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Abstract. We introduce new CP models for the many-to-many stable
matching problem. We use the notion of rotation to give a novel encoding
that is linear in the input size of the problem. We give extra filtering rules
to maintain arc consistency in quadratic time. Our experimental study
on hard instances of sex-equal and balanced stable matching shows the
efficiency of one of our propositions as compared with the state-of-the-art
constraint programming approach.

1 Introduction

In two-sided stable matching problems the objective is to assign some agents
to other agents based on their preferences [14]. The classic exemplar of such
problems is the well known stable marriage (SM ) problem, first introduced by
Gale and Shapley [6]. In SM the two sets of agents are called men and women.
Each man has a preference list over the women and vice versa. The purpose
is to find a matching where each man (respectively woman) is associated to at
most one woman (respectively man) that respects a criterion called stability.
A matching M in this context is stable if any pair 〈m,w〉 (where m is a man and
w is a woman) that does not belong to M satisfies the property that m prefers
his partner in M to w or w prefers her partner in M to m.

This family of problems has gained considerable attention as it has a wide
range of applications such as assigning doctors to hospitals, students to college,
and in kidney exchange problems. The stable marriage problem itself can be
solved in O(n2) time [6] where n is the maximum number of men/women. This
is also true for the general case of many-to-many stable matching; the complexity
O(n2) is given in the proof of Theorem 1 in [1]. However, when facing real world
situations the problem often considers additional optimality criteria. In many
cases, the problem becomes intractable and specialized algorithms for solving
the standard version are usually hard to adapt. The use of a modular approach
such as constraint programming is very beneficial to tackle such cases.

Many constraint programming approaches exist in the literature for stable
matching problems. Examples of these concern stable marriage [7,21,22], hospi-
tal residents (HR) [13,20], many-to-many stable matching [3], and stable room-
mates [17]. Despite the fact that many-to-many stable matching generalizes HR
and SM, it has not gained as much attention as SM and HR in the constraint pro-
gramming community. In this paper, we follow this line of research by proposing
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an effective and efficient model for all three variants of stable matching: one-to-
one, many-to-one, and many-to-many. Our propositions are based on a powerful
structure called rotations. The latter has been used to model the stable room-
mates problem in [9] (p. 194) and [4,5].

We leverage some known properties related to rotations in order to propose
a novel SAT formulation of the general case of many-to-many stable matching.
We show that unit propagation on this formula ensures the existence of a par-
ticular solution. Next, we use this property to give an algorithm that maintains
arc consistency if one considers many-to-many stable matching as a (global)
constraint. The overall complexity for arc consistency is O(L2) time where L is
total input size of all preference lists. Our experimental study on hard instances
of sex-equal and balanced stable matching show that our approach outperforms
the state-of-the-art constraint programming approach [20].

The remainder of this paper is organized as follows. In Sect. 2 we give a brief
overview of constraint programming. We present the stable matching problem
in Sect. 3 as well as various concepts related to rotations. In Sect. 4 we propose a
novel formulation of stable matching based on the notion of rotation. We show
in Sect. 5 some additional pruning rules and show that arc consistency can be
maintained in O(L2) worst case time complexity. Lastly, in Sect. 6 we present
an empirical experimental study on two hard variants of stable matching and
show that one of our new models outperforms the state-of-the-art constraint
programming approach in the literature.

2 Constraint Programming

We provide a short formal background related to constraint programming. Let
X be a set of integer variables. A domain for X , denoted by D, is a mapping
from variables to finite sets of integers. For each variable x, we call D(x) the
domain of the variable x. A variable is called assigned when D(x) = {v}. In
this case, we say that v is assigned to x and that x is set to v. A variable is
unassigned if it is not assigned. A constraint C defined over [x1, . . . , xk] (k ∈ N

∗)
is a finite subset of Zk. The sequence [x1, . . . , xk] is the scope of C (denoted by
X (C)) and k is called the arity of C. A support for C in a domain D is a k-tuple
τ such that τ ∈ C and τ [i] ∈ D(xi) for all i ∈ [1, . . . , k]. Let xi ∈ X (C) and
v ∈ D(xi). We say that the assignment of v to x has a support for C in D iff
there exists a support τ for C in D such that τ [i] = v. The constraint C is
arc consistent (AC ) in D iff ∀i ∈ [1, . . . , k], ∀v ∈ D(xi), the assignment of v
to xi has a support in D. A filtering algorithm (or propagator) for a constraint
C takes as input a domain D and returns either ∅ if there is no support for
C in D (i.e., failure) or a domain D′ such that any support for C in D is a
support for C in D′, ∀x ∈ X (C), D′(x) ⊆ D(x), and ∀x /∈ X (C), D′(x) = D(x).
A Boolean variable has an initial domain equal to {0, 1} (0 is considered as false
and 1 as true). A clause is a disjunction of literals where a literal is a Boolean
variable or its negation. Clauses are usually filtered with an algorithm called
unit propagation [16].
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Let X be a set of variables, D be a domain, and C be a set of constraints
defined over subsets of X . The constraint satisfaction problem (CSP) is the
question of deciding if an |X |−tuple of integers τ exists such that the projection
of τ on the scope of every constraint C ∈ C is a support for C in D. We consider
in this paper classical backtracking algorithms to solve CSPs by using filtering
algorithms at every node of the search tree [19].

3 Stable Matching

We consider the general case of the many-to-many stable matching problem. We
follow the standard way of introducing this problem by naming the two sets of
agents as workers and firms [14]. We use a notation similar to that of [3].

Let nF , nW ∈ N
∗, F = {f1, f2, . . . , fnF

} be a set of firms, W =
{w1, w2, . . . , wnW

} be a set of workers, and n = max{nF , nW }. Every firm fi

has a list, Pfi
, of workers given in a strict order of preference (i.e., no ties). The

preference list of a worker wi is similarly defined. We denote by PW = {Pwi
| i ∈

[1, nW ]} the set of preferences of workers, and by PF = {Pfj
| j ∈ [1, nF ]} the set

of preferences of firms. We use L to denote the sum of the sizes of the preference
lists. Note that the size of the input problem is O(L). Therefore we shall give all
our complexity results with respect to L.

For every firm fj (respectively, worker wi), we denote by qfj
(respectively,

qwi
) its quota. We denote by qW = {qwi

| i ∈ [1, nW ]} the set of quota for
workers, and by qF = {qfj

| j ∈ [1, nF ]} the set of quotas for firms. We use the
notation wi �fk

wj when a firm fk prefers worker wi to worker wj . The operator
�wk

is defined similarly for any worker wk.
A pair 〈wi, fj〉 is said to be acceptable if wi ∈ Pfj

and fj ∈ Pwi
. A matching

M is a set of acceptable pairs. Let M(wi) = {fj | 〈wi, fj〉 ∈ M}, and M(fj) =
{wi | 〈wi, fj〉 ∈ M}. A worker wi (respectively, firm fj) is said to be under-
assigned in M if |M(wi)| < qwi

(respectively, |M(fj)| < qfj
). We define for every

worker wi, lastM (wi) as the least preferred firm for wi in M(wi) if M(wi) 	= ∅.
For every firm fj , lastM (fj) is similarly defined. A pair 〈wi, fj〉 /∈ M is said to
be blocking M if it is acceptable such that the following two conditions are true:

– wi is under-assigned in M or ∃fk ∈ M(wi) and fj �wi
fk.

– fj is under-assigned in M or ∃wl ∈ M(fj) and wi �fj
wl.

Definition 1 (Stability). A matching M is (pairwise) stable if ∀wi ∈ W ,
|M(wi)| ≤ qwi

, ∀fj ∈ F , |M(fj)| ≤ qfj
, and there is no blocking pair for M .

An instance of the many-to-many stable matching problem is defined by the
tuple 〈W,F, PW , PF , qW , qF 〉. The problem is to find a stable matching if one
exists.

A pair 〈wi, fj〉 is stable if there exists a stable matching M containing 〈wi, fj〉,
unstable otherwise. A pair 〈wi, fj〉 is fixed if it is included in all stable matchings.

Let M,M ′ be two stable matchings. A worker wi prefers M no worse than
M ′ (denoted by M �wi

M ′) if (1) M(wi) = M ′(wi) or (2) |M(wi)| ≥ |M ′(wi)|
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and lastM (wi) �wi
lastM ′(wi). It should be noted that every worker (respec-

tively, firm) is assigned to the same number of firms (respectively, workers) in
every stable matching [1]. So the condition |M(wi)| ≥ |M ′(wi)| is always true
in the case of many-to-many stable matching. Let M,M ′ be two different stable
matchings. We say that M dominates M ′ (denoted by M �W M ′) if M �wi

M ′

for every worker wi. This is called the worker-oriented dominance relation. The
firm-oriented dominance relation (�F ) is similarly defined for firms.

The authors of [1] showed that a stable matching always exists and can be
found in O(n2) time. More precisely, the complexity of finding a stable matching
is O(L). Moreover, they showed that there always exist worker-optimal and firm-
optimal stable matchings (with respect to �W and �F ). We denote these two
matchings by M0 and Mz, respectively.

Example 1 (An instance of many-to-many stable matching (from [3]). Consider
the example where nW = 5, nF = 5, and for all 1 ≤ i, j ≤ 5, qwi

= qfj
= 2. The

preference lists for workers and firms are given in Table 1.

Table 1. Example of preference lists

Pw1 = [f1, f2, f3, f4, f5] Pf1 = [w3, w2, w4, w5, w1]

Pw2 = [f2, f3, f4, f5, f1] Pf2 = [w2, w3, w5, w4, w1]

Pw3 = [f3, f4, f5, f1, f2] Pf3 = [w4, w5, w2, w1, w3]

Pw4 = [f4, f5, f1, f2, f3] Pf4 = [w1, w5, w3, w2, w4]

Pw5 = [f5, f1, f2, f3, f4] Pf5 = [w4, w1, w2, w3, w5]

There exist seven stable matchings for this instance:

– M0 = {〈w1, f1〉, 〈w1, f2〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f3〉, 〈w3, f4〉, 〈w4, f4〉,
〈w4, f5〉, 〈w5, f5〉, 〈w5, f1〉}

– M1 = {〈w1, f1〉, 〈w1, f3〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f5〉, 〈w3, f4〉, 〈w4, f4〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f1〉}

– M2 = {〈w1, f4〉, 〈w1, f3〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f5〉, 〈w3, f4〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f1〉}

– M3 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f1〉, 〈w3, f4〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f3〉}

– M4 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f1〉, 〈w3, f2〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f4〉, 〈w5, f3〉}

– M5 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f1〉, 〈w3, f1〉, 〈w3, f4〉, 〈w4, f3〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f3〉}

– Mz = M6 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f1〉, 〈w3, f1〉, 〈w3, f2〉, 〈w4, f3〉,
〈w4, f5〉, 〈w5, f4〉, 〈w5, f3〉}

In this instance, 〈w1, f1〉 is a stable pair since 〈w1, f1〉 ∈ M0 and 〈w2, f4〉 is not
stable since it is not included in any stable matching. Regarding the dominance
relation, we have M1 �W M2, and M2 �W M3, Using transitivity, we obtain
M1 �W M3, Note that M4 and M5 are incomparable. ��
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In the following, we introduce a central notion in this paper called rotation.
Consider the matching M0 from the instance given in Example 1 and the list of
pairs ρ0 = [〈w1, f2〉, 〈w5, f5〉, 〈w3, f3〉]. Notice that every pair in ρ0 is part of M0.
Consider now the operation of shifting the firms in a cyclic way as follows: f2 is
paired with w5, f5 is paired with w3, and f3 is paired with w1. This operation
changes M0 to M1. In this case, we say ρ0 is a rotation.

Formally, for any stable matching M 	= Mz and any worker wi such that
M(wi) 	= ∅, we define rM (wi) to be the most preferred firm fj for wi such that
wi �fj

lastM (fj) and 〈wi, fj〉 /∈ M . In other words, given 〈wi, fj〉 /∈ M , rM (wi)
is a firm that is the most preferred firm to wi such that it prefers wi to her worst
assigned partner in M .

Definition 2 (Rotation [2]). A rotation ρ is an ordered list of pairs [〈wi0 , fj0〉,
〈wi1 , fj1〉, . . . , 〈wit−1 , fjt−1〉] such that t ∈ [2,min(nW , nF )], ik ∈ [1, nW ], jk ∈
[1, nF ] for all 0 ≤ k < t and there exists a stable matching M where 〈wik , fjk〉 ∈
M , wik = lastM (fjk), and fjk = rM (wik+1 mod t

) for all 0 ≤ k < t. In this case
we say that ρ is exposed in M .

Let ρ be a rotation exposed in a stable matching M . The operation of elimi-
nating a rotation ρ from M consists of removing each pair 〈wik , fjk〉 ∈ ρ from M ,
then adding 〈wik+1 mod t

, fjk〉. The new set of pairs, denoted by M/ρ constitutes
a stable matching that is dominated (w.r.t. workers) by M [3,8]. We say that ρ
produces 〈wi, fj〉 if 〈wi, fj〉 ∈ M/ρ \ M .

The following three lemmas are either known in the literature [3] or are a
direct consequence of [3].

Lemma 1. In every stable matching M 	= Mz, there exists (at least) a rotation
that can be exposed in M .

Lemma 2. Every stable matching M 	= M0 can be obtained by iteratively elim-
inating some rotations, without repetition, starting from M0.

Lemma 3. Any succession of eliminations leading from M0 to Mz contains all
the possible rotations (without repetition).

We say that a rotation ρ1 precedes another rotation ρ2 (denoted by ρ1 ≺≺ ρ2)
if ρ1 is exposed before ρ2 in every succession of eliminations leading from M0

to Mz. Note that this precedence relation is transitive and partial. That is,
ρ1 ≺≺ ρ2 ∧ ρ2 ≺≺ ρ3, implies ρ1 ≺≺ ρ3, and there might exist two rotations ρ1,
and ρ2 where neither ρ1 ≺≺ ρ2 nor ρ2 ≺≺ ρ1.

Example 2 (Rotation precedence). In the previous example we have ρ0 ≺≺ ρ1,
ρ1 ≺≺ ρ2, ρ2 ≺≺ ρ3, ρ2 ≺≺ ρ4. By transitivity we obtain ρ0 ≺≺ ρ4. Note that
in this example neither ρ3 ≺≺ ρ4 nor ρ4 ≺≺ ρ3. ��

Let R be the set of all rotations. The precedence relation ≺≺ with R forms
the rotation poset ΠR. Let G = (VG, AG) be the directed graph corresponding to
the rotation poset. That is, every vertex corresponds to a rotation, and there is an
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arc (ρj , ρi) ∈ AG iff ρj ≺≺ ρi. The construction of R and G can be performed
in O(L) time [3]. For each rotation ρi ∈ R, we denote by N−(ρi) the set of
rotations having an outgoing edge towards ρi, i.e., these rotations dominate ρi.
We introduce below the notion of closed subset and a very important theorem.

Definition 3 (Closed subset). A subset of rotations S ⊆ VG is closed iff
∀ρi ∈ S, ∀ρj ∈ VG, if ρj ≺≺ ρi, then ρj ∈ S.

Theorem 1 (From [2]). There is a one-to-one correspondence between closed
subsets and stable matchings.

The solution corresponding to a closed subset S is obtained by eliminating
all the rotations in S starting from M0 while respecting the order of precedence
between the rotations. Recall from Lemma 2 that every stable matching M 	= M0

can be obtained by iteratively eliminating some rotations, without any repeti-
tion, starting from M0. The closed subset corresponding to a stable matching
M is indeed the set of rotations in any succession of eliminations of rotations
leading to M . Notice that M0 corresponds to the empty set and that Mz is the
set of all rotations.

We denote by Δ the set of stable pairs. Let 〈wi, fj〉 be a stable pair. There
exists a unique rotation containing 〈wi, fj〉 if 〈wi, fj〉 /∈ Mz [3]. We denote this
rotation by ρeij

. Similarly, ∀〈wi, fj〉 ∈ Δ \ M0 there exists a unique rotation ρ
such that eliminating ρ produces 〈wi, fj〉. We denote by ρpij

the rotation that
produces the stable pair 〈wi, fj〉 ∈ Δ \M0. Notice that it is always the case that
ρpij

≺≺ ρeij
for any stable pair that is not part of M0 ∪ Mz.

Example 3 (The rotations ρeij
and ρpij

). For the previous example, we have
ρe23 = ρ4, and ρp31 = ρ2 since ρ2 produces the pair 〈w3, f1〉. ��

Lastly, we denote by FP the set of fixed pairs, SP is the set of stable pairs
that are not fixed, and NSP is the set of non stable pairs. Note that 〈wi, fj〉 ∈
FP iff 〈wi, fj〉 ∈ M0 ∩ Mz. These three sets can be constructed in O(L) [3].

4 A Rotation-Based Formulation

We first show that the problem of finding a stable matching can be formulated
as a SAT formula using properties from rotations. Next, we show that for any
input domain D, if unit propagation is performed without failure, then there
exists necessarily a solution in D. Recall that there exists an algorithm (called
the Extended Gale-Shapley algorithm) to find a solution to the many-to-many
stable matching that runs in O(L) time [1,3]. However, using a CP formulation
such as the one that we propose in this section is very beneficial when dealing
with NP-Hard variants of the problem.

In out model, a preprocessing step is performed to compute M0, Mz, SP ,
FP , NSP , the graph posed, ρeij

for all 〈wi, fj〉 ∈ SP \ Mz, and ρpij
for all

〈wi, fj〉 ∈ SP \ M0. This preprocessing is done in O(L) time [3].
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4.1 A SAT Encoding

We introduce for each pair 〈wi, fj〉 a Boolean variable xi,j . The latter is set
to true iff 〈wi, fj〉 is part of the stable matching. Moreover, we use for each
rotation ρk a Boolean variable rk (called rotation variable) to indicate whether
the rotation ρk is in the closed subset that corresponds to the solution.

Observe first that for all 〈wi, fj〉 ∈ FP , xi,j has to be true, and for all
〈wi, fj〉 ∈ NSP , xi,j has to be false.

We present three lemmas that are mandatory for the soundness and com-
pleteness of the SAT formula. Let M be a stable matching and S its closed
subset (Theorem 1).

Lemma 4. ∀〈wi, fj〉 ∈ SP ∩ M0 : 〈wi, fj〉 ∈ M iff ρeij
/∈ S.

Proof. ⇒ Suppose that ρeij
∈ S. Let Sequence be an ordered list of the rotations

in S such that exposing the rotations of S starting from M0 leads to M . For
all a ∈ [1, |S|], we define M ′

a to be the stable matching corresponding the closed
subset S′

a = {Sequence[k] | k ∈ [1, a]}. We also use M ′
0 to denote the particular

case of M0 and S′
0 = ∅. Notice that M ′

|S| = M and S′
|S| = S. Let a ∈ [1, |S|] such

that Sequence[a] = ρeij
. We know that exposing the rotation ρeij

from S′
a−1

moves worker wi to a partner that is worse than fi. For any matching M ′
b where

b ∈ [a, |S|], wi either has the same partners in M ′
b−1 or is assigned a new partner

that is worse than fi. Hence 〈wi, fj〉 cannot be part of M ′
|S| = M .

⇐ 〈wi, fj〉 must be part of the solution since it is part of M0 and ρeij
/∈ S. ��

Lemma 5. ∀〈wi, fj〉 ∈ SP ∩ Mz : 〈wi, fj〉 ∈ M iff ρpij
∈ S.

Proof. ⇒ Suppose that ρpij
/∈ S. The pair 〈wi, fj〉 cannot be produced when

eliminating rotations in S since ρpij
is unique. Therefore ρpij

∈ S.
⇐ Suppose that ρpij

∈ S. The pair 〈wi, fj〉 must be part of the solution since
ρpij

∈ S and it can never be eliminated by any rotation since 〈wi, fj〉 ∈ Mz. ��
Lemma 6. ∀〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : 〈wi, fj〉 ∈ M iff ρpij

∈ S ∧ ρeij
/∈ S.

Proof. ⇒ Suppose that 〈wi, fj〉 is part of M .

– If ρpij
/∈ S, then 〈wi, fj〉 can never be produced when eliminating rotations

in S. Therefore ρpij
∈ S.

– If ρeij
∈ S, similarly to the proof of Lemma4, we can show that the pair

〈wi, fj〉 cannot be part of the solution.

⇐ Suppose that ρpij
∈ S and ρeij

/∈ S. The pair 〈wi, fj〉 must be part of the
solution since it is produced by ρpij

and not eliminated since ρeij
/∈ S. ��

Using Lemmas 4, 5 and 6, we can formulate the problem of finding a stable
matching as follows.

∀ρi ∈ R,∀ρj ∈ N−(ρi) : ¬ri ∨ rj (1)
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∀〈wi, fj〉 ∈ SP ∩ M0 : ¬xi,j ∨ ¬reij
; xi,j ∨ reij

(2)

∀〈wi, fj〉 ∈ SP ∩ Mz : ¬xi,j ∨ rpij
; xi,j ∨ ¬rpij

(3)

∀〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : ¬xi,j ∨ rpij
; ¬xi,j ∨ ¬reij

; xi,j ∨ ¬rpij
∨ reij

(4)

∀〈wi, fj〉 ∈ FP : xi,j (5)

∀〈wi, fj〉 ∈ NSP : ¬xi,j (6)

We denote this formula by Γ . Clauses 1 make sure that the set of rotation
variables that are set to true corresponds to a closed subset. Clauses 2, 3, and 4
correspond (respectively) to Lemmas 4, 5, and 6. Lastly, Clauses 5 and 6 handle
the particular cases of fixed and non stable pairs (respectively). Observe that
each clause is of size at most 3. Moreover, since the the number of edges in the
graph poset is bounded by O(L) [3], then the size of this formula is O(L).

The only CP formulation for the case of many-to-many stable matching was
proposed in [3]. It is a straightforward generalization of the CSP model proposed
for the hospital/residents problem in [13]. The authors use qwi

variables per
worker, and qfj

variables per firm. The variables related to a worker wi represent
the rank of the firm assigned at each position (out of the qwi

available positions).
A similar set of variables is used for firms. The model contains |W | × (

∑
i qwi

+
|F | × (1 +

∑
j qfj

× (2 +
∑

i(qwi
− 1)))) constraints related to workers. Likewise,

|F | × (
∑

j qfj
+ |W | × (1 +

∑
i qwi

× (2 +
∑

j(qfj
− 1)))) constraints are used for

firms.

4.2 Properties Related to Unit Propagation

In the following, we show that once unit propagation is performed without failure
then there exists necessarily a solution.

Suppose that D is a domain where unit propagation has been performed
without failure. Let S1 be the set of rotation variables that are set to 1.

Lemma 7. S1 is a closed subset.

Proof. Let ρi be a rotation in S1 and let ρj be rotation such that ρj ≺≺ ρi. Unit
propagation on Clauses 1 enforces rj to be true. Therefore ρj ∈ S1. Hence S1 is
a closed subset. ��

Let M1 be the stable matching corresponding to S1 (Theorem 1). We show
that M1 is part of the solution space in D.

Lemma 8. For any xi,j that is set to 1, 〈wi, fj〉 ∈ M1.

Proof. The case where 〈wi, fj〉 is a fixed pair or non stable is trivial. Take a
non-fixed stable pair 〈wi, fj〉 and suppose that D(xi,j) = {1}. There are three
cases to distinguish.

1. 〈wi, fj〉 ∈ SP ∩ M0: Unit propagation on Clauses 2 enforces reij
to be false.

Therefore, ρeij
/∈ S1. Hence by Lemma 4 we obtain: 〈wi, fj〉 ∈ M1.
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2. 〈wi, fj〉 ∈ SP ∩ Mz : Unit propagation on Clauses 3 enforces rpij
to be true.

Therefore, ρpij
∈ S1. Hence by Lemma 5 we obtain: 〈wi, fj〉 ∈ M1.

3. 〈wi, fj〉 ∈ SP \ (M0 ∪Mz) : Unit propagation on Clauses 4 enforces rpij
to be

true and reij
to be false. Therefore, ρpij

∈ S1, ρeij
/∈ S1. Hence by Lemma 6

we obtain: 〈wi, fj〉 ∈ M1. ��

Lemma 9. For any xi,j that is set to 0, 〈wi, fj〉 /∈ M1.

Proof. The case where 〈wi, fj〉 is a fixed pair or non-stable is trivial. Take a
non-fixed stable pair 〈wi, fj〉 and suppose that D(xi,j) = {0}. There are three
cases to distinguish.

1. 〈wi, fj〉 ∈ SP ∩ M0: Unit propagation on Clauses 2 enforces reij
to be true.

Therefore, ρeij
∈ S1. Hence by Lemma 4 we obtain: 〈wi, fj〉 /∈ M1.

2. 〈wi, fj〉 ∈ SP ∩ Mz : Unit propagation on Clauses 3 enforces rpij
to be false.

Therefore, ρpij
/∈ S1. Hence by Lemma 5 we obtain: 〈wi, fj〉 /∈ M1.

3. 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz): We distinguish two cases:
(a) D(ρpij

) 	= {1}: In this case ρpij
/∈ S1 hence by Lemma 6 we obtain:

〈wi, fj〉 /∈ M1

(b) D(ρpij
) = {1}: In this case, unit propagation on Clauses 4 enforces reij

to
be true. Therefore, ρeij

∈ S1. Hence by Lemma 6 we obtain: 〈wi, fj〉 /∈ M1.
��

Recall that Γ denotes the SAT formula defined in Sect. 4.1.

Theorem 2. Let D be a domain such that unit propagation is performed without
failure on Γ . There exists at least a solution in D that satisfies Γ .

Proof. We show that M1 corresponds to a solution under D. To do so, one needs
to set every unassigned variable to a particular value. We propose the following
assignment. Let xi,j be an unassigned variable. Note that 〈wi, fi〉 has to be part
of SP .

1. If 〈wi, fj〉 ∈ SP ∩ M0 : xi,j is set to 1 if ρeij
/∈ S1; and 0 otherwise.

2. If 〈wi, fj〉 ∈ SP ∩ Mz : xi,j is set to 1 if ρpij
∈ S1; and 0 otherwise.

3. If 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : xi,j is set to 1 if ρpij
∈ S1 ∧ ρeij

/∈ S1; and 0
otherwise.

This assignment corresponds to a solution as a consequence of Lemmas 4, 5,
6, 8, and 9. Therefore, once unit propagation is established without failure, we
know that there exists at least one solution. ��

5 Arc Consistency

We propose in this section a procedure to filter more of the search space. We
assume in the rest of this section that I is a stable matching instance defined by
〈W,F, PW , PF , qW , qF 〉 using the same notations introduced in Sect. 3.
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Let X (M2M) = {x1,1, . . . xnW ,nF
, r1, . . . r|R|} be the set of Boolean variables

defined in Sect. 4.1. We define the many-to-many stable matching constraint as
M2M(I,X (M2M)). Given a complete assignment of the variables in X (M2M),
this constraint is satisfied iff the set M of pairs corresponding to Boolean vari-
ables xi,j that are set to 1 is a solution to I and the set of rotations corresponding
to Boolean variables rk that are set to 1 is the closed subset corresponding to M .

Example 4 shows an instance with a particular domain where unit propaga-
tion on Γ is not enough to establish arc consistency on the M2M constraint.

Example 4 (Missing Support). Consider the example where nW = 4, nF = 4,
and for all 1 ≤ i, j ≤ 4, qwi

= qfj
= 1. The preference lists for workers and firms

are given in Table 2.

Table 2. Preference lists

Pw1 = [f3, f2, f4, f1] Pf1 = [w1, w2, w4, w3]

Pw2 = [f2, f4, f1, f3] Pf2 = [w3, w1, w2, w4]

Pw3 = [f4, f1, f3, f2] Pf3 = [w2, w3, w4, w1]

Pw4 = [f1, f2, f3, f4] Pf4 = [w4, w1, w2, w3]

Consider the domain such that all the variables are unassigned except for
x1,4, x3,1, x3,3, x4,2, and x4,3 where the value 0 is assigned to each of these
variables. Unit propagation on the encoding Γ of this instance does not trigger
a failure. It also does not change the domain of x2,1 (i.e., {0, 1}). However, the
assignment of 1 to x2,1 does not have a support in D for M2M . ��

In the following, we assume that unit propagation is established on an input
domain D and that it propagated the clauses without finding a failure. In the rest
of this section, we use the term ‘support’ to say ‘support for M2M(I,X (M2M))’.
We shall use unit propagation to find a support for any assignment using the
property we showed in Theorem 2.

In order to construct supports, we need to introduce the following two
lemmas.

Lemma 10. For any rotation ρi where D(ri) = {0, 1}, assigning 1 to ri has a
support.

Proof. Consider the set of rotations S = S1 ∪ {rj | rj ≺≺ ri}. Clearly S is a
closed subset (Lemma 7). Let M be the corresponding stable matching of S. We
show that M corresponds to a valid support.

By construction, we have any variable xi,j set to 1 is part of M and any
variable set to 0 is not. Consider now the rotation variables. Recall that S1 is
the set of rotation variables that are set to 1. Observe that {rj |rj ≺≺ ri} can
only contain rotations that are unassigned because otherwise, unit propagation
would assign 0 to ri. In our support, every rotation variable whose rotation is
in {rj |rj ≺≺ ri} is set to 1. Consider xi,j an unassigned variable. We set xi,j as
follows
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1. If 〈wi, fj〉 ∈ SP ∩ M0 : xi,j is set to 1 if ρeij
/∈ S; and 0 otherwise.

2. If 〈wi, fj〉 ∈ SP ∩ Mz : xi,j is set to 1 if ρpij
∈ S; and 0 otherwise.

3. If 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : xi,j is set to 1 if ρpij
∈ S ∧ ρeij

/∈ S; and 0
otherwise.

This assignment corresponds by construction to M as a consequence of
Lemmas 4, 5, 6, 8, and 9. ��
Lemma 11. For any rotation ρi where D(ri) = {0, 1}, assigning 0 to ri has a
support.

Proof. Recall that S1 is the set of rotation variables that are set to 1 and that
M1 is its corresponding stable matching. By construction, we can show that M1

corresponds to a support. ��
Consider now an unassigned variable xi,j . Notice that 〈wi, fi〉 ∈ SP .

Lemma 12 show that there is always a support for 0.

Lemma 12. For any unassigned variable xi,j, assigning 0 to xi,j has a support.

Proof. We distinguish three cases:

1. 〈wi, fj〉 ∈ SP ∩ M0 : Observe that ρeij
is unassigned. We know by Lemma 10

that assigning 1 to reij
has a support. In this support 0 is assigned to xi,j .

2. 〈wi, fj〉 ∈ SP ∩ Mz : In this case ρpij
is unassigned. We know by Lemma 11

that assigning 0 to rpij
has a support. In this support, 0 is assigned to xi,j .

3. 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : Note that 0 cannot be assigned to ρpij
because

otherwise xi,j would be set to 0. We distinguish two cases:
(a) ρpij

is set to 1: In this case ρeij
is unassigned (otherwise xi,j would be

assigned). We know by Lemma 10 that assigning 1 to reij
has a support.

In this support 0 is assigned to xi,j .
(b) ρpij

is unassigned: We know by Lemma 11 that assigning 0 to rpij
has a

support. In this support 0 is assigned to xi,j . ��

In the case of finding supports when assigning 1 to xi,j , there are three cases.
These cases are detailed in Lemmas 13, 14, and 15.

Lemma 13. If 〈wi, fj〉 ∈ SP ∩ M0, then assigning 1 to xi,j has a support.

Proof. In this case ρeij
is unassigned. We know by Lemma 11 that assigning 0

to reij
has a support. In this support 1 is assigned to xi,j . ��

Lemma 14. If 〈wi, fj〉 ∈ SP ∩ Mz, then assigning 1 to xi,j has a support.

Proof. In this case ρpij
is unassigned. We know by Lemma 10 that assigning 1

to rpij
has a support. In this support xi,j is set to 1. ��

Let D1
xi,j

be the domain identical to D except for D(xi,j) = {1}.
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Lemma 15. If 〈wi, fj〉 ∈ SP \ M0 ∪ Mz, then

– If D(rpij
) = {1}, then assigning 1 to xi,j has a support.

– Otherwise, we have D(rpij
) = {0, 1} and assigning 1 to xi,j has a support iff

unit propagation on D1
xi,j

does not fail.

Proof. For the first case, we can argue that ρeij
is unassigned (otherwise xi,j

would be assigned). By Lemma 11, we have a support if we set reij
to 0. In this

support xi,j is set to 1.
For the second case, we have necessarily D(rpij

) = {0, 1} (otherwise xi,j

would be assigned) and it is easy to see that there exists a support iff unit
propagation does not fail on D1

xi,j
by Theorem 2. ��

We summarize all the properties of the previous lemmas in Algo-
rithm1. This algorithm shows a pseudo-code to maintain arc consistency on
M2M(I,X (M2M)). In this algorithm, UP(D) is the output domain after per-
forming unit propagation on a domain D. The output of UP(D) is ∅ iff a failure
is found.

Algorithm 1. Arc Consistency for M2M(I,X (M2M))

1 D ← UP(D) ;
if D 	= ∅ then

2 foreach 〈wi, fj〉 ∈ SP ∧ 〈wi, fj〉 /∈ M0 ∪ Mz ∧ D(rpij
) = {0, 1} do

3 D′ ← UP(D1
xi,j

) ;
if D′ = ∅ then

4 D(xi,j) = {0} ;

return D

Suppose that D is a domain where unit propagation is established without
failure. First, for any variable that is set to a value v, the assignment of v to this
variable has a support in D since there exists necessarily a solution (Theorem 2).
Second, we know that any assignment of any rotation variable has a support in
D by Lemmas 10 and 11. Also, the assignment of 0 to any unassigned variable
xi,j has a support (Lemma 12). Lastly, by Lemmas 13, 14, and 15, we know
that we need to check supports only for the assignment of 1 to some particular
unassigned variables xi,j . These variables correspond to the pairs of the set
Ψ = {〈wi, fj〉|〈wi, fj〉 ∈ SP ∧〈wi, fj〉 /∈ M0∪Mz ∧D(rpij

) = {0, 1}} (Lemma 15).
Algorithm 1 first performs unit propagation on the input domain D in Line

1. If a failure is not found, we loop over the pairs in Ψ in Line 2 and call unit
propagation on the new domain D1

xi,j
in Line 3 for each 〈wi, fj〉 ∈ Ψ . If this call

results in failure then xi,j does not have a support for the value 1. In this case,
such a variable is set to 0 in Line 4.

We discuss now the complexity of Algorithm 1. Observe first that since the
SAT formula contains only clauses of size at most 3, and since the number of
clauses is O(L), then unit propagation takes O(L) time. Notice that by using the
two-watched literal procedure [16], there is no data structure to update between
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the different calls. Lastly, observe that the number of calls to unit propagation in
Line 3 is bounded by the number of unassigned variables. Therefore the worst-
case time complexity to maintain arc consistency is O(Ux × L) where Ux is the
number of unassigned xi,j variables. Therefore the overall complexity is O(L2).

6 Experimental Results

In the absence of known hard problems for many to many stable matching, we
propose to evaluate our approach on two NP-hard variants of stable marriage
called sex-equal stable matching and balanced stable matching [14]. Let M be a
stable marriage. Let Cm

M (respectively Cw
M ) be the sum of the ranks of each man’s

partner (respectively woman’s partner). In balanced stable matching, the prob-
lem is to find a stable matching M with the minimum value of max{Cm

M , Cw
M}.

In sex-equal stable matching, the problem is to find a stable matching M with
the minimum value of |Cm

M − Cw
M | [14]. Modeling these problems in constraint

programming is straightforward by using an integer variable Xi for each man
mi whose domain represents the rank of the partner of mi.

We implemented our two propositions in the Mistral-2.0 [10] solver (denoted
by fr for the first formulation and ac for the arc consistency algorithm) and we
compare them against the bound (D) consistency algorithm of [20] implemented
in the same solver (denoted by bc). We restrict the search strategy to branch
on the sequence [X1, . . . , Xn] since it is sufficient to decide the problem. We
used four different heuristics: a lexicographic branching (lx ) with random value
selection (rd); lx with random min/max value selection (mn); activity based
search (as) [15]; and impact-based search (is) [18]. We use geometric restarts
and we run 5 randomization seeds. There is a time cutoff of 15 min for each
model on each instance.

We first run all the configurations on purely random instances with complete
preference lists of size up to 500 × 500 and observed that these instances are
extremely easy to solve for all configurations without valuable outcome. We
therefore propose to use a new benchmark of hard instances.

Irving and Leather [12] described a family of stable marriage instances, where
the number of solutions for stable matching grows exponentially. In this family,
the number of stable matchings g(n) for an instance of size n × n respects the
recursive formula g(n) ≥ 2×g(n/2)2, and g(1) = 1, where n, the number of men,
is of the form 2k. To give an idea of the exponential explosion, when n = 16,
the number of solutions is 195472, and when n = 32, the number of solutions is
104310534400. We generate instances of sizes n ∈ {32, 64, 128, 256} as follows.
For each size, we generate the instance as in [12], then swap α% of n random
pairs from the preference lists of men. We apply the same swapping procedure
for woman. We generated 50 instances for each size with α = 10, α = 20, and
α = 30. This gives us a total of 600 instances available in http://siala.github.io/
sm/sm.zip.

In the following figures we represent every configuration by “A-B” where
A∈ {fr, ac, bc} is the constraint model for stability and B ∈ {lx -rd, lx -mn, as, is}

http://siala.github.io/sm/sm.zip
http://siala.github.io/sm/sm.zip
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is the search strategy. In Figs. 1a and 2b we give the cactus plots of proving
optimality for these instances on the two problems. That is, after a given CPU
time in seconds (y-axis), we give the percentage of instances proved to optimality
for each configuration on the x-axis. In Figs. 1a and 2b we study the quality of
solutions by plotting the normalized objective value of the best solution found
by the configuration h (x-axis) after a given time in seconds (y-axis) [11]. Let
h(I) be the objective value of the best solution found using model h on instance
I and lb(I) (resp. ub(I)) the lowest (resp. highest) objective value found by
any model on I. We use a normalized score in the interval [0, 1]: score(h, I) =
ub(I)−h(I)+1
ub(I)−lb(I)+1 . The value of score(h, I) is equal to 1 if h has found the best
solution for this instance among all models, decreases as h(I) gets further from
the optimal objective value, and is equal to 0 if and only if h did not find any
solution for I. Note that for fr and ac the CPU time in all there figures includes
the O(L) preprocessing step that we mentioned at the beginning of Sect. 4.
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(a) Number of proofs
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(b) Objective value

Fig. 1. Performance cactus, sex equal stable matching

These figures show that the arc consistency model (ac) does not pay off as
it considerably slows down the speed of exploration. It should be noted that
between bc and ac there is no clear winner. The SAT formulation (fr), on the
other hand, outperforms both bc and ac using any search strategy. This is true
for both finding proofs of optimality and finding the best objective values. In
fact, fr clearly finds better solutions faster than any other approach.

Lastly, we note that the best search strategy for sex-equal stable matching is,
surprisingly, the one branching lexicographically using a random value selection
(Figs. 1a and b). For the case of balanced stable matching, clearly impact-based
search is the best choice for finding proofs (Fig. 2a) whereas activity based search
finds better solutions (Fig. 2b).
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Fig. 2. Performance cactus, balanced stable matching

7 Conclusion

We addressed the general case of many-to-many stable matching in a constraint
programming context. Using fundamental properties related to the notion of
rotation in stable matching we presented a novel SAT formulation of the problem
then showed that arc consistency can be maintained in quadratic time. Our
experimental study on two hard variants of stable matching called sex-equal
and balanced stable matching showed that our SAT formulation outperforms
the best CP approach in the literature. In the future, it would be interesting to
experimentally evaluate our propositions on hard variants in the many-to-many
setting.
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