulate this requirement with respect to �κ because of the more
regular structure of its equivalence classes, which facilitates a more convenient way
of invoking Lemma 4. Due to the fact that �κ constitutes a refinement of �̂κ on
the subspace (−κ−1, κ+1)m, and since for every �̂κ-equivalence class Ŝ over Rm

there is some �κ-equivalence class S ⊆ (−κ − 1, κ + 1)m such that S ⊆ Ŝ, we can
use the color χA(r̄) of representative m-tuples r̄ constructed from Q̂ to serve as a
blueprint when constructing a �̂κ-uniform model B.

Lemma 16. Let λ be the maximal number of distinct base-sort variables in any
single clause in N ; in case of λ < m, we set λ := m. Let A be a model of N .
Let κ be the maximal absolute value of any rational occurring in N ; in case this
value is zero, we set κ := 1. Suppose we are given a finite set Q ⊆ [0, 1) of
cardinality λ + 1 such that 0 ∈ Q and for all tuples r̄, s̄ ∈ Q̂m, r̄ �κ s̄ entails
χA(r̄) = χA(s̄), where

Q̂ :=
{
q + k

∣
∣ q ∈ Q and k ∈ {−κ − 1, . . . , 0, . . . , κ}

}
.

Then we can construct a model B of N that is �̂κ-uniform and that interprets
the free sort S as a finite set.

Proof sketch. The construction of B from A is similar to the construction of
uniform models outlined in the proof of Lemma 9.

Claim I: Let μ be a positive integer with μ ≤ λ. For every �̂κ-equivalence class
S over Rμ and every r̄ ∈ S there is some q̄ ∈ S ∩ Q̂μ such that r̄ �̂κ q̄ and for all
i1, i2, i3 with ri1 < −κ and ri2 > κ and −κ ≤ ri3 ≤ κ we have fr(qi1) < fr(qi2) <
fr(qi3). ♦

Let Ŝ denote the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. We con-
struct the interpretation B as follows: SB := Ŝ; cB := cA for every constant
symbol c; for every uninterpreted predicate symbol P occurring in N and for
all tuples ā ∈ Ŝm′

and r̄ ∈ R
m we pick some tuple q̄ ∈ Q̂m in accordance with

Claim I—i.e. q̄ satisfies r̄ �̂κ q̄—and define PB in such a way that 〈ā, r̄〉 ∈ PB if
and only if 〈ā, q̄〉 ∈ PA.

Claim II: The interpretation B is �̂κ-uniform. ♦
It remains to show B |= N . We use the same approach as in the proof for

Lemma 9, this time based on the equivalence relation �̂κ instead of ∼JA . ��

We employ Lemma 4 to prove the existence of the set Q used in Lemma 16.

256 M. Voigt

Lemma 17. Let A be an interpretation and let κ, λ be positive integers with
λ ≥ m. There exists a finite set Q ⊆ [0, 1) of cardinality λ + 1 such that 0 ∈ Q

and for all tuples s̄, s̄′ ∈ Q̂m, s̄ �κ s̄′ entails χA(s̄) = χA(s̄′), where
Q̂ :=

{
q + k

∣
∣ q ∈ Q and k ∈ {−κ − 1, . . . , 0, . . . , κ}

}
.

Proof sketch. One can show that every �κ-equivalence class S over (−κ − 1,
κ + 1)m can be represented by a pair of mappings : [m] → {0, 1, . . . ,m} and
σ : [m] → {−κ − 1, . . . , 0, . . . , κ} such that

(i) for any ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with r0 = 0 we have〈
r�(1) + σ(1), . . . , r�(m) + σ(m)

〉
∈ S, and

(ii) for every tuple 〈s1, . . . , sm〉 ∈ S there is an ascending tuple 〈r0, r1, . . . , rm〉 ∈
[0, 1)m+1 with r0 = 0 such that

〈
s1, . . . , sm

〉
=

〈
r�(1) + σ(1), . . . , r�(m) +

σ(m)
〉
.

Having an enumeration 〈1, σ1〉, . . . , 〈k, σk〉 of pairs of such mappings in which
every �κ-equivalence class over (−κ − 1, κ + 1)m is represented, we construct a
coloring χ̂ : Rm →

(
P{Piā | ā ∈ Ŝm′

and Pi occurs in N}
)k by setting

χ̂(r̄) :=
〈
χA

(
〈r�1(1) + σ1(1), . . . , r�1(m) + σ1(m)〉

)
,

. . . , χA
(
〈r�k(1) + σk(1), . . . , r�k(m) + σk(m)〉

)〉

for every tuple r̄ = 〈r1, . . . , rm〉 ∈ (0, 1)m, where we define r0 to be 0. By virtue
of Lemma 4, there is a set Q′ ⊆ (0, 1) of cardinality λ such that all ascending
tuples 〈r1, . . . , rm〉 ∈ Q′m are assigned the same color by χ. Then Q := Q′ ∪ {0}
is the sought set. ��

Lemmas 16 and 17 together entail the existence of �̂κ-uniform models for
finite satisfiable BSR(BD) clause sets, where κ is defined as in Lemma 16.

Corollary 18. Let κ be defined as in Lemma 16. If N is satisfiable, then it has
a model A that is �̂κ-uniform and that interprets the sort S as some finite set.

By virtue of Corollary 18, we can devise a nondeterministic decision proce-
dure for finite BSR(BD) clause sets N . We adapt the decision procedure for
BSR(SLR) as follows. Since base-sort Skolem constants do not occur in N ,
Steps (1), (2), and (3.3) are skipped. Moreover, Step (3.4) has to be modi-
fied slightly. The interpretations of uninterpreted predicate symbols need to be
constructed in such a way that the candidate interpretation B is �̂κ-uniform for
κ := max

(
{1} ∪ {|c|

∣
∣ c ∈ bconsts(N)}

)
.

Theorem 19. Satisfiability of finite BSR(BD) clause sets is decidable.

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 257

6 Formalizing Reachability for Timed Automata

In this section we show that reachability for timed automata (cf. [1]) can be
formalized using finite BSR(BD) clause sets. In what follows, we fix a finite
sequence x̄ of pairwise distinct clock variables that range over the reals. For
convenience, we occasionally treat x̄ as a set and use set notation such at x ∈ x̄,
|x̄|, and P(x̄). A clock constraint over x̄ is a finite conjunction of LA constraints
of the form true, x � c, or x − y � c, where x, y ∈ x̄, c is an integer and
� ∈{<,≤,=, �=,≥, >}. We denote the set of all clock constraints over x̄ by cc(x̄).
A timed automaton is a tuple 〈Loc, �0, x̄, 〈inv�〉�∈Loc, T 〉, where Loc is a finite
set of locations; �0 ∈ Loc is the initial location; 〈inv�〉�∈Loc is a family of clock
constraints from cc(x̄) where each inv� describes the invariant at location �;
T ⊆ Loc × cc(x̄) × P(x̄) × Loc is the location transition relation within the
automaton, including guards with respect to clocks and the set of clocks that
are being reset when the transition is taken.

Although the control flow of a timed automaton is described by finite means,
the fact that clocks can assume uncountably many values yields an infinite state
space, namely, Loc×[0,∞)|x̄|. Transitions between states fall into two categories:
delay transitions 〈�, r̄〉 ↪→ 〈�, r̄′〉 with r̄′ = r̄ + t for some t ≥ 0 and

[x̄′ �→r̄′] |= inv�[x̄′]; and
location transitions 〈�, r̄〉 ↪→ 〈�′, r̄′〉 for some 〈�, g, Z, �′〉∈T with [x̄ �→r̄] |= g[x̄],

r̄′ = r̄[Z �→ 0], and [x̄′ �→r̄′] |= inv�′ [x̄′].
The operation r̄′ := r̄ + t is defined by setting r′

i := ri + t for every i, and
r̄′ := r̄[Z �→ 0] means that r′

i = 0 for every xi ∈ Z and r′
i = ri for every xi �∈ Z.

In [6] Fietzke and Weidenbach present an encoding of reachability for a given
timed automaton A in terms of first-order logic modulo linear arithmetic.

Definition 20 (FOL(LA) encoding of a timed automaton, [6]). Given a
timed automaton A := 〈Loc, �0, x̄, 〈inv�〉�∈Loc, T 〉, the FOL(LA) encoding of A
is the following clause set NA, where Reach is a (1 + |x̄|)-ary predicate symbol:
the initial clause

∧
x∈x̄ x = 0 ∧ inv�0 [x̄]

∥
∥ → Reach(�0, x̄);

delay clauses z ≥ 0 ∧
∧

x∈x̄ x′ = x + z ∧ inv�[x̄′]∥
∥ Reach(�, x̄) → Reach(�, x̄′)

for every location � ∈ Loc;
transition clauses g[x̄] ∧

∧
x∈Z x′ = 0 ∧

∧
x∈x̄\Z x′ = x ∧ inv�′ [x̄′]∥

∥ Reach(�, x̄) → Reach(�′, x̄′)
for every location transition 〈�, g, Z, �′〉 ∈ T .

Corollary 4.3 in [6] states that for any model of NA, every location � ∈ Loc, and
every tuple r̄ ∈ R

|x̄| we have A, [x̄ �→r̄] |= Reach(�, x̄) if and only if A can reach
the state 〈�, r̄〉 from its initial configuration.

Given any clock constraint ψ ∈ cc(x̄) and some location �, the timed automa-
ton A can reach at least one of the states 〈�, r̄〉 with [x̄�→r̄] |= ψ[x̄] from its
initial configuration if and only if the clause set NA ∪

{
ψ[x̄] ‖Reach(�, x̄) → �

}

is unsatisfiable (cf. Proposition 4.4 in [6]).

258 M. Voigt

Next, we argue that the passage of time does not have to be formalized as
a synchronous progression of all clocks. Instead, it is sufficient to require that
clocks progress in such a way that their valuations do not drift apart excessively.
Although this weakens the semantics slightly, reachability remains unaffected.

Lemma 21. Consider any delay clause
C := z ≥ 0 ∧

∧
x∈x̄ x′ = x + z ∧ inv�[x̄′]

∥
∥ Reach(�, x̄) → Reach(�, x̄′)

that belongs to the FOL(LA) encoding of some timed automaton A := 〈Loc, �0, x̄,
〈inv�〉�∈Loc, T 〉. Let λ be some positive integer. Let M be a finite clause set cor-
responding to the following formula

ϕ :=
∧

x1,x2∈x̄

∧

−λ≤k≤λ

(
x1 − x2 ≤ k ↔ x′

1 − x′
2 ≤ k

)

∧
(
x1 − x2 ≥ k ↔ x′

1 − x′
2 ≥ k

)

∧
∧

x∈x̄

x′ ≥ x ∧ inv�[x̄′]
∥
∥ Reach(�, x̄) → Reach(�, x̄′).

For every �λ-uniform interpretation A we have A, [x̄ �→r̄, x̄′ �→r̄′] |= C for all
tuples r̄, r̄′ ∈ [0, λ + 1)|x̄| if and only if A, [x̄ �→q̄, x̄′ �→q̄′] |= M holds for all tuples
q̄, q̄′ ∈ [0, λ + 1)|x̄|.

Our approach to decidability of BSR(BD)-satisfiability exploits the observa-
tion that the allowed constraints cannot distinguish between tuples from one and
the same equivalence class with respect to �̂λ, which induces only a finite num-
ber of such classes. Decidability of the reachability problem for timed automata
can be argued in a similar fashion, using a suitable equivalence relation on clock
valuations [1]. We refer to the induced classes of indistinguishable clock valua-
tions over R

|x̄|, which are induced by a given timed automaton A = 〈Loc, �0, x̄,
〈inv�〉�∈Loc, T 〉, as TA regions of A. Figure 2 illustrates the TA regions for some

〈0, 0〉

Fig. 2. Partition of the set [0, ∞)2 into classes of clock valuations that cannot be distin-
guished by a timed automaton with two clocks in which the absolute value of integer
constants occurring in location invariants and transition guards does not exceed 2.
Every dot, line segment, and white area represents an equivalence class.

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 259

timed automaton with two clocks and in which all integer constants have an
absolute value of at most 2. For every TA region R ⊆ R

2 of such an automaton,
there is at least one representative r̄ ∈ R which lies in [0, 5)2.

Let k be the maximal absolute value of any integer constant occur-
ring in the invariants and the transition guards of A. Moreover, let
x1, . . . , x� be the clock variables in x̄. Consider a constraint of the form

ψ := x1 − x2 = k ∧ x2 − x3 = k ∧ . . . ∧ x�−1 − x� = k.
We observe that ψ entails x1−x� = (�−1) ·k. Of course, ψ can also be conjoined
with the constraint x1 < −k, say, which entails x� < −k − (�−1) ·k. This exam-
ple illustrates that one can combine several difference constraints x − y � c over
different clock variables in such a way that bounds are entailed which cannot be
formulated with a single constraint u − v � d with |d| ≤ k. However, all of these
combined constraints can be equivalently represented with atomic constraints
x − y � c or x � c, where |c| ≤ |x̄| · k.

In order to decide reachability for A, it is sufficient to consider a bounded
subspace of R

|x̄|. More precisely, there exists a computable integer λ, namely
|x̄| ·k, such that any valuation r̄ of A’s clocks can be projected to some valuation
r̄′ ∈ [0, λ + 1)|x̄| that A cannot distinguish from r̄. In the subspace [0, λ + 1)|x̄|,
A’s TA regions coincide with (finite unions of) equivalence classes with respect
to �λ. In fact, the quotient [0, λ+1)|x̄|/�λ

constitutes a refinement of the division
of [0, λ + 1)|x̄| into TA regions. Since any pair 〈�, r̄〉 with r̄ ∈ R for some TA
region R is reachable if and only if all pairs 〈�, r̄′〉 with r̄ ∈ R are reachable,
any minimal model A of the encoding NA is �λ-uniform (where minimality of
A refers to the minimality of the set ReachA with respect to set inclusion). This
is why Lemma 21 may focus on �λ-uniform models.

This means, given the FOL(LA) encoding NA of A, we obtain a BSR(BD)
encoding N ′

A of reachability with respect to A in the following two steps:
(1) Replace every delay clause in NA with a corresponding finite set of clauses
M in accordance with Lemma 21, where we set λ := |x̄| · k.
(2) Conjoin the constraints 0 ≤ x ∧ x < κ for κ := λ + 1 = |x̄| · k + 1 to every
constraint in which a base-sort variable x occurs.
Since any �̂λ+1-uniform model of N ′

A is �λ-uniform over the subspace
(−λ − 1, λ + 1)|x̄|, Lemma 21 entails that N ′

A faithfully encodes reachability
for A.

Theorem 22. The reachability problem for a given timed automaton can be
expressed in terms of satisfiability of a finite BSR(BD) clause set.

7 Discussion

We have shown that satisfiability for the clause fragments BSR(SLR) and
BSR(BD) is decidable. Both fragments hierarchically combine the Bernays–
Schönfinkel–Ramsey fragment over uninterpreted predicate symbols with
restricted forms of linear arithmetic over the reals.

Since the syntax of BSR(SLR) allows only a very restricted form of arithmetic
on universally quantified variables, this part of the fragment seems to reduce to

260 M. Voigt

the theory of (dense) orderings. Except for density, all characteristic properties
of orderings (e.g. transitivity) are already definable in the non-extended BSR
fragment. On the other hand, regarding existentially quantified variables—which
appear in the form of Skolem constants—, BSR(SLR) allows linear arithmetic
expressions without notable restrictions, as long as no universally quantified
variables are involved in the arithmetic expressions, and as long as no existential
quantifier lies within the scope of a universal quantifier. Unfortunately, a more
liberal syntax quickly leads to undecidability, as already pointed out in Sect. 1.

With BSR(BD) we have investigated another decidable fragment that is
a hierarchic combination of the Bernays–Schönfinkel–Ramsey fragment with
restricted arithmetic over the reals. Since difference constraints have been of
use in the analysis and verification of timed systems, the idea suggested itself
that BSR(BD) may find applications in this area. Indeed, we have seen that
reachability for timed automata can be expressed with BSR(BD), although not
entirely in a straightforward fashion. To this end, we have slightly weakened the
usual notion of synchronous progression of all clocks. Our modifications do not
affect the reachability relation. It is to be expected that BSR(BD) lends itself
to more sophisticated applications in the area of timed systems or other fields.

Acknowledgement. The present author is indebted to the anonymous reviewers for
their constructive criticism and valuable suggestions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

3. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38574-2 3

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2005). doi:10.1007/11609773 28

5. Downey, P.J.: Undecidability of Presburger arithmetic with a single monadic predi-
cate letter. Technical report, Center for Research in Computer Technology, Harvard
University (1972)

6. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012)

7. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

8. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. A Wiley-
Interscience publication, New York (1990)

9. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays-
Schönfinkel-Ramsey fragment with simple linear integer arithmetic. In: Automated
Deduction (CADE-26) (to appear)

http://dx.doi.org/10.1007/978-3-642-38574-2_3
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/978-3-642-02658-4_25

Bernays–Schönfinkel–Ramsey Fragment with (BD) Constraints 261

10. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of Presburger
arithmetic with unary uninterpreted predicates is undecidable. ArXiv preprint,
arXiv:1703.01212 [cs.LO] (2017)

11. Kroening, D., Strichman, O.: Decision Procedures. Texts in Theoretical Computer
Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-50497-0

12. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment
over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012)

13. Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification
of timed automata via satisfiability checking. In: Damm, W., Olderog, E.-R. (eds.)
FTRTFT 2002. LNCS, vol. 2469, pp. 225–243. Springer, Heidelberg (2002). doi:10.
1007/3-540-45739-9 15

14. Pratt, V.R.: Two Easy Theories Whose Combination is Hard. Technical report,
Massachusetts Institute of Technology (1977)

15. Putnam, H.: Decidability and essential undecidability. J. Symbolic Logic 22(1),
39–54 (1957)

16. Voigt, M.: The Bernays-Schönfinkel-Ramsey Fragment with Bounded Difference
Constraints over the Reals is Decidable. ArXiv preprint, arXiv:1706.08504 [cs.LO]
(2017)

17. Voigt, M., Weidenbach, C.: Bernays-Schönfinkel-Ramsey with Simple Bounds is
NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO] (2015)

http://arxiv.org/abs/1703.01212
http://dx.doi.org/10.1007/978-3-662-50497-0
http://dx.doi.org/10.1007/978-3-662-50497-0
http://dx.doi.org/10.1007/3-540-45739-9_15
http://dx.doi.org/10.1007/3-540-45739-9_15
http://arxiv.org/abs/1706.08504
http://arxiv.org/abs/1501.07209

Properties and Combinations of Logic

First-Order Interpolation of Non-classical Logics
Derived from Propositional Interpolation

Matthias Baaz(B) and Anela Lolic(B)

Institut Für Diskrete Mathematik und Geometrie 104,
Technische Universität Wien, Vienna, Austria

{baaz,anela}@logic.at

Abstract. This paper develops a general methodology to connect
propositional and first-order interpolation. In fact, the existence of suit-
able skolemizations and of Herbrand expansions together with a propo-
sitional interpolant suffice to construct a first-order interpolant. This
methodology is realized for lattice-based finitely-valued logics, the top
element representing true and for (fragments of) infinitely-valued first-
order Gödel logic, the logic of all linearly ordered constant domain Kripke
frames.

Keywords: Proof theory · Interpolation · Lattice-based many-valued
logics · Gödel logics

1 Introduction

Ever since Craig’s seminal result on interpolation [8], interpolation properties
have been recognized as important desiderata of logical systems. Craig interpo-
lation has many applications in mathematics and computer science, for instance
consistency proofs, model checking [18], proofs in modular specifications and
modular ontologies. Recall that a logic L has interpolation if whenever A ⊃ B
holds in L there exists a formula I in the common language of A and B such
that A ⊃ I and I ⊃ B both hold in L.

Propositional interpolation properties can be determined and classified with
relative ease using the ground-breaking results of Maksimova cf. [12–14]. This
approach is based on an algebraic analysis of the logic in question. In contrast
first-order interpolation properties are notoriously hard to determine, even for
logics where propositional interpolation is more or less obvious. For example it
is unknown whether GQF

[0,1] (first-order infinitely-valued Gödel logic) interpolates

(cf [1]) and even for MCQF, the logic of constant domain Kripke frames of 3
worlds with 2 top worlds (an extension of MC), interpolation proofs are very
hard cf. Ono [17]. This situation is due to the lack of an adequate algebraization
of non-classical first-order logics.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 265–280, 2017.
DOI: 10.1007/978-3-319-66167-4 15

http://orcid.org/0000-0002-7815-2501
http://orcid.org/0000-0002-4753-7302

266 M. Baaz and A. Lolic

In this paper we present a proof theoretic methodology to reduce first-order
interpolation to propositional interpolation:

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

⎫
⎬

⎭
→ first-order

interpolation.

The construction of the first-order interpolant from the propositional inter-
polant follows this procedure:

1. Develop a validity equivalent skolemization replacing all strong quantifiers
(negative existential or positive universal quantifiers) in the valid formula
A ⊃ B to obtain the valid formula A1 ⊃ B1.

2. Construct a valid Herbrand expansion A2 ⊃ B2 for A1 ⊃ B1. Occurrences of
∃xB(x) and ∀xA(x) are replaced by suitable finite disjunctions

∨
B(ti) and

conjunctions
∧

B(ti), respectively.
3. Interpolate the propositionally valid formula A2 ⊃ B2 with the propositional

interpolant I∗:
A2 ⊃ I∗ and I∗ ⊃ B2

are propositionally valid.
4. Reintroduce weak quantifiers to obtain valid formulas

A1 ⊃ I∗ and I∗ ⊃ B1.

5. Eliminate all function symbols and constants not in the common language
of A1 and B1 by introducing suitable quantifiers in I∗ (note that no Skolem
functions are in the common language, therefore they are eliminated). Let I
be the result.

6. I is an interpolant for A1 ⊃ B1. A1 ⊃ I and I ⊃ B1 are skolemizations of
A ⊃ I and I ⊃ B. Therefore I is an interpolant of A ⊃ B.

We apply this methodology to lattice based finitely-valued logics and the
weak quantifier and subprenex fragments of infinitely-valued first-order Gödel
logic.

Note that finitely-valued first-order logics admit variants of Maehara’s
Lemma and therefore interpolate if all truth values are quantifier free defin-
able [16]. For logics where not all truth-values are represented by quantifier-free
formulas this argument does not hold, which explains the necessity of different
interpolation arguments for e.g. MCQF (the result for MCQF is covered by our
framework, cf. Example 2).

2 Lattice-Based Finitely-Valued Logics

We consider finite lattices L = 〈W,≤,∪,∩, 0, 1〉 where ∪,∩, 0, 1 are supremum,
infimum, minimal element, maximal element and 0 �= 1, [7].

Definition 1. A propositional language for L, L0(L, V), V ⊆ W is based on
propositional variables xn, n ∈ N, truth constants Cv for v ∈ V , ∨, ∧, ⊃.

First-Order Interpolation of Non-classical Logics Derived 267

Definition 2. A first-order language for L, L1(L, V), V ⊆ W is based on the
usual first-order atoms, truth constants Cv for v ∈ V , ∨,∧,⊃,∃,∀.

We write ⊥ for C0, � for C1, ¬A for A ⊃ ⊥ if 0 ∈ V .

Definition 3. →: W × W ⇒ W for L = 〈W,≤,∪,∩, 0, 1〉 is an admissible
implication iff

u → v = 1 iff u ≤ v,

if u ≤ v, f ≤ g then v → f ≤ u → g.

Definition 4. The propositional logic L0(L, V,→) based on L0(L, V), L =
〈 W,≤,∪,∩, 0, 1 〉, → an admissible implication is defined as follows: Φ0 is a
propositional valuation iff

1. Φ0(x) ∈ W for a propositional variable x,
2. Φ0(Cv) = v,
3. Φ0(A ∨ B) = Φ0(A) ∪ Φ0(B),
4. Φ0(A ∧ B) = Φ0(A) ∩ Φ0(B),
5. Φ0(A ⊃ B) = Φ0(A) → Φ0(B).

|=0 A iff ∀Φ0 : Φ0(A) = 1 L(L, V,→) = {A | |=0 A}
we write A1 . . . An |=0 B iff for all Φ0 Φ0(A1) = 1 and . . . and Φ0(An) = 1
implies Φ0(B) = 1.

Definition 5. The first-order logic L1(L, V,→) based on L1(L, V), L = 〈W,
≤,∪,∩, 0, 1〉, → an admissible implication is defined as follows: Φ1 is a first-
order valuation into a structure 〈DΦ1 , ΩΦ1〉, DΦ1 �= ∅ iff

1. Φ1(x) ∈ DΦ1 for a variable x,
2. Φ1(Cv) = v,
3. Φ1 is calculated for terms and other atoms according to ΩΦ1 .
4. Φ1(A ∨ B) = Φ1(A) ∪ Φ1(B),
5. Φ1(A ∧ B) = Φ1(A) ∩ Φ1(B),
6. Φ1(A ⊃ B) = Φ1(A) → Φ1(B),
7. Φ1(∃xA(x)) = sup(Φ1(A(d) | d ∈ DΦ1),
8. Φ1(∀xA(x)) = inf(Φ1(A(d)) | d ∈ DΦ1).

|=1 A iff ∀Φ1 : Φ1(A) = 1 L1(L, V,→) = {A | |=1 A}
We write A1 . . . An |= B iff for all Φ1 Φ1(A1) = 1 and . . . and Φ1(An) = 1
implies Φ1(B) = 1.

1 is the only value denoting truth, this justifies the chosen definitions. We omit
the superscript in |=0, |=1 if the statement holds both for propositional and first-
order logic. Quantifier-free first-order formulas can be identified with proposi-
tional formulas by identifying different atoms with different variables.

268 M. Baaz and A. Lolic

Proposition 1. For all logics the following hold

i. |= A ⊃ A,
ii. If |= B then |= A ⊃ B,
iii. If |= A ⊃ B and |= C ⊃ D then |= (B ⊃ C) ⊃ (A ⊃ D).

Example 1. L = 〈{0, 1, a},≤,∪,∩, 0, 1〉, 0 < a < 1

u → v =

⎧
⎪⎨

⎪⎩

1 u ≤ v

0 u = 1 and v = 0
a else

L0(L, {0, 1},→) does not interpolate as

|=0 (x ∧ (x ⊃ ⊥)) ⊃ (y ∨ (y ⊃ ⊥))

does not interpolate, as the only possible interpolant is a constant with value a,
as there are no common variables in the antecedent and the succedent.

L0(L, {0, a},→) interpolates as all truth constants are representable, � by
⊥ ⊃ ⊥ (c.f. Sect. 5).

Example 2. Finite propositional and constant-domain Kripke frames can be
understood as lattice-based finitely valued logics: Consider upwards closed sub-
sets Γ ⊆ W , W is the set of worlds, and order them by inclusion. A formula A
is assigned the truth value Γ iff A is true at exactly the worlds in Γ .

The constant-domain intuitionistic Kripke frame K in Fig. 1 is represented
by the lattice L in Fig. 2.

α

γβ

〈{α, β, γ}, ≤∗〉

Fig. 1. Constant-domain intuitionistic Kripke frame K.

The propositional language is given by

L0

(

L,

{(
0 0

0

)})

and the first-order language is given by

L1

(

L,

{(
0 0

0

)})

.

First-Order Interpolation of Non-classical Logics Derived 269

1 1
1

)

1 1
0

)

0 1
0

)
1 0

0

)

0 0
0

)

≤

≤ ≤

≤ ≤

Fig. 2. Lattice L.

The admissible implication of K is

u → v =

{
1 u ≤ v

v else

≤ determines the lattice.

MC = L0

(

L,

{(
0 0

0

)}

,→
)

is the set of valid propositional sentences and

MCQF = L1

(

L,

{(
0 0

0

)}

,→
)

the set of valid first-order sentences.
Propositional interpolation is easily demonstrated for MC, one of the seven

intermediate logics which admit propositional interpolation [13]. Previous proofs
for the interpolation of MCQF are quite involved, [17]. In fact, in Sect. 5, Exam-
ple 5 we will show that this interpolation result is a corollary of the main theorem
of this paper.

270 M. Baaz and A. Lolic

Definition 6. The occurrence of a formula ◦ in a context C(◦) is inductively
defined as

– C(◦) is ◦: the occurrence of ◦ is positive,
– C(◦) is E(◦)�F , F�E(◦), F ⊃ E(◦), QxE(◦), where � ∈ {∧,∨}, Q ∈ {∃,∀},

E,F are formulas: the occurrence of ◦ is positive iff the occurrence of ◦ in
E(◦) is positive, negative iff the occurrence of ◦ in E(◦) is negative,

– C(◦) is E(◦) ⊃ F , where E,F are formulas: the occurrence of ◦ is positive
iff the occurrence of ◦ in E(◦) is negative, negative iff the occurrence of ◦ in
E(◦) is positive.

Definition 7. If a ∀ quantifier or an ∃ quantifier occurs positively or negatively,
respectively, it is referred to as a strong quantifier. If a ∀ quantifier or an ∃
quantifier occurs negatively or positively, respectively, it is referred to as a weak
quantifier.

Due to the general definition of → we have to prove the following Lemma.

Lemma 1. For formulas A, B and a corresponding context C(◦) it holds

if |= A ⊃ B then |= C(A) ⊃ C(B)

if ◦ occurs positively and

if |= A ⊃ B then |= C(B) ⊃ C(A)

if ◦ occurs negatively.

Proof. We proof the lemma by induction on the structure of the context C(◦).

1. If C(◦) is ◦ or Cv, the claim holds trivially.
2. If C(◦) is E(◦) ∧ F and ◦ occurs positively in E(◦), then ◦ occurs positively

in E(◦) ∧ F .
If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= E(A) ⊃ E(B)

and
if |= E(A) ⊃ E(B) then |= E(A) ∧ F ⊃ E(B) ∧ F.

If C(◦) is E(◦) ∧ F and ◦ occurs negatively in E(◦), then ◦ occurs negatively
in E(◦) ∧ F .

If |= A ⊃ B then |= C(B) ⊃ C(A)

as by induction hypothesis

if |= A ⊃ B then |= E(B) ⊃ E(A)

and
if |= E(B) ⊃ E(A) then |= E(B) ∧ F ⊃ E(A) ∧ F.

First-Order Interpolation of Non-classical Logics Derived 271

Analogously if C(◦) is E ∧ F (◦).
3. If C(◦) is E(◦) ∨ F and ◦ occurs positively in E(◦), or ◦ occurs negatively in

E(◦), similar to 2, analogously if C(◦) is E ∨ F (◦).
4. If C(◦) is E(◦) ⊃ F and ◦ occurs positively in E(◦) then ◦ occurs negatively

in E(◦) ⊃ F .

If |= A ⊃ B then |= C(B) ⊃ C(A)

as by induction hypothesis

if |= A ⊃ B then |= E(A) ⊃ E(B).

The claim follows by Proposition 1.
If C(◦) is E(◦) ⊃ F and ◦ occurs negatively in E(◦) then ◦ occurs positively
in E(◦) ⊃ F .

If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= E(B) ⊃ E(A).

The claim follows by Proposition 1.
If C(◦) is E ⊃ F (◦) and ◦ occurs positively in F (◦) or ◦ occurs negatively in
F (◦) similar to 2.

5. If C(◦) is ∃xD(◦) and ◦ occurs positively in D(◦) then ◦ occurs positively in
∃xD(◦).

If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= D(A) ⊃ D(B).

and
if |= D(A) ⊃ D(B) then |= ∃xD(A) ⊃ ∃xD(B).

Analogously if C(◦) is ∃xD(◦) and ◦ occurs negatively in D(◦).
6. If C(◦) is ∀xD(◦) and ◦ occurs positively in D(◦) then ◦ occurs positively in

∀xD(◦) similar to 5.

3 Skolemization

We use skolemization to replace strong quantifiers in valid formulas such that
the original formulas can be recovered. Note that several Skolem functions for
the replacement of a single quantifier are necessary to represent proper suprema
and proper infima. We fix L(L, V,→), L = 〈W,≤,∪,∩, 0, 1〉.

272 M. Baaz and A. Lolic

Definition 8. Consider a formula B in a context A(B). Then its skolemization
A(sk(B)) is defined as follows:

Replace all strong quantifier occurrences (positive occurrence of ∀ and nega-
tive occurrence of ∃) (note that no quantifiers in A bind variables in B) of the
form ∃xC(x) (or ∀xC(x)) in B by

∨|W |
i=1 C(fi(x)) (or

∧|W |
i=1 C(fi(x))), where fi

are new function symbols and x are the weakly quantified variables of the scope.
Skolem axioms are closed sentences

∀x(∃yA(y, x) ⊃
|W |∨

i=1

A(fi(x), x) and ∀x(
|W |∧

i=1

A(fi(x), x) ⊃ ∀yA(y, x))

where fi are new function symbols (Skolem functions).

Lemma 2. 1. If |=1 A(B) then |=1 A(sk(B)).
2. If S1 . . . Sk |=1 A(sk(B)) then S1 . . . Sk |=1 A(B), for suitable Skolem axioms

S1 . . . Sk.
3. If S1 . . . Sk |=1 A, where S1 . . . Sk are Skolem axioms and A does not contain

Skolem functions then |=1 A.

Proof. 1. Note that

if |= A(D) then |= A(D ∨ D)

and
if |= A(D) then |= A(D ∧ D).

Use Lemma 1 and

|=1 D′(t) ⊃ ∃xD′(x), |=1 ∀xD′(x) ⊃ D′(t).

2. Use Lemma 1 and suitable Skolem axioms to reconstruct strong quantifiers.
3. Assume �|=1 A. As usual, we have to extend the valuation to the Skolem

functions to verify the Skolem axioms. There is a valuation in 〈DΦ1 , ΩΦ1〉 s.t.
Φ1(A) �= 1. Using at most |W | Skolem functions and AC we can always pick
witnesses as values for the Skolem functions such that the first-order suprema
and infima are reconstructed on the propositional level. (AC is applied to sets
of objects where the corresponding truth value is taken.)

sup{Φ1(B(fi(t), t)) | 1 ≤ i ≤ |W |} =

sup{Φ1(B(d, t) | d ∈ DΦ1} = Φ1(∃yB(y, t))

and
inf{Φ1(B(fi(t), t)) | 1 ≤ i ≤ |W |} =

inf{Φ1(B(d, t)) | d ∈ DΦ1} = Φ1(∀yB(y, t)).

Example 3. We continue with the logic MCQF introduced in Example 2. For the
given logic

∃xB(x) ⊃ sk(∃y∀zC(y, z)) ≡ ∃xB(x) ⊃ ∃y
5∧

i=1

C(y, fi(y)).

First-Order Interpolation of Non-classical Logics Derived 273

4 Expansions

Expansions, first introduced in [15], are natural structures representing the
instantiated variables for quantified formulas. They record the substitutions for
quantifiers in an effort to recover a sound proof of the original formulation of
Herbrand’s Theorem. As we work with skolemized formulas, in this paper we we
consider only expansions for formulas with weak quantifiers. Consequently the
arguments are simplified.

In the following we assume that a constant c is present in the language
and that t1, t2, . . . is a fixed ordering of all closed terms (terms not containing
variables).

Definition 9. A term structure is a structure 〈D,Ω〉 such that D is the set of
all closed terms.

Proposition 2. Let Φ1(∃xA(x)) = υ in a term structure. Then Φ1(∃xA(x) =
Φ1(

∨n
i=1 A(ti)) for some n. Analogously for ∀xA(x), i.e. let Φ1(∀xA(x)) = υ in

a term structure, then Φ1(∀xA(x)) = Φ1(
∧n

i=1 A(ti)) for some n.

Proof. Only finitely many truth values exists, therefore there is an n such that
the valuation becomes stable on

∨n
i=1 A(ti) (

∧n
i=1 A(ti)).

Definition 10. Let E be a formula with weak quantifiers only. The n-th expan-
sion En of E is obtained from E by replacing inside out all subformulas ∃xA(x)
(∀xA(x)) by

∨n
i=1 A(ti) (

∧n
i=1 A(ti)). En is a Herbrand expansion iff En is valid.

In case there are only m terms Em+k = Em.

Lemma 3. Let Φ1(E) = υ in a term structure. Then there is an n such that for
all m ≥ n Φ1(Em) = υ.

Proof. We apply Proposition 2 outside in to replace subformulas ∃x A(x) (∀x
A(x)) stepwise by

∨n
i=1 A(ti) (

∧n
i=1 A(ti)) without changing the truth value. The

disjunctions and conjunctions can be extended to common maximal disjunctions
and conjunctions.

Theorem 1. Let E contain only weak quantifiers. Then |= E iff there is a
Herbrand expansion En of E.

Proof. ⇒: Assume |= E but �|= En for all n. Let Γi = {Φ0
i,v|Φ0

i,v(Ei) �= 1} and
define Γ =

⋃
Γi. Note that the first index in Φ0

i,v relates to the expansion level and
the second index to all counter-valuations at this level. Assign a partial order < to
Γ by Φ0

i,v < Φ0
j,w for Φ0

i,v ∈ Γi, Φ0
j,w ∈ Γj and i < j iff Φ0

i,v and Φ0
j,w coincide on

the atoms of Ei. By König’s Lemma there is an infinite branch Φ0
1,i1

< Φ0
2,i2

<
Define a term structure induced by an evaluation on atoms P :

Φ1(P) =

{
υ P occurs in some En and Φn,in(P) = υ

1 else

274 M. Baaz and A. Lolic

Φ1(E) �= 1 by Lemma 3.
⇐: Use Lemma 1 and |= A(t) ⊃ ∃xA(x) and |= ∀xA(x) ⊃ A(t). Note that

if |= A(D ∨ D) then |= A(D)

and
if |= A(D ∧ D) then |= A(D).

Example 4. Consider the lattice in Example 2, Fig. 2 and the term ordering
c < d. The expansion sequence of P (c, d, d) ⊃ ∃xP (c, x, d) is

E1 = P (c, d, d) ⊃ P (c, c, d), E2 = P (c, d, d) ⊃ P (c, c, d) ∨ P (c, d, d), E2+k = E2.

The second formula is a Herbrand expansion.

5 The Interpolation Theorem

Theorem 2. Interpolation holds for L0(L, V,→) iff interpolation holds for
L1(L, V,→).

Proof. ⇐: trivial.
⇒: Assume A ⊃ B ∈ L(L, V) and |= A ⊃ B.

|= sk(A) ⊃ sk(B) by Lemma 2 1.

Construct a Herbrand expansion AH ⊃ BH of sk(A) ⊃ sk(B) by Theorem 1.
Construct the propositional interpolant I∗ of AH ⊃ BH ,

|= AH ⊃ I∗ and |= I∗ ⊃ BH .

Use Lemma 1 and

|= A(t) ⊃ ∃xA(x), |= ∀xA(x) ⊃ A(t)

to obtain
|= sk(A) ⊃ I∗ and |= I∗ ⊃ sk(B)

Order all terms f(t) in I∗ by inclusion where f is not in the common language.
Let f∗(t) be the maximal term.

i. f∗ is not in sk(A). Replace f∗(t) by a fresh variable x to obtain

|= sk(A) ⊃ I∗{x/f∗(t)}.

But then also
|= sk(A) ⊃ ∀xI∗{x/f∗(t)}

and
|= ∀xI∗{x/f∗(t)} ⊃ sk(B)

by
|= ∀xI∗{x/f∗(t)} ⊃ I∗.

First-Order Interpolation of Non-classical Logics Derived 275

ii. f∗ is not in sk(B). Replace f∗(t) by a fresh variable x to obtain

|= I∗{x/f∗(t)} ⊃ sk(B).

But then also
|= ∃xI∗{x/f∗(t)} ⊃ sk(B)

and
|= sk(A) ⊃ ∃xI∗{x/f∗(t)}

by
|= I∗ ⊃ ∃xI∗{x\f∗(t)}.

Repeat this procedure till all functions and constants not in the common lan-
guage (among them the Skolem functions) are eliminated from the middle for-
mula. Let I be the result. I is an interpolant of sk(A) ⊃ sk(B). By Lemma 2 2,3
I is an interpolant of A ⊃ B. For a similar construction for classical first-order
logic see Chap. 8.2 of [4].

Corollary 1. If interpolation holds for L0(L, V,→), |= A ⊃ B and A ⊃ B
contains only weak quantifiers, then there is a quantifier-free interpolant with
common predicates for A ⊃ B.

Remark 1. Corollary 1 cannot be strengthened to provide a quantifier-free inter-
polant with common predicate symbols and common function symbols for
A ⊃ B. Consider

Q∀A(x1, f1(x1), x2, f2(x1, x2), . . .) ⊃ Q∃A(g1, y1, g2(y1), y2, g3(y1, y2), . . .),

where Q∀ = ∀x1∀x2 . . . and Q∃ = ∃y1∃y2 This is the skolemization of

∀x1∃x′
1∀x2 . . . A(x1, x

′
1, x2, . . .) ⊃ ∀x1∃x′

1∀x2 . . . A(x1, x
′
1, x2, . . .),

where ∀x1∃x′
1∀x2∃x′

2 . . . A(x1, x
′
1, x2, x

′
2, . . .) is the only possible interpolant

modulo provable equivalence with common predicate and function symbols.

Example 5. Example 2 continued. For the given logic we calculate the interpolant
for

∃x(B(x) ∧ ∀yC(y)) ⊃ ∃x(A(x) ∨ B(x)).

1. Skolemization

5∨

i=1

(B(ci) ∧ ∀yC(y)) ⊃ ∃x(A(x) ∨ B(x)).

2. Herbrand expansion

5∨

i=1

(B(ci) ∧ C(c1)) ⊃
5∨

i=1

(A(ci) ∨ B(ci)).

276 M. Baaz and A. Lolic

3. Propositional interpolant

5∨

i=1

(B(ci) ∧ C(c1)) ⊃
5∨

i=1

B(ci)
5∨

i=1

B(ci) ⊃
5∨

i=1

(A(ci) ∨ B(ci)).

4. Back to the Skolem form

5∨

i=1

(B(ci) ∧ ∀yC(y)) ⊃
5∨

i=1

B(ci)
5∨

i=1

B(ci) ⊃ ∃x(A(x) ∨ B(x)).

5. Elimination of function symbols and constants not in the common language
from

∨5
i=1 B(ci). Result:

∃z1 . . . ∃z5
∨

B(zi).

6. Use the Skolem axiom

∃x(B(x) ∧ ∀yC(y)) ⊃
5∨

i=1

B(ci) ∧ ∀yC(y)

to reconstruct the original first-order form.
7. The Skolem axiom can be deleted.

Proposition 3. Let L = 〈W,≤,∪,∩, 0, 1〉.
i. L0(L, ∅,→) (and therefore L1(L, ∅,→)) never has the interpolation property.
ii. L0(L,W,→) (and therefore L1(L,W,→)) always has the interpolation prop-

erty.

Proof. i. |=0 x ⊃ (y ⊃ y) and the only possible interpolant is �, which is not
variable-free definable.

ii. Consider |= A(x1, . . . , xn, y1, . . . , ym) ⊃ B(y1 . . . yn, z1, . . . zo),

I =
∨

〈vi1 ,...vin 〉∈W×W

A(Cvi1
, . . . , Cvin

, y1, . . . , ym)

is an interpolant as

|= A(x1, . . . , xn, y1, . . . , ym) ⊃ I

and
|= I ⊃ B(y1 . . . yn, z1, . . . zo)

by substitution.

Proposition 3 ii. makes it possible to characterize all extensions of a lattice
based many-valued logic which admit first-order interpolation.

SPECTRUM(L,→) = {V |L1(L, V,→) interpolates}.

First-Order Interpolation of Non-classical Logics Derived 277

Example 6. L = 〈{0, 1},≤,∪,∩, 0, 1〉 the lattice of classical logic, → classical
implication.

SPECTRUM(L,→) = {{0}, {1}, {0, 1}}
This is the maximal possible spectrum by Proposition 3 i.

L0(L, {0},→) and L0(L, {0, 1},→) interpolate as all truth constants are rep-
resentable by closed formulas, therefore L1(L, {0},→) and L1(L, {0, 1},→) inter-
polate (Craig’s result, which does however not cover L1(L, {1},→)).

To show that L0(L, {1},→) interpolates first note that in general
∨

i

Ei ⊃
∧

j

Fj

interpolates iff there are interpolants

Ei ⊃ Iij Iij ⊃ Fj .

∧
j

∨
i Iij is a suitable interpolant. Now use the value presenting transformations

D(A ∧ B ⊃ C) ⇒ D(A ⊃ C ∨ B ⊃ C)

D(A ∨ B ⊃ C) ⇒ D(A ⊃ C ∧ B ⊃ C)

D((A ⊃ B) ⊃ C) ⇒ D(C ∨ (A ∧ (B ⊃ C)))

D(x) ⇒ D(� ⊃ x)

for variables x together with distributions and simplifications, to reduce the
problem to ∧

i

(ui ⊃ vi) ⊃
∨

j

(sj ⊃ tj)

vi, tj variables, ui, sj variables or �. We assume that the succedent is not valid
(otherwise � is the interpolant). So any variable occurs either in the sj group or
in the tj group. Close the antecedents under transitivity of ⊃. There is a common
implication u ⊃ v, an interpolant (Otherwise there is a countervaluation by
assigning 0 to all tj and extending this assignment in the antecedent such that
if vi is assigned 0 also ui is assigned 0. No sj is assigned 0 by this procedure.
Assign 1 to all other variables and derive a contradiction to the assumption, that
the initial implication is valid). Therefore, L1(L, {1},→) interpolates.

Example 7. n-valued Gödel logics.
Let Gn = 〈Wn,≤,∪,∩, 0, 1〉, where Wn = {0, 1

n−1 , . . . , n−2
n−1 , 1}, ≤ is the

natural order and ∪,∩, 0, 1 are defined accordingly.

u → v =

{
1 u ≤ v

v else

The first-order spectrum in the presence of ⊥ consists of all sets of truth
values {⊥} ∪ (Γ − {⊥,�}) and {⊥,�} ∪ (Γ − {⊥,�}) such that there are no
consecutive truth values υi, υi+1 both not in Γ − {⊥,�} (see [6]).

278 M. Baaz and A. Lolic

6 Extensions to Infinitely-Valued Logics

We may use the described methodology to prove interpolation for (fragments
of) infinitely-valued logics, as for instance Gödel logics [5]. Consider Gödel logic
GQF

[0,1], the logic of all linearly ordered Kripke frames with constant domains. Its
connectives can be interpreted as functions over the real interval [0, 1] as follows:
⊥ is the logical constant for 0, ∨,∧,∃,∀ are defined as maximum, minimum,
supremum, infimum, respectively. ¬A is an abbreviation for A → ⊥ and → is
defined as

u → v =

{
1 u ≤ v

v else

The weak quantifier fragment of GQF
[0,1] admits Herbrand expansions. This fol-

lows from cut-free proofs in hypersequent calculi [2]. This can be easily shown by
proof transformation steps in the hypersequent calculus. Indeed, we can trans-
form proofs by eliminating weak quantifier inferences:

i. If there is an occurrence of an ∃ introduction, we select all formulas Ai that
correspond to this inference and eliminate the ∃ introduction by the use of∨

i Ai.
ii. If there is an occurrence of a ∀ introduction, we select all formulas Bi that

correspond to this inference and eliminate the ∀ introduction by the use of∧
i Bi.

We suppress the inference of weak quantifiers and combine the disjunctions
respectively conjunctions to accommodate contractions. Propositional Gödel
logic interpolates and therefore the weak quantifier fragment of GQF

[0,1] interpo-
lates too, as no skolemization is necessary.

The fragment A ⊃ B, A,B prenex also interpolates: Skolemize as in classical
logic, construct a Herbrand expansion, interpolate, go back to the Skolem form
and use an immediate analogy of the 2nd ε-theorem [11] to go back to the original
formulas. To illustrate the procedure, consider the following example.

Example 8.

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀x∃y(R(x) ∨ P (y))

We skolemize as in classical logic (note that the substitution of Skolem terms is
always possible).

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ ∃y(R(c) ∨ P (y)).

Calculate a Herbrand expansion

GQF
[0,1] |= P (c) ∧ Q(f(c)) ⊃ R(c) ∨ P (c).

Construct a propositional interpolant

GQF
[0,1] |= P (c) ∧ Q(f(c)) ⊃ P (c) GQF

[0,1] |= P (c) ⊃ R(c) ∨ P (c).

First-Order Interpolation of Non-classical Logics Derived 279

Go back to the Skolem form

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ P (c) GQF

[0,1] |= P (c) ⊃ ∃x(R(c) ∨ P (x)).

Eliminate c from the interpolant

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ ∀xP (x) GQF

[0,1] |= ∀xP (x) ⊃ ∃x(R(c) ∨ P (x)).

Skolemize the interpolant in both formulas and construct a Herbrand expansion
to apply the 2nd ε-Theorem to obtain

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀xP (x) GQF

[0,1] |= ∀xP (x) ⊃ ∀x∃y(R(x) ∨ P (y)).

i. GQF
[0,1] |= P (e) ∧ Q(f(e)) ⊃ P (e): replace all Skolem terms by variables repre-

senting them.
GQF

[0,1] |= P (xe) ∧ Q(xe) ⊃ P (xe).

Infer weak quantifiers, shift and contract as much as possible, otherwise infer
the strong quantifier representing a deepest Skolem term available, shift and
repeat.

GQF
[0,1] |= ∃y(P (xe) ∧ Q(y)) ⊃ P (xe)

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ P (xe)

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀xP (x)

ii. GQF
[0,1] |= P (c) ⊃ R(c) ∨ P (c):

GQF
[0,1] |= P (xc) ⊃ R(xc) ∨ P (xc)

GQF
[0,1] |= ∀xP (x) ⊃ R(xc) ∨ P (xc)

GQF
[0,1] |= ∀xP (x) ⊃ ∃y(R(xc) ∨ P (y))

GQF
[0,1] |= ∀xP (x) ⊃ ∀x∃y(R(x) ∨ P (y))

Therefore, it is possible to show interpolation for fragments of GQF
[0,1], how-

ever, not yet for GQF
[0,1]. What lacks to prove interpolation for GQF

[0,1] is a suitable
skolemization of all formulas!

7 Conclusion

Extending the notion of expansion to formulas containing strong quantifiers
might be possible to cover logics which do not admit skolemization, e.g. logics
based on non-constant domain Kripke frames (such notions of expansion are in
the spirit of Herbrand’s original proof of Herbrand’s Theorem).

280 M. Baaz and A. Lolic

Another possibility is to develop unusual skolemizations e.g. based on exis-
tence assumptions [3] or on added Skolem predicates instead of Skolem functions
as in [10].

The methodology of this paper can also be used to obtain negative results.
First-order S5 does not interpolate by a well-known result of Fine [9]. As propo-
sitional S5 interpolates, first-order S5 cannot admit skolemization together with
expansions in general.

Acknowledgments. Partially supported by FWF P 26976, FWF I 2671 and the
Czech-Austrian project MOBILITY No. 7AMB17AT054.

References

1. Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft. Comput. 21(1), 149–
152 (2017)

2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics -
a survey. J. Logic Comput. 13(6), 835–861 (2003)

3. Baaz, M., Iemhoff, R.: The Skolemization of existential quantifiers in intuitionistic
logic. Ann. Pure Appl. Logic 142(1–3), 269–295 (2006)

4. Baaz, M., Leitsch, A.: Methods of Cut-Elimination, vol. 34. Springer Science &
Business Media, Heidelberg (2011)

5. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Ann. Pure Appl. Logic
147(1), 23–47 (2007)

6. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Log. 38(7), 461–489
(1999)

7. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, New York
(1948)

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)

9. Fine, K.: Failures of the interpolation lemma in quantified modal logic. J. Symbolic
Logic 44(02), 201–206 (1979)

10. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monat-
shefte für Mathematik 37(1), 349–360 (1930)

11. Hilbert, D., Bernays, P.: Grundlagen der Mathematik (1968)
12. Maksimova, L.: Intuitionistic logic and implicit definability. Ann. Pure Appl. Logic

105(1–3), 83–102 (2000)
13. Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable

varieties of pseudo-Boolean algebras. Algebra Logic 16(6), 427–455 (1977)
14. Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Stud. Log-

ica. 38(4), 419–428 (1979)
15. Miller, D.A.: A compact representation of proofs. Stud. Logica. 46(4), 347–370

(1987)
16. Miyama, T.: The interpolation theorem and Beth’s theorem in many-valued logics.

Mathematica Japonica 19, 341–355 (1974)
17. Ono, H.: Model extension theorem and Craig’s interpolation theorem for interme-

diate predicate logics. Rep. Math. Logic 15, 41–58 (1983)
18. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their

applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

Finitariness of Elementary Unification
in Boolean Region Connection Calculus

Philippe Balbiani1(B) and Çiğdem Gencer2,3

1 Institut de recherche en informatique de Toulouse,
CNRS—Toulouse University, Toulouse, France

Philippe.Balbiani@irit.fr
2 Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

3 Faculty of Arts and Sciences, Aydın University, Istanbul, Turkey
cigdemgencer@aydin.edu.tr

Abstract. Boolean Region Connection Calculus is a formalism for rea-
soning about the topological relations between regions. In this paper,
we provide computability results about unifiability in Boolean Region
Connection Calculus and prove that elementary unification is finitary.

Keywords: Region connection calculus · Boolean terms · Unifiability
problem · Computability · Unification type

1 Introduction

The Region Connection Calculus (RCC) is a formalism for reasoning about the
topological relations between regions [19]. With RCC8, a variant of RCC based
on 8 atomic relations [6,17], knowledge is represented by means of a conjunc-
tion of disjunctions of atomic relations between variables representing regions.
Given such a formula, the main task is to know whether it is consistent—an NP -
complete problem [20,21]. Consisting of a combination of RCC8 with Boolean
reasoning, BRCC8 is a variant of RCC8 in which regions are represented by
Boolean terms [24]. With BRCC8, showing the consistency of formulas is NP -
complete in arbitrary topological spaces and PSPACE-complete in Euclidean
spaces [14–16,24]. BRCC8 and its multifarious variants have attracted consid-
erable interest both for their practical applications in spatial reasoning [6,20]
and for the mathematical problems they give rise to [3–5,7–9,14–16,23,24].

We are interested in supporting a new inference capability: unifia-
bility of formulas. The unifiability problem consists, given a finite set
{(ϕ1(x1, . . . , xn), ψ1(x1, . . . , xn)), . . . , (ϕm(x1, . . . , xn), ψm(x1, . . . , xn))} of pairs
of formulas, in determining whether there exists Boolean terms a1, . . . , an such
that ϕ1(a1, . . . , an) ↔ ψ1(a1, . . . , an), . . ., ϕm(a1, . . . , an) ↔ ψm(a1, . . . , an) are
valid. To explain our motivation for considering unifiability, consider a finite set
of pairs of BRCC8-formulas representing desired properties about some regions.
This set may contain non-equivalent formulas that can be made equivalent by

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 281–297, 2017.
DOI: 10.1007/978-3-319-66167-4 16

282 P. Balbiani and Ç. Gencer

applying to them appropriate substitutions. And if one is able to find such appro-
priate substitutions, then one is interested to find the maximal ones. An impor-
tant question is then the following: when a set of BRCC8-formulas is unifiable,
has it a minimal complete set of unifiers? When the answer is “yes”, how large
is this set? See [1,2] where such question is addressed for description logics.

The section-by-section breakdown of the paper is as follows. In Sect. 2, we
define the syntax of BRCC8. Section 3 explains our motivation for consider-
ing unification in BRCC8. In Sect. 4, we present the semantics of BRCC8.
Section 5 introduces the basic ideas involved in unification. In Sect. 6, we embark
on the study of specific Boolean terms: monoms and polynoms. The main result
we prove there is Proposition 4. Section 7 defines equivalence relations between
tuples of terms. The main results we prove there are Propositions 5 and 7. In
Sect. 8, we provide computability results about unifiability in BRCC8. Section 9
shows that unification in BRCC8 is finitary. Due to lack of space, we only
consider the elementary case where the considered terms do not contain free
constant symbols.

2 Syntax

Now, it is time to meet the language we are working with. We adopt the standard
rules for omission of the parentheses.

Let V AR be a countable set of propositional variables (with typical mem-
bers denoted x, y, etc.). Let (x1, x2, . . .) be an enumeration of V AR without
repetitions. The terms (denoted a, b, etc.) are defined as follows:

– a :: = x | 0 | a� | (a ∪ b).

The other constructs for terms (for instance, 1 and ∩) are defined as usual. We
use the following notations for terms:

– a0 for a�,
– a1 for a.

Reading terms as regions, the constructs 0, � and ∪ should be regarded as the
empty region, the complement operation and the union operation. As a result,
the constructs 1 and ∩ should be regarded as the full region and the intersection
operation. In the sequel, we use a(x1, . . . , xn) to denote a term a whose variables
form a subset of {x1, . . . , xn}. For all nonnegative integers n, let TER(x1, . . . , xn)
be the set of all terms whose variables form a subset of {x1, . . . , xn}. Let TER
be the set of all terms and TER(∅) be the set of all variable-free terms.

The formulas (denoted ϕ, ψ, etc.) are defined as follows:

– ϕ :: = P (a, b) | ⊥ | ¬ϕ | (ϕ ∨ ψ).

Here, a and b are terms and P is one of the following 8 binary predicates corre-
sponding to the 8 binary relations of RCC8:

– DC (“disconnected”),

Finitariness of Elementary Unification in BRCC 283

– EC (“external contact”),
– PO (“partial overlap”),
– TPP (“tangential proper part”),
– TPPI (“inverse of TPP”),
– NTPP (“nontangential proper part”),
– NTPPI (“inverse of NTPP”),
– EQ (“equal”).

The other constructs for formulas (for instance, � and ∧) are defined as usual.
We say that a formula ϕ is equational iff EQ is the only binary predicate pos-
sibly occurring in ϕ. In the sequel, we use ϕ(x1, . . . , xn) to denote a formula ϕ
whose variables form a subset of {x1, . . . , xn}. For all nonnegative integers n,
let FOR(x1, . . . , xn) be the set of all formulas whose variables form a subset of
{x1, . . . , xn}. Let FOR be the set of all formulas and FOR(∅) be the set of all
variable-free formulas. An inference rule is a pair of the form ϕ

ψ where ϕ and ψ
are formulas.

A substitution is a function σ : V AR −→ TER which moves at most finitely
many variables, i.e. there exists at most finitely many variables x such that
σ(x) �= x. Given a substitution σ, let σ̄ : TER ∪ FOR −→ TER ∪ FOR be
the endomorphism such that for all variables x, σ̄(x) = σ(x). Obviously, for all
substitutions σ, τ , the function σ ◦ τ such that for all x ∈ V AR, (σ ◦ τ)(x) =
τ̄(σ(x)) is a substitution called the composition of the substitutions σ and τ .

3 Motivation for Considering Unifiability in BRCC8

Our motivation for considering unifiability in BRCC8 comes from the following
three facts: BRCC8 is a formalism both with theoretical merits and with practi-
cal relevance; unification in Boolean algebras has attracted considerable interest;
there is a wide variety of situations where unifiability problems in formalisms
like BRCC8 arise.

BRCC8 is the result of the combination of RCC8 with Boolean reasoning.
Within the context of RCC8, formulas would just be quantifier-free first-order
formulas in a constant-free function-free language based on the 8 binary predi-
cates of RCC8. For instance, TPP (x, y) ∧ TPP (x, z) → TPP (y, z) ∨ TPP (z, y).
By allowing to apply the 8 binary predicates of RCC8 not only to propositional
variables but also to Boolean terms, Wolter and Zakharyaschev [24] have strictly
extended their expressive capacity. For instance, in the class of all topological
spaces, the BRCC8 formula EQ(x ∪ y, z) has no equivalent formula in a pure
RCC8-based language. As well, with this enriched language, one becomes able
by using the BRCC8 formula DC(x, x�) → EQ(x, 0)∨EQ(x�, 0) to distinguish
between connected and non-connected topological spaces.

Unification in Boolean algebras has attracted considerable interest and sev-
eral algorithms for computing solutions to Boolean equations are known, some of
them going back to Boole and Löwenheim. But the most important result is that
unification is unitary: given an equation a(x1, . . . , xn) = b(x1, . . . , xn), either it
possesses no solution, or it possesses a single most general unifier. See [2,18] for

284 P. Balbiani and Ç. Gencer

an introduction to the unifiability problem in Boolean algebras. So, it is nat-
ural to ask whether unification in BRCC8 inherits the unitariness character of
Boolean unification. In this paper, we refute this idea by proving that unification
in BRCC8 is finitary.

There is a wide variety of situations where unifiability problems arise. We
will explain our motivation for considering them within the context of geo-
graphical information systems. Suppose ϕ(p1, . . . , pm) is a formula representing
our knowledge about regions denoted p1, . . . , pm in some geographical universe
and ψ(x1, . . . , xn) is a formula representing a desirable property about regions
denoted x1, . . . , xn. It may happen that ψ(x1, . . . , xn) is not a logical conse-
quence of ϕ(p1, . . . , pm) in the considered geographical universe whereas some of
its instances are. Hence, one may wonder whether there are n-tuples (a1, . . . , an)
of terms for which the property represented by ψ(x1, . . . , xn) becomes a logical
consequence of ϕ(p1, . . . , pm) in the considered geographical universe. And if one
is able to decide such question, then one may be interested to obtain n-tuples
(b1, . . . , bn) as general as possible. Central to unification theory are the questions
of the computability of unifiability and the unification type. Within the context
of BRCC8, these questions will be addressed in Sects. 8 and 9.

4 Semantics

The best way to understand the meaning of the binary predicates is by inter-
preting terms and formulas in topological spaces [14–16,24]. More precisely, in
a topological space (X, τ), if Intτ (·) denotes its interior operation then to each
binary predicate P , one usually associates a binary relation P (X,τ) on the set of
all regular closed subsets of X:

– DC(X,τ)(A,B) iff A ∩ B = ∅,
– EC(X,τ)(A,B) iff A ∩ B �= ∅ and Intτ (A) ∩ Intτ (B) = ∅,
– PO(X,τ)(A,B) iff Intτ (A) ∩ Intτ (B) �= ∅, Intτ (A) �⊆ B and Intτ (B) �⊆ A,
– TPP (X,τ)(A,B) iff A ⊆ B, A �⊆ Intτ (B) and B �⊆ A,
– TPPI(X,τ)(A,B) iff B ⊆ A, B �⊆ Intτ (A) and A �⊆ B,
– NTPP (X,τ)(A,B) iff A ⊆ Intτ (B) and B �⊆ A,
– NTPPI(X,τ)(A,B) iff B ⊆ Intτ (A) and A �⊆ B,
– EQ(X,τ)(A,B) iff A = B.

This topological semantics is considered in [14–16,24]. Obviously, these relations
are jointly exhaustive and pairwise disjoint on the set of all nonempty regular
closed subsets of X. We say that a topological space (X, τ) is indiscrete iff τ =
{∅,X}. We say that a topological space (X, τ) is connected iff for all A,B ∈ τ ,
either A ∩ B �= ∅, or A ∪ B �= X.

A relational perspective is suggested by Galton [11] who introduces the notion
of adjacency space. Galton’s spaces are frames (W,R) where W is a nonempty
set of cells and R is an adjacency relation between cells. Galton defines regions
to be sets of cells. He also defines two regions A and B to be connected iff some
cell in A is adjacent to some cell in B. This definition relates Galton’s adjacency

Finitariness of Elementary Unification in BRCC 285

spaces to the relational semantics of modal logic which makes it possible to use
methods from modal logic for studying region-based theories of space. The truth
is that the above-mentioned topological semantics and the relational perspective
suggested by Galton are equivalent [23].

In this paper, we adopt a relational perspective by interpreting terms and
formulas in frames. A frame is a structure of the form (W,R) where W is a
nonempty set (with typical members denoted s, t, etc.) and R is a reflexive and
symmetric relation on W . A frame (W,R) is indiscrete iff R = W × W . A frame
(W,R) is connected iff R+ = W × W where R+ denotes the transitive closure
of R. Let (W,R) be a frame. We associate to each binary predicate P a binary
relation P (W,R) on 2W as follows:

– DC(W,R)(A,B) iff R ∩ (A × B) = ∅,
– EC(W,R)(A,B) iff R ∩ (A × B) �= ∅ and A ∩ B = ∅,
– PO(W,R)(A,B) iff A ∩ B �= ∅, A �⊆ B and B �⊆ A,
– TPP (W,R)(A,B) iff A ⊆ B, R ∩ (A × (W\B)) �= ∅ and B �⊆ A,
– TPPI(W,R)(A,B) iff B ⊆ A, R ∩ (B × (W\A)) �= ∅ and A �⊆ B,
– NTPP (W,R)(A,B) iff R ∩ (A × (W\B)) = ∅ and B �⊆ A,
– NTPPI(W,R)(A,B) iff R ∩ (B × (W\A)) = ∅ and A �⊆ B,
– EQ(W,R)(A,B) iff A = B.

This relational semantics is considered in [3–5,23]. Obviously, these binary rela-
tions are jointly exhaustive and pairwise disjoint on 2W \{∅}, i.e. for all non-
empty subsets A,B of W , there exists exactly one binary predicate P such that
P (W,R)(A,B). The truth is that for all binary predicates P and for all subsets
A,B of W , if either A = ∅, or B = ∅ then P (W,R)(A,B) iff either P = DC, or
P = NTPP and B �= ∅, or P = NTPPI and A �= ∅, or P = EQ and A = B.

A valuation on W is a map V associating with every variable x a subset V(x)
of W . Given a valuation V on W , we define

– V̄(x) = V(x),
– V̄(0) = ∅,
– V̄(a�) = W\V̄(a),
– V̄(a ∪ b) = V̄(a) ∪ V̄(b).

Thus, every term is interpreted as a subset of W . A valuation V on W is balanced
iff for all terms a, either V̄(a) = ∅, or V̄(a) = W , or V̄(a) is infinite and coinfinite.

A model on (W,R) is a structure M = (W,R,V) where V is a valuation on
W . The satisfiability of a formula ϕ in M (in symbols M |= ϕ) is defined as
follows:

– M |= P (a, b) iff P (W,R)(V̄(a), V̄(b)),
– M �|= ⊥,
– M |= ¬ϕ iff M �|= ϕ,
– M |= ϕ ∨ ψ iff either M |= ϕ, or M |= ψ.

A formula ϕ is valid in (W,R) iff for all valuations V on W , (W,R,V) |= ϕ.
A formula ϕ is satisfiable in (W,R) iff there exists a valuation V on W such

286 P. Balbiani and Ç. Gencer

that (W,R,V) |= ϕ. Let C be a class of frames. We say that a formula ϕ is
C-valid iff for all frames (W,R) in C, ϕ is valid in (W,R). We say that a formula
ϕ is C-satisfiable iff there exists a frame (W,R) in C such that ϕ is satisfiable
in (W,R). The C -satisfiability problem consists in determining whether a given
formula is C-satisfiable. We say that C agrees with unions iff for all disjoint frames
(W,R), (W ′, R′) in C, there exists a frame (W ′′, R′′) in C such that W∪W ′ = W ′′.
Note that if C contains frames of arbitrary cardinality then C agrees with unions.
We say that C is determined iff there exists a set of formulas such that C is the
class of all frames validating each formula in that set. We say that C is balanced iff
for all formulas ϕ, if ϕ is C-satisfiable then there exists a countable frame (W,R)
in C and there exists a balanced valuation V on W such that (W,R, V) |= ϕ.

As illustrative examples of classes of frames, let Call denote the class of all
frames, Cind denote the class of all indiscrete frames and Ccon denote the class of
all connected frames. The topological counterparts of these classes are the class
of all topological spaces, the class of all indiscrete spaces and the class of all
connected spaces. The following formulas are Call-valid:

– DC(x, x) → EQ(x, 0),
– DC(x, y) → DC(y, x).

In an indiscrete frame (W,R), any two points are R-related. Hence, for all subsets
A,B of W , if DC(W,R)(A,B) then either EQ(W,R)(A, ∅), or EQ(W,R)(B, ∅). Thus,
the following formula is Cind-valid:

– DC(x, y) → EQ(x, 0) ∨ EQ(y, 0).

In a connected frame (W,R), any two points are R+-related. Hence, for
all subsets A of W , if DC(W,R)(A,W\A) then either EQ(W,R)(A, ∅), or
EQ(W,R)(W\A, ∅). Thus, the following formula is Ccon-valid:

– DC(x, x�) → EQ(x, 0) ∨ EQ(x�, 0).

Proposition 1. Call, Cind and Ccon agree with unions.

Proof. By the definition of what it means for classes of frames to agree with
unions.

Proposition 2. Call, Cind and Ccon are determined.

Proof. It suffices to note that Call is determined by ∅, Cind is determined by
{DC(x, y) → EQ(x, 0) ∨ EQ(y, 0)} and Ccon is determined by {DC(x, x�) →
EQ(x, 0) ∨ EQ(x�, 0)}.

Proposition 3. Call, Cind and Ccon are balanced.

Proof. By Proposition 2 and [5, Theorem 4.1], Call, Cind and Ccon admit filtration.
Now, consider an arbitrary finite frame (W,R). We define the countable frame
(W ′, R′) as follows:

– W ′ = W × Z,

Finitariness of Elementary Unification in BRCC 287

– for all (s, i), (t, j) ∈ W ′, (s, i)R′(t, j) iff sRt.

Obviously, if (W,R) is indiscrete (respectively, connected) then (W ′, R′) is indis-
crete (respectively, connected) too. Moreover, according to [4, Definition 3.1],
(W,R) is a bounded morphic image of (W ′, R′). Thus, by [4, Proposition 3.1],
for all formulas ϕ, if ϕ is satisfiable in (W,R) then there exists a balanced valu-
ation V ′ on (W ′, R′) such that (W ′, R′,V ′) |= ϕ. Since (W,R) was arbitrary and
Call, Cind and Ccon admit filtration, therefore Call, Cind and Ccon are balanced.

As for the satisfiability problem, it is known to be NP -complete in Call and Cind

and PSPACE-complete in Ccon [5,14–16,24].

5 Unifiability

Let C be a class of frames.
We say that a substitution σ is C-equivalent to a substitution τ (in symbols

σ �C τ) iff for all variables x, EQ(σ(x), τ(x)) is C-valid. We say that a substi-
tution σ is more C-general than a substitution τ (in symbols σ �C τ) iff there
exists a substitution υ such that σ ◦ υ �C τ .

We say that a finite set {(ϕ1, ψ1), . . . , (ϕn, ψn)} of pairs of formulas is
C -unifiable iff there exists a substitution σ such that σ̄(ϕ1) ↔ σ̄(ψ1), . . .,
σ̄(ϕn) ↔ σ̄(ψn) are C-valid. As a consequence of the classical interpretation of
the constructs for formulas, this is equivalent to σ̄((ϕ1 ↔ ψ1)∧ . . .∧ (ϕn ↔ ψn))
is C-valid. This means that we can restrict our attention to a simpler kind of
unifiability problems consisting of exactly one formula. We say that a formula
ϕ is C -unifiable iff there exists a substitution σ such that σ̄(ϕ) is C-valid. In
that case, we say that σ is a C-unifier of ϕ. For instance, EQ(0, x) ∨ EQ(1, x)
is unifiable in Call, Cind and Ccon. As we will prove it with Proposition 15, its
unifiers are the substitutions σ such that considered as a formula in Classical
Propositional Logic (CPL), σ(x) is either equivalent to 0, or equivalent to 1. The
elementary C -unifiability problem consists in determining whether a given for-
mula is C-unifiable. See [1,2,12,13] for an introduction to the unifiability problem
in modal and description logics.

We say that a set of C-unifiers of a formula ϕ is complete iff for all C-unifiers
σ of ϕ, there exists a C-unifier τ of ϕ in that set such that τ �C σ. As we will
prove it with Proposition 15, the substitutions σ0 and σ1 such that σ0(x) = 0,
σ1(x) = 1 and for all variables y, if x �= y then σ0(y) = y and σ1(y) = y constitute
a complete set of C-unifiers of EQ(0, x) ∨ EQ(1, x). An important question is:
when a formula is C-unifiable, has it a minimal complete set of C-unifiers? When
the answer is “yes”, how large is this set?

We say that a C-unifiable formula ϕ is C-nullary iff there exists no minimal
complete set of C-unifiers of ϕ. We say that a C-unifiable formula ϕ is C-infinitary
iff there exists a minimal complete set of C-unifiers of ϕ but there exists no finite
one. We say that a C-unifiable formula ϕ is C-finitary iff there exists a finite min-
imal complete set of C-unifiers of ϕ but there exists no with cardinality 1. We
say that a C-unifiable formula ϕ is C -unitary iff there exists a minimal complete

288 P. Balbiani and Ç. Gencer

set of C-unifiers of ϕ with cardinality 1. We say that elementary unification in C
is nullary iff there exists a C-nullary formula. We say that elementary unification
in C is infinitary iff every C-unifiable formula is either C-infinitary, or C-finitary,
or C-unitary and there exists a C-infinitary formula. We say that elementary
unification in C is finitary iff every C-unifiable formula is either C-finitary, or
C-unitary and there exists a C-finitary formula. We say that elementary unifi-
cation in C is unitary iff every C-unifiable formula is C-unitary. See [10] for an
introduction to the unification types in logics.

An axiomatic system for C consists of axioms and rules. Its theorems are all
formulas which can be derived from the axioms by means of the rules. See [5,23]
for systems of axioms and rules characterizing validity with respect to different
classes of frames. In order to make stronger an axiomatic system for C, we can
add new axioms and new rules to it. Concerning new axioms, they should always
consist of C-valid formulas. About new rules, they should always consist of rules
that preserve C-validity. We say that an inference rule ϕ

ψ is C-admissible iff for
all substitutions σ, if σ(ϕ) is C-valid then σ(ψ) is C-valid. The elementary C-
admissibility problem consists in determining whether a given inference rule is
C-admissible. See [22] for an introduction to the admissibility problem in logics.

6 Monoms and Polynoms

Before we provide, in Sect. 8, computability results about unifiability and admis-
sibility in BRCC8 and prove, in Sect. 9, that elementary unification is finitary,
we introduce the notions of monom and polynom (this section) and define some
equivalence relations (next section).

Let k, n be nonnegative integer and f : {0, 1}k −→ {0, 1}n be a function.
An n-monom is a term of the form

– xβ1
1 ∩ . . . ∩ xβn

n

where (β1, . . . , βn) ∈ {0, 1}n. Considering the terms xβ1
1 , . . ., xβn

n as literals
in CPL, n-monoms are just conjunctions of literals. Considering a term a in
TER(x1, . . . , xn) as a formula in CPL, let mon(n, a) be the set of all n-monoms
xβ1
1 ∩ . . . ∩ xβn

n such that a is a tautological consequence of xβ1
1 ∩ . . . ∩ xβn

n . An
n -polynom is a term of the form

– (xβ11
1 ∩ . . . ∩ xβ1n

n) ∪ . . . ∪ (xβm1
1 ∩ . . . ∩ xβmn

n)

where m is a nonnegative integer and (β11, . . . , β1n), . . . , (βm1, . . . , βmn) ∈
{0, 1}n. Considering the terms xβ11

1 ∩ . . .∩xβ1n
n , . . ., xβm1

1 ∩ . . .∩xβmn
n as conjunc-

tions of literals in CPL, n-polynoms are just disjunctive normal forms. Note that
for all terms a in TER(x1, . . . , xn),

⋃
mon(n, a) is an n-polynom. For all positive

integers i, if i ≤ n then let πi : {0, 1}n −→ {0, 1} be the function such that for
all (β1, . . . , βn) ∈ {0, 1}n, πi(β1, . . . , βn) = βi. For all (β1, . . . , βn) ∈ {0, 1}n, we
define

– f−1(β1, . . . , βn) = {(α1, . . . , αk) ∈ {0, 1}k : f(α1, . . . , αk) = (β1, . . . , βn)}.

Finitariness of Elementary Unification in BRCC 289

Obviously, for all (β1, . . . , βn) ∈ {0, 1}n, f−1(β1, . . . , βn) ⊆ {0, 1}k. For all posi-
tive integers i, if i ≤ n then we define:

– Δi = {(α1, . . . , αk) ∈ {0, 1}k : πi(f(α1, . . . , αk)) = 1},
– ci =

⋃{xα1
1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ Δi}.

Obviously, for all positive integers i, if i ≤ n then Δi ⊆ {0, 1}k and ci is a
k-polynom. Note that Δi and ci depend on f too. Lemma 1 is a consequence of
the definition of mon(n, a).

Lemma 1. Let a(x1, . . . , xn) ∈ TER(x1, . . . , xn). Considered as formulas in
CPL, the terms a and

⋃
mon(n, a) are equivalent.

Proposition 4. For all (β1, . . . , βn) ∈ {0, 1}n, considered as formulas in CPL,
the terms

⋃{xα1
1 ∩ . . .∩xαk

k : (α1, . . . , αk) ∈ f−1(β1, . . . , βn)} and cβ1
1 ∩ . . .∩cβn

n

are equivalent.

Proof. Let (β1, . . . , βn) ∈ {0, 1}n. It suffices to show that considered as formulas
in CPL, for all θ1, . . . , θk ∈ {0, 1}, if x1 is interpreted by θ1, . . ., xk is interpreted
by θk then

⋃{xα1
1 ∩ . . .∩xαk

k : (α1, . . . , αk) ∈ f−1(β1, . . . , βn)} is equivalent to 1
iff cβ1

1 ∩ . . . ∩ cβn
n is equivalent to 1. Let θ1, . . . , θk ∈ {0, 1}. Let x1 be interpreted

by θ1, . . ., xk be interpreted by θk.
Suppose

⋃{xα1
1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ f−1(β1, . . . , βn)} is equivalent
to 1. Hence, (θ1, . . . , θk) ∈ f−1(β1, . . . , βn). Thus, f(θ1, . . . , θk) = (β1, . . . , βn).
For the sake of the contradiction, suppose cβ1

1 ∩ . . . ∩ cβn
n is equivalent to 0.

Let i be a positive integer such that i ≤ n and cβi

i is equivalent to 0. Since
either βi = 0, or βi = 1, therefore we have to consider two cases. In the for-
mer case, βi = 0 and therefore

⋃{xα1
1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ Δi} is
equivalent to 1. Consequently, (θ1, . . . , θk) ∈ Δi. Hence, πi(f(θ1, . . . , θk)) = 1.
Since f(θ1, . . . , θk) = (β1, . . . , βn), therefore βi = 1: a contradiction. In the
latter case, βi = 1 and therefore

⋃{xα1
1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ Δi} is
equivalent to 0. Thus, (θ1, . . . , θk) �∈ Δi. Hence, πi(f(θ1, . . . , θk)) = 0. Since
f(θ1, . . . , θk) = (β1, . . . , βn), therefore βi = 0: a contradiction.

Suppose cβ1
1 ∩. . .∩cβn

n is equivalent to 1. Let i be an arbitrary positive integer
such that i ≤ n. Since cβ1

1 ∩ . . .∩cβn
n is equivalent to 1, therefore cβi

i is equivalent
to 1. Since either βi = 0, or βi = 1, therefore we have to consider two cases. In the
former case, βi = 0 and therefore ci is equivalent to 0. Hence, (θ1, . . . , θk) �∈ Δi.
Thus, πi(f(θ1, . . . , θk)) = 0. Since βi = 0, therefore πi(f(θ1, . . . , θk)) = βi. In the
latter case, βi = 1 and therefore ci is equivalent to 1. Consequently, (θ1, . . . , θk) ∈
Δi. Hence, πi(f(θ1, . . . , θk)) = 1. Since βi = 1, therefore πi(f(θ1, . . . , θk)) =
βi. In both cases, πi(f(θ1, . . . , θk)) = βi. Since i was arbitrary, therefore
f(θ1, . . . , θk) = (β1, . . . , βn). Thus, (θ1, . . . , θk) ∈ f−1(β1, . . . , βn). Consequently,⋃{xα1

1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ f−1(β1, . . . , βn)} is equivalent to 1.

290 P. Balbiani and Ç. Gencer

7 Some Equivalence Relations

Let k, n be nonnegative integers and C be a class of frames.
Given (a1, . . . , an) ∈ TER(x1, . . . , xk)n, we define on {0, 1}k the equivalence

relation ∼k
(a1,...,an)

as follows:

– (α1, . . . , αk) ∼k
(a1,...,an)

(α′
1, . . . , α

′
k) iff for all positive integers i, if i ≤ n, then

xα1
1 ∩ . . . ∩ xαk

k ∈ mon(k, ai) iff x
α′

1
1 ∩ . . . ∩ x

α′
k

k ∈ mon(k, ai).

Lemma 2 is a consequence of its definition.

Lemma 2. For all (a1, . . . , an) ∈ TER(x1, . . . , xk)n, ∼k
(a1,...,an)

has at most 2n

equivalence classes on {0, 1}k.

Let f : {0, 1}k −→ {0, 1}n be a function such that for all
(α1, . . . , αk), (α′

1, . . . , α
′
k) ∈ {0, 1}k, if f(α1, . . . , αk) = f(α′

1, . . . , α
′
k) then

(α1, . . . , αk) ∼k
(a1,...,an)

(α′
1, . . . , α′

k). By means of the function f , we define
the n-tuple (b1, . . . , bn) of n-polynoms as follows:

– bi =
⋃{xβ1

1 ∩ . . . ∩ xβn
n : xα1

1 ∩ . . . ∩ xαk

k ∈ mon(k, ai) and f(α1, . . . , αk) =
(β1, . . . , βn)}.

We say that (b1, . . . , bn) is the n-tuple of n-polynoms properly obtained from the
given n-tuple (a1, . . . , an) in TER(x1, . . . , xk)n with respect to (k, n). Lemma 3
is a consequence of its definition.

Lemma 3. Let (a1, . . . , an) be an n-tuple in TER(x1, . . . , xk)n and (b1, . . . , bn)
be an n-tuple of n-polynoms. Let W be a nonempty set. If (b1, . . . , bn) is properly
obtained from (a1, . . . , an) with respect to (k, n) then for all valuations V on W ,
there exists a valuation V ′ on W such that for all positive integers i, if i ≤ n,
then V̄(ai) = V̄ ′(bi) and for all valuations V on W , there exists a valuation V ′

on W such that for all positive integers i, if i ≤ n, then V̄(bi) = V̄ ′(ai).

For all (β1, . . . , βn) ∈ {0, 1}n, let f−1(β1, . . . , βn) be as in Sect. 6. For all positive
integers i, if i ≤ n then let Δi and ci be as in Sect. 6. Let υ be the substitution
such that

– for all positive integers i, if i ≤ n then υ(xi) = ci,
– for all variables y, if y �∈ {x1, . . . , xn} then υ(y) = y.

Proposition 5. For all positive integers i, if i ≤ n then considered as formulas
in CPL, the terms ai and ῡ(bi) are equivalent.

Proof. Let i be a positive integer such that i ≤ n. Considered as formulas in
CPL, the following terms are equivalent:

1. ῡ(bi).
2.

⋃{cβ1
1 ∩ . . . ∩ cβn

n : xα1
1 ∩ . . . ∩ xαk

k ∈ mon(k, ai) and f(α1, . . . , αk) =
(β1, . . . , βn)}.

Finitariness of Elementary Unification in BRCC 291

3.
⋃{⋃{x

α′
1

1 ∩ . . . ∩ x
α′

k

k : (α′
1, . . . , α

′
k) ∈ f−1(β1, . . . , βn)} : xα1

1 ∩ . . . ∩ xαk

k ∈
mon(k, ai) and f(α1, . . . , αk) = (β1, . . . , βn)}.

4.
⋃{x

α′
1

1 ∩. . .∩x
α′

k

k : (α′
1, . . . , α

′
k) ∈ f−1(β1, . . . , βn), xα1

1 ∩. . .∩xαk

k ∈ mon(k, ai)
and f(α1, . . . , αk) = (β1, . . . , βn)}.

5.
⋃{x

α′
1

1 ∩ . . . ∩ x
α′

k

k : xα1
1 ∩ . . . ∩ xαk

k ∈ mon(k, ai) and f(α′
1, . . . , α

′
k) =

f(α1, . . . , αk)}.
6.

⋃
mon(k, ai).

7. ai.

The equivalence between 1 and 2 is a consequence of the definition of υ; the
equivalence between 2 and 3 is a consequence of Proposition 4; the equivalences
between 3, 4 and 5 are consequences of simple set-theoretic properties; the
equivalence between 5 and 6 is a consequence of the definition of ∼k

(a1,...,an)

and the fact that for all (α1, . . . , αk), (α′
1, . . . , α

′
k) ∈ {0, 1}k, if f(α1, . . . , αk) =

f(α′
1, . . . , α

′
k) then (α1, . . . , αk) ∼k

(a1,...,an)
(α′

1, . . . , α
′
k); the equivalence between

6 and 7 is a consequence of Lemma 1.

We define on FOR(x1, . . . , xn) the equivalence relation ≡n
C as follows:

– ϕ ≡n
C ψ iff ϕ ↔ ψ is C-valid.

Proposition 6. ≡n
C has finitely many equivalence classes on FOR(x1, . . . , xn).

Proof. Each formula ϕ in FOR(x1, . . . , xn) is a combination of formulas of the
form P (a, b) where a and b are terms in TER(x1, . . . , xn) and P is one of the 8
binary predicates of RCC8. Hence, ≡n

C has finitely many equivalence classes on
FOR(x1, . . . , xn).

Let An be the set of all n-tuples of terms. Note that n-tuples of terms in An may
contain occurrences of variables outside {x1, . . . , xn}. Given a model (W,R,V)
on a frame in C and (a1, . . . , an) ∈ An, let Φ

(W,R,V)
(a1,...,an)

be the set of all equational
formulas ϕ(x1, . . . , xn) in FOR(x1, . . . , xn) such that (W,R,V) |= ϕ(a1, . . . , an).
Consider a complete list of representatives for each equivalence class on Φ

(W,R,V)
(a1,...,an)

modulo ≡n
C and let ϕ

(W,R,V)
(a1,...,an)

(x1, . . . , xn) be their conjunction.
We define on An the equivalence relation ∼=n

C as follows:

– (a1, . . . , an) ∼=n
C (b1, . . . , bn) iff for all formulas ϕ(x1, . . . , xn) in FOR(x1, . . . ,

xn), ϕ(a1, . . . , an) is C-valid iff ϕ(b1, . . . , bn) is C-valid.

Now, we define on An the equivalence relation �n
C as follows:

– (a1, . . . , an) �n
C (b1, . . . , bn) iff for all equational formulas ϕ(x1, . . . , xn) in

FOR(x1, . . . , xn), ϕ(a1, . . . , an) is C-valid iff ϕ(b1, . . . , bn) is C-valid.

Obviously, ∼=n
C is finer than �n

C . Lemma 4 is a consequence of Proposition 6;
Lemma 5 is a consequence of Lemma 4; Lemma 6 is a consequence of the defini-
tion of �n

C and Lemma 3; Lemma 7 is a consequence of Lemma 6; Lemma 8 is a
consequence of the definition of ϕ

(W,R,V)
(a1,...,an)

(x1, . . . , xn).

292 P. Balbiani and Ç. Gencer

Lemma 4. ∼=n
C has finitely many equivalence classes on An.

Lemma 5. �n
C has finitely many equivalence classes on An.

Lemma 6. Let (a1, . . . , an) be an n-tuple in TER(x1, . . . , xk)n and (b1, . . . , bn)
be an n-tuple of n-polynoms. If (b1, . . . , bn) is properly obtained from (a1, . . . , an)
with respect to (k, n) then (a1, . . . , an) �n

C (b1, . . . , bn).

Lemma 7. TER(x1, . . . , xn)n constitutes a complete set of representatives for
each equivalence class on An modulo �n

C .

Lemma 8. Let (W,R,V) be a model on a frame in C and (a1, . . . , an) ∈ An.
(W,R,V) |= ϕ

(W,R,V)
(a1,...,an)

(a1, . . . , an).

Proposition 7. If C is balanced then for all (a1, . . . , an), (b1, . . . , bn) ∈ An, if
(a1, . . . , an) �n

C (b1, . . . , bn) then (a1, . . . , an) ∼=n
C (b1, . . . , bn).

Proof. Suppose C is balanced. Let (a1, . . . , an), (b1, . . . , bn) ∈ An be such that
(a1, . . . , an) �n

C (b1, . . . , bn) and (a1, . . . , an) �∼=n
C (b1, . . . , bn). Let ϕ(x1, . . . , xn)

be a formula in FOR(x1, . . . , xn) such that ϕ(a1, . . . , an) is C-valid not-
iff ϕ(b1, . . . , bn) is C-valid. Without loss of generality, let us assume that
ϕ(a1, . . . , an) is C-valid and ϕ(b1, . . . , bn) is not C-valid. Since C is balanced,
therefore let (W,R,V) be a balanced model on a countable frame in C such
that (W,R,V) �|= ϕ(b1, . . . , bn). By Lemma 8, (W,R,V) |= ϕ

(W,R,V)
(b1,...,bn)

(b1, . . . , bn).

Hence, ¬ϕ
(W,R,V)
(b1,...,bn)

(b1, . . . , bn) is not C-valid. Since (a1, . . . , an) �n
C (b1, . . . , bn),

therefore ¬ϕ
(W,R,V)
(b1,...,bn)

(a1, . . . , an) is not C-valid. Since C is balanced, therefore
let (W ′, R′,V ′) be a balanced model on a countable frame in C such that
(W ′, R′,V ′) |= ϕ

(W,R,V)
(b1,...,bn)

(a1, . . . , an). Now, consider (β1, . . . , βn) ∈ {0, 1}n.

If V̄(bβ1
1 ∩ . . . ∩ bβn

n) = ∅ then (W,R,V) |= EQ(bβ1
1 ∩ . . . ∩ bβn

n , 0). Thus,
ϕ
(W,R,V)
(b1,...,bn)

(x1, . . . , xn) → EQ(xβ1
1 ∩ . . . ∩ xβn

n , 0) is C-valid. Since (W ′, R′,V ′) |=
ϕ
(W,R,V)
(b1,...,bn)

(a1, . . . , an), therefore (W ′, R′,V ′) |= EQ(aβ1
1 ∩ . . . ∩ aβn

n , 0). Conse-

quently, V̄ ′(aβ1
1 ∩ . . . ∩ aβn

n) = ∅. Similarly, the reader may easily verify that if
V̄(bβ1

1 ∩ . . . ∩ bβn
n) = W then V̄ ′(aβ1

1 ∩ . . . ∩ aβn
n) = W ′ and if V̄(bβ1

1 ∩ . . . ∩ bβn
n) is

infinite and coinfinite then V̄ ′(aβ1
1 ∩. . .∩aβn

n) is infinite and coinfinite. In all cases,
there exists a bijection g(β1,...,βn) from V̄(bβ1

1 ∩. . .∩bβn
n) to V̄ ′(aβ1

1 ∩. . .∩aβn
n). Let g

be the union of all g(β1,...,βn) when (β1, . . . , βn) describes {0, 1}n. The reader may
easily verify that g is a bijection from W to W ′ such that for all u ∈ W and for all
(β1, . . . , βn) ∈ {0, 1}n, u ∈ V̄(bβ1

1 ∩ . . .∩ bβn
n) iff g(u) ∈ V̄ ′(aβ1

1 ∩ . . .∩aβn
n). Let R′

g

be the binary relation on W ′ defined by u′R′
gv

′ iff g−1(u′)Rg−1(v′). Obviously,
g is an isomorphism from (W,R) to (W ′, R′

g). Since ϕ(a1, . . . , an) is C-valid,
therefore (W ′, R′

g,V ′) |= ϕ(a1, . . . , an). Hence, (W,R,V) |= ϕ(b1, . . . , bn): a con-
tradiction.

Finitariness of Elementary Unification in BRCC 293

8 Computability of Unifiability

Let C be a class of frames. Lemma 9 is a consequence of the definitions in Sect. 4.

Lemma 9

1. For all a ∈ TER(∅), either EQ(a, 0) is C-valid, or EQ(a, 1) is C-valid. More-
over, the formula in {EQ(a, 0), EQ(a, 1)} that is C-valid can be computed in
linear time.

2. For all a, b ∈ TER(∅), either DC(a, b) is C-valid, or EQ(a, b) is C-valid.
Moreover, the formula in {DC(a, b), EQ(a, b)} that is C-valid can be computed
in linear time.

Lemma 10 is a consequence of the definition of unifiability.

Lemma 10. For all formulas ϕ(x1, . . . , xn), ϕ is C-unifiable iff there exists
a1, . . . , an ∈ TER(∅) such that ϕ(a1, . . . , an) is C-valid.

Proposition 8. The elementary C-unifiability problem is in NP .

Proof. By Lemmas 9 and 10, for all formulas ϕ(x1, . . . , xn), ϕ(x1, . . . , xn) is C-
unifiable iff there exists a1, . . . , an ∈ {0, 1} such that ϕ(a1, . . . , an) is C-valid.
Obviously, this can be decided in polynomial time.

Proposition 9. Let a(x1, . . . , xn) be a term. EQ(a(x1, . . . , xn), 1) is C-unifiable
iff considered as a formula in CPL, a(x1, . . . , xn) is satisfiable.

Proof. Suppose considered as a formula in CPL, a(x1, . . . , xn) is satisfiable.
Let b1, . . . , bn in {0, 1} be such that a(b1, . . . , bn) is a tautology. Hence,
EQ(a(b1, . . . , bn), 1) is C-valid. Thus, EQ(a(x1, . . . , xn), 1) is C-unifiable.

Suppose EQ(a(x1, . . . , xn), 1) is C-unifiable. By Lemmas 9 and 10, let
b1, . . . , bn in {0, 1} be such that EQ(a(b1, . . . , bn), 1) is C-valid. Consequently,
a(b1, . . . , bn) is a tautology. Hence, considered as a formula in CPL, a(x1, . . . , xn)
is satisfiable.

Proposition 10. The elementary C-unifiability problem is NP -hard.

Proof. By Proposition 9 and the NP -hardness of the satisfiability problem of
formulas in CPL.

It follows from Propositions 8 and 10 that

Proposition 11. The elementary unifiability problem in Call, Cind and Ccon is
NP -complete.

In other respect,

Proposition 12. Let A be a complexity class. If C is balanced and the C-
satisfiability problem is in A then the elementary C-admissibility problem is in
coNEXPA.

294 P. Balbiani and Ç. Gencer

Proof. Suppose C is balanced and the C-satisfiability problem is in A. By
Lemma 7 and Proposition 7, for all inference rules ϕ(x1,...,xn)

ψ(x1,...,xn)
, ϕ(x1,...,xn)

ψ(x1,...,xn)
is

not C-admissible iff there exists (b1, . . . , bn) ∈ TER(x1, . . . , xn)n such that
¬ϕ(b1, . . . , bn) is not C-satisfiable and ¬ψ(b1, . . . , bn) is C-satisfiable. Obviously,
this can be decided in exponential time with oracle in A.

Since the satisfiability problem in Call and Cind is in NP and the satisfiability
problem in Ccon is in PSPACE, it follows from Propositions 3 and 12 that

Proposition 13. The elementary admissibility problem in Call and Cind is
in coNEXPNP and the elementary admissibility problem in Ccon is in
coNEXPPSPACE.

Still, we do not know whether the elementary C-admissibility problem is in
coNEXP . We conjecture that in Call, Cind and Ccon, it is coNEXP -complete

9 Unification Type

Let C be a class of frames.

Proposition 14. If C agrees with unions then EQ(0, x) ∨ EQ(1, x) is not
C-unitary.

Proof. Suppose C agrees with unions and EQ(0, x) ∨ EQ(1, x) is C-unitary. Let
σ0 and σ1 be substitutions such that σ0(x) = 0 and σ1(x) = 1. Obviously, σ0

and σ1 are C-unifiers of EQ(0, x) ∨ EQ(1, x). Since EQ(0, x) ∨ EQ(1, x) is C-
unitary, therefore let τ be a C-unifier of EQ(0, x) ∨ EQ(1, x) such that τ �C σ0

and τ �C σ1. Let μ, ν be substitutions such that τ ◦ μ �C σ0 and τ ◦ ν �C σ1.
Hence, EQ(μ̄(τ(x)), 0) is C-valid and EQ(ν̄(τ(x)), 1) is C-valid. Thus, neither
EQ(0, τ(x)) is C-valid, nor EQ(1, τ(x)) is C-valid. Let (W,R) and (W ′, R′) be
disjoint frames in C, V be a valuation on W and V ′ be a valuation on W ′ such that
neither V̄(τ(x)) = ∅, nor V̄ ′(τ(x)) = W ′. Since C agrees with unions, therefore
let (W ′′, R′′) be a frame in C such that W ∪ W ′ = W ′′. Let V ′′ be the valuation
on W ′′ such that for all variables z, V ′′(z) = V(z) ∪ V ′(z). Obviously, for all
terms a, V̄ ′′(a) = V̄(a) ∪ V̄ ′(a). Since neither V̄(τ(x)) = ∅, nor V̄ ′(τ(x)) = W ′,
therefore neither V̄ ′′(τ(x)) = ∅, nor V̄ ′′(τ(x)) = W ′′. Consequently, τ is not a
C-unifier of EQ(0, x) ∨ EQ(1, x): a contradiction.

Proposition 15. If C agrees with unions then the substitutions σ0 and σ1 such
that σ0(x) = 0, σ1(x) = 1 and for all variables y, if x �= y then σ0(y) = y
and σ1(y) = y constitute a complete set of C-unifiers of EQ(0, x) ∨ EQ(1, x).
Moreover, EQ(0, x) ∨ EQ(1, x) is C-finitary.

Proof. Suppose C agrees with unions. Hence, by Proposition 14, EQ(0, x) ∨
EQ(1, x) is not C-unitary. Obviously, σ0 and σ1 are C-unifiers of EQ(0, x) ∨
EQ(1, x). Let τ be an arbitrary C-unifier of EQ(0, x) ∨ EQ(1, x) such that nei-
ther σ0 �C τ , nor σ1 �C τ . Thus, neither EQ(0, τ(x)) is C-valid, nor EQ(1, τ(x))

Finitariness of Elementary Unification in BRCC 295

is C-valid. Following the same line of reasoning as in the proof of Proposition 14,
we conclude τ is not a C-unifier of EQ(0, x) ∨ EQ(1, x): a contradiction. Since
τ was arbitrary, therefore σ0 and σ1 constitute a complete set of C-unifiers of
EQ(0, x)∨EQ(1, x). Consequently, EQ(0, x)∨EQ(1, x) is either C-unitary, or C-
finitary. Since EQ(0, x)∨EQ(1, x) is not C-unitary, therefore EQ(0, x)∨EQ(1, x)
is C-finitary.

Proposition 16. If C is balanced then elementary unification in C is either fini-
tary, or unitary. Moreover, if C agrees with unions then elementary unification
in C is finitary.

Proof. Suppose C is balanced. Let ϕ(x1, . . . , xn) be an arbitrary C-unifiable for-
mula. Let σ be an arbitrary substitution such that σ̄(ϕ) is C-valid. Without loss
of generality, we can assume that for all variables y, if y �∈ {x1, . . . , xn} then
σ(y) = y. Let k be a nonnegative integer and (a1, . . . , an) ∈ TER(x1, . . . , xk)n

be such that for all positive integers i, if i ≤ n then σ(xi) = ai. Since σ̄(ϕ) is
C-valid, therefore ϕ(a1, . . . , an) is C-valid. Let ∼k

(a1,...,an)
, f : {0, 1}k −→ {0, 1}n

and (b1, . . . , bn) be as in Sect. 7. By Lemma 6, (a1, . . . , an) �n
C (b1, . . . , bn).

Since C is balanced, therefore by Proposition 7, (a1, . . . , an) ∼=n
C (b1, . . . , bn).

Let τ be the substitution such that for all positive integers i, if i ≤ n then
τ(xi) = bi and for all variables y, if y �∈ {x1, . . . , xn} then τ(y) = y. Note
that (τ(x1), . . . , τ(xn)) ∈ TER(x1, . . . , xn)n. Moreover, since ϕ(a1, . . . , an) is C-
valid and (a1, . . . , an) ∼=n

C (b1, . . . , bn), therefore ϕ(b1, . . . , bn) is C-valid. Hence,
τ is a C-unifier of ϕ. For all positive integers i, if i ≤ n then let Δi and ci be
as in Sect. 6. Let υ be as in Sect. 7. By Proposition 5, for all positive integers
i, if i ≤ n then considered as formulas in CPL, the terms ai and ῡ(bi) are
equivalent. Thus, for all positive integers i, if i ≤ n then EQ(ῡ(τ(xi)), σ(xi))
is C-valid. Consequently, τ ◦ υ �C σ. Hence, τ �C σ. Since σ was arbitrary
and (τ(x1), . . . , τ(xn)) ∈ TER(x1, . . . , xn)n, therefore ϕ is either C-finitary, or
C-unitary. Since ϕ was arbitrary, therefore elementary unification in C is either
finitary, or unitary. Now, suppose C agrees with unions. By Proposition 15, ele-
mentary unification in C is not unitary. Since elementary unification in C is either
finitary, or unitary, therefore elementary unification in C is finitary.

It follows from the above discussion that elementary unification in Call, Cind and
Ccon is finitary.

10 Conclusion

Much remains to be done. For example, what becomes of the computability of
unifiability and admissibility when the language is extended by the connect-
edness predicate considered in [14,16]? What becomes of the unification type?
And when the language is interpreted in different Euclidean spaces as in [15,16]?
In other respect, it remains to see how decision procedures for unifiability and
admissibility can be used to improve the performance of algorithms that han-
dle the satisfiability problem. Finally, one may as well consider these questions

296 P. Balbiani and Ç. Gencer

when the language is extended by a set of propositional constants (denoted p,
q, etc.). In this case: (i) the unifiability problem is to determine, given a for-
mula ϕ(p1, . . . , pm, x1, . . . , xn), whether there exists terms a1, . . . , an such that
ϕ(p1, . . . , pm, a1, . . . , an) is valid; (ii) the admissibility problem is to determine,
given an inference rule ϕ(p1,...,pm,x1,...,xn)

ψ(p1,...,pm,x1,...,xn)
, whether for all terms a1, . . . , an, if

ϕ(p1, . . . , pm, a1, . . . , an) is valid then ψ(p1, . . . , pm, a1, . . . , an) is valid. We con-
jecture that in Call, Cind and Ccon, unification with constants is NEXP -complete
but still finitary.

Acknowledgements. Wemake a point of thanking Joseph Boudou, Yannick Chevalier
and Tinko Tinchev who contributed to the development of the work we present today.

References

1. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Principles of Knowledge Representation and Reasoning, pp.
568–572. AAAI Press (2012)

2. Baader, F., Ghilardi, S.: Unification in modal and description logics. Logic J. IGPL
19, 705–730 (2011)

3. Balbiani, P., Tinchev, T.: Boolean logics with relations. J. Logic Algebr. Program.
79, 707–721 (2010)

4. Balbiani, P., Tinchev, T.: Definability and canonicity for Boolean logic with a
binary relation. Fundamenta Informaticæ 129, 301–327 (2014)

5. Balbiani, P., Tinchev, T., Vakarelov, D.: Modal logics for region-based theories of
space. Fundamenta Informaticæ 81, 29–82 (2007)

6. Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: Handbook
of Knowledge Representation, pp. 551–596. Elsevier (2008)

7. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a
proximity approach – I. Fundamenta Informaticæ 74, 209–249 (2006)

8. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: prox-
imity approach – II. Fundamenta Informaticæ 74, 251–282 (2006)

9. Düntsch, I., Winter, M.: A representation theorem for Boolean contact algebras.
Theor. Comput. Sci. 347, 498–512 (2005)

10. Dzik, W.: Unification Types in Logic. Wydawnicto Uniwersytetu Slaskiego (2007)
11. Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)
12. Gencer, Ç., de Jongh, D.: Unifiability in extensions of K4. Logic J. IGPL 17,

159–172 (2009)
13. Ghilardi, S.: Best solving modal equations. Ann. Pure Appl. Logic 102, 183–198

(2000)
14. Kontchakov, R., Pratt-Hartmann, I., Wolter, F., Zakharyaschev, M.: Spatial logics

with connectedness predicates. Logical Methods Comput. Sci. 6, 1–43 (2010)
15. Kontchakov, R., Pratt-Hartmann, I., Zakharyaschev, M.: Interpreting topological

logics over Euclidean spaces. In: Proceedings of the Twelfth International Confer-
ence on the Principles of Knowledge Representation and Reasoning, pp. 534–544.
AAAI Press (2010)

16. Kontchakov, R., Nenov, Y., Pratt-Hartmann, I., Zakharyaschev, M.: Topological
logics with connectedness over Euclidean spaces. ACM Trans. Comput. Logic 14,
1–13 (2013)

Finitariness of Elementary Unification in BRCC 297

17. Li, S., Ying, M.: Region connection calculus: its model and composition table.
Artif. Intell. 145, 121–146 (2003)

18. Martin, U., Nipkow, T.: Boolean unification – the story so far. J. Symbol. Comput.
7, 275–293 (1989)

19. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, pp. 165–176. Morgan Kaufman (1992)

20. Renz, J.: Qualitative Spatial Reasoning with Topological Information. Lecture
Notes in Artificial Intelligence, vol. 2293. Springer, Heidelberg (2002). doi:10.1007/
3-540-70736-0

21. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal
tractable fragment of the region connection calculus. Artif. Intell. 108, 69–123
(1999)

22. Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier, Amsterdam (1997)
23. Vakarelov, D.: Region-based theory of space: algebras of regions, representation

theory, and logics. In: Gabbay, D.M., Zakharyaschev, M., Goncharov, S.S. (eds.)
Mathematical Problems from Applied Logic II. International Mathematical Series,
vol. 5. Springer, New York (2007). doi:10.1007/978-0-387-69245-6 6

24. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning
based on RCC-8. In: Proceedings of the Seventh International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pp. 3–14. Morgan Kaufmann
(2000)

http://dx.doi.org/10.1007/3-540-70736-0
http://dx.doi.org/10.1007/3-540-70736-0
http://dx.doi.org/10.1007/978-0-387-69245-6_6

Merging Fragments of Classical Logic

Carlos Caleiro1, Sérgio Marcelino1, and João Marcos2(B)

1 Departament of Mathematics, IST, Universidade de Lisboa, Lisbon, Portugal
{ccal,smarcel}@math.tecnico.ulisboa.pt

2 Lo.L.I.T.A. and DIMAp, UFRN, Natal, Brazil
jmarcos@dimap.ufrn.br

Abstract. We investigate the possibility of extending the non-
functionally complete logic of a collection of Boolean connectives by the
addition of further Boolean connectives that make the resulting set of
connectives functionally complete. More precisely, we will be interested
in checking whether an axiomatization for Classical Propositional Logic
may be produced by merging Hilbert-style calculi for two disjoint incom-
plete fragments of it. We will prove that the answer to that problem is
a negative one, unless one of the components includes only top-like con-
nectives.

1 Introduction

Hilbert-style calculi are arguably the most widespread way of defining logics,
and simultaneously the least studied one, from the metalogical viewpoint. This
is mostly due to the fact that proofs in Hilbert-style calculi are hard to obtain and
systematize, in contrast with other proof formalisms such as sequent calculi and
their well developed proof-theory, and semantic approaches involving algebraic or
relational structures. Still, Hilbert-style calculi are most directly associated with
the fundamental notion of logic as a consequence operation and are thus worth
studying. Furthermore, merging together Hilbert-style calculi for given logics in
order to build a combined logic precisely captures the mechanism for combining
logics known as fibring, yielding the least logic on the joint language that extends
the logics given as input [2]. Fibring fares well with respect to two basic guiding
principles one may consider, conservativity and interaction. In contrast, despite
their better behaved compositional character, alternative approaches based for
instance on sequent calculi are prone to emerging interactions and breaches in
conservativity (see, for instance, the collapsing problem [3]).

In this paper, as an application of recent results about fibred logics, we
investigate the modular construction of Hilbert-style calculi for classical logic.

This research was done under the scope of R&D Unit 50008, financed by the applica-
ble financial framework (FCT/MEC through national funds and when applicable
co-funded by FEDER/PT2020), and is part of the MoSH initiative of SQIG at Insti-
tuto de Telecomunicações. Sérgio Marcelino acknowledges the FCT postdoc grant
SFRH/BPD/76513/2011. João Marcos acknowledges partial support by CNPq and
by the Humboldt Foundation.

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 298–315, 2017.
DOI: 10.1007/978-3-319-66167-4 17

Merging Fragments of Classical Logic 299

Take, for instance, implication and negation. Together, they form a function-
ally complete set of connectives. However, all suitable axiomatizations of clas-
sical logic we have seen include at least one axiom/rule where implication and
negation interact. Rautenberg’s general method for axiomatizing fragments of
classical logic [9], which explores the structure of Post’s lattice [5,8], further
confirms the intuition about the essential role of interaction axioms/rules, that
one may have drawn from any experience with axiomatizations of classical logic.
Additionally, such expectation is consistent with a careful analysis of the char-
acterization of the complexity of different fragments of classical logic and their
associated satisfiability problems [10,12], namely in the light of recent results on
the decidability and complexity of fibred logics [6]. The question we wish to give
a definitive answer to, here, is precisely this: is it possible to recover classical
logic by fibring two disjoint fragments of it? We will show that the recovery is
successful iff one of the logics represents a fragment of classical logic consisting
only of top-like connectives (i.e., connectives that only produce theorems, for
whichever arguments received as input), while the other results in a functionally
complete set of connectives with the addition of �.

The paper is organized as follows. In Sect. 2, we overview basic notions of
logic, including Hilbert calculi and logical matrices, and introduce helpful nota-
tion. In Sect. 3 we carefully review the mechanism for fibring logics, as well as
some general results about disjoint fibring that shall be necessary next. Our
main results, analyzing the merging of disjoint fragments of classical logic, are
obtained in Sect. 4. We conclude, in Sect. 5, with a brief discussion of further
work. To the best of our knowledge, Proposition 1 (Sect. 3) and all the charac-
terization results in Sect. 4 are new.

2 Preliminaries

2.1 Logics in Abstract

In what follows, a signature Σ is an indexed set {Σ(k)}k∈N, where each Σ(k) is
a collection of k-place connectives. Given a signature Σ and a (disjoint) set P of
sentential variables, we denote by LΣ(P) the absolutely free Σ-algebra generated
by P , also known as the language generated by P over Σ. The objects in LΣ(P)
are called formulas, and a formula is called compound in case it belongs to
LΣ(P)\P , that is, in case it contains some connective. We will sometimes use
head(C) to refer to the main connective in a compound formula C, and say
that a formula C is Σ-headed if head(C) ∈ Σ. Furthermore, we will use sbf(C)
to refer to the set of subformulas of C, and use var(C) to refer to the set of
sentential variables occurring in C; the definitions of sbf and var are extended
to sets of formulas in the obvious way. Given a formula C such that var(C) ⊆
{p1, . . . , pk}, it is sometimes convenient to take it as inducing a k-ary term
function ϕ = λp1 . . . pk.C such that ϕ(p1, . . . , pk) = C, over which we will employ
essentially the same terminology used to talk about connectives and formulas
therewith constructed —in particular, a k-ary term function is induced by a
formula generated by k distinct sentential variables over a k-place connective.

300 C. Caleiro et al.

In such cases we will also say that the corresponding term functions are allowed
by the underlying language and expressed by the corresponding logic. We will
often employ the appellations nullary for 0-ary and singulary for 1-ary term
functions (or for the connectives that induce them). Given signatures Σ ⊆ Σ′

and sets P ⊆ P ′ of sentential variables, a substitution is a structure-preserving
mapping over the corresponding sets of formulas, namely a function σ : P −→
LΣ′(P ′) which extends uniquely to a homomorphism σ� : LΣ(P) −→ LΣ′(P ′)
by setting σ�(c©(C1, . . . , Ck)) := c©(σ�(C1), . . . , σ�(Ck)) for every c© ∈ Σ(k). We
shall refer to σ�(C) more simply as Cσ. The latter notation is extended in the
natural way to sets of formulas: given Π ⊆ LΣ(P), Πσ denotes {Cσ : C ∈ Π}.

A logic L over the language LΣ(P) is here a structure 〈LΣ(P),�〉 equipped
with a so-called consequence relation � ⊆ Pow(LΣ(P)) × LΣ(P) respecting (R)
Γ ∪ {C} � C; (M) if Γ � C then Γ ∪ Δ � C; (T) if Γ � D for every D ∈ Δ and
Γ ∪ Δ � C, then Γ � C; and (SI) if Γ � C then Γ σ � Cσ for any substitution
σ : P −→ LΣ(P). Any assertion in the form Π � E will be called a consecution,
and may be read as ‘E follows from Π (according to L)’; whenever 〈Π,E〉 ∈ �
one may say that L sanctions Π � E. Henceforth, union operations and braces
will be omitted from consecutions, and the reader will be trusted to appropriately
supply them in order to make the expressions well-typed.

Given two logics L = 〈LΣ(P),�〉 and L′ = 〈LΣ′(P ′),�′〉, we say that L′

extends L in case P ⊆ P ′, Σ ⊆ Σ′ and � ⊆ �′. In case Γ � C iff Γ �′ C, for every
Γ ∪{C} ⊆ LΣ(P), we say that the extension is conservative. So, in a conservative
extension no new consecutions are added in the ‘reduced language’ LΣ(P) by
the ‘bigger’ logic L′ to those sanctioned by the ‘smaller’ logic L. Fixed L =
〈LΣ(P),�〉, and given Σ ⊆ Σ′ and P ⊆ P ′, let Sbst collect all the substitutions
σ : P −→ LΣ′(P ′). We say that a formula B of LΣ′(P ′) is a substitution
instance of a formula A of LΣ(P) if there is a substitution σ ∈ Sbst such that
Aσ = B. A natural conservative extension induced by L is given by the logic
L′ = 〈LΣ′(P ′),�′〉 equipped by the smallest substitution-invariant consequence
relation preserving the consecutions of L inside the extended language, that is,
such that Γ �′ C iff there is some Δ ∪ {D} ⊆ LΣ(P) and some σ ∈ Sbst such
that Δ � D, where Δσ = Γ and Dσ = C. In what follows, when we simply
enrich the signature and the set of sentential variables, we shall not distinguish
between a given logic and its natural conservative extension.

Two formulas C and D of a logic L = 〈LΣ(P),�〉 are said to be logically
equivalent according to L if C � D and D � C; two sets of formulas Γ and Δ
are said to be logically equivalent according to L if each formula from each
one of these sets may correctly be said to follow from the other set of formulas
(notation: Γ ��L Δ). We call the set of formulas Γ ⊆ LΣ(P) trivial (according
to L) if Γ ��L LΣ(P). We will say that the logic L is consistent if its consequence
relation � does not sanction all possible consecutions over a given language, that
is, if there is some set of formulas Π ∪ {E} such that Π �� E, in other words,
if L contains some non-trivial set of formulas Π; we call a logic inconsistent if
it fails to be consistent. We say that a set of formulas Π in L = 〈LΣ(P),�〉 is
�-explosive in case Πσ � E for every substitution σ : P −→ LΣ(P) and every

Merging Fragments of Classical Logic 301

formula E. Obviously, an inconsistent logic L is one in which the empty set of
formulas is �-explosive.

Fixed a denumerable set of sentential variables P and a non-empty signa-
ture Σ, let conn =

⋃
Σ. To simplify notation, whenever the context eliminates

any risk of ambiguity, we will sometimes refer to LΣ(P) more simply as Lconn.
For instance, given the 2-place connective ∧, in writing L∧ we refer to the lan-
guage generated by P using solely the connective ∧, and similarly for the 2-place
connective ∨ and the language L∨. Taking the union of the corresponding sig-
natures, in writing L∧∨ we refer to the mixed language whose formulas may be
built using exclusively the connectives ∧ and ∨.

Example 1. For an illustration involving some familiar connectives, a logic L =
〈LΣ(P),�〉 will be said to be c©-classical if, for every set of formulas Γ∪{A,B,C}
in its language (see, for instance, [4]):

[c© = � ∈ Σ(0)] Γ,� � C implies Γ � C
[c© = ⊥ ∈ Σ(0)] Γ � ⊥ implies Γ � C
[c© = ¬ ∈ Σ(1)] (i) A,¬A � C; and (ii) Γ,A � C and Γ,¬A � C imply Γ � C
[c© = ∧ ∈ Σ(2)] Γ,A ∧ B � C iff Γ,A,B � C
[c© = ∨ ∈ Σ(2)] Γ,A ∨ B � C iff Γ,A � C and Γ,B � C
[c© =→∈ Σ(2)] (i) A,A → B � B; (ii) Γ,A → B � C implies Γ,B � C;

and (iii) Γ,A � C and Γ,A → B � C implies Γ � C

Other classical connectives may also be given appropriate abstract characteri-
zations, ‘upon demand’. If the logic Lconn = 〈Lconn,�〉 is c©-classical for every
c© ∈ conn, we call it the logic of classical conn and denote it by Bconn. �

Let ϕ be some k-ary term function expressed by the logic L = 〈LΣ(P),�〉.
If ϕ(p1, . . . , pk) � pj for some 1 ≤ j ≤ k, we say that ϕ is projective over
its j-th component. Such term function is called a projection-conjunction if
it is logically equivalent to its set of projective components, i.e., if there is
some J ⊆ {1, 2, . . . , k} such that (i) ϕ(p1, . . . , pk) � pj for every j ∈ J and
(ii) {pj : j ∈ J} � ϕ(p1, . . . , pk). In case ϕ(p1, . . . , pk) � pk+1, we say that ϕ is
bottom-like. We will call ϕ top-like if � ϕ(p1, . . . , pk); do note that the latter is
a particular case of projection-conjunction (take J = ∅). Classical conjunction
is another particular case of projection-conjunction (take n = 2 and J = {1, 2});
its singulary version (take n = 1 and J = {1}) corresponds to the so-called affir-
mation connective. A term function that is neither top-like nor bottom-like will
here be called significant; if in addition it is not a projection-conjunction, we will
call it very significant; in each case, connectives shall inherit the corresponding
terminology from the term functions that they induce. Note that being not very
significant means being either bottom-like or a projection-conjunction.

2.2 Hilbert-Style Proof Systems

One of the standard ways of presenting a logic is through the so-called ‘axiomatic
approach’. We call Hilbert calculus over the language LΣ(P) any structure H =
〈LΣ(P),R〉, presented by a set of inference rules R ⊆ Pow(LΣ(P)) × LΣ(P).

302 C. Caleiro et al.

An inference rule � = 〈Δ,D〉 ∈ R is said to have premises Δ and conclusion D,
and is often represented in tree-format by writing Δ

D
� , or D1 ... Dn

D
� when Δ =

{D1, . . . , Dn}, or D
� in case Δ = ∅. The latter type of rule, with an empty set

of premises, is called axiom.
Fix in what follows a Hilbert calculus presentation H = 〈LΣ(P),R〉, and

consider signatures Σ ⊆ Σ′ and sets P ⊆ P ′ of sentential variables, with the
corresponding collection Sbst of substitutions from LΣ(P) into LΣ′(P ′). Given
formulas Γ ∪ {C} ⊆ LΣ′(P ′), a rule application allowing to infer C from Γ
according to H corresponds to a pair 〈�, σ〉 such that Δ

D
� is in R and σ ∈ Sbst,

while Δσ = Γ and Dσ = C. Such rule applications are often annotated with the
names of the corresponding rules being applied. In case Δ = ∅ we may also refer
to the corresponding rule application as an instance of an axiom. As usual, an
H-derivation of C from Γ is a tree T with the following features: (i) all nodes are
labelled with substitution instances of formulas of LΣ(P); (ii) the root is labelled
with C; (iii) the existing leaves are all labelled with formulas from Γ ; (iv) all
non-leaf nodes are labelled with instances of axioms, or with premises from Γ ,
or with formulas inferred by rule applications from the formulas labelling the
roots of certain subtrees of T , using the inference rules R of H. It is not hard
to see that H induces a logic LH = 〈LΣ′(P ′),�R〉 by setting Γ �R C iff there is
some H-derivation of C from Γ ; indeed, we may safely leave to the reader the
task of verifying that postulates (R), (M), (T) and (SI) are all respected by �R.
We shall say that a logic L = 〈LΣ(P),�〉 is characterized by a Hilbert calculus
H = 〈LΣ(P),R〉 iff � = �R.

Example 2. We revisit the well-known connectives of classical logic whose infer-
ential behaviors were described in Example 1. What follows are the rules of
appropriate Hilbert calculi for the logics L c© = 〈L c©,�R c©〉, where p, q, r ∈ P :

[c© = �] � t1

[c© = ⊥] ⊥
p

b1

[c© = ¬] p
¬¬p

n1
¬¬p

p
n2

p ¬p
q

n3

[c© = ∧] p∧q
p

c1
p∧q

q
c2

p q
p∧q

c3

[c© = ∨] p
p∨q

d1
p∨p

p
d2

p∨q
q∨p

d3
p∨(q∨r)
(p∨q)∨r

d4

[c© =→] p→(q→p)
i1

(p→(q→r))→((p→q)→(p→r))
i2

((p→q)→p)→p
i3

p p→q
q

i4

Of course, other classical connectives can also be axiomatized. For instance, the
bi-implication ↔ defined by the term function λpq.(p → q) ∧ (q → p) may be
presented by:
[c© =↔] (p↔(q↔r))↔((p↔q)↔r)

e1
((p↔r)↔(q↔p))↔(r↔q)

e2
p p↔q

q
e3 �

2.3 Matrix Semantics

Another standard way of presenting a logic is through ‘model-theoretic seman-
tics’. A matrix semantics M over the language LΣ(P) is a collection of logical
matrices over LΣ(P), where by a logical matrix LM over LΣ(P) we mean a

Merging Fragments of Classical Logic 303

structure LM = 〈V,D,C〉 in which the set V is said to contain truth-values, each
truth-value in D ⊆ V is called designated, and for each c© ∈ Σ(k) there is in C a
k-ary interpretation mapping c̃© over V. A valuation over a logical matrix LM
is any mapping v : LΣ(P) −→ V such that v(c©(C1, . . . , Ck)) =
c̃©(v(C1), . . . , v(Ck)) for every c© ∈ Σ(k). We denote by VLM the set of all
valuations over LM, and say that the valuation v over LM satisfies a formula
C ∈ LΣ(P) if v(C) ∈ D. Note that a valuation might be thought more simply as
a mapping v : P −→ V, given that there is a unique extension of v as a homo-
morphism from LΣ(P) into the similar algebra having V as carrier and having
each symbol c© ∈ Σ(k) interpreted as the k-ary operator c̃© : Vk −→ V. Anal-
ogously, each k-ary term function λp1 . . . pk.ϕ over LΣ(P) is interpreted by a
logical matrix LM in the natural way as a k-ary operator ϕ̃ : Vk −→ V. We shall
call CΣ

LM the collection of all term functions compositionally derived over Σ and
interpreted through LM; in the literature on Universal Algebra, CΣ

LM is known as
the clone of operations definable by term functions allowed by the signature Σ,
under the interpretation provided by LM.

Given a valuation v : LΣ(P) −→ V, where the truth-values D ⊆ V are
taken as designated, and given formulas Γ ∪ {C} ⊆ LΣ(P), we say that C
follows from Γ according to v (notation: Γ �v C) iff it is not the case that v
simultaneously satisfies all formulas in Γ while failing to satisfy C. We extend
the definition to a set V of valuations by setting Γ �V C iff Γ �v C for every
v ∈ V, that is, �V =

⋂
v∈V(�v). On its turn, a matrix semantics M defines a

consequence relation �M by setting Γ �M C iff Γ �VLM
C for every LM ∈ M,

that is, �M =
⋂

LM∈M(�VLM
). If we set VM :=

⋃
LM∈M(VLM), it should be clear

that �M = �VM . We shall say that a logic L = 〈LΣ(P),�〉 is characterized by
a matrix semantics M iff � = �M. To make precise what we mean herefrom by
a ‘fragment’ of a given logic, given a subsignature Σ′ ⊆ Σ, a sublogic L′ of L is
a logic L′ = 〈LΣ′(P),�′〉 characterized by a matrix semantics M′ such that the
interpretation c̃© of the connective c© is the same at both M and M′, for every
c© ∈ Σ′ and every LM ∈ M′. It is not hard to see that L will in this case consist
in a conservative extension of L′. There are well-known results in the literature
to the effect that any logic whose consequence relation satisfies (R), (M), (T)
and (SI) may be characterized by a matrix semantics [13].

Example 3. We now revisit yet again the connectives of classical logic that
received our attention at Examples 1 and 2. Let V = {0, 1} and D = {1}. Given
a logical matrix 〈V,D,C〉, we will call it c©-Boolean if:

[c© = �] �̃ = 1

[c© = ⊥] ⊥̃ = 0
[c© = ¬] (i) ¬̃(1) = 0; and (ii) ¬̃(0) = 1
[c© = ∧] (i) ∧̃(1, 1) = 1; and (ii) ∧̃(x, y) = 0 otherwise
[c© = ∨] (i) ∨̃(0, 0) = 0; and (ii) ∨̃(x, y) = 1 otherwise
[c© =→] (i) →̃(1, 0) = 0; and (ii) →̃(x, y) = 1 otherwise
[c© =↔] (i) ↔̃(x, y) = 1 if x = y; and (ii) ↔̃(x, y) = 0 otherwise

304 C. Caleiro et al.

It is not difficult to show that, if M is a collection of c©-Boolean logical matrices,
the logic L c© = 〈L c©,�M〉 is c©-classical. Conversely, every c©-classical logic may
be characterized by a single c©-Boolean logical matrix.

We take the chance to introduce a few other connectives that will be useful
later on. These connectives may be primitive in some sublogics of classical logic,
but can also be defined by term functions involving the previously mentioned
connectives, as follows:

�→ := λpq.¬(p → q)
+ := λpq.(p ∧ ¬q) ∨ (q ∧ ¬p)
if := λpqr.(p → q) ∧ (¬p → r)

Tn
0 := λp1 . . . pn.�, for n ≥ 0

Tn
n := λp1 . . . pn.p1 ∧ · · · ∧ pn, for n > 0

Tn
k := λp1 . . . pn.(p1 ∧ Tn−1

k−1 (p2, . . . , pn)) ∨ Tn−1
k (p2, . . . , pn), for n > k > 0

Note that a logical matrix containing such connectives is c©-Boolean if:

[c© = �→] (i) ˜�→(1, 0) = 1; and (ii) ˜�→(x, y) = 0 otherwise
[c© = +] (i) +̃(x, y) = 0 if x = y; and (ii) +̃(x, y) = 1 otherwise
[c© = if] (i) ĩf(1, y, z) = y; and (ii) ĩf(0, y, z) = z

[c© = T̃n
k] (i) T̃n

k (x1, . . . , xn) = 0 if Size({i : xi = 1}) < k;
and (ii) T̃n

k (x1, . . . , xn) = 1 otherwise

�

In what follows we shall use the expression two-valued logic to refer to any
logic characterized by the logical matrix {V2,D2,C}, where V2 = {0, 1} and D2 =
{1}, and use the expression Boolean connectives to refer to the corresponding 2-
valued interpretation of the symbols in Σ (see Example 3). From this perspective,
whenever we deal with a two-valued logic whose language is expressive enough,
modulo its interpretation through a matrix semantics, to allow for all operators of
a Boolean algebra BA over V2 to be compositionally derived, we will say that we
are dealing with classical logic. Alternatively, whenever the underlying signature
turns out to be of lesser importance, one might say that classical logic is the two-
valued logic that corresponds to the clone CBA containing all operations over V2.
Due to such level of expressiveness, classical logic is said thus to be functionally
complete (over V2). On those grounds, it follows that all two-valued logics may
be said to be sublogics of classical logic. The paper [9] shows how to provide
a Hilbert calculus presentation for any proper two-valued sublogic of classical
logic.

Emil Post’s characterization of functional completeness for classical logic [5,8]
is very informative. First of all, it tells us that there are exactly five maximal
functionally incomplete clones (i.e., co-atoms in Post’s lattice), namely:

P0 = C∨ �→
BA P1 = C∧→

BA A = C↔⊥
BA M = C∧∨�⊥

BA D = CT 3
2 ¬

BA

The Boolean top-like connectives form the clone UP1 = C�
BA. As it will be useful

later on, we mention that an analysis of Post’s lattice also reveals that there are
also a number of clones which are maximal with respect to �, i.e., functionally
incomplete clones that become functionally complete by the mere addition of

Merging Fragments of Classical Logic 305

the nullary connective � (or actually any other connective from UP1). In terms
of the Post’s lattice, the clones whose join with UP1 result in CBA are:

D T
∞
0 = C �→

BA T
n
0 = CTn+1

n �→
BA (for n ∈ N)

It is worth noting that T
1
0 = P0.

If a logic turns out to be characterized by a single logical matrix with a finite
set of truth-values, a ‘tabular’ decision procedure is associable to its consequence
relation based on the fact that the valuations over a finite number of sentential
variables may be divided into a finite number of equivalence classes, and one may
then simply do an exhaustive check for satisfaction whenever a finite number of
formulas is involved in a given consecution. More generally, we will say that a
logic L is locally tabular if the relation of logical equivalence ��L partitions the
language LΣ({p1, . . . , pk}), freely generated by the signature Σ over a finite set
of sentential variables, into a finite number of equivalence classes. It is clear that
all two-valued sublogics of classical logic are locally tabular. On the same line,
it should be equally clear that any logic that fails to be locally tabular cannot
be characterized by a logical matrix with a finite set of truth-values.

3 Combining Logics

Given two logics La = 〈LΣa
(P),�a〉 and Lb = 〈LΣb

(P),�b〉, their fibring is
defined as the smallest logic La • Lb = 〈La•b(P),�a•b〉, where La•b(P) =
LΣa∪Σb

(P), and where �a ⊆ �a•b and �b ⊆ �a•b, that is, it consists in the
smallest logic over the joint signature that extends both logics given as input.
Typically, one could expect the combined logic La • Lb to conservatively extend
both La and Lb. That is not always possible, though (consider for instance the
combination of a consistent logic with an inconsistent logic). A full characteriza-
tion of the combinations of logics through disjoint fibring that yield conservative
extensions of both input logics may be found at [7]. The fibring of two logics is
called disjoint (or unconstrained) if their signatures are disjoint. A neat char-
acterization of fibring is given by way of Hilbert calculi: Given �a = �Ra

and
�b = �Rb

, where Ra and Rb are sets of inference rules, we may set Ra•b := Ra ∪Rb

and then note that La • Lb = 〈La•b(P),�Ra•b
〉.

Insofar as a logic may be said to codify inferential practices used in reason-
ing, the (conservative) combination of two logics should not only allow one to
faithfully recover the original forms of reasoning sanctioned by each ingredient
logic over the respective underlying language, but should also allow the same
forms of reasoning —and no more— to obtain over the mixed language. Hence,
it is natural to think that each of the ingredient logics cannot see past the con-
nectives belonging to the other ingredient logic —the latter connectives look like
‘monoliths’ whose internal structure is inaccessible from the outside.

To put things more formally, given signatures Σ ⊆ Σ′ and given a formula
C ∈ LΣ′(P), we call Σ-monoliths the largest subformulas of C whose heads
belong to Σ′\Σ. Accordingly, the set monΣ(C) ⊆ sbf(C) of all Σ-monoliths
of C is defined by setting:

306 C. Caleiro et al.

monΣ(C) :=

⎧
⎪⎨

⎪⎩

∅ if C ∈ P,
⋃k

i=1 monΣ(Ci) if C = c©(C1, . . . , Ck) and c© ∈ Σ(k),

{C} otherwise.

This definition may be extended to sets of formulas in the usual way, by set-
ting monΣ(Γ) :=

⋃
C∈Γ monΣ(C). Note, in particular, that monΣ(Γ) = ∅ if

Γ ⊆ LΣ(P). From the viewpoint of the signature Σ, monoliths may be seen
as ‘skeletal’ (sentential) variables that represent formulas of LΣ′(P) whose
inner structure cannot be taken advantage of. In what follows, let XΣ′

:=
{xD : D ∈ LΣ′(P)} be a set of fresh symbols for sentential variables. Given
C ∈ LΣ′(P), in order to represent the Σ-skeleton of C we define the function
skΣ : LΣ′(P) −→ LΣ′(P ∪ XΣ′

) by setting:

skΣ(C) :=

⎧
⎪⎨

⎪⎩

C if C ∈ P,

c©(skΣ(C1), . . . , skΣ(Ck)) if C = c©(C1, . . . , Ck) and c© ∈ Σ(k),

xC , otherwise.

Clearly, a skeletal variable xD is only really useful in case head(D) ∈ Σ′\Σ.

Example 4. Recall from Example 2 the inference rules characterizing the logic B∧
of classical conjunction and the logic B∨ of classical disjunction. As in Example 1,
we let B∧∨ refer to a logic that is at once ∧-classical and ∨-classical, and contains
no other primitive connectives besides ∧ and ∨. Consider now the fibred logic
L∧•∨ := B∧ • B∨. It should be clear that �∧•∨ ⊆ �∧∨. It is easy to see now that
p ∧ (p ∨ q) ��∧•∨ p (a logical realization of an absorption law of lattice theory).
Indeed, a one-step derivation D1 of p from p∧ (p∨ q) in L∧•∨ is obtained simply
by an application of rule c1 to p∧(p∨q), and a two-step derivation D2 of p∧(p∨q)
from p in L∧•∨ is obtained by the application of rule d1 to p to obtain p ∨ q,
followed by an application of c3 to p and p ∨ q to obtain p ∧ (p ∨ q). Note that
monΣ∧(p∧(p∨q)) = {p∨q} and monΣ∨(p∧(p∨q)) = {p∧(p∨q)}, and note also
that skΣ∧(p∧(p∨q)) = p∧xp∨q and skΣ∨(p∧(p∨q)) = xp∧(p∨q). This means that
from the viewpoint of B∧ the step of D2 in which the foreign rule d1 is used is seen
as a ‘mysterious’ passage from p to a new sentential variable xp∨q taken ex nihilo
as an extra hypothesis in the derivation, and from the viewpoint of B∨ the step
of D2 in which the foreign rule c3 is used is seen as the spontaneous introduction
of an extra hypothesis xp∧(p∨q). At our next example we will however show that
the dual absorption law, represented by p ∨ (p ∧ q) ��∧•∨ p, does not hold, even
though the corresponding equivalence holds good over all Boolean algebras. This
will prove that �∧∨ �⊆ �∧•∨, and thus B∧∨ �⊆ B∧ • B∨. �
Remark 1. In a natural conservative extension, where the syntax of a logic is
extended with new connectives but no further inference power is added, it is clear
that formulas headed by the newly added connectives are treated as monoliths.
Hence, the following result from [6] applies: Given L = 〈LΣ(P),�〉, Σ ⊆ Σ′ and
Δ ∪ {C,D} ⊆ LΣ′(P) we have Δ � D if and only if skΣ(Δ) � skΣ(D). �

Merging Fragments of Classical Logic 307

We will present next a fundamental result from [6] that fully describes disjoint
mixed reasoning in La •Lb, viz. by identifying the consecutions sanctioned by such
combined logic with the help of appropriate consecutions sanctioned by its ingre-
dient logics La and Lb. Given that consecutions in �a•b are justified by alternations
of consecutions sanctioned by �a and consecutions sanctioned by �b, given a set of
mixed formulas Δ ⊆ La•b, we define the saturation Sa•b(Δ) of Δ as

⋃
n∈N

Sn
a•b(Δ),

where S0a•b(Δ) := Δ and Sn+1
a•b (Δ) := {D ∈ sbf(Δ) : Sn

a•b(Δ) �a D or Sn
a•b(Δ) �b

D}. In addition, given a set of mixed formulas Δ ∪ {D} ⊆ La•b, we abbreviate
by Mi

a•b(Δ,D) the set of Σi-monoliths {C ∈ monΣi
(D) : Δ �a•b C}, for each

i ∈ {a, b}. Such ancillary notation helps us stating:

Theorem 1. Let La and Lb be two logics, each one characterizable by a single
logical matrix. If La and Lb have disjoint signatures, the consecutions in the
fibred logic La•b are such that Γ �a•b C iff the following condition holds good:
(Za) Sa•b(Γ),Ma

a•b(Γ,C) �a C or Sa•b(Γ) is �b-explosive.

Note that the roles of a and b may be exchanged in the above theorem, given that
the fibring operation is obviously commutative, so we might talk accordingly of
a corresponding condition (Zb), in case it turns out to be more convenient. The
original formulation of this result in [6] was based on a slightly more sophisticated
notion of saturation, which reduces to the above one in particular when the logics
involved in the combination are characterizable by means of a truth-functional
semantics (i.e., a matrix semantics involving a single logical matrix), as it is
indeed the case for all sublogics of classical logic.

Example 5. Set a = ∧ and b = ∨, E = p∨(p∧q), and let Γ = {E} and C = p. Note
that (i) sbf(Γ) = {p, q, p∧q, p∨ (p∧q)}. Moreover, it is clear that (ii) monΣa

(p) =
monΣb

(p) = ∅, given that p ∈ P , thus Ma
a•b(Γ,C) = Mb

a•b(Γ,C) = ∅. We know
by the base case of the definition of S that (iii) S0a•b(Γ) = Γ . Let us now show that
S1a•b(Γ) = Γ , from which it follows that Sa•b(Γ) = Γ . We shall be freely making
use of item (a) of Remark 1. Note first, by (R), that we obviously have Γ �c E,
for c ∈ {a, b}, and note also that (iv) skΣa

(E) = xE , (v) skΣb
(E) = p ∨ xp∧q, (vi)

skΣa
(p∧q) = p∧q, (vii) skΣb

(p∧q) = xp∧q and (viii) skΣc
(r) = r when r ∈ {p, q},

for c ∈ {a, b}. To see that S0a•b(Γ) ��c D for every D ∈ sbf(Γ)\{E} in case c is a
it suffices to invoke (i), (iii), (iv), (vi) and (viii), and set a valuation v such that
v(xE) := 1 and v(p) = v(q) := 0; in case c is b it suffices to invoke (i), (iii), (v),
(vii) and (viii), and one may even reuse the previous valuation v, just adding the
extra requirement that v(xp∧q) := 0. It thus follows from the recursive case of the
definition of S that S1a•b(Γ) = Γ . It is easy to see, with the help of (iv) and (v),
that Sa•b(Γ) = {E} is neither �a-explosive nor �b-explosive. Therefore, according
to condition (Zc) in Theorem 1, to check whether Γ �a•b C one may in this case
simply check whether Γ �a C or Γ �b C. From the preceding argument about
S0a•b(Γ) we already know that the answer is negative in both cases. We conclude
that p∨ (p∧ q) ��a•b p, thus indeed the fragment of classical logic with conjunction
and disjunction as sole primitive connectives must be a non-conservative exten-
sion of the fibring of the logic of classical conjunction with the logic of classical
disjunction, as we had announced at the end of Example 4. �

308 C. Caleiro et al.

The following is the first useful new result of this paper, establishing that con-
servativity is preserved by disjoint fibring, here proved for the (slightly simpler)
case where each logic is characterized by a single logical matrix.

Proposition 1. Let La and Lb be logics with disjoint signatures, each charac-
terizable by means of a single logical matrix. If La and Lb conservatively extend
logics L1 and L2, respectively, then La • Lb also conservatively extends L1 • L2.

Proof. Let Σa, Σb, Σ1 and Σ2, be the signatures of, respectively, La, Lb, L1

and L2. Fix Γ ∪ {C} ⊆ LΣ1∪Σ2(P). From Theorem 1 we may conclude that:
(a) Γ �a•b C if and only if either Sa•b(Γ),Ma

a•b(Γ,C) �a C, or Sa•b(Γ) is �b-
explosive; (b) Γ �1•2 C if and only if either S1•2(Γ),M1

1•2(Γ,C) �1 C, or S1•2(Γ)
is �2-explosive. Now, from the fact that Sn

a•b(Γ) ∪ Sn
1•2(Γ) ⊆ LΣ1∪Σ2(P), for all

n ∈ N, together with the assumptions that La conservatively extends L1 and Lb

conservatively extends L2 we conclude that Sa•b(Γ) = S1•2(Γ). The assumption
about conservative extension also guarantees that (c) Sa•b(Γ) is �b-explosive if
and only if S1•2(Γ) is �2-explosive.

We prove, by induction on the structure of C, that (d) Γ �a•b C if and only
if Γ �1•2 C. If C is a sentential variable then Ma

a•b(Γ,C) ⊆ monΣa
(C) = ∅

and, also, M1
1•2(Γ,C) ⊆ monΣ1(C) = ∅. We note that (d) then follows from

(a), (b) and (c). For the induction step, let C be compound. From the inductive
hypothesis we conclude that Ma

a•b(Γ,C) = M1
1•2(Γ,C). Hence, again from (a),

(b) and (c), we note that (d) follows. ��

4 Merging Fragments

This section studies the expressivity of logics obtained by fibring disjoint frag-
ments of classical logic. We start by analyzing the cases in which combining
disjoint sublogics of classical logic still yields a sublogic of classical logic.

Proposition 2. Let c©1 be a Boolean connective and c©2 be top-like. We then
have that B c©1

• B c©2
= B c©1 c©2

.

Proof. By assumption, c©2 is top-like, hence: () for any given set of formu-
las Δ, we have Δ � c©2

ψ iff ψ ∈ Δ or head(ψ) = c©2. Let us prove that
Γ � c©1 c©2

ϕ iff Γ � c©1• c©2
ϕ. By Theorem 1, we know that Γ � c©1• c©2

ϕ iff
S c©1• c©2

(Γ),M c©1
c©1• c©2

(Γ, ϕ) � c©1
ϕ or S c©1• c©2

(Γ) is � c©2
-explosive. By () it fol-

lows that if S c©1• c©2
(Γ) is � c©2

-explosive then S c©1• c©2
(Γ) must contain all the

sentential variables and { c©1}-headed formulas. Furthermore, mon c©2
(sbf(Γ)) ⊆

S c©1• c©2
(Γ) and M

c©1
c©1• c©2

(Γ, ϕ) = mon c©2
(ϕ). Therefore, Γ � c©1• c©2

ϕ iff
S c©1• c©2

(Γ),M c©1
c©1• c©2

(Γ, ϕ) � c©1
ϕ. Moreover, S c©1• c©2

(Γ) = {ψ ∈ sbf(Γ) :
Γ,mon c©1

(Γ) � c©1
ψ}. We may then finally conclude that Γ � c©1• c©2

ϕ iff
Γ,mon c©1

(Γ ∪ {ϕ}) � c©1
ϕ iff Γ � c©1 c©2

ϕ. ��

Merging Fragments of Classical Logic 309

Example 6. B �→ • B� = B �→� yields full classical logic, as the set {�→,�} is
functionally complete. �

Proposition 3. Let c©1 and c©2 be Boolean connectives neither of which are
very significant. Then, B c©1

• B c©2
= B c©1 c©2

.

Proof. There are three possible combinations, either (a) both connectives are
conjunction-projections, or (b) both are bottom-like, or (c) one connective is
bottom-like and the other is a conjunction-projection.

[Case (a)] Let J1 and J2 be the sets of indices corresponding respectively
to the projective components of c©1 and of c©2. For each ψ ∈ L c©1 c©2

(P) let
us define Pψ ⊆ P recursively, in the following way: Pψ := {ψ} if ψ ∈ P and
P c©i(ψ1,...,ψk) :=

⋃
a∈Ji

Pψa
for i ∈ {1, 2}. We claim that ψ is equivalent to Pψ

both according to B c©1
• B c©2

and according to B c©1 c©2
. Let us prove this by

induction on the structure of ψ. For the base case, let ψ be a sentential variable,
and note that ψ is equivalent to itself. If ψ is a nullary connective c©i, for some
i ∈ {1, 2} (and therefore c©i is top-like), then c©i is equivalent to P c©i

(namely,
the empty set). For the inductive step, consider ψ = c©i(ψ1, . . . , ψki

) where
ki is the arity of c©i. Using the fact that c©i is a projection-conjunction we
have that c©i is equivalent to {ψa : a ∈ Ji}. By induction hypothesis, each ψa

is equivalent to Pψa
, hence ψ is equivalent to

⋃
a∈Ji

Pψa
. Finally, for a set of

sentential variables B ∪ {b} we clearly have that B � c©1• c©2
b iff B � c©1 c©2

b iff
b ∈ B. So, the logics are equal.

[Case (b)] This is similar to the previous case. Let ψ ∈ L c©1 c©2
(P). We now

define Aψ recursively in the following way: Aψ := {ψ} if ψ ∈ P or head(ψ) = c©2,
and A c©1(ψ1,...,ψk) :=

⋃
a∈J1

Aψa
. Again, it is not hard to check that in both

B c©1
• B c©2

and B c©1 c©2
we have that ψ is equivalent to Aψ. Moreover, given

B ∪ {b} ⊆ P ∪ {ψ : head(ψ) = c©2} we clearly have that B � c©1• c©2
b iff

B � c©1 c©2
b iff b ∈ B or there is ψ ∈ B such that head(ψ) = c©2.

[Case (c)] It should be clear that according to both B c©1
• B c©2

and B c©1 c©2

we may conclude that ϕ follows from Γ iff either ϕ ∈ Γ or there is ψ ∈ Γ such
that ψ /∈ P . ��

Proposition 4. For any set of Boolean connectives conn ⊆ C↔
BA, we have that

Bconn • B⊥ = Bconn∪{⊥}.

Proof. We first show that B↔ • B⊥ = B↔⊥. As B⊥ is axiomatized by just the
single rule ⊥

p , it easily follows that (a) Γ �↔•⊥ C iff Γ �↔ ⊥ or Γ �↔ C.
By [4, Exercise 7.31.3(iii)], we note that (b) for every Γ ∪ {B,C} ⊆ L↔(P)
we have that Γ,B �↔ C iff Γ �↔ C or Γ �↔ B ↔ C. Note in addition that
(c) �↔ B ↔ ((B ↔ A) ↔ A). Now, if Γ ��↔•⊥ A then by (a) we have that Γ ��↔
A and Γ ��↔ ⊥. Further, using (b) and (c), it follows also that Γ,A ↔ ⊥ ��↔ A
and Γ,A ↔ ⊥ ��↔ ⊥. Now, a straightforward use of the Lindenbaum-Asser
lemma shows that there exists a �↔-theory T extending Γ ∪ {A ↔ ⊥} which is
maximal relative to A. Obviously ⊥ /∈ T , and B↔ •B⊥ = B↔⊥ then follows from
the completeness of the axiomatization of B↔. From this, given conn ⊆ C↔

BA, we
conclude with the help of Proposition 1 that Bconn • B⊥ = Bconn⊥. ��

310 C. Caleiro et al.

Example 7. For every connective c© expressed by the logic of classical bi-
implication, e.g. c© ∈ {↔, λpqr.p + q + r}, we have that B c© • B⊥ = B c©⊥. �

We now analyze the cases in which combining disjoint sublogics of classical
logic results in a logic strictly weaker than the logic of the corresponding classical
mixed language.

Remark 2. A detailed analysis of Post’s lattice tells us that every clone CΣ
BA that

contains the Boolean function of a very significant connective (i.e., CΣ
BA �⊆ C∧�⊥

BA)
must contain the Boolean function associated to at least one of the following
connectives: ¬, →, ↔, �→, +, if, Tn+1

n (for n ∈ N), Tn+1
2 (for n ∈ N), λpqr.p ∨

(q ∧ r), λpqr.p ∨ (q + r), λpqr.p ∧ (q ∨ r), λpqr.p ∧ (q → r), λpqr.p + q + r. �

Lemma 1. Let conn be a family of Boolean connectives, and assume that Bconn

expresses at least one among the connectives in Remark 2, distinct from ↔
and λpqr.p + q + r. Then Bconn • B⊥ � Bconn∪{⊥}.

Proof. Let c© be one of the above Boolean connectives. We show that there are
Γ∪{C} ⊆ L c©(P) and σ : P −→ P∪{�} such that Γ σ � c©⊥ Cσ yet Γ σ �� c©•⊥ Cσ,
thus concluding that B c© • B⊥ � B c©⊥. Hence, by applying Proposition 1, we
obtain that Bconn • B⊥ � Bconn∪{⊥} for conn in the conditions of the statement.

We will explain two cases in detail, and for the remaining cases we just present
the relevant formulas Γ σ and Cσ, as the rest of the reasoning is analogous.
[Case c© = ¬] Set Γ := ∅ and Cσ := ¬⊥. We have that � c©⊥ ¬⊥. However, since
�� c© ¬(x⊥) and S c©•⊥(Γ) = ∅ is not �⊥-explosive, we conclude that �� c©•⊥ ¬(⊥)
by Theorem 1.
[Case c© = ∨] Set Γ σ := {⊥ ∨ q} and Cσ := q. We have that ⊥ ∨ q � c©⊥ q.
However, since x⊥ ∨ q �� c© q and S c©•⊥({ϕ(x⊥, q)}) = {ϕ(x⊥, q)} is not �⊥-
explosive, we conclude that ⊥ ∨ q �� c©•⊥ q by Theorem 1.
[Case c© = +] Set Γ σ := {⊥ + q} and Cσ := q.
[Case c© =→] Set Γ σ := ∅ and Cσ := ⊥ → q.
[Case c© = �→] let Γ σ := {p} and Cσ := p �→ ⊥.
[Case c© = λpqr.p∨(q+r)] Set Γ σ := {⊥∨(q+⊥)} and Cσ := q.
[Case c© = λpqr.p∧(q→r)] Set Γ σ := {p} and Cσ := p∧(⊥→r).
[Case c© = λpqr.p∧(q∨r)] Set Γσ := {p∧(⊥∨r)} and Cσ := r.
[Case c© = λpqr.p∨(q∧r)] Set Γ σ := {⊥∨(q∧r)} and Cσ := q.
[Case c© = if] Set Γ σ := {if(⊥, q, r)} and Cσ := r.
[Case c© = T k+1

k] Set Γ σ := {T k+1
k (p, . . . , p, q,⊥)} and Cσ := q.

[Case c© = T k+1
2] Set Γ σ := {T k+1

2 (p, p,⊥, . . . ,⊥)} and Cσ := p. ��

Merging Fragments of Classical Logic 311

Corollary 1. Let c© /∈ C↔
BA be some very significant Boolean connective. Then,

B c© • B⊥ � B c©⊥.

Proof. Note, by Remark 2 and the fact that both ↔ and λpqr.p + q + r belong
to C↔

BA, that c© fulfills the conditions of application of Lemma1. ��

Example 8. For every connective c© among ¬, →, �→, +, if, Tn+1
n (for n ∈ N),

Tn+1
2 (for n ∈ N), λpqr.p ∨ (q ∧ r), λpqr.p ∨ (q + r), λpqr.p ∧ (q ∨ r), and

λpqr.p ∧ (q → r), we have that B c© • B⊥ � B c©⊥. �

Remark 3. On a two-valued logic: (i) sentential variables are always significant,
every nullary connective is either top-like or bottom-like; (ii) top-like term func-
tions are always assigned the value 1 and bottom-like term functions are always
assigned the value 0; (iii) significant singulary term functions all behave seman-
tically either as Boolean affirmation or as Boolean negation. �

Lemma 2. The logic of a significant Boolean k-place connective c© expresses
some 1-ary significant compound term function.

Proof. Let ϕ denote the singulary term function induced by the formula c©(p)
obtained by substituting a fixed sentential variable p at all argument positions
of c©(p1, . . . , pk). If ϕ is significant, we are done. Otherwise, there are two cases
to consider.

For the first case, suppose that ϕ is top-like. Thus, given that c© is sig-
nificant and the logic is two-valued, we know from Remark 3(ii), in particu-
lar, that there must be some valuation v such that v(c©(p1, . . . , pk)) = 0. Set
I := {i : v(pi) = 1}, and define the substitution σ by σ(pj) := ϕ(p) if j ∈ I, and
σ(pj) := p otherwise. Let ψ denote the new singulary term function induced by
(c©(p1, . . . , pk))σ. On the one hand, choosing a valuation v′ such that v′(p) = 0
we may immediately conclude that v′(ψ(p)) = v(c©(p1, . . . , pk)) = 0. On the
other hand, choosing v′′ such that v′′(p) = 1 we see that v′′(σ(pj)) = 1 for every
1 ≤ j ≤ k. We conclude v′′(ψ(p)) = v′′(c©(p)) = v′′(ϕ(p)), thus v′′(ψ(p)) = 1,
for ϕ was supposed in the present case to be top-like. It follows that ψ(p) is
indeed equivalent here to the sentential variable p.

For the remaining case, where we suppose that ϕ is bottom-like, it suffices
to set I := {i : v(pi) = 0} and then reason analogously. In both the latter cases
our task is seen to have been accomplished in view of Remark 3(i). ��

Lemma 3. Let L = 〈LΣ(P),�〉 be a two-valued logic whose language allows a
very significant k-ary term function ϕ, let I be the set of indices that identify the
projective components of ϕ, and let σ be some substitution such that σ(pi) = pi,
for i ∈ I, and σ(pi) = pk+i, for i /∈ I. Then, ϕ(p1, . . . , pk) �� (ϕ(p1, . . . , pk))σ.

Proof. By the assumption that ϕ is very significant, we know that this term
function is not a projection-conjunction. Thus, given that I ⊆ {1, . . . , k} is
the exact set of indices such that ϕ(p1, . . . , pk) � pi, for every i ∈ I, we con-
clude that {pi : i ∈ I} �� ϕ(p1, . . . , pk). There must be, then, some valuation v
over {0, 1} such that v(pi) = 1, for every i ∈ I, while v(ϕ(p1, . . . , pk)) = 0.

312 C. Caleiro et al.

From the assumption about significance we also learn that ϕ is not bottom-
like, thus, in view of two-valuedness and the Remark 3(ii), we know that
there must be some valuation v′ such that v′(ϕ(p1, . . . , pk)) = 1. Using the
assumption that ϕ(p1, . . . , pk) � pi for every i ∈ I one may conclude that
v′(pi) = v(pi) = 1 for every i ∈ I. Our final step to obtain a counter-model
to witness ϕ(p1, . . . , pk) �� (ϕ(p1, . . . , pk))σ is to glue together the two latter val-
uations by considering a valuation v′′ such that v′′(pj) = v′(pj) for 1 ≤ j ≤ k
(satisfying thus the premise) and such that v′′(pj) = v(pj) for j > k (allowing
for the conclusion to be falsified). ��

Proposition 5. The fibring B c©1
•B c©2

of the logic of a very significant classical
connective c©1 and the logic of a non-top-like Boolean connective c©2 distinct
from ⊥ fails to be locally tabular, and therefore B c©1

• B c©2
� B c©1 c©2

.

Proof. We want to build over Σ1∪Σ2, on a finite number of sentential variables,
an infinite family { c©m}m∈N of syntactically distinct formulas that are pairwise
inequivalent according to B c©1

• B c©2
.

In case c©2 is significant we know from Lemma 2 that we can count on a
singulary significant term function ψ0 allowed by L c©2

({p})\P . Set, in this case,
ψn+1 := ψ0 ◦ ψn. Given the assumption that B c©2

is a two-valued logic, in view
of Remark 3(iii) it should be clear that no such ψn+1 can be top-like. To the
same effect, in case c©2 is bottom-like, just consider any enumeration {ψm}m∈N

of the singulary term functions allowed by L c©2
({p})\P . In both cases we see

then how to build a family of syntactically distinct { c©2}-headed singulary term
functions, and these will be used below to build a certain convenient family of
({ c©1}-headed) formulas in the mixed language.

In what follows we abbreviate c©1(p1, p2, . . . , pk1) to C. We may assume,
without loss of generality, that there is some j < k1 such that C � c©1

pi for every
i ≤ j and C �� c©1

pi otherwise. Let σn, for each n > 0, denote a substitution
such that σn(pi) = pi, for i ≤ j, and σn(pi) = ψn×i(p) otherwise. We claim that
Cσa �� c©1• c©2

Cσb , for every a �= b.
To check the claim, first note that, for each a > 0, we have S c©1• c©2

({Cσa}) =
{Cσa}∪{pi : i ≤ j}. From the fact that C is a significant term function, it follows
that S c©1• c©2

({Cσa}) is neither � c©1
-explosive nor � c©2

-explosive. For arbitrary
b > 0, since monΣ2(ψb(p)) = ∅, we have M2

c©1• c©2
({Cσa}, ψb(p)) = ∅. There-

fore, using Theorem 1 we may conclude that Cσa �� c©1• c©2
ψb(p) and, given that

monΣ1(C
σb) ⊆ {ψk(p) : k ∈ N}, it also follows that M1

c©1• c©2
({Cσa}, Cσb) = ∅.

Note, in addition, for each n > 0, that skΣ1(C) = Cσ′
n , where σ′

n(pi) := pi for
i ∈ I, and σ′

n(pi) := xψn×i
for i /∈ I. Therefore, given that c©1 is very significant,

using Remark 1 and Lemma 3 we conclude at last, for every a �= b, that Cσb does
not follow from Cσa according to B c©1

• B c©2
. The latter combined logic, thus,

fails to be locally tabular. As a consequence, given that all two-valued logics are
locally tabular we see that B c©1

• B c©2
cannot coincide with B c©1 c©2

. ��

Example 9. If c©1 and c©2 are among the Boolean connectives mentioned in
Remark 2 then we have that B c©1

• B c©2
� B c©1 c©2

. �

Merging Fragments of Classical Logic 313

The following theorem makes use of the previous results to capture the exact
circumstances in which the logic that merges the axiomatizations of two classical
connectives coincides with the logic of these Boolean connectives.

Theorem 2. Consider the logic B c©1
of the classical connective c©1 and the logic

B c©2
of the distinct classical connective c©2. Then, B c©1

•B c©2
= B c©1 c©2

iff either:

(a) at least one among c©1 and c©2 is top-like, or
(b) neither c©1 nor c©2 are very significant, or
(c) c©1 ∈ C↔

BA and c©2 = ⊥ (or c©1 = ⊥ and c©2 ∈ C↔
BA).

Proof. The direction from right to left follows from Propositions 2 to 4. The
other direction follows from Corollary 1 and Proposition 5. ��

We can finally obtain the envisaged characterization result:

Theorem 3. Let conn1 and conn2 be non-functionally complete disjoint sets
of connectives such that conn = conn1 ∪ conn2 is functionally complete. The
disjoint fibring of the classical logics of conn1 and conn2 is classical iff Cconni

BA ∈
{D, T∞

0 } ∪ {T
k
0 : k ∈ N} and Cconnj

BA = UP1, for some i ∈ {1, 2} and j = 3 − i.

Proof. Note that if Cconni
BA ∈ {D, T∞

0 } ∪ {T
k
0 : k ∈ N} and Cconnj

BA = UP1, for
i �= j ∈ {1, 2}, then we have that conn is functionally complete. For the right to
left implication, it suffices to invoke Proposition 1 and item (a) of Theorem 2.

As for the converse implication, let us assume that Bconn1 • Bconn2 = Bconn.
Using Proposition 1, we know that for every pair of connectives c©1 ∈ conn1 and
c©2 ∈ conn2 one of the items (a), (b) or (c) of Theorem 2 must hold. If (a)
holds in all cases, then, without loss of generality, Cconnj

BA = UP1. This, given the
functional completeness of conn, implies that Cconni

BA ∈ {D, T∞
0 } ∪ {T

k
0 : k ∈ N}.

Otherwise, we would have Cconni
BA and Cconnj

BA both distinct from UP1, and items
(b) or (c) of Theorem 2 would have to hold in all the remaining cases. If (b) holds
in all the remaining cases then we would conclude that conni ∪ connj contains
only connectives that are not very significant, and that would contradict the
functional completeness of conn. Thence, without loss of generality, we could say
that Cconni

BA contains very significant connectives, and item (c) of Theorem 2 would
have to hold in those cases. But this would mean that Cconni

BA ⊆ C↔∧�⊥
BA = C↔∧⊥

BA

and Cconnj
BA ⊆ C�⊥

BA . Note, however, that neither ∧ nor ⊥ can coexist in Cconni
BA

with ↔, or the underlying logic would express some very significant connective
not expressible using only ↔. We are therefore led to conclude that Cconni

BA ⊆ C↔
BA

and Cconnj
BA ⊆ C�⊥

BA . But this is impossible, as we would then have Cconn
BA ⊆ A,

contradicting the functional completeness of conn. ��

5 Closing Remarks

In the present paper, we have investigated and fully characterized the situations
when merging two disjoint fragments of classical logic still results in a fragment
of classical logic. As a by-product, we showed that recovering full classical logic

314 C. Caleiro et al.

in such a manner can only be done when one of the logics is a fragment of
classical logic consisting exclusively of top-like connectives, while the other forms
a functionally complete set of connectives with the addition of �. Our results
take full advantage of the characterization of Post’s lattice, and may be seen
as an application of recent developments concerning fibred logics. Though our
conclusions cannot be seen as a total surprise, we are not aware of any other result
of this kind. Some unexpected situations do pop up, like the fact that B↔ •B⊥ =
B↔⊥, or the fact that B �→ • B� and B∨+ • B� both yield full classical logic. The
latter two combinations are particularly enlightening, given that according to [6]
the complexity of disjoint fibring is only polynomially worse than the complexity
of the component logics, and we know from [1] that the decision problems for B �→
or B∨+ are both co-NP-complete, as in full classical logic. As a matter of fact,
some of the results we obtained may alternatively be established as consequences
of the complexity result in [6] together with the conjecture that P �= NP. In fact,
for disjoint sets of Boolean connectives conn1 and conn2 such that conn1 ∪ conn2
is functionally complete, if the decision problems for Bconn1 and for Bconn2 are
both in P then clearly Bconn1 • Bconn2 �= Bconn1 ∪ conn2 . However, the techniques
we use here do not depend on P �= NP and allow us to solve also the cases
in which the complexity of the components is already in co-NP, for which the
complexity result in [6] offers no hints.

Similar studies could certainly be pursued concerning logics other than classi-
cal. However, even for the classical case there are some thought-provoking unset-
tled questions. Concretely, we would like to devise semantical counterparts for
all the combinations that do not yield fragments of classical logic, namely those
covered by Proposition 5. So far, we can be sure that such semantic counterparts
cannot be provided by a single finite logical matrix. Additionally, we would like
to link the cases yielding fragments of classical logic (as covered by the condi-
tions listed in Theorem 2) to properties of the multiple-conclusion consequence
relations [11] pertaining to such connectives.

References

1. Beyesrdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of proposi-
tional implication. Inf. Process. Lett. 109, 1071–1077 (2009)

2. Caleiro, C., Carnielli, W., Rasga, J., Sernadas, C.: Fibring of logics as a univer-
sal construction. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical
Logic, vol. 13, 2nd edn, pp. 123–187. Kluwer, Dordrecht (2005)

3. Caleiro, C., Ramos, J.: From fibring to cryptofibring: a solution to the collapsing
problem. Logica Universalis 1(1), 71–92 (2007)

4. Humberstone, L.: The Connectives. MIT Press, Cambridge (2011)
5. Lau, D.: Function Algebras on Finite Sets: Basic Course on Many-Valued Logic

and Clone Theory. Springer, New York (2006). doi:10.1007/3-540-36023-9
6. Marcelino, S., Caleiro, C.: Decidability and complexity of fibred logics without

shared connectives. Logic J. IGPL 24(5), 673–707 (2016)
7. Marcelino, S., Caleiro, C.: On the characterization of fibred logics, with applica-

tions to conservativity and finite-valuedness. J. Logic Comput. (2016). doi:10.1093/
logcom/exw023

http://dx.doi.org/10.1007/3-540-36023-9
http://dx.doi.org/10.1093/logcom/exw023
http://dx.doi.org/10.1093/logcom/exw023

Merging Fragments of Classical Logic 315

8. Post, E.L.: On the Two-Valued Iterative Systems of Mathematical Logic. Princeton
University Press, Princeton (1941)

9. Rautenberg, W.: 2-element matrices. Studia Logica 40(4), 315–353 (1981)
10. Reith, S., Vollmer, H.: Optimal satisfiability for propositional calculi and constraint

satisfaction problems. Inf. Comput. 186(1), 1–19 (2003)
11. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press,

Cambridge (1978)
12. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

J. ACM 32(3), 733–749 (1985)
13. Wójcicki, R.: Theory of Logical Calculi. Kluwer, Dordrecht (1988)

Interpolation, Amalgamation and Combination
(The Non-disjoint Signatures Case)

Silvio Ghilardi and Alessandro Gianola(B)

Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
alessandro.gianola93@gmail.com

Abstract. In this paper, we study the conditions under which existence
of interpolants (for quantifier-free formulae) is modular, in the sense
that it can be transferred from two first-order theories T1, T2 to their
combination T1∪T2. We generalize to the non-disjoint signatures case the
results from [3]. As a surprising application, we relate the Horn combi-
nability criterion of this paper to superamalgamability conditions known
from propositional logic and we use this fact to derive old and new results
concerning fusions transfer of interpolation properties in modal logic.

1 Introduction

Craig’s interpolation theorem [5] applies to first order formulae and states that
whenever the formula φ → ψ is valid, then it is possible to find a formula θ such
that (i) φ → θ is valid; (ii) θ → ψ is valid, and (iii) θ is defined over the common
symbols of φ and ψ. Interpolation theory has a long tradition in non-classical
logics (see for instance the seminal papers by L.L. Maksimova [12,13]) and has
been recently introduced also in verification, after the work of McMillan (see,
e.g., [15]). Intuitively, the interpolant θ can be seen as an over-approximation
of φ with respect to ψ: thus, for example, in the abstraction-refinement phase
of software model checking [10], interpolants are used to compute increasingly
precise over-approximations of the set of reachable states.

Of particular importance for verification techniques are those algorithms
capable of computing quantifier-free interpolants in presence of some background
theory. This is so because several symbolic verification problems are formalized
by representing sets of states and transitions as quantifier-free formulae. Unfor-
tunately, Craig’s interpolation theorem does not guarantee that it is always pos-
sible to compute quantifier-free interpolants when reasoning modulo a first-order
theory : in fact, for certain first-order theories, it is known that quantifiers must
occur in interpolants of quantifier-free formulae [11]. Even when quantifier-free
interpolants exist for single theories, this might not be anymore the case when
considering their combinations (see e.g. Example 3.5 below). Since verification
techniques frequently require to reason in combinations of theories, methods to
modularly combine available interpolation algorithms are indeed desirable.

The study of the modularity property of quantifier-free interpolation was first
started in [27], where the disjoint signatures convex case was solved; in [3] - the
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 316–332, 2017.
DOI: 10.1007/978-3-319-66167-4 18

Interpolation, Amalgamation and Combination 317

journal version of [2] - the non-convex (still disjoint) case was also thoroughly
investigated. The analysis in [3] is large-spectrum: combinability of quantifier-
free interpolation is first semantically analyzed (where it is related to strong
sub-amalgamability), then it is syntactically characterized and finally suitable
combination algorithms are designed.

This paper intends to be a first contribution for an extension to the non-
disjoint signatures case. Given the complexity of the problem, we shall limit to
semantic investigations, leaving for future research the subsequent, algorithmi-
cally oriented aspects. However, we show that our semantic techniques can be
quite effective in practice: in fact, we show how to use them in order to establish
that some theories combining integers and common datatypes (lists, trees, etc.)
indeed enjoy quantifier-free interpolation. In addition, we employ our results
in order to get interesting information concerning the transfer of interpolation
properties to the fusion of modal logics: in fact, not only we show how to obtain
Wolter’s interpolation fusion transfer theorem [26] for normal modal logics, but
we also identify a modular interpolation property for the non-normal case.

In attacking combination problems for non-disjoint signatures, we follow the
model-theoretic approach successfully employed in [6,9,17–20]; this approach
relies on the notion of T0-compatibility, in order to identify modular conditions
for combinability. The reason why this approach works can roughly be explained
as follows. In combining a model of a theory T1 with a model of a theory T2,
one needs to produce a superstructure of both of them: in such a superstructure,
additional constraints in the shared subsignature might turn out to be satisfied
and T0-compatibility is meant to keep satisfiability of constraints in superstruc-
tures under control inside T1 and T2. This is because T0-compatibility refers to
model-completeness and model-completeness is the appropriate technique [4] to
talk about satisfiability of quantifier-free formulae in extended structures.

The paper is organized as follows: in Sect. 2, we introduce notations and basic
ingredients from the literature; in Sect. 3 we obtain a first general result (The-
orem 3.2) and show how to use it in examples taken from verification theories.
In the final Sect. 4, we apply our results to modal logic (Corollary 4.3 and The-
orem 4.7); the proofs of the results from this last section require some algebraic
logic background, so they are moved to the (online available from authors’ web
page) manuscript [7] for space reasons.

2 Formal Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, sentence, and so on. Let Σ be a first-order signature; we
assume the binary equality predicate symbol ‘=’ to be added to any signature
(so, if Σ = ∅, then Σ just contains equality). The signature obtained from Σ by
adding it a set a of new constants (i.e., 0-ary function symbols) is denoted by
Σa. A positive clause is a disjunction of atoms. A constraint is a conjunction of
literals. A formula is quantifier-free (or open) iff it does not contain quantifiers.
A Σ-theory T is a set of sentences (called the axioms of T) in the signature Σ
and it is universal iff it has universal closures of open formulae as axioms.

318 S. Ghilardi and A. Gianola

We also assume the usual first-order notion of interpretation and truth of
a formula, with the proviso that the equality predicate = is always interpreted
as the identity relation. We let ⊥ denote a ground formula which is true in no
structure. A formula ϕ is satisfiable in M iff its existential closure is true in M.
A Σ-structure M is a model of a Σ-theory T (in symbols M |= T) iff all the
sentences of T are true in M. If ϕ is a formula, T |= ϕ (‘ϕ is a logical consequence
of T ’) means that the universal closure of ϕ is true in all the models of T . T
is consistent iff it has a model, i.e., if T �|= ⊥. A sentence ϕ is T -consistent iff
T ∪{ϕ} is consistent. A Σ-theory T is complete iff for every Σ-sentence ϕ, either
ϕ or ¬ϕ is a logical consequence of T . T admits quantifier elimination iff for every
formula ϕ(x) there is a quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x)
(notations like ϕ(x) mean that ϕ has free variables only among the tuple x).

If Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of
M is the Σ0-structure M|Σ0 obtained from M by forgetting the interpretation
of function and predicate symbols from Σ \Σ0. A Σ-homomorphism (or, simply,
a homomorphism) between two Σ-structures M and N is any mapping μ :
|M| −→ |N | among the support sets |M| of M and |N | of N satisfying the
condition

M |= ϕ ⇒ N |= ϕ (1)

for all Σ|M|-atoms ϕ (here M is regarded as a Σ|M|-structure, by interpreting
each additional constant a ∈ |M| into itself and N is regarded as a Σ|M|-
structure by interpreting each additional constant a ∈ |M| into μ(a)). In case
condition (1) holds for all Σ|M|-literals, the homomorphism μ is said to be an
embedding and if it holds for all first order formulae, the embedding μ is said
to be elementary. If μ : M −→ N is an embedding which is just the identity
inclusion |M| ⊆ |N |, we say that M is a substructure of N or that N is an
extension of M. A Σ-structure M is said to be generated by a set X included
in its support |M| iff there are no proper substructures of M including X.

Given a signature Σ and a Σ-structure A, we indicate with ΔΣ(A) the
diagram of A: this is the set of sentences obtained by first expanding Σ with a
fresh constant ā for every element a from |A| and then taking the set of ground
Σ|A|-literals which are true in A (under the natural expanded interpretation
mapping ā to a).

Finally, we point out that all the above definitions can be extended in a
natural way to many-sorted signatures (we shall use many-sorted theories in
some examples).

2.1 Model Completion and T0-compatibility

We recall a standard notion in Model Theory, namely the notion of a model
completion of a first order theory [4] (we limit the definition to universal theories,
because we shall use only this case):

Definition 2.1. Let T0 be a universal Σ-theory and let T �
0 ⊇ T0 be a further

Σ-theory; we say that T �
0 is a model completion of T0 iff: (i) every model of T0

Interpolation, Amalgamation and Combination 319

can be embedded into a model of T �
0 ; (ii) for every model M of T0, we have that

T �
0 ∪ ΔΣ(M) is a complete theory in the signature Σ|M|.

Being T0 universal, condition (ii) is equivalent to the fact that T �
0 has quan-

tifier elimination; we recall also that the model completion T �
0 of a theory T0 is

unique, if it exists (see [4] for these results and for examples).
We also recall the concept of T0-compatibility [6,9], which is crucial for our

combination technique.

Definition 2.2. Let T be a theory in the signature Σ and let T0 be a universal
theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-compatible iff T0 ⊆ T
and there is a Σ0-theory T �

0 such that:

(i) T0 ⊆ T �
0 ;

(ii) T �
0 is a model completion of T0;

(iii) every model of T can be embedded, as a Σ-structure, into a model of T ∪T �
0 .

Notice that if T0 is the empty theory over the empty signature, then T ∗
0 is the

theory axiomatizing an infinite domain, and the requirement of T0-compatibility
is equivalent to the stably infinite requirement of the Nelson-Oppen schema [16,
24] (in the sense that T is T0-compatible iff it is stably infinite). We remind that
a theory T is stably infinite iff every T -satisfiable quantifier-free formula (from
the signature of T) is satisfiable in an infinite model of T . By compactness, it
is possible to show that T is stably infinite iff every model of T embeds into an
infinite one.

We shall see many examples of T0-compatible theories (for various T0) during
the paper, here we just underline that T0-compatibility is a modular condition.
The following result is proved in [6] (as Proposition 4.4):

Proposition 2.3. Let T1 be a Σ1-theory and let T2 be a Σ2-theory; suppose they
are both compatible with respect to a Σ0-theory T0 (where Σ0 := Σ1 ∩Σ2). Then
T1 ∪ T2 is T0-compatible too.

2.2 Interpolation and Amalgamation

We say that a theory T has quantifier-free interpolation iff the following hold, for
every pair of quantifier free formulae ϕ(x, y), ψ(y, z): if T |= ϕ(x, y) → ψ(y, z),
then there exists a quantifier-free formula θ(y) such that T |= ϕ(x, y) → θ(y) and
T |= θ(y) → ψ(y, z). We underline that the requirement that θ is quantifier-free is
essential: in general such a θ(y) exists by the Craig interpolation theorem, but it
is not quantifier-free even if ϕ,ψ are such.1 Quantifier-free interpolation property
can be semantically characterized using the following notions, introduced in [1,3]:
1 Notice that in the above definition free function and predicate symbols (not already

present in the signature Σ of T) are not allowed; allowing them (and requiring
that only shared symbols occur in the interpolant θ) produces a different stronger
definition, which is nevertheless reducible to quantifier-free interpolation in the com-
bination with the theory of equality with uninterpreted function symbols (see [3]).

320 S. Ghilardi and A. Gianola

Definition 2.4. A theory T has the sub-amalgamation property iff, for given
models M1 and M2 of T sharing a common substructure A, there exists a further
model M of T endowed with embeddings μ1 : M1 −→ M and μ2 : M2 −→ M
whose restrictions to the support of A coincide. The triple (M, μ1, μ2) (or, by
abuse, M itself) is said to be a T -sub-amalgama of M1,M2,A.

Definition 2.5. A theory T has the strong sub-amalgamation property if the
T -sub-amalgama (M, μ1, μ2) of M1,M2,A can be chosen so as to satisfy the
following additional condition: if for some m1,m2 we have μ1(m1) = μ2(m2),
then there exists an element a in |A| such that m1 = a = m2.

If T is universal, then every substructure of a model of T is itself a model of
T : in these cases, we shall drop the prefix sub- and directly speak of ‘amalgama-
bility’, ‘strong amalgamability’ and ‘T -amalgama’. The following fact is proved
in [3], as Theorem 3.3:

Theorem 2.6. A theory T has the sub-amalgamation property iff it admits
quantifier-free interpolants.

3 Conditions for Combination

The main result from [3] says that if T1, T2 have disjoint signatures, are both
stably infinite and both enjoy the strong sub-amalgamation property, then the
combined theory T1 ∪ T2 also has the strong sub-amalgamation property2 (and
so it has quantifier-free interpolation).

In this paper, we try to extend the above results to the non-disjoint signatures
case. The idea, already shown to be fruitful for combined satisfiability problems
in [6], is to use T0-compatibility as the proper generalization of stable infiniteness.

We shall first obtain a rather abstract sufficient condition for transfer of
quantifier-free interpolation property to combined theories; nevertheless, we
show that such sufficient condition generalizes the disjoint signatures result
from [3] and is powerful enough to establish the quantifier-free interpolation
property for some natural combined theories arising in verification. Then we
move to the case in which the shared theory T0 is Horn and obtain as a corollary
a specialized result which is quite effective in modal logic applications.

3.1 Sub-amalgamation Schemata

Let T0, T be theories in their respective signatures Σ0, Σ such that Σ0 ⊆ Σ,
T0 is universal and T0 ⊆ T . If M1 and M2 are Σ-models of T with a common
substructure A, we call the triple (M1,M2,A) a T-fork (or, simply, a fork).

2 It is possible to characterize syntactically strong sub-amalgamability in terms of
a suitable ‘equality interpolating’ condition [3]. That sub-amalgamability needs to
be strenghtened to strong sub-amalgamability in order to get positive combination
results is demonstrated by converse facts also proved in [3].

Interpolation, Amalgamation and Combination 321

The sub-amalgamation schema σT
T0

(of T over T0) is the following function,
associating sets of T0-amalgama with T -forks:3

σT
T0

[(M1,M2,A)] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

the set of all (B, ν1, ν2) s.t.
(i) (B, ν1, ν2) is a T0-amalgama of the Σ0-reducts of

M1 and M2 over the Σ0-reduct of A;
(ii) B is generated, as Σ0-structure, by the union of

the images of ν1 and ν2;
(iii) (B, ν1, ν2) is embeddable in the Σ0-reduct of a

T -sub-amalgama of the fork (M1,M2,A).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Condition (iii) means that there is a T -sub-amalgama (M, μ1, μ2) such that B
is a Σ0-substructure of M and that μ1, μ2 coincide with ν1, ν2 on their domains.

Condition (ii) ensures that, disregarding isomorphic copies, σT
T0

[(M1,M2,A)]
is a set and not a proper class. Recall that T0 is universal, so that substructures
of models of T0 are also models of T0. This ensures that the following Proposition
trivially holds:

Proposition 3.1. T is sub-amalgamable iff σT
T0

is not empty (i.e. iff we have
that σT

T0
[(M1,M2,A)] �= ∅, for all forks (M1,M2,A)).

One side of the inclusion of the following Theorem is also immediate; for the
other one, T0-compatibility is needed (we shall prove the theorem in Subsect. 3.2
below).

Theorem 3.2. Let T1 and T2 be two theories in their respective signatures
Σ1, Σ2; assume that they are both T0-compatible, where T0 is a universal theory

3 It is not difficult to realize (using well-known Löwenheim-Skolem theorems [4]) that
one can get all the results in the paper by limiting this definition to forks among
structures whose cardinality is bounded by the cardinality of set of the formulae in
our signatures (signatures are finite or countable in all practical cases).

322 S. Ghilardi and A. Gianola

in the signature Σ0 := Σ1∩Σ2. The following hold for the amalgamation schema
of T1 ∪ T2 over T0:

σT1∪T2
T0

[(M1,M2,A)] = σT1
T0

[(M1,M2,A)|Σ1] ∩ σT2
T0

[(M1,M2,A)|Σ2]

for every (T1 ∪ T2)-fork (M1,M2,A) (here, with (M1,M2,A)|Σi
we indicate

the Ti-fork obtained by taking reducts to the signature Σi).

Despite its abstract formulation, Theorem 3.2 is powerful enough to imply the
main disjoint signatures result of [3] and also to work out interesting examples.

Example 3.3. (The disjoint signature case). Let S0, S1, S2 be sets such that S0 ⊆
S1, S0 ⊆ S2; the amalgamated sum S1 +S0 S2 of S1, S2 over S0 is just the set-
theoretic union S1 ∪ S2 in which elements from S1 \ S0 are renamed away so
as to be different from the elements of S2 \ S0. With this terminology, a theory
T is strongly sub-amalgamable iff its sub-amalgamation schema over the empty
theory T0 is such that σT

T0
[(M1,M2,A)] always contains the amalgamated sum

of the supports of M1,M2 over the support of A. Thus, Theorem 3.2 says in
particular that if T1, T2 are both stably infinite and strongly sub-amalgamable,
then so is T1 ∪ T2 (and the last is in particular quantifier-free interpolating).

Example 3.4 (Lists and Trees). Consider T0 := TS , the ‘theory of increment’ [20];
TS has the monosorted signature ΣS := {0 : NUM, s : NUM −→ NUM} and
it is axiomatized by the following sentences:

∀x∀y s(x) = s(y) → x = y (injectivity)

∀x sn(x) �= x for all n ∈ N, n > 0

This theory is universal and it admits as a model-completion T ∗
S the theory

obtained by adding the axiom ∀x∃y x = s(y). Hence, TS is amalgamable for
general reasons [4] (but notice that it is not strongly amalgamable).

Now consider the theory TLS of ‘lists endowed with length’ [20]. This is a
many-sorted theory; its signature ΣLS contains, besides ΣS-symbols, the addi-
tional sorts LISTS,ELEML, the additional set of function symbols {nil :
LISTS, car : LISTS −→ ELEML, cdr : LISTS −→ LISTS, cons :
ELEML × LISTS −→ LISTS, l : LISTS −→ NUM} and a single unary
relation symbol atom : LISTS. The axioms of TLS are the following:

1. car(cons(x, y)) = x 5. ¬atom(x) → cons(car(x), cdr(x)) = x
2. cdr(cons(x, y)) = y 6. ¬atom(cons(x, y))
3. l(nil) = 0 7. atom(nil)
4. l(cons(x, y)) = s(l(y))

This theory is TS-compatible [20]; below, we show that every TS-amalgama of
the TS-reducts of two models of TLS (sharing a common submodel) can be
embedded in a TLS-amalgama (since TLS is universal we can speak of amalgams
instead of sub-amalgams).

Let a TLS-fork (M1,M2,A) be given and let B be any amalgam of the
TS-reducts of M1,M2. We sketch the definition of a TLS-amalgam M of the

Interpolation, Amalgamation and Combination 323

fork (based on B). The support NUMM is the support of B and ELEMM1
L ∪

ELEMM2
L is the support of ELEMM

L . It remains to define LISTSM;4 we take
LISTSM to be the union of LISTSM1 , LISTSM2 and of LT , where LT is
the set containing the pairs (x, l), with x ∈ LISTM3−j \ LISTMj and l a finite
list of elements from ELEMM1

L ∪ ELEMM2
L which begins with an element in

ELEM
Mj

L (j = 1, 2). In other words, an element in LT has the form:

(x, (e1, e2, ..., en))

where (1) j = 1, 2; (2) e1 is in ELEM
Mj

L ; (3) x is in LISTSM3−j ; and (4) ei

(i > 1) is in ELEMM1
L ∪ELEMM2

L . ΣLS-operations and relations can be defined
in the obvious way so that axioms 1–7 above hold and so that the inclusions
M1 ⊆ M and M2 ⊆ M are embeddings.

Let us now consider the theory TBS of binary trees endowed with size func-
tions [20]. This is also a many-sorted theory: its signature ΣBS has the symbols
of the signature ΣS of the theory of increment plus the set of function sym-
bols {null : TREES, bin : ELEMT × TREES × TREES −→ TREES, lL :
TREES −→ NUM, lR : TREES −→ NUM}. The axioms of TLS are the
following:

1. lL(null) = 0 2. lR(null) = 0
3. lL(bin(e, t1, t2)) = s(lL(t1)) 4. lR(bin(e, t1, t2)) = s(lR(t2))

It can be showed that this theory is TS-compatible [20]. By arguments similar
to those we employed for TLS , it is possible to show that every TS-amalgama
of the TS-reducts of two models of TBS (sharing a common submodel) can be
embedded in a TBS-amalgama.

In conclusion, by (the multi-sorted version of) Theorem 3.2 we get
that for every (TLS ∪ TBS)-fork (M1,M2,A), the amalgamation schema
for this fork σTLS∪TBS

TS
[(M1,M2,A)], being equal to the intersection of

σTLS

TS
[(M1,M2,A)|ΣLS

] and of σTBS

TS
[(M1,M2,A)|ΣBS

], contains all the amal-
gams of the ΣS-reduced fork (M1,M2,A)|ΣS

and hence it is trivially not
empty. This guarantees that TLS ∪ TBS has quantifier-free interpolation by
Proposition 3.1.

Example 3.5 (Where combined quantifier-free interpolation fails). Let T0 be the
theory of linear orders (its signature Σ0 has just a binary relation symbol < and
the axioms of T0 say that < is irreflexive, transitive and satisfies the trichotomy
condition x < y ∨ x = y ∨ y < x). This is a universal theory and admits a
model completion T ∗

0 , which is the theory of dense linear orders without end-
points [4]; it is easily seen also that T0 is strongly sub-amalgamable. We consider
the signature Σ1 of linear orders endowed with an extra unary relation symbol
P and we let let T1 be the theory obtained by adding to T0 the following axiom:

∀x∀y (P (x) ∧ ¬P (y) → x < y)

4 We can freely assume that ELEMM1
L ∩ ELEMM2

L = ELEMA
L and LISTM1 ∩

LISTM2 = LISTA.

324 S. Ghilardi and A. Gianola

It is not difficult to see that T1 is T0-compatible and also strongly-sub-
amalgamable. We shall be interested in the combination of T1 with a partially
renamed copy of itself: this is the Σ2 := Σ0 ∪ {Q}-theory T2 axiomatized by the
axioms of T0 and

∀x∀y (Q(x) ∧ ¬Q(y) → x < y)

Quantifier-free interpolation fails in T1 ∪ T2, because sub-amalgamability
fails: to see this fact, just consider a fork (M1,M2,A) such that there exists
an element a ∈ |M1|\|A| which satisfies P ∧ ¬Q and another element b ∈
|M2|\|A| that satisfies Q and ¬P . Notice that we have σT1

T0
[(M1,M2,A)|Σ1] ∩

σT2
T0

[(M1,M2,A)|Σ2] = ∅ although both σTi

T0
[(M1,M2,A)|Σi

] are not empty
(the sub-amalgamation schemata here ‘do not match’).

3.2 Proof of Theorem 3.2

This subsection is entirely devoted to the proof of Theorem 3.2. We begin by
recalling some standard results from model theory and by introducing some
preliminary lemmata. The following easy fact is proved in [3], as Lemma 3.7:

Lemma 3.6. Let Σ1, Σ2 be two signatures and A be a Σ1 ∪ Σ2-structure; then
ΔΣ1∪Σ2(A) is logically equivalent to ΔΣ1(A) ∪ ΔΣ2(A).

An easy but nevertheless important basic result, called Robinson Diagram
Lemma [4], says that, given any Σ-structure B, the embeddings μ : A −→ B
are in bijective correspondence with expansions of B to Σ|A|-structures which
are models of ΔΣ(A). The expansions and the embeddings are related in the
obvious way: ā is interpreted as μ(a).

The following Lemma is proved using this property of diagrams:

Lemma 3.7. Let T0, T be theories in their respective signatures Σ0, Σ such that
Σ0 ⊆ Σ and T0 ⊆ T ; let (M1,M2,A) be a T -fork. For a T0-amalgam (B, ν1, ν2)
the following conditions are equivalent (we suppose that the support of B is dis-
joint from the supports of M1,M2):

(i) (B, ν1, ν2) ∈ σT
T0

[(M1,M2,A)];
(ii) the following theory (∗) is consistent

T ∪ ΔΣ(M1) ∪ ΔΣ(M2) ∪ ΔΣ0(B) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
{ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

Furthermore, in case T is T0-compatible, we can equivalently put T ∪ T �
0 instead

of T in the theory (∗) mentioned in (ii) above.

Interpolation, Amalgamation and Combination 325

Proof. By the above mentioned property of diagrams, the consistency of (∗)
means that there is a model N |= T and there are three embeddings

μ1 : M1 −→ N , μ2 : M2 −→ N , ν : B −→ N
(the last one is a Σ0-embedding, the first two are Σ-embeddings) such that
ν ◦ ν1 = μ1 and ν ◦ ν2 = μ2. Since μ1, μ2 agree on the support of A, the
triple (N , μ1, μ2) is a T -sub-amalgam of the fork. To make B a substructure
of N , it is sufficient to make a renaming of the elements in the image of ν
(so that ν becomes an inclusion). Thus consistency of (∗) means precisely that
(B, ν1, ν2) ∈ σT

T0
[(M1,M2,A)].

Since, by T0-compatibility, every model of T can be embedded into a model
of T ∪ T ∗, the consistency of (∗) is the same of the consistency of T � ∪ (∗). �

We need a further result from model theory to be found in textbooks like [4];
it can be seen as a combination result ‘ante litteram’:

Lemma 3.8. [Joint Consistency] Let Θ1, Θ2 be two signatures and let Θ0 :=
Θ1 ∩Θ2; suppose that the Θ1-theory U1 and the Θ2-theory U2 are both consistent
and that there is a Θ0-theory U0 which is complete and included both in U1 and
in U2. Then, U1 ∪ U2 is also consistent.

Proof. There are basically two proofs of this result, one by Craig’s interpolation
Theorem and another one by a double chain argument. The interested reader is
referred to [4]. �

We can now prove Theorem 3.2; the Theorem concerns theories T1, T2 (in
their respective signatures Σ1, Σ2) which are both T0-compatible with respect
to a universal theory T0 in the shared signature Σ0 := Σ1 ∩ Σ2.

Fix a T1 ∪ T2-fork (M1,M2,A). On one side, it is evident that if (B, ν1, ν2)
belongs to σT1∪T2

T0
[(M1,M2,A)], then it also belongs to σT1

T0
[(M1,M2,A)|Σ1] ∩

σT2
T0

[(M1,M2,A)|Σ2].
Vice versa, suppose that (B, ν1, ν2) belongs to σT1

T0
[(M1,M2,A)|Σ1] and to

σT2
T0

[(M1,M2,A)|Σ2]; in order to show that it belongs to σT1∪T2
T0

[(M1,M2,A)],
in view of Lemmas 3.6 and 3.7 (recall also Proposition 2.3), we need to show
that the following theory (let us call it U) is consistent:

T1 ∪ T2 ∪ T �
0 ∪ ΔΣ1(M1) ∪ ΔΣ1(M2) ∪ ΔΣ0(B) ∪

∪ ΔΣ2(M1) ∪ ΔΣ2(M2) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
{ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

The idea is to use Robinson Joint Consistency Lemma 3.8 and split U as U1∪U2.
Now U is a theory in the signature Σ1∪Σ2∪|M1|∪|M2|∪|B|; we let (for i = 1, 2)
Ui be the following theory in the signature Σi ∪ |M1| ∪ |M2| ∪ |B|:

Ti ∪ T �
0 ∪ ΔΣi

(M1) ∪ ΔΣi
(M2) ∪ ΔΣ0(B) ∪

∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
{ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

326 S. Ghilardi and A. Gianola

Notice that Ui is consistent by Lemma 3.7 because our assumption is that
(B, ν1, ν2) belongs to σTi

T0
[(M1,M2,A)|Σi

]. We now only have to identify a com-
plete theory U0 included in U1 ∩ U2. The shared signature of U1 and U2 is
Σ0 ∪ |M1| ∪ |M2| ∪ |B| and we take as U0 the theory

T �
0 ∪ ΔΣ0(M1) ∪ ΔΣ0(M2) ∪ ΔΣ0(B) ∪

∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
{ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

By the definition of a model-completion (T �
0 is a model-completion of T0), we

know that T �
0 ∪ ΔΣ0(B) is a complete theory in the signature Σ0 ∪ |B|. Now it

is sufficient to observe that every Σ0 ∪ |M1| ∪ |M2| ∪ |B|-sentence is equivalent,
modulo U0 ⊇ T �

0 ∪ ΔΣ0(B), to a Σ0 ∪ |B|-sentence: this is clear because U0

contains the sentences

{ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
{ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

which can be used to eliminate the constants from |M1| ∪ |M2|. �

3.3 When the Shared Theory is Horn

Theorem 3.2 gives modular information to determine the combined sub-amalga-
mation schema, but it is not a modular result itself. In fact, a modular result
should identify a condition C on a single (standing alone) theory such that
whenever T1, T2 satisfy C, then T1 ∪ T2 is sub-amalgamable and also satisfies
C. To get a modular sufficient condition, we need to specialize our framework.
In doing that, we are still guided by what happens in the disjoint signatures
case. Although we feel that suitable conditions could be identified without Horn
hypotheses, we prefer to assume that the shared theory is universal Horn to get
simpler statements of our results below.

Recall that a Σ-theory T is universal Horn iff it can be axiomatized via
Horn clauses (i.e. via formulae of the form A1 ∧ · · · ∧ An → B, where the Ai are
atoms and B is either an atom or ⊥). In universal Horn theories, it is possible
to show that if amalgamation holds, then there is always a minimal amalgama,
as stated in the following fact (which is basically due to the universal property
of pushouts, see [7] for a proof):

Proposition 3.9. Let T be a universal Horn theory having the amalgamation
property; given a T -fork (M1,M2,A), there exists a T -amalgam (M, μ1, μ2) of
M1 and M2 over A such that for every other T -amalgam (M′, μ′

1, μ
′
2) there is

a unique homomorphism ν : M −→ M′ such that ν ◦ μi = μ′
i (i = 1, 2).

We call the amalgam mentioned in the above Proposition (which is unique
up to isomorphism) the minimal T-amalgam of the T -fork (M1,M2,A); the
homomorphism ν (which needs not to be an embedding) is called the comparison
homomorphism.

Interpolation, Amalgamation and Combination 327

Let now T be a Σ-theory and let T0 ⊆ T be a universal Horn Σ0-theory
having the amalgamation property (with Σ0 ⊆ Σ). We say that T is T0-strongly
sub-amalgamable if the sub-amalgamation schema σT

T0
always contains the mi-

nimal T0-amalgama (meaning that for every T -fork (M1,M2,A), we have that
the minimal T0-amalgama of (M1,M2,A) belongs to σT

T0
[(M1,M2,A)]). Notice

that, whenever T0 is the empty theory in the empty signature, being T0-strongly
sub-amalgamable is the same as being strongly sub-amalgamable.

Theorem 3.2 immediately implies the following:

Theorem 3.10. If T1, T2 are both T0-compatible and T0-strongly sub-amalgama-
ble (over an amalgamable universal Horn theory T0 in their common subsignature
Σ0), then so it is T1 ∪ T2.

Proof. Since T1 and T2 are T0-strongly sub-amalgamable, their sub-
amalgamation schemata σTi

T0
(i = 1, 2) always contain minimal T0-amalgamas.

By Theorem 3.2 (T1 and T2 are also T0-compatible), this implies that for every
T1 ∪T2-fork (M1,M2,A), the minimal amalgama B of (M1,M2,A)|Σ0 belongs
to the set σT1∪T2

T0
[(M1,M2,A)]. Using Proposition 2.3, we conclude that also

T1 ∪ T2 is T0-compatible and T0-strongly sub-amalgamable. �

4 Applications to Modal Logic

Theorem 3.10 (obtained as a generalization of the analogous result from [3] for
the disjoint signatures case) has surprising applications to modal logic. To get
such applications, we need to reformulate it in the case of Boolean algebras with
operators: the reformulation needs a further Theorem, showing that T0-strong
sub-amalgamability, in case T0 is the theory of Boolean algebras, is nothing but
the superamalgamability property known from algebraic logic. Let us recall the
last property and state the Theorem we are still missing. For space reasons, all
proofs in this section are deferred to [7].

In the following, we let BA be the theory of Boolean algebras; a BAO-
equational theory5 is any theory T whose signature extends the signature of
Boolean algebras and whose axioms are all equations and include the Boolean
algebra axioms. In [7] we shall recall in detail how BAO-equational theories are
related to modal propositional logics via Lindenbaum constructions. The fusion
of two BAO-equational theories T1 and T2 is just their combination T1∪T2 (when
speaking of the fusion of T1 and T2, we assume that T1 and T2 share only the
Boolean algebras operations and no other symbol).

The following Proposition is proved in [6] (proof is reported in [7]):

Proposition 4.1. Every BAO-equational theory is BA-compatible.

We say that a BAO-equational theory T has the superamalgamation property
iff for every T -fork (M1,M2,A) there exists a T -amalgam (M, μ1, μ2) such that

5 BAO stands for ‘Boolean algebras with operators’.

328 S. Ghilardi and A. Gianola

for every a1 ∈ |M1|, a2 ∈ |M2| such that μ1(a1) ≤ μ2(a2) there exists a0 ∈ |A|
such that a1 ≤ a0 holds in M1 and a0 ≤ a2 holds in M2.6

We can now state our second main result (see [7] for the proof):

Theorem 4.2. A BAO-equational theory T has the superamalgamation property
iff it is BA-strongly amalgamable.

As an immediate consequence, from Theorem 3.10, we get:

Corollary 4.3. If two BAO-equational theories T1 and T2 both have the supera-
malgamability property, so does their fusion.

4.1 Superamalgamability and Interpolation in Propositional Logic

Corollary 4.3 immediately implies Wolter’s result [26] on fusion transfer of Craig
interpolation property for normal modal logics and says something new for non-
normal modal logics too. To see all this, we only need to recall some background
from propositional logic. For simplicity, we deal only with unary modalities (and,
consequently, we shall consider only BAO-theories whose non-Boolean symbols
are unary function symbols), however we point out that the extension to n-ary
modalities is straightforward.

A modal signature ΣM is a set of unary operation symbols; from ΣM , propo-
sitional modal formulae are built using countably many propositional variables,
the operation symbols in ΣM , the Boolean connectives ∩,∪,∼ and the con-
stants 1 for truth and 0 for falsity. We use the letters x, x1, . . . , y, y1, . . . to
denote propositional variables and the letters t, t1, . . . , u, u1, . . . to denote propo-
sitional formulae; t ⇒ u and t ⇔ u are abbreviations for (∼ t) ∪ u and for
(t ⇒ u) ∩ (u ⇒ t), respectively. We use notations like t(x) (resp. Γ (x)) to say
that the modal formula t (the set of modal formulae Γ) is built up from a set of
propositional variables included in the tuple x.

The following definition is taken from [21], pp. 8–9:

Definition 4.4. A classical modal logic L based on a modal signature ΣM is a
set of modal formulae that

(i) contains all classical propositional tautologies;
(ii) is closed under uniform substitution of propositional variables by proposi-

tional formulae;
(iii) is closed under the modus ponens rule (‘from t and t ⇒ u infer u’);
(iv) is closed under the replacement rules, which are specified as follows. We

have one such rule for each o ∈ ΣM , namely:

t ⇔ u
o(t) ⇔ o(u)

6 We recall that in every Boolean algebra (more generally, in every semilattice) x ≤ y
is defined as x ∩ y = x, where ∩ is the meet operation.

Interpolation, Amalgamation and Combination 329

A classical modal logic L is said to be normal iff for every modal operator o ∈
ΣM , L contains the modal formulae o(1) and o(y ⇒ z) ⇒ (o(y) ⇒ o(z)).

Since classical modal logics (based on a given modal signature) are closed
under intersections, it makes sense to speak of the least classical modal logic [S]
containing a certain set of propositional formulae S. If L = [S], we say that S is
a set of axiom schemata for L.

If L1 is a classical modal logic over the modal signature Σ1
M and L2 is a

classical modal logic over the modal signature Σ2
M and Σ1

M ∩ Σ2
M = ∅, the

fusion L1 ⊕ L2 is the modal logic [L1 ∪ L2] over the modal signature Σ1
M ∪ Σ2

M .
Given a modal logic L, a set of modal formulae Γ and a modal formula t, the

global consequence relation Γ �L t holds iff there is a finite list of modal formulae
t0, . . . , tn such that: (i) tn is t; (ii) each ti is either a member of L or a member
of Γ or is obtained from previous members of the list by applying one of the two
inference rules from Definition 4.4 (i.e. modus ponens and replacement).

Global consequence relation should be contrasted with local consequence rela-
tion, to be indicated with �L Γ ⇒ t: this holds iff there are g1, . . . , gn ∈ Γ such
that

⋂n
i=1 gi ⇒ t belongs to L. If Γ consists of a single modal formula g, below

we write g �L t and �L g ⇒ t instead of {g} �L t and of �L {g} ⇒ t.
In case L is normal, one can reduce the global consequence relation to the

local one: in fact, it is not difficult to see by induction that the following fact
(‘deduction theorem’) holds:

Γ �L t iff �L oΓ ⇒ t

where oΓ is some finite set of modal formulae (depending on t) obtained from Γ
by prefixing a string of modal operators (i.e. elements of oΓ are modal formulae
of the kind o1(o2 · · · on(g) · · ·), for g ∈ Γ and n ≥ 0, o1, . . . , on ∈ ΣM).

Due to the presence of local and global consequence relations, we can formu-
late two different versions of the Craig’s interpolation theorem:

Definition 4.5. Let L be a classical modal logic in a modal signature ΣM .

(i) We say that L enjoys the local interpolation property iff whenever we have
�L t1(x, y) ⇒ t2(x, z) for two modal formulae t1, t2, then there is a modal
formula u(x) such that �L t1 ⇒ u and �L u ⇒ t2.

(ii) We say that L enjoys the global interpolation property iff whenever we have
t1(x, y) �L t2(x, z) for two modal formulae t1, t2, then there is a modal
formula u(x) such that t1 �L u and u �L t2.

For normal modal logics, in view of the above deduction theorem, it is easy
to see that the local interpolation property implies the global one (but it is not
equivalent to it, see [13]). In the non-normal case, there is no deduction theorem
available, so that in order to have an interpolation property encompassing both
the local and the global versions, it seems that a different notion needs to be
introduced. This is what we are doing now.

Given a modal logic L and two sets of modal formulae Γ1(x, y), Γ2(x, z), let
us call an x-residue chain a tuple of modal formulae C(x) = g1(x), . . . , gk(x)

330 S. Ghilardi and A. Gianola

such that we have Γ1 ∪ {g1, . . . , g2i} �L g2i+1 and Γ2 ∪ {g1, . . . , g2j−1} �L g2j ,
for all i such that 0 ≤ 2i < n and for all j such that 0 < 2j ≤ n.

Definition 4.6. Let L be a classical modal logic in a modal signature ΣM .

(iii) We say that L enjoys the comprehensive interpolation property iff whenever
we have Γ1(x, y), Γ2(x, z) �L t1(x, y) ⇒ t2(x, z) for two modal formulae
t1, t2 and for two finite sets of modal formulae Γ1, Γ2, there are an x-residue
chain C(x) and a modal formula u(x) such that we have Γ1, C �L t1 ⇒ u
and Γ2, C �L u ⇒ t2.

Notice that the comprehensive interpolation property implies both the local
and the global interpolation properties; moreover, in the normal case, via deduc-
tion theorem, it is easily seen that the comprehensive interpolation property is
equivalent to the local interpolation property. Our final result, giving an exten-
sion of Wolter’s result [26] to non-normal case, is the following:

Theorem 4.7. If the modal logics L1 and L2 both have the comprehensive inter-
polation property, so does their fusion L1 ⊕ L2.

The proof of the above Theorem is reported in [7] for space reasons; in fact,
it requires some background, but only routine work. The idea is the follow-
ing. One first recall that classical modal logics are in bijective correspondence
with BAO-equational theories. Under this correspondence, in the normal case,
global interpolation property coincides with quantifier-free interpolation (alias
amalgamation property) and local interpolation property coincides with supera-
malgamability [13] (see [8] for a proof operating in a general context). Using
similar techniques as in the above mentioned papers, in the non-normal gene-
ral case, we show that the comprehensive interpolation property coincides with
superamalgamability. Now it is sufficient to apply Corollary 4.3.

5 Conclusions and Future Work

In this paper we considered the problem of transferring the quantifier-free inter-
polation property from two theories to their union, in the case where the two
theories share symbols other than pure equality.

We are not aware of previous papers attacking this problem. One should
however mention a series of papers (e.g. [22,23,25]) analyzing the problem of
transferring, in a hierarchical way, interpolation properties to theory extensions.
This problem is related to ours, but it is different because there interpolation is
assumed to hold for a basic theory T0 and conditions on super-theories T ⊇ T0

are analyzed in order to be able to extend interpolation to them. In our case,
we are given interpolation properties for component theories T1, T2 and we are
asked for modular conditions in order to transfer the property to T1 ∪ T2.

To this aim, we obtained a sufficient condition (Theorem 3.2) in terms of
sub-amalgamation schemata; we used such result to get a modular condition in
case the shared theory is universal Horn (Theorem 3.10). For equational theories

Interpolation, Amalgamation and Combination 331

extending the theory of Boolean algebras, this modular condition turns out to be
equivalent to the superamalgamability condition known from algebraic logic [14].
Thus, our results immediately imply the fusion transfer of local interpolation
property [26] for classical normal modal logics. In the general non-normal case,
the modularity of superamalgamability can be translated into a fusion transfer
result for a new kind of interpolation property (which we called ‘comprehensive
interpolation property’).

Still, many problems need to be faced by future research. Our combinability
conditions should be characterizable from a syntactic point of view and, from
such syntactic characterizations, we expect to be able to design concrete com-
bined interpolation algorithms. Concerning modal logic, besides the old question
about modularity of local interpolation property in the non-normal case, new
questions arise concerning the status of the new comprehensive interpolation
property: is it really stronger than other forms of interpolation property (e.g.
than the local one)? Are there different ways of specifying it? Is it modular also
for modal logics on a non-classical basis?

Acknowledgements. The first author was supported by the GNSAGA group of
INdAM (Istituto Nazionale di Alta Matematica).

References

1. Bacsich, P.D.: Amalgamation properties and interpolation theorems for equational
theories. Algebra Universalis 5, 45–55 (1975)

2. Bruttomesso, R., Ghilardi, S., Ranise, S.: From strong amalgamability to modular-
ity of quantifier-free interpolation. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 118–133. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31365-3 12

3. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation in combina-
tions of equality interpolating theories. ACM Trans. Comput. Log. 15(1), 5:1–5:34
(2014)

4. Chang, C.-C., Keisler, J.H.: Model Theory, 3rd edn. North-Holland, Amsterdam-
London (1990)

5. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22, 269–285 (1957)

6. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. J.
Autom. Reasoning 33(3–4), 221–249 (2004)

7. Ghilardi, S., Gianola, A.: Interpolation, amalgamation and combination (extended
version). Technical report (2017)

8. Ghilardi, S., Meloni, G.C.: Modal logics with n-ary connectives. Z. Math. Logik
Grundlag. Math. 36(3), 193–215 (1990)

9. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive framework for combined
decision procedures. ACM Trans. Comput. Logic 9(2), 1–54 (2008)

10. Henzinger, T., McMillan, K.L., Jhala, R., Majumdar, R.: Abstractions from Proofs.
In: POPL, pp. 232–244 (2004)

11. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for data structures. In:
SIGSOFT’06/FSE-14, pp. 105–116 (2006)

http://dx.doi.org/10.1007/978-3-642-31365-3_12

332 S. Ghilardi and A. Gianola

12. Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable
varieties. Algebra i Logika 16(6), 643–681, 741 (1977)

13. Maksimova, L.L.: Interpolation theorems in modal logics and amalgamable vari-
eties of topological Boolean algebras. Algebra i Logika 18(5), 556–586, 632 (1979)

14. Maksimova, L.L.: Interpolation theorems in modal logics. Sufficient conditions.
Algebra i Logika 19(2), 194–213, 250–251 (1980)

15. McMillan, K.: Applications of craig interpolation to model checking. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 22–23.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30124-0 3

16. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Programm. Lang. Syst. 1(2), 245–257 (1979)

17. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of abelian
groups. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 51–66.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 4

18. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data structures with arithmetic con-
straints: a non-disjoint combination. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS
2009. LNCS (LNAI), vol. 5749, pp. 319–334. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04222-5 20

19. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combi-
nation of theories sharing integer offsets. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 428–442. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00768-2 35

20. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1–2),
163–187 (2010)

21. Segerberg, K.: An Essay in Classical Modal Logic, Filosofiska Studier, vol. 13.
Uppsala Universitet (1971)

22. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. Logical Meth-
ods Comput. Sci. 4(4), 1–31 (2008)

23. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 273–289. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 19

24. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combi-
nation procedure. In: Proceedings of FroCoS 1996, Applied Logic, pp. 103–120.
Kluwer Academic Publishers (1996)

25. Totla, N., Wies, T.: Complete instantiation-based interpolation. J. Autom. Rea-
soning 57(1), 37–65 (2016)

26. Wolter, F.: Fusions of modal logics revisited. In Advances in Modal Logic, vol. 1
(Berlin, 1996), CSLI Lecture Notes, pp. 361–379 (1998)

27. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 353–368. Springer, Hei-
delberg (2005). doi:10.1007/11532231 26

http://dx.doi.org/10.1007/978-3-540-30124-0_3
http://dx.doi.org/10.1007/978-3-642-02959-2_4
http://dx.doi.org/10.1007/978-3-642-04222-5_20
http://dx.doi.org/10.1007/978-3-642-04222-5_20
http://dx.doi.org/10.1007/978-3-642-00768-2_35
http://dx.doi.org/10.1007/978-3-642-00768-2_35
http://dx.doi.org/10.1007/978-3-319-40229-1_19
http://dx.doi.org/10.1007/11532231_26

The Boolean Solution Problem
from the Perspective of Predicate Logic

Christoph Wernhard(B)

Technische Universität Dresden, Dresden, Germany
info@christophwernhard.com

Abstract. Finding solution values for unknowns in Boolean equations
was a principal reasoning mode in the Algebra of Logic of the 19th cen-
tury. Schröder investigated it as Auflösungsproblem (solution problem).
It is closely related to the modern notion of Boolean unification. Today
it is commonly presented in an algebraic setting, but seems potentially
useful also in knowledge representation based on predicate logic. We
show that it can be modeled on the basis of first-order logic extended
by second-order quantification. A wealth of classical results transfers,
foundations for algorithms unfold, and connections with second-order
quantifier elimination and Craig interpolation show up.

1 Introduction

Finding solution values for unknowns in Boolean equations was a principal rea-
soning mode in the Algebra of Logic of the 19th century. Schröder [27] investi-
gated it as Auflösungsproblem (solution problem). It is closely related to the mod-
ern notion of Boolean unification. For a given formula that contains unknowns
formulas are sought such that after substituting the unknowns with them the
given formula becomes valid or, dually, unsatisfiable. Of interest are also most
general solutions, condensed representations of all solution substitutions. A cen-
tral technique there is the method of successive eliminations, which traces back
to Boole. Schröder investigated reproductive solutions as most general solutions,
anticipating the concept of most general unifier . A comprehensive modern for-
malization based on this material, along with historic remarks, is presented by
Rudeanu [23] in the framework of Boolean algebra. In automated reasoning vari-
ants of these techniques have been considered mainly in the late 80s and early 90s
with the motivation to enrich Prolog and constraint processing by Boolean unifi-
cation with respect to propositional formulas handled as terms [8,15,16,20–22].
An early implementation based on [23] has been also described in [29]. An
implementation with BDDs of the algorithm from [8] is reported in [9]. The
ΠP

2 -completeness of Boolean unification with constants was proven only later
in [15,16] and seemingly independently in [2]. Schröder’s results were developed
further by Löwenheim [18,19]. A generalization of Boole’s method beyond propo-
sitional logic to relational monadic formulas has been presented by Behmann in
the early 1950s [5,6]. Recently the complexity of Boolean unification in a predi-
cate logic setting has been investigated for some formula classes, in particular for
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 333–350, 2017.
DOI: 10.1007/978-3-319-66167-4 19

334 C. Wernhard

quantifier-free first-order formulas [12]. A brief discussion of Boolean reasoning
in comparison with predicate logic can be found in [7].

Here we remodel the solution problem formally along with basic classi-
cal results and some new generalizations in the framework of first-order logic
extended by second-order quantification. The main thesis of this work is that it
is possible and useful to apply second-order quantification consequently through-
out the formalization. What otherwise would require meta-level notation is then
expressed just with formulas. As will be shown, classical results can be repro-
duced in this framework in a way such that applicability beyond propositional
logic, possible algorithmic variations, as well as connections with second-order
quantifier elimination and Craig interpolation become visible. As demonstrated
in [30], the foundations developed here are adequate as basis for adaptions of
further classical material, notably reproductive solutions, and for further studies
such as the investigation of certain special cases for which constructive solu-
tion methods are available and a generalization of the solution problem where
vocabulary restrictions are taken into account.

The envisaged application scenario is to let solving “solution problems”, or
Boolean equation solving, on the basis of predicate logic join reasoning modes
like second-order quantifier elimination (or “semantic forgetting”), Craig inter-
polation and abduction to support the mechanized reasoning about relationships
between theories and the extraction or synthesis of subtheories with given prop-
erties. On the practical side, the aim is to relate it to reasoning techniques such
as Craig interpolation on the basis of first-order provers, SAT and QBF solv-
ing, and second-order quantifier elimination based on resolution [14] and the
Ackermann approach [11]. Numerous applications of Boolean equation solving
in various fields are summarized in [24, Chap. 14]. Applications in automated
theorem proving and proof compression are mentioned in [12, Sect. 7]. The pre-
vention of certain redundancies has been described as application of (concept)
unification in description logics [4]. In [30] the synthesis of definitional equiva-
lences is sketched as an application.

The rest of the paper is structured as follows: Notation, in particular for
substitution in formulas, is introduced in Sect. 2. In Sect. 3 a formalization of the
solution problem is presented and related to different points of view. Section 4
is concerned with abstract properties of and algorithmic approaches to solution
problems with several unknowns. Conditions under which solutions exist are
discussed in Sect. 5. Section 6 closes the paper with concluding remarks.

2 Notation and Preliminaries

2.1 Notational Conventions

We consider formulas in first-order logic extended by second-order quantification
upon predicates. They are constructed from atoms, constant operators �, ⊥,
the unary operator ¬, binary operators ∧,∨ and quantifiers ∀,∃ with their usual
meaning. Further binary operators →,←,↔, as well as n-ary versions of ∧ and ∨
can be understood as meta-level notation. The operators ∧ and ∨ bind stronger

The Boolean Solution Problem from the Perspective of Predicate Logic 335

than →, ← and ↔. The scope of ¬, the quantifiers, and the n-ary connectives is
the immediate subformula to the right. A subformula occurrence has in a given
formula positive (negative) polarity if it is in the scope of an even (odd) number
of negations.

A vocabulary is a set of symbols, that is, predicate symbols (briefly predicates),
function symbols (briefly functions) and individual symbols. (Individual symbols
are not partitioned into variables and constants. Thus, an individual symbol is –
like a predicate – considered as variable if and only if it is bound by a quantifier.)
The arity of a predicate or function s is denoted by arity(s). The set of symbols
that occur free in a formula F is denoted by free(F). Symbols not present in the
formulas and other items under discussion are called fresh. We write F |= G for
F entails G ; |= F for F is valid ; and F ≡ G for F is equivalent to G , that is,
F |= G and G |= F .

We write sequences of symbols, of terms and of formulas by juxtaposition.
Their length is assumed to be finite. The empty sequence is written ε. A sequence
with length 1 is not distinguished from its sole member. In contexts where a set
is expected, a sequence stands for the set of its members. Atoms are written
in the form p(t), where t is a sequence of terms whose length is the arity of
the predicate p. Atoms of the form p(ε), that is, with a nullary predicate p, are
written also as p. For a sequence of fresh symbols we assume that its members
are distinct. A sequence p1 . . . pn of predicates is said to match another sequence
q1 . . . qm if and only if n = m and for all i ∈ {1, . . . , n} it holds that arity(pi) =
arity(qi). If s = s1 . . . sn is a sequence of symbols, then ∀s stands for ∀s1 . . . ∀sn
and ∃s for ∃s1 . . . ∃sn.

As explained below, in certain contexts the individual symbols in the set
X = {xi | i ≥ 1} play a special role. For example in the following shorthands for a
predicate p, a formula F and x = x1 . . . xarity(p): p ⇔ F stands for ∀x (p(x) ↔ F);
p �⇔ F for ¬(p ⇔ F); p ⇒ F for ∀x (p(x) → F); and p ⇐ F for ∀x (p(x) ← F).

2.2 Substitution with Terms and Formulas

To express systematic substitution of individual symbols and predicates concisely
we use the following notation:

– F (c) and F (t) – Notational Context for Substitution of Individual Symbols.
Let c = c1 . . . cn be a sequence of distinct individual symbols. We write F as
F (c) to declare that for a sequence t = t1 . . . tn of terms the expression F (t)
denotes F with, for i ∈ {1, . . . , n}, all free occurrences of ci replaced by ti.

– F [p], F [G] and F [q] – Notational Context for Substitution of Predicates. Let
p = p1 . . . pn be a sequence of distinct predicates and let F be a formula. We
write F as F [p] to declare the following:

• For a sequence G = G1(x1 . . . xarity(p1)) . . . Gn(x1 . . . xarity(pn)) of formulas
the expression F [G] denotes F with, for i ∈ {1, . . . , n}, each atom occur-
rence pi(t1 . . . tarity(pi)) where pi is free in F replaced by Gi(t1 . . . tarity(pi)).• For a sequence q = q1 . . . qn of predicates that matches p the expression
F [q] denotes F with, for i ∈ {1, . . . , n}, each free occurrence of pi replaced
by qi.

336 C. Wernhard

• The above notation F [S], where S is a sequence of formulas or of predi-
cates, is generalized to allow also pi at the ith position of S, for example
F [G1 . . . Gi−1pi . . . pn]. The formula F [S] then denotes F with only those
predicates pi with i ∈ {1, . . . , n} that are not present at the ith position in
S replaced by the ith component of S as described above (in the example
only p1, . . . , pi−1 would be replaced).

– F [p] – Notational Context for Substitution in a Sequence of Formulas. If
F = F1 . . . Fn is a sequence of formulas, then F [p] declares that F [S], where
S is a sequence with the same length as p, is to be understood as the sequence
F1[S] . . . Fn[S] with the meaning of the members as described above.

In the above notation for substitution of predicates by formulas the members
x1, . . . , xarity(p) of X play a special role: F [G] can be alternatively considered as
obtained by replacing predicates pi with λ-expressions λx1 . . . λxarity(pi).Gi fol-
lowed by β-conversion. The shorthand p ⇔ F can be correspondingly considered
as p ↔ λx1 . . . λxarity(p).G. The following property substitutible specifies precon-
ditions for meaningful simultaneous substitution of formulas for predicates:

Definition 1 (SUBST(G,p, F) – Substitutible Sequence of Formulas).
A sequence G = G1 . . . Gm of formulas is called substitutible for a sequence
p = p1 . . . pn of distinct predicates in a formula F , written SUBST(G,p, F), if
and only if m = n and for all i ∈ {1, . . . , n} it holds that (1.) No free occurrence
of pi in F is in the scope of a quantifier occurrence that binds a member of
free(Gi); (2.) free(Gi) ∩ p = ∅; and (3.) free(Gi) ∩ {xj | j > arity(pi)} = ∅.

The following propositions demonstrate the introduced notation for formula sub-
stitution. It is well known that terms can be “pulled out of” and “pushed in to”
atoms, justified by the equivalences p(t1 . . . tn) ≡ ∃x1 . . . ∃xn (p(x1 . . . xn) ∧∧n

i=1 xi = ti) ≡ ∀x1 . . . ∀xn (p(x1 . . . xn)∨∨n
i=1 xi �= ti), which hold if no mem-

ber of {x1, . . . , xn} does occur in the terms t1, . . . , tn. Analogously, substitutible
subformulas can be “pulled out of” and “pushed in to” formulas:

Proposition 2 (Pulling-Out and Pushing-In of Subformulas). Let G =
G1 . . . Gn be a sequence of formulas, let p = p1 . . . pn be a sequence of distinct
predicates and let F = F [p] be a formula such that SUBST(G,p, F). Then

(i) F [G] ≡ ∃p (F ∧ ∧n
i=1(pi ⇔ Gi)) ≡ ∀p (F ∨ ∨n

i=1(pi �⇔ Gi)).
(ii) ∀pF |= F [G] |= ∃pF.

Ackermann’s Lemma [1] can be applied in certain cases to eliminate second-order
quantifiers, that is, to compute for a given second-order formula an equivalent
first-order formula. It plays an important role in many modern methods for
elimination and semantic forgetting – see, e.g., [10,11,13,17,26,31]:

Proposition 3 (Ackermann’s Lemma, Positive Version). Let F,G be for-
mulas and let p be a predicate such that SUBST(G, p, F), p /∈ free(G) and all free
occurrences of p in F have negative polarity. Then ∃p ((p ⇐ G)∧F [p]) ≡ F [G].

The Boolean Solution Problem from the Perspective of Predicate Logic 337

3 The Solution Problem from Different Angles

3.1 Basic Formal Modeling

Our formal modeling of the Boolean solution problem is based on two concepts,
solution problem and particular solution:

Definition 4 (F [p] – Solution Problem (SP), Unary Solution Problem
(1-SP)). A solution problem (SP) F [p] is a pair of a formula F and a sequence p
of distinct predicates. The members of p are called the unknowns of the SP. The
length of p is called the arity of the SP. A SP with arity 1 is also called unary
solution problem (1-SP).

The notation F [p] for solution problems establishes as a “side effect” a context
for specifying substitutions of p in F by formulas as specified in Sect. 2.2.

Definition 5 (Particular Solution). A particular solution (briefly solution)
of a SP F [p] is defined as a sequence G of formulas such that SUBST(G,p, F)
and |= F [G].

The property SUBST(G,p, F) in this definition implies that no member of p
occurs free in a solution. Of course, particular solution can also be defined on the
basis of unsatisfiability instead of validity, justified by the equivalence of |= F [G]
and ¬F [G] |= ⊥. The variant based on validity has been chosen here because
then the associated second-order quantifications are existential, matching the
usual presentation of elimination techniques.

Solution problem and solution as defined here provide abstractions of compu-
tational problems in a technical sense that would be suitable, e.g., for complexity
analysis. Problems in the latter sense can be obtained by fixing involved formula
and predicate classes. The abstract notions are adequate to develop much of the
material on the “Boolean solution problem” shown here and in [30]. On occasion,
however, we consider restrictions, in particular to propositional and to first-order
formulas, as well as to nullary predicates. As shown in [30, Sect. 6], further vari-
ants of solution, general representations of several particular solutions, can be
introduced on the basis of the notions defined here.

Example 6 (A Solution Problem and its Particular Solutions). As an
example of a solution problem consider F [p1p2] where

F =∀x (a(x) → b(x)) →
(∀x (p1(x) → p2(x)) ∧ ∀x (a(x) → p2(x)) ∧ ∀x (p2(x) → b(x))).

The intuition is that the antecedent ∀x (a(x) → b(x)) specifies the “back-
ground theory”, and w.r.t. that theory the unknown p1 is “stronger” than the
other unknown p2, which is also “between” a and b. Examples of solutions are:
a(x1)a(x1); a(x1)b(x1); ⊥a(x1); b(x1)b(x1); and (a(x1) ∧ b(x1))(a(x1) ∨ b(x1)).
No solutions are for example b(x1)a(x1); a(x1)⊥; and all members of {�,⊥} ×
{�,⊥}.

338 C. Wernhard

Assuming a countable vocabulary, the set of valid first-order formulas is recur-
sively enumerable. It follows that for an n-ary SP F [p] where F is first-order the
set of those of its particular solutions that are sequences of first-order formulas
is also recursively enumerable: An n-ary sequence G of well-formed first-order
formulas that satisfies the syntactic restriction SUBST(G,p, F) is a solution of
F [p] if and only if F [G] is valid.

In the following subsections further views on the solution problem will be
discussed: as unification or equation solving, as a special case of second-order
quantifier elimination, and as related to determining definientia and interpolants.

3.2 View as Unification

Because |=F [G] if and only if F [G] ≡ �, a particular solution of F [p] can be
seen as a unifier of the two formulas F [p] and � modulo logical equivalence as
equational theory. From the perspective of unification the two formulas appear
as terms, the members of p play the role of variables and the other predicates
play the role of constants.

Vice versa, a unifier of two formulas can be seen as a particular solution,
justified by the equivalence of L[G] ≡ R[G] and |= (L ↔ R)[G], which holds
for sequences G and p of formulas and predicates, respectively, and formulas
L = L[p], R = R[p], (L ↔ R) = (L ↔ R)[p] such that SUBST(G,p, L) and
SUBST(G,p, R). This view of formula unification can be generalized to sets
with a finite cardinality k of equivalences, since for all i ∈ {1, . . . , k} it holds
that Li ≡ Ri can be expressed as |= ∧k

i=1(Li ↔ Ri).
An exact correspondence between solving a solution problem F [p1 . . . pn]

where F is a propositional formula with ∨,∧,¬,⊥,� as logic operators and
E-unification with constants in the theory of Boolean algebra (with the men-
tioned logic operators as signature) applied to F =E � can be established:
Unknowns p1, . . . , pn correspond to variables and propositional atoms in F cor-
respond to constants. A particular solution G1 . . . Gn corresponds to a unifier
{p1 ← G1, . . . , pn ← Gn} that is a ground substitution. The restriction to ground
substitutions is due to the requirement that unknowns do not occur in solu-
tions. General solutions [30, Sect. 6] are expressed with further special parame-
ter atoms, different from the unknowns. These correspond to fresh variables in
unifiers.

A generalization of Boolean unification to predicate logic with various specific
problems characterized by the involved formula classes has been investigated in
[12]. The material presented here and in [30] is largely orthogonal to that work,
but a technique from [12] has been adapted to more general cases in [30, Sect. 7.3].

3.3 View as Construction of Elimination Witnesses

Another view on the solution problem is related to eliminating second-order
quantifiers by replacing the quantified predicates with “witness formulas”.

The Boolean Solution Problem from the Perspective of Predicate Logic 339

Definition 7 (ELIM-Witness). Let p = p1 . . . pn be a sequence of distinct
predicates. An ELIM-witness of p in a formula ∃pF [p] is defined as a sequence
G of formulas such that SUBST(G,p, F) and ∃pF [p] ≡ F [G].

The condition ∃pF [p] ≡ F [G] in this definition is equivalent to |=¬F [p]∨F [G].
If F [p] and the considered G are first-order, then finding an ELIM-witness is
second-order quantifier elimination on a first-order argument formula, restricted
by the condition that the result is of the form F [G]. Differently from the gen-
eral case of second-order quantifier elimination on first-order arguments, the set
of formulas for which elimination succeeds and, for a given formula, the set of
its elimination results, are then recursively enumerable. Some well-known elim-
ination methods yield ELIM-witnesses, for example rewriting a formula that
matches the left side of Ackermann’s Lemma (Proposition 3) with its right side,
which becomes evident when considering that the right side F [G] is equivalent
to ∀x1 . . . ∀xarity(p) (G ← G) ∧ F [G]. Finding particular solutions and finding
ELIM-witnesses can be expressed in terms of each other:

Proposition 8 (Solutions and ELIM-Witnesses). Let F [p] be SP and let
G be a sequence of formulas. Then:

(i) G is an ELIM-witness of p in ∃pF if and only if G is a solution of the SP
(¬F [q] ∨ F)[p], where q is a sequence of fresh predicates matching p.

(ii) G is a solution of F [p] if and only if G is an ELIM-witness of p in ∃pF
and it holds that |=∃pF .

Proof (Sketch). Assume SUBST(G,p, F). (Proposition 8i) Follows since
∃pF [p] ≡ F [G] iff ∃pF [p] |= F [G] iff F [p] |= F [G] iff |=¬F [q]∨F [G]. (Propo-
sition 8ii) Left-To-Right: Follows since |=F [G] implies |= ∃pF [p] and |=F [G],
which implies ∃pF [p] ≡ � ≡ F [G]. Right-to-left: Follows since ∃pF [p] ≡ F [G]
and |= ∃pF [p] together imply |= F [G]. ��

3.4 View as Related to Definientia and Interpolants

The following proposition shows a further view on the solution problem that
relates it to definitions of the unknown predicates:

Proposition 9 (Solution as Entailed by a Definition). A sequence G =
G1 . . . Gn of formulas is a particular solution of a SP F [p = p1 . . . pn] if and
only if SUBST(G,p, F) and

∧n
i=1(pi ⇔ Gi) |= F .

Proof. Follows from the definition of particular solution and Proposition 2i. ��
In the special case where F [p] is a 1-SP with a nullary unknown p, the charac-
terization of a solution G according to Proposition 9 can be expressed with an
entailment where a definition of the unknown p appears on the right instead of
the left side: If p is nullary, then ¬(p ⇔ G) ≡ p ⇔ ¬G. Thus, the statement
p ⇔ G |= F is for nullary p equivalent to

¬F |= p ⇔ ¬G. (i)

340 C. Wernhard

The second condition of the characterization of solution according to Proposi-
tion 9, that is, SUBST(G, p, F), holds if it is assumed that p is not in free(G),
that free(G) ⊆ free(F) and that no member of free(F) is bound by a quantifier
occurrence in F . A solution is then characterized as negated definiens of p in
the negation of F . Another way to express (i) along with the condition that G
is semantically independent from p is as follows:

∃p (¬F ∧ ¬p) |= G |= ¬∃p (¬F ∧ p). (ii)

The second-order quantifiers upon the nullary p can be eliminated, yielding the
following equivalent statement:

¬F [⊥] |= G |= F [�]. (iii)

Solutions G then appear as the formulas in a range, between ¬F [⊥] and F [�].
This view is reflected in [23, Theorem 2.2], which goes back to work by Schröder.
If F is first-order, then Craig interpolation can be applied to compute formulas G
that also meet the requirements free(G) ⊆ free(F) and p /∈ free(F) to ensure
SUBST(G, p, F). Further connections to Craig interpolation are discussed in [30,
Sect. 7].

4 The Method of Successive Eliminations – Abstracted

4.1 Reducing n-ary to 1-ary Solution Problems

The method of successive eliminations to solve an n-ary solution problem by
reducing it to unary solution problems is attributed to Boole and has been
formally described in a modern algebraic setting in [23, Chap. 2, Sect. 4]. It has
been rediscovered in the context of Boolean unification in the late 1980s, notably
with [8]. Rudeanu notes in [23, p. 72] that variants described by several authors
in the 19th century are discussed by Schröder [27, vol. 1, Sects. 26 and 27]. To
research and compare all variants up to now seems to be a major undertaking on
its own. Our aim is here to provide a foundation to derive and analyze related
methods. The following proposition formally states the core property underly-
ing the method in a way that, compared to the Boolean algebra version in [23,
Chap. 2, Sect. 4], is more abstract in several aspects: Second-order quantification
upon predicates that represent unknowns plays the role of meta-level shorthands
that encode expansions; no commitment to a particular formula class is made,
thus the proposition applies to second-order formulas with first-order and propo-
sitional formulas as special cases; it is not specified how solutions of the arising
unary solution problems are constructed; and it is not specified how intermediate
second-order formulas (that occur also for inputs without second-order quanti-
fiers) are handled. The algorithm descriptions in the following subsections show
different possibilities to instantiate these abstracted aspects.

Proposition 10 (Characterization of Solution Underlying the Method
of Successive Eliminations). Let F [p = p1 . . . pn] be a SP and let
G = G1 . . . Gn be a sequence of formulas. Then the following statements are
equivalent:

The Boolean Solution Problem from the Perspective of Predicate Logic 341

(a) G is a solution of F [p].
(b) For i ∈ {1, . . . , n}: Gi is a solution of the 1-SP

(∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])[pi]

such that free(Gi) ∩ p = ∅.
Proof. Left-to-right: From (a) it follows that |=F [G]. Hence, for all i ∈ {1, . . . , n}
by Proposition 2ii it follows that

|=∃pi+1 . . . ∃pn F [G1 . . . Gipi+1 . . . pn].

From (a) it also follows that SUBST(G,p, F). This implies that for all i ∈
{1, . . . , n} it holds that

SUBST(Gi, pi,∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn]) and free(Gi) ∩ p = ∅.

We thus have derived for all i ∈ {1, . . . , n} the two properties that characterize
Gi as a solution of the 1-SP as stated in (b).

Right-to-left: From (b) it follows that Gn is a solution of the 1-SP

(F [G1 . . . Gn−1pn])[pn].

Hence, by the characteristics of solution it follows that |=F [G1 . . . Gn]. The prop-
erty SUBST(G,p, F) can be derived from free(G)∩p = ∅ and the fact that for all
i ∈ {1, . . . , n} it holds that SUBST(Gi, pi, (∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])).
The properties |=F [G1 . . . Gn] and SUBST(G,p, F) characterize G as a solution
of the SP F [p]. ��
This proposition states an equivalence between the solutions of an n-ary SP
and the solutions of n 1-SPs. These 1-SPs are on formulas with an existential
second-order prefix. The following gives an example of this decomposition:

Example 11 (Reducing an n-ary Solution Problem to Unary Solution
Problems). Consider the SP F [p1p2] of Example 6. The 1-SP with unknown p1
according to Proposition 10 is

(∃p2 F [p1p2])[p1],

whose formula is, by second-order quantifier elimination, equivalent to
∀x (a(x) → b(x)) → ∀x (p1(x) → b(x)). Take a(x1) as solution G1 of that 1-SP.
The 1-SP with unknown p2 according to Proposition 10 is

(F [G1p2])[p2].

Its formula is then, by replacing p1 in F as specified in Example 6 with a and
removing the duplicate conjunct obtained then, equivalent to

∀x (a(x) → b(x)) → (∀x (a(x) → p2(x)) ∧ ∀x (p2(x) → b(x))).

A solution of that second 1-SP is, for example, b(x1), yielding the pair a(x1)b(x1)
as solution of the originally considered SP F [p1p2].

342 C. Wernhard

4.2 Solving on the Basis of Second-Order Formulas

The following algorithm to compute particular solutions is an immediate trans-
fer of Proposition 10. Actually, it is more an “algorithm template”, since it is
parameterized with a method to compute 1-SPs and covers a nondeterministic
as well as a deterministic variant:

Algorithm 12 (SOLVE-ON-SECOND-ORDER). Let F be a class of formulas
and let 1-SOLVE be a nondeterministic or a deterministic algorithm that outputs
for 1-SPs of the form (∃p1 . . . ∃pn F [p])[p] with F ∈ F solutions G such that
free(G) ∩ {p1, . . . , pn} = ∅ and F [G] ∈ F .
Input: A SP F [p1 . . . pn], where F ∈ F , that has a solution.
Method: For i := 1 to n do: Assign to Gi an output of 1-SOLVE applied to the
1-SP (∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])[pi].
Output: The sequence G1 . . . Gn of formulas, which is a particular solution of
F [p1 . . . pn].

The solution components Gi are successively assigned to some solution of the
1-SP given in Proposition 10, on the basis of the previously assigned components
G1 . . . Gi−1. Even if the formula F of the input problem does not involve second-
order quantification, these 1-SPs are on second-order formulas with an existential
prefix ∃pi+1 . . . ∃pn upon the yet “unprocessed” unknowns.

The algorithm comes in a nondeterministic and a deterministic variant, just
depending on whether 1-SOLVE is instantiated by a nondeterministic or a deter-
ministic algorithm. Thus, in the nondeterministic variant the nondeterminism of
1-SOLVE is the only source of nondeterminism. With Proposition 10 it can be
verified that if a nondeterministic 1-SOLVE is “complete” in the sense that for
each solution there is an execution path that leads to the output of that solu-
tion, then also SOLVE-ON-SECOND-ORDER based on it enjoys that property,
with respect to the n-ary solutions G1 . . . Gn.

For the deterministic variant, from Proposition 10 it follows that if 1-SOLVE
is “complete” in the sense that it outputs some solution whenever a solution
exists, then, given that F [p1 . . . pn] has a solution, which is ensured by the spec-
ification of the input, also SOLVE-ON-SECOND-ORDER outputs some solution
G1 . . . Gn.

This method applies 1-SOLVE to existential second-order formulas, which
prompts some issues for future research: As indicated in Sect. 3.4 (and elab-
orated in [30, Sect. 7]) Craig interpolation can in certain cases be applied to
compute solutions of 1-SPs. Can QBF solvers, perhaps those that encode QBF
into predicate logic [28], be utilized to compute Craig interpolants? Can it be
useful to allow second-order quantifiers in solution formulas because they make
these smaller and can be passed between different calls to 1-SOLVE?

As shown in [30, Sect. 6], if 1-SOLVE is a method that outputs so-called
reproductive solutions, that is, most general solutions that represent all par-
ticular solutions, then also SOLVE-ON-SECOND-ORDER outputs reproductive
solutions. Thus, there are two ways to obtain representations of all particular
solutions whose comparison might be potentially interesting: A deterministic

The Boolean Solution Problem from the Perspective of Predicate Logic 343

method that outputs a single reproductive solution and the nondeterministic
method with an execution path to each particular solution.

4.3 Solving with the Method of Successive Eliminations

The method of successive eliminations in a narrower sense is applied in a
Boolean algebra setting that corresponds to propositional logic and outputs
reproductive solutions. The consideration of reproductive solutions belongs to
the classical material on Boolean reasoning [19,23,27] and is modeled in the
present framework in [30, Sect. 6]. Compared to SOLVE-ON-SECOND-ORDER,
the method handles the second-order quantification by eliminating quantifiers
one-by-one, inside-out, with a specific method and applies a specific method
to solve 1-SPs, which actually yields reproductive solutions. These incorporated
methods apply to propositional input formulas (and to first-order input formulas
if the unknowns are nullary). Second-order quantifiers are eliminated by rewrit-
ing with the equivalence ∃pF [p] ≡ F [�] ∨ F [⊥]. As solution of an 1-SP F [p] the
formula (¬F [⊥]∧t)∨(F [�]∧¬t) is taken, where t is a fresh nullary predicate that
is considered specially. The intuition is that particular solutions are obtained by
replacing t with arbitrary formulas in which p does not occur (see [30, Sect. 6]
for a more in-depth discussion).

The following algorithm is an iterative presentation of the method of suc-
cessive eliminations, also called Boole’s method , in the variant due to [8]. The
presentation in [22, Sect. 3.1], where apparently minor corrections compared to
[8] have been made, has been taken here as technical basis. We stay in the
validity-based setting, whereas [8,22,23] use the unsatisfiability-based setting.
Also differently from [8,22] we do not make use of the xor operator.

Algorithm 13 (SOLVE-SUCC-ELIM).
Input: A SP F [p1 . . . pn], where F is propositional, that has a solution and a
sequence t1 . . . tn of fresh nullary predicates.
Method:

1. Initialize Fn[p1 . . . pn] with F .
2. For i := n to 1 do: Assign to Fi−1[p1 . . . , pi−1] the formula Fi[p1 . . . pi−1�] ∨

Fi[p1 . . . pi−1⊥].
3. For i := 1 to n do: Assign to Gi the formula (¬Fi[G1 . . . Gi−1⊥] ∧ ti) ∨

(Fi[G1 . . . Gi−1�] ∧ ¬ti).

Output: The sequence G1 . . . Gn of formulas, which is a reproductive solution
of F [p1 . . . pn] with respect to the special predicates t1 . . . tn.

The formula assigned to Fi−1 in step (2.) is the result of eliminating ∃pi in
∃pi Fi[p1 . . . pi] and the formula assigned to Gi in step (3.) is the reproduc-
tive solution of the 1-SP (Fi[G1 . . . Gi−1pi])[pi], obtained with the respective
incorporated methods indicated above. The recursion in the presentations of
[8,22] is translated here into two iterations that proceed in opposite directions:
First, existential quantifiers of ∃p1 . . . ∃pn F are eliminated inside-out and the

344 C. Wernhard

intermediate results, which do not involve second-order quantifiers, are stored.
Solutions of 1-SPs are computed in the second phase on the basis of the stored
formulas.

In this presentation it is easy to identify two “hooks” where it is possible to
plug-in alternate methods that produce other outputs or apply to further for-
mula classes: In step (2.) the elimination method and in step (3.) the method to
determine solutions of 1-SPs. If the plugged-in method to compute 1-SPs out-
puts particular solutions, then SOLVE-SUCC-ELIM computes particular instead
of reproductive solutions.

4.4 Solving by Inside-Out Witness Construction

Like SOLVE-SUCC-ELIM, the following algorithm eliminates second-order quan-
tifiers one-by-one, inside-out, avoiding intermediate formulas with existential
second-order prefixes of length greater than 1, which arise with SOLVE-ON-
SECOND-ORDER. In contrast to SOLVE-SUCC-ELIM, it performs elimination by
the computation of ELIM-witnesses.

Algorithm 14 (SOLVE-BY-WITNESESS). Let F be a class of formulas and
ELIM-WITNESS be an algorithm that computes for formulas F ∈ F and predi-
cates p an ELIM-witness G of p in ∃pF [p] such that F [G] ∈ F .
Input: A SP F [p1 . . . pn], where F ∈ F , that has a solution.
Method: For i := n to 1 do:

1. Assign to Gi[p1 . . . pi−1] the output of ELIM-WITNESS applied to

∃pi F [p1 . . . piGi+1 . . . Gn].

2. For j := n to i+1 do: Re-assign toGj [p1 . . . pi−1] the formulaGj [p1 . . . pi−1Gi].

Output: : The sequence G1 . . . Gn of formulas, which provides a particular solu-
tion of F [p1 . . . pn].

Step (2.) in the algorithm expresses that a new value is assigned to Gj and that
Gj can be designated by Gj [p1 . . . pi−1], justified because the new value does not
contain free occurrences of pi, . . . , pn. In step (1.) the respective current values of
Gi+1 . . . Gn are used to instantiate F . It is not hard to see from the specification
of the algorithm that for input F [p] and output G it holds that ∃pF ≡ F [G]
and that SUBST(G,p, F). By Proposition 8ii, G is then a solution if |=∃pF .
This holds indeed if F [p] has a solution, as shown below with Proposition 15.

If ELIM-WITNESS is “complete” in the sense that it computes an elimina-
tion witness for all input formulas in F , then SOLVE-BY-WITNESESS outputs a
solution. Whether all solutions of the input SP can be obtained as outputs for dif-
ferent execution paths of a nondeterministic version of SOLVE-BY-WITNESESS
obtained through a nondeterministic ELIM-WITNESS, in analogy to the non-
deterministic variant of SOLVE-ON-SECOND-ORDER, appears to be an open
problem.

The Boolean Solution Problem from the Perspective of Predicate Logic 345

5 Existence of Solutions

5.1 Conditions for the Existence of Solutions

We now turn to the question under which conditions there exists a solution of
a given SP, or, in the terminology of [23], the SP is consistent . A necessary
condition is easy to see:

Proposition 15 (Necessary Condition for the Existence of a Solution).
If a SP F [p] has a solution, then it holds that |=∃pF .

Proof. Follows from the definition of particular solution and Proposition 2ii. ��
Under certain presumptions that hold for propositional logic this condition is
also sufficient. To express these abstractly we use the following concept:

Definition 16 (SOL-Witnessed Formula Class). A formula class F is
called SOL-switnessed for a predicate class P if and only if for all p ∈ P and
F [p] ∈ F the following statements are equivalent:

(a) |= ∃pF .
(b) There exists a solution G of the 1-SP F [p] such that F [G] ∈ F .

Since the right-to-left direction of that equivalence holds in general, the left-
to-right direction alone would provide an alternate characterization. The class
of propositional formulas is SOL-witnessed (for the class of nullary predicates).
This follows since in propositional logic it holds that

∃pF [p] ≡ F [F [�]], (iv)

which can be derived in the following steps: F [F [�]] ≡ ∃p (F [p]∧(p ↔ F [�])) ≡
(F [�] ∧ (� ↔ F [�])) ∨ (F [⊥] ∧ (⊥ ↔ F [�])) ≡ F [�] ∨ F [⊥] ≡ ∃pF [p].

The following definition adds closedness under existential second-order quan-
tification to the notion of SOL-witnessed , to allow the application on 1-SPs
matching with item (b) in Proposition 10:

Definition 17 (MSE-SOL-Witnessed Formula Class). A formula class F
is called MSE-SOL-witnessed for a predicate class P if and only if it is SOL-
witnessed for P and for all sequences p of predicates in P and F ∈ F it holds
that ∃pF ∈ F .

The class of existential QBFs (formulas of the form ∃pF where F is proposi-
tional) is MSE-SOL-witnessed (like the more general class of QBFs – second-
order formulas with only nullary predicates). Another example is the class of
first-order formulas extended by second-order quantification upon nullary pred-
icates, which is MSE-SOL-witnessed for the class of nullary predicates. The
following proposition can be seen as expressing an invariant of the method of
successive eliminations that holds for formulas in an MSE-SOL-witnessed class:

346 C. Wernhard

Proposition 18 (Solution Existence Lemma). Let F be a formula class
that is MSE-SOL-witnessed for predicate class P. Let F [p = p1 . . . pn] ∈ F
with p ∈ Pn. If |=∃pF [p], then for all i ∈ {0, . . . , n} there exists a sequence
G1 . . . Gi of formulas such that free(G1 . . . Gi) ∩ p = ∅, SUBST(G1 . . . Gi, p1 . . .
pi, F), |=∃pi+1 . . . ∃pnF [G1 . . . Gipi+1 . . . pn] and ∃pi+1 . . . ∃pnF [G1 . . . Gipi+1 . . .
pn]∈F .

Proof. By induction on the length i of the sequence G1 . . . Gi. The conclusion
of the proposition holds for the base case i = 0: The statement SUBST(ε, ε, F)
holds trivially, |= ∃pF is given as precondition, and ∃pF ∈ F follows from
F ∈ F . For the induction step, assume that the conclusion of the proposi-
tion holds for some i ∈ {0, . . . n − 1}. That is, SUBST(G1 . . . Gi, p1 . . . pi, F),
|=∃pF [G1 . . . Gipi+1 . . . pn] and ∃pF [G1 . . . Gipi+1 . . . pn] ∈ F . Since F is wit-
nessed for P and pi+1 ∈ P it follows that there exists a solution Gi+1 of the 1-SP
(∃pF [G1 . . . Gipi+1 . . . pn])[pi+1] such that (∃pF [G1 . . . Gi+1pi+2 . . . pn]) ∈ F .
From the characteristics of solution it follows that |=∃pF [G1 . . . Gi+1pi+2 . . . pn])
and SUBST(Gi+1, pi+1,∃pF [G1 . . . Gi+1pi+2 . . . pn]). In the latter statement the
quantifier ∃p ensures that free(Gi+1) ∩ p = ∅. With the induction hypothesis
SUBST(G1 . . . Gi, p1 . . . pi, F) it follows that SUBST(G1 . . . Gi+1, p1 . . . pi+1, F),
which completes the proof of the induction step. (The existential quantification
is here upon p, not just pi+1 . . . pn, to ensure that no members of p at all occur as
free symbols in the solutions.) ��
A sufficient and necessary condition for the existence of a solution of formulas
in MSE-SOL-witnessed classes now follows from Propositions 15 and 18:

Proposition 19 (Existence of a Solution). Let F be a formula class that
is MSE-SOL-witnessed on predicate class P. Then for all F [p] ∈ F where the
members of p are in P the following statements are equivalent:

(a) |= ∃pF .
(b) There exists a solution G of the SP F [p] such that F [G] ∈ F .

Proof. Follows from Propositions 15 and 18. ��
From that proposition it is easy to see that for SPs with propositional formulas
the complexity of determining the existence of a solution is the same as the
complexity of deciding validity of existential QBFs, as proven in [2,15,16], that
is, ΠP

2 -completeness: By Proposition 19, an SP F [p] where F is propositional
has a solution if and only if the existential QBF ∃pF [p] is valid and, vice versa,
an arbitrary existential QBF ∃pF [p] (where F is quantifier-free) is valid if and
only if the SP F [p] has a solution.

5.2 Characterization of SOL-Witnessed in Terms
of ELIM-Witness

The following proposition shows that under a minor syntactic precondition on
formula classes, SOL-witnessed can also be characterized in terms of ELIM-
witness instead of solution as in Definition 16:

The Boolean Solution Problem from the Perspective of Predicate Logic 347

Proposition 20 (SOL-Witnessed in Terms of ELIM-Witness). Let F be
a class of formulas that satisfies the following properties: For all F [p] ∈ F and
predicates q with the same arity of p it holds that F [p] ∨ ¬F [q] ∈ F , and for all
F ∨ G ∈ F it holds that F ∈ F . The class F is SOL-witnessed for a predicate
class P if and only if for all p ∈ P and F [p] ∈ F there exists an ELIM-witness
G of p in F [p] such that F [G] ∈ F .

Proof. Left-to-right: Assume that F is meets the specified closedness conditions
and is SOL-witnessed for P, p ∈ P and F [p] ∈ F . Let q be a fresh predicate with
the arity of p. The obviously true statement |= ∃pF [p]∨¬∃pF [p] is equivalent to
|=∃pF [p]∨¬F [q] and thus to |=∃p (F [p]∨¬F [q]). By the closedness properties of
F it holds that F [p]∨¬F [q] ∈ F . Since F is SOL-witnessed for P it thus follows
from Definition 16 that there exists a solution G of the SP (F [p]∨¬F [q])[p] such
that (F [G]∨¬F [q]) ∈ F , and, by the closedness properties, also F [G] ∈ F . From
the definition of solution it follows that |= F [G] ∨ ¬F [q], which is equivalent
to ∃pF [p] ≡ F [G], and also that SUBST(G, p, F [G] ∨ ¬F [q]), which implies
SUBST(G, p, F [G]). Thus G is an SO-witness of p in F [p] such that F [G] ∈ F .
Right-to-left: Easy to see from Proposition 8ii. ��

5.3 The Elimination Result as Precondition of Solution Existence

Proposition 19 makes an interesting relationship between the existence of a solu-
tion and second-order quantifier elimination apparent that has been pointed out
by Schröder [27, vol. 1, Sect. 21] and Behmann [5], and is briefly reflected in
[23, p. 62]: The formula ∃pF is valid if and only if the result of eliminating
the existential second-order prefix (called Resultante by Schröder [27, vol. 1,
Sect. 21]) is valid. If it is not valid, then, by Proposition 19, the SP F [p] has no
solution, however, in that case the elimination result represents the unique (mod-
ulo equivalence) weakest precondition under which the SP would have a solution.
The following proposition shows a way to make this precise:

Proposition 21 (The Elimination Result is the Unique Weakest Pre-
condition of Solution Existence). Let F be a formula class and let P be a
predicate class such that F is MSE-SOL-witnessed on P. Let F [p] be a solution
problem where F ∈ F and all members of p are in P. Let A be a formula such
that (A → F) ∈ F , A ≡ ∃pF , and no member of p does occur in A. Then

(i) The SP (A → F)[p] has a solution.
(ii) If B is a formula such that (B → F) ∈ F , no member of p occurs in B, and

the SP (B → F)[p] has a solution, then B |= A.

Proof. (Proposition 19i) From the specification of A it follows that |=A → ∃pF
and thus |= ∃p (A → F). Hence, by Proposition 19, the SP (A → F)[p] has a
solution. (Proposition 19ii) Let B be a formula such that the left side of holds.
With Proposition 19 it follows that |= B → ∃pF . Hence B |= ∃pF . Hence
B |= A. ��
The following example illustrates Proposition 21:

348 C. Wernhard

Example 22 (Elimination Result as Precondition for Solvability). Con-
sider the SP F [p1p2] where

F = ∀x (p1(x) → p2(x)) ∧ ∀x (a(x) → p2(x)) ∧ ∀x (p2(x) → b(x)).

Its formula is the consequent of the SP considered in Example 6. Since
∃p1∃p2 F ≡ ∀x (a(x) → b(x)) �≡ �, from Proposition 19 it follows that F [p1p2]
has no solution. If, however, the elimination result ∀x (a(x) → b(x)) is added as
an antecedent to F , then the resulting SP, which is the SP of Example 6, has a
solution.

6 Conclusion

The solution problem and second-order quantifier elimination were interrelated
tools in the early mathematical logic. Today elimination has entered automati-
zation with applications in the computation of circumscription, in modal logics,
and for semantic forgetting and modularizing knowledge bases, in particular for
description logics. Since the solution problem on the basis of first-order logic is,
like first-order validity, recursively enumerable there seems some hope to adapt
techniques from first-order theorem proving.

The paper makes the relevant scenario accessible from the perspective of
predicate logic and theorem proving. Together with the consideration of most
general solutions in [30] it shows that a wealth of classical material on Boolean
equation solving can be transferred to predicate logic. Some essential diverging
points crystallize, like the constructability of witness formulas for quantified
predicates. An abstracted version of the core property underlying the classical
method of successive eliminations provides a foundation for systematizing and
generalizing algorithms that reduce n-ary solution problems to unary solution
problems.

Beyond the presented core framework there seem to be many results from
different communities that are potentially relevant for further investigation. This
includes the vast amount of techniques for equation solving on the basis of
Boolean algebra and its variants, developed over the last 150 years. For descrip-
tion logics there are several results on concept unification, e.g., [3,4]. Variants of
Craig interpolation such as disjunctive interpolation [25] share with the solution
problem at least the objective to find substitution formulas such that the overall
formula becomes valid (or, dually, unsatisfiable).

First steps towards constructive methods for the solution problem that apply
to special cases of first-order inputs are described in [30], including methods
based on Craig interpolation and on an elimination technique from [12]. The
possible characterization of solution by an entailment also brings up the ques-
tion whether Skolemization and Herbrand’s theorem justify some “instance-
based” technique for computing solutions that succeeds on large enough quan-
tifier expansions.

Acknowledgments. The author thanks anonymous reviewers for their helpful com-
ments. This work was supported by DFG grant WE 5641/1-1.

The Boolean Solution Problem from the Perspective of Predicate Logic 349

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Math. Ann. 110, 390–413 (1935)

2. Baader, F.: On the complexity of Boolean unification. Inf. Process. Lett. 67(4),
215–220 (1998)

3. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Methods
Comput. Sci. 6(3), 1–31 (2010)

4. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31, 277–305 (2001)

5. Behmann, H.: Das Auflösungsproblem in der Klassenlogik. Archiv für Philosophie
4(1), 97–109 (1950). (First of two parts, also published in Archiv für mathematische
Logik und Grundlagenforschung, 1.1 (1950), pp. 17–29)

6. Behmann, H.: Das Auflösungsproblem in der Klassenlogik. Archiv für Philosophie
4(2), 193–211 (1951). (Second of two parts, also published in Archiv für mathema-
tische Logik und Grundlagenforschung, 1.2 (1951), pp. 33–51)

7. Brown, F.M.: Boolean Reasoning, 2nd edn. Dover Publications, Mineola (2003)
8. Büttner, W., Simonis, H.: Embedding Boolean expressions into logic programming.

J. Symb. Comput. 4(2), 191–205 (1987)
9. Carlsson, M.: Boolean constraints in SICStus Prolog. Technical report SICS

T91:09, Swedish Institute of Computer Science, Kista (1991)
10. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-

pleteness in modal logic. I. The core algorithm SQEMA. LMCS 2(1:5), 1–26 (2006)
11. Doherty, P., �Lukaszewicz, W., Sza�las, A.: Computing circumscription revisited: a

reduction algorithm. J. Autom. Reason. 18(3), 297–338 (1997)
12. Eberhard, S., Hetzl, S., Weller, D.: Boolean unification with predicates. J. Log.

Comput. 27(1), 109–128 (2017)
13. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second-Order Quantifier Elimination:

Foundations, Computational Aspects and Applications. College Publications, Lon-
don (2008)

14. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: KR 1992, pp. 425–435. Morgan Kaufmann (1992)

15. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. In: PODS
1990, pp. 299–313. ACM Press (1990)

16. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. J. Com-
put. Syst. Sci. 51(1), 26–52 (1995)

17. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using
fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS
2013. LNCS, vol. 8152, pp. 87–102. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40885-4 7

18. Löwenheim, L.: Über das Auflösungsproblem im logischen Klassenkalkül. In:
Sitzungsberichte der Berliner Mathematischen Gesellschaft, vol. 7, pp. 89–94. Teub-
ner (1908)

19. Löwenheim, L.: Über die Auflösung von Gleichungen im logischen Gebietekalkül.
Math. Ann. 68, 169–207 (1910)

20. Martin, U., Nipkow, T.: Unification in Boolean rings. In: Siekmann, J.H. (ed.)
CADE 1986. LNCS, vol. 230, pp. 506–513. Springer, Heidelberg (1986). doi:10.
1007/3-540-16780-3 115

21. Martin, U., Nipkow, T.: Unification in Boolean rings. J. Autom. Reason. 4(4),
381–396 (1988)

http://dx.doi.org/10.1007/978-3-642-40885-4_7
http://dx.doi.org/10.1007/978-3-642-40885-4_7
http://dx.doi.org/10.1007/3-540-16780-3_115
http://dx.doi.org/10.1007/3-540-16780-3_115

350 C. Wernhard

22. Martin, U., Nipkow, T.: Boolean unification - the story so far. J. Symb. Comput.
7, 275–293 (1989)

23. Rudeanu, S.: Boolean Functions and Equations. Elsevier, Amsterdam (1974)
24. Rudeanu, S.: Lattice Functions and Equations. Springer, London (2001). doi:10.

1007/978-1-4471-0241-0
25. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause ver-

ification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–
363. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 24

26. Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory
and second-order reduction. J. Appl. Log. 10(1), 52–74 (2012)

27. Schröder, E.: Vorlesungen über die Algebra der Logik. Teubner (vol. 1, 1890; vol.
2, pt. 1, 1891; vol. 2, pt. 2, 1905; vol. 3, 1895)

28. Seidl, M., Lonsing, F., Biere, A.: bf2epr: a tool for generating EPR formulas from
QBF. In: PAAR-2012. EPiC, vol. 21, pp. 139–148 (2012)

29. Sofronie, V.: Formula-handling computer solution of Boolean equations. I. Ring
equations. Bull. EATCS 37, 181–186 (1989)

30. Wernhard, C.: The Boolean solution problem from the perspective of predicate
logic - extended version. Technical report KRR 17-01, TU Dresden (2017)

31. Zhao, Y., Schmidt, R.A.: Concept forgetting in ALCOI-ontologies using an Ack-
ermann approach. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp.
587–602. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 34

http://dx.doi.org/10.1007/978-1-4471-0241-0
http://dx.doi.org/10.1007/978-1-4471-0241-0
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-319-25007-6_34

Author Index

Aoto, Takahito 115
Ayala-Rincón, Mauricio 209

Baader, Franz 43, 60, 77
Baaz, Matthias 265
Balbiani, Philippe 281
Barrett, Clark 22
Bian, Zhengbing 153
Biendarra, Julian 3
Blanchette, Jasmin Christian 3
Borgwardt, Stefan 60
Bouzy, Aymeric 3
Brockschmidt, Marc 132

Caleiro, Carlos 298
Chudak, Fabian 153
Claßen, Jens 227
Cruanes, Simon 172

de Carvalho-Segundo, Washington 209
Desharnais, Martin 3

Fernández, Maribel 209
Fleury, Mathias 3
Fontaine, Pascal 189
Frohn, Florian 132
Fuhs, Carsten 132

Gencer, Çiğdem 281
Ghilardi, Silvio 316
Gianola, Alessandro 316
Giesl, Jürgen 132

Haarslev, Volker 95
Hölzl, Johannes 3

Jaumard, Brigitte 95
Jovanović, Dejan 22

Kikuchi, Kentaro 115
Koopmann, Patrick 60, 77
Kunčar, Ondřej 3

Lochbihler, Andreas 3
Lolic, Anela 265

Macready, William 153
Marcelino, Sérgio 298
Marcos, João 298
Meier, Fabian 3

Naaf, Matthias 132
Nantes-Sobrinho, Daniele 209

Ogawa, Mizuhito 189
Ozaki, Ana 60

Panny, Lorenz 3
Popescu, Andrei 3

Reynolds, Andrew 22
Roy, Aidan 153

Sebastiani, Roberto 153
Sternagel, Christian 3
Sturm, Thomas 189

Thiemann, René 3
Thost, Veronika 60
Tinelli, Cesare 22
Toyama, Yoshihito 115
Traytel, Dmitriy 3
Turhan, Anni-Yasmin 77

Varotti, Stefano 153
Vlasenko, Jelena 95
Voigt, Marco 244
Vu, Xuan Tung 189

Wernhard, Christoph 333

Zarrieß, Benjamin 227

	Preface
	Organisation
	Contents
	Invited Talks
	Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic
	1 Introduction
	2 Isabelle/HOL
	3 Bounded Natural Functors
	4 Datatypes and Codatatypes
	5 Nonemptiness Witnesses
	6 Primitive Recursion and Corecursion
	7 Corecursion up to Friendly Operations
	8 Nonuniform Datatypes and Codatatypes
	9 Tool Integration
	10 Applications
	11 Conclusion
	References

	Designing Theory Solvers with Extensions
	1 Introduction
	1.1 Formal Preliminaries

	2 Theory Solvers
	3 Theory Solvers with Extensions
	3.1 Context-Dependent Simplification
	3.2 Model-Based Refinement
	3.3 A Strategy for Extended Theory Solvers

	4 An Efficient Solver for an Extended Theory of Strings
	5 Lightweight Techniques for Non-linear Arithmetic
	6 Lazy Bit-Blasting for Bit-Vector Constraints
	7 Related Work
	8 Conclusion and Future Work
	References

	Description and Temporal Logics
	A New Description Logic with Set Constraints and Cardinality Constraints on Role Successors
	1 Introduction
	2 Preliminaries
	3 Syntax and Semantics of ALCSCC
	4 Expressive Power
	5 Satisfiability of ALCSCC Concept Descriptions
	6 Satisfiability in ALCSCC w.r.t. GCIs
	7 Related Work and Future Work
	References

	Metric Temporal Description Logics with Interval-Rigid Names
	1 Introduction
	2 The Temporal Description Logic LTLbinALC
	3 LTLbinALC with Interval-Rigid Names
	3.1 Satisfiability Is in 2-ExpSpace
	3.2 Global GCIs

	4 ALC-LTLbin with Interval-Rigid Names
	4.1 Rigid Roles and Interval-Rigid Concepts
	4.2 Interval-Rigid Roles
	4.3 Rigid and Interval-Rigid Concepts

	5 ALC-LTLbin Without Interval-Rigid Names
	6 Conclusions
	References

	Using Ontologies to Query Probabilistic Numerical Data
	1 Introduction
	2 Description Logics with Numerical Domains
	2.1 Queries
	2.2 Complexity of Classical Query Entailment

	3 Probabilistic Knowledge Bases with Continuous Probability Distributions
	3.1 Semantics of Probabilistic Knowledge Bases

	4 Feasibility Conditions for PDFs
	5 Complexity of Probabilistic Query Answering
	6 Conclusion
	References

	Pushing the Boundaries of Reasoning About Qualified Cardinality Restrictions
	1 Introduction
	2 Preliminaries
	3 Column Generation and Branch-and-Price Methods
	4 Role Hierarchies
	5 Communication of Avalanche with QMediator
	6 Performance Evaluation
	7 Conclusion
	References

	Rewriting
	Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems
	1 Introduction
	2 Nominal Rewriting
	2.1 Nominal Terms
	2.2 Freshness Constraints and -Equivalence
	2.3 Nominal Rewriting Systems
	2.4 Basic Critical Pairs
	2.5 Uniform Rewrite Rules

	3 Confluence of Left-Linear Nominal Rewriting Systems
	3.1 Parallel Reduction
	3.2 Confluence of Left-Linear Parallel Closed Rewriting Systems

	4 Conclusion
	References

	Complexity Analysis for Term Rewriting by Integer Transition Systems
	1 Introduction
	2 Complexity of Term Rewriting
	3 From TRSs to Recursive Natural Transition Systems
	4 Analyzing the Complexity of RNTSs
	4.1 Size Bounds as Runtime Bounds
	4.2 Complexity Bounds for Recursive Programs

	5 Related Work, Experiments, and Conclusion
	References

	SAT, SMT and Automated Theorem Proving
	Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report
	1 Introduction
	2 Foundations
	2.1 Penalty Functions
	2.2 Properties of Penalty Functions and Problem Decomposition
	2.3 Embedding into Chimera Architecture

	3 Solving the Encoding Problem
	3.1 Encoding Small Boolean Functions
	3.2 Encoding Larger Boolean Functions

	4 Preliminary Experimental Evaluation
	5 Ongoing and Future Work
	References

	Superposition with Structural Induction
	1 Introduction
	2 Basic Definitions
	3 Superposition with Recursive Functions and Datatypes
	3.1 Recursive Functions and Rewriting
	3.2 Preprocessing the Input
	3.3 Inference Rules for Constructors

	4 Proving Formulas by Induction
	4.1 Instantiating the Induction Schema
	4.2 Selecting the Induction Variables

	5 Performing Several Inductive Proofs with AVATAR
	6 Finding Subgoals and Lemmas by Generalization
	6.1 Proving Subgoals by Induction
	6.2 Generalizing Subgoals

	7 Testing Conjectures Before Trying to Prove Them
	8 Implementation and Experiments
	9 Conclusion
	References

	Subtropical Satisfiability
	1 Introduction
	2 Basic Facts and Definitions
	3 Subtropical Real Root Finding Revisited
	4 Positive Values of Several Polynomials
	4.1 A Sufficient Condition
	4.2 Existence of Positive Vertex Clusters

	5 More General Solutions
	6 Application to SMT Benchmarks
	7 Conclusion
	References

	Decision Procedures, Decidability and Verification
	On Solving Nominal Fixpoint Equations
	1 Introduction
	2 Nominal Syntax and Nominal (-)C-Unification
	2.1 Nominal Syntax
	2.2 The Relation {, C} and Nominal {, C}-Unification
	2.3 Solutions of Fixpoint Problems Through Extended Pseudo-Cycles

	3 Soundness and Completeness
	4 Improvements in the Generation of Solutions
	5 Conclusions and future work
	References

	Decidable Verification of Decision-Theoretic GOLOG
	1 Introduction
	2 Preliminaries
	2.1 The Logic E S
	2.2 Action Theories
	2.3 DTGOLOG and the Verification Problem

	3 Decidability of Verification
	3.1 Fluent Dependencies and Acyclic Theories
	3.2 Decidable Verification with Acyclic Theories

	4 Conclusion
	References

	The Bernays--Schönfinkel--Ramsey Fragment with Bounded Difference Constraints over the Reals Is Decidable
	1 Introduction
	2 Preliminaries and Notation
	3 Basic Tools from Ramsey Theory
	4 Decidability of Satisfiability for BSR(SLR) Clause Sets
	5 Decidability of Satisfiability for BSR(BD) Clause Sets
	6 Formalizing Reachability for Timed Automata
	7 Discussion
	References

	Properties and Combinations of Logic
	First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation
	1 Introduction
	2 Lattice-Based Finitely-Valued Logics
	3 Skolemization
	4 Expansions
	5 The Interpolation Theorem
	6 Extensions to Infinitely-Valued Logics
	7 Conclusion
	References

	Finitariness of Elementary Unification in Boolean Region Connection Calculus
	1 Introduction
	2 Syntax
	3 Motivation for Considering Unifiability in BRCC8
	4 Semantics
	5 Unifiability
	6 Monoms and Polynoms
	7 Some Equivalence Relations
	8 Computability of Unifiability
	9 Unification Type
	10 Conclusion
	References

	Merging Fragments of Classical Logic
	1 Introduction
	2 Preliminaries
	2.1 Logics in Abstract
	2.2 Hilbert-Style Proof Systems
	2.3 Matrix Semantics

	3 Combining Logics
	4 Merging Fragments
	5 Closing Remarks
	References

	Interpolation, Amalgamation and Combination (The Non-disjoint Signatures Case)
	1 Introduction
	2 Formal Preliminaries
	2.1 Model Completion and T0-compatibility
	2.2 Interpolation and Amalgamation

	3 Conditions for Combination
	3.1 Sub-amalgamation Schemata
	3.2 Proof of Theorem 3.2
	3.3 When the Shared Theory is Horn

	4 Applications to Modal Logic
	4.1 Superamalgamability and Interpolation in Propositional Logic

	5 Conclusions and Future Work
	References

	The Boolean Solution Problem from the Perspective of Predicate Logic
	1 Introduction
	2 Notation and Preliminaries
	2.1 Notational Conventions
	2.2 Substitution with Terms and Formulas

	3 The Solution Problem from Different Angles
	3.1 Basic Formal Modeling
	3.2 View as Unification
	3.3 View as Construction of Elimination Witnesses
	3.4 View as Related to Definientia and Interpolants

	4 The Method of Successive Eliminations -- Abstracted
	4.1 Reducing n-ary to 1-ary Solution Problems
	4.2 Solving on the Basis of Second-Order Formulas
	4.3 Solving with the Method of Successive Eliminations
	4.4 Solving by Inside-Out Witness Construction

	5 Existence of Solutions
	5.1 Conditions for the Existence of Solutions
	5.2 Characterization of SOL-Witnessed in Terms of ELIM-Witness
	5.3 The Elimination Result as Precondition of Solution Existence

	6 Conclusion
	References

	Author Index

