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Abstract. In integer programming, cut generation is crucial for improv-
ing the tightness of the linear relaxation of the problem. This is rele-
vant for weighted constraint satisfaction problems (WCSPs) in which we
use approximate dual feasible solutions to produce lower bounds during
search. Here, we investigate using one class of cuts in WCSP: clique cuts.
We show that clique cuts are likely to trigger suboptimal behavior in the
specialized algorithms that are used in WCSP for generating dual bounds
and show how these problems can be corrected. At the same time, the
additional structure present in WCSP allows us to slightly generalize
these cuts. Finally, we show that cliques exist in instances from several
benchmark families and that exploiting them can lead to substantial
performance improvement.

1 Introduction

The performance of branch and bound algorithms depends crucially on the qual-
ity of the dual bound produced during search. One of the techniques used in Inte-
ger Linear Programming (ILP) to improve dual bounds is cut generation. These
work by adding to the LP relaxation constraints that are entailed by the integer
program but not by the linear program. These eliminate optimal non-integral
solutions and hence improve the dual bounds. One such class of cuts is clique
cuts [4]. These are quite powerful, as they strengthen the inference possible in
the LP from

∑n
i=1 xi ≥ n/2 to

∑n
i=1 xi ≥ n − 1, so when they can be found,

they can increase performance significantly.
In weighted constraint satisfaction, adding cuts remains under explored so

far. Instead, research has focused on other local techniques such as on-the-fly
variable elimination [24], soft arc consistency [8,9,16,25,27,28,31], dominance
detection [14,26], or global techniques like mini-bucket elimination [21] and tree-
decomposition based search [1,12,15,20,29].

These techniques are useful, but they are orthogonal to cut generation and
can be further improved by it. However, adding cuts to dual bound reasoning
in WCSP presents several challenges. The bounds used in WCSP are based on
producing feasible—but often suboptimal—dual solutions of the LP relaxation.
The algorithms that do so are weaker than LP solvers, but are significantly faster.
In some extreme cases, a WCSP solver can solve an instance to optimality by
search on several thousand nodes in shorter time than it would take to solve
the linear relaxation of that instance. This speed comes at a price, as it is not
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easy to extend these algorithms to handle arbitrary linear constraints and to do
so efficiently. In fact, we show that clique cuts reveal the worst cases for these
bounds and, if used without care, may lead to no improvement whatsoever in the
dual bound. We develop, however, a set of techniques and heuristics that prove
successful in applying clique cuts to some families of instances. These families
were cases where WCSP solving was much worse than applying ILP. With our
contributions, the performance gap is closed significantly.

2 Background

Integer Linear Programming. An ILP has the general form

min cT x

s.t.Ax ≥ b

x ≥ 0
and

x ∈ Zn

where c, b are constant vectors, x is a vector of variables and A is a constant
matrix, and all entries in c, b and A are integral. If we ignore the integrality
constraint, the resulting problem is the linear relaxation of the original ILP. As
a relaxation, any dual bound of the LP is a dual bound of the ILP.

The dual of an LP as given above is

max bT y

s.t.AT y ≤ c

y ≥ 0

Any feasible solution of the dual gives a lower bound of the primal and the
optima meet.

Solving an ILP exactly is typically done using branch and bound. At each node,
the linear relaxation is solved and if the lower bound is greater than the cost of the
incumbent, the node is closed. The linear relaxation can be strengthened using
cuts, i.e., linear inequalities that are not entailed by the LP relaxation, but are
entailed by the ILP. All linear combinations of inequalities are entailed by the LP.
A particular method of deriving inequalities that are not entailed by the LP is
strengthening, which derives

∑
aixi ≥ �b� from

∑
aixi ≥ b when b is not integral.

A special case that we use here is deriving
∑

aixi ≥ �b/c� from
∑

caixi ≥ b.

Weighted CSP. A WCSP is a tuple 〈X , C, k〉 where X is a set of discrete variables
with associated domain D(X) for each variable X ∈ X , C is a set of cost functions
with associated scope scope(c) ⊆ X for each c ∈ C and k is a distinguished “top”
cost. For simplicity, we assume a single cost function per scope and write cS for
the unique function with scope S. We also write ci for the unary cost function
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with scope {Xi} and cij for the binary cost function with scope {Xi,Xj}. A
partial assignment τ is a mapping from each of a subset of X (denoted scope(τ))
to one of the values in its domain. A complete assignment is a partial assignment
such that scope(τ) = X . We write τ(S) for all partial assignments such that
scope(τ) = scope(S). Given a cost function cS and a partial assignment τ such
that S ⊆ scope(τ), c(τ |S) ≥ 0 gives the cost of τ for c. If c(τ |S) = k, we
say that the constraint is violated. Given a complete assignment τ , its cost is
c(τ) =

∑
cS∈C c(τ |S). The objective of solving a WCSP is to find an assignment

that minimizes c(τ). It defines an NP-hard problem.
Dual (lower) bounds in WCSP are derived by applying equivalence preserv-

ing transformations (EPTs). Given two cost functions cS1 , cS2 with S1 ⊂ S2, a
partial assignment τ ∈ τ(S1) and a value α, we can move cost α between cS1

and cS2 by updating cS1(τ) ← cS1(τ) + α and cS2(τ
′) ← cS2(τ

′) − α for all
τ ′ ∈ τ(S2) such that τ ′|S1 = τ if this operation leaves no negative costs. This
operation preserves the global cost of all assignments, so it is called an EPT. If
α is positive, this operation is called a projection, otherwise it is an extension.
They are written, respectively project(cS2 , cS1 , τ, α) and extend(cS1 , τ, cS2 ,−α).
For convenience, it is usual to assume the presence of a cost function with nullary
scope, c∅. Since this function has nullary scope, its cost is used in every assign-
ment of the WCSP and its value is a lower bound for the cost of any assign-
ment of the WCSP (remember that all costs are non-negative). For any cost
function c with non-empty scope, if α = minscope(τ)=scope(c) c(τ), we can apply
project(c, c∅, ∅, α).

The extend and project operations preserve equivalence even if α is chosen
so that the operation creates negative costs. But it would violate the require-
ment that all costs are non-negative. This implies that a given EPT may be
inadmissible because it creates negative costs, but is admissible as part of a set
of EPTs, such that if they are all applied no negative costs remain.

Soft Consistencies and Linear Programming. There has been a long sequence of
algorithms for computing a sequence of EPTs. For the results from the WCSP
literature, an overview is given by Cooper et al. [9]. A parallel development of
algorithms has happened under the name maximum a posteriori (MAP) infer-
ence for Markov random fields (MRF) [39], starting with [36]. In most of the
literature, the extension and projection operations are limited so that one of the
cost functions involved has arity 1. We will also mostly limit our attention to
this case here. In any case, it has been shown that all these algorithms find a
feasible dual solution of the following linear relaxation of a WCSP/MRF:

min
∑

cS∈C,τ∈τ(S)

cS(τ) ∗ yτ

s.t.

yτ =
∑

τ′∈τ(S2),τ′|S1
=τ

yτ′ ∀cS1 , cS2 ∈ C | S1 ⊂ S2, τ ∈ τ(S1), |S1| ≥ 1

∑

τ∈τ(S)

yτ = 1 ∀cS ∈ C, |S| ≥ 1
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However, specialized algorithms aim to be faster than using a linear solver on
the above problem. But solving this special form is as hard as solving an arbitrary
LP [32], hence these specialized algorithms typically converge on suboptimal dual
solutions. One particular condition to which some algorithms converge is virtual
arc consistency:

Definition 1. Given a WCSP C, let hard(C) be the CSP which has the same
set of variables and domains as C and for each cS ∈ C has a hard constraint
hard(cS), which is satisfied by an assignment τ if and only if cS(τ) = 0. C is
virtually arc consistent if and only if hard(C) is arc consistent.

Among those algorithms that converge on virtual arc consistency is, not so
surprisingly, VAC [9], to which we refer further in this paper.

Finally, we define EDAC, which is the default level of soft consistency
enforced in the ToulBar2 solver.

Definition 2. A WCSP C is node consistent (NC) if for every cost function
c ∈ C with |scope(c)| = 1, there exists τ ∈ τ(c) with c(τ) = 0 and for all
τ ∈ τ(c), c∅ + c(τ) < k.

Definition 3. A WCSP C is generalized arc consistent (GAC) if for all cS ∈
C, |S| > 1, ∀τ ∈ τ(S), cS(τ) = k if c∅ + cS(τ) +

∑
Xi∈S ci(τ |{i}) = k and for all

Xi ∈ S,∀v ∈ D(Xi), ∃τ ∈ τ(S) such that τ{i} = v and cS(τ) = 0.

Definition 4. A binary WCSP C is existential arc consistent (EAC) if there
exists a value u ∈ D(Xi) for each Xi ∈ X such that ci(u) = 0 and ∀cij ∈
C,∃v ∈ D(Xj) s.t. cij(u, v)+cj(v) = 0. It is existential directional arc consistent
(EDAC) if it is NC, GAC, EAC, and directional arc consistent (DAC), i.e.,
∀cij ∈ C, i < j,∀u ∈ D(Xi),∃v ∈ D(Xj) s.t. cij(u, v) + cj(v) = 0.

EDAC has been extended to ternary cost functions in [35]. Different gener-
alizations for arbitrary arities have been proposed in [2,27,28].

3 Clique Cuts

An important class of cuts used by MIP solvers are clique cuts [4]. Given a set
S of 0/1 variables and the constraints

xi + xj ≥ 1 ∀xi, xj ∈ S, i �= j

we can derive
∑

xi∈S

xi ≥ |S| − 1 (1)

This is done as follows. Given any triplet of distinct xi, xj , xk ∈ S, we sum
the binary constraints involving these three variables to get 2xi + 2xj + 2xk ≥
3 ≡ xi +xj +xk ≥ 3/2, which we strengthen to xi +xj +xk ≥ 2. We repeat this
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with m-tuples of variables and the (m−1)-ary constraints from the previous step
to generate m-ary constraints until m = |S|, which gives the above constraint.
This is in contrast to the much weaker constraint which can be derived by linear
combinations only (that is, the constraint that is entailed by the LP), which is∑

xi∈S xi ≥ |S|/2.
The reason for the name of these cuts comes from the fact that the set S

corresponds to a clique in a graphical representation of binary constraints of the
IP. Specifically, we construct a graph with a vertex for each 0/1 variable of the
IP and have edges between two vertices if their variables appear together in a
binary constraint of the form x + y ≥ 1. From every clique in this graph we can
derive a clique cut, i.e., a constraint of the form (1).

We can generalize this construction to have a vertex also for 1 − x (equiva-
lently x) for every 0/1 variable x of the IP, connected to the vertex x. Then, there
exists an edge between x and y for every constraint x + (1− y) ≥ 1 ≡ x− y ≥ 0
and an edge between x and y for every constraint (1−x)+(1−y) ≥ 1 ≡ −x−y ≥
−1. In this case if we find a clique that contains both x and x, the clique cut
requires that we must set all other variables in the clique to 1:

x + (1 − x) +
∑

yi∈S

yi ≥ |S| + 1 ⇒

1 +
∑

yi∈S

yi ≥ |S| + 1 ⇒
∑

yi∈S

yi ≥ |S| ⇒

yi = 1 ∀yi ∈ S

If we find a clique that contains x, x, y, y, the problem is unsatisfiable.

3.1 Cliques in WCSPs

We apply this reasoning to get clique cuts in WCSPs. From a WCSP P with
top k, we construct a graph G(P ) as follows: we have a vertex for vxi every
variable x and every value i ∈ D(x). There exists an edge between two vertices
vpv(p), vqv(q) if there exists a cost function cpq such that cpq(v(p), v(q)) = k1.
This corresponds to the constraint (1 − xpv(p)) + (1 − xqv(q)) ≥ 1 in the LP
relaxation.

Now, given a clique S in G(P ), we can add the clique constraint
∑

vpv(p)∈S(1−
xpv(p)) ≥ |S| − 1. In other words, the constraint requires at least n − 1 variables
in the clique must get a value other than the one included in the clique.

Overlapping Cliques. In the ILP case, we mentioned that the graph construction
can be generalized to have vertices for both x and (1 − x) and an edge between

1 This is the micro-structure of the WCSP, restricted only to binary tuples with infinite
cost.
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them. In the WCSP case we already have vertices for different values of the
same variable. We can ensure that each set of vertices corresponding to values
of the same variable forms a clique. Then, the general case for a clique is that it
may contain several values from each variable involved. We assume in the rest
of this paper that this is the case. Then, given such a clique S, varsof(S) =
{Xp | ∃i.vpi ∈ S}. For every Xp ∈ varsof(S) we write S(p) = {i | vpi ∈ S}. The
constraint then requires that at least |varsof(S)|−1 of the variables get a value
outside their respective set S(p).

Despite this generalization, in order to simplify presentation, we will assume
that every variable in the clique is a binary variable and S(p) = {1}. All results
and algorithms are valid for the general case, with the caveat that when we use
ci(0) (ci(1)) on the right hand side of an expression, it means mini/∈S(i) ci(v)
(mini∈S(i) ci(v)) and when it appears on the left hand side, it means for all
v /∈ S(i), ci(v) (v ∈ S(i), ci(v)).

3.2 Propagating Clique Constraints

We can encode a clique constraint with a non-uniform layered automaton (mean-
ing an automaton where the transition function may differ in each layer) with
two states q0, q1. The initial state is q0 and both are accepting. Suppose |S| = n
and the variables involved are x1, . . . , xn. Then the transition function at layer
i is

Qi−1 Xi Qi

q0 j /∈ S(i) q0
q0 j ∈ S(i) q1
q1 j /∈ S(i) q1
q1 j ∈ S(i) not allowed

We can encode the automaton using the usual ternary construction [33,34].
This ensures that EDAC deduces the optimal lower bound for each clique con-
straint, at least when viewed in isolation. As the constraint is invariant under
reordering of the variables, we can use an ordering that agrees with the EDAC
ordering and place each state variable Qi in between the variables xi and xi+1 in
the EDAC ordering. This is sufficient to guarantee that EDAC propagates each
clique constraint optimally [2].

However, this is not an attractive option in practice. The reformulation to
automata introduces many variables for each clique constraint, something to
which EDAC is quite sensitive. That is, depending on the vagaries of the algo-
rithm, such as the order in which constraints of a variable are processed, it may
derive a stronger or weaker lower bound, even though the formulation is locally
optimal.

Combined with the issues that we describe later, this leads us to implement
a specialized propagator for these constraints, which includes the reasoning per-
formed by the softregular constraint [18] on this automaton. For completeness,
we describe the propagation independent of the softregular constraint. This also
sets the stage for the discussion of Sect. 3.3.
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Propagating Clique Constraints. For each clique constraint clq, we store a single
integer a0 which summarizes the effect on the constraint of all extensions and
projections we have performed. This quantity is the cost of assigning all variables
to 0.

We define the following transformation, u → clq which performs a set of
extensions and projections through the clique constraint, getting the maximum
increase in c∅ and extending the minimum amount from unary costs in order to
achieve this increase.

Let clq be the clique constraint, l0 =
∑

ci(0)−max{ci(0)}, r0 = max({ci(0)}\
max{ci(0)}) (the second largest ci(0), possibly equal to the largest), t =

∑
ci(0),

tr = l0 + r0 and l1 = min{tr − l0,min ci(1), a0}. Then u → clq comprises the
following operations:

– If the arity is 2 (resp. 1), project a0 to the (0, 0) tuple (resp. 0 value) of the
corresponding binary (resp. unary) cost function. Otherwise:

– Add l0 + l1 to c∅

– Set each unary cost ci(0) to max(0, ci(0) − r0)
– Add tr − l0 − l1 to a0 (possibly reducing a0)
– Add tr − l0 − l1 − min(ci(0), r0) to ci(1) for all i.

Proposition 1. u → clq is an EPT

Proof. We ignore here any binary costs. Since these are left untouched, they
would contribute the same cost to any assignment before and after the EPT.

Suppose n − 1 variables are assigned 0 and that xi = 1. The cost of this
assignment is ci(1) +

∑
j 	=i cj(0). In the reformulated problem, the cost of the

assignment is l0 + l1 from c∅, ci(1) + tr − l0 − l1 − min(ci(0), r0) from the unary
cost of xi = 1, and

∑
j 	=i max(0, cj(0) − r0) from the unary costs of xj = 0 for

j �= i. This sums to ci(1) + tr − min(ci(0), r0) +
∑

j 	=i max(0, cj(0) − r0).
If max ci(0) = r0, min(ci(0), r0) simplifies to ci(0), max(0, cj(0) − r0) and

tr = t. Then the above sum is ci(1) + t − ci(0) which is ci(1) +
∑

j 	=i ci(0), as in
the original problem.

If max ci(0) > r0, there exists a unique xk for which ck(0) = max ci(0).
Then min(ci(0), r0) simplifies to ci(0) for all i �= k and to r0 for i = k, while∑

j 	=i max(0, cj(0) − r0) is 0 if i = k and ck(0) − r0 if i �= k. So if i = k the sum
is ci(1) + tr − r0 = ci(1) + l0 = ci(1) +

∑
j 	=i cj(0), as in the original problem. If

i �= k, the sum is c1(1) − ci(0) + tr + ck(0) − r0 = c1(1) + l0 + ck(0) − ci(0). As
l0 is the sum of all cj(0) except for ck(0), that works out to c1(1) +

∑
j 	=i ci(0),

equivalent to the cost in the original problem.
Finally, assume all n variables are assigned 0, the cost of the assignment

is t =
∑

i ci(0) = l0 + l1 + t − l0 − l1 = c∅ + a0 + (t − tr). We have
t − tr = max ci(0) − r0, which is exactly the cost left in ck(0) if max ci(0) > r0
and 0 otherwise. In either case the cost remains the same before and after the
transformation, as long as a0 is later projected to c∅. As all variables are assigned
0, the cost a0 is indeed used by projecting to a lower arity cost function, so the
cost in the reformulated problem is the same as in the original problem.
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In general, we apply u → clq after node consistency has been enforced.
Therefore, for each variable, either ci(0) = 0 or ci(1) = 0 and so if min ci(1) > 0,
it has to be that t − l0 = max ci(0) = 0. This means that either l0 or l1 will be
non-zero. But unary costs change non-monotonically as other constraints move
costs through the variable of the clique, so it is possible for both to occur at
different times in the lifetime of the same constraint.

3.3 Issues with Virtual Arc Consistency

Using clique constraints to improve lower bounds computed by VAC or any
algorithm that converges to an arc consistent state is problematic. This includes
algorithms such as MPLP [17,37,38], TRW-S [23] and other algorithms from the
MRF community. We will show that the problem is that all these algorithms can
only improve the lower bound by sequences of EPTs, but it is required to use
sets of EPTs to fully exploit clique constraints.

As a hard constraint, the clique constraint is redundant, not only logically,
but also in terms of propagation. Indeed, suppose a clique S contains values
from three variables x, y and z, that the pairwise constraints are arc consistent,
and let d ∈ D(y) such that vyd ∈ S and txy, tyz be the supports of y = d in the
corresponding binary constraints. Since txy[x] and tyz[z] are values that may not
be part of the clique, they are consistent with each other in the clique constraint
and hence txyz = txy ∪ tyz is a support for all three variables simultaneously. We
can extend this reasoning to an arbitrary number of variables, hence we can get
global supports from pairwise supports.

The fact that clique constraints add no propagation strength to hard(C)
means that adding clique constraints after VAC propagation will have no effect.
Indeed, VAC can only improve the lower bound as long as hard(C) is arc incon-
sistent. Since the clique constraint is propagation redundant, if hard(C) is arc
consistent, it will remain so after adding the clique constraint.

Empirically, we have observed the same is often true after EDAC, even though
it does not necessarily converge to a virtually arc consistent state. Moreover, even
if the clique constraint exists before we enforce VAC, the fact that VAC does not
have a unique fixpoint means that we cannot predict whether the fixpoint that
it does reach will use the clique constraint optimally. Hence, we need to devise
a method to exploit clique constraints in a virtually arc consistent problem.

Example 1. To begin, consider what happens in a problem with 3 Boolean vari-
ables in a clique, where all costs are 0 except cx(0) = cy(0) = cz(0) = 1 and
cxy(1, 1) = cyz(1, 1) = cxz(1, 1) = k. The following series of EPTs makes the
problem VAC with c∅ = 3/2:

1. extend(x, 0, xy, 1/2)
2. extend(x, 0, xz, 1/2)
3. extend(z, 0, yz, 1/2)
4. project(xy, y, 1, 1/2)
5. project(xz, z, 1, 1/2)
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6. project(yz, y, 1, 1/2)
7. project0(y, 1)
8. project0(z, 1/2).

The reformulated problem has cxy(1, 1) = cyz(1, 1) = cxz(1, 1) = k and
cxy(0, 0) = cyz(0, 0) = cxz(0, 0) = 1/2. Note that actually running VAC would
perform a more convoluted series of moves: in the first iteration, a conflict
involves only two variables, say x and y. That allows it to move 1 unit of cost
from x = 0 to y = 1, and to project cost 1 to c∅. In the next iteration, the
conflict involves all 3 variables and it moves 1/2 a unit of cost from z = 0 to
x = 1 and from there to y = 0 and another 1/2 a unit directly from z = 0 to
y = 1, projecting another 1/2 to c∅.

Since this reformulated problem is VAC, adding a clique constraint will do
nothing, but solving the linear relaxation detects that we can improve the lower
bound by the following set of operations2:

1. extend(y, 1, xy, 1/2). After this, cy(1) = −1/2
2. extend(z, 1, xz, 1/2), extend(z, 1, yz, 1/2). After these, cz(1) = −1
3. project(xy, x, 0, 1/2)
4. project(xz, x, 0, 1/2)
5. project(yz, y, 0, 1/2)
6. extend(x, 0, clq, 1)
7. extend(y, 0, clq, 1/2)
8. project0(clq, 1/2)
9. project(clq, y, 1, 1/2)

10. project(clq, z, 1, 1).

This leaves the problem with lower bound increased to 2 and the only non-
zero costs are the hard tuples, which are unchanged throughout, and the tuple
cclq(0, 0, 0) = 1. ��

More generally, we can derive a specific method for propagating cliques in
virtually arc consistent instances by extending our reasoning to binary costs. In
the following, let n = |S|. Since (1−xi1) = xi0 for binary domains, the constraint
can be written either as

∑
xi1∈S xi0 ≥ n−1 or equivalently

∑
xi1∈S xi1 ≤ 1. Thus,

either n−1 or n variables must be assigned 0, meaning either
(
n
2

)
or

(
n−1
2

)
binary

〈0, 0〉 tuples will be used. This means

∑

xi1,xj1∈S,i<j

yij00 ≥
(

n − 1
2

)

(2)

These constraints can be further strengthened by observing that if we assign
xi = 1, then none of the binary tuples cij(0, 0) for j �= i are used. Thus we can

2 In this case, triangle-based consistencies [31] achieve the same effect, but not in
arbitrary arity cliques.
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treat these binary tuples as blocks, one for each variable, at least n − 1 of which
have to be used. This is captured by the following system:

∑

xi1,xj1∈S,i<j

yij00 ≥
(

n − 1
2

)

∑

xi1∈S

xi0 ≥ n − 1

xi0 ≥ yij00∀i, j (3)

We can incorporate (3) into propagation of the clique constraint. Let basei =∑
j<k∈[1,n]\{i} cjk(0, 0) for all i ∈ [1, n], base = min{basei | i ∈ [1, n} and

total =
∑

j<k∈[1,n] cjk(0, 0). We define the binary-to-clique transform, denoted
as b → clq as the transformation which performs the following operations:

1. Add base to c∅

2. Set cij(0, 0) = 0 for every binary constraint ij in the clique.
3. Add cost total − base to a0

4. For every variable i, add cost compi = basei − base to ci(1).

Proposition 2. The b → clq transform is an EPT.

Proof. Consider an arbitrary feasible solution of the subproblem. Since it is
feasible, at least n − 1 variables are assigned 0, so we only need to consider the
cases where n or n − 1 variables are 0.

Assume all n variables are assigned 0. The cost of this assignment in the
original problem is total =

∑
j<k∈[1,n] cjk(0, 0). In the reformulated problem,

the clique constraint entails cost a0 = total − base, because we assign all zeroes.
Together with the cost base projected to c∅, it gives total in the reformulated
problem as well.

Assume exactly n − 1 variables are assigned 0 and that the variable assigned
to 1 is Xi. The cost of this assignment is basei =

∑
j<k∈[1,n]\{i} cjk(0, 0). In the

reformulated problem, the cost of the assignment is base from c∅ and basei−base
from ci(1), giving basei, identical to the original problem.

This transform involves a higher-order transformation, so it is tempting to
think that it is stronger than the linear relaxation. Unfortunately, this is not the
case.

Proposition 3. The b → clq transform can be expanded to a set of EPTs.

Proof (Sketch). There exist already positive costs on the (0, 0) tuple of binary
cost functions. If the 1 value of one unary cost function has positive cost, we can
extend it to the binary cost function and project it to the 0 value on the other
variable involved. We can do this even if no such positive cost exists and create
a temporary negative cost. However, we can now apply the u → clq transform,
because we have positive costs on the 0 value of the unary cost functions. This
projects costs back to the 1 value of the unary cost functions involved, hence
covering the deficit created in the first step.
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Convergence. As was observed in [28], EDAC may not converge when cost func-
tions of higher arity exist. VAC is better behaved, but it may converge only as
the number of iteration grows to infinity. It is straightforward to see that the
presence of clique constraints does not raise any such issues: every time either
the u → clq or b → clq transform is applied, the cost c∅ is increased. As c∅

cannot be increased past the global optimum, this means that application of
these rules converges. Moreover, c∅ is increased by an integer, so the number of
iterations is also bounded by the cost of the global optimum.

3.4 Clique Selection and Ordering Heuristic

Finding Cliques. We implement detection of cliques as a preprocessing step. We
construct a graph as described previously: there exists a vertex for each variable-
value pair and an edge between two vertices if c∅ + cp(i) + cq(j) + cpq(i, j) ≥ k
or if they represent two values of the same variable. We then use the Bron-
Kerbosch algorithm [6] with degeneracy ordering to generate a set of cliques. In
some cases, the number of cliques can be overwhelming, so we place a limit on
the maximum number of cliques generated per top-level branch (which should
roughly correspond to the number of cliques that contain a single vertex), as
well as a global limit on the total number of cliques. We discard cliques S for
which |varsof(S)| < 3, as cliques over 2 variables are simply subsets of binary
cost functions and can propagate no better.

Selection and Ordering. The order of EPTs may have a large impact on the
quality of the resulting lower bounds.

Example 2. Consider two cliques C1, C2 with scope {X1,X2,X3} and
{X2,X3,X4}, respectively, such that all variables have binary domains and the 1
value from each variable participates in the cliques and ci(0) = i. If we propagate
C1 first, we project cost 3 to c∅ and update the unary costs c1(0) = c2(0) = 0,
c3(0) = 1 and c1(1) = 1 leaving the rest unchanged. We then propagate C2 and
project 1 unit of cost to c∅ and update c3(0) = 0, c4(0) = 3 and c2(1) = 1. The
final cost of c∅ is 4.

On the other hand, if we propagate C2 first, we project 5 units of cost to
c∅, leaving c2(0) = c3(0) = 0, c4(0) = 1 and c2(1) = 1. After this, C1 does not
propagate. Hence, by propagating C2 before C1, we get a stronger lower bound.

The above problem does not, of course, manifest itself when actually solving
the linear relaxation of the problem. It is, however, an inherent limitation of
algorithms like EDAC, which have no flexibility to process constraints in a dif-
ferent order in different passes. As we explained above, a more flexible algorithm
like VAC would not help either, as clique constraints are redundant with respect
to propagation on the hard problem. Therefore, our only recourse is to select an
order of propagation before performing the actual propagation. We can choose
this order either before search or dynamically at each node of the search. Here,
we chose to select the order just once before search begins.
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We choose a greedy heuristic to select and order the initial clique constraint
propagation. For that, we collect a bounded number of potential clique con-
straints, as described previously. We then use the classical Chvatal’s set cover-
ing heuristic [7] to find the best clique which maximizes the product of current
arity and current lower bound increase (by simulating the effect of its unary-to-
clique transform). We repeat this selection process followed by the corresponding
unary-to-clique transform until all the remaining cliques do not increase the lower
bound or have all their variables covered by another already-selected clique. Ties
are broken by a lexicographic ordering on the scope of the cliques. We keep also
all cliques found of arity 3 because they are natively managed by the Toul-

Bar2 solver as ternary/triangle cost functions with dedicated EDAC soft arc
consistency [31,35].

4 Related Work

The most related work is that of Atamtürk et al. [4], who explore adding clique
cuts in MIP solvers, not only during preprocessing but also during search. As
we descend the search tree, more tuples become effectively hard, creating more
cliques. This remains a future direction for us.

Khemmoudj and Bennaceur [22] studied the use of binary cliques to improve
lower bounds. These are used to obtain better approximations than EDAC to
the optimum of the LP relaxation of a MaxCSP. In contrast to our work here,
the strength of the LP relaxation is not improved.

Sontag et al. [38] strengthen the LP relaxation by adding higher order cost
functions, which may eventually make the relaxation as strong as the polytope
of the integer program, at the cost of potentially making the LP explonentially
larger. Later, Sontag et al. [37] considered adding cuts that correspond to frus-
trated cycles in the graph, which is more efficient but less powerful.

Cliques can also be handled efficiently in settings outside of linear relaxations.
For example, Narodytska and Bacchus [30] proposed a method for MaxSAT
which applies max-resolution on cores extracted from the instance. This method
is complete, i.e., will eventually produce the optimum of an instance. This
method can perform equivalent reasoning to a clique cut in a polynomial number
of steps and with cores that can be discovered in polynomial time.

On the subject of clique detection, Dixon [13], Ansotegui Gil [3] and Biere
et al. [5] showed several techniques that may uncover cliques that are not
explicitly present in the microstructure (called NAND graph in SAT when
restricted to binary clauses), using both syntactic and semantic (propagation-
based) information.

5 Experimental Results

We have implemented the clique generation and clique constraint propagation
inside toulbar2 (version 0.9.8), an open-source WCSP solver in C++. Among
the various benchmarks from [19] (available in LP, WCNF, WCSP, UAI, and
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MiniZinc formats) where cplex reports that clique cuts applied, we chose
four problem categories, combinatorial auctions Auction/path, Auction/sched,
maximum clique MaxClique, and satellite management SPOT5, a total of 252
instances, having binary forbidden tuples and initial unary cost functions such
that the unary-to-clique transform increases the lower bound in preprocessing.
The first three categories have Boolean domains, whereas SPOT5 has maximum
domain size of 4. For each category, we report in Table 1 the mean value of the
size of the problem, the number of cliques found, the number of selected cliques
among them and their arity, and the CPU time to find and select the cliques.
We limit the maximum number of cliques found to 10,000 in order to control the
computation time. The largest CPU time was 11.61 s for MaxClique/c-fat200-5
(n = 200 variables, e = 11, 627 cost functions, and 10,000 selected cliques of
arity 3). The arity of selected cliques varies from 3 to 67 (MaxClique/san1000).

Table 1. Clique generation process: number of instances per benchmark category fol-
lowed by maximum domain size (d), mean number of variables (n), cost functions (e),
graph vertices, graph edges, cliques found, and selected cliques, followed by mean arity
of selected cliques and CPU time in seconds to find and select cliques. A limit on the
maximum number of cliques found was set to 10,000.

Problem nb d n e Vertices Edges Cliques Selected c. Arity Time

Auction/path 86 2 120.2 1,475.7 120.2 1,355.5 143.9 28.8 7.3 0.02

Auction/sched 84 2 159.7 5,759.9 159.7 5,600.2 822.5 3.6 44.9 0.27

MaxClique 62 2 484.3 50,092.8 484.3 49,608.5 8,372.7 325.2 3.5 2.87

SPOT5 20 4 385.1 6,603.3 761.0 9,411.3 5,888.1 127.3 4.1 1.71

We compare solving time to find and prove optimality for toulbar2 exploit-
ing cliques (denoted as toulbar2

clq) against the original code without cliques
(both using default options, including hybrid best-first search [1]), and against
the CP solver gecode

3, the MaxSAT solvers maxhs 2.51 [10,11] and eva 500a
[30], and IBM-ILOG cplex 12.6.0.0 (using a direct encoding [19] and para-
meters EPAGAP, EPGAP, and EPINT set to zero to avoid premature stop).
All computations were performed on a single core of AMD Opteron 6176 at
2.3 GHz and 8 GB of RAM with a 1-h CPU time limit4. In Table 2, we give the
number of solved instances within a 1-h CPU time limit. Among 252 instances,
cplex solved 224 instances, maxhs 216, toulbar2

clq 213, eva 208, toul-

bar2 205, and gecode 137. For Auction, toulbar2clq is more than two orders
of magnitude faster than toulbar2, gecode (which cannot solve 57 Auc-
tion/path instances in 1 h) and eva on Auction/path (cat paths 60 170 0005
instance unsolved in 1 h). Still toulbar2clq is one order of magnitude slower
than cplex and maxhs. On MaxClique (resp. SPOT5), toulbar2clq solved 6
3 Version 4.4.0, using free search.
4 Using parameter -pe parallel smp 2 on a SUN Grid Engine to ensure half-load of the

cores on the cluster.
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Table 2. Number of solved instances and mean solving computation time in seconds,
for toulbar2 solver without using cliques compared to toulbar2

clq exploiting cliques,
cplex, maxhs, eva and gecode. toulbar2clq solving time does not take into account
clique generation time (see Table 1). A CPU time limit of 1 h was used for unsolved
instances for reporting mean solving times.

Problem toulbar2 toulbar2
clq

cplex maxhs eva gecode

Solv. Time Solv. Time Solv. Time Solv. Time Solv. Time Solv. Time

Auction/path 86 59 86 0.18 86 0.01 86 0.01 85 102 29 2614

Auction/sched 84 110 84 0.23 84 0.04 84 0.04 84 0.28 84 76

MaxClique 31 1871 37 1508 38 1533 40 1510 26 2268 24 2314

SPOT5 4 2884 6 2603 16 738 6 2577 13 1260 0 3600

(resp. 2) more instances than without using cliques. For example, toulbar2clq

solved MaxClique/MANN a45 in 57.9 s (taking 0.24 supplementary seconds to
generate the 330 selected cliques) whereas without using cliques it could not
finish in 1 h (maxhs took 28 s, cplex 93 s, and eva and gecode could not solve
in 1 h). SPOT5/404 was solved in 6 s using 32 cliques and 88.7 s without using
cliques (cplex took 0.02 s, eva 0.07 s, maxhs 8 s, and gecode could not solve
in 1 h).

Finally, we summarize the evolution of lower and upper bounds for each solver
over all instances in Fig. 1. Specifically, for each instance I we normalize all costs
as follows: the initial lower bound produced by toulbar2 is 0; the best – but
potentially suboptimal – solution found by any solver is 1; the worst solution

Fig. 1. Normalized lower and upper bounds on 252 instances as time passes.
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is 2. This normalization is invariant to translation and scaling. Additionally,
we simply normalize time from 0 to 1, corresponding to 1 h. A point 〈x, y〉 on
the lower bound line for solver S in Fig. 1 means that after normalized runtime
x, solver S has proved on average over all instances a normalized lower bound
of y and similarly for the upper bound. We show both the upper and lower
bound curves for all solvers evaluated here, except gecode which produces no
meaningful lower bound before it proves optimality. We observed that using
cliques, it mainly improves lower bounds for toulbar2. For these benchmarks,
cplex got the best lower bound curve and toulbar2

clq the best upper bound
curve.

6 Conclusions

We have shown how the idea of clique cut originated from MIP can be exploited
in the context of WCSPs. Using these cuts in WCSP is significantly more compli-
cated than in integer programming, owing to a large degree to the fact that the
fast specialized algorithms that are used in place of solving the linear relaxation
have weaknesses which seem to be particularly exposed by clique constraints. To
address these shortcomings, we provide two specific EPTs, unary-to-clique and
binary-to-clique, which propagate isolated clique constraints optimally, even if
costs are hidden in binary cost functions. We then gave an algorithm to greedily
select and order a subset of potential cliques in preprocessing and do the propa-
gation on these selected cliques during search. In an experimental evaluation, we
have obtained large improvements over the existing complete solver ToulBar2

on several benchmarks, significantly reducing the gap to state-of-the-art solver
cplex.
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