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Abstract. Maximum satisfiability (MaxSAT) is today a competitive
approach to tackling NP-hard optimization problems in a variety of AI
and industrial domains. A great majority of the modern state-of-the-art
MaxSAT solvers are core-guided, relying on a SAT solver to iteratively
extract unsatisfiable cores of the soft clauses in the working formula
and ruling out the found cores via adding cardinality constraints into
the working formula until a solution is found. In this work we propose
weight-aware core extraction (WCE) as a refinement to the current com-
mon approach of core-guided solvers. WCE integrates knowledge of soft
clause weights into the core extraction process, and allows for delaying
the addition of cardinality constraints into the working formula. We show
that WCE noticeably improves in practice the performance of PMRES,
one of the recent core-guided MaxSAT algorithms using soft cardinality
constraints, and explain how the approach can be integrated into other
core-guided algorithms.

1 Introduction

Several recent breakthroughs in algorithmic techniques for the constraint opti-
mization paradigm of maximum satisfiability (MaxSAT) are making MaxSAT
today a competitive approach to tackling NP-hard optimization problems in a
variety of AI and industrial domains, from planning, debugging, and diagnosis
to machine learning and systems biology, see e.g. [8,11,13,14,17,25,34].

A great majority of the most successful MaxSAT solvers today are based
on the so-called core-guided MaxSAT solving paradigm, see e.g. [4,12,16,29–
31]. Such solvers iteratively use Boolean satisfiability (SAT) solvers for finding
unsatisfiable cores, i.e., sets of soft clauses that together with the hard clauses
are unsatisfiable, of the input MaxSAT instance. After finding a new core, the
core is essentially compiled into the MaxSAT instance via adding a cardinality
constraint enforcing that one of the soft clauses in the core cannot be satisfied. An
in-built property of core-guided solvers is hence that the MaxSAT instance grows
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at each iteration due to compiling a new core into the instance. This can lead
to the instance becoming bloated, as many, possibly large, cores are compiled,
intuitively making the job of the SAT solver increasingly difficult. One way of
improving core-guided solvers is to develop more efficient ways of compiling the
cores, decreasing the blow-up of the instance. Most recently, progress in core-
guided solvers has been made by developing new ways of compiling the cores via
soft cardinality constraints [12,30,31].

In this work we propose weight-aware core extraction (WCE) as a technique
that refines the process of how cores are extracted and when they are compiled
into the working formula during core-guided MaxSAT search. WCE integrates
knowledge of soft clause weights into the core extraction process, and allows
for delaying the addition of cardinality constraints into the working formula by
enabling the extraction of more cores between compilation steps, thereby also
intuitively making the job of the core extractor (SAT solver) easier. In this paper
we explain in detail how a specific implementation of clause cloning allows inte-
grating WCE into PMRES, the first algorithm making use of soft cardinality
constraints [31]. We also show empirically that WCE noticeably improves the
performance of PMRES in practice on standard weighted partial MaxSAT bench-
marks from the most recent MaxSAT solver evaluation. Going beyond PMRES,
we also explain how ideas behind WCE can be integrated into other core-guided
algorithms employing soft cardinality constraints, and to what extent the pre-
sented ideas can be used in some of the other MaxSAT approaches utilizing SAT
solvers for core extraction.

In terms of related work, ideas underlying WCE have been previously applied
for computing lower bounds for MaxSAT instances [18,20–23]. Specifically,
the lower bounds are applied in the context of core-guided MaxSAT solving
before the actual search in [18]. Furthermore, WCE also bears some resem-
blance with the (weaker) approaches to obtaining bounds during branch-and-
bound search for MaxSAT based on detecting unsatisfiable cores by e.g. unit
propagation [20–23].

The rest of the paper is organized as follows. After necessary background on
MaxSAT (Sect. 2) and a detailed description of the PMRES algorithm (Sect. 3),
we present our main contributions, weight-aware core extraction in the context
of PMRES (Sect. 4). We then present empirical results on the speed-ups obtained
via WCE on PMRES (Sect. 5), and further, explain how and to what extent the
presented technique can be integrated into other SAT-based MaxSAT algorithms
(Sect. 6).

2 Maximum Satisfiability

For background on weighted partial maximum satisfiability (MaxSAT in short),
recall that for a Boolean variable x, there are two literals, the positive x and
the negative ¬x. A clause is a disjunction (∨) of literals, and a CNF formula a
conjunction (∧) of clauses. When convenient, we treat a clause as a set of literals
and a CNF formula as a set of clauses. We assume familiarity with other logical
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connectives and denote by CNF(φ) a set of clauses logically equivalent to the
formula φ; we can assume without loss of generality that the size of CNF(φ) is
linear in the size of φ [33].

A MaxSAT instance consists of a set of hard clauses Fh, a set of soft clauses
Fs, and a function w : Fs → N that associates a positive integral cost to each
of the soft clauses. We extend w to a set S ⊆ Fs of soft clauses by w(S) =∑

C∈S w(C). Further, let wmin
S = minC∈S{w(C)}, i.e., the smallest weight among

the clauses in S. If w(C) = 1 for all C ∈ Fs, the instance is unweighted.
A truth assignment τ is a function from Boolean variables to true (1) and

false (0). A clause C is satisfied by τ if τ(l) = 1 for a positive or τ(l) = 0 for a
negative literal l ∈ C. A CNF formula is satisfied by τ if τ satisfies all clauses
in the formula. If some τ satisfies a CNF formula, the formula is satisfiable, and
otherwise unsatisfiable. An assignment τ is a solution to a MaxSAT instance
F = (Fh, Fs, w) if τ satisfies Fh. We denote the set of soft clauses not satisfied
by τ by Fτ̄ , i.e., Fτ̄ = {C ∈ Fs | τ(C) = 0}. The cost of τ is w(Fτ̄ ). A solution τ
is optimal (for F ) if w(Fτ̄ ) ≤ w(Fτ̄ ′) for every solution τ ′ to F . We denote the
cost of optimal solutions to F by Cost(F ). Without loss of generality, we will
assume that a MaxSAT instance always has a solution, i.e., that Fh is satisfiable.

A central concept in modern SAT-based MaxSAT algorithms is that of
(unsatisfiable) cores. For a MaxSAT instance F = (Fh, Fs, w), a subset S ⊆ Fs of
soft clauses is an unsatisfiable core of F iff Fh∪S is unsatisfiable. An unsatisfiable
core S is minimal (an MUS) of F iff Fh ∪ S′ is satisfiable for all S′ ⊂ S.

3 The PMRES Algorithm

In order to explain weight-aware core extraction, we will use the PMRES algo-
rithm [31]. Figure 1 gives PMRES in pseudo-code. When invoked on a MaxSAT

1 PMRES(Fh, Fs, w):
2 (F w

h , F w
s ) ← (Fh, Fs)

3 while true do
4 (result, κ, τ) ← SATSOLVE(F w

h ∪ F w
s )

5 if result=”satisfiable” then return τ ;
6 else
7 R ← ∅
8 wmin

κ ← min{w(C) | C ∈ κ}
9 for Ci ∈ κ do
10 F w

s .remove(Ci)

11 if w(Ci) > wmin
κ then

12 F w
s .add(CL(Ci))

13 w(CL(Ci)) ← w(Ci)−wmin
κ

14 F w
h ← F w

h .add((Ci ∨ ri))
15 R.add(ri)

16 RELAX(wmin
κ , R)

1 RELAX(wmin
κ , R):

2 n ← |R|
3 F w

h .add((r1 ∨ . . . ∨ rn))
4 for i=1. . . n-1 do
5 F w

h .add(CNF(di ↔ (ri+1 ∨di+1)))
6 F w

s .add((¬ri ∨ ¬di))

7 w((¬ri ∨ ¬di)) ← wmin
κ

Fig. 1. The PMRES algorithm.
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instance (Fh, Fs, w) PMRES works by iteratively calling a SAT solver (line 4)
on a working formula, initialized to Fh ∪ Fs, i.e., considering all hard and soft
clauses of the input formula as a SAT instance (line 2). If the working formula
is satisfiable (line 5), PMRES returns the satisfying assignment reported by
the SAT solver, which is guaranteed to be an optimal solution to the MaxSAT
instance [31]. Otherwise the SAT solver returns an unsatisfiable core κ of the
working formula. PMRES then proceeds by removing all of the soft clauses in
the core from the working formula and cloning a subset of them; clause cloning
is a common way of extending MaxSAT algorithms from unweighted to weighted
MaxSAT [3,6,12,30,31], and works as follows. First the minimum-weight wmin

κ of
clauses in the core κ is determined (line 8). Then each clause in core is removed
(line 10), and a soft clone CL(C) of each clause C ∈ κ with w(C) > wmin

κ is
introduced to the working formula and given the weight w(C) − wmin

κ (lines
11–13).

After clause cloning, PMRES extends each C ∈ κ by a fresh relaxation
variable r and adds the extended clause C ∨ r as hard to the working formula
(line 14). The intuition here is that setting r = 1 allows for the corresponding soft
clause to be left unsatisfied, while setting r = 0 forces the corresponding clause to
be satisfied. Finally, PMRES relaxes the found core by adding a soft cardinality
constraint over the introduced r variables via the function RELAX(wmin

κ ,R)
(line 16). The added cardinality constraint is encoded as hard and soft clauses
using additional new variables d1, . . . , d|κ|−1, and essentially enforces that either
exactly one of the introduced relaxation variables is set to true, or some soft
clause corresponding to (ri → ¬di) is falsified (lines 2–7 of RELAX). In order
to see this, notice first that the hard clause (r1 ∨ . . . ∨ r|κ|) forces at least one
relaxation variable to be set to true, Assume then that two variables rk and rt for
some k < t are both set to true. Then the hard clauses of form di ↔ (ri+1∨di+1)
imply that dj is set to true for all j < t. Specifically the variable dk is set to
true, and the soft clause encoding (rk → ¬dk) will become falsified.

We end this section by discussing two improvements that have been proposed
for PMRES and other similar core-guided MaxSAT algorithms; the so-called
stratification and hardening rules [4,5,26]. Assume that PMRES in invoked on
a MaxSAT instance F = (Fh, Fs, w). The stratification rule aims at prioritizing
the extraction of cores κ for which wmin

κ is large. Since the sum of the mini-
mum weights of the extracted cores is a lower bound on the optimal cost of
the MaxSAT instance, the goal in extracting cores with large minimum weights
is to decrease the total number of iterations required for termination. More
precisely, PMRES extended with stratification maintains a bound wmax, initial-
ized by a heuristic. During solving, PMRES does not invoke the SAT solver on
Fw

h ∪ Fw
s , i.e., all of the clauses of the working formula, but rather, only on a

subset of them consisting of all hard clauses and the soft clauses with weight
greater than wmax. Whenever this subset of the working formula is satisfiable,
the algorithm checks if the SAT solver was invoked on the whole working for-
mula, i.e., whether wmax = 1. If that is the case, the algorithm terminates.
Otherwise the value of wmax is decreased heuristically, and the search continues.
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Several different strategies for updating wmax have been proposed [4,5]. A fairly
simple one is to initialize wmax to the maximum weight of the soft clauses, i.e.,
wmax = max{w(C) | C ∈ Fs} and update it by decreasing it to the highest
weight of soft clauses that is lower than the current value of wmax.1

The hardening rule attempts to further exploit information that can be
obtained from the satisfying assignments obtained during solving in conjunction
with stratification. For some intuition, notice that all subsets of the working for-
mula that PMRES with stratification invokes the SAT solver on, always include
Fh. Hence whenever the SAT solver returns satisfiable, the returned assignment
τ is a solution to the MaxSAT instance, and as such an upper bound on the opti-
mal cost of the instance. The hardening rule exploits this fact by noting that
any solution τ2 that does not satisfy a clause C ∈ Fw

s with w(C) > w(Fτ̄ ) will
have w(Fτ̄2) > w(Fτ̄ ) and as such can not be an optimal solution to F . Hence
all such soft clauses have to be satisfied by any optimal solution to F and can
therefore be hardened, i.e., turned into hard clauses.

Even though the presentation here is specific to PMRES, the stratification
and hardening rules can be used in conjunction with several different core-guided
MaxSAT algorithms. This is also the case for weight-aware core extraction pre-
sented next.

4 Weight-Aware Core Extraction for PMRES

We now describe weight-aware core extraction (WCE), a generic technique
designed to improve performance of PMRES and other similar MaxSAT algo-
rithms. WCE delays the addition of cardinality constraints to the working for-
mula with the aim of extracting more valid cores (or “core mining”) from the
working instance before adding more constraints to the formula.

Clause Cloning Through Assumptions (Without Cloning). WCE requi-
res clause cloning to be implemented in a specific way through assumptions which
essentially avoid actual clause cloning (copying) altogether. A similar approach
to clause cloning is taken in [1]. For more details, we first need to overview how
core extraction is usually implemented in SAT-based MaxSAT solving. Several
modern SAT solvers allow querying for the satisfiability of a CNF formula under
a set of assumptions, represented as a partial assignment of the variables in the
formula. Whenever the formula is unsatisfiable under those assumptions, the
SAT solver returns some subset of the assumptions that are required in the proof
of unsatisfiability. Notice that not only are unsatisfiable formulas unsatisfiable
under all assumptions, but a satisfiable formula may also be unsatisfiable under
some assumptions. For example, consider the CNF formula F = {(x ∨ y), (¬x)}.
Although the formula is satisfiable, it is unsatisfiable when assuming x = 1 or
y = 0.
1 In our implementation used in the experiments of this work, we use the slightly more

sophisticated diversity heuristic [5] which attempts to balance the number of new
soft clauses introduced and the amount that wmax is decreased.
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Core-guided MaxSAT solvers make use of the assumptions interface in SAT
solvers by extending each soft clause C ∈ Fs with a fresh assumption variable
a(C) and sending the extended clause C ∨a(C) to the SAT solver. During each
SAT solver call, all assumption variables are assumed false, thus reducing all
extended clauses C ∨ a(C) to C. Whenever the working formula is unsatisfi-
able, the SAT solver will return the extracted core κ in terms of the subset
of assumption variables corresponding to the clauses in κ. Importantly for the
PMRES algorithm, this means that each clause Ci ∈ κ is already extended with
the variable a(Ci) and that variable can be reused as the relaxation variable ri

that would otherwise be introduced on lines 15–16 in the algorithm described
in Fig. 1. Notice that whenever the SAT solver is invoked without assuming the
value of a(Ci) and the variable only appears in the extended clause Ci ∨ a(Ci),
it can be set to true by the SAT solver, thereby satisfying the extended clause
and effectively removing the clause from the formula. The same argument does
not hold as soon as other constraints involving a(Ci) are added to the formula.

With this, clause cloning through assumption variables is implemented as
follows. Assume that a clause C ∈ κ extended with the assumption variable a(C)
needs to be cloned, i.e., it is a member of some extracted core κ and w(C) > wmin

κ .
A simple way of improving on the naive description of clause cloning in Sect. 3 is
to introduce a new soft clause C ′ = (¬a(C)) with weight w(C ′) = w(Ci)−wmin

κ .
The correctness of this follows by noting that the extended clause (C ∨ a(C))
will be hard in all subsequent SAT solver calls. Thus satisfying C ′ forces the
clause C to be satisfied as well, achieving the same effect as cloning the whole
C. To further improve on this, notice that as C ′ would be added as a soft
clause, it would also be extended with an assumption variable and the extended
clause C ′ ∨a(C ′) would be sent to the SAT solver. This creates the logical chain
¬a(C ′) → ¬a(C) → C. The basic form of clause cloning would then assume
the variable a(C ′) to false in subsequent SAT solver calls, thus forcing C as
well. To refine this, note that the same affect is achieved by simply assuming
the value of a(C) to false instead, thus removing the need of introducing the
clause C ′ at all. In more detail, when a core κ is extracted, the minimum weight
wmin

κ is computed. Then the weight of each clause C ∈ κ is decreased by wmin
κ .

In subsequent SAT calls, the assumption variable of each clause C with weight
w(C) > 0 is assumed false, essentially treating that clause as soft. All other
clauses are treated as hard. Refining clause cloning in this way blurs the line
between hard and soft clauses. When discussing PMRES with clause cloning
implemented through assumptions we say that a clause C is soft as long as the
internal SAT solver is invoked assuming a(C) = 0, i.e., as long as w(C) > 0.
When w(C) drops to 0, the extended clause (C ∨ a(C)) becomes hard. Notice
that in order for w(C) to become 0, the clause C has appeared in at least one
core. Hence we have added a cardinality constraint over a(C) so not assuming
the value of it does not remove the clause C from the formula.

Except for removing the need of introducing clones to the formula, imple-
menting clause cloning through assumptions also results in tighter cardinality
constraints, as illustrated by the following example.
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Example 1. Let F = (Fh, Fs, w) be a MaxSAT instance Fh = {(x ∨ y), (y ∨ z)},
Fs = {C1 = (¬x), C2 = (¬y), C3 = (¬z)}, and w(C1) = 1 and w(C2) = w(C3) =
2. Assume that we invoke the basic version of PMRES, i.e., the algorithm in
Fig. 1, on F and that it first extracts the core {C1, C2}. After relaxing the core
the working instance (Fw

h , Fw
s , w) consists of Fw

h = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧
CNF(r1 + r2 = 1)h, Fw

s = CL(C2) ∧ C3 ∧ CNF(r1 + r2 = 1)s with w(CL(C2)) =
1, w(C3) = 2. Here we use CNF(r1 + r2 = 1)h and CNF(r1 + r2 = 1)s to denote
the hard and soft clauses, respectively, introduced in the Relax subroutine.
If PMRES next extracts and relaxes the core {CL(C2), C3}, the final working
formula will have the hard clauses Fw

h = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧ (CL(C2) ∨
r3) ∧ (C3 ∨ r4) ∧ CNF(r1 + r2 = 1)h ∧ CNF(r3 + r4 = 1)h and the soft clauses
Fw

s = CL(C3) ∧ CNF(r1 + r2 = 1)s ∧ CNF(r3 + r4 = 1)s. This instance is
satisfiable by setting r2 = r3 = 1 and r1 = r4 = 0. In total there are 4 different
ways of satisfying the added cardinality constraints. A similar argument holds
even if we use the assumption variables of soft clauses in cores when encoding
the cardinality constraints and introduce the negations of those variables as soft
clauses when performing clause cloning.

If we instead use assumptions to implement clause cloning, the final working
formula will have the hard clauses Fw

h = Fh ∧ (C1 ∨ a(C1)) ∧ (C2 ∨ a(C2)) ∧
CNF(a(C1) + a(C2) = 1)h ∧ CNF(a(C2) + a(C3) = 1)h and the soft clauses
Fw

s = C3 ∧ CNF(a(C1) + a(C2) = 1)s ∧ CNF(a(C2) + a(C3) = 1)s with
w(C1) = w(C2) = 0 and w(C3) = 1. As w(C3) > 0, the final SAT call will
be made assuming a(C3) = 0. Under the assumption, there is only a single way
of satisfying the added cardinality constraints. Even disregarding the assump-
tions, there are only 2 ways of satisfying the added cardinality constraints with
one of them resulting in the rest of the instance becoming satisfiable. �

WCE. Having discussed clause cloning in conjunction with WCE, we now turn
to describing WCE in detail. For some intuition, consider the following example.

Example 2. Consider again the MaxSAT instance F from Example 1 and assume
that PMRES with clause cloning implemented through assumptions first extracts
{C1, C2}. The working formula (Fw

h , Fw
s , w) will then become Fw

h = Fh ∧ (C1 ∨
a(C1)) ∧ CNF(a(C1) +a(C2) = 1)h and Fw

s = C2 ∧ C3 ∧ CNF(a(C1) +a(C2) =
1)s with w(C2) = 1, w(C3) = 2. The only core of the instance is {C2, C3}.
Notice, however, that ignoring the added cardinality constraints at this stage and
invoking the SAT solver on the (simpler) subset of the working formula consisting
of Fw

h = Fh ∧ (C1 ∨a(C1)) and Fw
s = C2 ∧C3 with w(C2) = 1, w(C3) = 2 would

result in the exact same core being extracted. �

The pseudocode of PMRES extended with WCE is shown in Fig. 2. Before invok-
ing its SAT solver, PMRES with WCE first adds an assumption a(C) = 0 for
all soft clauses C with w(C) > 0 (line 5). Then it invokes the SAT solver on
the working formula with these assumptions. If a core κ is extracted, wmin

κ is
computed and the weight of all clauses in the core decreased by wmin

κ (lines 14
and 16). However, instead of immediately calling RELAX(wmin

κ ,R), the tuple
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1 PMRES+WCE(Fh, Fs, w):
2 (F w

h , F w
s ) ← (Fh, Fs)

3 R ← ∅
4 while true do
5 A ← {A(C) = 0 | Ci ∈ F w

s , w(C) > 0}
6 (result, κ, τ) ← SATSOLVE(F w

h ∪ F w
s , A)

7 if result=”satisfiable” AND |R| = 0 then return τ ;
8 else if result=”satisfiable” then
9 for (R, wmin

κ ) ∈ R do
10 RELAX(wmin

κ , R)
11 R ← ∅
12 else
13 R ← ∅
14 wmin

κ ← min{w(C) | C ∈ κ}
15 for C ∈ κ do
16 w(C) ← w(C) − wmin

κ

17 R ← R ∪ {A(C)}
18 R.add((R, wmin

κ ))

Fig. 2. PMRES+WCE, the PMRES algorithm with WCE. In the pseudocode, the
assumption variable of a soft clause C used in core extraction is given by a(C).

(R, wmin
κ ) is added to the set R (line 18). Then the SAT solver in invoked again

with a new set of assumptions. Notice that at each iteration, the weight of at
least one soft clause C is dropped to 0. In subsequent SAT solver calls the value of
a(C) is not assumed anymore, effectively removing that clause from the formula
until the cardinality constraints are added, which is why the working formula
will eventually become satisfiable. The algorithm then checks if new cores have
been extracted since the last time cardinality constraints were added. If so, the
corresponding cardinality constraints are added to the formula and the loop iter-
ates (lines 8–11). If there are no new cores, the algorithm terminates and returns
the satisfying truth assignment as an optimal MaxSAT solution (line 7).

Similarly to the stratification rule, all working formulas of PMRES extended
with WCE contain the original hard clauses Fh. As such, whenever the working
formula is satisfiable, the algorithm obtains an upper bound on the cost of the
optimal solutions. The bound might in some cases allow PMRES with WCE to
terminate even before all cardinality constraints have been added to the working
formula.

Example 3. Consider the MaxSAT instance F from Examples 1 and 2. Invoke
PMRES with WCE on F and assume that the first core it extracts is again
κ1 = {C1, C2}. Now the addition of cardinality constraints is delayed and the
SAT solver is invoked on Fw

h = Fh∧(C1∨a(C1)) and Fw
s = C2∧C3 with w(C1) =

0, w(C2) = 1 and w(C3) = 2. As w(C1) = 0, the variable a(C1) is not assumed
to any value and the clause (C1 ∨ a(C1)) can be satisfied by setting a(C1) = 1.
Nevertheless, PMRES+WCE still extracts the core κ2 = {C2, C3}. On the third
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iteration the SAT solver is invoked on Fw
h = Fh ∧ (C1 ∨a(C1)∧ (C2 ∨a(C2)) and

Fw
s = C3 with w(C1) = w(C2) = 0 and w(C3) = 1 assuming a(C3) = 0. This

instance is satisfiable. Next the algorithm adds cardinality constraints to form
the same (satisfiable) final working instance as shown in Example 1. Then it
would invoke the SAT solver on that instance, find it satisfiable, and terminate.

However, by investigating the second to last SAT solver call we see that
PMRES+WCE might be able to terminate without adding any cardinality con-
straints at all. First note that after extracting the cores κ1 and κ2 we know that
Cost(F ) ≥ wmin

κ1 + wmin
κ2 = 1 + 1 = 2. Now, the second to last SAT solver call is

performed on the clauses (x∨y), (y∨z), (¬x∨a(C1)), (¬y∨a(C2)), (¬z ∨a(C3))
assuming a(C3) = 0. The assumption propagates z = 0 which in turn propa-
gates y = 1 and a(C2) = 1. At this point, all clauses except for (¬x ∨ a(C1))
are already satisfied. If the internal SAT solver now satisfies the clause by set-
ting x = 0, the cost of the assignment it returns will be 2, thus proving that
Cost(F ) ≤ 2 and allowing the algorithm to terminate early. Although we in
general can not guarantee early termination, empirically we found that it does
happen. �

The correctness of WCE is based on the correctness of PMRES. For more intu-
ition, note that all cores that are extractable by PMRES with WCE are a subset
of the cores that could be extracted by PMRES with clause cloning implemented
through assumptions, and that the final working instance of both algorithms is
the same.

Related Work. The method presented in [18] for computing MaxSAT lower
bounds is equivalent to running Algorithm2 until the working instance becomes
satisfiable for the first time, returning the sum

∑
wmin

κ over all of the cores
extracted; already this lower bounding step is shown in [18] to improve the per-
formance of specific MaxSAT algorithms compared to starting search with the
trivial bound of 0. Alternatively, WCE can be seen as a more thorough integra-
tion of the bound computation and the MaxSAT algorithm itself by performing
the lower bound computation in-between each core compilation step. Compu-
tation of lower bounds has also received significant interest in the context of
branch-and-bound MaxSAT solvers [20–23], which rely heavily on good lower
bounds in order to prune the search tree. For example, in [21] the authors pro-
pose a technique in which unit propagation is used to extract several cores of
the working instance in order to compute a lower bound. The main difference to
WCE is that WCE is not limited to cores detectable by unit propagation.

Integrating Stratification and Hardening. We end this section by dis-
cussing how the commonly used stratification and hardening rules can be inte-
grated with WCE. There are two obvious ways of integrating stratification in
conjunction with WCE. The first one is to prefer WCE to stratification: initialize
the bound wmax heuristically [5] and assume the assumption variable a(C) to
false only for each of the clauses C with w(C) ≥ wmax. Then iteratively extract
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cores over the subset of soft clauses under consideration, delaying the addition of
cardinality constraints until the instance becomes satisfiable. At that point, add
the cardinality constraints and continue. Whenever the instance remains satis-
fiable after the addition of cardinality constraints, harden any possible clauses
and decrease the bound wmax. The algorithm can terminate when no new cores
can be extracted and the SAT solver has been invoked on all soft clauses.

Another, dual way of integrating the two is to prefer stratification to WCE,
i.e., to delay the addition of cardinality constraints until wmax has been decreased
to 1, at which point all cardinality constraints are added and the bound wmax

is reinitialized. However, the choice between preferring stratification or WCE to
the other influences the applicability of the hardening rule and the quality of the
satisfiable assignments produced by WCE and stratification. Preferring WCE to
stratification we know that, whenever the bound wmax needs to be lowered, all
clauses C with w(C) ≥ wmax are satisfied, thus allowing for the hardening of
several soft clauses. In contrast, when preferring stratification to WCE, sound use
of the hardening rule requires considering the delayed soft cardinality constraints,
of which the SAT solver has had no information during search. The empirical
results presented next support this intuition, as preferring WCE to stratification
leads to performance boosts within PMRES, while preferring stratification to
WCE actually degrades performance compared to PMRES without using WCE.

5 Experiments

We investigate how WCE affects the performance of the PMRES algorithm in
practice. Since the implementation of PMRES by the original authors—coined
Eva500a as it participated in MaxSAT Evaluation 2014 [9]—is not available
in open source, we re-implemented PMRES on top of the open-source core-
guided MaxSAT solver Open-WBO [29], following the description in the paper
introducing the algorithm [31] using Glucose [10] as the underlying incremental
SAT solver.

In the experiments we compare the following MaxSAT algorithms.

– PMRES: our re-implementation of the PMRES algorithm using stratification,
implemented using assumption variables on soft clauses, hardening, and clause
cloning implemented through assumptions.

– PMRES+WCE: PMRES extended with WCE, preferring WCE to stratifica-
tion.

– PMRES+WCE (S/to/WCE): PMRES extended with WCE, preferring strat-
ification to WCE.

– Eva500a [31]: the closed-source implementation of PMRES that participated,
and won the industrial category of the 2014 MaxSAT Evaluation.

For reference, we also provide a comparison with MSCG15b [30], a closed-
source as the best-performing core-guided MaxSAT solver using soft cardinality
constraints in 2016 MaxSAT evaluation. As we will explain later in Sect. 6, WCE
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could also be integrated into MSCG.2 As benchmarks we used the weighted par-
tial industrial (630) and crafted (331) instances from the 2016 MaxSAT Evalu-
ation [9]. The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core
machines with 32-GB RAM and Debian GNU/Linux 8 using a per-instance
timeout of 3600 s.

An overview of the results, comparing the performance of Eva500a and
the variants PMRES, PMRES+WCE, and PMRES+WCE (S/to/WCE) of our
implementation, is provided through Figs. 3, 4, and Table 1. The “cactus” plot
of Fig. 3 gives the number of instances solved (x-axis) by the individual solvers
under different per-instance time limits (y-axis) over all benchmarks. More
detailed results are provided in Table 1, with the industrial and crafted bench-
marks separated by domain, showing the number of instances from each domain,
and the number of solved instances and the cumulative running time used for
solving the solved instances for each solver. First, note that our PMRES re-
implementation is competitive in terms of overall performance with Eva500a;
on the industrial instances PMRES solves three more instances overall and uses
cumulatively only 55% of the running time that Eva500a uses on the respec-
tively solved instances. On the crafted instances, PMRES solves two instances
less than Eva500a but still uses noticeably less time over all solved instances.
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Fig. 3. Solver comparisons: number of instances solved (x-axis) by the individual
solvers under different per-instance time limits (y-axis).

Turning to the influence of WCE on the performance of PMRES, we observe
that PMRES+WCE (preferring WCE to stratification) has noticeably improved
performance wrt PMRES (and thus also Eva500a), solving 11 more indus-
trial and 3 more crafted instances (14 and 1 more than Eva500a). Notice
that of all three solvers, PMRES+WCE is the best performing on both indus-
trial and crafted benchmarks. Most interestingly, PMRES+WCE uses at the
same time much less time on the solved instances; on the industrial instances

2 Unfortunately, we do not have access to the source code of MSCG.
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Table 1. Comparison of Eva500a, PMRES, and PMRES+WCE: number of solved
instances (#) and the cumulative running time used for solving the instances (Σ) for the
individual solvers, divided into the industrial (top) and crafted (bottom) benchmarks
according to the individual domains with the number of instances from each domain
given in parentheses.

Eva500a PMRES PMRES+WCE

Solved Time (s) Solved Time (s) Solved Time (s)

# Σ # Σ # Σ

Industrial domain (#instances)

abstraction refinement (11) 6 3670 9 2842 10 2147

BTBNSL (60) 9 403 16 6142 19 679

correlation clustering (129) 18 17630 11 4559 19 4499

haplotyping pedigrees (100) 100 7321 100 3409 100 1374

hs-timetabling (14) 1 477 1 1858 1 2596

packup-wpms (99) 99 2981 95 969 94 191

preference planning (29) 29 1416 29 311 29 264

railway transport (11) 2 126 3 603 3 340

relational inference (9) 5 8391 8 1431 8 1360

timetabling (26) 12 1818 12 1846 12 878

upgradeability (100) 100 2996 100 54 100 59

wcsp spot5 dir (21) 14 30 14 13 14 24

wcsp spot5 log (21) 14 61 14 1975 14 17

Total industrial (630) 409 47319 412 26012 423 14426

Crafted domain (#instances)

auctions (40) 40 6111 39 2691 38 1759

causal discovery (35) 10 9325 6 1267 6 1357

CSG (10) 7 610 8 1056 8 1370

frb (34) 20 3310 12 4461 17 4041

min-enc (48) 32 198 36 758 36 455

miplib (12) 5 1558 5 247 5 437

ramsey (15) 1 1 3 2282 3 2073

random-net (32) 13 4001 13 1196 13 5

set-covering (45) 9 2069 10 1520 9 155

staff-scheduling (12) 1 0 2 1069 2 1406

wmaxcut (48) 1 44 3 3208 3 2960

Total crafted (331) 139 27226 137 19756 140 16018
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Fig. 4. Solver comparisons: per-instance running time comparison of PMRES (x-axis)
and PMRES+WCE (y-axis), with the ticks below the y = x line representing instances
on which PMRES+WCE is faster than PMRES.

PMRES+WCE uses in total 55% of the time PMRES uses and 30% of the time
Eva500a uses, even though PMRES+WCE solves more instances than PMRES
and Eva500a individually. A similar observation can be made of the crafted
instances; PMRES+WCE uses 81% of the time used by PMRES and 59% of the
time used by Eva500a, again solving more instances than either one. The scatter
plot of Fig. 4 gives a per-instance running time comparison on a log-log scale of
PMRES+WCE and PMRES, with the ticks below the y = x line representing
instances on which PMRES+WCE is faster that PMRES. The colors of the ticks
distinguish between the benchmark domains listed in Table 1.

Next, we consider the question of the relative influence of preferring
stratification or WCE within PMRES. Here we observe that PMRES+WCE
(S/to/WCE)—preferring stratification over WCE—actually harms the overall
performance of PMRES noticeably, making it perform worse than Eva500a over-
all (see Fig. 3). This supports the earlier discussed intuition that preferring WCE
to stratification assures that whenever the bound wmax needs to be lowered, all
clauses C with w(C) ≥ wmax are satisfied, thus allowing for hardening several
soft clauses. In contrast, when preferring stratification to WCE, sound use of
the hardening rule requires considering the delayed soft cardinality constraints,
of which the SAT solver has had no information during search.

Finally, we consider the relative performance of PMRES+WCE and
MSCG15b. Here we note that this is not a direct comparison of the influence of
WCE in the sense that MSCG15b does not implement the PMRES algorithm
of Eva500a, but rather a different core-guided algorithm using soft cardinality
constraints, OLL [2,30]. As we will explain later in Sect. 6, WCE can also be inte-
grated into the OLL algorithm. However, we could not implement WCE directly
to MSCG as MSCG is not available in open source. Nevertheless, a comparison of
the performance of PMRES+WCE and MSCG15b is provided in Table 2. Over-
all MSCG15b solves 12 more industrial instances than PMRES+WCE. How-
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Table 2. Comparison of MSCG15b and PMRES+WCE: percentage (%) and number
(#) of solved instances and the cumulative running time used for solving the instances
(Σ) for the individual solvers, divided into industrial (top) and crafted (bottom) bench-
marks according to the individual domains with the number of instances from each
domain given in parentheses.

MSCG15b PMRES+WCE

Solved Time (s) Solved Time (s)

% # Σ % # Σ

Industrial domain (#instances)

abstraction refinement (11) 90.9 10 17096 90.9 10 2147

BTBNSL (60) 21.7 13 885 31.7 19 679

correlation clustering (129) 25.6 33 19780 14.7 19 4499

haplotyping pedigrees (100) 100.0 100 1343 100.0 100 1374

hs-timetabling (14) 7.1 1 167 7.1 1 2596

packup-wpms (99) 100 99 410 95.0 94 191

preference planning (29) 100 29 2021 100 29 264

railway transport (11) 27.3 3 283 27.3 3 340

relational inference (9) 44.4 4 3167 88.9 8 1360

timetabling (26) 46.2 12 764 46.2 12 878

upgradeability (100) 100.0 100 118 100.0 100 59

wcsp spot5 dir (21) 81.0 17 2776 66.7 14 24

wcsp spot5 log (21) 66.7 14 19 66.7 14 17

Total industrial (630) 435 50333 423 14426

Crafted domain (#instances)

auctions (40) 60.0% 24 313 95.0% 38 1759

causal discovery (35) 82.9% 29 6851 17.1% 6 1357

CSG (10) 100.0% 10 825 80.0% 8 1370

frb (34) 73.5% 25 4298 50.0% 17 4041

min-enc (48) 66.7% 32 27 75.0% 36 455

miplib (12) 41.7% 5 56 41.7% 5 437

ramsey (15) 13.3% 2 1335 20.0% 3 2073

random-net (32) 100.0% 32 288 40.6% 13 5

set-covering (45) 46.7% 21 1530 20.0% 9 155

staff-scheduling (12) 16.7% 2 1244 16.7% 2 1406

wmaxcut (48) 10.4% 5 3651 6.3% 3 2960

Total crafted (331) 187 20417 140 16018
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ever, at the same time MSCG used considerably more time per solved instance;
this can be observed by inspecting the total cumulative running times: while
PMRES+WCE uses 14416 s to solve 423 instances, MSCG15b uses a noticeable
35917 s more to solve additional 12 instances. Looking more closely at the results
on a benchmark domain basis, we notice that the main advantage of MSCG15b is
within the correlation clustering domain, where the solver also uses a noticeably
amount of time to solve an additional 14 instances; furthermore, notice that the
correlation clustering domain is over-represented among the full benchmark set
with 129 instances. On the other hand, PMRES solves twice as many instances
as MSCG15b within the relational inference domain, using at the same time
only 43% of the cumulative running time of MSCG15b. The abstraction refine-
ment domain provides another example where PMRES+WCE solves instances
cumulatively noticeably faster than MSCG15b: here the solvers solve the same
number of instances, but the cumulative running time of PMRES+WCE is less
than 13% of that of MSCG15b (i.e., an 8x speed-up relative to MSCG15b).
Turning to the crafted domains, we observe that MSCG15b clearly dominates
on several of them. This is an interesting observation, also in that Eva500a never
participated in the crafted MaxSAT evaluation categories.

6 WCE and Other SAT-Based MaxSAT Algorithms

In this section we discuss WCE in a more general setting and the question of to
what extent it could be applied to other recently proposed MaxSAT algorithms.

The key to integrating WCE with a core-guided MaxSAT algorithm is
whether clause cloning can be implemented through assumptions in the algo-
rithm. As far as we understand, the reason clause cloning through assumptions
can be added to PMRES is the fact that no clause ever appears in a core more
than once. In more detail, let κ be a core extracted by PMRES during solving
and assume C ∈ κ needs to be cloned, i.e., that w(C) > wmin

κ . Since the extended
clause C ∨a(C) is added to the working formula as hard, that clause is not going
to be extracted in any subsequent cores, but rather, only its clone CL(C) or some
of the soft clauses added in RELAX(wmin

κ ,R). This simple observation is a key
to implementing clause cloning through assumptions.

WPM1. As an example of an algorithm in which clause cloning seems to be dif-
ficult to implement through assumptions, consider the WPM1 algorithm [3,24].
WPM1 works similarly to PMRES in the sense that it uses a SAT solver to
extract and relax unsatisfiable cores of the input instance F . Given a core κ,
WPM1 clones its clauses similarly to PMRES and extends each clause Ci ∈ κ
(now of weight wmin

κ ) with a fresh relaxation variable ri. For WCE, the key
difference between PMRES and WPM1 is that WPM1 leaves all extended
clauses Ci ∨ ri as soft in the working formula and adds a cardinality constraint
CNF(

∑
ri = 1) as hard clauses. Hence the extended clause might appear in

subsequent cores, making it difficult if not impossible to also reuse it as its own
clone.

Finally, we point out MaxSAT algorithms to which WCE can be integrated.
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OLL and K. Two algorithms that closely resemble PMRES3 are OLL [2,30]
and K [1]. Both extract cores iteratively, harden and clone the clauses in cores,
and compile them into the formula using soft cardinality constraints. In contrast
to PMRES, OLL makes use of cardinality networks in order to dynamically
modify the previously added cardinality constraints while K uses parametrized
constraints for bounding their size. In both cases the clauses in the extracted
cores are hardened and do not appear in subsequent cores, and as such WCE
could be incorporated into both algorithms. Indeed, at least the K algorithm
does implement clause cloning through assumptions [1]. The MSCG15b MaxSAT
solver considered in Sect. 5 implements OLL.

WPM3 [7] maintains a set of at-most constraints, initialized to not allow any
soft clauses to be falsified. During solving all clauses are treated as hard and the
at-most constraints as soft, and hence all cores are subsets of these constraints.
After finding a new core, WPM3 performs clause cloning and then merges the
constraints to form new ones that make effective use of the global core structure.
In contrast to OLL and PMRES, the cardinality constraints in the extracted
cores are not hardened, but instead removed from the instance. To the best
of our understanding, the version of WPM3 presented in [7] does not use the
SAT solver iteratively, but instead rebuilds it on each iteration. Hence the idea
of implementing clause cloning through assumptions is not applicable to this
version of WPM3, even though it might be if the algorithm is extended with
incremental cardinality constraints in the spirit of [28]. However, the discussed
requirement of a clause in a core not appearing in any subsequent cores is satisfied
by the algorithm. Thereby delaying the modification of cardinality constraints
could be incorporated to the presented version of WPM3.

WMSU3 [27] maintains a single cardinality constraint
∑

r∈R r = λ over the
set R of relaxation variables of clauses appearing in cores extracted so far. When
a new core κ is extracted, all the assumption variables a(C) of clauses C ∈ κ
are reused as relaxation variables, i.e., added into the set R, after which a new
bound λ is computed and the solver invoked again. Here λ is a lower bound on
the optimal cost of the instance. As noted in Sect. 4, WCE can be viewed as an
extension of the lower bounding technique from [18], the difference being that
WMSU3 extended with WCE would perform such a core mining step in between
each modification of the cardinality constraint, not only before the cardinality
constraint is added.

SAT-IP Hybrids. Finally, also the SAT-IP hybrid solvers MaxHS [15] and
LMHS [32], based on the implicit hitting set approach to MaxSAT, could poten-
tially make use of specific ideas related to WCE. Specifically, WCE could be

3 Originally in [31] PMRES was formalized as a special case of the so-called
MAXRES [19] rule; the specific special case is equivalent to the formalization of
PMRES used here.
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incorporated into the disjoint core extraction phase—that is very important in
terms of performance in practice [15]—in this context in a straight-forward way:
instead of ruling out each clause C in a core κ from the working instance during
the disjoint phase, lower the weight of all clauses in the core by wmin

κ , and rule
out only those clauses whose weight is lowered to 0.

7 Conclusions

We proposed weight-aware core extraction (WCE) as a refinement to the app-
roach taken by various core-guided MaxSAT solvers for compiling the cores
extracted at each iteration of search. WCE allows for extracting multiple cores
of the same working formula by taking into account the residual weights of the
current soft clauses, thereby postponing the compilation step and allowing the
SAT solver to work on a less bloated working formula. We detailed WCE in
the context of PMRES, a representative of the most recent line of core-guided
MaxSAT solvers that use soft cardinality constraints in the compilation step, and
showed empirically that WCE noticeably improves the performance of PMRES
on standard weighted partial MaxSAT benchmarks. We also outlined how to
integrate ideas behind WCE into other core-guided MaxSAT algorithms. The
empirical results obtained for PMRES suggests that integrating WCE into other
recent MaxSAT solvers may provide further improvements to the state of the
art.
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