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Abstract. Several branching heuristics for compiling in a top-down
fashion finite-domain constraint networks into multi-valued decision dia-
grams (MDD) or decomposable multi-valued decision graphs (MDDG) are
empirically evaluated, using the cn2mddg compiler. This MDDG compiler
has been enriched with various additional branching rules. These rules
can be gathered into two families, the one consisting of heuristics for
the satisfaction problem (which are suited to compiling networks into
MDD representations) and the family of heuristics favoring decompositions
(which are relevant when the MDDG language is targeted). Our empirical
investigation on a large dataset shows the value of decomposability (tar-
geting MDDG allows for compiling many more instances and leads to much
smaller compiled representations). The well-known (Dom/Wdeg) heuris-
tics appears as the best choice for compiling networks into MDD. When
MDDG is the target, a new rule, based on a dynamic, yet parsimonious use
of hypergraph partitioning for the decomposition purpose turns out to
be the best option. As expected, the best heuristics for the satisfaction
problem perform better than the best heuristics favoring decompositions
when MDD is targeted, and the converse is the case when MDDG is targeted.
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1 Introduction

The objective of this work is to evaluate several branching heuristics (both exist-
ing ones but also new ones) which are candidates for compiling in a top-down
fashion finite-domain constraint networks into decision diagrams. Two target
languages are considered: the language MDD of multi-valued (deterministic) deci-
sion diagrams, and its superset, the language MDDG of decomposable multi-valued
decision graphs. The significance of those two compilation languages comes from
the fact that they support many useful queries in polynomial time. For instance,
it is possible to determine in polynomial time whether an MDD representation (or
an MDDG representation) is consistent or not, and even to count in polynomial
time its number of solutions, or more generally to compute in polynomial time
the number of (possibly weighted) solutions compatible with a given (partial)
instantiation. It is also possible to enumerate with a polynomial delay all the
solutions. Answering such queries is fundamental in a number of applications like
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product configuration (see e.g., [1]), where looking for a feasible product given
the user choices amounts to decide the consistency of a representation condi-
tioned by the instantiation encoding the user choices, or probabilistic inference
in Bayesian networks (computing the probability of a piece of evidence amounts
to a weighted model counting query, see e.g., [3]). However, all those queries are
NP-hard when the input is a constraint network.

In the Boolean case, the MDD language corresponds to the language FBDD
of free binary decision diagrams [13], while MDDG corresponds to the language
Decision-DNNF [12,22]. Roughly, every internal node in an MDD representation
is a decision node associated with a variable of the input constraint network
and having as many children as the number of elements in the domain of the
variable. In MDDG representations, internal nodes can also be decomposable ∧-
nodes, i.e., conjunctions of representations based on pairwise disjoint sets of
variables. Despite the increase of generality obtained by accepting non-Boolean
domains, the key tractable queries and transformations offered by Decision-DNNF
are also offered by MDDG and MDD. Note that MDD offers some transformations
that MDDG does not, and this is why this subset of MDDG is interesting in its
own right. For instance, from an MDD representation of the feasible products of
a configuration problem, it is possible to enumerate with a polynomial delay all
the full instantiations corresponding to the non-feasible products (while this is
impossible from an MDDG representation unless P = NP).

In order to generate MDDG and MDD representations, one takes advantage of the
cn2mddg compiler [17], see http://www.cril.fr/KC/mddg.html. As in the Boolean
case [16], an MDDG representation of a constraint network can be generated by
recording the trace of a solver (in the Boolean case, a SAT solver and here, a
CSP solver). Accordingly, cn2mddg is a top-down constraint network compiler,
based on a CSP solver. It exploits constraint propagation and conflict analysis
to guide the search. It also benefits from a specific caching technique and it
detects universal constraints during the search in order to perform additional
simplifications. Though cn2mddg was primarily based on a specific branching
heuristics relying on betweenness centrality for promoting decompositions, we
have implemented in it a number of additional heuristics for the sake of further
evaluations and comparisons.

We have considered two groups of heuristics. The first one is composed
of six heuristics for the consistency issue, namely the Dom/Wdeg heuristics
(Dom/Wdeg) [15], and its by-products (the Dom heuristics (Dom), and the
Wdeg heuristics (Wdeg)), the impact-based heuristics (IBS) [23], the activity-
based heuristics (ABS) [20], and the conflict-ordering search heuristics (COS)
[18]. All those heuristics were already known.

The second one gathers heuristics for promoting the generation of decompos-
able ∧-nodes. It is composed of seven heuristics. Three of them are static heuris-
tics, meaning that they are used for generating a decomposition tree (dTree) of
the input network in a preliminary step, before the compilation phase. The three
static heuristics considered for computing a dTree are Min Degree (dTree-MD),
Min Fill (dTree-MF), Hypergraph Partitioning (dTree-HP). The four remaining
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heuristics are dynamic ones, which means that each selected variable is computed
during the search from the current network (thus, not prior to the search). Two
of them, namely Closeness Centrality (CC) and Betweenness Centrality (BC),
are based on a notion of centrality of the variables in the primal graph of the
constraint network, one on the Hypergraph Partitioning (HP) of the dual hyper-
graph of the network, and the remaining one aims at computing a Cut Set (CS)
of the primal graph. Actually, we have also considered for each of those four
heuristics (H) a parsimonious variant (H-P) of it, meaning that a branching
variable is not computed at each decision step using the heuristics, but instead,
one computes a set of variables (containing all the variables that are ranked first
by the heuristics) and uses all those variables successively for branching until
the set becomes empty. All those heuristics except the one based on betweenness
centrality (computed at each decision step) are new in the sense that they have
not been tested so far, even if they are based on ingredients which are not brand
new.

The branching heuristics from the two groups have been implemented in
cn2mddg, parameterized in such a way that the compiler computes either MDDG
representations (its default mode) or MDD representations (which can be done
easily, by freezing the detection of disjoint components). For evaluating and
comparing their relative performances in generating MDD representations and
MDDG representations, cn2mddg (either in MDDG mode or in MDD mode), equipped
with each of the thirteen heuristics under consideration has been run on 546
benchmarks corresponding to several families of instances.

Our experiments show the value of decomposability (targeting MDDG allows
for compiling many more instances and leads to much smaller compiled repre-
sentations). The well-known (Dom/Wdeg) heuristics appears as the best choice
for compiling networks into MDD. When MDDG is the target, the new rule (HP-P),
based on a dynamic, yet parsimonious use of hypergraph partitioning for the
decomposition purpose turns out to be the best option. As expected, the best
heuristics for the satisfaction problem perform better than the best heuristics
favoring decompositions when MDD is targeted and the converse is the case when
MDDG is targeted.

Previous work on AND/OR search has shown the impact of variable ordering
on performance. AND/OR search is a framework for solving optimization tasks
in graphical models by detecting independencies in the model (decompositions).
Marinescu and Dechter [19] have shown that combining static and dynamic vari-
able orderings with problem decomposition principles results in exponential sav-
ings. Variable orderings based on decompositions are also important for com-
piling constraint networks in other graphical representations. Narodytska and
Walsh [21] proposed heuristics to reduce the time and space requirements for
compiling configuration problems into BDDs. These heuristics are based on the
distinctive clustered and hierarchical structure of the constraint graphs and are
used for a bottom-up compilation.
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2 Formal Preliminaries

A finite-domain constraint network (CN) is a triple N = (X , D, C) consisting of
a set X = {X1, · · · ,Xn} of variables, a set D = {D1, · · · ,Dn} of domains, and
a set C = {C1, · · · , Cm} of constraints. Each domain Di is a finite set containing
the possible values of Xi. Each constraint Cj characterizes the combinations of
values satisfying it. Formally, Cj = (Sj , Rj), where Sj = {Xj1 , · · · ,Xjk} is a
subset of variables from X , called the scope of Cj , and Rj is a predicate over
the Cartesian product Dj1 × · · · × Djk , called the relation of Cj . Rj can be
represented extensionally by the list of its satisfying tuples (or dually, by the
list of its forbidden tuples), or intensionally by an oracle, i.e., a mapping from
Dj1 ×· · ·×Djk to {0, 1} which is supposed to be computable in time polynomial
in its input size. The arity of a constraint is given by the size of its scope.
Constraints of arity 2 are called binary and constraints of arity greater than 2
are called non-binary.

Example 1. Let N be the CN given by four variables X1,X2,X3, and X4, each
of them being defined on the same domain {0, 1, 2}, and three constraints C1,
C2, and C3, specified by the following mathematical statements:

– C1 = (X1 �= X2);
– C2 = (X2 = 0) ∨ (X2 = 1) ∨ (X2 = X3 + X4 + 1);
– C3 = (X3 > X4).

Given a subset S of variables from X , a (decision) state s over S is a mapping
that associates with each variable Xi in S a subset s(Xi) of values in Di. In what
follows, states are often noted as union of elementary assignments, i.e., sets of
the form {〈Xi, xj〉}, where xj ∈ s(Xi). scope(s) denotes the set S of variables
over which s is defined. A state s is partial if scope(s) is a proper subset of X ;
otherwise, s is called a full state. A variable Xi in scope(s) is instantiated if s(Xi)
is a singleton set. The set of instantiated variables in s is noted single(s). As
usual, a state s is called an instantiation when all its variables are instantiated,
i.e., scope(s) = single(s).

For a state s and a set of variables T ⊆ scope(s), s[T ] denotes the restriction
of s to T , i.e., s[T ] is the set {〈Xi, xj〉 ∈ s | Xi ∈ T}. An instantiation s
satisfies a contraint Cj = (Sj , Rj) if Sj ⊆ scope(s) and Rj(xj1 , . . . , xjk) =
1, where ∀l ∈ 1, . . . , k, 〈Xjl , xjl〉 ∈ s[Sj ]. A solution of a CN N = (X ,D, C)
is a full instantiation s satisfying all constraints Cj in C. For example, s =
{〈X1, 1〉, 〈X2, 0〉, 〈X3, 1〉, 〈X4, 0〉} is a solution of the CN given at Example 1.

Given a CN N = (X ,D, C) and a state s over a subset of X , the conditioning
N | s of N by s is the CN (X ′,D′, C′) defined as follows: X ′ = X \single(s); with
each domain Di in D, one associates the domain D′

i ∈ D′, where D′
i = Di if Xi �∈

scope(s) and D′
i = s(Di) otherwise; finally, with each constraint Cj = (Sj , Rj)

in C, one associates the constraint C ′
j = (S′

j , R
′
j) in C′, where S′

j = Sj \ single(s)
and R′

j is the restriction of Rj to S′
j .

The primal graph of a CN N = (X ,D, C) is the undirected graph PG(N )
with vertex set X and edge set E , such that {Xp,Xq} ∈ E if and only if {Xp,Xq}
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Fig. 1. Graph representations of the CN given at Example 1.

is a subset of the scope Sj of some constraint Cj in C. For instance, the primal
graph of the CN given at Example 1 is depicted on Fig. 1a.

The dual hypergraph of a CN N = (X ,D, C) is the undirected hypergraph
DH(N ) with vertex set C and hyperedge set H, such that H = {H ⊆ C |
∃Xi ∈ X s.t. ∀Cj ∈ C, Cj ∈ H iff Xi ∈ Sj}. Thus, every hyperedge corresponds
precisely to a variable X which belongs to the scopes of all the constraints of the
hyperedge, but does not belong to the scope of any other constraint of the input
network. For instance, the dual hypergraph of the CN given at Example 1 is
depicted on Fig. 1b. For this example, every hyperedge contains two constraints
only, but of course this is not the case in general.

Let us now introduce a few definitions suited to the target languages consid-
ered for compiling CNs.

Definition 1 (MDG). Given a finite set X of finite-domain variables, the (read-
once) MDG language over X is the set of all single-rooted directed acyclic graphs
Δ, where leaf nodes are labelled by � (true) or ⊥ (false), and every internal
node is either a ∧-node N = ∧(N1, . . . , Ni) or a decision node N associated
with variable Xi ∈ X , i.e., a deterministic ∨-node N = ∨(N1, . . . , Nj) such that
Di = {xi1 , . . . , xij} and the arc from N to Nk (k ∈ 1, . . . , j) is labelled by the
elementary assignment {〈Xi, xik〉}. The paths of Δ must satisfy the read-once
property: for every path from the root of Δ to a � leaf node, and for any Xi ∈ X ,
no more than one arc can be labelled by an elementary assignment over Xi.

For every node N in an MDG representation Δ, Var(N) is defined inductively
as follows:

– if N is a leaf node, then Var(N) = ∅;
– if N is a ∧-node N = ∧(N1, . . . , Ni), then Var(N) =

⋃i
k=1 Var(Ni);

– if N is a decision node N = ∨(N1, . . . , Nj) associated with variable X, then
Var(N) = {X} ∪ ⋃j

k=1 Var(Nk).

Let s be a full instantiation over X and let Δ be a MDG representation over X ,
rooted at node N . Let eval(N, s) be the MDG representation without any decision
node, defined inductively by:
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– if N is a leaf node, then eval(N, s) = N ;
– if N is a ∧-node N = ∧(N1, . . . , Ni), then eval(N, s) = ∧(eval(N1, s),

. . . , eval(Ni, s));
– if N is a decision node N = ∨(N1, . . . , Nj) associated with variable Xi, then

eval(N, s) = eval(Nk, s), where 〈Xi, xik〉 ∈ s.

s is a solution of Δ if and only eval(N, s) evaluates to true.
The language MDDG we are interested in is the subset of MDG consisting of

decomposable representations, those where the children of any ∧-node do not
share any variable. MDD is the subset of it, containing the representations without
∧-nodes.

Definition 2 (MDDG, MDD). Given a finite set X of finite-domain variables:

– the MDDG language over X is the subset of MDG representations Δ, where each
∧-node N = ∧(N1, . . . , Ni) is decomposable, i.e., ∀k, l ∈ 1, . . . , i, if k �= l,
then Var(Nk) ∩ Var(Nl) = ∅.

– the MDD language over X is the subset of MDDG representations containing no
∧-nodes.
MDD can also be viewed as a restriction of the language of non-deterministic

multi-valued decision diagrams considered in [2].

3 Heuristics for Compiling CNs

In this section, we briefly describe the branching heuristics which have been
considered in our top-down constraint network compiler which targets the MDDG
language (but can also be downsized to target the MDD language).

3.1 Heuristics Targeting the MDD Language

Dom/Wdeg. With (Dom/Wdeg), one selects a variable with minimum ratio of
current domain size to weighted degree [15]. Each variable is associated with a
weighted degree (Wdeg), which is the sum of the weights over all constraints
involving the variable and at least another (unassigned) variable. A weight, ini-
tially set to one, is given to each constraint and each time a constraint causes a
domain wipeout its weight is incremented by one. It is a generic state-of-the-art
heuristics and the interesting is that it is adaptive, with the expectation to focus
on the hard part(s) of the problem.

Dom. (Dom) is a first by-product of dom/wdeg. With (Dom), variables are
ordered by considering their current domain size (the smallest cardinalities first).

Wdeg. (Wdeg) is a second by-product of (Dom/Wdeg). With (Wdeg), variables
are ordered by considering their weighted degrees (the largest values first). The
Wdeg score is close to the VSADS score used in model counters and compilers
for propositional CNF formulae [24].
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Impact-Based Search (IBS). With (IBS), one selects a variable with the highest
impact, where impact measures the importance of a variable in reducing the
search space [23]. An estimation of the size of the search space S(P ) is the
product of every variable domain size:

S(P ) =
∏

x∈X

|Dx|

The impact of a variable assignment at a decision node k is computed by the
ratio of the search space reduction as:

I(x = a) = 1 − S(Pk)
S(Pk−1)

Note that if x = a leads to a failure, then I(x = a) = 1, which is the maximum
impact as S(P k) = 0. It is easy to see that this heuristics can be used for
value selection as well. For variable selection, the average impact is preferred,
computed over the remaining values in its domain divided by its current domain
size. For more accurate results, a forgetting strategy is used in order to give less
importance to past variable assignments.

Activity-Based Search (ABS). With this heuristics, one selects a variable with
the highest activity, where activity is measured by the times the domain of each
variable is reduced during the search [20]. This heuristics is motivated by the key
role of propagation in constraint programming and relies on a decaying sum to
forget the oldest statistics progressively. The activities are initialized by making
random probing in the search space.

More formally, the activity A(x), of each variable x is updated at each node k
of the search tree regardless of the outcome (success or failure) by the following
two rules:

i. Ak(x) = Ak−1(x) ∗ γ, where 0 ≤ γ ≤ 1, |Dk
x| > 1 and Dk

x = Dk−1
x

ii. Ak(x) = Ak−1(x) + 1, where Dk
x ⊂ Dk−1

x

Conflict-Ordering Search (COS). This heuristics is considered more as a repair-
ing mechanism than as a heuristics, that can be combined with any (underlying)
variable ordering heuristics (e.g., (Dom/Wdeg)) [18]. When the solver needs to
backtrack, the last conflicting variables, recorded during search, are selected in
priority until they are all instantiated without causing any failure. Otherwise, in
normal mode, the variable ordering heuristics is the one that decides the next
variable.

3.2 Heuristics Targeting the MDDG Language

We have also considered eleven heuristics targeting the MDDG language, thus
promoting the generation of decomposable ∧-nodes. The rationale for it is the
gain in succinctness which mainly results in the generated representation when
such nodes are allowed. Indeed, consider a constraint network N with x variables
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each of them having a domain of size d > 1 (for simplicity reasons). Suppose that
every MDD representation of N has a size which is a fraction k (0 < k ≤ 1) of the
search space of all instantiations explored for generating it (which implies that
the corresponding compilation time will be at least as high). Suppose now that a
decomposition (X1,X2,X3) of the set X of variables of N has been found. Such
a decomposition is a tripartition of X such that for every assignment x1 over
X1, the conditioned network N | x1 has (at least) two disjoint components, one
over the variables of X2 and one over the variables of X3. Then a decomposable
∧-node can be generated. With |Xi| = xi (i ∈ {1, 2, 3}), the size of the resulting
MDDG representation of N will be at most dx1 × (k × dx2 + k × dx3), which is
always strictly smaller than the size k × dx1+x2+x3 of the MDD representation
of N , unless x2 = x3 = 1 (in which case the decomposition is trivial). One
can also easily check that the size of the resulting MDDG representation of N is
as small as the decomposition is balanced, i.e., as x2 and x3 are close. More
formally, x∗

2 = �x2+x3
2 � and x∗

3 = �x2+x3
2 � minimize the value of dx2 + dx3 when

the sum x2 + x3 is fixed (which is the case here whenever X1 has been set since
x1 + x2 + x3 = x). Accordingly, finding a “good” decomposition (X1,X2,X3),
i.e., a decomposition leading to an MDDG representation of “small” size) amounts
to minimizing x1 while making x2 and x3 as close as possible. It turns out that
those two objectives can be antagonistic so that a trade-off must be looked for.

Static Heuristics. Static heuristics consist in generating a decomposition tree
(dTree) prior to the compilation, which will be used to make precise the branch-
ing variables to be considered at each step. This approach is similar to the
one used by the C2D compiler for propositional CNF formulae, which targets the
Decision-DNNF language [8,9], see http://reasoning.cs.ucla.edu/c2d/. Roughly, a
dTree for a constraint network is a full binary tree which induces a recursive
decomposition of the network (for more details, see e.g., [10]).

The three static heuristics considered for computing a dTree are Min Degree
(dTree-MD), Min Fill (dTree-MF), and Hypergraph Partitioning (dTree-HP).

Min Degree (dTree-MD). The (dTree-MD) heuristics is used for generating a
dTree in a bottom-up way and is driven by a variable elimination ordering: the
variables are ordered by increasing degrees in the primal graph of the input
network. The generation of the dTree starts with the leaves (each of them being
associated with the scope of a constraint of the input network), and the initial
forest (set of trees) to be dealt with is composed of those leaves. Then the
variables of the network are considered according to the elimination ordering,
and each time a variable is picked up, a tree is computed so that all the trees of
the current forest which contain this variable are children of the resulting tree.
Once all the variables have been processed, a forest of dTrees is generated (it
consists of a single dTree when the primal graph of the network considered at
start is connected).

Min Fill (dTree-MF). The (dTree-MF) heuristics is also used for generating a
dTree in a bottom-up way and is driven by a variable elimination ordering (which

http://reasoning.cs.ucla.edu/c2d/
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is different from the one corresponding to the Min Degree heuristics): the vari-
ables are ordered by increasing numbers of non-connected neighbours in the pri-
mal graph of the input network. Then the generation of the dTree is made as in
the case of Min Degree but considering the Min Fill elimination ordering instead.

Hypergraph Partitioning (dTree-HP). The hypergraph partitioning heuristics
considers the dual hypergraph of the input network and generates a dTree for it
in a top-down way. It looks for a subset of the set of hyperedges of the current
network containing as few elements as possible such that removing them leads
to a hypergraph containing (at least) two disjoint components having sizes as
close as possible. When the variables corresponding to the selected hyperedges
are instantiated (whatever the way they are assigned) it is guaranteed that the
current network conditioned by the corresponding assignment has at least two
disjoint components, so that a decomposable ∧-node can be generated in the
compiled form. This set of variables is the cut set of the root of the dTree,
and then the hypergraph partitioning approach proceeds recursively consider-
ing the disjoint hypergraphs which are generated by removing from the current
hypergraph the hyperedges which have been selected at the previous step. One
takes advantage of the partitioner PaToH – Partitioning Tools Hypergraph, v.
3.2 (http://bmi.osu.edu/∼umit/software.html) [7] to do the job.

As explained above, hypergraph partitioning goes further than minimal cut-
ting by taking account of the sizes of the subgraphs which are generated, which
must be balanced, i.e., their difference in terms of numbers of vertices must
be below a preset bound. This comes with a significant complexity increase
since determining whether there exists a hypergraph partition of DH(N ) cor-
responding to a decomposition (X1,X2,X3) of N such that #(X1) ≤ c and
|#(X2)−#(X3)| ≤ d (where c and d are two given bounds) is NP-complete. This
departs deeply from the other heuristics considered in the paper which can be
computed in polynomial time. In our experiments, we looked for 2-partitionings
(i.e., one does not try to split the given hypergraph into more than two disjoint
components) and used the default setting of PaToH.

Dynamic Heuristics. The four (pairs of) remaining heuristics we have con-
sidered are dynamic ones: each selected variable is computed during the search
from the current network (thus, not prior to the search, from the input network),
such that the propagations resulting from the previous variable assignments and
leading to simplify the network, are taken into account. This can have a huge
impact on the compilation process (both on the compilation times and on the
sizes of the compiled forms).

We have considered two heuristics based on a notion of centrality (Between-
ness Centrality (BC) vs. Closeness Centrality (CC)), which favor the decom-
position of the current CN into components of balanced sizes by targeting the
variables which are in some sense the central ones in its primal graph. We have
also considered a heuristics based on Hypergraph Partitioning (HP) but this time
it is not in the objective of generating first a dTree from the dual hypergraph

http://bmi.osu.edu/~umit/software.html
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of the input network but considering instead the dual hypergraph of the cur-
rent network. Finally, we have also taken into account a Cut Set heuristics (CS),
which focuses on identifying variables to be instantiated in order to split the
current network into (at least) two disjoint components (whatever their sizes).

Each of those four heuristics (H) may point out several branching variables
as the best ones. When they are several best variables, they are ordered following
their decreasing (Dom/Wdeg) score. When (H) is used in its default mode, the
first variable w.r.t. this ordering is selected. When (H) is run in a parsimonious
mode (H-P), the score of each variable from the current set of best candidates
is not re-computed after each variable assignment but all the variables from this
set are successively considered as branching variables up to exhaustion.

Closeness Centrality (CC). Closeness centrality is a measure of the centrality of
a node in a graph [4]. Given a node Xi in a graph (here, the primal graph of the
current CN in which the nodes can be identified as with the variables labelling
them), the score cc(Xi) is calculated as the sum of the lengths of the shortest
paths between Xi and all other vertices in the graph. Thus the more central a
vertex is, the closer it is to all other vertices. Formally:

cc(Xi) =
1

ΣXj �=Xi
d(Xi,Xj)

where d(Xi,Xj) is the geodesic distance between nodes Xi and Xj which belong
to the same connected component of the graph. We also assume that the set
of vertices of the primal graph of the component of the current CN which
contains Xi is not a singleton, so that ΣXj �=Xi

d(Xi,Xj) �= 0 (indeed in the
remaining case, there is no option: Xi must be chosen in the component). The
computation of the values of all cc(Xi) when Xi varies in the set of vertices
of the primal graph of the current CN can be done in time polynomial in the
size of this graph, via a repeated use of breadth-first search from Xi or using
Floyd-Warshall algorithm. We took advantage of the code of Floyd-Warshall
algorithm from Boost Graph Library http://www.boost.org/doc/libs/1 64 0/
libs/graph/doc/ for implementing cc. Clearly enough, by instantiating first the
most central variables, the objective is to find out a decomposition (X1,X2,X3)
of the set of variables of the current network for which the cardinalities of |X2|
and |X3| are close, however the number of variables in X1 can be large and one
does not try to minimize it.

Betweenness Centrality (BC). Betweenness centrality is another measure of the
centrality of a node in a graph [5,6]. The score bc(Xi) is equal to the number of
shortest paths from all nodes to all others that pass through Xi. Formally,

bc(Xi) = ΣXj �=Xi �=Xk

σXi
(Xj ,Xk)

σ(Xj ,Xk)

where Xi,Xj ,Xk are nodes of the same connected component of the given net-
work, σ(Xj ,Xk) is the number of shortest paths from Xj to Xk, and σXi

(Xj ,Xk)

http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/
http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/
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are the number of those paths passing through Xi. Thus, for the CN N given
at Example 1, X2 is the unique variable maximizing the value of bc.

Interestingly, computing the betweenness centralities of all nodes in (X , E)
can be done in time O(n.m), where n is the cardinality of X and m is the cardi-
nality of E . In practice, the computation of bc(Xi) for each node Xi of the primal
graph (X , E) of a CN is efficient enough so that it can be computed dynamically,
i.e., for each network encountered during the compilation process. Again, we
took advantage of the implementation of betweenness centrality available in the
Boost Graph Library.

The rationale for instantiating first the most central variables (as to (BC)) is
the same as the one for (CC), i.e., to split the network into two parts of similar
sizes. (BC) can also be seen as an alternative of community structure [14], where
instead of constructing communities by adding the strongest edges to an initially
empty vertex set, it constructs them by progressively removing edges from the
original graph. The community method detects which edges are most central
to communities, while betweenness finds those edges that are most “between”
communities. The community structure is thus more relevant for the bottom-up
approaches to knowledge compilation like the one presented in [21].

Hypergraph Partitioning (HP). The approach is the same as the one described
above, except that one does not compute a full dTree of the given hypergraph,
but only its root. Note that when the current hypergraph has several disjoint
components, the cut set returned by PaToH is empty so that no branching variable
is defined. This is harmless when MDDG is targeted since this problem cannot
happen in this case (a decomposable ∧-node would have been introduced before
a branching variable is sought). However, this is still problematic in the case MDD
is targeted. To deal with it, we switch to the (Dom/Wdeg) heuristics when such
a pathological situation occurs.

Cut Set (CS). A (2-way) cut of a (undirected) graph is a partition of its ver-
tices into two, non-empty sets. The corresponding cut set is the set of all edges
between the two sets of vertices. A minimal cut set is a cut set of minimal size.
Removing all the edges of the cut set of a graph leads to split it into two dis-
joint components. A minimal cut set of a graph (X , E) can be computed in time
O(n.m2) where n is the number of vertices of X and m is the number of edges in
E [11]. Once a cut set of the primal graph of the current CN has been computed,
one selects one variable per edge in the cut set. By construction, eliminating the
variables of the resulting set in the primal graph is enough for ensuring that the
resulting graph contains two disjoint components.

Using the cut set heuristics on the primal graph of the current constraint
network, one computes decompositions (X1,X2,X3) of the set of variables of the
current network. One does not take care at all of balancing |X2| and |X3|. In
our implementation, we exploited the Stoer/Wagner algorithm [25] for min-cut
available in the Boost Graph Library. As for (HP), if X1 turns out to be empty
and MDD is targeted, then we switch to the (Dom/Wdeg) heuristics.



Defining and Evaluating Heuristics for the Compilation 183

4 Empirical Evaluation

Setup. We have considered 546 CNs from 15 data sets.1 Those data sets
correspond to several families of problems, including configuration problems,
graph coloring, scheduling problems, frequency allocation problems. For some
instances, the constraints are represented extensionally, by the list of satisfying
tuples or by the list of forbidden tuples; for other instances, they are given in
intension. Each instance has been compiled using cn2mddg equipped with the
various heuristics we focused on.

Our experiments have been conducted on a Quadcore Intel XEON X5550
with 32GiB of memory. A time limit of 1800 s for the off-line compilation phase
(including the dTree generation when relevant) and a total amount of 8GiB of
memory for storing the resulting compiled representation have been considered
for each instance.

Results. We have first evaluated a random heuristics serving as base line for
compiling the 546 benchmarks (for this heuristics, the decision variables are
selected at random under a uniform distribution). Based on the random heuris-
tics, cn2mddg has been able to compile 271 instances when MDDG was targeted
and 238 instances when MDD was targeted.

We have then evaluated all the heuristic methods discussed before. In Fig. 2,
we report their performances on a cactus plot where the x axis represents the
number of “solved” (i.e., compiled) instances (numbers are displayed in the leg-
end) and the y axis the CPU time needed per method, in logarithmic scale.
Dotted lines correspond to MDD representations and solid to MDDG representations.

The general picture is that compiling constraint networks into MDDG allows
to solve constantly more instances than when compiling to MDD, independently
of the heuristics involved. The performance shift between the best approaches
(ABS) and (Dom/Wdeg) targeting MDD and the one targeting MDDG (HP-P) is
equal to 133–134 instances (over 546), which is significant. In more detail, when
MDD is targeted, (ABS) solves 258 instances in the time and memory given and
(Dom/Wdeg) solved 257 instances; the number of instances solved by the vir-
tual best solver induced by the set of heuristics is 388. Its performance shift with
(ABS) and/or (Dom/Wdeg) is thus large. When MDD is targeted, heuristics hav-
ing instances solved by them and only them are (ABS), (IBS) and (dTree-MF).
When MDDG is targeted, the best heuristics is (HP-P) with 391 instances solved;
in this case, the number of instances solved by the virtual best solver induced
by the set of heuristics is 404. Its performance shift with (HP-P) is thus quite
limited (13 instances only). When MDDG is targeted, heuristics having instances
solved by them and only them are (HP-P), (BC), (CC) and (dTree-MF).

When the target is MDD, as expected, heuristics that target to MDD work better
than heuristics targeting MDDG. However, the performance shift is not that huge

1 From www.cril.fr/∼lecoutre/benchmarks.html, http://github.com/MiniZinc/minizinc
-benchmarks, and www.itu.dk/research/cla/externals/clib/.

www.cril.fr/~lecoutre/benchmarks.html
http://github.com/MiniZinc/minizinc-benchmarks
http://github.com/MiniZinc/minizinc-benchmarks
www.itu.dk/research/cla/externals/clib/


184 J.-M. Lagniez et al.

 1

 10

 100

 1000

 150  200  250  300  350  400

C
P

U
 ti

m
e 

us
ed

 (
in

 s
ec

on
ds

)

number of instances solved

MDDG HP-P (391)
MDDG BC-P (379)

MDDG BC (375)
MDDG dTree-HP (373)

MDDG Dom/Wdeg (372)
MDDG HP (368)

MDDG dTree-MD (367)
MDDG Wdeg (366)

MDDG dTree-MF (363)
MDDG CC-P (362)

MDDG CC (359)
MDDG COS (354)
MDDG ABS (325)

MDDG CS (289)
MDDG CS-P (288)
MDDG Dom (287)
MDDG IBS (284)

MDD CC-P (231)

MDD ABS (258)
MDD Dom/Wdeg (257)

MDD HP (255)
MDD Wdeg (255)

MDD IBS (248)
MDD HP-P (246)
MDD COS (244)

MDD dTree-MD (244)
MDD dTree-HP (244)
MDD dTree-MF (242)

MDD CC (239)
MDD BC (239)

MDD Dom (238)
MDD CS-P (238)

MDD CS (238)
MDD BC-P (235)

Fig. 2. Number of instances “solved” per method as the time allowed increases.

(it amounts to 27 instances, the worst heuristics for MDD being (CC-P) with 231
instances solved). Globally speaking, heuristics from the first group (the search-
based ones) appear as slightly better than the other heuristics but the difference
is not tremendous. Thus, one can also observe that the (HP) heuristics performs
quite well when MDD is targeted, with 255 instances solved, despite the fact
that it is designed for promoting decompositions. Contrastingly, some heuristics
performed quite bad, actually as bad as the random heuristics ((Dom), (CS),
(CS-P)) or even worse than it ((BC-P) and (CC-P)).

When MDDG is targeted, heuristics that take into account the graph struc-
ture are more suited. However, in that case, the performances shifts between
the heuristics from the two groups and between the heuristics from the second
group are important. Thus, the worst heuristics for MDDG is (IBS) which solves
only 284 instances, showing a shift of 107 instances with (HP-P). Other search
heuristics like (IBS), (Dom) and (ABS) also behave very poorly. Nevertheless,
all the heuristics which have been considered performed better than the ran-
dom one (with a shift at least equal to 13 instances). Search heuristics that take
into account structural information, namely the degree like (Wdeg) are more
efficient. It is interesting to note that the efficiency of (Dom/Wdeg) is mainly
due to its second by-product (Wdeg), since when we separately try (Dom) and
(Wdeg), there are 79 instances of difference in favor of (Wdeg). Such a differ-
ence does not appear when MDD is the target, demonstrating that structure plays
a critical role for producing meaningful decompositions. Focusing now on the
heuristics designed for promoting decompositions, significant shifts can also be
observed, (CS-P) and (CS) with 288 and 289 instances solved, respectively, being
far below the other heuristics (the next worst is (CC) with 359 instances solved).
The best members from this second group are (HP-P), and then (BC-P), (BC),
and (dTree-HP). Compared to (CS-P), (CS), (dTree-MD) and (dTree-MF), this
suggests that the fact that the generated decompositions are balanced has a
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major impact, which is more significant than the fact that the decomposition
is computed ex ante via the generation of a dTree, or on the fly. However, this
does not explain the deceiving performances of (CC-P) and (CC) which try as
well to split the network in two balanced parts by cutting it “in the middle”.

Let us now provide a more detailed, pairwise comparison of the performances
of the various heuristics. Tables 1 and 2 report (respectively) the dominance
matrices of the heuristics under consideration for the two target languages. Each
dominance matrix M gives for every pair of heuristics A, B, the number M [A,B]
of instances solved by A and not by B. Thus, when M [A,B] = 0 and M [B,A] �=
0, A is strictly dominated by B.

Table 1. Dominance matrix (MDDG).

A/B Dom/ Dom Wdeg IBS ABS COS dTree- dTree- dTree- CC-P BC-P HP-P CS-P CC BC HP CS

Wdeg MD MF HP

Dom/Wdeg - 85 8 89 48 19 7 12 1 27 17 5 85 30 20 5 84

Dom 0 - 0 11 3 0 1 4 0 12 8 0 16 13 9 0 16

Wdeg 2 79 - 83 46 15 8 14 3 27 17 5 82 29 19 4 81

IBS 1 8 1 - 3 2 2 5 1 14 9 0 16 15 9 1 16

ABS 1 41 5 44 - 5 6 10 2 20 15 5 45 22 17 5 44

COS 1 67 3 72 34 - 6 13 2 21 15 5 69 23 17 4 68

dTree-MD 2 81 9 85 48 19 - 10 0 24 14 3 81 27 17 4 80

dTree-MF 3 80 11 84 48 22 6 - 1 20 11 2 78 23 14 6 77

dTree-HP 2 86 10 90 50 21 6 11 - 27 17 5 86 30 20 5 85

CC-P 17 87 23 92 57 29 19 19 16 - 1 3 77 3 5 19 76

BC-P 24 100 30 104 69 40 26 27 23 18 - 4 93 21 4 26 92

HP-P 24 104 30 107 71 42 27 30 23 32 16 - 103 35 19 27 102

CS-P 1 17 4 20 8 3 2 3 1 3 2 0 - 5 4 1 0

CC 17 85 22 90 56 28 19 19 16 0 1 3 76 - 3 19 75

BC 23 97 28 100 67 38 25 26 22 18 0 3 91 19 - 25 90

HP 1 81 6 85 48 18 5 11 0 25 15 4 81 28 18 - 80

CS 1 18 4 21 8 3 2 3 1 3 2 0 1 5 4 1 -

For space reasons, we cannot detail the results obtained about the com-
pilation times and the sizes of the compiled forms for the various heuristics.
The benchmarks used and a detailed comparison in terms of compilation times
and sizes of the compiled forms, reported in a number of scatter plots, of all
the heuristics used can be found at http://www.cril.fr/KC/mddg.html. Roughly
speaking, it turns out that the best heuristics in terms of number of instances
solved are also the best heuristics when those two measures are considered
instead (the intuition being that one obtains less time-out and/or memory-out
precisely because the compilation times and the sizes of compiled forms are
shorter ones). As expected, targeting MDDG leads to more compact representa-
tions than when MDD is targeted instead. The scatter plots on Fig. 3 illustrate
it by focusing on the best heuristics for MDD (ABS) and (Dom/Wdeg) and the
best heuristics for MDDG (HP-P). Each dot represents an instance. The size (in
number of arcs) of the resulting compiled form, using the compiler cn2mddg

http://www.cril.fr/KC/mddg.html
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Table 2. Dominance matrix (MDD).

A/B Dom/ Dom Wdeg IBS ABS COS dTree- dTree- dTree- CC-P BC-P HP-P CS-P CC BC HP CS

Dom/ MD MF HP

Dom/Wdeg - 19 4 10 2 1 13 16 13 26 22 11 19 19 19 2 19

Dom 0 - 0 3 0 0 0 3 0 11 7 0 12 11 7 0 12

Wdeg 2 17 - 11 2 1 12 15 12 24 20 9 20 17 16 4 20

IBS 1 13 4 - 1 1 10 13 10 22 18 8 15 16 16 1 15

ABS 3 20 5 11 - 2 15 18 15 28 24 13 21 19 19 4 21

COS 2 20 4 11 2 - 14 17 14 27 23 12 20 19 19 3 20

dTree-MD 0 6 1 6 1 0 - 3 0 13 9 1 15 14 10 0 15

dTree-MF 1 7 2 7 2 1 1 - 1 11 7 2 13 12 8 1 13

dTree-HP 0 6 1 6 1 0 0 3 - 13 9 1 15 14 10 0 15

CC-P 0 4 0 5 1 0 0 0 0 - 0 0 3 1 1 0 3

BC-P 0 4 0 5 1 0 0 0 0 4 - 0 6 5 1 0 6

HP-P 0 8 0 6 1 0 3 6 3 15 11 - 15 14 10 0 15

CS-P 0 12 3 5 1 0 9 9 9 10 9 7 - 4 7 0 0

CC 1 12 1 7 0 0 9 9 9 9 9 7 5 - 4 1 5

BC 1 8 0 7 0 0 5 5 5 9 5 3 8 4 - 1 8

HP 0 17 4 8 1 0 11 14 11 24 20 9 17 17 17 - 17

CS 0 12 3 5 1 0 9 9 9 10 9 7 0 4 7 0 -
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Fig. 3. Comparing the sizes of the MDD representations.

equipped with the heuristics corresponding to the x-axis (resp. y-axis) is given
by its x-coordinate (resp. y-coordinate). Logarithmic scales are used for both
coordinates. These empirical results clearly illustrates the value of the notion of
decomposition in the compilation process from the practical side.

Again, due to space limitations, we cannot provide a differential analysis
of the heuristics performances depending on the family of benchmarks. How-
ever, the family chosen has a clear impact on the performances. For instance,
when MDDG is targeted, (HP-P) proved better than (Dom/Wdeg) for compiling
Bayesian networks and (Dom/Wdeg) proved better than (HP-P) for instances
of the frequency allocation problem (FAP) which are difficult to decompose.
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5 Conclusion

In this work, we have evaluated several branching heuristics for the top-down
compilation of constraint networks into the MDD language and into the MDDG
language, through the use of the cn2mddg compiler. Our evaluation on a large
dataset demonstrated that the decomposability of the constraint graph allows to
compile many more instances and offers much smaller compiled representations.
In particular, when compiling networks into MDD, the (Dom/Wdeg) heuristics
proved to be the best, while for MDDG representations, a new heuristics (HP-P)
based on dynamic, yet parsimonious hypergraph partitioning was the best per-
former.
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2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29828-8 15

21. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compil-
ing configuration problems. In: Proceedings of IJCAI 2007, pp. 149–154 (2007)

22. Oztok, U., Darwiche, A.: On compiling CNF into decision-DNNF. In: O’Sullivan,
B. (ed.) CP 2014. LNCS, vol. 8656, pp. 42–57. Springer, Cham (2014). doi:10.1007/
978-3-319-10428-7 7

23. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

24. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Proceedings of AAAI 2005, pp. 475–482 (2005)

25. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-319-10428-7_7
http://dx.doi.org/10.1007/978-3-319-10428-7_7
http://dx.doi.org/10.1007/978-3-540-30201-8_41

	Defining and Evaluating Heuristics for the Compilation of Constraint Networks
	1 Introduction
	2 Formal Preliminaries
	3 Heuristics for Compiling CNs
	3.1 Heuristics Targeting the MDD Language
	3.2 Heuristics Targeting the MDDG Language

	4 Empirical Evaluation
	5 Conclusion
	References




