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Abstract. We show that intractability of the constraint satisfaction
problem over a fixed finite constraint language can, in all known cases,
be replaced by an infinite hierarchy of intractable promise problems of
increasingly disparate promise conditions. The instances are guaranteed
to either have no solutions at all, or to be k-robustly satisfiable (for
any fixed k), meaning that every “reasonable” partial instantiation on k
variables extends to a solution.
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1 Introduction

In the constraint satisfaction problem (CSP) we are given a domain A, a list
of relations R on A and a finite set V of variables, in which various tuples of
variables have been constrained by the relations in R. The fundamental satis-
faction question is to decide whether there is a function φ : V → A such that
(φ(v1), . . . , φ(vn)) ∈ r whenever 〈(v1, . . . , vn), r〉 is a constraint (and r ∈ R is
of arity n). Many computational problems are expressible in this framework,
even in the nonuniform case, where the domain A and relations R are fixed.
Such fixed template CSPs have received particular attention in theoretical inves-
tigations: examples include the SAT variants considered by Schaefer [40], graph
homomorphism problems such as in the Hell-Nešetřil dichotomy [22] as well
as list-homomorphism problems and conservative CSPs [9]. Feder and Vardi
[14] generated particular attention on the theoretical analysis of computational
complexity of fixed template CSPs, by tying the complexity of fixed finite tem-
plate CSPs precisely to those complexities to be found in the largest logically
definable class for which they were unable to prove that Ladner’s Theorem
holds. This motivated their famous dichotomy conjecture: is it true that a fixed
finite template CSP is either solvable in polynomial time or is NP-complete?
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A pivotal development in the efforts toward a possible proof of the dichotomy
conjecture was the introduction of universal algebraic methods. This provided
fresh tools to build tractable algorithms, and to build reductions for hardness,
as well as an established mathematical landscape in which to formulate conjec-
tures on complexity. The method is fundamental to Bulatov’s classification of
3-element CSPs [8], of the Dichotomy Theorem for conservative CSPs [9], for
homomorphism problems on digraphs without sources and sinks [6], in the clas-
sification of when a CSP is solvable by generalised Gaussian elimination [23],
and of when a CSP is solvable by a local consistency check algorithm [5], among
others. The algebraic dichotomy conjecture (ADC) of [11] refines the Feder-Vardi
conjecture by speculating the precise boundary between P and NP, in terms of
the presence of certain algebraic properties. The ADC has been verified in each
of the aforementioned tractability classifications.

The present article shows that NP-completeness results obtained via the alge-
braic method also imply the NP-completeness of a strong promise problem. The
NO instances are those for which there is no solution, but the YES instances
are instances for which any “reasonable” partial assignment on k variables can
extend to a solution. “Reasonable” here means subject to some finite set of local,
necessary conditions. The All or Nothing Theorem (ANT) below proves the NP-
completeness of this promise problem for any integer k ≥ 0 and in any intractable
CSP covered by the algebraic method. The promise conditions include satisfac-
tion as a special case, and complement the promise condition on NO instances
provided by the PCP Theorem [4] (at least ε proportion of the constraints must
fail, for some ε > 0). We are also able to prove a dichotomy theorem by showing
that for sufficiently large k, our promise problem is solvable in AC0 if and only if
the CSP is of bounded width (in the sense of Barto and Kozik [5]) and otherwise
is hard for the complexity class Modp(L) for some prime p.

A second contribution of the article is to connect the model-theoretic notion
of quasivariety to the concept of implied constraints. Identifying various kinds
of implied constraints is a central method employed in constraint solvers [36],
and the proliferation of implied constraints is associated with phase transitions
in randomly generated constraint problems [37]. We explain how the absence of
implied constraints corresponds to membership in the quasivariety generated by
the template. Intuitively, it seems quite unlikely that the problem of recognising
“no implied constraints” can be approached using the algebraic method, because
there is no obvious reduction between constraint languages R1 and R2 when
R1 � R2. Despite this intuition, the strength of the promise in the ANT enables
us to show that whenever the algebraic method shows hardness of CSP(R),
then there is no polynomial time algorithm to distinguish constraint instances
with no solution, from those that have no implied constraints with respect to R.
We can also use our bounded width dichotomy to obtain the most general nonfi-
nite axiomatisability result known for finitely generated quasivarieties. A further
important corollary is a promise problem extension of Hell and Nešetřil’s well-
known dichotomy for simple graphs [22].
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More generally, the ability to extend all reasonable partial assignments holds
potential for a wide range of applications, with recent examples including mini-
mal networks [18], quantum mechanics [3], and semigroup theory [24].

2 Constraints and Implied Constraints

Since Feder and Vardi [14] it has been standard to reformulate the fixed template
CSP over domain A and finite language R as a homomorphism problem between
model-theoretic structures. The template is a relational structure A = 〈A,RA〉
(with R a relational signature), as is the instance (V,C ) (where C is the list of
constraints) where the variable set V is the universe, and with each r ∈ R being
interpreted as the relation on V equal to the set of tuples constrained to r in the
set C . Thus each individual constraint 〈(v1, . . . , vn), r〉 becomes a membership
of a tuple (v1, . . . , vn) in the relation rV on V . We refer to (v1, . . . , vn) ∈ rV

as a hyperedge. The constraint satisfaction problem for A, which we denote by
CSP(A) is the problem of deciding membership in the class of finite structures
admitting homomorphism into A. Throughout the article, A will be the default
notation for a CSP template of signature R (both assumed to be finite) and B

for a general (finite) R-structure. We let arity(R) denote the maximal arity of
any relation in R.

A nonhyperedge (v1, . . . , vn) /∈ rB , where r ∈ R ∪ {=} (of arity n) sat-
isfies the separation condition if there is a homomorphism φ : B → A with
(φ(v1), . . . , φ(vn)) /∈ rA. When a nonhyperedge fails the separation property we
say that it is an implied constraint, as every homomorphism into A places it
within the corresponding relation of A; equivalently, (v1, . . . , vn) can be added
to rB without changing the set of possible solutions for B with respect to A.
We say that B satisfies the separation condition (w.r.t. A), or has no implied
constraints if no nonhyperedge is an implied constraint. Note that if B is a NO
instance of CSP(A), then every nonhyperedge is implied (including equalities
between distinct elements).

The separation condition for B is widely known to be equivalent to the prop-
erty that B lies in the quasivariety generated by A: the class of isomorphic
copies of induced substructures of direct powers of A; see Maltsev [34] and Gor-
bunov [17], but also [24, Theorem 2.1] and [26, §2.1,2.2] for the CSP interpre-
tations and generalizations. The one-element total structure 1R, with no non-
hyperedges, satisfies the separation condition vacuously. If we wish to exclude
1R we arrive at the universal Horn class generated by A (which excludes the
zeroth power from “direct powers”). We let Q(A) denote the quasivariety of A

and Q+(A) the universal Horn class of A. Membership in Q(A) is the problem of
deciding if an input has no implied constraints, which we denote by CSP∞(A).
Membership in Q+(A) is essentially the same as CSP∞(A) because Q(A) and
Q+(A) differ on at most the structure 1R.
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Problem: CSP∞(A) (no implied constraints)
Instance: a finite R-structure B.
Question: for every nonhyperedge (v1, . . . , vn) /∈ rB , is there a homomor-
phism into B taking (v1, . . . , vn) /∈ rB to a nonhyperedge (a1, . . . , an) /∈ rA

of A?

The case of no implied equalities is considered in Ham [20,21], with a com-
plete tractability classification in the case of Boolean constraint languages.

3 Primitive Positive Formulæ and Robust Satisfiability

Definition 1. An atomic formula is an expression of the form (x1, . . . , xn) ∈ r
for some r ∈ R or x = y. A primitive positive formula (abbreviated to pp-
formula) is a formula obtained from a conjunction of atomic formulæ by existen-
tially quantifying some variables. A pp-formula φ(x1, . . . , xn) with free variables
x1, . . . , xn defines an n-ary relation rφ, which in any R-structure C is inter-
preted as the solution set of φ. If F is a set of pp-formulæ, then CF denotes
〈C; {rC

φ | φ ∈ F}〉.
We let pp(R) be the set of all pp-formulæ (over some fixed countably infinite

set of variables) in R and let pp(C) denote the set {rC
φ | φ ∈ pp(R)} of all

relations on C that are pp-definable from the fundamental relations of C.
Let A, B be R-structures and F ⊆ pp(R). For a subset S ⊆ B, a function

ν : S → A is F -compatible if it is a homomorphism from the substructure S of
BF to AF . A function ν : S → A extends to a homomorphism precisely when
it is pp(R)-compatible [24, Lemma 3.1], so restricting F to a fixed finite subset
of pp(R) is the natural local condition for extendability.

Definition 2 [21]. Let F be a finite set of pp-formulæ in R and let A be a fixed
finite R-structure. For a finite R-structure B, we say that B is (k,F )-robustly
satisfiable (with respect to A) if B is a YES instance of CSP(A) and for every
k-element subset S of B and every F -compatible assignment ν : S → A, there
is a solution to B extending ν. The structure B is (≤ k,F )-robustly satisfiable if
it is (�,F )-robustly satisfiable for every � ≤ k.

Note that (0,F )-robust satisfiability coincides with satisfiability. Intuitively,
(k,F )-robust satisfiability is a very strong condition on an instance. For exam-
ple, a graph is (2,F )-robustly 2-colorable if every F -compatible 2-coloring of
any 2 vertices extends to a full 2-coloring. It is an easy exercise to show that
a (2,F )-robustly 2-colorable graph must have diameter at most m, where m is
the number of variables appearing in F .

In [7], the case of (k, ∅)-robust satisfiability is considered for SAT-related
probems using the notation ̂Uk; this appears in the context of phase transi-
tions and implied constraints. The concept of (k, ∅)-robust satisfiability is called
k-supersymmetric in Gottlob [18], where it is used to show that there is no
polynomial time solver for a minimal constraint network. If P denotes the
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conjunction-free pp-formulæ, then (k,P)-robust satisfiability is the “k-robust
satisfiability” concept introduced in Abramsky, Gottlob and Kolaitis [3], where
(for k = 3 in 3SAT) it is applied to show the intractability of detecting local
hidden-variable models in quantum mechanics. Jackson [24] showed the NP-
completeness of a promise problem form of (2,P)-robust satisfiability for posi-
tive 1-in-3SAT, and used it to solve a 20+ year old problem in semigroup theory
[2, Problem 4], itself motivated by issues in formal languages. These examples
involve very technical case-checking arguments. A more unified algebraic app-
roach was very recently initiated by Ham [20,21], who classified the tractability
of (2,F )-robust satisfiability (for some F ) in the case of Boolean constraint
languages.

4 Primitive Positive Definability and Polymorphisms

When R is pp-definable from a set of relations S on a set A then there
is logspace reduction from CSP(〈A;R〉) to CSP(〈A;S 〉). This fundamental
idea was primarily developed through the work of Cohen, Jeavons and others
[27–31], though aspects appear in proof of Schaefer’s original dichotomy for
Boolean CSPs [40].

There is a well-known Galois correspondence between sets of relations on a
set A and the sets of operations on A; see [16]. The link is via polymorphisms,
which are homomorphisms from the direct product An to A. In other words,
for each relation r ∈ R (with arity k, say), if we are given an k × n matrix
of entries from A, with each column being a k-tuple in r, then applying the
polymorphism f to each row produces a k-tuple of outputs that also must lie
in r. We let Pol(A) denote the family of all polymorphisms of the relational
structure A. For finite A we have Pol(〈A;R〉) ⊆ Pol(〈A;S 〉) if and only if
S ⊆ pp(〈A,R〉), so that pp-definability is captured by polymorphisms. We now
list some conditions on polymorphisms that we will use; see an article such as [25]
for a survey of other conditions that play a role in understanding the complexity
of CSP complexity.

– An n-ary operation w : An → A on a set A is a weak near unanimity operation
(or WNU ) if it satisfies w(x, x, . . . , x) = x (idempotence) and w(y, x, . . . , x) =
w(x, y, . . . , x) = · · · = w(x, x, . . . , y) for all x, y. A weak near unanimity
operation is near unanimity (NU) if it additionally satisfies w(y, x, . . . , x) = x.

– If the condition of being idempotent is dropped, we refer to a quasi WNU,
and a quasi NU respectively.

We mention that most algebraic approaches use the assumption that the tem-
plate A is a core, meaning that it has no proper retracts. We now list a selection
of pertinent results and conjectures that are expressed in the language of poly-
morphisms.

The fundamental conjecture on fixed template CSP complexity is the follow-
ing refinement of Feder and Vardi’s original.
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Algebraic Dichotomy Conjecture (ADC) 3 [11]. Let A be a finite core
relational structure of finite relational signature. If A has a WNU polymor-
phism then CSP(A) is tractable. If A has no WNU polymorphism then CSP(A) is
NP-complete.

The final sentence in the conjecture is proved already in [11] (with the WNU
condition we state established in [35]), with completeness with respect to first
order reductions established in [33]. There are no counterexamples to the conjec-
ture amongst known classifications, and recently several purported proofs have
been claimed [10,39,42] (we do not assume these as verified).

In the following, bounded width corresponds to solvability by way of a local
consistency check algorithm, while strict width is a restricted case of this, where
every family of locally consistent partial solutions extends to a solution.

Theorem 4. Let A be a finite core relational structure of finite relational sig-
nature.

1. (Feder and Vardi [14].) CSP(A) has strict width if and only if A has an NU
polymorphism.

2. (Barto and Kozik [5].) CSP(A) has bounded width if and only if A has a 3-ary
WNU w3 and a 4-ary WNU w4 such that w3(y, x, x) = w4(y, x, x, x) holds
for all x, y.

5 Main Results

Recall that a promise problem consists of a pair of disjoint languages (Y,N).
The question is conditional: given the promise that an instance lies in Y ∪ N ,
decide if it lies in Y ; see [19] for example.

The main result (ANT) concerns the following promise problem, which simul-
taneously extends CSP(A), CSP∞(A), robust-CSP(A) [3], SEP(A) [20,21] and
others. In the title line, k is a non-negative integer and F is a finite set of
pp-formulæ in the signature of A.

Promise problem: (Y(k,F),Q, NCSP) for A.

YES: B is (k,F )-robustly satisfiable with respect to A and has no implied
constraints.

NO: B is a no instance of CSP(A).

We will let Y(k,F) denote the YES promise but where “no implied constraints”
is omitted.

All or Nothing Theorem (ANT) 5. Let A be a finite core relational struc-
ture in finite signature R.

1. (Everything is easy.) If CSP(A) is tractable then so also is deciding both
CSP∞(A) and (k,F )-robust satisfiability, for any k and any finite set F of
pp-formulæ.
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2. (Nothing is easy.) If A has no WNU, then for all k there exists a finite set of
pp-formulæ F such that (Y(k,F),Q, NCSP) is NP-complete for A with respect
to first order reductions.

Remark 6. The ANT shows that the ADC is equivalent to the ostensibly far
stronger dichotomy statement : either there is a WNU and (1 ) holds, or there
is no WNU and (Y(k,F),Q, NCSP) is NP-complete for some finite family of for-
mulæ F .

As an example, the ANT shows that or all k there exists an F such that it is
NP-hard to distinguish the (k,F )-robustly 3-colorable graphs from those that
are not 3-colorable at all.

The following result gives a dichotomy within tractable complexity classes.

Theorem 7. Let A be a finite core relational structure in finite signature R.

1. If CSP(A) has bounded width, then there exists n such that for all k ≥ n and
for all finite sets of pp-formulæ F , the promise problem (Y(k,F),Q, NCSP) lies
in AC0. (If CSP(A) has strict width, then the class of (k,F )-robustly satisfiable
instances is itself first order definable.)

2. If CSP(A) does not have bounded width then for some prime number p and
for all k there exists an F such that (Y(k,F),Q, NCSP) is Modp(L)-hard.

Recall that the Modp(L) class contains L and hence properly contains AC0; the
precise relationship with NL is unknown. Thus Theorem7 shows that in contrast
to CSP(A) (see [1,33]), one cannot get L-completeness, nor NL-completeness for
(Y(k,F),Q, NCSP) over A unless there are unexpected collapses between L, NL
and Modp(L) for various p. For example: while graph 2-colorability is L-complete,
deciding (k,F )-robust 2-colorability is first-order when k ≥ 2 (and for any F ).

The complexity of CSP(A) is determined by the core retract of A, but
this is not true for (k,F )-robust satisfiability and quasivariety membership;
see [24] and [20,21] for example. The following results however apply regardless
of whether A itself is a core.

Corollary 8. Let A be finite relational structure of finite signature.

– If A has no quasi WNU polymorphism then CSP∞(A) is NP-complete,
– If the core retract of A fails to have bounded width then Q(A) is not finitely

axiomatisable in first order logic, even amongst finite structures.

The second statement is equivalent to the absence of quasi WNUs satisfying the
conditions of Theorem 4(2). Similar statements to Corollary 8 hold for problems
intermediate to CSP(A) and CSP∞(A), such as the SEP(A) of [21] and the
problem of detecting if no variable is nontrivially forced to take a fixed value:
variables with implicitly fixed values have been called the “backbone” or “frozen
variables”; see [32] for example.

The following corollary simultaneously covers the original Hell-Nešetřil
Dichotomy for simple graphs and a corresponding quasivariety dichotomy; again
it does not assume cores.
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Gap Dichotomy for Simple Graphs 9. Let G be a finite simple graph.

1. If G is bipartite, then deciding CSP(G) and deciding membership in the qua-
sivariety of G are both tractable.

2. Otherwise, the following promise problem is NP-complete with respect to first
order reductions and for finite input graph H:
Yes H is in Q+(G).
No H has no homomorphisms into G.

We also complete a line of investigation initiated by Beacham and Culberson [7],
by identifying the threshold value for k in the intractability of (k, ∅)-robust
satisfiability for nSAT; see Theorem 19 below.

To complete this section we give an overview of how the proof of the ANT
develops across the remaining sections. Part (1) of ANT is a quite straightfor-
ward and is given in Sect. 12. The proof of ANT part (2) mimics the proof that
CSP(A) is NP-complete when A has no WNU. Every step involves substan-
tial difficulties in establishing that the promise (Y(k,F),Q, NCSP ) can be carried
through for some suitably constructed F . There are five main steps which are
developed as separate sections once we have introduced some further preliminary
development. The various stages of the proof are unified in Sect. 12, where an
outline of the proof of Theorem7 can also be found. Section 13 gives some ideas
for future work, including an example demonstrating the limits to which the NO
promise provided by the PCP Theorem can be incorporated in the ANT.

6 Preliminary Development: F -Types and Claw Formulæ

We now establish some useful preliminary constructions relating to pp-formulæ
and (k,F )-robustness. Throughout, A and F ⊆ pp(R) are fixed and B is an
input R-structure; all are finite.

Let x1, . . . , xn denote the free variables in some pp-formula φ(x1, . . . , xn) ∈
F and let k be a nonnegative integer. For any function ι : {x1, . . . , xn} →
{x1, . . . , xk} we let φι(x1, . . . , xk) denote the formula φ(ι(x1), . . . , ι(xn)). We
let Fk denote the set of all formulæ obtained in this way. This is the standard
way that high arity formulæ can produce lower arity ones, and the following is
immediate.

Lemma 10. Let A and B be R-structures and consider a subset {b1, . . . , bk}
of B. A function ν : {b1, . . . , bk} → A is F -compatible if and only if for every
φ(x1, . . . , xk) ∈ Fk, if B |= φ(b1, . . . , bk) then A |= φ(ν(b1), . . . , ν(bk)).

The following gives a natural restriction of the model theoretic “k-type” to pp-
formulæ.

Definition 11. Let R be a finite relational signature and F a set of pp-formulæ
in R.

1. A (k,F )-type is any finite conjunction of distinct k-ary formulæ in Fk over
x1, . . . , xk. The set of all (k,F )-types is denoted by typek(F ).
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2. The (k,F )-type of a tuple
−→
b ∈ Bk is the conjunction

∧

φ(−→x ) ∈ Fk,

B |= φ(
−→
b )

φ(−→x ).

3. For � ≤ k we let F |� denote {∃x�+1 . . . ∃xk τ(x1, . . . , xk) | τ ∈ typek(F )}.

The following follows immediately from Lemma 10 and the definition of (k,F )-
types.

Lemma 12. Let A and B be R-structures and consider a subset {b1, . . . , bk}
of B. A partial map ν : {b1, . . . , bk} → A is F -compatible if and only if A |=
τ(ν(b1), . . . , ν(bk)), where τ is the (k,F ) type of (b1, . . . , bk).

The next lemma has a straightforward proof. We assume that |B| ≥ k, though
minor amendment to the definition of F |i can accommodate smaller |B|.
Lemma 13. Let A and B be finite R-structures and let F be a finite set of
pp-formulæ in R. If B is (k,F )-robustly satisfiable into A and � ≤ k, then B is
(�,F |�)-robustly satisfiable. In particular, if B is (k,F )-robustly satisfiable for
some finite set of pp-formulæ F , then B is (≤k,

⋃

0≤i≤k F |i)-robustly satisfiable.

Recall from Sect. 4 that when R is pp-definable from a set of relations S on
a set A then there is logspace reduction from CSP(〈A;RA〉) to CSP(〈A;S A〉).
Assume then that each relation symbol r ∈ R has been matched to some fixed
defining S -formula ρr(x1, . . . , xn) of the same arity n as r:

∃y1 . . . ∃ym

∧

1≤i≤k

αi(xi,1, . . . , xi,ni
, yi,1, . . . , yi,mi

), (†)

where each αi is an atomic formula in S ∪ {=}, and
⋃

1≤i≤k{xi,1, . . . , xi,ni
} =

{x1, . . . , xn} and
⋃

1≤i≤k{yi,1, . . . , yi,mi
} = {y1, . . . , ym}. Let ρ�

r denote the
underlying open formula obtained from ρr by removing quantifiers: variables
of ρ�

r that are quantified in ρr will be called existential variables (or ∃-variables:
the yi in †) and the other variables will be referred to as open variables.

Each pp-formula ψ(x1, . . . , x�) in the signature R is equivalent to a pp-
formula ψS (x1, . . . , x�) in the signature S : replace each conjunct in ψ—an
atomic formula r(x1, . . . , xn) in for some r ∈ R—by the defining formula ρr as
in †, and then apply the usual logical rules for moving quantifiers to the front
(including renaming quantified variables where necessary).

Definition 14. Let S define R by pp-formulæ {ρr | r ∈ R} ⊆ pp(S ). Let k, �
be fixed non-negative integers and F a finite set of pp-formulæ in R. A claw
formula for F of arity k and bound � is any pp-formula in S of the form
constructed in the third step below:

1. (The talon.) Let γ denote any conjunction
∧

1≤i≤k′ ρ�
ri
, where ri ∈ R and

k′ ≤ k. We allow some identification between open variables, but not between
existential variables.
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2. (The wrist.) Let σ be an (�′,F )-type in R for some �′ ≤ �. Some of the �′

free variables in σ may be identified with open variables in γ, but not with
existential variables.

3. (The claw.) Existentially quantify all but k of the unquantified variables in
the conjunction γ ∧ σS .

7 Step 1. Reflection

Definition 15. Let A, k and F be fixed. For an input R-structure B, let B↓

be the result of adjoining all hyperedges to B that are implied by F -compatible
assignments from subsets of B on at most k elements. The structure B↓ will be
called the 1-step (k,F )-reflection of B.

Under the promise (Y(k,F), NCSP ) it is possible to show that there is a first
order query that defines B↓. The details take some effort and we omit them. To
achieve the main results with respect to polynomial time reductions however,
simply observe that B↓ can be constructed from B in polynomial time, because
there are only polynomially many F -compatible assignments from subsets of
size at most k. Then all that is needed is the following lemma.

Lemma 16. If B is (≤k,F )-robustly satisfiable with respect to A, and k ≥
arity(R), then B↓ lies in the quasivariety of A and is also (≤k,F )-robustly
satisfiable. If B is a NO instance of CSP(A) then so also is B↓.

8 Step 2. Stability of Robustness over Primitive-Positive
Reductions

We prove the following variant of the usual pp-reduction for CSPs.

Theorem 17. Assume that A1 = 〈A,RA〉 and A2 = 〈A,S A〉 are two relational
structures on the same finite set A, with RA ⊆ pp(A2) finite and � := arity(R).
Let F be a finite set of pp-formulæ in the language of R. Then, for any k, the
standard pp-reduction of CSP(A1) to CSP(A2) takes (≤k�,F )-robustly satisfi-
able instances of CSP(A1) to (k,G )-robustly satisfiable instances of CSP(A2),
where G denotes the k-ary claw formulæ for F of bound k�.

First briefly recall the precise nature of the “standard reduction” described in
Theorem 17. Recall that each r ∈ R corresponds to an S formula ρr, as in (†).
For an instance B = 〈B;RB〉 of CSP(A1), an instance B� of CSP(A2) is con-
structed in the following way. For each hyperedge (b1, . . . , bn) ∈ r in B (and
adopting the generic notation of †), new elements c1, . . . , cm are added to the
universe of B, and the hyperedge (b1, . . . , bn) ∈ r is replaced by the hyperedges
αi(bi,1, . . . , bi,nk

, ci,1, . . . , ci,mi
) for each i = 1, . . . , k. Note that new elements

c1, . . . , cm are introduced for every instance of a hyperedge. The new elements
will be referred to as existential elements (or ∃-elements), and for any D ⊆ B�
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we let D∃ denote ∃-elements in D. Elements of B will be referred to as open
elements, and we write DB for D ∩ B = D\D∃.

It is easy to see that there is a homomorphism from B to A1 if and only if there
is one from B� to A2: this is the usual logspace CSP reduction, which is a first
order reduction when none of the ρr formulæ involve equality [33]. Now assume
that B is (≤ k�,F )-robustly satisfiable with respect to A1 and consider a k-
element subset D ⊆ B�, for which there is a G -compatible assignment into A. The
following arguments will refer back to the 3-step construction of claw formulæ
in Definition 14.

Each c ∈ D∃ was introduced in replacing a hyperedge of B in signature R by
a family of hyperedges in the signature S , according to the pp-definition as in †.
Each element of D∃ appears in at most one such family of S -hyperedges, so the
number of these, k′, is at most |D∃| ≤ k. Observe that these hyperedge families
correspond to an interpretation of a conjunction γ of k′ many formulæ as in step
1 of Definition 14: there is no identification of ∃-elements, but there may be of
open elements. Each of these families involves at most � open elements, so that
at most k′ × � open elements appear in these hyperedge families. Let OB denote
these elements. Because k′ + |DB | ≤ |D∃| + |DB | = k and |OB | ≤ k′�, we have
|OB ∪DB | ≤ k′�+ |DB | ≤ k�. Let σ denote the (�′,F )-type of OB ∪DB in B, as
in the second step of Definition 14. (Here we treat OB ∪ DB as a tuple ordered
in any fixed way.) Observe that some elements b of DB may also lie in OB , and
we will assume then that the variable in σ corresponding to b has been identified
with the variable in γ corresponding to b. Let U be the set of all unquantified
variables in γ ∧ σS that do not correspond to elements of D. The claw formula
∃U γ ∧ σS is in G and is satisfied by B� at D (again, arbitrarily treated as a
tuple). Hence ∃U γ ∧ σS is preserved by ν. In particular then, in A2 we can
find values for the variables corresponding to the elements of OB that witness
the satisfaction of ∃U γ ∧ σS at ν(D). Let ν′ : OB ∪ D → A be the extension
of ν obtained by giving elements of OB\DB these witnessing values. Because
σ is the (�′,F )-type of OB ∪ DB , it follows from Lemma 12 that ν′|OB∪DB

is
F -compatible, so by the assumed (≤k�,F )-robust satisfiability of B it follows
that ν′|OB∪DB

extends to a homomorphism ν+ from B to A1. By the usual pp-
reduction, ν+ extends to a homomorphism ν� from B� to A2. Now ν� agrees
with ν on DB , but also, we may assume that it agrees with ν on D∃, because
the values given OB by ν′ (and hence ν�) were such that γ held. Thus we have
extended ν to a homomorphism, as required.

9 Step 3. (k,∅)-Robustness of (3k + 3)SAT

Gottlob [18, Lemma 1] showed that the standard Yes/No decision problem 3SAT
reduces to the promise (Y(k,∅), NCSP ) for (3k+3)SAT. For the sake of complete-
ness of our sketch, we recall the basic idea. The construction is to replace in a
3SAT instance B, each element b by 2k + 1 copies b1, . . . , b2k+1 and then each
clause (b ∨ c ∨ d) by all

(

2k+1
k+1

)3
clauses of the form (bi1 ∨ · · · ∨ bik+1 ∨ ci′

1
∨ · · · ∨

ci′
k+1

∨di′′
1
∨· · ·∨di′′

k+1
) where the ij , i

′
j , i

′′
j are from {1, . . . , 2k+1}. No assignment
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on k elements covers all of the k +1 copies of any element in a clause it appears,
which enables the flexibility for such assignments to always extend to a solution,
provided (and only when) B is a YES instance. We omit the details showing that
this can be achieved via a first-order query.

10 Step 4. (k,F )-Robustness of 3SAT

We now establish the following theorem by reduction from the result in Step 3.
Critically, the value of k is arbitrary, but the constraint language (3SAT) has
fixed arity 3.

Theorem 18. Fix any k ≥ 0 and let F be the set of all claw formulæ for ∅ of
arity k and with bound k. Then (Y(k,F), NCSP) for 3SAT is NP-complete via first
order reductions.

The usual reduction of nSAT to 3SAT (as in [15] for example) is an example of
a pp-reduction, because the nSAT clause relation (x1 ∨ · · · ∨ xn) (where the xi

can be negated variables if need be) is equivalent to the following pp-formula
over n − 2 clause relations of 3SAT:

∃y1 . . . ∃yn−4 (x1∨x2∨y1)∧
⎛

⎝

∧

3≤i≤n−2

(¬yi−2 ∨ xi ∨ yi−1)

⎞

⎠∧(¬yn−3∨xn−1∨xn)

(‡)
As we are dealing with the standard pp-reduction, an instance B of (3k+3)SAT
is satisfiable if and only if the constructed instance B� of 3SAT is satisfiable.

Now assume that B is a (k, ∅)-robustly satisfiable instance of (3k + 3)SAT.
Assume D is a k-set from B� and ν : D → {0, 1} an F -compatible partial
assignment. As in the proof of Theorem17, there are k′ ≤ |D∃| different clause
families involving elements from D∃; let F denote this set of families of clauses
(each family arising by the replacement of a (3k + 3)SAT clause by the 3k + 1
distinct 3SAT clauses). Let γ denote the conjunction of k′ many pp-formulæ
corresponding to these F : it is a conjunction of k′ distinct copies of the underlying
open formula of ‡, possibly with some of the open variables in different copies
identified. Let U be the variables of γ that do not correspond to an element
of D. Then ∃U γ is a claw formula in the sense of Definition 14 because the
only (�, ∅)-types (as detailed in step 2 of Definition 14) are empty formulæ. This
formula ∃U γ is obviously satisfied at D in B�, so is preserved by ν. Now the
proof deviates from Theorem 17. We show how to assign values to at most k of
the remaining open elements of F such that any extension to a full solution on B

extends to one for B� in a way consistent with the values given to D∃ by ν.
We introduce an arrow notation to help select the new open elements.

– Above the leftmost bracket of the clause family we place a right arrow �→,
and dually a ←� over the rightmost bracket.

– Place a left arrow ←� above a consecutive pair of brackets “)(” if the ∃-element
immediately preceding it is given 0 by ν, and dually, �→ if the ∃-element is
assigned 1.
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Let us say that two such arrows are convergent if they point toward one another.
In order to extend ν to a solution, within each pair of convergent arrows, an open-
literal to assign the value 1. We first give an example, consisting of a clause
family, an assignment to some elements (say, D∃ = {b1, b2, b3} and DB = {a1})
and the arrows placed as determined by the rules:

( a1 ¬a2 b1 )( ¬b1 a3 b2 )( ¬b2 a4 b3 )( ¬b3 a5 a6 )
( 0 ¬a2 0 )( 1 a3 1 )( 0 a4 0 )( 1 a5 a6 )
	→
( ¬a2

←�

)( a3

	→
)( a4

←�

)( a5 a6

←�

)

By calling on witnesses to preservation of F by ν we can select open literals
and values (here ν(a4) = 1 and ν(a2) = 0) that are consistent with the values
assigned to D∃.

In the general case: because ν preserves the claw formula ∃U γ, the 2-element
template for 3SAT has witnesses to all quantified variables. For each pair of
convergent arrows under the assignment by ν for D∃, there is a witness to one
of the open variables in γ taking the value 1; only one such witness is required
for each pair of convergent arrows. Let E consist of the open elements in F
corresponding to the selected witnesses, and extend ν to E by giving them the
witness values. Note that |E| ≤ |D∃|, so that |E∪DB | ≤ k. Thus ν|E∪DB

extends
to a solution for B. This solution extends to a solution for B� in a way that is
consistent with the values given elements of D∃ by ν.

By a variation of this argument and Sect. 9, we can also obtain the following
theorem, which completes one line of investigation initiated by Beacham and
Culberson [7].

Theorem 19. Let n > 2 and consider the problem nSAT. If k ≥ n then deciding
(k, ∅)-robust satisfiability is in AC0. If k < n then (Y(k,∅), NCSP) is NP-complete.

11 Step 5: Idempotence and the Algebraic Method

A key development in the algebraic method for CSP complexity was restric-
tion to idempotent polymorphisms [11]. We now sketch how this works for the
(Y(k,F), NCSP ) promise.

Let RCon be the signature obtained by adding a unary relation symbol a
for each element a of A, and let ACon denote the structure 〈A;RCon〉, with a
interpreted as {a}.

Theorem 20. Let A be a core and F be a finite subset of pp(RCon). Then for
any k, there exists a finite set G of pp-formulæ in the language of R such that the
standard reduction from CSP(ACon) to CSP(A) takes (k,F )-robustly satisfiable
instances of CSP(ACon) to the (k,G )-robustly satisfiable instances of CSP(A).

Proof (Proof sketch). Let B be an instance of CSP(ACon). The standard reduc-
tion (first order by [33, Lemma 2.5]) involves adjoining a copy of A to the instance
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B, and replacing all hyperedges b ∈ a by identifying b with the adjoined copy of a;
call this B�. (A (k,F )-reflection, via the first order version of Lemma 16, can be
used to circumvent some technical issues regarding identification of elements.)
Our task is to show how to construct G . Let diag(A) denote the positive atomic
diagram of A on some set of variables {va | a ∈ A}; that is, the conjunction of
all hyperedges of A (considered as atomic formulæ). We construct G by taking
the conjunction of diag(A) with F -types σ, and replacing each conjunct of the
form x ∈ a in σ, by x = va.

Assume B is (k,F )-robustly satisfiable with respect to ACon and consider a
G -compatible assignment ν from some k-set in B�. Because A is a core, there is
an automorphism α of A mapping witnesses to diag(A) to their named location
(that is, taking va to a). Then α ◦ ν is F -compatible into ACon, hence extends
to a homomorphism ψ from B. Then α−1 ◦ ψ is a homomorphism from B� to A

extending ν. ��

12 Proof of ANT, Corollaries and Theorem7

Proof (Proof of ANT). For part (1), we extend an idea from [24]. Our proof
will use only the assumption that CSP(ACon) is tractable. This is always true if
A is a core with CSP(A) tractable. Now observe that an F -compatible partial
assignment ν : bi �→ ai from a subset {b1, . . . , bk} of an instance B into A

extends to a solution if and only if the structure obtained from B by adjoining
the constraints {bi ∈ {ai} | i = 1, . . . , k} is a YES instance of CSP(ACon).
Thus after polynomially many calls on the tractable problem CSP(ACon), we
can decide the (k,F )-robust satisfiability of B. An almost identical argument
will determine if B has no implied constraints, thus deciding CSP∞(A).

Now to prove ANT part (2). Let A denote the polymorphism algebra of ACon.
One of the fundamental consequences of the algebraic method is that if A has no
WNU polymorphism, then the polymorphism algebra of 3SAT is a homomorphic
image of a subalgebra of A (direct powers are not required; see [41, Prop 3.1]).
For CSPs, these facts will give a first order reduction from 3SAT to some finite set
of relations S A in pp(ACon): see [33]. The first step of this reduction is to reduce
through homomorphic preimages and subalgebras. Ham [21, Sect. 8] showed that
these initial reductions also preserve the (Y(�,F), NCSP ) promise, with only minor
modification to F . Combining this with Theorem18 then Lemma 13 we find
that for all � there exists an F2 such that (Y(≤�,F2), NCSP ) is NP-complete for
〈A,S A〉. Then (using � = arity(S )×k) we can use Theorem 17 then Lemma 13
to find that for every k there exists F3 such that (Y(≤k,F3), NCSP ) is NP-complete
for ACon with respect to first order reductions. By Theorem20 the same is true
for A, with an amended compatibility condition F depending on k. Lemma 16
then extends the promise to (Y(k,F),Q, NCSP ), as required. ��
Proof (Proof of Corollary 8). Let A be a finite relational structure without
a quasi WNU polymorphism. By Chen and Larose [13, Lemma 6.4] the core
retract A� of A has no WNU. Hence the ANT applies to A�. Now Q+(A) con-
tains Q+(A�), which contains the YES promise in the ANT and is disjoint from
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the NO promise. Hence membership in Q+(A) is NP-complete with respect to
first order reductions, and hence is also not finitely axiomatisable in first order
logic, even at the finite level. The same argument using Theorem 7(2) implies
non-finite axiomatisability in the case that A� does not have bounded width. ��
Proof (Proof of the Gap Dichotomy for Simple Graphs 9). If G is bipartite, then
CSP(G) is tractable and so is deciding membership in Q+(G): there are only five
distinct quasivarieties [12,38]. Otherwise, G is not bipartite and so neither is its
core retract. Hence G has no quasi WNU; see [6]. Then apply Corollary 8. ��
Proof (Proof of Theorem 7). Due to space constraints we give only a very brief
overview of the method. A CSP has bounded width provided that there exists
j such that the existence of a homomorphism from B to A is equivalent to a
family of partial homomorphisms on all subsets of size at most j + 1, with the
family satisfying a compatibility condition, known as a (j, j +1)-strategy ; see [5].
When k > j and input B satisfies the Y(k,F),Q promise, there is an obvious choice
for a (j, j +1)-strategy: the family of all maps that can extend to F -compatible
assignments on k points. The property that this family forms a (j, j+1)-strategy
can be expressed as a first order sentence ξ. When CSP(A) has bounded width
(so that NO instances do not have (j, j + 1)-strategies) the sentence ξ must fail
on instances satisfying the NCSP promise, and must hold on those satisfying the
Y(k,F),Q promise.

Now assume that A does not have bounded width. In this case, a direct ana-
logue of the arguments of Sect. 12 lead back to a structure C (encoding ternary
linear equations over an abelian group) whose CSP is Modp(L)-complete; see proof
of [33, Theorem 4.1]. The rest of the proof parallels that of the ANT 5, except
that Sects. 9 and 10 are replaced by constructions concerning linear systems of
equations.

13 Discussion and Extensions

We have shown in the ANT that the fundamental intractability result of [11]
can be replaced by an unbounded hierarchy of intractable promise problems,
and demonstrated in Theorem 7 a collapse in several intermediate complexity
classes for these problems. We feel these results are just the beginning of new
applications to ideas relating to the detection of more general implied constraints
(as in [7]), minimal networks (as in [18]), as well as to other areas of mathematics
and computer science, such as the quantum-theoretic applications in [3] and the
semigroup-theoretic applications of [24]. Some further consequences of the ANT
omitted from the present work include a substantial extension of the Ham’s “Gap
Trichotomy Theorem” [21] to the (Y(k,F),Q, NCSP) promise.

Some specific new directions this work should be taken include the extension
of ANT to noncore templates and to infinite templates, where a much wider array
of important computational problems can be found. Another difficult question:
can the promise supplied by the PCP Theorem be added as a restriction to NCSP

in the ANT? (We write NεCSP for this condition: ε proportion of the constraints
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must fail.) The answer is nearly yes, but not quite. It is quite routine to carry
through the failure of a positive fraction of constraints through steps 1–5 of the
proof of the ANT part (2), and through step 6 with more difficulty, thereby
achieving the NP-completeness of (Y(k,F), NεCSP) for core templates without a
WNU. Surprisingly though, NεCSP does not in general survive reflection, as
the following example demonstrates. Let 2+ denote the template on {0, 1} with
the fundamental ternary relation r of +1-in-3SAT and the 4-ary total relation
s := {0, 1}4. This has no WNU, as +1-in-3SAT has no WNU, so the ANT part (2)
and claims just made imply that both (Y(k,F), NεCSP) and (Y(k,F),Q, NCSP) are
NP-complete. Yet (Y(k,F),Q, NεCSP) for 2+ falls into AC0! Indeed the first order
property τ stating that s is total must hold on instances without implied con-
straints, and fail on any large enough instance B satisfying NεCSP: the number of
r-constraints is at most |B|3 compared to the |B|4-many s-constraints required
by τ , and no s-constraint can fail into 2+. For +1-in-3SAT itself we can show
that (Y(k,F),Q, NεCSP) remains NP-complete.
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