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Abstract. We consider, for an integer time series, two families of con-
straints restricting the max, and the sum, respectively, of the surfaces
of the elements of the sub-series corresponding to occurrences of some
pattern. In recent work these families were identified as the most difficult
to solve compared to all other time-series constraints. For all patterns
of the time-series constraints catalogue, we provide a unique per family
parameterised among implied constraint that can be imposed on any
prefix/suffix of a time-series. Experiments show that it reduces both the
number of backtracks/time spent by up to 4/3 orders of magnitude.

1 Introduction

Going back to the work of Schützenberger [20], regular cost functions are quan-
titative extensions of regular languages that correspond to a function mapping a
word to an integer value or infinity. Recently there has been renewed interest in
this area, both from a theoretical perspective [14] with max-plus automata, and
from a practical point of view with the synthesis of cost register automata [2]
for data streams [3]. Within constraint programming, automata constraints were
introduced in [18] and in [8,15], the latter also computing an integer value from
a word.

This paper focusses on the g_surf_σ(X,R) families of time-series con-
straints with g being either Max or Sum, and with σ being one of the 22 pat-
terns of [5], as they were reported to be the most difficult in the recent work
of [4]. Each constraint of one of the two families restricts R to be the result
of applying the aggregator g to the sum of the elements corresponding to the
occurrences of a pattern σ [3] in an integer sequence X, which is called a time
series and corresponds to measurements taken over time. These constraints play
an important role in modelling power systems [10]. If the measured values cor-
respond to the power input/output, then the surface feature surf describes the
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energy used/generated during the period of pattern occurence. The Sum aggre-
gator imposes a bound on the total energy during all pattern occurences in
the time series, the Max aggregator is used to limit the maximal energy dur-
ing a single pattern occurence. Generating time series verifying a set of specific
time-series constraints is also useful in different contexts like trace generation,
i.e. generating typical energy consumption profiles of a data centre [16,17], or a
staff scheduling application, i.e. generating manpower profiles over time subject
to work regulations [1,6].

Many constraints of these families are not tractable, thus in order to improve
the efficiency of the solving we need to address the combinatorial aspect of time-
series constraints. We improve the reasoning for such time-series constraints
by identifying implied among constraints. Learning parameters of global con-
straints like among [9] is a well known method for strengthening constraint
models [11,12,19] with the drawback that it is instance specific, so this alter-
native was not explored here. Taking exact domains into account would lead to
filtering algorithms rather than to implied constraints which assume the same
minimum/maximum.

While coming up with implied constraints is usually problem specific, the
theoretical contribution of this paper is a unique per family among implied
constraint, that is valid for all regular expressions of the time-series constraint
catalogue [5] and that covers all the 22 time-series constraints of the correspond-
ing family. Hence, it covers 44 time-series constraints in total. The main focus of
this paper is on reusable necessary conditions that can be associated to a class
of time-series constraints described with regular expressions. There have been
several papers describing progress in propagation of a set of automata and time-
series constraints. The techniques described in this paper are only one element
required to make such models scale to industrial size.

Section 2 recalls the necessary background on time-series constraints used in
this paper. After introducing several regular expression characteristics, Sect. 3
presents the main contribution, Theorems 1 and 2, while Tables 2 and 3 provide
the corresponding derived concrete implied constraints for some subset of the
max_surf_σ and the sum_surf_σ time-series constraints, respectively, of
the time-series constraint catalogue. Finally Sect. 4 systematically evaluates the
impact of the derived implied constraints.

2 Time-Series Constraints Background

A time series constraint [7] imposed on a sequence of integer variables
X = 〈X1,X2, . . . , Xn〉 and an integer variable R is described by three main
components 〈g, f, σ〉. Let RΣ denote the set of regular expressions on Σ =
{‘ < ’, ‘ = ’, ‘ > ’}. Then, σ is a regular expression in RΣ , that is charac-
terised by two integer constants aσ and bσ, whose role is to trim the left
and right borders of the regular expression, and Lσ denotes the regular lan-
guage of σ, while f is a function, called a feature. In this paper, we con-
sider only the case when f is surf, which will be explained at the end of
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this paragraph. Finally g is also a function, called an aggregator, that is either
Max or Sum. The signature S = 〈S1, S2, . . . , Sn−1〉 of a time series X is defined
by the following constraints: (Xi < Xi+1 ⇔ Si = ‘ < ’) ∧ (Xi = Xi+1 ⇔
Si = ‘ = ’) ∧ (Xi > Xi+1 ⇔ Si = ‘ > ’) for all i ∈ [1, n − 1]. If a sub-
signature 〈Si, Si+1, . . . , Sj〉 is a maximal word matching σ in the signature of X,
then the subseries 〈Xi+bσ

,Xi+bσ+1, . . . , Xj+1−aσ
〉 is called a σ-pattern and the

subseries 〈Xi,Xi+1, . . . , Xj+1〉 is called an extended σ-pattern. The width of a
σ-pattern is its number of elements. The integer variable R is the aggregation,
computed using g, of the list of values of feature f for all σ-patterns in X. The
result of applying the surf feature to a σ-pattern is the sum of all elements of
this σ-pattern. If there is no σ-pattern in X, then R is the default value, denoted
by defg,f , which is −∞, or 0 when g is Max, or Sum, respectively. A time-series
constraint specified by 〈g, f, σ〉 is named as g_f_σ. A time series is maximal
for g_f_σ(X,R) if it contains at least one σ-pattern and yields the maximum
value of R among all time series of length n that have the same initial domains
for the time-series variables.

Example 1. Consider the σ = DecreasingSequence = ‘(>(>|=)*)*>’ regu-
lar expression and the time series X = 〈4, 2, 2, 1, 5, 3, 2, 4〉 whose signature is
‘>=><>>< ’. A σ-pattern, called a decreasing sequence, within a time series is
a subseries whose signature is a maximal occurrence
of σ in the signature of X, and the surf feature value
of a decreasing sequence is the sum of its elements.
The time series X contains two decreasing sequences,
namely 〈4, 2, 2, 1〉 and 〈5, 3, 2〉, shown in the figure on
the right, of surfaces 9 and 10, respectively. Hence, the
aggregation of their surfaces, obtained by using the
aggregator Max, or Sum is 10, or 19 respectively. The correspond-
ing time-series constraints are max_surf_decreasing_sequence, and
sum_surf_decreasing_sequence. �

3 Deriving AMONG Implied Constraint

Consider a g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint with g being
either Sum or Max, with f being the surf feature, and with every Xi ranging over
the same integer interval domain [�, u] such that u > 0. For brevity, we do not
consider here the case when u ≤ 0, since it can be handled in a symmetric way.
We derive an among(N , 〈X1, X2, . . . , Xn〉, 〈I〈�,u〉

〈g,f,σ〉, I
〈�,u〉
〈g,f,σ〉 + 1, . . . , I〈�,u〉

〈g,f,σ〉〉)
implied constraint, where:

– For any value of R, N is an integer variable whose lower bound only depends
on R, σ, f , �, u, and n.

– The interval I〈�,u〉
〈g,f,σ〉 = [I〈�,u〉

〈g,f,σ〉, I
〈�,u〉
〈g,f,σ〉] is a subinterval of [�, u], which is

called the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 and defined in Sect. 3.1.

Such an among [13] constraint is satisfied if exactly N variables of 〈X1,X2, . . . ,

Xn〉 are assigned a value in I〈�,u〉
〈g,f,σ〉. Before formally describing how to derive

this implied constraint, we provide an illustrating example.
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Example 2. Consider a max_surf_σ(〈X1,X2, . . . X7〉, R) time-series con-
straint with every Xi ranging over the same integer interval domain [1, 4], and
with σ being the DecreasingSequence regular expression of Example 1.

σ-pattern 1 σ-pattern 2

〈4, 3, 3, 3, 3, 2〉 〈4, 3, 3, 3, 2, 2, 1〉

Let us observe what happens when R is fixed, for example, to 18. The table
on the right gives the two distinct σ-patterns
such that at least one of them appear in every
ground time series X = 〈X1,X2, . . . , X7〉 that
yields 18 as the value of R. By inspection, we
observe that for any ground time series X for which R equals 18, its sin-
gle σ-pattern contains at least 4 time-series variables whose values are in [3, 4].
Hence, we can impose an among(N , 〈X1,X2, . . . , X7〉, 〈3, 4〉) implied constraint
with N ≥ 4. �

We now formalise the ideas presented in Example 2 and systematise the way
we obtain such an implied constraint even when R is not initially fixed.

– Section 3.1 introduces five characteristics of a regular expression σ, which will
be used to obtain a parameterised implied constraint:

• the height of σ (see Definition 1),
• the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 (see Definition 2),
• the maximal value occurrence number of v ∈ Z wrt 〈�, u, n〉 (see Defini-

tion 3),
• the big width of σ wrt 〈�, u, n〉 (see Definition 4), and
• the overlap of σ wrt 〈�, u〉 (see Definition 5).

– Based on these characteristics, Sect. 3.2 presents a systematic way of deriving
among implied constraints for the max_surf_σ and the sum_surf_σ
families of time-series constraints.

3.1 Characteristics of Regular Expressions

To get a unique per family among implied constraint that is valid for any
g_surf_σ(X,R) time-series constraint with g being either Sum or Max, we intro-
duce five characteristics of regular expressions that will be used for parametrising
our implied constraint. First, Definition 1 introduces the notion of height of a
regular expression, that is needed in Definition 2, which defines the specific range
of values on which the implied among constraint focusses on.

Definition 1. Given a regular expression σ, the height of σ, denoted by ησ, is a
function that maps an element of RΣ to N. It is the smallest difference between
the domain upper limit u and the domain lower limit � such that there exists a
ground time series over [�, u] whose signature has at least one occurrence of σ.

Example 3. Consider the σ = DecreasingSequence regular expression of
Example 1.

• When u = �, for any time-series length, there exists a single ground time
series t whose signature is a word in the regular language of ‘=∗’. The sig-
nature of t contains no occurrences of the ‘> ’ symbol, and thus contains no
words of Lσ either.
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• But when u − � = 1, there exists, for example, a time series t = 〈u − 1, u, u −
1, u − 1〉, depicted in Fig. 1a, whose signature ‘<>= ’ contains the word ‘> ’
of Lσ. Hence, the height of σ equals 1. �

Fig. 1. For all the figures, σ is the DecreasingSequence regular expression. A time
series t (a) with one σ-pattern such that the difference between its maximum and
minimum is 1; (b) with one σ-pattern, which contains a single occurrence of value u−1;
(c) with one σ-pattern, which contains 2 occurrences of value u − 1; (d) with the
maximum number, 3, of σ-patterns, which all contain one occurrence of value u − 1,
and only one contains an occurrence of value u − 2; (e) with one σ-pattern, which
contains one occurrence of both u and u − 1; (f) with one σ-pattern, whose width is
maximum among all other σ-patterns in ground time series of length 5 over the same
domain [u − 2, u].

Definition 2. Consider a g_f_σ(X,R) time-series constraint with X being
a time series over an integer interval domain [�, u]. The interval of interest
of 〈g, f, σ〉 wrt 〈�, u〉, denoted by I〈�,u〉

〈g,f,σ〉, is a function that maps an element
of T × Z × Z to Z × Z, where T denotes the set of all time-series constraints,
and the result pair of integers is considered as an interval.

– The upper limit of I〈�,u〉
〈g,f,σ〉, denoted by I〈�,u〉

〈g,f,σ〉, is the largest value in [�, u]
that can occur in a σ-pattern of a time series over [�, u]. If such value does
not exist, then I〈�,u〉

〈g,f,σ〉 is undefined.

– The lower limit of I〈�,u〉
〈g,f,σ〉, denoted by I〈�,u〉

〈g,f,σ〉, is the smallest value v

in [max(�, u − ησ − 1), u] such that for any n in N, the number of occur-
rences of v in the union of the σ-patterns of any maximal time series for
g_f_σ of length n over [�, u], is a non-constant function of n. If such v does
not exist, then I〈�,u〉

〈g,f,σ〉 equals I〈�,u〉
〈g,f,σ〉 − ησ.

We focus on such intervals of interests because they consist of the largest
values appearing in maximal time series for g_f_σ.

Example 4. Consider a g_f_σ(X,R) time-series constraint with σ being the
DecreasingSequence regular expression, with f being the surf feature, and
with X being a time series of length n ≥ 2 over an integer interval domain [�, u]
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such that u > 1 and u > �. We consider different combinations of triples 〈g, f, σ〉
and their corresponding intervals of interest wrt 〈�, u〉. Note that the value
of I〈�,u〉

〈g,f,σ〉 depends only on σ, �, and u and not on g and f . The largest value

appearing in the σ-patterns of X is u, and thus I〈�,u〉
〈g,f,σ〉 = u. We compute the

value of I〈�,u〉
〈g,f,σ〉 wrt two time-series constraints:

• Let g be the Max aggregator.
* If u−� = 1, then any σ-pattern of X has a signature ‘> ’, i.e. contains only

two elements. Then, the maximum value of R is reached for a time series t
that contains the 〈u, u − 1〉 σ-pattern. The rest of the variables of t are
assigned any value, e.g. all other variables have a value of u. Such a time
series t for the length 4 is shown in Fig. 1b. Further, for any v in [�, u],
the number of occurrences of v in the union of the σ-patterns of t is at
most 1, which is a constant, and does not depend on n. By definition
I〈�,u〉

〈g,f,σ〉 = I〈�,u〉
〈g,f,σ〉 − ησ = u − 1.

* If u − � > 1, then any maximal time series t for g_f_σ contains a
single σ-pattern whose signature is in the language of ‘>=∗>’. If, for
example, n = 4, then t has n − 2 = 2 time-series variables with the
values u − 1, which is depicted Fig. 1c. In addition, the σ-pattern of t has
a single occurrence of the value u − 2. Hence, I〈�,u〉

〈g,f,σ〉 = u − 1.
• Let g be the Sum aggregator.

Any maximal time series t for g_f_σ contains
⌊

n
2

⌋
σ-patterns, which

contains u and u − 1, and at most one of them has the value u − 2. Such a
time series t for the length n = 7 is depicted in Fig. 1d. Hence, I〈�,u〉

〈g,f,σ〉
= u − 1. �

The next characteristic, we introduce, is a function of �, u and n related to
the maximum number of value occurrences in a σ-pattern.

Definition 3. Consider a regular expression σ, and a time series X of length n
over an integer interval domain [�, u]. The maximum value occurrence number
of v in Z wrt 〈�, u, n〉, denoted by μ

〈�,u,n〉
σ (v), is a function that maps an element

of RΣ ×Z×Z×N
+ ×Z to N. It equals the maximum number of occurrences of

the value v in one σ-pattern of X.

Example 5. Consider the σ = DecreasingSequence regular expression and a
time series X of length n ≥ 2 over an integer interval domain [�, u] such that u >
�. We compute the maximum value occurrence number of v in Z wrt 〈�, u, n〉. If v

is not in [�, u], then μ
〈�,u,n〉
σ (v) = 0. Hence, we focus on the case when v ∈ [�, u].

• If u − � = 1, then any σ-pattern of X has a signature ‘> ’, and thus it may
have at most one occurrence of any value v in [�, u]. Hence, for any v in [�, u],
μ

〈�,u,n〉
σ (v) = 1.

• If u − � > 1, then we consider two subsets of [�, u]:
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* For either v in the set {�, u}, the value of μ
〈�,u,n〉
σ (v) is 1, since in any

σ-pattern the lower and upper limits of the domain, namely � and u, can
appear at most once, as it illustrated in Fig. 1e for the length n = 4.

* For any v in [�+1, u−1], the value of μ
〈�,u,n〉
σ (v) is max(1, n−2), since v can

occur at most n − 2 times in a σ-pattern of X. The time series in Fig. 1c
has a single σ-pattern, namely 〈t1, t2, t3, t4〉, which has n − 2 = 4− 2 = 2
occurrences of the value u − 1. �

The next characteristic, we introduce, is the largest width of a σ-pattern in
a time series.

Definition 4. Consider a regular expression σ, and a time series X of length n
over an integer interval domain [�, u]. The big width of σ wrt 〈�, u, n〉, denoted
by β

〈�,u,n〉
σ , is a function that maps an element of RΣ × Z × Z × N

+ to N. It
equals the maximum width of a σ-pattern in X. If X cannot have any σ-patterns,
then β

〈�,u,n〉
σ is 0.

Example 6. Consider the σ = DecreasingSequence regular expression and a
time series X of length n over an integer interval domain [�, u].

• If n ≤ 1, then X cannot have any σ-patterns, since a minimum width
σ-pattern contains at least two elements. Hence, β

〈�,u,n〉
σ = 0.

• If u − � = 0, then, as it was shown in Example 3, no word of Lσ can appear
in the signature of any ground time series over [�, u], and thus X cannot have
any σ-patterns. Hence, β

〈�,u,n〉
σ = 0.

• If u − � = 1 and n ≥ 2, then any σ-pattern of X has a signature ‘ > ’. The
width of such a σ-pattern is 2. Hence, β

〈�,u,n〉
σ = 2.

• If u − � > 1 and n ≥ 2, then there exists a word in Lσ that is also in the
language of ‘>=∗>’ and whose length is n − 1. This word is the signature
of some ground time series t of length n over [�, u], which contains a single
σ-pattern of width n. Such a time series t for the length n = 5 is illustrated
in Fig. 1f. The width of a σ-pattern cannot be greater than n, thus
β

〈�,u,n〉
σ = n. �

The last characteristic is the notion of maximum overlap of a regular expres-
sion wrt an integer interval domain. It will be used for deriving an implied among
constraint when the aggregator of a considered time-series constraint is Sum.

Definition 5. Consider a regular expression σ and an integer interval domain
[�, u]. The overlap of σ wrt [�, u], denoted by o

〈�,u〉
σ , is the maximum number of

time-series variables that belong simultaneously to two extended σ-patterns of a
time series among all time series over [�, u]. If such maximum number does not
exist, then o

〈�,u〉
σ is undefined.

Example 7. Consider the σ = DecreasingSequence regular expression and an
interval [�, u] with u > �. For any time series over [�, u], any of its two extended
σ-patterns have no time-series variables in common, thus o

〈�,u〉
σ = 0. �
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Table 1 gives the values of the four characteristics of regular expressions for
some regular expressions of [5], while Tables 2 and 3 provide the intervals of
interest for 12 time-series constraints.

Table 1. For every regular expression σ, [�, u] is an integer interval domain, and n
is a time series length, such that there is at least one ground time series of length n
over [�, u] whose signature contains at least one occurrence of σ. Then, ησ is the height
of σ, μ

〈�,u,n〉
σ (v) is the maximum value occurrence number of v ∈ [�, u] wrt 〈�, u, n〉,

β
〈�,u,n〉
σ is the big width of σ wrt 〈�, u, n〉, and o

〈�,u〉
σ is the overlap of σ wrt 〈�, u〉.

σ ησ μ
〈�,u,n〉
σ (v) β

〈�,u,n〉
σ o

〈�,u〉
σ

‘ >><>> ’ 2

⎧
⎨

⎩

1, if v ∈ {�, � + 1, u − 1, u}
2, if v ∈ [� + 2, u − 2]

3 3

‘>’ 1 1, ∀v ∈ [�, u] 2 1

‘(>(>|=)*)*>’ 1

⎧
⎨

⎩

1, if v ∈ {u, �}
max(1, n − 2), if v ∈ [� + 1, u − 1]

⎧
⎨

⎩

2, if u − � = 1

n, Otherwise
0

‘(>(>|=)*)*><((<|=)*<)*’ 1

⎧
⎪⎪⎨

⎪⎪⎩

0, if v = u

n − 3, if v ∈ [� + 1, u − 1]

1, if v = �

⎧
⎨

⎩

1, if u − � = 1

n − 2, Otherwise
1

‘<(<|=)* (>|=)*>’ 1

⎧
⎨

⎩

0, if v = �

n − 2, if v ∈ [� + 1, u]
n − 2 1

‘(<>)+(< | <>)|(><)+(> | ><)’ 1
⌊

n−1
2

⌋
, ∀v ∈ [�, u] n − 2

⎧
⎨

⎩

0, if u − � = 1

1, Otherwise

3.2 Deriving an AMONG Implied Constraint for the MAX_SURF_σ
and the SUM_SURF_σ Families

Consider a g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint with every Xi

ranging over the same integer interval domain [�, u], with f being the surf
feature, and with g being either Max or Sum. Our goal is to estimate a lower
bound on N , which is the number of time-series variables in the σ-patterns
of 〈X1,X2, . . . , Xn〉 that must be assigned a value in the interval of inter-
est I〈�,u〉

〈g,f,σ〉 of 〈g, f, σ〉 wrt 〈�, u〉, in order to satisfy the g_f_σ(〈X1,X2, . . . , Xn〉,
R) constraint. Theorems 1 and 2 present such inequality for the cases when g is
Max, and Sum, respectively, using the four characteristics introduced in Sect. 3.1.
Example 8 first conveys the intuition behind Theorem 1.

Example 8. Consider a g_f_σ(X,R) time-series constraint with g being Max,
with f being surf, with σ being the DecreasingSequence regular expression,
and with X being a time series of length n = 9 over the integer interval
domain [�, u] = [0, 4]. Let us assign R to the value 24, and let us compute a
lower bound on N , the number of variables of X that must be assigned a value
from I〈�,u〉

〈g,f,σ〉, which is [3, 4] as it was shown in Example 4. Our aim is to show
that for a σ-pattern in X, its number of time-series variables in [3, 4] can be esti-
mated as the difference between the value of the surface of this σ-pattern and
some other value that is a function of σ, �, u and n. In order to obtain this value,
we construct a time series t of length β

〈�,u,n〉
σ = 9 satisfying all the following con-

ditions:
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1. The number of time-series variables of t that are assigned to the value I〈�,u〉
〈g,f,σ〉

equals μ
〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = μ
〈0,4,9〉
σ (4) = 1.

2. The number of time-series variables of t that are assigned to the value I〈�,u〉
〈g,f,σ〉,

which is I〈�,u〉
〈g,f,σ〉 − 1, equals μ

〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = μ
〈0,4,9〉
σ (3) = n − 2 = 7.

3. The rest of the time-series variables of t, namely n − μ
〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) −
μ

〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = 1 time-series variable, is assigned to the value I〈�,u〉
〈g,f,σ〉 −

1 = 2.

0

1

2

3

4

X1X2X3X4X5X6X7X8X9

t

I〈0
,4

〉
〈g

,f
,σ

〉 Figure on the left illustrates a ground time series t of
length 9 over [0, 4] satisfying all the three conditions.
By construction, the sum of elements of t is greater
than or equal to the surface of any σ-pattern of X.
Furthermore, for any σ-pattern of X, its number of

time-series variables whose values are in [3, 4] is not greater than the number of
such time-series variables of t.

Figure above on the left contains three type of points: circled, squared and
diamond-shaped points; thus our goal is to evaluate the number of circles. The
value of Xi is one plus the number of squared and diamond-shaped points under
the point corresponding to Xi. Hence, the sum of all elements of t can be viewed
as the total number of circled, squared and diamond-shaped points. Furthermore,
the number of circles is the difference between the total number of points and
the number of squared points, namely 27 minus 19, which is 8.

0

1

2

3

4

X1X2X3X4X5X6X7X8X9

t′
I〈0

,4
〉

〈g
,f

,σ
〉For any σ-pattern of X, its corresponding number

of squared and diamond-shaped points is at most 19.
Then, its number of time-series variables whose values
are in [3, 4] can be estimated as the surface of the σ-
pattern minus 19. Hence, when the surface of the σ-
pattern is 24, a lower bound on N is 5. Figure on the right gives an example
of a ground time series t′ of length 9 over [0, 4] that contains a σ-pattern with
a surface of 24. This σ-pattern has 6 ≥ 5 values in [3, 4], which agrees with our
computed lower bound. �

Theorem 1. Consider a g_f_σ(X,R) time-series constraint with g =
Max, f = surf and X being a time series of length n over an integer inter-
val domain [�, u]; then among(N ,X, I) is an implied constraint, where N is
restricted by

N ≥ R − max (0, I − 1) · β −
∑

v∈[I+1,I]
μ〈�,u,n〉

σ (v) · (v − I) , (1)

where β (resp. I) is shorthand for β
〈�,u,n〉
σ (resp. I〈�,u〉

〈g,f,σ〉), and I (resp. I) denotes
the lower (resp. upper) limit of interval I.
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Proof . We show that the right-hand side of the stated inequality is a lower bound
on the number of time-series variables of a σ-pattern whose values are in I, and
the surface of the σ-pattern is R. In order to prove the lower bound on N , we
first compute a lower bound on the number N I of time-series variables of the
σ-pattern whose values are I, which is the smallest value of interval I. We assume
that for every v > I in I, the number of occurrences of v in the σ-pattern equals
some N v. Note that the number of time-series variables in any σ-pattern is not
greater than β = β

〈�,u,n〉
σ . We state the following inequality:

R ≤ N I · max(0, I)

︸ ︷︷ ︸
A

+
∑

v∈[I+1,I]

N v · max(0, v)

︸ ︷︷ ︸
B

(2)

+max(0, I − 1) · (β − N I −
∑

v∈[I+1,I]

N v)

︸ ︷︷ ︸
C

,

where A,B, and C correspond to the sums of elements of the σ-pattern that
equal I, are in I and are greater than I, and are outside I〈�,u〉

〈g,f,σ〉 respectively.
From Inequality (2) we obtain the following lower bound on N I :

N I ≥ R −
∑

v∈[I+1,I]

N v · max(0, v) − max(0, I − 1) · (β −
∑

v∈[I+1,I]

N v). (3)

In order to obtain a lower bound on N from the known lower bound on N I ,
we add

∑

v∈[I+1,I]

N v to both sides of Inequality (3). Further, we regroup some

terms in Inequality (3), we eliminate
∑

v∈[I+1,I]

N v in the right-hand side of

Inequality (3) by replacing it with
∑

v∈[I+1,I]

μ
〈�,u,n〉
σ (v), and obtain the inequality

of the theorem. 
�

Example 9. Consider the g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint,
with g being Sum, with f being surf, and with every Xi (with i ∈ [1, n]) ranging
over the same domain [�, u] with u > 1 and u−� > 1. We illustrate the derivation
of among implied constraints for two regular expressions.

• Consider the σ = DecreasingSequence regular expression and n ≥ 2.
In Example 4, we computed the interval of interest of max_surf_σ

wrt 〈�, u〉, which is [u − 1, u]. In Example 5, we showed that μ
〈�,u,n〉
σ (�) =

μ
〈�,u,n〉
σ (u) = 1, and for every value v in [�+1, u− 1], we have that μ

〈�,u,n〉
σ (v)

equals max(1, n−2). Finally, in Example 6 we demonstrated that β
〈�,u,n〉
σ = n.

By Theorem1, we can impose the among(N ,X, 〈u−1, u〉) implied constraint
with N ≥ R−μ

〈�,u,n〉
σ (u)−max(0, I〈�,u〉

〈g,f,σ〉−1)·β〈�,u,n〉
σ = R−1−max(0, u−2)·n.
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Turning back to Example 8 we observe that, in the obtained implied con-
straint, the term ‘1’ corresponds to the number of squared points, and the
term ‘max(0, u−2) ·n’ to the number of diamond-shaped points. The derived
lower bound on N also appears in the third row of Table 2.

• Consider the σ = Peak = ‘<(<|=)* (>|=)*>’ regular expression whose val-
ues of aσ and bσ both equal 1, and n ≥ 3. The maximum value in [�, u]
that appears in a σ-pattern is u. In addition, any maximal time series
for 〈g, f, σ〉 contains a single σ-pattern whose values are all the same and
equal u. Hence, the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 is [u, u]. Since
both aσ and bσ equal 1, the smallest value in [�, u] may not be in any σ-pattern
and μ

〈�,u,n〉
σ (�) = 0. For any value v ∈ [� + 1, u], we have μ

〈�,u,n〉
σ (v) = n − 2.

By Theorem2, we impose an among(N , 〈X1,X2, . . . , Xn〉, 〈u〉) implied con-
straint with N ≥ R −max(0, u − 1) · (n − 2). The derived lower bound on N
also appears in the fifth row of Table 2. �

Table 2 gives for 6 regular expressions of [5] the corresponding intervals of
interest of max_surf_σ constraints wrt some integer interval domain [�, u] such
that u > 1 ∧ u−� > 1, as well as the lower bound LB on the parameter N of the
derived among constraint for time series that may have at least one σ-pattern.

Table 2. Regular expression σ, the corresponding interval of interest of max_surf_σ
(X, R) wrt an integer interval domain [�, u] such that u > 1 and u−� > 1, and the lower
bound LB on the parameter of the derived among implied constraint. The value LB is
obtained from a generic formula, which is parameterised by characteristics of regular
expressions. The sequence X is supposed to be long enough to contain at least one
σ-pattern.

σ I〈�,u〉
〈max,surf,σ〉 LB

‘ >><>> ’ [u − 2, u] R − max(0, u − 3) · 3 − 3

‘>’ [u − 1, u] R − max(0, u − 2) · 2 − 1

‘(>(>|=)*)*>’ [u − 1, u] R − max(0, u − 2) · n − 1

‘(>(>|=)*)*><((<|=)*<)*’ [u − 1, u − 1] R − max(0, u − 2) · (n − 2)

‘<(<|=)* (>|=)*>’ [u, u] R − max(0, u − 1) · (n − 2)

‘(<>)+(< | <>)|(><)+(> | ><)’ [u − 1, u] R−max(0, u−2) ·(n−2)−⌊n−1
2

⌋

Theorem 2. Consider a g_f_σ(X,R) time-series constraint with g =
Sum, f = surf and X being a time series of length n over an integer inter-
val domain [�, u]; then among(N ,X, I) is an implied constraint, where N is
restricted by

N ≥ R − max (0, I − 1) ·
(
n − aσ − bσ + (po − 1) · max(0, o〈�,u〉

σ − aσ − bσ)
)

−
∑

v∈[I+1,I]
μ〈�,u,n〉

σ (v) · po · (v − I) (4)

− (po − 1) · max(0, o〈�,u〉
σ − aσ − bσ),
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where I is shorthand for I〈�,u〉
〈g,f,σ〉, I (resp. I) denotes the lower (resp. upper)

limit of I, and po is 1 if every maximal time series has a single σ-pattern, and
is the maximal number of σ-patterns in a time series of length n, otherwise.

Proof. To prove Theorem 2 we consider a time series with p ≥ 1 σ-patterns,
where σ-pattern i (with i ∈ [1, p]) has a width of ωi and a surface of Ri, and
where R =

∑
i∈[1,p] Ri. The proof consists of two steps:

1. First, for each σ-pattern i (with i ∈ [1, p]), we compute the minimum number
Ni of time-series variables that must be assigned to a value within the interval
of interest I, in order to reach a surface of Ri.

2. Second, we take the sum of Ni, and minimise the obtained value, which, in
the end, will be a minimum value for N .

First Step. We use Inequality (1) of Theorem 1 for a subseries X ′ of X of
length ω′

i = ωi + aσ + bσ, knowing that X ′ has a single σ-pattern and β
〈�,u,n〉
σ

is ωi. Then, by Theorem 1, we obtain the following estimation of Ni:

Ni ≥ Ri − ωi · max(0, I − 1) −
∑

v∈[I+1,I]

(v − I) · μ
〈�,u,ω′

i〉
σ (v). (5)

Second Step. We obtain the minimum value of N , by taking the sum of the
derived minimum values for Ni over all the values of i:

N =
p∑

i=1

Ni ≥
p∑

i=1

(Ri − Ai − Bi) − C = R −
p∑

i=1

Ai −
p∑

i=1

Bi − C, (6)

where for any i ∈ [1, p], Ai = ωi · max(0, I − 1) and Bi =
∑

v∈[I+1,I]

μ
〈�,u,ω′

i〉
σ (v) ·

(v − I), and C = (p − 1) · max(0, o〈�,u〉
σ − aσ − bσ). The terms Ai and Bi come

from Inequality (5) and the term C is used because some variables may belong to
two σ-patterns: in order to not count them twice we subtract a correction term.

Let A (resp. B) denote
p∑

i=1

Ai (resp.
p∑

i=1

Bi). In order to satisfy Condition 6, we

need to find the upper bounds on the sum A+B+C by choosing the value of p,
and the sum of σ-patterns lengths. We consider two cases, but any additional
information may be used for a more accurate estimation of these parameters:

– [every maximal time series has a single σ-pattern] Then, the maximum

value of A + B + C is reached for p being 1, and
p∑

i=1

ωi being n − bσ − aσ. It

implies that for any v ∈ [I〈�,u〉
〈g,f,σ〉 + 1, I〈�,u〉

〈g,f,σ〉], the value of
∑

i∈[1,p]

μ
〈�,u,ω′

i〉
σ (v)

equals μ
〈�,u,n〉
σ (v).

– [there is at least one maximal time series with more than one
σ-pattern] We give an overestimation: we assign the value of p to its maximum
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value, which depends on σ, the value of
p∑

i=1

ωi is overestimated by n − aσ −

bσ + (po − 1) · max(0, o〈�,u〉
σ − aσ − bσ), and the value of

∑

i∈[1,p]

μ
〈�,u,ω′

i〉
σ (v) is

overestimated by μ
〈�,u,n〉
σ (v) · po .

Hence, we obtain a lower bound for N , which is the right hand side of the
inequality stated by Theorem2. 
�

Table 3. Regular expression σ, the corresponding interval of interest of sum_surf_σ
(X, R) wrt an integer interval domain [�, u] such that u > 1 and u−� > 1, and the lower
bound LB on the parameter of the derived among implied constraint. The value LB is
obtained from a generic formula, which is parameterised by characteristics of regular
expressions. The sequence X is supposed to be long enough to contain at least one
σ-pattern.

σ I〈�,u〉
〈sum,surf,σ〉 LB

‘ >><>> ’ [u − 2, u] R − max(0, u − 3) ·
(n − 3) − 3 · ⌊n−3

3

⌋

‘>’ [u − 1, u] R − max(0, u − 2) ·
(2 · n − 2) − (2 · n − 3)

‘(>(>|=)*)*>’ [u − 1, u] R−max(0, u−2)· n−⌊n
2

⌋

‘(>(>|=)*)*><((<|=)*<)*’ [u − 1, u − 1] R−max(0, u−2) ·(n−2)

‘<(<|=)* (>|=)*>’ [u, u] R−max(0, u−1) ·(n−2)

‘(<>)+(< | <>)|(><)+(> | ><)’ [u − 1, u] R − max(0, u − 2) ·
(n − 2) − ⌊n−1

2

⌋

Example 10. Consider the g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint,
with g being Sum, with f being surf and with every Xi (with i ∈ [1, n]) ranging
over the same domain [�, u] with u > 1 and u−� > 1. We illustrate the derivation
of among implied constraints for two regular expressions.

• Consider the σ = DecreasingSequence regular expression and n ≥ 2.
In Example 4, we found that the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉
is [u − 1, u], and in Example 5, we showed that μ

〈�,u,n〉
σ (�) = μ

〈�,u,n〉
σ (u) = 1,

and for every value v in [�+1, u−1], we have that μ
〈�,u,n〉
σ (v) equals max(1, n−

2). Every maximal time series for sum_surf_σ contains the maximum num-
ber of σ-patterns. Hence, in this case, the value of po equals the maximum
number of decreasing sequences in a time series of length n, which is

⌊
n
2

⌋
.

By Theorem 2, we impose an among(N , 〈X1,X2, . . . , Xn〉, 〈u−1, u〉) implied
constraint with N ≥ R −

⌊
n
2

⌋
− max(0, u − 2) · n. The derived lower bound

on N also appears in the third row of Table 3.
• Consider the σ = Peak = ‘<(<|=)* (>|=)*>’ regular expression and n ≥ 3.

The maximum value in [�, u] that occurs in a σ-pattern is u. In addition,
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any maximal time series for 〈g, f, σ〉 contains a single σ-pattern whose val-
ues are all the same and equal u. Hence, the interval of interest of 〈g, f, σ〉
wrt 〈�, u〉 is [u, u], and the value of po equals 1. We showed in Example 9
that μ

〈�,u,n〉
σ (�) = 0 and for any v ∈ [� + 1, u], we have μ

〈�,u,n〉
σ (v) = n − 2.

The value of o
〈�,u〉
σ equals 1. By Theorem 2, we impose an among(N , 〈X1,

X2, . . . , Xn〉, 〈u〉) implied constraint with N ≥ R − max(0, u − 1) · (n − 2).
The derived lower bound on N also appears in the fifth row of Table 3. �

Table 3 gives for 6 regular expressions of [5] the corresponding intervals of
interest of sum_surf_σ constraints wrt some integer interval domain [�, u] such
that u > 1 ∧ u−� > 1, as well as the lower bound LB on the parameter N of the
derived among constraint for time series that may have at least one σ-pattern.

4 Evaluation

The intended use case is a problem where we learn parameters for a conjunction
of many time-series constraints from data, and use this conjunction to create new
time-series that are “similar” to the existing ones. An example would be electric-
ity production data for a day [10], in half hour periods (48 values), or manpower
levels per week over a year (52 values). To solve the conjunction, we need strong
propagation for each individual constraint. We therefore evaluate the impact of
the implied constraint on both execution time and the number of backtracks for
the time-series constraints of the max_surf_σ and the sum_surf_σ families
for which a glue constraint [4] exists, which are 38 out of 44 time-series con-
straints of the two families. These families of constraints were the most difficult
to solve in the experiments reported in [4].

In the experiments for both families, we consider a single g_surf_σ(X,
R) time-series constraint with g being either Sum or Max, for which we first
systematically try out all potential values of the parameter R, and then either
find a solution by assigning the Xi or prove infeasibility. We compare the best
(Combined) approach from the recent work [4] to the new method, adding the
implied among constraint on every suffix of X = 〈X1,X2, . . . , Xn〉, and also
a preprocessing procedure. The preprocessing procedure is a useful, if minor,
contribution of the paper for 8 out of 38 of the constraints in the families studied.
The purpose of this procedure is to find all feasible values of R, when σ is such
that any σ-pattern has all values being the same. Such values of R must satisfy
the following constraint:

R = defg,f ∨
(
∃V ∈ [�′, u′] β〈�,u,n〉

σ · V ≥ R ∧ R mod V = 0
)

,

where �′ and u′ are the smallest and the largest value, respectively, that can
occur in a σ-pattern over [�, u].

Since the implied constraints are precomputed offline, posting one implied
constraint takes a constant time, and the time and space complexity of the
preprocessing procedure does not exceed the size of the domain of R, which
is O(n · (u − �)).
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Fig. 2. Comparing backtrack count and runtime of the g_f_σ time-series constraints
for previous best results (old) and new method for finding the first solution or proving
infeasibility for time series of length 50 and domain [0, 5]. Colours of markers indicate
the regular expression, the cross (resp. circle) marker type indicates success (resp.
failure/timeout).

Figure 2 presents the results for the sum_surf_σ (upper plots) and the
max_surf_σ (lower plots) time-series constraints, where X is a time series of
length 50 over the domain [0, 5], when the goal is to find, for each value of R,
the first solution or prove infeasibility. This corresponds to our main use case,
where we want to construct time series with fixed R values. Our static search
routine enumerates the time-series variables Xi from left to right, starting with
the smallest value in the domain. Results for the backtrack count are on the
left, results for the execution time on the right. We use log scales on both axes,
replacing a zero value by one in order to allow plotting. A timeout of 60 s was
imposed. We see that the implied constraints reduce backtracks by up to a factor
exceeding 10,000 and runtime by up to a factor of 1,000, and they divide the
total execution time of terminated instances by a factor of 5 and 45 times when
g is Max and Sum, respectively. All experiments were run on a 2014 iMac 4 GHz
i7 using SICStus Prolog.

The results for the case g = Sum are better than for the case g = Max because
the aggregator Sum allows summing the surfaces of several σ-patterns, whereas
for the Max aggregator, R is the surface of a single σ-pattern, the surfaces of
other σ-patterns, if any, are absorbed.

5 Conclusion

In summary, based on 4 regular expression characteristics, we have defined a sin-
gle per family generic implied constraint for all constraints of the max_surf_σ
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and sum_surf_σ families. The experimental results showed a good speed up
in the number of backtracks and the time spent for the sum_surf_σ family.
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