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Abstract. Distributed Constraint Optimization Problems (DCOPs)
offer a powerful approach for the description and resolution of coopera-
tive multi-agent problems. In this model, a group of agents coordinate
their actions to optimize a global objective function, taking into account
their preferences or constraints. A core limitation of this model is the
assumption that the preferences of all agents or the costs of all con-
straints are specified a priori. Unfortunately, this assumption does not
hold in a number of application domains where preferences or constraints
must be elicited from the users. One of such domains is the Smart Home
Device Scheduling (SHDS) problem. Motivated by this limitation, we
make the following contributions in this paper: (1) We propose a gen-
eral model for preference elicitation in DCOPs; (2) We propose several
heuristics to elicit preferences in DCOPs; and (3) We empirically eval-
uate the effect of these heuristics on random binary DCOPs as well as
SHDS problems.

Keywords: Distributed Constraint Optimization · Smart homes · Pref-
erence elicitation

1 Introduction

The importance of constraint optimization is outlined by the impact of its
application in a range of Weighted Constraint Satisfaction Problems (WCSPs),
also known as Constraint Optimization Problems (COPs), such as supply chain
management [34] and roster scheduling [1]. When resources are distributed
among a set of autonomous agents and communication among the agents are
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restricted, COPs take the form of Distributed Constraint Optimization Problems
(DCOPs) [10,27,33,45]. In this context, agents coordinate their value assign-
ments to minimize the overall sum of resulting constraint costs. DCOPs are
suitable to model problems that are distributed in nature and where a collection
of agents attempts to optimize a global objective within the confines of local-
ized communication. They have been employed to model various distributed
optimization problems, such as meeting scheduling [44,46], sensor networks [9],
coalition formation [40], and smart grids [14,24].

The field of DCOP has matured significantly over the past decade since
its inception [27]. DCOP researchers have proposed a wide variety of solution
approaches, from complete approaches that use distributed search-based tech-
niques [27,28,44] to distributed inference-based techniques [33,41]. There is also
a significant body of work on incomplete methods that can be similarly catego-
rized into local search-based methods [9,23], inference-based techniques [41], and
sampling-based methods [11,29,31]. Researchers have also proposed the use of
other off-the-shelf solvers such as logic programming solvers [21,22] and mixed-
integer programming solvers [17].

One of the core limitations of all these approaches is that they assume that
the constraint costs in a DCOP are known a priori. Unfortunately, in some appli-
cation domains, these costs are only known after they are queried or elicited from
experts or users in the domain. One such application is the Smart Home Device
Scheduling (SHDS) problem [13]. In this problem, agents have to coordinate
with each other to schedule smart devices (e.g., smart thermostats, smart light-
bulbs, smart washers, etc.) distributed across a network of smart homes, where
the goal is to schedule them in such a way that optimizes the preferences of
occupants in those homes subject to a larger constraint that the peak energy
demand in the network does not exceed an energy utility defined limit. Through
the introduction of a number of smart devices in the commercial market, they
are starting to become ubiquitous in today’s very interconnected environment,
consistent with the Internet-of-Things paradigm [25]. Therefore, we suspect that
this SHDS problem will become more important in the future.

DCOPs are a natural framework to represent this problem as each home can
be represented as an agent and the preferences of occupants can be represented
as constraints. Furthermore, due to privacy reasons, it is preferred that the
preferences of each occupant are not revealed to other occupants. The DCOP
formulation allows the preservation of such privacy since agents are only aware
of constraints that they are involved in. We further describe this motivating
application and its mapping to DCOPs in more detail in Sect. 3.

A priori knowledge on the constraint costs is infeasible in our motivating
SHDS application. A key challenge is thus in the elicitation of user preferences
to populate the constraint cost tables. Due to the infeasibility of eliciting pref-
erences to populate all preferences, in this paper, we introduce the preference
elicitation problem for DCOPs, which studies how to select a subset of k cost
tables to elicit from each agent with the goal of choosing those having a large
impact on the overall solution quality. We propose several methods to select this
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subset of cost tables to elicit, based on the notion of partial orderings. Addition-
ally, we extend the SHDS problem to allow for the encoding and elicitation of
soft preferences, and evaluate our methods on this extended SHDS problem as
well as on random graphs to show generality. Our results illustrate the effective-
ness of our approach in contrast to a baseline evaluator that randomly selects
cost tables to elicit. While the description of our solution focuses on DCOPs,
our approach is also suitable to solve WCSPs.

2 Background

WCSP: A Weighted Constraint Satisfaction Problem (WCSP) [20,36] is a
tuple P = 〈X ,D,F〉, where X = {x1, . . . , xn} is a finite set of variables,
D = {D1, . . . , Dn} is a set of finite domains for the variables in X , with
Di being the set of possible values for the variable xi, and F is a set of
weighted constraints (or cost tables). A weighted constraint fi ∈ F is a func-
tion, fi : �xj∈xfi Dj → R

+
0 ∪ {⊥}, where xfi ⊆ X is the set of variables relevant

to fi, referred to as the scope of fi, and ⊥ is a special element used to denote
that a given combination of value assignments is not allowed. A solution x is
a value assignment to a set of variables Xx ⊆ X that is consistent with the
variables’ domains. The cost FP(x) =

∑
f∈F,xf⊆Xx

f(x) is the sum of the costs
of all the applicable cost functions in x. A solution x is said complete if Xx=X .
The goal is to find an optimal complete solution x∗ = argminxFP(x).

DCOP: When the elements of a WCSP are distributed among a set of
autonomous agents, we refer to it as a Distributed Constraint Optimization
Problem (DCOP) [27,33,45]. Formally, a DCOP is described by a tuple P =
〈X ,D,F ,A, α〉, where X , D, and F are the set of variables, their domains, and
the set of cost functions, defined as in a classical WCSP, A={a1, . . . , ap} (p ≤ n)
is a set of autonomous agents, and α : X → A is a surjective function, from vari-
ables to agents, mapping the control of each variable x ∈ X to an agent α(x).
The goal in a DCOP is to find a complete solution that minimizes its cost:
x∗ = argminxFP(x). A DCOP can be described by a constraint graph, where
the nodes correspond to the variables in the DCOP, and the edges connect pairs
of variables in the scope of the same cost functions. Following [12], we introduce
the following definitions:

Definition 1. For each agent ai ∈ A, Li = {xj ∈ X |α(xj)=ai} is the set of its
local variables. Ii ={xj ∈ Li | ∃xk ∈ X ∧∃fs ∈ F : α(xk) �= ai ∧{xj , xk} ⊆ xfs}
is the set of its interface variables.

Definition 2. For each agent ai ∈ A, its local constraint graph Gi = (Li, EFi
)

is a subgraph of the constraint graph, where Fi = {fj ∈ F | xfj ⊆ Li}.
Figure 1(a) shows the constraint graph of a sample DCOP with 3 agents a1,
a2, and a3, where L1 = {x1, x2}, L2 = {x3, x4}, L3 = {x5, x6}, I1 = {x2},
I2 = {x4}, and I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}. Figure 1(b)
shows the cost table of all constraints; all constraints have the same cost table
for simplicity.
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Fig. 1. Example DCOP and uncertain DCOP

3 Motivating Domain: Smart Home Device Scheduling
Problem

We now provide a description of (a variant of) the Smart Home Device Scheduling
(SHDS) problem [13]. An SHDS problem is composed of a neighborhood H of
smart homes hi ∈ H that are able to communicate with one another and whose
energy demands are served by an energy provider. The energy prices are set
according to a real-time pricing schema specified at regular intervals t within a
finite time horizon H. We use T = {1, . . . , H} to denote the set of time intervals
and θ : T → R

+ to represent the price function associated with the pricing
schema adopted, which expresses the cost per kWh of energy consumed by a
consumer.

Within each smart home hi there is a set of (smart) electric devices Zi

networked together and controlled by a home automation system. We assume
all the devices are uninterruptible (i.e., they cannot be stopped once they are
started) and use szj

and δzj
to denote, respectively, the start time and duration

(expressed in multiples of time intervals) of device zj ∈ Zi. The energy con-
sumption of each device zj is ρzj

kWh for each hour that it is on. It will not
consume any energy if it is off. We use the indicator function φt

zj
to indicate the

state of the device zj at time step t:

φt
zj

=
{

1 if szj
≤ t ∧ szj

+ δzj
≥ t

0 otherwise

Additionally, the usage of a device zj is characterized by a cost, representing the
monetary expense to schedule zj at a given time. The aggregated cost of the
home hi at time step t is denoted with Ct

i and expressed as:

Ct
i = Et

i · θ(t) (1)

where Et
i =

∑
zj∈Zi

φt
zj

· ρzj
is the aggregated energy consumed by home hi at

time step t.
The SHDS problem seeks a schedule for the devices of each home in the

neighborhood in a coordinated fashion so as to minimize the monetary costs
and, at the same time, ensure that user-defined scheduling constraints (called
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active scheduling rules in [13]) are satisfied. The SHDS problem is also subject
to the following constraints:

1 ≤ szj
≤ T − δzj

∀hi ∈ H, zj ∈ Zi (2)
∑

t∈T

φt
zj

= δzj
∀hi ∈ H, zj ∈ Zi (3)

∑

hi∈H
Et

i ≤ �t ∀t ∈ T (4)

where �t ∈ R
+ is the maximum allowed total energy consumed by all the homes

in the neighborhood at time step t. This constraint is typically imposed by
the energy provider and is adopted to guarantee reliable electricity delivery.
Constraint (2) expresses the lower and upper bounds for the start time associated
to the schedule of each device. Constraint (3) ensures the devices are scheduled
and executed for exactly their duration time. Constraint (4) ensures the total
amount of energy consumed by the homes in the neighborhood does not exceed
the maximum allowed threshold.

3.1 DCOP Representation

Fioretto et al. introduced a mapping of the SHDS problem to a DCOP [13]. At a
high level, each home hi ∈ H is mapped to an autonomous agent in the DCOP.
For each home, the start times szj

, indicator variables φt
zj

, and aggregated energy
in the home are mapped to DCOP variables, which are controlled by the agent for
that home. Constraints (2) to (4) are enforced by the DCOP constraints. Finally,
the objective function of the SHDS is expressed through agents’ preferences.

4 Encoding and Eliciting Preferences in SHDS

The above SHDS problem thus far includes exclusively hard constraints and has
no soft constraints (i.e., preferences for when devices are scheduled). Thus, we
will describe in this section how to integrate such preferences as soft constraints
into SHDS.

We consider the scenario in which a single home hi may host multiple users
u ∈ Uhi

, with Uhi
denoting the set of users in hi. In modeling agents’ pref-

erences, we introduce discomfort values dt
zj ,u ∈ R

+
0 describing the degree of

dissatisfaction for a user u to schedule the device zj at a given time step t. Note
that the monetary cost is the same for all users while the degree of dissatisfaction
is user dependent. Thus, to avoid conflicting users’ decision over the control of
the device, we assume that there is one user who has exclusive access to a device
z ∈ Zi at any point in time. In this paper, for each device zj ∈ Zi in home hi and
each time step t, we assume the likelihood for a user to gain exclusive access on a
device zj is expressed through a probability Prt

zj
(i.e., ∀u ∈ Uhi

, P rt
zj

(u) ∈ [0, 1]
and

∑
u∈Uhi

Prt
zj

(u) = 1). Additionally, we use dt
i =

∑
zj∈Zi

φt
zj

· dt
zj

to denote
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the aggregated discomfort in home hi at time step t, where dt
zj

is the discomfort
value of the user who has exclusive access to the device zj at time step t.

We can update the SHDS objective to take into account the users’ preferences
in addition to minimizing the monetary costs. While this is a multi-objective
problem, we combine the two objectives into a single one through the use of a
weighted sum:

minimize
∑

t∈T

∑

hi∈H
αc · Ct

i + αu · dt
i (5)

where αc and αu are weights in the open interval (0, 1) ⊆ R such that αc+αu = 1.
While, in general, the real-time pricing schema θ that defines the cost per

kWh of energy consumed and the energy consumption ρzj
of each device zj are

well-defined concepts and can be easily acquired or modeled, the preferences on
the users’ discomfort values dt

zj ,u on scheduling a device zj at time step t are
subjective and, thus, more difficult to model explicitly.

We foresee two approaches to acquire these preferences: (1) eliciting them
directly from the users and (2) estimating them based on historical preferences
or from preferences of similar users. While the former method will be more
accurate and reliable, it is cumbersome for the user to enter their preference for
every device zj and every time step t of the problem. Therefore, in this paper, we
assume that a combination of the two approaches will be used, where a subset
of preferences will be elicited and the remaining preferences will be estimated
from historical sources or similar users. We believe that this strategy is especially
important in application domains such as the SHDS problem, where users’ pref-
erences may be learned over time, thus, ensuring a continuous elicitation process
of the unknown users preferences.

5 Preference Elicitation in DCOPs

A key drawback of existing DCOP approaches is the underlying assumption of a
total knowledge of the model, which is not the case for a number of applications
involving users’ preferences, including the SHDS problem. Due to the infeasibil-
ity of eliciting all users’ preferences—and, thus, their associated complete cost
tables—in this paper, we study how to choose a subset of k cost tables to elicit.
We first cast this problem as an optimization problem, before describing our
proposed techniques.

Let P̂ = 〈X ,D, F̂ ,A, α〉 denote a DCOP with partial knowledge on the cost
tables in F̂ . The constraints F̂ = Fr ∪ Fu are composed of revealed constraints
Fr, whose cost tables are accurately revealed, and uncertain constraints Fu,
whose cost tables are unrevealed and must be either estimated from historical
sources or elicited. We refer to this problem as the uncertain DCOP.

In this paper, we assume that the costs of the uncertain constraints are sam-
pled from Normal distributions that can be estimated from historical sources.1

1 Other forms of distributions can also be used, but our minimax regret heuristics
require that the form of the distributions have the following property: The sum of
two distributions has the same form as their individual distributions.
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X2 X4 u u

X2 X6 u u

X2 u u

X2 u u

X2 u u
X2 u u X2 u u

(a) (b) (c) (d) (e)

Fig. 2. Minimax regret example

Further, we assume that the distribution for each cost value is independent from
the distribution of all other cost values. Figure 1(c) illustrates an uncertain cost
table whose costs are modeled via random variables obeying Normal distribu-
tions, and u1 and u2 denote two distinct users that can control the associated
device.

5.1 The Preference Elicitation Problem

The preference elicitation problem in DCOPs is formalized as follows: Given an
oracle DCOP P and a value k ∈ N, construct an uncertain DCOP P̂ that reveals
only k constraints per agent (i.e., |Fr| = k · |X |) and minimizes the error:

εP̂ = E
[
FP(x̂∗) − FP(x∗)

]
(6)

where x̂∗ is the optimal solution for a realization of the uncertain DCOP P̂,
and x∗ is the optimal complete solution for the oracle DCOP P. A realization
of an uncertain DCOP P̂ is a DCOP (with no uncertainty), whose values for
the cost tables are sampled from their corresponding Normal distributions. Note
that the possible numbers of uncertain DCOPs that can be generated is

( |F|
k·|X |

)
.

Since solving each DCOP is NP-hard [26], the preference elicitation problem is
a particularly challenging one. Thus, we propose a number of heuristic methods
to determine the subset of constraints to reveal, and to construct an uncertain
problem P̂.

5.2 Preference Elicitation Heuristics

Let us first introduce a general concept of dominance between cost tables of
uncertain constraints. Given two cost tables of uncertain constraints fzi

, fzj
∈

Fu ⊂ F̂ , let �◦ denote the dominance between the two cost tables according to
partial ordering criteria ◦. In other words, fzi

�◦ fzj
means that fzi

dominates
fzj

according to criteria ◦. We now introduce the heuristic methods for different
possible ordering criteria ◦.
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Minimax Regret: Minimax regret is a well-known strategy that minimizes the
maximum regret, and it is particularly suitable in a risk-neutral environment. At
a high level, the minimax regret approach seeks to approximate and minimize
the impact of the worst-case scenario. The idea of using minimax regret in our
domain of interest is derived by the desire of taking into account the possible
different outcomes occurring when eliciting the preferences of different users for a
single device. Further, we assume that constraints that can be elicited are either
unary or binary constraints. We leave to future work the extension to higher
arity constraints. We now describe how to compute the regret for a single user
u, and later how to combine the regrets across multiple users.

We use Prxi
(d) to estimate the likelihood of an assignment d ∈ Di to a

variable xi:

Prxi,u(d) = Πd′∈Di\{d}Pr(ψd
xi,u ≤ ψd′

xi,u) (7)

where ψd
xi,u is the random variable representing the total cost incurred by xi if

it is assigned value d from its domain under user u. Then, the value

d∗
xi,u = argmax

d
Prxi,u(d) (8)

with the largest probability is the one that is most likely to be assigned to xi.
The probability Pr(ψd

xi,u ≤ ψd′
xi,u) can be computed using:

Pr(ψd
xi,u ≤ ψd′

xi,u) =
∫ ∞

c′=0

∫ c′

c=0

Prd
xi,u(c)Prd′

xi,u(c′) dc dc′ (9)

where Prd
xi,u is the probability distribution function (PDF) for random variable

ψd
xi,u. Unfortunately, the PDF Prd

xi,u is not explicitly defined in the uncertain
DCOP. There are two challenges that one needs to address to obtain or estimate
this PDF:

i. First, the total cost incurred by an agent is the summation of the costs
over all constraints of that agent. Thus, the PDF for the total cost needs
to be obtained by summing over the PDFs of all the individual constraint
costs. Since we assume that these PDFs are all Normally distributed, one can
efficiently construct the summed PDF, which is also a Normal distribution.
Specifically, if N (μi, σ

2
i ) is the PDF for random variables ci (i = 1, 2), then

N (μ1 + μ2, σ
2
1 + σ2

2) is the PDF for c1 + c2.
ii. Second, the cost associated to a variable for each constraint is not only depen-

dent on its value but also on the value of the other variables constrained with
it. In turn, the value of those variables depend on the variables that they are
constrained with, and so on. As a result, estimating the true PDF requires
the estimation of all the constraint costs in the entire DCOP. To simplify the
computation process and introduce an independence between the costs of all
variables, we propose the three following variants, each of which estimates the
true PDF Prd,f

xi,u of a random variable ψd,f
xi,u, representing the cost incurred

by xi from constraint f if assigned value d when its control is under user u:
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• Optimistic: In this variant, the agent will optimistically choose the PDF
with smallest mean among all the PDFs for all possible values of variables
xj ∈ xf \ {xi} in the scope of constraint f :

Prd,f
xi,u = N (μ∗, σ2

d̂
) (10)

μ∗ = min
d̂∈Dj

μd̂ (11)

where N (μd̂, σ
2
d̂
) is the PDF of the constraint cost if xi = d and xj = d̂

under user u. For example, in the uncertain cost tables in Fig. 1(c), the
estimated PDF of the cost incurred for the choice x2 = 0 from constraint
f24 is Pr0,f24

x2,u = N (65, 82), which optimistically assumes that x4 will be
assigned value 0 to minimize the incurred cost.

• Pessimistic: In this variant, the agent chooses the PDF with largest
mean among all the PDFs for all possible values of xj ∈ xf \ {xi}:

Prd,f
xi,u = N (μ∗, σ2

d̂
) (12)

μ∗ = max
d̂∈Dj

μd̂ (13)

In Fig. 1(c), the estimated PDF of the cost incurred by x2 = 0 from
constraint f24 is Pr0,f24

x2,u = N (71, 82), which pessimistically assumes that
x4 will be assigned value 1 to maximize the incurred cost.

• Expected: In this variant, the agent chooses the PDF with the “average”
value of all the PDFs for all possible values of xj ∈ xf \ {xi}:

Prd,f
xi,u = N

(
1

|Dj |
∑

d̂∈Dj

μd̂,
1

|Dj |2
∑

d̂∈Dj

σ2
d̂

)

(14)

In Fig. 1(c), the estimated PDF of the cost incurred by x2 = 0 from
constraint f24 is Pr0,f24

x2,u = N (68, 82), assuming that x4 = 0 or x4 = 1
with equal probability.

The regret Rd
xi,u of variable xi being assigned value d is defined as:

Rd
xi,u = 1 − Prxi,u(d) (15)

Each variable xi will most likely be assigned the value d∗
xi

with the smallest
regret by definition (see Eqs. 7 and 8). We thus define the regret Rxi,u for each
variable xi to be the regret for this value:

Rxi,u = R
d∗
xi

xi,u = min
d∈Di

Rd
xi,u (16)

To generalize our approach to also handle multiple users in each house, where
the PDFs differ across users, we take the maximum regret over all users u for



Preference Elicitation for DCOPs 287

each variable xi and its value d before taking the minimum over all values. More
precisely,

Rxi
= min

d∈Di

max
s

Rd
xi,u (17)

Therefore, the minimax regret approach seeks to approximate the impact of the
worst-case scenario. Finally, we define the regret Rfi

for a constraint fi to be
the absolute difference between the regrets of the variables in the scope of the
function:

Rfi
= |Rxi1

− Rxi2
| (18)

where xfi = {xi1 , xi2}.
While defining the regret to be the sum of the two variables’ regrets may be

more intuitive, our experimental results show that the above definition provides
better results. Intuitively, if the regret of a variable xi is large, then there is lit-
tle confidence that it will take on value d∗

xi
with the smallest regret because the

PDFs for all its values are very similar and have significant overlaps. Thus, elic-
iting a constraint between two variables with large regrets will likely not help in
improving the overall solution quality since the PDFs for all value combinations
for that constraint are likely to be similar.

Similarly, if the regret of a variable is small, then there is a high confidence
that it will be assigned value with the smallest regret because the PDFs for its
values are sufficiently distinct that regardless of the actual realizations of the
random variables (costs in the cost table), the value with the smallest regret will
be the one with the smallest cost. Therefore, eliciting a constraint between two
agents with small regrets will also not help. Therefore, we define the regret of
a constraint to be the difference in the regrets of the variables in its scope (see
Eq. 18).

If we order the constraints using the ordering criteria ◦ = MR[·], that is,
according to the minimax regret criterion, then, given two uncertain constraints
fi, fj ∈ Fu, we say that fi �MR fj iff MR[fi] ≥ MR[fj ], where MR[fj ] = Rfj

is the regret as defined in Eq. 18.
Figure 2 illustrates a partial trace of this approach on the example DCOP of

Fig. 1 with two users u1 and u2. Figure 2(a) shows the uncertain cost tables for
constraint f24 between variables x2 and x4 and constraint f26 between variables
x2 and x6. Figure 2(b) shows the estimated PDFs Prd,f

x2,u of the constraint costs
incurred by variables x2 from constraint f under user u if it takes on value d.
In this trace, we use the “optimistic” variant of the algorithm, and the PDFs
are estimated using Eqs. 10 and 11. Figure 2(c) shows estimated summed PDFs
Prd,f

x2,u of the total constraint costs incurred by the agent, summed over all of
its constraints. Here, we only sum the PDFs for the two constraints f24 and f26.
Figure 2(d) shows the probabilities Prx2,u(d) of x2 = d under user u, computed
using Eq. 7, and Fig. 2(e) shows the regrets Rd

x2,u, computed using Eq. 15. Thus,
the regret Rx2 for x2 is 0.13, computed using Eq. 17. Assume that the regret
Rx1 of x1 is 0.50. Then, the regret Rf12 of constraint f12 = |Rx1 − Rx2 | =
|0.50 − 0.13| = 0.37.
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Maximum Standard Deviation: We now propose a different heuristic that
makes use of the degree of uncertainty in the constraint costs χv

f,u for constraint
f , value combination v = 〈xi1 = di1 , . . . , xik = dik〉, and user u, where xf =
{xi1 , . . . , xik}, di1 ∈ Di1 , . . ., and dik ∈ Dik .

Assume that there is only a single user u. Then, using the same motiva-
tion described for the minimax regret heuristic, and assuming that variables be
assigned a different value for different constraints, the value combination cho-
sen for a constraint f will be the v∗ = argminvχv

f,u that has the smallest cost.
Unfortunately, the actual constraint costs are not known and only their PDFs
N (μv

f,u, (σv
f,u)2) are known.

Since the constraint costs’ distribution means are known, we assume that the
value combination chosen for a constraint f will be the value v∗ = argminvμv

f,u

that has the smallest mean. The degree of uncertainty in the constraint cost for
that constraint f is thus the standard deviation associated σv∗

f,u with that value
combination v∗.

To generalize this approach to multiple users, we take the maximum stan-
dard deviations over all users u. More precisely, the degree of uncertainty in the
constraint costs for a constraint f is:

σf = max
s

σv∗
f,u (19)

One can then use this maximum standard deviation criterion to order the
constraints. In other words, if the ordering criteria ◦ = MS[·] is done according
to the maximum standard deviation criterion, then, given two unknown functions
fi, fj ∈ Fu, we say that fi �MS fj iff MS[fi] ≥ MS[fj ], where MS[fj ] = σfj

is the maximum standard deviation as defined in Eq. 19.

6 Related Work

There is an extensive body of work on the topic of modeling preferences [16]. In
particular, Rossi et al. discussed conditional-preference networks (CP-nets) for
handling preferences [35], which provide a qualitative graphical representation of
preferences reflecting the conditional dependence of the problem variables. Dif-
ferently from CP-nets, our proposal focuses on the notion of conditional additive
independence [3], which requires the utility of an outcome to be the sum of the
“utilities” of the different variable values of the outcome.

In terms of preference elicitation, two major approaches are studied in the lit-
erature [6]: A Bayesian approach [4,7] and a minimax regret approach [5,15,42].
The former is typically adopted when the uncertainty can be quantified proba-
bilistically, and preference elicitation is often formalized as a partially-observable
Markov decision process (POMDP) [18] that assumes each query to a user is asso-
ciated with a finite set of possible responses. In contrast, our proposal follows
the minimax regret approach [5,15,42]. The proposed framework differs from
other proposals in the literature in the following ways: We assume the unknown
costs are sampled from a Normal distribution and compute the regret based on
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such distributions. In contrast, other minimax regret based methods have dif-
ferent assumptions. For example, Boutilier et al. assumes that a set of (hard)
constraints together with a graphical utility model captures user preferences [5].
While the structure of the utility model is known, the parameters of this utility
model are imprecise, given by upper and lower bounds. The notion of regret
is computed based on those upper and lower bounds. Differently, Wang and
Boutilier computes regrets under the assumption that constraints over unknown
utility values are linear [42]. Finally, Gelain et al. computes regrets by taking the
minimum among the known utilities associated to the projections of an assign-
ment, that is, of the appropriated sub-tuples in the constraints [15].

Finally, preference elicitation has never been applied directly on DCOPs
before. The closest DCOP-related problem is a class of DCOPs where agents
have partial knowledge on the costs of their constraints and, therefore, they
may discover the unknown costs via exploration [39,47]. In this context, agents
must balance the coordinated exploration of the unknown environment and the
exploitation of the known portion of the rewards, in order to optimize the global
objective [37]. Another orthogonal related DCOP model is the problem where
costs are sampled from probability distribution functions [30]. In such a prob-
lem, agents seek to minimize either the worst-case regret [43] or the expected
regret [21].

7 Empirical Evaluation

We evaluate our preference elicitation framework on distributed random binary
graphs and smart home device scheduling (SHDS) problems [13], where we com-
pared our four heuristics–minimax regret with the three variants: optimistic
(MR-O), pessimistic (MR-P), and expected (MR-E) and maximum standard
deviation (MS)–against a random baseline (RD) that chooses the constraints to
elicit randomly. All the problems are modeled and solved optimally on multiple
computers with Intel Core i7-3770 CPU 3.40 GHz and 16 GB of RAM. We use
MiniZinc [38], an off-the-shelf centralized CP solver, to solve all the DCOPs.

In our experiments the preference elicitation heuristics are evaluated in terms
of the normalized error εP̂

FP(x∗) , where εP̂ is the error as defined by Eq. 6. An
accurate computation of this error requires us to generate all possible realizations
for the uncertain DCOPs. Due to the complexity of such task, we create m = 50
realizations of the uncertain DCOPs and compute the error εP̂ in this reduced
sampled space.

7.1 Random Graphs

We create 100 random graphs whose topologies are based on the Erdős and
Rényi model [8] with the following parameters: |X | = 50, |A| = 5, and |Di| =
2 for all variables xi ∈ X . Each agent ai has |Li| = 10 local variables with
density p1 = 0.8 that produces |Fi| = 36 local constraints per agent. These
constraints are unknown (uncertain constraints) and we set two scenarios (called
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Fig. 3. Random graphs preference elicitation

users in Sect. 5) for all uncertain cost tables. All constraint costs are modeled as
random variables following a Normal distribution N (μ, σ2), where σ is uniformly
sampled from the range [5, 10] and the means μ are uniformly sampled from one
of the following six ranges [5, 70], [5, 80], [5, 90], [5, 100], [5, 110], and [5, 120].
The different ranges are to introduce some heterogeneity into the constraints.
We set the non-local constraints (i.e., inter-agent constraints) to be uncertain
constraints as well, where we vary the mean μ of their Normal distributions to
be from different distributions: μ = 0; μ ∈ [0, 20]; and μ ∈ [0, 40]. Finally, we
allow only local constraints (or preferences) to be elicited.

Figure 3(a) illustrates the normalized errors of our heuristics and that of the
random baseline heuristic, where the mean μ of the non-local constraints are
uniformly sampled from the range [0, 20]. We control k so that the number of
the constraints per agent elicited from the oracle DCOP varies from 3 to 15 with
increment of 3. We make the following observations:

• As the number of constraints (k) to elicit increases, the errors of the MR-P
and MR-O heuristic decrease for all values of k as opposed to the random
heuristic which is approximately the same for all values of k. The reason is,
as we increase k, the random heuristic randomly selects k constraint to elicit
with high likelihood of choosing the wrong constraints. However, since the
regret-based heuristic (e.g., MR-P) takes into account the uncertain cost of
the constraints it chooses those minimizing the regret.

• The MS heuristic performs slightly better than random heuristic. The reason
is that MS orders the uncertain constraints by their degrees of uncertainty
(i.e., σ) corresponding to the most likely value combinations to be assigned
(i.e., the ones with the smallest μ). In contrast, the random heuristic chooses
constraint randomly without taking into account the degree of uncertainty.
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Table 1. Smart devices and their energy consumption (in kWh)

Dish-washer Washer Dryer Hob Oven Microwave Laptop Desktop Vacuum

cleaner

Fridge Electrical

vehicle

0.75 1.20 2.50 3.00 5.00 1.70 0.10 0.30 1.20 0.30 3.50

• All regret-based heuristics outperform the baseline heuristic, especially for
larger values of k, indicating that they are able to effectively take the regrets
of the constraints into account.

Figure 3(b) illustrates the normalized errors for the random problems, where
we vary the mean values μ of the non-local constraints, sampled from differ-
ent distributions; we set k = 15 for all cases. The same trends observed above
apply here. However, the normalized error increases as the range of the mean
increases for all heuristics. The reason is because the magnitude in the error
(when variables are assigned wrong value due to wrong guesses in the cost of the
constraints) increases when the range increases. However, generally, the opti-
mistic and pessimistic variants of the minimax regret heuristics still perform
better in all three cases.

7.2 Smart Home Device Scheduling (SHDS) Problems

SHDS Problem Construction: We now describe how we construct SHDS
problems. As the only uncertain element in the uncertain constraints are the
discomfort values dt

zj ,u (defined in Sect. 3) for devices zj , time steps t, and users
u, we model these values as random variables following a Normal distribution
(e.g., one could fit a Normal distribution to the historical data). As the distrib-
ution for one user may be different from the distribution for a different user in
a home, for each user u, we generate a discomfort table composed of a Normal
distribution N (μt

zj ,u, (σt
zj ,u)2) for each device zj and time step t. Each user u

can gain the exclusive access to a device zj with the probability Prt
zj

, and the
Normal distribution of the discomfort of device zj at time step t is the Normal
distribution of the user that has exclusive access for that device and time step.

Next, let P = 〈X ,D,F ,A, α〉 denote the DCOP whose constraints F have
accurate cost tables that depend only on external parameters and are easily
obtained (e.g., price function θ and energy consumption of devices ρzj

) or they
depend on user preferences that are accurately obtained through an oracle. Using
the same process described above, we combine the discomfort tables for multiple
users into a single aggregated discomfort table U . Note that this aggregated
discomfort table may be different than the one Û for the uncertain DCOP if
there are multiple users. Then, the actual discomfort value dt

zj
for each device

zj and time step t is sampled from the Normal distribution N (μt
zj

, (σt
zj

)2) for
that device and time step in the aggregated discomfort table U . We refer to this
problem as the oracle DCOP. In summary, when a constraint is elicited, the
actual discomfort values are retrieved from the oracle DCOP.
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Experimental Setup: In our experiments, we consider |H| = 10 homes, each
controlling |Zi| = 10 smart devices, listed in Table 1 along with their energy
consumption. We populate the set of smart devices Zi of each home by randomly
sampling 10 elements from Z. Thus, a home might control multiple devices of
the same type. We set a time horizon H = 6 with increments of 4 h. We use
the same real-time pricing schema as proposed by Fioretto et al. [13], which
is the one used by the Pacific Gas and Electric Company for their Californian
consumers during peak summer months.2

To generate the discomfort table for each user, we assume that there is a weak
correlation between the price of energy and the level of discomfort of the user.
Specifically, we assume that users will prefer (i.e., they are more comfortable)
using their devices when prices are low to save money. Therefore, the higher
the price, the more uncomfortable the user will be at using the device at that
time. Based on this assumption, for each home, user, and device, the mean
μt at each time step t is an integer that is uniformly sampled from the range
[max{1, θ(t) − 50}, θ(t) + 50], where θ(t) is the real-time pricing at time step
t used by the Pacific Gas and Electric Company. Therefore, the range of the
means differ across time steps but are the same for all devices as the discomfort
level is primarily motivated by the pricing schema.

The weights αc and αu of the objective function defined in Eq. 5 are both
set to 0.5. These settings are employed to create both an oracle DCOP and the
corresponding uncertain DCOP, except that the values of the constraints of the
uncertain DCOPs are not realized (i.e., they are distributions).

Finally, since all uncertain constraints in an SHDS problem are unary con-
straints, all three variants of the minimax regret heuristics are identical, and we
use “MR” to label this heuristic.

Single User Experiments: In the first set of experiments, we set each home
to have only one user. Figure 4(a) plots the error for our heuristics compared
against the random baseline heuristic. The results are averaged over 100 ran-
domly generated SHDS problem instances. We make the following observations:

• As expected, for all elicitation heuristics, the error decreases as the number
of cost tables to elicit increases.

• Both the MR and MS heuristics consistently outperform the random heuristic
for all values of k. Like the results in random graphs, the random heuristic
has a higher likelihood of choosing the wrong constraint to elicit, while MR
and MS choose better constraints.

• Interestingly, we observe that MS selects the constraints slightly better than
MR, indicating that despite the fact that MS is a simpler heuristic, it is well-
suited in problems with single users. The reason is that the key feature of
MR—maximizing the regret over all users—is ignored when there is only one
user.

2 https://www.pge.com/en US/business/rate-plans/rate-plans/peak-day-pricing/pea
k-day-pricing.page. Retrieved in November 2016.

https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page
https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page
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Fig. 4. Smart homes device scheduling preference elicitation

Multiple User Experiments: In the second set of experiments, we set each
home to have two users, where both users have equal likelihood of controlling
the devices (i.e., Pu1 = Pu2 = 0.5). Figure 4(b) shows the results. The trends for
this experiment is similar to that shown for Fig. 4(a), where our MR heuristic
outperforms the random heuristic. However, the MS heuristic performs poorly
in this experiment, with similar performance as the random baseline. In general,
our results show that the regret-based method outperforms other heuristics in
multiple users scenarios, as it takes into account the discomfort values of all
users, orders the constraints to elicit based on their minimum regrets. Similar to
random graph results, MR performs better in the scenarios that multiple users
take control of the devices in a building.

Finally, the SHDS and random graph experiment results demonstrate that
the regret-based elicitation heuristics achieve approximately 30% and 11%
improvement over the baseline random heuristic in minimizing the error, respec-
tively. The improvements in SHDS problems are larger than those in random
graphs because variables are highly connected (p1 = 0.8) in random graph prob-
lems. In contrast, variables in SHDS problems are mostly independent as they
mostly have unary constraints. The higher dependency between variables in ran-
dom graphs reduces the improvements of our heuristics over the baseline random
heuristic.

8 Conclusions and Future Work

DCOPs have been used to model a number of multi-agent coordination problems
including the smart home device scheduling (SHDS) problem. However, one of
the key assumptions in DCOPs—that constraint costs are known a priori—do
not apply to many applications including SHDS. Thus, in this paper, we propose
the problem of preference (i.e., constraint cost) elicitation for DCOPs; introduce
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minimax regret based heuristics to elicit the preferences; and evaluate them on
random binary DCOPs as well as SHDS problems. Our results show that our
methods are better than a baseline method that elicits preferences randomly.
This paper thus makes the foundational contributions that are necessary in the
deployment of DCOP algorithms on practical applications, where preferences or
constraint costs must be elicited or estimated. Future work includes incorpo-
rating real-world datasets [2,19,32] to generate the uncertain constraint costs
as well as conducting comprehensive experiments in the many other applica-
tions that DCOPs have been used (e.g., meeting scheduling problems), where
preferences are typically unknown and must be elicited too.
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