
On Maximum Weight Clique Algorithms,
and How They Are Evaluated

Ciaran McCreesh, Patrick Prosser, Kyle Simpson, and James Trimble(B)

University of Glasgow, Glasgow, Scotland
j.trimble.1@research.gla.ac.uk

Abstract. Maximum weight clique and maximum weight indepen-
dent set solvers are often benchmarked using maximum clique problem
instances, with weights allocated to vertices by taking the vertex num-
ber mod 200 plus 1. For constraint programming approaches, this rule
has clear implications, favouring weight-based rather than degree-based
heuristics. We show that similar implications hold for dedicated algo-
rithms, and that additionally, weight distributions affect whether certain
inference rules are cost-effective. We look at other families of benchmark
instances for the maximum weight clique problem, coming from winner
determination problems, graph colouring, and error-correcting codes, and
introduce two new families of instances, based upon kidney exchange and
the Research Excellence Framework. In each case the weights carry much
more interesting structure, and do not in any way resemble the 200 rule.
We make these instances available in the hopes of improving the quality
of future experiments.

1 Introduction

This paper does not present a better algorithm for the maximum weight clique
problem. Instead, it argues that due to questionable benchmarking practices, we
do not know what the state of the art for maximum weight clique algorithms is.
This is unfortunate, because the problem is widely researched.

Of particular interest to us is using a maximum weight clique algorithm to
solve certain kinds of constraint optimisation problem. The reduction of con-
straint satisfaction problems to finding a clique in a corresponding microstruc-
ture graph is primarily studied for its theoretical properties [13–16,28]. For prob-
lems with a special objective function, a reduction to the maximum clique prob-
lem which preserves the objective value is possible—indeed, recent experimental
work shows that this encoding, rather than conventional constraint program-
ming, is the best practical approach for solving the maximum common subgraph
problem when vertex or edge labels are present [39]. To tackle other problems
this way (such as graph edit distance problems with complex scoring schemes),

C. McCreesh, P. Prosser and J. Trimble—This work was supported by the Engi-
neering and Physical Sciences Research Council [grant numbers EP/K503058/1,
EP/M508056/1 and EP/P026842/1].

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 206–225, 2017.
DOI: 10.1007/978-3-319-66158-2 14



On Maximum Weight Clique Algorithms, and How They Are Evaluated 207

we would like to be able to relax the restrictions on the objective function, by
reducing to the maximum weight clique problem instead.

This paper also does not attempt to demonstrate that this is a viable app-
roach. Although preliminary experiments suggest that this technique should not
be dismissed out of hand, we believe that its chances of success would be much-
improved by a change in how maximum weight clique algorithms are designed
and evaluated. We therefore begin with a brief review of maximum weight clique
algorithms. We then look at the set of instances usually used for benchmark-
ing, focussing in particular upon a widespread practice of allocating weights to
unweighted graphs. We show how this has affected the design of heuristics and
other filtering rules. We finish by looking at other problem instances, where
weights have real-world meanings and the vertices often have special structure;
we make all of these instances available for other experimenters to use.

2 Maximum Weight Clique Algorithms

Given a graph G where each vertex v has an integer weight w(v), the maximum
weight clique problem is to find a subset of vertices of maximum sum of weights,
such that every vertex in the subset is adjacent to every other in the subset;
note that the maximum weight independent set and minimum weighted vertex
cover problems are essentially equivalent. The problem also comes in an edge-
weighted variant, which we do not discuss in this paper. We write N(v) for the
set of vertices adjacent to v (that is, its neighbourhood), the degree of a vertex is
the cardinality of its neighbourhood, and the density of a graph is the proportion
of potential edges which are present. We use C in our descriptions of algorithms
to denote the current clique that is being built during search; P denotes the set
of candidate (potential) vertices that may be added to this clique.

Cliquer [43] finds a maximum clique and an earlier paper [42] presents a sketch of
how Cliquer can find a maximum weight clique. Cliquer is essentially a Russian
Doll search [60], finding a maximum weight clique in iteration i with an initial
clique C = {i} and a candidate set of vertices to choose from P = N(i) ∩
{0, . . . , i − 1}. The weight of this clique is then stored in an array element c[i].
In the case of unweighted maximum clique, c[i] = c[i − 1] if we cannot unseat
the incumbent using vertices {0, . . . , i}. If we can unseat the incumbent using
vertices {0, . . . , i} then we must have added one more vertex, that vertex is i
and c[i] = c[i−1]+1. In the case of maximum weight clique, c[i] is a weight, and
c[i] > c[i − 1] if and only if we unseat the incumbent using vertices {0, . . . , i}.
Obviously, 0 ≤ c[i] − c[i − 1] ≤ w(i). When a vertex v is selected from P to add
to C, c[v] can be used to prune the search. Prior to adding vertex v to C, we
know that the best possible clique that can be found using vertices {0, . . . , v} is
c[v], so if the weight of C plus c[v] does not exceed the weight of the incumbent
then search can be abandoned. The search is also pruned if the total weight of
C ∪ P is no greater than the incumbent.



208 C. McCreesh et al.

Kumlander’s algorithm [32] is an enhancement of Cliquer. At the top of search
the vertices of the graph are coloured, giving colour classes C1 to Ck. In each
colour class, vertices are then sorted by weight in ascending order. We now have
a Cliquer-like search with iterations 1 to k, where iteration i finds the heaviest
clique using vertices in the colour classes C1 ∪ . . .∪Ci and the weight is recorded
in c[i] (as in Cliquer). This can then be used as a bound (as before) along with
a colouring upper bound, that is the sum of the maximum weights in each of the
colour classes C1 . . . Ci , i.e.

∑i
j=1 max{w(v) : v ∈ Cj ∩ P}.

MWCLQ [22] uses MaxSAT reasoning to tighten an upper bound given by vertex
colouring. At each search node, the vertices of G are first partitioned into inde-
pendent sets C1 ∪ . . .∪Cn. This allows conversion to a literal-weighted MaxSAT
encoding: a variable xi is created for every vertex vi, having w(xi) = w(vi), and a
hard clause xi∨xj is posted for each pair of vertices vi, vj which are not adjacent.
For each independent set Ci = {v1, . . . , vl}, a soft clause is then added where lit-
erals are weighted, ci = (x1,w(x1))∨· · ·∨(xl,w(xl)), where w(c) is the maximum
literal weight within that clause and literals in a clause are sorted by weight in
non-increasing order. The upper bound starts as the sum of all original soft clause
weights. By applying unit propagation on an instance, the algorithm identifies
sets S of conflicting soft clauses and for each, the accompanying set Stopk where
the k highest-weight literals are failed. Defining w(S) = min{w(c) : c ∈ S}
and k(t) as the count of failed high-weight literals in t, the upper bound is
then reduced by min(w(S),mint∈Stopk

(w(t)−w(xk(t)+1))). Further such sets (and
bounds reductions) are identified by iteratively splitting and transforming the
soft clauses in S and Stopk to obtain new unit clauses.

Tavares [2,59] introduces a new heuristic colouring algorithm for calculating an
upper bound, BITCOLOR, in which each vertex may appear in more than one
colour class. Each colour class has an associated weight, and the colouring has
the property that the weight of a vertex v equals the sum of the weights of the
colour classes to which v belongs. If we produce a colouring of the candidate
set P in this way, and let UB(P ) be the sum of colour-class weights, it can be
shown that UB(P )+

∑
v∈C w(v) is a valid upper bound on the maximum clique

weight. In practice, this approach produces a tighter upper bound than simple
colouring. Tavares uses BITCOLOR in three algorithms for maximum weight
clique: a Cliquer-style Russian dolls algorithm, an algorithm which branches on
vertices in reverse colouring order, and a resolution search algorithm [12].

OTClique [55] enhances the Russian dolls approach of Cliquer by precomputing,
using dynamic programming, the maximum-weight clique in each of a large set of
induced subgraphs of G. The precomputed values are used to quickly calculate
a bound that is tighter than the näıve sum-of-vertex-weights bound used by
Cliquer.

WLMC is an exact algorithm which is designed for large, sparse graphs, but
also performs well on the relatively small, dense graphs that are the focus of this



On Maximum Weight Clique Algorithms, and How They Are Evaluated 209

paper. In a preprocessing step—which is performed at the top of search and also
after every possible choice of first vertex—WLMC uses the method of Carraghan
and Pardalos [11] to produce a vertex ordering and an initial incumbent clique.
The preprocessing step then reduces the size of the graph by deleting any vertex
v such that the incumbent clique has weight greater than or equal to w(v) plus
the sum of weights of v’s neighbours. At each node of the branch-and-bound
search, WLMC uses MaxSAT reasoning to find a set of vertices on which it is
unnecessary to branch1.

Other approaches. The problem has also been tackled using mathematical pro-
gramming [25,27,61], and is the subject of ongoing research for inexact (heuris-
tic) solutions [3,4,10,20,27,29,41,62,65,66]. Finally, sometimes alternative con-
straints or objectives are considered [6,34,54].

3 Current Practices in Benchmarking

For the maximum (unweighted) clique problem, experimenters are blessed with
a suite of instances from the second DIMACS implementation challenge [30].
These are all relatively small, dense graphs. Most instances fit into one of three
classes:

– Graphs which encode a problem from another domain. The “c-fat” family
encode a problem involving fault diagnosis for distributed systems [5]. The
“hamming” and “johnson” graphs model problems from coding theory [7].
The “keller” instances encode a geometric conjecture [17], and the MANN
family is made from clique formulations of the Steiner triple problem [36]. In
each of these cases, the size of the solution has a real-world interpretation
(and sometimes the vertices contained therein also convey meaning).

– Randomly-generated graphs. The “C” and “DSJC” instances are simple ran-
dom graphs of varying orders and densities. The “p hat” family are also
random graphs, but with an unusually large degree spread [23,56].

– Random graphs with large hidden solutions. The “brock” family of instances
[9] are an attempt at camouflaging a known clique in a quasi-random graph
for cryptographic purposes, in a way resistant to heuristic attacks. The “gen”
and “san(r)” instances use a different technique for hiding a large clique of
known size in a graph [50,51]: again, they are an attempt to create challenging
instances with a known and unusually large optimal solution.

The instances from the first set are valuable because of their applications. Mean-
while, the randomly generated instances are useful because they provide a chal-
lenge: although being able to solve crafted hard instances is not the primary
goal of developing clique algorithms, working on these instances has led to bet-
ter solvers. For example, Depolli et al. [18] use a maximum clique algorithm
1 The existing implementation of WLMC does not support the large weights that

appear in many of the instances in this paper. Therefore, we could not include this
program in our experimental evaluation.



210 C. McCreesh et al.

for new instances from a biochemistry application, and note that although their
instances are reasonably easy for a modern algorithm, they are challenging for
earlier algorithms that predate experiments on these instances; a similar conclu-
sion holds for clique-based solvers for maximum common subgraph problems [39].

For the weighted problem, standard practice is to take these same instances,
and to follow a convention usually ascribed to Pullan [45]:

“Instances were converted to MVWC instances (the DIMACS-VW bench-
mark) by allocating weight, for vertex i, of imod 200 + 1”.

Incidentally, Mannino and Stefanutti [37] had used a similar convention previ-
ously, using modulo 10 rather than 200. Pullan justifies this rule and choice of
constant as follows:

“This technique allows future investigators to simply replicate the experi-
ments performed in this study. The constant 200 in the weight calculation
was determined after a number of experiments showed that the generated
problems appeared to be reasonably difficult for PLS (clearly, allocating
weights in the range 1, . . . , k results in an MC instance when k = 1 while,
intuitively, it is reasonable to expect that as k increases, the difficulty in
solving the instance will, in general, increase).”

This rule, together with a similar rule for allocating weights to edges for the edge-
weighted variant of the problem, is very widely used [2–4,20–22,25,27,29,32,34,
41–43,45,55,61,62,65,66, and many more], often as the only way of evaluating
a solver. It has also recently been adopted for large sparse graphs [10,20,29,62],
and for benchmarking the minimum weight dominating set problem [63], often
as the only way of evaluating a solver. It has also recently been adopted for
large sparse graphs [10,20,29,62], and for benchmarking the minimum weight
dominating set problem [63].

4 Experimental Setup

Our experiments are performed on a machine with dual Intel Xeon E5-2697A
v4 CPUs and 512 GBytes RAM, running Ubuntu 16.04. We used the latest ver-
sion of Cliquer (1.21), released in 2010, downloaded from the author’s website.
The source code for MWCLQ and OTClique was provided by these programs’
authors. We modified each program by changing every occurrence of int to a
64-bit integer type, in order to accommodate the large weights that occur in
some classes of instance. This change has a measurable effect on the runtime of
the programs, particularly for OTClique.

Tavares’ programs were not available when we ran our experiments. We have
therefore written two programs using a Tavares-style colouring for use in our
experiments, one which uses Russian Dolls and one which branches in an order
based on colouring. We call these programs TR and TC, respectively. In both



On Maximum Weight Clique Algorithms, and How They Are Evaluated 211

Tavares’ description and our implementations, bitsets are used to perform the
colouring step efficiently.

All five programs are implemented in C, and were compiled using GCC 5.4.0
at optimisation level -O3. We set the OTClique parameter l to 20. Finally, we
implemented a constraint programming model in Java, using the Choco solver
version 3.3.3.

5 Does Weight Allocation Affect Algorithm Design?

The maximum weight clique problem has an obvious constraint programming
model: we have a 0/1 variable for each vertex, a constraint for each non-adjacent
pair of vertices prohibiting the two vertices from being set to 1 simultaneously,
and an objective to maximise the weighted sum over all variables. But what
about variable-ordering heuristics? For the unweighted maximum clique prob-
lem, we might use the degree of the vertex corresponding to each variable. In
the weighted case, we could look either at degree, or at weight.

When weights are chosen to be between 1 and 200, we would expect weights
to be much more important than degree: selecting a vertex of high weight would
affect the solution more than selecting several vertices of low weight. Thus it
seems likely that a variable-ordering heuristic which considered weights would
be best. On the other hand, if we selected weights to be between 190 and 200,
perhaps degree would matter more instead?

Figure 1 confirms this suspicion. We look at random graphs with 70 vertices
and density 0.6. We assign weights sequentially, starting at x + 1 and wrapping
back to x + 1 when we exceed 200. Thus, on the far left of the plot, we have
weights ranging from 1 to 70, in the middle from 101 to 170, near the right
from 180 to 200 (with weights repeated), and on the far right, every weight is
200. For the y-axis, we plot the mean search effort from a sample of 100 runs
for our Choco model, using ascending and descending degree or weight as static
variable-ordering heuristics, and preferring 1 over 0 as a value-ordering heuristic.
Because weights are allocated sequentially, we randomly permute the order of
vertices before solving to avoid using weight unintentionally as a tie-breaking
heuristic. The results show that when weights are chosen to be between 1 and
70, it is indeed best to select a weight-based variable ordering heuristic. However,
once weights are chosen to be between 50 and 119, it becomes much more useful
to use degree-based heuristics.

The plot also shows the effects of using impact-based search [46]. These
results are nearly as good as the degree-based heuristics, but do not beat tailored
heuristics. Impact-based search is also unable to mimic weight-based heuristics
in the parts of the parameter-space where weights are more informative, since
impact is unaware of the effect of domain deletions upon the objective function.
We also plot domain over weighted degree [8], which fares less well.

What about other densities? Most of the DIMACS instances are dense—does
this affect algorithm design too? In the top left plot of Fig. 2, we vary both the
graph density and weight range, and use colour to show which heuristic has best



212 C. McCreesh et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

M
ea

n 
Se

ar
ch

Minimum Weight

Degree Ascending
Degree Descending
Weight Descending
Weight Ascending
Impact
Dom / WDeg

Fig. 1. A comparison of heuristics using a Choco model, over random graphs with 70
vertices, density 0.6, and sequential weights starting from x and never exceeding 200.

average performance at each point. The results show that when the minimum
weight is low (such as when using the 200 rule), we should favour descending
weight heuristics, but otherwise we should favour ascending degree.

This basic constraint programming approach is not performance-competitive,
but the relative simplicity of the algorithm makes it easy to experiment with.
What about the algorithms introduced in Sect. 2, which use more complex
branching strategies and inference? Figure 2 also compares the run times of five
dedicated algorithms with modified vertex orderings, working with 100 vertex
graphs. (Note that several of the algorithms have branching strategies that are
influenced by, but not identical to, the order of vertices in the graph.) The focus
of this paper is not on explaining these results in great detail: we are simply
demonstrating that the 200 rule has likely had an effect on algorithm design2.
The default orderings for most of these algorithms are primarily weight-based,
which appears to be a good choice when weight ranges are large (there are many
dark and light blue points towards the bottom of these plots), but perhaps not
otherwise (the plots are not monochromatic, and there are large orange and/or
yellow areas in each plot).

Are heuristics the only design choice affected by the benchmark instances?
Figure 3 compares our Tavares-style algorithm TC with a similar algorithm which
uses a simple colour bound rather than the Tavares-style multi-colouring. The
plots show mean search effort and runtimes for random 200-vertex instances
of density 0.6. On the instances with a wide weight range such as 5–200, the

2 It is interesting to note that MWCLQ often resembles Choco but with a higher
threshold for switching away from weights, except that sometimes it is worth switch-
ing to descending degree as well as ascending degree, and that the three Russian Dolls
algorithms exhibit similar heuristic behaviour to each other. We do not understand
how ordering heuristics should work with Russian Dolls search, and suggest that this
could be a good avenue for future research—for example, perhaps it is better to use
different heuristics for different dolls?.



On Maximum Weight Clique Algorithms, and How They Are Evaluated 213

Choco

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

MWCLQ

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

TC

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

OTClique

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

TR

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

Cliquer

0
50

100
150
200

0 0.2 0.4 0.6 0.8 1

Fig. 2. Which heuristic is best when varying density (x-axis) and weight range
(y-axis), choosing from descending/ascending weight (dark/medium blue), descend-
ing/ascending degree (orange/yellow), or no difference (white). Graphs have 70 vertices
for Choco, and 100 for the other algorithms (which also have higher plotting densities).
No plot is monochromatic, showing that heuristics are affected by density and weight
ranges. (Color figure online)

0
10000
20000
30000
40000
50000
60000
70000
80000

0 50 100 150 200

M
ea

n 
Se

ar
ch

Minimum Weight

Tavares Simple

0

20

40

60

80

100

120

0 50 100 150 200

M
ea

n 
R

un
ti
m

e 
(m

s)

Minimum Weight

Tavares Simple

Fig. 3. Comparing TC with a simpler algorithm which does not use the Tavares multi-
colouring rule, on 200 vertex graphs with density 0.6, and different weight ranges.

Tavares-style algorithm is the clear winner. When the minimum weight is greater
than 100, the simple algorithm is faster; although it visits more search nodes,
this is outweighed by the shorter time per node of the simpler algorithm. This
shows that the practical benefits of Tavares’ more complex bound are also heavily
dependent upon how weights are allocated.

6 Other Families of Problem Instances

Having questioned the 200 rule and the use of unweighted DIMACS instances,
we now discuss five families of instances which we hope will lead to better



214 C. McCreesh et al.

0

50

100

150

200

0 100 200 300 400

Kidney 085

107
108
109

1010
1011

26330 1000
103

104

105

106

2410 100

ECC 10

0
2
4
6
8

10

21240 500 10001500

WDP in201

105

106

107

108

0 250 500 750 1000

REF 25-35-01

0

4

8

12

16

3750 100 200 300

Fig. 4. Weight (y-axis) plotted against degree (x-axis) for an example instance from
each different graph class. Note some plots use a log scale for the weight, and do not
start at zero.

experiments in the future. Three of these are from existing papers (but in one
case the instances are hard to find online in a convenient format), and two are
new. We bring all of these instances together in the standard DIMACS format
to help future experimenters, and we will update this collection as new families
are uncovered3. Note that many of these instances require support for 64-bit
weights.

Figure 4 plots weight versus degree for one instance from each of these fami-
lies. We also plot “brock400 1” from the DIMACS set using the 200 rule: observe
that degree gives almost no information for this instance, compared to weight.
We return to this figure as we introduce each family.

6.1 Kidney Exchange

Kidney-exchange schemes exist in several countries to increase the number of
transplants from living donors to patients with end-stage renal disease [24,35,
47]. A patient enters the scheme along with a friend or family member who
is willing to donate to that patient but unable to do so due to blood or tissue
incompatibility. These two participants form a donor-patient pair. From the pool
of donor-patient pairs, the scheme administrator periodically arranges exchanges,
each of which involves two or more donor-patient pairs. In a two-way exchange,
the donor of the first pair gives a kidney to the patient of the second pair, and
the donor of the second pair gives a kidney to the patient of the first. In three-
way and larger exchanges, kidneys are donated between the donor-patient pairs
cyclically.
3 https://doi.org/10.5281/zenodo.816293.

https://doi.org/10.5281/zenodo.816293


On Maximum Weight Clique Algorithms, and How They Are Evaluated 215

In addition, many schemes benefit from altruistic donors, who enter the
scheme without a paired patient, and may initiate a chain of donations. For
the optimisation problem, we may view an altruistic donor as a donor paired
with a “dummy patient” who is compatible with any donor.

Each feasible exchange is given a score reflecting its desirability. This may,
for example, take into account the size of the exchange, the time that patients
have been waiting for a transplant, and the probability that the transplants will
be successful. Typically, the scheme administrator carries out a matching run
at fixed intervals, with the goal of maximising the sum of exchange scores. A
popular approach to solving this optimisation problem is integer programming
using the cycle formulation, in which we have one binary variable for each fea-
sible exchange, and a constraint for each participant in the scheme ensuring
that he or she is involved in at most one selected exchange [1,48]. We propose
that this optimisation problem may, alternatively, be solved by reduction to
maximum-weight clique. Each vertex is an exchange, whose weight is its score.
Two exchanges are adjacent if and only if they have no participants in common.

To create maximum weight clique instances, we used kidney instances by
Dickerson [19], available on PrefLib [38], originally from a widely-used generator
due to Saidman et al. [49] (real instances cannot be made public due to medical
confidentiality). The weighting scheme and exchange size cap we used are based
on the system used in the UK’s National Living Donor Kidney Sharing Scheme
(NLDKSS) [35]. The NLDKSS has a maximum exchange size of three, and has
five objectives, ranked hierarchically. The first objective is optimised; subject to
this being at its optimal value, the second objective is optimised, and so on.

The primary objective is to maximise the number of effective two-way
exchanges: exchanges that either consist of only two donor-patient pairs, or
which contain (as part of a larger exchange) two donor-patient pairs who could by
themselves form a two-way exchange. This provides robustness: part of a larger
exchange may still proceed even if the full exchange does not (for example, due
to illness). The second objective is to maximise the total number of transplants.
The third objective is to minimise the number of three-way exchanges. The
fourth objective is to maximise the number of back-arcs in three-way exchanges;
these are compatibilities between donor-patient pairs in the reverse direction
of the exchange. The final objective is to optimise the weight of the exchange,
which is a value based on factors including the number of previous matching
runs that patients have been in, and the level of compatibility between donors
and patients in planned transplants.

To create these instances, we used the first four of these objectives, combining
them into a single long integer using the formula x = 236x1 +224x2 +212x3 +x4

where xi is an exchange’s score for the ith objective. We use a simple transfor-
mation to convert the third objective from a minimisation to a maximisation.
This method of combining scores in order to perform a single optimisation is
not practical using IP solvers because, as Manlove and O’Malley [35] observe,
the resulting weights would be too large for IP solvers. By contrast, all of our
maximum-weight clique solvers can use 64-bit weights without loss of precision.



216 C. McCreesh et al.

(Ideally, we would like to use even larger weights, to include the fifth ranking
criterion.) Note that due to the extreme ranges of weights requiring the use of a
log scale, Fig. 4 does not clearly show the variation between weights.

6.2 Colouring Instances

In branch and bound graph colouring algorithms such as Held et al. [26] the
fractional chromatic number χf (G) acts as a useful upper bound. This can be
found according to an integer programming formulation introduced by Mehrotra
and Trick [40]: the model starts with a subset of the required variables, which is
extended if a maximum weight independent set (MWIS) of weight at least 1 can
be found within the original graph. The weights themselves are the dual price of
including that vertex in the model according to an independent set formulation,
multiplied by some factor scalef to achieve integer values. As a result, these
graphs feature very large weights to have sufficient resolution to encode small
fractions of scalef.

The instances we include are due to Held et al. Each instance arises dur-
ing colouring of a corresponding DIMACS instance; many of these are the last
such MWIS instance encountered during search, and represent that problem’s
bottleneck.

6.3 Error-Correcting Codes

Österg̊ard [42] describes the following problem from coding theory. Let a length
n, a distance d, a weight w, and a permutation group G be given. The objective
is to find a maximum-cardinality set C of codes (binary vectors) of length n,
such that each element in S has Hamming weight w; each pair of elements in
C is at least Hamming distance d apart; and for every permutation σ ∈ G and
every code c ∈ C, we have that σ(c) ∈ C. Österg̊ard shows how this problem
may be reduced to maximum weight clique by partitioning the set of all binary
vectors of length n and weight w into orbits under the permutation group G, and
creating a vertex for each orbit satisfying the condition that no two members
of the orbit are less than Hamming distance d apart. The weight of each vertex
equals the size of the corresponding orbit, and two vertices are adjacent if and
only if all pairs of members of the two orbits are at least distance d apart.

The fifteen instances presented by Österg̊ard are no longer readily available.
We have written a program to reconstruct the instances. For the instance ECC10
shown in Fig. 4 the weights range from one to eight, and are roughly inversely
correlated with degree; in other instances, the weights go as high as eighty.

6.4 The Winner Determination Problem

In a combinatorial auction, bidders are allowed to bid on sets of items rather
than just single items. For example, at a furniture auction, agent A might bid
for four dining chairs and a table, rather than bid for each chair and the table



On Maximum Weight Clique Algorithms, and How They Are Evaluated 217

separately. Another bidder, agent B, might bid for the same table and a side-
board, whilst agent C bids for the sideboard and a set of crockery. Agent B’s
bid is incompatible with that of A (they want the same table) and that of C
(they want the same sideboard), but A’s bid is compatible with C’s (there is no
intersection on the items of interest).

Finding an allocation of items to bidders that maximizes the auctioneer’s
revenue is called the winner determination problem (WDP) [44,52,53]. A prob-
lem instance can be represented as a weighted graph. A vertex v in the graph
corresponds to a bid, the weight of v is the value of that bid, and an edge
exists between a pair of vertices (u, v) if the corresponding bids have no items in
common (i.e. they are compatible with each other). Consequently, a maximum
weight clique corresponds to an optimal allocation.

WDP instances, available via cspLib [44] and originally created by Lau and
Goh [33], have been used as a benchmark suite by Fang et al. [22] and Wu and
Hao [64] for comparing one maximum weight clique algorithm against another.
But what do these instances look like? Figure 4, instance WDP in201, shows
that high weight vertices have low degree, and light weight vertices have high
degree. This is not surprising: a high value bid is typically a bid for many items
and is incompatible with many other bids, and corresponds to a heavy vertex of
low degree. Consequently, when used to compare algorithms, we might find that
an ordering on decreasing weight will perform much the same as an ordering of
increasing degree.

6.5 The Research Excellence Framework

In 2016, Her Majesty’s Government proposed that in the next Research Excel-
lence Framework (REF2021) academics would be allowed to submit exactly four
publications over a given interval of time (typically 4 years)4. In a university,
in each unit of assessment (typically a department or school) each member of
staff would submit six publications and of those six publications management
would select four. Papers are assigned rankings in the range 4 to 1, with 4 being
“internationally excellent”. Therefore, for each member of staff, there would be
C6

4 possible selections, where each selection would have a combined ranking in
the range 4 to 16. At most one of these 4-selections would be allowed for each
member of staff, and no publication could be counted more than once (that
is, co-authors within the same unit of assessment cannot both submit a shared
publication).

This has strong similarities to a winner determination problem: we must find
an allocation of items (sets of four publications) to bidders (academic staff) that
maximizes the auctioneer’s (unit of assessment’s) revenue (combined rankings).

Realistic instances were generated for departments with n members of acad-
emic staff producing m publications. A random number of papers were generated,
each with a ranking in the range 2 to 4, with a specified distribution based on
historical data5. For each member of staff 6 papers were randomly selected, and
4 However, in July 2016 Lord Nicholas Stern suggested greater flexibility be allowed.
5 Being a “research-led institution” no papers with a ranking of 1 are allowed.



218 C. McCreesh et al.

that member of staff was then considered an author. This was then represented
as a weighted graph. The graph has 15 · n vertices (there are 15 ways for each
author to choose 4 publications from 6) with weights in the range 8 to 16. The
15 vertices associated with an author form an independent set (at most one of
the author’s 4-selections can be selected).

As the number of publications to choose from increases, the likelihood of any
pair of 4-selections having a publication in common falls, so bids become more
compatible and the resultant graph has more edges (is denser), and this tends
to increase the difficulty of the problem. For example with n = 20 and m = 50
graphs have 300 vertices and average density 0.67, and with n = 20 and m = 30
we again have 300 vertices and density is 0.52 on average. These graphs have
a maximum (unweighted) clique of size no more than min(n,m/4). There is a
small range of weights (8 to 16) and in any instance there is a small variation in
degree (see instance REF 25-35-01 in Fig. 4).

6.6 Experiments

In Figs. 5, 6, 7, 8, 9 and 10 we plot, for each algorithm, the cumulative number of
instances which can be solved in under a certain amount of time, for these differ-
ent families of instances. The dark thick line in each plot shows that algorithm’s
default vertex ordering, and the light lines show ascending and descending weight
and degree orderings. To interpret these plots, select a preferred timeout along
the x-axis, and then select the line with highest y-value to determine the best-
performing algorithm for that choice of timeout.

Although we did not intend to carry out an algorithmic beauty contest,
these results support the simple conclusion that our implementation of Tavares’
(little known) colour-ordering algorithm is consistently the best solver, and that
the default heuristic we picked for it (decreasing degree order) is nearly always
the best. This is a surprise. We were hoping to end this paper by stressing the
importance of tailoring heuristics and solvers on a family by family basis, perhaps
suggesting algorithm portfolios, but instead we have identified a clear winner.

MWCLQ

0

20

40

60

80

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 5. Cumulative plots for DIMACS instances, with weights in range 1–200 added
using the standard scheme. The dark thick line is the default heuristic for each solver,
and the thin light lines show ascending and descending degree and weight heuristics.
The x-axis is runtime in milliseconds, and the y-axis plots the cumulative number of
instances which can be solved (individually) in time less than or equal to x.



On Maximum Weight Clique Algorithms, and How They Are Evaluated 219

MWCLQ

0
10
20
30
40
50

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 6. Cumulative plots for kidney instances.

MWCLQ

112

0
20
40
60
80

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 7. Cumulative plots for colouring instances.

MWCLQ

0
10
20
30
40
50

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 8. Cumulative plots for winner determination problem instances.

MWCLQ

0
20
40
60
80

100

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 9. Cumulative plots for REF instances.



220 C. McCreesh et al.

MWCLQ

0

5

10

15

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 10. Cumulative plots for error correcting code instances.

7 Conclusion

Despite our experiments suggesting a single winning algorithm, we believe our
new sets of instances are valuable. The 200-weighted DIMACS benchmark
instances are often cited as being good “real-world” tests for the maximum
weight clique problem. This is not the case: some of these instances are real-
world tests for the maximum clique problem, but adding weights destroys the
real-world meaning of the results. Additionally, most of these instances are of the
“crafted, challenging” (for unweighted clique) kind, and again, adding 200-rule
weights destroys these properties. The other families we discuss in this paper are
somewhat better in this respect, and if they replace the 200-weighted DIMACS
instances as the standard for benchmarking, they may open the way up more
interesting kinds of algorithm in the future.

Figure 6 emphasises this opportunity. It shows 50 kidney-exchange instances
which have a minimum of 16 pairs and no altruistic donors, and a maximum
of 64 pairs and 6 altruistic donors. These results are far from competitive with
leading integer program solvers, which can solve each of these instances in less
than a second.

Our discussion has focussed on weights. However, it is worth noting that
for many of the DIMACS instances, vertex degrees are also unusually unhelp-
ful. The situation shown in the top left plot of Fig. 4 where each vertex has
similar degree is common, and for some instance families, the degrees are delib-
erately constructed to be misleading. In contrast, the vertices in our instances
were not crafted with hostile intent, and they often carry a certain amount of
structure. This is particularly true with microstructure-like encodings, where
vertices from any given variable always form an independent set, and where we
know that the graph may always be coloured in a particular way. Now that we
have families of instances that have interesting, realistic structure, perhaps sub-
sequent algorithms can be tailored to exploit these properties (such as treating
the first branching vertex specially [58]), and it may also be worth considering
preprocessing techniques [57].

We hope to extend our collections of instances and algorithms in the future,
and perhaps this will make these results more interesting and inspiring. We are
also interested in real instances for the edge-weighted variant of the problem,
which suffers similarly from an arbitrary weight allocation rule.



On Maximum Weight Clique Algorithms, and How They Are Evaluated 221

We note in passing that all of these instances are dense, despite being “real-
world” instances. It is important to distinguish between solving graph problems
on graphs which directly represent real-world phenomena (which are often sparse
and have power-law degree structures), with solving problems which encode the
solution to a problem. Graphs of the latter kind may very well be dense. This
is true even when the question being answered is regarding a sparse graph: for
example, when solving the maximum common subgraph problem via reduction
to clique, the encoding of two sparse graphs gives a dense graph [39]. Similarly,
microstructure graphs for non-trivial problems are usually reasonably dense.

Finally, we observed (in Fig. 2) an anomaly with respect to the variable-
ordering heuristics used by Russian Doll algorithms. Clearly, this deserves more
attention.

Acknowledgments. The REF instance generator was joint work with David
Manlove. We are grateful to David for this, and for helpful discussions on kidney
exchange.

References

1. Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In: MacKie-Mason, J.K., Parkes,
D.C., Resnick, P. (eds.) Proceedings 8th ACM Conference on Electronic Com-
merce (EC-2007), 11–15 June 2007, San Diego, California, USA, pp. 295–304. ACM
(2007). http://doi.acm.org/10.1145/1250910.1250954

2. Araujo Tavares, W.: Algoritmos exatos para problema da clique maxima ponder-
ada. Ph.D. thesis, Universidade federal do Ceará (2016). http://www.theses.fr/
2016AVIG0211

3. Baz, D.E., Hifi, M., Wu, L., Shi, X.: A parallel ant colony optimization for the
maximum-weight clique problem. In: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, IPDPS Workshops 2016, 23–27 May
2016, Chicago, IL, USA, pp. 796–800. IEEE Computer Society (2016). doi:10.1109/
IPDPSW.2016.111

4. Benlic, U., Hao, J.: Breakout local search for maximum clique problems. Comput.
OR 40(1), 192–206 (2013). doi:10.1016/j.cor.2012.06.002

5. Berman, P., Pelc, A.: Distributed probabilistic fault diagnosis for multiprocessor
systems. In: Proceedings of the 20th International Symposium on Fault-Tolerant
Computing, FTCS 1990, 26–28 June 1990, Newcastle Upon Tyne, UK, pp. 340–346.
IEEE Computer Society (1990). doi:10.1109/FTCS.1990.89383

6. Boginski, V., Butenko, S., Shirokikh, O., Trukhanov, S., Gil-Lafuente, J.: A
network-based data mining approach to portfolio selection via weighted clique
relaxations. Ann. OR 216(1), 23–34 (2014). doi:10.1007/s10479-013-1395-3

7. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization,
pp. 1–74. Springer, Boston (1999). doi:10.1007/978-1-4757-3023-4 1

8. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the
16th Eureopean Conference on Artificial Intelligence, ECAI 2004, Including Pres-
tigious Applicants of Intelligent Systems, PAIS 2004, 22–27 August 2004, Valencia,
Spain, pp. 146–150. IOS Press (2004)

http://doi.acm.org/10.1145/1250910.1250954
http://www.theses.fr/2016AVIG0211
http://www.theses.fr/2016AVIG0211
http://dx.doi.org/10.1109/IPDPSW.2016.111
http://dx.doi.org/10.1109/IPDPSW.2016.111
http://dx.doi.org/10.1016/j.cor.2012.06.002
http://dx.doi.org/10.1109/FTCS.1990.89383
http://dx.doi.org/10.1007/s10479-013-1395-3
http://dx.doi.org/10.1007/978-1-4757-3023-4_1


222 C. McCreesh et al.

9. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs. In: Johnson and Trick [31], pp. 75–88. http://dimacs.rutgers.edu/Volumes/
Vol26.html

10. Cai, S., Lin, J.: Fast solving maximum weight clique problem in massive graphs.
In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, 9–15 July 2016, New York, NY,
USA, pp. 568–574. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/16/
087

11. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique prob-
lem. Oper. Res. Lett. 9, 375–382 (1990)

12. Chvátal, V.: Resolution search. Discrete Appl. Math. 73(1), 81–99 (1997). doi:10.
1016/S0166-218X(96)00003-0

13. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability
of CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR) 45, 47–78
(2012). doi:10.1613/jair.3651

14. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry def-
initions for constraint satisfaction problems. Constraints 11(2–3), 115–137 (2006).
doi:10.1007/s10601-006-8059-8

15. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction
on trees: hybrid tractability and variable elimination. Artif. Intell. 174(9–10), 570–
584 (2010). doi:10.1016/j.artint.2010.03.002

16. Cooper, M.C., Zivny, S.: Hybrid tractable classes of constraint problems. In:
Krokhin, A.A., Zivny, S. (eds.) The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 113–135. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017). doi:10.4230/DFU.Vol7.15301.4

17. Debroni, J., Eblen, J.D., Langston, M.A., Myrvold, W., Shor, P.W., Weerapurage,
D.: A complete resolution of the Keller maximum clique problem. In: Randall,
D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, 23–25 January 2011, San Francisco, California,
USA, pp. 129–135. SIAM (2011). doi: 10.1137/1.9781611973082.11

18. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. J. Chem. Inf. Model. 53(9),
2217–2228 (2013). doi:10.1021/ci4002525

19. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with
transplant chains: theory and reality. In: van der Hoek, W., Padgham, L., Conitzer,
V., Winikoff, M. (eds.) International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2012, IFAAMAS, 4–8 June 2012, Valencia, Spain, vol.
3, pp. 711–718 (2012). http://dl.acm.org/citation.cfm?id=2343798

20. Fan, Y., Li, C., Ma, Z., Wen, L., Sattar, A., Su, K.: Local search for maximum
vertex weight clique on large sparse graphs with efficient data structures. In: Kang,
B.H., Bai, Q. (eds.) AI 2016. LNCS, vol. 9992, pp. 255–267. Springer, Cham (2016).
doi:10.1007/978-3-319-50127-7 21

21. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using
maximum satisfiability reasoning. In: Schaub, T., Friedrich, G., ÓSullivan, B. (eds.)
ECAI 2014–21st European Conference on Artificial Intelligence, 18–22 August
2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS) 2014. Frontiers in Artificial Intelligence and Applications, vol. 263,
pp. 303–308. IOS Press (2014). doi:10.3233/978-1-61499-419-0-303

22. Fang, Z., Li, C., Xu, K.: An exact algorithm based on maxsat reasoning for the
maximum weight clique problem. J. Artif. Intell. Res. (JAIR) 55, 799–833 (2016).
doi:10.1613/jair.4953

http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://www.ijcai.org/Abstract/16/087
http://www.ijcai.org/Abstract/16/087
http://dx.doi.org/10.1016/S0166-218X(96)00003-0
http://dx.doi.org/10.1016/S0166-218X(96)00003-0
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1007/s10601-006-8059-8
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.4230/DFU.Vol7.15301.4
http://dx.doi.org/10.1137/1.9781611973082.11
http://dx.doi.org/10.1021/ci4002525
http://dl.acm.org/citation.cfm?id=2343798
http://dx.doi.org/10.1007/978-3-319-50127-7_21
http://dx.doi.org/10.3233/978-1-61499-419-0-303
http://dx.doi.org/10.1613/jair.4953


On Maximum Weight Clique Algorithms, and How They Are Evaluated 223

23. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using
a tabu search approach. Ann. OR 41(4), 385–403 (1993). doi:10.1007/BF02023002

24. Glorie, K., Haase-Kromwijk, B., van de Klundert, J., Wagelmans, A., Weimar,
W.: Allocation and matching in kidney exchange programs. Transpl. Int. 27(4),
333–343 (2014)

25. Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in
sparse graphs with compact formulations. EURO J. Comput. Optim. 3(1), 1–30
(2015). doi:10.1007/s13675-014-0028-1

26. Held, S., Cook, W.J., Sewell, E.C.: Maximum-weight stable sets and safe lower
bounds for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012). doi:10.
1007/s12532-012-0042-3

27. Hosseinian, S., Fontes, D., Butenko, S.: A quadratic approach to the maximum
edge weight clique problem. In: XIII Global Optimization Workshop GOW 2016,
pp. 125–128 (2016)

28. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence, 11–15 July 1993, Wash-
ington, DC, USA, pp. 731–736. AAAI Press/The MIT Press (1993). http://www.
aaai.org/Library/AAAI/1993/aaai93-109.php

29. Jiang, H., Li, C., Manyà, F.: An exact algorithm for the maximum weight clique
problem in large graphs. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San
Francisco, California, USA, pp. 830–838. AAAI Press (2017). http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14370

30. Johnson, D.S., Trick, M.A.: Introduction to the second DIMACS challenge: cliques,
coloring, and satisfiability. In: Cliques, Coloring, and Satisfiability, Proceedings of
a DIMACS Workshop, 11–13 October 1993, New Brunswick, New Jersey, USA,
[31], pp. 1–10. http://dimacs.rutgers.edu/Volumes/Vol26.html

31. Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and satisfiability. In: Pro-
ceedings of a DIMACS Workshop, DIMACS/AMS, 11–13 October 1993, New
Brunswick, New Jersey, USA. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, vol. 26 (1996). http://dimacs.rutgers.edu/Volumes/
Vol26.html

32. Kumlander, D.: On importance of a special sorting in the maximum-weight clique
algorithm based on colour classes. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) Mod-
elling, Computation and Optimization in Information Systems and Management
Sciences, MCO 2008. Communications in Computer and Information Science, vol.
14, pp. 165–174. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87477-5-18

33. Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-
based 4th-party logistics. In: 14th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 4–6 November 2002, Washington, DC, USA, p. 154.
IEEE Computer Society (2002). doi:10.1109/TAI.2002.1180800

34. Malladi, K.T., Mitrovic-Minic, S., Punnen, A.P.: Clustered maximum weight clique
problem: algorithms and empirical analysis. Comput. Oper. Res. 85, 113–128
(2017). http://www.sciencedirect.com/science/article/pii/S0305054817300837

35. Manlove, D.F., O’Malley, G.: Paired and altruistic kidney donation in the UK: algo-
rithms and experimentation. ACM J. Exper. Algorithmics 19(1) (2014). http://
doi.acm.org/10.1145/2670129

36. Mannino, C., Sassano, A.: Solving hard set covering problems. Oper. Res. Lett.
18(1), 1–5 (1995). doi:10.1016/0167-6377(95)00034-H

http://dx.doi.org/10.1007/BF02023002
http://dx.doi.org/10.1007/s13675-014-0028-1
http://dx.doi.org/10.1007/s12532-012-0042-3
http://dx.doi.org/10.1007/s12532-012-0042-3
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dx.doi.org/10.1007/978-3-540-87477-5-18
http://dx.doi.org/10.1109/TAI.2002.1180800
http://www.sciencedirect.com/science/article/pii/S0305054817300837
http://doi.acm.org/10.1145/2670129
http://doi.acm.org/10.1145/2670129
http://dx.doi.org/10.1016/0167-6377(95)00034-H


224 C. McCreesh et al.

37. Mannino, C., Stefanutti, E.: An augmentation algorithm for the maximum
weighted stable set problem. Comput. Opt. Appl. 14(3), 367–381 (1999). doi:10.
1023/A:1026456624746

38. Mattei, N., Walsh, T.: Preflib: a library of preference data. In: Perny, P., Pirlot,
M., Tsoukiàs, A. (eds.) ADT2013, vol. 8176, pp. 259–270. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41575-3 20. http://www.preflib.org

39. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint mod-
els for maximum common (connected) subgraph problems. In: Rueher, M. (ed.)
CP 2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1 23

40. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996). doi:10.1287/ijoc.8.4.344

41. Nogueira, B., Pinheiro, R.G.S., Subramanian, A.: A hybrid iterated local search
heuristic for the maximum weight independent set problem. Optim. Lett. 1–17
(2017). doi:10.1007/s11590-017-1128-7

42. Österg̊ard, P.R.J.: A new algorithm for the maximum-weight clique problem.
Nord. J. Comput. 8(4), 424–436 (2001). http://www.cs.helsinki.fi/njc/References/
ostergard2001:424.html

43. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete
Appl. Math. 120(1–3), 197–207 (2002). doi:10.1016/S0166-218X(01)00290-6

44. Prosser, P.: CSPLib problem 063: Winner determination problem (combinatorial
auction)

45. Pullan, W.J.: Approximating the maximum vertex/edge weighted clique using local
search. J. Heuristics 14(2), 117–134 (2008). doi:10.1007/s10732-007-9026-2

46. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

47. Roth, A.E., Sönmez, T., Ünver, M.U.: Kidney exchange. Q. J. Econ. 119(2), 457
(2004). doi:10.1162/0033553041382157

48. Roth, A.E., Sönmez, T., Ünver, M.U.: Efficient kidney exchange: coincidence of
wants in markets with compatibility-based preferences. Am. Econ. Rev. 97(3),
828–851 (2007). http://www.aeaweb.org/articles?id=10.1257/aer.97.3.828

49. Saidman, S.L., Roth, A.E., Sonmez, T., Unver, M.U., Delmonico, F.L.: Increas-
ing the opportunity of live kidney donation by matching for two- and three-way
exchanges. Transplantation 81(5), 773–782 (2006)

50. Sanchis, L.A.: Test case construction for the vertex cover problem. In: Dean,
N., Shannon, G.E. (eds.) Computational Support for Discrete Mathematics, Pro-
ceedings of a DIMACS Workshop, 12–14 March 1992, Piscataway, New Jersey,
USA. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
DIMACS/AMS, vol. 15, pp. 315–326 (1992). http://dimacs.rutgers.edu/Volumes/
Vol15.html

51. Sanchis, L.A.: Generating hard and diverse test sets for NP-hard graph problems.
Discrete Appl. Math. 58(1), 35–66 (1995). doi:10.1016/0166-218X(93)E0140-T

52. Sandholm, T., Suri, S.: BOB: improved winner determination in combinatorial
auctions and generalizations. Artif. Intell. 145(1–2), 33–58 (2003). doi:10.1016/
S0004-3702(03)00015-8

53. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOB: a fast optimal algorithm
for winner determination in combinatorial auctions. Manag. Sci. 51(3), 374–390
(2005). doi:10.1287/mnsc.1040.0336

54. Sethuraman, S., Butenko, S.: The maximum ratio clique problem. Comput. Manag.
Sci. 12(1), 197–218 (2015). doi:10.1007/s10287-013-0197-z

http://dx.doi.org/10.1023/A: 1026456624746
http://dx.doi.org/10.1023/A: 1026456624746
http://dx.doi.org/10.1007/978-3-642-41575-3_20
http://www.preflib.org
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1287/ijoc.8.4.344
http://dx.doi.org/10.1007/s11590-017-1128-7
http://www.cs.helsinki.fi/njc/References/ostergard2001: 424.html
http://www.cs.helsinki.fi/njc/References/ostergard2001: 424.html
http://dx.doi.org/10.1016/S0166-218X(01)00290-6
http://dx.doi.org/10.1007/s10732-007-9026-2
http://dx.doi.org/10.1007/978-3-540-30201-8_41
http://dx.doi.org/10.1162/0033553041382157
http://www.aeaweb.org/articles?id=10.1257/aer.97.3.828
http://dimacs.rutgers.edu/Volumes/Vol15.html
http://dimacs.rutgers.edu/Volumes/Vol15.html
http://dx.doi.org/10.1016/0166-218X(93)E0140-T
http://dx.doi.org/10.1016/S0004-3702(03)00015-8
http://dx.doi.org/10.1016/S0004-3702(03)00015-8
http://dx.doi.org/10.1287/mnsc.1040.0336
http://dx.doi.org/10.1007/s10287-013-0197-z


On Maximum Weight Clique Algorithms, and How They Are Evaluated 225

55. Shimizu, S., Yamaguchi, K., Saitoh, T., Masuda, S.: Fast maximum weight
clique extraction algorithm: optimal tables for branch-and-bound. Discrete Appl.
Math. 223, 120–134 (2017). http://www.sciencedirect.com/science/article/pii/
S0166218X1730063X

56. Soriano, P., Gendreau, M.: Tabu search algorithms for the maximum clique prob-
lem. In: Johnson and Trick [31], pp. 221–244. http://dimacs.rutgers.edu/Volumes/
Vol26.html

57. Strash, D.: On the power of simple reductions for the maximum independent set
problem. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp.
345–356. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1 28

58. Suters, W.H., Abu-Khzam, F.N., Zhang, Y., Symons, C.T., Samatova, N.F.,
Langston, M.A.: A new approach and faster exact methods for the maximum com-
mon subgraph problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp.
717–727. Springer, Heidelberg (2005). doi:10.1007/11533719 73

59. Tavares, W.A., Neto, M.B.C., Rodrigues, C.D., Michelon, P.: Um algoritmo de
branch and bound para o problema da clique máxima ponderada. In: Proceedings
of XLVII SBPO, vol. 1 (2015)

60. Verfaillie, G., Lemâıtre, M., Schiex, T.: Russian doll search for solving constraint
optimization problems. In: Clancey, W.J., Weld, D.S. (eds.) Proceedings of the
Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, AAAI 1996, IAAI 1996, 4–8
August 1996, Portland, Oregon, vol. 1, pp. 181–187. AAAI Press/The MIT Press
(1996). http://www.aaai.org/Library/AAAI/1996/aaai96-027.php

61. Wang, Y., Hao, J., Glover, F., Lü, Z., Wu, Q.: Solving the maximum vertex weight
clique problem via binary quadratic programming. J. Comb. Optim. 32(2), 531–
549 (2016)

62. Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum
weight clique problem. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016,
Phoenix, Arizona, USA, pp. 805–811. AAAI Press (2016). http://www.aaai.org/
ocs/index.php/AAAI/AAAI16/paper/view/11915

63. Wang, Y., Cai, S., Yin, M.: Local search for minimum weight dominating set with
two-level configuration checking and frequency based scoring function. J. Artif.
Intell. Res. (JAIR) 58, 267–295 (2017). doi:10.1613/jair.5205

64. Wu, Q., Hao, J.: Solving the winner determination problem via a weighted max-
imum clique heuristic. Expert Syst. Appl. 42(1), 355–365 (2015). doi:10.1016/j.
eswa.2014.07.027

65. Wu, Q., Hao, J., Glover, F.: Multi-neighborhood tabu search for the maxi-
mum weight clique problem. Ann. OR 196(1), 611–634 (2012). doi:10.1007/
s10479-012-1124-3

66. Zhou, Y., Hao, J., Goëffon, A.: PUSH: a generalized operator for the maximum
vertex weight clique problem. Eur. J. Oper. Res. 257(1), 41–54 (2017). doi:10.
1016/j.ejor.2016.07.056

http://www.sciencedirect.com/science/article/pii/S0166218X1730063X
http://www.sciencedirect.com/science/article/pii/S0166218X1730063X
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dx.doi.org/10.1007/978-3-319-42634-1_28
http://dx.doi.org/10.1007/11533719_73
http://www.aaai.org/Library/AAAI/1996/aaai96-027.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://dx.doi.org/10.1613/jair.5205
http://dx.doi.org/10.1016/j.eswa.2014.07.027
http://dx.doi.org/10.1016/j.eswa.2014.07.027
http://dx.doi.org/10.1007/s10479-012-1124-3
http://dx.doi.org/10.1007/s10479-012-1124-3
http://dx.doi.org/10.1016/j.ejor.2016.07.056
http://dx.doi.org/10.1016/j.ejor.2016.07.056

	On Maximum Weight Clique Algorithms, and How They Are Evaluated
	1 Introduction
	2 Maximum Weight Clique Algorithms
	3 Current Practices in Benchmarking
	4 Experimental Setup
	5 Does Weight Allocation Affect Algorithm Design?
	6 Other Families of Problem Instances
	6.1 Kidney Exchange
	6.2 Colouring Instances
	6.3 Error-Correcting Codes
	6.4 The Winner Determination Problem
	6.5 The Research Excellence Framework
	6.6 Experiments

	7 Conclusion
	References




