
An Efficient SMT Approach to Solve
MRCPSP/max Instances with Tight Constraints

on Resources

Miquel Bofill, Jordi Coll(B), Josep Suy, and Mateu Villaret

University of Girona, Girona, Spain
{miquel.bofill,jordi.coll,josep.suy,mateu.villaret}@imae.udg.edu

Abstract. The Multi-Mode Resource-Constrained Project Scheduling
Problem with Minimum and Maximum Time Lags (MRCPSP/max) is a
generalization of the well known Resource-Constrained Project Schedul-
ing Problem. Recently, it has been shown that the benchmark datasets
typically used in the literature can be easily solved by relaxing some
resource constraints, which in many cases are dummy. In this work
we propose new datasets with tighter resource limitations. We tackle
them with an SMT encoding, where resource constraints are expressed
as specialized pseudo-Boolean constraints and then translated into SAT.
We provide empirical evidence that this approach is state-of-the-art for
instances highly constrained by resources.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is the problem
of finding the start times of a set of non-preemptive activities while respect-
ing some constraints, namely precedence relations between activities and cor-
rect usage of shared resources with limited capacity. There exist many exten-
sions of this problem [5], e.g., involving multiple execution modes per activity
(MRCPSP), or generalized precedence relations (RCPSP/max). The exact meth-
ods with the best known performance in such scheduling problems are based in
Lazy Clause Generation [13,16], Failure-Directed Search (FDS) [17] and SAT
Modulo Theories (SMT) [1,3,4].

In this work we address the Multi-mode Resource-Constrained Project
Scheduling Problem with Minimal and Maximal Time Lags (MRCPSP/max),1

which combines MRCPSP and RCPSP/max. The goal is to determine a start
time and an execution mode for each activity, in order to obtain a schedule
which satisfies all the resource and generalized precedence constraints, and which
has minimum makespan (i.e., the total duration of the whole set of activities).
Up to our knowledge, the best exact approaches for this problem are based in
Constraint Integer Programming with cumulative constraint handlers [12] and
FDS [17].
1 This problem is denoted MPS|temp|Cmax in [5] and m, 1|gpr|Cmax in [8]. It is also

known as the Multi-mode RCPSP with Generalized Precedence Relations.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 71–79, 2017.
DOI: 10.1007/978-3-319-66158-2 5



72 M. Bofill et al.

Most of the recent works on MRCPSP/max have been evaluated using
the benchmark datasets created in [14]. In [17] it was observed that, in those
instances, the resource constraints are not the hardest component. In this work,
we further analyse the reason why the resource constraints seem not to play an
important role in those instances, concluding that such constraints are trivially
satisfied in many cases. Therefore, we have crafted new instance sets, where
resource constraints take a more important role. Moreover, we present an SMT-
based system to solve the MRCPSP/max. We use Integer Difference Logic (IDL)
to deal with generalized precedences, and recently introduced specialized pseudo-
Boolean (PB) constraints [4] to deal with resource constraints. Such PB con-
straints allow compact encodings into SAT, and have been shown to improve
performance in the MRCPSP. We provide experiments showing that our SMT
approach performs better than other exact approaches on instances with tight
constraints on resources.

2 The Multi-mode RCPSP with Minimum and Maximum
Time Lags (MRCPSP/max)

The MRCPSP/max is defined by a tuple (V,M, p,E, g,R,B, b) where:

– V = {A0, A1, . . . , An, An+1} is a set of non-preemptive activities. A0 and
An+1 are dummy activities representing the start and the end of the schedule,
respectively. The set of non-dummy activities is defined as A = {A1, . . . , An}.

– M ∈ Nn+2 is a vector of naturals, being Mi the number of modes in which
activity i can be executed. M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈ A.

– p is a vector of vectors of naturals, being pi,o the duration of activity i when
is executed in mode o, with 1 ≤ o ≤ Mi, p0,1 = pn+1,1 = 0.

– E is a set of pairs of activities which have a time lag defined.
– g is a four dimensional vector of naturals, being gi,j,o,o′ the time lag from

activity Ai in mode o to activity Aj in mode o′. If gi,j,o,o′ >= 0, it is a
minimum time lag, and means that if Ai is running in mode o and Aj is
running in mode o′, then Aj must start at least gi,j,o,o′ units of time after
the start of Ai. If gi,j,o,o′ < 0, it is a maximum time lag, and means that Ai

must start at most |gi,j,o,o′ | units of time after the start of Aj .
– R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v

resources are renewable, and the last q − v resources are non-renewable.
– B ∈ Nq is a vector of naturals, being Bk the capacity of resource Rk.
– b is a matrix of naturals corresponding to the resource demands of activities

per mode: bi,k,o represents the amount of resource Rk required by activity
Ai in mode o, b0,k,1 = 0 and bn+1,k,1 = 0,∀k ∈ {1, . . . , q}. For renewable
resources, this is the required amount per time step, whilst for non-renewable
resources, it is the total amount required by the activity during its execution.

A schedule is a vector of naturals S = (S0, . . . , Sn+1) where Si denotes
the start time of activity Ai, S0 = 0, and Sn+1 is the makespan (comple-
tion time of the project). A schedule of modes is a vector of naturals SM =



An Efficient SMT Approach to Solve MRCPSP/max Instances 73

(SM 0, . . . ,SM n+1) where SM i, satisfying 1 ≤ SM i ≤ Mi, denotes the mode
of each activity Ai. A solution of the MRCPSP/max problem is a schedule of
modes SM and a schedule S of minimal makespan Sn+1 satisfying the general-
ized precedence (1), non-renewable (2) and renewable (3) resource constraints:

((SM i = o) ∧ (SM j = o′)) → (Sj − Si ≥ gi,j,o,o′)
∀(Ai, Aj) ∈ E,∀o ∈ [1,Mi],∀o′ ∈ [1,Mj ] (1)⎛

⎝ ∑
Ai∈A

∑
o∈[1,Mi]

ite(SM i = o; bi,k,o; 0)

⎞
⎠ ≤ Bk ∀Rk ∈ {Rv+1, . . . , Rq} (2)

⎛
⎝ ∑

Ai∈A

∑
o∈[1,Mi]

ite
(
(SM i = o) ∧ (Si ≤ t) ∧ (t < Si + pi,o); bi,k,o; 0

)
⎞
⎠ ≤ Bk

∀Rk ∈ {R1, . . . , Rv},∀t ∈ H (3)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and e2
otherwise, H = {0, . . . , T} is the scheduling horizon, and T (the length of the
scheduling horizon) is an upper bound (UB) for the makespan.

3 Formulation

We propose a SAT modulo Integer Difference Logic formulation to solve the
MRCPSP/max. This is a formulation for the decision version of the problem,
i.e., it models the problem of finding a feasible schedule for an MRCPSP/max
instance whose makespan is smaller or equal than a given UB. The optimization
is achieved by successive calls to an SMT solver, as described in Sect. 4.

In our formulation, we use some precomputed values which serve to bound the
execution times of the activities. Given an UB, these values can be recomputed
according to different criteria [2]; here we consider time lag constraints between
activities as done in [12]. By ESi we denote the earliest time instant at which
Ai can start, by LSi the latest time instant at which Ai can start, and by LCi

the latest time instant at which Ai can end.
We use a set of integer variables {S0, . . . , Sn+1} to denote the start time

of each activity. We represent the schedule of modes with the set of Boolean
variables {smi,o | 0 ≤ i ≤ n + 1, 1 ≤ o ≤ Mi}, being smi,o true if and only if
activity Ai is executed in mode o. The constraints are the following:

S0 = 0 (4)
ESi ≤ Si ≤ LSi ∀Ai∈{A1, . . . , An+1} (5)
(smi,o ∧ smj,o′) → (Sj − Si ≥ gi,j,o,o′) ∀(Ai, Aj) ∈ E,

∀o ∈ [1,Mi],∀o′ ∈ [1,Mj ] (6)∨
∀o∈[1,Mi]

smi,o ∀Ai∈V (7)

¬smi,o ∨ ¬smi,o′ ∀Ai∈ A,∀o, o′ ∈ [1,Mi], o < o′ (8)



74 M. Bofill et al.

where (5) sets the earliest and latest start time of each activity, (6) encodes
the generalized precedences and (7) and (8) ensure that each activity runs in
exactly one mode—(8) is an at-most-one (AMO) constraint. The formulation
of the constraints over resources is a time-indexed formulation [11], where we
introduce the set of Boolean variables xi,t,o, which are true if and only if activity
Ai is being executed in mode o at time t in the schedule:

xi,t,o ↔ (Si ≤ t < Si + pi,o ∧ smi,o) ∀Ai ∈ A,∀t ∈ [ESi, LCi),∀o ∈ [1,Mi] (9)

We can express resource constraints as pseudo-Boolean (PB) constraints. A PB
constraint has the form q1 · x1 + · · · + qn · xn#K, where qi and K are integer
constants, xi are 0/1 (false/true) variables, and # ∈ {<,≤,=,≥, >} [7]. A well-
known approach to encode PB constraints is to represent them as Binary Deci-
sion Diagrams (BDDs), and then encode such BDDs into SAT [7]. This method
was successfully applied to encode resource constraints for the MRCPSP in [3].
Recently, in [4] it was proposed a way to compactly encode PB constrains into
SAT when their variables can be organized in groups that have AMO constraints
already enforced. These PB constraints, called AMO-PB constraints, are built
up from AMO-products.

Definition 1 (AMO-product). We refer to an integer linear expression
q1 · x1 + · · · + qm · xm over 0/1 variables x1, . . . , xm, subject to the fact that
at most one xi is true, as an AMO-product. We conveniently express AMO-
products as QX, where Q = 〈q1, . . . , qm〉 and X = 〈x1, · · · , xm〉.
Definition 2 (AMO-PB). We refer to an expression of the form Q1X1+ · · ·+
QnXn ≤ K, where QiXi are AMO-products and K is an integer constant, as a
PB constraint with AMO relations (AMO-PB).

Notice that an AMO-PB can be seen as a partial function, whose value is
undefined if the AMO relation does not hold for some Xi.

The key idea in the use of AMO-PBs is that, if the AMO constraints over the
variables of each AMO-product are already enforced, then the SAT encoding of
the AMO-PB does not need to forbid the inconsistent assignments which do not
satisfy the AMO constraints. In some formulations the needed AMO constraints
are implicitly enforced, and hence there is no need to add additional clauses to
the encoding. In our formulation of the MRCPCP/max, Constraints (8) explic-
itly enforce that at most one of all the variables smi,o can be true for a particular
activity Ai. Similarly, at most one of all the variables xi,t,o can be true for a par-
ticular activity Ai and time t, i.e., an activity can be running in at most one
execution mode o at a time. Note, however, that the AMO relation of variables
xi,t,o for an activity Ai and time t follows from the conjunction of Constraints (8)
and (9). Interestingly, the generalized precedence relations (6) can introduce fur-
ther implicit AMO relations between variables xi,t,o. Let us consider a case in
which (Ai, Aj) ∈ E, and it holds that gi,j,o,o′ ≥ pi,o, for all execution modes o
and o′. In such cases we will say that Ai and Aj have an end-start precedence,
meaning that Aj will always start after Ai has ended, so they will never be run-
ning at a same time. Therefore, in this case xi,t,o and xj,t,o′ cannot be both true,



An Efficient SMT Approach to Solve MRCPSP/max Instances 75

because an AMO constraint is implicitly enforced by Constraints (6) and (9). We
can take profit of all these explicit AMO constraints over smi,o, and the implicit
AMO relations over xi,t,o, to express the resource constraints as AMO-PBs.

Similarly to what is done in [4], we precompute a set P(t) = {P1, . . . , Pm} for
each time t, where all Pj in P(t) are disjoint sets of activities, and P1 ∪ · · · ∪Pm

contains all the activities Ai which can be running at time t according to
their ESi and LCi. Moreover, all the activities in a set Pj are pairwise mutu-
ally exclusive due to end-start precedences. Hence, there is an AMO relation
enforced over the variables xi,t,o of all activities Ai in each Pj . Then, the con-
straints over renewable resources can be formulated as AMO-PBs, where the j-th
AMO-product contains the variables xi,t,o for all Ai ∈ Pj , o ∈ [1,Mi]:

∑
Pj∈P(t)

Q(Pj , k) · X(Pj , k, t) ≤ Bk ∀Rk ∈ {R1, . . . , Rv},∀t ∈ [0,H] (10)

where Q(Pj , k) = 〈bi,k,o | Ai ∈ Pj ∧ o ∈ [1,Mi] ∧ bi,k,o > 0〉
X(Pj , k, t) = 〈xi,t,o | Ai ∈ Pj ∧ o ∈ [1,Mi] ∧ bi,k,o > 0〉

The non-renewable resource constraints 2 can also be represented using AMO-
PB constraints. In this case, the i-th AMO-product will contain all the variables
smi,o for all o ∈ [1,Mi]:

∑
Ai∈A

Q(Ai, k) · X(Ai, k) ≤ Bk ∀Rk ∈ {Rv+1, . . . , Rq} (11)

where Q(Ai, k) = 〈bi,k,o | o ∈ [1,Mi]〉 X(Ai, k) = 〈smi,o | o ∈ [1,Mi]〉
AMO-PB constraints (10) and (11) are encoded into SAT as described in [4].

4 Optimization Procedure

The formulation in Sect. 3 models whether it is possible to find a schedule whose
makespan is not greater than a given UB. Some SMT solvers have built-in opti-
mization mechanisms which let to specify an objective function [10,15]. We use
the Yices SMT solver [6], because we have experienced that it performs very
well in scheduling problems. However, this solver does not provide optimization.
In order to get the optimal solution, we have implemented an optimization pro-
cedure that can use any off-the-shelf SMT solver as an oracle. Note that our
formulation requires an UB in order to specify some constraints. An UB which
is commonly used in scheduling problems is trivialUB, which is the makespan
resulting from scheduling all the activities in a way such that only one runs
at a time [2]. Since this UB tends to be significantly larger than the optimal
makespan, we implement an optimization procedure similar to the one in [17]:

1. Find a LB. We optimize a relaxed version of the MRCPSP/max which does
not include Constraints (10), by following a top-bottom search: starting from



76 M. Bofill et al.

trivialUB, we make successive satisfiability calls to the SMT solver, and after
each call we set UB to be the makespan of the previous call minus 1. The
procedure ends when the optimality is certified.

2. Find an UB. We optimize a single-mode version of the MRCPSP/max, by
enforcing the execution modes to be the ones of the optimal solution found in
step 1. We perform a bottom-top search, i.e., we try increasing upper bounds,
starting from LB, until a model is found, or trivialUB is reached.

3. Solve MRCPSP/max. This last step is only required when UB > LB. In
this case, we follow a top-bottom search starting at UB.

Steps 1 and 2 are intended to find tight bounds on the makespan. We per-
form these steps because reaching the optimal makespan of the MRCPSP/max
decreasingly from trivialUB or increasingly from a LB, have shown in prelimi-
nary experiments to be far more time consuming than finding bounds by means
of relaxed formulations. The main differences with respect to [17] are two: in [17],
a MIP formulation in which the renewable resource constraints are relaxed using
energetic reasoning (instead of completely ignoring them) is used in step 1; on
the other hand, in [17] built-in optimization methods are used in all three steps.

5 New Benchmark Datasets for MRCPSP/max

Most of the recent approaches on solving the MRCPSP/max have been evaluated
on the datasets generated in [14] and available in the PSPLib [9]. In particular,
there are three datasets with 270 problem instances each one, namely mm30,
mm50 and mm100 (instances have 30, 50 and 100 non-dummy activities). The
number of execution modes ranges from 3 to 5, and there are 3 renewable and
3 non-renewable resources in each instance. The works of [12,17] have reported
the best exact results, considering the mm30, mm50 and mm100 datasets. The
former presented a handler for an extension of the cumulative constraint for the
MRCPSP/max integrated into the SCIP optimization framework. The latter
proposed a Failure-Directed Search Constraint Programming approach which
shown to perform very well in different scheduling problems. Also, in [17] it was
pointed out that, in the previously mentioned instances, resource constraints
are not the hardest part of the problem. They used the relaxations on resource
constraints mentioned in Sect. 4 to find a LB and an UB and it turned out that,
in most of the cases, the LB and the UB were equal, and therefore an optimal
solution was found without the need of encoding the whole original problem.

We have studied why the resources play such a minor role in those datasets.
For 1432 out of the total 2430 non-renewable resources, it is trivially true that
the demands do not exceed their capacity, i.e., any assignment of modes satisfies
Constraint (2) for these resources. We have also checked if the relaxed optimal
solutions obtained in step 1 of our optimization procedure satisfied the renewable
resource constraints, which weren’t enforced in this relaxation. We have observed
that the relaxed optimal solution found for 593 out of the 810 instances satisfied
the renewable resource constraints, although they were not encoded, and hence
were also optimal solutions of the original problem. This number may be larger



An Efficient SMT Approach to Solve MRCPSP/max Instances 77

because some instances timed out without having found the optimal solution of
the relaxation, and therefore have not been counted.

Table 1. Resource capacities of the new datasets. The capacity of each resource of each
instance have been generated uniformly and independently at random in the interval
indicated in the corresponding cell of the table.

Set name mm30 1 mm30 2 mm50 1 mm50 2 mm100 1 mm100 2

Renewable capacity [30,39] [20,29] [30,39] [20,29] [30,39] [20,29]

Non-renewable capacity [135,164] [135,164] [235,264] [235,264] [485,514] [485,514]

These characteristics, in addition to the fact that all the mentioned instances
have been closed, suggest us that there is a need for new and more challenging
datasets, in particular regarding the hardness of resource constraints. The reason
why most renewable and non-renewable resources barely constrain the instances
is because the capacities are far large enough to supply the demands of the activi-
ties in a large amount of the possible combinations of mode assignments. For this
reason, we propose to use as a basis the same instances, but shrinking the capac-
ities of the resources to amounts which make them non-dummy. For the case of
the renewable resources, we have conducted some preliminary experiments to
see approximately which capacity is needed to make the optimal makespan of
an instance increase. We have observed that, given the original demand values
and precedence network topologies, for capacities smaller than 30, rarely any
instance has an optimal makespan equal to the optimal of the MRCPSP/max
without resource constraints. Regarding the non-renewable resources, the origi-
nal dataset was created with demands ranging from 1 to 10. Considering that all
the activities require the intermediate amount of 5 units for each non-renewable
resource, it would be needed a capacity of 5n to supply the demands, being n the
number of activities of the instance. Considering these facts, we have generated
two new versions of each one of the mm30, mm50 and mm100 datasets, namely
mm{30,50,100} 1 and mm{30,50,100} 2. They are the result of replacing the
resource capacities as stated in Table 1. The new mm{30,50,100} 2 datasets are
intended to be very constrained by resources. This is indeed the case, since we
have not been able to find any relaxed solution satisfying the renewable resource
constraints, and no non-renewable constraint is dummy. Sets mm{30,50,100} 1
are a bit softer regarding renewable resources.

6 Results and Conclusions

The experiments have been run on a 8 GB Intel R© Xeon R© E3-1220v2 machine
at 3.10 GHz. We have run our solver using Yices 2.4.2 [6] as the core SMT
solver, and compared the performance of our system with [17] (FDS) and [12]
(SCIP). We have run all three solvers in the same machine on both the old and



78 M. Bofill et al.

Table 2. Results for each solver (rows) and each dataset (columns), with a timeout of
600 s; avg denotes the average running time, in seconds, required to optimally solve the
instances (computed on the instances which did not time out); to denotes the number
of instances that timed out before reaching the optimum.

30 50 100 30 1 50 1 100 1 30 2 50 2 100 2

FDS avg 0.48 1.30 15.19 27.80 125.12 36.00 72.91 185.41 -

to 0 0 3 1 113 267 24 216 270

SCIP avg 14.49 26.74 134.03 88.97 163.79 - 178.33 281.23 -

to 1 24 90 49 206 270 155 257 270

SMT avg 0.87 17.14 67.97 16.39 120.38 - 54.36 224.47 -

to 0 0 65 1 108 270 12 192 270

the new datasets. The results2 are contained in Table 2. FDS is doubtlessly the
best solver for the original datasets, with only 3 timeouts in the hardest dataset
(mm100) and average runtimes one order of magnitude lower than the other
approaches. This is because its MIP relaxation works very well with generalized
precedence relations. It must be noted that SCIP does not start by solving a
relaxed MRCPSP/max with respect to resources, which penalizes this approach
in these datasets. On the other hand we can see that, in the new datasets, which
are more constrained by resources, SMT is able to solve more instances than the
other approaches in all cases except for the mm100 1 dataset. We remark that 2
out of the 3 instances that FDS solves in this dataset are optimally solved already
in the relaxation solving steps. SMT is the best approach in sets mm{30,50} 2,
which have the strongest resource constraints.

In conclusion, thanks to identifying some weaknesses of existing instances,
we are able to provide new and challenging datasets for MRCPSP/max. This
is especially noticeable in mm100 sets which, with the exception of 3 instances
for FDS, could not be solved in less than 600 s using the state-of-the-art exact
methods for MRCPSP/max. We have provided an SMT formulation showing to
be more efficient than other state-of-the-art approaches for heavily resource con-
strained instances. Interestingly, our approach takes an off-the-shelf SMT solver
and, instead of using specialized propagators, it uses recent specialized encod-
ings of PB constraints into SAT to deal with resource constraints. The resulting
encoding uses only the IDL theory, to deal with generalized precedences. Left
as future work are the incorporation of better relaxations on resource equa-
tions, as the ones in [17], for a better LB identification. Also other optimization
approaches could be considered, as well as the use of a full SAT encoding.

Acknowledgments. Work supported by grants TIN2015-66293-R (MINECO/
FEDER, UE), MPCUdG2016/055 (UdG), and Ayudas para Contratos Predoctorales
2016 (grant number BES-2016-076867, funded by MINECO and co-funded by FSE).
We thank the authors of [12,17] for sharing with us their solvers.

2 The solver used in the experiments, detailed results and the new instances are avail-
able at http://imae.udg.edu/recerca/LAP/.

http://imae.udg.edu/recerca/LAP/


An Efficient SMT Approach to Solve MRCPSP/max Instances 79

References

1. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Satisfiability modulo
theories: an efficient approach for the resource-constrained project scheduling prob-
lem. In: Proceedings of the Ninth Symposium on Abstraction, Reformulation, and
Approximation (SARA), pp. 2–9. AAAI (2011)

2. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. Wiley, Hoboken (2013)

3. Bofill, M., Coll, J., Suy, J., Villaret, M.: Solving the multi-mode resource-
constrained project scheduling problem with SMT. In: 28th International Con-
ference on Tools with Artificial Intelligence (ICTAI), pp. 239–246. IEEE (2016)

4. Bofill, M., Coll, J., Suy, J., Villaret, M.: Compact MDDs for pseudo-Boolean con-
straints with at-most-one relations in resource-constrained scheduling problems. In:
International Joint Conference on Artificial Intelligence (IJCAI) (2017, to appear)

5. Brucker, P., Drexl, A., Mhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models, and methods. Eur. J. Oper.
Res. 112(1), 3–41 (1999)

6. Dutertre, B., de Moura, L.: The yices SMT solver. Technical report, Computer
Science Laboratory, SRI International (2006). http://yices.csl.sri.com

7. Eén, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2, 1–26 (2006)

8. Herroelen, W., Demeulemeester, E., Reyck, B.: A classification scheme for project
scheduling. In: Weglarz, J. (ed.) Project Scheduling. International Series in Oper-
ations Research & Management Science, vol. 14, pp. 1–26. Springer, New York
(1999). doi:10.1007/978-1-4615-5533-9 1

9. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1997)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

11. Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited
resources: a zero-one programming approach. Manag. Sci. 16, 93–108 (1969)

12. Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode
resource-constrained project scheduling problem with generalized precedence rela-
tions. OR Spectr. 38(2), 283–303 (2016)

13. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource con-
strained project scheduling problem with generalized precedences by lazy clause
generation. CoRR abs/1009.0347 (2010). http://arxiv.org/abs/1009.0347

14. Schwindt, C.: Generation of resource constrained project scheduling problems sub-
ject to temporal constraints. Inst. für Wirtschaftstheorie und Operations-Research
(1998)

15. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 38

16. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained
project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 31

17. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). doi:10.1007/978-3-319-18008-3 30

http://yices.csl.sri.com
http://dx.doi.org/10.1007/978-1-4615-5533-9_1
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1009.0347
http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/978-3-319-44953-1_31
http://dx.doi.org/10.1007/978-3-319-18008-3_30

	An Efficient SMT Approach to Solve MRCPSP/max Instances with Tight Constraints on Resources
	1 Introduction
	2 The Multi-mode RCPSP with Minimum and Maximum Time Lags (MRCPSP/max)
	3 Formulation
	4 Optimization Procedure
	5 New Benchmark Datasets for MRCPSP/max
	6 Results and Conclusions
	References




