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Abstract. A kernelization algorithm for a computational problem is
a procedure which compresses an instance into an equivalent instance
whose size is bounded with respect to a complexity parameter. For the
constraint satisfaction problem (CSP), there exist many results concern-
ing upper and lower bounds for kernelizability of specific problems, but
it is safe to say that we lack general methods to determine whether a
given problem admits a kernel of a particular size. In this paper, we take
an algebraic approach to the problem of characterizing the kernelization
limits of NP-hard CSP problems, parameterized by the number of vari-
ables. Our main focus is on problems admitting linear kernels, as has,
somewhat surprisingly, previously been shown to exist. We show that a
finite-domain CSP problem has a kernel with O(n) constraints if it can
be embedded (via a domain extension) into a CSP which is preserved by
a Maltsev operation. This result utilise a variant of the simple algorithm
for Maltsev constraints. In the complementary direction, we give indi-
cation that the Maltsev condition might be a complete characterization
for Boolean CSPs with linear kernels, by showing that an algebraic con-
dition that is shared by all problems with a Maltsev embedding is also
necessary for the existence of a linear kernel unless NP ⊆ co-NP/poly.

1 Introduction

Kernelization is a preprocessing technique based on reducing an instance of a
computationally hard problem in polynomial time to an equivalent instance, a
kernel, whose size is bounded by a function f with respect to a given complexity
parameter. The function f is referred to as the size of the kernel, and if the size
is polynomially bounded we say that the problem admits a polynomial kernel.
A classical example is Vertex Cover, which admits a kernel with 2k vertices,
where k denotes the size of the cover [25]. Polynomial kernels are of great interest
in parameterized complexity, as well as carrying practical significance in speeding
up subsequent computations (e.g., the winning contribution in the 2016 PACE
challenge for Feedback Vertex Set used a novel kernelization step as a key
component (see https://pacechallenge.wordpress.com/).
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When the complexity parameter is a size parameter, e.g., the number of vari-
ables n, then such a size reduction is also referred to as sparsification (although
a sparsification is not always required to run in polynomial time). A promi-
nent example is the famous sparsification lemma that underpins research into
the Exponential Time Hypothesis [10], which shows that for every k there is
a subexponential-time reduction from k-SAT on n variables to k-SAT on O(n)
clauses, and hence Õ(n) bits in size. However, the super-polynomial running
time is essential to this result. Dell and van Melkebeek [5] showed that k-SAT
cannot be kernelized even down to size O(nk−ε), and Vertex Cover cannot
be kernelized to size O(n2−ε), for any ε > 0 unless the polynomial hierarchy
collapses (in the sequel, we will make this assumption implicitly). These results
suggest that in general, polynomial-time sparsification cannot give non-trivial
size guarantees. The first result to the contrary was by Bart Jansen (unpub-
lished until recently [12]), who observed that 1-in-k-SAT admits a kernel with
at most n constraints using Gaussian elimination. More surprisingly, Jansen and
Pieterse [11] showed that the Not-All-Equal k-SAT problem admits a kernel
with O(nk−1) constraints, improving on the trivial bound by a factor of n and
settling an implicit open problem. In later research, they improved and general-
ized the method, and also showed that the bound of O(nk−1) is tight [12]. These
improved upper bounds are all based on rephrasing the SAT problem as a prob-
lem of low-degree polynomials, and exploiting linear dependence to eliminate
superfluous constraints. Still, it is fair to say that we currently lack the tools for
making a general analysis of the kernelizability of a generic SAT problem.

In this paper we take a step in this direction, by studying the kernelizability
of the constraint satisfaction problem over a constraint language Γ (CSP(Γ )),
parameterized by the number of variables n, which can be viewed as the problem
of determining whether a set of constraints over Γ is satisfiable. Some notable
examples of problems of this kind are k-colouring, k-SAT, 1-in-k-SAT, and not-
all-equal-k-SAT. We will occasionally put a particular emphasis on the Boolean
CSP problem and therefore denote this problem by SAT(Γ). Note that CSP(Γ )
has a trivial polynomial kernel for any finite language Γ (produced by simply
discarding duplicate constraints), but the question remains for which languages
Γ we can improve upon this. Concretely, our question in this paper is for which
languages Γ the problem CSP(Γ ) admits a kernel of O(nc) constraints, for some
c ≥ 1, with a particular focus on linear kernels (c = 1).

The Algebraic Approach in Parameterized and Fine-Grained
Complexity. For any language Γ , the classical complexity of CSP(Γ ) (i.e.,
whether CSP(Γ ) is in P) is determined by the existence of certain algebraic
invariants of Γ known as polymorphisms [13]. This gave rise to the algebraic
approach to characterizing the complexity of CSP(Γ ) by studying algebraic
properties. It has been conjectured that for every Γ , CSP(Γ ) is either in P or
NP-complete, and that the tractability of a CSP problem can be characterized by
a finite list of polymorphisms [3]. Recently, several independent results appeared,
claiming to settle this conjecture in the positive [1,26,27]. However, for purposes
of parameterized and fine-grained complexity questions, looking at polymor-
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phisms alone is too coarse. More technically, the polymorphisms of Γ character-
ize the expressive power of Γ up to primitive positive definitions, i.e., up to the
use of conjunctions, equality constraints, and existential quantification, whereas
for many questions a liberal use of existentially quantified local variables is not
allowed. In such cases, one may look at the expressive power under quantifier-
free primitive positive definitions (qfpp-definitions), allowing only conjunctions
and equality constraints. This expressive power is characterized by more fine-
grained algebraic invariants called partial polymorphisms. For example, there
are numerous dichotomy results for the complexity of parameterized SAT(Γ )
and CSP(Γ ) problems, both for so-called FPT algorithms and for kernelization
[17–19,24], and in each of the cases listed, a dichotomy is given which is equiv-
alent to requiring a finite list of partial polymorphisms of Γ . Similarly, Jonsson
et al. [16] showed that the exact running times of NP-hard SAT(Γ ) and CSP(Γ )
problems in terms of the number of variables n are characterized by the partial
polymorphisms of Γ . Unfortunately, studying properties of SAT(Γ ) and CSP(Γ )
for questions phrased in terms of the size parameter n is again more complicated
than for more permissive parameters k. For example, it is known that for every
finite set P of strictly partial polymorphisms, the number of relations invariant
under P is double-exponential in terms of the arity n (hence they cannot all be
described in a polynomial number of bits) [20, Lemma 35]. It can similarly be
shown that the existence of a polynomial kernel cannot be characterized by such
a finite set P . Instead, such a characterization must be given in another way (for
example, Lagerkvist et al. [22] provide a way to finitely characterize all partial
polymorphisms of a finite Boolean language Γ ).

Our Results. We generalize and extend the results of Jansen and Pieterse [12]
in the case of linear kernels to a general recipe for NP-hard SAT and CSP
problems in terms of the existence of a Maltsev embedding, i.e., an embedding
of a language Γ into a tractable language Γ ′ on a larger domain with a Maltsev
polymorphism. We show that for any language Γ with a Maltsev embedding into
a finite domain, CSP(Γ ) has a kernel with O(n) constraints. Attempting an
algebraic characterization, we also show an infinite family of universal partial
operations which are partial polymorphisms of every language Γ with a Maltsev
embedding, and show that these operations guarantee the existence of a Maltsev
embedding for Γ , albeit into a language with an infinite domain. Turning to
lower bounds against linear kernels, we show that the smallest of these universal
partial operations is also necessary, in the sense that for any Boolean language
Γ which is not invariant under this operation, SAT(Γ ) admits no kernel of size
O(n2−ε) for any ε > 0. We conjecture that this can be completed into a tight
characterization – i.e., that for Boolean languages Γ , SAT(Γ ) admits a linear
kernel if and only if it is invariant under all universal partial Maltsev operations.

Generalizations for kernels of higher degree are possible, but have been omit-
ted for reasons of length, and we refer the reader to the extended preprint [21].
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2 Preliminaries

2.1 The Constraint Satisfaction Problem and Kernelization

A relation R over a set of values D is a subset of Dk for some k ≥ 0, and we
write ar(R) = k to denote the arity of R. A set of relations Γ is referred to as
a constraint language. An instance (V,C) of the constraint satisfaction problem
over a constraint language Γ over D (CSP(Γ )) is a set V of variables and a
set C of constraint applications R(v1, . . . , vk) where R ∈ Γ , ar(R) = k, and
v1, . . . , vk ∈ V . The question is whether there exists a function f : V → D such
that (f(v1), . . . , f(vk)) ∈ R for each R(v1, . . . , vk) in C? If Γ is Boolean we denote
CSP(Γ ) by SAT(Γ ), and we let BR denote the set of all Boolean relations. As
an example, let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3}) can be
viewed as an alternative formulation of the 1-in-3-SAT problem restricted to
instances consisting only of positive literals. More generally, if we let R1/k =
{(x1, . . . , xk) ∈ {0, 1}k | x1 + . . . + xk = 1}, then SAT({R1/k}) is a natural
formulation of 1-in-k-SAT without negation.

A parameterized problem is a subset of Σ∗ × N where Σ is a finite alphabet.
Hence, each instance is associated with a natural number, called the parameter.

Definition 1. A kernelization algorithm, or a kernel, for a parameterized prob-
lem L ⊆ Σ∗ × N is a polynomial-time algorithm which, given an instance
(x, k) ∈ Σ∗ × N, computes (x′, k′) ∈ Σ∗ × N such that (1) (x, k) ∈ L if and
only if (x′, k′) ∈ L and (2) |x′| + k′ ≤ f(k) for some function f .

The function f in the above definition is sometimes called the size of the kernel.
In this paper, we are mainly interested in the case where the parameter denotes
the number of variables in a given CSP(Γ ) instance.

2.2 Operations and Relations

An n-ary function f : Dn → D over a domain D is typically referred to as
an operation on D, although we will sometimes use the terms function and
operation interchangeably. We let ar(f) = n denote the arity of f . Similarly,
an n-ary partial operation over a set D of values is a map f : X → D, where
X ⊆ Dn is called the domain of f . Again, we let ar(f) = n, and furthermore
let domain(f) = X. If f and g are n-ary partial operations with domain(g) ⊆
domain(f) and f(x1, . . . , xn) = g(x1, . . . , xn) for each (x1, . . . , xn) ∈ domain(g),
then g is said to be a subfunction of f .

Definition 2. An n-ary partial operation f is a partial polymorphism of a k-
ary relation R if, for every sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R
or (t1[i], . . . , tn[i]) /∈ domain(f) for some 1 ≤ i ≤ k, where f(t1, . . . , tn) =
(f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])).

If f is total we simply say that f is a polymorphism of R, and in both cases
we sometimes also say that f preserves R, or that R is invariant under f . For



Kernelization of Constraint Satisfaction Problems 161

a constraint language Γ we then let Pol(Γ) and pPol(Γ) denote the set of oper-
ations and partial operations preserving every relation in Γ , respectively, and
if F is a set of total or partial operations we let Inv(F) denote the set of all
relations invariant under F . It is known that Pol(Γ) and pPol(Γ) are closed
under composition of (partial) operations, i.e., if f ◦ g1, . . . , gm(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included in Pol(Γ) (respectively pPol(Γ))
then f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included in Pol(Γ) (respectively
pPol(Γ)) [23]. It is also known that Pol(Γ) and pPol(Γ) for each n and i ≤ n
contain every projection πn

i (x1, . . . , xi, . . . , xn) = xi. On the relational side, if
every operation in F is total, then Inv(F) is closed under primitive positive
definitions (pp-definitions) which are logical formulas consisting of existential
quantification, conjunction, and equality constraints. In symbols, we say that
a k-ary relation R has a pp-definition over a constraint language Γ over a
domain D if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧ Rm(xm), where each
Ri ∈ Γ ∪ {Eq}, Eq = {(x, x) | x ∈ D} and each xi is an ar(Ri)-ary tuple of vari-
ables over x1, . . . , xk, y1, . . . , yk′ . If F is a set of partial operations then Inv(F) is
closed under quantifier-free primitive positive definitions (qfpp-definitions), i.e.,
pp-definitions that do not make use of existential quantification. As a shorthand,
we let [F ] = Pol(Inv(F)), 〈Γ 〉 = Inv(Pol(Γ)), and 〈Γ 〉�∃ = Inv(pPol(Γ)). We then
have the following Galois connections [8].

Theorem 3. Let Γ, Γ ′ be constraint languages. Then (1) Γ ⊆ 〈Γ ′〉�∃ if and only
if pPol(Γ′) ⊆ pPol(Γ) and (2) Γ ⊆ 〈Γ ′〉 if and only if Pol(Γ′) ⊆ Pol(Γ).

Jonsson et al. [16] proved the following theorem, showing that partial poly-
morphisms are indeed a refinement over total polymorphisms, since the latter
are only guaranteed to provide polynomial-time many-one reductions [15].

Theorem 4. If Γ , Γ ′ are finite languages and pPol(Γ) ⊆ pPol(Γ′) there exists a
constant c and a polynomial-time reduction from CSP(Γ ′) to CSP(Γ ) mapping
(V,C) of CSP(Γ ′) to (V ′, C ′) of CSP(Γ ) where |V ′| ≤ |V | and |C ′| ≤ c|C|.

Last, we will define a particular type of operation which is central to our
algebraic approach. A Maltsev operation over D ⊇ {0, 1} is a ternary operation φ
which for all x, y ∈ D satisfies the two identities φ(x, x, y) = y and φ(x, y, y) = x.
Before we can explain the powerful, structural properties of relations invariant
under Maltsev operations, we need a few technical definitions from Bulatov and
Dalmau [2]. If t ∈ Dn is a tuple we let t[i] denote the ith element in t and we
let pri1,...,in′ (t) = (t[i1], . . . , t[in′ ]), n′ ≤ n, denote the projection of t on (not
necessarily distinct) coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an n-
ary relation we let pri1,...,in′ (R) = {pri1,...,in′ (t) | t ∈ R}. Let t, t′ be two n-ary
tuples over D. We say that (t, t′) witnesses a tuple (i, a, b) ∈ {1, . . . , n} × D2 if
pr1,...,i−1(t) = pr1,...,i−1(t′), t[i] = a, and t′[i] = b. The signature Sig(R) of an
n-ary relation R over D is then defined as

{(i, a, b) ∈ {1, . . . , n} × D2 | ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)},
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and we say that R′ ⊆ R is a representation of R if Sig(R) = Sig(R′). If R′

is a representation of R it is said to be compact if |R′| ≤ 2|Sig(R)|, and it is
known that every relation invariant under a Maltsev operation admits a compact
representation. Furthermore, we have the following theorem from Bulatov and
Dalmau, where we let 〈R〉f denote the smallest superset of R invariant under f .

Theorem 5 ([2]). Let φ be a Maltsev operation over a finite domain, R ∈
Inv({φ}) a relation, and R′ a representation of R. Then 〈R′〉φ = R.

Hence, relations invariant under Maltsev operations are reconstructible from
their compact representations.

3 Maltsev Embeddings and Kernels of Linear Size

In this section we give general upper bounds for kernelization of NP-hard CSP
problems, utilising Maltsev operations. At this stage the connection between
Maltsev operations, compact representations and tractability of Maltsev con-
straints might not be immediate. In a nutshell, the Maltsev algorithm [2] works
as follows (where φ is a Maltsev operation over a finite set D). First, let
(V, {C1, . . . , Cm}) be an instance of CSP(Inv({φ})), and let S0 be a compact
representation of D|V |. Second, for each i ∈ {1, . . . , m} compute a compact rep-
resentation Si of the solution space of the instance (V, {C1, . . . , Ci}) using Si−1.
Third, answer yes if Sm �= ∅ and no otherwise. For a full description of the
involved procedures we refer the reader to Bulatov and Dalmau [2] and Dyer
and Richerby [6].

Example 6. We review two familiar special cases of this result. First, consider
a linear equation

∑
i αixi = b, interpreted over a finite field F. It is clear that

the set of solutions to such an equation is invariant under x1 − x2 + x3 (over F),
hence systems of linear equations are a special case of Maltsev constraints, and
can in principle be solved by the Maltsev algorithm. Second, for a more general
example, let G = (D, ·) be a finite group, and let s(x, y, z) = x · (y−1) · z be
the coset generating operation of G. Then s is Maltsev, hence CSP(Inv({s}))
is tractable; this was shown by Feder and Vardi [7], but also follows from the
Maltsev algorithm. In particular, if G = (D,+) is an Abelian group where |D|
is prime, then R ∈ Inv({s}) if and only if R is the solution space of a system of
linear equations modulo |D| [14].

Since CSP(Γ ) is tractable whenever Γ is preserved by a Maltsev operation,
it might not be evident how the Maltsev algorithm can be used for constructing
kernels for NP-hard CSPs. The basic idea is to embed Γ into a language Γ̂ over
a larger domain, which is preserved by a Maltsev operation. This allows us to
use the advantageous properties of relations invariant under Maltsev operations,
in order to compute a kernel for the original problem.

Definition 7. A constraint language Γ over D admits an embedding over the
constraint language Γ̂ over D′ ⊇ D if there exists a bijection h : Γ → Γ̂ such
that ar(h(R)) = ar(R) and h(R) ∩ Dar(R) = R for every R ∈ Γ .
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If Γ̂ is preserved by a Maltsev operation then we say that Γ admits a Maltsev
embedding. We do not exclude the possibility that D′ is infinite, but in this
section we will only be concerned with finite domains, and therefore do not
explicitly state this assumption. If the bijection h is efficiently computable and
there exists a polynomial p such that h(R) can be computed in O(p(|R|)) time
for each R ∈ Γ , then we say that Γ admits a polynomially bounded embedding.
In particular, an embedding over a finite domain of any finite Γ is polynomially
bounded.

Example 8. Recall from Sect. 2 that R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. We claim
that R1/3 has a Maltsev embedding over {0, 1, 2}. Let R̂1/3 = {(x, y, z) ∈
{0, 1, 2}3 | x + y + z = 1 (mod 3)}. Then R̂1/3 ∩ {0, 1}3 = R1/3, and from Exam-
ple 6 we recall that R̂1/3 is preserved by a Maltsev operation. Hence, R̂1/3 is
indeed a Maltev embedding of R1/3. More generally, for every k, R1/k has a
Maltsev embedding into equations over a finite field of size at least k.

For a CSP(Γ ) instance I = ({x1, . . . , xn}, C) we let ΨI be the relation
{(g(x1), . . . , g(xn)) | g satisfies I}, and if φ is a Maltsev operation and I =
(V, {C1, . . . , Cm}) an instance of CSP(Inv({φ})) we let Seq(I) = (S0, S1 . . . , Sm)
denote the compact representations of the relations Ψ(V,∅), Ψ(V,{C1}), . . .,
Ψ(V,{C1,...,Cm}) computed by the Maltsev algorithm. We remark that the ordering
of the constraints in Seq(I) does not influence the upper bound for the kernel.

Definition 9. Let φ be a Maltsev operation, p a polynomial and let Δ ⊆
Inv({φ}). We say that Δ and CSP(Δ) have chain length p if |{〈Si〉φ | i ∈
{0, 1, . . . , |C|}}| ≤ p(|V |) for each instance I = (V,C) of CSP(Δ), where
Seq(I) = (S0, S1, . . . , S|C|).

We now have everything in place to define our kernelization algorithm.

Theorem 10. Let Γ be a constraint language over D which admits a polyno-
mially bounded Maltsev embedding Γ̂ with chain length p. Then CSP(Γ ) has a
kernel with O(p(|V |)) constraints.

Proof. Let φ ∈ Pol(Γ̂) denote the Maltsev operation witnessing the embed-
ding Γ̂ . Given an instance I = (V,C) of CSP(Γ ) we can obtain an instance
I ′ = (V,C ′) of CSP(Γ̂ ) by replacing each constraint Ri(xi) in C by R̂i(xi). We
arbitrarily order the constraints as C ′ = (C1, . . . , Cm) where m = |C ′|. We then
iteratively compute the corresponding sequence Seq(I ′) = (S0, S1, . . . , S|C′|).
This can be done in polynomial time with respect to the size of I via the same
procedure as the Maltsev algorithm. For each i ∈ {1, . . . , m} we then do the
following.

1. Let the ith constraint be Ci = R̂i(xi1 , . . . , xir ) with ar(Ri) = r.
2. For each t ∈ Si−1 determine whether pri1,...,ir (t) ∈ R̂i.
3. If yes, then remove the constraint Ci, otherwise keep it.
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This can be done in polynomial time with respect to the size of the instance I ′,
since (1) |Si−1| is bounded by a polynomial in |V | and (2) the test pri1,...,ir (t) ∈
R̂i can naively be checked in linear time with respect to |R̂i|. We claim that
the procedure outlined above will correctly detect whether the constraint Ci

is redundant or not with respect to 〈Si−1〉φ, i.e., whether 〈Si−1〉φ = 〈Si〉φ.
First, observe that if there exists t ∈ Si−1 such that pri1,...,ir (t) /∈ R̂i, then the
constraint is clearly not redundant. Hence, assume that pri1,...,ir (t) ∈ R̂i for every
t ∈ Si−1. Then Si−1 ⊆ 〈Si〉φ, hence also 〈Si−1〉φ ⊆ 〈Si〉φ. On the other hand,
〈Si〉φ ⊆ 〈Si−1〉φ holds trivially. Therefore, equality must hold. Let I ′′ = (V,C ′′)
denote the resulting instance. Since CSP(Inv({φ})) has chain length p it follows
that (1) the sequence 〈S0〉φ, 〈S1〉φ, . . . , 〈S|C′|〉φ contains at most p(|V |) distinct
elements, hence |C ′′| ≤ p(|V |), and (2) ΨI′ = ΨI′′ . Clearly, it also holds that
ΨI = (ΨI′ ∩ {0, 1}|V |) = (ΨI′′ ∩ {0, 1}|V |). Hence, we can safely transform I ′′

to an instance I∗ of CSP(Γ ) by replacing each constraint R̂i(xi) with Ri(xi).
Then I∗ is an instance of CSP(Γ ) with at most p(|V |) constraints, such that
ΨI = ΨI∗ . In particular, I∗ has a solution if and only if I has a solution. ��

All that remains to be proven now is that there actually exist Maltsev embed-
dings with bounded chain length.

Theorem 11. CSP(Inv({φ})) has chain length O(|D||V |) for every Maltsev
operation φ over a finite D.

Proof. Let I = (V,C) be an instance of CSP(Inv({φ})), with |V | = n and |C| =
m, and let Seq(I) = (S0, S1, . . . , Sm) be the sequence of compact representations
computed by the Maltsev algorithm. First, we claim that Sig(Si+1) ⊆ Sig(Si)
for every i < m. To see this, pick (j, a, b) ∈ Sig(Si), where j ∈ {1, . . . , |V |}
and a, b ∈ D. Then there exists t, t′ ∈ Si such that (t, t′) witnesses (j, a, b), i.e.,
pr1,...,j−1(t) = pr1,...,j−1(t′), and t[j] = a, t′[j] = b. Since 〈Si−1〉φ ⊇ 〈Si〉φ ⊇ Si,
it follows that t, t′ ∈ 〈Si−1〉φ, and hence also that (j, a, b) ∈ Sig(〈Si−1〉φ). But
since Si−1 is a representation of 〈Si−1〉φ, Sig(Si−1) = Sig(〈Si−1〉φ), from which
we infer that (j, a, b) ∈ Sig(Si−1). Second, we claim that the sets (j, a, b) ∈
Sig(Si) induce an equivalence relation on prj(〈Si〉φ) for every i ≤ m, j ≤ n1.
Let a ∼ b hold if and only if (j, a, b) ∈ Sig(Si). Note that (j, a, a) ∈ Sig(Si) if
and only if a ∈ prj(Si), and that (j, a, b) /∈ Sig(Si) for any b if a /∈ prj(Si).
Also note that ∼ is symmetric by its definition. It remains to show transitivity.
Let (j, a, b) ∈ Sig(Si) be witnessed by (ta, tb) and (j, a, c) ∈ Sig(Si) be witnessed
by (t′a, t′c). We claim that tc := φ(ta, t′a, t′c) ∈ Si is a tuple such that (tb, tc)
witnesses (i, b, c) ∈ Sig(Si). Indeed, for every i′ < i we have φ(ta[i′], t′a[i′], t′c[i

′]) =
φ(ta[i′], t′a[i′], t′a[i′]) = ta[i′], whereas φ(ta[i′], t′a[i′], t′c[i

′]) = (a, a, c) = c. Since
ta[i′] = tb[i′] for every i′ < i, it follows that (tb, tc) witnesses (j, b, c) ∈ Sig(Si).
Hence ∼ is an equivalence relation on prj(Si). We wrap up the proof as follows.
Note that if Sig(Si+1) = Sig(Si), then 〈Si〉φ = 〈Si+1〉φ since Si+1 is a compact
representation of 〈Si〉φ. Hence, we need to bound the number of times that

1 This property is essentially folklore in universal algebra, and follows from the rec-
tangularity property of relations invariant under Maltsev operations.
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Sig(Si+1) ⊂ Sig(Si) can hold. Now, whenever Sig(Si+1) ⊂ Sig(Si), then either
prj(〈Si〉φ) ⊂ prj(〈Si+1〉φ) for some j, or the equivalence relation induced by
tuples (j, a, b) ∈ Sig(Si+1) is a refinement of that induced by tuples (j, a, b) ∈
Sig(Si) for some j. Both of these events can only occur |D| − 1 times for every
position j (unless Sm = ∅). Hence the chain length is bounded by 2|V ||D|. ��

This bound can be slightly improved for a particular class of Maltsev opera-
tions. Recall from Example 6 that s(x, y, z) = x · y−1 · z is the coset generating
operation of a group G = (D, ·).
Lemma 12. Let G = (D, ·) be a finite group and let s be its coset generating
operation. Then CSP(Inv({s})) has chain length O(|V | log |D|).
Proof. Let I = (V,C) be an instance of CSP(Inv({s})), where |V | = n and
|C| = m. Let Seq(I) = (S0, S1, . . . , Sm) be the corresponding sequence. First
observe that S0 is a compact representation of Dn and that (Dn, ·) is nothing
else than the nth direct power of G. It is well-known that R is a coset of a sub-
group of (Dn, ·) if and only if s preserves R [4]. In particular, this implies that
S1 is a compact representation of a subgroup of (Dn, ·), and more generally that
each Si is a compact representation of a subgroup of 〈Si−1〉s. Lagrange’s theo-
rem then reveals that |〈Si〉s| divides |〈Si−1〉s|, which implies that the sequence
〈S0〉s, 〈S1〉s, . . . , 〈Sm〉s contains at most n log2 |D| + 1 distinct elements. ��

Note that the bound |V | log |D| is in fact a bound on the length of a chain
of subgroups of Gn; thus it can be further strengthened in certain cases. In
particular, if |D| is prime then the bound on chain length is simply |V | + 1 and
the resulting kernel has at most |V | constraints. Thus, Theorem 10 and Lemma 12
(via Example 8) give an alternate proof of the result that SAT({R1/k}) has a
kernel with at most |V | constraints. More generally, we get the following cases.
First, if Γ can be represented via linear equations over a finite field, then CSP(Γ )
has a kernel with at most |V | constraints. This closely mirrors the result of
Jansen and Pieterse [12]. Second, if Γ can be embedded into cosets of a finite
group over a set D, then CSP(Γ ) has a kernel of O(|V | log |D|) constraints, but
not necessarily |V | constraints (for example, x = 0 (mod 2) and x = 0 (mod 3)
are independent over Z6). Third, in the general case, where Γ has an embedding
into a language on domain D with some arbitrary Maltsev polymorphism with
no further structure implied, CSP(Γ ) has a kernel with O(|V ||D|) constraints.
(More generally, for |Γ | finite, we may use different Maltsev embeddings for
different R ∈ Γ , and apply the above kernel to each relation R in turn, for a
kernel of O(|Γ ||D||V |) constraints, where |D| is the largest domain used in these
embeddings.) Each case is more general than the previous: there are groups
whose coset generating operations cannot be represented by Abelian groups (for
example An, the group of all even permutations over {1, . . . , n} for n ≥ 3), and
it is known that a Maltsev operation φ over D is the coset generating operation
of a group (D, ·) if and only if φ(φ(x, y, z), z, u) = φ(x, y, u), φ(u, z, φ(z, y, x)) =
φ(u, y, x) for all x, y, z, u ∈ D [4]. Hence, any Maltsev operation which does not
satisfy these two identities cannot be viewed as the coset generating operation
of a group.
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4 Partial Polymorphisms and Lower Bounds

We have seen that Maltsev embeddings provide an algebraic criterion for deter-
mining that a CSP(Γ ) problem admits a kernel of a fixed size. In this section we
develop a connection between the partial polymorphisms of a constraint language
and the existence of a Maltsev embedding, and leverage these results in order to
prove lower bound on kernelization for SAT(Γ ). Let f : Dk → D be a k-ary oper-
ation over D ⊇ {0, 1}. We can then associate a partial Boolean operation f|B with
f by restricting f to the Boolean arguments which also result in a Boolean value.
In other words domain(f|B) = {(x1, . . . , xk) ∈ {0, 1}k | f(x1, . . . , xk) ∈ {0, 1}},
and f|B(x1, . . . , xk) = f(x1, . . . , xk) for every (x1, . . . , xk) ∈ domain(f|B). We
then characterize the partial polymorphisms of Boolean constraint languages
admitting Maltsev embeddings as follows.

Theorem 13. Let Γ be a Boolean constraint language, φ a Maltsev operation,
and Γ̂ = {〈R〉φ | R ∈ Γ}. Then Γ̂ is a Maltsev embedding of Γ if and only if
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂).

Proof. For the first direction, assume that Γ̂ is a Maltsev embedding of Γ ,
and assume that there exists R ∈ Γ and an n-ary f ∈ Pol(Γ̂) such that
f|B(t1, . . . , tn) /∈ R for t1, . . . , tn ∈ R. By construction, f|B(t1, . . . , tn) = t is
a Boolean tuple. But since R̂ ∩ {0, 1}ar(R) = R, this implies (1) that t /∈ R̂
and (2) that f|B(t1, . . . , tn) = f(t1, . . . , tn) = t /∈ R̂. Hence, f does not pre-
serve R̂ or Γ̂ , and we conclude that f|B ∈ pPol(Γ). For the other direction,
assume that {f|B | f ∈ Pol(Γ̂)} ⊆ pPol(Γ) but that there exists R̂ ∈ Γ̂ such
that R̂ ∩ {0, 1}ar(R) ⊃ R. Let t ∈ R̂ ∩ {0, 1}ar(R) \ R. By construction of R̂
it follows that there exists an n-ary f ∈ [{φ}] and t1, . . . , tn ∈ R such that
f(t1, . . . , tn) = t /∈ R. But then it follows that f|B(t1, . . . , tn) is defined as
well, implying that f|B(t1, . . . , tn) /∈ R. This contradicts the assumption that
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂). ��

Hence, the existence of a Maltsev embedding can always be witnessed by the
partial polymorphisms of a constraint language. We will now describe the partial
operations that preserve every Boolean language with a Maltsev embedding.
Therefore, say that f is a universal partial Maltsev operation if f ∈ pPol(Γ) for
every Boolean Γ admitting a Maltsev embedding. Due to Theorem 13 this is
tantamount to finding a Maltsev operation φ such that every Boolean language
with a Maltsev embedding admits a Maltsev embedding over φ.

Definition 14. Let the infinite domain D∞ be recursively defined to contain 0,
1, and ternary tuples of the form (x, y, z) where x, y, z ∈ D∞, x �= y, y �= z.
The Maltsev operation u over D∞ is defined as u(x, x, y) = y, u(x, y, y) = x, and
u(x, y, z) = (x, y, z) otherwise.

We will now prove that q|B is a universal partial Maltsev operation if
q ∈ [{u}].
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Theorem 15. Let q ∈ [{u}]. Then q|B is a universal partial Maltsev operation.

Proof. We provide a sketch of the most important ideas. Let q ∈ [{u}] be n-ary,
and let Γ be a Boolean constraint language admitting a Maltsev embedding
with respect to an operation φ. It is known that every operation in [{u}] can be
expressed as a term over u [9], and if we let p denote the operation defined by
replacing each occurence of u in this term by φ we obtain an operation included
in [{φ}]. We then claim that q|B can be obtained as a subfunction of p|B, which
is sufficient to prove the result since p|B ∈ pPol(Γ) via Theorem13 and since
pPol(Γ) is known to be closed under taking subfunctions [23]. The intuition
behind this step is that q(x1, . . . , xn) for x1, . . . , xn ∈ {0, 1} may only return a
Boolean value through a sequence of Maltsev conditions, and since φ is also a
Maltsev operation, it has to abide by these conditions as well. Formally, this can
be proven straightforwardly through induction on the terms defining q and p. ��

We may thus combine Theorem 13 and Theorem 15 to obtain a com-
plete description of all universal partial Maltsev operations. Even though
these proofs are purely algebraic we will shortly see that universal Malt-
sev operations have strong implications for kernelizability of SAT. For this
purpose we define the first partial Maltsev operation φ1 as φ1(x, y, y) = x
and φ1(x, x, y) = y for all x, y ∈ {0, 1}, and observe that domain(φ1) =
{(0, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}. Via Theorem 15 it follows
that φ1 is equivalent to u|B, and is therefore a universal partial Maltsev oper-
ation. We will now prove that φ1 ∈ pPol(Γ) is in fact a necessary condi-
tion for the existence of a linear-sized kernel for SAT(Γ ), modulo a stan-
dard complexity theoretical assumption. A pivotal part of this proof is that if
φ1 /∈ pPol(Γ), then Γ can qfpp-define a relation Φ1, which can be used as a gad-
get in a reduction from the Vertex Cover problem. This relation is defined as
Φ1(x1, x2, x3, x4, x5, x6) ≡ (x1∨x4)∧(x1 �= x3)∧(x2 �= x4)∧(x5 = 0)∧(x6 = 1).
The following lemma shows a strong relationship between φ1 and Φ1.

Lemma 16. If Γ is a Boolean constraint language such that 〈Γ 〉 = BR and
φ1 /∈ pPol(Γ) then Φ1 ∈ 〈Γ 〉�∃.

Proof. Before the proof we need two central observations. First, the assumption
that 〈Γ 〉 = BR is well-known to be equivalent to that Pol(Γ) consists only of
projections. Second, Φ1 consists of three tuples which can be ordered as s1, s2, s3
in such a way that for every s ∈ domain(φ1) there exists 1 ≤ i ≤ 6 such that
s = (s1[i], s2[i], s3[i]). Now, assume that 〈Γ 〉 = BR, φ1 /∈ pPol(Γ), but that
Φ1 /∈ 〈Γ 〉�∃. Then there exists an n-ary f ∈ pPol(Γ) such that f /∈ pPol({Φ1}),
and t1, . . . , tn ∈ Φ1 such that f(t1, . . . , tn) /∈ Φ1. Now consider the value k =
|{t1, . . . , tn}|, i.e., the number of distinct tuples in the sequence. If n > k then
it is known that there exists a closely related partial operation g of arity at
most k such that g /∈ pPol({Φ1}) [22], and we may therefore assume that n =
k ≤ |Φ1| = 3. Assume first that 1 ≤ n ≤ 2. Then, for every t ∈ {0, 1}n there
exists i such that (t1[i], . . . , tn[i]) = t. But then f must be a total operation
which is not a projection, which is impossible since we assumed that 〈Γ 〉 = BR.
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Hence, it must be the case that n = 3, and that {t1, t2, t3} = Φ1. Assume
without loss of generality that t1 = s1, t2 = s2, t3 = s3, and note that this
implies that domain(f) = domain(φ1) (otherwise f can simply be described as a
permutation of φ1). First, we will show that f(0, 0, 0) = 0 and that f(1, 1, 1) =
1. Indeed, if f(0, 0, 0) = 1 or f(1, 1, 1) = 0, it is possible to define a unary
total f ′ as f ′(x) = f(x, x, x) which is not a projection since either f ′(0) = 1
or f ′(1) = 0. Second, assume there exists (x, y, z) ∈ domain(f), distinct from
(0, 0, 0) and (1, 1, 1), such that f(x, y, z) �= φ1(x, y, z). Without loss of generality
assume that (x, y, z) = (a, a, b) for a, b ∈ {0, 1}, and note that f(a, a, b) = a
since φ1(a, a, b) = b. If also f(b, b, a) = a it is possible to define a binary total
operation f ′(x, y) = f(x, x, y) which is not a projection, therefore we have that
f(b, b, a) = b. We next consider the values taken by f on the tuples (b, a, a) and
(a, b, b). If f(b, a, a) = f(a, b, b) then we can again define a total, binary operation
which is not a projection, therefore it must hold that f(b, a, a) �= f(a, b, b).
However, regardless of whether f(b, a, a) = b or f(b, a, a) = a, f must be a
partial projection. This contradicts the assumption that f /∈ pPol({Φ1}), and
we conclude that Φ1 ∈ 〈Γ 〉�∃. ��

We will shortly use Lemma 16 to give a reduction from the Vertex Cover
problem, since it is known that Vertex Cover does not admit a kernel with
O(n2−ε) edges for any ε > 0, unless NP ⊆ co-NP/poly [5]. For each n and k let
Hn,k denote the relation {(b1, . . . , bn) ∈ {0, 1}n | b1 + . . . + bn = k}.

Lemma 17. Let Γ be a constraint language. If 〈Γ 〉 = BR then Γ can pp-define
Hn,k with O(n + k) constraints and O(n + k) existentially quantified variables.

Proof. We first observe that one can recursively design a circuit consisting of
fan-in 2 gates which computes the sum of n input gates as follows. At the lowest
level, we split the input gates into pairs and compute the sum for each pair,
producing an output of 2 bits for each pair. At every level i above that, we join
each pair of outputs from the previous level, of i bits each, into a single output of
i+1 bits which computes their sum. This can be done with O(i) gates by chaining
full adders. Finally, at level �log2 n�, we will have computed the sum. The total
number of gates will be

∑	log2 n

i=1 ( n

2i )·O(i), which sums to O(n). Let z1, . . . , zlog2 n

denote the output gates of this circuit. By a standard Tseytin transformation
we then obtain an equisatisfiable 3-SAT instance with O(n) clauses and O(n)
variables. For each 1 ≤ i ≤ log2 n, add the unary constraint (zi = ki), where
ki denotes the ith bit of k written in binary. Each such constraint can be pp-
defined with O(1) existentially quantified variables over Γ . We then pp-define
each 3-SAT clause in order to obtain a pp-definition of R over Γ , which in total
only requires O(n) existentially quantified variables. This is possible since if
〈Γ 〉 = BR then Γ can pp-define every Boolean relation. ��
Theorem 18. Let Γ be a finite Boolean constraint language such that 〈Γ 〉 = BR
and φ1 /∈ pPol(Γ). Then SAT(Γ ) does not have a kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ co-NP/poly.



Kernelization of Constraint Satisfaction Problems 169

Proof. We will give a reduction from Vertex Cover parameterized by the
number of vertices to SAT(Γ ∪ {Φ1}), which via Theorem 4 and Lemma 16 has
a reduction to SAT(Γ ) which does not increase the number of variables. Let
(V,E) be the input graph and let k denote the maximum size of the cover. First,
introduce two variables xv and x′

v for each v ∈ V , and one variable yi for each
1 ≤ i ≤ k. Furthermore, introduce two variables x and y. For each edge {u, v} ∈
E introduce a constraint Φ1(xu, x′

v, x′
u, xv, x, y), and note that this enforces

the constraint (xu ∨ xv). Let ∃z1, . . . , zm.φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm)
denote the pp-definition of H|V |+k,k over Γ where m ∈ O(k + |V |), and con-
sisting of at most O(k + |V |) constraints. Such a pp-definition must exist
according to Lemma 17. Drop the existential quantifiers and add the con-
straints of φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm). Let (V ′, C) denote this instance
of SAT(Γ ∪{Φ1}). Assume first that (V,E) has a vertex cover of size k′ ≤ k. We
first assign x the value 0 and y the value 1. For each v in this cover assign xv

the value 1 and x′
v the value 0. For any vertex not included in the cover we use

the opposite values. Then set y1, . . . , yk−k′ to 1 and yk−k′+1, . . . , yk to 0. For the
other direction, assume that (V ′, C) is satisfiable. For any xv variable assigned 1
we then let v be part of the vertex cover. Since x1 + . . .+x|V | +y1 + . . .+yk = k,
the resulting vertex cover is smaller than or equal to k. ��

For example, let Rk = {(b1, . . . , bk) ∈ {0, 1}k | b1+. . .+bk ∈ {1, 2} ( mod 6)}
and let P = {Rk | k ≥ 1}. The kernelization status of SAT(P ) was left open
in Jansen and Pieterse [12], and while a precise upper bound seems difficult to
obtain, we can easily prove that this problem does not admit a kernel of linear
size, unless NP ⊆ co-NP/poly. Simply observe that (0, 0, 1), (0, 1, 1), (0, 1, 0) ∈ R3

but φ1((0, 0, 1), (0, 1, 1), (0, 1, 0)) = (0, 0, 0) /∈ R3. The result then follows from
Theorem 18. At this stage, it might be tempting to conjecture that φ1 ∈ pPol(Γ)
is also a sufficient condition for a Maltsev embedding. We can immediately rule
this out by finding a relation R and a universal partial Maltsev operation φ
such that R is invariant under φ1 but not under φ. For example, let q be the
9-ary function defined by u(u(x1, x2, x3), u(x4, x5, x6), u(x7, x8, x9)). Then we by
computer experiments have verified that there exists a relation R of cardinality
9, invariant under φ1 but not under q|B [21].

5 Concluding Remarks and Future Research

We have studied kernelization properties of SAT and CSP with tools from uni-
versal algebra. We focused on problems with linear kernels, and showed that a
CSP problem has a kernel with O(n) constraints if it can be embedded into a
CSP problem preserved by a Maltsev operation; thus extending previous results
in this direction. On the other hand, we showed that a SAT problem not pre-
served by a partial Maltsev operation does not admit such a kernel, unless NP
⊆ co-NP/poly. This shows that the algebraic approach is viable for studying
such fine-grained kernelizability questions. Our work opens several directions for
future research.
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A Dichotomy Theorem for Linear Kernels? Our results suggest a possible
dichotomy theorem for the existence of linear kernels for SAT problems. How-
ever, two gaps remain towards such a result. On the one hand, we proved that if Γ
is preserved by the universal partial Maltsev operations then it admits a Malt-
sev embedding over an infinite domain. However, the kernelization algorithm
only works for finite domains. Does the existence of an infinite-domain Maltsev
embedding for a finite language imply the existence of a Maltsev embedding
over a finite domain? Alternatively, can the algorithms be adjusted to work for
languages with infinite domains, since D∞ is finitely generated in a simple way?
On the other hand, we only have necessity results for φ1 out of an infinite set of
conditions for the positive results. Is it true that every universal partial Malt-
sev operation is a partial polymorphism of every language with a linear kernel,
or do there exist SAT problems with linear kernels that do not admit Maltsev
embeddings?

The Algebraic CSP Dichotomy Conjecture. Several solutions to the CSP
dichotomy conjecture have been announced [1,26,27]. If correct, these algorithms
solve CSP(Γ ) in polynomial time whenever Γ is preserved by a Taylor term. One
can then define the concept of a Taylor embedding, which raises the question
of whether the proposed algorithms can be modified to construct polynomial
kernels. More generally, when can an operation f such that CSP(Inv({f})) is
tractable be used to construct improved kernels? On the one hand, one can
prove that k-edge operations, which are generalized Maltsev operations, can be
used to construct kernels with O(nk−1) constraints via a variant of the few
subpowers algorithm. On the other hand, it is known that relations invariant
under semilattice operations can be described as generalized Horn formulas, but
it is not evident how this property could be useful in a kernelization procedure.
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