
J. Christopher Beck (Ed.)

 123

LN
CS

 1
04

16

23rd International Conference, CP 2017
Melbourne, VIC, Australia, August 28 – September 1, 2017
Proceedings

Principles and Practice
of Constraint Programming

Lecture Notes in Computer Science 10416

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

J. Christopher Beck (Ed.)

Principles and Practice
of Constraint Programming
23rd International Conference, CP 2017
Melbourne, VIC, Australia, August 28 – September 1, 2017
Proceedings

123

Editor
J. Christopher Beck
University of Toronto
Toronto, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66157-5 ISBN 978-3-319-66158-2 (eBook)
DOI 10.1007/978-3-319-66158-2

Library of Congress Control Number: 2017949522

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 23rd International Conference on the
Principles and Practice of Constraint Programming (CP 2017) held from August 28 to
September 1, 2017 in Melbourne, Australia and colocated with the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the
33rd International Conference on Logic Programming. Detailed information about the
CP 2017 conference with links to the colocated conferences can be found at http://
cp2017.a4cp.org.

The CP conference is the annual international conference on all aspects of com-
puting with constraints including theory, algorithms, environments, languages, models,
systems, and applications such as decision making, resource allocation, scheduling,
configuration, and planning. In addition to the main technical track and long-standing
applications track, and as a continuation of the effort of the CP community to reach out
to other research fields that intersect with constraint programming, CP 2017 featured
thematic tracks in Machine Learning and CP, Operations Research and CP, Satisfia-
bility and CP, and Test and Verification and CP. Each track had its own Track Chair(s)
and Program Committee to ensure that the papers would be peer reviewed by expert
reviewers with specific knowledge of the intersecting area.

The conference received 115 submissions across all tracks, including eight sub-
missions to the Journal and Sister Conferences Track. Each paper was assigned to a
Senior Program Committee member or the appropriate Track Chair and to three Pro-
gram Committee members from either the technical track Program Committee or the
relevant thematic track Program Committee. All papers received at least three reviews,
following which the authors had an opportunity to respond. Detailed discussions were
held on each paper by the PC members, led by the SPC member, Track Chair, and
Program Chair. The Senior Program Committee, including Track Chairs, met in
Padova, Italy, on June 5, 2017 with participation both in person and via video link.
Each paper was discussed by the SPC with the decisions taken by consensus. The
Journal and Sister Conferences Track papers followed a separate process, led by the
Track Chair, to evaluate the relevance and significance of submitted papers that had
been previously published in journals or other conferences. The Journal and Sister
Conferences Track Program Committee met in Cupar, Scotland, UK on June 18, 2017
to make the final decisions. The final outcome of these meetings was the acceptance of
46 papers across all technical and thematic tracks, resulting in an acceptance rate of
approximately 44%, and the acceptance of all eight papers submitted to the Journal and
Sister Conferences Track.

The Senior Program Committee awarded four best paper awards, generously sup-
ported by Springer.

– Best Paper Award: Grigori German, Olivier Briant, Hadrien Cambazard, and
Vincent Jost, “Arc Consistency via Linear Programming”

http://cp2017.a4cp.org
http://cp2017.a4cp.org

– Distinguished Paper Award: Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and
Paul Saikko, “Reduced Cost Fixing in MaxSAT”

– Best Student Paper Award: Adrian Goldwaser and Andreas Schutt, “Optimal
Torpedo Scheduling”

– Distinguished Student Paper Award: Guillaume Derval, Jean-Charles Regin, and
Pierre Schaus, “Improved Filtering for the Bin-Packing with Cardinality Constraint”

The Program Chair and the Journal-Publication-Fast-Track Chair, Louis-Martin
Rousseau, invited four papers from across the technical and thematic tracks to par-
ticipate in the Constraints journal fast-track process to publish an extended version in
the journal at the same time as the conference, while also presenting the work at the
conference. Due to the tight editorial deadlines, one paper accepted this invitation and
so appears in this volume as an abstract with the full paper in Constraints.

The conference program included five invited talks in coordination with SAT 2017
and ICLP 2017 by Agostino Dovier, Holger Hoos, Nina Narodytska, Enrico Pontelli,
and Mark Wallace. The conference also shared the workshop program with the two
colocated conferences, resulting in seven workshops overseen by the Joint Workshop
Chairs: Charlotte Truchet, Enrico Pontelli, and Stefan Rümmele. The tutorial program,
also chaired by Charlotte Truchet with support from the SAT 2017 and ICLP 2017
Program Chairs, consisted of four tutorials on CP, SAT, Mixed Integer Nonlinear
Programming, and Machine Learning and Data Science. The Doctoral Program, jointly
organized by CP 2017 and ICLP 2017 and chaired by Chris Mears and Neda Saeedloei,
hosted 24 students from around the world. The students had an opportunity to present
their work, meet one-on-one with a senior researcher mentor, and attend invited talks
targeted to the experiences of a PhD student.

The program for the conference is the result of a substantial amount of work by
many people to whom I am grateful. I would like to thank the authors for their
submission of high-quality scientific work and the substantial efforts of the Program
Committees and external reviewers, who jointly prepared 341 high-quality reviews.
The Senior Program Committee and Track Chairs played a crucial role in managing the
reviews and discussions, in writing meta-reviews and recommendations for each
submission, and in making the final decisions. I would like to specifically acknowledge
the efforts of the Track Chairs to attract new contributors to the conference: Yael
Ben-Haim and Yehuda Naveh (Satisfiability and CP Track Chairs), David Bergman
and Andre Cire (Operations Research and CP Track Chairs), Ken Brown (Application
Track Chair), Arnaud Gotlieb and Nadjib Lazaar (Test and Verification and CP Track
Chairs), Tias Guns and Michele Lombardi (Machine Learning and CP Track Chairs),
Karen Petrie (Journal and Sister Conferences Track Chair), Enrico Pontelli (Biology
and CP Track Chair), and Louis-Martin Rousseau (Journal-Publication-Fast-Track
Chair).

Beyond the peer review process, there is a substantial team that made the program
and conference possible. I would like to particularly thank: Peter Stuckey and Guido
Tack (CP 2017 Conference Chairs), Christopher Mears and Neda Saeedloei (Doctoral
Program Chairs), Charlotte Truchet (Tutorial Chair), Charlotte Truchet, Enrico Pontelli,
and Stefan Rümmele (Joint CP/SAT/ICLP Workshop Chairs), Tommaso Urli
(Publicity Chair), Maria Garcia de la Banda (ICLP 2017 Conference Chair), Serge

VI Preface

Gaspers and Toby Walsh (SAT 2017 Conference and Program Chairs), and Ricardo
Rocha and Tran Cao Son (ICLP 2017 Program Chairs).

I would also like to thank the sponsors of the conference for their generous support.
At the time of writing, these sponsors include: the Artificial Intelligence Journal
Division (AIJD) of IJCAI, the Association for Constraint Programming, the Associa-
tion for Logic Programming, the City of Melbourne, CompSustNet, Cosling, Cosytec,
CSIRO Data61, the European Association for Artificial Intelligence, IBM, Monash
University, Satalia, Springer, and the University of Melbourne.

July 2017 Chris Beck

Preface VII

Tutorials and Workshops

Tutorials

Introduction to Constraint Programming - If You Already Know SAT or Logic
Programming

Guido Tack Monash University, Australia

An Introduction to Satisfiability

Armin Biere Johannes Kepler University Linz, Austria

Introduction to Machine Learning and Data Science

Tias Guns Vrije Universiteit Brussel, Belgium

Mixed Integer Nonlinear Programming: An Introduction

Pietro Belotti FICO, UK

Workshops

Pragmatics of Constraint Reasoning

Daniel Le Berre Université d’Artois, France
Pierre Schaus UCLouvain, Belgium

Workshop on Answer Set Programming and Its Applications

Kewen Wang Griffith University, Australia
Yan Zhang Western Sydney University, Australia

Workshop on Constraint Solvers in Testing, Verification, and Analysis

Zakaria Chihani Atomic Energy Commission (CEA), France

Workshop on Logic and Search

David Mitchell Simon Fraser University, Canada

Progress Towards the Holy Grail

Eugene Freuder University College Cork, Ireland

International Workshop on Constraint Modeling and Reformulation

Özgür Akgün University of St Andrews, UK

Colloquium on Implementation of Constraint Logic Programming Systems

Jose F. Morales IMDEA Software Institute, Spain
Nataliia Stulova IMDEA Software Institute, Spain

X Tutorials and Workshops

Conference Organization

Program Chair

J. Christopher Beck University of Toronto, Canada

Conference Chairs

Peter Stuckey University of Melbourne, Australia
Guido Tack Monash University, Australia

Application Track Chair

Ken Brown University College Cork, Ireland

Biology and CP Track Chair

Enrico Pontelli New Mexico State University, USA

Machine Learning and CP Track Chairs

Tias Guns Vrije Universiteit Brussel, Belgium
Michele Lombardi DISI, University of Bologna, Italy

Operations Research and CP Track Chairs

David Bergman University of Connecticut, USA
Andre Augusto Cire University of Toronto Scarborough, Canada

Satisfiability and CP Track Chairs

Yael Ben-Haim IBM Research, Israel
Yehuda Naveh IBM Research, Israel

Test and Verification and CP Track Chairs

Nadjib Lazaar LIRMM, France
Arnaud Gotlieb Simula Research Laboratory, Norway

Journal and Sister Conferences Track Chair

Karen Petrie University of Dundee, UK

Journal-Publication-Fast-Track Chair

Louis-Martin Rousseau École Polytechnique de Montréal, Canada

Doctoral Program Chairs

Christopher Mears Redbubble, Australia
Neda Saeedloei University of Minnesota Duluth, USA

Workshop and Tutorial Chair

Charlotte Truchet University of Nantes, France

Publicity Chair

Tommaso Urli CSIRO/Data61 and the Australian National University,
Australia

Senior Program Committee

Yael Ben-Haim IBM Research, Israel
David Bergman University of Connecticut, USA
Ken Brown University College Cork, Ireland
Andre Augusto Cire University of Toronto Scarborough, Canada
Sophie Demassey CMA, MINES ParisTech, France
Bistra Dilkina Georgia Institute of Technology, USA
Arnaud Gotlieb Simula Research Laboratory, Norway
Tias Guns Vrije Universiteit Brussel, Belgium
Nadjib Lazaar LIRMM, France
Christophe Lecoutre CRIL, Université d’Artois, France
Jimmy Lee The Chinese University of Hong Kong, Hong Kong
Michele Lombardi DISI, University of Bologna, Italy
Yehuda Naveh IBM Research, Israel
Justyna Petke University College London, UK
Karen Petrie University of Dundee, UK
Enrico Pontelli New Mexico State University, USA
Louis-Martin Rousseau École Polytechnique de Montréal, Canada
Pierre Schaus UCLouvain, Belgium
Andreas Schutt Data61, CSIRO, and The University of Melbourne,

Australia

Technical Track Program Committee

Carlos Ansótegui Universitat de Lleida, Spain
Nicolas Beldiceanu IMT Atlantique (LS2N), France

XII Conference Organization

David Cohen Royal Holloway, University of London, UK
Pierre Flener Uppsala University, Sweden
Emmanuel Hebrard LAAS-CNRS, Université de Toulouse, France
John Hooker Carnegie Mellon University, USA
Marie-José Huguet LAAS-CNRS, Université de Toulouse, France
Said Jabbour CRIL CNRS, Université d’Artois, France
Joris Kinable Carnegie Mellon University, USA
Zeynep Kiziltan University of Bologna, Italy
Philippe Laborie IBM, France
Chavalit Likitvivatanavong Thailand
Boon Ping Lim NICTA, Australia
Andrea Lodi École Polytechnique de Montréal, Canada
Samir Loudni GREYC, CNRS UMR 6072, Université de Caen

Basse-Normandie, France
Ines Lynce INESC-ID/IST, Universidade de Lisboa, Portugal
Arnaud Malapert Université Côte d’Azur, CNRS, I3S, France
Ciaran McCreesh University of Glasgow, UK
Kuldeep S. Meel Rice University, USA
Peter Nightingale University of St Andrews, UK
Justin Pearson Uppsala University, Sweden
Gilles Pesant École Polytechnique de Montréal, Canada
Thierry Petit Worcester Polytechnic Institute, USA
Patrick Prosser University of Glasgow, UK
Claude-Guy Quimper Université Laval, Canada
Jean-Charles Regin University Nice-Sophia Antipolis/I3S/CNRS, France
Emma Rollon Technical University of Catalonia, Spain
Francesca Rossi IBM Research and University of Padova, Italy
Mohamed Siala Insight Centre for Data Analytics, University College

Cork, Ireland
Michael Trick Carnegie Mellon University, USA
Tommaso Urli CSIRO Data61 and the Australian National University,

Australia
Peter van Beek University of Waterloo, Canada
Pascal Van Hentenryck University of Michigan, USA
Willem-Jan Van Hoeve Carnegie Mellon University, USA
Petr Vilím IBM, Czech Republic
Christel Vrain LIFO, University of Orléans, France
Mohamed Wahbi Insight, University College Cork, Ireland
Roland Yap National University of Singapore, Singapore
William Yeoh New Mexico State University, USA
Alessandro Zanarini ABB Corporate Research, Switzerland
Roie Zivan Ben Gurion University of the Negev, Israel
Stanislav Živný University of Oxford, UK

Conference Organization XIII

Application Track Program Committee

Carmen Gervet Université de Montpellier, France
Philip Kilby Data61 and the Australian National University,

Australia
Deepak Mehta United Technologies Research Centre Ireland, Ireland
Laurent Michel University of Connecticut, USA
Laurent Perron Google, France
Christian Schulte KTH Royal Institute of Technology, Sweden
Paul Shaw IBM, France
Helmut Simonis Insight Centre for Data Analytics, University College

Cork, Ireland
Sylvie Thiébaux The Australian National University, Australia

Biology and CP Track Program Committee

Nicos Angelopoulos Wellcome Sanger Institute, UK
Alexander Bockmayr Freie Universität Berlin, Germany
Simon De Givry INRA - MIAT, France
Agostino Dovier Università di Udine, Italy
Ferdinando Fioretto University of Michigan, USA

Machine Learning and CP Track Program Committee

Christian Bessiere CNRS, University of Montpellier, France
Bruno Cremilleux Université de Caen, France
Thi-Bich-Hanh Dao University of Orléans, France
Georgiana Ifrim University College Dublin, Ireland
Michela Milano DISI Università di Bologna, Italy
Siegfried Nijssen Université Catholique de Louvain, Belgium

Operations Research and CP Track Program Committee

Serdar Kadioglu Oracle Corporation, USA
Nick Sahinidis Carnegie Mellon University, USA
Olivia Smith IBM Research, Australia
Christine Solnon LIRIS CNRS UMR 5205/INSA Lyon, France
Pascal Van Hentenryck University of Michigan, USA
Tallys Yunes University of Miami, USA

Satisfiability and CP Track Program Committee

Alan Frisch University of York, UK
George Katsirelos MIAT, INRA, France
Ian Miguel University of St Andrews, UK
Nina Narodytska Samsung Research America, USA

XIV Conference Organization

Steve Prestwich Insight Centre for Data Analytics, Ireland
Ofer Strichman Technion, Israel

Test and Verification and CP Track Program Committee

Sébastien Bardin CEA LIST, France
Mats Carlsson RISE SICS, Sweden
Roberto Castañeda Lozano SICS, Sweden
Catherine Dubois ENSIIE, Samovar, France
Vijay Ganesh University of Waterloo, Canada
Anastasia Paparrizou CRIL-CNRS, Université d’Artois, France
Marie Pelleau LIP6, UPMC, France
Andreas Podelski University of Freiburg, Germany
Michel Rueher Université Côte d’Azur, CNRS, France
Pascal Van Hentenryck University of Michigan, USA
Lebbah Yahia University of Oran 1, Algeria

Journal and Sister Conferences Track Program Committee

Özgür Akgün University of St Andrews, UK
Munsee Chang University of St Andrews, UK
Ian Gent University of St Andrews, UK
Christopher Jefferson University of St Andrews, UK
Peter Nightingale University of St Andrews, UK

Additional Reviewers

Rui Abreu
Özgür Akgün
Suguman Bansal
Johannes Gerhardus Benade
Clément Carbonnel
Mats Carlsson
Supratik Chakraborty
Kenil Cheng
Christel Christel
Martin Cooper
Thi-Bich-Hanh Dao
Daniel J. Fremont
Luca Di Gaspero
Chrysanthos Gounaris
Alban Grastien
Peter Jeavons
Christopher Jefferson

Ryo Kimura
Philippe Laborie
Javier Larrosa
Nadjib Lazaar
Olivier Lhomme
Barnaby Martin
Jacopo Mauro
Ciaran McCreesh
Jean-Noël Monette
Christian Muise
Cemalettin Ozturk
Alexandre Papadopoulos
Guillaume Perez
Yash Puranik
Ashish Sabharwal
Lakhdar Sais
Paul Scott

Conference Organization XV

Thiago Serra
Gilles Simonin
Carsten Sinz
Friedrich Slivovsky
Atena Tabakhi
James Trimble

Gilles Trombettoni
Matt Valeriote
Christoph M. Wintersteiger
Ghiles Ziat
Roie Zivan
Ed Zulkoski

XVI Conference Organization

Journal Fast Track (Abstract)

Improved Filtering for the Bin-Packing
with Cardinality Constraint

Guillaume Derval1, Jean-Charles Régin2, and Pierre Schaus1

1 UCLouvain, Belgium
{guillaume.derval,pierre.schaus}@uclouvain.be

2 University of Nice Sophia-Antipolis, France
jcregin@gmail.com

Previous research [2, 3] shows that a cardinality reasoning can improve the pruning
of the bin-packing constraint, even when cardinalities are not involved in the original
model. Our contribution is two-fold.

We first introduce a new algorithm, called BPCFlow, that filters both load and
cardinality bounds on the bins, using a flow reasoning similar to the one used for the
Global Cardinality Constraint.

Moreover, we detect impossible assignments of items by combining the load and
cardinality of the bins using a new reasoning method called “too-big/too-small”. This
new method attempts to construct for each bin with load and cardinality bounds ½L; L�
and ½C;C� a maximum-weighted set of C � 1 items. Once this set is constructed, we
detect that items with weight w\L�P

i2S wi cannot be assigned to the current bin.
Similar arguments can be used to detect a maximum weight. The “too-big/too-small”
reasoning is then adapted to the existing propagators, namely SimpleBPC [3], Pelsser’s
method [2] and BPCFlow.

We then experiment our four new algorithms on Balanced Academic Curriculum
Problem and Tank Allocation Problem instances.

BPCFlow is shown to be indeed stronger than previously existing filtering, and
more computationally intensive. We show that the new filtering is useful on a small
number of hard instances, while being too expensive for general use.

Our results show the introduced “too-big/too-small” filtering can most of the time
drastically reduce the size of the search tree and the computation time. This method is
profitable in 88% of the tested instances.

This work is published in the Constraints journal [1].

References

1. Derval, G., Régin, J.C., Schaus, P.: Improved filtering for the bin-packing with cardinality
constraint. In: Constraints. Springer (2017)

2. Pelsser, F., Schaus, P., Régin, J.C.: Revisiting the cardinality reasoning for binpacking
Constraint. In: Schulte, C. (eds.) Principles and Practice of Constraint Programming, CP 2013.
LNCS, vol 8124, pp. 578–586. Springer, Heidelberg (2013)

3. Schaus, P., Régin, J.C., Van Schaeren, R., Dullaert, W., Raa, B.: Cardinality reasoning for
bin-packing constraint: application to a tank allocation problem. In: Milano, M. (eds) Princi-
ples and Practice of Constraint Programming. LNCS, vol 7514, pp. 815–822. Springer,
Heidelberg (2012)

XX G. Derval et al.

Journal and Sister Conference
Tracks (Abstracts)

Ranking Constraints

Christian Bessiere1, Emmanuel Hebrard2, George Katsirelos3,
Zeynep Kiziltan4, and Toby Walsh5

1 LIRMM, CNRS, Université de Montpellier
2 LAAS-CNRS, Université de Toulouse

3 MIAT, INRA
4 University of Bologna

5 University of New south Wales

Abstract. In many problems we want to reason about the ranking of items. For
example, in information retrieval, when aggregating several search results, we
may have ties and consequently rank orders. (e.g. [2, 3]). As a second example,
we may wish to construct an overall ranking of tennis player based on pairwise
comparisons between players. One principled method for constructing a ranking
is the Kemeny distance [5] as this is the unique scheme that is neutral, con-
sistent, and Condorcet. Unfortunately, determining this ranking is NP-hard, and
remains so when we permit ties in the input or output [4]. As a third example,
tasks in a scheduling problem may run in parallel, resulting in a ranking. In a
ranking, unlike a permutation, we can have ties. Thus, 12225 is a ranking whilst
12345 is a permutation. To reason about permutations, we have efficient and
effective global constraints. Regin [7] proposed an Oðn4Þ GAC propagator for
permutations. For BC, there is an even faster Oðn log nÞ propagator [6]. Every
constraint toolkit now provides propagators for permutation constraints. Sur-
prisingly, ranking constraints are not yet supported. In [1], we tackle this
weakness by proposing a global ranking constraint. We show that simple
decompositions of this constraint hurt pruning. We then show that GAC can be
achieved in polynomial time and we propose an Oðn3 log nÞ algorithm for
achieving RC as well as an efficient quadratic algorithm offering a better
tradeoff.

References

1. Bessiere, C., Hebrard, E., Katsirelos, G., Kiziltan, Z., Walsh. T.: Ranking constraints. In:
Proceedings of the of IJCAI, pp. 705–711 (2016)

2. Brancotte, B., Yang, B., Blin, G., Denise S. Cohen-Boulakia, Hamel, S.: Rank aggregation
with ties: experiments and analysis. In: Proceedings of the VLDB Endowment (PVLDB)
(2015)

3. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and aggregating
rankings with ties. In: Proceedings of the PODS, pp. 47–58. ACM (2004)

4. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of kemeny elections. Theoret.
Comput. Sci. 349(3), 382–391 (2005)

5. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)

6. Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds
consistency of the all different constraint. In: Proceedings of the of IJCAI, pp. 245–250 (2003)

7. Régin. J.-C., A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the
AAAI, pp. 362–367 (1994)

XXIV C. Bessiere et al.

Modeling with Metaconstraints and Semantic
Typing of Variables

André Ciré1, J.N. Hooker2, and Tallys Yunes3

1 University of Toronto
2 Carnegie Mellon University

3 University of Miami

Research in hybrid optimization shows that a combination of constraint programming
and optimization technologies can significantly speed up computation. A key element
of hybridization is the use of high-level metaconstraints in the problem formulation,
which generalize the global constraints that are characteristic of constraint program-
ming models. Metaconstraints aid solution by communicating problem structure to the
solver.

Modeling with metaconstraints, however, raises a fundamental issue of variable
management that must be addressed before its full potential can be realized. The solver
frequently creates auxiliary variables as it relaxes and/or reformulates metaconstraints.
Variables created for different constraints may actually have the same meaning, or they
may relate in some more complicated way to each other and to variables in the original
model. The solver must recognize these relationships among variables if it is to gen-
erate the necessary channeling constraints and formulate a tight overall continuous
relaxation of the problem.

We address this problem systematically with a semantic typing scheme that reveals
relationships among variables while allowing simpler, self-documenting models. We
view a model as organized around user-defined, multiplace predicates that denote
relations akin to those that occur in a relational database. A variable declaration is
viewed as a database query that has the effect of assigning a semantic type to the
variable. Relationships between variables are then deduced from their semantic types.

We develop this idea for a wide variety of constraint types, including systems of
all-different constraints, employee scheduling constraints, general scheduling con-
straints with interval variables, sequencing problems with side constraints, disjunctions
of linear systems, and constraints with piecewise linear functions. We develop three
very general classes of channeling constraints that can be automatically inferred and are
based on such relational database operations as projection. Finally, we discuss the
advantages of semantic typing for error detection and model management.

This is an extended abstract of the full paper, which appears in INFORMS Journal on Computing 28
(2016) 1–13.

MaxSAT-Based Large Neighborhood Search
for High School Timetabling

Emir Demirović and Nysret Musliu

Institute of Information Systems, Databases and Artificial Intelligence Group,
Vienna University of Technology, Vienna, Austria
{demirovic,musliu}@dbai.tuwien.ac.at

Extended Abstract

The problem of high school timetabling (HSTT) is to coordinate resources (e.g. rooms,
teachers, students) with times in order to fulfill certain goals (e.g. scheduling lectures).
It is a well known and widespread problem, as every high school requires some form of
timetabling. Unfortunately, HSTT is hard to solve and just finding a feasible solution
for simple variants of HSTT has been proven to be NP-complete. When solving hard
combinatorial problems such as HSTT, there are two solving paradigms that are used
often: local search algorithms, which usually find fast local optimal solutions, but
cannot guarantee the optimality, and complete algorithms, which provide optimal
results by exhaustively enumerating all solutions over longer periods of time.

In this paper [1], we aim to obtain the best of both worlds by combining the two
strategies. More precisely, we develop a new anytime algorithm for HSTT which
combines local search with a novel maxSAT-based large neighborhood search. A local
search algorithm is used to drive an initial solution into a local optimum and then more
powerful large neighborhood search (LNS) techniques based on maxSAT are used to
further improve the solution. During the course of the algorithm, the solution is iter-
atively destroyed, by using one of the two neighborhood vectors, and repaired by
maxSAT. The size of the neighborhood vectors is increased with time until the com-
plete search space is explored, allowing the algorithm to prove optimality if given
enough computational time.

The computational results demonstrate that we outperform the state-of-the-art sol-
vers on numerous benchmarks and provide four new upper bounds. To the best of our
knowledge, this is the first time maxSAT is used within a large neighborhood search
scheme. In addition, we experiment with several variants to show the importance of each
component of the algorithm. Furthermore, our algorithm is more efficient than a pure
maxSAT-based approach for the given computational setting (20 min runtime).

Reference

1. Demirovic, E., Musliu, N.: Maxsat-based large neighborhood search for high school time-
tabling. Comput. OR 78, 172–180 (2017)

Android Database Attacks Revisited

Behnaz Hassanshahi and Roland H.C. Yap

School of Computing, National University of Singapore, Singapore
b.hassanshahi@u.nus.edu
ryap@comp.nus.edu.sg

Many Android apps (applications) employ databases for managing sensitive data. In
[1], we systematically study attacks targeting databases in benign Android apps and
also study a new class of database vulnerabilities, which we call private database
vulnerabilities.

We propose an analysis framework, extending the framework in [2], to find
Android database vulnerabilities which are confirmed with a proof-of-concept
(POC) exploit, i.e. zero-day. Our analysis combines static dataflow analysis, sym-
bolic execution and constraint solving and finally dynamic testing to certify the exploit.
In order, to generate a POC malware, our analysis uses an SMT solver to solve the path
constraints in the program which together with the Android manifest is used to generate
parameters for API calls which may exploit the app database vulnerabilities. Dynamic
testing on the generated POC malware confirms whether or not the malware exploits
the app database vulnerabilities, if not, alternative malware are generated.

In order to analyse how apps use databases, it is necessary to accurately handle URI
objects and libraries which use them. We build accurate models for URI objects
connecting them to appropriate constraints. Simple URI methods can be directly
translated to SMT formulas while more complex URI methods are modelled using
Symbolic Finite Transducers together with the SMT solver.

We evaluate our analysis on popular Android apps, successfully finding many
database vulnerabilities. Surprisingly, our analyzer finds new ways to exploit previ-
ously reported and fixed vulnerabilities. We also propose a fine-grained protection
mechanism which extends the Android manifest to protect against database attacks.

References

1. Hassanshahi, B., Yap, R.H.C.: Android database attacks revisited. In: ACM Asia Conference
on Computer and Communications Security (ASIACCS), pp. 625–639, ACM (2017)

2. Hassanshahi, B., Jia, Y., Yap, R.H.C., Saxena, P., Liang, Z.: Web-to-application injection
attacks on android: characterization and detection. In: 20th European Symposium on Research
in Computer Security, LNCS, vol. 9327, pp. 577–598. Springer, Cham (2015)

This is a summary of paper [1].

Hybrid Optimization Methods
for Time-Dependent Sequencing Problems

(Abstract)

Joris Kinable1,2, Andre A. Cire3, and Willem-Jan van Hoeve2

1 Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, PA 15213, USA
jkinable@cs.cmu.edu

2 Tepper School of Business, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213, USA

acire@utsc.utoronto.ca
3 Department of Management, University of Toronto Scarborough,

1265 Military Trail, Toronto, ON M1C 1A4, Canada
vanhoeve@andrew.cmu.edu

Abstract. A large number of practical problems in manufacturing, transportation,
and distribution require the sequencing of activities over time. Often activities in
a sequencing problem are subject to operational constraints and optimization
criteria involving setup times, i.e., the minimum time that must elapse between
two consecutive activities in a sequence. A setup time typically models the time
to change jobs in an assembly line or the travel time between two cities in
traveling salesman problems. In classical sequencing problems, the setup time is
only defined between pairs of activities. However, in many practical applications
the setup time is also a function of the order of the activities in the sequence. Such
position-dependent setup times are useful in modeling different states of a
resource throughout a schedule, for example when the internal components of a
machine degrade after performing a number of tasks.

In this paper, we introduce a novel optimization method for sequencing prob-
lems with position-dependent setup times. Our proposed method relies on a hybrid
approach where a constraint programming model is enhanced with two distinct
relaxations: A discrete relaxation based on multivalued decision diagrams, and a
continuous relaxation based on linear programming, which are combined via the
method of additive bounding. The relaxations are used to generate bounds and
enhance constraint propagation. We conduct experiments on three variants of the
time-dependent traveling salesman problem: the first considers no side constraints,
the second considers time window constraints, and the third considers precedence
constraints between pairs of activities. The experiments indicate that our techniques
substantially outperform general-purpose methods based on mixed-integer linear
programming and constraint programming models.

This paper appeared as “Joris Kinable, Andre A. Cire, and Willem-Jan van Hoeve. Hybrid
Optimization Methods for Time-Dependent Sequencing Problems. European Journal of Operational
Research 259(3):887–897, 2017”.

Learning Rate Based Branching Heuristic
for SAT Solvers

Jia Hui Liang, Vijay Ganesh, Pascal Poupart,
and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada

Abstract. In this paper, we propose a framework for viewing solver branching
heuristics as optimization algorithms where the objective is to maximize the
learning rate, defined as the propensity for variables to generate learnt clauses.
By viewing online variable selection in SAT solvers as an optimization problem,
we can leverage a wide variety of optimization algorithms, especially from
machine learning, to design effective branching heuristics. In particular, we
model the variable selection optimization problem as an online multi-armed
bandit, a special-case of reinforcement learning, to learn branching variables
such that the learning rate of the solver is maximized. We develop a branching
heuristic that we call learning rate branching or LRB, based on a well-known
multi-armed bandit algorithm called exponential recency weighted average and
implement it as part of MiniSat and CryptoMiniSat. We upgrade the LRB
technique with two additional novel ideas to improve the learning rate by
accounting for reason side rate and exploiting locality. The resulting LRB
branching heuristic is shown to be faster than the VSIDS and conflict
history-based (CHB) branching heuristics on 1975 application and hard com-
binatorial instances from 2009 to 2014 SAT Competitions. We also show that
CryptoMiniSat with LRB solves more instances than the one with VSIDS.
These experiments show that LRB improves on state-of-the-art. The original
version of this paper appeared in the SAT 2016 proceedings [1].

Reference

1. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic
for SAT Solvers. In: Proceedings of the 19th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2016, Bordeaux, France, 5–8 July 2016, pp. 123–
140 (2016)

Three Generalizations
of the FOCUS Constraint

Nina Narodytska1, Thierry Petit2,3, Mohamed Siala4,
and Toby Walsh5

1 Samsung Research America, Mountain View, USA
nina.n@samsung.com

2 School of Business, Worcester Polytechnic Institute, Worcester, USA
tpetit@wpi.edu

3 LINA-CNRS, Mines-Nantes, Inria, Nantes, France
thierry.petit@mines-nantes.fr

4 Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Ireland

mohamed.siala@insight-centre.org
5 UNSW, Data61 and TU Berlin, Sydney, NSW 2052, Australia

toby.walsh@data61.csiro.au

Abstract. The Focus constraint expresses the notion that solutions are con-
centrated. In practice, this constraint suffers from the rigidity of its semantics. To
tackle this issue, we propose three generalizations of the Focus constraint. We
provide for each one a complete filtering algorithm. Moreover, we propose ILP
and CSP decompositions.

This work is published in [1, 2].

References

1. Narodytska, N., Petit, T., Siala, M., Walsh, T.: Three generalizations of the FOCUS con-
straint. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
IJCAI 2013, Beijing, China, 3–9 August 2013, pp. 630–636 (2013)

2. Narodytska, N., Petit, T., Siala, M., Walsh, T.: Three generalizations of the FOCUS con-
straint. Constraints 21(4), 495–532 (2016)

Conditions Beyond Treewidth for Tightness
of Higher-Order LP Relaxations

Mark Rowland, Aldo Pacchiano, and Adrian Weller

UC Berkeley
pacchiano@berkeley.edu

We examine Boolean binary weighted constraint satisfaction problems without hard
constraints, and explore conditions under which it is possible to solve the problem
exactly in polynomial time [2]. We are interested in the problem of finding a config-
uration of variables x ¼ ðx1; . . .; xnÞ 2 f0; 1gn that maximizes a score function, defined
by unary and pairwise rational terms f ðxÞ ¼ Pn

i¼1 wiðxiÞþ
P

ði;jÞ2E wijðxi; xjÞ. In the
machine learning community, this is typically known as MAP (or MPE) inference.

In this work, we consider a popular approach which first expresses the MAP
problem as an integer linear program (ILP) then relaxes this to a linear program (LP). If
the LP optimum is achieved at an integral point we say the LP is tight. If the LP is
performed over the marginal polytope, which enforces global consistency [1], then the
LP will always be tight but exponentially many constraints are required. Sherali and
Adams introduced a series of successively tighter relaxations of the marginal polytope:
for any integer r, Lr enforces consistency over all clusters of variables of size � r. Lr is
solvable in polynomial time and tight for graphs of treewidth r � 1 [1].

Most past work has focused on characterizing conditions for L2 and L3 tightness [3,
4]. Here we significantly improve on the result for L3 of [4], and provide important new
results for when LPþL4 is tight, employing an interesting geometric perspective. The
main result is to show that the relationship which holds between forbidden minors
characterizing treewidth and Lr tightness for r ¼ 2 and r ¼ 3 breaks down for r ¼ 4,
hence demonstrating that treewidth is not precisely the right condition for analyzing
tightness of higher-order LP relaxation.

References

1. Wainwright, M., Jordan, M.: Treewidth-based conditions for exactness of the Sherali-Adams
and Lasserre relaxations. Technical report, University of California, Berkeley, 671:4 (2004)

2. Weller, A., Tang, K., Sontag, D., Jebara, T.: Understanding the Bethe approximation: when
and how can it go wrong? In: Uncertainty in Artificial Intelligence (UAI) (2014)

This is a summary of the paper “M. Rowland, A. Pacchiano, A.Weller. Conditions Beyond Treewidth
for Tightness of Higher-order LP Relaxations. AISTATS 2017”

3. Weller, A.: Characterizing tightness of LP relaxations by forbidding signed minors. In:
Uncertainty in Artificial Intelligence (UAI) (2016)

4. Weller, A., Rowland, M., Sontag, D.: Tightness of LP relaxations for almost balanced models.
In: Artificial Intelligence and Statistics (AISTATS) (2016)

XXXII M. Rowland et al.

Contents

Technical Track

A Novel Approach to String Constraint Solving . 3
Roberto Amadini, Graeme Gange, Peter J. Stuckey, and Guido Tack

Generating Linear Invariants for a Conjunction of Automata Constraints 21
Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis

AMONG Implied Constraints for Two Families of Time-Series Constraints . . . 38
Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis

Solving Constraint Satisfaction Problems Containing Vectors
of Unknown Size . 55

Erez Bilgory, Eyal Bin, and Avi Ziv

An Efficient SMT Approach to Solve MRCPSP/max Instances
with Tight Constraints on Resources . 71

Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret

Conjunctions of Among Constraints . 80
Víctor Dalmau

Clique Cuts in Weighted Constraint Satisfaction . 97
Simon de Givry and George Katsirelos

Arc Consistency via Linear Programming. 114
Grigori German, Olivier Briant, Hadrien Cambazard, and Vincent Jost

Combining Nogoods in Restart-Based Search . 129
Gael Glorian, Frederic Boussemart, Jean-Marie Lagniez,
Christophe Lecoutre, and Bertrand Mazure

All or Nothing: Toward a Promise Problem Dichotomy
for Constraint Problems . 139

Lucy Ham and Marcel Jackson

Kernelization of Constraint Satisfaction Problems: A Study
Through Universal Algebra . 157

Victor Lagerkvist and Magnus Wahlström

Defining and Evaluating Heuristics for the Compilation
of Constraint Networks . 172

Jean-Marie Lagniez, Pierre Marquis, and Anastasia Paparrizou

http://dx.doi.org/10.1007/978-3-319-66158-2_1
http://dx.doi.org/10.1007/978-3-319-66158-2_2
http://dx.doi.org/10.1007/978-3-319-66158-2_3
http://dx.doi.org/10.1007/978-3-319-66158-2_4
http://dx.doi.org/10.1007/978-3-319-66158-2_4
http://dx.doi.org/10.1007/978-3-319-66158-2_5
http://dx.doi.org/10.1007/978-3-319-66158-2_5
http://dx.doi.org/10.1007/978-3-319-66158-2_6
http://dx.doi.org/10.1007/978-3-319-66158-2_7
http://dx.doi.org/10.1007/978-3-319-66158-2_8
http://dx.doi.org/10.1007/978-3-319-66158-2_9
http://dx.doi.org/10.1007/978-3-319-66158-2_10
http://dx.doi.org/10.1007/978-3-319-66158-2_10
http://dx.doi.org/10.1007/978-3-319-66158-2_11
http://dx.doi.org/10.1007/978-3-319-66158-2_11
http://dx.doi.org/10.1007/978-3-319-66158-2_12
http://dx.doi.org/10.1007/978-3-319-66158-2_12

A Tolerant Algebraic Side-Channel Attack on AES Using CP 189
Fanghui Liu, Waldemar Cruz, Chujiao Ma, Greg Johnson,
and Laurent Michel

On Maximum Weight Clique Algorithms, and How They Are Evaluated 206
Ciaran McCreesh, Patrick Prosser, Kyle Simpson, and James Trimble

MDDs: Sampling and Probability Constraints . 226
Guillaume Perez and Jean-Charles Régin

An Incomplete Constraint-Based System for Scheduling
with Renewable Resources . 243

Cédric Pralet

Rotation-Based Formulation for Stable Matching. 262
Mohamed Siala and Barry O’Sullivan

Preference Elicitation for DCOPs . 278
Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, and William Yeoh

Extending Compact-Table to Basic Smart Tables . 297
Hélène Verhaeghe, Christophe Lecoutre, Yves Deville,
and Pierre Schaus

Constraint Programming Applied to the Multi-Skill Project
Scheduling Problem. 308

Kenneth D. Young, Thibaut Feydy, and Andreas Schutt

Application Track

An Optimization Model for 3D Pipe Routing with Flexibility Constraints . . . 321
Gleb Belov, Tobias Czauderna, Amel Dzaferovic,
Maria Garcia de la Banda, Michael Wybrow, and Mark Wallace

Optimal Torpedo Scheduling . 338
Adrian Goldwaser and Andreas Schutt

Constraint Handling in Flight Planning . 354
Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 370
Tong Liu, Roberto Di Cosmo, Maurizio Gabbrielli, and Jacopo Mauro

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems . . . 387
Morten Mossige, Arnaud Gotlieb, Helge Spieker, Hein Meling,
and Mats Carlsson

XXXIV Contents

http://dx.doi.org/10.1007/978-3-319-66158-2_13
http://dx.doi.org/10.1007/978-3-319-66158-2_14
http://dx.doi.org/10.1007/978-3-319-66158-2_15
http://dx.doi.org/10.1007/978-3-319-66158-2_16
http://dx.doi.org/10.1007/978-3-319-66158-2_16
http://dx.doi.org/10.1007/978-3-319-66158-2_17
http://dx.doi.org/10.1007/978-3-319-66158-2_18
http://dx.doi.org/10.1007/978-3-319-66158-2_19
http://dx.doi.org/10.1007/978-3-319-66158-2_20
http://dx.doi.org/10.1007/978-3-319-66158-2_20
http://dx.doi.org/10.1007/978-3-319-66158-2_21
http://dx.doi.org/10.1007/978-3-319-66158-2_22
http://dx.doi.org/10.1007/978-3-319-66158-2_23
http://dx.doi.org/10.1007/978-3-319-66158-2_24
http://dx.doi.org/10.1007/978-3-319-66158-2_25

Integrating ILP and SMT for Shortwave Radio Broadcast Resource
Allocation and Frequency Assignment . 405

Linjie Pan, Jiwei Jin, Xin Gao, Wei Sun, Feifei Ma, Minghao Yin,
and Jian Zhang

Constraint-Based Fleet Design Optimisation for Multi-compartment
Split-Delivery Rich Vehicle Routing . 414

Tommaso Urli and Philip Kilby

Integer and Constraint Programming for Batch Annealing Process Planning . . . 431
Willem-Jan van Hoeve and Sridhar Tayur

Machine Learning and CP Track

Minimum-Width Confidence Bands via Constraint Optimization 443
Jeremias Berg, Emilia Oikarinen, Matti Järvisalo, and Kai Puolamäki

Constraint Programming for Multi-criteria Conceptual Clustering 460
Maxime Chabert and Christine Solnon

A Declarative Approach to Constrained Community Detection 477
Mohadeseh Ganji, James Bailey, and Peter J. Stuckey

Combining Stochastic Constraint Optimization and Probabilistic
Programming: From Knowledge Compilation to Constraint Solving 495

Anna L.D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig,
Guy Van den Broeck, and Siegfried Nijssen

Learning the Parameters of Global Constraints Using Branch-and-Bound 512
Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper,
and Jason Sweeney

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 529
Pierre Schaus, John O.R. Aoga, and Tias Guns

Operations Research and CP Track

A Column-Generation Algorithm for Evacuation Planning
with Elementary Paths . 549

Mohd. Hafiz Hasan and Pascal Van Hentenryck

Job Sequencing Bounds from Decision Diagrams . 565
J.N. Hooker

Branch-and-Check with Explanations for the Vehicle Routing Problem
with Time Windows . 579

Edward Lam and Pascal Van Hentenryck

Contents XXXV

http://dx.doi.org/10.1007/978-3-319-66158-2_26
http://dx.doi.org/10.1007/978-3-319-66158-2_26
http://dx.doi.org/10.1007/978-3-319-66158-2_27
http://dx.doi.org/10.1007/978-3-319-66158-2_27
http://dx.doi.org/10.1007/978-3-319-66158-2_28
http://dx.doi.org/10.1007/978-3-319-66158-2_29
http://dx.doi.org/10.1007/978-3-319-66158-2_30
http://dx.doi.org/10.1007/978-3-319-66158-2_31
http://dx.doi.org/10.1007/978-3-319-66158-2_32
http://dx.doi.org/10.1007/978-3-319-66158-2_32
http://dx.doi.org/10.1007/978-3-319-66158-2_33
http://dx.doi.org/10.1007/978-3-319-66158-2_34
http://dx.doi.org/10.1007/978-3-319-66158-2_35
http://dx.doi.org/10.1007/978-3-319-66158-2_35
http://dx.doi.org/10.1007/978-3-319-66158-2_36
http://dx.doi.org/10.1007/978-3-319-66158-2_37
http://dx.doi.org/10.1007/978-3-319-66158-2_37

Solving Multiobjective Discrete Optimization Problems with Propositional
Minimal Model Generation. 596

Takehide Soh, Mutsunori Banbara, Naoyuki Tamura,
and Daniel Le Berre

Analyzing Lattice Point Feasibility in UTVPI Constraints 615
K. Subramani and Piotr Wojciechowski

A Constraint Composite Graph-Based ILP Encoding of the Boolean
Weighted CSP . 630

Hong Xu, Sven Koenig, and T.K. Satish Kumar

Satisfiability and CP Track

Reduced Cost Fixing in MaxSAT . 641
Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 652
Jeremias Berg and Matti Järvisalo

Optimizing SAT Encodings for Arithmetic Constraints 671
Neng-Fa Zhou and Håkan Kjellerstrand

Test and Verification and CP Track

Constraint-Based Synthesis of Datalog Programs. 689
Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith

Search Strategies for Floating Point Constraint Systems 707
Heytem Zitoun, Claude Michel, Michel Rueher, and Laurent Michel

Author Index . 723

XXXVI Contents

http://dx.doi.org/10.1007/978-3-319-66158-2_38
http://dx.doi.org/10.1007/978-3-319-66158-2_38
http://dx.doi.org/10.1007/978-3-319-66158-2_39
http://dx.doi.org/10.1007/978-3-319-66158-2_40
http://dx.doi.org/10.1007/978-3-319-66158-2_40
http://dx.doi.org/10.1007/978-3-319-66158-2_41
http://dx.doi.org/10.1007/978-3-319-66158-2_42
http://dx.doi.org/10.1007/978-3-319-66158-2_43
http://dx.doi.org/10.1007/978-3-319-66158-2_44
http://dx.doi.org/10.1007/978-3-319-66158-2_45

Technical Track

A Novel Approach to String Constraint Solving

Roberto Amadini1(B), Graeme Gange1, Peter J. Stuckey1, and Guido Tack2

1 University of Melbourne, Melbourne, Victoria, Australia
roberto.amadini@unimelb.edu.au

2 Monash University, Melbourne, Australia

Abstract. String processing is ubiquitous across computer science, and
arguably more so in web programming. In order to reason about pro-
grams manipulating strings we need to solve constraints over strings. In
Constraint Programming, the only approaches we are aware for repre-
senting string variables—having bounded yet possibly unknown size—
degrade when the maximum possible string length becomes too large.
In this paper, we introduce a novel approach that decouples the size of
the string representation from its maximum length. The domain of a
string variable is dynamically represented by a simplified regular expres-
sion that we called a dashed string, and the constraint solving relies on
propagation of information based on equations between dashed strings.
We implemented this approach in G-Strings, a new string solver—built
on top of Gecode solver—that already shows some promising results.

1 Introduction

Strings are fundamental datatypes in all the modern programming languages.
String analysis [10,23,25] is needed in several real-life applications such as test-
case generation [12], program analysis [8], model checking [17], web security [5],
and bioinformatics [4]. Reasoning over strings requires the processing of con-
straints such as (in-)equality, concatenation, length, and so on.

A natural candidate to tackle string constraints is the Constraint Program-
ming (CP) paradigm [19]. Unfortunately, practically no CP solver natively sup-
ports string constraints. To the best of our knowledge, the only exception is
Gecode+S [29,31], an extension of Gecode solver [18]. Gecode+S relies
on Bounded-Length Sequence (BLS) string variables [31], implemented with
dynamic lists of bitsets. Empirical results shows that Gecode+S is usually
better than dedicated string solvers such as Hampi [22], Kaluza [28], and
Sushi [14].

The MiniZinc [26] modelling language was recently extended to include string
variables and constraints [1]. A MiniZinc library for converting MiniZinc models
with strings into equivalent FlatZinc instances containing only integer variables
has also been provided. In this way every solver supporting FlatZinc can now
solve a MiniZinc model with strings, by converting each string of maximum
length n into an array of n integer variables. This allowed the comparison of
native string solvers like Gecode+S against state-of-the-art CP solvers using a
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 3–20, 2017.
DOI: 10.1007/978-3-319-66158-2 1

4 R. Amadini et al.

decomposition. Results indicate that native support for string variables usually
pays off, but not always, in which case the technology of the best solver varies.

Having bounded-length strings is reasonable (note that satisfiability with
unbounded-length strings is not decidable in general [16]) and enables finite-
domain variables. The crucial issue here is to decide a maximum length � for
string variables. On the one hand, too small a value for � may exclude solutions
for important classes of string applications, e.g., where a variable represents a
long XML string or part of a DNA string. On the other hand, too large a value
for � can significantly worsen performance even for relatively simple problems.

A common drawback, shared by both the Gecode+S solver and the
approaches statically mapping string variables to arrays of integer variables,
is that the solving process is coupled to the maximum string length �. Indeed,
the performance of these approaches degrade when � becomes bigger and bigger
even for relatively simple problems.

In this paper we address this problem by proposing a novel approach to string
representation in CP solvers. The new representation is based on a restricted
class of regular expressions, which we refer to as dashed strings. Given an
alphabet Σ and a maximum string length �, a dashed string consists of an
ordered sequence Sl1,u1

1 Sl2,u2
2 · · · Slk,uk

k of 0 < k ≤ � blocks, where Si ⊆ Σ and
0 ≤ li ≤ ui ≤ � for i = 1, . . . , k, and Σk

i=1li ≤ �. Each block Sli,ui

i represents
the set of all the strings of Σ having length in [li, ui] and characters in Si. The
idea of dashed strings takes inspiration from the Bricks abstract domain of [10].
In that paper, however, each block refers to a set of strings of Σ∗ (while in our
representation refers to a set of characters of Σ) and some workarounds are used
in order to make the abstract domain a lattice.

We use dashed strings to model the domain of string variables. The propaga-
tors for string constraints rely on the notion of equation between dashed strings
in order to possibly narrow each string domain to a concrete string (i.e., to a
dashed string representing a single string of Σ∗). We also define a branching
strategy that aims to select the strings with minimal length that satisfy all the
constraints, using the lexicographic order for breaking ties.

Following the Gecode+S approach, we use Gecode [18] as a starting point
for implementing our solver. The resulting solver, that we called G-Strings,
already shows promising results. We compared its performance against: the
aforementioned Gecode+S; the state-of-the-art CP solvers Chuffed, Gecode,
iZplus; the SMT solver Z3str3 [34], a string theory plug-in built on top of
Z3 solver. Results indicate that, despite still being in a preliminary stage, G-

Strings often outperforms all such solvers. However, there are class of problems
where it has worse performance. This leaves room for future enhancements.

The original contributions of this paper are: (i) new abstractions and algo-
rithms for modelling and manipulating the domain of string variables; (ii) new
propagators and branchers for string constraint solving; (iii) the implementation
and the evaluation of a new string solver.
Paper Structure. Section 2 gives preliminary notions. Section 3 defines the
dashed strings and the algorithms we used in Sect. 4 for implementing string

A Novel Approach to String Constraint Solving 5

variables and constraints. Section 5 provides an evaluation of our approach,
before we conclude in Sect. 6.

2 Preliminaries

Given a finite alphabet Σ = {a1, . . . , an}, a string x ∈ Σ∗ is a finite sequence
of |x| ≥ 0 characters of Σ, where |x| is the length of x. We omit the distinction
between characters and strings of unary length. The interval [a, b] will be denoted
also with {a..b}.

The concatenation of x, y ∈ Σ is denoted by x · y (or simply xy when not
ambiguous) while xn denotes the iterated concatenation of x for n times (where
x0 is the empty string ε). We generalise this definition to set of strings: given
X,Y ⊆ Σ, we denote with X · Y = {xy | x ∈ X, y ∈ Y } (or simply with XY)
their concatenation and with Xn the iterated concatenation of X for n times
(where X0 = {ε}).

In this work we focus on bounded-length strings: fixed a maximum length �,
we consider only strings in the universe S =

⋃�
i=0 Σi. Clearly S is not closed

under concatenation. We extend the canonical definition of Constraint Satisfac-
tion Problem (CSP) by including string variables and constraints. Formally, a
CSP is a triple 〈V,D, C〉 consisting of a set of variables V, each of which asso-
ciated with a domain D(x) ∈ D of values that x ∈ V could take, and a set of
constraints C defining all the feasible assignments of values to variables. The goal
is to find a solution, i.e., a variable assignment satisfying all the constraints of C.

In addition to “standard” integer variables and constraints, in this paper we
consider string variables x having domain D(x) ⊆ S, and string constraints over
string variables. We also consider constraints involving both string and integer
variables, e.g., the length constraint |x| = n or the power constraint xn = y
where x, y are string variables and n is an integer variable.

3 Dashed Strings

A dashed string is a restricted regular expression denoting a finite set of concrete
strings. The rationale behind this representation is to facilitate a compact and
dynamic representation of set of strings of unknown length, without statically
pre-allocating an arbitrarily large number of elements. Moreover, as we shall see
later, dashed strings enable us to deal with concatenation—arguably the most
common string operation—in a natural way.

Below we give the formal definition of dashed string, and then show how we
propagate information over equations between dashed strings. Before that, we
give an informal intuition of what a dashed string is. The name “dashed” comes
from a graphical interpretation of S = Sl1,u1

1 Sl2,u2
2 · · · Slk,uk

k where we imagine a
block Sli,ui

i as a continuous segment of length li followed by a dashed segment
of length ui − li. The continuous segment indicates that exactly li characters
of Si must occur in each concrete string denoted by S; the dashed segment

6 R. Amadini et al.

indicates that k characters of Si, with 0 ≤ k ≤ ui − li, may occur. Consider
Fig. 1, illustrating dashed string S = {B,b}1,1{o}2,4{m}1,1{!}0,3. Each string
represented by S starts with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.

Fig. 1. Graphical representation of {B,b}1,1{o}2,4{m}1,1{!}0,3.

3.1 Definition

Let us fix the alphabet Σ, the maximum length �, and the universe S =
⋃n

i=0 Σ�.
A dashed string of length k is defined by a concatenation of 0 < k ≤ � blocks
Sl1,u1
1 Sl2,u2

2 · · · Slk,uk

k , where Si ⊆ Σ and 0 ≤ li ≤ ui ≤ � for i = 1, . . . , k, and
Σk

i=1li ≤ �. For block Sl1,u1
i , we call Si the base and (li, ui) the cardinality. S[i]

indicates the i-th block of dashed string S, and |S| the number of blocks (i.e.,
the length of S). DS denotes the set of all dashed strings. We do not distinguish
blocks from dashed strings of unary length.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the language denoted by block Sl,u.
In particular the null element ∅0,0 is such that γ(∅0,0) = {ε}. We extend γ to
dashed strings: γ(Sl1,u1

1 · · · Slk,uk

k) = (γ(Sl1,u1
1) · · · γ(Slk,uk

k))∩S. A dashed string
S is known if |γ(S)| = 1, i.e., it represents a single string.

We say Sl,u is coverable by T l′,u′
if some string in γ(Sl,u) is a prefix of a string

in γ(T l′,u′
) (formally, if l = 0 ∨ (l ≤ u′ ∧ S ∩ T �= ∅)). S and T are incompatible

if neither S nor T is coverable by the other.
Given S, T ∈ DS we define the relation S T ⇐⇒ γ(S) ⊆ γ(T). Intuitively,

operator models the relation “is more precise than” between dashed strings.
Unfortunately, although is a partial order over DS, the structure (DS,)

does not form in general a lattice. This means that it might not exist a greatest
lower bound (or a least upper bound) for two given dashed strings S, T ∈ DS.
Proposition 1 proves this statement. Unlike other frameworks (e.g., Abstract
Interpretation [11]), Constraint Programming does not require lattice structures
to preserve the soundness of constraint solving. However, as we shall see, care
must be taken in order to avoid leaks of feasible solutions or infinite propagations.

Proposition 1. The structure (DS,) is not a lattice.

Proof. Let Σ = {a, b}, S = {a}1,1{b}1,1, and T = {b}1,1{a}1,1. We prove that
there is no least upper bound in (DS,) for S and T , nor a greatest lower bound
for S′ = {a}0,1{b}1,1{a}0,1 and T ′ = {b}0,1{a}1,1{b}0,1.

We first observe that S′, T ′ and {a, b}2,2 are the minimal elements greater
than S, T according to . However, they are incomparable with since γ(S′) =
{b, ab, aba}, γ(T ′) = {a, ba, bab} and γ({a, b}2,2) = {aa, ab, ba, bb}. Thus, there
not exist a least upper bound for S, T . The greatest lower bound of S′, T ′ does
not exists because the maximal elements smaller than S′, T ′ are {a, b}1,1{a, b}0,2

and {a, b}0,2{a, b}1,1, which are incomparable according to . ��

A Novel Approach to String Constraint Solving 7

The γ function is not injective. For example, for S = {a}0,1{a}0,1 and
T = {a}0,2 we have γ(S) = γ(T) = {ε, a, aa}. To remove redundant configu-
rations, and minimise the length of a dashed string, we introduce the notion of
normalisation. A dashed string S = Sl1,u1

1 · · · Slk,uk

k is normalised if and only if:

(i) Si �= Si+1, for i = 1, . . . , k − 1.
(ii) Si = ∅ ⇐⇒ li = ui = 0, for i = 1, . . . , k;
(iii) S = ∅0,0 ∨ Si �= ∅, for i = 1, . . . , k;

Condition (i) says that each adjacent base has to be distinct, since blocks Sl,u and
Sl′,u′

are equivalent to Sl+l′,u+u′
. Condition (ii) avoid multiple configurations

for the null element ∅0,0. Condition (iii) forbids the redundant use of ∅0,0, being
in general γ(B · ∅0,0) = γ(∅0,0 · B) = γ(B).

We omit the definition of the normalisation algorithm, that unsurprisingly
has linear cost O(|S|) for normalising a dashed string S. Note that if S, S′ ∈ DS

are normalised then S = S′ ⇐⇒ γ(S) = γ(S′).
Finally, we define the size ‖Sl,u‖ of a block Sl,u as:

‖Sl,u‖ =

⎧
⎨

⎩

u − l + 1 if |S| ≤ 1
|S|u+1 − |S|l

|S| − 1
otherwise.

and we generalise this definition to dashed strings, i.e., ‖S‖ = Πk
i=1‖Sli,ui

i ‖ for
each dashed string S = Sl1,u1

1 · · · Slk,uk

k .
The size of a dashed string gives a measure of the number of concrete strings

it represents. Note that, while for a block Sl,u we have that ‖Sl,u‖ = |γ(Sl,u)|, for
a generic dashed string S ∈ DS we have that ‖S‖ ≥ |γ(S)| but not ‖S‖ = |γ(S)|.
For example, if S = {a}0,1{a, b}0,1, we have |γ(S)| = |{ε, a, b, aa, ab}| = 5 while
‖S‖ = ‖{a}0,1‖ · ‖{a, b}0,1‖ = 2 · 3 = 6.

3.2 Equating Dashed Strings

We use dashed strings as a domain abstraction for string variables. Following
the standard CP framework, each variable domain is iteratively narrowed until
it becomes a single value, that will be assigned to the variable, or it becomes
empty, meaning that the problem is unsatisfiable.

In this context, we have to iteratively “narrow” a dashed string S until it
becomes known or the unsatisfiability is detected. Things are tricky here since
(DS,) does not form a lattice. Consider for example two string variables x and
y, having domain S′ and T ′ as in the proof of Proposition 1. There is not an
unique way to prune the domain of x and y when it comes to propagate the
equality constraint x = y, since there is no greatest lower bound for S′ and T ′.

Regardless of the choice of how pruning, a propagator for a string constraint
must be at least sound (it never prunes values that can appear in a solution)
and contracting (is only allowed to remove values).

8 R. Amadini et al.

Algorithm 1. Equate algorithm
1: function Equate (S, T)
2: Input: Dashed strings S = Sa1,b1

1 · · · San,bn
n and T = T c1,d1

1 · · · T cm,dm
m .

3: Output: true if S and T are equatable; false otherwise.
4: Matches ← NoGoods ← ∅
5: Check(S, 1, Sa1,b1

1 , T, 1, T c1,d1
1 ,Matches,NoGoods)

6: if Matches = ∅ then
7: return false
8: SplitS ,SplitT ← Split(S, T,Matches)

9: ˜S, ˜T ← Merge(SplitS, SplitT)

10: Update(S, T, ˜S, ˜T)
11: return true

The core algorithm that we adopted for string constraint propagation is based
on the equation of two dashed strings. Informally, equating two dashed strings
S and T means, firstly, to verify that there exists at least a concrete string
shared by both γ(S) and γ(T) and, if so, to find a representation for S and
T that includes all the strings of γ(S) ∩ γ(T) and removes the most values
not belonging to γ(S) ∩ γ(T). More formally, this problem consists in find-
ing, if feasible, two dashed strings S′ and T ′ such that: (i) S′ S, T ′ T ;
(ii) γ(S′) ∩ γ(T ′) = γ(S) ∩ γ(T). We could add a third condition stating that
there not exist two dashed strings S′′, T ′′ such that S′′ � S′ and T ′′ � T .
However, this requirement makes the propagation too difficult.

We address this equation problem—that can be seen as a semantic unifica-
tion problem—with a multiphase strategy, where dashed strings S are T in input
are processed and possibly updated with two “refined” dashed strings S′ and T ′.
These phases, namely checking, splitting, merging, and updating, are explained
below. We use pseudo-code and we abstract as much as possible the technicali-
ties, referring to a running example rather than going into the implementation
details. The actual code we developed integrates and optimise these four stages
that, for the sake of readability, here we present simplified and separately.

The main algorithm is summarised in Algorithm 1. Taking as input two
dashed strings S = Sa1,b1

1 · · · San,bn
n and T = T c1,d1

1 · · · T cm,dm
m , that we assume

already normalised, Equate initialises variables Matches and NoGoods to the
empty set (we shall explain their meaning below) and then Check is called.

Checking. Check (Algorithm 2) both tests if S and T are equatable, and
constructs a directed acyclic graph Matches encoding the set of solutions. Split
will then reconstruct Matches into dashed strings for S and T .

Check uses a top-down dynamic programming approach, recursively match-
ing suffixes of S and T . In any matching, the first block of either S or T must
finish first. If S, we compute what remains available of the T -block, and match
the tail of S with the remnant of T (similarly for T) – this is done in lines 11–
18. Lines 2–10 cover early termination, where S or T reached the end or have

A Novel Approach to String Constraint Solving 9

Algorithm 2. Check algorithm
1: function Check (S, i, Sli,ui

i , T, j, Tj
lj ,uj ,Matches,NoGoods)

2: if (i, li, ui, j, lj , uj) ∈ NoGoods then return false
3: if i = |S| + 1 then � Reached end of S
4: if lj = cj+1 = · · · = cm = 0 then return NewMatch(Matches)
5: else return Fail(NoGoods, Si

li,ui , Tj
lj ,uj)

6: else if j = |T | + 1 then � Reached end of T
7: if li = ai+1 = · · · = an = 0 then return NewMatch(Matches)
8: else return Fail(NoGoods, Si

li,ui , Tj
lj ,uj)

9: else if li > 0 ∧ lj > 0 ∧ Si ∩ Tj = ∅ then � Incompatible blocks
10: return Fail(NoGoods, Si

li,ui , Tj
lj ,uj)

11: if li = 0 ∨ (Si ∩ Tj �= ∅ ∧ li ≤ uj) then � Si
li,ui coverable

12: RemT ← Si ∩ Tj �= ∅ ? T
max(0,lj−ui),uj−li
j : T

lj ,uj

j

13: CheckS ← Check(S, i + 1, S[i + 1], T, j,RemT ,Matches,NoGoods)
14: else CheckS ← false
15: if lj = 0 ∨ (Si ∩ Tj �= ∅ ∧ lj ≤ ui) then � Tj

lj ,uj coverable

16: RemS ← Si ∩ Tj �= ∅ ? S
max(0,li−uj),ui−lj
i : Sli,ui

i

17: CheckT ← Check(S, i,RemS , T, j + 1, T [j + 1],Matches,NoGoods)
18: else CheckT ← false
19: if ¬(CheckS ∨ CheckT) then
20: return Fail(NoGoods, Si

li,ui , Tj
lj ,uj)

21: return CheckS ∨ CheckT

incompatible initial blocks. Fail saves failed computations in NoGoods before
returning false.

For a successful computation, the sequence of partial blocks consumed by
calls to Check encode possible solutions to S = T . Check builds a directed
acyclic graph representing the set of such sequences. Each sequence will be called
a match. For simplicity, we elide details of how Matches is maintained – essen-
tially, it amounts to recording the graph of successful Check calls.

Check defines a match-tree, i.e., a binary tree where: (i) each node is a pair
of blocks (the root is 〈Sl1,u1

1 , T l1,u1
1 〉); (ii) there is a branch from 〈Sli,ui

i , T
lj ,uj

j 〉
to left child 〈Sli+1,ui+1

i+1 , T
l′j ,u′

j

j 〉 if Sli,ui

i is coverable by T
lj ,uj

j and T
l′j ,u′

j

j is the
corresponding remnant (the dual definition applies to the right child); (iii) a leaf
is either a success (a match is found) or a failure (due to incompatible blocks).

A match tree for S = {a..c}0,30{d}5,5{c..f}0,2 and T = {b..d}26,26{f}1,1 is
shown in Fig. 2 (ignoring for now dashed arrows). Failures are denoted with
×, while successes with ♦. A match identifies a path from root to ♦ repre-
sentable with the coordinates 〈i, j〉 of each node 〈Sli,ui

i , T
lj ,uj

j 〉. For each transi-
tion 〈i, j〉 → 〈i′, j′〉 the invariant (i′ = i∧ j′ = j +1)∨ (j′ = j ∧ i′ = i+1) holds.
We can thus see each transition as a move of length 1 in a n × m grid.

All the three matches of Fig. 2 are coloured in green. In particular the
(partial) match [〈1, 1〉, 〈2, 1〉, 〈2, 2〉, 〈3, 2〉] is truncated. This is because the pair
〈{c..f}0,2

3 , {f}1,1
2 〉 has already been examined before and thus there is no

need to rebuild the subtree again. Even if not explicitly detailed, our actual

10 R. Amadini et al.

implementation defines a mechanism—similar to the recording of failures—that
enables the caching of already visited nodes, and hence to prune redundant
computations.

From Fig. 2 we can see for example that the rightmost subtree rooted in
〈1, 1〉 always fails. This is because if the block {b..d}26,26 is entirely covered by
{a..c}0,30, then there is no other block in S that can cover {f}1,1.

{a..c}0,30
1 ; {b..d}26,26

1

{d}5,5
2 ; {b..d}0,26

1

{c..f}0,2
3 ; {b..d}0,21

1

∅0,0
4 ; {b..d}0,19

1

×

{c..f}0,2
3 ; {f}1,1

2

∅0,0
4 ; {f}0,1

2

♦

{c..f}0,1
3 ; ∅0,0

3

♦

{d}0,5
2 ; {f}1,1

2

{c..f}0,2
3 ; {f}1,1

2
×

{a..c}0,4
1 ; {f}1,1

2

{d}5,5
2 ; {f}1,1

2

×

×
{f}1,1

{c, d}0,1

{d}5,5

{b, c}20,21

{f}1,1

∅0,0

{d, d}5,5

{b, c}21,21

Fig. 2. Match tree for S = {a..c}0,30{d}5,5{c..f}0,2 and T = {b..d}26,26{f}1,1. (Color
figure online)

Lemma 1. The worst case complexity of Equate is O(nm max(n,m)).

Proof. Each recursive call in Check(S, i, Sli,ui

i , T, j, Tj
lj ,uj ,Matches,NoGoods)

removes one block completely from S or from T so one between Sli,ui

i and Tj
lj ,uj

is an original block and the other one is a remnant block. If it is a remnant block
it can only be changed max(n,m) times, since it runs out of blocks to cover.
Hence the total number of different calls is O(nm max(n,m)). ��

Splitting. Suppose Check returned true (otherwise Equate terminates). Thus
γ(S)∩γ(T) �= ∅. However, we would like to refine S and T in order to prune the
most values not belonging to γ(S) ∩ γ(T). In this second phase we take advantage
of the matches collected in Matches for possibly splitting the blocks of S and T .
We aim to find (partial) maps σS : [1, |S|] → DS such that σS(i) S[i]. In this
way, by definition, σS(1) · · · σS(n) S (same applies for T).

A Novel Approach to String Constraint Solving 11

Algorithm 3. Split algorithm
1: function Split (S, T,Matches)
2: k ← 1; splitS ← splitT ← []; Matches ′ ← Trim(Matches)
3: for Mk ∈ Matches ′ do
4: sli ← sui ← slj ← suj ← 0; splitkS ← splitkT ← { }; lasti ← −1

5: for 〈Sli,ui
i , T

lj ,uj

j 〉 ∈ Mk do
6: R ← Si ∩ Tj

7: if i = lasti then � direction ↖
8: l ← max(li − suj , lj); u ← min(ui − slj , uj)
9: if l > u then l ← u ← 0

10: splitkS [i] ← Norm([Rl,u] + splitkS [i]); splitkT [j] ← [Rl,u]
11: sli ← l; sui ← u; slj ← slj + l; suj ← suj + u
12: else � direction ↗
13: l ← max(lj − sui, li); u ← min(uj − sli, ui)
14: if l > u then l ← u ← 0
15: splitkT [j] ← Norm([Rl,u] + splitkT [j]); splitkS [i] ← [Rl,u]
16: slj ← l; suj ← u; sli ← sli + l; sui ← sui + u
17: lasti ← i
18: splitS ← splitS + [splitkS]; splitT ← splitT + [splitkT]; k ← k + 1
19: return splitS, splitT

As mentioned, a match for S = Sa1,b1
1 · · · San,bn

n and T = T c1,d1
1 · · · T cm,dm

m

can be described by a path in the match tree. In particular, a sub-path of the form
[〈i, j〉, 〈i, j +1〉, . . . , 〈i, j + k〉] enables us to split block Sli,ui

i of S into a concate-
nation of k blocks (Si ∩ Tj)αk,βk(Si ∩ Tj+1)αk−1,βk−1 · · · (Si ∩ Tj+k)α1,β1 where,
for h = 1, . . . , k, cardinalities αh, βh are computed iteratively by a bottom-up
approach that we explain below.

Informally speaking, we “climb back up” the match-tree from the leaves to
the root. Each move from a child node to its father has a direction that can be
top-right (if it is a left child) or top-left (for a right child). If we “walk straight”
in the same direction, for each node of the path there is always one block B that
stays fixed, while the other blocks B′, B′′, B′′′, . . . vary along the way. So we
can split B into sub-blocks thanks to the information given by B′, B′′, B′′′, . . . ,
i.e., by all the blocks covered by B along the way. Care must be taken when
computing the cardinality of the sub-blocks: we have to consider the cumulative
cardinality of B′, B′′, B′′′, . . . and not only the block currently being examined.
When the direction changes, we “turn” in the new direction. This process is
repeated until the root is reached.

The Split algorithm listed in Algorithm 3 performs the backward propaga-
tion from the leaves to the root. We consider each match Mk ∈ Matches ′ where
Matches ′ = Trim(Matches) and the Trim function removes from Matches all
the pairs of the form 〈∅0,0, B〉 and 〈B, ∅0,0〉 (useless in this context). For each
Mk we have a map splitkS (resp., splitkT) mapping each index i ∈ [1, n] to a
list of blocks splitkS [i] defining a splitting of S[i] (resp., mapping each index
j ∈ [1,m] to splitkT [j]). Split returns two lists splitS = [split1S , . . . , splitpS] and
splitT = [split1T , . . . , splitpT] where p = |Matches ′|.

12 R. Amadini et al.

Each match Mk is already in reversed order, i.e., from leaf to root, since each
match is registered following the stack of recursive calls to Check.

If we are going top-right (lines 7–11) then we are splitting on Si. We then
add at the head of the current split splitkS [i] the element Rl,u with R = Si ∩ Tj ,
l = max(li−suj , lj) and u = min(ui−slj , uj). We store in variable slj (resp., suj)
the cumulative sum of the lower bounds (resp., upper bounds) encountered when
walking in the same direction. The + operator is the concatenation between lists.

Note that splitting a block Sl,u into S′ = (S ∩T1)l1,u1 . . . (S ∩Tk)lk,uk always
refines the base S, since (S ∩ T1) ∪ · · · ∪ (S ∩ Tk) ⊆ S, but in general does
not ensure that S′ is normalised and, most important, that γ(S′) ⊆ γ(Sl,u).
Consider matching S = {a, b, d}2,3 with T = {a, c}0,2{b, c}0,2. After matching,
we would obtain a split S′ = {a}0,2{b}0,2 for S[1]. While S′ refines the base of
S[1], the loss of cardinality information introduces new (spurious) strings (e.g.,
the string aabb ∈ γ(S′)\γ(S)). We must therefore consider the cardinality of the
original block when splitting. This is performed by a function Norm that, when
splitting Sl,u into S′ = (S ∩ T1)l1,u1 . . . (S ∩ T1)lk,uk , first checks if Σk

i=1li ≥ l
and Σk

i=1ui ≤ u. If so, it returns the normalisation of S′. Otherwise, it returns
the block ((S ∩ T1) ∪ · · · ∪ (S ∩ Tk))l,u.

The opposite direction (lines 12–16) is totally symmetric. To identify the
direction it is enough to check the value of lasti , which is updated at each loop
iteration at line 17. Line 18 updates the lists of the split for each new match;
these lists are then returned in line 19.

To better understand how Split works, consider again the match tree in
Fig. 2. After Check algorithm, we have Matches ′ = {M1,M2} where M1 and
M2 correspond to paths [〈3, 2〉, 〈3, 1〉, 〈2, 1〉, 〈1, 1〉] and [〈3, 2〉, 〈2, 2〉, 〈2, 1〉, 〈1, 1〉]
respectively. Let us consider M1 (see the red dashed arrows). Its first node
〈{c..f}0,2, {f}1,1〉 propagates upward the block ({c..f} ∩ {f})max(0,1),min(2,1) =
{f}1,1. Then we change direction. Node 〈{c..f}0,2, {b..d}0,21〉 propagates upward
({c..f} ∩ {b..d})max(0−1,0),min(2−1,21) = {c, d}0,1. Node 〈{d}5,5, {b..d}0,26〉 prop-
agates ({d} ∩ {b..d})max(5,0−0),min(5,26−1) = {d}5,5 and finally the root propa-
gates ({a..c} ∩ {b..d})max(0,26−5−1),min(30,26−5−0) = {b, c}20,21. The correspond-
ing splits are then split1S = {1 : {b, c}20,21, 2 : {d}5,5, 3 : {c, d}0,1{f}1,1} and
split1T = {1 : {b..d}26,26, 2 : {f}1,1}. We observe that split1T [1] = T [1] instead of
T ′ = {b, c}20,21{d}5,5{c, d}0,1 since, as explained above, T ′ � T [1] (in particular,
T ′ would compromise the soundness by allowing strings of length 25 and 27).

Similarly, we can construct split2S = {1 : {b, c}21,21, 2 : {d}5,5} and split2T =
{1 : {b, c}21,21{d}5,5, 2 : {f}1,1}. Note that in the actual implementation the
element {f}1,1 coloured in violet in Fig. 2 does not need to be recomputed by
Split because it is already cached.

Merging. At this stage, we have two lists of splits splitS = [split1S , . . . , splitpS]
and splitT = [split1T , . . . , splitpT] that can be used to refine S and T respectively.
The question now is: how to actually refine each S[i] and T [j], having different
splitting splitkS [i] and splitkT [j] for k = 1, . . . , p? We have somehow to merge each

A Novel Approach to String Constraint Solving 13

split split1S [i], . . . , splitpS [i] into a minimal dashed string S̃i that “contains” each
split, i.e., such that S̃i � split1S [i], . . . , splitpS [i] (analogously for each T̃j).

Unfortunately, we remark that (DS,) is not a lattice so there might not
exist a least upper bound for split1S [i], . . . , splitpS [i] (see Proposition 1). Even
here we have thus to settle for a relaxed “join” operation � returning a dashed
string S̃i = split1S [i]� · · · � splitpS [i] that over-approximates each split and it is a
good compromise between precision and efficiency (same thing for T̃j). If some
splitkS [i] is not defined, we simply ignore it.

In the general case, given S = Sa1,b1
1 · · · San,bn

n and T = T c1,d1
1 · · · T cm,dm

m we
define S � T = Rl,u where R =

⋃n
i=1

⋃m
j=1(Si ∪ Tj), l = min(Σn

i=1ai,Σm
j=1cj),

and u = max(Σn
i=1bi,Σm

j=1dj). However, we also deal with particular cases to
improve the precision (e.g., when S = T).

In the example of Fig. 2, having split1S = {1 : {b, c}20,21, 2 : {d}5,5, 3 :
{c, d}0,1{f}1,1} and split2S = {1 : {b, c}21,21, 2 : {d}5,5}, we get S̃1 = {b, c}20,21,
S̃2 = {d}5,5, and S̃3 = {c, d}0,1{f}1,1. For T instead we simply get T̃1 = T1 and
T̃2 = T2. Finally, we return S̃ = S̃1 . . . S̃n and T̃ = T̃1 . . . T̃m.

Updating. In the last stage, we update the original dashed strings S and T
trying to refine their blocks thanks to the information given by S̃ and T̃ . To do
so, we use a simple block-wise approach that compares each Si with S̃i and, in
case ‖S̃i‖ < ‖Si‖, updates Si with S̃i. For avoiding overflows, instead of ‖S‖ we
consider its logarithm log ‖S‖ =

∑n
i=1 log ‖Sai,bi

i ‖. In particular, if x = |S| > 1,

we compute log ‖Sl,u‖ as log
xu+1 − xl

x − 1
= log

xl(xu−l+1 − 1)
x − 1

= log(xl(xu−l+1 −
1)) − log(x − 1) = l · log x + log(xu−l+1 − 1) − log(x − 1). In the same way we
possibly update each Tj with ‖T̃j‖.

Considering again the example in Fig. 2, from the original dashed strings S =
{a..c}0,30{d}5,5{c..f}0,2 we get S′ = {b, c}20,21{d}5,5{c, d}0,1, while T remains
unchanged. However, we observe that while ‖S‖ is in the order of 1015, the
size of S′ is 9437184. Note the size difference which results if we equate S′′ =
{a..c}0,30M{d}5M,5M{c..f}0,2M and T ′′ = {b..d}26M,26M{f}M,M , where M is an
arbitrarily big parameter. A nice property of Equate algorithm is that in this
case the complexity is totally independent from M : both Equate(S, T) and
Equate(S′′, T ′′) are solved instantaneously.

Finally, note that we could run Equate on S and T with the blocks reversed
to determine different information. We do not consider this in our implemen-
tation since we will focus on extracting information about the earliest blocks
which will be the most helpful when aligned with the search we perform.

4 Constraint Solving

In this Section we give an overview of how we applied the notions introduced in
Sect. 3 in order to solve a CSP with string variables and constraints.

14 R. Amadini et al.

Given a CSP 〈V,D, C〉, the domain of each string variable x ∈ V is a dashed
string D(x) ∈ DS. Each constraint C ∈ C on string variables x1, . . . , xk has an
associated propagator that aims to remove the inconsistent values from domains
D(x1), . . . ,D(xk). Since propagation is incomplete, we have to define search
strategies that split the domain of strings to cause more propagation.

4.1 Constraints

The key property of dashed strings that makes them useful is that we can
concatenate dashed strings in a natural way: given S = Sa1,b1

1 · · · San,bn
n and

T = T c1,d1
1 · · · T cm,dm

m we get S·T = Sa1,b1
1 · · · San,bn

n T c1,d1
1 · · · T cm,dm

m without any
effort. Analogously, we can easily define the iterated concatenation Sk = S ·Sk−1,
where S0 = ∅0,0, and the reverse S−1 = San,bn

n · · · S1,1. Hence we can define
many propagators by simply relying on the dashed string concatenation and
the Equate algorithm described in Sect. 3. To lighten the load of propagation,
we defined CheckEquate, a simplified version of Equate(S, T) that returns
true if S and T have a match (and immediately returns), and false otherwise.
CheckEquate neither stores nor computes the matches.

We consider the following constraints, and the corresponding propagators:1

– equality x = y. Implemented by Equate(D(x),D(y));
– disequality x �= y. If CheckEquate(D(x),D(y)) = false the constraint is

subsumed; otherwise we wait until both D(x) and D(y) are known;
– half-reified [13] equality b ⇒ (x = y). If b = true, the constraint is

rewritten into x = y. If b = false, the constraint is subsumed. Other-
wise, if CheckEquate(D(x),D(y)) = false then b is set to false. We treat
b ⇒ (x �= y) similarly. Full reification b ⇔ (x = y) is encoded as the conjunc-
tion (b ⇒ x = y) ∧ (¬b ⇒ x �= y).

– length |x| = n. If D(x) = Sl1,u1
1 · · · Slk,uk

k , it is implemented analogously to
x1 + · · · + xk = n where xi is an integer variable with domain [li, ui].

– domain x :: S, where S ∈ DS. Implemented by a version of Equate(D(x), S)
that only updates D(x). If D(x) S, the constraint is subsumed.

– concatenation z = x · y. Implemented by Equate(D(z),D(x) · D(y)), taking
care of properly projecting the narrowing of D(x) · D(y) on D(x) and D(y).

– iterated concatenation y = xn. If D(x) = Sl1,u1
1 · · · Slk,uk

k , it is propagated by
Equate(D(y),D(x)n · (

⋃k
i=1 Si)0,n−n).

– reverse y = x−1. Implemented by Equate(D(y),D(x)−1), taking care of
properly projecting the narrowing of D(x)−1 on D(x).

– sub-string y = x[i..j]. Rewritten in l = |x| ∧ n = max(1, i) ∧ m = min(l, j) ∧
|y| = max(0,m−n+1)∧x = y′ ·y ·y′′ ∧y′ :: Σn−1,n−1 ∧y′′ :: Σmax(0,l−m),l−m.

This set of constraints is not fully exhaustive. In particular, the lack of regular
constraint limits its expressiveness since we can not fully encode the Kleene star
S∗ when S ⊆ Σ∗ is a set of strings having length greater than one. However,

1 For conciseness, for integer variable x, we define x = min(D(x)) and x = max(D(x)).

A Novel Approach to String Constraint Solving 15

thanks to reification and (iterated) concatenation we can often compensate this
lack (and also define constraints that are not expressible with regular, i.e., see
the SQL Injection problem introduced in [1] and evaluated in Sect. 5).

Each propagator is scheduled by propagator events that occur if and when
the domain of a variable in the constraint changes. We consider the follow-
ing events: fail (a domain became empty), none (domains unchanged), value (a
domain became a singleton), cardinality (the cardinality of some block changed),
character (the characters of some base changed), domain (cardinality or char-
acters changed). For example, the propagator for |x| = n can only narrow the
length of D(x) and not its characters, hence it does not need to wake on character
changes.

4.2 Search

Searching in string problems is very important since there are typically a very
large number of solutions for each string variable x. The search strategy we
implemented first chooses the string variable x with smallest domain (i.e., min-
imising log ‖D(x)‖).

If the length of x is unknown it branches on the first unknown length block
Sli,ui

i being equal to its minimal length or not (i.e., Sli,li
i or Sli+1,ui

i). This
branching wakes up propagators dependent on the length of x.

Otherwise if the first non-zero length block Sli,li
i is of length li > 1 it splits

it into two fixed length blocks S1,1
i Sli−1,li−1

i (note this is not a branch point).
If the first non-zero length block Sli,li

i is of length 1 it branches on setting the
block to its least value a = min(Si) or not (i.e., {a} or Si −{a}). This branching
wakes up propagators dependent of the contents of x.

Overall this search has the effect of enumerating the solutions of x in
lexicographic order, as shown in Fig. 3 where we show the search tree when
D(x) = {0}2,2{a, b, c}0,1{1}1,1. However, the branching can be generalised by
defining proper heuristic to choose how to split an unknown-length block, and
how to pick a value from the base of a known-length block.

{0}2,2{a, b, c}0,1{1}1,1

001 {0}2,2{a, b, c}1,1{1}1,1

00a1 {0}2,2{b, c}1,1{1}1,1

00b1 00c1

Fig. 3. Example of search tree.

16 R. Amadini et al.

5 Evaluation

We implemented our approach as an extension of Gecode [18], a mature CP
solver written in C++. The resulting solver, that we called G-Strings, is pub-
licly available at https://bitbucket.org/robama/g-strings.

G-Strings is a copying solver, i.e., during the search the domains are copied
(and possibly restored) before a choice is committed. In this context the memory
management becomes critical. We underline that G-Strings is still a prototype,
and mainly relies on the Gecode built-in data structures. In a nutshell, a dashed
string is currently implemented as a DynamicArray of blocks, where the base of
each block is encoded by a BndSet, which represents finite set of integers as
unions of disjoint ranges (see [18] for more details about this data structures).
As a future work we plan to improve this implementation.

We compared G-Strings against the string CP solver Gecode+S [29,31],
the string SMT solver Z3str3 [34]2 and three state-of-the-art constraint solvers,
namely: the aforementioned Gecode [18]; Chuffed [9], a CP solver with lazy
clause generation [27]; and iZplus [15], a CP solver that also exploits local
search. For these three solvers we used the MiniZinc translation to integers [1]
that statically maps string variables into arrays of integer variables. We did
not compare against automata-based approaches like [21,24,32,33] since their
limited effectiveness in our context (as an example, every single block Sl,u has
to be encoded by an automaton of exactly u + 1 states).

As already noted in [1,20,29–31] there is unfortunately a lack of standardised
and challenging string benchmarks. We decided to use the same string problems
used in the evaluation of [1], namely: anbn, ChunkSplit, HammingDistance, Lev-
enshtein, StringReplace, SQLInjection. The only differences are: (i) the “Ham-
mingDistance” problem has been simplified since G-Strings does not yet sup-
port the regular constraint (for the other problems we have overcome this lack
with (iterated) concatenation and reified equality); (ii) the “Palindrome” prob-
lem is omitted since neither G-Strings nor Gecode+S supports the new global
cardinality constraint introduced in [1].

All these problems have no parameters, except for the maximum string length
� that we varied in {250, 1000, 10000}. We ran the experiments on Ubuntu 15.10
machines with 16 GB of RAM and 2.60 GHz Intel R© i7 CPU by setting a solving
timeout of T = 1200 s.

Comparative solving times are shown in Table 1. We ignore model construc-
tion time, which for the first three solvers using MiniZinc can be quite expensive
(e.g., for SQL and � = 10000 this is almost 20 min). The results show that the
G-Strings solver is (almost) independent of the maximum string length, and
in particular it provides an instantaneous answer in all the Norn benchmarks.
The performance of Gecode+S and the other CP solvers clearly degrade when
increasing �. Although being independent from �, also Z3str3 performs worse
than G-Strings.

2 We used the last stable release: https://sites.google.com/site/z3strsolver/.

https://bitbucket.org/robama/g-strings
https://sites.google.com/site/z3strsolver/

A Novel Approach to String Constraint Solving 17

Table 1. Results in seconds. ‘n/a’ indicates an abnormal termination while ‘t/o’ means
timeout. Unsatisfiable problems are marked with *, best performance are in bold font.

� Chuffed Gecode iZplus Z3str3 Gecode+S G-Strings

250 1000 10000 250 1000 10000250 1000 10000 250 100010000250 1000 10000 250 1000 10000

anbn * 0.1 1.3 483.831.81129.32t/o 0.74 16.45 t/o t/o t/o t/o 0.31 29.46 t/o 0.0 0.0 0.0

ChunkSplit 1.62 t/o 26.33 0.3912.93 61.91 1.81 11.56 116.610.6 0.6 0.6 1.28 182.24t/o 0.0 0.0 0.0

Hamming * 0.32 1.69 61.27 0.160.77 19.58 0.24 1.89 49.95 1.221.2 1.2 0.0 0.12 129.8 0.0 0.0 0.0

Levenshtein0.18 0.89 63.67 0.080.36 18.05 2.32 2.64 306.390.010.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0

StringRep 1.46 43.75n/a 0.5619.28 n/a 0.7 8.54 673.182.582.59 2.62 0.06 2.25 t/o 0.0 0.0 0.0

SQLInj 10.78t/o n/a 0.81375.17t/o 130.68613.16n/a t/o t/o t/o 0.010.2 299.990.0972.58t/o

Conversely, the SQL benchmark introduced in [1] illustrates a weakness of the
current implementation. This problem involves a long fixed string of length �, and
our solver has worse performance than Gecode+S. In particular, G-Strings

runs out of time when � = 10000. This points out that we need to specialise
the Equate algorithm for parts of strings representable as fixed strings, and
also switch to asymptotically faster propagation algorithms when the number of
blocks becomes large.

6 Conclusions

In this work we introduced the dashed string representation to enable possibly
very long strings to be represented succinctly, trying to decouple the complexity
of constraint solving from the maximum length a string may have. Propagation of
dashed strings is very efficient when the number of its blocks is small. Moreover,
while dealing with large alphabets might be a problem for some approaches [31],
this representation is weakly coupled to the size of the alphabet we are using.

Clearly dashed strings are not a universal panacea, since equating long dashed
string representations can be too expensive. In other terms, this approach might
fail when a string must be very long. Hence we need to develop weaker propa-
gation algorithms to gracefully handle this case.

Using multiple representations for a string variable may be highly advanta-
geous, where we choose the propagator for each string constraint which is most
efficient to propagate. String abstract domains often combine different repre-
sentations in this way (see, e.g., [3,10]). Although this may clearly reduce the
propagation of information, it can avoid worst case behaviour. This hybrid app-
roach can be implemented “internally”, i.e., by building a channeling propagator
between the representations, or “externally” via a portfolio approach [2] com-
bining different solving strategies.

The introduction of dashed strings immediately opens several research
branches. One of these concerns the definition of new propagators. We have
already devised algorithms for propagating lexicographic comparisons, global
cardinality, and regular constraints, although they are not implemented yet in
G-Strings. Furthermore, the potentially huge search space suggests the explo-
ration of different search approaches such as, e.g., Local Search [6,7]. Another
interesting directions concerns the definition of trailing string solvers, i.e., solvers

18 R. Amadini et al.

that store the domain changes instead of copying the entire domain during the
search.

Acknowledgements. This work is supported by the Australian Research Coun-
cil (ARC) through Linkage Project Grant LP140100437 and Discovery Early Career
Researcher Award DE160100568.

References

1. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc
with strings. In: Logic-Based Program Synthesis and Transformation - 25th Inter-
national Symposium, LOPSTR 2016 (2016). https://arxiv.org/abs/1608.03650

2. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving.
In: Proceedings of the International Joint Conference on Artificial Intelligence, pp.
232–238. AAAI Press (2015)

3. Amadini, R., Jordan, A., Gange, G., Gauthier, F., Schachte, P., Søndergaard, H.,
Stuckey, P.J., Zhang, C.: Combining string abstract domains for javascript analysis:
an evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 41–57. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5 3

4. Barahona, P., Krippahl, L.: Constraint programming in structural bioinformatics.
Constraints 13(1–2), 3–20 (2008)

5. Bisht, P., Hinrichs, T.L., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: white-
box analysis of web applications for parameter tampering exploit construction. In:
Proceedings of ACM Conference on Computer and Communications Security, pp.
575–586. ACM (2011)

6. Björdal, G.: String variables for constraint-based local search. Master’s thesis,
Department of Information Technology, Uppsala University, Sweden, August 2016.
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501

7. Björdal, G., Monette, J.-N., Flener, P., Pearson, J.: A constraint-based local search
backend for MiniZinc. Constraints 20(3), 325–345 (2015)

8. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00768-2 27

9. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, Department of Com-
puting and Information Systems, University of Melbourne, Australia (2011)

10. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw.: Pract. Exp. 45(2), 245–287 (2015)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the Fourth ACM Symposium on Principles of Programming Languages, pp. 238–
252. ACM (1977)

12. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pp. 151–162. ACM (2007)

13. Feydy, T., Somogyi, Z., Stuckey, P.J.: Half reification and flattening. In: Lee, J.
(ed.) CP 2011. LNCS, vol. 6876, pp. 286–301. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23786-7 23

https://arxiv.org/abs/1608.03650
http://dx.doi.org/10.1007/978-3-662-54577-5_3
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-23786-7_23
http://dx.doi.org/10.1007/978-3-642-23786-7_23

A Novel Approach to String Constraint Solving 19

14. Fu, X., Powell, M.C., Bantegui, M., Li, C.: Simple linear string constraints. Form.
Asp. Comput. 25(6), 847–891 (2013)

15. Fujiwara, T.: iZplus description (2016). http://www.minizinc.org/challenge2016/
description izplus.txt

16. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with
length constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC
2012. LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39611-3 21

17. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 277–291. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36742-7 20

18. Gecode Team. Gecode: generic constraint development environment (2016). http://
www.gecode.org

19. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8 26

20. He, J., Flener, P., Pearson, J., Zhang, W.M.: Solving string constraints: the case
for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
381–397. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 31

21. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

22. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. 21(4), Article 25 (2012)

23. Kim, S.-W., Chin, W., Park, J., Kim, J., Ryu, S.: Inferring grammatical summaries
of string values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 372–391.
Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 20

24. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Cham (2013). doi:10.1007/978-3-319-03077-7 2

25. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54807-9 12

26. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

27. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

28. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: S&P, pp. 513–528. IEEE Computer Society
(2010)

29. Scott, J.D.: Other things besides number: abstraction, constraint propagation,
and string variable types. Ph.D. thesis, Department of Information Technology,
Uppsala University, Sweden (2016). http://urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-273311

30. Scott, J.D., Flener, P., Pearson, J.: Constraint solving on bounded string variables.
In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 375–392. Springer, Cham
(2015). doi:10.1007/978-3-319-18008-3 26

http://www.minizinc.org/challenge2016/description_izplus.txt
http://www.minizinc.org/challenge2016/description_izplus.txt
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-36742-7_20
http://www.gecode.org
http://www.gecode.org
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-642-40627-0_31
http://dx.doi.org/10.1007/978-3-319-12736-1_20
http://dx.doi.org/10.1007/978-3-319-03077-7_2
http://dx.doi.org/10.1007/978-3-642-54807-9_12
http://dx.doi.org/10.1007/978-3-642-54807-9_12
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://dx.doi.org/10.1007/978-3-319-18008-3_26

20 R. Amadini et al.

31. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). doi:10.1007/
978-3-319-59776-8 5

32. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4), 33
(2013)

33. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 13

34. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 235–254. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 14

http://dx.doi.org/10.1007/978-3-319-59776-8_5
http://dx.doi.org/10.1007/978-3-319-59776-8_5
http://dx.doi.org/10.1007/978-3-642-12002-2_13
http://dx.doi.org/10.1007/978-3-319-21690-4_14

Generating Linear Invariants for a Conjunction
of Automata Constraints

Ekaterina Arafailova1(B), Nicolas Beldiceanu1, and Helmut Simonis2

1 TASC (LS2N), IMT Atlantique, 44307 Nantes, France
{Ekaterina.Arafailova,Nicolas.Beldiceanu}@imt-atlantique.fr

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
Helmut.Simonis@insight-centre.org

Abstract. We propose a systematic approach for generating linear
implied constraints that link the values returned by several automata
with accumulators after consuming the same input sequence. The method
handles automata whose accumulators are increased by (or reset to) some
non-negative integer value on each transition. We evaluate the impact of
the generated linear invariants on conjunctions of two families of time-
series constraints.

1 Introduction

We present a compositional method for deriving linear invariants for a conjunc-
tion of global constraints that are each represented by an automaton with accu-
mulators [10]. Since they do not encode explicitly all potential values of accumu-
lators as states, automata with accumulators allow a constant size representation
of many counting constraints imposed on a sequence of integer variables. More-
over their compositional nature permits representing a conjunction of constraints
on a same sequence as the intersection of the corresponding automata [21,22],
i.e. the intersection of the languages accepted by all automata, without represent-
ing explicitly the Cartesian product of all accumulator values. As a consequence,
the size of such an intersection automaton is often quite compact, even if main-
taining domain consistency for such constraints is in general NP-hard [8]; for
instance the intersection of the 22 automata that restrict the number of occur-
rences of patterns of the Vol. II of the time-series catalogue [3] in a sequence has
only 16 states. The contributions of this paper are twofold:

– First, Sects. 3 and 4 provide the basis of a simple, systematic and uniform
preprocessing technique to compute necessary conditions for a conjunction of
automata with accumulator constraints on the same sequence. Each necessary
condition is a linear inequality involving the result variables of the different

E. Arafailova is supported by the EU H2020 programme under grant 640954 for
the GRACeFUL project. N. Beldiceanu is partially supported by GRACeFUL and
by the Gaspard-Monge programme. H. Simonis is supported by Science Foundation
Ireland (SFI) under grant numbers SFI/12/RC/2289 and SFI/10/IN.1/I3032.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 21–37, 2017.
DOI: 10.1007/978-3-319-66158-2 2

22 E. Arafailova et al.

automata, representing the fact that the result variables cannot vary inde-
pendently. These inequalities are parametrised by the sequence size and are
independent of the domains of the sequence variables. The method may be
extended if the scopes of the automata constraints overlap, but not if the
scopes contain the same variables ordered differently.

– Second, within the context of the time-series catalogue, Sect. 5 shows that the
method allows to precompute in less than five minutes a data base of 7755
invariants that significantly speed up the search for time series satisfying
multiple time-series constraints.

Adding implied constraints to a constraint model has been recognized from
the very beginning of Constraint Programming as a major source of improve-
ment [13]. Attempts to generate such implied constraints in a systematic way
were limited (1) by the difficulty to manually prove a large number of con-
jectures [6,17], (2) by the limitations of automatic proof systems [12,15], or
(3) to specific constraints like alldifferent, gcc, element or circuit [1,18,19].
Within the context of automata with accumulators, linear invariants relating
consecutive accumulators values of a same constraint were obtained [14] using
Farkas’ lemma [11] in a resource intensive procedure.

2 Background

Consider a sequence of integer variables X = 〈X1,X2, . . . , Xn〉, and a func-
tion S : Zp → Σ, where Σ is a finite set denoting an alphabet. Then, the signature
of X is a sequence 〈S1, S2, . . . , Sn−p+1〉, where every Si equals S(Xi,Xi+1, . . . ,
Xi+p−1). Intuitively, the signature of a sequence is a mapping of p consecutive
elements of this sequence to an alphabet Σ, where p is called the arity of the
signature.

An automaton M with a memory of m ≥ 0 integer accumulators [10] is a
tuple 〈Q,Σ, δ, q0, I, A, α〉, where Q is the set of states, Σ the alphabet, δ : (Q ×
Z
m) × Σ → Q × Z

m the transition function, q0 ∈ Q the initial state, I the m-
tuple of initial values of the accumulators, A ⊆ Q the set of accepting states, and
α : Zm → Z the acceptance function – the identity in this paper –, transforming
the memory of an accepting state into an integer. If the left-to-right consumption
of the symbols of a word w in Σ∗ transits from q0 to some accepting state and
the m-tuple C of final accumulator values, then the automaton returns the value
α(C), otherwise it fails. An integer sequence 〈X1,X2, . . . , Xn〉 is an accepting
sequence wrt an automaton M if its signature is accepted by M. The intersection
[21] of k automata M1,M2, . . . ,Mk is denoted by M1 ∩ M2 ∩ · · · ∩ Mk.

An automaton with accumulators can be seen as a checker for a constraint
that has two arguments, namely (1) a sequence of integer variables X; (2) an
integer variable R. Then, for a ground sequence X and an integer number R,
the constraint holds iff after consuming the signature of X, the corresponding
automaton returns R. In Example 1, we introduce two constraints with their
automata that will be further used as a running example.

Generating Linear Invariants for a Conjunction of Automata Constraints 23

Example 1. Consider a sequence X = 〈X1,X2, . . . , Xn〉 of integer variables. A
peak (resp. valley) is a variable Xk of X (with k ∈ [2, n−1]) such that there exists
an i where Xi−1 < Xi (resp. Xi−1 > Xi) and Xi = Xi+1 = · · · = Xk and Xk >
Xk+1 (resp. Xk < Xk+1). For example, the sequence 〈1, 2, 6, 6, 7, 0, 4, 2〉 has two
peaks, namely 7 and 4, and one valley, namely 0. Then, the peak(X,P) (resp.
valley(X,V)) constraint restricts P (resp. V) to be the number of peaks (resp.
valleys) in the sequence X.

Both constraints can be represented by automata with one accumulator,
which consume the signature of X, defined by the following conjunction of con-
straints: S(Xi,Xi+1) = ‘<’ ⇔ Xi < Xi+1 ∧ S(Xi,Xi+1) = ‘=’ ⇔ Xi = Xi+1 ∧
S(Xi,Xi+1) = ‘>’ ⇔ Xi > Xi+1. Figure 1 gives the automata for peak, valley,
and their intersection. For a ground sequence X, and for an integer value P (resp.
V), the constraint peak(X,P) (resp. valley(X,V)) holds iff, after consuming
the signature of X, the automaton in Part (A) (resp. Part(B)) of Fig. 1 returns P
(resp. V). Given the sequence X = 〈1, 2, 6, 6, 7, 0, 4, 2〉, the constraints peak(X, 2)
and valley(X, 1) hold since, after consuming X = 〈1, 2, 6, 6, 7, 0, 4, 2〉, the peak
and valley automata of Fig. 1 return 2 and 1, respectively. �

Fig. 1. Automata for (A) peak, (B) valley, and (C) their intersection; within each
automaton accepting states are shown by double circles.

3 Generating Linear Invariants

Consider k automata M1,M2, . . . ,Mk over a same alphabet Σ. Let ri denote
the number of accumulators of Mi, and let Vi designate its returned value. In
this section we show how to systematically generate linear invariants of the form

e + e0 · n +
k∑

i=1

ei · Vi ≥ 0 with e, e0, e1, . . . , ek ∈ Z, (1)

which hold after the signature of a same input sequence 〈X1,X2, . . . , Xn〉 is
completely consumed by the k automata M1,M2, . . . ,Mk. We call such invari-
ant general since it holds regardless of any conditions on the result variables

24 E. Arafailova et al.

V1, V2, . . . , Vk. Stronger, but less general, invariants may be obtained when the
result variables cannot be assigned the initial values of the accumulators.

Our method for generating invariants is applicable for a restricted class of
automata with accumulators that we now introduce.

Property 1. An automaton M with r accumulators have the incremental-
automaton property if the following conditions are all satisfied:

1. For every accumulator Aj of M, its initial value α0
j is a natural number.

2. For every accumulator Aj of M and for every transition t of M, the update

of Aj upon triggering transition t is of the form Aj ← αt
j,0 +

r∑
i=1

αt
j,i ·Ai, with

αt
j,0 ∈ N and αt

j,1, α
t
j,2, . . . , α

t
j,r ∈ {0, 1}.

3. The accumulator Ar is called the main accumulator and verifies the following
three conditions:
(a) the value returned by automaton M is the last value of its main accumu-

lator Ar,
(b) for every transition t of M, αt

r,r = 1,

(c) for a non-empty subset T of transitions of M,
r−1∑
i=1

αt
r,i > 0, ∀t ∈ T .

4. For all other accumulators Aj with j < r, on every transition t of M, we have
r∑

i=1,i �=j

αt
j,i = 0 and if αt

r,j > 0, then αt
j,j is 0.

The intuition behind the incremental-automaton property is that there is one
accumulator that we name main accumulator, whose last value is the final value,
returned by the automaton, (see 3a). At some transitions, the update of the main
accumulator is a linear combination of the other accumulators, while on the other
transitions its value either does not change or incremented by a non-negative con-
stant, (see 3b and 3c). All other accumulators may only be incremented by a
non-negative constant or assigned to some non-negative integer value, and they
may contribute to the final value, (see 4). These accumulators are called potential
accumulators. Both automata in Fig. 1 have the incremental-automaton prop-
erty, and their single accumulators are main accumulators. Volumes I and II
of the global constraint catalogue contain more than 50 such automata. In
the rest of this paper we assume that all automata M1,M2, . . . ,Mk have
the incremental-automaton property.

Our approach for systematically generating linear invariants of type e + e0 ·

n +
k∑

i=1

ei ·Vi ≥ 0 considers each combination of signs of the coefficients ei (with

i ∈ [0, k]). It consists of three main steps:

1. Construct a non-negative function v = e + e0 ·n +
k∑

i=1

ei ·Vi, which represents

the left-hand side of the sought invariant (see Sect. 3.1).

Generating Linear Invariants for a Conjunction of Automata Constraints 25

2. Select the coefficients e0, e1, . . . , ek, called the relative coefficients of the linear

invariant, so that there exists a constant C such that e0 · n +
k∑

i=1

ei · Vi ≥ C

(see Sect. 3.2).
3. Compute C and set the coefficient e, called the constant term of the linear

invariant, to −C (see Sect. 3.3).

The three previous steps are performed as follows:

1. First, we assume a sign for each coefficient ei (with i ∈ [0, k]), which tells
whether we have to consider or not the contribution of the potential accu-
mulators; note that each combination of signs of the coefficients ei (with
i ∈ [1, k]) will lead to a different linear invariant. Then, from the intersection
automaton I of M1,M2, . . . ,Mk, we construct a digraph called the invari-
ant digraph, where each transition t of I is replaced by an arc whose weight

represents the lower bound of the variation of the term e0 ·n+
k∑

i=1

ei ·Vi while

triggering t.
2. Second, we find the coefficients ei (with i ∈ [0, k]) so that the invariant digraph

does not contain any negative cycles.
3. Third, to obtain C we compute the shortest path in the invariant digraph

from the node of the invariant digraph corresponding to the initial state of I
to all nodes corresponding to accepting states of I.

3.1 Constructing the Invariant Digraph for a Conjunction of
Automaton Constraints Wrt a Linear Function

First, Definition 1 introduces the notion of invariant digraph Gv
I of the automa-

ton I = M1 ∩ M2 ∩ . . . ∩ Mk wrt a linear function v involving the values
returned by these automata. Second, Definition 2 introduces the notion of weight
of an accepting sequence X wrt I in Gv

I , which makes the link between a path
in Gv

I and the vector of values returned by I after consuming the signature of X.
Finally, Theorem 1 shows that the weight of X in Gv

I is a lower bound on the
linear function v.

Definition 1. Consider an accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt the
automaton I = M1 ∩ M2 ∩ . . . ∩ Mk, and a linear function v = e + e0 ·

n +
k∑

i=1

ei · Vi, where (V1, V2, . . . , Vk) is the vector of values returned by I after

consuming the signature of X. The invariant digraph of I wrt v, denoted by Gv
I

is a weighted digraph defined in the following way:

– The set of nodes of Gv
I is the set of states of I.

– The set of arcs of Gv
I is the set of transitions of I, where for every transition t

the corresponding symbol of the alphabet is replaced by an integer weight,

26 E. Arafailova et al.

which is e0 +
k∑

i=1

ei · βt
i , where βt

i is defined as follows, and where ri denotes

the number of accumulators of Mi:

βt
i =

⎧
⎪⎪⎨

⎪⎪⎩

αt
ri,0 of Mi, if ei ≥ 0 (1)
ri∑

j=1

αt
j,0 of Mi, if ei < 0 (2)

Definition 2. Consider an accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt the
automaton I = M1 ∩ M2 ∩ . . . ∩ Mk, and a linear function v = e + e0 ·

n +
k∑

i=1

ei · Vi, where (V1, V2, . . . , Vk) is the vector of values returned by I after

consuming the signature of X. The walk of X in Gv
I is a path ω in Gv

I whose
sequence of arcs is the sequence of the corresponding transitions of I triggered
upon consuming the signature of X. The weight of X in Gv

I is the weight of its
path in Gv

I plus a constant value, which is a lower bound on v corresponding to
the initial values of the accumulators. It equals e + e0 · (p − 1) +

∑k
i=1 ei · β0

i ,
where p is the arity of the signature, and where β0

i is defined as follows, and
where ri denotes the number of accumulators of Mi:

β0
i =

⎧
⎪⎪⎨

⎪⎪⎩

α0
ri of Mi, if ei ≥ 0 (1)
ri∑

j=1

α0
j of Mi, if ei < 0 (2)

Example 2. Consider peak(〈X1,X2, . . . , Xn〉 , P) and valley(〈X1,X2, . . . , Xn〉 ,
V) introduced in Example 1. Figure 1 gives the automata for peak, valley, and
their intersection I. We aim to find inequalities of the form e+e0 ·n+e1 ·P +e2 ·
V ≥ 0 that hold for every integer sequence X. After consuming the signature of
X = 〈X1,X2, . . . , Xn〉, I returns a pair of values (P, V), which are the number
of peaks (resp. valleys) in X. The invariant
digraph of I wrt v = e + e0 · n + e1 · P + e2 · V
is given in the figure on the right. Since both
automata do not have any potential accumu-
lators, the weights of the arcs of Gv

I do not
depend on the signs of e1 and e2. Hence, for
every integer sequence X, its weight in Gv

I equals e + e0 · n + e1 · P + e2 · V . �

s

t r

e0

e0e0

e0e0
e0 + e2

e0 + e1

Theorem 1. Consider an accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt the
automaton I = M1 ∩ M2 ∩ . . . ∩ Mk, and a linear function v = e + e0 · n +
k∑

i=1

ei · Vi, where (V1, V2, . . . , Vk) is the vector of values return by I. Then, the

weight of X in Gv
I is less than or equal to e + e0 · n +

k∑
i=1

ei · Vi.

Generating Linear Invariants for a Conjunction of Automata Constraints 27

Proof. Since, when doing the intersection of automata we do not merge accu-
mulators, the accumulators of I that come from different automata Mi and
Mj do not interact, hence the returned values of Mi and Mj are indepen-
dent. By definition of the invariant digraph, the weight of any of its arc is

e0 +
k∑

i=1

ei · βt
i , where βt

i depends on the sign of ei, and where t is the cor-

responding transition in I. Then, the weight of X in Gv
I is the constant

e + e0 · (p − 1) +
k∑

i=1

ei · β0
i (see Definition 2) plus the weight of the walk of X,

which is in total e + e0 · (p− 1)+
k∑

i=1

ei ·β0
i + e0 · (n− p+1)+

n−p+1∑
j=1

k∑
i=1

ei ·βtj
i =

e + e0 · n +
k∑

i=1

ei ·
(

β0
i +

n−p+1∑
j=1

β
tj
i

)
, where p is the arity of the considered sig-

nature, and t1, t2, . . . tn−p+1 is the sequence of transitions of I triggered upon

consuming the signature of X. We now show that the value ei ·
(

β0
i +

n−p+1∑
j=1

β
tj
i

)

is not greater than ei · Vi. This will imply that the weight of the walk of X in

Gv
I is less than or equal to v = e + e0 · n +

k∑
i=1

ei · Vi.

Consider the vi = ei ·Vi linear function. We show that the weight of X in Gvi

I ,

which equals ei ·
(

β0
i +

n−p+1∑
j=1

β
tj
i

)
, is less than or equal to ei ·Vi. Depending on

the sign of ei we consider two cases.

Case 1: ei ≥ 0. In this case, the weight of every arc of Gvi

I is ei multiplied
by αt

ri,0, where t is the corresponding transition in I, and ri is the main accu-
mulator of Mi (see Case 1 of Definition 1). If, on transition t, some potential
accumulators of Mi are incremented by a positive constant, the real contribu-
tion of the accumulator updates on this transition to Vi is at least αt

ri,0 since
ei ≥ 0. The same reasoning applies to the contribution of the initial values
of the potential accumulators to the final value Vi. Since this contribution is
non-negative, it is ignored, and β0

i = α0
ri (see Case 1 of Definition 2). Hence,

ei · (β0
i +

n−p+1∑
j=1

β
tj
i) = ei · (α0

ri +
n−p+1∑
j=1

αt
ri,0) ≤ ei · Vi.

Case 2: ei < 0. In this case, the weight of every arc of Gvi

I is ei multiplied
by the sum of the non-negative constants, which come from the updates of
every accumulator of Mi (see Case 2 of Definition 1). The contribution of the
potential accumulators is always taken into account, and since ei < 0, it is always
negative. The same reasoning applies to the contribution of the initial values of
the potential accumulators to the returned value Vi. Since the initial values of the
potential accumulators are non-negative, and ei < 0, in order to obtain a lower
bound on v we assume that the initial values of the potential accumulators always

contribute to Vi (see Case 2 of Definition 2). Hence, ei ·(β0
i +

n−p+1∑
j=1

β
tj
i) ≤ ei ·Vi. ��

28 E. Arafailova et al.

Note that if all the considered automata M1,M2, . . . ,Mk do not have poten-
tial accumulators, then for every accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt

I = M1 ∩ M2 ∩ . . . ∩ Mk and for any linear function v = e + e0 ·n +
k∑

i=1

ei ·Vi,

the weight of X in Gv
I is equal to v. If there is at least one potential accumulator

for at least one automaton Mi, then there may exist an integer sequence whose
weight in Gv

I is strictly less than v.

3.2 Finding the Relative Coefficients of the Linear Invariant

We now focus on finding the relative coefficients e0, e1, . . . , ek of the linear invari-

ant v = e + e0 · n +
k∑

i=1

ei · Vi ≥ 0 such that, after consuming the signature of

any accepting sequence by the automaton I = M1 ∩ M2 ∩ . . . ∩ Mk, the value
of v is non-negative.

For any accepting sequence X wrt I, by Theorem 1, we have that the weight w
of X in Gv

I is less than or equal to v. Recall that w consists of a constant part,
and of a part that depends on X, which involves the coefficients e0, e1, . . . , ek;
thus, these coefficients must be chosen in a way that there exists a constant C
such that w ≥ C, and C does not depend on X. This is only possible when Gv

I
does not contain any negative cycles. Let C denote the set of all simple circuits of
Gv

I , and let we denote the weight of an arc e of Gv
I . In order to prevent negative

cycles in Gv
I , we solve the following minimisation problem, parameterised by

(s0, s1, . . . sk), the signs of e0, e1, . . . , ek:

minimise
∑

c∈C
Wc +

k∑

i=1

|ei| (3)

subject to Wc =
∑

e∈c

we ∀c ∈ C (4)

Wc ≥ 0 ∀c ∈ C (5)
si = ‘−’ ⇒ ei ≤ 0, si = ‘+’ ⇒ ei ≥ 0 ∀i ∈ [0, k] (6)
ei �= 0 ∀i ∈ [1, k] (7)

In order to obtain the coefficients e0, e1, . . . , ek so that Gv
I does not contain

any negative cycles, it is enough to find a solution to the satisfaction problem
(4)–(7). Minimisation is required to obtaining invariants that eliminate as many
infeasible values of (V1, V2, . . . , Vk) as possible. Within the objective function
(3), the term

∑
c∈C

Wc is for minimising the weight of every simple circuit, while

the term
k∑

i=1

|ei| is for obtaining the coefficients with the smallest absolute value.

By changing the sign vector (s0, s1, . . . sk) we obtain different invariants.

Example 3. Consider peak(〈X1,X2, . . . , Xn〉 , P) and valley(〈X1,X2, . . . , Xn〉 ,
V) from Example 2. The invariant digraph of the intersection of the automata

Generating Linear Invariants for a Conjunction of Automata Constraints 29

for the Peak and Valley constraints wrt v = e + e0 · n + e1 · P + e2 · V was
given in Example 2. This digraph has four simple circuits, namely s − s, t − t,
r − r, and r − t − r, which are labeled by 1, 2, 3 and 4, respectively. Then, the
minimisation problem for finding the relative coefficients of the invariant v ≥ 0,
parameterised by (s0, s1, s2), the signs of e0, e1 and e2, is the following:

minimise
4∑

j=1

Wj+
2∑

i=0

|ei|

subject to Wj =e0, ∀j ∈ [1, 3]
W4 =e0 + e1 + e2

Wj ≥ 0 ∀j ∈ [1, 4] (8)
si = ‘−’ ⇒ ei ≤ 0, si = ‘+’ ⇒ ei ≥ 0 ∀i ∈ [0, 2]
ei �= 0 ∀i ∈ [1, 2]

Note that the value of e0 must be non-negative otherwise (8) cannot be
satisfied for j ∈ {1, 2, 3}. Hence, we consider only the combinations of signs
of the form (‘+’, s1, s2) with s1 ans s2 being either ‘−’ or ‘+’. The following
table gives the optimal solution of the minimisation problem for the considered
combinations of signs:

(s0, s1, s2) (+,−,−) (+,−,+) (+,+,−) (+,+,+)

(e0, e1, e2) (1,−1,−1) (0,−1, 1) (0, 1,−1) (0, 1, 1)

�

3.3 Finding the Constant Term of the Linear Invariant

Finally, we focus on finding the constant term e of the linear invariant v =

e + e0 · n +
k∑

i=1

ei · Vi ≥ 0, when the coefficients e0, e1, . . . , ek are known, and

when the digraph of the automaton I = M1 ∩ M2 ∩ . . . ∩ Mk wrt v does not
contain any negative cycles. By Theorem 1, the weight of any accepting sequence
X wrt I in Gv

I is smaller or equal to v, then if the weight of X is non-negative,
it implies that v is also non-negative. Since the digraph Gv

I does not contain any
negative cycles, then the weight of X cannot be smaller than some constant C.
Hence, it suffices to find this constant and set the constant term e to −C. The

value of C is computed as the constant e0 · (p−1)−
k∑

i=1

β0
i (see Definition 2) plus

the shortest path length from the node of Gv
I corresponding to the initial state

of I to all the nodes of Gv
I corresponding to the accepting states of I.

Example 4. Consider peak(〈X1,X2, . . . , Xn〉 , P) and valley(〈X1,X2, . . . , Xn〉 ,
V) from Example 2 with n ≥ 2, i.e. the signature of 〈X1,X2, . . . , Xn〉 is not
empty. In Example 3, we found four vectors for the relative coefficients e0, e1,

30 E. Arafailova et al.

Fig. 2. (A) The invariant digraph of the automata for the Peak and the Valley con-
straints. (B) The set of feasible values of the result variables P and V of the Peak and
the Valley constraints, respectively, for sequences of size 11.

e2 of the invariant e + e0 · n + e1 · P + e2 · V ≥ 0. For every found vector for
the relative coefficients (e0, e1, e2), we obtain a weighted digraph, whose weights
now are integer numbers. For example, for the vector (e0, e1, e2) = (0,−1, 1),
the obtained digraph is given in Part (A) of Fig. 2. We compute the length of
a shortest path from the node s, which corresponds to the initial state of the
automaton in Part (C) of Fig. 1 to every node corresponding to the accepting
state of the automaton in Part (C) of Fig. 1. The length of the shortest path
from s to s is 0, from s to t is 0, and from s to r is −1. The minimum of this
values is −1, hence the constant term e equals −(0 + (−1)) = 1. The obtained
invariant is P ≤ V + 1.

In a similar way, we find the constant terms for the other found vectors of the
relative coefficients (e0, e1, e2), and obtain the following invariants: V ≤ P + 1,
V + P ≤ n − 2, V + P ≥ 0.

Part (B) of Fig. 2 gives the polytope of feasible points (P, V) when n is 11.
Observe that three of the four found linear invariants are facets of the convex
hull of this polytope, which implies that these invariants are sharp. �

Example 5. We illustrate how the method presented in this section can also be
used for generating linear invariants for non time-series constraints. Consider
a sequence of integer variables X = 〈X1,X2, . . . , Xn〉 with every Xi ranging
over [0, 3], four among [7] constraints that restrict the variables V0, V1, V2, V3

to be the number of occurrences of values 0, 1, 2, 3, respectively, in X, as well
as the four corresponding stretch [23] constraints restricting the stretch length
in X to be respectively in [1, 4], [2, 5], [3, 5], and [1, 2]. In addition assume that
value 2 (resp. 1) cannot immediately follow a 3 (resp. 2). The intersection of the
corresponding automata has 17 states and allows to generate 16 linear invariants,
one of them being 2 + n + V0 + V1 − V2 − 2 · V3 ≥ 0. Since the sum of all Vi

is n, this invariant can be simplified to 2 + 2 · n − 2 · V2 − 3 · V3 ≥ 0, which
is equivalent to 2 · (V2 + V3 − n) ≤ 2 − V3. This inequality means that if X
consists only of the values 2 and 3, i.e. V2 + V3 − n = 0, then V3 ≤ 2, which
represents the conjunction of the conditions that the stretch length of V3 ∈ [1, 2]
and (Xi = 3) ⇒ (Xi+1 �= 2). �

Generating Linear Invariants for a Conjunction of Automata Constraints 31

4 Conditional Linear Invariants

In Sect. 3, we presented a method for generating linear invariants linking the
values returned by an automaton I = M1 ∩ M2 ∩ . . . ∩ Mk after consuming
the signature of a same accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt I. In
this section, we present several cases where the same method can be used for
generating conditional linear invariants.

Quite often an automaton Mi (with i in [1, k]) returns its initial value only
when the signature of X does not contain any occurrence of some regular expres-
sion σi. This may lead to a convex hull of points of coordinates (V1, V2, . . . , Vk)
returned by I containing infeasible points, e.g. see Part (A) of Fig. 3. Some
of these infeasible points can be eliminated by stronger invariants subject to
the condition, called the non-default value condition, that no variable of the
returned vector is assigned to the initial value of the corresponding accumulator.
Section 4.1 shows to generate such invariants. Section 4.2 introduces the notion of

guard of a transition t of I, a linear inequality of the form e + e0·n +
k∑

i=1

ei·Vi ≥ 0,

which is a necessary condition on the vector of values returned by I after con-
suming X for triggering the transition t upon consuming X.

4.1 Linear Invariants with the Non-default Value Condition

We first illustrate the motivation for such invariants.

Example 6. Consider the nb decreasing terrace(〈X1,X2, . . . , Xn〉 , V1) and
the sum width increasing terrace(〈X1,X2, . . . , Xn〉 , V2) constraints, where
V1 is restricted to be the number of maximal occurrences of Decreasing
Terrace = ‘ >=+> ’ in the signature of X = 〈X1,X2, . . . , Xn〉, and V2 is
restricted to be the sum of the number of elements in subseries of X whose sig-
natures correspond to words of the language of IncreasingTerrace = ‘ <=+< ’.
In Fig. 3, for n = 12, the squared points represent feasible pairs (V1, V2), while
the circled points stand for infeasible pairs (V1, V2) inside the convex hull. The
linear invariant 2·V1+V2 ≤ n−2 is a facet of the polytope, which does not elimi-
nate the points (1, 8), (2, 6), (3, 4), (4, 2). However, if we assume that both V1 > 0
and V2 > 0, then we can add a linear invariant eliminating these four infeasible
points, namely 2 ·V1 +V2 ≤ n− 3, shown in Part (B) of Fig. 3. In addition, if we
assume that V1 > 0 and V2 > 0, the infeasible points on the straight line V2 = 1
will also be eliminated by the restriction V2 = 0 ∨ V2 ≥ 2 given in [3, p. 2598].

�

Consider that each automaton Mi (with i in [1, k]) returns its initial value
after consuming the signature of an accepting sequence X wrt Mi iff the sig-
nature of X does not contain any occurrence of some regular expression σi over
the alphabet Σ. Let M′

i denote the automaton which accepts the words of the
language Σ∗σiΣ

∗, where Σ∗ denotes any word over Σ. Then, using the method
of Sect. 3 we generate the invariants for M′

1 ∩ M′
2 ∩ . . . ∩ M′

k. These invariants
hold when the non-default value condition is satisfied.

32 E. Arafailova et al.

Fig. 3. Invariants on the result values V1 and V2 of nb decreasing terrace and
sum width increasing terrace for a sequence size of 12 (A) with the general invari-
ants, and (B) with the non-default value condition. (C) Intersection automaton for
Peak and Valley with the guards P ≥ V and V ≥ P on transitions s → t and s → r
(as for the return statement, the P and V accumulators in the guards refer to the final
values of the corresponding accumulators).

4.2 Generating Guards for Transitions of the Intersection of Several
Automata

Consider k automata M1,M2, . . . ,Mk and let Vi (with i ∈ [1, k]) designate
the value returned by Mi. We focus on generating necessary conditions, called
guards, introduced in Definition 3, for enabling transitions of the automaton
I = M1 ∩ M2 ∩ . . . ∩ Mk. Further, we give a three-step procedure for generating
guards for transitions of I.

Definition 3. Consider a transition t of the automaton I = M1 ∩ M2 ∩ . . . ∩

Mk. A guard of t is a linear inequality of the form e + e0 · n +
k∑

i=1

ei · Vi ≥ 0

such that there does not exist any accepting sequence X = 〈X1,X2, . . . , Xn〉 wrt
I such that (1) after consuming the signature of X, the vector (V1, V2, . . . , Vk)

returned by I satisfies the inequality e + e0 · n +
k∑

i=1

ei · Vi < 0, (2) and the

transition t was triggered upon consuming the signature of X.

The following example illustrates Definition 3.

Example 7. Given a sequence X = 〈X1,X2, . . . , Xn〉, consider the peak(X,P)
and valley(X,V) constraints. The intersection I of the automata for peak and
valley was given in Part (C) of Fig. 1. Observe that, if at the initial state s the
automaton consumes ‘<’ (resp. ‘>’), then the number of peaks (resp. valleys) in
X is greater than or equal to the number of valleys (resp. peaks). Hence, we can
impose the guard P ≥ V (resp. V ≥ P) on the transition from s to t (resp. to
r). Part (C) of Fig. 3 gives the automaton I with the obtained guards. �

Guards for the transitions of an automaton I = M1 ∩ M2 ∩ . . . ∩ Mk can
be generated in three steps:

1. First, we identify the subset T of transitions of I such that, for any transition
t in T , upon consuming any sequence, t can be triggered at most once.

Generating Linear Invariants for a Conjunction of Automata Constraints 33

2. Second, for every transition t in T , we obtain a new automaton It by removing
from I all transitions of T different from t that start at the same state as t.

3. Third, using the technique of Sect. 3 on the invariant digraph Gv
It

, we obtain
linear invariants that are guards of transition t.

5 Evaluation

To test the effectiveness of the generated invariants, we first try systematic tests
on the conjunction of pairs of the 35 time-series constraints [5] of the nb and
sum width families for which the glue matrix constraints exist [2]. The nb con-
straints count the number of occurrences of some pattern in a time series, while
the sum width family constrains the sum of the width of pattern occurrences.
Our intended use case is similar to [9], where constraints and parameter ranges of
the problem are learned from real-world data, and are used to produce solutions
that are similar to the previously observed data. It is important both to remove
infeasible parameter combinations quickly, as well as helping to find solutions
for feasible problems. Real world datasets often will only show a tiny subset of
all possible parameter combinations, but as we don’t know the data a priori, a
systematic evaluation seems the most conservative approach.

For the experiments we use a database of generated invariants in a format
compatible with the Global Constraint Catalogue [3]. Invariants are generated as
Prolog facts, from which executable code, and other formats are then produced
automatically. The time required to produce the invariants (5 min) is insignificant
compared to the overall runtime of the experiments. For the 595 combinations
of the 35 constraints we produce over 4100 unconditional invariants, over 3500
conditional invariants, and 86 guard invariants. In the test, we try each pair of
constraints and try to find solutions for all possible pairs of parameter values.
We compare four different versions of our methods: The pure baseline version
uses the automata that were described in [4], the bounds on the parameter
values for each prefix and suffix, and the glue matrix constraints as described
in [2]. This version represents the state of the art before the current work. In
the invariant version we add the generated invariants for the parameters of the
complete time series. In the incremental version, we not only state the invariants
for the complete time series, but also apply them for each suffix. The required
variables are already available as part of the glue matrix setup, we only need
to add the linear inequalities for each suffix length. In the all version, we add
the product automaton of the conjunction of the two constraints, if it contains
guard constraints, and also state some additional, manually derived invariants.

The test program uses a labeling routine that first assigns the signature
variables, and only afterwards assigns values for the Xi decision variables. The
variables in each case are assigned from left to right. For each pair of parameters
values, defined by the product of the bounds from [2], we try to find a first
solution with a timeout of 60 s.

34 E. Arafailova et al.

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000

Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

U
nd

ec
id

ed

Time [ms]

Time Needed, Size 18, Total Instances 109682

pure
inv

incr
all

Fig. 4. Comparing constraint variants, unde-
cided instances percentage for size 18 as a
function of time, Timeout = 60 s

We have tested the results for
different time series length, Fig. 4
shows the result for length 18 and
domain size 0..18, the largest prob-
lem size where we find solutions
for each case within the timeout.
All experiments were run on a lap-
top with Intel i7 CPU (2.9 GHz),
64 Gb main memory and Windows
10 64 bit OS using SICStus Pro-
log 4.3.5 utilizing a single core. For
our four problem variants, we plot
the percentage of undecided prob-
lem instances as a function of computation time. The plot uses log-log scales to
more clearly show the values for short runtimes and for low number of unde-
cided problems. The baseline pure variant solves around 55% of the instances
immediately, and leaves just under one percent unsolved within the timeout. The
invariants version improves on this by pruning more infeasible problems imme-
diately. On the other hand, stating the invariants on the full series has no effect
on feasible instances. When using the incremental version of the constraints,
this has very little additional impact on infeasible problems, but improves the
solution time for the feasible instances significantly. Adding (variant all) addi-
tional constraints further reduces the number of backtracks required, but these
savings are largely balanced with the additional processing time, and therefore
have no major impact on the overall results. After one second, around 9.5% of
all instances are unsolved in the baseline, but only 0.5% in the incremental or
all variant.

Fig. 5. Percentage of problems solved for 3 overlapping segments of lengths 22, 24, and
25; execution time in top row, backtracks required in bottom row

Generating Linear Invariants for a Conjunction of Automata Constraints 35

To test the method in a more realistic setting, we consider the conjunction of
all 35 considered time-series constraints on electricity demand data provided by
an industrial partner. The time-series describes daily demand levels in half-hour
intervals, giving 48 data points. To capture the shape of the time-series more
accurately, we split the series into overlapping segments from 00–12, 06–18, and
12–24 h, each segment containing 24 data points, overlapping in 12 data points
with the previous segment. We then setup the conjunction of the 35 time-series
constraints for each segment, using the pure and incremental variants described
above. This leads to 3×35×2 = 210 automata constraints with shared signature
and decision variables. The invariants are created for every pair of constraints,
and every suffix, leading to a large number of inequalities. The search routine
assigns all signature variables from left to right, and then assigns the decision
variables, with a timeout of 120 s.

In order to understand the scalability of the method, we also consider time
series of 44 resp. 50 data points (three segments of length 22 and 25), extracted
from the daily data stream covering a four year period (1448 samples). In Fig. 5
we show the time and backtrack profiles for finding a first solution. The top
row shows the percentage of instances solved within a given time budget, the
bottom row shows the percentage of problems solved within a backtrack budget.
For easy problems, the pure variant finds solutions more quickly, but the incre-
mental version pays off for more complex problems, as it reduces the number of
backtracks required sufficiently to account for the large overhead of stating and
pruning all invariants. The problems for segment length 20 (not shown) can be
solved without timeout for both variants, as the segment length increases, the
number of time outs increases much more rapidly for the pure variant. Adding
the invariants drastically reduces the search space in all cases, future work should
consider if we can identify those invariants that actively contribute to the search
by cutting off infeasible branches early on. Restricting the invariants to such an
active subset should lead to a further improvement in execution time.

6 Conclusion

Future work may look how to extend the current approach to handle automata
with accumulators that also allow the min and max aggregators for accumulator
updates. It also should investigate the use of such invariants within the context
of MIP. While MIP has been using linear cuts for a long time [16,20], no off-the-
shelf data base of cuts in some computer readable format is currently available.
Cuts are typically defined in papers and are then directly embedded within MIP
solvers.

References

1. Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all different pred-
icates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp.
364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 25

http://dx.doi.org/10.1007/978-3-540-24664-0_25

36 E. Arafailova et al.

2. Arafailova, E., Beldiceanu, N., Carlsson, M., Flener, P., Francisco Rodŕıguez, M.A.,
Pearson, J., Simonis, H.: Systematic derivation of bounds and glue constraints for
time-series constraints. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 13–29.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 2

3. Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Rodŕıguez,
M.A.F., Pearson, J., Simonis, H.: Global constraint catalog, volume II, time-series
constraints. CoRR abs/1609.08925 (2016). http://arxiv.org/abs/1609.08925

4. Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodŕıguez, M.A.,
Pearson, J., Simonis, H.: Time-series constraints: improvements and application in
CP and MIP contexts. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676,
pp. 18–34. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2 2

5. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22–40 (2016). Journal fast track of CP 2015: summary. LNCS, vol. 9255, p. 723.
Springer, Heidelberg (2015)

6. Beldiceanu, N., Carlsson, M., Rampon, J.-X., Truchet, C.: Graph invariants as
necessary conditions for global constraints. In: Beek, P. (ed.) CP 2005. LNCS, vol.
3709, pp. 92–106. Springer, Heidelberg (2005). doi:10.1007/11564751 10

7. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Com-
put. Model. 20(12), 97–123 (1994)

8. Beldiceanu, N., Flener, P., Pearson, J., Van Hentenryck, P.: Propagating regular
counting constraints. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014, pp. 2616–2622.
AAAI Press, Palo Alto (2014)

9. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40627-0 54

10. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8 11

11. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

12. Charnley, J.W., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: ECAI 2006. Frontiers in AI and Applications, vol. 141, pp. 73–77. IOS Press
(2006)

13. Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving the car-sequencing problem
in constraint logic programming. In: ECAI, pp. 290–295 (1988)

14. Rodŕıguez, M.A.F., Flener, P., Pearson, J.: Implied constraints for automaton con-
straints. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015. EasyChair
Proceedings in Computing, vol. 36, pp. 113–126 (2015)

15. Frisch, A., Miguel, I., Walsh, T.: Extensions to proof planning for generating
implied constraints. In: 9th Symposium on the Integration of Symbolic Compu-
tation and Mechanized Reasoning (2001)

16. Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bull.
Am. Math. Soc. 64, 275–278 (1958)

17. Hansen, P., Caporossi, G.: Autographix: an automated system for finding conjec-
tures in graph theory. Electron. Notes Discret. Math. 5, 158–161 (2000)

18. Hooker, J.N.: Integrated Methods for Optimization, 2nd edn. Springer Publishing
Company, New York (2011). Incorporated

19. Lee, J.: All-different polytopes. J. Comb. Optim. 6(3), 335–352 (2002)

http://dx.doi.org/10.1007/978-3-319-44953-1_2
http://arxiv.org/abs/1609.08925
http://dx.doi.org/10.1007/978-3-319-33954-2_2
http://dx.doi.org/10.1007/11564751_10
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-540-30201-8_11

Generating Linear Invariants for a Conjunction of Automata Constraints 37

20. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer
and mixed integer programming. Discret. Appl. Math. 123(1–3), 397–446 (2002)

21. Menana, J.: Automata and Constraint Programming for Personnel Schedul-
ing Problems. Theses, Université de Nantes, October 2011. https://tel.
archives-ouvertes.fr/tel-00785838

22. Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular

constraint. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 178–192. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01929-6 14

23. Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001). doi:10.1007/
3-540-45578-7 13

https://tel.archives-ouvertes.fr/tel-00785838
https://tel.archives-ouvertes.fr/tel-00785838
http://dx.doi.org/10.1007/978-3-642-01929-6_14
http://dx.doi.org/10.1007/3-540-45578-7_13
http://dx.doi.org/10.1007/3-540-45578-7_13

AMONG Implied Constraints
for Two Families of Time-Series Constraints

Ekaterina Arafailova1(B), Nicolas Beldiceanu1, and Helmut Simonis2

1 TASC (LS2N), IMT Atlantique, 44307 Nantes, France
{Ekaterina.Arafailova,Nicolas.Beldiceanu}@imt-atlantique.fr

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
Helmut.Simonis@insight-centre.org

Abstract. We consider, for an integer time series, two families of con-
straints restricting the max, and the sum, respectively, of the surfaces
of the elements of the sub-series corresponding to occurrences of some
pattern. In recent work these families were identified as the most difficult
to solve compared to all other time-series constraints. For all patterns
of the time-series constraints catalogue, we provide a unique per family
parameterised among implied constraint that can be imposed on any
prefix/suffix of a time-series. Experiments show that it reduces both the
number of backtracks/time spent by up to 4/3 orders of magnitude.

1 Introduction

Going back to the work of Schützenberger [20], regular cost functions are quan-
titative extensions of regular languages that correspond to a function mapping a
word to an integer value or infinity. Recently there has been renewed interest in
this area, both from a theoretical perspective [14] with max-plus automata, and
from a practical point of view with the synthesis of cost register automata [2]
for data streams [3]. Within constraint programming, automata constraints were
introduced in [18] and in [8,15], the latter also computing an integer value from
a word.

This paper focusses on the g_surf_σ(X,R) families of time-series con-
straints with g being either Max or Sum, and with σ being one of the 22 pat-
terns of [5], as they were reported to be the most difficult in the recent work
of [4]. Each constraint of one of the two families restricts R to be the result
of applying the aggregator g to the sum of the elements corresponding to the
occurrences of a pattern σ [3] in an integer sequence X, which is called a time
series and corresponds to measurements taken over time. These constraints play
an important role in modelling power systems [10]. If the measured values cor-
respond to the power input/output, then the surface feature surf describes the

E. Arafailova is supported by the EU H2020 programme under grant 640954 for
the GRACeFUL project. N. Beldiceanu is partially supported by GRACeFUL and
by the Gaspard-Monge programme. H. Simonis is supported by Science Foundation
Ireland (SFI) under grant numbers SFI/12/RC/2289 and SFI/10/IN.1/I3032.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 38–54, 2017.
DOI: 10.1007/978-3-319-66158-2_3

among Implied Constraints for Two Families 39

energy used/generated during the period of pattern occurence. The Sum aggre-
gator imposes a bound on the total energy during all pattern occurences in
the time series, the Max aggregator is used to limit the maximal energy dur-
ing a single pattern occurence. Generating time series verifying a set of specific
time-series constraints is also useful in different contexts like trace generation,
i.e. generating typical energy consumption profiles of a data centre [16,17], or a
staff scheduling application, i.e. generating manpower profiles over time subject
to work regulations [1,6].

Many constraints of these families are not tractable, thus in order to improve
the efficiency of the solving we need to address the combinatorial aspect of time-
series constraints. We improve the reasoning for such time-series constraints
by identifying implied among constraints. Learning parameters of global con-
straints like among [9] is a well known method for strengthening constraint
models [11,12,19] with the drawback that it is instance specific, so this alter-
native was not explored here. Taking exact domains into account would lead to
filtering algorithms rather than to implied constraints which assume the same
minimum/maximum.

While coming up with implied constraints is usually problem specific, the
theoretical contribution of this paper is a unique per family among implied
constraint, that is valid for all regular expressions of the time-series constraint
catalogue [5] and that covers all the 22 time-series constraints of the correspond-
ing family. Hence, it covers 44 time-series constraints in total. The main focus of
this paper is on reusable necessary conditions that can be associated to a class
of time-series constraints described with regular expressions. There have been
several papers describing progress in propagation of a set of automata and time-
series constraints. The techniques described in this paper are only one element
required to make such models scale to industrial size.

Section 2 recalls the necessary background on time-series constraints used in
this paper. After introducing several regular expression characteristics, Sect. 3
presents the main contribution, Theorems 1 and 2, while Tables 2 and 3 provide
the corresponding derived concrete implied constraints for some subset of the
max_surf_σ and the sum_surf_σ time-series constraints, respectively, of
the time-series constraint catalogue. Finally Sect. 4 systematically evaluates the
impact of the derived implied constraints.

2 Time-Series Constraints Background

A time series constraint [7] imposed on a sequence of integer variables
X = 〈X1,X2, . . . , Xn〉 and an integer variable R is described by three main
components 〈g, f, σ〉. Let RΣ denote the set of regular expressions on Σ =
{‘ < ’, ‘ = ’, ‘ > ’}. Then, σ is a regular expression in RΣ , that is charac-
terised by two integer constants aσ and bσ, whose role is to trim the left
and right borders of the regular expression, and Lσ denotes the regular lan-
guage of σ, while f is a function, called a feature. In this paper, we con-
sider only the case when f is surf, which will be explained at the end of

40 E. Arafailova et al.

this paragraph. Finally g is also a function, called an aggregator, that is either
Max or Sum. The signature S = 〈S1, S2, . . . , Sn−1〉 of a time series X is defined
by the following constraints: (Xi < Xi+1 ⇔ Si = ‘ < ’) ∧ (Xi = Xi+1 ⇔
Si = ‘ = ’) ∧ (Xi > Xi+1 ⇔ Si = ‘ > ’) for all i ∈ [1, n − 1]. If a sub-
signature 〈Si, Si+1, . . . , Sj〉 is a maximal word matching σ in the signature of X,
then the subseries 〈Xi+bσ

,Xi+bσ+1, . . . , Xj+1−aσ
〉 is called a σ-pattern and the

subseries 〈Xi,Xi+1, . . . , Xj+1〉 is called an extended σ-pattern. The width of a
σ-pattern is its number of elements. The integer variable R is the aggregation,
computed using g, of the list of values of feature f for all σ-patterns in X. The
result of applying the surf feature to a σ-pattern is the sum of all elements of
this σ-pattern. If there is no σ-pattern in X, then R is the default value, denoted
by defg,f , which is −∞, or 0 when g is Max, or Sum, respectively. A time-series
constraint specified by 〈g, f, σ〉 is named as g_f_σ. A time series is maximal
for g_f_σ(X,R) if it contains at least one σ-pattern and yields the maximum
value of R among all time series of length n that have the same initial domains
for the time-series variables.

Example 1. Consider the σ = DecreasingSequence = ‘(>(>|=)*)*>’ regu-
lar expression and the time series X = 〈4, 2, 2, 1, 5, 3, 2, 4〉 whose signature is
‘>=><>>< ’. A σ-pattern, called a decreasing sequence, within a time series is
a subseries whose signature is a maximal occurrence
of σ in the signature of X, and the surf feature value
of a decreasing sequence is the sum of its elements.
The time series X contains two decreasing sequences,
namely 〈4, 2, 2, 1〉 and 〈5, 3, 2〉, shown in the figure on
the right, of surfaces 9 and 10, respectively. Hence, the
aggregation of their surfaces, obtained by using the
aggregator Max, or Sum is 10, or 19 respectively. The correspond-
ing time-series constraints are max_surf_decreasing_sequence, and
sum_surf_decreasing_sequence. �

3 Deriving AMONG Implied Constraint

Consider a g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint with g being
either Sum or Max, with f being the surf feature, and with every Xi ranging over
the same integer interval domain [�, u] such that u > 0. For brevity, we do not
consider here the case when u ≤ 0, since it can be handled in a symmetric way.
We derive an among(N , 〈X1, X2, . . . , Xn〉, 〈I〈�,u〉

〈g,f,σ〉, I
〈�,u〉
〈g,f,σ〉 + 1, . . . , I〈�,u〉

〈g,f,σ〉〉)
implied constraint, where:

– For any value of R, N is an integer variable whose lower bound only depends
on R, σ, f , �, u, and n.

– The interval I〈�,u〉
〈g,f,σ〉 = [I〈�,u〉

〈g,f,σ〉, I
〈�,u〉
〈g,f,σ〉] is a subinterval of [�, u], which is

called the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 and defined in Sect. 3.1.

Such an among [13] constraint is satisfied if exactly N variables of 〈X1,X2, . . . ,

Xn〉 are assigned a value in I〈�,u〉
〈g,f,σ〉. Before formally describing how to derive

this implied constraint, we provide an illustrating example.

among Implied Constraints for Two Families 41

Example 2. Consider a max_surf_σ(〈X1,X2, . . . X7〉, R) time-series con-
straint with every Xi ranging over the same integer interval domain [1, 4], and
with σ being the DecreasingSequence regular expression of Example 1.

σ-pattern 1 σ-pattern 2

〈4, 3, 3, 3, 3, 2〉 〈4, 3, 3, 3, 2, 2, 1〉

Let us observe what happens when R is fixed, for example, to 18. The table
on the right gives the two distinct σ-patterns
such that at least one of them appear in every
ground time series X = 〈X1,X2, . . . , X7〉 that
yields 18 as the value of R. By inspection, we
observe that for any ground time series X for which R equals 18, its sin-
gle σ-pattern contains at least 4 time-series variables whose values are in [3, 4].
Hence, we can impose an among(N , 〈X1,X2, . . . , X7〉, 〈3, 4〉) implied constraint
with N ≥ 4. �

We now formalise the ideas presented in Example 2 and systematise the way
we obtain such an implied constraint even when R is not initially fixed.

– Section 3.1 introduces five characteristics of a regular expression σ, which will
be used to obtain a parameterised implied constraint:

• the height of σ (see Definition 1),
• the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 (see Definition 2),
• the maximal value occurrence number of v ∈ Z wrt 〈�, u, n〉 (see Defini-

tion 3),
• the big width of σ wrt 〈�, u, n〉 (see Definition 4), and
• the overlap of σ wrt 〈�, u〉 (see Definition 5).

– Based on these characteristics, Sect. 3.2 presents a systematic way of deriving
among implied constraints for the max_surf_σ and the sum_surf_σ
families of time-series constraints.

3.1 Characteristics of Regular Expressions

To get a unique per family among implied constraint that is valid for any
g_surf_σ(X,R) time-series constraint with g being either Sum or Max, we intro-
duce five characteristics of regular expressions that will be used for parametrising
our implied constraint. First, Definition 1 introduces the notion of height of a
regular expression, that is needed in Definition 2, which defines the specific range
of values on which the implied among constraint focusses on.

Definition 1. Given a regular expression σ, the height of σ, denoted by ησ, is a
function that maps an element of RΣ to N. It is the smallest difference between
the domain upper limit u and the domain lower limit � such that there exists a
ground time series over [�, u] whose signature has at least one occurrence of σ.

Example 3. Consider the σ = DecreasingSequence regular expression of
Example 1.

• When u = �, for any time-series length, there exists a single ground time
series t whose signature is a word in the regular language of ‘=∗’. The sig-
nature of t contains no occurrences of the ‘> ’ symbol, and thus contains no
words of Lσ either.

42 E. Arafailova et al.

• But when u − � = 1, there exists, for example, a time series t = 〈u − 1, u, u −
1, u − 1〉, depicted in Fig. 1a, whose signature ‘<>= ’ contains the word ‘> ’
of Lσ. Hence, the height of σ equals 1. �

Fig. 1. For all the figures, σ is the DecreasingSequence regular expression. A time
series t (a) with one σ-pattern such that the difference between its maximum and
minimum is 1; (b) with one σ-pattern, which contains a single occurrence of value u−1;
(c) with one σ-pattern, which contains 2 occurrences of value u − 1; (d) with the
maximum number, 3, of σ-patterns, which all contain one occurrence of value u − 1,
and only one contains an occurrence of value u − 2; (e) with one σ-pattern, which
contains one occurrence of both u and u − 1; (f) with one σ-pattern, whose width is
maximum among all other σ-patterns in ground time series of length 5 over the same
domain [u − 2, u].

Definition 2. Consider a g_f_σ(X,R) time-series constraint with X being
a time series over an integer interval domain [�, u]. The interval of interest
of 〈g, f, σ〉 wrt 〈�, u〉, denoted by I〈�,u〉

〈g,f,σ〉, is a function that maps an element
of T × Z × Z to Z × Z, where T denotes the set of all time-series constraints,
and the result pair of integers is considered as an interval.

– The upper limit of I〈�,u〉
〈g,f,σ〉, denoted by I〈�,u〉

〈g,f,σ〉, is the largest value in [�, u]
that can occur in a σ-pattern of a time series over [�, u]. If such value does
not exist, then I〈�,u〉

〈g,f,σ〉 is undefined.

– The lower limit of I〈�,u〉
〈g,f,σ〉, denoted by I〈�,u〉

〈g,f,σ〉, is the smallest value v

in [max(�, u − ησ − 1), u] such that for any n in N, the number of occur-
rences of v in the union of the σ-patterns of any maximal time series for
g_f_σ of length n over [�, u], is a non-constant function of n. If such v does
not exist, then I〈�,u〉

〈g,f,σ〉 equals I〈�,u〉
〈g,f,σ〉 − ησ.

We focus on such intervals of interests because they consist of the largest
values appearing in maximal time series for g_f_σ.

Example 4. Consider a g_f_σ(X,R) time-series constraint with σ being the
DecreasingSequence regular expression, with f being the surf feature, and
with X being a time series of length n ≥ 2 over an integer interval domain [�, u]

among Implied Constraints for Two Families 43

such that u > 1 and u > �. We consider different combinations of triples 〈g, f, σ〉
and their corresponding intervals of interest wrt 〈�, u〉. Note that the value
of I〈�,u〉

〈g,f,σ〉 depends only on σ, �, and u and not on g and f . The largest value

appearing in the σ-patterns of X is u, and thus I〈�,u〉
〈g,f,σ〉 = u. We compute the

value of I〈�,u〉
〈g,f,σ〉 wrt two time-series constraints:

• Let g be the Max aggregator.
* If u−� = 1, then any σ-pattern of X has a signature ‘> ’, i.e. contains only

two elements. Then, the maximum value of R is reached for a time series t
that contains the 〈u, u − 1〉 σ-pattern. The rest of the variables of t are
assigned any value, e.g. all other variables have a value of u. Such a time
series t for the length 4 is shown in Fig. 1b. Further, for any v in [�, u],
the number of occurrences of v in the union of the σ-patterns of t is at
most 1, which is a constant, and does not depend on n. By definition
I〈�,u〉

〈g,f,σ〉 = I〈�,u〉
〈g,f,σ〉 − ησ = u − 1.

* If u − � > 1, then any maximal time series t for g_f_σ contains a
single σ-pattern whose signature is in the language of ‘>=∗>’. If, for
example, n = 4, then t has n − 2 = 2 time-series variables with the
values u − 1, which is depicted Fig. 1c. In addition, the σ-pattern of t has
a single occurrence of the value u − 2. Hence, I〈�,u〉

〈g,f,σ〉 = u − 1.
• Let g be the Sum aggregator.

Any maximal time series t for g_f_σ contains
⌊

n
2

⌋
σ-patterns, which

contains u and u − 1, and at most one of them has the value u − 2. Such a
time series t for the length n = 7 is depicted in Fig. 1d. Hence, I〈�,u〉

〈g,f,σ〉
= u − 1. �

The next characteristic, we introduce, is a function of �, u and n related to
the maximum number of value occurrences in a σ-pattern.

Definition 3. Consider a regular expression σ, and a time series X of length n
over an integer interval domain [�, u]. The maximum value occurrence number
of v in Z wrt 〈�, u, n〉, denoted by μ

〈�,u,n〉
σ (v), is a function that maps an element

of RΣ ×Z×Z×N
+ ×Z to N. It equals the maximum number of occurrences of

the value v in one σ-pattern of X.

Example 5. Consider the σ = DecreasingSequence regular expression and a
time series X of length n ≥ 2 over an integer interval domain [�, u] such that u >
�. We compute the maximum value occurrence number of v in Z wrt 〈�, u, n〉. If v

is not in [�, u], then μ
〈�,u,n〉
σ (v) = 0. Hence, we focus on the case when v ∈ [�, u].

• If u − � = 1, then any σ-pattern of X has a signature ‘> ’, and thus it may
have at most one occurrence of any value v in [�, u]. Hence, for any v in [�, u],
μ

〈�,u,n〉
σ (v) = 1.

• If u − � > 1, then we consider two subsets of [�, u]:

44 E. Arafailova et al.

* For either v in the set {�, u}, the value of μ
〈�,u,n〉
σ (v) is 1, since in any

σ-pattern the lower and upper limits of the domain, namely � and u, can
appear at most once, as it illustrated in Fig. 1e for the length n = 4.

* For any v in [�+1, u−1], the value of μ
〈�,u,n〉
σ (v) is max(1, n−2), since v can

occur at most n − 2 times in a σ-pattern of X. The time series in Fig. 1c
has a single σ-pattern, namely 〈t1, t2, t3, t4〉, which has n − 2 = 4− 2 = 2
occurrences of the value u − 1. �

The next characteristic, we introduce, is the largest width of a σ-pattern in
a time series.

Definition 4. Consider a regular expression σ, and a time series X of length n
over an integer interval domain [�, u]. The big width of σ wrt 〈�, u, n〉, denoted
by β

〈�,u,n〉
σ , is a function that maps an element of RΣ × Z × Z × N

+ to N. It
equals the maximum width of a σ-pattern in X. If X cannot have any σ-patterns,
then β

〈�,u,n〉
σ is 0.

Example 6. Consider the σ = DecreasingSequence regular expression and a
time series X of length n over an integer interval domain [�, u].

• If n ≤ 1, then X cannot have any σ-patterns, since a minimum width
σ-pattern contains at least two elements. Hence, β

〈�,u,n〉
σ = 0.

• If u − � = 0, then, as it was shown in Example 3, no word of Lσ can appear
in the signature of any ground time series over [�, u], and thus X cannot have
any σ-patterns. Hence, β

〈�,u,n〉
σ = 0.

• If u − � = 1 and n ≥ 2, then any σ-pattern of X has a signature ‘ > ’. The
width of such a σ-pattern is 2. Hence, β

〈�,u,n〉
σ = 2.

• If u − � > 1 and n ≥ 2, then there exists a word in Lσ that is also in the
language of ‘>=∗>’ and whose length is n − 1. This word is the signature
of some ground time series t of length n over [�, u], which contains a single
σ-pattern of width n. Such a time series t for the length n = 5 is illustrated
in Fig. 1f. The width of a σ-pattern cannot be greater than n, thus
β

〈�,u,n〉
σ = n. �

The last characteristic is the notion of maximum overlap of a regular expres-
sion wrt an integer interval domain. It will be used for deriving an implied among
constraint when the aggregator of a considered time-series constraint is Sum.

Definition 5. Consider a regular expression σ and an integer interval domain
[�, u]. The overlap of σ wrt [�, u], denoted by o

〈�,u〉
σ , is the maximum number of

time-series variables that belong simultaneously to two extended σ-patterns of a
time series among all time series over [�, u]. If such maximum number does not
exist, then o

〈�,u〉
σ is undefined.

Example 7. Consider the σ = DecreasingSequence regular expression and an
interval [�, u] with u > �. For any time series over [�, u], any of its two extended
σ-patterns have no time-series variables in common, thus o

〈�,u〉
σ = 0. �

among Implied Constraints for Two Families 45

Table 1 gives the values of the four characteristics of regular expressions for
some regular expressions of [5], while Tables 2 and 3 provide the intervals of
interest for 12 time-series constraints.

Table 1. For every regular expression σ, [�, u] is an integer interval domain, and n
is a time series length, such that there is at least one ground time series of length n
over [�, u] whose signature contains at least one occurrence of σ. Then, ησ is the height
of σ, μ

〈�,u,n〉
σ (v) is the maximum value occurrence number of v ∈ [�, u] wrt 〈�, u, n〉,

β
〈�,u,n〉
σ is the big width of σ wrt 〈�, u, n〉, and o

〈�,u〉
σ is the overlap of σ wrt 〈�, u〉.

σ ησ μ
〈�,u,n〉
σ (v) β

〈�,u,n〉
σ o

〈�,u〉
σ

‘ >><>> ’ 2

⎧
⎨

⎩

1, if v ∈ {�, � + 1, u − 1, u}
2, if v ∈ [� + 2, u − 2]

3 3

‘>’ 1 1, ∀v ∈ [�, u] 2 1

‘(>(>|=)*)*>’ 1

⎧
⎨

⎩

1, if v ∈ {u, �}
max(1, n − 2), if v ∈ [� + 1, u − 1]

⎧
⎨

⎩

2, if u − � = 1

n, Otherwise
0

‘(>(>|=)*)*><((<|=)*<)*’ 1

⎧
⎪⎪⎨

⎪⎪⎩

0, if v = u

n − 3, if v ∈ [� + 1, u − 1]

1, if v = �

⎧
⎨

⎩

1, if u − � = 1

n − 2, Otherwise
1

‘<(<|=)* (>|=)*>’ 1

⎧
⎨

⎩

0, if v = �

n − 2, if v ∈ [� + 1, u]
n − 2 1

‘(<>)+(< | <>)|(><)+(> | ><)’ 1
⌊

n−1
2

⌋
, ∀v ∈ [�, u] n − 2

⎧
⎨

⎩

0, if u − � = 1

1, Otherwise

3.2 Deriving an AMONG Implied Constraint for the MAX_SURF_σ
and the SUM_SURF_σ Families

Consider a g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint with every Xi

ranging over the same integer interval domain [�, u], with f being the surf
feature, and with g being either Max or Sum. Our goal is to estimate a lower
bound on N , which is the number of time-series variables in the σ-patterns
of 〈X1,X2, . . . , Xn〉 that must be assigned a value in the interval of inter-
est I〈�,u〉

〈g,f,σ〉 of 〈g, f, σ〉 wrt 〈�, u〉, in order to satisfy the g_f_σ(〈X1,X2, . . . , Xn〉,
R) constraint. Theorems 1 and 2 present such inequality for the cases when g is
Max, and Sum, respectively, using the four characteristics introduced in Sect. 3.1.
Example 8 first conveys the intuition behind Theorem 1.

Example 8. Consider a g_f_σ(X,R) time-series constraint with g being Max,
with f being surf, with σ being the DecreasingSequence regular expression,
and with X being a time series of length n = 9 over the integer interval
domain [�, u] = [0, 4]. Let us assign R to the value 24, and let us compute a
lower bound on N , the number of variables of X that must be assigned a value
from I〈�,u〉

〈g,f,σ〉, which is [3, 4] as it was shown in Example 4. Our aim is to show
that for a σ-pattern in X, its number of time-series variables in [3, 4] can be esti-
mated as the difference between the value of the surface of this σ-pattern and
some other value that is a function of σ, �, u and n. In order to obtain this value,
we construct a time series t of length β

〈�,u,n〉
σ = 9 satisfying all the following con-

ditions:

46 E. Arafailova et al.

1. The number of time-series variables of t that are assigned to the value I〈�,u〉
〈g,f,σ〉

equals μ
〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = μ
〈0,4,9〉
σ (4) = 1.

2. The number of time-series variables of t that are assigned to the value I〈�,u〉
〈g,f,σ〉,

which is I〈�,u〉
〈g,f,σ〉 − 1, equals μ

〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = μ
〈0,4,9〉
σ (3) = n − 2 = 7.

3. The rest of the time-series variables of t, namely n − μ
〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) −
μ

〈�,u,n〉
σ (I〈�,u〉

〈g,f,σ〉) = 1 time-series variable, is assigned to the value I〈�,u〉
〈g,f,σ〉 −

1 = 2.

0

1

2

3

4

X1X2X3X4X5X6X7X8X9

t

I〈0
,4

〉
〈g

,f
,σ

〉 Figure on the left illustrates a ground time series t of
length 9 over [0, 4] satisfying all the three conditions.
By construction, the sum of elements of t is greater
than or equal to the surface of any σ-pattern of X.
Furthermore, for any σ-pattern of X, its number of

time-series variables whose values are in [3, 4] is not greater than the number of
such time-series variables of t.

Figure above on the left contains three type of points: circled, squared and
diamond-shaped points; thus our goal is to evaluate the number of circles. The
value of Xi is one plus the number of squared and diamond-shaped points under
the point corresponding to Xi. Hence, the sum of all elements of t can be viewed
as the total number of circled, squared and diamond-shaped points. Furthermore,
the number of circles is the difference between the total number of points and
the number of squared points, namely 27 minus 19, which is 8.

0

1

2

3

4

X1X2X3X4X5X6X7X8X9

t′
I〈0

,4
〉

〈g
,f

,σ
〉For any σ-pattern of X, its corresponding number

of squared and diamond-shaped points is at most 19.
Then, its number of time-series variables whose values
are in [3, 4] can be estimated as the surface of the σ-
pattern minus 19. Hence, when the surface of the σ-
pattern is 24, a lower bound on N is 5. Figure on the right gives an example
of a ground time series t′ of length 9 over [0, 4] that contains a σ-pattern with
a surface of 24. This σ-pattern has 6 ≥ 5 values in [3, 4], which agrees with our
computed lower bound. �

Theorem 1. Consider a g_f_σ(X,R) time-series constraint with g =
Max, f = surf and X being a time series of length n over an integer inter-
val domain [�, u]; then among(N ,X, I) is an implied constraint, where N is
restricted by

N ≥ R − max (0, I − 1) · β −
∑

v∈[I+1,I]
μ〈�,u,n〉

σ (v) · (v − I) , (1)

where β (resp. I) is shorthand for β
〈�,u,n〉
σ (resp. I〈�,u〉

〈g,f,σ〉), and I (resp. I) denotes
the lower (resp. upper) limit of interval I.

among Implied Constraints for Two Families 47

Proof . We show that the right-hand side of the stated inequality is a lower bound
on the number of time-series variables of a σ-pattern whose values are in I, and
the surface of the σ-pattern is R. In order to prove the lower bound on N , we
first compute a lower bound on the number N I of time-series variables of the
σ-pattern whose values are I, which is the smallest value of interval I. We assume
that for every v > I in I, the number of occurrences of v in the σ-pattern equals
some N v. Note that the number of time-series variables in any σ-pattern is not
greater than β = β

〈�,u,n〉
σ . We state the following inequality:

R ≤ N I · max(0, I)

︸ ︷︷ ︸
A

+
∑

v∈[I+1,I]

N v · max(0, v)

︸ ︷︷ ︸
B

(2)

+max(0, I − 1) · (β − N I −
∑

v∈[I+1,I]

N v)

︸ ︷︷ ︸
C

,

where A,B, and C correspond to the sums of elements of the σ-pattern that
equal I, are in I and are greater than I, and are outside I〈�,u〉

〈g,f,σ〉 respectively.
From Inequality (2) we obtain the following lower bound on N I :

N I ≥ R −
∑

v∈[I+1,I]

N v · max(0, v) − max(0, I − 1) · (β −
∑

v∈[I+1,I]

N v). (3)

In order to obtain a lower bound on N from the known lower bound on N I ,
we add

∑

v∈[I+1,I]

N v to both sides of Inequality (3). Further, we regroup some

terms in Inequality (3), we eliminate
∑

v∈[I+1,I]

N v in the right-hand side of

Inequality (3) by replacing it with
∑

v∈[I+1,I]

μ
〈�,u,n〉
σ (v), and obtain the inequality

of the theorem.
�

Example 9. Consider the g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint,
with g being Sum, with f being surf, and with every Xi (with i ∈ [1, n]) ranging
over the same domain [�, u] with u > 1 and u−� > 1. We illustrate the derivation
of among implied constraints for two regular expressions.

• Consider the σ = DecreasingSequence regular expression and n ≥ 2.
In Example 4, we computed the interval of interest of max_surf_σ

wrt 〈�, u〉, which is [u − 1, u]. In Example 5, we showed that μ
〈�,u,n〉
σ (�) =

μ
〈�,u,n〉
σ (u) = 1, and for every value v in [�+1, u− 1], we have that μ

〈�,u,n〉
σ (v)

equals max(1, n−2). Finally, in Example 6 we demonstrated that β
〈�,u,n〉
σ = n.

By Theorem1, we can impose the among(N ,X, 〈u−1, u〉) implied constraint
with N ≥ R−μ

〈�,u,n〉
σ (u)−max(0, I〈�,u〉

〈g,f,σ〉−1)·β〈�,u,n〉
σ = R−1−max(0, u−2)·n.

48 E. Arafailova et al.

Turning back to Example 8 we observe that, in the obtained implied con-
straint, the term ‘1’ corresponds to the number of squared points, and the
term ‘max(0, u−2) ·n’ to the number of diamond-shaped points. The derived
lower bound on N also appears in the third row of Table 2.

• Consider the σ = Peak = ‘<(<|=)* (>|=)*>’ regular expression whose val-
ues of aσ and bσ both equal 1, and n ≥ 3. The maximum value in [�, u]
that appears in a σ-pattern is u. In addition, any maximal time series
for 〈g, f, σ〉 contains a single σ-pattern whose values are all the same and
equal u. Hence, the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉 is [u, u]. Since
both aσ and bσ equal 1, the smallest value in [�, u] may not be in any σ-pattern
and μ

〈�,u,n〉
σ (�) = 0. For any value v ∈ [� + 1, u], we have μ

〈�,u,n〉
σ (v) = n − 2.

By Theorem2, we impose an among(N , 〈X1,X2, . . . , Xn〉, 〈u〉) implied con-
straint with N ≥ R −max(0, u − 1) · (n − 2). The derived lower bound on N
also appears in the fifth row of Table 2. �

Table 2 gives for 6 regular expressions of [5] the corresponding intervals of
interest of max_surf_σ constraints wrt some integer interval domain [�, u] such
that u > 1 ∧ u−� > 1, as well as the lower bound LB on the parameter N of the
derived among constraint for time series that may have at least one σ-pattern.

Table 2. Regular expression σ, the corresponding interval of interest of max_surf_σ
(X, R) wrt an integer interval domain [�, u] such that u > 1 and u−� > 1, and the lower
bound LB on the parameter of the derived among implied constraint. The value LB is
obtained from a generic formula, which is parameterised by characteristics of regular
expressions. The sequence X is supposed to be long enough to contain at least one
σ-pattern.

σ I〈�,u〉
〈max,surf,σ〉 LB

‘ >><>> ’ [u − 2, u] R − max(0, u − 3) · 3 − 3

‘>’ [u − 1, u] R − max(0, u − 2) · 2 − 1

‘(>(>|=)*)*>’ [u − 1, u] R − max(0, u − 2) · n − 1

‘(>(>|=)*)*><((<|=)*<)*’ [u − 1, u − 1] R − max(0, u − 2) · (n − 2)

‘<(<|=)* (>|=)*>’ [u, u] R − max(0, u − 1) · (n − 2)

‘(<>)+(< | <>)|(><)+(> | ><)’ [u − 1, u] R−max(0, u−2) ·(n−2)−⌊n−1
2

⌋

Theorem 2. Consider a g_f_σ(X,R) time-series constraint with g =
Sum, f = surf and X being a time series of length n over an integer inter-
val domain [�, u]; then among(N ,X, I) is an implied constraint, where N is
restricted by

N ≥ R − max (0, I − 1) ·
(
n − aσ − bσ + (po − 1) · max(0, o〈�,u〉

σ − aσ − bσ)
)

−
∑

v∈[I+1,I]
μ〈�,u,n〉

σ (v) · po · (v − I) (4)

− (po − 1) · max(0, o〈�,u〉
σ − aσ − bσ),

among Implied Constraints for Two Families 49

where I is shorthand for I〈�,u〉
〈g,f,σ〉, I (resp. I) denotes the lower (resp. upper)

limit of I, and po is 1 if every maximal time series has a single σ-pattern, and
is the maximal number of σ-patterns in a time series of length n, otherwise.

Proof. To prove Theorem 2 we consider a time series with p ≥ 1 σ-patterns,
where σ-pattern i (with i ∈ [1, p]) has a width of ωi and a surface of Ri, and
where R =

∑
i∈[1,p] Ri. The proof consists of two steps:

1. First, for each σ-pattern i (with i ∈ [1, p]), we compute the minimum number
Ni of time-series variables that must be assigned to a value within the interval
of interest I, in order to reach a surface of Ri.

2. Second, we take the sum of Ni, and minimise the obtained value, which, in
the end, will be a minimum value for N .

First Step. We use Inequality (1) of Theorem 1 for a subseries X ′ of X of
length ω′

i = ωi + aσ + bσ, knowing that X ′ has a single σ-pattern and β
〈�,u,n〉
σ

is ωi. Then, by Theorem 1, we obtain the following estimation of Ni:

Ni ≥ Ri − ωi · max(0, I − 1) −
∑

v∈[I+1,I]

(v − I) · μ
〈�,u,ω′

i〉
σ (v). (5)

Second Step. We obtain the minimum value of N , by taking the sum of the
derived minimum values for Ni over all the values of i:

N =
p∑

i=1

Ni ≥
p∑

i=1

(Ri − Ai − Bi) − C = R −
p∑

i=1

Ai −
p∑

i=1

Bi − C, (6)

where for any i ∈ [1, p], Ai = ωi · max(0, I − 1) and Bi =
∑

v∈[I+1,I]

μ
〈�,u,ω′

i〉
σ (v) ·

(v − I), and C = (p − 1) · max(0, o〈�,u〉
σ − aσ − bσ). The terms Ai and Bi come

from Inequality (5) and the term C is used because some variables may belong to
two σ-patterns: in order to not count them twice we subtract a correction term.

Let A (resp. B) denote
p∑

i=1

Ai (resp.
p∑

i=1

Bi). In order to satisfy Condition 6, we

need to find the upper bounds on the sum A+B+C by choosing the value of p,
and the sum of σ-patterns lengths. We consider two cases, but any additional
information may be used for a more accurate estimation of these parameters:

– [every maximal time series has a single σ-pattern] Then, the maximum

value of A + B + C is reached for p being 1, and
p∑

i=1

ωi being n − bσ − aσ. It

implies that for any v ∈ [I〈�,u〉
〈g,f,σ〉 + 1, I〈�,u〉

〈g,f,σ〉], the value of
∑

i∈[1,p]

μ
〈�,u,ω′

i〉
σ (v)

equals μ
〈�,u,n〉
σ (v).

– [there is at least one maximal time series with more than one
σ-pattern] We give an overestimation: we assign the value of p to its maximum

50 E. Arafailova et al.

value, which depends on σ, the value of
p∑

i=1

ωi is overestimated by n − aσ −

bσ + (po − 1) · max(0, o〈�,u〉
σ − aσ − bσ), and the value of

∑

i∈[1,p]

μ
〈�,u,ω′

i〉
σ (v) is

overestimated by μ
〈�,u,n〉
σ (v) · po .

Hence, we obtain a lower bound for N , which is the right hand side of the
inequality stated by Theorem2.
�

Table 3. Regular expression σ, the corresponding interval of interest of sum_surf_σ
(X, R) wrt an integer interval domain [�, u] such that u > 1 and u−� > 1, and the lower
bound LB on the parameter of the derived among implied constraint. The value LB is
obtained from a generic formula, which is parameterised by characteristics of regular
expressions. The sequence X is supposed to be long enough to contain at least one
σ-pattern.

σ I〈�,u〉
〈sum,surf,σ〉 LB

‘ >><>> ’ [u − 2, u] R − max(0, u − 3) ·
(n − 3) − 3 · ⌊n−3

3

⌋

‘>’ [u − 1, u] R − max(0, u − 2) ·
(2 · n − 2) − (2 · n − 3)

‘(>(>|=)*)*>’ [u − 1, u] R−max(0, u−2)· n−⌊n
2

⌋

‘(>(>|=)*)*><((<|=)*<)*’ [u − 1, u − 1] R−max(0, u−2) ·(n−2)

‘<(<|=)* (>|=)*>’ [u, u] R−max(0, u−1) ·(n−2)

‘(<>)+(< | <>)|(><)+(> | ><)’ [u − 1, u] R − max(0, u − 2) ·
(n − 2) − ⌊n−1

2

⌋

Example 10. Consider the g_f_σ(〈X1,X2, . . . , Xn〉, R) time-series constraint,
with g being Sum, with f being surf and with every Xi (with i ∈ [1, n]) ranging
over the same domain [�, u] with u > 1 and u−� > 1. We illustrate the derivation
of among implied constraints for two regular expressions.

• Consider the σ = DecreasingSequence regular expression and n ≥ 2.
In Example 4, we found that the interval of interest of 〈g, f, σ〉 wrt 〈�, u〉
is [u − 1, u], and in Example 5, we showed that μ

〈�,u,n〉
σ (�) = μ

〈�,u,n〉
σ (u) = 1,

and for every value v in [�+1, u−1], we have that μ
〈�,u,n〉
σ (v) equals max(1, n−

2). Every maximal time series for sum_surf_σ contains the maximum num-
ber of σ-patterns. Hence, in this case, the value of po equals the maximum
number of decreasing sequences in a time series of length n, which is

⌊
n
2

⌋
.

By Theorem 2, we impose an among(N , 〈X1,X2, . . . , Xn〉, 〈u−1, u〉) implied
constraint with N ≥ R −

⌊
n
2

⌋
− max(0, u − 2) · n. The derived lower bound

on N also appears in the third row of Table 3.
• Consider the σ = Peak = ‘<(<|=)* (>|=)*>’ regular expression and n ≥ 3.

The maximum value in [�, u] that occurs in a σ-pattern is u. In addition,

among Implied Constraints for Two Families 51

any maximal time series for 〈g, f, σ〉 contains a single σ-pattern whose val-
ues are all the same and equal u. Hence, the interval of interest of 〈g, f, σ〉
wrt 〈�, u〉 is [u, u], and the value of po equals 1. We showed in Example 9
that μ

〈�,u,n〉
σ (�) = 0 and for any v ∈ [� + 1, u], we have μ

〈�,u,n〉
σ (v) = n − 2.

The value of o
〈�,u〉
σ equals 1. By Theorem 2, we impose an among(N , 〈X1,

X2, . . . , Xn〉, 〈u〉) implied constraint with N ≥ R − max(0, u − 1) · (n − 2).
The derived lower bound on N also appears in the fifth row of Table 3. �

Table 3 gives for 6 regular expressions of [5] the corresponding intervals of
interest of sum_surf_σ constraints wrt some integer interval domain [�, u] such
that u > 1 ∧ u−� > 1, as well as the lower bound LB on the parameter N of the
derived among constraint for time series that may have at least one σ-pattern.

4 Evaluation

The intended use case is a problem where we learn parameters for a conjunction
of many time-series constraints from data, and use this conjunction to create new
time-series that are “similar” to the existing ones. An example would be electric-
ity production data for a day [10], in half hour periods (48 values), or manpower
levels per week over a year (52 values). To solve the conjunction, we need strong
propagation for each individual constraint. We therefore evaluate the impact of
the implied constraint on both execution time and the number of backtracks for
the time-series constraints of the max_surf_σ and the sum_surf_σ families
for which a glue constraint [4] exists, which are 38 out of 44 time-series con-
straints of the two families. These families of constraints were the most difficult
to solve in the experiments reported in [4].

In the experiments for both families, we consider a single g_surf_σ(X,
R) time-series constraint with g being either Sum or Max, for which we first
systematically try out all potential values of the parameter R, and then either
find a solution by assigning the Xi or prove infeasibility. We compare the best
(Combined) approach from the recent work [4] to the new method, adding the
implied among constraint on every suffix of X = 〈X1,X2, . . . , Xn〉, and also
a preprocessing procedure. The preprocessing procedure is a useful, if minor,
contribution of the paper for 8 out of 38 of the constraints in the families studied.
The purpose of this procedure is to find all feasible values of R, when σ is such
that any σ-pattern has all values being the same. Such values of R must satisfy
the following constraint:

R = defg,f ∨
(
∃V ∈ [�′, u′] β〈�,u,n〉

σ · V ≥ R ∧ R mod V = 0
)

,

where �′ and u′ are the smallest and the largest value, respectively, that can
occur in a σ-pattern over [�, u].

Since the implied constraints are precomputed offline, posting one implied
constraint takes a constant time, and the time and space complexity of the
preprocessing procedure does not exceed the size of the domain of R, which
is O(n · (u − �)).

52 E. Arafailova et al.

Fig. 2. Comparing backtrack count and runtime of the g_f_σ time-series constraints
for previous best results (old) and new method for finding the first solution or proving
infeasibility for time series of length 50 and domain [0, 5]. Colours of markers indicate
the regular expression, the cross (resp. circle) marker type indicates success (resp.
failure/timeout).

Figure 2 presents the results for the sum_surf_σ (upper plots) and the
max_surf_σ (lower plots) time-series constraints, where X is a time series of
length 50 over the domain [0, 5], when the goal is to find, for each value of R,
the first solution or prove infeasibility. This corresponds to our main use case,
where we want to construct time series with fixed R values. Our static search
routine enumerates the time-series variables Xi from left to right, starting with
the smallest value in the domain. Results for the backtrack count are on the
left, results for the execution time on the right. We use log scales on both axes,
replacing a zero value by one in order to allow plotting. A timeout of 60 s was
imposed. We see that the implied constraints reduce backtracks by up to a factor
exceeding 10,000 and runtime by up to a factor of 1,000, and they divide the
total execution time of terminated instances by a factor of 5 and 45 times when
g is Max and Sum, respectively. All experiments were run on a 2014 iMac 4 GHz
i7 using SICStus Prolog.

The results for the case g = Sum are better than for the case g = Max because
the aggregator Sum allows summing the surfaces of several σ-patterns, whereas
for the Max aggregator, R is the surface of a single σ-pattern, the surfaces of
other σ-patterns, if any, are absorbed.

5 Conclusion

In summary, based on 4 regular expression characteristics, we have defined a sin-
gle per family generic implied constraint for all constraints of the max_surf_σ

among Implied Constraints for Two Families 53

and sum_surf_σ families. The experimental results showed a good speed up
in the number of backtracks and the time spent for the sum_surf_σ family.

References

1. Akşin, O.Z., Armony, M., Mehrotra, V.: The modern call center: a multi-
disciplinary perspective on operations management research. Prod. Oper. Manag.
16(6), 665–688 (2007)

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013,
pp. 13–22. IEEE Computer Society (2013)

3. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1_2

4. Arafailova, E., Beldiceanu, N., Carlsson, M., Flener, P., Francisco Rodríguez, M.A.,
Pearson, J., Simonis, H.: Systematic derivation of bounds and glue constraints for
time-series constraints. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 13–29.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_2

5. Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Rodríguez,
M.A.F., Pearson, J., Simonis, H.: Global constraint catalog, volume ii, time-series
constraints. CoRR, abs/1609.08925 (2016)

6. Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez, M.A.,
Pearson, J., Simonis, H.: Time-series constraints: improvements and application in
CP and MIP contexts. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676,
pp. 18–34. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2_2

7. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22–40 (2016). Journal Fast Track of CP 2015. Summary. LNCS, vol. 9255, p. 723.
Springer, Berlin (2015)

8. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_11

9. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Com-
put. Model. 20(12), 97–123 (1994)

10. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40627-0_54

11. Bessière, C., Coletta, R., Hébrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.-G., Walsh, T.: Constraint Acquisition via Partial Queries. In: IJCAI,
Beijing, China, p. 7, June 2013

12. Bessière, C., Coletta, R., Petit, T.: Learning implied global constraints. In: IJCAI
2007, Hyderabad, India, pp. 50–55 (2007)

13. Bessière, C., Hébrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Among, common and
disjoint constraints. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP
2005. LNCS (LNAI), vol. 3978, pp. 29–43. Springer, Heidelberg (2006). doi:10.
1007/11754602_3

http://dx.doi.org/10.1007/978-3-662-49498-1_2
http://dx.doi.org/10.1007/978-3-319-44953-1_2
http://dx.doi.org/10.1007/978-3-319-33954-2_2
http://dx.doi.org/10.1007/978-3-540-30201-8_11
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/11754602_3
http://dx.doi.org/10.1007/11754602_3

54 E. Arafailova et al.

14. Colcombet, T., Daviaud, L.: Approximate comparison of functions computed by
distance automata. Theory Comput. Syst. 58(4), 579–613 (2016)

15. Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

16. Eeckhout, L., De Bosschere, K., Neefs, H.: Performance analysis through syn-
thetic trace generation. In: 2000 ACM/IEEE International Symposium Perfor-
mance Analysis Systems Software, pp. 1–6 (2000)

17. Kegel, L., Hahmann, M., Lehner, W.: Template-based time series generation with
loom. In: EDBT/ICDT Workshops 2016, Bordeaux, France (2016)

18. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30201-8_36

19. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning para-
meters for the sequence constraint from solutions. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 405–420. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1_26

20. Marcel Paul Schützenberger: On the definition of a family of automata. Inf. Control
4, 245–270 (1961)

http://dx.doi.org/10.1007/978-3-540-30201-8_36
http://dx.doi.org/10.1007/978-3-319-44953-1_26
http://dx.doi.org/10.1007/978-3-319-44953-1_26

Solving Constraint Satisfaction Problems
Containing Vectors of Unknown Size

Erez Bilgory, Eyal Bin(B), and Avi Ziv

IBM Research, Haifa, Israel
{erezbi,bin,aziv}@il.ibm.com

Abstract. Constraint satisfaction problems (CSPs) are used to solve
real-life problems with inherent structures that contain vectors for
repeating sets of variables and constraints. Often, the structure of the
problem is a part of the problem, since the number of elements in the
vector is not known in advance. We propose a method to solve such
problems, even when there is no maximal length provided. Our method
is based on constructing a vector size CSP from the problem description,
and solving it to get the number of elements in the vector. We then use
the vector size to construct and solve a CSP that has a specific number of
elements. Experimental results show that this method enables fast solv-
ing of problems that cannot be solved or even constructed by existing
methods.

Keywords: Constraint satisfaction problems · Unbounded vector size

1 Introduction

Constraint satisfaction problems (CSPs) [6] are used to model and solve many
real-life problems. In many of these problems there is an inherent structure that
includes repetitions (or vectors) of sub-problems. For example, in the configura-
tion of hardware systems, the system, which is the target of the CSP, contains
several, potentially different, racks and boxes [18]. In many cases, the size of
the vectors is not known in advance, and therefore the role of the CSP solver
is to find a correct vector size that enables the problem to be solved. In such
problems, we can treat the vector size as a CSP variable on its own.

This problem cannot be handled by standard CSP techniques, which assume
that the graph of the CSP (variables as nodes, constraints as hyperedges) is
fully known before beginning to solve it. One possible solution to the problem
is to apply external heuristics, or a simple random guess for the vector size,
before constructing the CSP. This solution requires a different heuristic for each
problem and may suffer from a low success rate, depending on the quality of
the heuristic and the sparseness of the feasible vector size compared to its initial
domain.

A second possible solution is to use conditional CSP techniques [9], where
the existence of parts of the CSP is conditioned by other parts of it. The idea
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 55–70, 2017.
DOI: 10.1007/978-3-319-66158-2 4

56 E. Bilgory et al.

of this solution is creating the CSP with maximal vector size, and marking
elements in the vector beyond the vector size as inactive. This can be wasteful in
terms of memory and compute time, especially if there is a substantial difference
between the initial domain of the vector size and its feasible sizes. Moreover, an
unbounded vector size requires a preprocessing step that estimates a bound.

This paper presents a method for solving CSPs that contain vectors of
unknown sizes. Our method can handle problems with several vectors and hierar-
chies of vectors (i.e., vectors with unknown size that contain vectors of unknown
size, etc.). The method is based on extracting information on the vector size
from the problem description, and using this information to construct and solve
a vector size CSP for each vector with unknown size. After we obtain the vector
size with the vector size CSP, we can add the vector to the full CSP. Therefore,
when the size of all the vectors is known, the construction of the full CSP is
completed.

The heart of the method is the construction of the vector size CSP. This
CSP has to include not only variables and constraints that explicitly (directly
or indirectly) affect the vector size, but also constraints on the vector elements
that can have an implicit effect on the size. For example, a constraint on the
sum of the vector elements can affect the range of feasible sizes. To handle this
implicit effect, we created projectors from the vector elements to its size, for
commonly used constraints. Our projectors overapproximate the possible sizes,
thereby maintaining the completeness of the solution procedure.

Our proposed method constructs the full CSP only when the sizes of all
vectors are known. In addition, it does not require a predefined bound for the
vector size. Therefore, it does not suffer from the waste of conditional CSPs. On
the other hand, because it extracts all the available information from the problem
description, it can significantly improve its success rate over the random selection
of vector sizes. This is done without resorting to external heuristics, which are
not always available. Another advantage of our method is that the modeler of
the CSP does not have to add modeling to account for the solution method.

We implemented our method on top of our internal constraint solver [5,15].
The proposed method is currently in use in CSP-based systems in two separate
domains: test program generation for processor verification [10], and data fab-
rication for the testing of database systems [1]. We present experimental results
on real-life problems to illustrate the advantages of the proposed method over
existing methods, in terms of success rate and resource consumption.

The rest of the paper is organized as follows. In Sect. 2, we provide a detailed
description of the problem. Section 3 presents the proposed solution and provides
details on specific aspects. Section 4 shows some experimental results. Finally,
Sect. 5 concludes the paper.

2 Problem Description

A constraint satisfaction problem (CSP) is a mathematical formulation that is
used to model and solve many real-life problems. Formally, a constraint satis-
faction problem is defined as a triple (X,D,C), where

Solving Constraint Satisfaction Problems Containing Vectors 57

X = {X1, . . . , Xn} is a finite set of variables,
D = {D1, . . . , Dn} is a set of the respective domains of values, and
C = {C1, · · · , Cm} is a finite set of constraints.

Each variable Xi can take on the values in the finite, nonempty domain Di.
Every constraint Cj ∈ C is in turn a pair 〈tj , Rj〉, where tj ⊂ X is a subset of k
variables and Rj is a k-ary relation on the corresponding subset of domains Dj .
A solution to the CSP is a consistent assignment of a single value to each variable
Xi from its domain Di, such that it does not violate any of the constraints. Note,
this paper deals with finite CSPs.

Many problems that are modeled and solved as constraint satisfaction prob-
lems have an inherent structure. For example, in the configuration of hardware
systems [18], the systems contain racks and each rack contains boxes of diverse
types and capabilities. Another example is the generation of test programs for
processors [10], where the generated test comprises instructions, which, in turn,
comprise operands.

In such structured cases, it is natural and useful to use similar structures in
the CSP that models the problem. Consequently, the full CSP is constructed
using instances of structures or classes, each handling a sub-problem or sub-
structure of the full system. A CSP sub-structure, or class, is a set of variables
and constraints related to the variables, and in hierarchical cases, sub-classes.
Constraints can be internal to an instance or can span classes and instances. For
example, in the configuration of the hardware system, each rack in the system is
a class with variables for type and dimensions, constraints on power and cooling
capabilities, and sub-classes of boxes mounted in the rack.

In many cases, the structure of the problem is unknown ahead of time and
has to be handled as part of the overall problem. If the exact types of instances
in the overall model are not known in advance, object-oriented techniques [18]
can be used to model the various sub-types. For example, in the configuration
problem we can have sub-types or sub-classes for specific types of boxes in the
system, such as compute boxes, memory boxes, and disk boxes.

This paper deals with a different type of unknown structure, where the system
contains a vector of sub-structures, and the size of the vector is not known in
advance. For example, the number of boxes in a rack depends on their dimensions
and on their total power requirements compared to the power availability of the
rack. In these cases, the size of the vector is related to or constrained by other
variables in the problem. Therefore, the vector size can be modeled as a CSP
variable.

The simple example in Fig. 1, which we use throughout the paper, illustrates
the problem and the proposed solution. We used the constraint language of
our internal CSP solver [5] for the problem description. The problem is taken
from the domain of test program generation, where CSP is used to generate
test programs that are valid, interesting, and fulfill specific user requests [4].
The example shows a CSP modeling of a test program template that verifies the
memory sub-system of a processor. A test program generated from this template

58 E. Bilgory et al.

must include load and store instructions that access 4 K bytes of memory. Each
instruction in the program is either a load instruction that reads from memory
or a store instruction that writes to memory. The number of bytes accessed by
each instruction is 64, 128, 256, or 512 bytes, with 512 bytes only possible in
load instructions. A specific user request is that instruction 5 in the program
reads 256 bytes.

1: class MemoryAccess
2: variable int numOfBytes {64, 128, 256, 512};
3: variable enum instructionType {load, store};
4: constraint (numOfBytes = 512) → (instructionType = load);
5: end class;
6: variable int numMemInstructions;
7: vector MemoryAccess memAccessSeq[numMemInstructions];
8: constraint numMemInstructions < 100;
9: constraint SumOf(memAccessSeq[*].numOfBytes) = 4096;

10: constraint memAccessSeq[5].numOfBytes = 256;
11: constraint memAccessSeq[5].InstructionType = load;

Fig. 1. Simple program generation CSP

Lines 1–5 in the figure define the class of a memory accessing instruction.
The class contains two variables, numOfBytes and instructionType, in lines 2
and 3, and a constraint that relates the number of bytes and the instruction
type in line 4. The description of the problem contains a variable for the length
of the program (line 6) and a vector of instructions for the generated program
in line 7. The constraints in the description include a limit of 100 instructions
on the program length in line 8, the specification of 4 K bytes access in line 9,
and the specific user request in lines 10 and 11.

There are several known approaches to address such problems where the
CSP solver has to find the number of elements in vectors of instances. The first
possible solution is to use external heuristics to select the size of the vector before
building the CSP. The simplest such heuristic is to randomly choose a vector
length. It is also possible to use more sophisticated heuristics that are based on
the analysis of the problem. For example, we deduce from the possible access
length of the instructions in the program generation problem in Fig. 1 that the
possible number of instructions is between 8 (if they all access 512 bytes) and 64
(if they all access 64 bytes). A more careful analysis can change this range from
9 to 61 instructions, because instruction 5 accesses 256 bytes. After applying the
heuristics, we can randomly select the vector length from the set of possibilities
it provides. The drawbacks of this approach are that it requires external analysis
of the problem and it can lead to an infeasible vector length if the heuristics are
not good enough.

Another possible solution is the use of conditional CSP [9]. In conditional
CSP, the existence of some of the variables and constraints in the problem is

Solving Constraint Satisfaction Problems Containing Vectors 59

dependent on the values of other variables. The concept of using conditional
variables in CSPs was first introduced in [14]. This work was later enhanced and
improved in many publications such as [9,11,20]. Sabin, Freuder, and Wallace
suggest in [16] the use of a special null value in conditional variables as an
alternative to the existence variables.

To model the program generation of Fig. 1 as a conditional CSP, we make
each element in the instruction vector conditional and add two constraints that
condition their existence, as shown in Fig. 2. The existence variable in line 2
is a special variable that indicates whether the element exists. If the element
does not exist, the solver ignores all its variables and constraints. Lines 14
and 15 are existence constraints, which specify that consecutive instructions 0 to
numMemInstructions − 1 exist, and that instruction 5 specifically exists. Note,
in this paper we assume that constraints on specific elements in a vector (e.g.,
memAccessSeq [5].numOfBytes = 256) imply their existence. This assumption
is not required and it does not influence the proposed solution.

1: class MemoryAccess
2: variable bool existence;
3: variable int numOfBytes {64, 128, 256, 512};
4: variable enum instructionType {load, store};
5: constraint (numOfBytes = 512) → (instructionType = load);
6: end class;
7: variable int numMemInstructions;
8: vector MemoryAccess memAccessSeq[numMemInstructions];
9: constraint numMemInstructions < 100;

10: constraint SumOf(memAccessSeq[*].numOfBytes) = 4096;
11: constraint memAccessSeq[5].numOfBytes = 256;
12: constraint memAccessSeq[5].InstructionType = load;
13: // Existence constraints:
14: constraint forEach (i, memAccessSeq[i].existence ⇔ (i < numMemInstructions));
15: constraint memAccessSeq[5].existence = true;

Fig. 2. Modeling the simple program generation as a conditional CSP

Using a conditional CSP is complete in the sense that it does not lead to the
loss of solutions for the CSP. The drawback of this approach is that it can cause
inefficiencies in constructing and solving the problem in terms of memory usage
and compute time. This problem is significant, especially if the initial domain
of the vector size is not tight and nested vectors exist. Moreover, this approach
cannot handle cases when the initial domain of the vector size is unbounded.
Handling unbounded sizes requires preprocessing that sets bounds.

Of course, the two approaches can be combined. If the heuristics provides
a range of possible vector lengths, we create conditional elements of the vector
only for the elements within the range. For example, if in our example the range
provided by the heuristics is 6 to 10 elements, then we create 6 unconditional
elements for elements 0–5, and 4 conditional elements for elements 6–9.

60 E. Bilgory et al.

A third possible solution to the unknown vector size is the use of dynamic
CSP techniques. Dynamic CSP allows us to add variables and constraints to the
CSP after the solver starts the solution process. There are several dynamic CSP
methods. For example, Mailharro [13] and Yokoo [21] present frameworks that
use infinite domains to solve problems where the domains of the variables are not
known in advance. Bessiere [3] enables adding and removing constraints during
the solving of the CSP. The main disadvantage of dynamic CSP methods is their
inability to propagate the constraints from vector elements that have not been
added yet to the vector size. The proposed method overcomes this limitation by
adding constraints that replace that global constraints of the missing elements
to the skeleton CSP that determines that vector size.

A completely different solution involves converting the CSP with unknown
vector size to an equivalent CSP over strings. Several propagation techniques
that deal with strings of unknown length [19], or even unbounded length [8], have
been proposed; some of them are used in CSP solvers. For example, support for
strings is now part of MiniZinc [2]. Saxena et al. [17] use bounded length strings
in the symbolic execution of JavaScripts.

The main idea in this method is to convert vectors of unknown size to strings.
Each element in the vector is represented by a character in the string, and the
alphabet of the string includes all the possible states of a single vector element.
For example, to convert the program generation problem of Fig. 1 to a CSP
over strings, the vector of instructions must be converted to a string with a
varying size of up to 100 characters, using an alphabet containing 8 letters (7 if
we include the constraint in line 4). This approach has two main disadvantages.
First, it is not clear how to convert constraints in the original problem to efficient
constraints on the string. For example, the SumOf constraint in line 9 needs to
be converted to a long list of possible strings without an efficient way of pruning
the string. The second disadvantage is that the size of the alphabet can be very
large because of the number of possible solutions for a single vector element.
Moreover, if vector elements contain vectors of unknown size, the size of the
alphabet for the outer vector may be unknown or even unbounded.

3 Our Solution

The first step in solving a CSP is to read the input description or model of the
problem and to create an equivalent data structure for the CSP solver. After
the data structure is constructed, the CSP solver can be activated to solve it.
The CSP construction step is not trivially possible when the description contains
vectors of unknown or even unbounded size. Our method addresses this problem
by constructing the full CSP in stages. Specifically, we construct the full CSP
while solving sub-problems related to the unknown vector sizes.

Using a staged solution of CSPs is not new. It is used in many cases when
the full CSP is too big or complex to be solved as a single problem [15]. The
novelty of our proposed method lies in its application to CSP problems that
cannot be constructed because of the unknown structure of the CSP and the
unknown vector size.

Solving Constraint Satisfaction Problems Containing Vectors 61

Procedure 1 shows a high-level description of the proposed method. The first
step (line 2 of the procedure) is to build a structural skeleton of the CSP. This
skeleton is then expanded until it contains the full CSP with a known structure,
or, in other words, all the unknown factors in the CSP structure are resolved
and removed.

1: procedure SolveCspWithUnknownVectorSize(inputDescription)
2: root ← ConstructSkeleton(inputDescription);
3: ExpandKnownVectors(root);

4: lastNode ← root;
5: while ((lastNode ← DfsSearchUnknownVectors(lastNode)) �= NULL) do
6: sizeProblem ← ConstructVectorSizeProblem (lastNode);
7: vectorSize ← SolveVectorSize(sizeProblem);
8: if (No solution found) then
9: backtrack;

10: end if
11: SetSize(lastNode, vectorSize);
12: ExpandKnownVectors(lastNode);
13: end while

14: SolveFullCsp(root);
15: if (no solution found) then
16: backtrack;
17: end if
18: end procedure

Procedure 1: Procedure for solving a CSP with vectors of unknown size

The structural skeleton is a tree of the structure of the CSP. It is only a
skeleton because to begin with, it does not contain all the elements of the CSP.
The root of the tree points to the entire problem, sub-trees starting at internal
nodes are sub-structures in the problem, and the leaves are CSP variables. Con-
straints are hyperedges connecting leaves in the graph. Constraints are not part
of the structure tree.

Vectors are special internal nodes in the graph. A vector node has two types
of children: a leaf CSP variable for its size and nodes for special elements in
the vector. These special nodes include a representative element of the vector,
and one for each element that is explicitly referred to by name in the problem
description. For example, memAccessSeq [5] in Fig. 1. The representative element
is a source of information and constraints that are used in the vector size CSPs.
For example, the domain of the numOfBytes variable in the representative ele-
ment of memAccessSeq is used when projecting the SumOf constraint to the size
of memAccessSeq. When building the skeleton graph, we do not need to know
the vector size or even a bound on it, because only a fixed number of elements
(that do not depend on the vector size) appear in the graph.

62 E. Bilgory et al.

The construction of the skeleton graph is straightforward, therefore, we do
not discuss it in the text. Figure 3 shows the skeleton graph for the simple pro-
gram generation of Fig. 1. In the figure, ovals represent nodes in the structure
tree and red rectangles represent constraints. The root of the problem con-
tains two children, the memAccessSeq vector and numMemInstructions vari-
able. The vector memAccessSeq has a vecSize child that is connected with the
equality constraint to numMemInstructions, and two children for the vector
elements of type MemoryAccess: one for the representative element and the sec-
ond for memAccessSeq [5] that is specifically referred to in lines 10 and 11 of
Fig. 1. Each MemoryAccess node has two leaf children for the numOfBytes and
instructionType CSP variables in them.

Fig. 3. CSP skeleton for the program generation problem

After construction of the skeleton graph, the next step is to expand all the
vectors whose sizes were known during the construction of the graph to their
actual size. This is done by the ExpandKnownVectors method in line 3. The
method replaces the size node with a constant indicating the vector size, removes
the representative element, and adds element nodes for each vector element that
is not included in the original skeleton. This step may add new vectors with
unknown size as descendants of vector elements.

Lines 4–13 are the main part of the algorithm. The “DfsSearchUnknown-
Vectors” function in line 5 performs a pre-ordering DFS search for vectors with
unknown sizes. The function searches for vector nodes in the graph whose size
child is not yet determined. When such a node is found, the function returns
it to the main algorithm. When the function does not find such a node, that
is, when all the vectors have known sizes, the function returns NULL and the

Solving Constraint Satisfaction Problems Containing Vectors 63

main loop terminates. After a vector with unknown size is found, we construct
and solve a vector size CSP problem for the vector (lines 6–10). If we fail to
find a solution, we backtrack to the previous vector and try again, or declare
the problem unsatisfiable if this is the first vector. We describe the heart of the
algorithm in detail in the next subsection.

After finding a possible size for the vector in the vector size problem, in
lines 11–12, we set the size in the skeleton and expand the vector to include
all elements, as described earlier. Note that setting the vector size may affect
the size of other vectors whose sizes are unknown, for example via constraints
relating the sizes of two vectors.

After the algorithm finishes the search for vectors with unknown size, the
resulting skeleton graph becomes a graph containing the full CSP. For example,
Fig. 4 shows the full CSP for the program generation problem with 10 instruc-
tions. Now, in lines 14–17 of the algorithm, we can solve the full CSP and obtain
the requested solution.

Fig. 4. Full CSP for the program generation problem

3.1 Constructing and Solving a Vector Size Sub-problem

The heart of our method is the extraction of a vector size CSP for a vector
of unknown size. This CSP should include the factors that can affect the size.
These factors can be divided into two main types: other variables in the problem
outside the vector that affect the vector size, and constraints on elements in
the vector. These constraints can be global constraints on all (or some) of the
elements of the vector, or constraints on specific elements.

64 E. Bilgory et al.

Other variables in the problem related to the vector size can obviously affect
the vector size. For example, if a vector size N with initial domain 1–10 is
related to another variable M with initial domain 1–5 with equality constraint,
then the vector size cannot be greater than 5. It is easy to find the variables
and constraints that directly or indirectly affect the vector size, by finding the
transitive closure of CSP variables and constraints in the skeleton graph, for
example using a BFS search from the vector size variable.

As stated in Sect. 2, we assume that a constraint on a specific element in a
vector implies that this element in the vector exists, therefore, it affects the vector
size. Hence, the constraint memAccessSeq [5].numOfBytes = 256 in the skeleton
is reflected in the vector size CSP as the constraint vecSize ¿ 5 (we assume that
the index of the first element is 0).

Global constraints on all the vector elements can be divided into two cate-
gories, constraints that operate on each element in the vector individually and
constraints that operate on all the elements together. Constraints of the first
category appear in the definition of the class of the vector elements. An example
for such constraint is the constraint in line 5 of Fig. 1 that forces instruction
that access 512 bytes to be load instructions. To add constraints on individual
elements, we add the representative of the vector to the vector size CSP.

At first glance, these constraints do not seem to affect the vector size, and
therefore are not needed in the vector size CSP. However, this is not the case.
For example, if the constraints contain a contradiction, it means that no vector
element can exist, and therefore the vector size must be zero.

To avoid failure in the vector size CSP and to detect the cases when the vector
size must be 0, we make the representative element conditional in the vector size
CSP. The existence variable of the element is connected to the vector size with
the constraints (vecSize > 0) ↔ vector[representative].existence. This means that
if the representative element contains a contradiction and its existence variable
is set to false to avoid failure, then the vector size is forced to be zero. On the
other hand, if the vector size is not zero, the representative element exists and
all its constraints must hold.

Global constraints that operate on all the vector elements together are the
most difficult to handle. These constraints implicitly affect the size of the vec-
tor in a ‘chicken and egg problem’ manner. Namely, the vector size depends
on the vector elements, but we cannot construct the elements until we know
the vector size. Our solution is to create a projection of the global constraints
on the vector size and use these projections and information on the vector
elements in the vector size CSP as constraints on the vector size. For exam-
ple, the constraint SumOf(memAccessSeq[∗].numOfBytes) = 4096 in line 10 of
Fig. 1 and the minimum and maximum value of numOfBytes imply that the vec-
tor size cannot be smaller than 8 or larger than 64. Therefore, the constraint
8 ≤ memAccessSeq.vecSize ≤ 64 is added to the vector size problem.

The projections of these constraints to the vector size are not accurate. We
use overapproximated projections, so that we do not lose solutions of possible
vector sizes in the solution process.

Solving Constraint Satisfaction Problems Containing Vectors 65

The following examples show some commonly used global constraints on the
vector elements that can affect the vector size and their projection on the vector
size. Note that in the list below we use the simple expression consisting of a
single variable in a vector element for clarity. More complex expressions can also
be used.

Exists (predicate of vector.V). This operator gets a set of predicates on ele-
ments of the vector and ensures that there will be at least one vector element
for which the predicate holds. The fact that the predicate for a vector ele-
ment holds implies that this element exists, and thus, the vector is not empty.
Therefore, the projection for this operator is the constraint vecSize ≥ 1.

Similar projection is also used in other global operators that imply existence
of at least one element in the vector, such as MinOf and MaxOf that calculate
the minimum and maximum of variables in the vector.

AtLeast (predicate of vector.V, limit). This operator holds if the number
of vector elements on which the predicate holds is at least limit. Therefore,
its projection is vecSize ≥ limit.

AllDiff (vector.V). This operator gets a set of variables as input and forces
each of them to have a different value. This operator affects the size of the
vector because it means that the size of the vector cannot be greater than the
domain size of the variable. Therefore, when this operator is encountered, we
replace it with the following constraint on the number of elements: vecSize ≤
|domain of variable|. This projector assumes that the different input variables
have the same domain.

SumOf (vector.V). This operator gets a set of variables as input and calculates
their sum. It enables the modeler to write a constraint on the sum of their
values (e.g., SumOf(vector.V) = T , where T is the target value). The relation
between the minimal and maximal values of V and the minimal and maximal
values of T can affect the range of feasible vector sizes. For example, if all the
values in the domain of V and T are of the same sign, the following relation
must hold: min(T

V) ≤ vecSize ≤ max(T
V), where min(T

V) and max(T
V) are the

minimal and maximal values of all possible divisions of T and V . If V has
both positive and negative values in its domain, or it has the value 0, then the
SumOf constraint does not impose any upper bound on the vector size. The
minimal vector size is the minimum of Mpos and Mneg, where Mpos (Mneg)
is the minimal value of T

V for only the positive (negative) values in V and T .

Note that the projections above are valid when the constraints have posi-
tive polarity. When the constraints are negated, their projection on the vector
size is different. For example, the constraint NotExists(predicate of vector.V) (or
not(Exists(predicate of vector.V))) does not imply anything on the vector size
because this constraint holds if the vector is empty. Therefore, it is not included
in the vector size CSP. Similarly, there are other global constraints that do not
affect the vector size and therefore do not require a projection in the vector size
CSP. Examples for these include:

66 E. Bilgory et al.

AllSame (vector.V). This operator gets a set of variables and forces all of
them to get the same value.

AtMost (predicate of vector.V, limit). This operator holds if the number
of vector elements on which the predicate holds is at most limit.

Finally, there are global constraints with an overly complex projection to the
vector size that prevent us from getting a good overapproximated bound. In these
cases, we prefer not to project at all, which may increase the failure probability,
over an under-approximated projection. For example, the Monotonic(vector.V),
which ensures that variables V in the vector elements is monotonically not
decreasing, cannot be easily projected in an over-approximation projection.
Therefore, we prefer to ignore this constraint instead of using an under-
approximated projection.

Figure 5 shows the vector size CSP for the size of the memAccessSeq vector
derived from the skeleton in Fig. 3. Note the constraint 4096

512 ≤ vecSize ≤ 4096
64

that replaced the SumOf constraint in the CSP skeleton of Fig. 3, the new
constraint vecSize > 5 caused by the specific reference to memAccessSeq [5] in
the problem description, and the existence variable added to the representative
element.

Fig. 5. Vector size CSP for the memAccessSeq vector

4 Experimental Results

We implemented the proposed method as part of our internal CSP engine [5,15].
It is currently being used in two applications: test-program generation and data
fabrication for database systems. Our CSP engine uses a declarative language
for describing CSP problems [5]. The language supports logical and arithmetic

Solving Constraint Satisfaction Problems Containing Vectors 67

constraints over a rich set of data types, global operations on sets of variables,
assembly of complex constraints, nullable variables, declaration of classes, includ-
ing inheritance and other useful features. The examples in Figs. 1 and 2 use
the syntax of this declarative language. The CSP solver [15] is based on the
MAC algorithm [12], but contains many additions, adaptions, and optimizations
needed for its main use, namely test and content generation. Our CSP solver
provides random solutions to a CSP [4]. This feature is important because in
many use cases the engine must provide a large number of different solutions to
the same problem. Other key features include soft constraints, conditional CSP,
and support of very large domains [4].

We could not test our method against standard CSP benchmarks, such as
CSPLib [7], because these benchmarks do not include problems that contain vec-
tors of unknown size. Instead, the experimental results presented in this section
include three problems, one synthetic and two that are taken from the appli-
cations that use the proposed method. In each experiment, we compared the
running time of the CSP engine and its memory consumption when the pro-
posed method is used for the two alternatives of conditional CSP and random
guess of vector sizes. In many of the problems we deal with, it is hard for the
problem modeler to determine a limit to vector sizes because of the complexity
of the constraints, or because they are highly dependent on user parameters. As
a result, in almost all such problems, vector sizes are left unbounded. This makes
the two alternative solutions unfeasible. To overcome this issue, we used a two-
step solution method: first setting an upper bound to all vector sizes, and only
then constructing and solving the CSP. The upper bounds that we used in the
experiments are 10, 100, and 1000. We present the results for each bound. Note
that our method does not require this initial step. This is one of the advantages
of our method over other existing solutions.

The three problems we used in the experiments are:

Synthetic problem: This problem is like the one shown in Fig. 1, except it
does not include line 8, which sets a bound to the vector size. This was done
to match the other two problems. The CSP for this problem contains 2N + 1
variables and N + 3 constraints, where N is the vector size.

Data fabrication problem: The problem involves fabricating data to test a
database application for financial transactions. The data contains people and
their financial transactions. Therefore, the problem contains a vector of per-
sons with unknown size, and each entry in this vector contains a vector of
unknown size for transactions. The fabricated data has to satisfy legality
constraints and some statistic properties, all of which are described as con-
straints. Specifically, there are four constraints that sum up various variables
in all the transactions in the problem, and four repeating constraints that
sum variables for the transactions of each person.

Each transaction sub-problem contains 15 variables and 12 constraints.
Each person contains, in addition to its transactions, 15 variables and 10
constraints. There are also 21 global constraints. Therefore, a problem with
10 people and an average of 13 transactions per person contains 21+10 ·(10+
13 · 12) = 1681 constraints and 10 · (15 + 13 · 15) = 2100 variables.

68 E. Bilgory et al.

Test generation problem: The goal is to generate four instruction streams
(note that this is a vector with fixed size). Each stream contains between 1
and 32 instructions. There are two types of instructions, which are reflected
in two CSP sub-problems, one with one variable and one constraint and one
with two variables and two constraints.

The CSP contains 1 global variable and 1 global constraint. Each stream
contains 9 variables and 7 constraints in addition to the variables and con-
straints of the individual instructions. Therefore, a problem with an average
stream size of 16 where the instructions are equally split between the 2 types
contains 1 + 4 · (9 + 16 · 1.5) = 133 variables and 1 + 4 · (7 + 16 · 1.5) = 125
constraints.

The size of the problems is provided for the base problem. It does not include
additions needed for the three solution methods, such as the vector size CSPs
in the proposed method and the additional existence variable and constraints
needed by the conditional CSP method (For example, see Fig. 2).

We ran these experiments on a virtual Linux machine with an x86 64 Intel
processor that is part of a large server. While the server has 239 GB of memory,
the CSP engine that was used in the experiments is limited to 4 GB. To avoid
an infinite running time, we set several limits. First, we set a limited time and
number of backtracks for each CSP the engine tried to solve. These limits were
never reached in the experiments, meaning that each CSP either found a solution
or reported that the problem is unsatisfiable. Second, we set a limit of 1000 to
the number of attempts to select random vector sizes in the random size method.

Because our CSP engine provides random solutions to the CSPs, we ran each
experiment six times. The reported results are the average of these runs. Tables 1
and 2 summarize the results. Table 1 shows the average execution time of each
problem and Table 2 shows average memory consumption.

The results show that our method always outperformed the other two meth-
ods in both execution time and memory consumption when the bound on the
vector sizes is high (100 or 1000). There are two reasons for this. The random
size method can randomly select a vector size that is not feasible, leading to
failure in the CSP solution and a retry. This issue becomes more severe when
the bound on the vector size is not tight (as in the 1000 bound case where there
are only a few legal solutions) or when the number of vectors with unknown sizes
is large. The conditional CSP method has to construct and solve the CSP with
the maximal number of vector elements. Therefore, it consumes more memory

Table 1. Experimental results - average execution time [seconds]

Method Random size Conditional CSP Ours

Bound 10 100 1000 10 100 1000

Synthetic 0.020 0.208 81.753 0.027 0.131 7.118 0.025

Data fabrication 6.448 4678.331 Timeout 24.321 N/A N/A 1.674

Test generation 0.059 17.482 Timeout 0.077 0.315 2.998 0.112

Solving Constraint Satisfaction Problems Containing Vectors 69

Table 2. Experimental results - average memory consumption [MB]

Method Random size Conditional CSP Ours

Bound 10 100 1000 10 100 1000

Synthetic 6.2 6.6 10.4 6.4 7.9 22.9 6.3

Data fabrication 40.8 278.9 4096.0 84.0 Out-of-memory Out-of-memory 38.0

Testgeneration 7.5 14.6 217.6 8.2 17.0 101.3 8.3

and takes longer to solve than our method. In fact, the memory requirements
in the data fabrication experiment were so high, that it ran out of memory for
bounds of 100 and 1000.

With a low bound of 10, the random size method outperformed our method
in both the synthetic and test generation examples. This is because in these
two problems, each size in the bound is feasible. The problem with this too-
tight bound, which is extremely important in our domain that requires random
solutions, is that many solutions with vector sizes greater than 10 cannot be
reached. Note that because the data fabrication experiment contains only a single
feasible size for the people vector (4), our method outperforms the random size
with the tight bound.

5 Conclusions

We presented a method that enables solving CSPs that have vectors of unknown
sizes, even when there is no obvious maximal length to the vector. The heart
of our method lies in the construction of vector size CSPs that project the full
problem to a smaller problem of finding the unknown size of a vector. The
obtained vector sizes are then used to construct and solve a CSP with a fully
known structure. We showed that in some real-life problems in which vector sizes
are controlled by constraints, our method outperforms other existing solving
methods.

Although we successfully deployed our proposed method, we continue to work
primarily on improving the precision of projection of global constraints to the
vector size in the vector size problem, adding new constraints that are currently
not supported, and adding other features in our constraints language to this
framework.

References

1. Adir, A., Levy, R., Salman, T.: Dynamic test data generation for data intensive
applications. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol.
7261, pp. 219–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34188-5 19

2. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc
with strings. arXiv preprint arXiv:1608.03650 (2016)

http://dx.doi.org/10.1007/978-3-642-34188-5_19
http://arxiv.org/abs/1608.03650

70 E. Bilgory et al.

3. Bessiere, C.: Arc-consistency in dynamic constraint satisfaction problems. In: Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, pp. 221–226,
July 1991

4. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation
and solution techniques for random test program generation. IBM Syst. J. 41(3),
386–402 (2002)

5. Bin, E., Venezian, E.: Solving the address translation problem as a constraint
satisfaction problem. In: CP Meets Verifiation Workshop of the 20th International
Conference on Principles and Practice of Constraint Programming, September 2014

6. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
7. Gent, I., Walsh, T.: CSPLib: a problem library for constraints. http://www.csplib.

org. Accessed 24 Apr 2017
8. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP

2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8 26

9. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: logical
foundations and complexity. In: Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pp. 88–93, January 2007

10. Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP.
In: Proceedings of the 2012 Design, Automation and Test in Europe Conference,
pp. 15–20, March 2012

11. Keppens, J., Shen, Q.: Compositional model repositories via dynamic constraint
satisfaction with order-of-magnitude preferences. J. Artif. Intell. Res. 21, 499–550
(2004)

12. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

13. Mailharro, D.: A classification and constraint-based frame-work for configuration.
Artif. Intell. Eng. Des. Anal. Manuf. J. 12(4), 383–397 (1998)

14. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction. In: Proceedings of
the Eighth National Conference on Artificial Intelligence, pp. 25–32, July 1990

15. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Mag.
28(3), 13–30 (2007)

16. Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional con-
straint satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8 44

17. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: IEEE Symposium on Security and Privacy,
pp. 513–528, May 2010

18. Schenner, G., Taupe, R.: Encoding object-oriented models in MiniZinc. In:
Fifteenth International Workshop on Constraint Modelling and Reformulation,
September 2016

19. Scott, J.D., Flener, P., Pearson, J.: Constraint solving on bounded string variables.
In: Proceedings of the 12th International Conference on Integration of AI and OR
Techniques in Constraint Programming, pp. 375–392, May 2015

20. Soininen, T., Gelle, E., Niemelä, I.: A fixpoint definition of dynamic constraint
satisfaction. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 419–433. Springer,
Heidelberg (1999). doi:10.1007/978-3-540-48085-3 30

21. Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS,
vol. 976, pp. 88–102. Springer, Heidelberg (1995). doi:10.1007/3-540-60299-2 6

http://www.csplib.org
http://www.csplib.org
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-540-45193-8_44
http://dx.doi.org/10.1007/978-3-540-48085-3_30
http://dx.doi.org/10.1007/3-540-60299-2_6

An Efficient SMT Approach to Solve
MRCPSP/max Instances with Tight Constraints

on Resources

Miquel Bofill, Jordi Coll(B), Josep Suy, and Mateu Villaret

University of Girona, Girona, Spain
{miquel.bofill,jordi.coll,josep.suy,mateu.villaret}@imae.udg.edu

Abstract. The Multi-Mode Resource-Constrained Project Scheduling
Problem with Minimum and Maximum Time Lags (MRCPSP/max) is a
generalization of the well known Resource-Constrained Project Schedul-
ing Problem. Recently, it has been shown that the benchmark datasets
typically used in the literature can be easily solved by relaxing some
resource constraints, which in many cases are dummy. In this work
we propose new datasets with tighter resource limitations. We tackle
them with an SMT encoding, where resource constraints are expressed
as specialized pseudo-Boolean constraints and then translated into SAT.
We provide empirical evidence that this approach is state-of-the-art for
instances highly constrained by resources.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is the problem
of finding the start times of a set of non-preemptive activities while respect-
ing some constraints, namely precedence relations between activities and cor-
rect usage of shared resources with limited capacity. There exist many exten-
sions of this problem [5], e.g., involving multiple execution modes per activity
(MRCPSP), or generalized precedence relations (RCPSP/max). The exact meth-
ods with the best known performance in such scheduling problems are based in
Lazy Clause Generation [13,16], Failure-Directed Search (FDS) [17] and SAT
Modulo Theories (SMT) [1,3,4].

In this work we address the Multi-mode Resource-Constrained Project
Scheduling Problem with Minimal and Maximal Time Lags (MRCPSP/max),1

which combines MRCPSP and RCPSP/max. The goal is to determine a start
time and an execution mode for each activity, in order to obtain a schedule
which satisfies all the resource and generalized precedence constraints, and which
has minimum makespan (i.e., the total duration of the whole set of activities).
Up to our knowledge, the best exact approaches for this problem are based in
Constraint Integer Programming with cumulative constraint handlers [12] and
FDS [17].
1 This problem is denoted MPS|temp|Cmax in [5] and m, 1|gpr|Cmax in [8]. It is also

known as the Multi-mode RCPSP with Generalized Precedence Relations.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 71–79, 2017.
DOI: 10.1007/978-3-319-66158-2 5

72 M. Bofill et al.

Most of the recent works on MRCPSP/max have been evaluated using
the benchmark datasets created in [14]. In [17] it was observed that, in those
instances, the resource constraints are not the hardest component. In this work,
we further analyse the reason why the resource constraints seem not to play an
important role in those instances, concluding that such constraints are trivially
satisfied in many cases. Therefore, we have crafted new instance sets, where
resource constraints take a more important role. Moreover, we present an SMT-
based system to solve the MRCPSP/max. We use Integer Difference Logic (IDL)
to deal with generalized precedences, and recently introduced specialized pseudo-
Boolean (PB) constraints [4] to deal with resource constraints. Such PB con-
straints allow compact encodings into SAT, and have been shown to improve
performance in the MRCPSP. We provide experiments showing that our SMT
approach performs better than other exact approaches on instances with tight
constraints on resources.

2 The Multi-mode RCPSP with Minimum and Maximum
Time Lags (MRCPSP/max)

The MRCPSP/max is defined by a tuple (V,M, p,E, g,R,B, b) where:

– V = {A0, A1, . . . , An, An+1} is a set of non-preemptive activities. A0 and
An+1 are dummy activities representing the start and the end of the schedule,
respectively. The set of non-dummy activities is defined as A = {A1, . . . , An}.

– M ∈ Nn+2 is a vector of naturals, being Mi the number of modes in which
activity i can be executed. M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈ A.

– p is a vector of vectors of naturals, being pi,o the duration of activity i when
is executed in mode o, with 1 ≤ o ≤ Mi, p0,1 = pn+1,1 = 0.

– E is a set of pairs of activities which have a time lag defined.
– g is a four dimensional vector of naturals, being gi,j,o,o′ the time lag from

activity Ai in mode o to activity Aj in mode o′. If gi,j,o,o′ >= 0, it is a
minimum time lag, and means that if Ai is running in mode o and Aj is
running in mode o′, then Aj must start at least gi,j,o,o′ units of time after
the start of Ai. If gi,j,o,o′ < 0, it is a maximum time lag, and means that Ai

must start at most |gi,j,o,o′ | units of time after the start of Aj .
– R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v

resources are renewable, and the last q − v resources are non-renewable.
– B ∈ Nq is a vector of naturals, being Bk the capacity of resource Rk.
– b is a matrix of naturals corresponding to the resource demands of activities

per mode: bi,k,o represents the amount of resource Rk required by activity
Ai in mode o, b0,k,1 = 0 and bn+1,k,1 = 0,∀k ∈ {1, . . . , q}. For renewable
resources, this is the required amount per time step, whilst for non-renewable
resources, it is the total amount required by the activity during its execution.

A schedule is a vector of naturals S = (S0, . . . , Sn+1) where Si denotes
the start time of activity Ai, S0 = 0, and Sn+1 is the makespan (comple-
tion time of the project). A schedule of modes is a vector of naturals SM =

An Efficient SMT Approach to Solve MRCPSP/max Instances 73

(SM 0, . . . ,SM n+1) where SM i, satisfying 1 ≤ SM i ≤ Mi, denotes the mode
of each activity Ai. A solution of the MRCPSP/max problem is a schedule of
modes SM and a schedule S of minimal makespan Sn+1 satisfying the general-
ized precedence (1), non-renewable (2) and renewable (3) resource constraints:

((SM i = o) ∧ (SM j = o′)) → (Sj − Si ≥ gi,j,o,o′)
∀(Ai, Aj) ∈ E,∀o ∈ [1,Mi],∀o′ ∈ [1,Mj] (1)⎛

⎝ ∑
Ai∈A

∑
o∈[1,Mi]

ite(SM i = o; bi,k,o; 0)

⎞
⎠ ≤ Bk ∀Rk ∈ {Rv+1, . . . , Rq} (2)

⎛
⎝ ∑

Ai∈A

∑
o∈[1,Mi]

ite
(
(SM i = o) ∧ (Si ≤ t) ∧ (t < Si + pi,o); bi,k,o; 0

)
⎞
⎠ ≤ Bk

∀Rk ∈ {R1, . . . , Rv},∀t ∈ H (3)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and e2
otherwise, H = {0, . . . , T} is the scheduling horizon, and T (the length of the
scheduling horizon) is an upper bound (UB) for the makespan.

3 Formulation

We propose a SAT modulo Integer Difference Logic formulation to solve the
MRCPSP/max. This is a formulation for the decision version of the problem,
i.e., it models the problem of finding a feasible schedule for an MRCPSP/max
instance whose makespan is smaller or equal than a given UB. The optimization
is achieved by successive calls to an SMT solver, as described in Sect. 4.

In our formulation, we use some precomputed values which serve to bound the
execution times of the activities. Given an UB, these values can be recomputed
according to different criteria [2]; here we consider time lag constraints between
activities as done in [12]. By ESi we denote the earliest time instant at which
Ai can start, by LSi the latest time instant at which Ai can start, and by LCi

the latest time instant at which Ai can end.
We use a set of integer variables {S0, . . . , Sn+1} to denote the start time

of each activity. We represent the schedule of modes with the set of Boolean
variables {smi,o | 0 ≤ i ≤ n + 1, 1 ≤ o ≤ Mi}, being smi,o true if and only if
activity Ai is executed in mode o. The constraints are the following:

S0 = 0 (4)
ESi ≤ Si ≤ LSi ∀Ai∈{A1, . . . , An+1} (5)
(smi,o ∧ smj,o′) → (Sj − Si ≥ gi,j,o,o′) ∀(Ai, Aj) ∈ E,

∀o ∈ [1,Mi],∀o′ ∈ [1,Mj] (6)∨
∀o∈[1,Mi]

smi,o ∀Ai∈V (7)

¬smi,o ∨ ¬smi,o′ ∀Ai∈ A,∀o, o′ ∈ [1,Mi], o < o′ (8)

74 M. Bofill et al.

where (5) sets the earliest and latest start time of each activity, (6) encodes
the generalized precedences and (7) and (8) ensure that each activity runs in
exactly one mode—(8) is an at-most-one (AMO) constraint. The formulation
of the constraints over resources is a time-indexed formulation [11], where we
introduce the set of Boolean variables xi,t,o, which are true if and only if activity
Ai is being executed in mode o at time t in the schedule:

xi,t,o ↔ (Si ≤ t < Si + pi,o ∧ smi,o) ∀Ai ∈ A,∀t ∈ [ESi, LCi),∀o ∈ [1,Mi] (9)

We can express resource constraints as pseudo-Boolean (PB) constraints. A PB
constraint has the form q1 · x1 + · · · + qn · xn#K, where qi and K are integer
constants, xi are 0/1 (false/true) variables, and # ∈ {<,≤,=,≥, >} [7]. A well-
known approach to encode PB constraints is to represent them as Binary Deci-
sion Diagrams (BDDs), and then encode such BDDs into SAT [7]. This method
was successfully applied to encode resource constraints for the MRCPSP in [3].
Recently, in [4] it was proposed a way to compactly encode PB constrains into
SAT when their variables can be organized in groups that have AMO constraints
already enforced. These PB constraints, called AMO-PB constraints, are built
up from AMO-products.

Definition 1 (AMO-product). We refer to an integer linear expression
q1 · x1 + · · · + qm · xm over 0/1 variables x1, . . . , xm, subject to the fact that
at most one xi is true, as an AMO-product. We conveniently express AMO-
products as QX, where Q = 〈q1, . . . , qm〉 and X = 〈x1, · · · , xm〉.
Definition 2 (AMO-PB). We refer to an expression of the form Q1X1+ · · ·+
QnXn ≤ K, where QiXi are AMO-products and K is an integer constant, as a
PB constraint with AMO relations (AMO-PB).

Notice that an AMO-PB can be seen as a partial function, whose value is
undefined if the AMO relation does not hold for some Xi.

The key idea in the use of AMO-PBs is that, if the AMO constraints over the
variables of each AMO-product are already enforced, then the SAT encoding of
the AMO-PB does not need to forbid the inconsistent assignments which do not
satisfy the AMO constraints. In some formulations the needed AMO constraints
are implicitly enforced, and hence there is no need to add additional clauses to
the encoding. In our formulation of the MRCPCP/max, Constraints (8) explic-
itly enforce that at most one of all the variables smi,o can be true for a particular
activity Ai. Similarly, at most one of all the variables xi,t,o can be true for a par-
ticular activity Ai and time t, i.e., an activity can be running in at most one
execution mode o at a time. Note, however, that the AMO relation of variables
xi,t,o for an activity Ai and time t follows from the conjunction of Constraints (8)
and (9). Interestingly, the generalized precedence relations (6) can introduce fur-
ther implicit AMO relations between variables xi,t,o. Let us consider a case in
which (Ai, Aj) ∈ E, and it holds that gi,j,o,o′ ≥ pi,o, for all execution modes o
and o′. In such cases we will say that Ai and Aj have an end-start precedence,
meaning that Aj will always start after Ai has ended, so they will never be run-
ning at a same time. Therefore, in this case xi,t,o and xj,t,o′ cannot be both true,

An Efficient SMT Approach to Solve MRCPSP/max Instances 75

because an AMO constraint is implicitly enforced by Constraints (6) and (9). We
can take profit of all these explicit AMO constraints over smi,o, and the implicit
AMO relations over xi,t,o, to express the resource constraints as AMO-PBs.

Similarly to what is done in [4], we precompute a set P(t) = {P1, . . . , Pm} for
each time t, where all Pj in P(t) are disjoint sets of activities, and P1 ∪ · · · ∪Pm

contains all the activities Ai which can be running at time t according to
their ESi and LCi. Moreover, all the activities in a set Pj are pairwise mutu-
ally exclusive due to end-start precedences. Hence, there is an AMO relation
enforced over the variables xi,t,o of all activities Ai in each Pj . Then, the con-
straints over renewable resources can be formulated as AMO-PBs, where the j-th
AMO-product contains the variables xi,t,o for all Ai ∈ Pj , o ∈ [1,Mi]:

∑
Pj∈P(t)

Q(Pj , k) · X(Pj , k, t) ≤ Bk ∀Rk ∈ {R1, . . . , Rv},∀t ∈ [0,H] (10)

where Q(Pj , k) = 〈bi,k,o | Ai ∈ Pj ∧ o ∈ [1,Mi] ∧ bi,k,o > 0〉
X(Pj , k, t) = 〈xi,t,o | Ai ∈ Pj ∧ o ∈ [1,Mi] ∧ bi,k,o > 0〉

The non-renewable resource constraints 2 can also be represented using AMO-
PB constraints. In this case, the i-th AMO-product will contain all the variables
smi,o for all o ∈ [1,Mi]:

∑
Ai∈A

Q(Ai, k) · X(Ai, k) ≤ Bk ∀Rk ∈ {Rv+1, . . . , Rq} (11)

where Q(Ai, k) = 〈bi,k,o | o ∈ [1,Mi]〉 X(Ai, k) = 〈smi,o | o ∈ [1,Mi]〉
AMO-PB constraints (10) and (11) are encoded into SAT as described in [4].

4 Optimization Procedure

The formulation in Sect. 3 models whether it is possible to find a schedule whose
makespan is not greater than a given UB. Some SMT solvers have built-in opti-
mization mechanisms which let to specify an objective function [10,15]. We use
the Yices SMT solver [6], because we have experienced that it performs very
well in scheduling problems. However, this solver does not provide optimization.
In order to get the optimal solution, we have implemented an optimization pro-
cedure that can use any off-the-shelf SMT solver as an oracle. Note that our
formulation requires an UB in order to specify some constraints. An UB which
is commonly used in scheduling problems is trivialUB, which is the makespan
resulting from scheduling all the activities in a way such that only one runs
at a time [2]. Since this UB tends to be significantly larger than the optimal
makespan, we implement an optimization procedure similar to the one in [17]:

1. Find a LB. We optimize a relaxed version of the MRCPSP/max which does
not include Constraints (10), by following a top-bottom search: starting from

76 M. Bofill et al.

trivialUB, we make successive satisfiability calls to the SMT solver, and after
each call we set UB to be the makespan of the previous call minus 1. The
procedure ends when the optimality is certified.

2. Find an UB. We optimize a single-mode version of the MRCPSP/max, by
enforcing the execution modes to be the ones of the optimal solution found in
step 1. We perform a bottom-top search, i.e., we try increasing upper bounds,
starting from LB, until a model is found, or trivialUB is reached.

3. Solve MRCPSP/max. This last step is only required when UB > LB. In
this case, we follow a top-bottom search starting at UB.

Steps 1 and 2 are intended to find tight bounds on the makespan. We per-
form these steps because reaching the optimal makespan of the MRCPSP/max
decreasingly from trivialUB or increasingly from a LB, have shown in prelimi-
nary experiments to be far more time consuming than finding bounds by means
of relaxed formulations. The main differences with respect to [17] are two: in [17],
a MIP formulation in which the renewable resource constraints are relaxed using
energetic reasoning (instead of completely ignoring them) is used in step 1; on
the other hand, in [17] built-in optimization methods are used in all three steps.

5 New Benchmark Datasets for MRCPSP/max

Most of the recent approaches on solving the MRCPSP/max have been evaluated
on the datasets generated in [14] and available in the PSPLib [9]. In particular,
there are three datasets with 270 problem instances each one, namely mm30,
mm50 and mm100 (instances have 30, 50 and 100 non-dummy activities). The
number of execution modes ranges from 3 to 5, and there are 3 renewable and
3 non-renewable resources in each instance. The works of [12,17] have reported
the best exact results, considering the mm30, mm50 and mm100 datasets. The
former presented a handler for an extension of the cumulative constraint for the
MRCPSP/max integrated into the SCIP optimization framework. The latter
proposed a Failure-Directed Search Constraint Programming approach which
shown to perform very well in different scheduling problems. Also, in [17] it was
pointed out that, in the previously mentioned instances, resource constraints
are not the hardest part of the problem. They used the relaxations on resource
constraints mentioned in Sect. 4 to find a LB and an UB and it turned out that,
in most of the cases, the LB and the UB were equal, and therefore an optimal
solution was found without the need of encoding the whole original problem.

We have studied why the resources play such a minor role in those datasets.
For 1432 out of the total 2430 non-renewable resources, it is trivially true that
the demands do not exceed their capacity, i.e., any assignment of modes satisfies
Constraint (2) for these resources. We have also checked if the relaxed optimal
solutions obtained in step 1 of our optimization procedure satisfied the renewable
resource constraints, which weren’t enforced in this relaxation. We have observed
that the relaxed optimal solution found for 593 out of the 810 instances satisfied
the renewable resource constraints, although they were not encoded, and hence
were also optimal solutions of the original problem. This number may be larger

An Efficient SMT Approach to Solve MRCPSP/max Instances 77

because some instances timed out without having found the optimal solution of
the relaxation, and therefore have not been counted.

Table 1. Resource capacities of the new datasets. The capacity of each resource of each
instance have been generated uniformly and independently at random in the interval
indicated in the corresponding cell of the table.

Set name mm30 1 mm30 2 mm50 1 mm50 2 mm100 1 mm100 2

Renewable capacity [30,39] [20,29] [30,39] [20,29] [30,39] [20,29]

Non-renewable capacity [135,164] [135,164] [235,264] [235,264] [485,514] [485,514]

These characteristics, in addition to the fact that all the mentioned instances
have been closed, suggest us that there is a need for new and more challenging
datasets, in particular regarding the hardness of resource constraints. The reason
why most renewable and non-renewable resources barely constrain the instances
is because the capacities are far large enough to supply the demands of the activi-
ties in a large amount of the possible combinations of mode assignments. For this
reason, we propose to use as a basis the same instances, but shrinking the capac-
ities of the resources to amounts which make them non-dummy. For the case of
the renewable resources, we have conducted some preliminary experiments to
see approximately which capacity is needed to make the optimal makespan of
an instance increase. We have observed that, given the original demand values
and precedence network topologies, for capacities smaller than 30, rarely any
instance has an optimal makespan equal to the optimal of the MRCPSP/max
without resource constraints. Regarding the non-renewable resources, the origi-
nal dataset was created with demands ranging from 1 to 10. Considering that all
the activities require the intermediate amount of 5 units for each non-renewable
resource, it would be needed a capacity of 5n to supply the demands, being n the
number of activities of the instance. Considering these facts, we have generated
two new versions of each one of the mm30, mm50 and mm100 datasets, namely
mm{30,50,100} 1 and mm{30,50,100} 2. They are the result of replacing the
resource capacities as stated in Table 1. The new mm{30,50,100} 2 datasets are
intended to be very constrained by resources. This is indeed the case, since we
have not been able to find any relaxed solution satisfying the renewable resource
constraints, and no non-renewable constraint is dummy. Sets mm{30,50,100} 1
are a bit softer regarding renewable resources.

6 Results and Conclusions

The experiments have been run on a 8 GB Intel R© Xeon R© E3-1220v2 machine
at 3.10 GHz. We have run our solver using Yices 2.4.2 [6] as the core SMT
solver, and compared the performance of our system with [17] (FDS) and [12]
(SCIP). We have run all three solvers in the same machine on both the old and

78 M. Bofill et al.

Table 2. Results for each solver (rows) and each dataset (columns), with a timeout of
600 s; avg denotes the average running time, in seconds, required to optimally solve the
instances (computed on the instances which did not time out); to denotes the number
of instances that timed out before reaching the optimum.

30 50 100 30 1 50 1 100 1 30 2 50 2 100 2

FDS avg 0.48 1.30 15.19 27.80 125.12 36.00 72.91 185.41 -

to 0 0 3 1 113 267 24 216 270

SCIP avg 14.49 26.74 134.03 88.97 163.79 - 178.33 281.23 -

to 1 24 90 49 206 270 155 257 270

SMT avg 0.87 17.14 67.97 16.39 120.38 - 54.36 224.47 -

to 0 0 65 1 108 270 12 192 270

the new datasets. The results2 are contained in Table 2. FDS is doubtlessly the
best solver for the original datasets, with only 3 timeouts in the hardest dataset
(mm100) and average runtimes one order of magnitude lower than the other
approaches. This is because its MIP relaxation works very well with generalized
precedence relations. It must be noted that SCIP does not start by solving a
relaxed MRCPSP/max with respect to resources, which penalizes this approach
in these datasets. On the other hand we can see that, in the new datasets, which
are more constrained by resources, SMT is able to solve more instances than the
other approaches in all cases except for the mm100 1 dataset. We remark that 2
out of the 3 instances that FDS solves in this dataset are optimally solved already
in the relaxation solving steps. SMT is the best approach in sets mm{30,50} 2,
which have the strongest resource constraints.

In conclusion, thanks to identifying some weaknesses of existing instances,
we are able to provide new and challenging datasets for MRCPSP/max. This
is especially noticeable in mm100 sets which, with the exception of 3 instances
for FDS, could not be solved in less than 600 s using the state-of-the-art exact
methods for MRCPSP/max. We have provided an SMT formulation showing to
be more efficient than other state-of-the-art approaches for heavily resource con-
strained instances. Interestingly, our approach takes an off-the-shelf SMT solver
and, instead of using specialized propagators, it uses recent specialized encod-
ings of PB constraints into SAT to deal with resource constraints. The resulting
encoding uses only the IDL theory, to deal with generalized precedences. Left
as future work are the incorporation of better relaxations on resource equa-
tions, as the ones in [17], for a better LB identification. Also other optimization
approaches could be considered, as well as the use of a full SAT encoding.

Acknowledgments. Work supported by grants TIN2015-66293-R (MINECO/
FEDER, UE), MPCUdG2016/055 (UdG), and Ayudas para Contratos Predoctorales
2016 (grant number BES-2016-076867, funded by MINECO and co-funded by FSE).
We thank the authors of [12,17] for sharing with us their solvers.

2 The solver used in the experiments, detailed results and the new instances are avail-
able at http://imae.udg.edu/recerca/LAP/.

http://imae.udg.edu/recerca/LAP/

An Efficient SMT Approach to Solve MRCPSP/max Instances 79

References

1. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Satisfiability modulo
theories: an efficient approach for the resource-constrained project scheduling prob-
lem. In: Proceedings of the Ninth Symposium on Abstraction, Reformulation, and
Approximation (SARA), pp. 2–9. AAAI (2011)

2. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. Wiley, Hoboken (2013)

3. Bofill, M., Coll, J., Suy, J., Villaret, M.: Solving the multi-mode resource-
constrained project scheduling problem with SMT. In: 28th International Con-
ference on Tools with Artificial Intelligence (ICTAI), pp. 239–246. IEEE (2016)

4. Bofill, M., Coll, J., Suy, J., Villaret, M.: Compact MDDs for pseudo-Boolean con-
straints with at-most-one relations in resource-constrained scheduling problems. In:
International Joint Conference on Artificial Intelligence (IJCAI) (2017, to appear)

5. Brucker, P., Drexl, A., Mhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models, and methods. Eur. J. Oper.
Res. 112(1), 3–41 (1999)

6. Dutertre, B., de Moura, L.: The yices SMT solver. Technical report, Computer
Science Laboratory, SRI International (2006). http://yices.csl.sri.com

7. Eén, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2, 1–26 (2006)

8. Herroelen, W., Demeulemeester, E., Reyck, B.: A classification scheme for project
scheduling. In: Weglarz, J. (ed.) Project Scheduling. International Series in Oper-
ations Research & Management Science, vol. 14, pp. 1–26. Springer, New York
(1999). doi:10.1007/978-1-4615-5533-9 1

9. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1997)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

11. Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited
resources: a zero-one programming approach. Manag. Sci. 16, 93–108 (1969)

12. Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode
resource-constrained project scheduling problem with generalized precedence rela-
tions. OR Spectr. 38(2), 283–303 (2016)

13. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource con-
strained project scheduling problem with generalized precedences by lazy clause
generation. CoRR abs/1009.0347 (2010). http://arxiv.org/abs/1009.0347

14. Schwindt, C.: Generation of resource constrained project scheduling problems sub-
ject to temporal constraints. Inst. für Wirtschaftstheorie und Operations-Research
(1998)

15. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 38

16. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained
project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 31

17. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). doi:10.1007/978-3-319-18008-3 30

http://yices.csl.sri.com
http://dx.doi.org/10.1007/978-1-4615-5533-9_1
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1009.0347
http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/978-3-319-44953-1_31
http://dx.doi.org/10.1007/978-3-319-18008-3_30

Conjunctions of Among Constraints

Vı́ctor Dalmau(B)

Department of Information and Communication Technologies,
Universitat Pompeu Fabra, Barcelona, Spain

vdalmau@gmail.com

Abstract. Many existing global constraints can be encoded as a con-
junction of among constraints. An among constraint holds if the num-
ber of the variables in its scope whose value belongs to a prespecified
set, which we call its range, is within some given bounds. It is known
that domain filtering algorithms can benefit from reasoning about the
interaction of among constraints so that values can be filtered out tak-
ing into consideration several among constraints simultaneously. The
present paper embarks into a systematic investigation on the circum-
stances under which it is possible to obtain efficient and complete domain
filtering algorithms for conjunctions of among constraints. We start by
observing that restrictions on both the scope and the range of the among
constraints are necessary to obtain meaningful results. Then, we derive a
domain flow-based filtering algorithm and present several applications. In
particular, it is shown that the algorithm unifies and generalizes several
previous existing results.

1 Introduction

Global constraints play a major role in constraint programming. Very informally,
a global constraint is a constraint, or perhaps more precisely, a family of con-
straints, which is versatile enough to be able to express restrictions that are
encountered often in practice. For example, one of the most widely used global
constraints is the ‘All different’ constraint, AllDiff(S) where S = {x1, . . . , xn}
is a set of variables, which specifies that the values assigned to the variables in
S must be all pairwise different. This sort of restriction arises naturally in many
areas, such as for example scheduling problems, where the variables x1, . . . , xn

could represent n activities that must be assigned different times of a common
resource.

Besides is usefulness in simplifying the modeling or programming task,
global constraints also improve greatly the efficiently of propagation-search based
solvers. This type of solver performs a tree search that constructs partial assign-
ments and enforces some sort of propagation or local consistency that prunes
the space search. Different forms of consistency, including (singleton) bounds
consistency, (singleton, generalized) arc-consistency, path consistency and many
others, can be used in the propagation phase. One of the most commonly used
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 80–96, 2017.
DOI: 10.1007/978-3-319-66158-2 6

Conjunctions of Among Constraints 81

forms of local consistency is domain consistency, also called generalized arc-
consistency. A domain consistency algorithm keeps, for every variable v, a list,
L(v), of feasible values, which is updated, by removing a value d from it, when
some constraint in the problem guarantees that v cannot take value d in any
solution. One of the key reasons of the success of global constraints is that they
enable the use of efficient filtering algorithms specifically tailored for them.

Several constraints studied in the literature including AllDiff[19],
GCC[22], Symmetric-GCC [16], Sequence [5], GlobalSequencing [29],
OrderedDistribute [23], and CardinalityMatrix [28] can be decomposed
as the conjunction of a simpler family of constraints, called among constraints
[5]. An among constraint has the form Among(S,R,min,max) where S is again
a set of variables called the scope, R is a subset of the possible values, called
the range, and min,max are integers. This constraint specifies that the number
of variables in S that take a value in R must be in the range {min, . . . ,max}.
For example, the constraint AllDiff(S) can be expressed as the conjunction of
constraints Among(S, {d1}, 0, 1), . . . ,Among(S, {dk}, 0, 1) where d1, . . . , dk are
the set of all feasible values for the variables in S.

Besides encoding more complex global cardinality constraints, conjunctions
of among constraints, (CAC), appear in many problems, such as Sudoku or latin
squares. In consequence, CACs have been previously studied [9,27,33], specially
the particular case of conjunctions of AllDiff constraints [2,3,8,12,17,18,20].
Although deciding the satisfiability of an arbitrary conjunction of among con-
straints is NP-complete [27] this body of work shows that sometimes there
are benefits in reasoning about the interaction between the among constraints.
Hence, it is important to understand under which circumstances among con-
straints can be combined in order to endow CSP solvers with the ability to
propagate taking into consideration several among constraints simultaneously.
The aim of the present paper is to contribute to this line of research. To this
end we first observe that restrictions on both the scope and the range of the
among constraints are necessary to obtain meaningful results. Then we embark
in a systematic study of which such restrictions guarantee efficient propagation
algorithms. In particular, we introduce a general condition such that every CAC

satisfying it admits an efficient and complete domain filtering algorithm. This
condition basically expresses that the matrix of a system of linear equations
encoding the CAC instance belongs to a particular class of totally unimodular
matrices known as network matrices. This allows to reformulate the domain fil-
tering problem in terms of flows in a network graph and apply the methodology
derived by Régin [25,26]. The algorithm thus obtained, although simple, unifies
and generalizes existing domain filtering algorithms for several global constraints,
including AllDiff, GCC, Sequence, Symmetric-GCC, OrderedDistrib-

ute as well as for other problems expressed as conjunctions of among constraints
in [24,27]. A nice feature of our approach is that it abstracts out the construc-
tion of the network flow problem, so that when exploring a new CAC one might
leave out the usually messy details of the design of the network graph and reason
purely in combinatorial terms.

82 V. Dalmau

Several filtering methods have been obtained by decomposing a global
constraint into a combination of among constraints. For example the first
polynomial-time filtering algorithm for the Sequence constraint [33] is obtained
explicitly in this way. However, there have been very few attempts to determine
systematically which particular conjunctions of among constraints allow efficient
filtering algorithms. The seminal paper in this direction is [26] which identifies
several combinations of among and GCC constraints that admit a complete and
efficient domain filtering algorithm (see Sect. 6 for more details). Our approach
is more general as it subsumes the tractable cases introduced in [26]. Another
closely related work is [24] where two tractable combinations of boolean CACs,
called TFO and 3FO, are identified. The approach in [24] differs from ours in
two aspects: it deals with optimization problem and also considers restrictions
on the min and max parameters of the among constraints while we only con-
sider restrictions on the scope and range. A different family of CACs has been
investigated in [9] although the work in [9] focuses in bound consistency instead
of domain consistency.

Other approaches to the design of filtering algorithms for combinations (but
not necessarily conjunctions) of global (but not necessarily among) constraints
are described in [4,6,7]. The method introduced in [4] deals with logical combi-
nations of some primitive constraints but differs substantially from ours in the
sense that it cannot capture a single among constraint. The work reported in
[6,7] does not guarantee tractability.

Several proofs are omitted due to space restrictions. They can be found in
the full version [10].

2 Preliminaries

A conjunction of among constraints, (CAC) is a tuple (V,D,L, C) where V is
a finite set whose elements are called variables, D is a finite set called domain,
L : V → 2D is a mapping that sends every variable v to a subset of D, which we
call its list, and C is a finite set of constraints where a constraint is an expression
of the form Among(S,R,min,max) where S ⊆ V is called the scope of the
constraint, R ⊆ D is called range of the constraint, and min,max are integers
satisfying 0 ≤ min ≤ max ≤ |S|.

A solution of (V,D,L, C) is a mapping s : V → D such that s(v) ∈ L(v) for
every variable v ∈ V and min ≤ |{v ∈ S | s(v) ∈ R}| ≤ max for every constraint
Among(S,R,min,max) in C.

Example 1 (GCC and AllDiff constraints). The global cardinality con-
straint1, GCC [22] corresponds to instances (V,D,L, C) where all the constraints
have the form Among(V, {d},min,max) with d ∈ D. The AllDiff constraint
is the particular case obtained when, additionally, min = 0 and max = 1.

1 We want to stress here that a global constraint is not a single constraint but, in fact,
a family of them.

Conjunctions of Among Constraints 83

Let I = (V,D,L, C) be a CAC. We say that a value d ∈ D is supported for a
variable v ∈ V if there is a solution s of I with s(v) = d. In this paper we focus in
the following computational problem, which we will call domain filtering: given
a CAC, compute the set of all the non supported values for each of its variables.

This definition is motivated by the following scenario: think of (V,D,L, C) as
defining a constraint which is part of a CSP instance that is being solved by a
search-propagation algorithm that enforces domain consistency. Assume that at
any stage of the execution of the algorithm, L encodes the actual feasible values
for each variable in V . Then, the domain filtering problem is basically the task
of identifying all the values that need to be pruned by considering the constraint
encoded by (V,D,L, C).

3 Network Hypergraphs

An hypergraph H is a tuple, (V (H), E(H)), where V (H) is a finite set whose
elements are called nodes and E(H) is set whose elements are subsets of V (H),
called hyperedges. An hypergraph is totally unimodular if its incidence matrix M
is totally unimodular, that is, if every square submatrix of M has determinant
0, +1, or −1. In this paper we are concerned with a subset of totally unimodular
hypergraphs called network hypergraphs. In order to define network hypergraph
we need to introduce a few definitions.

An oriented tree T is any directed tree obtained by orienting the edges of
an undirected tree. A path p in T is any sequence x1, e1, x2, . . . , en−1, xn where
x1, . . . , xn are different vertices of T , e1, . . . , en−1 are edges in T and for every
1 ≤ i < n, either ei = (xi, xi+1) or ei = (xi+1, xi). The polarity of an edge
e ∈ E(T) wrt. p is defined to be +1 (or positive) if e = (xi, xi+1) for some
1 ≤ i < n, −1 (or negative) if e = (xi+1, xi) for some 1 ≤ i < n, and 0 if e
does not appear in p. A path p has positive (resp. negative) polarity if all its
edges have positive (resp. negative) polarity. Paths with positive polarity are also
called directed paths. Since an oriented tree does not contain symmetric edges,
we might represent a path by giving only its sequence of nodes x1, . . . , xn.

We say that an oriented tree T defines an hypergraph H if we can associate
to every hyperedge h ∈ E(H) an edge eh ∈ E(T) and to every node v ∈ V (H) a
directed path pv in T such that for every v ∈ V (H) and h ∈ E(V), v ∈ h if and
only if eh belongs to pv. We say that an H is a network hypergraph if there is
an oriented tree that defines it.

Example 2. The hypergraph H with variable-set {v1, . . . , v6} and hyperedge-set
{h1, . . . , h5} given in Fig. 1a is a network hypergraph as it is defined by tree T
given in Fig. 1b where we have indicated, using labels on the edges, the edge in T
associated to every hyperedge in H. We associate to every variable vi, 1 ≤ i ≤ 6
the directed path s(i−1 mod 2), r, t(i−1 mod 3) in T . It can be readily checked that,
under this assignment, T defines H.

Sometimes, it will be convenient to assume that the tree T defining H is
minimal in the sense that no tree with fewer nodes defines H. Minimal trees have

84 V. Dalmau

v1 v3 v5

v4 v6 v2

h4

h5

h1 h3 h2

r

s0

s1

t0

t1

t2

h
4

h5

h1

h2

h
3

(a) (b)

Fig. 1. (a): Hypergraph H, (b): oriented tree T

the nice property that every edge e in T is associated with some hyperedge of H.
Indeed, assume that some edge e = (x, y) is not associated to any hyperedge in
H, then one could find an smaller tree T defining H by contracting edge e, that
is, by merging x and y into a new node z that has as in-neighbors the union of
all in-neighbors of x and y and, as out-neighbors, the union of all out-neighbors
of x and y.

Since the vast majority of the trees defined in this paper will be oriented
we shall usually drop ‘oriented’. So, unless, otherwise explicitly stated, a tree is
always an oriented tree. Finally, we note that one can decide whether a given
hypergraph is a network hypergraph in time O(e3v2) where e is the number of
hyperedges and v is the number of nodes (see Chap. 20 in [30] for example).

4 Restricting Only the Scope or the Range

It has been shown by Régin [27] that the domain filtering problem for CACs
is NP-hard. Still, efficient algorithms are known for some particular cases. It
seems natural to start by asking which tractable subcases of the problem can
be explained by considering only the scopes of the constraints. This question
has a close similarity to the study of the so-called structural restrictions of the
CSP (see, for example [14] for a survey) and, not surprisingly, it can be solved
by applying results developed there. Indeed, it follows easily from a result of
Färnquivst and Jonsson [11] that, modulo some mild technical assumptions, if
one allows arbitrary ranges in constraints, then the domain filtering problem is
solvable in polynomial time if and only if the hypergraph of the scopes of the
constraints has bounded tree-width (see the full version for precise statement
and the proof). This result, although delineates exactly the border between
tractability and intractability, turns out to be not very useful in explaining the
tractability of global constraints. This is due to the fact that global cardinality
constraints defined by conjunctions of among constraints usually have constraints
with large scopes and the cardinality of the scope in a constraint is a lower bound
on the tree-width of its scope hypergraph.

One can also turn the attention to the range of constraints and inquiry
whether there are tractable subcases of the problem that can be explained only
by the range of the constraints. Here, again the response is not too useful. Indeed,
it is very easy to show (see again the full version) that as soon as we allow some
non-trivial range R (that is some range different than the empty set and than the

Conjunctions of Among Constraints 85

whole domain) and arbitrary scopes in the among constraints, then the domain
filtering problem becomes NP-complete.

In view of this state of affairs it is meaningful to consider families of con-
junctions of among constraints that are obtained by restricting simultaneously
the scope and the range of the constraints occurring in them. This is done in the
next section.

5 A Flow-Based Algorithm

Let I = (V,D,L, C) be conjunction of among constraints. We will deal first with
the case in which D is a boolean, say D = {0, 1}. Hence, we can assume that
every constraint Among(S,R,min,max) in C satisfies R = {1} since, if R = {0}
it can be reformulated as Among(S, {1}, |S| −max, |S| −min). We also assume
that L(v) = {0, 1} for every v ∈ V since if L(v) �= {0, 1} we could obtain easily
an equivalent instance without variable v.

It is easy to construct a system of linear equations whose feasible integer
solutions encode the solutions of I. Let v1, . . . , vn be the variables of I and let
Cj = (Sj , {1},minj ,maxj), j = 1, . . . ,m, be its constraints. The system has
variables xi(1 ≤ i ≤ n), yj(1 ≤ j ≤ m) and the following equations:

yj +
∑

vi∈Sj

xi = maxj j = 1, . . . ,m

0 ≤ yj ≤ maxj − minj j = 1, . . . ,m
0 ≤ xi ≤ 1 i = 1, . . . , n

which we express in matrix form as

Mz = a

0 ≤ z ≤ c

with zT = (x1, . . . , xn, y1, . . . , ym) (see Example 3).
If M is totally unimodular then one can perform domain filtering in polyno-

mial time. Indeed, for every vi ∈ V and d ∈ L(v), we might decide whether d is
a supported value for v as follows: add equation xi = d to the system and decide
whether there exists a feasible solution of its linear relaxation using a LP solver.
It follows from total unimodularity (see Theorem 19.1 in [30] for example) that
such a feasible solution exists if and only if d is a support for v.

However, this approach implies invoking O(n) times a LP solver, which might
be too expensive to be practical, since, in addition, a propagation-based algo-
rithm might call a domain filtering algorithm many times during its execution.
To overcome this difficulty we shall require further conditions on the matrix
M . To this end, we define the hypergraph associated to instance I to be the
hypergraph H with V (H) = V and E(H) = {Sj | 1 ≤ j ≤ m}.

Now, assume that H is a network hypergraph defined by a tree T . In this
case, one can use specific and more efficient methods like the network simplex
algorithm (see for example [1]) instead of a general purpose LP solver. However,

86 V. Dalmau

it is still possible to do better (and avoid the O(n) calls to the network simplex
algorithm) by transforming it into a maximum flow problem. This idea has been
used in [21] to obtain a domain filtering algorithm for the Sequence constraint.
More precisely, [21] deals with the particular case of network matrices defined
by a directed path. Our approach draws upon [21] and generalizes it to network
matrices defined by arbitrary trees. This is done as follows.

Let P be the incidence matrix of T . That is, let t1, . . . , tm+1 be an arbitrary
ordering of nodes in T and define P to be the ((m + 1) × m)-matrix where Pi,j

is +1 if edge eSj
starts at ti, −1 if eSj

ends at ti, and 0 otherwise.
Let r be a m-ary (column) vector and let p be a path in T . We say that r is

the indicator vector of p if for every j = 1, . . . ,m, rj is the polarity of eSj
wrt.

p. The next observation follows directly from the definitions.

Observation 1. Let p be a path in T and let r be its indicator vector. Then,
the ith entry, (Pr)i, of Pr, is +1 if ti is the first node in p, −1 if ti is the last
node in p, and 0 otherwise.

The next two lemmas follow directly from the previous observation.

Lemma 1. P has full rank.

Proof. Let P ′ be the (m × m) matrix obtained by removing the last row (cor-
responding to vertex tm+1) and consider the (m × m)-matrix Q such that for
every i = 1, . . . ,m, the ith column of Q, which we shall denote as Q∗,i, is the
indicator vector of the unique path in T starting at ti and ending at tm+1. It
follows from Observation 1 that P ′Q is the identity matrix. �

Then, since P has full rank we can obtain an equivalent system PMz = Pa
by multiplying both sides of Mz = a by P . Let N = PM and b = Pa (see
Example 3).

Lemma 2. In every column of N one entry is +1, one entry is −1, and all the
other entries are 0.

Proof. It is only necessary to show that every column, M∗,k, k = 1, . . . ,m+n of
M is the indicator vector of some directed path in T . If the variable corresponding
to the k-column is xi for some 1 ≤ i ≤ n then by construction M∗,k is the
indicator column of the path associated to vi in T . Otherwise, if the variable
corresponding to column k is yj for some 1 ≤ j ≤ m then M∗,k is the indicator
vector of the directed path containing only edge eSj

. �

Hence, matrix N is the incidence matrix of a directed graph G. Note that,
by definition, G contains an edge ek, k = 1, . . . ,m + n for each variable zk and
a node uj , j = 1, . . . ,m + 1 for each row in N (that is, for every node in T).
Define the capacity of every edge ek to be ck. Then, feasible solutions of the
system correspond precisely to flows where every node uj has a supply/demand
specified by bj (more precisely, node uj has a supply of bj units if bj > 0 and a
demand of −bj units if bj < 0). It is well known that this problem can be reduced
to the (standard) maximum flow problem by adding new source and sink nodes

Conjunctions of Among Constraints 87

s, t and edges from s to uj with capacity bj whenever bj > 0 and from uj to t
with capacity −bj whenever bj < 0.

It follows from this construction that for every 1 ≤ i ≤ n and every d = {0, 1},
there is a solution s of I with s(vi) = d if and only if there is a saturating flow
(that is, a flow where all the edges leaving s or entering t are at full capacity)
such that the edge associated to xi carries d units of flow. Régin [25,26] has
shown that this later condition can be tested simultaneously for all 1 ≤ i ≤ n
and d ∈ {0, 1} by finding a maximal flow and computing the strongly connected
components of its residual graph. Finding a maximal flow of a network with
integral capacities can be done in time O(min(v2/3, e1/2)e log(v2/e) log u) using
Goldberg and Rao’s algorithm [13] where v is the number of vertices, e is the
number of edges, and u is the maximum capacity of an edge. Computing the
strongly connected components of the residual graph takes O(v + e) time using
Tarjan’s algorithm [31]. By construction, the network derived by our algorithm
satisfies e ≤ n + 2m and v ≤ m + 1. Furthermore, it is not difficult to see that
u ≤ mn. Indeed, note that the capacity of any edge is either some entry, ci, of
vector c or the absolute value of some entry, bi, of vector b. It follows directly
from the definition of c, that all its entries are at most n. As for b, the claim
follows from the fact that b = Pa where, by construction, a has m entries where
every entry is in the range {1, . . . , n} and every entry in P is in {−1, 0, 1}.

Hence, if we define f(n,m) to be min(m2/3, (n+m)1/2)(n+m) log(m2/(n+
m)) logmn) we have:

Lemma 3. There is a domain filtering algorithm for conjunctions of boolean
among constraints whose associated hypergraph is a network hypergraph, which
runs in time O(f(n,m)) where n is the number of variables and m is the number
of constraints, assuming the instance is presented as a network flow problem.

There are minor variants (leading to the same asymptotic complexity)
obtained by modifying the treatment of the slack variables. Here we will
discuss two of them. In the first variant one encodes a constraint Cj =
(Sj , {1},minj ,maxj) with the equation −yj +

∑
vi∈Sj

xi = 0 where yj satis-
fies minj ≤ yj ≤ maxj . Under this encoding, our approach produces a net-
work problem where, instead of having nodes with specified supply or demand,
we have edges with minimum demand. In the second variant, used in [21],
one encodes a constraint Cj with two equations yj +

∑
vi∈Sj

xi = maxj , and
−zj +

∑
vi∈Sj

xi = minj where yj and zj are new slack variables satisfying
0 ≤ yj , zj . This encoding produces a network that has m more nodes and edges.

When analyzing the time complexity of domain filtering it is customary to
report, additionally, the so-called time complexity ‘down a branch of a search
tree’ which consists in the aggregate time complexity of successive calls to the
algorithm, when at each new call, the list of some of the variables has been
decreased (as in the execution of a propagation-search based solver). It was
observed again by Régin [26] that, in this setting, it is not necessary to solve
the flow problem from scratch at each call, leading to a considerable reduction
in total time. Applying the scheme in [26], we obtain that the time complexity
down a branch of a search tree of our algorithm is O(n(n + m)). We omit the
details because they are fairly standard.

88 V. Dalmau

If the instance is not presented as a network flow problem then one would
need to add the cost of transforming the instance into it. However this cost would
be easily amortized as a domain filtering algorithm is invoked several times dur-
ing the execution of a constraint solver. Furthermore, in practical scenarios, the
conjunction of among constraints will encode a global constraint from a catalog
of available global constraints. Hence, it is reasonable to assume that the formu-
lation of the global constraint as a network flow problem can be precomputed.

Example 3. Let I be a boolean instance with variables {v1, . . . , v6} and con-
straints: C1 = Among({v1, v4}, {1}, 0, 1), C2 = Among({v2, v5}, {1}, 0, 1),
C3 = Among({v3, v6}, {1}, 0, 1), C4 = Among({v1, v3, v5}, {1}, 1, 1),
C5 = Among({v2, v4, v6}, {1}, 1, 1).

The specific values for M , a and c of the ILP formulation of I are:

y1 y2 y3 x1 x2 x3 x4 x5 x6⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

C1 1 0 0 1 0 0 1 0 0 1
C2 0 1 0 0 1 0 0 1 0 1

M = C3 0 0 1 0 0 1 0 0 1 a = 1
C4 0 0 0 1 0 1 0 1 0 1
C5 0 0 0 0 1 0 1 0 1 1

()cT = 1 1 1 1 1 1 1 1 1

Note that since mini = maxi for i = 4, 5 we did not need to add the slack
variables y4 and y5. Note that the hypergraph of instance I is precisely the
hypergraph H in Example 2. In particular, hi is the hypererdge corresponding
to the scope of constraint Ci for i = 1, . . . , 5. The matrix P obtained from the
tree T defining H is:

h1 h2 h3 h4 h5⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

t0 −1 0 0 0 0
t1 0 −1 0 0 0
t2 0 0 −1 0 0
s0 0 0 0 1 0
s1 0 0 0 0 1
r 1 1 1 −1 −1

Multiplying M and a by P we obtain:

y1 y2 y3 x1 x2 x3 x4 x5 x6⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

t0 −1 0 0 −1 0 0 −1 0 0 −1
t1 0 −1 0 0 −1 0 0 −1 0 −1

N = PM = t2 0 0 −1 0 0 −1 0 0 −1 b = Pa = −1
s0 0 0 0 1 0 1 0 1 0 1
s1 0 0 0 0 1 0 1 0 1 1
r 1 1 1 0 0 0 0 0 0 1

Conjunctions of Among Constraints 89

The feasible solutions of the previous LP correspond to the feasible flows of
the network in Fig. 2a, where nodes s0, s1 and r have a supply of one unit of flow
and nodes y0, y1, y2 have a demand of one unit of flow. We also give the final
network (Fig. 2b) obtained by applying the first variant discussed after Lemma3.
In this case the edges (r, si), i = 0, 1 have a demand of one unit of flow. Finally,
Fig. 2c contains the result of transforming the network in Fig. 2a to a (standard)
max flow problem. In all three networks all edges have capacity 1.

1

1

1

−1

−1

−1r

s0

s1

t0

t1

t2

r

s0

s1

t0

t1

t2

≥1

≥1

r

s0

s1

t0

t1

t2

s t

(a)

(b)

(c)

Fig. 2. (a): Network with supplies/demands, (b): network with edge demands, (c):
standard flow network obtained from (2a)

This approach can be generalized to non-boolean domains via boolean encod-
ing. The choice of boolean encoding might depend on the particular instance at
hand but for concreteness we will fix one. The canonical booleanization (see
Example 4) of a conjunction I = (V,D,L, C) of among constraints with |D| ≥ 3
is the boolean instance (V ×D, {0, 1}, Lb, Cb) where Lb(v, d) = {0, 1} if d ∈ L(v)
and {0} otherwise, and Cb contains:

– Among(S×R, {1},min,max) for every constraintAmong(S,R,min,max) ∈
C, and

– Among({v}×D, {1}, 1, 1) for every variable v ∈ V . This family of constraints
are called non-empty assignment constraints.

That is, the intended meaning of the encoding is that (v, d) ∈ V × D is true
whenever v takes value d.

We define the hypergraph H associated to I to be the hypergraph associ-
ated to the canonical booleanization of I. That is, V (H) is V × D and E(H)
contains hyperedge {(v, d) | v ∈ S, d ∈ R} = S × R for every constraint
Among(S,R,min,max) in C, and hyperedge {(v, d) | d ∈ D} = {v} × D for
every variable v ∈ V . Thus, for arbitrary domains, we have:

90 V. Dalmau

Corollary 1. There is a domain filtering algorithm for conjunctions (V,D,L, C)
of among constraints whose associated hypergraph is a network hypergraph, which
runs in time O(f(n,m)) where n =

∑
v∈V |L(v)| and m = |C| + |V |, assuming

the instance is presented as a network flow problem.

Proof. It just follows from observing that the canonical booleanization of
instance (V,D,L, C) has at most n =

∑
v∈V |L(v)| variables and at most

m = |C| + |V | constraints. �

6 Some Applications

The aim of this section is to provide evidence that the kind of CACs covered by
the approach developed in Sect. 5 are often encountered in practice. To this end,
we shall revisit several families of CACs for which domain filtering algorithms
have been previously introduced and show how they can solved and, in some
cases generalized, using our algorithm. Furthermore, we shall compare, when-
ever possible, the time complexity bounds of our algorithm with other state-of-
the-art algorithms for the same problem. Like other flow-based algorithms, the
algorithm proposed here has very good time complexity down a branch of the
search tree. However, we will only consider in our comparison the cost of calling
the algorithm just once. This is due to the fact that, once the size of the network
produced is under a certain threshold, the total cost down a branch of the search
tree is dominated by the cost of the incremental updates and, hence, it cannot
be used to assess the comparative quality of different flow-based algorithms.
Furthermore, we will try to compare, whenever possible, the parameters of the
obtained network flow problem (number of nodes, edges, capacities of the edges)
instead of the actual running time since the latter is dependend on the choice
of the max-flow algorithm. Somewhat surprisingly, in many of the cases, even if
we did not attempt any fine-tuning, the network produced by the algorithm is
essentially equivalent to the network produced by specific algorithms.

6.1 Disjoint Constraints

As a warm up we shall consider the GCC and AllDiff constraints. We have
seen in Example 1 that both can be formulated as a conjunction (V,D,L, C)
of among constraints of the form Cd = Among(V, {d},mind,maxd), d ∈ D.
Note that both have the same associated hypergraph H with node-set, V × D,
and edge set E(H) containing hyperedge hv = {v} × D for every v ∈ V , and
hyperedge hd = V × {d}, for every d ∈ D.

It is not difficult to see (see Example 4) that H is defined by the tree T defined
as follows: The node-set of T consists of {r}∪V ∪D where r is a new node. The
edge-set of T contains an edge from every v ∈ V to r (associated to hv) and from r
to every node d ∈ D (associated to hd). Consequently, both GCC and AllDiff

are solvable by our algorithm. It can be seen that the network for the GCC

using the tree T described above has e = O(|V ||D|) edges, v = |V | + |D| + 3

Conjunctions of Among Constraints 91

nodes, and the maximum capacity, u, of an edge is at most |D||V |. Hence, it
follows that the total running time of our algorithm for the GCC constraint
is O(min(v2/3, e1/2)e log(v2/e) log u). Régin’s algorithm [26] has a O(|V |2|D|)
complexity which is better when |V | ∈ O(|D|2/3) but the comparison between
the two bounds is not very meaningful because it mainly reflects a different
choice of max flow algorithm. Indeed, the network obtained using the first variant
discussed after Lemma 3 is identical to the network constructed in [26]. In the
particular case of the AllDiff constraint [25] shows how to produce a bipartite
matching problem that can be solved using specialized algorithms, such as [15],
leading to a total time complexity of O(|V |5/2) which is better than ours.

Example 4. Consider the constraint AllDiff(s0, s1) where the list of each vari-
able contains the following three values: t0, t1, t2. Then, AllDiff(s0, s1) is
encoded as a CAC I with the following constraints: Among({s0, s1}, {t0}, 0, 1),
Among({s0, s1}, {t1}, 0, 1), Among({s0, s1}, {t2}, 0, 1).

The canonical booleanization of I has variables {s0, s1} × {t0, t1, t2} and
constraints C1 = Among({s0, s1} × {t0}, {1}, 0, 1), C2 = Among({s0, s1} ×
{t1}, {1}, 0, 1), C3 = Among({s0, s1} × {t2}, {1}, 0, 1), C4 = Among({s0} ×
{t0, t1, t2}, {1}, 1, 1), and C5 = Among({s1}×{t0, t1, t2}, {1}, 1, 1). Observe that
this instance is, under the renaming vi 	→ (si−1 mod 2, ti−1 mod 3), the same
instance than we have considered previously in Example 3. The network flow
problem that our algorithm constructs for this instance (see Fig. 2b in Example 3)
is essentially identical to the one derived in [26]. Indeed, our network is obtained
by merely merging the source and sink nodes of the network in [26].

A simple analysis reveals that the same approach can be generalized to
instances (V,D,L, C) satisfying the following disjointedness condition: for every
pair of constraints Among(S,R,min,max) and Among(S′, R′,min′,max′) in
C, (S × R) ∩ (S′ × R′) = ∅. The tractability of such instances was, to the best
of our knowledge, not known before. The particular case in which R ∩ R′ = ∅
has been previously shown in [27] using a different approach. The proof given in
[27] does not construct a flow problem nor gives run-time bounds so we omit a
comparison.

6.2 Domains Consisting of Subsets

Consider the following generalization of our setting where in a CAC (V,D,L, C)
every variable v must be assigned to a subset of L(v) (instead of a single element).
In this case, the semantics of the among constraint need to be generalized as
well. Instead, we will say a constraint Among(S,R,min,max) is satisfied by a
mapping s : V → 2D if min ≤ ∑

v∈S |s(v) ∩ R| ≤ max. To avoid confusion we
shall refer to this variant of the among constraint as set among constraint.

For example, the Symmetric-GCC constraint [16] is precisely a conjunc-
tion (V,D,L, C) where in every constraint Among(S,R,min,max), S or R is a
singleton.

It is easy to reduce a conjunction of set among constraints I = (V,D,L, C)
to a conjunction of (ordinary, not set) boolean among constraints. Indeed, one

92 V. Dalmau

only needs to remove the non-empty assignment constraints to the canonical
booleanization of I. Consequently, if (V,D,L, C) encodes a Symmetric-GCC

constraint then the resulting boolean instance has the same hypergraph than
the canonical booleanization of the GCC constraint. It follows that the running
time bounds of our algorithm for the Symmetric-GCC constraint are exactly
the same than for the GCC constraint (see Sect. 6.1) since the networks are
essentially equivalent. The only differences are, possibly, in the capacities of
the edges of the constructed network but it is still possible to bound them by
|V ||D|. Finally, we note that the network produced by our algorithm using the
first variant discussed after Lemma 3 is identical the one given in [16].

6.3 The Sequence Constraint

The Sequence constraint [5] corresponds to instances ({v1, . . . , vn},D, L, C)
with constraints Among({vi, . . . , vi+k}, R,min,max), i = 1, . . . , n − k for some
fixed integers min,max, k, and fixed R ⊆ D. It is not difficult to see that the
hypergraph of the canonical booleanization of the Sequence constraint is not
a network hypergraph. However, as shown in [21] one obtains an equivalent
instance with a network hypergraph using a different encoding in which for
every original variable vi ∈ V , we have a boolean variable xi which is intended
to be true whenever vi takes a value in R and false otherwise. Under this alter-
native encoding we obtain a boolean instance I which consists of constraints
Among({xi, . . . , xi+k}, {1},min,max), i = 1, . . . , n− k. It is shown in [21] that
the ILP formulation of this instance satisfies the so-called consecutive-ones prop-
erty which implies that the hypergraph of I is defined by a tree T consist-
ing of a single directed path. Indeed, the network flow obtained by our app-
roach using such tree T is identical to the one derived in [21] if one encodes
Among constraints using the second variant discussed after Lemma 3. Applying
Lemma 3 and noting that, in the particular case of the Sequence constraint,
we have m = O(n) we obtain the bound O(n3/2 log2 n). By inspecting closely
the proof of Lemma 3 this bound can be slightly improved (see full version)
to O(n3/2 log n logmax) coinciding with the bound given in [21], which is not
surprising since both networks are essentially equivalent. To the best of our
knowledge O(n3/2 log n logmax) is the best bound among all complete domain
filtering algorithms for the problem, jointly with the algorithm proposed in [32]
which, with time complexity O(n2k), provides better bounds when k � n.

6.4 TFO model

The TFO model was introduced by Razgon et al. [24] as a generalization of
several common global constraints. Formally, a TFO model is a triple (V, F1, F2)
where V is a finite set of vertices and F1 and F2 are nonempty families of subsets
of V such that two sets that belong to the same family are either disjoint or
contained in each other. Each set Y in F1 ∪ F2 is associated with two non-
negative integers minY ,maxY ≤ |Y |. A subset X of V is said to be valid if
minY ≤ X ∩ Y ≤ maxY for every Y ∈ F1 ∪ F2. The task is to find the largest

Conjunctions of Among Constraints 93

valid subset. Although the methods introduced in the present paper can be
generalized to deal as well with optimization version we will consider only now
the feasibility problem consisting in finding a valid subset (or report that none
exists).

First, note that the existence of a valid subset in a TFO model can be
formulated naturally as a satisfiability problem for a combination of among con-
straints. Indeed, there is a one-to-one correspondence between the valid subsets
of (V, F1, F2) and the solutions of the instance (V, {0, 1}, L, C) where C contains
the constraints Among(Y, {1},minY ,maxY), Y ∈ F1 ∪ F2, and the list L(v) of
every variable v ∈ V is {0, 1}. The hypergraph H associated to this instance is
(V, F1 ∪ F2). It can be shown (see full version) that H is a network hypergraph
and hence one can use our approach to decide the existence of a feasible solution
of a TFO model. It turns out that the network introduced in [24] is identical
to the network flow problem that would be obtained by our approach using the
first variant described after Lemma 3. It is not meaningful to compare the run-
ning time of our algorithm with that of [24] since it deals with an optimization
variant.

6.5 Conjunction of Among Constraints with Full Domain

Some global constraints studied in the literature correspond to conjunctions
(V,D,L, C) of among constraints where the scope of every constraint is the
full set V of variables. This class contains, of course, the GCC constraint and
also several others, since we do not require R to be a singleton. For example,
the OrderedDistribute constraint introduced by Petit and Régin [23] can
be encoded as conjunction (V,D,L, C) of among constraint where the domain
D has some arbitrary (but fixed) ordering d1, . . . , d|D| and in every constraint
Among(S,R,min,max), S = V and R is of the form {di, . . . , d|D|}.

We shall show that the hypergraph of the conjunction of among constraints
defining OrderedDistribute is a network hypergraph. Indeed, with some
extra work we have managed to completely characterize all CAC instances con-
taining only constraints with full scope that have an associated network hyper-
graph.

Theorem 1. Let I = (V,D,L, C) be a conjunction of among constraints with
|D| ≥ 3 such that the scope of each constraint is V . Then, the following are
equivalent:

1. The hypergraph of the canonical booleanization of I is a network hypergraph.
2. For every pair of constraints in C, their ranges are disjoint or one of them

contained in the other.

In the particular case of OrderedDistribute constraint the network
obtained by our approach using the first variant described after Lemma3 is iden-
tical to the network introduced in ([23], Sect. V.A). However, in this case our
algorithm seems far from optimal. In particular, a complete filtering algorithm
with time complexity O(|V | + |D|) is given also in [23].

94 V. Dalmau

6.6 Adding New Among Constraints to a GCC constraint

Let (V,D,L, C) be a conjunction of among constraints encoding the GCC con-
straint (see Example 1) and assume that we are interested in adding several new
among constraints to it. In general, we might end up with a hard instance but
depending on the shape of the new constraints we might perhaps still preserve
tractability. Which among constraint can we safely add? This question has been
addressed by Régin [27]. In particular, [27] shows that the domain filtering prob-
lem is still tractable whenever:

(a) every new constraint added has scope V and, furthermore, the ranges of
every pair of new constraints are disjoint, or

(b) every new constraint added has range D and, furthermore, the scopes of
every pair of new constraints are disjoint.

We can explore this question by inquiring which families of constraints can be
added to an instance (V,D,L, C) encoding GCC such that its associate hyper-
graph is still a network hypergraph. Somewhat surprisingly we can solve com-
pletely this question (see Theorem 2). This is due to the fact that the presence
of the global cardinality constraint restricts very much the shape of the tree
defining the hypergraph of the instance.

Theorem 2. Let I = (V,D,L, C) be a conjunction of among constraints con-
taining a global cardinality constraint with scope V with |D| ≥ 3. Then the
following are equivalent:

1. The hypergraph of the canonical booleanization of I is a network hypergraph.
2. In every constraint in C, the scope is a singleton or V , or the range is a

singleton or D. Furthermore, for every pair Among(S1, R1,min1,max1),
Among(S2, R2,min2,max2) of constraints in C the following two conditions
hold:
(a) If S1 = S2 = V or S1 = S2 = {v} for some v ∈ V then R1 and R2 are

disjoint or one of them is contained in the other.
(b) If R1 = R2 = D or R1 = R2 = {d} for some d ∈ D then S1 and S2 are

disjoint or one of them is contained in the other.

Note that the previous theorem covers cases (a) and (b) from [27] described
at the beginning of this section. The network produced in [27] for the case (a)
is identical to the one derived by our approach using the first variant described
after Lemma 3. For the case (b) [27] does not construct a flow problem nor gives
run-time bounds so we omit a comparison.

Acknowledgments. The author would like to thank the anonymous referees for many
useful comments. This work was supported by the MEIC under grant TIN2016-76573-
C2-1-P and the MECD under grant PRX16/00266.

Conjunctions of Among Constraints 95

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory. Algorithms and
Applications. Prentice Hall, Upper Saddle River (1993)

2. Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all different pred-
icates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp.
364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 25

3. Appa, G., Magos, D., Mourtos, I.: On the system of two all different predicates.
Inf. Process. Lett. 94(3), 99–105 (2005)

4. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Pro-
ceedings of IJCAI 2005, pp. 35–40 (2005)

5. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Modell. 12, 97–123 (1994)

6. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Toby Walsh, S.: A useful special
case of the CARDPATH constraint. In: Proceedings of ECAI 2008, pp. 475–479
(2008)

7. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two
common patterns for specifying and propagating counting and occurrence con-
straints. Artif. Intell. 173(11), 1054–1078 (2009)

8. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Propagat-
ing conjunctions of alldifferent constraints. In: Proceedings of AAAI 2010 (2010)

9. Chabert, G., Demassey, S.: The conjunction of interval among constraints. In:
Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp.
113–128. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8 8

10. Dalmau, V.: Conjunctions of among constraints. Technical report, eprint
arXiv:1706.05059 (2017)

11. Färnqvist, T., Jonsson, P.: Bounded tree-width and CSP-related problems. In:
Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 632–643. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77120-3 55

12. Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Con-
straint satisfaction problems: convexity makes alldifferent constraints tractable.
Theor. Comput. Sci. 472, 81–89 (2013)

13. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5),
783–797 (1998)

14. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243–282 (2000)

15. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

16. Kocjan, W., Kreuger, P.: Filtering methods for symmetric cardinality constraint.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 200–208.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 14

17. Kutz, M., Elbassioni, K.M., Katriel, I., Mahajan, M.: Simultaneous matchings:
hardness and approximation. J. Comput. Syst. Sci. 74(5), 884–897 (2008)

18. Lardeux, F., Monfroy, E., Saubion, F.: Interleaved alldifferent constraints: CSP vs.
SAT approaches. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008.
LNCS (LNAI), vol. 5253, pp. 380–384. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85776-1 34

19. Laurière, J.-L.: A language and a program for stating and solving combinatorial
problems. Artif. Intell. 10(1), 29–127 (1978)

http://dx.doi.org/10.1007/978-3-540-24664-0_25
http://dx.doi.org/10.1007/978-3-642-29828-8_8
http://arxiv.org/abs/1706.05059
http://dx.doi.org/10.1007/978-3-540-77120-3_55
http://dx.doi.org/10.1007/978-3-540-24664-0_14
http://dx.doi.org/10.1007/978-3-540-85776-1_34
http://dx.doi.org/10.1007/978-3-540-85776-1_34

96 V. Dalmau

20. Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system.
Math. Program. 132(1–2), 209–260 (2012)

21. Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators
for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 11

22. Oplobedu, A., Marcovitch, J., Toubier, Y.: CHARME: Un langage industriel de
programmation par contraintes, illustré par une application chez renault. In: Pro-
ceedings of 9th International Workshop on Expert Systems and their Applications,
pp. 55–70 (1989)

23. Petit, T., Régin, J.-C.: The ordered distribute constraint. Int. J. Artif. Intell. Tools
20(4), 617–637 (2011)

24. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing global constraints based
on network flows. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007.
LNCS (LNAI), vol. 5129, pp. 127–141. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89812-2 9

25. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of AAAI 1994, pp. 362–367 (1994)

26. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of AAAI 1996, pp. 209–215 (1996)

27. Régin, J.-C.: Combination of among and cardinality constraints. In: Barták,
R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer,
Heidelberg (2005). doi:10.1007/11493853 22

28. Régin, J.-C., Gomes, C.P.: The cardinality matrix constraint. In: Proceedings of
CP 2004, pp. 572–587 (2004)

29. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg
(1997). doi:10.1007/BFb0017428

30. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
31. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
32. Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence

constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634.
Springer, Heidelberg (2006). doi:10.1007/11889205 44

33. Jan van Hoeve, W., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algo-
rithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)

http://dx.doi.org/10.1007/978-3-540-85958-1_11
http://dx.doi.org/10.1007/978-3-540-85958-1_11
http://dx.doi.org/10.1007/978-3-540-89812-2_9
http://dx.doi.org/10.1007/978-3-540-89812-2_9
http://dx.doi.org/10.1007/11493853_22
http://dx.doi.org/10.1007/BFb0017428
http://dx.doi.org/10.1007/11889205_44

Clique Cuts in Weighted Constraint Satisfaction

Simon de Givry and George Katsirelos(B)

MIAT, UR-875, INRA, 31320 Castanet Tolosan, France
simon.de-givry@inra.fr, gkatsi@gmail.com

Abstract. In integer programming, cut generation is crucial for improv-
ing the tightness of the linear relaxation of the problem. This is rele-
vant for weighted constraint satisfaction problems (WCSPs) in which we
use approximate dual feasible solutions to produce lower bounds during
search. Here, we investigate using one class of cuts in WCSP: clique cuts.
We show that clique cuts are likely to trigger suboptimal behavior in the
specialized algorithms that are used in WCSP for generating dual bounds
and show how these problems can be corrected. At the same time, the
additional structure present in WCSP allows us to slightly generalize
these cuts. Finally, we show that cliques exist in instances from several
benchmark families and that exploiting them can lead to substantial
performance improvement.

1 Introduction

The performance of branch and bound algorithms depends crucially on the qual-
ity of the dual bound produced during search. One of the techniques used in Inte-
ger Linear Programming (ILP) to improve dual bounds is cut generation. These
work by adding to the LP relaxation constraints that are entailed by the integer
program but not by the linear program. These eliminate optimal non-integral
solutions and hence improve the dual bounds. One such class of cuts is clique
cuts [4]. These are quite powerful, as they strengthen the inference possible in
the LP from

∑n
i=1 xi ≥ n/2 to

∑n
i=1 xi ≥ n − 1, so when they can be found,

they can increase performance significantly.
In weighted constraint satisfaction, adding cuts remains under explored so

far. Instead, research has focused on other local techniques such as on-the-fly
variable elimination [24], soft arc consistency [8,9,16,25,27,28,31], dominance
detection [14,26], or global techniques like mini-bucket elimination [21] and tree-
decomposition based search [1,12,15,20,29].

These techniques are useful, but they are orthogonal to cut generation and
can be further improved by it. However, adding cuts to dual bound reasoning
in WCSP presents several challenges. The bounds used in WCSP are based on
producing feasible—but often suboptimal—dual solutions of the LP relaxation.
The algorithms that do so are weaker than LP solvers, but are significantly faster.
In some extreme cases, a WCSP solver can solve an instance to optimality by
search on several thousand nodes in shorter time than it would take to solve
the linear relaxation of that instance. This speed comes at a price, as it is not
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 97–113, 2017.
DOI: 10.1007/978-3-319-66158-2 7

98 S. de Givry and G. Katsirelos

easy to extend these algorithms to handle arbitrary linear constraints and to do
so efficiently. In fact, we show that clique cuts reveal the worst cases for these
bounds and, if used without care, may lead to no improvement whatsoever in the
dual bound. We develop, however, a set of techniques and heuristics that prove
successful in applying clique cuts to some families of instances. These families
were cases where WCSP solving was much worse than applying ILP. With our
contributions, the performance gap is closed significantly.

2 Background

Integer Linear Programming. An ILP has the general form

min cT x

s.t.Ax ≥ b

x ≥ 0
and

x ∈ Zn

where c, b are constant vectors, x is a vector of variables and A is a constant
matrix, and all entries in c, b and A are integral. If we ignore the integrality
constraint, the resulting problem is the linear relaxation of the original ILP. As
a relaxation, any dual bound of the LP is a dual bound of the ILP.

The dual of an LP as given above is

max bT y

s.t.AT y ≤ c

y ≥ 0

Any feasible solution of the dual gives a lower bound of the primal and the
optima meet.

Solving an ILP exactly is typically done using branch and bound. At each node,
the linear relaxation is solved and if the lower bound is greater than the cost of the
incumbent, the node is closed. The linear relaxation can be strengthened using
cuts, i.e., linear inequalities that are not entailed by the LP relaxation, but are
entailed by the ILP. All linear combinations of inequalities are entailed by the LP.
A particular method of deriving inequalities that are not entailed by the LP is
strengthening, which derives

∑
aixi ≥ �b� from

∑
aixi ≥ b when b is not integral.

A special case that we use here is deriving
∑

aixi ≥ �b/c� from
∑

caixi ≥ b.

Weighted CSP. A WCSP is a tuple 〈X , C, k〉 where X is a set of discrete variables
with associated domain D(X) for each variable X ∈ X , C is a set of cost functions
with associated scope scope(c) ⊆ X for each c ∈ C and k is a distinguished “top”
cost. For simplicity, we assume a single cost function per scope and write cS for
the unique function with scope S. We also write ci for the unary cost function

Clique Cuts in Weighted Constraint Satisfaction 99

with scope {Xi} and cij for the binary cost function with scope {Xi,Xj}. A
partial assignment τ is a mapping from each of a subset of X (denoted scope(τ))
to one of the values in its domain. A complete assignment is a partial assignment
such that scope(τ) = X . We write τ(S) for all partial assignments such that
scope(τ) = scope(S). Given a cost function cS and a partial assignment τ such
that S ⊆ scope(τ), c(τ |S) ≥ 0 gives the cost of τ for c. If c(τ |S) = k, we
say that the constraint is violated. Given a complete assignment τ , its cost is
c(τ) =

∑
cS∈C c(τ |S). The objective of solving a WCSP is to find an assignment

that minimizes c(τ). It defines an NP-hard problem.
Dual (lower) bounds in WCSP are derived by applying equivalence preserv-

ing transformations (EPTs). Given two cost functions cS1 , cS2 with S1 ⊂ S2, a
partial assignment τ ∈ τ(S1) and a value α, we can move cost α between cS1

and cS2 by updating cS1(τ) ← cS1(τ) + α and cS2(τ
′) ← cS2(τ

′) − α for all
τ ′ ∈ τ(S2) such that τ ′|S1 = τ if this operation leaves no negative costs. This
operation preserves the global cost of all assignments, so it is called an EPT. If
α is positive, this operation is called a projection, otherwise it is an extension.
They are written, respectively project(cS2 , cS1 , τ, α) and extend(cS1 , τ, cS2 ,−α).
For convenience, it is usual to assume the presence of a cost function with nullary
scope, c∅. Since this function has nullary scope, its cost is used in every assign-
ment of the WCSP and its value is a lower bound for the cost of any assign-
ment of the WCSP (remember that all costs are non-negative). For any cost
function c with non-empty scope, if α = minscope(τ)=scope(c) c(τ), we can apply
project(c, c∅, ∅, α).

The extend and project operations preserve equivalence even if α is chosen
so that the operation creates negative costs. But it would violate the require-
ment that all costs are non-negative. This implies that a given EPT may be
inadmissible because it creates negative costs, but is admissible as part of a set
of EPTs, such that if they are all applied no negative costs remain.

Soft Consistencies and Linear Programming. There has been a long sequence of
algorithms for computing a sequence of EPTs. For the results from the WCSP
literature, an overview is given by Cooper et al. [9]. A parallel development of
algorithms has happened under the name maximum a posteriori (MAP) infer-
ence for Markov random fields (MRF) [39], starting with [36]. In most of the
literature, the extension and projection operations are limited so that one of the
cost functions involved has arity 1. We will also mostly limit our attention to
this case here. In any case, it has been shown that all these algorithms find a
feasible dual solution of the following linear relaxation of a WCSP/MRF:

min
∑

cS∈C,τ∈τ(S)

cS(τ) ∗ yτ

s.t.

yτ =
∑

τ′∈τ(S2),τ′|S1
=τ

yτ′ ∀cS1 , cS2 ∈ C | S1 ⊂ S2, τ ∈ τ(S1), |S1| ≥ 1

∑

τ∈τ(S)

yτ = 1 ∀cS ∈ C, |S| ≥ 1

100 S. de Givry and G. Katsirelos

However, specialized algorithms aim to be faster than using a linear solver on
the above problem. But solving this special form is as hard as solving an arbitrary
LP [32], hence these specialized algorithms typically converge on suboptimal dual
solutions. One particular condition to which some algorithms converge is virtual
arc consistency:

Definition 1. Given a WCSP C, let hard(C) be the CSP which has the same
set of variables and domains as C and for each cS ∈ C has a hard constraint
hard(cS), which is satisfied by an assignment τ if and only if cS(τ) = 0. C is
virtually arc consistent if and only if hard(C) is arc consistent.

Among those algorithms that converge on virtual arc consistency is, not so
surprisingly, VAC [9], to which we refer further in this paper.

Finally, we define EDAC, which is the default level of soft consistency
enforced in the ToulBar2 solver.

Definition 2. A WCSP C is node consistent (NC) if for every cost function
c ∈ C with |scope(c)| = 1, there exists τ ∈ τ(c) with c(τ) = 0 and for all
τ ∈ τ(c), c∅ + c(τ) < k.

Definition 3. A WCSP C is generalized arc consistent (GAC) if for all cS ∈
C, |S| > 1, ∀τ ∈ τ(S), cS(τ) = k if c∅ + cS(τ) +

∑
Xi∈S ci(τ |{i}) = k and for all

Xi ∈ S,∀v ∈ D(Xi), ∃τ ∈ τ(S) such that τ{i} = v and cS(τ) = 0.

Definition 4. A binary WCSP C is existential arc consistent (EAC) if there
exists a value u ∈ D(Xi) for each Xi ∈ X such that ci(u) = 0 and ∀cij ∈
C,∃v ∈ D(Xj) s.t. cij(u, v)+cj(v) = 0. It is existential directional arc consistent
(EDAC) if it is NC, GAC, EAC, and directional arc consistent (DAC), i.e.,
∀cij ∈ C, i < j,∀u ∈ D(Xi),∃v ∈ D(Xj) s.t. cij(u, v) + cj(v) = 0.

EDAC has been extended to ternary cost functions in [35]. Different gener-
alizations for arbitrary arities have been proposed in [2,27,28].

3 Clique Cuts

An important class of cuts used by MIP solvers are clique cuts [4]. Given a set
S of 0/1 variables and the constraints

xi + xj ≥ 1 ∀xi, xj ∈ S, i �= j

we can derive
∑

xi∈S

xi ≥ |S| − 1 (1)

This is done as follows. Given any triplet of distinct xi, xj , xk ∈ S, we sum
the binary constraints involving these three variables to get 2xi + 2xj + 2xk ≥
3 ≡ xi +xj +xk ≥ 3/2, which we strengthen to xi +xj +xk ≥ 2. We repeat this

Clique Cuts in Weighted Constraint Satisfaction 101

with m-tuples of variables and the (m−1)-ary constraints from the previous step
to generate m-ary constraints until m = |S|, which gives the above constraint.
This is in contrast to the much weaker constraint which can be derived by linear
combinations only (that is, the constraint that is entailed by the LP), which is∑

xi∈S xi ≥ |S|/2.
The reason for the name of these cuts comes from the fact that the set S

corresponds to a clique in a graphical representation of binary constraints of the
IP. Specifically, we construct a graph with a vertex for each 0/1 variable of the
IP and have edges between two vertices if their variables appear together in a
binary constraint of the form x + y ≥ 1. From every clique in this graph we can
derive a clique cut, i.e., a constraint of the form (1).

We can generalize this construction to have a vertex also for 1 − x (equiva-
lently x) for every 0/1 variable x of the IP, connected to the vertex x. Then, there
exists an edge between x and y for every constraint x + (1− y) ≥ 1 ≡ x− y ≥ 0
and an edge between x and y for every constraint (1−x)+(1−y) ≥ 1 ≡ −x−y ≥
−1. In this case if we find a clique that contains both x and x, the clique cut
requires that we must set all other variables in the clique to 1:

x + (1 − x) +
∑

yi∈S

yi ≥ |S| + 1 ⇒

1 +
∑

yi∈S

yi ≥ |S| + 1 ⇒
∑

yi∈S

yi ≥ |S| ⇒

yi = 1 ∀yi ∈ S

If we find a clique that contains x, x, y, y, the problem is unsatisfiable.

3.1 Cliques in WCSPs

We apply this reasoning to get clique cuts in WCSPs. From a WCSP P with
top k, we construct a graph G(P) as follows: we have a vertex for vxi every
variable x and every value i ∈ D(x). There exists an edge between two vertices
vpv(p), vqv(q) if there exists a cost function cpq such that cpq(v(p), v(q)) = k1.
This corresponds to the constraint (1 − xpv(p)) + (1 − xqv(q)) ≥ 1 in the LP
relaxation.

Now, given a clique S in G(P), we can add the clique constraint
∑

vpv(p)∈S(1−
xpv(p)) ≥ |S| − 1. In other words, the constraint requires at least n − 1 variables
in the clique must get a value other than the one included in the clique.

Overlapping Cliques. In the ILP case, we mentioned that the graph construction
can be generalized to have vertices for both x and (1 − x) and an edge between

1 This is the micro-structure of the WCSP, restricted only to binary tuples with infinite
cost.

102 S. de Givry and G. Katsirelos

them. In the WCSP case we already have vertices for different values of the
same variable. We can ensure that each set of vertices corresponding to values
of the same variable forms a clique. Then, the general case for a clique is that it
may contain several values from each variable involved. We assume in the rest
of this paper that this is the case. Then, given such a clique S, varsof(S) =
{Xp | ∃i.vpi ∈ S}. For every Xp ∈ varsof(S) we write S(p) = {i | vpi ∈ S}. The
constraint then requires that at least |varsof(S)|−1 of the variables get a value
outside their respective set S(p).

Despite this generalization, in order to simplify presentation, we will assume
that every variable in the clique is a binary variable and S(p) = {1}. All results
and algorithms are valid for the general case, with the caveat that when we use
ci(0) (ci(1)) on the right hand side of an expression, it means mini/∈S(i) ci(v)
(mini∈S(i) ci(v)) and when it appears on the left hand side, it means for all
v /∈ S(i), ci(v) (v ∈ S(i), ci(v)).

3.2 Propagating Clique Constraints

We can encode a clique constraint with a non-uniform layered automaton (mean-
ing an automaton where the transition function may differ in each layer) with
two states q0, q1. The initial state is q0 and both are accepting. Suppose |S| = n
and the variables involved are x1, . . . , xn. Then the transition function at layer
i is

Qi−1 Xi Qi

q0 j /∈ S(i) q0
q0 j ∈ S(i) q1
q1 j /∈ S(i) q1
q1 j ∈ S(i) not allowed

We can encode the automaton using the usual ternary construction [33,34].
This ensures that EDAC deduces the optimal lower bound for each clique con-
straint, at least when viewed in isolation. As the constraint is invariant under
reordering of the variables, we can use an ordering that agrees with the EDAC
ordering and place each state variable Qi in between the variables xi and xi+1 in
the EDAC ordering. This is sufficient to guarantee that EDAC propagates each
clique constraint optimally [2].

However, this is not an attractive option in practice. The reformulation to
automata introduces many variables for each clique constraint, something to
which EDAC is quite sensitive. That is, depending on the vagaries of the algo-
rithm, such as the order in which constraints of a variable are processed, it may
derive a stronger or weaker lower bound, even though the formulation is locally
optimal.

Combined with the issues that we describe later, this leads us to implement
a specialized propagator for these constraints, which includes the reasoning per-
formed by the softregular constraint [18] on this automaton. For completeness,
we describe the propagation independent of the softregular constraint. This also
sets the stage for the discussion of Sect. 3.3.

Clique Cuts in Weighted Constraint Satisfaction 103

Propagating Clique Constraints. For each clique constraint clq, we store a single
integer a0 which summarizes the effect on the constraint of all extensions and
projections we have performed. This quantity is the cost of assigning all variables
to 0.

We define the following transformation, u → clq which performs a set of
extensions and projections through the clique constraint, getting the maximum
increase in c∅ and extending the minimum amount from unary costs in order to
achieve this increase.

Let clq be the clique constraint, l0 =
∑

ci(0)−max{ci(0)}, r0 = max({ci(0)}\
max{ci(0)}) (the second largest ci(0), possibly equal to the largest), t =

∑
ci(0),

tr = l0 + r0 and l1 = min{tr − l0,min ci(1), a0}. Then u → clq comprises the
following operations:

– If the arity is 2 (resp. 1), project a0 to the (0, 0) tuple (resp. 0 value) of the
corresponding binary (resp. unary) cost function. Otherwise:

– Add l0 + l1 to c∅

– Set each unary cost ci(0) to max(0, ci(0) − r0)
– Add tr − l0 − l1 to a0 (possibly reducing a0)
– Add tr − l0 − l1 − min(ci(0), r0) to ci(1) for all i.

Proposition 1. u → clq is an EPT

Proof. We ignore here any binary costs. Since these are left untouched, they
would contribute the same cost to any assignment before and after the EPT.

Suppose n − 1 variables are assigned 0 and that xi = 1. The cost of this
assignment is ci(1) +

∑
j 	=i cj(0). In the reformulated problem, the cost of the

assignment is l0 + l1 from c∅, ci(1) + tr − l0 − l1 − min(ci(0), r0) from the unary
cost of xi = 1, and

∑
j 	=i max(0, cj(0) − r0) from the unary costs of xj = 0 for

j �= i. This sums to ci(1) + tr − min(ci(0), r0) +
∑

j 	=i max(0, cj(0) − r0).
If max ci(0) = r0, min(ci(0), r0) simplifies to ci(0), max(0, cj(0) − r0) and

tr = t. Then the above sum is ci(1) + t − ci(0) which is ci(1) +
∑

j 	=i ci(0), as in
the original problem.

If max ci(0) > r0, there exists a unique xk for which ck(0) = max ci(0).
Then min(ci(0), r0) simplifies to ci(0) for all i �= k and to r0 for i = k, while∑

j 	=i max(0, cj(0) − r0) is 0 if i = k and ck(0) − r0 if i �= k. So if i = k the sum
is ci(1) + tr − r0 = ci(1) + l0 = ci(1) +

∑
j 	=i cj(0), as in the original problem. If

i �= k, the sum is c1(1) − ci(0) + tr + ck(0) − r0 = c1(1) + l0 + ck(0) − ci(0). As
l0 is the sum of all cj(0) except for ck(0), that works out to c1(1) +

∑
j 	=i ci(0),

equivalent to the cost in the original problem.
Finally, assume all n variables are assigned 0, the cost of the assignment

is t =
∑

i ci(0) = l0 + l1 + t − l0 − l1 = c∅ + a0 + (t − tr). We have
t − tr = max ci(0) − r0, which is exactly the cost left in ck(0) if max ci(0) > r0
and 0 otherwise. In either case the cost remains the same before and after the
transformation, as long as a0 is later projected to c∅. As all variables are assigned
0, the cost a0 is indeed used by projecting to a lower arity cost function, so the
cost in the reformulated problem is the same as in the original problem.

104 S. de Givry and G. Katsirelos

In general, we apply u → clq after node consistency has been enforced.
Therefore, for each variable, either ci(0) = 0 or ci(1) = 0 and so if min ci(1) > 0,
it has to be that t − l0 = max ci(0) = 0. This means that either l0 or l1 will be
non-zero. But unary costs change non-monotonically as other constraints move
costs through the variable of the clique, so it is possible for both to occur at
different times in the lifetime of the same constraint.

3.3 Issues with Virtual Arc Consistency

Using clique constraints to improve lower bounds computed by VAC or any
algorithm that converges to an arc consistent state is problematic. This includes
algorithms such as MPLP [17,37,38], TRW-S [23] and other algorithms from the
MRF community. We will show that the problem is that all these algorithms can
only improve the lower bound by sequences of EPTs, but it is required to use
sets of EPTs to fully exploit clique constraints.

As a hard constraint, the clique constraint is redundant, not only logically,
but also in terms of propagation. Indeed, suppose a clique S contains values
from three variables x, y and z, that the pairwise constraints are arc consistent,
and let d ∈ D(y) such that vyd ∈ S and txy, tyz be the supports of y = d in the
corresponding binary constraints. Since txy[x] and tyz[z] are values that may not
be part of the clique, they are consistent with each other in the clique constraint
and hence txyz = txy ∪ tyz is a support for all three variables simultaneously. We
can extend this reasoning to an arbitrary number of variables, hence we can get
global supports from pairwise supports.

The fact that clique constraints add no propagation strength to hard(C)
means that adding clique constraints after VAC propagation will have no effect.
Indeed, VAC can only improve the lower bound as long as hard(C) is arc incon-
sistent. Since the clique constraint is propagation redundant, if hard(C) is arc
consistent, it will remain so after adding the clique constraint.

Empirically, we have observed the same is often true after EDAC, even though
it does not necessarily converge to a virtually arc consistent state. Moreover, even
if the clique constraint exists before we enforce VAC, the fact that VAC does not
have a unique fixpoint means that we cannot predict whether the fixpoint that
it does reach will use the clique constraint optimally. Hence, we need to devise
a method to exploit clique constraints in a virtually arc consistent problem.

Example 1. To begin, consider what happens in a problem with 3 Boolean vari-
ables in a clique, where all costs are 0 except cx(0) = cy(0) = cz(0) = 1 and
cxy(1, 1) = cyz(1, 1) = cxz(1, 1) = k. The following series of EPTs makes the
problem VAC with c∅ = 3/2:

1. extend(x, 0, xy, 1/2)
2. extend(x, 0, xz, 1/2)
3. extend(z, 0, yz, 1/2)
4. project(xy, y, 1, 1/2)
5. project(xz, z, 1, 1/2)

Clique Cuts in Weighted Constraint Satisfaction 105

6. project(yz, y, 1, 1/2)
7. project0(y, 1)
8. project0(z, 1/2).

The reformulated problem has cxy(1, 1) = cyz(1, 1) = cxz(1, 1) = k and
cxy(0, 0) = cyz(0, 0) = cxz(0, 0) = 1/2. Note that actually running VAC would
perform a more convoluted series of moves: in the first iteration, a conflict
involves only two variables, say x and y. That allows it to move 1 unit of cost
from x = 0 to y = 1, and to project cost 1 to c∅. In the next iteration, the
conflict involves all 3 variables and it moves 1/2 a unit of cost from z = 0 to
x = 1 and from there to y = 0 and another 1/2 a unit directly from z = 0 to
y = 1, projecting another 1/2 to c∅.

Since this reformulated problem is VAC, adding a clique constraint will do
nothing, but solving the linear relaxation detects that we can improve the lower
bound by the following set of operations2:

1. extend(y, 1, xy, 1/2). After this, cy(1) = −1/2
2. extend(z, 1, xz, 1/2), extend(z, 1, yz, 1/2). After these, cz(1) = −1
3. project(xy, x, 0, 1/2)
4. project(xz, x, 0, 1/2)
5. project(yz, y, 0, 1/2)
6. extend(x, 0, clq, 1)
7. extend(y, 0, clq, 1/2)
8. project0(clq, 1/2)
9. project(clq, y, 1, 1/2)

10. project(clq, z, 1, 1).

This leaves the problem with lower bound increased to 2 and the only non-
zero costs are the hard tuples, which are unchanged throughout, and the tuple
cclq(0, 0, 0) = 1. ��

More generally, we can derive a specific method for propagating cliques in
virtually arc consistent instances by extending our reasoning to binary costs. In
the following, let n = |S|. Since (1−xi1) = xi0 for binary domains, the constraint
can be written either as

∑
xi1∈S xi0 ≥ n−1 or equivalently

∑
xi1∈S xi1 ≤ 1. Thus,

either n−1 or n variables must be assigned 0, meaning either
(
n
2

)
or

(
n−1
2

)
binary

〈0, 0〉 tuples will be used. This means

∑

xi1,xj1∈S,i<j

yij00 ≥
(

n − 1
2

)

(2)

These constraints can be further strengthened by observing that if we assign
xi = 1, then none of the binary tuples cij(0, 0) for j �= i are used. Thus we can

2 In this case, triangle-based consistencies [31] achieve the same effect, but not in
arbitrary arity cliques.

106 S. de Givry and G. Katsirelos

treat these binary tuples as blocks, one for each variable, at least n − 1 of which
have to be used. This is captured by the following system:

∑

xi1,xj1∈S,i<j

yij00 ≥
(

n − 1
2

)

∑

xi1∈S

xi0 ≥ n − 1

xi0 ≥ yij00∀i, j (3)

We can incorporate (3) into propagation of the clique constraint. Let basei =∑
j<k∈[1,n]\{i} cjk(0, 0) for all i ∈ [1, n], base = min{basei | i ∈ [1, n} and

total =
∑

j<k∈[1,n] cjk(0, 0). We define the binary-to-clique transform, denoted
as b → clq as the transformation which performs the following operations:

1. Add base to c∅

2. Set cij(0, 0) = 0 for every binary constraint ij in the clique.
3. Add cost total − base to a0

4. For every variable i, add cost compi = basei − base to ci(1).

Proposition 2. The b → clq transform is an EPT.

Proof. Consider an arbitrary feasible solution of the subproblem. Since it is
feasible, at least n − 1 variables are assigned 0, so we only need to consider the
cases where n or n − 1 variables are 0.

Assume all n variables are assigned 0. The cost of this assignment in the
original problem is total =

∑
j<k∈[1,n] cjk(0, 0). In the reformulated problem,

the clique constraint entails cost a0 = total − base, because we assign all zeroes.
Together with the cost base projected to c∅, it gives total in the reformulated
problem as well.

Assume exactly n − 1 variables are assigned 0 and that the variable assigned
to 1 is Xi. The cost of this assignment is basei =

∑
j<k∈[1,n]\{i} cjk(0, 0). In the

reformulated problem, the cost of the assignment is base from c∅ and basei−base
from ci(1), giving basei, identical to the original problem.

This transform involves a higher-order transformation, so it is tempting to
think that it is stronger than the linear relaxation. Unfortunately, this is not the
case.

Proposition 3. The b → clq transform can be expanded to a set of EPTs.

Proof (Sketch). There exist already positive costs on the (0, 0) tuple of binary
cost functions. If the 1 value of one unary cost function has positive cost, we can
extend it to the binary cost function and project it to the 0 value on the other
variable involved. We can do this even if no such positive cost exists and create
a temporary negative cost. However, we can now apply the u → clq transform,
because we have positive costs on the 0 value of the unary cost functions. This
projects costs back to the 1 value of the unary cost functions involved, hence
covering the deficit created in the first step.

Clique Cuts in Weighted Constraint Satisfaction 107

Convergence. As was observed in [28], EDAC may not converge when cost func-
tions of higher arity exist. VAC is better behaved, but it may converge only as
the number of iteration grows to infinity. It is straightforward to see that the
presence of clique constraints does not raise any such issues: every time either
the u → clq or b → clq transform is applied, the cost c∅ is increased. As c∅

cannot be increased past the global optimum, this means that application of
these rules converges. Moreover, c∅ is increased by an integer, so the number of
iterations is also bounded by the cost of the global optimum.

3.4 Clique Selection and Ordering Heuristic

Finding Cliques. We implement detection of cliques as a preprocessing step. We
construct a graph as described previously: there exists a vertex for each variable-
value pair and an edge between two vertices if c∅ + cp(i) + cq(j) + cpq(i, j) ≥ k
or if they represent two values of the same variable. We then use the Bron-
Kerbosch algorithm [6] with degeneracy ordering to generate a set of cliques. In
some cases, the number of cliques can be overwhelming, so we place a limit on
the maximum number of cliques generated per top-level branch (which should
roughly correspond to the number of cliques that contain a single vertex), as
well as a global limit on the total number of cliques. We discard cliques S for
which |varsof(S)| < 3, as cliques over 2 variables are simply subsets of binary
cost functions and can propagate no better.

Selection and Ordering. The order of EPTs may have a large impact on the
quality of the resulting lower bounds.

Example 2. Consider two cliques C1, C2 with scope {X1,X2,X3} and
{X2,X3,X4}, respectively, such that all variables have binary domains and the 1
value from each variable participates in the cliques and ci(0) = i. If we propagate
C1 first, we project cost 3 to c∅ and update the unary costs c1(0) = c2(0) = 0,
c3(0) = 1 and c1(1) = 1 leaving the rest unchanged. We then propagate C2 and
project 1 unit of cost to c∅ and update c3(0) = 0, c4(0) = 3 and c2(1) = 1. The
final cost of c∅ is 4.

On the other hand, if we propagate C2 first, we project 5 units of cost to
c∅, leaving c2(0) = c3(0) = 0, c4(0) = 1 and c2(1) = 1. After this, C1 does not
propagate. Hence, by propagating C2 before C1, we get a stronger lower bound.

The above problem does not, of course, manifest itself when actually solving
the linear relaxation of the problem. It is, however, an inherent limitation of
algorithms like EDAC, which have no flexibility to process constraints in a dif-
ferent order in different passes. As we explained above, a more flexible algorithm
like VAC would not help either, as clique constraints are redundant with respect
to propagation on the hard problem. Therefore, our only recourse is to select an
order of propagation before performing the actual propagation. We can choose
this order either before search or dynamically at each node of the search. Here,
we chose to select the order just once before search begins.

108 S. de Givry and G. Katsirelos

We choose a greedy heuristic to select and order the initial clique constraint
propagation. For that, we collect a bounded number of potential clique con-
straints, as described previously. We then use the classical Chvatal’s set cover-
ing heuristic [7] to find the best clique which maximizes the product of current
arity and current lower bound increase (by simulating the effect of its unary-to-
clique transform). We repeat this selection process followed by the corresponding
unary-to-clique transform until all the remaining cliques do not increase the lower
bound or have all their variables covered by another already-selected clique. Ties
are broken by a lexicographic ordering on the scope of the cliques. We keep also
all cliques found of arity 3 because they are natively managed by the Toul-

Bar2 solver as ternary/triangle cost functions with dedicated EDAC soft arc
consistency [31,35].

4 Related Work

The most related work is that of Atamtürk et al. [4], who explore adding clique
cuts in MIP solvers, not only during preprocessing but also during search. As
we descend the search tree, more tuples become effectively hard, creating more
cliques. This remains a future direction for us.

Khemmoudj and Bennaceur [22] studied the use of binary cliques to improve
lower bounds. These are used to obtain better approximations than EDAC to
the optimum of the LP relaxation of a MaxCSP. In contrast to our work here,
the strength of the LP relaxation is not improved.

Sontag et al. [38] strengthen the LP relaxation by adding higher order cost
functions, which may eventually make the relaxation as strong as the polytope
of the integer program, at the cost of potentially making the LP explonentially
larger. Later, Sontag et al. [37] considered adding cuts that correspond to frus-
trated cycles in the graph, which is more efficient but less powerful.

Cliques can also be handled efficiently in settings outside of linear relaxations.
For example, Narodytska and Bacchus [30] proposed a method for MaxSAT
which applies max-resolution on cores extracted from the instance. This method
is complete, i.e., will eventually produce the optimum of an instance. This
method can perform equivalent reasoning to a clique cut in a polynomial number
of steps and with cores that can be discovered in polynomial time.

On the subject of clique detection, Dixon [13], Ansotegui Gil [3] and Biere
et al. [5] showed several techniques that may uncover cliques that are not
explicitly present in the microstructure (called NAND graph in SAT when
restricted to binary clauses), using both syntactic and semantic (propagation-
based) information.

5 Experimental Results

We have implemented the clique generation and clique constraint propagation
inside toulbar2 (version 0.9.8), an open-source WCSP solver in C++. Among
the various benchmarks from [19] (available in LP, WCNF, WCSP, UAI, and

Clique Cuts in Weighted Constraint Satisfaction 109

MiniZinc formats) where cplex reports that clique cuts applied, we chose
four problem categories, combinatorial auctions Auction/path, Auction/sched,
maximum clique MaxClique, and satellite management SPOT5, a total of 252
instances, having binary forbidden tuples and initial unary cost functions such
that the unary-to-clique transform increases the lower bound in preprocessing.
The first three categories have Boolean domains, whereas SPOT5 has maximum
domain size of 4. For each category, we report in Table 1 the mean value of the
size of the problem, the number of cliques found, the number of selected cliques
among them and their arity, and the CPU time to find and select the cliques.
We limit the maximum number of cliques found to 10,000 in order to control the
computation time. The largest CPU time was 11.61 s for MaxClique/c-fat200-5
(n = 200 variables, e = 11, 627 cost functions, and 10,000 selected cliques of
arity 3). The arity of selected cliques varies from 3 to 67 (MaxClique/san1000).

Table 1. Clique generation process: number of instances per benchmark category fol-
lowed by maximum domain size (d), mean number of variables (n), cost functions (e),
graph vertices, graph edges, cliques found, and selected cliques, followed by mean arity
of selected cliques and CPU time in seconds to find and select cliques. A limit on the
maximum number of cliques found was set to 10,000.

Problem nb d n e Vertices Edges Cliques Selected c. Arity Time

Auction/path 86 2 120.2 1,475.7 120.2 1,355.5 143.9 28.8 7.3 0.02

Auction/sched 84 2 159.7 5,759.9 159.7 5,600.2 822.5 3.6 44.9 0.27

MaxClique 62 2 484.3 50,092.8 484.3 49,608.5 8,372.7 325.2 3.5 2.87

SPOT5 20 4 385.1 6,603.3 761.0 9,411.3 5,888.1 127.3 4.1 1.71

We compare solving time to find and prove optimality for toulbar2 exploit-
ing cliques (denoted as toulbar2

clq) against the original code without cliques
(both using default options, including hybrid best-first search [1]), and against
the CP solver gecode

3, the MaxSAT solvers maxhs 2.51 [10,11] and eva 500a
[30], and IBM-ILOG cplex 12.6.0.0 (using a direct encoding [19] and para-
meters EPAGAP, EPGAP, and EPINT set to zero to avoid premature stop).
All computations were performed on a single core of AMD Opteron 6176 at
2.3 GHz and 8 GB of RAM with a 1-h CPU time limit4. In Table 2, we give the
number of solved instances within a 1-h CPU time limit. Among 252 instances,
cplex solved 224 instances, maxhs 216, toulbar2

clq 213, eva 208, toul-

bar2 205, and gecode 137. For Auction, toulbar2clq is more than two orders
of magnitude faster than toulbar2, gecode (which cannot solve 57 Auc-
tion/path instances in 1 h) and eva on Auction/path (cat paths 60 170 0005
instance unsolved in 1 h). Still toulbar2clq is one order of magnitude slower
than cplex and maxhs. On MaxClique (resp. SPOT5), toulbar2clq solved 6
3 Version 4.4.0, using free search.
4 Using parameter -pe parallel smp 2 on a SUN Grid Engine to ensure half-load of the

cores on the cluster.

110 S. de Givry and G. Katsirelos

Table 2. Number of solved instances and mean solving computation time in seconds,
for toulbar2 solver without using cliques compared to toulbar2

clq exploiting cliques,
cplex, maxhs, eva and gecode. toulbar2clq solving time does not take into account
clique generation time (see Table 1). A CPU time limit of 1 h was used for unsolved
instances for reporting mean solving times.

Problem toulbar2 toulbar2
clq

cplex maxhs eva gecode

Solv. Time Solv. Time Solv. Time Solv. Time Solv. Time Solv. Time

Auction/path 86 59 86 0.18 86 0.01 86 0.01 85 102 29 2614

Auction/sched 84 110 84 0.23 84 0.04 84 0.04 84 0.28 84 76

MaxClique 31 1871 37 1508 38 1533 40 1510 26 2268 24 2314

SPOT5 4 2884 6 2603 16 738 6 2577 13 1260 0 3600

(resp. 2) more instances than without using cliques. For example, toulbar2clq

solved MaxClique/MANN a45 in 57.9 s (taking 0.24 supplementary seconds to
generate the 330 selected cliques) whereas without using cliques it could not
finish in 1 h (maxhs took 28 s, cplex 93 s, and eva and gecode could not solve
in 1 h). SPOT5/404 was solved in 6 s using 32 cliques and 88.7 s without using
cliques (cplex took 0.02 s, eva 0.07 s, maxhs 8 s, and gecode could not solve
in 1 h).

Finally, we summarize the evolution of lower and upper bounds for each solver
over all instances in Fig. 1. Specifically, for each instance I we normalize all costs
as follows: the initial lower bound produced by toulbar2 is 0; the best – but
potentially suboptimal – solution found by any solver is 1; the worst solution

Fig. 1. Normalized lower and upper bounds on 252 instances as time passes.

Clique Cuts in Weighted Constraint Satisfaction 111

is 2. This normalization is invariant to translation and scaling. Additionally,
we simply normalize time from 0 to 1, corresponding to 1 h. A point 〈x, y〉 on
the lower bound line for solver S in Fig. 1 means that after normalized runtime
x, solver S has proved on average over all instances a normalized lower bound
of y and similarly for the upper bound. We show both the upper and lower
bound curves for all solvers evaluated here, except gecode which produces no
meaningful lower bound before it proves optimality. We observed that using
cliques, it mainly improves lower bounds for toulbar2. For these benchmarks,
cplex got the best lower bound curve and toulbar2

clq the best upper bound
curve.

6 Conclusions

We have shown how the idea of clique cut originated from MIP can be exploited
in the context of WCSPs. Using these cuts in WCSP is significantly more compli-
cated than in integer programming, owing to a large degree to the fact that the
fast specialized algorithms that are used in place of solving the linear relaxation
have weaknesses which seem to be particularly exposed by clique constraints. To
address these shortcomings, we provide two specific EPTs, unary-to-clique and
binary-to-clique, which propagate isolated clique constraints optimally, even if
costs are hidden in binary cost functions. We then gave an algorithm to greedily
select and order a subset of potential cliques in preprocessing and do the propa-
gation on these selected cliques during search. In an experimental evaluation, we
have obtained large improvements over the existing complete solver ToulBar2

on several benchmarks, significantly reducing the gap to state-of-the-art solver
cplex.

Acknowledgements. This work has been partially funded by the french “Agence
nationale de la Recherche”, reference ANR-16-C40-0028. We are grateful to the Bioinfo
Genotoul platform Toulouse Midi-Pyrenees for providing computing resources.

References

1. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime
hybrid best-first search with tree decomposition for weighted CSP. In: Pesant,
G. (ed.) CP 2015. LNCS, vol. 9255, pp. 12–29. Springer, Cham (2015). doi:10.
1007/978-3-319-23219-5 2

2. Allouche, D., Bessière, C., Boizumault, P., de Givry, S., Gutierrez, P., Lee, J.H.,
Leung, K.L., Loudni, S., Métivier, J.P., Schiex, T., Wu, Y.: Tractability-preserving
transformations of global cost functions. Artif. Intell. 238, 166–189 (2016)

3. Anstegui Gil, C.: Complete SAT solvers for many-valued CNF formulas. Ph.D.
thesis, University of Lleida (2004)

4. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: Conflict graphs in solving
integer programming problems. Eur. J. Oper. Res. 121(1), 40–55 (2000)

5. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints
in CNF. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 285–301.
Springer, Cham (2014). doi:10.1007/978-3-319-09284-3 22

http://dx.doi.org/10.1007/978-3-319-23219-5_2
http://dx.doi.org/10.1007/978-3-319-23219-5_2
http://dx.doi.org/10.1007/978-3-319-09284-3_22

112 S. de Givry and G. Katsirelos

6. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc con-
sistency for weighted CSP. In: Proceedings of AAAI-2008, Chicago, IL (2008)

9. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

10. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-23786-7 19

11. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 21

12. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif.
Intell. 171(2), 73–106 (2007)

13. Dixon, H.E.: Automating psuedo-Boolean inference within a DPLL framework.
Ph.D. thesis, University of Oregon (2004)

14. de Givry, S., Prestwich, S.D., O’Sullivan, B.: Dead-end elimination for weighted
CSP. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 263–272. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40627-0 22

15. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local
consistency in weighted CSP. In: Proceedings of AAAI-2006, Boston, MA (2006)

16. de Givry, S., Zytnicki, M., Heras, F., Larrosa, J.: Existential arc consistency: get-
ting closer to full arc consistency in weighted CSPs. In: Proceedings of IJCAI-2005,
Edinburgh, Scotland, pp. 84–89 (2005)

17. Globerson, A., Jaakkola, T.: Fixing max-product: convergent message passing algo-
rithms for MAP LP-relaxations. In: Proceedings of NIPS, Vancouver, Canada
(2007)

18. van Hoeve, W.J., Pesant, G., Rousseau, L.: On global warming: flow-based soft
global constraints. J. Heuristics 12(4–5), 347–373 (2006)

19. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,
de Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints 21(3), 413–434 (2016)

20. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artif. Intell. 146(1), 43–75 (2003)

21. Kask, K., Dechter, R.: Branch and bound with mini-bucket heuristics. In: Proceed-
ings of IJCAI-1999. vol. 99, pp. 426–433 (1999)

22. Khemmoudj, M.O.I., Bennaceur, H.: Clique inference process for solving Max-CSP.
Eur. J. Oper. Res. 199(3), 665–673 (2009)

23. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

24. Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP
2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000). doi:10.1007/
3-540-45349-0 22

25. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for
weighted CSP. In: Proceedings of 18th IJCAI, Acapulco, Mexico, pp. 239–244
(2003)

26. Lecoutre, C., Roussel, O., Dehani, D.E.: WCSP integration of soft neighborhood
substitutability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 406–421. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-33558-7 31

http://dx.doi.org/10.1007/978-3-642-23786-7_19
http://dx.doi.org/10.1007/978-3-642-40627-0_21
http://dx.doi.org/10.1007/978-3-642-40627-0_22
http://dx.doi.org/10.1007/3-540-45349-0_22
http://dx.doi.org/10.1007/3-540-45349-0_22
http://dx.doi.org/10.1007/978-3-642-33558-7_31

Clique Cuts in Weighted Constraint Satisfaction 113

27. Lee, J.H.M., Leung, K.L.: Consistency techniques for global cost functions in
weighted constraint satisfaction. J. Artif. Intell. R. 43, 257–292 (2012)

28. Lee, J.H., Leung, K.L.: A stronger consistency for soft global constraints in
weighted constraint satisfaction. In: Proceedings of AAAI-2010, Atlanta, USA
(2010)

29. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In:
Proceedings of IJCAI-2005, Edinburgh, Scotland, UK, pp. 224–229 (2005)

30. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MAXSAT
resolution. In: Proceedings of AAAI-2014, Quebec City, Canada, pp. 2717–2723
(2014)

31. Nguyen, H., Bessiere, C., de Givry, S., Schiex, T.: Triangle-based consistencies for
cost function networks. Constraints 22(2), 230–264 (2016)

32. Prusa, D., Werner, T.: Universality of the local marginal polytope. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1738–1743
(2013)

33. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006). doi:10.1007/
11889205 64

34. Quimper, C., Walsh, T.: Decompositions of grammar constraints. CoRR
abs/0903.0470 (2009)

35. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints 13(1), 130–154
(2008)

36. Schlesinger, M.I.: Syntactic analysis of two-dimensional visual signals in noisy con-
ditions. Kibernetika 4, 113–130 (1976). (in Russian)

37. Sontag, D., Choe, D., Li, Y.: Efficiently searching for frustrated cycles in MAP
inference. In: Proceedings of UAI, pp. 795–804 (2012)

38. Sontag, D., Meltzer, T., Globerson, A., Weiss, Y., Jaakkola, T.: Tightening LP
relaxations for MAP using message-passing. In: Proceedings of UAI, pp. 503–510
(2008)

39. Werner, T.: A linear programming approach to max-sum problem: a
review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007).
https://doi.org/10.1109/TPAMI.2007.1036

http://dx.doi.org/10.1007/11889205_64
http://dx.doi.org/10.1007/11889205_64
https://doi.org/10.1109/TPAMI.2007.1036

Arc Consistency via Linear Programming

Grigori German(B), Olivier Briant, Hadrien Cambazard, and Vincent Jost

CNRS, Grenoble INP G-SCOP, University Grenoble Alpes, 38000 Grenoble, France
grigori.german@grenoble-inp.fr

Abstract. A typical technique in integer programming for filtering vari-
ables is known as variable fixing. The optimal dual solution of the linear
relaxation can be used to detect some of the 0/1 variables that must be
fixed to either 0 or 1 in any solution improving the best known, but this
filtering is incomplete. A complete technique is proposed in this paper
for satisfaction problems with an ideal integer programming formulation.
We show, in this case, that the 0/1 variables taking the same value in all
solutions can be identified by solving a single linear program with twice
the number of the original variables. In other words, a complete variable
fixing of the 0/1 variables can be performed for a small overhead. As
a result, this technique can be used to design generic arc consistency
algorithms. We believe it is particularly useful to quickly prototype arc
consistency algorithms for numerous polynomial constraints and demon-
strate it for the family of Sequence global constraints.

Keywords: Constraint Programming · Linear Programming filtering ·
Arc consistency · Reduced-cost fixing

1 Introduction

Mixed integer programming (MIP) and Constraint Programming (CP) have
benefited from each other increasingly in recent years due to the complemen-
tary strengths of the two frameworks. Many approaches have been proposed to
combine their modeling and solving capabilities [1,2,6,18,21]. On one side, CP
tailored algorithms for specific constraints take advantage of local combinatorial
structures to reduce the search space efficiently. On the other, MIP techniques
usually encompass the whole problem and typically compute lower/upper bounds
of the objective function that propagation through the domains fails to derive.
A typical integration of the two approaches is to use the linear relaxation of
the entire problem in addition to the local consistencies enforced by the CP
solver. The relaxation is used to perform filtering, in particular by providing a
global bound of the objective but also by filtering the domains using a tech-
nique referred to as reduced-cost-based filtering [11,14]. Constraints can in turn
provide specialized linear formulations and cutting planes.

As opposed to previous work, we investigate in this paper how linear pro-
gramming (LP) can be used to filter individual constraints and in particular to

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 114–128, 2017.
DOI: 10.1007/978-3-319-66158-2 8

Arc Consistency via Linear Programming 115

provide arc consistency algorithms. Let us suppose that an ideal linear formu-
lation F over n variables is available for a global constraint. A formulation is
referred to as ideal when it has the integrality property i.e. when the extreme
points of the corresponding polytope are integer points. It is easy to come by
such formulations for many global constraints [18] that include 0/1 variables
typically encoding whether an original variable of the constraint is assigned to
a given value of its domain. Since F is supposed ideal, a simple way to achieve
arc consistency is to fix, in turn, each variable to each value and check the con-
sistency by calling a linear solver. This is very similar to the failed literal test
mentioned in [3] for achieving arc consistency with unit propagation over a SAT
encoding of the constraint.

We show, however, that arc consistency can be achieved in this case by solving
a single linear program with n additional variables and 2n additional constraints.
The idea is to look for an interior point, of the convex hull of F maximizing the
number of variables with a slack to their respective lower and upper bounds.
Although this goes against the rationale explained above for integrating the
two frameworks, we believe the advantages are twofold. First of all, since each
solver only provides a handful of the existing constraints, it is particularly useful
to quickly design arc consistency algorithms for many polynomial constraints.
Secondly, it can provide a generic but competitive algorithm for constraints with
a quadratic running time such as the Gen-Sequence [13].

The linear relaxation has been used in the past for filtering and we now review
several closely related works [1,2,18,21] that propose frameworks for combining
the linear relaxation, specialized cutting planes generation and filtering. An illus-
trative example is the work of [18] where each constraint is able to provide its
linear relaxation so that a global relaxation of the entire problem is automatically
derived from a CP model. Additionally, a constraint is able to add dedicated cut-
ting planes during search, taking advantage of the corresponding combinatorial
structure to build a stronger relaxation. The linear relaxations of common global
constraints such as Element, AllDifferent, Circuit and Cumulative can
be found in [12,18] and relaxations of global constraints involving costs such as
MinimumWeightAlldifferent or WeightedCircuit are described in [10].
The linear relaxation is directly used for filtering by [1,2,10,17,18]. It can detect
infeasibility, provide a bound for a cost variable and perform filtering using a
technique referred to as reduced-cost based filtering [10,11]. The latter is a spe-
cific case of cost-based filtering [9] that aims at filtering out values leading to
non-improving solutions.

Section 2 summarizes the key notations. Section 3 reviews and explains
reduced-cost based filtering in more details. The main result of this paper is
presented Sect. 4 and its application to AllDifferent, GlobalCardinality

and Gen-Sequence constraints is described in Sect. 5. Finally experimental
results are reported on three benchmarks in Sect. 6.

116 G. German et al.

2 Notations

A constraint satisfaction problem is made of a set of variables, each with a given
domain, i.e. a finite set of possible values, and a set of constraints specifying
the allowed combinations of values for subset of variables. In the following, the
variables, e.g. Xi, are denoted with upper case letters for the constraint pro-
gramming models as opposed to the variables of linear programming models
that are in lower case. D(Xi) ⊆ Z denotes the domain of Xi. A constraint C
over a set of variables 〈X1, . . . , Xn〉 is defined by the allowed combinations of
values (tuples) of its variables. Such tuples of values are also referred to as solu-
tions of the constraint C. Given a constraint C with a scope 〈X1, . . . , Xn〉, a
support for C is a tuple of values 〈v1, . . . , vn〉 that is a solution of C and such
that vi ∈ D(Xi) for all variable Xi in the scope of C. Consider a variable Xi in
the scope of C, the domain D(Xi) is said arc consistent for C if and only if
all the values vj ∈ D(Xi) belong to a support for C. A constraint C is said arc
consistent if and only if all its variables are arc consistent.

3 Traditional Filtering Using LP: Reduced-Cost Filtering

Let us first review how linear programming is traditionally used to perform fil-
tering. Suppose we are dealing with a minimization problem. Cost-based filtering
relies on a known upper bound z of the objective function which is usually the
cost of the best feasible solution found so far. Since there is no need to consider
solutions with a greater cost that z, values of the domains that would necessar-
ily lead to such non-improving solutions should be filtered. Linear reduced-costs
provide valuable information to perform such reasonings. They are available from
an optimal dual solution of the linear relaxation and give a minimum increase
of the objective function. This increase can be used to detect if a bound of a
variable leads to a non-improving solution. When applied to 0/1 variables, i.e.
variables with the domain {0, 1}, any update of a bound leads to fixing a variable
to 0 or 1. It has thus been known for a long time as variable fixing.

To our knowledge, the best account of this technique in the context of con-
straint programming is given in [11]. It is usually presented in textbooks on
integer programming such as [14,26] for 0/1 variables. We give a summary of
this technique in the more general case of integer variables. Consider a linear
programming formulation (P) where the feasible region is defined by a poly-
tope Q = {x ∈ R

T | Ax ≥ b, l ≤ x ≤ u}. Note that each variable xt for all
t ∈ {1, . . . , T}, has a given lower and upper bound i.e. xt ∈ [lt, ut].

(P) z∗ = min{cx : x ∈ Q}

Program (P) is typically the linear relaxation of an integer programming
formulation identified for the whole problem or for a single constraint. Let α be
the m dual variables of the constraints Ax ≥ b. Moreover, let x∗ be an optimal
solution of (P) and α∗ a set of optimal values of the α variables. The reduced cost

Arc Consistency via Linear Programming 117

rt of a variable xt, with respect to α∗, is defined as rt = ct−α∗At where At is the
t-th column of A. Note that the definition of rt ignores the dual variables related
to the lower and upper bounds since xt ≤ ut and xt ≥ lt are usually not added
as constraints to the formulation of (P) but handled directly by the simplex
algorithm (see [8] for more details). The reduced cost rt is typically the quantity
returned by linear programming solvers when the bounds are not explicitly stated
as constraints in the model but directly as bounds of the variable’s domains.

Reduced-cost-based filtering removes values necessarily leading to non-
improving solutions i.e. solutions of cost greater than the known upper bound z.
The following rules can be used for filtering a variable xt of (P) from an optimal
dual solution.

Proposition 1 (Reduced cost filtering).

If rt > 0 then xt ≤ lt +
(z − z∗)

rt
in any solution of cost less than z (1)

If rt < 0 then xt ≥ ut − (z − z∗)
−rt

in any solution of cost less than z (2)

Note that if xt is originally an integer variable, the reasoning can be tightened
as xt ≤ lt + � (z−z∗)

rt
	 and xt ≥ ut − � (z−z∗)

−rt
	.

The two rules are a direct consequence of traditional sensitivity analysis and
the reader can refer to [11,26] for more details.

The filtering obtained from a particular optimal dual solution is usually
incomplete since rt depends on the specific α∗ found. In other words, consider-
ing several optimal dual solutions may provide more filtering. Let us go through
a very simple example to illustrate this point. We consider a difference con-
straint X1
= X2 with D(X1) = {1, 2} and D(X2) = {1}. Value 1 of D(X1) is
thus expected to be filtered. A simple integer formulation of the feasible solu-
tions can be written with 0/1 variables x1, x2, x3 respectively encoding whether
X1 = 1, X1 = 2 or X2 = 1. The linear relaxation and its dual problem write as
follows:

min 0 max
∑4

i=1 αi +
∑3

i=1 βi

x1 + x2 ≥ 1 α1 + α3 + α4 + β1 ≤ 0
x3 ≥ 1 α1 + α4 + β2 ≤ 0

(P) x1 + x3 ≤ 1 (D) α2 + α3 + β3 ≤ 0
x1 + x2 ≤ 1 α1, α2 ≥ 0
x1, x2, x3 ≥ 0 α3, α4 ≤ 0
x1, x2, x3 ≤ 1 β1, β2, β3 ≤ 0

x∗ = (0, 1, 1) is an optimal solution of (P). It is easy to see that α∗ = (0, 0, 0, 0)
or α∗ = (0, 1,−1, 0) are two vectors of optimal values for α (with β∗ = (0, 0, 0)).
The reduced cost of x1 is r1 = 0 − α∗

1 − α∗
3 − α∗

4. In the first case, r1 = 0 and
none of the rules given in Proposition 1 is triggered. In the second case, r1 = 1
and the first rule applies with z = 0 enforcing x1 ≤ 0 as expected. In both cases
r2 = r3 = 0, therefore x2 and x3 are not filtered.

118 G. German et al.

Note that this drawback occurs even if the polytope Q has integer extreme
points which is the case in the example. Moreover, in any case, minimizing 0
in (P) implies that α∗ = 0 is an optimal vector for α and the linear solver
can always return it. To reduce this phenomenon, it is possible to use another
objective function cx as long as all feasible solutions have the same cost (see
Sect. 6 for an example).

An alternative approach to reduced costs is proposed in the next section to
perform a complete variable fixing.

4 A New Generic Filtering Algorithm Based on LP

Let us briefly explain the general idea and its application to filtering global
constraints before stating the result in detail.

Consider a polytope Q = {x ∈ R
T | Ax ≥ b, l ≤ x ≤ u} with integer extreme

points and l, u ∈ Z
T . We show in this section that a variable that is fixed to one

of its bound (either lt or ut) in all extreme point of Q can be detected by solving
a linear program with T additional variables and 2T additional constraints. The
idea is to look for an interior point of Q maximizing the number of variables with
a slack to their respective lower and upper bounds. When no slack is possible,
the variable is proved to be fixed to the same value in all extreme points.

For numerous polynomial global constraints, it is possible to give an ideal
integer programming formulation F of the solutions where 0/1 variables xij typ-
ically encode whether an integer variable Xi of the constraint’s scope is assigned
to value a vj of its domain. The linear relaxation of F defines a polytope Q that
represents the convex hull of the supports of the constraint. Each integer point
in Q can be seen as a support of the constraint. The proposed technique iden-
tifies all 0/1 variables that are set to 0 in all extreme points. Since all interior
points of Q are a convex combination of the extreme points, the same variables
are thus also set to 0 for all interior points of Q, i.e. the corresponding values do
not belong to any support. Since complete variable fixing can be performed (all
inconsistent values are removed), the proposed technique gives the arc consistent
domains for the constraint.

The main result is stated as Theorem 1. The polytope Q = {x ∈ R
T | Ax ≥

b, l ≤ x ≤ u} is assumed to have integer extreme points and l, u ∈ Z
T . Let us

also denote by S the set of extreme points of Q.

Theorem 1. Let us define ε =
1

(T + 1)
, and (P ′) the following linear program:

min z(x, e) =
T∑

t=1

et

s.t. xt + et ≥ lt + ε ∀t ∈ {1, . . . , T}
xt − et ≤ ut − ε ∀t ∈ {1, . . . , T}

et ≥ 0 ∀t ∈ {1, . . . , T}
x ∈ Q

Arc Consistency via Linear Programming 119

For all t ∈ {1, . . . , T}, all δ ∈ {lt, ut}, and all optimal solution (x∗, e∗) of (P ′)
we have:

x∗
t = δ ⇔ x̂t = δ ∀x̂ ∈ S

Note that a feasible solution of (P ′) with et = 0 indicates that variable xt

has a slack of at least ε to its lower and upper bound. Keep also in mind that
the objective of (P ′) is to minimize the sum of the et which tend to create slack.
We will show that any optimal solution of (P ′) actually maximizes the number
of variables that can be unstuck from their bounds revealing all the xt that are
always instantiated to either lt or ut. We first make a simple observation:

Remark 1. If (x∗, e∗) is an optimal solution of (P ′), then e∗ = e(x∗) with
e : RT → R

T such that e(x) = (e1(x), . . . , et(x), . . . , eT (x)) and

et(x) = max{0, ε + lt − xt, ε − ut + xt} ∀t ∈ {1, . . . , T}

Proof: Each variable et only occurs in three constraints of (P ′): et ≥ 0, et ≥
ε + lt − xt and et ≥ ε − ut + xt. Given a value of x∗, the minimum possible
feasible value for et is thus max{0, ε + lt − xt, ε − ut + xt}. �

The optimal objective value of (P ′) is at least ε times the number of variables
that are necessarily fixed to either lt or ut. The proof given below builds a feasible
solution of (P ′) reaching this bound by setting et(x) = 0 for all other variables.
Thus, any optimal solution highlights the fixed variables.

Proof of Theorem 1:
We denote by T l = {t ∈ {1, . . . , T} | x̂t = lt, ∀x̂ ∈ S} and T u = {t ∈
{1, . . . , T} | x̂t = ut, ∀x̂ ∈ S} the sets of indices referring to variables fixed
respectively to their lower or upper bounds, in all extreme points of Q. As
mentioned above, a valid lower bound (P ′) is ε(|T l| + |T u|).

Let (x̂0, x̂1, x̂2, . . . , x̂T) be a series of extreme points of S defined as follows.
x̂0 is chosen arbitrarily in S. Each x̂t such that t /∈ T l ∪ T u is chosen in S so
that x̂t

t
= x̂0
t . Finally, all remaining x̂t are chosen arbitrarily in S.

Based on this series of points, we can define a feasible solution (x̄, e(x̄)) of

(P ′) by considering x̄ as the following convex combination x̄ =
1

T + 1

T∑

t=0

x̂t.

Firstly, note that x̄t ∈ {lt, ut} if and only if t ∈ T l ∪ T u. Indeed, lt ≤ x̂t ≤ ut

for all x̂ ∈ S, so we have x̄t ∈ {lt, ut} if and only if x̂t′
t = x̄t for all t′ ∈ {0, . . . , T}.

Therefore, by construction, x̄t ∈ {lt, ut} if and only if x̂t = x̂0
t for all x̂ ∈ S, i.e.

t ∈ T l ∪ T u.
Secondly, all other x̄t have a slack of at least ε. For all t /∈ T l ∪ T u, we have

x̂t
t
= x̂0

t , therefore max{x̂t
t, x̂

0
t} ≥ lt + 1 and min{x̂t

t, x̂
0
t} ≤ ut − 1 since extreme

points of Q are integers. As a result:

x̄t ≥ 1
T + 1

(max{x̂t
t, x̂

0
t} + T lt) ≥ 1

T + 1
(lt + 1 + T lt) = lt + ε

x̄t ≤ 1
T + 1

(min{x̂t
t, x̂

0
t} + T ut) ≤ 1

T + 1
(ut − 1 + T ut) = ut − ε

120 G. German et al.

Hence for all t ∈ {1, . . . , T}, we have

et(x̄) =
{

ε if t ∈ T l ∪ T u

0 otherwise

Thus z(x̄, e(x̄)) = ε(|T l| + |T u|) which proves that the solution (x̄, e(x̄)) is
optimal. Any optimal solution x∗ must therefore have a cost of ε(|T l| + |T u|).
Since et(x∗) ≥ 0 for all t and et(x∗) = ε for all t ∈ T l ∪ T u, et(x∗) = 0 for all
t /∈ T l ∪ T u.

Conclusion: for all optimal solutions (x∗, e∗) of (P ′), all t ∈ {1, . . . , T} and
all δ ∈ {lt, ut},

x∗
t = δ ⇔ t ∈ T l ∪ T u ⇔ x̂t = δ ∀x̂ ∈ S

��
We now propose a simple application of this result to filtering global

constraints. Consider a polynomial global constraint C over a scope X =
〈X1, . . . , Xn〉 of n integer variables with their respective domains D(Xi) ∈ Z.
The approach proposed to enforce arc consistency is summarized below:

LP-Based Filtering for Constraint C:
Inputs: A constraint C over the variables X = 〈X1, . . . , Xn〉. An ideal integer
formulation F of the solutions of C where a 0/1 variable xij is present for all
Xi ∈ X, vj ∈ D(Xi) to encode whether variable Xi takes value vj .

Output: arc consistent domains D(X1), . . . , D(Xn) for constraint C

1. Consider Q as the convex hull of F by simply relaxing the domain’s constraint
xij ∈ {0, 1} into xij ∈ [0, 1] for all xij

2. Find an optimal solution (x∗, e∗) of (P ′) as defined in Theorem 1
3. For each Xi ∈ X and each vj ∈ D(Xi), if x∗

ij = 0, remove value vj from
D(Xi).

The procedure given above computes arc consistent domains as a direct con-
sequence of Theorem 1: indeed x∗

ij = 0 means that xij = 0 for any solution of
the LP, hence the corresponding value has to be removed. Furthermore, when
x∗
ij = 1, x∗

ik = 0 for all k
= j.

Corollary 1. The procedure LP-based filtering is correct and establishes arc
consistency for constraint C.

Proof: Recall that the integer points of Q represent the supports of C. Since
any interior point can be written as a convex combination of the extreme points,
there exists at least one extreme point x̂ ∈ S such that x̂ij = 1 for any consistent
value vj of a D(Xi). Similarly when all x̂ij = 0 for all x̂ ∈ S, it is the case of all
interior integer points. Keeping that in mind, we simply check that the procedure
does not remove any consistent value (it is correct) and removes all inconsistent
values (it is complete).

Arc Consistency via Linear Programming 121

Correct: consider a consistent value vj in D(Xi). Since it belongs to a support,
there exists at least one x̂ ∈ S such that x̂ij = 1. Therefore, x∗

ij
= 0 according
to Theorem 1 and value vj is not removed by the proposed procedure.

Complete: Let us check that all remaining values belong to a support. Con-
sider a value vj of a domain D(Xi) after the procedure has been called. Since
vj has not been filtered, x∗

ij
= 0 implying by Theorem 1 that there exists at
least one extreme point x̂ ∈ S such that x̂ij = 1. Therefore vj belongs to the
corresponding support. �

The complexity of LP-based filtering depends on the algorithm used to solve
the LP. In practice, the simplex algorithm is known to have a number of iterations
proportional to m log(n) [8] where n is the number of variables and m the number
of constraints of the LP formulation.

5 Ideal Linear Formulations of Polynomial Global
Constraints

We now provide an ideal integer programming formulation F for a number of
polynomial global constraints. The fact that a variable Xi takes one and one
value only of its domain (Xi ∈ D(Xi)) is typically expressed in F following [18]:

{ ∑

vj∈D(xi)

xij = 1

xij ∈ {0, 1} ∀vj ∈ D(Xi)
(3)

5.1 AllDifferent and GlobalCardinality

The AllDifferent(X1, . . . , Xn) constraint [19] is satisfied when the variables
X1, . . . , Xn take different values. The formulation given below is the classical for-
mulation for the matching problem and is known to have the integrality property:

F =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i|vj∈D(Xi)

xij ≤ 1 ∀vj ∈
⋃n

i=1 D(Xi)
∑

vj∈D(xi)

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i ∈ {1, . . . , n},∀vj ∈ D(Xi)

(4)

A related global constraint is the GlobalCardinality constraint [20]. It
enforces the number of occurrences of each value vj to be at least lj and at
most uj in the set X1, . . . , Xn of variables. The formulation F is the following:

F =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

i|vj∈D(Xi)

xij ≤ uj ∀vj ∈
⋃n

i=1 D(Xi)
∑

i|vj∈D(Xi)

xij ≥ lj ∀vj ∈
⋃n

i=1 D(Xi)
∑

vj∈D(xi)

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i ∈ {1, . . . , n},∀vj ∈ D(Xi)

(5)

122 G. German et al.

F has the integrality property since the matrix can be seen as a specific case
of a network flow matrix. Let us denote by d = maxn

i=1 |D(Xi)|, the maximum
cardinality of the domains and m = |

⋃n
i=1 D(Xi)|, the total number of distinct

values. Both formulations given have O(nd) variables and O(n+m) constraints.
Arc consistency can thus be established by solving the program (P ′) which
has twice the number of variables and O(nd + m) constraints. Recall that the
dedicated algorithms for each constraint respectively runs in O(n1.5d) for the
AllDifferent, O(n2m) for the GlobalCardinality and are incremental
down a branch of the search tree.

5.2 The Family of Sequence Constraints

The Sequence constraint restricts the number of occurrences of some given
values in any sequence of k variables. It can be expressed as a conjunction of
Among constraints and has been used for car sequencing [5] and nurse ros-
tering [7]. More precisely, Among(l, u, 〈X1, . . . , Xk〉, V) holds if and only if
l ≤ |{i|Xi ∈ V }| ≤ u. In other words, at least l and at most u of the vari-
ables take their values in the set V . The Sequence constraint can be defined
as a conjunction of sliding Among constraints over k consecutive variables.
Sequence(l, u, k, 〈X1, . . . , Xn〉, V) holds if and only if ∀i ∈ {1, . . . , n − k + 1}
Among(l, u, 〈Xi, . . . , Xi+k−1〉, V) holds.

An incomplete filtering algorithm for Sequence is proposed in [4]. Two arc
consistency algorithms are later given in [24,25] with respective running times
of O(n3) and O(2kn). Additionally, an encoding achieving arc consistency is
presented in [7] and runs in O(n2log(n)) down a branch of a search tree. It is
latter improved in [13] by using the fact that a natural integer programming
formulation of the constraint has the consecutive ones property on the columns.
This is used to build a network flow graph and derive an arc consistency algo-
rithm. The complexity of this flow-based propagator to enforce arc consistency
is O(n((n−k)(u− l)+u)) when using the Ford-Fulkerson algorithm for finding a
maximum flow. The incremental cost when fixing a single variable is only O(n)
so that the algorithm runs in O(n2) down a branch of a search tree.

A generalization of Sequence is known as Gen-Sequence and allows dif-
ferent occurrences (l and u) and sizes (k) for an arbitrary set of m Among con-
straints over consecutive variables. Gen-Sequence(p1, . . . , pm, 〈X1, . . . , Xn〉, V)
holds if and only if ∀ 1 ≤ i ≤ m, Among(li, ui, 〈Xsi , . . . , Xsi+ki−1〉, V) holds
where pi = {li, ui, ki, si}.

The Gen-Sequence global constraint is defined in [24,25] and a O(n4) algo-
rithm is proposed to enforce arc consistency. The consecutive one property does
not hold in general for a Gen-Sequence constraint. Although it may sometimes
be possible to re-order the lines of the matrix to have the consecutive one prop-
erty on the columns or to find an equivalent network matrix, [13] outlines that
not all Gen-Sequence constraints can be expressed as network flows. The flow-
based algorithm for Sequence can therefore not be reused in general. Nonethe-
less, the encoding of Sequence proposed in [7] extends to Gen-Sequence and
runs in O(nm + n2 log n) [13]. Finally, in [3], a filtering method based on unit

Arc Consistency via Linear Programming 123

propagation over a conjunctive normal form encoding of the constraint is pro-
posed and achieves arc consistency in O(mn3).

Notice that the previous sequence constraints can be encoded with a sim-
ple boolean channeling, without hindering any filtering since the resulting con-
straint network is Berge-acyclic. Typically Gen-Sequence(p1, . . . , pm, 〈X1, . . . ,
Xn〉, V) can be stated as:

⎧
⎨

⎩

Gen-Sequence(p1, . . . , pm, 〈Y1, . . . , Yn〉, 1)
Yi = 1 ⇔ Xi ∈ V,∀i ∈ {1, . . . , n}

Yi ∈ {0, 1},∀i ∈ {1, . . . , n}
(6)

All previous studies thus focused on the restricted case where V = {1}. The
integer linear formulation for Gen-Sequence(p1, . . . , pm, 〈Y1, . . . , Yn〉, 1) is the
following:

F =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

si+ki−1∑

j=si

yj ≤ ui ∀i ∈ {1, . . . , m}
si+ki−1∑

j=si

yj ≥ li ∀i ∈ {1, . . . , m}

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}

(7)

This formulation has the integrality property, as already mentioned in [13].
The linear program (P ′) solved by the proposed LP-based procedure to enforce
arc consistency has O(n) variables and O(m + n) constraints. Recall that the
best arc consistency algorithm for Gen-Sequence is the encoding of [13] and
runs in O(nm + n2 log n).

6 Numerical Results

We carried out experiments on the AllDifferent and Sequence global con-
straints. The first set of experiments compares the LP-based filtering to the
dedicated filtering algorithm of AllDifferent (Sect. 6.1). It also evaluates in
practice the power of reduced-cost based filtering. The second one (Sect. 6.2)
compares two encodings of Sequence to the LP-based filtering on random
sequences alone following the experiments reported in [13]. Finally the last one
evaluates the LP-based filtering on the Car-sequencing problem (Sect. 6.3).

The experiments were performed with Windows 8 on an Intel Core i5 @
2.5 GHz with 12 GB of RAM. A memory limit of 4 GB of RAM was used. The
indicators shown in the result tables are the average resolution time in seconds
(CPU), the average number of nodes (N) and the average speed of the resolution
in node per second (N/s). The constraint solver used is Choco 3.3 [16].

6.1 LP and Reduced-Cost Filtering for the AllDifferent constraint

The LP-based filtering is implemented for AllDifferent with the polytope
given in Sect. 5.1. It is referred to as AllDifferentLPF (for LP Filtering) and

124 G. German et al.

compared with three other filtering algorithms: the Choco AllDifferent con-
straint, the decomposition into cliques of difference constraints (DEC) and the
reduced-cost based filtering algorithm in addition to the decomposition (RCF).
As mentioned in Sect. 3, when filtering via reduced costs, the use of an objective
function of the form cx can increase the chances of having non null reduced costs.
To perturb the dual, the objective function used is

∑n
i=1 ci(

∑
j∈D(Xi)

xij), where
the ci are randomly chosen in [−10, 10] at each node. Note that this function
guarantees that all feasible solutions have the same cost.

We solve the QuasiGroup Completion problem [15]. The problem is to fill
a n by n matrix previously filled at k% with numbers from 1 to n such that
on each line and on each column, each number appears only once. We compare
four models and look for the number of nodes needed to find all solutions for
small instances with a lexicographic branching heuristic. Table 1 shows the aver-
age results on 10 randomly generated instances for each size n ∈ {5, 10, 15}.
These three classes of instances are respectively filled at 10, 40 and 50% to have
instances solvable under 3600 s. One instance with n = 15 is solved within the
time limit by Choco AllDifferent only and is thus not included in the results.

Table 1. QuasiGroup completion: filtering the AllDifferent constraint

n 5 10 15

Filtering CPU N N/s CPU N N/s CPU N N/s

Choco AllDifferent 0.1 3190.1 51453.2 1.2 51591.0 41405.3 5.1 87680.6 17244.9

AllDifferentLPF 2.7 3190.1 1184.6 110.2 51591.0 468.3 478.2 87680.6 183.4

RCF 0.9 3223.0 3679.2 40.7 57679.4 1416.6 292.6 159399.0 544.7

DEC 0.0 3285.6 547600.0 0.8 126613.2 150015.6 161.5 14338395.8 88805.2

As expected, AllDifferentLPF is slower than Choco AllDifferent that
uses a dedicated algorithm. It is also on average three times slower than RCF. We
can however see that it achieves arc consistency as it explores the same number of
nodes than Choco AllDifferent. When n = 15, RCF explores approximately
twice the number of nodes of Choco AllDifferent or AllDifferentLPF.
RCF does not achieve arc consistency, yet filters more than the decomposition
alone. DEC propagates small constraints and is faster than RCF but can explore
up to a 100 times the number of nodes of RCF for these instances.

6.2 Filtering One Sequence Constraint

The LP-based filtering is implemented for Sequence with the polytope given
in Sect. 5.2. It is referred to as SequenceLPF and compared with an encoding
of Sequence: the PS encoding presented in [7] which achieves arc consistency
using a decomposition based on partial sums with O(nk2) constraints. Following
the experimentation of [13] we generated 20 instances of a single sequence for
each combination of n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k ∈ {5, 15, 50, 75}
and Δ = l −u ∈ {1, 5}. We look for the first solution found with a heuristic that

Arc Consistency via Linear Programming 125

randomly chooses the variable and the value to branch on. Figure 1 shows the
evolution of the resolution time (in s) with the size of the instances.

Fig. 1. Sequence

SequenceLPF is slower than the PS encoding on sequences with smaller k.
However, when k = 75, PS runs out of memory due to the number of constraints,
whereas SequenceLPF can solve the sequence. Most importantly, as we can
see on Fig. 1, LP filtering scales better with the problem: it does not seem very
sensitive to the value of k.

6.3 The Car-Sequencing Problem

We evaluate the performance of SequenceLPF on the Car-sequencing problem
[23]. The goal is to schedule n cars partitioned in k classes: the demand of a class
c is denoted by dc. Each class requires a subset of options in a set of m options.
For each option j, there must be at most pj cars that require that option in each
sub-sequence of size qj . We consider the two first set of instances presented in
[22]: Set 1 is composed of 70 feasible instances with 200 cars, Set 2 is composed

126 G. German et al.

of 4 feasible instances with 100 cars. All the instances are available in CSPLib.
We use the model described by [22]:

Variables

– The class variables are n integer variables X = {X1, . . . , Xn} taking their
value in {1, . . . , k}. Xi = c means that a car of class c is scheduled in slot i.

– The option variables are nm boolean variables Y = {Y1,1, . . . , Yn,m}. Yi,j = 1
means that the car in slot i has the option j.

Constraints

– The demand constraint states that the demand of each class must be satisfied
and is enforced by GlobalCardinality(X , {d1, . . . , dk}), meaning that for
each class c ∈ [1, n] the number of variables in X taking the value c should
be exactly dc.

– The capacity constraints: for each option j, in each sub-sequence of cars of
size qj , the number of cars requiring option j is limited by pj . For each option
j, we set: Sequence(0, pj , qj , {Y1,j , . . . , Yn,j}).

– The option and class variables are linked using implication constraints. For
each class c, we define Oc the set of options required by the class. For each
slot i, we set: Xi = c ⇒ Yi,j = 1 ∀ j ∈ Oc and Xi = c ⇒ Yi,j = 0 ∀ j
∈ Oc.

The problem is to find a single feasible solution and the search is done with
a branching heuristic defined in [22] denoted by {class, lex, δ,≤∑}. It branches
lexicographically on the class variables and chooses the class for which the sum
of the loads of each option is the highest. We set a time limit of 1200 s. Table 2
compares a model with the filtering of SequenceLPF to a model with the PS
encoding. The columns CST and VAR show the average number of constraints
and variables of the model.

Table 2. Car-sequencing Sets 1 and 2

MODEL Set 1 (70 instances) Set 2 (4 instances)

CST VAR SOLV CPU N N/s CST VAR SOLV CPU N N/s

SequenceLPF 1006 1212 100% 0.4 185.4 418.4 506 610 20.0% 900.0 603588.8 670.7

PS 11872 4786 100% 0.1 185.4 2948.9 5872 2384 20.0% 900.0 10666137.5 11850.8

The branching heuristic is very efficient for the first set of instances whereas
only 1 instance out of the 4 of Set 2 is solved. The Sequence constraints are
not very big (n ≤ 200 and k ≤ 5), hence PS has no more than 12000 constraints
and is faster than SequenceLPF. For this more complex problem, LP filtering
is only 20 times slower than the encoding that achieves arc consistency while for
QuasiGroup Completion, it is 100 times slower than the Choco AllDifferent

constraint.

Arc Consistency via Linear Programming 127

7 Conclusion and Future Work

Given a formulation of a constraint with the integrality property, we have shown
that arc consistency can be achieved by solving a single linear program. We
believe it is very useful to provide arc consistency algorithms for numerous poly-
nomial constraints that are not available in solvers. Although it is unlikely to
be competitive with dedicated and incremental filtering algorithms, a number
of improvements have yet to be investigated. Firstly, the algorithm boils down
to the search for an interior point in a polytope and there might be more effi-
cient techniques, although maybe more difficult to implement, than the simplex
algorithm for that purpose. Secondly, the result itself is more general than the
specific usage done here to enforce arc consistency since it can be used to detect
integer variables necessarily grounded to a bound of their domain. This raises the
question whether more sparse LP formulations that does not necessarily intro-
duce a variable per value of the original domains can be used. Finally, polynomial
constraints with high running times often have a cost variable, for instance the
MinimumWeightAlldifferent, so that a natural extension of this work is to
handle an objective function.

References

1. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-
ming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68155-7 4

2. Aron, I., Hooker, J.N., Yunes, T.H.: SIMPL: a system for integrating optimization
techniques. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011,
pp. 21–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 2

3. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 133–147. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7 12

4. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing
the cardinality-pathconstraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 59–73. Springer, Heidelberg (2001). doi:10.1007/3-540-45635-X 12

5. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Modell. 20(12), 97–123 (1994)

6. Bockmayr, A., Kasper, T.: Branch and infer: a unifying framework for integer
and finite domain constraint programming. INFORMS J. Comput. 10(3), 287–300
(1998)

7. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P., Walsh, T.: Encodings
of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210–224. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7 17

8. Chvátal, V.: Linear Programming. Series of Books in the Mathematical Sciences.
W.H. Freeman, New York (1983)

9. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-48085-3 14

10. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for
solving TSP and TSPTW. Ann. Math. Artif. Intell. 34(4), 291–311 (2002)

http://dx.doi.org/10.1007/978-3-540-68155-7_4
http://dx.doi.org/10.1007/978-3-540-68155-7_4
http://dx.doi.org/10.1007/978-3-540-24664-0_2
http://dx.doi.org/10.1007/978-3-540-74970-7_12
http://dx.doi.org/10.1007/3-540-45635-X_12
http://dx.doi.org/10.1007/978-3-540-74970-7_17
http://dx.doi.org/10.1007/978-3-540-48085-3_14
http://dx.doi.org/10.1007/978-3-540-48085-3_14

128 G. German et al.

11. Hooker, J.N.: Operations research methods in constraint programming (chap. 15).
In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

12. Hooker, J.N., Yan, H.: A relaxation of the cumulative constraint. In: van
Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 686–691. Springer,
Heidelberg (2002). doi:10.1007/3-540-46135-3 46

13. Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators
for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 11

14. George, L., Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley-Interscience, New York (1988)

15. Pesant, G.: CSPLib problem 067: Quasigroup completion. http://www.csplib.org/
Problems/prob067

16. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)

17. Refalo, P.: Tight cooperation and its application in piecewise linear optimization.
In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 375–389. Springer, Heidelberg
(1999). doi:10.1007/978-3-540-48085-3 27

18. Refalo, P.: Linear formulation of constraint programming models and hybrid
solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer,
Heidelberg (2000). doi:10.1007/3-540-45349-0 27

19. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI,
vol. 94, pp. 362–367 (1994)

20. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg
(1997). doi:10.1007/BFb0017428

21. Rodosek, R., Wallace, M.G., Hajian, M.T.: A new approach to integrating mixed
integer programming and constraint logicprogramming. Ann. Oper. Res. 86, 63–87
(1999)

22. Siala, M., Hebrard, E., Huguet, M.-J.: A study of constraint programming heuris-
tics for the car-sequencing problem. Eng. Appl. Artif. Intell. 38, 34–44 (2015)

23. Smith, B.: CSPLib problem 001: car sequencing. http://www.csplib.org/Problems/
prob001

24. Van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the
sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–
634. Springer, Heidelberg (2006). doi:10.1007/11889205 44

25. Van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algo-
rithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)

26. Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998)

http://dx.doi.org/10.1007/3-540-46135-3_46
http://dx.doi.org/10.1007/978-3-540-85958-1_11
http://dx.doi.org/10.1007/978-3-540-85958-1_11
http://www.csplib.org/Problems/prob067
http://www.csplib.org/Problems/prob067
http://dx.doi.org/10.1007/978-3-540-48085-3_27
http://dx.doi.org/10.1007/3-540-45349-0_27
http://dx.doi.org/10.1007/BFb0017428
http://www.csplib.org/Problems/prob001
http://www.csplib.org/Problems/prob001
http://dx.doi.org/10.1007/11889205_44

Combining Nogoods in Restart-Based Search

Gael Glorian(B), Frederic Boussemart, Jean-Marie Lagniez,
Christophe Lecoutre, and Bertrand Mazure

CRIL, CNRS, University Artois, F62300 Lens, France
{glorian,boussemart,lagniez,lecoutre,mazure}@cril.fr

Abstract. Nogood recording is a form of learning that has been shown
useful for solving constraint satisfaction problems. One simple app-
roach involves recording nogoods that are extracted from the rightmost
branches of the successive trees built by a backtrack search algorithm
with restarts. In this paper, we propose several mechanisms to reason
with so-called increasing-nogoods that exactly correspond to the states
reached at the end of each search run. Interestingly, some similarities
that can be observed between increasing-nogoods allow us to propose
new original ways of dynamically combining them in order to improve
the overall filtering capability of the learning system. Our preliminary
results show the practical interest of our approach.

Keywords: Learning · Increasing nogoods · Restarts · Filtering

1 Introduction

Nogood recording is a learning technique that has been applied to the Constraint
Satisfaction Problem (CSP) in the 90’s [2,4,14]. A classical nogood is defined as
a partial instantiation that cannot be extended into a solution. Such nogoods
have been cleverly exploited to manage explanations [5,7] of values that are
deleted during search (when running constraint propagation). They have also
been generalized [8] by incorporating both assigned variables (positive decisions)
and refuted values (negative decisions). More recently, the practical interest of
nogood recording has been revisited in the context of lazy clause generation [3].

Nogoods can also be effective in the context of a backtrack search algorithm
that regularly triggers restarts. Indeed, just before restarting, a set of nogoods
can be easily identified [10] on the rightmost branch of the search tree, which
stands for the part of search space that has been explored during the last run. By
recording these so-called nld-nogoods, we obtain the guarantee of never exploring
the same subtrees, further making the approach complete. This restart-based
learning mechanism has been extended to take into account symmetry breaking
[11,13] and the increasing nature of nld-nogoods [12], called increasing-nogoods
for this reason.

In this paper, we propose several mechanisms to combine increasing-nogoods,
allowing us to increase their filtering capacity. By dynamically analyzing relevant

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 129–138, 2017.
DOI: 10.1007/978-3-319-66158-2 9

130 G. Glorian et al.

subsets of increasing-nogoods, especially from equivalence forms between deci-
sions, we show that the search space can be more efficiently pruned. More specif-
ically, we introduce three inference rules for deeper reasoning with increasing-
nogoods.

2 Preliminaries

A constraint network P is a pair (X , C), where X is a finite set of variables
and C a finite set of constraints. Each variable x ∈ X has a domain, denoted
by dom(x), which is the finite set of values a that can be assigned to x. Each
constraint c ∈ C involves an ordered set of variables, called the scope of c and
denoted by scp(c). A constraint c is semantically defined by a relation, denoted
by rel(c), which is the set of tuples allowed by (variables of) c. Let X ⊆ X be a
subset of variables, an instantiation I of X maps each variable x ∈ X to a value
in dom(x); we note I[x] = a and vars(I) = X. An instantiation I is complete
iff vars(I) = X , partial otherwise. A solution of P is a complete instantiation
satisfying all constraints of P .

A nogood is an instantiation that cannot be extended to any solution. The
benefit of recording nogoods is to avoid some form of thrashing, i.e. exploring
the same unsatisfiable subtrees several times. There are two classical methods to
identify and store nogoods: during search or at restarts. In this paper, we con-
sider a complete backtrack search algorithm with binary branching and nogood
recording from restarts [9]. Decisions taken during search are either positive (i.e.,
variable assignments such as x = a) or negative (i.e., value refutations such as
x �= a). A decision δ is checked to be positive or negative by simply writing
pos(δ) and neg(δ), respectively. The variable involved in a decision δ is denoted
by var(δ), whereas the value involved in a decision δ is denoted by val(δ). Binary
branching means that at each search node a left branch labeled with a positive
decision x = a is developed first, and a right branch labeled with a negative
decision x �= a is developed next. A decision δ is satisfied (resp., falsified) iff it
holds (resp., does not hold) whatever is the value chosen in the current domain
of var(δ). A decision that is not satisfied (resp., falsified) is said to be unsatisfied
(resp., unfalsified).

3 Increasing Nogoods

So-called nld-nogoods [9] (negative last decision nogoods) can be extracted at
each restart of a backtrack search algorithm. Let us assume that the sequence
of labels all along the rightmost branch of a current search tree being developed
is Σ = 〈δ1, . . . , δm〉, where each decision of Σ is either a positive or a negative
decision. It is known that for any i such that 1 ≤ i ≤ m and neg(δi), the set
{δj : 1 ≤ j < i ∧ pos(δj)} ∪ {¬ δi} is a reduced nld-nogood. Note that it only
contains positive decisions (and so, is a standard nogood). From now on, for
simplicity reasons, we simply call them nld-nogoods.

Combining Nogoods in Restart-Based Search 131

Fig. 1. The search tree at the end of a run.

Example 1. Let us consider the search tree depicted in Fig. 1, where the right-
most branch of the tree is Σ = {δ1,¬ δ2,¬ δ6, δ8,¬ δ9,¬ δ11}. The follow-
ing (reduced) nld-nogoods can be extracted: {δ1, δ2}, {δ1, δ6}, {δ1, δ8, δ9} and
{δ1, δ8, δ11}.

As we can observe, there are some similarities between these nld-nogoods: they
are said to be increasing [12,13]. An increasing-nogood compactly represents
the full set of nld-nogoods that can be extracted from a branch. To obtain an
increasing-nogood from a set of nld-nogoods, we have first to consider each nld-
nogood under its directed form.

Example 2. Considering again the search tree in Fig. 1, let us assume the deci-
sions of the last branch represent: Σ = 〈x2 = 1, x3 �= 0, x4 �= 1, x5 = 2, x1 �=
1, x6 �= 2〉. The four nld-nogoods ng0, ng1, ng2 and ng3 are given below under
their logical forms (middle) and directed forms (right):

ng0 ≡ ¬(x2 = 1 ∧ x3 = 0) ≡ x2 = 1 ⇒ x3 �= 0
ng1 ≡ ¬(x2 = 1 ∧ x4 = 1) ≡ x2 = 1 ⇒ x4 �= 1
ng2 ≡ ¬(x2 = 1 ∧ x5 = 2 ∧ x1 = 1) ≡ x2 = 1 ∧ x5 = 2 ⇒ x1 �= 1
ng3 ≡ ¬(x2 = 1 ∧ x5 = 2 ∧ x6 = 2) ≡ x2 = 1 ∧ x5 = 2 ⇒ x6 �= 2

In [12], the authors have shown that the set of directed nld-nogoods extracted
from a branch are necessarily increasing, meaning that LHS(ngi) ⊆ LHS(ngi+1)
where LHS designates the left hand side of the implication. This is illustrated
on our example by:

ng0 ≡ x2 = 1 ⇒ x3 �= 0
ng1 ≡ LHS(ng0) ⇒ x4 �= 1
ng2 ≡ LHS(ng1) ∧ x5 = 2 ⇒ x1 �= 1
ng3 ≡ LHS(ng2) ⇒ x6 �= 2

In practical terms, it means that it suffices to record the branch exactly as
it is instead of extracting nld-nogoods independently. Another important obser-
vation is that each increasing-nogood can be viewed as a constraint, together

132 G. Glorian et al.

with a filtering algorithm enforcing GAC (Generalized Arc Consistency). Inter-
estingly enough, if 〈ng1, . . . , ngt〉 is a sequence of increasing nld-nogoods, and if
LHS(ngi) contains two unsatisfied decisions then any nogood ngj with j ≥ i is
necessarily GAC because the LHS of larger nogoods subsume the LHS of smaller
ones.

Technically, two indices α and β can be used to watch the two leftmost
unsatisfied positive decisions in the sequence of an increasing-nogood. These two
watched decisions as well as all the negative decisions that may occur between
them are under surveillance, as δ1, ¬ δ2 and δ3 in the following illustration:

Σ = 〈
Watched

︷ ︸︸ ︷

δ1
︸︷︷︸

α

,¬ δ2, δ3
︸︷︷︸

β

, δ4,¬ δ5,¬ δ6〉

For the sake of simplicity, we consider that for any increasing-nogood Σ, the
decisions in Σ that are watched by the alpha and beta indices can be respec-
tively accessed by using α(Σ) and β(Σ). On our illustration, α(Σ) and β(Σ) are
respectively δ1 and δ3.

The filtering algorithm (called IncNG) associated with an increasing-nogood
(constraint) is triggered in three cases:

1. a watched negative decision is falsified: α(Σ) must be forced to be falsified,
and consequently all nogoods within the constraint are satisfied;

2. α(Σ) is satisfied: all negative decisions between α and β must be satisfied and
we search for the next unsatisfied positive decision;

3. β(Σ) is satisfied: we need to find the next unsatisfied positive decision.

4 Reasoning with Increasing Nogoods

When considered as constraints, it is quite natural that nld-nogoods and
increasing-nogoods are solicited independently for filtering tasks. However, we
show that it is possible to exploit the similarities that exist (rather frequently)
between such nogoods. More specifically, we introduce in this section three rules
for reasoning deeper with increasing-nogoods.

4.1 Reasoning with Watched Negative Decisions

By checking for each variable x and each increasing-nogood Σ that there exists a
value in dom(x) which is not involved in a negative decision for x between α(Σ)
and β(Σ), we have the guarantee of not missing some inferences from a simple
reasoning on watched negative decisions.

Example 3. Consider the following increasing-nogood: Σ = 〈x2 = 1, x3 �= 2, x3 �=
4, x5 = 3〉. Assume that we have α(Σ) and β(Σ) being indices for x2 = 1 and
x5 = 3, and all variables with the same domain {1, 2, 3, 4}. If x2 is assigned to
the value 1, then the values 2 and 4 can be removed from dom(x3). Of course, a

Combining Nogoods in Restart-Based Search 133

conflict occurs if dom(x3) only contains these two values. However, this conflict
could have been avoided (anticipated) by removing the value 1 from dom(x2) as
soon as dom(x3) is reduced to {2, 4}. �

First, we introduce a function diffValues(Σ, xi) that returns for a given
increasing-nogood Σ, the set of values present in a negative decision of Σ involv-
ing xi and situated between α(Σ) and β(Σ). We also introduce a function
diffVars(Σ) that returns the set of variables involved in a negative decision
of Σ situated between α(Σ) and β(Σ). For example, for Σ = 〈x2 = 1, x3 �=
2, x3 �= 4, x5 = 3〉 with α(Σ) being x2 = 1 and β(Σ) being x5 = 3, we have
diffVars(Σ) = {x3} and diffValues(Σ, x3) = {2, 4}. Algorithm 1 implements
this way of reasoning, i.e. performs an inference by refuting the value involved
in α(Σ), each time a conflict can be anticipated as discussed above. Even if
increasing-nogoods are still reviewed independently (in turn), the filtering capa-
bility of the algorithm proposed in [12] is clearly improved if this simple pro-
cedure is systematically called. The worst-case time complexity of Algorithm 1
is O(nd) where n is the number of variables and d is the size of the largest
domain. Indeed, we can precompute sets diffVars(Σ) and diffValues(Σ, x) by
scanning the decisions in Σ whose size is O(nd). With these precomputed sets,
executing lines 1–2 is also in O(nd).

Algorithm 1. checkNegativeDecisions(Σ : increasing-nogood)
1 foreach x ∈ diffVars(Σ) do
2 if dom(x) ⊆ diffValues(Σ, x) then
3 falsify α(Σ);

4.2 Combining Increasing Nogoods of Similar α

In this section, we extend the principle presented above to sets of increasing-
nogoods. For this purpose, we partition the set of increasing-nogoods according
to the decisions indexed by α: two increasing-nogoods Σi and Σj are in the
same group iff α(Σi) is the same decision as α(Σj). Of course, it is therefore
necessary to update the partition each time one α is modified (i.e., when filtering
and backtracking). Despite that, reasoning about groups of increasing-nogoods
allows us to improve the filtering capacity of the increasing-nogoods, and turns
out to encompass the previous case.

134 G. Glorian et al.

Example 4. Let us consider the three following increasing-nogoods:

Σ0 ≡ ... , x6 �= 2, x2 = 1
︸ ︷︷ ︸

α

, x1 �= 3, x3 �= 1, ...

Σ1 ≡ ... , x2 �= 0, x1 �= 2, x2 = 1
︸ ︷︷ ︸

α

, x3 �= 0, ...

Σ2 ≡ ... , x2 = 1
︸ ︷︷ ︸

α

, x3 �= 2, x6 �= 1, x8 �= 3, ...

and let us assume that all variables have the same domain {0, 1, 2, 3}. On this
example, we can observe that x2 = 1 is the common α to this group of three
increasing-nogoods. By looking at the negative decisions following these three
occurrences of α (the precise values of β are not relevant for our illustration), we
can collect {0, 1, 2} as values involved in watched negative decisions for x3 (they
are necessarily put before β which is not represented here). This means that if
x2 is assigned the value 1 then the only remaining value in dom(x3) will be 3.
On the other hand, if at a certain moment, the domain of x3 does not contain
anymore the value 3, it is absolutely necessary to prevent x2 from being assigned
the value 1. �

Algorithm 2. checkNegativeDecisions(Σs : set of increasing-nogoods)
Data: Increasing-nogoods in Σs have a common α

1 foreach x ∈ ⋃Σ∈Σs diffVars(Σ) do
2 if dom(x) ⊆ ⋃Σ∈Σs diffValues(Σ, x) then
3 falsify α(Σ); // Σ can be any increasing-nogood from Σs

Algorithm 2 is a generalization of Algorithm 1, by considering groups of
increasing-nogoods instead of increasing-nogoods individually. Algorithm2 has
a worst-case time complexity in O(nd + g) where g is the sum of the size of the
increasing-nogoods in Σs (we have g =

∑

Σ∈Σs |Σ|). Indeed, precomputing sets
⋃

Σ∈Σs diffVars(Σ) and
⋃

Σ∈Σs diffValues(Σ, x) can be performed in O(g) by
scanning every decision in the increasing-nogoods of Σs. With these precomputed
sets, executing lines 1–2 is in O(nd).

4.3 Combining Increasing Nogoods Using Pivots

We call pivot a variable x such that for any value a ∈ dom(x) there exists an
increasing-nogood Σ such that α(Σ) is the positive decision x = a; in that case,
we say that Σ is a support of pivot x for a. Interestingly, once a pivot variable x is
identified, it is possible to infer negative decisions that are shared by all supports
of x. This is the principle of the algorithm we present after an illustration.

Combining Nogoods in Restart-Based Search 135

Algorithm 3. checkPivots(Σs : the full set of increasing-nogoods)
1 foreach x ∈ {var(α(Σ)) : Σ ∈ Σs} do
2 if dom(x) ⊆ {val(α(Σ)) : Σ ∈ Σs ∧ var(α(Σ)) = x} then
3 foreach δ ∈ ⋂{Σ ∈ Σs : var(α(Σ)) = x} do
4 satisfy δ;

Example 5. Let us consider the following three increasing-nogoods:

Σ0 ≡ ... , x6 �= 2, x2 = 1
︸ ︷︷ ︸

α

, x1 �= 0, x3 �= 1, ...

Σ1 ≡ ... , x7 �= 0, x1 �= 2, x2 = 0
︸ ︷︷ ︸

α

, x3 �= 1, ...

Σ2 ≡ ... , x2 = 2
︸ ︷︷ ︸

α

, x3 �= 1, x6 �= 1, x8 �= 2, ...

and let us assume that all variables have the same domain {0, 1, 2}. On this
example, we can see that x2 is a pivot since all its possible values are involved
in α of different increasing-nogoods. As x3 �= 1 is a negative decision that is
watched in the three increasing-nogoods, we can deduce that x3 must always be
different from 1. �

Algorithm 3 implements the use of pivot variables for making additional infer-
ences. Line 1 only iterates over the variables that are involved in some α (i.e., α

of some increasing-nogoods). Line 2 tests if the variable x is indeed a pivot. Line
3 iterates over the decisions that are shared by all supports of x. Each such deci-
sion must be forced to be satisfied. Note that an optimization consists in only
checking that a decision is shared by some subsets of supports of x, the subsets
with exactly one support of x for each value. Algorithm 3 has a worst-case time
complexity in O(n2dp) where p is the number of increasing-nogoods.

5 Experiments

We have conducted an experimentation on a computer Intel Xeon X5550 clocked
at 2,67 GHz and equipped with 8 GB of RAM. Our initial benchmark was com-
posed of all instances that were used during XCSP 2.1 solver competitions. We
discarded the series of instances that were either too easy to solve (less than 1 s)
or too hard to solve (more than 900 s) when employing MAC without nogood
recording; this yielded a set composed of 3,744 instances. For our experiments,
we have used the solver rclCSP introduced in [6]. The variable ordering heuris-
tic is dom/wdeg [1] and the restart policy corresponds to a geometric series
of first term 10 and common ratio 1.1. Given the complexity of Algorithm3
and because Algorithm 1 is generalized by Algorithm 2, we chose to conduct our

136 G. Glorian et al.

Fig. 2. Pairwise comparison (CPU time in seconds) of IncNG and IncNG+. Results
obtained on the 3,744 instances used as benchmarks. The timeout to solve an instance
is set to 900 s.

Table 1. Average results on 15 series of instances (timeout set to 900 s).

Series #inst NRR IncNG IncNG+

#sols PAR10 #sols PAR10 #sols PAR10

costasArray 11 9 1,745 9 1,686 9 1,686

fapp11-15 55 42 2,162 42 2,157 42 2,155

frb45-21 10 9 1,138 10 232 10 282

nengfa 10 9 970 9 954 9 974

ogdVg 65 35 4,197 39 3,637 40 3,511

ortholatin 9 4 5,045 3 6,011 3 6,010

os-taillard-7 30 19 3,353 18 3,679 18 3,680

QCP-20 15 6 5,437 7 4,870 8 4,289

QWH-20 10 10 79 10 47 10 48

QWH-25 10 1 8,187 0 9,000 2 7,291

rand-2-50-23-fcd 50 5 8,146 12 6,953 15 6,436

rand-2-50-23 50 4 16,481 9 14,429 9 13,899

rand-3-24-24 50 14 11,605 16 10,557 18 10,028

rlfapScens11 12 11 852 11 844 11 852

super-jobShop 46 34 2,358 33 2,547 35 2,358

Combining Nogoods in Restart-Based Search 137

experiments with only Algorithm2 (combining increasing-nogoods of similar α).
For our comparison, we tested three methods: NRR (nogood recording from
restarts as proposed in [12]), IncNG (managing increasing-nogoods as proposed
in [10]) and IncNG+ (combining increasing-nogoods, our approach as introduced
in Sect. 4.2). Figure 2 displays the overall results that we have obtained. The
scatter plot shows that our approach (IncNG+) has usually a small overhead
(when it turns out to be not very effective), and interestingly makes search a
little bit more robust (see the dots on the right vertical line that corresponds
to unsolved instances by IncNG). Table 1 shows a detailed comparison between
the three methods on some series. The table contains the following information:
the name of the series, the number of instances in the series (#inst) and for the
three tested approaches, the number of solved instances (#sols) and the PAR10
score that is the average of the runtimes while considering 10 times the time-
out (900) for unsolved instances. In general, our approach (IncNG+) solves at
least as many instances as IncNG and sometimes more (see, for example, super-
jobShop). When IncNG and IncNG+ both solve the same number of instances,
we usually notice a slight loss for our approach due to the management of the
partitions of the increasing-nogoods (for example, see frb45-21). But interest-
ingly, there are series where this processing time is compensated by a better
pruning of the search tree, with a substantial time saving as outcome (rand-2-
50-23). Moreover, we observe that, in general, the more difficult the instance
is, the more competitive our approach is, as illustrated by the QWH-20 and
QWH-25 series which admit increasing sizes and complexities.

6 Conclusion

In this paper, we have introduced three general rules allowing us to reason with
(groups of) increasing-nogoods. We have shown experimentally the practical
interest of the second rule (which generalizes the first one): when it is effective,
i.e., when inferences can be performed by reasoning on groups of increasing-
nogoods, it saves computation time, and when it is not effective, the overhead is
rather limited. We believe that some improvements are still possible, especially
on the exploitation of pivot variables.

Acknowledgement. This work has been supported by the project CPER DATA from
the “Hauts-de-France” Region.

References

1. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of 16th European Conference on Artificial
Intelligence, ECAI 2004, Including Prestigious Applicants of Intelligent Systems,
PAIS 2004, Valencia, Spain, 22–27 August 2004, pp. 146–150. IOS Press (2004)

2. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)

138 G. Glorian et al.

3. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 29

4. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of 12th National
Conference on Artificial Intelligence, Seattle, WA, USA, 31 July - 4 August 1994,
vol. 1, pp. 294–300. AAAI Press/The MIT Press (1994)

5. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res. (JAIR) 1, 25–46 (1993)
6. Grégoire, É., Lagniez, J.-M., Mazure, B.: A CSP solver focusing on FAC variables.

In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 493–507. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23786-7 38

7. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within
dynamic backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–
261. Springer, Heidelberg (2000). doi:10.1007/3-540-45349-0 19

8. Katsirelos, G., Bacchus, F.: Unrestricted nogood recording in CSP search. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 873–877. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45193-8 70

9. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
IJCAI 2007, Proceedings of 20th International Joint Conference on Artificial Intel-
ligence, Hyderabad, India, 6–12 January 2007, pp. 131–136 (2007)

10. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods
from restarts. J. Satisf. Boolean Model. Comput. (JSAT) 1(3–4), 147–167 (2007)

11. Lecoutre, C., Tabary, S.: Symmetry-reinforced nogood recording from restarts. In:
11th International Workshop on Symmetry in Constraint Satisfaction Problems
(SymCon 2011), Perugia, Italy, pp. 13–27 (2011)

12. Lee, J.H.M., Schulte, C., Zhu, Z.: Increasing nogoods in restart-based search. In:
Proceedings of 30th AAAI Conference on Artificial Intelligence, 12–17 February
2016, Phoenix, Arizona, USA, pp. 3426–3433. AAAI Press (2016)

13. Lee, J.H.M., Zhu, Z.: An increasing-nogoods global constraint for symmetry break-
ing during search. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 465–480.
Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 35

14. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint sat-
isfaction problems. Int. J. Artif. Intell. Tools 3(2), 187–208 (1994)

http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/978-3-642-23786-7_38
http://dx.doi.org/10.1007/3-540-45349-0_19
http://dx.doi.org/10.1007/978-3-540-45193-8_70
http://dx.doi.org/10.1007/978-3-319-10428-7_35

All or Nothing: Toward a Promise Problem
Dichotomy for Constraint Problems

Lucy Ham and Marcel Jackson(B)

Department of Mathematics and Statistics, La Trobe University,
Melbourne 3086, Australia

leham@students.latrobe.edu.au, m.g.jackson@latrobe.edu.au

Abstract. We show that intractability of the constraint satisfaction
problem over a fixed finite constraint language can, in all known cases,
be replaced by an infinite hierarchy of intractable promise problems of
increasingly disparate promise conditions. The instances are guaranteed
to either have no solutions at all, or to be k-robustly satisfiable (for
any fixed k), meaning that every “reasonable” partial instantiation on k
variables extends to a solution.

Keywords: Constraint satisfaction problem · Dichotomy · Robust sat-
isfiability · Promise problem · Quasivariety · Universal horn class

1 Introduction

In the constraint satisfaction problem (CSP) we are given a domain A, a list
of relations R on A and a finite set V of variables, in which various tuples of
variables have been constrained by the relations in R. The fundamental satis-
faction question is to decide whether there is a function φ : V → A such that
(φ(v1), . . . , φ(vn)) ∈ r whenever 〈(v1, . . . , vn), r〉 is a constraint (and r ∈ R is
of arity n). Many computational problems are expressible in this framework,
even in the nonuniform case, where the domain A and relations R are fixed.
Such fixed template CSPs have received particular attention in theoretical inves-
tigations: examples include the SAT variants considered by Schaefer [40], graph
homomorphism problems such as in the Hell-Nešetřil dichotomy [22] as well
as list-homomorphism problems and conservative CSPs [9]. Feder and Vardi
[14] generated particular attention on the theoretical analysis of computational
complexity of fixed template CSPs, by tying the complexity of fixed finite tem-
plate CSPs precisely to those complexities to be found in the largest logically
definable class for which they were unable to prove that Ladner’s Theorem
holds. This motivated their famous dichotomy conjecture: is it true that a fixed
finite template CSP is either solvable in polynomial time or is NP-complete?

M. Jackson—The second author was supported by ARC grants FT120100666 and
DP1094578.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 139–156, 2017.
DOI: 10.1007/978-3-319-66158-2 10

140 L. Ham and M. Jackson

A pivotal development in the efforts toward a possible proof of the dichotomy
conjecture was the introduction of universal algebraic methods. This provided
fresh tools to build tractable algorithms, and to build reductions for hardness,
as well as an established mathematical landscape in which to formulate conjec-
tures on complexity. The method is fundamental to Bulatov’s classification of
3-element CSPs [8], of the Dichotomy Theorem for conservative CSPs [9], for
homomorphism problems on digraphs without sources and sinks [6], in the clas-
sification of when a CSP is solvable by generalised Gaussian elimination [23],
and of when a CSP is solvable by a local consistency check algorithm [5], among
others. The algebraic dichotomy conjecture (ADC) of [11] refines the Feder-Vardi
conjecture by speculating the precise boundary between P and NP, in terms of
the presence of certain algebraic properties. The ADC has been verified in each
of the aforementioned tractability classifications.

The present article shows that NP-completeness results obtained via the alge-
braic method also imply the NP-completeness of a strong promise problem. The
NO instances are those for which there is no solution, but the YES instances
are instances for which any “reasonable” partial assignment on k variables can
extend to a solution. “Reasonable” here means subject to some finite set of local,
necessary conditions. The All or Nothing Theorem (ANT) below proves the NP-
completeness of this promise problem for any integer k ≥ 0 and in any intractable
CSP covered by the algebraic method. The promise conditions include satisfac-
tion as a special case, and complement the promise condition on NO instances
provided by the PCP Theorem [4] (at least ε proportion of the constraints must
fail, for some ε > 0). We are also able to prove a dichotomy theorem by showing
that for sufficiently large k, our promise problem is solvable in AC0 if and only if
the CSP is of bounded width (in the sense of Barto and Kozik [5]) and otherwise
is hard for the complexity class Modp(L) for some prime p.

A second contribution of the article is to connect the model-theoretic notion
of quasivariety to the concept of implied constraints. Identifying various kinds
of implied constraints is a central method employed in constraint solvers [36],
and the proliferation of implied constraints is associated with phase transitions
in randomly generated constraint problems [37]. We explain how the absence of
implied constraints corresponds to membership in the quasivariety generated by
the template. Intuitively, it seems quite unlikely that the problem of recognising
“no implied constraints” can be approached using the algebraic method, because
there is no obvious reduction between constraint languages R1 and R2 when
R1 � R2. Despite this intuition, the strength of the promise in the ANT enables
us to show that whenever the algebraic method shows hardness of CSP(R),
then there is no polynomial time algorithm to distinguish constraint instances
with no solution, from those that have no implied constraints with respect to R.
We can also use our bounded width dichotomy to obtain the most general nonfi-
nite axiomatisability result known for finitely generated quasivarieties. A further
important corollary is a promise problem extension of Hell and Nešetřil’s well-
known dichotomy for simple graphs [22].

Promise problem dichotomy for CSPs 141

More generally, the ability to extend all reasonable partial assignments holds
potential for a wide range of applications, with recent examples including mini-
mal networks [18], quantum mechanics [3], and semigroup theory [24].

2 Constraints and Implied Constraints

Since Feder and Vardi [14] it has been standard to reformulate the fixed template
CSP over domain A and finite language R as a homomorphism problem between
model-theoretic structures. The template is a relational structure A = 〈A,RA〉
(with R a relational signature), as is the instance (V,C) (where C is the list of
constraints) where the variable set V is the universe, and with each r ∈ R being
interpreted as the relation on V equal to the set of tuples constrained to r in the
set C . Thus each individual constraint 〈(v1, . . . , vn), r〉 becomes a membership
of a tuple (v1, . . . , vn) in the relation rV on V . We refer to (v1, . . . , vn) ∈ rV

as a hyperedge. The constraint satisfaction problem for A, which we denote by
CSP(A) is the problem of deciding membership in the class of finite structures
admitting homomorphism into A. Throughout the article, A will be the default
notation for a CSP template of signature R (both assumed to be finite) and B

for a general (finite) R-structure. We let arity(R) denote the maximal arity of
any relation in R.

A nonhyperedge (v1, . . . , vn) /∈ rB , where r ∈ R ∪ {=} (of arity n) sat-
isfies the separation condition if there is a homomorphism φ : B → A with
(φ(v1), . . . , φ(vn)) /∈ rA. When a nonhyperedge fails the separation property we
say that it is an implied constraint, as every homomorphism into A places it
within the corresponding relation of A; equivalently, (v1, . . . , vn) can be added
to rB without changing the set of possible solutions for B with respect to A.
We say that B satisfies the separation condition (w.r.t. A), or has no implied
constraints if no nonhyperedge is an implied constraint. Note that if B is a NO
instance of CSP(A), then every nonhyperedge is implied (including equalities
between distinct elements).

The separation condition for B is widely known to be equivalent to the prop-
erty that B lies in the quasivariety generated by A: the class of isomorphic
copies of induced substructures of direct powers of A; see Maltsev [34] and Gor-
bunov [17], but also [24, Theorem 2.1] and [26, §2.1,2.2] for the CSP interpre-
tations and generalizations. The one-element total structure 1R, with no non-
hyperedges, satisfies the separation condition vacuously. If we wish to exclude
1R we arrive at the universal Horn class generated by A (which excludes the
zeroth power from “direct powers”). We let Q(A) denote the quasivariety of A

and Q+(A) the universal Horn class of A. Membership in Q(A) is the problem of
deciding if an input has no implied constraints, which we denote by CSP∞(A).
Membership in Q+(A) is essentially the same as CSP∞(A) because Q(A) and
Q+(A) differ on at most the structure 1R.

142 L. Ham and M. Jackson

Problem: CSP∞(A) (no implied constraints)
Instance: a finite R-structure B.
Question: for every nonhyperedge (v1, . . . , vn) /∈ rB , is there a homomor-
phism into B taking (v1, . . . , vn) /∈ rB to a nonhyperedge (a1, . . . , an) /∈ rA

of A?

The case of no implied equalities is considered in Ham [20,21], with a com-
plete tractability classification in the case of Boolean constraint languages.

3 Primitive Positive Formulæ and Robust Satisfiability

Definition 1. An atomic formula is an expression of the form (x1, . . . , xn) ∈ r
for some r ∈ R or x = y. A primitive positive formula (abbreviated to pp-
formula) is a formula obtained from a conjunction of atomic formulæ by existen-
tially quantifying some variables. A pp-formula φ(x1, . . . , xn) with free variables
x1, . . . , xn defines an n-ary relation rφ, which in any R-structure C is inter-
preted as the solution set of φ. If F is a set of pp-formulæ, then CF denotes
〈C; {rC

φ | φ ∈ F}〉.
We let pp(R) be the set of all pp-formulæ (over some fixed countably infinite

set of variables) in R and let pp(C) denote the set {rC
φ | φ ∈ pp(R)} of all

relations on C that are pp-definable from the fundamental relations of C.
Let A, B be R-structures and F ⊆ pp(R). For a subset S ⊆ B, a function

ν : S → A is F -compatible if it is a homomorphism from the substructure S of
BF to AF . A function ν : S → A extends to a homomorphism precisely when
it is pp(R)-compatible [24, Lemma 3.1], so restricting F to a fixed finite subset
of pp(R) is the natural local condition for extendability.

Definition 2 [21]. Let F be a finite set of pp-formulæ in R and let A be a fixed
finite R-structure. For a finite R-structure B, we say that B is (k,F)-robustly
satisfiable (with respect to A) if B is a YES instance of CSP(A) and for every
k-element subset S of B and every F -compatible assignment ν : S → A, there
is a solution to B extending ν. The structure B is (≤ k,F)-robustly satisfiable if
it is (�,F)-robustly satisfiable for every � ≤ k.

Note that (0,F)-robust satisfiability coincides with satisfiability. Intuitively,
(k,F)-robust satisfiability is a very strong condition on an instance. For exam-
ple, a graph is (2,F)-robustly 2-colorable if every F -compatible 2-coloring of
any 2 vertices extends to a full 2-coloring. It is an easy exercise to show that
a (2,F)-robustly 2-colorable graph must have diameter at most m, where m is
the number of variables appearing in F .

In [7], the case of (k, ∅)-robust satisfiability is considered for SAT-related
probems using the notation ̂Uk; this appears in the context of phase transi-
tions and implied constraints. The concept of (k, ∅)-robust satisfiability is called
k-supersymmetric in Gottlob [18], where it is used to show that there is no
polynomial time solver for a minimal constraint network. If P denotes the

Promise problem dichotomy for CSPs 143

conjunction-free pp-formulæ, then (k,P)-robust satisfiability is the “k-robust
satisfiability” concept introduced in Abramsky, Gottlob and Kolaitis [3], where
(for k = 3 in 3SAT) it is applied to show the intractability of detecting local
hidden-variable models in quantum mechanics. Jackson [24] showed the NP-
completeness of a promise problem form of (2,P)-robust satisfiability for posi-
tive 1-in-3SAT, and used it to solve a 20+ year old problem in semigroup theory
[2, Problem 4], itself motivated by issues in formal languages. These examples
involve very technical case-checking arguments. A more unified algebraic app-
roach was very recently initiated by Ham [20,21], who classified the tractability
of (2,F)-robust satisfiability (for some F) in the case of Boolean constraint
languages.

4 Primitive Positive Definability and Polymorphisms

When R is pp-definable from a set of relations S on a set A then there
is logspace reduction from CSP(〈A;R〉) to CSP(〈A;S 〉). This fundamental
idea was primarily developed through the work of Cohen, Jeavons and others
[27–31], though aspects appear in proof of Schaefer’s original dichotomy for
Boolean CSPs [40].

There is a well-known Galois correspondence between sets of relations on a
set A and the sets of operations on A; see [16]. The link is via polymorphisms,
which are homomorphisms from the direct product An to A. In other words,
for each relation r ∈ R (with arity k, say), if we are given an k × n matrix
of entries from A, with each column being a k-tuple in r, then applying the
polymorphism f to each row produces a k-tuple of outputs that also must lie
in r. We let Pol(A) denote the family of all polymorphisms of the relational
structure A. For finite A we have Pol(〈A;R〉) ⊆ Pol(〈A;S 〉) if and only if
S ⊆ pp(〈A,R〉), so that pp-definability is captured by polymorphisms. We now
list some conditions on polymorphisms that we will use; see an article such as [25]
for a survey of other conditions that play a role in understanding the complexity
of CSP complexity.

– An n-ary operation w : An → A on a set A is a weak near unanimity operation
(or WNU) if it satisfies w(x, x, . . . , x) = x (idempotence) and w(y, x, . . . , x) =
w(x, y, . . . , x) = · · · = w(x, x, . . . , y) for all x, y. A weak near unanimity
operation is near unanimity (NU) if it additionally satisfies w(y, x, . . . , x) = x.

– If the condition of being idempotent is dropped, we refer to a quasi WNU,
and a quasi NU respectively.

We mention that most algebraic approaches use the assumption that the tem-
plate A is a core, meaning that it has no proper retracts. We now list a selection
of pertinent results and conjectures that are expressed in the language of poly-
morphisms.

The fundamental conjecture on fixed template CSP complexity is the follow-
ing refinement of Feder and Vardi’s original.

144 L. Ham and M. Jackson

Algebraic Dichotomy Conjecture (ADC) 3 [11]. Let A be a finite core
relational structure of finite relational signature. If A has a WNU polymor-
phism then CSP(A) is tractable. If A has no WNU polymorphism then CSP(A) is
NP-complete.

The final sentence in the conjecture is proved already in [11] (with the WNU
condition we state established in [35]), with completeness with respect to first
order reductions established in [33]. There are no counterexamples to the conjec-
ture amongst known classifications, and recently several purported proofs have
been claimed [10,39,42] (we do not assume these as verified).

In the following, bounded width corresponds to solvability by way of a local
consistency check algorithm, while strict width is a restricted case of this, where
every family of locally consistent partial solutions extends to a solution.

Theorem 4. Let A be a finite core relational structure of finite relational sig-
nature.

1. (Feder and Vardi [14].) CSP(A) has strict width if and only if A has an NU
polymorphism.

2. (Barto and Kozik [5].) CSP(A) has bounded width if and only if A has a 3-ary
WNU w3 and a 4-ary WNU w4 such that w3(y, x, x) = w4(y, x, x, x) holds
for all x, y.

5 Main Results

Recall that a promise problem consists of a pair of disjoint languages (Y,N).
The question is conditional: given the promise that an instance lies in Y ∪ N ,
decide if it lies in Y ; see [19] for example.

The main result (ANT) concerns the following promise problem, which simul-
taneously extends CSP(A), CSP∞(A), robust-CSP(A) [3], SEP(A) [20,21] and
others. In the title line, k is a non-negative integer and F is a finite set of
pp-formulæ in the signature of A.

Promise problem: (Y(k,F),Q, NCSP) for A.

YES: B is (k,F)-robustly satisfiable with respect to A and has no implied
constraints.

NO: B is a no instance of CSP(A).

We will let Y(k,F) denote the YES promise but where “no implied constraints”
is omitted.

All or Nothing Theorem (ANT) 5. Let A be a finite core relational struc-
ture in finite signature R.

1. (Everything is easy.) If CSP(A) is tractable then so also is deciding both
CSP∞(A) and (k,F)-robust satisfiability, for any k and any finite set F of
pp-formulæ.

Promise problem dichotomy for CSPs 145

2. (Nothing is easy.) If A has no WNU, then for all k there exists a finite set of
pp-formulæ F such that (Y(k,F),Q, NCSP) is NP-complete for A with respect
to first order reductions.

Remark 6. The ANT shows that the ADC is equivalent to the ostensibly far
stronger dichotomy statement : either there is a WNU and (1) holds, or there
is no WNU and (Y(k,F),Q, NCSP) is NP-complete for some finite family of for-
mulæ F .

As an example, the ANT shows that or all k there exists an F such that it is
NP-hard to distinguish the (k,F)-robustly 3-colorable graphs from those that
are not 3-colorable at all.

The following result gives a dichotomy within tractable complexity classes.

Theorem 7. Let A be a finite core relational structure in finite signature R.

1. If CSP(A) has bounded width, then there exists n such that for all k ≥ n and
for all finite sets of pp-formulæ F , the promise problem (Y(k,F),Q, NCSP) lies
in AC0. (If CSP(A) has strict width, then the class of (k,F)-robustly satisfiable
instances is itself first order definable.)

2. If CSP(A) does not have bounded width then for some prime number p and
for all k there exists an F such that (Y(k,F),Q, NCSP) is Modp(L)-hard.

Recall that the Modp(L) class contains L and hence properly contains AC0; the
precise relationship with NL is unknown. Thus Theorem7 shows that in contrast
to CSP(A) (see [1,33]), one cannot get L-completeness, nor NL-completeness for
(Y(k,F),Q, NCSP) over A unless there are unexpected collapses between L, NL
and Modp(L) for various p. For example: while graph 2-colorability is L-complete,
deciding (k,F)-robust 2-colorability is first-order when k ≥ 2 (and for any F).

The complexity of CSP(A) is determined by the core retract of A, but
this is not true for (k,F)-robust satisfiability and quasivariety membership;
see [24] and [20,21] for example. The following results however apply regardless
of whether A itself is a core.

Corollary 8. Let A be finite relational structure of finite signature.

– If A has no quasi WNU polymorphism then CSP∞(A) is NP-complete,
– If the core retract of A fails to have bounded width then Q(A) is not finitely

axiomatisable in first order logic, even amongst finite structures.

The second statement is equivalent to the absence of quasi WNUs satisfying the
conditions of Theorem 4(2). Similar statements to Corollary 8 hold for problems
intermediate to CSP(A) and CSP∞(A), such as the SEP(A) of [21] and the
problem of detecting if no variable is nontrivially forced to take a fixed value:
variables with implicitly fixed values have been called the “backbone” or “frozen
variables”; see [32] for example.

The following corollary simultaneously covers the original Hell-Nešetřil
Dichotomy for simple graphs and a corresponding quasivariety dichotomy; again
it does not assume cores.

146 L. Ham and M. Jackson

Gap Dichotomy for Simple Graphs 9. Let G be a finite simple graph.

1. If G is bipartite, then deciding CSP(G) and deciding membership in the qua-
sivariety of G are both tractable.

2. Otherwise, the following promise problem is NP-complete with respect to first
order reductions and for finite input graph H:
Yes H is in Q+(G).
No H has no homomorphisms into G.

We also complete a line of investigation initiated by Beacham and Culberson [7],
by identifying the threshold value for k in the intractability of (k, ∅)-robust
satisfiability for nSAT; see Theorem 19 below.

To complete this section we give an overview of how the proof of the ANT
develops across the remaining sections. Part (1) of ANT is a quite straightfor-
ward and is given in Sect. 12. The proof of ANT part (2) mimics the proof that
CSP(A) is NP-complete when A has no WNU. Every step involves substan-
tial difficulties in establishing that the promise (Y(k,F),Q, NCSP) can be carried
through for some suitably constructed F . There are five main steps which are
developed as separate sections once we have introduced some further preliminary
development. The various stages of the proof are unified in Sect. 12, where an
outline of the proof of Theorem7 can also be found. Section 13 gives some ideas
for future work, including an example demonstrating the limits to which the NO
promise provided by the PCP Theorem can be incorporated in the ANT.

6 Preliminary Development: F -Types and Claw Formulæ

We now establish some useful preliminary constructions relating to pp-formulæ
and (k,F)-robustness. Throughout, A and F ⊆ pp(R) are fixed and B is an
input R-structure; all are finite.

Let x1, . . . , xn denote the free variables in some pp-formula φ(x1, . . . , xn) ∈
F and let k be a nonnegative integer. For any function ι : {x1, . . . , xn} →
{x1, . . . , xk} we let φι(x1, . . . , xk) denote the formula φ(ι(x1), . . . , ι(xn)). We
let Fk denote the set of all formulæ obtained in this way. This is the standard
way that high arity formulæ can produce lower arity ones, and the following is
immediate.

Lemma 10. Let A and B be R-structures and consider a subset {b1, . . . , bk}
of B. A function ν : {b1, . . . , bk} → A is F -compatible if and only if for every
φ(x1, . . . , xk) ∈ Fk, if B |= φ(b1, . . . , bk) then A |= φ(ν(b1), . . . , ν(bk)).

The following gives a natural restriction of the model theoretic “k-type” to pp-
formulæ.

Definition 11. Let R be a finite relational signature and F a set of pp-formulæ
in R.

1. A (k,F)-type is any finite conjunction of distinct k-ary formulæ in Fk over
x1, . . . , xk. The set of all (k,F)-types is denoted by typek(F).

Promise problem dichotomy for CSPs 147

2. The (k,F)-type of a tuple
−→
b ∈ Bk is the conjunction

∧

φ(−→x) ∈ Fk,

B |= φ(
−→
b)

φ(−→x).

3. For � ≤ k we let F |� denote {∃x�+1 . . . ∃xk τ(x1, . . . , xk) | τ ∈ typek(F)}.

The following follows immediately from Lemma 10 and the definition of (k,F)-
types.

Lemma 12. Let A and B be R-structures and consider a subset {b1, . . . , bk}
of B. A partial map ν : {b1, . . . , bk} → A is F -compatible if and only if A |=
τ(ν(b1), . . . , ν(bk)), where τ is the (k,F) type of (b1, . . . , bk).

The next lemma has a straightforward proof. We assume that |B| ≥ k, though
minor amendment to the definition of F |i can accommodate smaller |B|.
Lemma 13. Let A and B be finite R-structures and let F be a finite set of
pp-formulæ in R. If B is (k,F)-robustly satisfiable into A and � ≤ k, then B is
(�,F |�)-robustly satisfiable. In particular, if B is (k,F)-robustly satisfiable for
some finite set of pp-formulæ F , then B is (≤k,

⋃

0≤i≤k F |i)-robustly satisfiable.

Recall from Sect. 4 that when R is pp-definable from a set of relations S on
a set A then there is logspace reduction from CSP(〈A;RA〉) to CSP(〈A;S A〉).
Assume then that each relation symbol r ∈ R has been matched to some fixed
defining S -formula ρr(x1, . . . , xn) of the same arity n as r:

∃y1 . . . ∃ym

∧

1≤i≤k

αi(xi,1, . . . , xi,ni
, yi,1, . . . , yi,mi

), (†)

where each αi is an atomic formula in S ∪ {=}, and
⋃

1≤i≤k{xi,1, . . . , xi,ni
} =

{x1, . . . , xn} and
⋃

1≤i≤k{yi,1, . . . , yi,mi
} = {y1, . . . , ym}. Let ρ�

r denote the
underlying open formula obtained from ρr by removing quantifiers: variables
of ρ�

r that are quantified in ρr will be called existential variables (or ∃-variables:
the yi in †) and the other variables will be referred to as open variables.

Each pp-formula ψ(x1, . . . , x�) in the signature R is equivalent to a pp-
formula ψS (x1, . . . , x�) in the signature S : replace each conjunct in ψ—an
atomic formula r(x1, . . . , xn) in for some r ∈ R—by the defining formula ρr as
in †, and then apply the usual logical rules for moving quantifiers to the front
(including renaming quantified variables where necessary).

Definition 14. Let S define R by pp-formulæ {ρr | r ∈ R} ⊆ pp(S). Let k, �
be fixed non-negative integers and F a finite set of pp-formulæ in R. A claw
formula for F of arity k and bound � is any pp-formula in S of the form
constructed in the third step below:

1. (The talon.) Let γ denote any conjunction
∧

1≤i≤k′ ρ�
ri
, where ri ∈ R and

k′ ≤ k. We allow some identification between open variables, but not between
existential variables.

148 L. Ham and M. Jackson

2. (The wrist.) Let σ be an (�′,F)-type in R for some �′ ≤ �. Some of the �′

free variables in σ may be identified with open variables in γ, but not with
existential variables.

3. (The claw.) Existentially quantify all but k of the unquantified variables in
the conjunction γ ∧ σS .

7 Step 1. Reflection

Definition 15. Let A, k and F be fixed. For an input R-structure B, let B↓

be the result of adjoining all hyperedges to B that are implied by F -compatible
assignments from subsets of B on at most k elements. The structure B↓ will be
called the 1-step (k,F)-reflection of B.

Under the promise (Y(k,F), NCSP) it is possible to show that there is a first
order query that defines B↓. The details take some effort and we omit them. To
achieve the main results with respect to polynomial time reductions however,
simply observe that B↓ can be constructed from B in polynomial time, because
there are only polynomially many F -compatible assignments from subsets of
size at most k. Then all that is needed is the following lemma.

Lemma 16. If B is (≤k,F)-robustly satisfiable with respect to A, and k ≥
arity(R), then B↓ lies in the quasivariety of A and is also (≤k,F)-robustly
satisfiable. If B is a NO instance of CSP(A) then so also is B↓.

8 Step 2. Stability of Robustness over Primitive-Positive
Reductions

We prove the following variant of the usual pp-reduction for CSPs.

Theorem 17. Assume that A1 = 〈A,RA〉 and A2 = 〈A,S A〉 are two relational
structures on the same finite set A, with RA ⊆ pp(A2) finite and � := arity(R).
Let F be a finite set of pp-formulæ in the language of R. Then, for any k, the
standard pp-reduction of CSP(A1) to CSP(A2) takes (≤k�,F)-robustly satisfi-
able instances of CSP(A1) to (k,G)-robustly satisfiable instances of CSP(A2),
where G denotes the k-ary claw formulæ for F of bound k�.

First briefly recall the precise nature of the “standard reduction” described in
Theorem 17. Recall that each r ∈ R corresponds to an S formula ρr, as in (†).
For an instance B = 〈B;RB〉 of CSP(A1), an instance B� of CSP(A2) is con-
structed in the following way. For each hyperedge (b1, . . . , bn) ∈ r in B (and
adopting the generic notation of †), new elements c1, . . . , cm are added to the
universe of B, and the hyperedge (b1, . . . , bn) ∈ r is replaced by the hyperedges
αi(bi,1, . . . , bi,nk

, ci,1, . . . , ci,mi
) for each i = 1, . . . , k. Note that new elements

c1, . . . , cm are introduced for every instance of a hyperedge. The new elements
will be referred to as existential elements (or ∃-elements), and for any D ⊆ B�

Promise problem dichotomy for CSPs 149

we let D∃ denote ∃-elements in D. Elements of B will be referred to as open
elements, and we write DB for D ∩ B = D\D∃.

It is easy to see that there is a homomorphism from B to A1 if and only if there
is one from B� to A2: this is the usual logspace CSP reduction, which is a first
order reduction when none of the ρr formulæ involve equality [33]. Now assume
that B is (≤ k�,F)-robustly satisfiable with respect to A1 and consider a k-
element subset D ⊆ B�, for which there is a G -compatible assignment into A. The
following arguments will refer back to the 3-step construction of claw formulæ
in Definition 14.

Each c ∈ D∃ was introduced in replacing a hyperedge of B in signature R by
a family of hyperedges in the signature S , according to the pp-definition as in †.
Each element of D∃ appears in at most one such family of S -hyperedges, so the
number of these, k′, is at most |D∃| ≤ k. Observe that these hyperedge families
correspond to an interpretation of a conjunction γ of k′ many formulæ as in step
1 of Definition 14: there is no identification of ∃-elements, but there may be of
open elements. Each of these families involves at most � open elements, so that
at most k′ × � open elements appear in these hyperedge families. Let OB denote
these elements. Because k′ + |DB | ≤ |D∃| + |DB | = k and |OB | ≤ k′�, we have
|OB ∪DB | ≤ k′�+ |DB | ≤ k�. Let σ denote the (�′,F)-type of OB ∪DB in B, as
in the second step of Definition 14. (Here we treat OB ∪ DB as a tuple ordered
in any fixed way.) Observe that some elements b of DB may also lie in OB , and
we will assume then that the variable in σ corresponding to b has been identified
with the variable in γ corresponding to b. Let U be the set of all unquantified
variables in γ ∧ σS that do not correspond to elements of D. The claw formula
∃U γ ∧ σS is in G and is satisfied by B� at D (again, arbitrarily treated as a
tuple). Hence ∃U γ ∧ σS is preserved by ν. In particular then, in A2 we can
find values for the variables corresponding to the elements of OB that witness
the satisfaction of ∃U γ ∧ σS at ν(D). Let ν′ : OB ∪ D → A be the extension
of ν obtained by giving elements of OB\DB these witnessing values. Because
σ is the (�′,F)-type of OB ∪ DB , it follows from Lemma 12 that ν′|OB∪DB

is
F -compatible, so by the assumed (≤k�,F)-robust satisfiability of B it follows
that ν′|OB∪DB

extends to a homomorphism ν+ from B to A1. By the usual pp-
reduction, ν+ extends to a homomorphism ν� from B� to A2. Now ν� agrees
with ν on DB , but also, we may assume that it agrees with ν on D∃, because
the values given OB by ν′ (and hence ν�) were such that γ held. Thus we have
extended ν to a homomorphism, as required.

9 Step 3. (k,∅)-Robustness of (3k + 3)SAT

Gottlob [18, Lemma 1] showed that the standard Yes/No decision problem 3SAT
reduces to the promise (Y(k,∅), NCSP) for (3k+3)SAT. For the sake of complete-
ness of our sketch, we recall the basic idea. The construction is to replace in a
3SAT instance B, each element b by 2k + 1 copies b1, . . . , b2k+1 and then each
clause (b ∨ c ∨ d) by all

(

2k+1
k+1

)3
clauses of the form (bi1 ∨ · · · ∨ bik+1 ∨ ci′

1
∨ · · · ∨

ci′
k+1

∨di′′
1
∨· · ·∨di′′

k+1
) where the ij , i

′
j , i

′′
j are from {1, . . . , 2k+1}. No assignment

150 L. Ham and M. Jackson

on k elements covers all of the k +1 copies of any element in a clause it appears,
which enables the flexibility for such assignments to always extend to a solution,
provided (and only when) B is a YES instance. We omit the details showing that
this can be achieved via a first-order query.

10 Step 4. (k,F)-Robustness of 3SAT

We now establish the following theorem by reduction from the result in Step 3.
Critically, the value of k is arbitrary, but the constraint language (3SAT) has
fixed arity 3.

Theorem 18. Fix any k ≥ 0 and let F be the set of all claw formulæ for ∅ of
arity k and with bound k. Then (Y(k,F), NCSP) for 3SAT is NP-complete via first
order reductions.

The usual reduction of nSAT to 3SAT (as in [15] for example) is an example of
a pp-reduction, because the nSAT clause relation (x1 ∨ · · · ∨ xn) (where the xi

can be negated variables if need be) is equivalent to the following pp-formula
over n − 2 clause relations of 3SAT:

∃y1 . . . ∃yn−4 (x1∨x2∨y1)∧
⎛

⎝

∧

3≤i≤n−2

(¬yi−2 ∨ xi ∨ yi−1)

⎞

⎠∧(¬yn−3∨xn−1∨xn)

(‡)
As we are dealing with the standard pp-reduction, an instance B of (3k+3)SAT
is satisfiable if and only if the constructed instance B� of 3SAT is satisfiable.

Now assume that B is a (k, ∅)-robustly satisfiable instance of (3k + 3)SAT.
Assume D is a k-set from B� and ν : D → {0, 1} an F -compatible partial
assignment. As in the proof of Theorem17, there are k′ ≤ |D∃| different clause
families involving elements from D∃; let F denote this set of families of clauses
(each family arising by the replacement of a (3k + 3)SAT clause by the 3k + 1
distinct 3SAT clauses). Let γ denote the conjunction of k′ many pp-formulæ
corresponding to these F : it is a conjunction of k′ distinct copies of the underlying
open formula of ‡, possibly with some of the open variables in different copies
identified. Let U be the variables of γ that do not correspond to an element
of D. Then ∃U γ is a claw formula in the sense of Definition 14 because the
only (�, ∅)-types (as detailed in step 2 of Definition 14) are empty formulæ. This
formula ∃U γ is obviously satisfied at D in B�, so is preserved by ν. Now the
proof deviates from Theorem 17. We show how to assign values to at most k of
the remaining open elements of F such that any extension to a full solution on B

extends to one for B� in a way consistent with the values given to D∃ by ν.
We introduce an arrow notation to help select the new open elements.

– Above the leftmost bracket of the clause family we place a right arrow �→,
and dually a ←� over the rightmost bracket.

– Place a left arrow ←� above a consecutive pair of brackets “)(” if the ∃-element
immediately preceding it is given 0 by ν, and dually, �→ if the ∃-element is
assigned 1.

Promise problem dichotomy for CSPs 151

Let us say that two such arrows are convergent if they point toward one another.
In order to extend ν to a solution, within each pair of convergent arrows, an open-
literal to assign the value 1. We first give an example, consisting of a clause
family, an assignment to some elements (say, D∃ = {b1, b2, b3} and DB = {a1})
and the arrows placed as determined by the rules:

(a1 ¬a2 b1)(¬b1 a3 b2)(¬b2 a4 b3)(¬b3 a5 a6)
(0 ¬a2 0)(1 a3 1)(0 a4 0)(1 a5 a6)
	→
(¬a2

←�

)(a3

	→
)(a4

←�

)(a5 a6

←�

)

By calling on witnesses to preservation of F by ν we can select open literals
and values (here ν(a4) = 1 and ν(a2) = 0) that are consistent with the values
assigned to D∃.

In the general case: because ν preserves the claw formula ∃U γ, the 2-element
template for 3SAT has witnesses to all quantified variables. For each pair of
convergent arrows under the assignment by ν for D∃, there is a witness to one
of the open variables in γ taking the value 1; only one such witness is required
for each pair of convergent arrows. Let E consist of the open elements in F
corresponding to the selected witnesses, and extend ν to E by giving them the
witness values. Note that |E| ≤ |D∃|, so that |E∪DB | ≤ k. Thus ν|E∪DB

extends
to a solution for B. This solution extends to a solution for B� in a way that is
consistent with the values given elements of D∃ by ν.

By a variation of this argument and Sect. 9, we can also obtain the following
theorem, which completes one line of investigation initiated by Beacham and
Culberson [7].

Theorem 19. Let n > 2 and consider the problem nSAT. If k ≥ n then deciding
(k, ∅)-robust satisfiability is in AC0. If k < n then (Y(k,∅), NCSP) is NP-complete.

11 Step 5: Idempotence and the Algebraic Method

A key development in the algebraic method for CSP complexity was restric-
tion to idempotent polymorphisms [11]. We now sketch how this works for the
(Y(k,F), NCSP) promise.

Let RCon be the signature obtained by adding a unary relation symbol a
for each element a of A, and let ACon denote the structure 〈A;RCon〉, with a
interpreted as {a}.

Theorem 20. Let A be a core and F be a finite subset of pp(RCon). Then for
any k, there exists a finite set G of pp-formulæ in the language of R such that the
standard reduction from CSP(ACon) to CSP(A) takes (k,F)-robustly satisfiable
instances of CSP(ACon) to the (k,G)-robustly satisfiable instances of CSP(A).

Proof (Proof sketch). Let B be an instance of CSP(ACon). The standard reduc-
tion (first order by [33, Lemma 2.5]) involves adjoining a copy of A to the instance

152 L. Ham and M. Jackson

B, and replacing all hyperedges b ∈ a by identifying b with the adjoined copy of a;
call this B�. (A (k,F)-reflection, via the first order version of Lemma 16, can be
used to circumvent some technical issues regarding identification of elements.)
Our task is to show how to construct G . Let diag(A) denote the positive atomic
diagram of A on some set of variables {va | a ∈ A}; that is, the conjunction of
all hyperedges of A (considered as atomic formulæ). We construct G by taking
the conjunction of diag(A) with F -types σ, and replacing each conjunct of the
form x ∈ a in σ, by x = va.

Assume B is (k,F)-robustly satisfiable with respect to ACon and consider a
G -compatible assignment ν from some k-set in B�. Because A is a core, there is
an automorphism α of A mapping witnesses to diag(A) to their named location
(that is, taking va to a). Then α ◦ ν is F -compatible into ACon, hence extends
to a homomorphism ψ from B. Then α−1 ◦ ψ is a homomorphism from B� to A

extending ν. ��

12 Proof of ANT, Corollaries and Theorem7

Proof (Proof of ANT). For part (1), we extend an idea from [24]. Our proof
will use only the assumption that CSP(ACon) is tractable. This is always true if
A is a core with CSP(A) tractable. Now observe that an F -compatible partial
assignment ν : bi �→ ai from a subset {b1, . . . , bk} of an instance B into A

extends to a solution if and only if the structure obtained from B by adjoining
the constraints {bi ∈ {ai} | i = 1, . . . , k} is a YES instance of CSP(ACon).
Thus after polynomially many calls on the tractable problem CSP(ACon), we
can decide the (k,F)-robust satisfiability of B. An almost identical argument
will determine if B has no implied constraints, thus deciding CSP∞(A).

Now to prove ANT part (2). Let A denote the polymorphism algebra of ACon.
One of the fundamental consequences of the algebraic method is that if A has no
WNU polymorphism, then the polymorphism algebra of 3SAT is a homomorphic
image of a subalgebra of A (direct powers are not required; see [41, Prop 3.1]).
For CSPs, these facts will give a first order reduction from 3SAT to some finite set
of relations S A in pp(ACon): see [33]. The first step of this reduction is to reduce
through homomorphic preimages and subalgebras. Ham [21, Sect. 8] showed that
these initial reductions also preserve the (Y(�,F), NCSP) promise, with only minor
modification to F . Combining this with Theorem18 then Lemma 13 we find
that for all � there exists an F2 such that (Y(≤�,F2), NCSP) is NP-complete for
〈A,S A〉. Then (using � = arity(S)×k) we can use Theorem 17 then Lemma 13
to find that for every k there exists F3 such that (Y(≤k,F3), NCSP) is NP-complete
for ACon with respect to first order reductions. By Theorem20 the same is true
for A, with an amended compatibility condition F depending on k. Lemma 16
then extends the promise to (Y(k,F),Q, NCSP), as required. ��
Proof (Proof of Corollary 8). Let A be a finite relational structure without
a quasi WNU polymorphism. By Chen and Larose [13, Lemma 6.4] the core
retract A� of A has no WNU. Hence the ANT applies to A�. Now Q+(A) con-
tains Q+(A�), which contains the YES promise in the ANT and is disjoint from

Promise problem dichotomy for CSPs 153

the NO promise. Hence membership in Q+(A) is NP-complete with respect to
first order reductions, and hence is also not finitely axiomatisable in first order
logic, even at the finite level. The same argument using Theorem 7(2) implies
non-finite axiomatisability in the case that A� does not have bounded width. ��
Proof (Proof of the Gap Dichotomy for Simple Graphs 9). If G is bipartite, then
CSP(G) is tractable and so is deciding membership in Q+(G): there are only five
distinct quasivarieties [12,38]. Otherwise, G is not bipartite and so neither is its
core retract. Hence G has no quasi WNU; see [6]. Then apply Corollary 8. ��
Proof (Proof of Theorem 7). Due to space constraints we give only a very brief
overview of the method. A CSP has bounded width provided that there exists
j such that the existence of a homomorphism from B to A is equivalent to a
family of partial homomorphisms on all subsets of size at most j + 1, with the
family satisfying a compatibility condition, known as a (j, j +1)-strategy ; see [5].
When k > j and input B satisfies the Y(k,F),Q promise, there is an obvious choice
for a (j, j +1)-strategy: the family of all maps that can extend to F -compatible
assignments on k points. The property that this family forms a (j, j+1)-strategy
can be expressed as a first order sentence ξ. When CSP(A) has bounded width
(so that NO instances do not have (j, j + 1)-strategies) the sentence ξ must fail
on instances satisfying the NCSP promise, and must hold on those satisfying the
Y(k,F),Q promise.

Now assume that A does not have bounded width. In this case, a direct ana-
logue of the arguments of Sect. 12 lead back to a structure C (encoding ternary
linear equations over an abelian group) whose CSP is Modp(L)-complete; see proof
of [33, Theorem 4.1]. The rest of the proof parallels that of the ANT 5, except
that Sects. 9 and 10 are replaced by constructions concerning linear systems of
equations.

13 Discussion and Extensions

We have shown in the ANT that the fundamental intractability result of [11]
can be replaced by an unbounded hierarchy of intractable promise problems,
and demonstrated in Theorem 7 a collapse in several intermediate complexity
classes for these problems. We feel these results are just the beginning of new
applications to ideas relating to the detection of more general implied constraints
(as in [7]), minimal networks (as in [18]), as well as to other areas of mathematics
and computer science, such as the quantum-theoretic applications in [3] and the
semigroup-theoretic applications of [24]. Some further consequences of the ANT
omitted from the present work include a substantial extension of the Ham’s “Gap
Trichotomy Theorem” [21] to the (Y(k,F),Q, NCSP) promise.

Some specific new directions this work should be taken include the extension
of ANT to noncore templates and to infinite templates, where a much wider array
of important computational problems can be found. Another difficult question:
can the promise supplied by the PCP Theorem be added as a restriction to NCSP

in the ANT? (We write NεCSP for this condition: ε proportion of the constraints

154 L. Ham and M. Jackson

must fail.) The answer is nearly yes, but not quite. It is quite routine to carry
through the failure of a positive fraction of constraints through steps 1–5 of the
proof of the ANT part (2), and through step 6 with more difficulty, thereby
achieving the NP-completeness of (Y(k,F), NεCSP) for core templates without a
WNU. Surprisingly though, NεCSP does not in general survive reflection, as
the following example demonstrates. Let 2+ denote the template on {0, 1} with
the fundamental ternary relation r of +1-in-3SAT and the 4-ary total relation
s := {0, 1}4. This has no WNU, as +1-in-3SAT has no WNU, so the ANT part (2)
and claims just made imply that both (Y(k,F), NεCSP) and (Y(k,F),Q, NCSP) are
NP-complete. Yet (Y(k,F),Q, NεCSP) for 2+ falls into AC0! Indeed the first order
property τ stating that s is total must hold on instances without implied con-
straints, and fail on any large enough instance B satisfying NεCSP: the number of
r-constraints is at most |B|3 compared to the |B|4-many s-constraints required
by τ , and no s-constraint can fail into 2+. For +1-in-3SAT itself we can show
that (Y(k,F),Q, NεCSP) remains NP-complete.

References

1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complex-
ity of satisfiability problems: refining Schaefer’s Theorem. J. Comput. System Sci.
75, 245–254 (2009)

2. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore
(1994)

3. Abramsky, S., Gottlob, G., Kolaitis, P.G.: Robust constraint satisfaction and local
hidden variables in quantum mechanics. In: IJCAI 2013, pp. 440–446 (2013)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

5. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Pro-
ceedings of FOCS 2009 (2009)

6. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell),
SIAM J. Comput. 38, 1782–1802 (2008/2009)

7. Beacham, A., Culberson, J.: On the complexity of unfrozen problems. Disc. Appl.
Math. 153, 3–24 (2005)

8. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53, 66–120 (2006)

9. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log. 12(4), 24 (2011)

10. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. arXiv:1703.03021v2
11. Bulatov, A.A., Jeavons, P.G., Krokhin, A.: Classifying the complexity of con-

straints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)
12. Caicedo, X.: Finitely axiomatizable quasivarieties of graphs. Algebra Univers. 34,

314–321 (1995)
13. Chen, H., Larose, B.: Asking the metaquestions in constraint tractability.

arxiv:1604.00932
14. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

http://arxiv.org/abs/1703.03021v2
http://arxiv.org/abs/1604.00932

Promise problem dichotomy for CSPs 155

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

16. Geiger, D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100
(1968)

17. Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Consultants Bureau, New
York (1998)

18. Gottlob, G.: On minimal constraint networks. In: Lee, J. (ed.) CP 2011. LNCS, vol.
6876, pp. 325–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 26

19. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). doi:10.1007/11685654 12

20. Ham, L.: A gap trichotomy theorem for Boolean constraint problems: extending
Schaefer’s theorem. In: ISAAC 2016, pp. 36: 1–36: 12 (2016)

21. Ham, L.: Gap theorems for robust satisfiability of constraint problems: Boolean
CSPs and beyond. Theoret. Comp. Sci. 676, 69–91 (2017)

22. Hell, P., Nešetřil, J.: On the complexity of H-colouring. J. Combin. Theory Ser. B
48(1), 92–110 (1990)

23. Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability
and learnability arising from algebras with few subpowers. SIAM J. Comput. 39,
3023–3037 (2010)

24. Jackson, M.: Flexible constraint satisfiability and a problem in semigroup theory.
arXiv:1512.03127

25. Jackson, M., Kowalski, T., Niven, T.: Digraph related constructions and the com-
plexity of digraph homomorphism problems. Int. J. Algebra Comput. 26, 1395–
1433 (2016)

26. Jackson, M., Trotta, B.: Constraint satisfaction, irredundant axiomatisability and
continuous colouring. Stud. Logica. 101, 65–94 (2013)

27. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput.
Sci. 200(1–2), 185–204 (1998)

28. Jeavons, P., Cohen, D.A., Martin, C.: Cooper.: constraints, consistency and closure.
Artif. Intell. 101(1–2), 251–265 (1998)

29. Jeavons, P., Cohen, D., Gyssens, M.: A unifying framework for tractable con-
straints. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 276–291.
Springer, Heidelberg (1995). doi:10.1007/3-540-60299-2 17

30. Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM
44, 527–548 (1997)

31. Jeavons, P., Cohen, D.A., Pearson, J.: Constraints and universal algebra. Ann.
Math. Artif. Intell. 24(1–4), 51–67 (1998)

32. Jonsson, P., Krokhin, A.: Recognizing frozen variables in constraint satisfaction
problems. Theoret. Comp. Sci. 329, 93–113 (2004)

33. Larose, B., Tesson, P.: Universal algebra and hardness results for constraint satis-
faction problems. Theoret. Comput. Sci. 410, 1629–1647 (2009)

34. Maltsev, A.I.: Algebraic Systems. Springer, Heidelberg (1973)
35. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations.

Algebra Univers. 59, 463–489 (2008)
36. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional

satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)
37. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-

ing computational complexity from characteristic phase transitions. Nature 400,
133–137 (1998)

http://dx.doi.org/10.1007/978-3-642-23786-7_26
http://dx.doi.org/10.1007/11685654_12
http://arxiv.org/abs/1512.03127
http://dx.doi.org/10.1007/3-540-60299-2_17

156 L. Ham and M. Jackson

38. Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects
and factorobjects. Disc. Math. 22, 287–300 (1978)

39. Rafiey, A., Kinne, J., Feder, T.: Dichotomy for digraph homomorphism problems,
arXiv:1701.02409v2

40. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC , pp. 216–226
(1978)

41. Valeriote, M.A.: A subalgebra intersection property for congruence distributive
varieties. Canad. J. Math. 61, 451–464 (2009)

42. Zhuk, D.: The proof of the CSP dichotomy conjecture, arXiv:1704.01914

http://arxiv.org/abs/1701.02409v2
http://arxiv.org/abs/1704.01914

Kernelization of Constraint Satisfaction
Problems: A Study Through Universal Algebra

Victor Lagerkvist1(B) and Magnus Wahlström2

1 Institut für Algebra, TU Dresden, Dresden, Germany
victor.lagerqvist@tu-dresden.de

2 Department of Computer Science, Royal Holloway, University of London, Egham,
Great Britain

magnus.wahlstrom@rhul.ac.uk

Abstract. A kernelization algorithm for a computational problem is
a procedure which compresses an instance into an equivalent instance
whose size is bounded with respect to a complexity parameter. For the
constraint satisfaction problem (CSP), there exist many results concern-
ing upper and lower bounds for kernelizability of specific problems, but
it is safe to say that we lack general methods to determine whether a
given problem admits a kernel of a particular size. In this paper, we take
an algebraic approach to the problem of characterizing the kernelization
limits of NP-hard CSP problems, parameterized by the number of vari-
ables. Our main focus is on problems admitting linear kernels, as has,
somewhat surprisingly, previously been shown to exist. We show that a
finite-domain CSP problem has a kernel with O(n) constraints if it can
be embedded (via a domain extension) into a CSP which is preserved by
a Maltsev operation. This result utilise a variant of the simple algorithm
for Maltsev constraints. In the complementary direction, we give indi-
cation that the Maltsev condition might be a complete characterization
for Boolean CSPs with linear kernels, by showing that an algebraic con-
dition that is shared by all problems with a Maltsev embedding is also
necessary for the existence of a linear kernel unless NP ⊆ co-NP/poly.

1 Introduction

Kernelization is a preprocessing technique based on reducing an instance of a
computationally hard problem in polynomial time to an equivalent instance, a
kernel, whose size is bounded by a function f with respect to a given complexity
parameter. The function f is referred to as the size of the kernel, and if the size
is polynomially bounded we say that the problem admits a polynomial kernel.
A classical example is Vertex Cover, which admits a kernel with 2k vertices,
where k denotes the size of the cover [25]. Polynomial kernels are of great interest
in parameterized complexity, as well as carrying practical significance in speeding
up subsequent computations (e.g., the winning contribution in the 2016 PACE
challenge for Feedback Vertex Set used a novel kernelization step as a key
component (see https://pacechallenge.wordpress.com/).

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 157–171, 2017.
DOI: 10.1007/978-3-319-66158-2 11

https://pacechallenge.wordpress.com/

158 V. Lagerkvist and M. Wahlström

When the complexity parameter is a size parameter, e.g., the number of vari-
ables n, then such a size reduction is also referred to as sparsification (although
a sparsification is not always required to run in polynomial time). A promi-
nent example is the famous sparsification lemma that underpins research into
the Exponential Time Hypothesis [10], which shows that for every k there is
a subexponential-time reduction from k-SAT on n variables to k-SAT on O(n)
clauses, and hence Õ(n) bits in size. However, the super-polynomial running
time is essential to this result. Dell and van Melkebeek [5] showed that k-SAT
cannot be kernelized even down to size O(nk−ε), and Vertex Cover cannot
be kernelized to size O(n2−ε), for any ε > 0 unless the polynomial hierarchy
collapses (in the sequel, we will make this assumption implicitly). These results
suggest that in general, polynomial-time sparsification cannot give non-trivial
size guarantees. The first result to the contrary was by Bart Jansen (unpub-
lished until recently [12]), who observed that 1-in-k-SAT admits a kernel with
at most n constraints using Gaussian elimination. More surprisingly, Jansen and
Pieterse [11] showed that the Not-All-Equal k-SAT problem admits a kernel
with O(nk−1) constraints, improving on the trivial bound by a factor of n and
settling an implicit open problem. In later research, they improved and general-
ized the method, and also showed that the bound of O(nk−1) is tight [12]. These
improved upper bounds are all based on rephrasing the SAT problem as a prob-
lem of low-degree polynomials, and exploiting linear dependence to eliminate
superfluous constraints. Still, it is fair to say that we currently lack the tools for
making a general analysis of the kernelizability of a generic SAT problem.

In this paper we take a step in this direction, by studying the kernelizability
of the constraint satisfaction problem over a constraint language Γ (CSP(Γ)),
parameterized by the number of variables n, which can be viewed as the problem
of determining whether a set of constraints over Γ is satisfiable. Some notable
examples of problems of this kind are k-colouring, k-SAT, 1-in-k-SAT, and not-
all-equal-k-SAT. We will occasionally put a particular emphasis on the Boolean
CSP problem and therefore denote this problem by SAT(Γ). Note that CSP(Γ)
has a trivial polynomial kernel for any finite language Γ (produced by simply
discarding duplicate constraints), but the question remains for which languages
Γ we can improve upon this. Concretely, our question in this paper is for which
languages Γ the problem CSP(Γ) admits a kernel of O(nc) constraints, for some
c ≥ 1, with a particular focus on linear kernels (c = 1).

The Algebraic Approach in Parameterized and Fine-Grained
Complexity. For any language Γ , the classical complexity of CSP(Γ) (i.e.,
whether CSP(Γ) is in P) is determined by the existence of certain algebraic
invariants of Γ known as polymorphisms [13]. This gave rise to the algebraic
approach to characterizing the complexity of CSP(Γ) by studying algebraic
properties. It has been conjectured that for every Γ , CSP(Γ) is either in P or
NP-complete, and that the tractability of a CSP problem can be characterized by
a finite list of polymorphisms [3]. Recently, several independent results appeared,
claiming to settle this conjecture in the positive [1,26,27]. However, for purposes
of parameterized and fine-grained complexity questions, looking at polymor-

Kernelization of Constraint Satisfaction Problems 159

phisms alone is too coarse. More technically, the polymorphisms of Γ character-
ize the expressive power of Γ up to primitive positive definitions, i.e., up to the
use of conjunctions, equality constraints, and existential quantification, whereas
for many questions a liberal use of existentially quantified local variables is not
allowed. In such cases, one may look at the expressive power under quantifier-
free primitive positive definitions (qfpp-definitions), allowing only conjunctions
and equality constraints. This expressive power is characterized by more fine-
grained algebraic invariants called partial polymorphisms. For example, there
are numerous dichotomy results for the complexity of parameterized SAT(Γ)
and CSP(Γ) problems, both for so-called FPT algorithms and for kernelization
[17–19,24], and in each of the cases listed, a dichotomy is given which is equiv-
alent to requiring a finite list of partial polymorphisms of Γ . Similarly, Jonsson
et al. [16] showed that the exact running times of NP-hard SAT(Γ) and CSP(Γ)
problems in terms of the number of variables n are characterized by the partial
polymorphisms of Γ . Unfortunately, studying properties of SAT(Γ) and CSP(Γ)
for questions phrased in terms of the size parameter n is again more complicated
than for more permissive parameters k. For example, it is known that for every
finite set P of strictly partial polymorphisms, the number of relations invariant
under P is double-exponential in terms of the arity n (hence they cannot all be
described in a polynomial number of bits) [20, Lemma 35]. It can similarly be
shown that the existence of a polynomial kernel cannot be characterized by such
a finite set P . Instead, such a characterization must be given in another way (for
example, Lagerkvist et al. [22] provide a way to finitely characterize all partial
polymorphisms of a finite Boolean language Γ).

Our Results. We generalize and extend the results of Jansen and Pieterse [12]
in the case of linear kernels to a general recipe for NP-hard SAT and CSP

problems in terms of the existence of a Maltsev embedding, i.e., an embedding
of a language Γ into a tractable language Γ ′ on a larger domain with a Maltsev
polymorphism. We show that for any language Γ with a Maltsev embedding into
a finite domain, CSP(Γ) has a kernel with O(n) constraints. Attempting an
algebraic characterization, we also show an infinite family of universal partial
operations which are partial polymorphisms of every language Γ with a Maltsev
embedding, and show that these operations guarantee the existence of a Maltsev
embedding for Γ , albeit into a language with an infinite domain. Turning to
lower bounds against linear kernels, we show that the smallest of these universal
partial operations is also necessary, in the sense that for any Boolean language
Γ which is not invariant under this operation, SAT(Γ) admits no kernel of size
O(n2−ε) for any ε > 0. We conjecture that this can be completed into a tight
characterization – i.e., that for Boolean languages Γ , SAT(Γ) admits a linear
kernel if and only if it is invariant under all universal partial Maltsev operations.

Generalizations for kernels of higher degree are possible, but have been omit-
ted for reasons of length, and we refer the reader to the extended preprint [21].

160 V. Lagerkvist and M. Wahlström

2 Preliminaries

2.1 The Constraint Satisfaction Problem and Kernelization

A relation R over a set of values D is a subset of Dk for some k ≥ 0, and we
write ar(R) = k to denote the arity of R. A set of relations Γ is referred to as
a constraint language. An instance (V,C) of the constraint satisfaction problem
over a constraint language Γ over D (CSP(Γ)) is a set V of variables and a
set C of constraint applications R(v1, . . . , vk) where R ∈ Γ , ar(R) = k, and
v1, . . . , vk ∈ V . The question is whether there exists a function f : V → D such
that (f(v1), . . . , f(vk)) ∈ R for each R(v1, . . . , vk) in C? If Γ is Boolean we denote
CSP(Γ) by SAT(Γ), and we let BR denote the set of all Boolean relations. As
an example, let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3}) can be
viewed as an alternative formulation of the 1-in-3-SAT problem restricted to
instances consisting only of positive literals. More generally, if we let R1/k =
{(x1, . . . , xk) ∈ {0, 1}k | x1 + . . . + xk = 1}, then SAT({R1/k}) is a natural
formulation of 1-in-k-SAT without negation.

A parameterized problem is a subset of Σ∗ × N where Σ is a finite alphabet.
Hence, each instance is associated with a natural number, called the parameter.

Definition 1. A kernelization algorithm, or a kernel, for a parameterized prob-
lem L ⊆ Σ∗ × N is a polynomial-time algorithm which, given an instance
(x, k) ∈ Σ∗ × N, computes (x′, k′) ∈ Σ∗ × N such that (1) (x, k) ∈ L if and
only if (x′, k′) ∈ L and (2) |x′| + k′ ≤ f(k) for some function f .

The function f in the above definition is sometimes called the size of the kernel.
In this paper, we are mainly interested in the case where the parameter denotes
the number of variables in a given CSP(Γ) instance.

2.2 Operations and Relations

An n-ary function f : Dn → D over a domain D is typically referred to as
an operation on D, although we will sometimes use the terms function and
operation interchangeably. We let ar(f) = n denote the arity of f . Similarly,
an n-ary partial operation over a set D of values is a map f : X → D, where
X ⊆ Dn is called the domain of f . Again, we let ar(f) = n, and furthermore
let domain(f) = X. If f and g are n-ary partial operations with domain(g) ⊆
domain(f) and f(x1, . . . , xn) = g(x1, . . . , xn) for each (x1, . . . , xn) ∈ domain(g),
then g is said to be a subfunction of f .

Definition 2. An n-ary partial operation f is a partial polymorphism of a k-
ary relation R if, for every sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R
or (t1[i], . . . , tn[i]) /∈ domain(f) for some 1 ≤ i ≤ k, where f(t1, . . . , tn) =
(f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])).

If f is total we simply say that f is a polymorphism of R, and in both cases
we sometimes also say that f preserves R, or that R is invariant under f . For

Kernelization of Constraint Satisfaction Problems 161

a constraint language Γ we then let Pol(Γ) and pPol(Γ) denote the set of oper-
ations and partial operations preserving every relation in Γ , respectively, and
if F is a set of total or partial operations we let Inv(F) denote the set of all
relations invariant under F . It is known that Pol(Γ) and pPol(Γ) are closed
under composition of (partial) operations, i.e., if f ◦ g1, . . . , gm(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included in Pol(Γ) (respectively pPol(Γ))
then f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included in Pol(Γ) (respectively
pPol(Γ)) [23]. It is also known that Pol(Γ) and pPol(Γ) for each n and i ≤ n
contain every projection πn

i (x1, . . . , xi, . . . , xn) = xi. On the relational side, if
every operation in F is total, then Inv(F) is closed under primitive positive
definitions (pp-definitions) which are logical formulas consisting of existential
quantification, conjunction, and equality constraints. In symbols, we say that
a k-ary relation R has a pp-definition over a constraint language Γ over a
domain D if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧ Rm(xm), where each
Ri ∈ Γ ∪ {Eq}, Eq = {(x, x) | x ∈ D} and each xi is an ar(Ri)-ary tuple of vari-
ables over x1, . . . , xk, y1, . . . , yk′ . If F is a set of partial operations then Inv(F) is
closed under quantifier-free primitive positive definitions (qfpp-definitions), i.e.,
pp-definitions that do not make use of existential quantification. As a shorthand,
we let [F] = Pol(Inv(F)), 〈Γ 〉 = Inv(Pol(Γ)), and 〈Γ 〉�∃ = Inv(pPol(Γ)). We then
have the following Galois connections [8].

Theorem 3. Let Γ, Γ ′ be constraint languages. Then (1) Γ ⊆ 〈Γ ′〉�∃ if and only
if pPol(Γ′) ⊆ pPol(Γ) and (2) Γ ⊆ 〈Γ ′〉 if and only if Pol(Γ′) ⊆ Pol(Γ).

Jonsson et al. [16] proved the following theorem, showing that partial poly-
morphisms are indeed a refinement over total polymorphisms, since the latter
are only guaranteed to provide polynomial-time many-one reductions [15].

Theorem 4. If Γ , Γ ′ are finite languages and pPol(Γ) ⊆ pPol(Γ′) there exists a
constant c and a polynomial-time reduction from CSP(Γ ′) to CSP(Γ) mapping
(V,C) of CSP(Γ ′) to (V ′, C ′) of CSP(Γ) where |V ′| ≤ |V | and |C ′| ≤ c|C|.

Last, we will define a particular type of operation which is central to our
algebraic approach. A Maltsev operation over D ⊇ {0, 1} is a ternary operation φ
which for all x, y ∈ D satisfies the two identities φ(x, x, y) = y and φ(x, y, y) = x.
Before we can explain the powerful, structural properties of relations invariant
under Maltsev operations, we need a few technical definitions from Bulatov and
Dalmau [2]. If t ∈ Dn is a tuple we let t[i] denote the ith element in t and we
let pri1,...,in′ (t) = (t[i1], . . . , t[in′]), n′ ≤ n, denote the projection of t on (not
necessarily distinct) coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an n-
ary relation we let pri1,...,in′ (R) = {pri1,...,in′ (t) | t ∈ R}. Let t, t′ be two n-ary
tuples over D. We say that (t, t′) witnesses a tuple (i, a, b) ∈ {1, . . . , n} × D2 if
pr1,...,i−1(t) = pr1,...,i−1(t′), t[i] = a, and t′[i] = b. The signature Sig(R) of an
n-ary relation R over D is then defined as

{(i, a, b) ∈ {1, . . . , n} × D2 | ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)},

162 V. Lagerkvist and M. Wahlström

and we say that R′ ⊆ R is a representation of R if Sig(R) = Sig(R′). If R′

is a representation of R it is said to be compact if |R′| ≤ 2|Sig(R)|, and it is
known that every relation invariant under a Maltsev operation admits a compact
representation. Furthermore, we have the following theorem from Bulatov and
Dalmau, where we let 〈R〉f denote the smallest superset of R invariant under f .

Theorem 5 ([2]). Let φ be a Maltsev operation over a finite domain, R ∈
Inv({φ}) a relation, and R′ a representation of R. Then 〈R′〉φ = R.

Hence, relations invariant under Maltsev operations are reconstructible from
their compact representations.

3 Maltsev Embeddings and Kernels of Linear Size

In this section we give general upper bounds for kernelization of NP-hard CSP

problems, utilising Maltsev operations. At this stage the connection between
Maltsev operations, compact representations and tractability of Maltsev con-
straints might not be immediate. In a nutshell, the Maltsev algorithm [2] works
as follows (where φ is a Maltsev operation over a finite set D). First, let
(V, {C1, . . . , Cm}) be an instance of CSP(Inv({φ})), and let S0 be a compact
representation of D|V |. Second, for each i ∈ {1, . . . , m} compute a compact rep-
resentation Si of the solution space of the instance (V, {C1, . . . , Ci}) using Si−1.
Third, answer yes if Sm �= ∅ and no otherwise. For a full description of the
involved procedures we refer the reader to Bulatov and Dalmau [2] and Dyer
and Richerby [6].

Example 6. We review two familiar special cases of this result. First, consider
a linear equation

∑
i αixi = b, interpreted over a finite field F. It is clear that

the set of solutions to such an equation is invariant under x1 − x2 + x3 (over F),
hence systems of linear equations are a special case of Maltsev constraints, and
can in principle be solved by the Maltsev algorithm. Second, for a more general
example, let G = (D, ·) be a finite group, and let s(x, y, z) = x · (y−1) · z be
the coset generating operation of G. Then s is Maltsev, hence CSP(Inv({s}))
is tractable; this was shown by Feder and Vardi [7], but also follows from the
Maltsev algorithm. In particular, if G = (D,+) is an Abelian group where |D|
is prime, then R ∈ Inv({s}) if and only if R is the solution space of a system of
linear equations modulo |D| [14].

Since CSP(Γ) is tractable whenever Γ is preserved by a Maltsev operation,
it might not be evident how the Maltsev algorithm can be used for constructing
kernels for NP-hard CSPs. The basic idea is to embed Γ into a language Γ̂ over
a larger domain, which is preserved by a Maltsev operation. This allows us to
use the advantageous properties of relations invariant under Maltsev operations,
in order to compute a kernel for the original problem.

Definition 7. A constraint language Γ over D admits an embedding over the
constraint language Γ̂ over D′ ⊇ D if there exists a bijection h : Γ → Γ̂ such
that ar(h(R)) = ar(R) and h(R) ∩ Dar(R) = R for every R ∈ Γ .

Kernelization of Constraint Satisfaction Problems 163

If Γ̂ is preserved by a Maltsev operation then we say that Γ admits a Maltsev
embedding. We do not exclude the possibility that D′ is infinite, but in this
section we will only be concerned with finite domains, and therefore do not
explicitly state this assumption. If the bijection h is efficiently computable and
there exists a polynomial p such that h(R) can be computed in O(p(|R|)) time
for each R ∈ Γ , then we say that Γ admits a polynomially bounded embedding.
In particular, an embedding over a finite domain of any finite Γ is polynomially
bounded.

Example 8. Recall from Sect. 2 that R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. We claim
that R1/3 has a Maltsev embedding over {0, 1, 2}. Let R̂1/3 = {(x, y, z) ∈
{0, 1, 2}3 | x + y + z = 1 (mod 3)}. Then R̂1/3 ∩ {0, 1}3 = R1/3, and from Exam-
ple 6 we recall that R̂1/3 is preserved by a Maltsev operation. Hence, R̂1/3 is
indeed a Maltev embedding of R1/3. More generally, for every k, R1/k has a
Maltsev embedding into equations over a finite field of size at least k.

For a CSP(Γ) instance I = ({x1, . . . , xn}, C) we let ΨI be the relation
{(g(x1), . . . , g(xn)) | g satisfies I}, and if φ is a Maltsev operation and I =
(V, {C1, . . . , Cm}) an instance of CSP(Inv({φ})) we let Seq(I) = (S0, S1 . . . , Sm)
denote the compact representations of the relations Ψ(V,∅), Ψ(V,{C1}), . . .,
Ψ(V,{C1,...,Cm}) computed by the Maltsev algorithm. We remark that the ordering
of the constraints in Seq(I) does not influence the upper bound for the kernel.

Definition 9. Let φ be a Maltsev operation, p a polynomial and let Δ ⊆
Inv({φ}). We say that Δ and CSP(Δ) have chain length p if |{〈Si〉φ | i ∈
{0, 1, . . . , |C|}}| ≤ p(|V |) for each instance I = (V,C) of CSP(Δ), where
Seq(I) = (S0, S1, . . . , S|C|).

We now have everything in place to define our kernelization algorithm.

Theorem 10. Let Γ be a constraint language over D which admits a polyno-
mially bounded Maltsev embedding Γ̂ with chain length p. Then CSP(Γ) has a
kernel with O(p(|V |)) constraints.

Proof. Let φ ∈ Pol(Γ̂) denote the Maltsev operation witnessing the embed-
ding Γ̂ . Given an instance I = (V,C) of CSP(Γ) we can obtain an instance
I ′ = (V,C ′) of CSP(Γ̂) by replacing each constraint Ri(xi) in C by R̂i(xi). We
arbitrarily order the constraints as C ′ = (C1, . . . , Cm) where m = |C ′|. We then
iteratively compute the corresponding sequence Seq(I ′) = (S0, S1, . . . , S|C′|).
This can be done in polynomial time with respect to the size of I via the same
procedure as the Maltsev algorithm. For each i ∈ {1, . . . , m} we then do the
following.

1. Let the ith constraint be Ci = R̂i(xi1 , . . . , xir) with ar(Ri) = r.
2. For each t ∈ Si−1 determine whether pri1,...,ir (t) ∈ R̂i.
3. If yes, then remove the constraint Ci, otherwise keep it.

164 V. Lagerkvist and M. Wahlström

This can be done in polynomial time with respect to the size of the instance I ′,
since (1) |Si−1| is bounded by a polynomial in |V | and (2) the test pri1,...,ir (t) ∈
R̂i can naively be checked in linear time with respect to |R̂i|. We claim that
the procedure outlined above will correctly detect whether the constraint Ci

is redundant or not with respect to 〈Si−1〉φ, i.e., whether 〈Si−1〉φ = 〈Si〉φ.
First, observe that if there exists t ∈ Si−1 such that pri1,...,ir (t) /∈ R̂i, then the
constraint is clearly not redundant. Hence, assume that pri1,...,ir (t) ∈ R̂i for every
t ∈ Si−1. Then Si−1 ⊆ 〈Si〉φ, hence also 〈Si−1〉φ ⊆ 〈Si〉φ. On the other hand,
〈Si〉φ ⊆ 〈Si−1〉φ holds trivially. Therefore, equality must hold. Let I ′′ = (V,C ′′)
denote the resulting instance. Since CSP(Inv({φ})) has chain length p it follows
that (1) the sequence 〈S0〉φ, 〈S1〉φ, . . . , 〈S|C′|〉φ contains at most p(|V |) distinct
elements, hence |C ′′| ≤ p(|V |), and (2) ΨI′ = ΨI′′ . Clearly, it also holds that
ΨI = (ΨI′ ∩ {0, 1}|V |) = (ΨI′′ ∩ {0, 1}|V |). Hence, we can safely transform I ′′

to an instance I∗ of CSP(Γ) by replacing each constraint R̂i(xi) with Ri(xi).
Then I∗ is an instance of CSP(Γ) with at most p(|V |) constraints, such that
ΨI = ΨI∗ . In particular, I∗ has a solution if and only if I has a solution. ��

All that remains to be proven now is that there actually exist Maltsev embed-
dings with bounded chain length.

Theorem 11. CSP(Inv({φ})) has chain length O(|D||V |) for every Maltsev
operation φ over a finite D.

Proof. Let I = (V,C) be an instance of CSP(Inv({φ})), with |V | = n and |C| =
m, and let Seq(I) = (S0, S1, . . . , Sm) be the sequence of compact representations
computed by the Maltsev algorithm. First, we claim that Sig(Si+1) ⊆ Sig(Si)
for every i < m. To see this, pick (j, a, b) ∈ Sig(Si), where j ∈ {1, . . . , |V |}
and a, b ∈ D. Then there exists t, t′ ∈ Si such that (t, t′) witnesses (j, a, b), i.e.,
pr1,...,j−1(t) = pr1,...,j−1(t′), and t[j] = a, t′[j] = b. Since 〈Si−1〉φ ⊇ 〈Si〉φ ⊇ Si,
it follows that t, t′ ∈ 〈Si−1〉φ, and hence also that (j, a, b) ∈ Sig(〈Si−1〉φ). But
since Si−1 is a representation of 〈Si−1〉φ, Sig(Si−1) = Sig(〈Si−1〉φ), from which
we infer that (j, a, b) ∈ Sig(Si−1). Second, we claim that the sets (j, a, b) ∈
Sig(Si) induce an equivalence relation on prj(〈Si〉φ) for every i ≤ m, j ≤ n1.
Let a ∼ b hold if and only if (j, a, b) ∈ Sig(Si). Note that (j, a, a) ∈ Sig(Si) if
and only if a ∈ prj(Si), and that (j, a, b) /∈ Sig(Si) for any b if a /∈ prj(Si).
Also note that ∼ is symmetric by its definition. It remains to show transitivity.
Let (j, a, b) ∈ Sig(Si) be witnessed by (ta, tb) and (j, a, c) ∈ Sig(Si) be witnessed
by (t′a, t′c). We claim that tc := φ(ta, t′a, t′c) ∈ Si is a tuple such that (tb, tc)
witnesses (i, b, c) ∈ Sig(Si). Indeed, for every i′ < i we have φ(ta[i′], t′a[i′], t′c[i

′]) =
φ(ta[i′], t′a[i′], t′a[i′]) = ta[i′], whereas φ(ta[i′], t′a[i′], t′c[i

′]) = (a, a, c) = c. Since
ta[i′] = tb[i′] for every i′ < i, it follows that (tb, tc) witnesses (j, b, c) ∈ Sig(Si).
Hence ∼ is an equivalence relation on prj(Si). We wrap up the proof as follows.
Note that if Sig(Si+1) = Sig(Si), then 〈Si〉φ = 〈Si+1〉φ since Si+1 is a compact
representation of 〈Si〉φ. Hence, we need to bound the number of times that

1 This property is essentially folklore in universal algebra, and follows from the rec-
tangularity property of relations invariant under Maltsev operations.

Kernelization of Constraint Satisfaction Problems 165

Sig(Si+1) ⊂ Sig(Si) can hold. Now, whenever Sig(Si+1) ⊂ Sig(Si), then either
prj(〈Si〉φ) ⊂ prj(〈Si+1〉φ) for some j, or the equivalence relation induced by
tuples (j, a, b) ∈ Sig(Si+1) is a refinement of that induced by tuples (j, a, b) ∈
Sig(Si) for some j. Both of these events can only occur |D| − 1 times for every
position j (unless Sm = ∅). Hence the chain length is bounded by 2|V ||D|. ��

This bound can be slightly improved for a particular class of Maltsev opera-
tions. Recall from Example 6 that s(x, y, z) = x · y−1 · z is the coset generating
operation of a group G = (D, ·).
Lemma 12. Let G = (D, ·) be a finite group and let s be its coset generating
operation. Then CSP(Inv({s})) has chain length O(|V | log |D|).
Proof. Let I = (V,C) be an instance of CSP(Inv({s})), where |V | = n and
|C| = m. Let Seq(I) = (S0, S1, . . . , Sm) be the corresponding sequence. First
observe that S0 is a compact representation of Dn and that (Dn, ·) is nothing
else than the nth direct power of G. It is well-known that R is a coset of a sub-
group of (Dn, ·) if and only if s preserves R [4]. In particular, this implies that
S1 is a compact representation of a subgroup of (Dn, ·), and more generally that
each Si is a compact representation of a subgroup of 〈Si−1〉s. Lagrange’s theo-
rem then reveals that |〈Si〉s| divides |〈Si−1〉s|, which implies that the sequence
〈S0〉s, 〈S1〉s, . . . , 〈Sm〉s contains at most n log2 |D| + 1 distinct elements. ��

Note that the bound |V | log |D| is in fact a bound on the length of a chain
of subgroups of Gn; thus it can be further strengthened in certain cases. In
particular, if |D| is prime then the bound on chain length is simply |V | + 1 and
the resulting kernel has at most |V | constraints. Thus, Theorem 10 and Lemma 12
(via Example 8) give an alternate proof of the result that SAT({R1/k}) has a
kernel with at most |V | constraints. More generally, we get the following cases.
First, if Γ can be represented via linear equations over a finite field, then CSP(Γ)
has a kernel with at most |V | constraints. This closely mirrors the result of
Jansen and Pieterse [12]. Second, if Γ can be embedded into cosets of a finite
group over a set D, then CSP(Γ) has a kernel of O(|V | log |D|) constraints, but
not necessarily |V | constraints (for example, x = 0 (mod 2) and x = 0 (mod 3)
are independent over Z6). Third, in the general case, where Γ has an embedding
into a language on domain D with some arbitrary Maltsev polymorphism with
no further structure implied, CSP(Γ) has a kernel with O(|V ||D|) constraints.
(More generally, for |Γ | finite, we may use different Maltsev embeddings for
different R ∈ Γ , and apply the above kernel to each relation R in turn, for a
kernel of O(|Γ ||D||V |) constraints, where |D| is the largest domain used in these
embeddings.) Each case is more general than the previous: there are groups
whose coset generating operations cannot be represented by Abelian groups (for
example An, the group of all even permutations over {1, . . . , n} for n ≥ 3), and
it is known that a Maltsev operation φ over D is the coset generating operation
of a group (D, ·) if and only if φ(φ(x, y, z), z, u) = φ(x, y, u), φ(u, z, φ(z, y, x)) =
φ(u, y, x) for all x, y, z, u ∈ D [4]. Hence, any Maltsev operation which does not
satisfy these two identities cannot be viewed as the coset generating operation
of a group.

166 V. Lagerkvist and M. Wahlström

4 Partial Polymorphisms and Lower Bounds

We have seen that Maltsev embeddings provide an algebraic criterion for deter-
mining that a CSP(Γ) problem admits a kernel of a fixed size. In this section we
develop a connection between the partial polymorphisms of a constraint language
and the existence of a Maltsev embedding, and leverage these results in order to
prove lower bound on kernelization for SAT(Γ). Let f : Dk → D be a k-ary oper-
ation over D ⊇ {0, 1}. We can then associate a partial Boolean operation f|B with
f by restricting f to the Boolean arguments which also result in a Boolean value.
In other words domain(f|B) = {(x1, . . . , xk) ∈ {0, 1}k | f(x1, . . . , xk) ∈ {0, 1}},
and f|B(x1, . . . , xk) = f(x1, . . . , xk) for every (x1, . . . , xk) ∈ domain(f|B). We
then characterize the partial polymorphisms of Boolean constraint languages
admitting Maltsev embeddings as follows.

Theorem 13. Let Γ be a Boolean constraint language, φ a Maltsev operation,
and Γ̂ = {〈R〉φ | R ∈ Γ}. Then Γ̂ is a Maltsev embedding of Γ if and only if
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂).

Proof. For the first direction, assume that Γ̂ is a Maltsev embedding of Γ ,
and assume that there exists R ∈ Γ and an n-ary f ∈ Pol(Γ̂) such that
f|B(t1, . . . , tn) /∈ R for t1, . . . , tn ∈ R. By construction, f|B(t1, . . . , tn) = t is
a Boolean tuple. But since R̂ ∩ {0, 1}ar(R) = R, this implies (1) that t /∈ R̂
and (2) that f|B(t1, . . . , tn) = f(t1, . . . , tn) = t /∈ R̂. Hence, f does not pre-
serve R̂ or Γ̂ , and we conclude that f|B ∈ pPol(Γ). For the other direction,
assume that {f|B | f ∈ Pol(Γ̂)} ⊆ pPol(Γ) but that there exists R̂ ∈ Γ̂ such
that R̂ ∩ {0, 1}ar(R) ⊃ R. Let t ∈ R̂ ∩ {0, 1}ar(R) \ R. By construction of R̂
it follows that there exists an n-ary f ∈ [{φ}] and t1, . . . , tn ∈ R such that
f(t1, . . . , tn) = t /∈ R. But then it follows that f|B(t1, . . . , tn) is defined as
well, implying that f|B(t1, . . . , tn) /∈ R. This contradicts the assumption that
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂). ��

Hence, the existence of a Maltsev embedding can always be witnessed by the
partial polymorphisms of a constraint language. We will now describe the partial
operations that preserve every Boolean language with a Maltsev embedding.
Therefore, say that f is a universal partial Maltsev operation if f ∈ pPol(Γ) for
every Boolean Γ admitting a Maltsev embedding. Due to Theorem 13 this is
tantamount to finding a Maltsev operation φ such that every Boolean language
with a Maltsev embedding admits a Maltsev embedding over φ.

Definition 14. Let the infinite domain D∞ be recursively defined to contain 0,
1, and ternary tuples of the form (x, y, z) where x, y, z ∈ D∞, x �= y, y �= z.
The Maltsev operation u over D∞ is defined as u(x, x, y) = y, u(x, y, y) = x, and
u(x, y, z) = (x, y, z) otherwise.

We will now prove that q|B is a universal partial Maltsev operation if
q ∈ [{u}].

Kernelization of Constraint Satisfaction Problems 167

Theorem 15. Let q ∈ [{u}]. Then q|B is a universal partial Maltsev operation.

Proof. We provide a sketch of the most important ideas. Let q ∈ [{u}] be n-ary,
and let Γ be a Boolean constraint language admitting a Maltsev embedding
with respect to an operation φ. It is known that every operation in [{u}] can be
expressed as a term over u [9], and if we let p denote the operation defined by
replacing each occurence of u in this term by φ we obtain an operation included
in [{φ}]. We then claim that q|B can be obtained as a subfunction of p|B, which
is sufficient to prove the result since p|B ∈ pPol(Γ) via Theorem13 and since
pPol(Γ) is known to be closed under taking subfunctions [23]. The intuition
behind this step is that q(x1, . . . , xn) for x1, . . . , xn ∈ {0, 1} may only return a
Boolean value through a sequence of Maltsev conditions, and since φ is also a
Maltsev operation, it has to abide by these conditions as well. Formally, this can
be proven straightforwardly through induction on the terms defining q and p. ��

We may thus combine Theorem 13 and Theorem 15 to obtain a com-
plete description of all universal partial Maltsev operations. Even though
these proofs are purely algebraic we will shortly see that universal Malt-
sev operations have strong implications for kernelizability of SAT. For this
purpose we define the first partial Maltsev operation φ1 as φ1(x, y, y) = x
and φ1(x, x, y) = y for all x, y ∈ {0, 1}, and observe that domain(φ1) =
{(0, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}. Via Theorem 15 it follows
that φ1 is equivalent to u|B, and is therefore a universal partial Maltsev oper-
ation. We will now prove that φ1 ∈ pPol(Γ) is in fact a necessary condi-
tion for the existence of a linear-sized kernel for SAT(Γ), modulo a stan-
dard complexity theoretical assumption. A pivotal part of this proof is that if
φ1 /∈ pPol(Γ), then Γ can qfpp-define a relation Φ1, which can be used as a gad-
get in a reduction from the Vertex Cover problem. This relation is defined as
Φ1(x1, x2, x3, x4, x5, x6) ≡ (x1∨x4)∧(x1 �= x3)∧(x2 �= x4)∧(x5 = 0)∧(x6 = 1).
The following lemma shows a strong relationship between φ1 and Φ1.

Lemma 16. If Γ is a Boolean constraint language such that 〈Γ 〉 = BR and
φ1 /∈ pPol(Γ) then Φ1 ∈ 〈Γ 〉�∃.

Proof. Before the proof we need two central observations. First, the assumption
that 〈Γ 〉 = BR is well-known to be equivalent to that Pol(Γ) consists only of
projections. Second, Φ1 consists of three tuples which can be ordered as s1, s2, s3
in such a way that for every s ∈ domain(φ1) there exists 1 ≤ i ≤ 6 such that
s = (s1[i], s2[i], s3[i]). Now, assume that 〈Γ 〉 = BR, φ1 /∈ pPol(Γ), but that
Φ1 /∈ 〈Γ 〉�∃. Then there exists an n-ary f ∈ pPol(Γ) such that f /∈ pPol({Φ1}),
and t1, . . . , tn ∈ Φ1 such that f(t1, . . . , tn) /∈ Φ1. Now consider the value k =
|{t1, . . . , tn}|, i.e., the number of distinct tuples in the sequence. If n > k then
it is known that there exists a closely related partial operation g of arity at
most k such that g /∈ pPol({Φ1}) [22], and we may therefore assume that n =
k ≤ |Φ1| = 3. Assume first that 1 ≤ n ≤ 2. Then, for every t ∈ {0, 1}n there
exists i such that (t1[i], . . . , tn[i]) = t. But then f must be a total operation
which is not a projection, which is impossible since we assumed that 〈Γ 〉 = BR.

168 V. Lagerkvist and M. Wahlström

Hence, it must be the case that n = 3, and that {t1, t2, t3} = Φ1. Assume
without loss of generality that t1 = s1, t2 = s2, t3 = s3, and note that this
implies that domain(f) = domain(φ1) (otherwise f can simply be described as a
permutation of φ1). First, we will show that f(0, 0, 0) = 0 and that f(1, 1, 1) =
1. Indeed, if f(0, 0, 0) = 1 or f(1, 1, 1) = 0, it is possible to define a unary
total f ′ as f ′(x) = f(x, x, x) which is not a projection since either f ′(0) = 1
or f ′(1) = 0. Second, assume there exists (x, y, z) ∈ domain(f), distinct from
(0, 0, 0) and (1, 1, 1), such that f(x, y, z) �= φ1(x, y, z). Without loss of generality
assume that (x, y, z) = (a, a, b) for a, b ∈ {0, 1}, and note that f(a, a, b) = a
since φ1(a, a, b) = b. If also f(b, b, a) = a it is possible to define a binary total
operation f ′(x, y) = f(x, x, y) which is not a projection, therefore we have that
f(b, b, a) = b. We next consider the values taken by f on the tuples (b, a, a) and
(a, b, b). If f(b, a, a) = f(a, b, b) then we can again define a total, binary operation
which is not a projection, therefore it must hold that f(b, a, a) �= f(a, b, b).
However, regardless of whether f(b, a, a) = b or f(b, a, a) = a, f must be a
partial projection. This contradicts the assumption that f /∈ pPol({Φ1}), and
we conclude that Φ1 ∈ 〈Γ 〉�∃. ��

We will shortly use Lemma 16 to give a reduction from the Vertex Cover

problem, since it is known that Vertex Cover does not admit a kernel with
O(n2−ε) edges for any ε > 0, unless NP ⊆ co-NP/poly [5]. For each n and k let
Hn,k denote the relation {(b1, . . . , bn) ∈ {0, 1}n | b1 + . . . + bn = k}.

Lemma 17. Let Γ be a constraint language. If 〈Γ 〉 = BR then Γ can pp-define
Hn,k with O(n + k) constraints and O(n + k) existentially quantified variables.

Proof. We first observe that one can recursively design a circuit consisting of
fan-in 2 gates which computes the sum of n input gates as follows. At the lowest
level, we split the input gates into pairs and compute the sum for each pair,
producing an output of 2 bits for each pair. At every level i above that, we join
each pair of outputs from the previous level, of i bits each, into a single output of
i+1 bits which computes their sum. This can be done with O(i) gates by chaining
full adders. Finally, at level �log2 n�, we will have computed the sum. The total
number of gates will be

∑	log2 n

i=1 (n

2i)·O(i), which sums to O(n). Let z1, . . . , zlog2 n

denote the output gates of this circuit. By a standard Tseytin transformation
we then obtain an equisatisfiable 3-SAT instance with O(n) clauses and O(n)
variables. For each 1 ≤ i ≤ log2 n, add the unary constraint (zi = ki), where
ki denotes the ith bit of k written in binary. Each such constraint can be pp-
defined with O(1) existentially quantified variables over Γ . We then pp-define
each 3-SAT clause in order to obtain a pp-definition of R over Γ , which in total
only requires O(n) existentially quantified variables. This is possible since if
〈Γ 〉 = BR then Γ can pp-define every Boolean relation. ��
Theorem 18. Let Γ be a finite Boolean constraint language such that 〈Γ 〉 = BR
and φ1 /∈ pPol(Γ). Then SAT(Γ) does not have a kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ co-NP/poly.

Kernelization of Constraint Satisfaction Problems 169

Proof. We will give a reduction from Vertex Cover parameterized by the
number of vertices to SAT(Γ ∪ {Φ1}), which via Theorem 4 and Lemma 16 has
a reduction to SAT(Γ) which does not increase the number of variables. Let
(V,E) be the input graph and let k denote the maximum size of the cover. First,
introduce two variables xv and x′

v for each v ∈ V , and one variable yi for each
1 ≤ i ≤ k. Furthermore, introduce two variables x and y. For each edge {u, v} ∈
E introduce a constraint Φ1(xu, x′

v, x′
u, xv, x, y), and note that this enforces

the constraint (xu ∨ xv). Let ∃z1, . . . , zm.φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm)
denote the pp-definition of H|V |+k,k over Γ where m ∈ O(k + |V |), and con-
sisting of at most O(k + |V |) constraints. Such a pp-definition must exist
according to Lemma 17. Drop the existential quantifiers and add the con-
straints of φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm). Let (V ′, C) denote this instance
of SAT(Γ ∪{Φ1}). Assume first that (V,E) has a vertex cover of size k′ ≤ k. We
first assign x the value 0 and y the value 1. For each v in this cover assign xv

the value 1 and x′
v the value 0. For any vertex not included in the cover we use

the opposite values. Then set y1, . . . , yk−k′ to 1 and yk−k′+1, . . . , yk to 0. For the
other direction, assume that (V ′, C) is satisfiable. For any xv variable assigned 1
we then let v be part of the vertex cover. Since x1 + . . .+x|V | +y1 + . . .+yk = k,
the resulting vertex cover is smaller than or equal to k. ��

For example, let Rk = {(b1, . . . , bk) ∈ {0, 1}k | b1+. . .+bk ∈ {1, 2} (mod 6)}
and let P = {Rk | k ≥ 1}. The kernelization status of SAT(P) was left open
in Jansen and Pieterse [12], and while a precise upper bound seems difficult to
obtain, we can easily prove that this problem does not admit a kernel of linear
size, unless NP ⊆ co-NP/poly. Simply observe that (0, 0, 1), (0, 1, 1), (0, 1, 0) ∈ R3

but φ1((0, 0, 1), (0, 1, 1), (0, 1, 0)) = (0, 0, 0) /∈ R3. The result then follows from
Theorem 18. At this stage, it might be tempting to conjecture that φ1 ∈ pPol(Γ)
is also a sufficient condition for a Maltsev embedding. We can immediately rule
this out by finding a relation R and a universal partial Maltsev operation φ
such that R is invariant under φ1 but not under φ. For example, let q be the
9-ary function defined by u(u(x1, x2, x3), u(x4, x5, x6), u(x7, x8, x9)). Then we by
computer experiments have verified that there exists a relation R of cardinality
9, invariant under φ1 but not under q|B [21].

5 Concluding Remarks and Future Research

We have studied kernelization properties of SAT and CSP with tools from uni-
versal algebra. We focused on problems with linear kernels, and showed that a
CSP problem has a kernel with O(n) constraints if it can be embedded into a
CSP problem preserved by a Maltsev operation; thus extending previous results
in this direction. On the other hand, we showed that a SAT problem not pre-
served by a partial Maltsev operation does not admit such a kernel, unless NP
⊆ co-NP/poly. This shows that the algebraic approach is viable for studying
such fine-grained kernelizability questions. Our work opens several directions for
future research.

170 V. Lagerkvist and M. Wahlström

A Dichotomy Theorem for Linear Kernels? Our results suggest a possible
dichotomy theorem for the existence of linear kernels for SAT problems. How-
ever, two gaps remain towards such a result. On the one hand, we proved that if Γ
is preserved by the universal partial Maltsev operations then it admits a Malt-
sev embedding over an infinite domain. However, the kernelization algorithm
only works for finite domains. Does the existence of an infinite-domain Maltsev
embedding for a finite language imply the existence of a Maltsev embedding
over a finite domain? Alternatively, can the algorithms be adjusted to work for
languages with infinite domains, since D∞ is finitely generated in a simple way?
On the other hand, we only have necessity results for φ1 out of an infinite set of
conditions for the positive results. Is it true that every universal partial Malt-
sev operation is a partial polymorphism of every language with a linear kernel,
or do there exist SAT problems with linear kernels that do not admit Maltsev
embeddings?

The Algebraic CSP Dichotomy Conjecture. Several solutions to the CSP
dichotomy conjecture have been announced [1,26,27]. If correct, these algorithms
solve CSP(Γ) in polynomial time whenever Γ is preserved by a Taylor term. One
can then define the concept of a Taylor embedding, which raises the question
of whether the proposed algorithms can be modified to construct polynomial
kernels. More generally, when can an operation f such that CSP(Inv({f})) is
tractable be used to construct improved kernels? On the one hand, one can
prove that k-edge operations, which are generalized Maltsev operations, can be
used to construct kernels with O(nk−1) constraints via a variant of the few
subpowers algorithm. On the other hand, it is known that relations invariant
under semilattice operations can be described as generalized Horn formulas, but
it is not evident how this property could be useful in a kernelization procedure.

Acknowledgements. We thank the anonymous reviewers for several helpful sugges-
tions. The first author is supported by the DFG-funded project “Homogene Strukturen,
Bedingungserfüllungsprobleme, und topologische Klone” (Project number 622397).

References

1. Bulatov, A.: A dichotomy theorem for nonuniform CSPs. CoRR, abs/1703.03021
(2017)

2. Bulatov, A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SICOMP
36(1), 16–27 (2006)

3. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SICOMP 34(3), 720–742 (2005)

4. Dalmau, V., Jeavons, P.: Learnability of quantified formulas. TCS 306(1–3), 485–
511 (2003)

5. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

6. Dyer, M., Richerby, D.: An effective dichotomy for the counting constraint satis-
faction problem. SICOMP 42(3), 1245–1274 (2013)

Kernelization of Constraint Satisfaction Problems 171

7. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and
constraint satisfaction: a study through datalog and group theory. SICOMP 28(1),
57–104 (1998)

8. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(1), 95–100
(1968)

9. Goldstern, M., Pinsker, M.: A survey of clones on infinite sets. Algebra Univers.
59(3), 365–403 (2008)

10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)

11. Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT. In: Proceedings of IPEC 2015, Patras, Greece
(2015)

12. Jansen, B.M.P., Pieterse, A.: Optimal sparsification for some binary CSPs using
low-degree polynomials. In: Proceedings of MFCS 2016, vol. 58, pp. 71:1–71:14
(2016)

13. Jeavons, P.: On the algebraic structure of combinatorial problems. TCS 200, 185–
204 (1998)

14. Jeavons, P., Cohen, D., Gyssens, M.: A unifying framework for tractable con-
straints. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 276–291.
Springer, Heidelberg (1995). doi:10.1007/3-540-60299-2 17

15. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. JACM
44(4), 527–548 (1997)

16. Jonsson, P., Lagerkvist, V., Nordh, G., Zanuttini, B.: Strong partial clones and the
time complexity of SAT problems. JCSS 84, 52–78 (2017)

17. Kratsch, S., Marx, D., Wahlström, M.: Parameterized complexity and kernelizabil-
ity of max ones and exact ones problems. TOCT 8(1), 1 (2016)

18. Kratsch, S., Wahlström, M.: Preprocessing of min ones problems: a dichotomy. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6198, pp. 653–665. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14165-2 55

19. Krokhin, A.A., Marx, D.: On the hardness of losing weight. ACM Trans. Algo-
rithms 8(2), 19 (2012)

20. Lagerkvist, V., Wahlström, M.: The power of primitive positive definitions with
polynomially many variables. JLC 27, 1465–1488 (2016)

21. Lagerkvist, V., Wahlström, M.: Kernelization of constraint satisfaction problems:
a study through universal algebra. ArXiv e-prints, June 2017

22. Lagerkvist, V., Wahlström, M., Zanuttini, B.: Bounded bases of strong partial
clones. In: Proceedings of ISMVL 2015 (2015)

23. Lau, D.: Function Algebras on Finite Sets: Basic Course on Many-Valued Logic
and Clone Theory (Springer Monographs in Mathematics). Springer, New York
(2006)

24. Marx, D.: Parameterized complexity of constraint satisfaction problems. Comput.
Complex. 14(2), 153–183 (2005)

25. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Program. 8(1), 232–248 (1975)

26. Rafiey, A., Kinne, J., Feder, T.: Dichotomy for digraph homomorphism problems.
CoRR, abs/1701.02409 (2017)

27. Zhuk, D.: The proof of CSP dichotomy conjecture. CoRR, abs/1704.01914 (2017)

http://dx.doi.org/10.1007/3-540-60299-2_17
http://dx.doi.org/10.1007/978-3-642-14165-2_55

Defining and Evaluating Heuristics
for the Compilation of Constraint Networks

Jean-Marie Lagniez, Pierre Marquis(B), and Anastasia Paparrizou

CRIL, U. Artois & CNRS, Lens, France
{Lagniez,Marquis,Paparrizou}@cril.fr

Abstract. Several branching heuristics for compiling in a top-down
fashion finite-domain constraint networks into multi-valued decision dia-
grams (MDD) or decomposable multi-valued decision graphs (MDDG) are
empirically evaluated, using the cn2mddg compiler. This MDDG compiler
has been enriched with various additional branching rules. These rules
can be gathered into two families, the one consisting of heuristics for
the satisfaction problem (which are suited to compiling networks into
MDD representations) and the family of heuristics favoring decompositions
(which are relevant when the MDDG language is targeted). Our empirical
investigation on a large dataset shows the value of decomposability (tar-
geting MDDG allows for compiling many more instances and leads to much
smaller compiled representations). The well-known (Dom/Wdeg) heuris-
tics appears as the best choice for compiling networks into MDD. When
MDDG is the target, a new rule, based on a dynamic, yet parsimonious use
of hypergraph partitioning for the decomposition purpose turns out to
be the best option. As expected, the best heuristics for the satisfaction
problem perform better than the best heuristics favoring decompositions
when MDD is targeted, and the converse is the case when MDDG is targeted.

Keywords: Knowledge compilation · Top-down compiler · Heuristics

1 Introduction

The objective of this work is to evaluate several branching heuristics (both exist-
ing ones but also new ones) which are candidates for compiling in a top-down
fashion finite-domain constraint networks into decision diagrams. Two target
languages are considered: the language MDD of multi-valued (deterministic) deci-
sion diagrams, and its superset, the language MDDG of decomposable multi-valued
decision graphs. The significance of those two compilation languages comes from
the fact that they support many useful queries in polynomial time. For instance,
it is possible to determine in polynomial time whether an MDD representation (or
an MDDG representation) is consistent or not, and even to count in polynomial
time its number of solutions, or more generally to compute in polynomial time
the number of (possibly weighted) solutions compatible with a given (partial)
instantiation. It is also possible to enumerate with a polynomial delay all the
solutions. Answering such queries is fundamental in a number of applications like
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 172–188, 2017.
DOI: 10.1007/978-3-319-66158-2 12

Defining and Evaluating Heuristics for the Compilation 173

product configuration (see e.g., [1]), where looking for a feasible product given
the user choices amounts to decide the consistency of a representation condi-
tioned by the instantiation encoding the user choices, or probabilistic inference
in Bayesian networks (computing the probability of a piece of evidence amounts
to a weighted model counting query, see e.g., [3]). However, all those queries are
NP-hard when the input is a constraint network.

In the Boolean case, the MDD language corresponds to the language FBDD
of free binary decision diagrams [13], while MDDG corresponds to the language
Decision-DNNF [12,22]. Roughly, every internal node in an MDD representation
is a decision node associated with a variable of the input constraint network
and having as many children as the number of elements in the domain of the
variable. In MDDG representations, internal nodes can also be decomposable ∧-
nodes, i.e., conjunctions of representations based on pairwise disjoint sets of
variables. Despite the increase of generality obtained by accepting non-Boolean
domains, the key tractable queries and transformations offered by Decision-DNNF
are also offered by MDDG and MDD. Note that MDD offers some transformations
that MDDG does not, and this is why this subset of MDDG is interesting in its
own right. For instance, from an MDD representation of the feasible products of
a configuration problem, it is possible to enumerate with a polynomial delay all
the full instantiations corresponding to the non-feasible products (while this is
impossible from an MDDG representation unless P = NP).

In order to generate MDDG and MDD representations, one takes advantage of the
cn2mddg compiler [17], see http://www.cril.fr/KC/mddg.html. As in the Boolean
case [16], an MDDG representation of a constraint network can be generated by
recording the trace of a solver (in the Boolean case, a SAT solver and here, a
CSP solver). Accordingly, cn2mddg is a top-down constraint network compiler,
based on a CSP solver. It exploits constraint propagation and conflict analysis
to guide the search. It also benefits from a specific caching technique and it
detects universal constraints during the search in order to perform additional
simplifications. Though cn2mddg was primarily based on a specific branching
heuristics relying on betweenness centrality for promoting decompositions, we
have implemented in it a number of additional heuristics for the sake of further
evaluations and comparisons.

We have considered two groups of heuristics. The first one is composed
of six heuristics for the consistency issue, namely the Dom/Wdeg heuristics
(Dom/Wdeg) [15], and its by-products (the Dom heuristics (Dom), and the
Wdeg heuristics (Wdeg)), the impact-based heuristics (IBS) [23], the activity-
based heuristics (ABS) [20], and the conflict-ordering search heuristics (COS)
[18]. All those heuristics were already known.

The second one gathers heuristics for promoting the generation of decompos-
able ∧-nodes. It is composed of seven heuristics. Three of them are static heuris-
tics, meaning that they are used for generating a decomposition tree (dTree) of
the input network in a preliminary step, before the compilation phase. The three
static heuristics considered for computing a dTree are Min Degree (dTree-MD),
Min Fill (dTree-MF), Hypergraph Partitioning (dTree-HP). The four remaining

http://www.cril.fr/KC/mddg.html

174 J.-M. Lagniez et al.

heuristics are dynamic ones, which means that each selected variable is computed
during the search from the current network (thus, not prior to the search). Two
of them, namely Closeness Centrality (CC) and Betweenness Centrality (BC),
are based on a notion of centrality of the variables in the primal graph of the
constraint network, one on the Hypergraph Partitioning (HP) of the dual hyper-
graph of the network, and the remaining one aims at computing a Cut Set (CS)
of the primal graph. Actually, we have also considered for each of those four
heuristics (H) a parsimonious variant (H-P) of it, meaning that a branching
variable is not computed at each decision step using the heuristics, but instead,
one computes a set of variables (containing all the variables that are ranked first
by the heuristics) and uses all those variables successively for branching until
the set becomes empty. All those heuristics except the one based on betweenness
centrality (computed at each decision step) are new in the sense that they have
not been tested so far, even if they are based on ingredients which are not brand
new.

The branching heuristics from the two groups have been implemented in
cn2mddg, parameterized in such a way that the compiler computes either MDDG
representations (its default mode) or MDD representations (which can be done
easily, by freezing the detection of disjoint components). For evaluating and
comparing their relative performances in generating MDD representations and
MDDG representations, cn2mddg (either in MDDG mode or in MDD mode), equipped
with each of the thirteen heuristics under consideration has been run on 546
benchmarks corresponding to several families of instances.

Our experiments show the value of decomposability (targeting MDDG allows
for compiling many more instances and leads to much smaller compiled repre-
sentations). The well-known (Dom/Wdeg) heuristics appears as the best choice
for compiling networks into MDD. When MDDG is the target, the new rule (HP-P),
based on a dynamic, yet parsimonious use of hypergraph partitioning for the
decomposition purpose turns out to be the best option. As expected, the best
heuristics for the satisfaction problem perform better than the best heuristics
favoring decompositions when MDD is targeted and the converse is the case when
MDDG is targeted.

Previous work on AND/OR search has shown the impact of variable ordering
on performance. AND/OR search is a framework for solving optimization tasks
in graphical models by detecting independencies in the model (decompositions).
Marinescu and Dechter [19] have shown that combining static and dynamic vari-
able orderings with problem decomposition principles results in exponential sav-
ings. Variable orderings based on decompositions are also important for com-
piling constraint networks in other graphical representations. Narodytska and
Walsh [21] proposed heuristics to reduce the time and space requirements for
compiling configuration problems into BDDs. These heuristics are based on the
distinctive clustered and hierarchical structure of the constraint graphs and are
used for a bottom-up compilation.

Defining and Evaluating Heuristics for the Compilation 175

2 Formal Preliminaries

A finite-domain constraint network (CN) is a triple N = (X , D, C) consisting of
a set X = {X1, · · · ,Xn} of variables, a set D = {D1, · · · ,Dn} of domains, and
a set C = {C1, · · · , Cm} of constraints. Each domain Di is a finite set containing
the possible values of Xi. Each constraint Cj characterizes the combinations of
values satisfying it. Formally, Cj = (Sj , Rj), where Sj = {Xj1 , · · · ,Xjk} is a
subset of variables from X , called the scope of Cj , and Rj is a predicate over
the Cartesian product Dj1 × · · · × Djk , called the relation of Cj . Rj can be
represented extensionally by the list of its satisfying tuples (or dually, by the
list of its forbidden tuples), or intensionally by an oracle, i.e., a mapping from
Dj1 ×· · ·×Djk to {0, 1} which is supposed to be computable in time polynomial
in its input size. The arity of a constraint is given by the size of its scope.
Constraints of arity 2 are called binary and constraints of arity greater than 2
are called non-binary.

Example 1. Let N be the CN given by four variables X1,X2,X3, and X4, each
of them being defined on the same domain {0, 1, 2}, and three constraints C1,
C2, and C3, specified by the following mathematical statements:

– C1 = (X1 �= X2);
– C2 = (X2 = 0) ∨ (X2 = 1) ∨ (X2 = X3 + X4 + 1);
– C3 = (X3 > X4).

Given a subset S of variables from X , a (decision) state s over S is a mapping
that associates with each variable Xi in S a subset s(Xi) of values in Di. In what
follows, states are often noted as union of elementary assignments, i.e., sets of
the form {〈Xi, xj〉}, where xj ∈ s(Xi). scope(s) denotes the set S of variables
over which s is defined. A state s is partial if scope(s) is a proper subset of X ;
otherwise, s is called a full state. A variable Xi in scope(s) is instantiated if s(Xi)
is a singleton set. The set of instantiated variables in s is noted single(s). As
usual, a state s is called an instantiation when all its variables are instantiated,
i.e., scope(s) = single(s).

For a state s and a set of variables T ⊆ scope(s), s[T] denotes the restriction
of s to T , i.e., s[T] is the set {〈Xi, xj〉 ∈ s | Xi ∈ T}. An instantiation s
satisfies a contraint Cj = (Sj , Rj) if Sj ⊆ scope(s) and Rj(xj1 , . . . , xjk) =
1, where ∀l ∈ 1, . . . , k, 〈Xjl , xjl〉 ∈ s[Sj]. A solution of a CN N = (X ,D, C)
is a full instantiation s satisfying all constraints Cj in C. For example, s =
{〈X1, 1〉, 〈X2, 0〉, 〈X3, 1〉, 〈X4, 0〉} is a solution of the CN given at Example 1.

Given a CN N = (X ,D, C) and a state s over a subset of X , the conditioning
N | s of N by s is the CN (X ′,D′, C′) defined as follows: X ′ = X \single(s); with
each domain Di in D, one associates the domain D′

i ∈ D′, where D′
i = Di if Xi �∈

scope(s) and D′
i = s(Di) otherwise; finally, with each constraint Cj = (Sj , Rj)

in C, one associates the constraint C ′
j = (S′

j , R
′
j) in C′, where S′

j = Sj \ single(s)
and R′

j is the restriction of Rj to S′
j .

The primal graph of a CN N = (X ,D, C) is the undirected graph PG(N)
with vertex set X and edge set E , such that {Xp,Xq} ∈ E if and only if {Xp,Xq}

176 J.-M. Lagniez et al.

X1 X2

X3

X4

C1

C2

C3

(a) Primal graph

C1 C2 C3

X1 X2 X3,X4

(b) Dual hypergraph

Fig. 1. Graph representations of the CN given at Example 1.

is a subset of the scope Sj of some constraint Cj in C. For instance, the primal
graph of the CN given at Example 1 is depicted on Fig. 1a.

The dual hypergraph of a CN N = (X ,D, C) is the undirected hypergraph
DH(N) with vertex set C and hyperedge set H, such that H = {H ⊆ C |
∃Xi ∈ X s.t. ∀Cj ∈ C, Cj ∈ H iff Xi ∈ Sj}. Thus, every hyperedge corresponds
precisely to a variable X which belongs to the scopes of all the constraints of the
hyperedge, but does not belong to the scope of any other constraint of the input
network. For instance, the dual hypergraph of the CN given at Example 1 is
depicted on Fig. 1b. For this example, every hyperedge contains two constraints
only, but of course this is not the case in general.

Let us now introduce a few definitions suited to the target languages consid-
ered for compiling CNs.

Definition 1 (MDG). Given a finite set X of finite-domain variables, the (read-
once) MDG language over X is the set of all single-rooted directed acyclic graphs
Δ, where leaf nodes are labelled by � (true) or ⊥ (false), and every internal
node is either a ∧-node N = ∧(N1, . . . , Ni) or a decision node N associated
with variable Xi ∈ X , i.e., a deterministic ∨-node N = ∨(N1, . . . , Nj) such that
Di = {xi1 , . . . , xij} and the arc from N to Nk (k ∈ 1, . . . , j) is labelled by the
elementary assignment {〈Xi, xik〉}. The paths of Δ must satisfy the read-once
property: for every path from the root of Δ to a � leaf node, and for any Xi ∈ X ,
no more than one arc can be labelled by an elementary assignment over Xi.

For every node N in an MDG representation Δ, Var(N) is defined inductively
as follows:

– if N is a leaf node, then Var(N) = ∅;
– if N is a ∧-node N = ∧(N1, . . . , Ni), then Var(N) =

⋃i
k=1 Var(Ni);

– if N is a decision node N = ∨(N1, . . . , Nj) associated with variable X, then
Var(N) = {X} ∪ ⋃j

k=1 Var(Nk).

Let s be a full instantiation over X and let Δ be a MDG representation over X ,
rooted at node N . Let eval(N, s) be the MDG representation without any decision
node, defined inductively by:

Defining and Evaluating Heuristics for the Compilation 177

– if N is a leaf node, then eval(N, s) = N ;
– if N is a ∧-node N = ∧(N1, . . . , Ni), then eval(N, s) = ∧(eval(N1, s),

. . . , eval(Ni, s));
– if N is a decision node N = ∨(N1, . . . , Nj) associated with variable Xi, then

eval(N, s) = eval(Nk, s), where 〈Xi, xik〉 ∈ s.

s is a solution of Δ if and only eval(N, s) evaluates to true.
The language MDDG we are interested in is the subset of MDG consisting of

decomposable representations, those where the children of any ∧-node do not
share any variable. MDD is the subset of it, containing the representations without
∧-nodes.

Definition 2 (MDDG, MDD). Given a finite set X of finite-domain variables:

– the MDDG language over X is the subset of MDG representations Δ, where each
∧-node N = ∧(N1, . . . , Ni) is decomposable, i.e., ∀k, l ∈ 1, . . . , i, if k �= l,
then Var(Nk) ∩ Var(Nl) = ∅.

– the MDD language over X is the subset of MDDG representations containing no
∧-nodes.
MDD can also be viewed as a restriction of the language of non-deterministic

multi-valued decision diagrams considered in [2].

3 Heuristics for Compiling CNs

In this section, we briefly describe the branching heuristics which have been
considered in our top-down constraint network compiler which targets the MDDG
language (but can also be downsized to target the MDD language).

3.1 Heuristics Targeting the MDD Language

Dom/Wdeg. With (Dom/Wdeg), one selects a variable with minimum ratio of
current domain size to weighted degree [15]. Each variable is associated with a
weighted degree (Wdeg), which is the sum of the weights over all constraints
involving the variable and at least another (unassigned) variable. A weight, ini-
tially set to one, is given to each constraint and each time a constraint causes a
domain wipeout its weight is incremented by one. It is a generic state-of-the-art
heuristics and the interesting is that it is adaptive, with the expectation to focus
on the hard part(s) of the problem.

Dom. (Dom) is a first by-product of dom/wdeg. With (Dom), variables are
ordered by considering their current domain size (the smallest cardinalities first).

Wdeg. (Wdeg) is a second by-product of (Dom/Wdeg). With (Wdeg), variables
are ordered by considering their weighted degrees (the largest values first). The
Wdeg score is close to the VSADS score used in model counters and compilers
for propositional CNF formulae [24].

178 J.-M. Lagniez et al.

Impact-Based Search (IBS). With (IBS), one selects a variable with the highest
impact, where impact measures the importance of a variable in reducing the
search space [23]. An estimation of the size of the search space S(P) is the
product of every variable domain size:

S(P) =
∏

x∈X

|Dx|

The impact of a variable assignment at a decision node k is computed by the
ratio of the search space reduction as:

I(x = a) = 1 − S(Pk)
S(Pk−1)

Note that if x = a leads to a failure, then I(x = a) = 1, which is the maximum
impact as S(P k) = 0. It is easy to see that this heuristics can be used for
value selection as well. For variable selection, the average impact is preferred,
computed over the remaining values in its domain divided by its current domain
size. For more accurate results, a forgetting strategy is used in order to give less
importance to past variable assignments.

Activity-Based Search (ABS). With this heuristics, one selects a variable with
the highest activity, where activity is measured by the times the domain of each
variable is reduced during the search [20]. This heuristics is motivated by the key
role of propagation in constraint programming and relies on a decaying sum to
forget the oldest statistics progressively. The activities are initialized by making
random probing in the search space.

More formally, the activity A(x), of each variable x is updated at each node k
of the search tree regardless of the outcome (success or failure) by the following
two rules:

i. Ak(x) = Ak−1(x) ∗ γ, where 0 ≤ γ ≤ 1, |Dk
x| > 1 and Dk

x = Dk−1
x

ii. Ak(x) = Ak−1(x) + 1, where Dk
x ⊂ Dk−1

x

Conflict-Ordering Search (COS). This heuristics is considered more as a repair-
ing mechanism than as a heuristics, that can be combined with any (underlying)
variable ordering heuristics (e.g., (Dom/Wdeg)) [18]. When the solver needs to
backtrack, the last conflicting variables, recorded during search, are selected in
priority until they are all instantiated without causing any failure. Otherwise, in
normal mode, the variable ordering heuristics is the one that decides the next
variable.

3.2 Heuristics Targeting the MDDG Language

We have also considered eleven heuristics targeting the MDDG language, thus
promoting the generation of decomposable ∧-nodes. The rationale for it is the
gain in succinctness which mainly results in the generated representation when
such nodes are allowed. Indeed, consider a constraint network N with x variables

Defining and Evaluating Heuristics for the Compilation 179

each of them having a domain of size d > 1 (for simplicity reasons). Suppose that
every MDD representation of N has a size which is a fraction k (0 < k ≤ 1) of the
search space of all instantiations explored for generating it (which implies that
the corresponding compilation time will be at least as high). Suppose now that a
decomposition (X1,X2,X3) of the set X of variables of N has been found. Such
a decomposition is a tripartition of X such that for every assignment x1 over
X1, the conditioned network N | x1 has (at least) two disjoint components, one
over the variables of X2 and one over the variables of X3. Then a decomposable
∧-node can be generated. With |Xi| = xi (i ∈ {1, 2, 3}), the size of the resulting
MDDG representation of N will be at most dx1 × (k × dx2 + k × dx3), which is
always strictly smaller than the size k × dx1+x2+x3 of the MDD representation
of N , unless x2 = x3 = 1 (in which case the decomposition is trivial). One
can also easily check that the size of the resulting MDDG representation of N is
as small as the decomposition is balanced, i.e., as x2 and x3 are close. More
formally, x∗

2 = �x2+x3
2 � and x∗

3 = �x2+x3
2 � minimize the value of dx2 + dx3 when

the sum x2 + x3 is fixed (which is the case here whenever X1 has been set since
x1 + x2 + x3 = x). Accordingly, finding a “good” decomposition (X1,X2,X3),
i.e., a decomposition leading to an MDDG representation of “small” size) amounts
to minimizing x1 while making x2 and x3 as close as possible. It turns out that
those two objectives can be antagonistic so that a trade-off must be looked for.

Static Heuristics. Static heuristics consist in generating a decomposition tree
(dTree) prior to the compilation, which will be used to make precise the branch-
ing variables to be considered at each step. This approach is similar to the
one used by the C2D compiler for propositional CNF formulae, which targets the
Decision-DNNF language [8,9], see http://reasoning.cs.ucla.edu/c2d/. Roughly, a
dTree for a constraint network is a full binary tree which induces a recursive
decomposition of the network (for more details, see e.g., [10]).

The three static heuristics considered for computing a dTree are Min Degree
(dTree-MD), Min Fill (dTree-MF), and Hypergraph Partitioning (dTree-HP).

Min Degree (dTree-MD). The (dTree-MD) heuristics is used for generating a
dTree in a bottom-up way and is driven by a variable elimination ordering: the
variables are ordered by increasing degrees in the primal graph of the input
network. The generation of the dTree starts with the leaves (each of them being
associated with the scope of a constraint of the input network), and the initial
forest (set of trees) to be dealt with is composed of those leaves. Then the
variables of the network are considered according to the elimination ordering,
and each time a variable is picked up, a tree is computed so that all the trees of
the current forest which contain this variable are children of the resulting tree.
Once all the variables have been processed, a forest of dTrees is generated (it
consists of a single dTree when the primal graph of the network considered at
start is connected).

Min Fill (dTree-MF). The (dTree-MF) heuristics is also used for generating a
dTree in a bottom-up way and is driven by a variable elimination ordering (which

http://reasoning.cs.ucla.edu/c2d/

180 J.-M. Lagniez et al.

is different from the one corresponding to the Min Degree heuristics): the vari-
ables are ordered by increasing numbers of non-connected neighbours in the pri-
mal graph of the input network. Then the generation of the dTree is made as in
the case of Min Degree but considering the Min Fill elimination ordering instead.

Hypergraph Partitioning (dTree-HP). The hypergraph partitioning heuristics
considers the dual hypergraph of the input network and generates a dTree for it
in a top-down way. It looks for a subset of the set of hyperedges of the current
network containing as few elements as possible such that removing them leads
to a hypergraph containing (at least) two disjoint components having sizes as
close as possible. When the variables corresponding to the selected hyperedges
are instantiated (whatever the way they are assigned) it is guaranteed that the
current network conditioned by the corresponding assignment has at least two
disjoint components, so that a decomposable ∧-node can be generated in the
compiled form. This set of variables is the cut set of the root of the dTree,
and then the hypergraph partitioning approach proceeds recursively consider-
ing the disjoint hypergraphs which are generated by removing from the current
hypergraph the hyperedges which have been selected at the previous step. One
takes advantage of the partitioner PaToH – Partitioning Tools Hypergraph, v.
3.2 (http://bmi.osu.edu/∼umit/software.html) [7] to do the job.

As explained above, hypergraph partitioning goes further than minimal cut-
ting by taking account of the sizes of the subgraphs which are generated, which
must be balanced, i.e., their difference in terms of numbers of vertices must
be below a preset bound. This comes with a significant complexity increase
since determining whether there exists a hypergraph partition of DH(N) cor-
responding to a decomposition (X1,X2,X3) of N such that #(X1) ≤ c and
|#(X2)−#(X3)| ≤ d (where c and d are two given bounds) is NP-complete. This
departs deeply from the other heuristics considered in the paper which can be
computed in polynomial time. In our experiments, we looked for 2-partitionings
(i.e., one does not try to split the given hypergraph into more than two disjoint
components) and used the default setting of PaToH.

Dynamic Heuristics. The four (pairs of) remaining heuristics we have con-
sidered are dynamic ones: each selected variable is computed during the search
from the current network (thus, not prior to the search, from the input network),
such that the propagations resulting from the previous variable assignments and
leading to simplify the network, are taken into account. This can have a huge
impact on the compilation process (both on the compilation times and on the
sizes of the compiled forms).

We have considered two heuristics based on a notion of centrality (Between-
ness Centrality (BC) vs. Closeness Centrality (CC)), which favor the decom-
position of the current CN into components of balanced sizes by targeting the
variables which are in some sense the central ones in its primal graph. We have
also considered a heuristics based on Hypergraph Partitioning (HP) but this time
it is not in the objective of generating first a dTree from the dual hypergraph

http://bmi.osu.edu/~umit/software.html

Defining and Evaluating Heuristics for the Compilation 181

of the input network but considering instead the dual hypergraph of the cur-
rent network. Finally, we have also taken into account a Cut Set heuristics (CS),
which focuses on identifying variables to be instantiated in order to split the
current network into (at least) two disjoint components (whatever their sizes).

Each of those four heuristics (H) may point out several branching variables
as the best ones. When they are several best variables, they are ordered following
their decreasing (Dom/Wdeg) score. When (H) is used in its default mode, the
first variable w.r.t. this ordering is selected. When (H) is run in a parsimonious
mode (H-P), the score of each variable from the current set of best candidates
is not re-computed after each variable assignment but all the variables from this
set are successively considered as branching variables up to exhaustion.

Closeness Centrality (CC). Closeness centrality is a measure of the centrality of
a node in a graph [4]. Given a node Xi in a graph (here, the primal graph of the
current CN in which the nodes can be identified as with the variables labelling
them), the score cc(Xi) is calculated as the sum of the lengths of the shortest
paths between Xi and all other vertices in the graph. Thus the more central a
vertex is, the closer it is to all other vertices. Formally:

cc(Xi) =
1

ΣXj �=Xi
d(Xi,Xj)

where d(Xi,Xj) is the geodesic distance between nodes Xi and Xj which belong
to the same connected component of the graph. We also assume that the set
of vertices of the primal graph of the component of the current CN which
contains Xi is not a singleton, so that ΣXj �=Xi

d(Xi,Xj) �= 0 (indeed in the
remaining case, there is no option: Xi must be chosen in the component). The
computation of the values of all cc(Xi) when Xi varies in the set of vertices
of the primal graph of the current CN can be done in time polynomial in the
size of this graph, via a repeated use of breadth-first search from Xi or using
Floyd-Warshall algorithm. We took advantage of the code of Floyd-Warshall
algorithm from Boost Graph Library http://www.boost.org/doc/libs/1 64 0/
libs/graph/doc/ for implementing cc. Clearly enough, by instantiating first the
most central variables, the objective is to find out a decomposition (X1,X2,X3)
of the set of variables of the current network for which the cardinalities of |X2|
and |X3| are close, however the number of variables in X1 can be large and one
does not try to minimize it.

Betweenness Centrality (BC). Betweenness centrality is another measure of the
centrality of a node in a graph [5,6]. The score bc(Xi) is equal to the number of
shortest paths from all nodes to all others that pass through Xi. Formally,

bc(Xi) = ΣXj �=Xi �=Xk

σXi
(Xj ,Xk)

σ(Xj ,Xk)

where Xi,Xj ,Xk are nodes of the same connected component of the given net-
work, σ(Xj ,Xk) is the number of shortest paths from Xj to Xk, and σXi

(Xj ,Xk)

http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/
http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/

182 J.-M. Lagniez et al.

are the number of those paths passing through Xi. Thus, for the CN N given
at Example 1, X2 is the unique variable maximizing the value of bc.

Interestingly, computing the betweenness centralities of all nodes in (X , E)
can be done in time O(n.m), where n is the cardinality of X and m is the cardi-
nality of E . In practice, the computation of bc(Xi) for each node Xi of the primal
graph (X , E) of a CN is efficient enough so that it can be computed dynamically,
i.e., for each network encountered during the compilation process. Again, we
took advantage of the implementation of betweenness centrality available in the
Boost Graph Library.

The rationale for instantiating first the most central variables (as to (BC)) is
the same as the one for (CC), i.e., to split the network into two parts of similar
sizes. (BC) can also be seen as an alternative of community structure [14], where
instead of constructing communities by adding the strongest edges to an initially
empty vertex set, it constructs them by progressively removing edges from the
original graph. The community method detects which edges are most central
to communities, while betweenness finds those edges that are most “between”
communities. The community structure is thus more relevant for the bottom-up
approaches to knowledge compilation like the one presented in [21].

Hypergraph Partitioning (HP). The approach is the same as the one described
above, except that one does not compute a full dTree of the given hypergraph,
but only its root. Note that when the current hypergraph has several disjoint
components, the cut set returned by PaToH is empty so that no branching variable
is defined. This is harmless when MDDG is targeted since this problem cannot
happen in this case (a decomposable ∧-node would have been introduced before
a branching variable is sought). However, this is still problematic in the case MDD
is targeted. To deal with it, we switch to the (Dom/Wdeg) heuristics when such
a pathological situation occurs.

Cut Set (CS). A (2-way) cut of a (undirected) graph is a partition of its ver-
tices into two, non-empty sets. The corresponding cut set is the set of all edges
between the two sets of vertices. A minimal cut set is a cut set of minimal size.
Removing all the edges of the cut set of a graph leads to split it into two dis-
joint components. A minimal cut set of a graph (X , E) can be computed in time
O(n.m2) where n is the number of vertices of X and m is the number of edges in
E [11]. Once a cut set of the primal graph of the current CN has been computed,
one selects one variable per edge in the cut set. By construction, eliminating the
variables of the resulting set in the primal graph is enough for ensuring that the
resulting graph contains two disjoint components.

Using the cut set heuristics on the primal graph of the current constraint
network, one computes decompositions (X1,X2,X3) of the set of variables of the
current network. One does not take care at all of balancing |X2| and |X3|. In
our implementation, we exploited the Stoer/Wagner algorithm [25] for min-cut
available in the Boost Graph Library. As for (HP), if X1 turns out to be empty
and MDD is targeted, then we switch to the (Dom/Wdeg) heuristics.

Defining and Evaluating Heuristics for the Compilation 183

4 Empirical Evaluation

Setup. We have considered 546 CNs from 15 data sets.1 Those data sets
correspond to several families of problems, including configuration problems,
graph coloring, scheduling problems, frequency allocation problems. For some
instances, the constraints are represented extensionally, by the list of satisfying
tuples or by the list of forbidden tuples; for other instances, they are given in
intension. Each instance has been compiled using cn2mddg equipped with the
various heuristics we focused on.

Our experiments have been conducted on a Quadcore Intel XEON X5550
with 32GiB of memory. A time limit of 1800 s for the off-line compilation phase
(including the dTree generation when relevant) and a total amount of 8GiB of
memory for storing the resulting compiled representation have been considered
for each instance.

Results. We have first evaluated a random heuristics serving as base line for
compiling the 546 benchmarks (for this heuristics, the decision variables are
selected at random under a uniform distribution). Based on the random heuris-
tics, cn2mddg has been able to compile 271 instances when MDDG was targeted
and 238 instances when MDD was targeted.

We have then evaluated all the heuristic methods discussed before. In Fig. 2,
we report their performances on a cactus plot where the x axis represents the
number of “solved” (i.e., compiled) instances (numbers are displayed in the leg-
end) and the y axis the CPU time needed per method, in logarithmic scale.
Dotted lines correspond to MDD representations and solid to MDDG representations.

The general picture is that compiling constraint networks into MDDG allows
to solve constantly more instances than when compiling to MDD, independently
of the heuristics involved. The performance shift between the best approaches
(ABS) and (Dom/Wdeg) targeting MDD and the one targeting MDDG (HP-P) is
equal to 133–134 instances (over 546), which is significant. In more detail, when
MDD is targeted, (ABS) solves 258 instances in the time and memory given and
(Dom/Wdeg) solved 257 instances; the number of instances solved by the vir-
tual best solver induced by the set of heuristics is 388. Its performance shift with
(ABS) and/or (Dom/Wdeg) is thus large. When MDD is targeted, heuristics hav-
ing instances solved by them and only them are (ABS), (IBS) and (dTree-MF).
When MDDG is targeted, the best heuristics is (HP-P) with 391 instances solved;
in this case, the number of instances solved by the virtual best solver induced
by the set of heuristics is 404. Its performance shift with (HP-P) is thus quite
limited (13 instances only). When MDDG is targeted, heuristics having instances
solved by them and only them are (HP-P), (BC), (CC) and (dTree-MF).

When the target is MDD, as expected, heuristics that target to MDD work better
than heuristics targeting MDDG. However, the performance shift is not that huge

1 From www.cril.fr/∼lecoutre/benchmarks.html, http://github.com/MiniZinc/minizinc
-benchmarks, and www.itu.dk/research/cla/externals/clib/.

www.cril.fr/~lecoutre/benchmarks.html
http://github.com/MiniZinc/minizinc-benchmarks
http://github.com/MiniZinc/minizinc-benchmarks
www.itu.dk/research/cla/externals/clib/

184 J.-M. Lagniez et al.

 1

 10

 100

 1000

 150 200 250 300 350 400

C
P

U
 ti

m
e

us
ed

 (
in

 s
ec

on
ds

)

number of instances solved

MDDG HP-P (391)
MDDG BC-P (379)

MDDG BC (375)
MDDG dTree-HP (373)

MDDG Dom/Wdeg (372)
MDDG HP (368)

MDDG dTree-MD (367)
MDDG Wdeg (366)

MDDG dTree-MF (363)
MDDG CC-P (362)

MDDG CC (359)
MDDG COS (354)
MDDG ABS (325)

MDDG CS (289)
MDDG CS-P (288)
MDDG Dom (287)
MDDG IBS (284)

MDD CC-P (231)

MDD ABS (258)
MDD Dom/Wdeg (257)

MDD HP (255)
MDD Wdeg (255)

MDD IBS (248)
MDD HP-P (246)
MDD COS (244)

MDD dTree-MD (244)
MDD dTree-HP (244)
MDD dTree-MF (242)

MDD CC (239)
MDD BC (239)

MDD Dom (238)
MDD CS-P (238)

MDD CS (238)
MDD BC-P (235)

Fig. 2. Number of instances “solved” per method as the time allowed increases.

(it amounts to 27 instances, the worst heuristics for MDD being (CC-P) with 231
instances solved). Globally speaking, heuristics from the first group (the search-
based ones) appear as slightly better than the other heuristics but the difference
is not tremendous. Thus, one can also observe that the (HP) heuristics performs
quite well when MDD is targeted, with 255 instances solved, despite the fact
that it is designed for promoting decompositions. Contrastingly, some heuristics
performed quite bad, actually as bad as the random heuristics ((Dom), (CS),
(CS-P)) or even worse than it ((BC-P) and (CC-P)).

When MDDG is targeted, heuristics that take into account the graph struc-
ture are more suited. However, in that case, the performances shifts between
the heuristics from the two groups and between the heuristics from the second
group are important. Thus, the worst heuristics for MDDG is (IBS) which solves
only 284 instances, showing a shift of 107 instances with (HP-P). Other search
heuristics like (IBS), (Dom) and (ABS) also behave very poorly. Nevertheless,
all the heuristics which have been considered performed better than the ran-
dom one (with a shift at least equal to 13 instances). Search heuristics that take
into account structural information, namely the degree like (Wdeg) are more
efficient. It is interesting to note that the efficiency of (Dom/Wdeg) is mainly
due to its second by-product (Wdeg), since when we separately try (Dom) and
(Wdeg), there are 79 instances of difference in favor of (Wdeg). Such a differ-
ence does not appear when MDD is the target, demonstrating that structure plays
a critical role for producing meaningful decompositions. Focusing now on the
heuristics designed for promoting decompositions, significant shifts can also be
observed, (CS-P) and (CS) with 288 and 289 instances solved, respectively, being
far below the other heuristics (the next worst is (CC) with 359 instances solved).
The best members from this second group are (HP-P), and then (BC-P), (BC),
and (dTree-HP). Compared to (CS-P), (CS), (dTree-MD) and (dTree-MF), this
suggests that the fact that the generated decompositions are balanced has a

Defining and Evaluating Heuristics for the Compilation 185

major impact, which is more significant than the fact that the decomposition
is computed ex ante via the generation of a dTree, or on the fly. However, this
does not explain the deceiving performances of (CC-P) and (CC) which try as
well to split the network in two balanced parts by cutting it “in the middle”.

Let us now provide a more detailed, pairwise comparison of the performances
of the various heuristics. Tables 1 and 2 report (respectively) the dominance
matrices of the heuristics under consideration for the two target languages. Each
dominance matrix M gives for every pair of heuristics A, B, the number M [A,B]
of instances solved by A and not by B. Thus, when M [A,B] = 0 and M [B,A] �=
0, A is strictly dominated by B.

Table 1. Dominance matrix (MDDG).

A/B Dom/ Dom Wdeg IBS ABS COS dTree- dTree- dTree- CC-P BC-P HP-P CS-P CC BC HP CS

Wdeg MD MF HP

Dom/Wdeg - 85 8 89 48 19 7 12 1 27 17 5 85 30 20 5 84

Dom 0 - 0 11 3 0 1 4 0 12 8 0 16 13 9 0 16

Wdeg 2 79 - 83 46 15 8 14 3 27 17 5 82 29 19 4 81

IBS 1 8 1 - 3 2 2 5 1 14 9 0 16 15 9 1 16

ABS 1 41 5 44 - 5 6 10 2 20 15 5 45 22 17 5 44

COS 1 67 3 72 34 - 6 13 2 21 15 5 69 23 17 4 68

dTree-MD 2 81 9 85 48 19 - 10 0 24 14 3 81 27 17 4 80

dTree-MF 3 80 11 84 48 22 6 - 1 20 11 2 78 23 14 6 77

dTree-HP 2 86 10 90 50 21 6 11 - 27 17 5 86 30 20 5 85

CC-P 17 87 23 92 57 29 19 19 16 - 1 3 77 3 5 19 76

BC-P 24 100 30 104 69 40 26 27 23 18 - 4 93 21 4 26 92

HP-P 24 104 30 107 71 42 27 30 23 32 16 - 103 35 19 27 102

CS-P 1 17 4 20 8 3 2 3 1 3 2 0 - 5 4 1 0

CC 17 85 22 90 56 28 19 19 16 0 1 3 76 - 3 19 75

BC 23 97 28 100 67 38 25 26 22 18 0 3 91 19 - 25 90

HP 1 81 6 85 48 18 5 11 0 25 15 4 81 28 18 - 80

CS 1 18 4 21 8 3 2 3 1 3 2 0 1 5 4 1 -

For space reasons, we cannot detail the results obtained about the com-
pilation times and the sizes of the compiled forms for the various heuristics.
The benchmarks used and a detailed comparison in terms of compilation times
and sizes of the compiled forms, reported in a number of scatter plots, of all
the heuristics used can be found at http://www.cril.fr/KC/mddg.html. Roughly
speaking, it turns out that the best heuristics in terms of number of instances
solved are also the best heuristics when those two measures are considered
instead (the intuition being that one obtains less time-out and/or memory-out
precisely because the compilation times and the sizes of compiled forms are
shorter ones). As expected, targeting MDDG leads to more compact representa-
tions than when MDD is targeted instead. The scatter plots on Fig. 3 illustrate
it by focusing on the best heuristics for MDD (ABS) and (Dom/Wdeg) and the
best heuristics for MDDG (HP-P). Each dot represents an instance. The size (in
number of arcs) of the resulting compiled form, using the compiler cn2mddg

http://www.cril.fr/KC/mddg.html

186 J.-M. Lagniez et al.

Table 2. Dominance matrix (MDD).

A/B Dom/ Dom Wdeg IBS ABS COS dTree- dTree- dTree- CC-P BC-P HP-P CS-P CC BC HP CS

Dom/ MD MF HP

Dom/Wdeg - 19 4 10 2 1 13 16 13 26 22 11 19 19 19 2 19

Dom 0 - 0 3 0 0 0 3 0 11 7 0 12 11 7 0 12

Wdeg 2 17 - 11 2 1 12 15 12 24 20 9 20 17 16 4 20

IBS 1 13 4 - 1 1 10 13 10 22 18 8 15 16 16 1 15

ABS 3 20 5 11 - 2 15 18 15 28 24 13 21 19 19 4 21

COS 2 20 4 11 2 - 14 17 14 27 23 12 20 19 19 3 20

dTree-MD 0 6 1 6 1 0 - 3 0 13 9 1 15 14 10 0 15

dTree-MF 1 7 2 7 2 1 1 - 1 11 7 2 13 12 8 1 13

dTree-HP 0 6 1 6 1 0 0 3 - 13 9 1 15 14 10 0 15

CC-P 0 4 0 5 1 0 0 0 0 - 0 0 3 1 1 0 3

BC-P 0 4 0 5 1 0 0 0 0 4 - 0 6 5 1 0 6

HP-P 0 8 0 6 1 0 3 6 3 15 11 - 15 14 10 0 15

CS-P 0 12 3 5 1 0 9 9 9 10 9 7 - 4 7 0 0

CC 1 12 1 7 0 0 9 9 9 9 9 7 5 - 4 1 5

BC 1 8 0 7 0 0 5 5 5 9 5 3 8 4 - 1 8

HP 0 17 4 8 1 0 11 14 11 24 20 9 17 17 17 - 17

CS 0 12 3 5 1 0 9 9 9 10 9 7 0 4 7 0 -

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

M
D

D
G

 H
P

-P

MDD ABS

(a) (ABS) vs. (HP-P)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

M
D

D
G

 H
P

-P

MDD Dom/Wdeg

(b) (Dom/Wdeg) vs. (HP-P)

Fig. 3. Comparing the sizes of the MDD representations.

equipped with the heuristics corresponding to the x-axis (resp. y-axis) is given
by its x-coordinate (resp. y-coordinate). Logarithmic scales are used for both
coordinates. These empirical results clearly illustrates the value of the notion of
decomposition in the compilation process from the practical side.

Again, due to space limitations, we cannot provide a differential analysis
of the heuristics performances depending on the family of benchmarks. How-
ever, the family chosen has a clear impact on the performances. For instance,
when MDDG is targeted, (HP-P) proved better than (Dom/Wdeg) for compiling
Bayesian networks and (Dom/Wdeg) proved better than (HP-P) for instances
of the frequency allocation problem (FAP) which are difficult to decompose.

Defining and Evaluating Heuristics for the Compilation 187

5 Conclusion

In this work, we have evaluated several branching heuristics for the top-down
compilation of constraint networks into the MDD language and into the MDDG
language, through the use of the cn2mddg compiler. Our evaluation on a large
dataset demonstrated that the decomposability of the constraint graph allows to
compile many more instances and offers much smaller compiled representations.
In particular, when compiling networks into MDD, the (Dom/Wdeg) heuristics
proved to be the best, while for MDDG representations, a new heuristics (HP-P)
based on dynamic, yet parsimonious hypergraph partitioning was the best per-
former.

References

1. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations
in dynamic CSPs application to configuration. Artif. Intell. 135(1–2), 199–234
(2002)

2. Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complex-
ity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell.
Tools 23(4) (2014)

3. Bart, A., Koriche, F., Lagniez, J.M., Marquis, P.: An improved CNF encoding
scheme for probabilistic inference. In: Proceedings of ECAI 2016, pp. 613–621
(2016)

4. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am.
22(6), 725–730 (1950)

5. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25(2),
163–177 (2001)

6. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Soc. Netw. 30(2), 136–145 (2008)

7. Catalyürek, U., Aykanat, C.: PaToH (Partitioning Tool for Hypergraphs), pp.
1479–1487. Encyclopedia of Parallel Computing (2011)

8. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)
9. Darwiche, A.: New advances in compiling CNF into decomposable negation normal

form. In: Proceedings of ECAI 2004, pp. 328–332 (2004)
10. Darwiche, A., Hopkins, M.: Using recursive decomposition to construct elimination

orders, jointrees, and dtrees. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001.
LNCS (LNAI), vol. 2143, pp. 180–191. Springer, Heidelberg (2001). doi:10.1007/
3-540-44652-4 17

11. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM 19(2), 248–264 (1972).
http://doi.acm.org/10.1145/321694.321699

12. Fargier, H., Marquis, P.: On the use of partially ordered decision graphs in knowl-
edge compilation and quantified Boolean formulae. In: Proceedings of AAAI 2006,
pp. 42–47 (2006)

13. Gergov, J., Meinel, C.: Efficient analysis and manipulation of OBDDs can be
extended to FBDDs. IEEE Trans. Comput. 43(10), 1197–1209 (1994)

14. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

http://dx.doi.org/10.1007/3-540-44652-4_17
http://dx.doi.org/10.1007/3-540-44652-4_17
http://doi.acm.org/10.1145/321694.321699

188 J.-M. Lagniez et al.

15. Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting con-
straints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

16. Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191–219
(2007)

17. Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Compiling constraint networks
into multivalued decomposable decision graphs. In: Proceedings of IJCAI 2015, pp.
332–338 (2015)

18. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in
constraint programming. Artif. Intell. 173(18), 1592–1614 (2009)

19. Marinescu, R., Dechter, R.: Dynamic orderings for AND/OR branch-and-bound
search in graphical models. In: Proceedings of ECAI 2006, pp. 138–142 (2006)

20. Michel, L., Hentenryck, P.: Activity-based search for black-box constraint pro-
gramming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29828-8 15

21. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compil-
ing configuration problems. In: Proceedings of IJCAI 2007, pp. 149–154 (2007)

22. Oztok, U., Darwiche, A.: On compiling CNF into decision-DNNF. In: O’Sullivan,
B. (ed.) CP 2014. LNCS, vol. 8656, pp. 42–57. Springer, Cham (2014). doi:10.1007/
978-3-319-10428-7 7

23. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

24. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Proceedings of AAAI 2005, pp. 475–482 (2005)

25. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-319-10428-7_7
http://dx.doi.org/10.1007/978-3-319-10428-7_7
http://dx.doi.org/10.1007/978-3-540-30201-8_41

A Tolerant Algebraic Side-Channel Attack
on AES Using CP

Fanghui Liu, Waldemar Cruz, Chujiao Ma, Greg Johnson,
and Laurent Michel(B)

Computer Science and Engineering Department, School of Engineering,
University of Connecticut, Storrs, CT 06269-4155, USA

{fanghui.liu,waldemar.cruz,chujiao.ma,greg.johnson,
laurent.michel}@uconn.edu

Abstract. AES is a mainstream block cipher used in many protocols
and whose resilience against attack is essential for cybersecurity. In [14],
Oren and Wool discuss a Tolerant Algebraic Side-Channel Analysis
(TASCA) and show how to use optimization technology to exploit side-
channel information and mount a computational attack against AES.
This paper revisits the results and posits that Constraint Programming
is a strong contender and a potent optimization solution. It extends
bit-vector solving as introduced in [8], develops a CP and an IP model
and compares them with the original Pseudo-Boolean formulation. The
empirical results establish that CP can deliver solutions with orders of
magnitude improvement in both run time and memory usage, traits that
are essential to potential adoption by cryptographers.

Keywords: Algebraic Side-Channel Attack · AES · Cryptography ·
Block cipher · Constraint programming · Optimization

1 Introduction

Tolerant Algebraic Side-Channel Analysis (TASCA) attack is a combination
of algebraic and side-channel attacks with possible errors taken into account.
A cryptographic algorithm takes a plaintext and a secret cipher key as input.
Through rounds of permutations and combinations, it outputs the encrypted
message also known as ciphertext. Algebraic cryptanalysis attacks first model
the target algorithm as a system of equations then solve for the secret key. Since
solving such system of equations is generally prohibitively expensive computa-
tionally, side-channel information is added [17]. In side-channel analysis (SCA),
data leaked during the encryption or decryption of the algorithm, such as power
consumption, are related to the intermediate values internal to the algorithm.
With such knowledge and given either plaintext or ciphertext, the attacker can
utilize a divide-and-conquer strategy and use statistical analysis to recover bytes
of the key [6]. However, such attack is dependent on the accuracy of the data
gathered. To reduce the sensitivity of SCA to noise from the measurement or
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 189–205, 2017.
DOI: 10.1007/978-3-319-66158-2 13

190 F. Liu et al.

decoding errors, a large number of samples may be needed. By combining alge-
braic cryptanalysis and SCA, fewer samples are needed and the attack can also
succeed in unknown plaintext/ciphertext scenarios [16].

The success of the standard “Algebraic Side-channel Attacks” (ASCA), which
include no attempt at being fault-tolerant regarding power trace measurements,
depends on the accuracy of the side-channel data, i.e., the Hamming weights.
Modification to ASCA to account for noise/error tolerance were introduced
in [10]. One approach, introduced in [17], represents the Hamming weights as
equations that accept any value from a set of several possible values instead of
just a single possible value and relies on SAT solvers such as CryptoMiniSAT
[18]. When multiple solutions are possible, the non-optimizing SAT solver arbi-
trarily chooses a solution and terminates, thus the success of the attack is still
dependent on the error rate rather than the set size. For TASCA as presented by
Oren and Wool [13], an optimizing solver with a goal function to minimize the
amount of modeled noise is used. This transforms the problem from a satisfiabil-
ity problem to an optimization problem and drastically increases the probability
of successfully recovering the key. The key was recovered with error rate up to
20% using SCIP with a Pseudo-Boolean formulation. The error rate refers to the
probability that the Hamming weight of a leak is incorrect. The key is counted
as recovered or correct if four or less bytes of the sixteen byte key are wrong.

However, the solving time of the optimizer was inferior to that of the SAT
solver and grew in proportion to the set size [14]. The optimizer used to perform
TASCA required significant memory to represent the entire AES encryption in
equation form [12]. The purpose of this paper is to revisit the TASCA attack
with a Constraint Programming (CP) model over bit-vectors and explore its
capabilities relative to IP solvers reported in [13]. CP was used in [5], to model
a differential crypt-analysis attack which differs significantly from attacks based
on side-channel data and relies on a multi-stage relaxation technique. CP was
also used in [15] to design better S-boxes.

Section 2 of the paper introduces the modeling of AES and side-channel infor-
mation. Section 3 presents TASCA and an IP approach. Section 4 introduces CP
aspects. Section 5 discusses the CP implementation. Section 6 compares the IP
and CP approaches. Section 7 concludes the paper.

2 Modeling AES and Side-Channel Information

AES is a symmetric block cipher that supports block lengths of 128, 192 and
256 bits. The version used in this paper is AES-128 and consists of 10 rounds.
The 128-bit cipher key is first expanded into 11 round keys via key expansion
[4]. During the encryption, the plaintext is separated into blocks of 16 bytes,
where each block is represented by bytes p0..p15 in Fig. 1. The block is arranged
as a 4 × 4 matrix and combined with an initial round key. It then goes through
9 rounds consisting of four subrounds, then one last round without MixColumns
to produce the ciphertext c0 to c15. The subrounds in Fig. 2 are:

A Tolerant Algebraic Side-Channel Attack on AES Using CP 191

– SubBytes: substitute each byte of the state using an S-box.
– ShiftRows: shift each of the four rows 0, 1, 2 and 3 bytes to the left.
– MixColumns: multiply each column with a matrix of constants (MC).
– AddRoundKey: XOR the state with the round key from the key expansion.

Plaintext
(…)

SubBytes
ShiftRows

MixColumns
AddRoundKey

One Round
(9 times)

SubBytes
ShiftRows

AddRoundKey

dnuoRtsaLyeKdnuoRddA

Ciphertext
(…)

16 bytes of state for round

Fig. 1. AES flowchart.

ShiftRows

SubBytes

MixColumns

MC

AddRoundKey

 sBox

Fig. 2. AES subround operations, with x being the input state.

For more details on the structure of AES, please refer to [4]. This analy-
sis considers a simulated implementation of the AES-128 as device under test
(DUT). It assumes that the key expansion is done in advance and no leaks from
the process are available. This corresponds to a more challenging scenario since it
was shown in [7] that side-channel leakages from an 8-bit microcontroller imple-
mentation of AES during key expansion are sufficient to recover the complete
key. Numerous research has shown that side-channel leakages occur regardless
of whether the implementation of AES is for 8-bit microcontroller [16], 32-bit
CPU [1], or an FPGA [19], hence we do not focus on the hardware aspect.

The purpose of this paper is to investigate the potential that constraint
programming offers. For the sake of comparison, the attack model is the same as
that of [13]. Namely, we assume that the attacker has access to a DUT (device
under test) that emits a measurable power consumption trace, during encryption,
from which the attacker is able to learn about the internal state of the DUT

192 F. Liu et al.

during the cryptographic operations and quantified as Hamming weights. The
TASCA attack examines one round of AES only. The plaintext, AES model,
and the Hamming weights with error taken into account are modeled as sets of
constraints. The constraints are given to the solver, which solves for the key.

3 IP Approach

The approach described in [14] uses SCIP as a Pseudo-Boolean solver [2]. In par-
ticular, it does not linearize several constraints and leaves to SCIP the responsi-
bility to produce a linear encoding or deal with the Pseudo-Boolean aspects on
its own. The IP model considered here explicitly linearizes all the constructions.

Decision Variables. The encoding of the AES algorithm uses three types of
variables to represent the state of the algorithm, the round keys and a relaxation
of the side-channel constraints with slack variables.

State Variables. Ssr,i,j corresponds to each intermediate state. Ssr,i,j denotes
the value of bit j of state byte i at subround sr, where sr ∈ [0, 40], i ∈ [0, 15],
j ∈ [0, 7]. S0 represents the initial plaintext and S40 represents the ciphertext.

Key Variables. Kr,i,j corresponds to each 128-bit round key. Kr,i,j denotes the
value of bit j of key byte i at round r, where r ∈ [0, 10], i ∈ [0, 15], j ∈ [0, 7].
Note that K0 is equal to the cipher key according to [4].

Error Variables. Esr,i relaxes the SCA constraints to account for noise in side-
channel equations. The actual value of a state variable is allowed to deviate from
the measured value by ±1. The variable Esr,0 denotes the positive error and the
variable Esr,1 denotes the negative error for subround sr.

Product Encodings. AES uses a set of non-linear algebraic equations that contain
multiplication and exclusive OR. Encoding an exclusive OR O = A ⊕ B where O,
A, B ∈ {0, 1}, is done with

A + B − 2AB − O = 0

which is linearized with the elimination of the product AB in favor of an auxiliary
Boolean variable P and the inequalities A ≥ P (1), B ≥ P (2) and A+B−P ≤ 1
(3). Indeed, P = 1 forces both A and B to be 1 whereas A = B = 1 forces P = 1
through (3). If only one of A or B is 1, by either (1) or (2), then P = 0. This
can be generalized to a product of Boolean variables

∏n
i=1 bi with the set of

inequalities

∀i ∈ 1..n : bi ≥ P
n∑

i=1

bi − P ≤ n − 1

This approach is also reported in [2].

A Tolerant Algebraic Side-Channel Attack on AES Using CP 193

XTime. AES implementations use a byte-level operation to further mix bits
within a single byte. xtime : {0, 1}8 → {0, 1}8 is a function transforming an 8-
bit input sequence x into an 8-bit output sequence y, i.e., y = xtime(x) specified
as:

y =
{

(x << 1) ⇔ x7 = 0
(x << 1) ⊕ 0x1b ⇔ x7 = 1

that applies a left shift to the 8-bits and subsequent conditional bitwise XOR
with value 0x1b if the most significant bit is 1. The operation is described in
Sect. 4.2.1 of the FIPS specification of AES [11].

AES Constraints. Once the basic operations are linearized, we can then model
the subrounds of AES as well as the side-channel constraints and error variables.

– AddRoundKey is a straightforward XOR operation. It takes in a state
Ssr,i,j and a round key Kr,i,j , then performs an XOR operation to translate
Ssr,i,j to Ssr+1,i,j .

– SubBytes is a non-linear byte-wise substitution. The mapping of the Sub-
Bytes permutation π : {0, 1}8 ⇒ {0, 1}8 is defined by a look-up table
Sr+1,i = π[Sr,i], where the permutation π maps a group of 8 bits to another
group of 8 bits. This operation transforms a state variable Ssr,i,[0..7] to
Ssr+1,i,[0..7]. The permutation π is represented by the following truth table:

x7 x6 x5 x4 x3 x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0

.

1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1

The constraint y = π[I(x)] (where I is a function that gives the integer inter-
pretation of its bit-vector argument) states that the value of y is the xth entry
of the look-up table for π. For instance, row 0 of the table maps the bit-string
00000000 to the bit-string 01100011. Namely, when the bits of x are equal to
00000000, represented by the conjunction of literals x̄7x̄6x̄5x̄4x̄3x̄2x̄1x̄0, then
the bits of y must take the value 10011100 implying that the conjunction of
literals ȳ7y6y5ȳ4ȳ3ȳ2y1y0 must also be true. Therefore, the non-linear Boolean
equation

x̄7x̄6x̄5x̄4x̄3x̄2x̄1x̄0 − ȳ7y6y5ȳ4ȳ3ȳ2y1y0 = 0

encodes the first row of the π lookup table and 256 such equations capture
the entire table.
Naturally, each n-ary product is linearized with the encoding from the pre-
vious sub-section. Overall, this requires 9 · 2 · 256 linear inequalities and
equations for each occurrence of SubBytes in AES.

194 F. Liu et al.

– ShiftRows is a logical circular shift on the state variables. Because there
are no changes in the values, it does not leak any side-channel information.
Therefore, ShiftRows is combined with MixColumns. To combine them, the
state variables are shifted based on the rules for ShiftRows and then passed
to MixColumns. For example, the ShiftRows operation for state 2 rearranges
the entries in each row of the 4× 4 state matrix S2 as follows

[S2,0, S2,5, S2,10, S2,15] = ShiftRows([S2,0, S2,1, S2,2, S2,3])
[S2,4, S2,9, S2,14, S2,3] = ShiftRows([S2,4, S2,5, S2,6, S2,7])
[S2,8, S2,13, S2,2, S2,7] = ShiftRows([S2,8, S2,9, S2,10, S2,11])

[S2,12, S2,1, S2,6, S2,11] = ShiftRows([S2,12, S2,13, S2,14, S2,15])

– MixColumns is a more complex operation that applies to a column of the
state matrix at a time. At a high-level it can be represented directly with:

[S4,0, S4,1, S4,2, S4,3] = MixColumns([S2,0, S2,5, S2,10, S2,15])
[S4,4, S4,5, S4,6, S4,7] = MixColumns([S2,4, S2,9, S2,14, S2,3])

[S4,8, S4,9, S4,10, S4,11] = MixColumns([S2,8, S2,13, S2,2, S2,7])
[S4,12, S4,13, S4,14, S4,15] = MixColumns([S2,12, S2,1, S2,6, S2,11])

The 32-bit operation is repeated 4 times, once for every column. For an
8-bit processor, the transformation has an efficient implementation using
8-bit words [14], which is used by the IP model. The following shows the
four equations for one output column [o0, o1, o2, o3] based on an input col-
umn [a0, a1, a2, a3]:

ok =
(⊕3

i=0 ai

)
⊕ xtime(ak ⊕ a(k+1) mod 4) ⊕ ak ∀ k ∈ 0..3

in which xtime is the byte level operation described earlier. Suppose x is an
8-bit input sequence and y is an 8-bit output sequence, to linearize the xtime
operation, the following encoding is applied

yi+1 = xi ⊕ x7 ∀i ∈ {0, 2, 3}
y(i+1) mod 8 = xi ∀i ∈ {1, 4, 5, 6, 7}

– Key Expansion is an invertible key derivation function that maps a given
cipher key to a series of round keys. The key expansion derives the next round
key by applying a series of XOR operations to the current round key with
round constants RC and a series of SubBytes substitutions. The following is
an example of the derivation of the second round key:

K1,0 = SubBytes(K0,13) ⊕ K0,0 ⊕ RC0 (1)
K1,1 = SubBytes(K0,14) ⊕ K0,1 (2)
K1,2 = SubBytes(K0,15) ⊕ K0,2 (3)
K1,3 = SubBytes(K0,12) ⊕ K0,3 (4)
∀i ∈ {0, ..., 11} K1,i+4 = K1,i ⊕ K0,i+4 (5)

A Tolerant Algebraic Side-Channel Attack on AES Using CP 195

– Side-Channel Constraints model the Hamming weights (number of bits
with value of 1 for each byte) of state. To handle measurement errors, each
equation uses slack variables. Namely, let Msr,i denote the Hamming weight
for state Ssr,i. A tolerant side-channel constraint for byte i of subround sr

becomes
∑7

j=0 Ssr,i,j + E+
sr,i − E−

sr,i = Msr,i where the slacks E+
sr,i and E−

sr,i

relax the Hamming weight requirement from the power trace.
– Objective Function minimizes the total measurement of error and is written

as
min :

∑
E+

sr,i +
∑

E−
sr,i

4 Constraint Programming

A Constraint Satisfaction Problem (CSP) is a tuple 〈X,D,C〉 where X is a
finite set of variables, C is a set of constraints and D is a set of domains for the
variables, i.e., ∀x ∈ X, D(x) denotes the domain of variable x.

4.1 Bit-Vector Domains

A bit-vector b[k] is a sequence of k ≥ 1 bits and bi (i ∈ 0..k−1) is the ith bit. For
instance, 100 is a bit-vector of length 3 with its least significant bit (b0) equal to
0 and most significant bit (b2) equal to 1. This paper assumes that bit-vectors are
of length 8 and we slightly abuse notation using b to refer to b[8]. Bit-vectors are
denoted by the letters b, l, and u. The narrative adopts the bit-vectors from [8]
in which the domain is a pair 〈l, u〉 of bit-sequences such that li ≤ ui (0 ≤ i < k).
The bit-vector domain represents the set of bit-sequences

{b | l ≤ b ≤ u ∧ ∀i ∈ 0..k − 1 : li = ui ⇒ bi = li}
The ObjectiveCP solver offers an implementation for bit-vectors of arbitrary
length. Emerging implementations have been introduced in the literature includ-
ing one built on top of MiniSat [21] as well as another CP implementation [3].

4.2 Bit-Vector Constraints

The bit-vector library in [8] supports constraints for arithmetic, relational, logi-
cal and structural bit-vector manipulations. A significant number of propagators
run in O(1) time. While extensive, the library misses two bit-vector constraints
to neatly express the TASCA model. Those are a generalization of the element
constraint over bit-vector arrays and the count constraint to determine the
Hamming weight of a bit-vector. Both extensions are described next.

Element Constraint. The element constraint for finite-domains solvers
appeared first in [20]. The constraint is defined as element(x,t,y) and states
that y = t[x], namely, y is constrained to be the xth entry of table t. This exten-
sion considers the constraint y[k] = t[k][x[n]] where x[n] is an n-bit long bit-vector

196 F. Liu et al.

representing an unsigned integer between 0 and 2n − 1, t[k] is a 0-based table of
bit-vectors of length k containing at most 2n − 1 entries and y[k] is a bit-vector
of length k. Given the natural interpretation function I(x) =

∑n−1
i=0 xi · 2i, the

semantics of the constraint is simply y[k] = t[k][I(x[n])].
The propagation algorithm uses an auxiliary function IC(p, y) which, given

a bit-sequence from D(x), computes the set of incompatible bits. Its definition is

IC(p, y) = {i ∈ 0..k−1|y.li = y.ui}∩{i ∈ 0..k−1|t[I(p)]i < y.li∨y.ui < t[I(p)]i}
Namely, it is the set of bits fixed in y and disagreeing with the pth entry of table
t. With IC, one can define the subset of D(x) of compatible values with y, i.e.,
I = {p ∈ D(x)|IC(p, y) �= ∅}. Four arrays can maintain the number of supports
for 0 and 1 in x and y and are defined as

∀v ∈ {0, 1} , ∀i ∈ 0..k − 1 : syi (v) = |{p ∈ I | t[I(p)]i = v}|
∀v ∈ {0, 1} , ∀i ∈ 0..n − 1 : sxi (v) = |{p ∈ I | pi = v}|

The propagation algorithm triggered whenever D(x) or D(y) changes is:

procedure Propagate(y, t, x) � When D(x)/D(y) changes
for all p ∈ I do

if IC(p, y) �= ∅ then � the index bit-sequence is incompatible.
I ← I \ {p}
if |I| = 1 then D(x) ← k , y ← t[k] with k ∈ I

if |I| = 0 then fail()

update(p, t[p], sy, sx) � Supports are decreased.

for all i ∈ 0..n − 1 | x.li < x.ui do � Consider free bits in x.
if sxi (0) = 0 then x.li ← 1

if sxi (1) = 0 then x.ui ← 0

for all i ∈ 0..k − 1 | y.li < y.ui do � Consider free bits in y.
if syi (0) = 0 then y.li ← 1

if syi (1) = 0 then y.ui ← 0

The algorithm runs in O(|D(x)| · max(n, k)) as it must update the supports for
each incompatible bit-sequence in I. Both sy and sx are reversible.

Bit-Vector Count Constraint. The count(b,x) constraint is a special case
of the cardinality global constraint for integer variables. It is defined on one
bit-vector variable b with D(b) = 〈l, u〉 and one integer variable x with a finite
domain D(x) = [L..U]. It enforces x =

∑n−1
i=0 (bi = 1). Note that M =

∑n−1
i=0 li

is the number of mandatory bits (already set at 1) while P =
∑n−1

i=0 (l ⊕ u)i is
the number of possible bits (free bits that could go to 1). Both quantities can
be computed in O(1) with the assembly-level popcount instruction. Whenever
b changes or the bounds of x change, one can run the following constant time
algorithm to enforce bit consistency.

A Tolerant Algebraic Side-Channel Attack on AES Using CP 197

procedure Propagate(x = [L..U], b = 〈l, u〉) � When D(x)/D(b) changes
M =

∑n−1
i=0 li, P =

∑n−1
i=0 (l ⊕ u)i � Runs in O(1)

if L > M + P ∨ U < M then fail()

L ← max(L, M), U ← min(U, M + P)
if L = M + P then D(x) ← {L} , D(b) ← 〈u, u〉
else if U = M then D(x) ← {U} , D(b) ← 〈l, l〉
else

D(x) ← [L..U]

5 CP Approach

The IP section showed that it is possible to produce a linear encoding of AES
with side-channel constraints. However, the encoding is cumbersome due to bit-
blasting and the heavy cost of modeling non-linear constructions such as the
S-Box. By using bit-vectors with a constraint programming model, a more direct
and natural formulation becomes possible. Bit-vectors [8] are the corner stone
of this formulation.

Variables/Bit-Vector. Each state variable is represented by 16 8-bit wide bit-
vectors. In the IP model, a byte would be represented by 8 Boolean variables
Ssr,i,j ∈ {0, 1}. In the CP model, it is represented by a single bit-vector Ssr,i ∈
{0, 1}8. All the AES subrounds transformations operate over 8-bit values.

Constraints. The CP model is particularly attractive as the formulation does
not require any cumbersome encoding and is now lightweight direct expression
of the AES transformations.

– AddRoundKey is implemented as a bitwise XOR operation between two
8-bit bit-vector variables. In the IP model, the linearization of an XOR oper-
ation requires several constraints. In the CP model, the XOR operation only
requires one constraint per byte: Ssr,i ⊕ Kr,i = Ssr+1,i,∀i = {0, · · · , 15}.

– SubBytes is implemented as an element constraint over bit-vectors. The
element constraint z = c[I(x)] takes in an array c of (constant) bit-vectors
and requires z to be equal to the I(x)th entry of the array c. An array of 256
constant bit-vectors model the full substitution box.

– ShiftRows & MixColumns are combined just like for the IP model. As
before, the 8-bit efficient MixColumns implementation is used in the CP encod-
ing. Bit-vector constraints are used to capture XOR as well as xtime resulting
in the same non-linear Boolean constraints

βk = xtime(ak ⊕ a(k+1) mod 4) ∀ k ∈ 0..3

ok =

(
3⊕

i=0

ai

)

⊕ βk ⊕ ak ∀ k ∈ 0..3

198 F. Liu et al.

meant to connect the input bytes of MixColumns to its output bytes. However,
it is no longer necessary to linearize these equations as the bit-vector solver
natively supports all the operators.

– Key Expansion It uses the Eqs. (1)–(5) but sidesteps any linear encoding in
favor of a direct native expression based on bit-vectors and using bit-vector
elements (for the S-Boxes) and XOR constraints.

– Side-Channel Constraints are created using the count(b,x) constraint
on bit-vectors. The formulation is linear and therefore identical to the one
used in the IP model:

count(Ssr,i) + E+
sr,i − E−

sr,i = Msr,i

The bit-vector constraint count(b, c) requires c to be the Hamming weight of
the bit-vector b. Namely, c = |{k ∈ 0 · · · n|b|k = 1}|.

– Objective Function is the total number of errors, same as in the IP model:

min :
∑

E+
sr,i +

∑
E−

sr,i

Search. The search is a major component in the optimized TASCA and focuses
on the side-channel information. For each of the 16 bytes of the state variables
appearing in each of the 40 stages, a Hamming weight is generated as the side-
channel information. A candidate value v ∈ D(Sr,i) has a Hamming weight
H(v) =

∑
b∈0..7(v|b = 1) capturing the number of bits at 1 in v. TASCA imposes

that D(Sr,i) be restricted to values v for which

−1 ≤ H(v) − Mr,i ≤ 1

i.e., the discrepancy between the measurement Mr,i and the value v does not
exceed ±1. The CP model minimizes an objective that captures the total number
of deviations (errors) that may be observed for the Hamming weights throughout
the 40 replications of AES’s state. Branching on value assignments that yield the
least amount of errors in the objective will be most effective to get high-quality
solutions early on. With the objective equal to the sum of the errors, we have

min
41∑

j=0

E(j, σ(Sj)) where E(j, v) =

{
0 if H(v) = Mj

1 if H(v) = Mj ± 1

and σ is the current value assignment. It is tempting to guide the search process
with a custom procedure that takes advantage of the objective function and the
semantics of AES. Such a procedure would first consider assignments that have
the least impact on the objective function, and therefore on the errors. Unsur-
prisingly, this implies that it may be advantageous to branch not on individual
bits, but instead on entire bit-vectors to quickly get good bounds on the number
of errors induced by an assignment.

A Tolerant Algebraic Side-Channel Attack on AES Using CP 199

MixColumns

SubBytes

AddRoundKey

Fig. 3. Circuit for bytes {0, 1, 2, 3}.

A Circuit View. Consider a single round of the AES algorithm containing all 4
subrounds, AddRoundKey, SubBytes, and MixColumns/ShiftRows. Figure 3 illus-
trates the subrounds for the first column of the state matrix. The structure is
repeated four times for the entire state. The column [S0,0S0,5S0,10S0,15]T of the
state and the column [K0,0K0,5K0,10K0,15]T of the sub-round key form the inputs
at the bottom of the Figure. In round 1, [S0,0S0,5S0,10S0,15]T are known since
they represent bytes of the plaintext. AddRoundKey and SubBytes apply bijective
transformations once the state is known. Consequently, as soon as S2,0, S1,0 or
K0,0 is fixed, the others are fixed by propagation (This is also true for S2,5, S1,5

and K0,5). The dashed box on the far left that contains S2,0 and S2,5 highlights
the inputs to an exclusive OR that yields the temporary value TM0. The output
of the circuit TM ′

0 is the first byte of the output, i.e., state S4,0. The vertical
light-gray column on the far left is a description of the relations defining byte
0 of the output. The evaluation of TM0 rests upon the availability of values for
both S2,0 and S2,5. Observe that if, for instance, S2,5 is fixed, one only needs to
fix S2,10 to get propagation up and down and fix both K0,10 and TM ′

1.

Variable Selection Heuristic. Branching on TM0 will only trigger propagation
“up” as the exclusive OR will not be able to push information “down”. Similarly,
branching on S2,0 or even K0,0 will have a limited propagation given the bijective
nature of the relations in the bottom “legs”. However, simultaneously assigning
both variables in the dashed box will trigger propagation up and down.

This is a key insight into the variable selection strategy. The search should
branch on pairs of variables that trigger propagation within an entire gray box.
In Fig. 3 this implies four columns for a total of 16 pairs of variables to consider
for the first branching decision (recall that this structure is replicated 4 times).
Note how the four columns are topped by TM ′

0, TM ′
1, TM ′

2 and TM ′
3. Once

a pair is selected, the search should create another pair by reusing one of the
two variables from the first pair. For instance, if 〈S2,0, S2,5〉 was selected, it is
tempting to consider the two pairs 〈S2,5, S2,10〉 and 〈S2,15, S2,0〉 as the domains
of TM1 and TM3 were reduced by the first choice.

Finally, not all pairs of values drawn from the domains of S2,0 and S2,5 are
compatible. Some of these pairs may induce errors that exceed the ±1 margin

200 F. Liu et al.

dictated by TASCA. It is thus advisable to follow first-fail and break ties among
pairs of variables based on the number of pairs of values that yield assignments
compatible with the error margins.

Value Selection Heuristic. The errors in the objective are driven by the sum of
measurement errors on state variables. If the search considers a pair of values

〈a, b〉 ∈ D(S2,0) × D(S2,5)

it can assess the impact that the simultaneous assignments S2,0 = a ∧ S2,5 = b
would have on the errors at the state variables in the leftmost gray column.
This assessment is an under-approximation of the true error induced by the
assignments. Indeed TM ′

1 can expose errors caused by the choice of value b for
S2,5, but that falls outside the gray column and is therefore ignored. A sensible
value selection heuristic considers pairs of values and assess their quality with a
scoring function C. Given a pair of values 〈a, b〉, the scoring is

C(〈a, b〉) = Cleg(a, [S2,0, S1,0,K0,0])+Cleg(b, [S2,5, S1,5,K0,5])+Cmc(a⊕b, [TM ′
0])

The functions Cleg and Cmc model the errors attributable to a leg in the gray
box, or the top of a gray box (the MixColumns operation) and a⊕ b denotes the
value inferred for TM0 based on the connecting XOR constraint. Cleg and Cmc

measure the differences between the value of the state variable and the expected
Hamming weight. Given a pair of variables and the scoring function C, the value
heuristic enumerate pairs that contribute the least to the objective function.

Optimality Pruning. Since the total contribution of errors due to Hamming
weights accumulate as the search dives deeper, the total error can be used to
further prune value-pairs whose contribution would bring the total beyond the
total error for the incumbent solution.

Procedure. It is helpful to define V arPairs as the set of pairs of variables that
the search will be branching on. Those correspond to the variables in the dashed
boxes in Fig. 3 and are consecutive variables in the state matrix that MixColumns
operates on. Additionally, let Col(〈X,Y 〉) denote the state variables connected to
X and Y in that same column (vertical gray highlight). Given a pair of variable
〈X,Y 〉 it is possible to define the domain

D(〈X,Y 〉) =
{

〈a, b〉 ∈ D(X) × D(Y) : −1 ≤ max
z∈Col(〈X,Y 〉)

C(a, b) ≤ 1
}

as the set of value pairs from D(X) × D(Y) with error levels compatible with
the Hamming weights. Let B(X) return 0 or 1 based on whether X is bound.

6 Experimental Setup

The CP solver used in the experiments is Objective-CP [9] which combines
modeling and search including user-defined search. The IP approach relies on

A Tolerant Algebraic Side-Channel Attack on AES Using CP 201

1: V arPairs ← {〈S2,0, S2,5〉, 〈S2,5, S2,10〉, · · · } � all 16 pairs for the round
2: for all 〈X, Y 〉 ∈ V arPairs orderedBy (−(B(X) + B(Y)), |D(〈X, Y 〉)|) do
3: try all 〈a, b〉 ∈ D(〈X, Y 〉) orderedBy C(a, b) tiebreak −(E(a) + E(b))
4: post Si = a ∧ Sj = b
5: end tryall

the Gurobi Solver (6.5.2) while SCIP 4.0 is used for both for IP and for Pseudo-
Boolean formulations. The experiments ran on a 16-core Intel Xeon E52640 at
2.40 Ghz with 16 MB cache and Ubuntu 16.04 LTS. Two categories of instances
were generated, Structured instances and Random instances. For random
instances, the plaintexts are chosen uniformly in {0, 1}128 and the cipher keys
are fixed. For structured instances, the plaintexts are generated by picking a
subset of 16 bytes from ascii text and the cipher keys are fixed.

Each instance contains a known plaintext and 100 Hamming weight leaks
that correspond to the first four subrounds. For each instance, a 10% error rate
is applied to the 100 Hamming weight leaks, the Hamming weights of 10 ran-
domly chosen indices are modified by ±1 (set size k = 3 [14]). To investigate the
performance of all solvers, the hardest 3-Set TASCA benchmark instance from
the original paper is used. To compare the average performance, 50 structured
instances and 50 random instances are generated and solved by solvers sepa-
rately. All instances are given 10 min limit. All the solvers run in sequential1.

The Original TASCA Instance. The behavior on the original hardest
TASCA instance (aes 8bit tasca 3set) was captured for Objective-CP with
custom and Fail-First searches. Gurobi uses an IP model while SCIP uses an
IP model and Pseudo-Boolean model. Each solver was given 10 min time limit.
Figure 4 shows the run time and comparative memory usage vs. the number of
known key bytes. The CP approach delivers two orders of magnitude improve-
ment over the recent SCIP (4.0) and Gurobi solvers. Note that the difference is
far more dramatic if one compares to the published results that relied on SCIP
1.2. The custom CP search has two orders of magnitude advantage over the
generic search when less than 7 known keys fixed.

CP Performance. Figure 5 shows that random instances display a better per-
formance than structured instances, especially with few known key bytes. When
solving for 16 bytes, on average, the random instances perform under 10 s, and
the structured instances require around 80 s.

Comparing General Instances. Tables 1 and 2 compare all solvers in terms of
solving times from 5 known key bytes down to 0 known key bytes. Figures 6 and
7 show the quartile plots of ratios TGurobi(i)

TCP (i) and TSCIP (i)
TCP (i) over the 50 instances.

1 Parallel search was also tested both for Gurobi and Objective-CP but both solvers
failed to gain speedups from parallelization.

202 F. Liu et al.

(a) Run time Comparison (b) Memory Comparison

Fig. 4. Comparative TASCA performance on original instance.

Fig. 5. CP performance with x-axis being the number of known key bytes.

Table 1. Random instances

CP Gurobi SCIP

KB μT σT μT σT μT σT

5 0:24 0:23 26:95 23:82 64:3 22:88

4 0:46 0:70 37:90 32:51 92:6 46:65

3 1:05 1:97 89:36 72:56 180:3 115:86

2 2:04 4:32 122:71 107:51 232:4 108:71

1 4:16 7:12 191:04 115:03 377:9 137:20

0 7:43 15:63 256:93 127:10 355:0 153:11

Table 2. Structured instances

CP Gurobi SCIP

KB μT σT μT σT μT σT

5 0:24 0:51 27:51 22:48 63:5 17:31

4 0:32 0:60 41:18 29:92 87:3 46:80

3 11:43 67:87 100:60 71:28 191:2 109:97

2 3:39 9:56 138:58 79:76 296:5 138:33

1 4:87 11:55 228:29 106:90 348:4 108:90

0 13:49 34:52 247:84 120:89 384:0 98:05

Figure 6 shows that the CP solver can solve (on average) instances approximately
50 times faster than a state-of-the-art IP solver, peaking at 100 times faster than
Gurobi when solving for all 16 keys. According to Fig. 7, for the majority of
instances CP has more than 2 orders of magnitude advantage over SCIP. While
SCIP cannot solve the key for most of the instances within 10 min when 0 key
bytes are provided.

Memory Consumption. The CP approach for TASCA offers an extremely
lightweight memory footprint. The original SCIP model is restricted to 5

A Tolerant Algebraic Side-Channel Attack on AES Using CP 203

sub-rounds due to the high memory usage. The memory consumption of the
CP solver is significantly lower as indicated in Fig. 4. This is attributed to mod-
eling with bit-vectors and avoiding costly linearizations. While the CP model
has approximately 1000 variables and 600 constraints, the IP model has around
13000 variables and 10700 constraints. As Fig. 4 shows, the memory consump-
tion for Gurobi is above 5 times that of CP, and the ratio increases to around 10
when solving for 16 keys. The memory usage ratio of (SCIP:CP) is higher with
SCIP consuming 15 times more memory when solving for all 16 keys.

Fig. 6. Performance comparison with Gurobi.

Fig. 7. Performance comparison with SCIP.

Error Tolerance. A key advantage of CP is to not only solve the optimization
problem, but also enumerate all optimal solutions. This is inherently valuable as
each global optimum is a candidate key called a partial correct solution in [14].
A brute force approach can test the recovered keys to find the correct one.
Naturally, a large number of incorrect bytes in the candidate keys make the
brute force approach untractable. The size of the candidate pool is a critical
indicator of the true potential of TASCA.

204 F. Liu et al.

Fig. 8. Pool histogram

This experiment used the CP model to enumerate
all global optima to assess the distribution of candidate
pool sizes for 100 clear and cipher texts. The majority
of instances provided a solution pool that was less than
100 solutions, and each solution pool contained the cor-
rect key. Figure 8 gives a histogram of the candidate
pool sizes. 25 instances had pools with 0–10 keys while
50% of them have a pool size under 50.

Search. To investigate the impact of the custom search, one can look into
the performance of a first-fail/min-Domain for bit-vectors. The adaptation (CP-
Generic in Fig. 4) selects the variable with the smallest domain and branches on
bits. It is weaker as it does not exploit the cost function at all.

7 Conclusion

This paper introduced two new constraints (element and count) extending the
bit-vector capabilities described in [8]. Both are used alongside the original
bit-vector constraints to formulate a CP model capturing the Tolerant Alge-
braic Side-Channel Attack on AES proposed in [13,14]. The performance of the
CP approach is empirically evaluated against the original model with the most
recent SCIP and Gurobi versions. The CP approach delivers orders of magni-
tude improvement in run time and memory usage opening the door to scaling
the attack to more rounds and showing that CP is as strong candidate as the
technology of choice for cryptographers.

References

1. Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks
through digital signal processing. In: Proceedings of the 3rd International Confer-
ence on Security of Information and Networks, SIN 2010, NY, USA, pp. 124–133
(2010). http://doi.acm.org/10.1145/1854099.1854126

2. Berthold, T., Heinz, S., Pfetsch, M.E.: Solving pseudo-Boolean problems with
SCIP. Technical report 08–12, ZIB, Takustr.7, 14195, Berlin (2008)

3. Chihani, Z., Marre, B., Bobot, F., Bardin, S.: Sharpening constraint program-
ming approaches for bit-vector theory. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 3–20. Springer, Cham (2017). doi:10.1007/
978-3-319-59776-8 1

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer Science & Business Media, Berlin (2013)

5. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 37

6. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

http://doi.acm.org/10.1145/1854099.1854126
http://dx.doi.org/10.1007/978-3-319-59776-8_1
http://dx.doi.org/10.1007/978-3-319-59776-8_1
http://dx.doi.org/10.1007/978-3-319-44953-1_37
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25

A Tolerant Algebraic Side-Channel Attack on AES Using CP 205

7. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 343–358. Springer, Heidelberg (2003). doi:10.1007/3-540-36552-4 24

8. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33558-7 39

9. Michel, L., Van Hentenryck, P.: A microkernel architecture for constraint
programming. Constraints 22(2), 107–151 (2017). http://dx.doi.org/10.1007/
s10601-016-9242-1

10. Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann,
J.: Improved algebraic side-channel attack on AES. J. Cryptographic Eng. 3(3),
139–156 (2013). http://dx.doi.org/10.1007/s13389-013-0059-1

11. NIST: Federal information processing standards publication (FIPS 197). Advanced
Encryption Standard (AES) (2001)

12. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33027-8 9

13. Oren, Y., Wool, A.: Tolerant algebraic side-channel analysis of AES. IACR Cryp-
tology ePrint Archive, Report 2012/092 (2012). http://iss.oy.ne.ro/TASCA-eprint

14. Oren, Y., Wool, A.: Side-channel cryptographic attacks using pseudo-Boolean
optimization. Constraints 21(4), 616–645 (2016). http://dx.doi.org/10.1007/
s10601-015-9237-3

15. Ramamoorthy, V., Silaghi, M.C., Matsui, T., Hirayama, K., Yokoo, M.: The design
of cryptographic S-boxes using CSPs. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876,
pp. 54–68. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 7

16. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16342-5 29

17. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04138-9 8

18. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

19. Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power
analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–
394 (2006)

20. Van Hentenryck, P., Carillon, J.P.: Generality versus specificity: an experience
with AI and or techniques. In: 7th AAAI National Conference on Artificial Intel-
ligence, AAAI 1988, pp. 660–664. AAAI Press (1988). http://dl.acm.org/citation.
cfm?id=2887965.2888082

21. Wang, W., Søndergaard, H., Stuckey, P.J.: A bit-vector solver with word-level
propagation. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 374–
391. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2 27

http://dx.doi.org/10.1007/3-540-36552-4_24
http://dx.doi.org/10.1007/978-3-642-33558-7_39
http://dx.doi.org/10.1007/978-3-642-33558-7_39
http://dx.doi.org/10.1007/s10601-016-9242-1
http://dx.doi.org/10.1007/s10601-016-9242-1
http://dx.doi.org/10.1007/s13389-013-0059-1
http://dx.doi.org/10.1007/978-3-642-33027-8_9
http://dx.doi.org/10.1007/978-3-642-33027-8_9
http://iss.oy.ne.ro/TASCA-eprint
http://dx.doi.org/10.1007/s10601-015-9237-3
http://dx.doi.org/10.1007/s10601-015-9237-3
http://dx.doi.org/10.1007/978-3-642-23786-7_7
http://dx.doi.org/10.1007/978-3-642-16342-5_29
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dl.acm.org/citation.cfm?id=2887965.2888082
http://dl.acm.org/citation.cfm?id=2887965.2888082
http://dx.doi.org/10.1007/978-3-319-33954-2_27

On Maximum Weight Clique Algorithms,
and How They Are Evaluated

Ciaran McCreesh, Patrick Prosser, Kyle Simpson, and James Trimble(B)

University of Glasgow, Glasgow, Scotland
j.trimble.1@research.gla.ac.uk

Abstract. Maximum weight clique and maximum weight indepen-
dent set solvers are often benchmarked using maximum clique problem
instances, with weights allocated to vertices by taking the vertex num-
ber mod 200 plus 1. For constraint programming approaches, this rule
has clear implications, favouring weight-based rather than degree-based
heuristics. We show that similar implications hold for dedicated algo-
rithms, and that additionally, weight distributions affect whether certain
inference rules are cost-effective. We look at other families of benchmark
instances for the maximum weight clique problem, coming from winner
determination problems, graph colouring, and error-correcting codes, and
introduce two new families of instances, based upon kidney exchange and
the Research Excellence Framework. In each case the weights carry much
more interesting structure, and do not in any way resemble the 200 rule.
We make these instances available in the hopes of improving the quality
of future experiments.

1 Introduction

This paper does not present a better algorithm for the maximum weight clique
problem. Instead, it argues that due to questionable benchmarking practices, we
do not know what the state of the art for maximum weight clique algorithms is.
This is unfortunate, because the problem is widely researched.

Of particular interest to us is using a maximum weight clique algorithm to
solve certain kinds of constraint optimisation problem. The reduction of con-
straint satisfaction problems to finding a clique in a corresponding microstruc-
ture graph is primarily studied for its theoretical properties [13–16,28]. For prob-
lems with a special objective function, a reduction to the maximum clique prob-
lem which preserves the objective value is possible—indeed, recent experimental
work shows that this encoding, rather than conventional constraint program-
ming, is the best practical approach for solving the maximum common subgraph
problem when vertex or edge labels are present [39]. To tackle other problems
this way (such as graph edit distance problems with complex scoring schemes),

C. McCreesh, P. Prosser and J. Trimble—This work was supported by the Engi-
neering and Physical Sciences Research Council [grant numbers EP/K503058/1,
EP/M508056/1 and EP/P026842/1].

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 206–225, 2017.
DOI: 10.1007/978-3-319-66158-2 14

On Maximum Weight Clique Algorithms, and How They Are Evaluated 207

we would like to be able to relax the restrictions on the objective function, by
reducing to the maximum weight clique problem instead.

This paper also does not attempt to demonstrate that this is a viable app-
roach. Although preliminary experiments suggest that this technique should not
be dismissed out of hand, we believe that its chances of success would be much-
improved by a change in how maximum weight clique algorithms are designed
and evaluated. We therefore begin with a brief review of maximum weight clique
algorithms. We then look at the set of instances usually used for benchmark-
ing, focussing in particular upon a widespread practice of allocating weights to
unweighted graphs. We show how this has affected the design of heuristics and
other filtering rules. We finish by looking at other problem instances, where
weights have real-world meanings and the vertices often have special structure;
we make all of these instances available for other experimenters to use.

2 Maximum Weight Clique Algorithms

Given a graph G where each vertex v has an integer weight w(v), the maximum
weight clique problem is to find a subset of vertices of maximum sum of weights,
such that every vertex in the subset is adjacent to every other in the subset;
note that the maximum weight independent set and minimum weighted vertex
cover problems are essentially equivalent. The problem also comes in an edge-
weighted variant, which we do not discuss in this paper. We write N(v) for the
set of vertices adjacent to v (that is, its neighbourhood), the degree of a vertex is
the cardinality of its neighbourhood, and the density of a graph is the proportion
of potential edges which are present. We use C in our descriptions of algorithms
to denote the current clique that is being built during search; P denotes the set
of candidate (potential) vertices that may be added to this clique.

Cliquer [43] finds a maximum clique and an earlier paper [42] presents a sketch of
how Cliquer can find a maximum weight clique. Cliquer is essentially a Russian
Doll search [60], finding a maximum weight clique in iteration i with an initial
clique C = {i} and a candidate set of vertices to choose from P = N(i) ∩
{0, . . . , i − 1}. The weight of this clique is then stored in an array element c[i].
In the case of unweighted maximum clique, c[i] = c[i − 1] if we cannot unseat
the incumbent using vertices {0, . . . , i}. If we can unseat the incumbent using
vertices {0, . . . , i} then we must have added one more vertex, that vertex is i
and c[i] = c[i−1]+1. In the case of maximum weight clique, c[i] is a weight, and
c[i] > c[i − 1] if and only if we unseat the incumbent using vertices {0, . . . , i}.
Obviously, 0 ≤ c[i] − c[i − 1] ≤ w(i). When a vertex v is selected from P to add
to C, c[v] can be used to prune the search. Prior to adding vertex v to C, we
know that the best possible clique that can be found using vertices {0, . . . , v} is
c[v], so if the weight of C plus c[v] does not exceed the weight of the incumbent
then search can be abandoned. The search is also pruned if the total weight of
C ∪ P is no greater than the incumbent.

208 C. McCreesh et al.

Kumlander’s algorithm [32] is an enhancement of Cliquer. At the top of search
the vertices of the graph are coloured, giving colour classes C1 to Ck. In each
colour class, vertices are then sorted by weight in ascending order. We now have
a Cliquer-like search with iterations 1 to k, where iteration i finds the heaviest
clique using vertices in the colour classes C1 ∪ . . .∪Ci and the weight is recorded
in c[i] (as in Cliquer). This can then be used as a bound (as before) along with
a colouring upper bound, that is the sum of the maximum weights in each of the
colour classes C1 . . . Ci , i.e.

∑i
j=1 max{w(v) : v ∈ Cj ∩ P}.

MWCLQ [22] uses MaxSAT reasoning to tighten an upper bound given by vertex
colouring. At each search node, the vertices of G are first partitioned into inde-
pendent sets C1 ∪ . . .∪Cn. This allows conversion to a literal-weighted MaxSAT
encoding: a variable xi is created for every vertex vi, having w(xi) = w(vi), and a
hard clause xi∨xj is posted for each pair of vertices vi, vj which are not adjacent.
For each independent set Ci = {v1, . . . , vl}, a soft clause is then added where lit-
erals are weighted, ci = (x1,w(x1))∨· · ·∨(xl,w(xl)), where w(c) is the maximum
literal weight within that clause and literals in a clause are sorted by weight in
non-increasing order. The upper bound starts as the sum of all original soft clause
weights. By applying unit propagation on an instance, the algorithm identifies
sets S of conflicting soft clauses and for each, the accompanying set Stopk where
the k highest-weight literals are failed. Defining w(S) = min{w(c) : c ∈ S}
and k(t) as the count of failed high-weight literals in t, the upper bound is
then reduced by min(w(S),mint∈Stopk

(w(t)−w(xk(t)+1))). Further such sets (and
bounds reductions) are identified by iteratively splitting and transforming the
soft clauses in S and Stopk to obtain new unit clauses.

Tavares [2,59] introduces a new heuristic colouring algorithm for calculating an
upper bound, BITCOLOR, in which each vertex may appear in more than one
colour class. Each colour class has an associated weight, and the colouring has
the property that the weight of a vertex v equals the sum of the weights of the
colour classes to which v belongs. If we produce a colouring of the candidate
set P in this way, and let UB(P) be the sum of colour-class weights, it can be
shown that UB(P)+

∑
v∈C w(v) is a valid upper bound on the maximum clique

weight. In practice, this approach produces a tighter upper bound than simple
colouring. Tavares uses BITCOLOR in three algorithms for maximum weight
clique: a Cliquer-style Russian dolls algorithm, an algorithm which branches on
vertices in reverse colouring order, and a resolution search algorithm [12].

OTClique [55] enhances the Russian dolls approach of Cliquer by precomputing,
using dynamic programming, the maximum-weight clique in each of a large set of
induced subgraphs of G. The precomputed values are used to quickly calculate
a bound that is tighter than the näıve sum-of-vertex-weights bound used by
Cliquer.

WLMC is an exact algorithm which is designed for large, sparse graphs, but
also performs well on the relatively small, dense graphs that are the focus of this

On Maximum Weight Clique Algorithms, and How They Are Evaluated 209

paper. In a preprocessing step—which is performed at the top of search and also
after every possible choice of first vertex—WLMC uses the method of Carraghan
and Pardalos [11] to produce a vertex ordering and an initial incumbent clique.
The preprocessing step then reduces the size of the graph by deleting any vertex
v such that the incumbent clique has weight greater than or equal to w(v) plus
the sum of weights of v’s neighbours. At each node of the branch-and-bound
search, WLMC uses MaxSAT reasoning to find a set of vertices on which it is
unnecessary to branch1.

Other approaches. The problem has also been tackled using mathematical pro-
gramming [25,27,61], and is the subject of ongoing research for inexact (heuris-
tic) solutions [3,4,10,20,27,29,41,62,65,66]. Finally, sometimes alternative con-
straints or objectives are considered [6,34,54].

3 Current Practices in Benchmarking

For the maximum (unweighted) clique problem, experimenters are blessed with
a suite of instances from the second DIMACS implementation challenge [30].
These are all relatively small, dense graphs. Most instances fit into one of three
classes:

– Graphs which encode a problem from another domain. The “c-fat” family
encode a problem involving fault diagnosis for distributed systems [5]. The
“hamming” and “johnson” graphs model problems from coding theory [7].
The “keller” instances encode a geometric conjecture [17], and the MANN
family is made from clique formulations of the Steiner triple problem [36]. In
each of these cases, the size of the solution has a real-world interpretation
(and sometimes the vertices contained therein also convey meaning).

– Randomly-generated graphs. The “C” and “DSJC” instances are simple ran-
dom graphs of varying orders and densities. The “p hat” family are also
random graphs, but with an unusually large degree spread [23,56].

– Random graphs with large hidden solutions. The “brock” family of instances
[9] are an attempt at camouflaging a known clique in a quasi-random graph
for cryptographic purposes, in a way resistant to heuristic attacks. The “gen”
and “san(r)” instances use a different technique for hiding a large clique of
known size in a graph [50,51]: again, they are an attempt to create challenging
instances with a known and unusually large optimal solution.

The instances from the first set are valuable because of their applications. Mean-
while, the randomly generated instances are useful because they provide a chal-
lenge: although being able to solve crafted hard instances is not the primary
goal of developing clique algorithms, working on these instances has led to bet-
ter solvers. For example, Depolli et al. [18] use a maximum clique algorithm
1 The existing implementation of WLMC does not support the large weights that

appear in many of the instances in this paper. Therefore, we could not include this
program in our experimental evaluation.

210 C. McCreesh et al.

for new instances from a biochemistry application, and note that although their
instances are reasonably easy for a modern algorithm, they are challenging for
earlier algorithms that predate experiments on these instances; a similar conclu-
sion holds for clique-based solvers for maximum common subgraph problems [39].

For the weighted problem, standard practice is to take these same instances,
and to follow a convention usually ascribed to Pullan [45]:

“Instances were converted to MVWC instances (the DIMACS-VW bench-
mark) by allocating weight, for vertex i, of imod 200 + 1”.

Incidentally, Mannino and Stefanutti [37] had used a similar convention previ-
ously, using modulo 10 rather than 200. Pullan justifies this rule and choice of
constant as follows:

“This technique allows future investigators to simply replicate the experi-
ments performed in this study. The constant 200 in the weight calculation
was determined after a number of experiments showed that the generated
problems appeared to be reasonably difficult for PLS (clearly, allocating
weights in the range 1, . . . , k results in an MC instance when k = 1 while,
intuitively, it is reasonable to expect that as k increases, the difficulty in
solving the instance will, in general, increase).”

This rule, together with a similar rule for allocating weights to edges for the edge-
weighted variant of the problem, is very widely used [2–4,20–22,25,27,29,32,34,
41–43,45,55,61,62,65,66, and many more], often as the only way of evaluating
a solver. It has also recently been adopted for large sparse graphs [10,20,29,62],
and for benchmarking the minimum weight dominating set problem [63], often
as the only way of evaluating a solver. It has also recently been adopted for
large sparse graphs [10,20,29,62], and for benchmarking the minimum weight
dominating set problem [63].

4 Experimental Setup

Our experiments are performed on a machine with dual Intel Xeon E5-2697A
v4 CPUs and 512 GBytes RAM, running Ubuntu 16.04. We used the latest ver-
sion of Cliquer (1.21), released in 2010, downloaded from the author’s website.
The source code for MWCLQ and OTClique was provided by these programs’
authors. We modified each program by changing every occurrence of int to a
64-bit integer type, in order to accommodate the large weights that occur in
some classes of instance. This change has a measurable effect on the runtime of
the programs, particularly for OTClique.

Tavares’ programs were not available when we ran our experiments. We have
therefore written two programs using a Tavares-style colouring for use in our
experiments, one which uses Russian Dolls and one which branches in an order
based on colouring. We call these programs TR and TC, respectively. In both

On Maximum Weight Clique Algorithms, and How They Are Evaluated 211

Tavares’ description and our implementations, bitsets are used to perform the
colouring step efficiently.

All five programs are implemented in C, and were compiled using GCC 5.4.0
at optimisation level -O3. We set the OTClique parameter l to 20. Finally, we
implemented a constraint programming model in Java, using the Choco solver
version 3.3.3.

5 Does Weight Allocation Affect Algorithm Design?

The maximum weight clique problem has an obvious constraint programming
model: we have a 0/1 variable for each vertex, a constraint for each non-adjacent
pair of vertices prohibiting the two vertices from being set to 1 simultaneously,
and an objective to maximise the weighted sum over all variables. But what
about variable-ordering heuristics? For the unweighted maximum clique prob-
lem, we might use the degree of the vertex corresponding to each variable. In
the weighted case, we could look either at degree, or at weight.

When weights are chosen to be between 1 and 200, we would expect weights
to be much more important than degree: selecting a vertex of high weight would
affect the solution more than selecting several vertices of low weight. Thus it
seems likely that a variable-ordering heuristic which considered weights would
be best. On the other hand, if we selected weights to be between 190 and 200,
perhaps degree would matter more instead?

Figure 1 confirms this suspicion. We look at random graphs with 70 vertices
and density 0.6. We assign weights sequentially, starting at x + 1 and wrapping
back to x + 1 when we exceed 200. Thus, on the far left of the plot, we have
weights ranging from 1 to 70, in the middle from 101 to 170, near the right
from 180 to 200 (with weights repeated), and on the far right, every weight is
200. For the y-axis, we plot the mean search effort from a sample of 100 runs
for our Choco model, using ascending and descending degree or weight as static
variable-ordering heuristics, and preferring 1 over 0 as a value-ordering heuristic.
Because weights are allocated sequentially, we randomly permute the order of
vertices before solving to avoid using weight unintentionally as a tie-breaking
heuristic. The results show that when weights are chosen to be between 1 and
70, it is indeed best to select a weight-based variable ordering heuristic. However,
once weights are chosen to be between 50 and 119, it becomes much more useful
to use degree-based heuristics.

The plot also shows the effects of using impact-based search [46]. These
results are nearly as good as the degree-based heuristics, but do not beat tailored
heuristics. Impact-based search is also unable to mimic weight-based heuristics
in the parts of the parameter-space where weights are more informative, since
impact is unaware of the effect of domain deletions upon the objective function.
We also plot domain over weighted degree [8], which fares less well.

What about other densities? Most of the DIMACS instances are dense—does
this affect algorithm design too? In the top left plot of Fig. 2, we vary both the
graph density and weight range, and use colour to show which heuristic has best

212 C. McCreesh et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

M
ea

n
 S

ea
rc

h

Minimum Weight

Degree Ascending

Degree Descending

Weight Descending

Weight Ascending

Impact

Dom / WDeg

Fig. 1. A comparison of heuristics using a Choco model, over random graphs with 70
vertices, density 0.6, and sequential weights starting from x and never exceeding 200.

average performance at each point. The results show that when the minimum
weight is low (such as when using the 200 rule), we should favour descending
weight heuristics, but otherwise we should favour ascending degree.

This basic constraint programming approach is not performance-competitive,
but the relative simplicity of the algorithm makes it easy to experiment with.
What about the algorithms introduced in Sect. 2, which use more complex
branching strategies and inference? Figure 2 also compares the run times of five
dedicated algorithms with modified vertex orderings, working with 100 vertex
graphs. (Note that several of the algorithms have branching strategies that are
influenced by, but not identical to, the order of vertices in the graph.) The focus
of this paper is not on explaining these results in great detail: we are simply
demonstrating that the 200 rule has likely had an effect on algorithm design2.
The default orderings for most of these algorithms are primarily weight-based,
which appears to be a good choice when weight ranges are large (there are many
dark and light blue points towards the bottom of these plots), but perhaps not
otherwise (the plots are not monochromatic, and there are large orange and/or
yellow areas in each plot).

Are heuristics the only design choice affected by the benchmark instances?
Figure 3 compares our Tavares-style algorithm TC with a similar algorithm which
uses a simple colour bound rather than the Tavares-style multi-colouring. The
plots show mean search effort and runtimes for random 200-vertex instances
of density 0.6. On the instances with a wide weight range such as 5–200, the

2 It is interesting to note that MWCLQ often resembles Choco but with a higher
threshold for switching away from weights, except that sometimes it is worth switch-
ing to descending degree as well as ascending degree, and that the three Russian Dolls
algorithms exhibit similar heuristic behaviour to each other. We do not understand
how ordering heuristics should work with Russian Dolls search, and suggest that this
could be a good avenue for future research—for example, perhaps it is better to use
different heuristics for different dolls?.

On Maximum Weight Clique Algorithms, and How They Are Evaluated 213

Choco

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

MWCLQ

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

TC

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

OTClique

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

TR

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Cliquer

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Fig. 2. Which heuristic is best when varying density (x-axis) and weight range
(y-axis), choosing from descending/ascending weight (dark/medium blue), descend-
ing/ascending degree (orange/yellow), or no difference (white). Graphs have 70 vertices
for Choco, and 100 for the other algorithms (which also have higher plotting densities).
No plot is monochromatic, showing that heuristics are affected by density and weight
ranges. (Color figure online)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200

M
ea

n
 S

ea
rc

h

Minimum Weight

Tavares Simple

0

20

40

60

80

100

120

0 50 100 150 200

M
ea

n
 R

u
n
ti
m

e
(m

s)

Minimum Weight

Tavares Simple

Fig. 3. Comparing TC with a simpler algorithm which does not use the Tavares multi-
colouring rule, on 200 vertex graphs with density 0.6, and different weight ranges.

Tavares-style algorithm is the clear winner. When the minimum weight is greater
than 100, the simple algorithm is faster; although it visits more search nodes,
this is outweighed by the shorter time per node of the simpler algorithm. This
shows that the practical benefits of Tavares’ more complex bound are also heavily
dependent upon how weights are allocated.

6 Other Families of Problem Instances

Having questioned the 200 rule and the use of unweighted DIMACS instances,
we now discuss five families of instances which we hope will lead to better

214 C. McCreesh et al.

0

50

100

150

200

0 100 200 300 400

Kidney 085

107
108
109

1010
1011

26330 1000
103

104

105

106

2410 100

ECC 10

0

2

4

6

8

10

21240 500 10001500

WDP in201

105

106

107

108

0 250 500 750 1000

REF 25-35-01

0

4

8

12

16

3750 100 200 300

Fig. 4. Weight (y-axis) plotted against degree (x-axis) for an example instance from
each different graph class. Note some plots use a log scale for the weight, and do not
start at zero.

experiments in the future. Three of these are from existing papers (but in one
case the instances are hard to find online in a convenient format), and two are
new. We bring all of these instances together in the standard DIMACS format
to help future experimenters, and we will update this collection as new families
are uncovered3. Note that many of these instances require support for 64-bit
weights.

Figure 4 plots weight versus degree for one instance from each of these fami-
lies. We also plot “brock400 1” from the DIMACS set using the 200 rule: observe
that degree gives almost no information for this instance, compared to weight.
We return to this figure as we introduce each family.

6.1 Kidney Exchange

Kidney-exchange schemes exist in several countries to increase the number of
transplants from living donors to patients with end-stage renal disease [24,35,
47]. A patient enters the scheme along with a friend or family member who
is willing to donate to that patient but unable to do so due to blood or tissue
incompatibility. These two participants form a donor-patient pair. From the pool
of donor-patient pairs, the scheme administrator periodically arranges exchanges,
each of which involves two or more donor-patient pairs. In a two-way exchange,
the donor of the first pair gives a kidney to the patient of the second pair, and
the donor of the second pair gives a kidney to the patient of the first. In three-
way and larger exchanges, kidneys are donated between the donor-patient pairs
cyclically.
3 https://doi.org/10.5281/zenodo.816293.

https://doi.org/10.5281/zenodo.816293

On Maximum Weight Clique Algorithms, and How They Are Evaluated 215

In addition, many schemes benefit from altruistic donors, who enter the
scheme without a paired patient, and may initiate a chain of donations. For
the optimisation problem, we may view an altruistic donor as a donor paired
with a “dummy patient” who is compatible with any donor.

Each feasible exchange is given a score reflecting its desirability. This may,
for example, take into account the size of the exchange, the time that patients
have been waiting for a transplant, and the probability that the transplants will
be successful. Typically, the scheme administrator carries out a matching run
at fixed intervals, with the goal of maximising the sum of exchange scores. A
popular approach to solving this optimisation problem is integer programming
using the cycle formulation, in which we have one binary variable for each fea-
sible exchange, and a constraint for each participant in the scheme ensuring
that he or she is involved in at most one selected exchange [1,48]. We propose
that this optimisation problem may, alternatively, be solved by reduction to
maximum-weight clique. Each vertex is an exchange, whose weight is its score.
Two exchanges are adjacent if and only if they have no participants in common.

To create maximum weight clique instances, we used kidney instances by
Dickerson [19], available on PrefLib [38], originally from a widely-used generator
due to Saidman et al. [49] (real instances cannot be made public due to medical
confidentiality). The weighting scheme and exchange size cap we used are based
on the system used in the UK’s National Living Donor Kidney Sharing Scheme
(NLDKSS) [35]. The NLDKSS has a maximum exchange size of three, and has
five objectives, ranked hierarchically. The first objective is optimised; subject to
this being at its optimal value, the second objective is optimised, and so on.

The primary objective is to maximise the number of effective two-way
exchanges: exchanges that either consist of only two donor-patient pairs, or
which contain (as part of a larger exchange) two donor-patient pairs who could by
themselves form a two-way exchange. This provides robustness: part of a larger
exchange may still proceed even if the full exchange does not (for example, due
to illness). The second objective is to maximise the total number of transplants.
The third objective is to minimise the number of three-way exchanges. The
fourth objective is to maximise the number of back-arcs in three-way exchanges;
these are compatibilities between donor-patient pairs in the reverse direction
of the exchange. The final objective is to optimise the weight of the exchange,
which is a value based on factors including the number of previous matching
runs that patients have been in, and the level of compatibility between donors
and patients in planned transplants.

To create these instances, we used the first four of these objectives, combining
them into a single long integer using the formula x = 236x1 +224x2 +212x3 +x4

where xi is an exchange’s score for the ith objective. We use a simple transfor-
mation to convert the third objective from a minimisation to a maximisation.
This method of combining scores in order to perform a single optimisation is
not practical using IP solvers because, as Manlove and O’Malley [35] observe,
the resulting weights would be too large for IP solvers. By contrast, all of our
maximum-weight clique solvers can use 64-bit weights without loss of precision.

216 C. McCreesh et al.

(Ideally, we would like to use even larger weights, to include the fifth ranking
criterion.) Note that due to the extreme ranges of weights requiring the use of a
log scale, Fig. 4 does not clearly show the variation between weights.

6.2 Colouring Instances

In branch and bound graph colouring algorithms such as Held et al. [26] the
fractional chromatic number χf (G) acts as a useful upper bound. This can be
found according to an integer programming formulation introduced by Mehrotra
and Trick [40]: the model starts with a subset of the required variables, which is
extended if a maximum weight independent set (MWIS) of weight at least 1 can
be found within the original graph. The weights themselves are the dual price of
including that vertex in the model according to an independent set formulation,
multiplied by some factor scalef to achieve integer values. As a result, these
graphs feature very large weights to have sufficient resolution to encode small
fractions of scalef.

The instances we include are due to Held et al. Each instance arises dur-
ing colouring of a corresponding DIMACS instance; many of these are the last
such MWIS instance encountered during search, and represent that problem’s
bottleneck.

6.3 Error-Correcting Codes

Österg̊ard [42] describes the following problem from coding theory. Let a length
n, a distance d, a weight w, and a permutation group G be given. The objective
is to find a maximum-cardinality set C of codes (binary vectors) of length n,
such that each element in S has Hamming weight w; each pair of elements in
C is at least Hamming distance d apart; and for every permutation σ ∈ G and
every code c ∈ C, we have that σ(c) ∈ C. Österg̊ard shows how this problem
may be reduced to maximum weight clique by partitioning the set of all binary
vectors of length n and weight w into orbits under the permutation group G, and
creating a vertex for each orbit satisfying the condition that no two members
of the orbit are less than Hamming distance d apart. The weight of each vertex
equals the size of the corresponding orbit, and two vertices are adjacent if and
only if all pairs of members of the two orbits are at least distance d apart.

The fifteen instances presented by Österg̊ard are no longer readily available.
We have written a program to reconstruct the instances. For the instance ECC10
shown in Fig. 4 the weights range from one to eight, and are roughly inversely
correlated with degree; in other instances, the weights go as high as eighty.

6.4 The Winner Determination Problem

In a combinatorial auction, bidders are allowed to bid on sets of items rather
than just single items. For example, at a furniture auction, agent A might bid
for four dining chairs and a table, rather than bid for each chair and the table

On Maximum Weight Clique Algorithms, and How They Are Evaluated 217

separately. Another bidder, agent B, might bid for the same table and a side-
board, whilst agent C bids for the sideboard and a set of crockery. Agent B’s
bid is incompatible with that of A (they want the same table) and that of C
(they want the same sideboard), but A’s bid is compatible with C’s (there is no
intersection on the items of interest).

Finding an allocation of items to bidders that maximizes the auctioneer’s
revenue is called the winner determination problem (WDP) [44,52,53]. A prob-
lem instance can be represented as a weighted graph. A vertex v in the graph
corresponds to a bid, the weight of v is the value of that bid, and an edge
exists between a pair of vertices (u, v) if the corresponding bids have no items in
common (i.e. they are compatible with each other). Consequently, a maximum
weight clique corresponds to an optimal allocation.

WDP instances, available via cspLib [44] and originally created by Lau and
Goh [33], have been used as a benchmark suite by Fang et al. [22] and Wu and
Hao [64] for comparing one maximum weight clique algorithm against another.
But what do these instances look like? Figure 4, instance WDP in201, shows
that high weight vertices have low degree, and light weight vertices have high
degree. This is not surprising: a high value bid is typically a bid for many items
and is incompatible with many other bids, and corresponds to a heavy vertex of
low degree. Consequently, when used to compare algorithms, we might find that
an ordering on decreasing weight will perform much the same as an ordering of
increasing degree.

6.5 The Research Excellence Framework

In 2016, Her Majesty’s Government proposed that in the next Research Excel-
lence Framework (REF2021) academics would be allowed to submit exactly four
publications over a given interval of time (typically 4 years)4. In a university,
in each unit of assessment (typically a department or school) each member of
staff would submit six publications and of those six publications management
would select four. Papers are assigned rankings in the range 4 to 1, with 4 being
“internationally excellent”. Therefore, for each member of staff, there would be
C6

4 possible selections, where each selection would have a combined ranking in
the range 4 to 16. At most one of these 4-selections would be allowed for each
member of staff, and no publication could be counted more than once (that
is, co-authors within the same unit of assessment cannot both submit a shared
publication).

This has strong similarities to a winner determination problem: we must find
an allocation of items (sets of four publications) to bidders (academic staff) that
maximizes the auctioneer’s (unit of assessment’s) revenue (combined rankings).

Realistic instances were generated for departments with n members of acad-
emic staff producing m publications. A random number of papers were generated,
each with a ranking in the range 2 to 4, with a specified distribution based on
historical data5. For each member of staff 6 papers were randomly selected, and
4 However, in July 2016 Lord Nicholas Stern suggested greater flexibility be allowed.
5 Being a “research-led institution” no papers with a ranking of 1 are allowed.

218 C. McCreesh et al.

that member of staff was then considered an author. This was then represented
as a weighted graph. The graph has 15 · n vertices (there are 15 ways for each
author to choose 4 publications from 6) with weights in the range 8 to 16. The
15 vertices associated with an author form an independent set (at most one of
the author’s 4-selections can be selected).

As the number of publications to choose from increases, the likelihood of any
pair of 4-selections having a publication in common falls, so bids become more
compatible and the resultant graph has more edges (is denser), and this tends
to increase the difficulty of the problem. For example with n = 20 and m = 50
graphs have 300 vertices and average density 0.67, and with n = 20 and m = 30
we again have 300 vertices and density is 0.52 on average. These graphs have
a maximum (unweighted) clique of size no more than min(n,m/4). There is a
small range of weights (8 to 16) and in any instance there is a small variation in
degree (see instance REF 25-35-01 in Fig. 4).

6.6 Experiments

In Figs. 5, 6, 7, 8, 9 and 10 we plot, for each algorithm, the cumulative number of
instances which can be solved in under a certain amount of time, for these differ-
ent families of instances. The dark thick line in each plot shows that algorithm’s
default vertex ordering, and the light lines show ascending and descending weight
and degree orderings. To interpret these plots, select a preferred timeout along
the x-axis, and then select the line with highest y-value to determine the best-
performing algorithm for that choice of timeout.

Although we did not intend to carry out an algorithmic beauty contest,
these results support the simple conclusion that our implementation of Tavares’
(little known) colour-ordering algorithm is consistently the best solver, and that
the default heuristic we picked for it (decreasing degree order) is nearly always
the best. This is a surprise. We were hoping to end this paper by stressing the
importance of tailoring heuristics and solvers on a family by family basis, perhaps
suggesting algorithm portfolios, but instead we have identified a clear winner.

MWCLQ

0

20

40

60

80

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 5. Cumulative plots for DIMACS instances, with weights in range 1–200 added
using the standard scheme. The dark thick line is the default heuristic for each solver,
and the thin light lines show ascending and descending degree and weight heuristics.
The x-axis is runtime in milliseconds, and the y-axis plots the cumulative number of
instances which can be solved (individually) in time less than or equal to x.

On Maximum Weight Clique Algorithms, and How They Are Evaluated 219

MWCLQ

0

10

20

30

40

50

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 6. Cumulative plots for kidney instances.

MWCLQ

112

0

20

40

60

80

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 7. Cumulative plots for colouring instances.

MWCLQ

0

10

20

30

40

50

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 8. Cumulative plots for winner determination problem instances.

MWCLQ

0

20

40

60

80

100

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 9. Cumulative plots for REF instances.

220 C. McCreesh et al.

MWCLQ

0

5

10

15

100 106

TC

100 106

OTClique

100 106

TR

100 106

Cliquer

100 106

Fig. 10. Cumulative plots for error correcting code instances.

7 Conclusion

Despite our experiments suggesting a single winning algorithm, we believe our
new sets of instances are valuable. The 200-weighted DIMACS benchmark
instances are often cited as being good “real-world” tests for the maximum
weight clique problem. This is not the case: some of these instances are real-
world tests for the maximum clique problem, but adding weights destroys the
real-world meaning of the results. Additionally, most of these instances are of the
“crafted, challenging” (for unweighted clique) kind, and again, adding 200-rule
weights destroys these properties. The other families we discuss in this paper are
somewhat better in this respect, and if they replace the 200-weighted DIMACS
instances as the standard for benchmarking, they may open the way up more
interesting kinds of algorithm in the future.

Figure 6 emphasises this opportunity. It shows 50 kidney-exchange instances
which have a minimum of 16 pairs and no altruistic donors, and a maximum
of 64 pairs and 6 altruistic donors. These results are far from competitive with
leading integer program solvers, which can solve each of these instances in less
than a second.

Our discussion has focussed on weights. However, it is worth noting that
for many of the DIMACS instances, vertex degrees are also unusually unhelp-
ful. The situation shown in the top left plot of Fig. 4 where each vertex has
similar degree is common, and for some instance families, the degrees are delib-
erately constructed to be misleading. In contrast, the vertices in our instances
were not crafted with hostile intent, and they often carry a certain amount of
structure. This is particularly true with microstructure-like encodings, where
vertices from any given variable always form an independent set, and where we
know that the graph may always be coloured in a particular way. Now that we
have families of instances that have interesting, realistic structure, perhaps sub-
sequent algorithms can be tailored to exploit these properties (such as treating
the first branching vertex specially [58]), and it may also be worth considering
preprocessing techniques [57].

We hope to extend our collections of instances and algorithms in the future,
and perhaps this will make these results more interesting and inspiring. We are
also interested in real instances for the edge-weighted variant of the problem,
which suffers similarly from an arbitrary weight allocation rule.

On Maximum Weight Clique Algorithms, and How They Are Evaluated 221

We note in passing that all of these instances are dense, despite being “real-
world” instances. It is important to distinguish between solving graph problems
on graphs which directly represent real-world phenomena (which are often sparse
and have power-law degree structures), with solving problems which encode the
solution to a problem. Graphs of the latter kind may very well be dense. This
is true even when the question being answered is regarding a sparse graph: for
example, when solving the maximum common subgraph problem via reduction
to clique, the encoding of two sparse graphs gives a dense graph [39]. Similarly,
microstructure graphs for non-trivial problems are usually reasonably dense.

Finally, we observed (in Fig. 2) an anomaly with respect to the variable-
ordering heuristics used by Russian Doll algorithms. Clearly, this deserves more
attention.

Acknowledgments. The REF instance generator was joint work with David
Manlove. We are grateful to David for this, and for helpful discussions on kidney
exchange.

References

1. Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In: MacKie-Mason, J.K., Parkes,
D.C., Resnick, P. (eds.) Proceedings 8th ACM Conference on Electronic Com-
merce (EC-2007), 11–15 June 2007, San Diego, California, USA, pp. 295–304. ACM
(2007). http://doi.acm.org/10.1145/1250910.1250954

2. Araujo Tavares, W.: Algoritmos exatos para problema da clique maxima ponder-
ada. Ph.D. thesis, Universidade federal do Ceará (2016). http://www.theses.fr/
2016AVIG0211

3. Baz, D.E., Hifi, M., Wu, L., Shi, X.: A parallel ant colony optimization for the
maximum-weight clique problem. In: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, IPDPS Workshops 2016, 23–27 May
2016, Chicago, IL, USA, pp. 796–800. IEEE Computer Society (2016). doi:10.1109/
IPDPSW.2016.111

4. Benlic, U., Hao, J.: Breakout local search for maximum clique problems. Comput.
OR 40(1), 192–206 (2013). doi:10.1016/j.cor.2012.06.002

5. Berman, P., Pelc, A.: Distributed probabilistic fault diagnosis for multiprocessor
systems. In: Proceedings of the 20th International Symposium on Fault-Tolerant
Computing, FTCS 1990, 26–28 June 1990, Newcastle Upon Tyne, UK, pp. 340–346.
IEEE Computer Society (1990). doi:10.1109/FTCS.1990.89383

6. Boginski, V., Butenko, S., Shirokikh, O., Trukhanov, S., Gil-Lafuente, J.: A
network-based data mining approach to portfolio selection via weighted clique
relaxations. Ann. OR 216(1), 23–34 (2014). doi:10.1007/s10479-013-1395-3

7. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization,
pp. 1–74. Springer, Boston (1999). doi:10.1007/978-1-4757-3023-4 1

8. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the
16th Eureopean Conference on Artificial Intelligence, ECAI 2004, Including Pres-
tigious Applicants of Intelligent Systems, PAIS 2004, 22–27 August 2004, Valencia,
Spain, pp. 146–150. IOS Press (2004)

http://doi.acm.org/10.1145/1250910.1250954
http://www.theses.fr/2016AVIG0211
http://www.theses.fr/2016AVIG0211
http://dx.doi.org/10.1109/IPDPSW.2016.111
http://dx.doi.org/10.1109/IPDPSW.2016.111
http://dx.doi.org/10.1016/j.cor.2012.06.002
http://dx.doi.org/10.1109/FTCS.1990.89383
http://dx.doi.org/10.1007/s10479-013-1395-3
http://dx.doi.org/10.1007/978-1-4757-3023-4_1

222 C. McCreesh et al.

9. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs. In: Johnson and Trick [31], pp. 75–88. http://dimacs.rutgers.edu/Volumes/
Vol26.html

10. Cai, S., Lin, J.: Fast solving maximum weight clique problem in massive graphs.
In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, 9–15 July 2016, New York, NY,
USA, pp. 568–574. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/16/
087

11. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique prob-
lem. Oper. Res. Lett. 9, 375–382 (1990)

12. Chvátal, V.: Resolution search. Discrete Appl. Math. 73(1), 81–99 (1997). doi:10.
1016/S0166-218X(96)00003-0

13. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability
of CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR) 45, 47–78
(2012). doi:10.1613/jair.3651

14. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry def-
initions for constraint satisfaction problems. Constraints 11(2–3), 115–137 (2006).
doi:10.1007/s10601-006-8059-8

15. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction
on trees: hybrid tractability and variable elimination. Artif. Intell. 174(9–10), 570–
584 (2010). doi:10.1016/j.artint.2010.03.002

16. Cooper, M.C., Zivny, S.: Hybrid tractable classes of constraint problems. In:
Krokhin, A.A., Zivny, S. (eds.) The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 113–135. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017). doi:10.4230/DFU.Vol7.15301.4

17. Debroni, J., Eblen, J.D., Langston, M.A., Myrvold, W., Shor, P.W., Weerapurage,
D.: A complete resolution of the Keller maximum clique problem. In: Randall,
D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, 23–25 January 2011, San Francisco, California,
USA, pp. 129–135. SIAM (2011). doi: 10.1137/1.9781611973082.11

18. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. J. Chem. Inf. Model. 53(9),
2217–2228 (2013). doi:10.1021/ci4002525

19. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with
transplant chains: theory and reality. In: van der Hoek, W., Padgham, L., Conitzer,
V., Winikoff, M. (eds.) International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2012, IFAAMAS, 4–8 June 2012, Valencia, Spain, vol.
3, pp. 711–718 (2012). http://dl.acm.org/citation.cfm?id=2343798

20. Fan, Y., Li, C., Ma, Z., Wen, L., Sattar, A., Su, K.: Local search for maximum
vertex weight clique on large sparse graphs with efficient data structures. In: Kang,
B.H., Bai, Q. (eds.) AI 2016. LNCS, vol. 9992, pp. 255–267. Springer, Cham (2016).
doi:10.1007/978-3-319-50127-7 21

21. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using
maximum satisfiability reasoning. In: Schaub, T., Friedrich, G., ÓSullivan, B. (eds.)
ECAI 2014–21st European Conference on Artificial Intelligence, 18–22 August
2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS) 2014. Frontiers in Artificial Intelligence and Applications, vol. 263,
pp. 303–308. IOS Press (2014). doi:10.3233/978-1-61499-419-0-303

22. Fang, Z., Li, C., Xu, K.: An exact algorithm based on maxsat reasoning for the
maximum weight clique problem. J. Artif. Intell. Res. (JAIR) 55, 799–833 (2016).
doi:10.1613/jair.4953

http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://www.ijcai.org/Abstract/16/087
http://www.ijcai.org/Abstract/16/087
http://dx.doi.org/10.1016/S0166-218X(96)00003-0
http://dx.doi.org/10.1016/S0166-218X(96)00003-0
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1007/s10601-006-8059-8
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.4230/DFU.Vol7.15301.4
http://dx.doi.org/10.1137/1.9781611973082.11
http://dx.doi.org/10.1021/ci4002525
http://dl.acm.org/citation.cfm?id=2343798
http://dx.doi.org/10.1007/978-3-319-50127-7_21
http://dx.doi.org/10.3233/978-1-61499-419-0-303
http://dx.doi.org/10.1613/jair.4953

On Maximum Weight Clique Algorithms, and How They Are Evaluated 223

23. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using
a tabu search approach. Ann. OR 41(4), 385–403 (1993). doi:10.1007/BF02023002

24. Glorie, K., Haase-Kromwijk, B., van de Klundert, J., Wagelmans, A., Weimar,
W.: Allocation and matching in kidney exchange programs. Transpl. Int. 27(4),
333–343 (2014)

25. Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in
sparse graphs with compact formulations. EURO J. Comput. Optim. 3(1), 1–30
(2015). doi:10.1007/s13675-014-0028-1

26. Held, S., Cook, W.J., Sewell, E.C.: Maximum-weight stable sets and safe lower
bounds for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012). doi:10.
1007/s12532-012-0042-3

27. Hosseinian, S., Fontes, D., Butenko, S.: A quadratic approach to the maximum
edge weight clique problem. In: XIII Global Optimization Workshop GOW 2016,
pp. 125–128 (2016)

28. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence, 11–15 July 1993, Wash-
ington, DC, USA, pp. 731–736. AAAI Press/The MIT Press (1993). http://www.
aaai.org/Library/AAAI/1993/aaai93-109.php

29. Jiang, H., Li, C., Manyà, F.: An exact algorithm for the maximum weight clique
problem in large graphs. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San
Francisco, California, USA, pp. 830–838. AAAI Press (2017). http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14370

30. Johnson, D.S., Trick, M.A.: Introduction to the second DIMACS challenge: cliques,
coloring, and satisfiability. In: Cliques, Coloring, and Satisfiability, Proceedings of
a DIMACS Workshop, 11–13 October 1993, New Brunswick, New Jersey, USA,
[31], pp. 1–10. http://dimacs.rutgers.edu/Volumes/Vol26.html

31. Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and satisfiability. In: Pro-
ceedings of a DIMACS Workshop, DIMACS/AMS, 11–13 October 1993, New
Brunswick, New Jersey, USA. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, vol. 26 (1996). http://dimacs.rutgers.edu/Volumes/
Vol26.html

32. Kumlander, D.: On importance of a special sorting in the maximum-weight clique
algorithm based on colour classes. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) Mod-
elling, Computation and Optimization in Information Systems and Management
Sciences, MCO 2008. Communications in Computer and Information Science, vol.
14, pp. 165–174. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87477-5-18

33. Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-
based 4th-party logistics. In: 14th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 4–6 November 2002, Washington, DC, USA, p. 154.
IEEE Computer Society (2002). doi:10.1109/TAI.2002.1180800

34. Malladi, K.T., Mitrovic-Minic, S., Punnen, A.P.: Clustered maximum weight clique
problem: algorithms and empirical analysis. Comput. Oper. Res. 85, 113–128
(2017). http://www.sciencedirect.com/science/article/pii/S0305054817300837

35. Manlove, D.F., O’Malley, G.: Paired and altruistic kidney donation in the UK: algo-
rithms and experimentation. ACM J. Exper. Algorithmics 19(1) (2014). http://
doi.acm.org/10.1145/2670129

36. Mannino, C., Sassano, A.: Solving hard set covering problems. Oper. Res. Lett.
18(1), 1–5 (1995). doi:10.1016/0167-6377(95)00034-H

http://dx.doi.org/10.1007/BF02023002
http://dx.doi.org/10.1007/s13675-014-0028-1
http://dx.doi.org/10.1007/s12532-012-0042-3
http://dx.doi.org/10.1007/s12532-012-0042-3
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dx.doi.org/10.1007/978-3-540-87477-5-18
http://dx.doi.org/10.1109/TAI.2002.1180800
http://www.sciencedirect.com/science/article/pii/S0305054817300837
http://doi.acm.org/10.1145/2670129
http://doi.acm.org/10.1145/2670129
http://dx.doi.org/10.1016/0167-6377(95)00034-H

224 C. McCreesh et al.

37. Mannino, C., Stefanutti, E.: An augmentation algorithm for the maximum
weighted stable set problem. Comput. Opt. Appl. 14(3), 367–381 (1999). doi:10.
1023/A:1026456624746

38. Mattei, N., Walsh, T.: Preflib: a library of preference data. In: Perny, P., Pirlot,
M., Tsoukiàs, A. (eds.) ADT2013, vol. 8176, pp. 259–270. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41575-3 20. http://www.preflib.org

39. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint mod-
els for maximum common (connected) subgraph problems. In: Rueher, M. (ed.)
CP 2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1 23

40. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996). doi:10.1287/ijoc.8.4.344

41. Nogueira, B., Pinheiro, R.G.S., Subramanian, A.: A hybrid iterated local search
heuristic for the maximum weight independent set problem. Optim. Lett. 1–17
(2017). doi:10.1007/s11590-017-1128-7

42. Österg̊ard, P.R.J.: A new algorithm for the maximum-weight clique problem.
Nord. J. Comput. 8(4), 424–436 (2001). http://www.cs.helsinki.fi/njc/References/
ostergard2001:424.html

43. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete
Appl. Math. 120(1–3), 197–207 (2002). doi:10.1016/S0166-218X(01)00290-6

44. Prosser, P.: CSPLib problem 063: Winner determination problem (combinatorial
auction)

45. Pullan, W.J.: Approximating the maximum vertex/edge weighted clique using local
search. J. Heuristics 14(2), 117–134 (2008). doi:10.1007/s10732-007-9026-2

46. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

47. Roth, A.E., Sönmez, T., Ünver, M.U.: Kidney exchange. Q. J. Econ. 119(2), 457
(2004). doi:10.1162/0033553041382157

48. Roth, A.E., Sönmez, T., Ünver, M.U.: Efficient kidney exchange: coincidence of
wants in markets with compatibility-based preferences. Am. Econ. Rev. 97(3),
828–851 (2007). http://www.aeaweb.org/articles?id=10.1257/aer.97.3.828

49. Saidman, S.L., Roth, A.E., Sonmez, T., Unver, M.U., Delmonico, F.L.: Increas-
ing the opportunity of live kidney donation by matching for two- and three-way
exchanges. Transplantation 81(5), 773–782 (2006)

50. Sanchis, L.A.: Test case construction for the vertex cover problem. In: Dean,
N., Shannon, G.E. (eds.) Computational Support for Discrete Mathematics, Pro-
ceedings of a DIMACS Workshop, 12–14 March 1992, Piscataway, New Jersey,
USA. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
DIMACS/AMS, vol. 15, pp. 315–326 (1992). http://dimacs.rutgers.edu/Volumes/
Vol15.html

51. Sanchis, L.A.: Generating hard and diverse test sets for NP-hard graph problems.
Discrete Appl. Math. 58(1), 35–66 (1995). doi:10.1016/0166-218X(93)E0140-T

52. Sandholm, T., Suri, S.: BOB: improved winner determination in combinatorial
auctions and generalizations. Artif. Intell. 145(1–2), 33–58 (2003). doi:10.1016/
S0004-3702(03)00015-8

53. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOB: a fast optimal algorithm
for winner determination in combinatorial auctions. Manag. Sci. 51(3), 374–390
(2005). doi:10.1287/mnsc.1040.0336

54. Sethuraman, S., Butenko, S.: The maximum ratio clique problem. Comput. Manag.
Sci. 12(1), 197–218 (2015). doi:10.1007/s10287-013-0197-z

http://dx.doi.org/10.1023/A: 1026456624746
http://dx.doi.org/10.1023/A: 1026456624746
http://dx.doi.org/10.1007/978-3-642-41575-3_20
http://www.preflib.org
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1287/ijoc.8.4.344
http://dx.doi.org/10.1007/s11590-017-1128-7
http://www.cs.helsinki.fi/njc/References/ostergard2001: 424.html
http://www.cs.helsinki.fi/njc/References/ostergard2001: 424.html
http://dx.doi.org/10.1016/S0166-218X(01)00290-6
http://dx.doi.org/10.1007/s10732-007-9026-2
http://dx.doi.org/10.1007/978-3-540-30201-8_41
http://dx.doi.org/10.1162/0033553041382157
http://www.aeaweb.org/articles?id=10.1257/aer.97.3.828
http://dimacs.rutgers.edu/Volumes/Vol15.html
http://dimacs.rutgers.edu/Volumes/Vol15.html
http://dx.doi.org/10.1016/0166-218X(93)E0140-T
http://dx.doi.org/10.1016/S0004-3702(03)00015-8
http://dx.doi.org/10.1016/S0004-3702(03)00015-8
http://dx.doi.org/10.1287/mnsc.1040.0336
http://dx.doi.org/10.1007/s10287-013-0197-z

On Maximum Weight Clique Algorithms, and How They Are Evaluated 225

55. Shimizu, S., Yamaguchi, K., Saitoh, T., Masuda, S.: Fast maximum weight
clique extraction algorithm: optimal tables for branch-and-bound. Discrete Appl.
Math. 223, 120–134 (2017). http://www.sciencedirect.com/science/article/pii/
S0166218X1730063X

56. Soriano, P., Gendreau, M.: Tabu search algorithms for the maximum clique prob-
lem. In: Johnson and Trick [31], pp. 221–244. http://dimacs.rutgers.edu/Volumes/
Vol26.html

57. Strash, D.: On the power of simple reductions for the maximum independent set
problem. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp.
345–356. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1 28

58. Suters, W.H., Abu-Khzam, F.N., Zhang, Y., Symons, C.T., Samatova, N.F.,
Langston, M.A.: A new approach and faster exact methods for the maximum com-
mon subgraph problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp.
717–727. Springer, Heidelberg (2005). doi:10.1007/11533719 73

59. Tavares, W.A., Neto, M.B.C., Rodrigues, C.D., Michelon, P.: Um algoritmo de
branch and bound para o problema da clique máxima ponderada. In: Proceedings
of XLVII SBPO, vol. 1 (2015)

60. Verfaillie, G., Lemâıtre, M., Schiex, T.: Russian doll search for solving constraint
optimization problems. In: Clancey, W.J., Weld, D.S. (eds.) Proceedings of the
Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, AAAI 1996, IAAI 1996, 4–8
August 1996, Portland, Oregon, vol. 1, pp. 181–187. AAAI Press/The MIT Press
(1996). http://www.aaai.org/Library/AAAI/1996/aaai96-027.php

61. Wang, Y., Hao, J., Glover, F., Lü, Z., Wu, Q.: Solving the maximum vertex weight
clique problem via binary quadratic programming. J. Comb. Optim. 32(2), 531–
549 (2016)

62. Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum
weight clique problem. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016,
Phoenix, Arizona, USA, pp. 805–811. AAAI Press (2016). http://www.aaai.org/
ocs/index.php/AAAI/AAAI16/paper/view/11915

63. Wang, Y., Cai, S., Yin, M.: Local search for minimum weight dominating set with
two-level configuration checking and frequency based scoring function. J. Artif.
Intell. Res. (JAIR) 58, 267–295 (2017). doi:10.1613/jair.5205

64. Wu, Q., Hao, J.: Solving the winner determination problem via a weighted max-
imum clique heuristic. Expert Syst. Appl. 42(1), 355–365 (2015). doi:10.1016/j.
eswa.2014.07.027

65. Wu, Q., Hao, J., Glover, F.: Multi-neighborhood tabu search for the maxi-
mum weight clique problem. Ann. OR 196(1), 611–634 (2012). doi:10.1007/
s10479-012-1124-3

66. Zhou, Y., Hao, J., Goëffon, A.: PUSH: a generalized operator for the maximum
vertex weight clique problem. Eur. J. Oper. Res. 257(1), 41–54 (2017). doi:10.
1016/j.ejor.2016.07.056

http://www.sciencedirect.com/science/article/pii/S0166218X1730063X
http://www.sciencedirect.com/science/article/pii/S0166218X1730063X
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dx.doi.org/10.1007/978-3-319-42634-1_28
http://dx.doi.org/10.1007/11533719_73
http://www.aaai.org/Library/AAAI/1996/aaai96-027.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://dx.doi.org/10.1613/jair.5205
http://dx.doi.org/10.1016/j.eswa.2014.07.027
http://dx.doi.org/10.1016/j.eswa.2014.07.027
http://dx.doi.org/10.1007/s10479-012-1124-3
http://dx.doi.org/10.1007/s10479-012-1124-3
http://dx.doi.org/10.1016/j.ejor.2016.07.056
http://dx.doi.org/10.1016/j.ejor.2016.07.056

MDDs: Sampling and Probability Constraints

Guillaume Perez and Jean-Charles Régin(B)

Université Nice-Sophia Antipolis, I3S UMR 7271, CNRS, Sophia Antipolis, France
guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract. We propose to combine two successful techniques of Artifi-
cial Intelligence: sampling and Multi-valued Decision Diagrams (MDDs).
Sampling, and notably Markov sampling, is often used to generate data
resembling to a corpus. However, this generation has usually to respect
some additional constraints, for instance to avoid plagiarism or to respect
some rules of the application domain. We propose to represent the corpus
dependencies and these side constraints by an MDD and to develop some
algorithms for sampling the solutions of an MDD while respecting some
probabilities or a Markov chain. In that way, we obtain a generic method
which avoids the development of ad-hoc algorithms for each application
as it is currently the case. In addition, we introduce new constraints
for controlling the probabilities of the solutions that are sampled. We
experiments our method on a real life application: the geomodeling of a
petroleum reservoir, and on the generation of French alexandrines. The
obtained results show the advantage and the efficiency of our approach.

1 Introduction

Multi-valued decision diagrams (MDDs) are a compressing data structure
defined over a set of variables and used to store a set of tuples of values. They
are implemented in almost all constraint programming solvers and have been
increasingly used to build models [1,3,5,8–10,21,23]. They can be constructed
in several ways, from tables, automata, dynamic programming, etc.; or defined
by combining two or more MDDs thanks to operators like intersection, union,
or difference. They have a high compression efficiency. For instance, an MDD
having 14,000 nodes and 600,000 arcs and representing 1090 tuples has been used
to solve a music synchronization problem [23].

For solving some automatic generation problems, sampling from a knowledge
data set is used to generate new data. Often, some additional control constraints
must be satisfied. One approach is to generate a vast amount of sequences for
little cost, and keep the satisfactory ones. However, this does not work well
when constraints are complex and difficult to satisfy. Thus, some works have
investigated to integrate the control constraints into the stochastic process.

For instance, in text generation, a Markov chain, which is a random process
with a probability depending only on the last state (or a fixed number of them),
is defined from a corpus [11,16,18]. In this case, a state can represent a word, and
such a process will generate sequences of words, or phrases. It can be modeled as

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 226–242, 2017.
DOI: 10.1007/978-3-319-66158-2 15

MDDs: Sampling and Probability Constraints 227

a directed graph, encoding the dependency between the previous state and the
next state. Then, a random walk, i.e. a walk in this graph where the probability
for choosing each successor has been given by the Markov model, will correspond
to a new phrase. Such a walk corresponds to a sampling of the solution set while
respecting the probabilities given by the Markov chain. This process generates
sequences imitating the statistical properties of the corpus. Then, the goal is
to be able to incorporate some side constraints defining the type of phrases we
would like to obtain. For example, we may want to only produce sequences of
words that contain no subsequence belonging to the corpus or longer than a
given threshold, in order to limit plagiarism [16].

Such Markov models have long been used to generate music in the style of a
composer [7,13,16]. The techniques of Markov constraints have been introduced
to deal precisely with the issue of generating sequences from a Markov model
estimated from a corpus, that also satisfy non Markovian, user defined properties
[2,14,15,24].

Hence, there is a real need for being able to sample some solutions while
satisfying some other constraints.

The idea of this paper is to represent the corpus dependencies and the addi-
tional constraints by an MDD and develop sampling algorithms dealing with the
solution set represented by this MDD.

Recently Papadopoulos et al. have designed a new algorithm which can be
applied to a regular constraint [17]. However, the paper is complex because it is
a direct adaption of the powerful and general belief propagation algorithm and
requires the definition of a regular constraint. In this paper, we propose a con-
ceptually simpler method defined on a more general data structure (the MDD),
which may represent any regular constraint, but also different constraints. In
addition, we show how to apply it for any kind of samplings and not only on
Markov samplings. Thus, instead of developing ad-hoc algorithms or forcing the
use of regular constraints, we propose a more general approach that could be
used for a large range of problems provided that we have enough memory for
representing the MDD.

However, combining samplings and MDDs is not an easy task. Consider, for
instance, that we have a very simple MDD (Fig. 1) involving only two variables

a b

a b b

Fig. 1. A simple MDD.

228 G. Perez and J.-C. Régin

x1 and x2 whose values are a and b and that it represents the three solutions
S = {((x1, a), (x2, a)), ((x1, a), (x2, b)), ((x1, b), (x2, b))}. Assume that we want to
sample uniformly the solution set. In other words, we want to randomly select
one solution with an equal probability for each solution. This can easily be done
by randomly selecting a solution in S. Since there are 3 solutions, any solu-
tion has a probability of 1/3 to be selected. The issue with MDDs is that they
compress the solution set, so picking a solution with a uniform probability is
not straightforward. For instance, if we randomly select the first value of the
first variable and if we randomly select the value of the second variable then
the selection is not uniform, because we are going to select more often the solu-
tion ((x1, b), (x2, b)) than the others. This problem can be solved by computing
the local probabilities of selecting a value according to the probabilities of the
solutions containing that value.

Furthermore, we study the case where the probabilities of values are not
the same and we consider Markov sampling, that is sampling where instead of
considering the probability of selecting one value, we consider the probability of
selecting a sequence of values.

In addition, it is sometimes interesting to define some constraints on the
sampling. For instance, the problem of generating the sequences with the maxi-
mum probability in the Markov chain estimated from the corpus satisfying other
constraints has been studied by Pachet and Roy [14]. Hence we propose some
constraints for imposing that the probabilities of the solutions belong to a given
range of probabilities.

This paper is mainly a paper about modeling and the advantage of having
general methods for dealing with different kinds of problems occurring in Arti-
ficial Intelligence. As an example of this advantage, we apply our method to
the transformation of classical texts written in French into alexandrine texts.
This means that we try to express the same idea as the original text with the
same style but by using only sentences having twelve syllables. The generation
of the text in the same style as an author uses a Markov chain that is extracted
from the corpus. An MDD is defined from the corpus and ensures that each
sentence will have exactly twelve syllables. Then, probabilities implementing the
Markov chain are associated with arcs of the MDD, and a random walk pro-
cedure is used for sampling the solutions. Thus, the model of this problem is
conceptually simple and easy to implement. In addition, thanks to the existence
of efficient propagators for MDDs and the algorithms we propose for computing
local probabilities, it gives good results in practice.

We also test our approach on a real world application mainly involving con-
volutions which are expressed by knapsack constraints (i.e.

∑
αixi) in which the

probability of a value to be taken by a variable is defined by a probability mass
function. In addition outliers are not allowed. We show how solutions can be
efficiently sampled.

Note that the problem we consider is different from the work of Morin and
Quimper on the Markov transition constraint which proposes to compute the
distribution of the states of a Markov chain [12].

MDDs: Sampling and Probability Constraints 229

The paper is organized as follows. First we recall some definitions about
probability distribution, Markov chain and MDDs and their use in constraint
programming. Then, we propose some algorithms for sampling the solution set
of an MDD while respecting the probabilities given by a distribution, that can
be a probability mass function or a Markov chain. Next, we introduce two con-
straints ensuring that any solution of an MDD associated with some probability
distribution belongs to a given probability interval. Afterwards, we present some
experiments on the geomodelling of a petroleum reservoir and on the generation
of French alexandrines based on the famous La Fontaine’s fables. Finally we
conclude.

2 Preliminaries

2.1 Probability Distribution

We consider that the probability distribution is given by a probability mass
function (PMF), which is a probability density function for a discrete random
variable. The PMF gives for each value v, the probability P (v) that v is taken:

Given a discrete random variable Y taking values in Y = {v1, . . . vm} its
probability mass function P: Y → [0, 1] is defined as P (vi) = Pr[Y = vi] and
satisfies the following condition: P (vi) ≥ 0 and

∑m
i=1 P (vi) = 1.

Property 1. Let fP be a PMF and consider {xi} a set of n discrete integer
variables independent from a probabilistic point of view and associated with fP

that specifies probabilities for their values. Then, the probability of an assign-
ment of all the variables (i.e. a tuple) is equal to the product of the probabili-
ties of the assigned values. That is ∀i = 1..n, ∀ai ∈ D(xi) P (a1, a2, . . . , an) =
P (a1)P (a2)...P (an).

2.2 Markov Chain

A Markov chain1 is a stochastic process, where the probability for state Xi, a
random variable, depends only on the last state Xi−1. A Markov chain produces
sequence X1, . . . , Xn with a probability P (X1)P (X2|X1) . . . P (Xn|Xn−1).

Property 2. Let PM be a Markov chain and consider a set of n discrete integer
variables associated with PM that specifies probabilities for their values. Then,
∀i = 1..n, ∀ai ∈ D(xi) P (a1, a2, . . . , an) = P (a1)P (a2|a1) . . . P (an|an−1).

Several methods can be used to estimate the Markov chain from a corpus,
like the maximum likehood estimation [11]. This paper is independent from such
methods and considers that the Markov chain is given.
1 Order k Markov chains have a longer memory: the Markov property states that
P (Xi|X1, . . . , Xi−1) = P (Xi|Xi−k, . . . , Xi−1). They are equivalent to order 1
Markov chains on an alphabet composed of k-grams, and therefore we assume only
order 1 Markov chains [17].

230 G. Perez and J.-C. Régin

Sampling a Markov chain can be simply and efficiently done by a random walk
(i.e. a path consisting of a succession of random steps) driven by the distribution
of the Markov chain. If we need to build a finite sequence of length k, then we
perform a random walk of k iterations using the given distribution.

\ a b
a 0.9 0.1
b 0.1 0.9

Tuple Probability
aa 0.54
ab 0.06
ba 0.04
bb 0.36

Fig. 2. Markov chain for two variables. The starting probabilities are 0.6 for a and 0.4
for b.

Example. Consider M , the Markov chain in Fig. 2 and an initial probability
of 0.6 for a and 0.4 for b. If we apply M on two variables x1 and x2, then the
probability of the tuple (a, a) is P (x1, a)P ((x2, a)|(x1, a)) = 0.6 × 0.9 = 0.54.
The probabilities of the four possible tuples are given in Fig. 2. The sum of the
probabilities is equal to 1.

2.3 Multi-valued Decision Diagram (MDD)

An MDD is a data-structure representing discrete functions. It is a multiple-
valued extension of BDDs [4]. An MDD, as used in CP [1,3,5,8–10,20,23], is a
rooted directed acyclic graph (DAG) used to represent some multi-valued func-
tion f : {0 . . . d − 1}n → {true, false}. Given the n input variables, the DAG
representation is designed to contain n+1 layers of nodes, such that each variable
is represented at a specific layer of the graph. Each node on a given layer has at
most d outgoing arcs to nodes in the next layer. Each arc is labeled by its corre-
sponding integer. The arc (u, v, a) is from node u to node v and labeled by a. All
outgoing arcs of the layer n reach tt, the true terminal node (the false terminal
node is typically omitted). There is an equivalence between f(a1, . . . , an) = true
and the existence of a path from the root node to the true terminal node whose
arcs are labeled a1, . . . , an. The number of nodes of an MDD is denoted by V ,
the number of edges by E and d is the largest domain size of the input variables.

MDD of a Constraint. Let C be a constraint defined on X(C). The MDD
associated with C, denoted by MDD(C), is an MDD which models the set of
tuples satisfying C. MDD(C) is defined on X(C), such that layer i corresponds
to the variable xi and the labels of arcs of the layer i correspond to values of xi,
and a path of MDD(C) where ai is the label of layer i corresponds to a tuple
(a1, . . . , an) on X(C).

Consistency with MDD(C). An arc (u, v, a) at layer i is valid iff a ∈ D(xi).
A path is valid iff all its arcs are valid. The value a ∈ D(xi) is consistent with

MDDs: Sampling and Probability Constraints 231

MDD(C) iff there is a valid path in MDD(C) from the root node to tt which
contains an arc at layer i labeled by a.

MDD Propagator. An MDD propagator associated with a constraint C is an
algorithm which removes some inconsistent values of X(C). It establishes arc
consistency of C if and only if it removes all inconsistent values with MDD(C).
This means that it ensures that there is a valid path from the root to the true
terminal node in MDD(C) if and only if the corresponding tuple is allowed by
C and valid.

Cost-MDD. A cost-MDD is an MDD whose arcs have an additional informa-
tion: the cost c of the arc. That is, an arc is a 4-uplet e = (u, v, a, c), where u
is the head, v the tail, a the label and c the cost. Let M be a cost-MDD and p
be a path of M . The cost of p is denoted by γ(p) and is equal to the sum of the
costs of the arcs it contains.

Cost-MDD of a Constraint [6,8]. Let C be a constraint and fC be a function
associating a cost with each value of each variable of X(C). The cost-MDD of
C and fC is denoted by cost-MDD(C, fC) and is MDD(C) whose the cost of an
arc labeled by a at layer i is fC(xi, a).

3 Sampling and MDD

We aim at sampling the solution set of an MDD while respecting the probabilities
given by a distribution, that can be a PMF or a Markov chain.

Let M be an MDD whose n variables are associated with a distribution that
specifies the probabilities of their values. For sampling the solutions of M , we
propose to associate with each arc a probability, such that a simple random walk
from the root node to tt according to these probabilities will sample the solution
set of M while respecting the probabilities of the distribution of M .

First, we consider that the distribution of M is given by a PMF and that the
variables of M are independent from a statistical point of view. Then, we will
consider that we have a Markov chain for determining the probability of a value
to be selected.

3.1 PMF and Independent Variables

If the distribution associated with M is defined by a PMF fP and if the vari-
ables of M are independent from a statistical point of view, then we propose to
associate with each arc e a probability P (e). From Property 1 we know that the
probability of a solution (a1, . . . , an) must be equal to Πn

i=1P (ai).
We could be tempted to define P (e) as the value of fP (label(e)) where label(e)

is the label (i.e. value) associated with e. However, this is not exact because the
MDD usually does not contain all possible combinations of values as solutions.

232 G. Perez and J.-C. Régin

For instance, consider the example of Fig. 1 with a uniform distribution. If all
probabilities are equivalent then each solution must be able to be selected with
the same probability, which is 1/3 since there are three solutions (a, a), (a, b)
and (b, b). Now, if we do a random walk considering that the probability of each
arc is 1/2 then we will choose with a probability 1/2 the solution (b, b) which is
incorrect. The problem stems from the fact that the probabilities of the higher
layers are not determined according to the probabilities of solutions that they can
reach while it should be the case. The choice (x1, a) allows to reach 2 solutions
and (x1, b) one. So, with a uniform distribution the probability of choosing a for
x1 should be 2/3 while that of choosing b should be 1/3.

Definition 1. The partial solutions that can be reached from a node n in an
MDD are defined by the paths from n to tt.

In order to compute the correct values, we compute for each node n the sum
of the original probabilities of the partial solutions that we can reach from n.
Then, we renormalize these values in order to have these sums equal to 1 for each
node. For instance, for the node reached by traversing the first arc labeled by a
in Fig. 1, the sum of the original probabilities is 1/2 + 1/2 = 1, so the original
probabilities are still valid. However, for the node reached by traversing the arc
from the root and labeled by b, the sum of the original probabilities is 1/2, so
half of the combinations are lost. This probability is no longer valid and new
values must be computed.

The sum of the original probabilities of the partial solutions that can be
reached from a node is defined as follows:

Property 3. Let M be an MDD defined on X and fP a PMF associated with
M . Let n be any of node of the MDD and A be any partial instantiation of X
reaching node n. The sum of the original probabilities of the partial solutions
that can be reached from n is v(n) =

∑
s∈S(n) P (s|A), where S(n) is the set

of partial solutions that we can reach from n and P (s|A) is the probability of
s under condition A. The probability of any arc e = (n′, n, a) is defined by
P (e) = fP (a) × v(n).

Proof. By induction from tt. Assume this is true at layer i + 1. Let n′ be a
node of layer i, n a node in layer i + 1 and e = (n′, n, a) an arc. We have
P (e) = fP (a) × v(n), that is P (e) = fP (a) × ∑

s∈S(n) P (s|A), where A is any
partial instantiation reaching node n. So for node n′ we have:
v(n′) =

∑
e∈ω+(n′) P (e), where ω+(n′) is the set of outgoing arcs of n′

v(n′) =
∑

e∈ω+(n′) fP (label(e)) × ∑
s∈S(n) P (s|A). Note that A is any partial

instantiation reaching node n, so it can go through e. So we have
v(n′) =

∑
s∈S(n′) P (s|A′) where A′ is any partial instantiation reaching node n′.

��
The correct probabilities can be computed by a bottom-up algorithm followed

by a top-down algorithm. First, we consider the second to last layer and we
define the probability P of an arc labeled by a as fP (a). Then, we directly

MDDs: Sampling and Probability Constraints 233

apply Property 3 from the bottom of the MDD to the top: once the layer i + 1
is determined, we compute for each node n′ of the layer i the value v(n′) =∑

e∈ω+(n′) P (e) =
∑

e∈ω+(n′) fP (label(e)) × v(n). Once the bottom-up part is
finished, we normalize the computed values P in order to have v(n) = 1 for
each node n. We use a simple top-down procedure for computing these values.
Figure 3 details this process. The left graph simply contains the probability of
the arc labels. The middle graph shows the bottom-up procedure. For instance,
we can see that the right arc outgoing from the source has a probability equal to
1/2 × 1/2 = 1/4. Thus a normalization is needed for the root because the sum
of the probabilities of the outgoing arcs is 1/2 + 1/4 = 3/4 < 1. The right graph
is obtained after normalization.

a,1/2 b,1/2

a,1/2 b,1/2 b,1/2

a,1/2 b,1/4

a,1/2 b,1/2 b,1/2

a,2/3 b,1/3

a,1/2 b,1/2 b,1

Fig. 3. Sampling from a simple MDD. The probability of a and b are 1/2.

Note that the normalization consists of computing the probability according
to the sum of the probabilities. If P (e) is the current value for the arc e =
(u, v, a) and T is the sum of the probability of the outgoing arcs from u, then
the probability of e becomes P (e)/T .

This step can be avoided in practice by computing such normalized values
only when needed.

Algorithm computeMDDProbabilities can be described as follows:

1. Set v(tt) = 1; For each node v �= tt, in a Breadth First Search (BFS) in
bottom-up fashion:
(a) Compute v(n) the sum of the original probabilities of the outgoing arcs

of n.
(b) Define the probability of each incoming arc e of n labeled by a as P (e) =

fP (a) × v(n).
2. For each node in a BFS top-down fashion, normalize the probabilities of the

outgoing arcs.

During this algorithm, each sum is calculated once for each node during the
bottom up processing, and the normalization is performed once for each arc.
The final complexity is O(|E| + |V |).

234 G. Perez and J.-C. Régin

a,1/3 b,2/3

a,1/3 b,2/3 b,2/3

a,1/3 b,4/9

a,1/3 b,2/3 b,2/3

a,3/7 b,4/7

a,1/3 b,2/3 b,1

Fig. 4. Sampling from a simple MDD. The probability of a is 1/3 and it is 2/3 for b.

Figure 4 gives an example of the running of this algorithm when the proba-
bilities are not uniform.

3.2 Markov Chain

As in the previous section, our goal is to associate each arc with a probability
and then sample the solution set by running a simple random walk according to
these probabilities. The method we obtain is equivalent to the one proposed by
Papadopoulos et al. for the regular constraint [17]. However, their method is
complex and the propagation of the regular constraint costs more memory than
the one of an MDD [20]. We claim that our method is conceptually simpler.

It is more difficult to apply a Markov chain than a PMF because in a Markov
chain the probability of selecting a value depends on the previous selected value,
that is, probabilities must be defined in order to satisfy Property 2. More pre-
cisely, in an MDD, a node can have many incoming arcs, and these different
incoming arcs can have different labels. Since the Markov probability depends
on the previous value, the outgoing arcs of that node may have different proba-
bilities depending on which was the incoming arc label. Thus, for an arc e, we
need to have several probability values depending on the previous arc that has
been used.

There are two possible ways to deal with a Markov chain. Either we transform
the MDD by duplicating nodes in order to be able to apply an algorithm similar
as computeMDDProbabilities or we directly deal with the original MDD and
we design a new algorithm.

Duplication of Nodes. We can note that the matrix of the Markov chain
represents a compression of nodes. Thus, if we duplicate each node according to
its incoming arcs then we obtain a new MDD for which the probabilities become
independent. More precisely, for each node n we split the node n in as many
nodes as there are different values incoming. This means that each node n has
only incoming arcs having the same label, and so only one value a incoming.

MDDs: Sampling and Probability Constraints 235

Thus, the probability of each outgoing arc of the duplicated nodes of n can be
determined directly by the Markov matrix.

For instance, consider the probabilities of Fig. 2 and that we have a node n
with two incoming arcs: one labeled by a an the other labeled by b; and with
two outgoing arcs: one labeled by a an the other labeled by b (Fig. 5). The node
n is split into two nodes na and nb. Node na has only incoming arcs labeled by
a, and nb has only incoming arcs labeled by b ((c) in Fig. 5). In this case, we can
define the probabilities as if we had independent variables. The probability of the
arc (na, x, a), is defined by P (a|a) = 0.9, the probability of the arc (na, x, b) is
P (b|a) = 0.1, the probability of the arc (nb, x, a) is P (a|b) = 0.1, the probability
of the arc (nb, x, b) is P (b|b) = 0.9. Figure 5 shows the duplication of a node.
Note that when the node x will be split into two nodes xa and xb, then each of
them will have two incoming arcs having the same label, a for xa and b for xb

((d) in Fig. 5).

\ a b
a 0.9 0.1
b 0.1 0.9

(c) n is split (d) x is split

Fig. 5. Duplication of a node and computation of probabilities.

Let PC(e) be the computed probability of any edge e computed by the dupli-
cation process. We can establish a Property similar as Property 3.

Property 4. Let M be an MDD defined on X and PC a probability associated
with each arc. Let n be any of node of the MDD and A be any partial instantiation
of X reaching node n. The sum of the original probabilities of the partial solutions
that can be reached from n is v(n) =

∑
s∈S(n) P (s|A), where S(n) is the set

of partial solutions that we can reach from n and P (s|A) is the probability of
s under condition A. The probability of any arc e = (n′, n, a) is defined by
P (e) = PC(e) × v(n).

Proof. Similar as for Property 3. ��

236 G. Perez and J.-C. Régin

From this property we can design an algorithm similar as com-

puteMDDProbabilities by using PC(e) instead of fP (label(e)) for each arc e.
The drawback of this method is that it can multiply the number of nodes by
at most d, the greatest cardinality domain of variables and also increases the
number of edges which slowdowns the propagators. The next section presents
another method avoiding this duplication.

A New Algorithm. In order to deal with the fact that the probability of
an outgoing arc depends on the label of the incoming arc without duplicating
nodes, we associate each node with a probability matrix whose row depends on
the incoming arc label. We denote these matrices by Pn

M for the node n. For
efficiency, we only have one vector by incoming value instead of the full matrix,
and each vector contains only the probability of the possible outgoing arcs labels.
Then, the same reasoning as previously can be applied. We just need to adapt
the previous algorithm by using matrices instead of duplicating nodes:

Algorithm computeMDDMarkovProbabilities can be described as
follows:

1. For each node n, build the Pn
M matrix by copying the initial Markov

probabilities.
2. For each node n, in BFS in bottom-up fashion:

(a) Build the vector vv(n) whose size is equal to the number of different
incoming labels2. Each cell contains the sum of the probabilities of the
row of the corresponding label in the Pn

M matrix.
(b) Multiply each incoming arc probability by the cell of vv(n) corresponding

to its label.
3. For each node in a BFS top-bottom fashion, normalize the probability of the

outgoing arcs.

Example. Consider the MDD of Fig. 6a, if we reuse the Markov distribution of
Fig. 2 and apply the step 1 of the method, we obtain the MDD in Fig. 6b.

Now from the MDD in Fig. 6b, we perform step 2, first (step 2.a) we process
the sum of the outgoing probabilities for each node. For example for node 5 its
probability is 0.1+0.9 = 1 and for node 3 the sum is 0.9. For these two nodes the
sum does not depend on the incoming arc label because there is only one. This
is not the case for node 4 which has a sum of 0.1 for the incoming arc labeled by
a and 0.9 for the incoming arc labeled by b. Now we apply step 2.b: we multiply
the probability of the incoming arcs by the sum associated to their label in their
destination node. Consider the arc from node 1 to node 3 and labeled by a, its
probability was 0.9 and the sum of probabilities in its destination node is 0.9,
then its new probability is 0.81. The arc from node 1 to node 4 is labeled by b;
its probability was 0.1. For node 4, the sum is 0.9 for the incoming arc labeled
by b, so the new probability of the (1, 4, b) is 0.1 × 0.9 = 0.09. The MDD in
Fig. 7a is labeled with the resulting global probabilities.
2 vv(n) represents a vector of v(n).

MDDs: Sampling and Probability Constraints 237

0

1

a

2

b

3

a

4

b a

5

b

6

a b a b

0

1

(a,0.6)

2

(b,0.4)

3

(a,0.9)

4

(b,0.1) (a,0.1)

5

(b,0.9)

6

(a,0.9) (b,[a b;0.1 0.9]) (a,0.1) (b,0.9)

Fig. 6. (a) left: an MDD. (b) right: the MDD whose arcs have their probability set
thanks to the Markov distribution.

0

1

(a,0.54)

2

(b,0.364)

3

(a,0.81)

4

(b,0.09) (a,0.01)

5

(b,0.9)

6

(a,0.9) (b,[a b;0.1 0.9]) (a,0.1) (b,0.9)

0

1

(a,0.597)

2

(b,0.403)

3

(a,0.9)

4

(b,0.1) (a,0.011)

5

(b,0.989)

6

(a,1) (b,[a b;1 1]) (a,0.1) (b,0.9)

Fig. 7. (a) left: MDD from Fig. 6b whose arcs probability has been multiplied by the
sum of the probabilities of the outgoing arcs from their destination node. (b) right: the
MDD with renormalized probabilities.

Finally, from the MDD in Fig. 7a, we normalize the outgoing arc probability
of each node (step 3). For the root node 0, the outgoing probabilities sum is
0.54 + 0.364 = 0.904. For its arc labeled by a and directed to node 1, the
probability become 0.54/0.904 = 0.597, this value has been rounded to 3 digits
for readability. For its arc labeled by b and directed to node 2, the probability
becomes 0.364/0.904 = 0.403 (rounded). Thus, the outgoing sum of probabilities
emanating from node 0 becomes 0.597+0.403 = 1. The MDD from Fig. 7b shows
the normalized probabilities.

Complexities. The complexities of computeMDDMarkovProbabilities

algorithm are the following. The number of matrices is |V |, in the worst case the
number of columns and rows is d, so the global memory complexity is O(|V |×d2).
The complexity of each of the operations of this method are all linear over the
matrices, so the overall time complexity is O(|V | × d2). Since the number of
columns of the matrix of a node is equal to the number of outgoing arcs of
this node, a more realistic complexity for space and time is O(|V | + |E| × d),

238 G. Perez and J.-C. Régin

knowing that in a MDD, |E| ≤ |V | × d. Note that, for a given layer, nodes can
be processed in parallel.

3.3 Incremental Modifications

If some modifications occur in the MDD, then instead of reprocessing all the
probabilities we can have an incremental approach. From Step 2 of algorithms
computeMDDProbabilities or computeMDDMarkovProbabilities,
which performs a BFS in bottom-up, we perform the BFS only from the mod-
ified nodes since they are the only ones that can trigger modifications of the
probabilities.

The reset principle used in MDD4R [20] can also be applied in this case. In
other words, when there is less remaining arcs than deleted arcs, it is worthwhile
to recompute from scratch the values.

4 MDDs and Probabilities Based Constraints

For some reasons, like security or for avoiding outliers, some paths of MDDs can
be unwanted, because they have only very little chance to be selected or because
they contain almost only values having the strongest probability to be selected.
In other words, we accept only paths whose probability is in a certain interval.

We define constraints for this purpose. One, named the MDDProbability,
considered that the MDD is associated with a PMF and independent variables
and the other, named MDDMarkovProcess, that the MDD is associated with a
Markov chain.

Definition 2. Given M an MDD defined on X = {x1, x2, . . . , xn} that are inde-
pendent from a probabilistic point of view and associated with fP a probability
mass function , Pmin a minimum probability and Pmax a maximum probabil-
ity. The constraint MDDProbability(X, fP ,M, Pmin, Pmax) ensures that every
allowed tuple (a1, a2, . . . an) is a solution of the MDD and satisfies Pmin ≤
Πn

i=1fP (a1) ≤ Pmax.

This constraint can be easily transformed into a cost-MDD constraint. The
cost associated with an arc labeled by a is log(fP (a)), and the logarithms of
Pmin and Pmax are considered for dealing with a sum instead of a product3.
Thus, any cost-MDD propagator can be used [22].

Definition 3. Given M an MDD defined on X = {x1, x2, . . . , xn} and asso-
ciated with P a Markov chain, Pmin a minimum probability and Pmax a
maximum probability. The constraint MDDMarkovProcess(X,P,M,Pmin, Pmax)
ensures that every allowed tuple (a1, a2, . . . an) is a solution of the MDD and
satisfies Pmin ≤ P (a1)P (a2|a1) . . . P (an|an−1) ≤ Pmax.

3 We can also directly deal with products if we modify the costMDD propagator
accordingly.

MDDs: Sampling and Probability Constraints 239

As we have seen, with a Markov chain, the probability for selecting an arc
depends on the previous selected arc. Thus, each arc of the MDD is associated
with several probabilities. So we cannot directly use a cost-MDD propagator
as for the MDDProbability constraint. However, if we accept to duplicate the
nodes as proposed in the previous section then we can immediately transforms
the constraint into a simple cost-MDD constraint by considering logarithms of
probabilities and any cost-MDD propagator can be used. Since the number of
time a node can be duplicated is bounded by d, the overall complexity of this
transformation is O(d × (|V | + |E|)).

5 Evaluation

The experiments were run on a macbook pro (2013) Intel core i7 2.3 GHz with
8 GB of memory. The constraint solver used is or-tools. MDD4R [20] is used as
MDD propagator and cost-MDD4R as cost-MDD propagator [22].

5.1 PMF Constraint and Sampling

The data come from a real life application: the geomodeling of a petroleum
reservoir [19]. The problem is quite complex and we consider here only a sub-
part. Given a seismic image we want to find the velocities. Velocities values
are represented by a probability mass function (PMF) on the model space.
Velocities are discrete values of variables. For each cell cij of the reservoir,
the seismic image gives a value sij from which we define a sum constraint
Cij :

∑22
k=1 αklog(xi−11+k−1j) = sij ± ε, where αk are defined from the given

seismic wavelet. Locally, that is, for each sum, we have to avoid outliers w.r.t.
the PMF for the velocities. The problem is huge (millions of variables) so we
consider here only a very small part.

We recall that the MDD of the constraint
∑

xi∈X f(xi) ∈ I, with I = [a, b]
is denoted by MDD(Σf,I(X)) and defined as follows. For the layer i, there are
as many nodes as there are values of

∑i
k=1 f(xk). Each node is associated with

such a value. A node np at layer i associated with value vp is linked to a node
nq at layer i + 1 associated with value vq if and only if vq = vp + f(ai) with
ai ∈ D(xi). Then, only values v of the layer |X| with a ≤ v ≤ b are linked to tt.
The reduction operation is applied after the definition and delete invalid nodes
[21]. The construction can be accelerated by removing states that are greater
than b or that will not permit to reach a.

Each constraint Cij is represented by MDD(Σf,I(X)) where f(xi) = αixi and
I is the tight interval representing [sij − ε, sij + ε]. Outliers are avoided thanks
to an MDDProbability constraint defined from the PMF for the velocities. Pmin

is defined by selecting only values having the 10% smaller probabilities, Pmax

is defined by selecting only values having the 10% greater probabilities. This
constraint is represented by a cost-MDD constraint, as explained in the Sect. 4.
Then, we intersect it with MDD(Σf,I(X)).

240 G. Perez and J.-C. Régin

We consider 20 definitions of Cij . We repeat the experiments 20 times and
take the mean of the results.

For each constraint Cij , the resulting MDD has in average 116,848 nodes
and 1,239,220 edges. More than 320 s are needed to compute it. Only 8 ms
are required by computeMDDProbabilities algorithm in average. When a
modification occurs the time to recompute the values are between a negligible
value when the modifications are close to the root of the MDD and 8 ms when
another part is modified.

For sampling 100,000 solutions we need 169 ms with the rand() function
and 207 ms with the Mersenne-Twister random engine in conjunction with the
uniform generator of the C++ standard library. Note that the time spends within
the rand() function is 15 ms, whereas it is 82 ms with the second function.
Therefore, the sampling procedures require less than 3 times the time spent in
the random function.

5.2 Markov Chain and Sampling

We evaluate our method for generating French alexandrines. That is, sentences
containing exactly twelve syllables. The goal is to transform an existing text into
a text having the same meaning but using only alexandrines. From the corpus we
define a Markov chain and an MDD representing the sentences having the right
number of syllables. The sampling procedure we define generates solutions of the
MDD associated with the Markov chain, that is, sentences hopefully resembling
those of the corpus and having exactly 12 syllables. This model is simple and
easy to implement. Note that we are not able to model this problem with any
other technique, even the one proposed by Papadopoulos et al, because we need
to deal only with sentences having 12 syllables and we do not know how to
integrate this constraint into their model.

First, we use a corpus defined by one of the famous La Fontaine’s fables. Here
is the result we obtain for the fable: La grenouille qui veut se faire aussi grosse
que le boeuf (The Frog and the Ox). We have underlined the syllables that must
be pronounced when it is unclear:

La grenouille veut se faire aussi grosse que le bœuf

Grands seigneurs Tout bourgeois veut bâtir comme un Bœuf
Plus sages Tout marquis veut bâtir comme un œuf
Pour égaler l’animal en tout M’y voila
Voici donc Point du tout comme les grands seigneurs
Chétive Pécore S’enfla si bien qu’elle creva
Seigneurs Tout petit prince a des ambassadeurs

The generation of the MDD with the correct probabilities, that is just before
the random walk, can be performed in negligible computational time.

We also considered a larger corpus: “A la recherche du temps perdu” of
Proust, which contains more than 10,000 words. In this case, the results are less
pertinent and some more work must be done about the meaning of the sentences.

MDDs: Sampling and Probability Constraints 241

However, the method is efficient in term of computing performance because only
2 s are needed to create the MDD with the correct probabilities.

6 Conclusion

We have presented two methods for sampling MDDs, one using a probability
mass function and another one using a Markov chain. These methods require
the definition of probabilities for each arc and we have given algorithms for
performing this task. We have also proposed propagators for constraining these
probabilities. Thanks to these algorithms and MDD propagators we can easily
model and implement complex problems of automatic music or text generations
having good performances in practice. We have experimented our method on a
real life application: the geomodeling of a petroleum reservoir and on the problem
of the transformation of French texts into alexandrines. We have shown how it
is easy to define the model and to generate solutions.

Acknowledgments. This research is conducted within the Flow Machines project
which received funding from the European Research Council under the European
Unions Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no.
291156. We would like to thank F. Pachet and P. Roy, who gave us the idea of this
article.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 118–132. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7 11

2. Barbieri, G., Pachet, F., Roy, P., Esposti, M.D.: Markov constraints for generating
lyrics with style. In: ECAI 2012–20th European Conference on Artificial Intelli-
gence, pp. 115–120 (2012)

3. Bergman, D., Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for com-
binatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS,
vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21311-3 5

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

5. Cheng, K.C.K., Yap, R.H.C.: An MDD-based generalized arc consistency algorithm
for positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

6. Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

7. Brooks, F., Hopkings, A., Neumann, P., Wright, W.: An experiment in musical
composition. 3(6), 175–182 (1957)

8. Gange, G., Stuckey, P.J., Hentenryck, P.: Explaining propagators for edge-valued
decision diagrams. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 340–355.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 28

http://dx.doi.org/10.1007/978-3-540-74970-7_11
http://dx.doi.org/10.1007/978-3-642-21311-3_5
http://dx.doi.org/10.1007/978-3-642-40627-0_28

242 G. Perez and J.-C. Régin

9. Hadzic, T., Hooker, J.N., ÓSullivan, B., Tiedemann, P.: Approximate compila-
tion of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 30

10. Hoda, S., Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based con-
straint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15396-9 23

11. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson, London
(2014)

12. Morin, M., Quimper, C.-G.: The Markov transition constraint. In: Simonis, H. (ed.)
CPAIOR 2014. LNCS, vol. 8451, pp. 405–421. Springer, Cham (2014). doi:10.1007/
978-3-319-07046-9 29

13. Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Genera-
tion. Springer, Heidelberg (2009)

14. Pachet, F., Roy, P.: Markov constraints: steerable generation of Markov sequences.
Constraints 16(2), 148–172 (2011)

15. Pachet, F., Roy, P., Barbieri, G.: Finite-length Markov processes with constraints.
IJCAI 2011, 635–642 (2011)

16. Papadopoulos, A., Roy, P., Pachet, F.: Avoiding plagiarism in Markov sequence
generation. In: Proceeding of the Twenty-Eight AAAI Conference on Artificial
Intelligence, pp. 2731–2737 (2014)

17. Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for
regular and Markov constraints with belief propagation. In: Pesant, G. (ed.)
CP 2015. LNCS, vol. 9255, pp. 341–350. Springer, Cham (2015). doi:10.1007/
978-3-319-23219-5 24

18. Papadopoulos, A., Roy, P., Régin, J.-C., Pachet, F.: Generating all possible palin-
dromes from Ngram corpora. In: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, 25–31 July 2015, Buenos
Aires, Argentina, pp. 2489–2495 (2015)

19. Pennington, W.D.: Reservoir geophysics 66(1) (2001)
20. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:

ÓSullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014).
doi:10.1007/978-3-319-10428-7 44

21. Perez, G., Régin, J.-C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: International Joint Conference on Artificial Intelligence,
IJCAI 2015, Argentina, pp. 374–380 (2015)

22. Perez, G., Régin, J.-C.: Soft and cost MDD propagators. In: The Thirty-First
AAAI Conference on Artificial Intelligence AAAI 2017 (2017)

23. Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.:
Enforcing structure on temporal sequences: the Allen constraint. In: Rueher, M.
(ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1 49

24. Roy, P., Pachet, F.: Enforcing meter in finite-length Markov sequences. In: AAAI
2013 (2013)

http://dx.doi.org/10.1007/978-3-540-85958-1_30
http://dx.doi.org/10.1007/978-3-540-85958-1_30
http://dx.doi.org/10.1007/978-3-642-15396-9_23
http://dx.doi.org/10.1007/978-3-319-07046-9_29
http://dx.doi.org/10.1007/978-3-319-07046-9_29
http://dx.doi.org/10.1007/978-3-319-23219-5_24
http://dx.doi.org/10.1007/978-3-319-23219-5_24
http://dx.doi.org/10.1007/978-3-319-10428-7_44
http://dx.doi.org/10.1007/978-3-319-44953-1_49
http://dx.doi.org/10.1007/978-3-319-44953-1_49

An Incomplete Constraint-Based System
for Scheduling with Renewable Resources

Cédric Pralet(B)

ONERA – The French Aerospace Lab, 31055 Toulouse, France
cedric.pralet@onera.fr

Abstract. In this paper, we introduce a new framework for manag-
ing several kinds of renewable resources, including disjunctive resources,
cumulative resources, and resources with setup times. In this framework,
we use a list scheduling approach in which a priority order between activ-
ities must be determined to solve resource usage conflicts. In this con-
text, we define a new differentiable constraint-based local search invariant
which transforms a priority order into a full schedule and which incre-
mentally maintains this schedule in case of change in the order. On top
of that, we use multiple neighborhoods and search strategies, and we get
new best upper bounds on several scheduling benchmarks.

1 Introduction

In scheduling, renewable resources are resources which are consumed during the
execution of activities and released in the same amount at the end of these
activities. Such resources are present in most scheduling problems, and various
types of renewable resources were extensively studied in the literature, such as
disjunctive resources, which can perform only one activity at a time, disjunc-
tive resources with setup times, which can require some time between activities
successively realized by the resource, or cumulative resources, which can per-
form several activities in parallel up to a given capacity. These three kinds of
renewable resources are respectively present in Job Shop Scheduling Problems
(JSSPs [30]), Job Shop Scheduling Problems with Sequence-Dependent Setup
Times (SDST-JSSPs [2]), and Resource Constrained Project Scheduling Prob-
lems (RCPSPs [8]).

In the constraint programming community, specific global constraints were
defined to efficiently deal with renewable resources, like the disjunctive and
cumulative constraints [1,10], together with efficient propagators based on edge-
finding [11,36], timetable edge-finding [37], or on mechanisms to deal with setup
times [34]. Following these developments, constraint programming is nowadays
one of the best systematic approach for solving scheduling problems with renew-
able resources [19,21,32].

In parallel, several incomplete search techniques were developed in the
scheduling community to quickly produce good-quality solutions on large
instances. One of these is list scheduling. It manipulates a priority list between

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 243–261, 2017.
DOI: 10.1007/978-3-319-66158-2 16

244 C. Pralet

activities, and at each step considers the next activity in the list and inserts it
at the earliest possible time without delaying activities already placed in the
schedule (so-called serial schedule generation scheme). For RCPSP, such a list
scheduling approach is used for heuristic search [23,24] but also for designing
local search [12] or genetic algorithms [20].

In this paper, we propose a combination between list scheduling and constraint
programming. More specifically, we combine list scheduling with constraint-based
local search [35], with the goal of being able to deal with various types of renewable
resources (disjunctive or cumulative, with or without setup times). To get such
a combination, we define a new constraint-based scheduling system composed of
three layers: (1) an incremental evaluation layer, used for estimating very quickly
the impact of local modifications on a given priority list, (2) a neighborhood
layer, containing a catalog of neighborhoods usable for updating priority lists,
and (3) a search strategy layer, which implements various techniques for escaping
local minima and plateaus.

The paper is organized as follows. Sections 2–3 present the new frame-
work considered and a lazy schedule generation scheme for this framework.
Sections 4–5 detail the first layer mentioned above. Sections 6–7 give a brief
overview of the second and third layers, and Sect. 8 shows the performance
of the approach on standard benchmarks. In our current implementation, the
techniques proposed are actually applied to a wider class of problems involving
release and due dates for activities, time-dependent processing times, resource
availability windows, and choices on the resources used by activities. We present
here a simplified version for readability issues.

2 RCPSP with Sequence-Dependent Setup Times
(SDST-RCPSP)

To simultaneously cover cumulative resources and disjunctive resources with
setup times, we introduce a new framework called Resource Constrained Project
Scheduling Problem with Sequence-Dependent Setup Times (SDST-RCPSP). The
more complex part of this unifying framework (cumulative resources with setup
times) can also be useful in practice. For instance, in manufacturing, a paint-
ing machine might be able to simultaneously paint several items with the same
color, while requiring a setup time to change the color used by the machine when
needed. In space applications, satellites can be equipped with several communi-
cation channels allowing them to transmit several data files in parallel to a given
ground reception station, while requiring a setup time to change the pointing of
the satellite to download data to another station.

Formally, an SDST-RCPSP is defined by a set of renewable resources R
and by a set of activities A to be realized. Each resource r ∈ R has a maximum
capacity Kr (equal to 1 for disjunctive resources), a set of possible running modes
Mr (reduced to a singleton for resources without setup times), and an initial
running mode m0,r ∈ Mr. For each pair of distinct resource modes m,m′ ∈ Mr,

An Incomplete Constraint-Based System for Scheduling 245

a setup time Δr,m,m′ is introduced to represent the duration required by resource
r to make a transition from mode m to mode m′.

Each activity a ∈ A has a duration (or processing time) pa and consumes a
set of resources Ra ⊆ R. We assume that pa > 0 when activity a consumes at
least one resource. With each activity a and each resource r ∈ Ra are associated
the quantity of resource qa,r ∈ [1..Kr] consumed by a over r, and the resource
mode ma,r ∈ Mr required for realizing a. In the following, for every resource r,
we denote by Ar the set of activities a which consume r (i.e. such that r ∈ Ra).
Activities are also subject to an acyclic set of project precedence constraints
P ⊆ A × A, which contains pairs of activities (a, b) such that b cannot start
before the end of a.

A solution to an SDST-RCPSP assigns a start time σa ∈ N to each activity
a ∈ A. The end time of a is then given by σa + pa. A solution is said to be
consistent when constraints in Eqs. 1 to 4 hold. These constraints impose that all
project precedences must be satisfied (Eq. 1), that the capacity of resources must
never be exceeded (Eq. 2), that there must be a sufficient setup time between
activities requiring distinct resource modes (Eq. 3), and a sufficient setup time
with regards to the initial modes (Eq. 4).

∀(a, b) ∈ P, σa + pa ≤ σb (1)
∀r ∈ R,∀a ∈ Ar,

∑
b∈Ar | σb≤σa<σb+pb

qb,r ≤ Kr (2)

∀r ∈ R,∀a, b ∈ Ar s.t. ma,r �= mb,r, (3)
(σa ≥ σb + pb + Δr,mb,r,ma,r

) ∨ (σb ≥ σa + pa + Δr,ma,r,mb,r
)

∀r ∈ R,∀a ∈ Ar s.t. ma,r �= m0,r, (σa ≥ Δr,m0,r,ma,r
) (4)

A solution is said to be optimal iff it minimizes the makespan, defined as the
end time of the last activity (maxa∈A(σa + pa)).

Precedence Graphs. Another way of defining a solution schedule is the standard
concept of precedence graph. Such a graph contains nodes labeled by activities,
and arcs a → b labeled by the duration of a (see Fig. 1, upper part). These arcs
correspond to precedence constraints “b can start only once a is finished”. Each
arc a → b corresponds either to a project precedence (a, b) ∈ P given in the initial
specification (dotted lines in Fig. 1), or to a resource precedence posted to prevent
resources from being overused (continuous lines in Fig. 1). A precedence graph
must be acyclic, and it also contains two dummy activities of null duration called
the source node s and the sink node t, which respectively represent the start and
the end of the schedule. The precedence graph G contains arcs s → a and a → t
that guarantee that the source and the sink activities respectively precede and
follow every activity in A. In the case of SDST-RCPSP, the precedence graph
also contains setup activities setupa,r for changing the current running mode m
of a resource r just before realizing an activity a requiring another running mode
ma,r �= m. The duration of setupa,r is then given by Δr,m,ma,r

.
From this, it is possible to compute, for every activity a, the length of the

longest path from the source node to a in G, denoted by ds,a, and the length of

246 C. Pralet

the longest path from a to the sink node, denoted by da,t. These distances are
given inside each activity node in Fig. 1 (e.g., ds,D = 4 and dD,t = 7). Then, the
earliest start time of a is given by esta = ds,a, the makespan mk of the schedule
corresponds to the distance ds,t from the source to the sink, and the latest start
time of a is given by lsta = mk − da,t. The resulting earliest and latest time
schedules are given in Fig. 1 (middle part). An activity is said to be critical iff
esta = lsta, and its temporal flexibility is given by mk − (ds,a + da,t). In Fig. 1,
activities A, C, and E are critical.

4,9 11,2

1,10 7,6

13,0
t

4/r

3/r

4/r
0/r

0/r’

0/r

4

1/r

1/r

1/r

0,13
s

0,13 4,7

0,11

8,3

3
4/r

1/r’ 3/r’ 4/r’
1/r’

2/r

2/r’

1
2

1

11

r

r’ 1 11 11

22

1

1

1

2

r’

r r

r’

setup(r’)
[0=>1]

setup(r’)
[1=>0]

B

B E

E
C

D

C

setup(r)
[1=>0]

A

setup(r’)
[0=>1]

setup(r’)
[1=>0]

setup(r)
[1=>0]

C E

A

B

D

CB

D

A

B

ECB

A

D
B

E

C
E

C
E

Fig. 1. Precedence graph (top), resulting earliest schedule (middle left) and latest
schedule (middle right), and flow-network (bottom) for a SDST-RCPSP where R=
{r, r′}, A={A, B, C, D, E}, P = {(A, C), (C, E)}, pA=pD =4, pB =1, pE =2, pC =3,
RA = RD = {r}, RB = RC = RE = {r, r′}, Kr = 3, Kr′ = 1, qA,r = qD,r = qE,r = 2,
qB,r = qC,r = 1, qx,r′ = 1, Mr = Mr′ = {0, 1}, m0,r = mA,r = mB,r = mC,r =
mD,r = 1, mE,r = 0, Δr,0,1 = Δr,1,0 = 1, m0,r′ = mB,r′ = mE,r′ = 0, mC,r′ = 1,
Δr′,0,1 = 1, Δr′,1,0 = 4. In the precedence graph, an arc a → b label by r/x is used
when the duration of a is x and the precedence link is introduced because of resource
r. The priority list used is [A, B, C, D, E].

To deal with cumulative resources, as in [4], it is also possible to represent,
for each resource precedence a → b, the number of resource units φr

a→b released
at the end of activity a and used by activity b. These resource transfers are
represented in a flow-network (see Fig. 1, bottom part). To get a consistent flow-
network, the sum of all resource flows associated with a resource r and which
respectively point to and come out of an activity node a must be equal to the
amount of resource qa,r required by a. For setup activities, the sum of these flows
must be equal to the total capacity of the resource (Kr), to guarantee that every
resource has a unique running mode at any time. Last, all resource flows φr

a→b

used in the flow-network must be consistent with the resource modes associated
with activities. This means for instance that there cannot be a direct flow φr

a→b

between two activities a, b ∈ Ar such that ma,r �= mb,r.

An Incomplete Constraint-Based System for Scheduling 247

3 A Lazy Precedence Graph Generation Scheme

As said in the introduction, instead of directly searching for activity start times
σa or for precedence graphs, we use a list scheduling approach in which we search
for a priority list O = [a1, . . . , an] containing all activities in A. This priority list
is then transformed into a precedence graph through a serial schedule generation
scheme. In the following, we manipulate only consistent priority lists O, which
are such that for every project precedence (a, b) in P, activity a is placed before
activity b in O. Also, we denote by Or the sequence of successive activities which
consume r. On the example of Fig. 1, O = [A,B,C,D,E], Or = [A,B,C,D,E]
and Or′ = [B,C,E].

The generation scheme that we use starts from a precedence graph containing
only the source node. At each step, it considers the next activity a in priority
list O and tries to insert it into the current schedule at the earliest possible
time σa so that starting a at time σa is feasible in terms of project precedences
and resource consumptions, and that activities already placed in the schedule are
not delayed. The generation scheme also computes the so-called pending resource
flows obtained for r after the insertion of a, denoted by Φa,r. Formally, these
pending resource flows correspond to a list

Φa,r = [(φ1, z1), . . . , (φh, zh)]

such that for every i ∈ [1..h], a resource amount φi is released at the end of
activity zi and is available for future activities. Figure 2 (upper part) gives the
set of pending flows over resource r obtained after the insertion of each activity.
For example, the set of pending flows after the insertion of C would be ΦC,r =
[(1, B), (1, A), (1, C)], and the set of pending flows after the insertion of E would
be ΦE,r = [(1, setupr,1,0), (2, E)]. In the following, we assume that the pending
flows are ordered by increasing release time, that is σz1 + pz1 ≤ . . . ≤ σzh

+ pzh
.

2

1

2

1

2

1

2
1

1

1

11

2
1

2

1

1

11

2
1

2

1

1

11

2 2 2

1

3

3
2

1

22

1

2
1

2
2

2

1

2
1

2

1

2

2

1

2
1

2

1

1

11

2

1

2
1

2

1

1

11

2

B B

A A
C

A
C

D

A
C

D

A se
tu
p

E

B B

Ese
tu
pD

Ese
tu
p

C

D

Ese
tu
p

C

D

Ese
tu
p

C

D

A

B B

ΦE,rΦD,rΦC,rΦB,rΦA,rΦs,r

ΨA,r ΨB,r ΨC,r ΨD,r ΨE,r Ψt,r

E

Fig. 2. Forward pending flows (upper part) and backward pending flows (bottom part)

We now come back to the generation process. For every resource r, the
initial list of pending flows after source activity s is Φs,r = [(Kr, s)], since

248 C. Pralet

initially, the whole capacity of the resource is available. Then, let a be the
next activity to consider in the priority list. For each resource r ∈ Ra, let
Φpreva,r,r = [(φ1, z1), . . . , (φh, zh)] be the pending flows obtained after the inser-
tion of the activity preva,r that immediately precedes a on r. If the resource
mode mpreva,r,r associated with this predecessor is distinct from the resource
mode ma,r required by a, a setup is needed before a and the earliest time σa,r at
which r can support the realization of a is given by Eq. 5. Otherwise, σa,r cor-
responds to the earliest time at which resource level qa,r can be made available
according to the pending resource flows in Φpreva,r,r (Eq. 6).

σa,r ← σzh
+ pzh

+ Δr,mpreva,r,r,ma,r
if mpreva,r,r �= ma,r (5)

σzk
+ pzk

otherwise, with k = min{k′ ∈ [1..h] |∑i∈[1..k′] φi ≥ qa,r}(6)

From these elements, the start time of a produced by the schedule generation
scheme is given by the maximum between the end time of project predecessors
of a, and the earliest start times of resource consumptions associated with a:

σa ← max(max(b,a)∈P(σb + pb),maxr∈Ra
σa,r) (7)

In Fig. 1, the earliest start time of C on resource r is σC,r = 1 (the single
resource unit required for C can be available just after the end of activity B), its
earliest start time on r′ is σC,r′ = 2 (requirement to change the resource running
mode), and its earliest start time according to its project predecessors equals 4
(end time of A). As a result, the earliest start time of C is σC ← max(4, 1, 2) = 4.

The activity a considered is then truly introduced in the precedence graph.
If the running mode of resource r before the introduction of a is distinct from
the resource mode ma,r required by a, then a setup activity setupa,r is added
to the precedence graph, together with one arc zi → setupa,r with flow φi for
each pending flow (φi, zi) in Φpreva,r,r, and one arc setupa,r → a with flow qa,r

pointing to a. The new pending flows after the introduction of a are obtained
from these updates.

Otherwise, if the current state of resource r is equal to the resource state ma,r

required by a, we compute the maximum index k such that pending flow (φk, zk)
in Φpreva,r,r releases its resource units before σa (i.e. σzk

+pzk
≤ σa). This specific

index is chosen for reducing resource idle periods (minimization of the length of
the potential idle period created between the end of zk and the start of a). In the
precedence graph, we add arc zk → a to represent that resource units released by
zk are transmitted to a. The number of resource units transferred is min(φk, qa,r).
If this does not suffice to cover the total amount of resource required by a (case
φk < qa,r), we continue with pending flows (φk−1, zk−1), (φk−2, zk−2) . . . until
resource consumption qa,r is fully covered. The new pending flows after the
introduction of a are obtained from these updates. For resource r in Fig. 1,
activity C, for which σC = 4, consumes resource units released by A, while
activity D consumes resource units released by both A and B.

These operations are successively realized for each activity in priority list
O. The generation scheme defined is lazy because it only considers pending

An Incomplete Constraint-Based System for Scheduling 249

flows, which are located at the end of the resource usage profile. It does not
exploit potential valleys present in this profile. In terms of scheduling, this entails
that the generation scheme does not necessarily generate active schedules, which
means that some activities might be started earlier without delaying other activ-
ities. Nevertheless, for every active schedule S, there exists a priority list which
generates this schedule (it suffices to order activities by increasing start times
in S). This implies that for regular performance measures such as makespan
minimization, there exists a priority list inducing an optimal schedule. Also, all
schedules produced are semi-active, meaning that for every activity a, there is no
date t < σa such that all start times t, t+1, . . . , σa lead to a consistent schedule.

One advantage of the lazy schedule generation scheme proposed is its low
time complexity compared to serial schedule generation schemes used for RCPSP,
which maintain a global resource usage profile. Indeed, each insertion into a given
resource has a worst-case time complexity which is linear in M , the maximum
number of resource consumptions that might be performed in parallel on r,
instead of a complexity linear in the number of activities in A. In particular,
for a disjunctive resource, our lazy schedule generation scheme takes a constant
time for each consumption insertion.

4 Incremental Schedule Maintenance Techniques

The techniques defined in the previous section can be used to automatically
derive a full schedule from a priority list O. To progressively get better solutions,
a strategy is to perform local search in the space of priority lists, for instance
by changing the position of one activity in the list, by swapping the positions of
two activities, or by moving a block of successive activities.

This is were constraint programming comes into play, since we use
Constraint-Based Local Search (CBLS [35]) for realizing these updates efficiently.
As in standard constraint programming, CBLS models are defined by decision
variables, constraints, and criteria. One distinctive feature is that in CBLS, all
decision variables are assigned when searching for a solution. The search space is
then explored by performing local moves which reassign some decision variables,
and it is explored more freely than in tree search with backtracking. One speci-
ficity of CBLS models is that they manipulate invariants, which are one-way
constraints x ← exp where x is a variable and exp is a functional expression
of other variables of the problem, such as x ← sum(i ∈ [1..N]) yi. During local
moves, these invariants are efficiently maintained thanks to specific procedures
that incrementally reevaluate the output of invariants (left part) in case of change
in their inputs (right part).

Invariant Inputs. To achieve our goal, we introduce a new CBLS invariant which
takes as an input a priority list O. In our CBLS solver, priority list O is imple-
mented based on the data structure defined in [7] for encoding total orders. This
data structure maintains the predecessor and the successor of each element a in
the list. It also assigns to a an integer taga ∈ [0..231 − 1] such that if a is located

250 C. Pralet

before b in the list, then taga < tagb. When inserting an element c between two
successive elements a and b, the tag of c is set to taga+tagb

2 if taga + 1 < tagb,
and otherwise operations are used to retag elements so as to allow some space
between taga and tagb.

The invariant introduced also takes as an input one boolean parameter ua for
each activity a ∈ A, specifying whether resource consumptions associated with
a are activated or not. When ua takes value false, only the impact of project
precedence constraints is taken into account for a, and in a full schedule, ua must
take value true for all activities. Adding such inputs to the invariant can bring
a better view of the promising insertion positions for an activity (see Sect. 5).

Invariant Outputs. The invariant built maintains the precedence graph and
returns, for each activity a, the distance from the source node to a (ds,a, equal to
σa), and the distance from a to the sink node (da,t). It also maintains, for each
resource r, the sequence Or of activities which successively use r. Each sequence
Or is represented as a linked list defining the predecessor preva,r and the succes-
sor nexta,r of a in Or. For incremental computation reasons, the invariant also
maintains, for each activity a and each resource r ∈ Ra, the pending resource
flows Φa,r after the insertion of a. For each resource and each activity, the space
complexity required to record these flows is O(M), with M the maximum num-
ber of resource consumptions that might be performed in parallel on a resource.
In the end, the lazySGS invariant defined takes the form:

({ds,a | a ∈ A}, {da,t | a ∈ A}, {Or | r ∈ R}) ← lazySGS (O, {ua | a ∈ A}) (8)

Even if such an invariant is rather large, it can be used in a CBLS model con-
taining other invariants. For example, output variables ds,a and da,t are usually
used as inputs for invariants that incrementally compute the temporal flexibility
of each activity (flexa ← ds,t − (ds,a + da,t)), and then for computing the set of
critical activities using a set invariant (CriticalSet ← {a ∈ A |flexa = 0}). Also,
when considering extensions of the invariant in which there is a choice on the
resources used by activities, the associated resource allocation decisions can be
connected to other invariants managing other constraints such as limitations on
non-renewable resources.

Incremental Evaluation. The incremental evaluation function of the CBLS
invariant corresponds to Algorithm1. This algorithm is inspired by the incre-
mental longest paths maintenance algorithms introduced in [22]. The main diffi-
culty is that in our case, we need more than incrementally computing distances
in a precedence graph: we also need to incrementally manage the construction
of the precedence graph itself, which depends on the pending resource flows
successively obtained.

Two kinds of changes must be considered: (1) moves of some activities in the
priority list; (2) activation/deactivation of resource consumptions for some activ-
ities. To handle these changes, the first step consists in updating sequences of
resource consumptions applied to resources (Or). All activities for which changes

An Incomplete Constraint-Based System for Scheduling 251

occurred are removed from sequences Or, and all activities whose consumptions
are still activated (ua = true) are sorted by increasing tag and reintroduced
in Or via a single forward traversal. These updates are realized by a call to
UpdateOrders at line 1.

For performing forward revisions, Algorithm1 uses several data structures:

– a global revision queue Qrev containing activities for which some revisions
must be made; to ensure that revisions are realized in a topological order
with relation to the precedence graph, activities are ordered in Qrev as their
tags in O;

– for every activity a, a precedence revision set Prev
a containing activities b such

that (b, a) is a precedence in P and the end time of b has been updated;
– for every activity a, a resource revision set Rrev

a containing resources r ∈ Ra

such that the impact of the consumption of resource r by a might not be
up-to-date.

Data structures Qrev , Prev
a , Rrev

a are initialized at line 2 by a call to InitRe-

visions. The latter adds to revision queue Qrev all activities a which have been
activated or deactivated since the last evaluation of the invariant. For these
activities, all resources in Ra are added to revision set Rrev

a . For every other
activity a and every resource r ∈ Ra, if activity a has a new predecessor in Or,
then a is added to Qrev and resource r is added to Rrev

a . Last, Prev
a is initially

empty for every activity a.
After these initialization steps, while there are some revisions left in Qrev ,

the revisions associated with the activity a that has the lowest tag in ordering
O are considered (line 4). After that, the algorithm computes the contribution
ρold of all elements in Prev

a and Rrev
a to the previous value of the start time

of a, denoted by σold
a (line 5). The computations performed take into account

the value of ua at the last evaluation of the invariant (value uold
a). Then, the

algorithm computes the new contribution ρ of these same elements to the new
value of the start time of a (lines 6–7), by using function EarliestStart which
recomputes terms σa,r seen in Eqs. 5 and 6.

If the new contribution ρ is greater than or equal to the current value of
σa, this means that temporal constraints have been strengthened since the last
evaluation of the invariant, hence the new value of σa is ρ (line 8). Otherwise,
if the old contribution ρold was a support for σold

a , then σa is recomputed from
scratch (lines 9–10). Otherwise, there is a weakening of the temporal constraints
associated with the elements revised, but these elements did not support the
previous value of σa, hence σa is up-to-date.

If the new value obtained for σa is distinct from its old value σold
a , revisions are

triggered for project successors of a (lines 11–15). Last, resource consumptions
associated with a and which require a revision are handled, by recomputing the
pending flows after the insertion of a for these resources (function Apply), and
by triggering new resource revisions over successor activities in case of a change
in these pending flows (lines 16–21). Note that it is more likely to get at some
point an equality between two lists of pending resource flows than between two
full resource usage profiles.

252 C. Pralet

Algorithm 1. Incremental revision procedure for the CBLS invariant
introduced
1 {Or | r ∈ R} ← UpdateOrders()
2 (Qrev , {Prev

a | a ∈ A}, {Rrev
a | a ∈ A}) ← InitRevisions()

3 while Qrev �= ∅ do
4 a ← ExtractMin(Qrev)

5 ρold ← maxb∈Prev
a

(σold
b + pb); if uold

a then ρold ← max(ρold , maxr∈Rrev
a

σa,r)
6 if ua then σa,r ← EarliestStart(a, r, Φpreva,r,r,mpreva,r,r) for each

r ∈ Rrev
a

7 ρ ← maxb∈Prev
a

(σb + pb); if ua then ρ ← max(ρ, maxr∈Rrev
a

σa,r)
8 if ρ ≥ σa then σa ← ρ

9 else if ρold = σold
a then

10 σa ← max(b,a)∈P(σb + pb); if ua then σa ← max(σa, maxr∈Ra σa,r)

11 if σa �= σold
a then

12 foreach (a, b) ∈ P do
13 if b /∈ Qrev then Add(〈b, tagb〉,Qrev)
14 Add(a, Prev

b)

15 if ua then Rrev
a ← Ra

16 if ua then
17 foreach r ∈ Rrev

a do

18 Φold ← Φa,r; Φa,r ← Apply(a, r, σa, Φpreva,r,r,mpreva,r,r)

19 if (nexta,r �= t) ∧ ((Φa,r �= Φold) ∨ (∃(φ, z) ∈ Φa,r s.t. σz �= σold
z))

then
20 if nexta,r /∈ Qrev then Add(〈nexta,r, tagnexta,r

〉,Qrev)

21 Add(r, Rrev
nexta,r

)

Backward revisions, which compute distances from every activity to the sink
node, are performed similarly. The main differences are that revisions are trig-
gered in the direction of predecessors of activities, and that backward revisions
do not update the precedence graph but just follow the graph produced by
the forward revisions. After all forward and backward revisions, the old values
which need to be recorded are updated following the changes made (uold

a ← ua,
σold

a ← σa, dold
a,t ← da,t).

As a last remark, note that the CBLS invariant obtained can deal with plan-
ning horizons containing many time-steps, since the complexity of the algo-
rithm defined does not depend on the number of possible values of temporal
distances. Further analyses would be required to get, as in [22], the complex-
ity of the incremental evaluation function in terms of changes in the inputs
and outputs of the invariant. Finally, it would be possible to define another
version of the invariant taking as inputs directly individual priority orders
Or over each resource, provided that these orders are compatible (invariant
({ds,a | a ∈ A}, {da,t | a ∈ A}) ← lazySGS ′({Or | r ∈ R}, {ua | a ∈ A})).

An Incomplete Constraint-Based System for Scheduling 253

5 Differentiability of the Invariant

In addition to incremental reevaluation issues, one key feature of invariants in
CBLS is their differentiability [35], which allows to quickly estimate the quality
of local moves instead of fully evaluating them. To get such a differentiability, in
addition to the set of forward pending flows Φa,r obtained after the insertion of an
activity a, the invariant also maintains a list of backward pending flows Ψa,r =
[(ψ1, z1), . . . , (ψh, zh)] obtained just before each activity a. This list contains
pairs (ψi, zi) such that activity zi waits for a flow ψi which is released by activities
placed before a in Or. See the bottom part of Fig. 2 for an illustration. On this
figure, the backward pending flows for C and B on r are ΨC,r = [(C, 1), (D, 2)]
and ΨB,r = [(B, 1), (C, 1), (D, 1)]. Intuitively, Φa,r and Ψa,r describe the resource
usage frontiers obtained when cutting the flow-network respectively just after
and just before the realization of a.

Let us now detail the techniques used for quickly estimating the quality of
the possible reinsertions of an activity a in priority list O. To do this efficiently,
we first deactivate resource consumptions for a, to take into account only project
precedences for a, and we evaluate the new schedule using the incremental eval-
uation function of the CBLS invariant. Then, from the current activity list O, it
is possible to compute all relevant insertion positions for a that do not lead to
a precedence cycle. More precisely, we traverse the ancestors of a in the current
precedence graph to find the greatest-tag ancestor activity b1 such that there
is a common resource used by a and b1 (Ra ∩ Rb1 �= ∅). We also traverse the
descendants of a to find the lowest-tag descendant activity b2 such that there
is a common resource used by a and b2. Reinserting a in priority list O any-
where between b1 and b2 is consistent from the project precedences point of
view. However, not all insertion positions deserve to be tested. It suffices to test
the insertion of a just after activities c which share a common resource with a.

Let c be a relevant insertion position in O located between b1 and b2. To
estimate the quality of the schedule obtained by inserting a just after c, we first
simulate the insertion of a over resources r ∈ Ra. For each resource r ∈ Ra,
we compute the activities ˆpreva,r and ˆnexta,r that would immediately precede
and follow a on r if a is inserted at the chosen position. We then simulate the
merging of the forward pending flows in Φ ˆpreva,r,r, followed by a, followed by
the backward pending flows in Ψ ˆnexta,r,r. To simulate this merging, we compute
a set of additional resource flows and nodes that allow to get a consistent flow
network (see Fig. 3). The quality of the resulting schedule is then estimated by
the contribution to the makespan associated with the part of the schedule modified
by the insertion of a, or in other words by the length of the longest source-to-
sink path which traverses flow arcs added for merging the forward and backward
pending flows (longest path through the gray area in Fig. 3).

In the case of disjunctive resources, the evaluation adopted generalizes clas-
sical formulas used in job shop scheduling and gives the exact value of the
length of the longest source-to-sink path through a in the schedule that would
be obtained [25]. In the case of cumulative resources, it gives a more global
evaluation. To efficiently compute the length of such longest paths, we use the

254 C. Pralet

(already known) distances ds,b from the source node to activities b contained in
the forward pending flows, and the (already known) distances db,t from activities
b contained in the backward pending flows to the sink node.

11

11

11

2

1

2
1

2
2

1 1 1 1 1 1 1

1

1

1 11

1

1

11

2
r

r’

22 2

1

2

2
2

1

1

1

1

r

r’
1 11111 1 1 1

B

C
se
tu
pF

se
tu
p

CF Ese
tu
p

C F se
tu
p

F
Ese

tu
pD

B

C
A

B

A

D

E

EB se
tu
p

ΦC,r′ ΨE,r′

ΦC,r ΨD,rΦB,r ΨC,r

ΦB,r′ ΨC,r′

Fig. 3. Flow merging for estimating the quality of the insertion of activity F into
the schedule given in Fig. 1: simulation of the insertion between B and C (left), and
between C and D (right)

More formally, we first compute the earliest start time σ̂a of a for the chosen
insertion position. Next, for each resource r ∈ Ra, we compute the new pending
flows Φ̂a,r that would be obtained just after the insertion of a, and for each
pending flow (φ, z) in Φ̂a,r we denote by σ̂z the earliest start time obtained
for z.

If no setup is required between a and ˆnexta,r (case ma,r = m ˆnexta,r,r), we
compute a set of flows Γ which allow to merge forward pending flows in Φ̂a,r

with backward pending flows in Ψ ˆnexta,r,r. To define Γ , flows (ψ, z) in Ψ ˆnexta,r,r

are ordered by increasing activity-tag, and for each of them we deliver from Φ̂a,r

the resource flow ψ required by z, by using the same principles as in the schedule
generation scheme of Sect. 3. For resource r, the quality of the insertion of a just
after c in O is estimated by:

lengtha,c,r = max
x

φ−→y∈Γ
(σ̂x + px + dy,t) (9)

Otherwise (case ma,r �= m ˆnexta,r,r), a setup operation is required just after a,
as for the insertion of F on resource r′ on the right part of Fig. 3. In this case,
the estimation associated with the insertion of a just after c in O is:

lengtha,c,r = max
(φ,z)∈Φ̂a,r

(σ̂z + pz) + Δr,ma,r,m ˆnexta,r,r
+ max

(ψ,z)∈Ψ ˆnexta,r,r

dz,t (10)

Finally, the global estimation associated with the insertion of a just after c
in O is:

lengtha,c = max((max
r∈Ra

lengtha,c,r) , (σ̂a + pa + max
(a,b)∈P

db,t)) (11)

This estimation takes into account not only the estimation of the quality of
the insertion over each resource, but also the project successors of the activity

An Incomplete Constraint-Based System for Scheduling 255

inserted. Compared to [4], which uses resource flows for guiding the way an
activity should be inserted into an RCPSP schedule, testing the insertion at one
position in our case has a lower complexity (complexity O(Mm + P) with m
the number of resources, M the maximum number of activities that might be
performed in parallel over a resource, and P the maximum number of project
predecessors and successors for an activity, instead of complexity O(nm) with n
the number of activities in A).

6 Generic Local Search Neighborhoods

As said in the introduction, the other parts of our scheduling system are
described with fewer details. Several neighborhoods are used when searching
for good priority lists O:

– Reinsertion: reinserts a given activity a at one of the best positions in the
schedule according to the estimations provided by the differentiation tech-
niques of the previous section. When choosing a particular insertion position
for a, updates are automatically made in O to guarantee that all ancestors
(resp. descendants) of a in the precedence graph are still located on the left
(resp. on the right) of a in O.

– ReinsertionDeep: considers an activity a and tries to reinsert a at the best
possible position. To enlarge the set of candidate insertion positions, it also
moves project ancestors of a at their leftmost position in the order and project
descendants of a at their rightmost position, without increasing the current
makespan.

– Or-opt: consists in searching for a better positioning for a block B of k
successive activities. It is inspired by the or-opt-k neighborhood [5] used for
traveling salesman problems (TSPs), and it can be useful for scheduling with
setup times for SDST-RCPSP. The candidate reinsertion positions for B are
efficiently explored by adapting the differentiation techniques seen previously.

– 2-opt: considers a set of successive activities ai, ai+1, . . . , aj and tries to
realize them in the reverse order. Such a neighborhood is inspired by the
2-opt moves [13] used for TSPs and can be useful for scheduling with setup
times. It is efficiently explored by extending the differentiation techniques
seen in the previous section.

– Swap: considers two activities a, b such that swapping a and b does not cre-
ate a precedence cycle. Using this neighborhood is more expensive since for
evaluating a swap, we explicitly make it and compute its exact effect.

– ReorderByDistToSink: transforms the current priority list O by ordering
elements by decreasing distance to the sink node. For RCPSP, such a strategy
is known as the Forward-Backward Improvement algorithm [33].

7 Search Strategy

The last part of our CBLS scheduling system allows search strategies to be
defined. For space limitation reasons, we only give a brief overview of the strategy

256 C. Pralet

used for the experiments. One of the main component of this strategy is Vari-
able Neighborhood Search (VNS [27]), which successively considers the neighbor-
hoods defined and applies these neighborhoods to critical activities until reaching
a locally optimal solution.

Then, tabu search is used to escape local optima and plateaus [14]. More
precisely, we maintain a tabu list which contains forbidden makespan values,
and schedules that have a forbidden (real or estimated) makespan cannot be
selected anymore during VNS. Once VNS converges to a new locally optimal
(and non-tabu) solution, the makespan of this solution is added to the tabu
list, the oldest tabu makespan is removed if some place is needed, and VNS is
launched again. Tabu search ends when the makespan of the current solution
has not been improved during a certain number of VNS applications.

Another technique is used for focusing search on the bottleneck of the prob-
lem: (a) if after tabu search the current makespan is not strictly better than the
best makespan known, we randomly choose one non-critical activity a, deacti-
vate its resource consumptions (ua = false), clear the tabu list, and apply tabu
search again on the problem containing one less activity; (b) otherwise, we select
an activity whose resource consumptions have been deactivated, reactivate these
consumptions, clear the tabu list, and apply tabu search again on the problem
containing one more activity. Each time a full schedule with a better makespan
is found, it is recorded as the best solution. We call the obtained metaheuristic
Tabu Search with Repair (TSR).

Last, to avoid spending too much time on conflict resolution rather than
on search over full schedules, each non-critical activity can be removed at most
once during each call to TSR. When no activity is candidate for being removed
from the schedule, we select x% of the activities (x = 10% in the experiments),
randomly move each of them in priority list O while preserving the satisfaction
of all project precedences, and call TSR on the resulting schedule. From time to
time, we also perform restarts. In the end, by combining tabu search and per-
turbation, we get a metaheuristic that we call Iterated Tabu Search with Repair
(ITSR). It combines local and global search, and makes a trade-off between
search intensification and diversification.

8 Experiments

Experiments are performed on clusters composed of 20 Intel Xeon 2.6 GHz
processors with a shared memory of 65 GB of RAM. Each run used for solving
one problem instance is performed on a single processor (no parallel solving). For
each cluster, the 20 CBLS models together with the 20 search engines easily fit
onto the available memory. The invariant defined is integrated into the InCELL
CBLS library [31].

SDST-JSSP. Table 1 summarizes the results obtained on SDST-JSSP
instances [9]. Each instance contains n jobs and m resources, leading to nm
activities to schedule. For ITSR, the results presented are obtained based on

An Incomplete Constraint-Based System for Scheduling 257

10 runs, each run having a time limit of 1 h. All neighborhoods defined in Sect. 6
are used except for the swap neighborhood, and the or-opt-k neighborhood is
limited to k = 2. The length of the tabu list which contains makespan values is
set to 15, and for tabu search the number of iterations allowed without improve-
ments is set to 15 as well. ITSR is compared against techniques of the state-of-
the-art: the branch-and-bound method defined in [3], the method defined in [6]
which adapts to SDST-JSSP the shifting bottleneck procedure used for JSSP,
two methods based on genetic algorithms hybridized with local search [16] and
tabu search [17], and the CP approach defined in [18]. In the table, these meth-
ods are respectively referred to as AF08, BSV08, GVV08, GVV09, and GH10.
The latter uses the same 1 h time limit as ITSR on a similar processor. As in [18],
the bold font in the table is used for best makespan values, underlined values are
used when the solver proves optimality, and values marked with a star denote
new best upper bounds found by ITSR, which have also been verified using a
separate checker. Globally, ITSR finds 6 new upper bounds and for all other
instances it always finds the best known upper bound. Table 1 also shows the
impact of the incremental computation techniques and of the differentiability
of the lazySGS invariant. Compared to ITSR, the version which fully evaluates
local moves instead of using differentiability (column ITSR-D in Table 1) typ-
ically performs 10 times less local moves, while the version which uses neither
differentiability nor incremental evaluations (column ITSR-D-I in Table 1), typ-
ically performs 20 times less local moves. The solutions produced after one hour
by these versions have higher makespans on average.

MJSSP. Figure 4a summarizes results obtained for the Multi-Capacity Job Shop
Scheduling Problem (MJSSP). This problem involves cumulative resources and
activities which all consume one resource unit. As in [26,29], which introduces
iterative flattening (a precedence constraint posting approach), the instances
considered are derived from standard JSSP instances by duplicating jobs and
increasing the capacity of resources accordingly. The advantage of doing this is
that results over the initial JSSP instances provide lower and upper bounds for
the MJSSP instances [28] (column NA96 in Fig. 4a). The instances selected are
the 21 instances for which [26] provides new best upper bounds (column MV04
in Fig. 4a). In [26], these bounds are presented as the best ones found during the
work on iterative flattening (no computation time specified). These bounds have
been improved in [15], which uses randomized large neighborhood search (column
GLN05). Over the 21 instances, ITSR manages to find 12 best upper bounds
compared to MV04, but only one compared to GLN05. To get these results, the
or-opt and 2-opt neighborhoods are deactivated because they are less relevant
without setup times, and the length of the tabu list is set to 2. As for SDST-
JSSP, Fig. 4a shows that deactivating the differentiability and the incremental
computation capabilities of the lazySGS invariant degrades the average quality
of the solutions produced.

RCPSP. Figure 4b reports the results obtained on RCPSP instances j60, j90, and
j120 (www.om-db.wi.tum.de/psplib), which respectively contain 60, 90, and 120

http://www.om-db.wi.tum.de/psplib

258 C. Pralet

Table 1. Experiments for SDST-JSSP: comparison with the state-of-the-art for
makespan minimization (best & mean values over 10 runs, with a 1 h time limit for
each run)

Instance #jobs x #res AF08 BSV08 GVV08 GVV09 GH10 ITSR ITSR-D ITSR-D-I
Best Best Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

t2-ps06 15 x 5 1009 1018 1026 1026 1009 1009.0 1009 1009.2 1009 1009.7 1009 1010.3
t2-ps07 15 x 5 970 1003 970 971 970 970.0 970 970.0 970 970.0 970 970.0
t2-ps08 15 x 5 963 975 963 966 963 963.0 963 963.0 963 963.0 963 963.0
t2-ps09 15 x 5 1061 1060 1060 1060 1060 1060.0 1060 1060.0 1060 1060.0 1060 1060.0
t2-ps10 15 x 5 1018 1018 1018 1018 1018 1018.0 1018 1018.0 1018 1018.0 1018 1018.0
t2-ps11 20 x 5 1494 1470 1438 1439 1438 1441 1443 1463.8 1437* 1437.6 1438 1442.1 1438 1441.9
t2-ps12 20 x 5 1381 1305 1269 1291 1269 1277 1269 1322.2 1269 1269.0 1269 1270.8 1269 1271.1
t2-ps13 20 x 5 1457 1439 1406 1415 1415 1416 1415 1428.8 1404* 1406.4 1406 1414.1 1406 1414.5
t2-ps14 20 x 5 1483 1485 1452 1489 1452 1489 1452 1470.5 1452 1452.0 1452 1452.0 1452 1452.0
t2-ps15 20 x 5 1661 1527 1485 1502 1485 1496 1486 1495.8 1479* 1485.9 1485 1492.9 1485 1496.0
t2-pss06 15 x 5 1126 1114 1114.0 1114 1117.7 1114 1120.6 1114 1122.0
t2-pss07 15 x 5 1075 1070 1070.0 1070 1070.0 1070 1070.0 1070 1070.0
t2-pss08 15 x 5 1087 1072 1073.0 1072 1073.1 1072 1073.6 1072 1074.2
t2-pss09 15 x 5 1181 1161 1161.0 1161 1161.0 1161 1161.0 1161 1161.0
t2-pss10 15 x 5 1121 1118 1118.0 1118 1118.0 1118 1118.0 1118 1118.0
t2-pss11 20 x 5 1442 1412 1425.9 1409* 1412.4 1412 1417.6 1414 1420.6
t2-pss12 20 x 5 1290 1258 1266 1269 1287.6 1257* 1260.5 1258 1266.7 1260 1269.3
t2-pss13 20 x 5 1398 1361 1379 1365 1388.0 1361 1364.7 1361 1371.9 1367 1373.9
t2-pss14 20 x 5 1453 1452 1453.0 1452 1452.0 1452 1452.0 1452 1452.0
t2-pss15 20 x 5 1435 1417 1427.4 1410* 1411.1 1410* 1421.1 1417 1421.8

Instance
#jobs NA96 MV04 GLN05 ITSR ITSR-D ITSR-D-I
x #res lb / ub Best Best Best Avg Best Avg Best Avg

la04-2 20 x 5 572 / 590 577 576 576 576.0 584 587.3 582 588.7
la04-3 30 x 5 570 / 590 584 573 577 579.7 594 603.7 596 605.0
la16-2 20 x 10 888 / 935 929 925 933 938.4 932 936.6 930 937.6
la16-3 30 x 10 717 / 935 927 918 939 947.1 941 951.9 945 955.3
la17-2 20 x 10 750 / 765 756 755 756 757.8 760 763.3 760 763.4
la17-3 30 x 10 646 / 765 761 755 763 765.7 773 777.7 772 779.0
la18-2 20 x 10 783 / 844 818 811 814 818.1 828 833.7 832 836.6
la18-3 30 x 10 663 / 844 813 808 818 825.4 854 861.4 840 858.4
la19-2 20 x 10 730 / 840 803 795 792* 799.9 818 826.2 822 827.5
la19-3 30 x 10 617 / 840 801 787 799 802.5 841 848.5 842 852.3
la20-2 20 x 10 829 / 902 864 859 859 867.2 872 878.9 871 878.6
la20-3 30 x 10 756 / 902 863 854 862 871.5 879 894.5 888 901.4
la24-2 30 x 10 704 / 935 932 903 911 917.9 966 976.6 963 975.3
la24-3 45 x 10 704 / 935 929 898 917 923.2 1000 1010.8 1000 1014.4
la25-3 45 x 10 723 / 977 965 945 977 983.2 1027 1037.6 1035 1043.9
la38-2 30 x 15 943 / 1196 1185 1175 1180 1188.6 1249 1260.8 1223 1261.5
la38-3 45 x 15 943 / 1196 1195 1168 1197 1204.9 1286 1304.6 1297 1311.3
ft10-2 20 x 10 835 / 930 913 891 906 908.9 921 931.3 922 934.2
ft10-3 30 x 10 655 / 930 912 879 915 921.8 946 957.7 955 962.3
ft20-2 40 x 5 1165/1165 1186 1182 1172 1175.0 1195 1215.6 1213 1226.0
ft20-3 60 x 5 387 / 1165 1205 1179 1182 1190.1 1239 1254.8 1220 1255.7

 360

 380

 400

 420

 440

 0 1 2 3 4 5

ITSR
ITSR-D

ITSR-D-I

 300

 320

 340

 360

 380

 400

 420

 440

 0 1 2 3 4 5 6 7 8

ITSR
ITSR-D

ITSR-D-I

 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 2 4 6 8 10

ITSR
ITSR-D

ITSR-D-I

(a) (b)

Fig. 4. Results on cumulative resources: (a) results on MJSSP instances (best & mean
values over 10 runs with a 1 h time limit per run); (b) results on RCPSP instances j60
(top), j90 (middle), and j120 (bottom); representation of the mean number of instances
(y-axis) for which the deviation percentage with regards to the best known upper bound
is less than the value on the x-axis (average results over 5 runs with a 30min time limit
per run)

An Incomplete Constraint-Based System for Scheduling 259

activities to schedule. This time, the length of the tabu list is set to 4 as well as the
maximum number of iterations without improvement for tabu search. Figure 4b
gives the distribution of the relative distance between the average makespan
found by ITSR after 30 minutes and the best makespan reported in the PSPLIB.
For example, for j60, the graph expresses that among the 450 instances of j60
considered, the distance to the best solution known is 0% for approximately 375
instances, it is ≤ 1% for approximately 400 instances, and so on. Globally, for
j60 (resp. j90 and j120), ITSR finds schedules which are within 5% (resp. 7%
and 9%) from the best upper bounds. Figure 4b shows the degradation of the
search efficiency when deactivating the differentiation techniques (ITSR-D), and
then both differentiability and incremental computations (ITSR-D-I).

9 Conclusion and Future Work

In this paper, we gave a global view of CBLS techniques adapted to SDST-
RCPSP, with a focus on a new CBLS invariant capable of dealing with a large
class of renewable resources. With regards to existing CBLS systems, this invari-
ant is rather large in the sense that it does not decompose the management of
renewable resources into several smaller invariants which are then dynamically
ordered in the graph of invariants. We believe that this allows us to get more
powerful differentiation techniques, however additional experiments should be
performed to confirm this point. For future work, it would be useful to extend
the invariant introduced to take into account resources with time-varying avail-
ability profiles, activities with time-varying resource consumptions, or maximum
distance constraints between activities, and to get more insight into the contri-
bution of each component of the search strategy defined.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Modell. 17(7), 57–73 (1993)

2. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems
with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

3. Artigues, C., Feillet, D.: A branch and bound method for the job-shop problem
with sequence-dependent setup times. Ann. Oper. Res. 159(1), 135–159 (2008)

4. Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic
resource constrained project scheduling. Eur. J. Oper. Res. 149(2), 249–267 (2003)

5. Babin, G., Deneault, S., Laporte, G.: Improvements to the Or-opt heuristic for the
symmetric traveling salesman problem. J. Oper. Res. Soc. 58, 402–407 (2007)

6. Balas, E., Simonetti, N., Vazacopoulos, A.: Job shop scheduling with setup times,
deadlines and precedence constraints. J. Sched. 11(4), 253–262 (2008)

7. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/
3-540-45749-6 17

http://dx.doi.org/10.1007/3-540-45749-6_17
http://dx.doi.org/10.1007/3-540-45749-6_17

260 C. Pralet

8. Brucker, P., Drexl, A., Möring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models, and methods. Eur. J. Oper.
Res. 112(1), 3–41 (1999)

9. Brucker, P., Thiele, O.: A branch and bound method for the general-shop problem
with sequence dependent setup-times. Oper. Res. Spekt. 18(3), 145–161 (1996)

10. Carlier, J.: The one machine sequencing problem. Eur. J. Oper. Res. 11, 42–47
(1982)

11. Carlier, J., Pinson, E.: Adjustment of heads and tails for the job-shop problem.
Eur. J. Oper. Res. 78, 146–161 (1994)

12. Croce, F.D.: Generalized pairwise interchanges and machine scheduling. Eur. J.
Oper. Res. 83(2), 310–319 (1995)

13. Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6,
791–812 (1958)

14. Glover, F., Laguna, M.: Tabu search. In: Modern Heuristic Techniques for Combi-
natorial Problems, pp. 70–141. Blackwell Scientific Publishing (1993)

15. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: Proceedings of the 15th International Conference on
Automated Planning and Scheduling (ICAPS 2005), pp. 81–89 (2005)

16. González, M.A., Vela, C.R., Varela, R.: A new hybrid genetic algorithm for the job
shop scheduling problem with setup times. In: Proceedings of the 18th International
Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 116–123
(2008)

17. González, M.A., Vela, C.R., Varela, R.: Genetic algorithm combined with
tabu search for the job shop scheduling problem with setup times. In: Mira,
J., Ferrández, J.M., Álvarez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC
2009. LNCS, vol. 5601, pp. 265–274. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02264-7 28

18. Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-
lags: a simple constraint programming approach. In: Lodi, A., Milano, M., Toth, P.
(eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13520-0 19

19. Grimes, D., Hebrard, E.: Solving variants of the job shop scheduling problem
through conflict-directed search. INFORMS J. Comput. 27(2), 268–284 (2015)

20. Hartmann, S.: A competitive genetic algorithm for resource-constrained project
scheduling. Naval Res. Logist. 45, 733–750 (1997)

21. Ilog: IBM ILOG CPLEX and CpOptimizer. http://www-03.ibm.com/software/
products/

22. Katriel, I., Michel, L., Van Hentenryck, P.: Maintaining longest paths incremen-
tally. Constraints 10(2), 159–183 (2005)

23. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained
project scheduling problem: classification and computational analysis. In: Hand-
book on Recent Advances in Project Scheduling, pp. 147–178. Kluwer Academic
Publishers, Dordrecht (1999)

24. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

25. Mastrolilli, M., Gambardella, L.: Effective neighborhood functions for the flexible
job shop problem. J. Sched. 3(1), 3–20 (2000)

26. Michel, L., Van Hentenryck, P.: Iterative relaxations for iterative flattening in
cumulative scheduling. In: Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS 2004), pp. 200–208 (2004)

http://dx.doi.org/10.1007/978-3-642-02264-7_28
http://dx.doi.org/10.1007/978-3-642-02264-7_28
http://dx.doi.org/10.1007/978-3-642-13520-0_19
http://www-03.ibm.com/software/products/
http://www-03.ibm.com/software/products/

An Incomplete Constraint-Based System for Scheduling 261

27. Mladenov́ıc, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

28. Nuijten, W.P.M., Aarts, E.H.L.: A computational study of constraint satisfaction
for multiple capacitated job shop scheduling. Eur. J. Oper. Res. 90(2), 269–284
(1996)

29. Oddi, A., Cesta, A., Policella, N., Smith, S.F.: Iterative flattening search for
resource constrained scheduling. J. Intell. Manuf. 21, 17–30 (2010)

30. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York
(2012). doi:10.1007/978-1-4614-2361-4

31. Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static
invariant-based evaluation model. In: Proceedings of the 23rd International Con-
ference on Automated Planning and Scheduling (ICAPS 2013), pp. 171–179 (2013)

32. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource con-
strained project scheduling problem with generalized precedences by lazy clause
generation. CoRR abs/1009.0347 (2010)

33. Valls, V., Ballest́ın, F., Quintanilla, S.: Justification and RCPSP: a technique that
pays. Eur. J. Oper. Res. 165(2), 375–386 (2005)

34. Van Cauwelaert, S., Dejemeppe, C., Monette, J.N., Schaus, P.: Efficient filtering for
the unary resource with family-based transition times. In: Proceedings of the 22nd
International Conference on Principles and Practice of Constraint Programming
(CP 2016), pp. 520–535 (2016)

35. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

36. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in O(k
n log n). In: Proceedings of the 15th International Conference on Principles and
Practice of Constraint Programming (CP 2009), pp. 802–816 (2009)

37. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697,
pp. 230–245. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21311-3 22

http://dx.doi.org/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-3-642-21311-3_22

Rotation-Based Formulation for Stable Matching

Mohamed Siala(B) and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science, University
College Cork, Cork, Ireland

{mohamed.siala,barry.osullivan}@insight-centre.org

Abstract. We introduce new CP models for the many-to-many stable
matching problem. We use the notion of rotation to give a novel encoding
that is linear in the input size of the problem. We give extra filtering rules
to maintain arc consistency in quadratic time. Our experimental study
on hard instances of sex-equal and balanced stable matching shows the
efficiency of one of our propositions as compared with the state-of-the-art
constraint programming approach.

1 Introduction

In two-sided stable matching problems the objective is to assign some agents
to other agents based on their preferences [14]. The classic exemplar of such
problems is the well known stable marriage (SM) problem, first introduced by
Gale and Shapley [6]. In SM the two sets of agents are called men and women.
Each man has a preference list over the women and vice versa. The purpose
is to find a matching where each man (respectively woman) is associated to at
most one woman (respectively man) that respects a criterion called stability.
A matching M in this context is stable if any pair 〈m,w〉 (where m is a man and
w is a woman) that does not belong to M satisfies the property that m prefers
his partner in M to w or w prefers her partner in M to m.

This family of problems has gained considerable attention as it has a wide
range of applications such as assigning doctors to hospitals, students to college,
and in kidney exchange problems. The stable marriage problem itself can be
solved in O(n2) time [6] where n is the maximum number of men/women. This
is also true for the general case of many-to-many stable matching; the complexity
O(n2) is given in the proof of Theorem 1 in [1]. However, when facing real world
situations the problem often considers additional optimality criteria. In many
cases, the problem becomes intractable and specialized algorithms for solving
the standard version are usually hard to adapt. The use of a modular approach
such as constraint programming is very beneficial to tackle such cases.

Many constraint programming approaches exist in the literature for stable
matching problems. Examples of these concern stable marriage [7,21,22], hospi-
tal residents (HR) [13,20], many-to-many stable matching [3], and stable room-
mates [17]. Despite the fact that many-to-many stable matching generalizes HR
and SM, it has not gained as much attention as SM and HR in the constraint pro-
gramming community. In this paper, we follow this line of research by proposing
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 262–277, 2017.
DOI: 10.1007/978-3-319-66158-2 17

Rotation-Based Formulation for Stable Matching 263

an effective and efficient model for all three variants of stable matching: one-to-
one, many-to-one, and many-to-many. Our propositions are based on a powerful
structure called rotations. The latter has been used to model the stable room-
mates problem in [9] (p. 194) and [4,5].

We leverage some known properties related to rotations in order to propose
a novel SAT formulation of the general case of many-to-many stable matching.
We show that unit propagation on this formula ensures the existence of a par-
ticular solution. Next, we use this property to give an algorithm that maintains
arc consistency if one considers many-to-many stable matching as a (global)
constraint. The overall complexity for arc consistency is O(L2) time where L is
total input size of all preference lists. Our experimental study on hard instances
of sex-equal and balanced stable matching show that our approach outperforms
the state-of-the-art constraint programming approach [20].

The remainder of this paper is organized as follows. In Sect. 2 we give a brief
overview of constraint programming. We present the stable matching problem
in Sect. 3 as well as various concepts related to rotations. In Sect. 4 we propose a
novel formulation of stable matching based on the notion of rotation. We show
in Sect. 5 some additional pruning rules and show that arc consistency can be
maintained in O(L2) worst case time complexity. Lastly, in Sect. 6 we present
an empirical experimental study on two hard variants of stable matching and
show that one of our new models outperforms the state-of-the-art constraint
programming approach in the literature.

2 Constraint Programming

We provide a short formal background related to constraint programming. Let
X be a set of integer variables. A domain for X , denoted by D, is a mapping
from variables to finite sets of integers. For each variable x, we call D(x) the
domain of the variable x. A variable is called assigned when D(x) = {v}. In
this case, we say that v is assigned to x and that x is set to v. A variable is
unassigned if it is not assigned. A constraint C defined over [x1, . . . , xk] (k ∈ N

∗)
is a finite subset of Zk. The sequence [x1, . . . , xk] is the scope of C (denoted by
X (C)) and k is called the arity of C. A support for C in a domain D is a k-tuple
τ such that τ ∈ C and τ [i] ∈ D(xi) for all i ∈ [1, . . . , k]. Let xi ∈ X (C) and
v ∈ D(xi). We say that the assignment of v to x has a support for C in D iff
there exists a support τ for C in D such that τ [i] = v. The constraint C is
arc consistent (AC) in D iff ∀i ∈ [1, . . . , k], ∀v ∈ D(xi), the assignment of v
to xi has a support in D. A filtering algorithm (or propagator) for a constraint
C takes as input a domain D and returns either ∅ if there is no support for
C in D (i.e., failure) or a domain D′ such that any support for C in D is a
support for C in D′, ∀x ∈ X (C), D′(x) ⊆ D(x), and ∀x /∈ X (C), D′(x) = D(x).
A Boolean variable has an initial domain equal to {0, 1} (0 is considered as false
and 1 as true). A clause is a disjunction of literals where a literal is a Boolean
variable or its negation. Clauses are usually filtered with an algorithm called
unit propagation [16].

264 M. Siala and B. O’Sullivan

Let X be a set of variables, D be a domain, and C be a set of constraints
defined over subsets of X . The constraint satisfaction problem (CSP) is the
question of deciding if an |X |−tuple of integers τ exists such that the projection
of τ on the scope of every constraint C ∈ C is a support for C in D. We consider
in this paper classical backtracking algorithms to solve CSPs by using filtering
algorithms at every node of the search tree [19].

3 Stable Matching

We consider the general case of the many-to-many stable matching problem. We
follow the standard way of introducing this problem by naming the two sets of
agents as workers and firms [14]. We use a notation similar to that of [3].

Let nF , nW ∈ N
∗, F = {f1, f2, . . . , fnF

} be a set of firms, W =
{w1, w2, . . . , wnW

} be a set of workers, and n = max{nF , nW }. Every firm fi

has a list, Pfi
, of workers given in a strict order of preference (i.e., no ties). The

preference list of a worker wi is similarly defined. We denote by PW = {Pwi
| i ∈

[1, nW]} the set of preferences of workers, and by PF = {Pfj
| j ∈ [1, nF]} the set

of preferences of firms. We use L to denote the sum of the sizes of the preference
lists. Note that the size of the input problem is O(L). Therefore we shall give all
our complexity results with respect to L.

For every firm fj (respectively, worker wi), we denote by qfj
(respectively,

qwi
) its quota. We denote by qW = {qwi

| i ∈ [1, nW]} the set of quota for
workers, and by qF = {qfj

| j ∈ [1, nF]} the set of quotas for firms. We use the
notation wi �fk

wj when a firm fk prefers worker wi to worker wj . The operator
�wk

is defined similarly for any worker wk.
A pair 〈wi, fj〉 is said to be acceptable if wi ∈ Pfj

and fj ∈ Pwi
. A matching

M is a set of acceptable pairs. Let M(wi) = {fj | 〈wi, fj〉 ∈ M}, and M(fj) =
{wi | 〈wi, fj〉 ∈ M}. A worker wi (respectively, firm fj) is said to be under-
assigned in M if |M(wi)| < qwi

(respectively, |M(fj)| < qfj
). We define for every

worker wi, lastM (wi) as the least preferred firm for wi in M(wi) if M(wi) 	= ∅.
For every firm fj , lastM (fj) is similarly defined. A pair 〈wi, fj〉 /∈ M is said to
be blocking M if it is acceptable such that the following two conditions are true:

– wi is under-assigned in M or ∃fk ∈ M(wi) and fj �wi
fk.

– fj is under-assigned in M or ∃wl ∈ M(fj) and wi �fj
wl.

Definition 1 (Stability). A matching M is (pairwise) stable if ∀wi ∈ W ,
|M(wi)| ≤ qwi

, ∀fj ∈ F , |M(fj)| ≤ qfj
, and there is no blocking pair for M .

An instance of the many-to-many stable matching problem is defined by the
tuple 〈W,F, PW , PF , qW , qF 〉. The problem is to find a stable matching if one
exists.

A pair 〈wi, fj〉 is stable if there exists a stable matching M containing 〈wi, fj〉,
unstable otherwise. A pair 〈wi, fj〉 is fixed if it is included in all stable matchings.

Let M,M ′ be two stable matchings. A worker wi prefers M no worse than
M ′ (denoted by M �wi

M ′) if (1) M(wi) = M ′(wi) or (2) |M(wi)| ≥ |M ′(wi)|

Rotation-Based Formulation for Stable Matching 265

and lastM (wi) �wi
lastM ′(wi). It should be noted that every worker (respec-

tively, firm) is assigned to the same number of firms (respectively, workers) in
every stable matching [1]. So the condition |M(wi)| ≥ |M ′(wi)| is always true
in the case of many-to-many stable matching. Let M,M ′ be two different stable
matchings. We say that M dominates M ′ (denoted by M �W M ′) if M �wi

M ′

for every worker wi. This is called the worker-oriented dominance relation. The
firm-oriented dominance relation (�F) is similarly defined for firms.

The authors of [1] showed that a stable matching always exists and can be
found in O(n2) time. More precisely, the complexity of finding a stable matching
is O(L). Moreover, they showed that there always exist worker-optimal and firm-
optimal stable matchings (with respect to �W and �F). We denote these two
matchings by M0 and Mz, respectively.

Example 1 (An instance of many-to-many stable matching (from [3]). Consider
the example where nW = 5, nF = 5, and for all 1 ≤ i, j ≤ 5, qwi

= qfj
= 2. The

preference lists for workers and firms are given in Table 1.

Table 1. Example of preference lists

Pw1 = [f1, f2, f3, f4, f5] Pf1 = [w3, w2, w4, w5, w1]

Pw2 = [f2, f3, f4, f5, f1] Pf2 = [w2, w3, w5, w4, w1]

Pw3 = [f3, f4, f5, f1, f2] Pf3 = [w4, w5, w2, w1, w3]

Pw4 = [f4, f5, f1, f2, f3] Pf4 = [w1, w5, w3, w2, w4]

Pw5 = [f5, f1, f2, f3, f4] Pf5 = [w4, w1, w2, w3, w5]

There exist seven stable matchings for this instance:

– M0 = {〈w1, f1〉, 〈w1, f2〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f3〉, 〈w3, f4〉, 〈w4, f4〉,
〈w4, f5〉, 〈w5, f5〉, 〈w5, f1〉}

– M1 = {〈w1, f1〉, 〈w1, f3〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f5〉, 〈w3, f4〉, 〈w4, f4〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f1〉}

– M2 = {〈w1, f4〉, 〈w1, f3〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f5〉, 〈w3, f4〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f1〉}

– M3 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f1〉, 〈w3, f4〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f3〉}

– M4 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f3〉, 〈w3, f1〉, 〈w3, f2〉, 〈w4, f1〉, 〈w4, f5〉,
〈w5, f4〉, 〈w5, f3〉}

– M5 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f1〉, 〈w3, f1〉, 〈w3, f4〉, 〈w4, f3〉, 〈w4, f5〉,
〈w5, f2〉, 〈w5, f3〉}

– Mz = M6 = {〈w1, f4〉, 〈w1, f5〉, 〈w2, f2〉, 〈w2, f1〉, 〈w3, f1〉, 〈w3, f2〉, 〈w4, f3〉,
〈w4, f5〉, 〈w5, f4〉, 〈w5, f3〉}

In this instance, 〈w1, f1〉 is a stable pair since 〈w1, f1〉 ∈ M0 and 〈w2, f4〉 is not
stable since it is not included in any stable matching. Regarding the dominance
relation, we have M1 �W M2, and M2 �W M3, Using transitivity, we obtain
M1 �W M3, Note that M4 and M5 are incomparable. ��

266 M. Siala and B. O’Sullivan

In the following, we introduce a central notion in this paper called rotation.
Consider the matching M0 from the instance given in Example 1 and the list of
pairs ρ0 = [〈w1, f2〉, 〈w5, f5〉, 〈w3, f3〉]. Notice that every pair in ρ0 is part of M0.
Consider now the operation of shifting the firms in a cyclic way as follows: f2 is
paired with w5, f5 is paired with w3, and f3 is paired with w1. This operation
changes M0 to M1. In this case, we say ρ0 is a rotation.

Formally, for any stable matching M 	= Mz and any worker wi such that
M(wi) 	= ∅, we define rM (wi) to be the most preferred firm fj for wi such that
wi �fj

lastM (fj) and 〈wi, fj〉 /∈ M . In other words, given 〈wi, fj〉 /∈ M , rM (wi)
is a firm that is the most preferred firm to wi such that it prefers wi to her worst
assigned partner in M .

Definition 2 (Rotation [2]). A rotation ρ is an ordered list of pairs [〈wi0 , fj0〉,
〈wi1 , fj1〉, . . . , 〈wit−1 , fjt−1〉] such that t ∈ [2,min(nW , nF)], ik ∈ [1, nW], jk ∈
[1, nF] for all 0 ≤ k < t and there exists a stable matching M where 〈wik , fjk〉 ∈
M , wik = lastM (fjk), and fjk = rM (wik+1 mod t

) for all 0 ≤ k < t. In this case
we say that ρ is exposed in M .

Let ρ be a rotation exposed in a stable matching M . The operation of elimi-
nating a rotation ρ from M consists of removing each pair 〈wik , fjk〉 ∈ ρ from M ,
then adding 〈wik+1 mod t

, fjk〉. The new set of pairs, denoted by M/ρ constitutes
a stable matching that is dominated (w.r.t. workers) by M [3,8]. We say that ρ
produces 〈wi, fj〉 if 〈wi, fj〉 ∈ M/ρ \ M .

The following three lemmas are either known in the literature [3] or are a
direct consequence of [3].

Lemma 1. In every stable matching M 	= Mz, there exists (at least) a rotation
that can be exposed in M .

Lemma 2. Every stable matching M 	= M0 can be obtained by iteratively elim-
inating some rotations, without repetition, starting from M0.

Lemma 3. Any succession of eliminations leading from M0 to Mz contains all
the possible rotations (without repetition).

We say that a rotation ρ1 precedes another rotation ρ2 (denoted by ρ1 ≺≺ ρ2)
if ρ1 is exposed before ρ2 in every succession of eliminations leading from M0

to Mz. Note that this precedence relation is transitive and partial. That is,
ρ1 ≺≺ ρ2 ∧ ρ2 ≺≺ ρ3, implies ρ1 ≺≺ ρ3, and there might exist two rotations ρ1,
and ρ2 where neither ρ1 ≺≺ ρ2 nor ρ2 ≺≺ ρ1.

Example 2 (Rotation precedence). In the previous example we have ρ0 ≺≺ ρ1,
ρ1 ≺≺ ρ2, ρ2 ≺≺ ρ3, ρ2 ≺≺ ρ4. By transitivity we obtain ρ0 ≺≺ ρ4. Note that
in this example neither ρ3 ≺≺ ρ4 nor ρ4 ≺≺ ρ3. ��

Let R be the set of all rotations. The precedence relation ≺≺ with R forms
the rotation poset ΠR. Let G = (VG, AG) be the directed graph corresponding to
the rotation poset. That is, every vertex corresponds to a rotation, and there is an

Rotation-Based Formulation for Stable Matching 267

arc (ρj , ρi) ∈ AG iff ρj ≺≺ ρi. The construction of R and G can be performed
in O(L) time [3]. For each rotation ρi ∈ R, we denote by N−(ρi) the set of
rotations having an outgoing edge towards ρi, i.e., these rotations dominate ρi.
We introduce below the notion of closed subset and a very important theorem.

Definition 3 (Closed subset). A subset of rotations S ⊆ VG is closed iff
∀ρi ∈ S, ∀ρj ∈ VG, if ρj ≺≺ ρi, then ρj ∈ S.

Theorem 1 (From [2]). There is a one-to-one correspondence between closed
subsets and stable matchings.

The solution corresponding to a closed subset S is obtained by eliminating
all the rotations in S starting from M0 while respecting the order of precedence
between the rotations. Recall from Lemma 2 that every stable matching M 	= M0

can be obtained by iteratively eliminating some rotations, without any repeti-
tion, starting from M0. The closed subset corresponding to a stable matching
M is indeed the set of rotations in any succession of eliminations of rotations
leading to M . Notice that M0 corresponds to the empty set and that Mz is the
set of all rotations.

We denote by Δ the set of stable pairs. Let 〈wi, fj〉 be a stable pair. There
exists a unique rotation containing 〈wi, fj〉 if 〈wi, fj〉 /∈ Mz [3]. We denote this
rotation by ρeij

. Similarly, ∀〈wi, fj〉 ∈ Δ \ M0 there exists a unique rotation ρ
such that eliminating ρ produces 〈wi, fj〉. We denote by ρpij

the rotation that
produces the stable pair 〈wi, fj〉 ∈ Δ \M0. Notice that it is always the case that
ρpij

≺≺ ρeij
for any stable pair that is not part of M0 ∪ Mz.

Example 3 (The rotations ρeij
and ρpij

). For the previous example, we have
ρe23 = ρ4, and ρp31 = ρ2 since ρ2 produces the pair 〈w3, f1〉. ��

Lastly, we denote by FP the set of fixed pairs, SP is the set of stable pairs
that are not fixed, and NSP is the set of non stable pairs. Note that 〈wi, fj〉 ∈
FP iff 〈wi, fj〉 ∈ M0 ∩ Mz. These three sets can be constructed in O(L) [3].

4 A Rotation-Based Formulation

We first show that the problem of finding a stable matching can be formulated
as a SAT formula using properties from rotations. Next, we show that for any
input domain D, if unit propagation is performed without failure, then there
exists necessarily a solution in D. Recall that there exists an algorithm (called
the Extended Gale-Shapley algorithm) to find a solution to the many-to-many
stable matching that runs in O(L) time [1,3]. However, using a CP formulation
such as the one that we propose in this section is very beneficial when dealing
with NP-Hard variants of the problem.

In out model, a preprocessing step is performed to compute M0, Mz, SP ,
FP , NSP , the graph posed, ρeij

for all 〈wi, fj〉 ∈ SP \ Mz, and ρpij
for all

〈wi, fj〉 ∈ SP \ M0. This preprocessing is done in O(L) time [3].

268 M. Siala and B. O’Sullivan

4.1 A SAT Encoding

We introduce for each pair 〈wi, fj〉 a Boolean variable xi,j . The latter is set
to true iff 〈wi, fj〉 is part of the stable matching. Moreover, we use for each
rotation ρk a Boolean variable rk (called rotation variable) to indicate whether
the rotation ρk is in the closed subset that corresponds to the solution.

Observe first that for all 〈wi, fj〉 ∈ FP , xi,j has to be true, and for all
〈wi, fj〉 ∈ NSP , xi,j has to be false.

We present three lemmas that are mandatory for the soundness and com-
pleteness of the SAT formula. Let M be a stable matching and S its closed
subset (Theorem 1).

Lemma 4. ∀〈wi, fj〉 ∈ SP ∩ M0 : 〈wi, fj〉 ∈ M iff ρeij
/∈ S.

Proof. ⇒ Suppose that ρeij
∈ S. Let Sequence be an ordered list of the rotations

in S such that exposing the rotations of S starting from M0 leads to M . For
all a ∈ [1, |S|], we define M ′

a to be the stable matching corresponding the closed
subset S′

a = {Sequence[k] | k ∈ [1, a]}. We also use M ′
0 to denote the particular

case of M0 and S′
0 = ∅. Notice that M ′

|S| = M and S′
|S| = S. Let a ∈ [1, |S|] such

that Sequence[a] = ρeij
. We know that exposing the rotation ρeij

from S′
a−1

moves worker wi to a partner that is worse than fi. For any matching M ′
b where

b ∈ [a, |S|], wi either has the same partners in M ′
b−1 or is assigned a new partner

that is worse than fi. Hence 〈wi, fj〉 cannot be part of M ′
|S| = M .

⇐ 〈wi, fj〉 must be part of the solution since it is part of M0 and ρeij
/∈ S. ��

Lemma 5. ∀〈wi, fj〉 ∈ SP ∩ Mz : 〈wi, fj〉 ∈ M iff ρpij
∈ S.

Proof. ⇒ Suppose that ρpij
/∈ S. The pair 〈wi, fj〉 cannot be produced when

eliminating rotations in S since ρpij
is unique. Therefore ρpij

∈ S.
⇐ Suppose that ρpij

∈ S. The pair 〈wi, fj〉 must be part of the solution since
ρpij

∈ S and it can never be eliminated by any rotation since 〈wi, fj〉 ∈ Mz. ��
Lemma 6. ∀〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : 〈wi, fj〉 ∈ M iff ρpij

∈ S ∧ ρeij
/∈ S.

Proof. ⇒ Suppose that 〈wi, fj〉 is part of M .

– If ρpij
/∈ S, then 〈wi, fj〉 can never be produced when eliminating rotations

in S. Therefore ρpij
∈ S.

– If ρeij
∈ S, similarly to the proof of Lemma4, we can show that the pair

〈wi, fj〉 cannot be part of the solution.

⇐ Suppose that ρpij
∈ S and ρeij

/∈ S. The pair 〈wi, fj〉 must be part of the
solution since it is produced by ρpij

and not eliminated since ρeij
/∈ S. ��

Using Lemmas 4, 5 and 6, we can formulate the problem of finding a stable
matching as follows.

∀ρi ∈ R,∀ρj ∈ N−(ρi) : ¬ri ∨ rj (1)

Rotation-Based Formulation for Stable Matching 269

∀〈wi, fj〉 ∈ SP ∩ M0 : ¬xi,j ∨ ¬reij
; xi,j ∨ reij

(2)

∀〈wi, fj〉 ∈ SP ∩ Mz : ¬xi,j ∨ rpij
; xi,j ∨ ¬rpij

(3)

∀〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : ¬xi,j ∨ rpij
; ¬xi,j ∨ ¬reij

; xi,j ∨ ¬rpij
∨ reij

(4)

∀〈wi, fj〉 ∈ FP : xi,j (5)

∀〈wi, fj〉 ∈ NSP : ¬xi,j (6)

We denote this formula by Γ . Clauses 1 make sure that the set of rotation
variables that are set to true corresponds to a closed subset. Clauses 2, 3, and 4
correspond (respectively) to Lemmas 4, 5, and 6. Lastly, Clauses 5 and 6 handle
the particular cases of fixed and non stable pairs (respectively). Observe that
each clause is of size at most 3. Moreover, since the the number of edges in the
graph poset is bounded by O(L) [3], then the size of this formula is O(L).

The only CP formulation for the case of many-to-many stable matching was
proposed in [3]. It is a straightforward generalization of the CSP model proposed
for the hospital/residents problem in [13]. The authors use qwi

variables per
worker, and qfj

variables per firm. The variables related to a worker wi represent
the rank of the firm assigned at each position (out of the qwi

available positions).
A similar set of variables is used for firms. The model contains |W | × (

∑
i qwi

+
|F | × (1 +

∑
j qfj

× (2 +
∑

i(qwi
− 1)))) constraints related to workers. Likewise,

|F | × (
∑

j qfj
+ |W | × (1 +

∑
i qwi

× (2 +
∑

j(qfj
− 1)))) constraints are used for

firms.

4.2 Properties Related to Unit Propagation

In the following, we show that once unit propagation is performed without failure
then there exists necessarily a solution.

Suppose that D is a domain where unit propagation has been performed
without failure. Let S1 be the set of rotation variables that are set to 1.

Lemma 7. S1 is a closed subset.

Proof. Let ρi be a rotation in S1 and let ρj be rotation such that ρj ≺≺ ρi. Unit
propagation on Clauses 1 enforces rj to be true. Therefore ρj ∈ S1. Hence S1 is
a closed subset. ��

Let M1 be the stable matching corresponding to S1 (Theorem 1). We show
that M1 is part of the solution space in D.

Lemma 8. For any xi,j that is set to 1, 〈wi, fj〉 ∈ M1.

Proof. The case where 〈wi, fj〉 is a fixed pair or non stable is trivial. Take a
non-fixed stable pair 〈wi, fj〉 and suppose that D(xi,j) = {1}. There are three
cases to distinguish.

1. 〈wi, fj〉 ∈ SP ∩ M0: Unit propagation on Clauses 2 enforces reij
to be false.

Therefore, ρeij
/∈ S1. Hence by Lemma 4 we obtain: 〈wi, fj〉 ∈ M1.

270 M. Siala and B. O’Sullivan

2. 〈wi, fj〉 ∈ SP ∩ Mz : Unit propagation on Clauses 3 enforces rpij
to be true.

Therefore, ρpij
∈ S1. Hence by Lemma 5 we obtain: 〈wi, fj〉 ∈ M1.

3. 〈wi, fj〉 ∈ SP \ (M0 ∪Mz) : Unit propagation on Clauses 4 enforces rpij
to be

true and reij
to be false. Therefore, ρpij

∈ S1, ρeij
/∈ S1. Hence by Lemma 6

we obtain: 〈wi, fj〉 ∈ M1. ��

Lemma 9. For any xi,j that is set to 0, 〈wi, fj〉 /∈ M1.

Proof. The case where 〈wi, fj〉 is a fixed pair or non-stable is trivial. Take a
non-fixed stable pair 〈wi, fj〉 and suppose that D(xi,j) = {0}. There are three
cases to distinguish.

1. 〈wi, fj〉 ∈ SP ∩ M0: Unit propagation on Clauses 2 enforces reij
to be true.

Therefore, ρeij
∈ S1. Hence by Lemma 4 we obtain: 〈wi, fj〉 /∈ M1.

2. 〈wi, fj〉 ∈ SP ∩ Mz : Unit propagation on Clauses 3 enforces rpij
to be false.

Therefore, ρpij
/∈ S1. Hence by Lemma 5 we obtain: 〈wi, fj〉 /∈ M1.

3. 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz): We distinguish two cases:
(a) D(ρpij

) 	= {1}: In this case ρpij
/∈ S1 hence by Lemma 6 we obtain:

〈wi, fj〉 /∈ M1

(b) D(ρpij
) = {1}: In this case, unit propagation on Clauses 4 enforces reij

to
be true. Therefore, ρeij

∈ S1. Hence by Lemma 6 we obtain: 〈wi, fj〉 /∈ M1.
��

Recall that Γ denotes the SAT formula defined in Sect. 4.1.

Theorem 2. Let D be a domain such that unit propagation is performed without
failure on Γ . There exists at least a solution in D that satisfies Γ .

Proof. We show that M1 corresponds to a solution under D. To do so, one needs
to set every unassigned variable to a particular value. We propose the following
assignment. Let xi,j be an unassigned variable. Note that 〈wi, fi〉 has to be part
of SP .

1. If 〈wi, fj〉 ∈ SP ∩ M0 : xi,j is set to 1 if ρeij
/∈ S1; and 0 otherwise.

2. If 〈wi, fj〉 ∈ SP ∩ Mz : xi,j is set to 1 if ρpij
∈ S1; and 0 otherwise.

3. If 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : xi,j is set to 1 if ρpij
∈ S1 ∧ ρeij

/∈ S1; and 0
otherwise.

This assignment corresponds to a solution as a consequence of Lemmas 4, 5,
6, 8, and 9. Therefore, once unit propagation is established without failure, we
know that there exists at least one solution. ��

5 Arc Consistency

We propose in this section a procedure to filter more of the search space. We
assume in the rest of this section that I is a stable matching instance defined by
〈W,F, PW , PF , qW , qF 〉 using the same notations introduced in Sect. 3.

Rotation-Based Formulation for Stable Matching 271

Let X (M2M) = {x1,1, . . . xnW ,nF
, r1, . . . r|R|} be the set of Boolean variables

defined in Sect. 4.1. We define the many-to-many stable matching constraint as
M2M(I,X (M2M)). Given a complete assignment of the variables in X (M2M),
this constraint is satisfied iff the set M of pairs corresponding to Boolean vari-
ables xi,j that are set to 1 is a solution to I and the set of rotations corresponding
to Boolean variables rk that are set to 1 is the closed subset corresponding to M .

Example 4 shows an instance with a particular domain where unit propaga-
tion on Γ is not enough to establish arc consistency on the M2M constraint.

Example 4 (Missing Support). Consider the example where nW = 4, nF = 4,
and for all 1 ≤ i, j ≤ 4, qwi

= qfj
= 1. The preference lists for workers and firms

are given in Table 2.

Table 2. Preference lists

Pw1 = [f3, f2, f4, f1] Pf1 = [w1, w2, w4, w3]

Pw2 = [f2, f4, f1, f3] Pf2 = [w3, w1, w2, w4]

Pw3 = [f4, f1, f3, f2] Pf3 = [w2, w3, w4, w1]

Pw4 = [f1, f2, f3, f4] Pf4 = [w4, w1, w2, w3]

Consider the domain such that all the variables are unassigned except for
x1,4, x3,1, x3,3, x4,2, and x4,3 where the value 0 is assigned to each of these
variables. Unit propagation on the encoding Γ of this instance does not trigger
a failure. It also does not change the domain of x2,1 (i.e., {0, 1}). However, the
assignment of 1 to x2,1 does not have a support in D for M2M . ��

In the following, we assume that unit propagation is established on an input
domain D and that it propagated the clauses without finding a failure. In the rest
of this section, we use the term ‘support’ to say ‘support for M2M(I,X (M2M))’.
We shall use unit propagation to find a support for any assignment using the
property we showed in Theorem 2.

In order to construct supports, we need to introduce the following two
lemmas.

Lemma 10. For any rotation ρi where D(ri) = {0, 1}, assigning 1 to ri has a
support.

Proof. Consider the set of rotations S = S1 ∪ {rj | rj ≺≺ ri}. Clearly S is a
closed subset (Lemma 7). Let M be the corresponding stable matching of S. We
show that M corresponds to a valid support.

By construction, we have any variable xi,j set to 1 is part of M and any
variable set to 0 is not. Consider now the rotation variables. Recall that S1 is
the set of rotation variables that are set to 1. Observe that {rj |rj ≺≺ ri} can
only contain rotations that are unassigned because otherwise, unit propagation
would assign 0 to ri. In our support, every rotation variable whose rotation is
in {rj |rj ≺≺ ri} is set to 1. Consider xi,j an unassigned variable. We set xi,j as
follows

272 M. Siala and B. O’Sullivan

1. If 〈wi, fj〉 ∈ SP ∩ M0 : xi,j is set to 1 if ρeij
/∈ S; and 0 otherwise.

2. If 〈wi, fj〉 ∈ SP ∩ Mz : xi,j is set to 1 if ρpij
∈ S; and 0 otherwise.

3. If 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : xi,j is set to 1 if ρpij
∈ S ∧ ρeij

/∈ S; and 0
otherwise.

This assignment corresponds by construction to M as a consequence of
Lemmas 4, 5, 6, 8, and 9. ��
Lemma 11. For any rotation ρi where D(ri) = {0, 1}, assigning 0 to ri has a
support.

Proof. Recall that S1 is the set of rotation variables that are set to 1 and that
M1 is its corresponding stable matching. By construction, we can show that M1

corresponds to a support. ��
Consider now an unassigned variable xi,j . Notice that 〈wi, fi〉 ∈ SP .

Lemma 12 show that there is always a support for 0.

Lemma 12. For any unassigned variable xi,j, assigning 0 to xi,j has a support.

Proof. We distinguish three cases:

1. 〈wi, fj〉 ∈ SP ∩ M0 : Observe that ρeij
is unassigned. We know by Lemma 10

that assigning 1 to reij
has a support. In this support 0 is assigned to xi,j .

2. 〈wi, fj〉 ∈ SP ∩ Mz : In this case ρpij
is unassigned. We know by Lemma 11

that assigning 0 to rpij
has a support. In this support, 0 is assigned to xi,j .

3. 〈wi, fj〉 ∈ SP \ (M0 ∪ Mz) : Note that 0 cannot be assigned to ρpij
because

otherwise xi,j would be set to 0. We distinguish two cases:
(a) ρpij

is set to 1: In this case ρeij
is unassigned (otherwise xi,j would be

assigned). We know by Lemma 10 that assigning 1 to reij
has a support.

In this support 0 is assigned to xi,j .
(b) ρpij

is unassigned: We know by Lemma 11 that assigning 0 to rpij
has a

support. In this support 0 is assigned to xi,j . ��

In the case of finding supports when assigning 1 to xi,j , there are three cases.
These cases are detailed in Lemmas 13, 14, and 15.

Lemma 13. If 〈wi, fj〉 ∈ SP ∩ M0, then assigning 1 to xi,j has a support.

Proof. In this case ρeij
is unassigned. We know by Lemma 11 that assigning 0

to reij
has a support. In this support 1 is assigned to xi,j . ��

Lemma 14. If 〈wi, fj〉 ∈ SP ∩ Mz, then assigning 1 to xi,j has a support.

Proof. In this case ρpij
is unassigned. We know by Lemma 10 that assigning 1

to rpij
has a support. In this support xi,j is set to 1. ��

Let D1
xi,j

be the domain identical to D except for D(xi,j) = {1}.

Rotation-Based Formulation for Stable Matching 273

Lemma 15. If 〈wi, fj〉 ∈ SP \ M0 ∪ Mz, then

– If D(rpij
) = {1}, then assigning 1 to xi,j has a support.

– Otherwise, we have D(rpij
) = {0, 1} and assigning 1 to xi,j has a support iff

unit propagation on D1
xi,j

does not fail.

Proof. For the first case, we can argue that ρeij
is unassigned (otherwise xi,j

would be assigned). By Lemma 11, we have a support if we set reij
to 0. In this

support xi,j is set to 1.
For the second case, we have necessarily D(rpij

) = {0, 1} (otherwise xi,j

would be assigned) and it is easy to see that there exists a support iff unit
propagation does not fail on D1

xi,j
by Theorem 2. ��

We summarize all the properties of the previous lemmas in Algo-
rithm1. This algorithm shows a pseudo-code to maintain arc consistency on
M2M(I,X (M2M)). In this algorithm, UP(D) is the output domain after per-
forming unit propagation on a domain D. The output of UP(D) is ∅ iff a failure
is found.

Algorithm 1. Arc Consistency for M2M(I,X (M2M))

1 D ← UP(D) ;
if D 	= ∅ then

2 foreach 〈wi, fj〉 ∈ SP ∧ 〈wi, fj〉 /∈ M0 ∪ Mz ∧ D(rpij
) = {0, 1} do

3 D′ ← UP(D1
xi,j

) ;
if D′ = ∅ then

4 D(xi,j) = {0} ;

return D

Suppose that D is a domain where unit propagation is established without
failure. First, for any variable that is set to a value v, the assignment of v to this
variable has a support in D since there exists necessarily a solution (Theorem 2).
Second, we know that any assignment of any rotation variable has a support in
D by Lemmas 10 and 11. Also, the assignment of 0 to any unassigned variable
xi,j has a support (Lemma 12). Lastly, by Lemmas 13, 14, and 15, we know
that we need to check supports only for the assignment of 1 to some particular
unassigned variables xi,j . These variables correspond to the pairs of the set
Ψ = {〈wi, fj〉|〈wi, fj〉 ∈ SP ∧〈wi, fj〉 /∈ M0∪Mz ∧D(rpij

) = {0, 1}} (Lemma 15).
Algorithm 1 first performs unit propagation on the input domain D in Line

1. If a failure is not found, we loop over the pairs in Ψ in Line 2 and call unit
propagation on the new domain D1

xi,j
in Line 3 for each 〈wi, fj〉 ∈ Ψ . If this call

results in failure then xi,j does not have a support for the value 1. In this case,
such a variable is set to 0 in Line 4.

We discuss now the complexity of Algorithm 1. Observe first that since the
SAT formula contains only clauses of size at most 3, and since the number of
clauses is O(L), then unit propagation takes O(L) time. Notice that by using the
two-watched literal procedure [16], there is no data structure to update between

274 M. Siala and B. O’Sullivan

the different calls. Lastly, observe that the number of calls to unit propagation in
Line 3 is bounded by the number of unassigned variables. Therefore the worst-
case time complexity to maintain arc consistency is O(Ux × L) where Ux is the
number of unassigned xi,j variables. Therefore the overall complexity is O(L2).

6 Experimental Results

In the absence of known hard problems for many to many stable matching, we
propose to evaluate our approach on two NP-hard variants of stable marriage
called sex-equal stable matching and balanced stable matching [14]. Let M be a
stable marriage. Let Cm

M (respectively Cw
M) be the sum of the ranks of each man’s

partner (respectively woman’s partner). In balanced stable matching, the prob-
lem is to find a stable matching M with the minimum value of max{Cm

M , Cw
M}.

In sex-equal stable matching, the problem is to find a stable matching M with
the minimum value of |Cm

M − Cw
M | [14]. Modeling these problems in constraint

programming is straightforward by using an integer variable Xi for each man
mi whose domain represents the rank of the partner of mi.

We implemented our two propositions in the Mistral-2.0 [10] solver (denoted
by fr for the first formulation and ac for the arc consistency algorithm) and we
compare them against the bound (D) consistency algorithm of [20] implemented
in the same solver (denoted by bc). We restrict the search strategy to branch
on the sequence [X1, . . . , Xn] since it is sufficient to decide the problem. We
used four different heuristics: a lexicographic branching (lx) with random value
selection (rd); lx with random min/max value selection (mn); activity based
search (as) [15]; and impact-based search (is) [18]. We use geometric restarts
and we run 5 randomization seeds. There is a time cutoff of 15 min for each
model on each instance.

We first run all the configurations on purely random instances with complete
preference lists of size up to 500 × 500 and observed that these instances are
extremely easy to solve for all configurations without valuable outcome. We
therefore propose to use a new benchmark of hard instances.

Irving and Leather [12] described a family of stable marriage instances, where
the number of solutions for stable matching grows exponentially. In this family,
the number of stable matchings g(n) for an instance of size n × n respects the
recursive formula g(n) ≥ 2×g(n/2)2, and g(1) = 1, where n, the number of men,
is of the form 2k. To give an idea of the exponential explosion, when n = 16,
the number of solutions is 195472, and when n = 32, the number of solutions is
104310534400. We generate instances of sizes n ∈ {32, 64, 128, 256} as follows.
For each size, we generate the instance as in [12], then swap α% of n random
pairs from the preference lists of men. We apply the same swapping procedure
for woman. We generated 50 instances for each size with α = 10, α = 20, and
α = 30. This gives us a total of 600 instances available in http://siala.github.io/
sm/sm.zip.

In the following figures we represent every configuration by “A-B” where
A∈ {fr, ac, bc} is the constraint model for stability and B ∈ {lx -rd, lx -mn, as, is}

http://siala.github.io/sm/sm.zip
http://siala.github.io/sm/sm.zip

Rotation-Based Formulation for Stable Matching 275

is the search strategy. In Figs. 1a and 2b we give the cactus plots of proving
optimality for these instances on the two problems. That is, after a given CPU
time in seconds (y-axis), we give the percentage of instances proved to optimality
for each configuration on the x-axis. In Figs. 1a and 2b we study the quality of
solutions by plotting the normalized objective value of the best solution found
by the configuration h (x-axis) after a given time in seconds (y-axis) [11]. Let
h(I) be the objective value of the best solution found using model h on instance
I and lb(I) (resp. ub(I)) the lowest (resp. highest) objective value found by
any model on I. We use a normalized score in the interval [0, 1]: score(h, I) =
ub(I)−h(I)+1
ub(I)−lb(I)+1 . The value of score(h, I) is equal to 1 if h has found the best
solution for this instance among all models, decreases as h(I) gets further from
the optimal objective value, and is equal to 0 if and only if h did not find any
solution for I. Note that for fr and ac the CPU time in all there figures includes
the O(L) preprocessing step that we mentioned at the beginning of Sect. 4.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

200

400

600

800

Optimality ratio (x-axis); CPU time (y-axis)

bc-is-

bc-as-

bc-lx -mn

bc-lx -rd

fr-is-

fr-as-

fr-lx -mn

fr-lx -rd

ac-is-
ac-as-

ac-lx -mn

ac-lx -rd

(a) Number of proofs

0.4 0.5 0.6 0.7 0.8 0.9 1

Objective ratio (x-axis); CPU time (y-axis)

(b) Objective value

Fig. 1. Performance cactus, sex equal stable matching

These figures show that the arc consistency model (ac) does not pay off as
it considerably slows down the speed of exploration. It should be noted that
between bc and ac there is no clear winner. The SAT formulation (fr), on the
other hand, outperforms both bc and ac using any search strategy. This is true
for both finding proofs of optimality and finding the best objective values. In
fact, fr clearly finds better solutions faster than any other approach.

Lastly, we note that the best search strategy for sex-equal stable matching is,
surprisingly, the one branching lexicographically using a random value selection
(Figs. 1a and b). For the case of balanced stable matching, clearly impact-based
search is the best choice for finding proofs (Fig. 2a) whereas activity based search
finds better solutions (Fig. 2b).

276 M. Siala and B. O’Sullivan

0.26 0.28 0.3 0.32 0.34 0.36

0

200

400

600

800

Optimality ratio (x-axis); CPU time (y-axis)

bc-is-

bc-as-

bc-lx -mn

bc-lx -rd

fr-is-

fr-as-

fr-lx -mn

fr-lx -rd

ac-is-
ac-as-

ac-lx -mn

(a) Number of proofs

0.5 0.6 0.7 0.8 0.9 1

Objective ratio (x-axis); CPU time (y-axis)

(b) Objective value

Fig. 2. Performance cactus, balanced stable matching

7 Conclusion

We addressed the general case of many-to-many stable matching in a constraint
programming context. Using fundamental properties related to the notion of
rotation in stable matching we presented a novel SAT formulation of the problem
then showed that arc consistency can be maintained in quadratic time. Our
experimental study on two hard variants of stable matching called sex-equal
and balanced stable matching showed that our SAT formulation outperforms
the best CP approach in the literature. In the future, it would be interesting to
experimentally evaluate our propositions on hard variants in the many-to-many
setting.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments that helped to improve the presentation of the paper.

We thank Begum Genc for generating the instances.
This publication has emanated from research conducted with the financial support

of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

References

1. Bäıou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy
(or polygamous polyandry). Discrete Appl. Math. 101(1–3), 1–12 (2000)

2. Bansal, V., Agrawal, A., Malhotra, V.S.: Polynomial time algorithm for an optimal
stable assignment with multiple partners. Theor. Comput. Sci. 379(3), 317–328
(2007)

3. Eirinakis, P., Magos, D., Mourtos, I., Miliotis, P.: Finding all stable pairs and
solutions to the many-to-many stable matching problem. INFORMS J. Comput.
24(2), 245–259 (2012)

Rotation-Based Formulation for Stable Matching 277

4. Feder, T.: A new fixed point approach for stable networks and stable marriages.
J. Comput. Syst. Sci. 45(2), 233–284 (1992)

5. Fleiner, T., Irving, R.W., Manlove, D.: Efficient algorithms for generalized stable
marriage and roommates problems. Theor. Comput. Sci. 381(1–3), 162–176 (2007)

6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

7. Gent, I.P., Irving, R.W., Manlove, D.F., Prosser, P., Smith, B.M.: A constraint
programming approach to the stable marriage problem. In: Walsh, T. (ed.) CP
2001. LNCS, vol. 2239, pp. 225–239. Springer, Heidelberg (2001). doi:10.1007/
3-540-45578-7 16

8. Gusfield, D., Irving, R.W.: The Stable Marriage Problem - Structure and Algo-
rithms. Foundations of Computing Series. MIT Press, Cambridge (1989)

9. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

10. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the CP
2008 Third International CSP Solvers Competition, pp. 31–40 (2008)

11. Hebrard, E., Siala, M.: Explanation-based weighted degree. In: Salvagnin, D., Lom-
bardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 167–175. Springer, Cham
(2017). doi:10.1007/978-3-319-59776-8 13

12. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J.
Comput. 15(3), 655–667 (1986)

13. Manlove, D.F., O’Malley, G., Prosser, P., Unsworth, C.: A constraint programming
approach to the hospitals/residents problem. In: Hentenryck, P., Wolsey, L. (eds.)
CPAIOR 2007. LNCS, vol. 4510, pp. 155–170. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-72397-4 12

14. Manlove, D.F.: Algorithmics of Matching Under Preferences. Series on Theoretical
Computer Science, vol. 2. WorldScientific, Singapore (2013)

15. Michel, L., Hentenryck, P.: Activity-based search for black-box constraint pro-
gramming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29828-8 15

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 530–535 (2001)

17. Prosser, P.: Stable roommates and constraint programming. In: Simonis, H. (ed.)
CPAIOR 2014. LNCS, vol. 8451, pp. 15–28. Springer, Cham (2014). doi:10.1007/
978-3-319-07046-9 2

18. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)

20. Siala, M., O’Sullivan, B.: Revisiting two-sided stability constraints. In: Quimper,
C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 342–357. Springer, Cham (2016).
doi:10.1007/978-3-319-33954-2 25

21. Unsworth, C., Prosser, P.: A specialised binary constraint for the stable marriage
problem. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607,
pp. 218–233. Springer, Heidelberg (2005). doi:10.1007/11527862 16

22. Unsworth, C., Prosser, P.: An n-ary constraint for the stable marriage problem.
CoRR, abs/1308.0183 (2013)

http://dx.doi.org/10.1007/3-540-45578-7_16
http://dx.doi.org/10.1007/3-540-45578-7_16
http://dx.doi.org/10.1007/978-3-319-59776-8_13
http://dx.doi.org/10.1007/978-3-540-72397-4_12
http://dx.doi.org/10.1007/978-3-540-72397-4_12
http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-319-07046-9_2
http://dx.doi.org/10.1007/978-3-319-07046-9_2
http://dx.doi.org/10.1007/978-3-540-30201-8_41
http://dx.doi.org/10.1007/978-3-319-33954-2_25
http://dx.doi.org/10.1007/11527862_16

Preference Elicitation for DCOPs

Atena M. Tabakhi1(B), Tiep Le2, Ferdinando Fioretto3, and William Yeoh1

1 Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, USA

{amtabakhi,wyeoh}@wustl.edu
2 Department of Computer Science, New Mexico State University,

Las Cruces, USA
tile@cs.nmsu.edu

3 Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, USA

fioretto@umich.edu

Abstract. Distributed Constraint Optimization Problems (DCOPs)
offer a powerful approach for the description and resolution of coopera-
tive multi-agent problems. In this model, a group of agents coordinate
their actions to optimize a global objective function, taking into account
their preferences or constraints. A core limitation of this model is the
assumption that the preferences of all agents or the costs of all con-
straints are specified a priori. Unfortunately, this assumption does not
hold in a number of application domains where preferences or constraints
must be elicited from the users. One of such domains is the Smart Home
Device Scheduling (SHDS) problem. Motivated by this limitation, we
make the following contributions in this paper: (1) We propose a gen-
eral model for preference elicitation in DCOPs; (2) We propose several
heuristics to elicit preferences in DCOPs; and (3) We empirically eval-
uate the effect of these heuristics on random binary DCOPs as well as
SHDS problems.

Keywords: Distributed Constraint Optimization · Smart homes · Pref-
erence elicitation

1 Introduction

The importance of constraint optimization is outlined by the impact of its
application in a range of Weighted Constraint Satisfaction Problems (WCSPs),
also known as Constraint Optimization Problems (COPs), such as supply chain
management [34] and roster scheduling [1]. When resources are distributed
among a set of autonomous agents and communication among the agents are

This research is partially supported by NSF grant 1345232. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the U.S. government.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 278–296, 2017.
DOI: 10.1007/978-3-319-66158-2 18

Preference Elicitation for DCOPs 279

restricted, COPs take the form of Distributed Constraint Optimization Problems
(DCOPs) [10,27,33,45]. In this context, agents coordinate their value assign-
ments to minimize the overall sum of resulting constraint costs. DCOPs are
suitable to model problems that are distributed in nature and where a collection
of agents attempts to optimize a global objective within the confines of local-
ized communication. They have been employed to model various distributed
optimization problems, such as meeting scheduling [44,46], sensor networks [9],
coalition formation [40], and smart grids [14,24].

The field of DCOP has matured significantly over the past decade since
its inception [27]. DCOP researchers have proposed a wide variety of solution
approaches, from complete approaches that use distributed search-based tech-
niques [27,28,44] to distributed inference-based techniques [33,41]. There is also
a significant body of work on incomplete methods that can be similarly catego-
rized into local search-based methods [9,23], inference-based techniques [41], and
sampling-based methods [11,29,31]. Researchers have also proposed the use of
other off-the-shelf solvers such as logic programming solvers [21,22] and mixed-
integer programming solvers [17].

One of the core limitations of all these approaches is that they assume that
the constraint costs in a DCOP are known a priori. Unfortunately, in some appli-
cation domains, these costs are only known after they are queried or elicited from
experts or users in the domain. One such application is the Smart Home Device
Scheduling (SHDS) problem [13]. In this problem, agents have to coordinate
with each other to schedule smart devices (e.g., smart thermostats, smart light-
bulbs, smart washers, etc.) distributed across a network of smart homes, where
the goal is to schedule them in such a way that optimizes the preferences of
occupants in those homes subject to a larger constraint that the peak energy
demand in the network does not exceed an energy utility defined limit. Through
the introduction of a number of smart devices in the commercial market, they
are starting to become ubiquitous in today’s very interconnected environment,
consistent with the Internet-of-Things paradigm [25]. Therefore, we suspect that
this SHDS problem will become more important in the future.

DCOPs are a natural framework to represent this problem as each home can
be represented as an agent and the preferences of occupants can be represented
as constraints. Furthermore, due to privacy reasons, it is preferred that the
preferences of each occupant are not revealed to other occupants. The DCOP
formulation allows the preservation of such privacy since agents are only aware
of constraints that they are involved in. We further describe this motivating
application and its mapping to DCOPs in more detail in Sect. 3.

A priori knowledge on the constraint costs is infeasible in our motivating
SHDS application. A key challenge is thus in the elicitation of user preferences
to populate the constraint cost tables. Due to the infeasibility of eliciting pref-
erences to populate all preferences, in this paper, we introduce the preference
elicitation problem for DCOPs, which studies how to select a subset of k cost
tables to elicit from each agent with the goal of choosing those having a large
impact on the overall solution quality. We propose several methods to select this

280 A.M. Tabakhi et al.

subset of cost tables to elicit, based on the notion of partial orderings. Addition-
ally, we extend the SHDS problem to allow for the encoding and elicitation of
soft preferences, and evaluate our methods on this extended SHDS problem as
well as on random graphs to show generality. Our results illustrate the effective-
ness of our approach in contrast to a baseline evaluator that randomly selects
cost tables to elicit. While the description of our solution focuses on DCOPs,
our approach is also suitable to solve WCSPs.

2 Background

WCSP: A Weighted Constraint Satisfaction Problem (WCSP) [20,36] is a
tuple P = 〈X ,D,F〉, where X = {x1, . . . , xn} is a finite set of variables,
D = {D1, . . . , Dn} is a set of finite domains for the variables in X , with
Di being the set of possible values for the variable xi, and F is a set of
weighted constraints (or cost tables). A weighted constraint fi ∈ F is a func-
tion, fi : �xj∈xfi Dj → R

+
0 ∪ {⊥}, where xfi ⊆ X is the set of variables relevant

to fi, referred to as the scope of fi, and ⊥ is a special element used to denote
that a given combination of value assignments is not allowed. A solution x is
a value assignment to a set of variables Xx ⊆ X that is consistent with the
variables’ domains. The cost FP(x) =

∑
f∈F,xf⊆Xx

f(x) is the sum of the costs
of all the applicable cost functions in x. A solution x is said complete if Xx=X .
The goal is to find an optimal complete solution x∗ = argminxFP(x).

DCOP: When the elements of a WCSP are distributed among a set of
autonomous agents, we refer to it as a Distributed Constraint Optimization
Problem (DCOP) [27,33,45]. Formally, a DCOP is described by a tuple P =
〈X ,D,F ,A, α〉, where X , D, and F are the set of variables, their domains, and
the set of cost functions, defined as in a classical WCSP, A={a1, . . . , ap} (p ≤ n)
is a set of autonomous agents, and α : X → A is a surjective function, from vari-
ables to agents, mapping the control of each variable x ∈ X to an agent α(x).
The goal in a DCOP is to find a complete solution that minimizes its cost:
x∗ = argminxFP(x). A DCOP can be described by a constraint graph, where
the nodes correspond to the variables in the DCOP, and the edges connect pairs
of variables in the scope of the same cost functions. Following [12], we introduce
the following definitions:

Definition 1. For each agent ai ∈ A, Li = {xj ∈ X |α(xj)=ai} is the set of its
local variables. Ii ={xj ∈ Li | ∃xk ∈ X ∧∃fs ∈ F : α(xk) �= ai ∧{xj , xk} ⊆ xfs}
is the set of its interface variables.

Definition 2. For each agent ai ∈ A, its local constraint graph Gi = (Li, EFi
)

is a subgraph of the constraint graph, where Fi = {fj ∈ F | xfj ⊆ Li}.
Figure 1(a) shows the constraint graph of a sample DCOP with 3 agents a1,
a2, and a3, where L1 = {x1, x2}, L2 = {x3, x4}, L3 = {x5, x6}, I1 = {x2},
I2 = {x4}, and I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}. Figure 1(b)
shows the cost table of all constraints; all constraints have the same cost table
for simplicity.

Preference Elicitation for DCOPs 281

Fig. 1. Example DCOP and uncertain DCOP

3 Motivating Domain: Smart Home Device Scheduling
Problem

We now provide a description of (a variant of) the Smart Home Device Scheduling
(SHDS) problem [13]. An SHDS problem is composed of a neighborhood H of
smart homes hi ∈ H that are able to communicate with one another and whose
energy demands are served by an energy provider. The energy prices are set
according to a real-time pricing schema specified at regular intervals t within a
finite time horizon H. We use T = {1, . . . , H} to denote the set of time intervals
and θ : T → R

+ to represent the price function associated with the pricing
schema adopted, which expresses the cost per kWh of energy consumed by a
consumer.

Within each smart home hi there is a set of (smart) electric devices Zi

networked together and controlled by a home automation system. We assume
all the devices are uninterruptible (i.e., they cannot be stopped once they are
started) and use szj

and δzj
to denote, respectively, the start time and duration

(expressed in multiples of time intervals) of device zj ∈ Zi. The energy con-
sumption of each device zj is ρzj

kWh for each hour that it is on. It will not
consume any energy if it is off. We use the indicator function φt

zj
to indicate the

state of the device zj at time step t:

φt
zj

=
{

1 if szj
≤ t ∧ szj

+ δzj
≥ t

0 otherwise

Additionally, the usage of a device zj is characterized by a cost, representing the
monetary expense to schedule zj at a given time. The aggregated cost of the
home hi at time step t is denoted with Ct

i and expressed as:

Ct
i = Et

i · θ(t) (1)

where Et
i =

∑
zj∈Zi

φt
zj

· ρzj
is the aggregated energy consumed by home hi at

time step t.
The SHDS problem seeks a schedule for the devices of each home in the

neighborhood in a coordinated fashion so as to minimize the monetary costs
and, at the same time, ensure that user-defined scheduling constraints (called

282 A.M. Tabakhi et al.

active scheduling rules in [13]) are satisfied. The SHDS problem is also subject
to the following constraints:

1 ≤ szj
≤ T − δzj

∀hi ∈ H, zj ∈ Zi (2)
∑

t∈T

φt
zj

= δzj
∀hi ∈ H, zj ∈ Zi (3)

∑

hi∈H
Et

i ≤ �t ∀t ∈ T (4)

where �t ∈ R
+ is the maximum allowed total energy consumed by all the homes

in the neighborhood at time step t. This constraint is typically imposed by
the energy provider and is adopted to guarantee reliable electricity delivery.
Constraint (2) expresses the lower and upper bounds for the start time associated
to the schedule of each device. Constraint (3) ensures the devices are scheduled
and executed for exactly their duration time. Constraint (4) ensures the total
amount of energy consumed by the homes in the neighborhood does not exceed
the maximum allowed threshold.

3.1 DCOP Representation

Fioretto et al. introduced a mapping of the SHDS problem to a DCOP [13]. At a
high level, each home hi ∈ H is mapped to an autonomous agent in the DCOP.
For each home, the start times szj

, indicator variables φt
zj

, and aggregated energy
in the home are mapped to DCOP variables, which are controlled by the agent for
that home. Constraints (2) to (4) are enforced by the DCOP constraints. Finally,
the objective function of the SHDS is expressed through agents’ preferences.

4 Encoding and Eliciting Preferences in SHDS

The above SHDS problem thus far includes exclusively hard constraints and has
no soft constraints (i.e., preferences for when devices are scheduled). Thus, we
will describe in this section how to integrate such preferences as soft constraints
into SHDS.

We consider the scenario in which a single home hi may host multiple users
u ∈ Uhi

, with Uhi
denoting the set of users in hi. In modeling agents’ pref-

erences, we introduce discomfort values dt
zj ,u ∈ R

+
0 describing the degree of

dissatisfaction for a user u to schedule the device zj at a given time step t. Note
that the monetary cost is the same for all users while the degree of dissatisfaction
is user dependent. Thus, to avoid conflicting users’ decision over the control of
the device, we assume that there is one user who has exclusive access to a device
z ∈ Zi at any point in time. In this paper, for each device zj ∈ Zi in home hi and
each time step t, we assume the likelihood for a user to gain exclusive access on a
device zj is expressed through a probability Prt

zj
(i.e., ∀u ∈ Uhi

, P rt
zj

(u) ∈ [0, 1]
and

∑
u∈Uhi

Prt
zj

(u) = 1). Additionally, we use dt
i =

∑
zj∈Zi

φt
zj

· dt
zj

to denote

Preference Elicitation for DCOPs 283

the aggregated discomfort in home hi at time step t, where dt
zj

is the discomfort
value of the user who has exclusive access to the device zj at time step t.

We can update the SHDS objective to take into account the users’ preferences
in addition to minimizing the monetary costs. While this is a multi-objective
problem, we combine the two objectives into a single one through the use of a
weighted sum:

minimize
∑

t∈T

∑

hi∈H
αc · Ct

i + αu · dt
i (5)

where αc and αu are weights in the open interval (0, 1) ⊆ R such that αc+αu = 1.
While, in general, the real-time pricing schema θ that defines the cost per

kWh of energy consumed and the energy consumption ρzj
of each device zj are

well-defined concepts and can be easily acquired or modeled, the preferences on
the users’ discomfort values dt

zj ,u on scheduling a device zj at time step t are
subjective and, thus, more difficult to model explicitly.

We foresee two approaches to acquire these preferences: (1) eliciting them
directly from the users and (2) estimating them based on historical preferences
or from preferences of similar users. While the former method will be more
accurate and reliable, it is cumbersome for the user to enter their preference for
every device zj and every time step t of the problem. Therefore, in this paper, we
assume that a combination of the two approaches will be used, where a subset
of preferences will be elicited and the remaining preferences will be estimated
from historical sources or similar users. We believe that this strategy is especially
important in application domains such as the SHDS problem, where users’ pref-
erences may be learned over time, thus, ensuring a continuous elicitation process
of the unknown users preferences.

5 Preference Elicitation in DCOPs

A key drawback of existing DCOP approaches is the underlying assumption of a
total knowledge of the model, which is not the case for a number of applications
involving users’ preferences, including the SHDS problem. Due to the infeasibil-
ity of eliciting all users’ preferences—and, thus, their associated complete cost
tables—in this paper, we study how to choose a subset of k cost tables to elicit.
We first cast this problem as an optimization problem, before describing our
proposed techniques.

Let P̂ = 〈X ,D, F̂ ,A, α〉 denote a DCOP with partial knowledge on the cost
tables in F̂ . The constraints F̂ = Fr ∪ Fu are composed of revealed constraints
Fr, whose cost tables are accurately revealed, and uncertain constraints Fu,
whose cost tables are unrevealed and must be either estimated from historical
sources or elicited. We refer to this problem as the uncertain DCOP.

In this paper, we assume that the costs of the uncertain constraints are sam-
pled from Normal distributions that can be estimated from historical sources.1

1 Other forms of distributions can also be used, but our minimax regret heuristics
require that the form of the distributions have the following property: The sum of
two distributions has the same form as their individual distributions.

284 A.M. Tabakhi et al.

X2 X4 u u

X2 X6 u u

X2 u u

X2 u u

X2 u u
X2 u u X2 u u

(a) (b) (c) (d) (e)

Fig. 2. Minimax regret example

Further, we assume that the distribution for each cost value is independent from
the distribution of all other cost values. Figure 1(c) illustrates an uncertain cost
table whose costs are modeled via random variables obeying Normal distribu-
tions, and u1 and u2 denote two distinct users that can control the associated
device.

5.1 The Preference Elicitation Problem

The preference elicitation problem in DCOPs is formalized as follows: Given an
oracle DCOP P and a value k ∈ N, construct an uncertain DCOP P̂ that reveals
only k constraints per agent (i.e., |Fr| = k · |X |) and minimizes the error:

εP̂ = E
[
FP(x̂∗) − FP(x∗)

]
(6)

where x̂∗ is the optimal solution for a realization of the uncertain DCOP P̂,
and x∗ is the optimal complete solution for the oracle DCOP P. A realization
of an uncertain DCOP P̂ is a DCOP (with no uncertainty), whose values for
the cost tables are sampled from their corresponding Normal distributions. Note
that the possible numbers of uncertain DCOPs that can be generated is

(|F|
k·|X |

)
.

Since solving each DCOP is NP-hard [26], the preference elicitation problem is
a particularly challenging one. Thus, we propose a number of heuristic methods
to determine the subset of constraints to reveal, and to construct an uncertain
problem P̂.

5.2 Preference Elicitation Heuristics

Let us first introduce a general concept of dominance between cost tables of
uncertain constraints. Given two cost tables of uncertain constraints fzi

, fzj
∈

Fu ⊂ F̂ , let �◦ denote the dominance between the two cost tables according to
partial ordering criteria ◦. In other words, fzi

�◦ fzj
means that fzi

dominates
fzj

according to criteria ◦. We now introduce the heuristic methods for different
possible ordering criteria ◦.

Preference Elicitation for DCOPs 285

Minimax Regret: Minimax regret is a well-known strategy that minimizes the
maximum regret, and it is particularly suitable in a risk-neutral environment. At
a high level, the minimax regret approach seeks to approximate and minimize
the impact of the worst-case scenario. The idea of using minimax regret in our
domain of interest is derived by the desire of taking into account the possible
different outcomes occurring when eliciting the preferences of different users for a
single device. Further, we assume that constraints that can be elicited are either
unary or binary constraints. We leave to future work the extension to higher
arity constraints. We now describe how to compute the regret for a single user
u, and later how to combine the regrets across multiple users.

We use Prxi
(d) to estimate the likelihood of an assignment d ∈ Di to a

variable xi:

Prxi,u(d) = Πd′∈Di\{d}Pr(ψd
xi,u ≤ ψd′

xi,u) (7)

where ψd
xi,u is the random variable representing the total cost incurred by xi if

it is assigned value d from its domain under user u. Then, the value

d∗
xi,u = argmax

d
Prxi,u(d) (8)

with the largest probability is the one that is most likely to be assigned to xi.
The probability Pr(ψd

xi,u ≤ ψd′
xi,u) can be computed using:

Pr(ψd
xi,u ≤ ψd′

xi,u) =
∫ ∞

c′=0

∫ c′

c=0

Prd
xi,u(c)Prd′

xi,u(c′) dc dc′ (9)

where Prd
xi,u is the probability distribution function (PDF) for random variable

ψd
xi,u. Unfortunately, the PDF Prd

xi,u is not explicitly defined in the uncertain
DCOP. There are two challenges that one needs to address to obtain or estimate
this PDF:

i. First, the total cost incurred by an agent is the summation of the costs
over all constraints of that agent. Thus, the PDF for the total cost needs
to be obtained by summing over the PDFs of all the individual constraint
costs. Since we assume that these PDFs are all Normally distributed, one can
efficiently construct the summed PDF, which is also a Normal distribution.
Specifically, if N (μi, σ

2
i) is the PDF for random variables ci (i = 1, 2), then

N (μ1 + μ2, σ
2
1 + σ2

2) is the PDF for c1 + c2.
ii. Second, the cost associated to a variable for each constraint is not only depen-

dent on its value but also on the value of the other variables constrained with
it. In turn, the value of those variables depend on the variables that they are
constrained with, and so on. As a result, estimating the true PDF requires
the estimation of all the constraint costs in the entire DCOP. To simplify the
computation process and introduce an independence between the costs of all
variables, we propose the three following variants, each of which estimates the
true PDF Prd,f

xi,u of a random variable ψd,f
xi,u, representing the cost incurred

by xi from constraint f if assigned value d when its control is under user u:

286 A.M. Tabakhi et al.

• Optimistic: In this variant, the agent will optimistically choose the PDF
with smallest mean among all the PDFs for all possible values of variables
xj ∈ xf \ {xi} in the scope of constraint f :

Prd,f
xi,u = N (μ∗, σ2

d̂
) (10)

μ∗ = min
d̂∈Dj

μd̂ (11)

where N (μd̂, σ
2
d̂
) is the PDF of the constraint cost if xi = d and xj = d̂

under user u. For example, in the uncertain cost tables in Fig. 1(c), the
estimated PDF of the cost incurred for the choice x2 = 0 from constraint
f24 is Pr0,f24

x2,u = N (65, 82), which optimistically assumes that x4 will be
assigned value 0 to minimize the incurred cost.

• Pessimistic: In this variant, the agent chooses the PDF with largest
mean among all the PDFs for all possible values of xj ∈ xf \ {xi}:

Prd,f
xi,u = N (μ∗, σ2

d̂
) (12)

μ∗ = max
d̂∈Dj

μd̂ (13)

In Fig. 1(c), the estimated PDF of the cost incurred by x2 = 0 from
constraint f24 is Pr0,f24

x2,u = N (71, 82), which pessimistically assumes that
x4 will be assigned value 1 to maximize the incurred cost.

• Expected: In this variant, the agent chooses the PDF with the “average”
value of all the PDFs for all possible values of xj ∈ xf \ {xi}:

Prd,f
xi,u = N

(
1

|Dj |
∑

d̂∈Dj

μd̂,
1

|Dj |2
∑

d̂∈Dj

σ2
d̂

)

(14)

In Fig. 1(c), the estimated PDF of the cost incurred by x2 = 0 from
constraint f24 is Pr0,f24

x2,u = N (68, 82), assuming that x4 = 0 or x4 = 1
with equal probability.

The regret Rd
xi,u of variable xi being assigned value d is defined as:

Rd
xi,u = 1 − Prxi,u(d) (15)

Each variable xi will most likely be assigned the value d∗
xi

with the smallest
regret by definition (see Eqs. 7 and 8). We thus define the regret Rxi,u for each
variable xi to be the regret for this value:

Rxi,u = R
d∗
xi

xi,u = min
d∈Di

Rd
xi,u (16)

To generalize our approach to also handle multiple users in each house, where
the PDFs differ across users, we take the maximum regret over all users u for

Preference Elicitation for DCOPs 287

each variable xi and its value d before taking the minimum over all values. More
precisely,

Rxi
= min

d∈Di

max
s

Rd
xi,u (17)

Therefore, the minimax regret approach seeks to approximate the impact of the
worst-case scenario. Finally, we define the regret Rfi

for a constraint fi to be
the absolute difference between the regrets of the variables in the scope of the
function:

Rfi
= |Rxi1

− Rxi2
| (18)

where xfi = {xi1 , xi2}.
While defining the regret to be the sum of the two variables’ regrets may be

more intuitive, our experimental results show that the above definition provides
better results. Intuitively, if the regret of a variable xi is large, then there is lit-
tle confidence that it will take on value d∗

xi
with the smallest regret because the

PDFs for all its values are very similar and have significant overlaps. Thus, elic-
iting a constraint between two variables with large regrets will likely not help in
improving the overall solution quality since the PDFs for all value combinations
for that constraint are likely to be similar.

Similarly, if the regret of a variable is small, then there is a high confidence
that it will be assigned value with the smallest regret because the PDFs for its
values are sufficiently distinct that regardless of the actual realizations of the
random variables (costs in the cost table), the value with the smallest regret will
be the one with the smallest cost. Therefore, eliciting a constraint between two
agents with small regrets will also not help. Therefore, we define the regret of
a constraint to be the difference in the regrets of the variables in its scope (see
Eq. 18).

If we order the constraints using the ordering criteria ◦ = MR[·], that is,
according to the minimax regret criterion, then, given two uncertain constraints
fi, fj ∈ Fu, we say that fi �MR fj iff MR[fi] ≥ MR[fj], where MR[fj] = Rfj

is the regret as defined in Eq. 18.
Figure 2 illustrates a partial trace of this approach on the example DCOP of

Fig. 1 with two users u1 and u2. Figure 2(a) shows the uncertain cost tables for
constraint f24 between variables x2 and x4 and constraint f26 between variables
x2 and x6. Figure 2(b) shows the estimated PDFs Prd,f

x2,u of the constraint costs
incurred by variables x2 from constraint f under user u if it takes on value d.
In this trace, we use the “optimistic” variant of the algorithm, and the PDFs
are estimated using Eqs. 10 and 11. Figure 2(c) shows estimated summed PDFs
Prd,f

x2,u of the total constraint costs incurred by the agent, summed over all of
its constraints. Here, we only sum the PDFs for the two constraints f24 and f26.
Figure 2(d) shows the probabilities Prx2,u(d) of x2 = d under user u, computed
using Eq. 7, and Fig. 2(e) shows the regrets Rd

x2,u, computed using Eq. 15. Thus,
the regret Rx2 for x2 is 0.13, computed using Eq. 17. Assume that the regret
Rx1 of x1 is 0.50. Then, the regret Rf12 of constraint f12 = |Rx1 − Rx2 | =
|0.50 − 0.13| = 0.37.

288 A.M. Tabakhi et al.

Maximum Standard Deviation: We now propose a different heuristic that
makes use of the degree of uncertainty in the constraint costs χv

f,u for constraint
f , value combination v = 〈xi1 = di1 , . . . , xik = dik〉, and user u, where xf =
{xi1 , . . . , xik}, di1 ∈ Di1 , . . ., and dik ∈ Dik .

Assume that there is only a single user u. Then, using the same motiva-
tion described for the minimax regret heuristic, and assuming that variables be
assigned a different value for different constraints, the value combination cho-
sen for a constraint f will be the v∗ = argminvχv

f,u that has the smallest cost.
Unfortunately, the actual constraint costs are not known and only their PDFs
N (μv

f,u, (σv
f,u)2) are known.

Since the constraint costs’ distribution means are known, we assume that the
value combination chosen for a constraint f will be the value v∗ = argminvμv

f,u

that has the smallest mean. The degree of uncertainty in the constraint cost for
that constraint f is thus the standard deviation associated σv∗

f,u with that value
combination v∗.

To generalize this approach to multiple users, we take the maximum stan-
dard deviations over all users u. More precisely, the degree of uncertainty in the
constraint costs for a constraint f is:

σf = max
s

σv∗
f,u (19)

One can then use this maximum standard deviation criterion to order the
constraints. In other words, if the ordering criteria ◦ = MS[·] is done according
to the maximum standard deviation criterion, then, given two unknown functions
fi, fj ∈ Fu, we say that fi �MS fj iff MS[fi] ≥ MS[fj], where MS[fj] = σfj

is the maximum standard deviation as defined in Eq. 19.

6 Related Work

There is an extensive body of work on the topic of modeling preferences [16]. In
particular, Rossi et al. discussed conditional-preference networks (CP-nets) for
handling preferences [35], which provide a qualitative graphical representation of
preferences reflecting the conditional dependence of the problem variables. Dif-
ferently from CP-nets, our proposal focuses on the notion of conditional additive
independence [3], which requires the utility of an outcome to be the sum of the
“utilities” of the different variable values of the outcome.

In terms of preference elicitation, two major approaches are studied in the lit-
erature [6]: A Bayesian approach [4,7] and a minimax regret approach [5,15,42].
The former is typically adopted when the uncertainty can be quantified proba-
bilistically, and preference elicitation is often formalized as a partially-observable
Markov decision process (POMDP) [18] that assumes each query to a user is asso-
ciated with a finite set of possible responses. In contrast, our proposal follows
the minimax regret approach [5,15,42]. The proposed framework differs from
other proposals in the literature in the following ways: We assume the unknown
costs are sampled from a Normal distribution and compute the regret based on

Preference Elicitation for DCOPs 289

such distributions. In contrast, other minimax regret based methods have dif-
ferent assumptions. For example, Boutilier et al. assumes that a set of (hard)
constraints together with a graphical utility model captures user preferences [5].
While the structure of the utility model is known, the parameters of this utility
model are imprecise, given by upper and lower bounds. The notion of regret
is computed based on those upper and lower bounds. Differently, Wang and
Boutilier computes regrets under the assumption that constraints over unknown
utility values are linear [42]. Finally, Gelain et al. computes regrets by taking the
minimum among the known utilities associated to the projections of an assign-
ment, that is, of the appropriated sub-tuples in the constraints [15].

Finally, preference elicitation has never been applied directly on DCOPs
before. The closest DCOP-related problem is a class of DCOPs where agents
have partial knowledge on the costs of their constraints and, therefore, they
may discover the unknown costs via exploration [39,47]. In this context, agents
must balance the coordinated exploration of the unknown environment and the
exploitation of the known portion of the rewards, in order to optimize the global
objective [37]. Another orthogonal related DCOP model is the problem where
costs are sampled from probability distribution functions [30]. In such a prob-
lem, agents seek to minimize either the worst-case regret [43] or the expected
regret [21].

7 Empirical Evaluation

We evaluate our preference elicitation framework on distributed random binary
graphs and smart home device scheduling (SHDS) problems [13], where we com-
pared our four heuristics–minimax regret with the three variants: optimistic
(MR-O), pessimistic (MR-P), and expected (MR-E) and maximum standard
deviation (MS)–against a random baseline (RD) that chooses the constraints to
elicit randomly. All the problems are modeled and solved optimally on multiple
computers with Intel Core i7-3770 CPU 3.40 GHz and 16 GB of RAM. We use
MiniZinc [38], an off-the-shelf centralized CP solver, to solve all the DCOPs.

In our experiments the preference elicitation heuristics are evaluated in terms
of the normalized error εP̂

FP(x∗) , where εP̂ is the error as defined by Eq. 6. An
accurate computation of this error requires us to generate all possible realizations
for the uncertain DCOPs. Due to the complexity of such task, we create m = 50
realizations of the uncertain DCOPs and compute the error εP̂ in this reduced
sampled space.

7.1 Random Graphs

We create 100 random graphs whose topologies are based on the Erdős and
Rényi model [8] with the following parameters: |X | = 50, |A| = 5, and |Di| =
2 for all variables xi ∈ X . Each agent ai has |Li| = 10 local variables with
density p1 = 0.8 that produces |Fi| = 36 local constraints per agent. These
constraints are unknown (uncertain constraints) and we set two scenarios (called

290 A.M. Tabakhi et al.

3 6 9 12 15

k

N
or

m
al

iz
ed

 E
rro

r

0.
00

0
0.

00
4

0.
00

8
0.

01
2

MR−O
MR−P
MR−E
MS
RD

(a) Varying the Number of Elicited Con-
straints (k)

0 [0−20] [0−40]

Costs of Non−local Constraints

N
or

m
al

iz
ed

 E
rro

r

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

MR−O
MR−P
MR−E
MS
RD

(b) Varying Costs of Non-Local Con-
straints

Fig. 3. Random graphs preference elicitation

users in Sect. 5) for all uncertain cost tables. All constraint costs are modeled as
random variables following a Normal distribution N (μ, σ2), where σ is uniformly
sampled from the range [5, 10] and the means μ are uniformly sampled from one
of the following six ranges [5, 70], [5, 80], [5, 90], [5, 100], [5, 110], and [5, 120].
The different ranges are to introduce some heterogeneity into the constraints.
We set the non-local constraints (i.e., inter-agent constraints) to be uncertain
constraints as well, where we vary the mean μ of their Normal distributions to
be from different distributions: μ = 0; μ ∈ [0, 20]; and μ ∈ [0, 40]. Finally, we
allow only local constraints (or preferences) to be elicited.

Figure 3(a) illustrates the normalized errors of our heuristics and that of the
random baseline heuristic, where the mean μ of the non-local constraints are
uniformly sampled from the range [0, 20]. We control k so that the number of
the constraints per agent elicited from the oracle DCOP varies from 3 to 15 with
increment of 3. We make the following observations:

• As the number of constraints (k) to elicit increases, the errors of the MR-P
and MR-O heuristic decrease for all values of k as opposed to the random
heuristic which is approximately the same for all values of k. The reason is,
as we increase k, the random heuristic randomly selects k constraint to elicit
with high likelihood of choosing the wrong constraints. However, since the
regret-based heuristic (e.g., MR-P) takes into account the uncertain cost of
the constraints it chooses those minimizing the regret.

• The MS heuristic performs slightly better than random heuristic. The reason
is that MS orders the uncertain constraints by their degrees of uncertainty
(i.e., σ) corresponding to the most likely value combinations to be assigned
(i.e., the ones with the smallest μ). In contrast, the random heuristic chooses
constraint randomly without taking into account the degree of uncertainty.

Preference Elicitation for DCOPs 291

Table 1. Smart devices and their energy consumption (in kWh)

Dish-washer Washer Dryer Hob Oven Microwave Laptop Desktop Vacuum

cleaner

Fridge Electrical

vehicle

0.75 1.20 2.50 3.00 5.00 1.70 0.10 0.30 1.20 0.30 3.50

• All regret-based heuristics outperform the baseline heuristic, especially for
larger values of k, indicating that they are able to effectively take the regrets
of the constraints into account.

Figure 3(b) illustrates the normalized errors for the random problems, where
we vary the mean values μ of the non-local constraints, sampled from differ-
ent distributions; we set k = 15 for all cases. The same trends observed above
apply here. However, the normalized error increases as the range of the mean
increases for all heuristics. The reason is because the magnitude in the error
(when variables are assigned wrong value due to wrong guesses in the cost of the
constraints) increases when the range increases. However, generally, the opti-
mistic and pessimistic variants of the minimax regret heuristics still perform
better in all three cases.

7.2 Smart Home Device Scheduling (SHDS) Problems

SHDS Problem Construction: We now describe how we construct SHDS
problems. As the only uncertain element in the uncertain constraints are the
discomfort values dt

zj ,u (defined in Sect. 3) for devices zj , time steps t, and users
u, we model these values as random variables following a Normal distribution
(e.g., one could fit a Normal distribution to the historical data). As the distrib-
ution for one user may be different from the distribution for a different user in
a home, for each user u, we generate a discomfort table composed of a Normal
distribution N (μt

zj ,u, (σt
zj ,u)2) for each device zj and time step t. Each user u

can gain the exclusive access to a device zj with the probability Prt
zj

, and the
Normal distribution of the discomfort of device zj at time step t is the Normal
distribution of the user that has exclusive access for that device and time step.

Next, let P = 〈X ,D,F ,A, α〉 denote the DCOP whose constraints F have
accurate cost tables that depend only on external parameters and are easily
obtained (e.g., price function θ and energy consumption of devices ρzj

) or they
depend on user preferences that are accurately obtained through an oracle. Using
the same process described above, we combine the discomfort tables for multiple
users into a single aggregated discomfort table U . Note that this aggregated
discomfort table may be different than the one Û for the uncertain DCOP if
there are multiple users. Then, the actual discomfort value dt

zj
for each device

zj and time step t is sampled from the Normal distribution N (μt
zj

, (σt
zj

)2) for
that device and time step in the aggregated discomfort table U . We refer to this
problem as the oracle DCOP. In summary, when a constraint is elicited, the
actual discomfort values are retrieved from the oracle DCOP.

292 A.M. Tabakhi et al.

Experimental Setup: In our experiments, we consider |H| = 10 homes, each
controlling |Zi| = 10 smart devices, listed in Table 1 along with their energy
consumption. We populate the set of smart devices Zi of each home by randomly
sampling 10 elements from Z. Thus, a home might control multiple devices of
the same type. We set a time horizon H = 6 with increments of 4 h. We use
the same real-time pricing schema as proposed by Fioretto et al. [13], which
is the one used by the Pacific Gas and Electric Company for their Californian
consumers during peak summer months.2

To generate the discomfort table for each user, we assume that there is a weak
correlation between the price of energy and the level of discomfort of the user.
Specifically, we assume that users will prefer (i.e., they are more comfortable)
using their devices when prices are low to save money. Therefore, the higher
the price, the more uncomfortable the user will be at using the device at that
time. Based on this assumption, for each home, user, and device, the mean
μt at each time step t is an integer that is uniformly sampled from the range
[max{1, θ(t) − 50}, θ(t) + 50], where θ(t) is the real-time pricing at time step
t used by the Pacific Gas and Electric Company. Therefore, the range of the
means differ across time steps but are the same for all devices as the discomfort
level is primarily motivated by the pricing schema.

The weights αc and αu of the objective function defined in Eq. 5 are both
set to 0.5. These settings are employed to create both an oracle DCOP and the
corresponding uncertain DCOP, except that the values of the constraints of the
uncertain DCOPs are not realized (i.e., they are distributions).

Finally, since all uncertain constraints in an SHDS problem are unary con-
straints, all three variants of the minimax regret heuristics are identical, and we
use “MR” to label this heuristic.

Single User Experiments: In the first set of experiments, we set each home
to have only one user. Figure 4(a) plots the error for our heuristics compared
against the random baseline heuristic. The results are averaged over 100 ran-
domly generated SHDS problem instances. We make the following observations:

• As expected, for all elicitation heuristics, the error decreases as the number
of cost tables to elicit increases.

• Both the MR and MS heuristics consistently outperform the random heuristic
for all values of k. Like the results in random graphs, the random heuristic
has a higher likelihood of choosing the wrong constraint to elicit, while MR
and MS choose better constraints.

• Interestingly, we observe that MS selects the constraints slightly better than
MR, indicating that despite the fact that MS is a simpler heuristic, it is well-
suited in problems with single users. The reason is that the key feature of
MR—maximizing the regret over all users—is ignored when there is only one
user.

2 https://www.pge.com/en US/business/rate-plans/rate-plans/peak-day-pricing/pea
k-day-pricing.page. Retrieved in November 2016.

https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page
https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page

Preference Elicitation for DCOPs 293

20 40 60 80
k (%)

N
or

m
al

iz
ed

 E
rro

r
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

MR
MS
RD

(a) SHDS Single User

20 40 60 80
k (%)

N
or

m
al

iz
ed

 E
rro

r
0.

00
0.

10
0.

20
0.

30

MR
MS
RD

(b) SHDS Multiple Users

Fig. 4. Smart homes device scheduling preference elicitation

Multiple User Experiments: In the second set of experiments, we set each
home to have two users, where both users have equal likelihood of controlling
the devices (i.e., Pu1 = Pu2 = 0.5). Figure 4(b) shows the results. The trends for
this experiment is similar to that shown for Fig. 4(a), where our MR heuristic
outperforms the random heuristic. However, the MS heuristic performs poorly
in this experiment, with similar performance as the random baseline. In general,
our results show that the regret-based method outperforms other heuristics in
multiple users scenarios, as it takes into account the discomfort values of all
users, orders the constraints to elicit based on their minimum regrets. Similar to
random graph results, MR performs better in the scenarios that multiple users
take control of the devices in a building.

Finally, the SHDS and random graph experiment results demonstrate that
the regret-based elicitation heuristics achieve approximately 30% and 11%
improvement over the baseline random heuristic in minimizing the error, respec-
tively. The improvements in SHDS problems are larger than those in random
graphs because variables are highly connected (p1 = 0.8) in random graph prob-
lems. In contrast, variables in SHDS problems are mostly independent as they
mostly have unary constraints. The higher dependency between variables in ran-
dom graphs reduces the improvements of our heuristics over the baseline random
heuristic.

8 Conclusions and Future Work

DCOPs have been used to model a number of multi-agent coordination problems
including the smart home device scheduling (SHDS) problem. However, one of
the key assumptions in DCOPs—that constraint costs are known a priori—do
not apply to many applications including SHDS. Thus, in this paper, we propose
the problem of preference (i.e., constraint cost) elicitation for DCOPs; introduce

294 A.M. Tabakhi et al.

minimax regret based heuristics to elicit the preferences; and evaluate them on
random binary DCOPs as well as SHDS problems. Our results show that our
methods are better than a baseline method that elicits preferences randomly.
This paper thus makes the foundational contributions that are necessary in the
deployment of DCOP algorithms on practical applications, where preferences or
constraint costs must be elicited or estimated. Future work includes incorpo-
rating real-world datasets [2,19,32] to generate the uncertain constraint costs
as well as conducting comprehensive experiments in the many other applica-
tions that DCOPs have been used (e.g., meeting scheduling problems), where
preferences are typically unknown and must be elicited too.

References

1. Abdennadher, S., Schlenker, H.: Nurse scheduling using constraint logic program-
ming. In: Proceedings of the Conference on Innovative Applications of Artificial
Intelligence (IAAI), pp. 838–843 (1999)

2. Anderson, B., Lin, S., Newing, A., Bahaj, A., James, P.: Electricity consumption
and household characteristics: implications for census-taking in a smart metered
future. Comput. Environ. Urban Syst. 63, 58–67 (2017)

3. Bacchus, F., Grove, A.J.: Utility independence in a qualitative decision theory. In:
Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), pp. 542–552 (1996)

4. Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pp. 239–246
(2002)

5. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Regret-based utility elic-
itation in constraint-based decision problems. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 929–934 (2005)

6. Braziunas, D.: Computational approaches to preference elicitation. Technical
report (2006)

7. Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings
of the Conference in Uncertainty in Artificial Intelligence (UAI), pp. 42–49 (2005)

8. Erdös, P., Rényi, A.: On random graphs, I. Publ. Math. (Debr.) 6, 290–297 (1959)
9. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of

low-power embedded devices using the Max-Sum algorithm. In: Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 639–646 (2008)

10. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: a survey. CoRR, abs/1602.06347 (2016)

11. Fioretto, F. Yeoh, W., Pontelli, E.: A dynamic programming-based MCMC frame-
work for solving DCOPs with GPUs. In: Proceedings of Principles and Practice of
Constraint Programming (CP), pp. 813–831 (2016)

12. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agent decomposition for
DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
(2016)

13. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to schedul-
ing devices in smart homes. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

Preference Elicitation for DCOPs 295

14. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to
the economic dispatch with demand response. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–
989 (2017)

15. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies for
fuzzy constraint problems with missing preferences: algorithms and experimental
studies. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 402–417. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85958-1 27

16. Goldsmith, J., Junker, U.: Preference handling for artificial intelligence. AI Mag.
29(4), 9–12 (2008)

17. Hatano, D., Hirayama, K.: DeQED: an efficient divide-and-coordinate algorithm
for DCOP. In: Proceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 566–572 (2013)

18. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

19. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation
research. In: Proceedings of the Workshop on Data Mining Applications in Sus-
tainability, pp. 59–62 (2011)

20. Larrosa, J.: Node and arc consistency in weighted CSP. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 48–53 (2002)

21. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: ER-DCOPs: a framework for
distributed constraint optimization with uncertainty in constraint utilities. In: Pro-
ceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2016)

22. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimiza-
tion problems with logic programming. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) (2015)

23. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a
graphical game-based approach. In: Proceedings of the International Conference
on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)

24. Miller, S., Ramchurn, S., Rogers, A.: Optimal decentralised dispatch of embedded
generation in the smart grid. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 281–288 (2012)

25. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

26. Modi, P.: Distributed constraint optimization for multiagent systems. Ph.D. thesis,
University of Southern California, Los Angeles (United States) (2003)

27. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

28. Netzer, A., Grubshtein, A., Meisels, A.: Concurrent forward bounding for distrib-
uted constraint optimization problems. Artif. Intell. 193, 186–216 (2012)

29. Nguyen, D.T., Yeoh, W., Lau, H.C., Gibbs, D.: A memory-bounded sampling-based
DCOP algorithm. In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 167–174 (2013)

30. Nguyen, D.T., Yeoh, W., Lau, H.C., Zilberstein, S., Zhang, C.: Decentralized multi-
agent reinforcement learning in average-reward dynamic DCOPs. In: Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1447–1455 (2014)

31. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: an upper confidence bound
approach to distributed constraint optimization problems. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 528–534 (2012)

http://dx.doi.org/10.1007/978-3-540-85958-1_27

296 A.M. Tabakhi et al.

32. Paatero, J.V., Lund, P.D.: A model for generating household electricity load pro-
files. Int. J. Energy Res. 30(5), 273–290 (2006)

33. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimiza-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1413–1420 (2005)

34. Rodrigues, L., Magatao, L.: Enhancing supply chain decisions using constraint pro-
gramming: a case study. In: Proceedings of the Mexican International Conference
on Artificial Intelligence (MICAI), pp. 1110–1121 (2007)

35. Rossi, F., Venable, K.B., Walsh, T.: Preferences in constraint satisfaction and
optimization. AI Mag. 29(4), 58–68 (2008)

36. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE
Trans. Pattern Anal. Mach. Intell. 5, 504–519 (1981)

37. Stranders, R., Delle Fave, F., Rogers, A., Jennings, N.: DCOPs and bandits: explo-
ration and exploitation in decentralised coordination. In: Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 289–297 (2012)

38. Stuckey, P.J., Becket, R., Brand, S., Brown, M., Feydy, T., Fischer, J., de la Banda,
M.G., Marriott, K., Wallace, M.: The evolving world of MiniZinc. In: Constraint
Modelling and Reformulation, pp. 156–170 (2007)

39. Taylor, M., Jain, M., Tandon, P., Yokoo, M., Tambe, M.: Distributed on-line multi-
agent optimization under uncertainty: balancing exploration and exploitation. Adv.
Complex Syst. 14(03), 471–528 (2011)

40. Ueda, S., Iwasaki, A., Yokoo, M.: Coalition structure generation based on distrib-
uted constraint optimization. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 197–203 (2010)

41. Vinyals, M., Rodŕıguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory
of dynamic programming DCOP algorithms via the generalized distributive law.
J. Auton. Agents Multi-Agent Syst. 22(3), 439–464 (2011)

42. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret
decision criterion. In: Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), pp. 309–318 (2003)

43. Wu, F., Jennings, N.: Regret-based multi-agent coordination with uncertain task
rewards. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 1492–1499 (2014)

44. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

45. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Mag. 33(3), 53–65 (2012)
46. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed

constraint optimization. Artif. Intell. 212, 1–26 (2014)
47. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed con-

straint optimization for teams of mobile sensing agents. J. Auton. Agents Multi-
Agent Syst. 29(3), 495–536 (2015)

Extending Compact-Table to Basic Smart Tables

Hélène Verhaeghe1(B), Christophe Lecoutre2, Yves Deville1, and Pierre Schaus1

1 UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
{helene.verhaeghe,yves.deville,pierre.schaus}@uclouvain.be

2 CRIL-CNRS UMR 8188, Université d’Artois, 62307 Lens, France
lecoutre@cril.fr

Abstract. Table constraints are instrumental in modelling combinato-
rial problems with Constraint Programming. Recently, Compact-Table
(CT) has been proposed and shown to be as an efficient filtering algo-
rithm for table constraints, notably because of bitwise operations. CT
has already been extended to handle non-ordinary tables, namely, short
tables and/or negative tables. In this paper, we introduce another exten-
sion so as to deal with basic smart tables, which are tables containing
universal values (∗), restrictions on values (�=v) bounds (≤v or ≥v) and
sets (∈S). Such tables offer the user a better expressiveness and per-
mit to deal efficiently with compressed tuples. Our experiments show a
substantial speedup when compression is possible (and a very limited
overhead otherwise).

Keywords: Table constraints · Filtering · Compression ·
Compact-table · Bitset

1 Introduction

Table constraints, also known as extension(al) constraints, express on sequences
of variables the combinations of values that are allowed (supports) or forbidden
(conflicts). Lots of efforts [1,5,7,9,13,16,17,19,24,28,30] have been made during
the last decade to enhance the filtering process of such constraints, in order to
establish the property known as Generalized Arc Consistency (GAC). Motivation
behind this excitement comes from the fact that tables can theoretically encode
any other kind of constraints. They are thus used in many application fields, as
stated in the industry.

The last big improvement in this domain has been the introduction of
Compact-Table [5], an algorithm that advantageously combines tabular reduc-
tion and bitwise operations (a related algorithm, independently proposed in the
literature, is STRBit [30]). Quite interestingly, Compact-Table (CT) has been
shown to be about one order of magnitude faster than the best algorithm(s)
developed during the last decade.

Unfortunately, tables have a major drawback: the memory space required to
store them, which may grow exponentially with the number of columns (arity).
To address this issue, various compression techniques have already been studied.
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 297–307, 2017.
DOI: 10.1007/978-3-319-66158-2 19

298 H. Verhaeghe et al.

Some are based on using particular data structures, like Multi-valued Decision
Diagrams (MDDs) [4,24], tries [7] and Deterministic Finite Automata (DFA)
[25]. Other approaches attempt to keep a table-like structure, which is made
compact by reasoning on Cartesian products and some intentional forms of col-
umn restrictions, like short tuples [10], compressed tuples [11,31], sliced tables
[8] and smart tables [21].

In this paper, we show how CT can be extended for basic smart tables, i.e.,
tables that may contain universal values (∗), restrictions (�=), bounds (≤ and ≥)
and sets (∈S).

2 Technical Background

A constraint network (CN) is composed of a set of n variables and a set of e
constraints. Each variable x has an associated domain (dom(x)) that contains
the finite set of values that can be assigned to it. Each constraint c involves
an ordered set of variables, called the scope of c and denoted by scp(c), and
is semantically defined by a relation (rel(c)) which contains the set of tuples
allowed for the variables involved in c. The arity of a constraint c is |scp(c)|.
For simplicity, a variable-value pair (x, a) such that x ∈ scp(c) and a ∈ dom(x)
is called a value (of c). A table constraint c is a constraint such that rel(c) is
explicitly defined by listing (in a table) the tuples that are allowed1 by c.

Let τ = (a1, . . . , ar) be a tuple of values associated with an ordered set of
variables vars(τ) = {x1, . . . , xr}. The ith value of τ is denoted by τ [i] or τ [xi],
and τ is valid iff ∀i ∈ 1..r, τ [i] ∈ dom(xi). τ is a support on a constraint c iff
vars(τ) = scp(c) and τ is a valid tuple allowed by c. If τ is a support on a
constraint c involving a variable x and such that τ [x] = a, we say that τ is a
support for the value (x, a) of c. Enforcing Generalized Arc Consistency (GAC)
on a constraint c means removing all values without any support on c.

Over the years, there have been many developments about compact forms of
tables. Ordinary tables contain ordinary or ground tuples, i.e., classical sequences
of values as in (1, 2, 0). Short tables can additionally contain short tuples, which
are tuples involving the special symbol ∗ as in (0, ∗, 2), and compressed tables can
additionally contain compressed tuples, which are tuples involving sets of values
as in (0, {1, 2}, 3). Assuming that the tuples mentioned just above are associated
with the ordered set of variables {x1, x2, x3}, in (0, ∗, 2), x2 can take any value
from its domain and in (0, {1, 2}, 3), x2 can take the value 1 or the value 2. Smart
tables2 are composed of smart tuples, which are tuples containing expressions
(column constraints) of one the following forms: ∗, <op>v, ∈S, /∈S, <op>xj

and <op>xj + v; v being a value, S a set of values, and <op>an operator in
{<,≤,=, �=,≥, >}. Finally, a basic smart table is a restricted form of smart table
where column constraints are unary, that is where smart tuples are of the form ∗,
<op>v, ∈ S and /∈ S. For example, in the smart tuple (�= 1, 2, > 1), x1 must be
1 We only deal with positive forms of table constraints in this paper.
2 For simplicity, we consider here a slightly simpler form of smart table constraints

than in [21].

Extending Compact-Table to Basic Smart Tables 299

different from 1, x2 must be equal to 2 (’= 2’ being trivially simplified in ’2’) and
x3 must be greater than 1. In term of expressiveness, one can observe that basic
smart tables are equivalent to compressed tables, meaning that any compressed
tuple can be represented by a basic smart tuple (this is immediate), and any basic
smart tuple can be represented by a compressed tuple. However, they allow more
compact representation (having ‘�= 2’ is shorter than ‘{. . . , 1, 3, 4, 5, . . . }’).

3 CT on Ordinary and Short Tables

This section briefly introduces Compact-Table (CT), a state-of-the-art filtering
algorithm [5] initially introduced for enforcing GAC on positive (ordinary) table
constraints. It first appeared in Or-Tools [22], the solver developed at Google,
and is now implemented in OscaR [23], AbsCon and Choco [26]. CT benefits
from well-established techniques: bitwise operations [2,18], residual supports
[14,15,20], tabular reduction [13,16,28], reversible sparse sets [27] and resetting
operations [24].

The core structure of CT, when applied to a constraint c, is a reversible sparse
bitset, called currTable, responsible for keeping track of the current supports
of c: the ith bit of currTable is set to 1 iff the ith tuple τi of the table of c is
currently valid. It is updated by means of precomputed bitsets: for each value
(x, a) of c, supports[x, a] is the bitset that identifies the set of tuples that are
initially supports of (x, a) on c.

Algorithm 1 presents a simplified version of CT, which consists of two main
steps. First, updateTable(), iterates for each variable x involved in c over either
the set Δx of values that have been removed from the domain of x since the last
invocation of the algorithm (Line 5) or the current domain of x (Line 9), and use
the appropriate bitsets supports to update currTable using bitwise operations
(Lines 6 and 10). The test at Line 4 ensures minimizing the number of operations
that must be performed during the update. Secondly, filterDomains(), iterates
over every value (x, a) of c (Lines 13 and 14) and use the corresponding bitset
supports[x, a] to verify whether the value is still supported or not (Line 15). It
should be noted that the bitwise operations on the bitsets currtable and mask
are only performed on the active (i.e., non null) words of currtable.

In [29], it was shown how CT can be extended to (positive) short tables. CT∗

just requires the introduction of a second pool of bitsets: for each value (x, a) of
c, supports∗[x, a] is the bitset that identifies the set of tuples τ that are explicit
supports of (x, a), i.e., such that τ [x] = a. This means that any occurrence of *
in a short tuple implies that the corresponding bits are always set to 0 in the
bitsets supports∗ (unlike bitsets supports). An illustration is given by Fig. 1
where the bits for τ1 in bitsets supports and supports∗ are different because
τ1[y] = ∗. CT∗ is obtained from CT by simply replacing Line 6 of Algorithm1
with:

mask ← mask | supports∗[x, a]

300 H. Verhaeghe et al.

x y z

τ1 �= a ∗ c
τ2 c ≤ b �= a
τ3 < c b �= b
τ4 > b ≥ b ∗

(a) Table

supports supports∗ supportsMin supportsMax

τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

(x, a) 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0
(x, b) 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0
(x, c) 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1
(y, a) 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0
(y, b) 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
(y, c) 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1

. . .

(b) Bitsets

Fig. 1. Bitsets supports, supports∗, supportsMin and supportsMax

The complexity of CT∗ is O(rd t
w) where r denotes the arity, d the size of the

largest domain, t the number of tuples and w the size of the computer words
(e.g., w = 64).

Algorithm 1. Class ConstraintCT
1 Method updateTable()
2 foreach variable x ∈ scp do
3 mask ← 0
4 if |Δx| < |dom(x)| then // Incremental Update
5 foreach value a ∈ Δx do
6 mask ← mask | supports[x, a] // Use supports∗[x, a] in CT∗

7 mask ← ˜mask // ˜: bitwise negation

8 else // Reset-based Update
9 foreach value a ∈ dom(x) do

10 mask ← mask | supports[x, a] // | : bitwise or

11 currTable ← currTable & mask // & : bitwise and

12 Method filterDomains()
13 foreach variable x ∈ scp do
14 foreach value a ∈ dom(x) do
15 if currTable & supports[x, a] = 0 then
16 dom(x) ← dom(x) \ {a}

17 Method enforceGAC()
18 updateTable()
19 filterDomains()

Extending Compact-Table to Basic Smart Tables 301

4 CT on Basic Smart Tables

A basic smart table is composed of smart tuples containing expressions of the
following forms: ∗, <op>v, ∈ S and �∈ S, with <op>∈ {<,≤,=, �=,≥, >}. As
CT∗ already covers the forms ∗ and = v, we need to further extend CT∗ to
handle the remaining forms of smart tuples in a basic smart table. The resulting
algorithm is called CTbs.

4.1 Handling �= v

In reality, CT∗ can already handle expressions of the form �= v. We simply have
to slightly extend the semantics of bitsets supports∗. Any occurrence of * or �= v
in a tuple implies that the corresponding bits are set to 0 in supports∗ (unlike
supports). The complexity is obviously unchanged. An example is depicted with
τ1[x] in Fig. 1. Correctness is proved by showing that the table is always properly
updated. Let us cover all possible cases for an expression �= v at column x. When
|dom(x)| = 0, the solver detect the failure through the variables. For the case of
the reset-based update, as support precisely depicts the acceptance of values by
tuples, this is necessarily correct. In the incremental update, we will necessary
have |dom(x)| ≥ 2. This comes from the structure of the algorithm when the full
version, as described in [5], is used. In this case, the tuple is always support for
the given variable and as the corresponding bits in supports∗ are set to 0 by
construction, the tuple is not removed from currTable.

4.2 Handling <op>v, with <op>∈ {<,≤,≥, >}
First, note that it is sufficient to focus on expressions of the form ≥ v and ≤ v
since > v and < v are equivalent to ≥ v + 1 and ≤ v − 1. We first introduce two
additional arrays of bitsets: supportsMin for ≤ v and supportsMax for ≥ v. For
each value (x, a) of c, the ith bit of supportsMin[x, a] (resp., supportsMax[x, a])
is 1 iff τi[x] allows at least one value ≥ a (resp., ≤ a). An example of the different
bitsets for each of the operators <,≤,≥, > can be found in Fig. 1. We assume
the ordering a < b < c on domains.

To handle <op>v, with <op>∈ {≤,≥}, Lines 4–7 (incremental update)
in Algorithm 1 must be replaced by the lines given in Algorithm 2. Note that
min (resp. max) denotes the smallest (resp. largest) value of dom(x), whereas
minChanged() (resp. maxChanged()) is a method that return true when min (resp.
max) have changed since the last call of the algorithm. Line 1 is slightly modified
to compensate the overhead induced by the two operations. Because Lines 5–8
handle all the values that are less than and greater than min and max, we only
consider at Line 3 the values a ∈ Δx such that dom(x).min < a < dom(x).max.
Note that the semantics of supports∗ is unchanged: only explicit supports of
(x, a) are considered, meaning that we have supports∗[x, a] = 0 when τ [x] = ∗,
τ [x] �= b, τ [x] ≥ b or τ [x] ≤ b for any value b.

Correctness is shown for ≤ v, considering all cases at column x for tuple
τ . The case |dom(x)| = 0 is as trivial as in the last section. For the case of

302 H. Verhaeghe et al.

the reset-based update, as supports precisely depicts the acceptance of values
by tuples, this is necessarily correct. Finally in the incremental update (Algo-
rithm2), due to the constructions of the bitsets, i.e., the bit for τ in supports∗

(resp. supportsMax) is always set to 0 (resp. 1), updating depends only on
supportsMin. By definition, if dom(x).min is ≤ v, meaning still supported, the
bit for τ in supportsMin is 1, keeping τ in currTable. If dom(x).min > v, bit
for τ is 0, removing τ . Time complexity remains O(rd t

w).

Algorithm 2. Incremental Update for CTbs

1 if |Δx| + 2 < |dom(x)| then
2 foreach value a ∈ Δx such that dom(x).min < a < dom(x).max do
3 mask ← mask | supports∗[x, a]

4 mask ← ˜mask
5 if dom(x).minChanged() then
6 mask ← mask & supportsMin[x, dom(x).min]

7 if dom(x).maxChanged() then
8 mask ← mask & supportsMax[x, dom(x).max]

4.3 Handling ∈ S (and /∈ S)

There is no easy way to handle expressions of the form ∈ S using incremen-
tal update (on bitsets). We then propose to systematically execute reset-based
update as they do in [30] for passing from STRbit to STRbit-C. More precisely,
as soon as a variable is involved in an expression of the form ∈ S in one of the
tuples of the basic smart table, a reset-based update is forced in Algorithm 1
(Lines 9–10). We do not present the (rather immediate) code. Dealing with /∈ S
can be conducted similarly.

5 Compression

Computing the smallest short table (compression with only ∗) is known to be
NP-complete [10]. Not surprisingly computing the smallest basic smart table is
also NP-complete. Indeed minimizing the size of a DNF formula (NP-complete
[12]) can be reduced in polynomial time to minimizing the size of a basic smart
table.

We introduce a heuristic compression algorithm to generate a basic smart
table from a given (ordinary) table. It focuses on column constraints of the form
≤ v and ≥ v. Other forms can be obtained by post-processing: (i) expressions
≤ dom(x).max or ≥ dom(x).min can be replaced by ∗, and (ii) two tuples that are
identical except on a column where we have respectively ≤ v−1 and ≥ v+1 can

Extending Compact-Table to Basic Smart Tables 303

be merged by simply using �= v. Expressions ∈ S and �∈ S were not considered
in this heuristic to avoid costly set operations.

The compression algorithm proceeds in r steps, r being the arity of the
table. At each step, the algorithm handles two tables: the c-table (compressed
table) and the r-table (residual table). The union of c-table and r-table is always
equivalent to the initial table. At step i, each tuple of the c-table has exactly i
column constraints of the form ≤ v or ≥ v. When i = 0, c-table is the initial table
and r-table is empty. After step r, the resulting table of the algorithm is the union
of c-table and r-table. The computation at a given step is the following. From
the tuples in c-table, several abstract tuples are generated, used to introduce
new tuples with one more column constraint of the form ≤ v or ≥ v. The new
tuples that cover at least two tuples in c-table are gathered in a new c-table used
in the next step. The uncovered tuples in c-table are added to r-table.

More formally, at a given step, we define an abstract tuple as a tuple taken
from the current c-table with one of its literal value x = a replaced by the symbol
‘?’. At step i, there are thus (r− i) · tc possible abstract tuples, with tc the size of
c-table. An abstract tuple can be matched against so-called strictly compatible
(resp. compatible) tuples. A basic smart tuple τ is strictly compatible (resp.
compatible) with an abstract tuple ρ iff for each 1 ≤ j ≤ r, the form of τ [j]
is strictly compatible (resp. compatible) with the form of ρ[j]. Compatibility of
forms is intuitive: a value v is compatible with the same value v and also with
’?’, the form ≤ v (resp. ≥ v) is compatible with ≤ w (resp. ≥ w) provided that
w ≥ v (resp. w ≤ v). Strict compatibility requires compatibility and w = v.

We denote by Sρ
c (resp., Sρ

sc) the sets of tuples from the current c-table that
are compatible (resp., strictly compatible) with ρ, an abstract tuple. Note that
the computation of these two sets can be done in O(r.tc) and that we have Sρ

sc ⊂
Sρ

c . Given Sρ
c = {τ1, . . . , τk}, we denote by V ρ set of values {τ1[j], . . . , τk[j]}

where j is the column index of ? in ρ. If, given the domain of xj , a subset of
V ρ can be represented by xj ≤ v (or xj ≥ v), then a new basic smart tuple
ρ′ is generated, where ρ′ is the tuple ρ with ? replaced by ≤ v (or ≥ v). The
corresponding tuples in Ssc can be removed as they are covered by the new smart
tuple. However, the tuples only present in Sc cannot be removed. In practice, a
new basic smart tuple is only introduced if it ensures a reduction of the table
(i.e., at least two tuples can be removed). As tc is O(t), the total complexity of
the compression algorithm is O(r3t2).

Example. Let us consider the abstract tuple ρ = (1, ?,≤ 1). In the following
set of basic smart tuples {τ1 = (1, 0,≤ 1), τ2 = (1, 1,≤ 2), τ3 = (1, 2,≤ 1)}, the
tuples τ1 and τ3 are strictly compatible with ρ, the tuple τ2 is only compatible
with ρ. The new smart tuple (1,≤ 2,≤ 1) is then generated, allowing us to
remove both τ1 and τ3. The tuple τ2 is necessary to generate this new tuple, but
cannot be removed from the table.

304 H. Verhaeghe et al.

6 Experimental Results

We have selected from the XCSP3 website [3] the instances that exclusively
contain positive table constraints. This benchmark includes a large variety of
series.

Compression of Ordinary Tables into Basic Smart Tables. The compression ratio
is defined as t′

t , where t and t′ respectively denote the numbers of tuples in the
initial and compressed tables. Using the algorithm described in Sect. 5, we obtain
the results displayed in Fig. 2. As we expected, dense tables (i.e., tables with a
high number of tuples compared to the Cartesian product of domains) lead to
good compression. This can be observed in particular with the series PigeonsPlus
that contains really dense instances (making them highly compressible), and also
the series Renault that contains instances with a wide range of tables (many of
them being well compressed). On the other hand, the series Kakuro contains
very sparse tables that cannot be compressed at all.

Practical Efficiency. To assess the efficiency of CTbs, notably the interest of
using the different forms of expressions, tables have been compressed using our
algorithm in three different related ways: (1) compression with ≤ and ≥, (2)
compression with ≤ and ≥ followed by a post-processing to detect ∗ and �= and
(3) compression with ≤ and ≥ followed by a transformation into set restrictions
(e.g., ≤ v is written as {i : i ≤ v}).

0

0.25

0.5

0.75

1

C
om

pr
es

si
on

 R
at

io

#tuples

Kakuro Renault MaxCSP Random

0

0.25

0.5

0.75

1

101 103 105

Nonogram

101 103 105

Sat

101 103 105

QRandom

101 103 105

PigeonsPlus

Fig. 2. Distribution of table compression ratios on 8 series of instances.

Figure 3 shows the performance profile [6] for CTbs with these three related
compression approaches and also for standard CT on uncompressed tables. A
point (x, y) on the plot indicates the percentage of instances that can be solved
within a time-limit that is at most x times the time taken by the best algorithm.
The performance profile was based only on instances showing enough compres-
sion (rate ≤ 0.9) and requiring at least 2 s of solving time. With a timeout set
to 10 min, only 60 instances matched out these criteria out of the 4, 000 tested
instances.

Extending Compact-Table to Basic Smart Tables 305

Fig. 3. Performance profile for CTbsversus CT

Obtained results show that simple compression (1) brings a slight speedup
compared to CT. Notice however that the computation time for an instance was
reduced up to a factor of 7. Because post-processing (2) brought less than 3% of
additional compression, it is not surprising that CTbs with approaches (1) and
(2) are close. As expected, handling tables with set restrictions only, approach
(3), induces an overhead as no incremental updates can be performed. The over-
head is however limited (at most a factor two). The computation time taken
by Method updateDomain() in Algorithm 1 is not much reduced when using
basic smart tables (mainly, because of the residue caching described in [5]). This
explains why the observed speed-ups are not proportional to the compression
ratios.

7 Conclusion

In this paper, we have shown how to extend CT ∗, the Compact-Table algorithm
devised for (ordinary and) short tables, to basic smart tables. The new algo-
rithm CTbs benefits from the highly optimized mechanisms of CT and can be
attractively applied to expressive forms of tables involving natural conditions on
values (∗, �= v, ≤ v, ≥ v and ∈ S).

We have also proposed a heuristic algorithm to generate basic smart tables.
Our experimental results show both the usefulness of this form of compression
and the good behavior of CTbs compared to CT.

References

1. Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: prelim-
inary results. In: Proceedings of IJCAI 1997, pp. 398–404 (1997)

306 H. Verhaeghe et al.

2. Bliek, C.: Wordwise algorithms and improved heuristics for solving hard constraint
satisfaction problems. Technical report 12–96-R045, ERCIM (1996)

3. Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: An integrated format for bench-
marking combinatorial constrained problems. Technical report arXiv:1611.03398,
CoRR (2016). http://www.xcsp.org

4. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

5. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C.,
Schaus, P.: Compact-table: efficiently filtering table constraints with reversible
sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 14

6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

7. Gent, I., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised
arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp.
191–197 (2007)

8. Gharbi, N., Hemery, F., Lecoutre, C., Roussel, O.: Sliced table constraints: combin-
ing compression and tabular reduction. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 120–135. Springer, Cham (2014). doi:10.1007/978-3-319-07046-9 9

9. Mairy, J.B., Van Hentenryck, P., Deville, Y.: Optimal and efficient filtering algo-
rithms for table constraints. Constraints 19(1), 77–120 (2014)

10. Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short sup-
ports. In: Proceedings of IJCAI 2013, pp. 573–579 (2013)

11. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74970-7 28

12. Khot, S., Saket, R.: Hardness of minimizing and learning DNF expressions. In:
IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, pp. 231–240. IEEE (2008)

13. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

14. Lecoutre, C., Boussemart, F., Hemery, F.: Exploiting multidirectionality in coarse-
grained arc consistency algorithms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 480–494. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8 33

15. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In:
Proceedings of IJCAI 2007, pp. 125–130 (2007)

16. Lecoutre, C., Likitvivatanavong, C., Yap, R.: STR3: a path-optimal filtering algo-
rithm for table constraints. Artif. Intell. 220, 1–27 (2015)

17. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer,
Heidelberg (2006). doi:10.1007/11889205 22

18. Lecoutre, C., Vion, J.: Enforcing arc consistency using bitwise operations. Con-
straint Program. Lett. 2, 21–35 (2008)

19. Lhomme, O., Régin, J.C.: A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of AAAI 2005, pp. 405–410 (2005)

20. Likitvivatanavong, C., Zhang, Y., Bowen, J., Freuder, E.: Arc consistency in MAC:
a new perspective. In: Proceedings of CPAI’04 Workshop held with CP 2004, pp.
93–107 (2004)

http://arxiv.org/abs/1611.03398
http://www.xcsp.org
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://dx.doi.org/10.1007/978-3-319-07046-9_9
http://dx.doi.org/10.1007/978-3-540-74970-7_28
http://dx.doi.org/10.1007/978-3-540-45193-8_33
http://dx.doi.org/10.1007/11889205_22

Extending Compact-Table to Basic Smart Tables 307

21. Mairy, J.-B., Deville, Y., Lecoutre, C.: The smart table constraint. In: Michel, L.
(ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 271–287. Springer, Cham (2015). doi:10.
1007/978-3-319-18008-3 19

22. van Omme, N., Perron, L., Furnon, V.: or-tools user’s manual. Technical report,
Google (2014). https://github.com/google/or-tools

23. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
24. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:

O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). doi:10.1007/978-3-319-10428-7 44

25. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30201-8 36

26. Prud’homme, C., Fages, J.G., Lorca, X.: Choco3 documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241 (2014)

27. de Saint-Marcq, V.L.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for
domain implementation. In: (TRICS) Workshop on Techniques for Implementing
Constraint Programming Systems (2013)

28. Ullmann, J.: Partition search for non-binary constraint satisfaction. Inf. Sci. 177,
3639–3678 (2007)

29. Verhaeghe, H., Lecoutre, C., Schaus, P.: Extending compact-table to negative and
short tables. In: Proceedings of AAAI 2017 (2017)

30. Wang, R., Xia, W., Yap, R., Li, Z.: Optimizing Simple Tabular Reduction with a
bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–795 (2016)

31. Xia, W., Yap, R.H.C.: Optimizing STR algorithms with tuple compression. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 724–732. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 53

http://dx.doi.org/10.1007/978-3-319-18008-3_19
http://dx.doi.org/10.1007/978-3-319-18008-3_19
https://github.com/google/or-tools
https://bitbucket.org/oscarlib/oscar
http://dx.doi.org/10.1007/978-3-319-10428-7_44
http://dx.doi.org/10.1007/978-3-540-30201-8_36
http://dx.doi.org/10.1007/978-3-642-40627-0_53

Constraint Programming Applied
to the Multi-Skill Project Scheduling Problem

Kenneth D. Young1, Thibaut Feydy2, and Andreas Schutt1,2(B)

1 The University of Melbourne, Melbourne, Australia
kdyoung@student.unimelb.edu.au

2 Decision Sciences, Data61, CSIRO, Melbourne, Australia
{thibaut.feydy,andreas.schutt}@data61.csiro.au

Abstract. The Multi-Skill Project Scheduling Problem is a variant of
the well-studied Resource Constrained Project Scheduling Problem, in
which the resources are assumed to be multi-skilled. Practical applica-
tions of this problem occur when the resources considered are a multi-
skilled workforce or multi-purpose machines. This variant introduces a
set of assignment decisions between the resources and activities, further
to the usual scheduling decisions. This additional layer of complexity
results in the problem becoming far more difficult to solve. We investi-
gate different constraint programming models and searches tailored for
solvers with nogood learning. These models and searches are then evalu-
ated on instances available from the literature as well as newly generated
ones. Using the best performing model and search, we are able to close
at least 87 open instances from the literature.

1 Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is one of the
most widely studied combinatorial optimization problems [11,27] and is the basic
problem for the herein studied Multi-Skill Project Scheduling Problem (MSPSP).
Solving RCPSP involves finding the optimal schedule to perform a set of non-
preemptive activities which satisfies the given precedence relations. Limitations
on the available resources are also imposed and must be respected throughout
the project’s duration. In most cases, the objective when solving this problem is
to find the shortest possible duration of the project, which we call the makespan.

In RCPSP and many of its variants, it is assumed that each resource only
has one capability or skill. However, when the resources considered are multi-
skilled workers or multi-purpose machines then each could have a variety of skills.
MSPSP is the extension of RCPSP, where each resource can have multiple skills.
In addition, it is assumed that each resource can use only one skill at each time.

MSPSP consists of non-preemptive activities, which require time and skills for
their execution, some precedence relations between pairs of activities, and renew-
able multi-skilled resources. We assume that all resources are unary, because
multi-skilled resources are typical human resources in real scenarios. In a solu-
tion, all precedence relations are satisfied, no resource is overloaded at any time,
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 308–317, 2017.
DOI: 10.1007/978-3-319-66158-2 20

Constraint Programming Applied to the MSPSP 309

and no resource uses more than one skill at any time. In addition, each activity
must be fully processed by the same resources from the start to the end. Natu-
rally, a solution can be divided into the scheduling decisions, which assign each
activity to a start time, and the assignment decisions, which assign each activity
to one or more resources having the required skills. As noted in [7], adding these
assignment decisions to the unit-skilled RCPSP presents a non-trivial layer of
complexity. Hence, the MSPSP is NP-hard [3].

Example 1 (Adapted from [17]). The small example is made up of activities
A0, A1, . . . , A5, for which A0 (A5) is a fictitious source (sink) activity hav-
ing a zero duration, and resources R1, R2, . . . , R4 having one or more of the
three skills S1, S2, and S3. Table 1 defines the skills which each resource has
mastered and Table 2 defines the skill requirements of each activity. Figure 1
shows the precedence relations which must be respected, with the processing
times of each activity shown on the directed edges. Figure 2 contains a solu-
tion showing the start times of the non-fictitious activities, assignment of the
resources to activities and skill contribution of each resource. This solution has a
makespan of 8. ��

In the past two decades Constraint Programming (CP) has been used exten-
sively to tackle a variety of combinatorial optimization problems. One of its
successes lies in solving resource-constrained scheduling problems, which was
further boosted since the introduction of Lazy Clause Generation (LCG) [19].
LCG is a CP solver with nogood learning facility from Boolean Satisfiability
Solving (SAT). It has been shown to effectively prune the search space with con-
flict driven search to guide the solver [13,20–24,26]. In line with these works, we
investigate the different CP models and searches for MSPSP using the MiniZinc
modeling language and show the effectiveness of LCG by beating the state-of-the-
art methods on instances from the literature and newly generated ones. When

Table 1. Resources’ skills

R1 R2 R3 R4

S1 - � � �
S2 � - - -

S3 � � - �

Table 2. Activity skill requirement

A0 A1 A2 A3 A4 A5

S1 - - 1 2 1 -

S2 - 1 - - 1 -

S3 - 1 1 - - -

Fig. 1. Precedence graph Fig. 2. Feasible schedule and assign-
ment

310 K.D. Young et al.

using the best performing model and search, which utilizes a recent extension of
the search facilities of MiniZinc, the LCG solver Chuffed [6] was able to close
at least 87 open instances that were made available to us from the literature.

2 Literature Review

To the best of our knowledge, the first contribution to the literature concerning
the MSPSP was by Néron [17] who proposed two lower bounds on the makespan.
These bounds were later enhanced in [9]. [16] provides strong lower bounds using
Lagrangian relaxation and column generation. Exact branch-and-bound methods
were developed in [4,5] based on the reduction of the slack of one activity at each
node. More recently, the authors of [14,15] propose an approach using column
generation and a branch-and-price framework.

Correia et al. [8] propose a mixed-integer linear program for solving MSPSP.
They strengthen their model by adding many valid cuts, which are computed
in a pre-processing step. For evaluating their method, they created a data set
which was inspired by the data generator for RCPSP in [12]. Building upon this
work, [1] develop an instance generator for MSPSP and create a larger data set.
Later the same author [2] proposed a constructive heuristic using a priority-based
parallel scheduling scheme. Correia and Saldanha-da-Gama [7] design a generic
modeling framework for the MSPSP as well as preprocessing and enhancement
methods. Their framework provides the basis of our CP model in Sect. 4.

A closely related problem is the Multi-Mode RCPSP, in which each activity
has one or more execution modes and a solver has to decide, in which mode an
activity is processed. Recently all open instances from standard benchmark sets
were closed by [26] using the solver Chuffed. As noted in [4], MSPSP can be
reduced to Multi-Mode RCPSP by creating one execution mode for each possible
activity-resource assignment potentially leading to a large number of modes.

3 Problem Definition

The MSPSP consists of non-preemptive activities V = {0, 1, . . . , n+ 1}, a set of
precedence relations E ⊆ V × V , unary renewable resources R = {1, 2, . . . ,m},
and skills S = {1, 2, . . . , l}. An activity i ∈ V is characterized by a duration
(processing time) pi ∈ N

0 and the skill requirement srsi ∈ N
0 for each skill s ∈ S,

where srsi = 0 means the skill s is not required. The activities 0 and n + 1 are
fictitious marking the start and the end of the project. Both activities have a
zero duration and no skill requirements. A resource r ∈ R is defined by the skill
mastery mastsr ∈ {0, 1} for each skill s ∈ S, where mastsr = 1 (mastsr = 0) means
that the resource (does not) masters the skill. A solution assigns each activity i
to not only a start time si ∈ N

0, but also the resource-skill combinations ysir ∈
{0, 1}, that are used for executing i, so that the following constraints are satisfied.

Constraint Programming Applied to the MSPSP 311

si + pi ≤ sj ∀(i, j) ∈ E (1)
∑

r∈R
ysir = srsi ∀i ∈ V,∀s ∈ S (2)

∑
s∈S

∑
i∈V :si≤t<si+pi

ysir ≤ 1 ∀r ∈ R,∀t ∈
{

0, 1, . . . ,
∑

i∈V
pi

}
(3)

ysir ≤ mastsr ∀i ∈ V,∀r ∈ R,∀s ∈ S (4)

Constraint (1) models the precedence relations, (2) ensures that required
resource-skills are assigned to each activity, (3) states that a unary resource only
can use one skill at any time, and (4) ensures that a resource only contributes
with a skill that it mastered. The goal is to find a solution that minimizes the
makespan, i.e., mini∈V si + pi or, simply, min sn+1.

4 Constraint Programming Model

The inherent similarities between the Multi-Skill and the Multi-Mode RCPSP
motivated us to employ a similar approach to Szeredi and Schutt [26] using CP
with the modeling language MiniZinc [18]. MiniZinc allows the user to define
application-tailored search strategies that guide the solver’s branching strategy
when exploring the solution space which proved helpful for this problem.

4.1 Basic Variables and Constraints

As the previous section indicated, we have a start time variable si and resource-
skill assignment variables ysir for each activity i. They are linked with the input
data via (2), (4), and the following ones, which ensures that a resource only
contributes at most one skill for the execution of an activity.

∑
s∈S

ysir ≤ 1 ∀i ∈ V,∀r ∈ R (5)

Precedence relations are modeled as stated in constraint (1). Note that all non-
fictitious activities have at least one predecessor and one successor, whereas the
fictitious activity 0 (n+1) has no predecessor (successor). We set the start time
s0 = 0 and, thus, the start time of n + 1 equals the project makespan if started
immediately after the completion of all its predecessors.

4.2 Unary Resource Constraints

The modeling of the unary resource constraints (3) is an important ingredient for
efficient solving of MSPSP. We investigate different model choices tailored to the
LCG solver Chuffed and other CP solvers with nogood learning. Note that some
model choices are clearly weaker for CP solvers without nogood learning, due to
the weaker propagation strength, but for CP solvers with nogood learning the
weaker propagation strength might be more than compensated by the stronger
learning that is provided by the model choice.

312 K.D. Young et al.

Time-Indexed Decomposition. The straightforward way is to model it as a time-
indexed decomposition, as stated in the constraint (3). Since the size of the
decomposition also depends on the size of the planning horizon, the resulting
model size quickly became prohibitive, which was supported by bad results in
preliminary experiments. Thus, we did not consider this option further.

Global Constraints. The standard way in CP is to use the global constraint
disjunctive or cumulative, if the first one is not supported by the solver,
for each resource and re-using the variables ysir for modeling the optionality of
each activity on the resource. The solver Chuffed does not support the constraint
disjunctive in the form that is needed for MSPSP. Thus, we model the resource
constraints by cumulative.

cumulative((si)i∈V,s∈S , (pi)i∈V,s∈S , (ysir)i∈V,s∈S , 1) ∀r ∈ R

The parameters of cumulative represent the start times of activities, the dura-
tions of activities, the resource requirements of activities, and the resource capac-
ity. This resource model creates nl “optional” tasks with a variable resource
requirement, which equals to 1 if the activity uses a skill of the resource; other-
wise it is 0 and the activity is absent.

This model choice works better than the time-indexed decomposition, and
can be further improved as the number of “optional” tasks created can be
reduced to n by introducing auxiliary variables xir for each activity i ∈ V and
each resource r ∈ R. These variables are reflecting the fact whether a resource r
contributes with any of its skills to the execution of the activity i.

ysir ≤ xir ∀i ∈ V, r ∈ R, s ∈ S (6)
cumulative((si)i∈V , (pi)i∈V , (xir)i∈V , 1) ∀r ∈ R (7)

Constraint (6) links the auxiliary variables to the resource-skill assignment vari-
ables, whereas (7) uses these auxiliary variables as resource requirement ones in
the constraint cumulative. Note that these cumulative constraints will perform
the same propagation when using the variables ysir, but the learning would be
stronger, because it relaxes the exact skill contribution for the resources.

Order Constraints. Instead of using the cumulative constraint, which provides
the strongest propagation on the start time variables and lets the solver learn
about the time resource usage connection, we can use ordering constraints that
enforce a non-overload of any resource. In order to reduce the number of those
ordering constraints, we introduce the concept of unrelated activity pairs.

Let clo(E) be the transitive closure of the set of the precedence relations in E,
i.e., ∀(i, j) ∈ clo(E),∃(k1, k2), (k2, k3), . . . , (ko, ko+1) ∈ E, o ≥ 1 with k1 = i
and ko+1 = j. Two activities i and j are unrelated if (i, j), (j, i) /∈ clo(E). Let
U = {(i, j) | i, j ∈ V, i < j, {(i, j), (j, i)} ∩ clo(E) = ∅} be the set of all unrelated
activity pairs. Only the execution of unrelated activities can overlap in time; all
others cannot due to the precedence relations. Even if unrelated activities run

Constraint Programming Applied to the MSPSP 313

concurrently they might not cause a resource overload if different resources are
assigned to them. For each pair of unrelated activities (i, j) ∈ U , we introduce
an order variable oij ∈ {0, 1}, which takes the value 1 if their executions are
overlapping and otherwise 0.

¬oij ⇔ (si + pi ≤ sj) ∨ (sj + pj ≤ si) ∀(i, j) ∈ U (8)
(xir ∧ xjr) ⇒ ¬oij ∀(i, j) ∈ U, r ∈ R (9)

Constraint (8) uses an equality for linking the order variables to whether one of
the activity runs before the other one. Constraint (9) enforces that, when two
unrelated activities are assigned to the same resource, then their execution can-
not overlap. We note that the order variables allow the solver to learn about the
relative position of activities, which is stronger than the time-dependent learn-
ing that happens with the above described models. Thus, the stronger learning
might compensate the weaker propagation.

Moreover, for some unrelated activities, we may know a priori that they
cannot overlap due their combined requirements of a given skill exceeding the
number of available resources mastering that skill. For such unrelated activities,
we can replace the corresponding constraints in (8) and (9) by this conjunction.

(oij ⇒ si + pi ≤ sj) ∧ (¬oij ⇒ sj + pj ≤ si)

∀(i, j) ∈ U,∃s ∈ S : srsi + srsj >
∑

r∈R
mastsr (10)

4.3 Redundant Constraints

Similar to the valid inequalities presented in [8], we add redundant constraints
to enhance our formulation. Since the assignment of activities to resources is
unknown at the beginning of any search, the unary resource constraints will
propagate poorly, potentially resulting in poor early search decisions, which are
hard to recover for any solver. Two ways to allow more propagation earlier in the
search is to relax the skill from the resources and the resource from the skills.

cumulative((si)i∈V , (pi)i∈V , (srsi)i∈V , |{r ∈ R | mastsr = 1}|) ∀s ∈ S (11)

cumulative((si)i∈V , (pi)i∈V , (
∑

s∈S
srsi)i∈V , |R|) (12)

Constraint (11) ensures that at any time no more than the available number
of resources having a particular skill are taken, whereas (12) states that at any
time no more than the available resources can be used.

4.4 Search Procedures

Preliminary experiments showed that the basic search procedures in MiniZinc
performed poorly, because of the disconnection of branching on the resource
assignment and start time variables related to one activity. However, we made

314 K.D. Young et al.

use of the new search facilities of MiniZinc priority search [10], which is sup-
ported by Chuffed. We grouped the start time variables si and the resource-skill
assignment variables ysir by activities i ∈ V . The search procedures then branch
over each activity group. For each group, the search assigns the smallest possible
start time of si before assigning the maximal value of its corresponding resource
skill variables ysir in input order. We investigate three different branching orders
of activity groups, which depend on the domain of their start time variables si.
The first one priority-sm picks the group having the smallest value in the
domain of si, the second one priority-sml the smallest largest value, and the
last one priority-ff the smallest domain size.

5 Computational Experiments

All experiments were run on a PC with an Intel i7 2600 CPU 3.4 GHz and 8 GB
of memory. The model was compiled to the Chuffed FlatZinc format using
MiniZinc 2.1.2. We used Chuffed [6] from https://github.com/chuffed (branch:
develop, commit 1f37fde). All experiments were run with a time limit of 10 min.
We evaluated our models and search strategies on two data sets detailed in
Table 3. This table provides the number of instances in each set and the range
of n, l and m values. The last two columns give source and performance of the
best known exact solution methods for each corresponding data set. Set 1 was
proposed in [1,8], but we were unable to get in contact with the authors and
access their data sets. Thus, we created a new data set 1′ using the same instance
generator and parameters as they did. [15] selected a subset of 271 instances from
the available 278 MSPSP instances in set 2. To the best of our knowledge, their
exact method provides the best results for this subset. All data we used can be
found in [28]. We run preliminary experiments on set 1′a to inform our decision
on the best model formulation and search strategy.

Table 3. Data sets summary

Set #instances n l m Best known results

Source %optimal

1a 216 22 4 10–30 [8] 93.98

1b 216 42 4 20–60 [2] 2.31

2a 110 20–51 2–8 5–14 [15] 43.64

2b 77 32–62 9–15 5–19 [15] 66.20

2c 91 22–32 3–12 4–15 [15] 51.11

Table 4 presents a comparison between the different unary and redundant
constraints, as well as the search strategies tested on set 1′a. In the table, we
first define the basic, unary and redundant constraints used in the model and
search strategy. We provide the mean number of nodes explored by the search,

https://github.com/chuffed

Constraint Programming Applied to the MSPSP 315

Table 4. Model and search comparison – set 1′a

Basic cons. Unary cons. Redundant cons. Search #nodes %optimal Runtime

(1–2),(4–6) (7) (11–12) Default 370, 174 100.00 10.23 s

(1–2),(4–6) (8–9) (11–12) Default 97, 085 100.00 2.73 s

(1–2),(4–6) (8–10) (11–12) Default 54, 282 100.00 1.30 s

(1–2),(4–6) (8–10) (11–12) priority-ff 41, 762 100.00 1.25 s

(1–2),(4–6) (8–10) (11–12) priority-sml 20, 786 100.00 0.68 s

(1–2),(4–6) (8–10) (11–12) priority-sm 13, 241 100.00 0.51 s

(1–2),(4–6) (8–10) (11) priority-sm 847, 879 85.19 94.81 s

(1–2),(4–6) (8–10) (12) priority-sm 13, 953 100.00 0.67 s

the percentage of instances optimally solved and the mean runtime. We used
the time-tabling filtering as described in [22] for all cumulative constraints (7),
(11–12) and, additionally, the time-tabling-edge-finding filtering [25] for (12).
The first three rows show that modeling the unary constraints by (8–10) is
superior to the other formulations, where Chuffed’s default search is an activity-
based search with restarts. The next three rows show the results for the search
strategies from Sect. 4.4, which are alternated by the default search on restarts.
The priority-based searches are superior to the default search and prioritizing
the activity selection by the smallest possible start is the best. The last two
rows reveal that the performance decays when one of the redundant constraints
is removed, especially for (12). Constraints (8–12) using the priority-sm search
were used for all remaining experiments.

Table 5 presents the results of testing the CP model on all remaining bench-
mark instances. We include the mean nodes explored, mean optimality gap for
unsolved instances, optimal solutions found, mean runtime on solved instances
and the mean runtime across all instances. The gap has been calculated using a
näıve lower bound defined by the length of the critical path in the precedence
graph. The results of set 2a make it clear that this is a very loose bound.

The CP model performed well on the instances of set 2 previously tackled by
the literature as we see that all instances of set 2c have been solved to optimality
in an average of 1.20 s. Previously, half of this set was unsolved.

Table 5. Benchmark results – set 1′b and set 2

Set #nodes %gap #opt %opt Mean opt runtime Mean runtime

1′b 7, 584, 577 49.32 27/216 12.50 77.12 s 534.64 s

2a 2, 223, 060 185.20 81/110 73.64 50.29 s 195.22 s

2b 816, 068 22.42 63/77 81.82 16.88 s 122.90 s

2c 14, 035 0.00 91/91 100.00 1.20 s 1.20 s

316 K.D. Young et al.

6 Conclusion

We have investigated different CP models and searches for the MSPSP and
evaluated them on 710 instances. These models were tailored for CP solvers
deploying nogood learning, for which the best trade-off between propagation
and learning strength needs to be found. The key ingredients for a successful
solution procedure was the combination of problem tailored search with the use
of redundant resource constraints and learning on the order between activities
by not modeling unary resources with global constraints. The CP solver Chuffed
was able to optimally solve 67.3% of the instances with a time limit of 10 min.
In total, we closed at least 87 open instances from the literature.

Acknowledgments. This work was partially supported by the Asian Office of
Aerospace Research and Development grant 15-4016.

References

1. Almeida, B.F., Correia, I., Saldanha-da Gama, F.: An instance gen-
erator for the multi-skill resource-constrained project scheduling problem
(2015). https://ciencias.ulisboa.pt/sites/default/files/fcul/unidinvestig/cmaf-cio/
SGama.pdf. Accessed 26 Apr 2017

2. Almeida, B.F., Correia, I., Saldanha-da Gama, F.: Priority-based heuristics for the
multi-skill resource constrained project scheduling problem. Expert Syst. Appl. 57,
91–103 (2016)

3. Artigues, C., Demassey, S., Néron, E.: Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. ISTE/Wiley, Hoboken (2008)

4. Bellenguez-Morineau, O.: Methods to solve multi-skill project scheduling problem.
4OR 6(1), 85–88 (2008)

5. Bellenguez-Morineau, O., Néron, E.: A branch-and-bound method for solving
multi-skill project scheduling problem. RAIRO - Oper. Res. 41(2), 155–170 (2007)

6. Chu, G.G.: Improving Combinatorial Optimization. Ph.D. thesis, The University
of Melbourne (2011). http://hdl.handle.net/11343/36679

7. Correia, I., Saldanha-da-Gama, F.: A modeling framework for project staffing
and scheduling problems. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on
Project Management and Scheduling Vol.1. IHIS, pp. 547–564. Springer, Cham
(2015). doi:10.1007/978-3-319-05443-8 25

8. Correia, I., Loureno, L.L., Saldanha-da Gama, F.: Project scheduling with flexible
resources: formulation and inequalities. OR Spectr. 34(3), 635–663 (2012)

9. Dhib, C., Kooli, A., Soukhal, A., Néron, E.: Lower bounds for a multi-skill project
scheduling problem. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) OR 2011.
ORP, pp. 471–476. Springer, Heidelberg (2012)

10. Feydy, T., Goldwaser, A., Schutt, A., Stuckey, P.J., Young, K.D.: Priority search
with MiniZinc. In: ModRef 2017: The Sixteenth International Workshop on Con-
straint Modelling and Reformulation at CP2017 (2017)

11. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem, Working Paper Series 02/2008, Hamburg
School of Business Administration (HSBA) (2008). https://ideas.repec.org/p/zbw/
hsbawp/022008.html

https://ciencias.ulisboa.pt/sites/default/files/fcul/unidinvestig/cmaf-cio/SGama.pdf
https://ciencias.ulisboa.pt/sites/default/files/fcul/unidinvestig/cmaf-cio/SGama.pdf
http://hdl.handle.net/11343/36679
http://dx.doi.org/10.1007/978-3-319-05443-8_25
https://ideas.repec.org/p/zbw/hsbawp/022008.html
https://ideas.repec.org/p/zbw/hsbawp/022008.html

Constraint Programming Applied to the MSPSP 317

12. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1997)

13. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer,
Cham (2015). doi:10.1007/978-3-319-23219-5 19

14. Montoya, C.: New methods for the multi-skills project scheduling problem. Ph.D.
thesis, Ecole des Mines de Nantes (2012)

15. Montoya, C., Bellenguez-Morineau, O., Pinson, E., Rivreau, D.: Branch-and-price
approach for the multi-skill project scheduling problem. Optim. Lett. 8(5), 1721–
1734 (2014)

16. Montoya, C., Bellenguez-Morineau, O., Pinson, E., Rivreau, D.: Integrated column
generation and lagrangian relaxation approach for the multi-skill project schedul-
ing problem. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Man-
agement and Scheduling Vol.1. IHIS, pp. 565–586. Springer, Cham (2015). doi:10.
1007/978-3-319-05443-8 26

17. Néron, E.: Lower bounds for the multi-skill project scheduling problem. In: Pro-
ceedings of 8th International Workshop on Project Management and Scheduling,
pp. 274–277 (2002)

18. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

19. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

20. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present
value for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N.,
Pinson, É. (eds.) Integration of AI and OR Techniques in Contraint Programming
for Combinatorial Optimzation Problems, pp. 362–378. Springer, Heidelberg (2012)

21. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 47

22. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

23. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. J. Sched. 16(3), 273–289 (2013)

24. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23786-7 8

25. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propaga-
tion for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.)
CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38171-3 16

26. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained
project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 31

27. Wȩglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite
or infinite number of activity processing modes a survey. Eur. J. Oper. Res. 208(3),
177–205 (2011)

28. Young, K.D.: Multi-skill project scheduling problem instance library (2017).
https://github.com/youngkd/MSPSP-InstLib

http://dx.doi.org/10.1007/978-3-319-23219-5_19
http://dx.doi.org/10.1007/978-3-319-05443-8_26
http://dx.doi.org/10.1007/978-3-319-05443-8_26
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-642-40627-0_47
http://dx.doi.org/10.1007/978-3-642-23786-7_8
http://dx.doi.org/10.1007/978-3-642-23786-7_8
http://dx.doi.org/10.1007/978-3-642-38171-3_16
http://dx.doi.org/10.1007/978-3-642-38171-3_16
http://dx.doi.org/10.1007/978-3-319-44953-1_31
https://github.com/youngkd/MSPSP-InstLib

Application Track

An Optimization Model for 3D Pipe Routing
with Flexibility Constraints

Gleb Belov1(B), Tobias Czauderna1, Amel Dzaferovic2,
Maria Garcia de la Banda1, Michael Wybrow1, and Mark Wallace1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{gleb.belov,tobias.czauderna,maria.garciadelabanda,michael.wybrow,

mark.wallace}@monash.edu
2 Woodside Energy Ltd., Perth, Australia

amel.dzaferovic@woodside.com.au

Abstract. Optimizing the layout of the equipment and connecting pipes
that form a chemical plant is an important problem, where the aim is
to minimize the total cost of the plant while ensuring its safety and
correct operation. The complexity of this problem is such that it is still
solved manually, taking multiple engineers several years to complete.
Most research in this area focuses on the simpler subproblem of placing
the equipment, while the approaches that take pipe routing into account
are either based on heuristics or do not consider sufficiently realistic
scenarios. Our work presents a new model of the pipe routing subproblem
that integrates realistic requirements, such as flexibility constraints, and
aims for optimality while solving the largest problem instance considered
in the literature. The model is being developed in collaboration with
Woodside Energy Ltd. for their Liquefied Natural Gas plants, and is
implemented in the high-level modeling language MiniZinc. The use of
MiniZinc has both reduced the amount of time required to develop the
model, and allowed us to easily experiment with different solvers.

1 Introduction

A chemical process plant produces chemicals through the transformation or sep-
aration of materials. This is achieved as the materials pass through the different
equipment in the plant via the required connecting pipes. Perhaps surprisingly,
the cost of the pipes and associated support structures takes the largest share of
the material cost for constructing such plants. This paper focuses on determining
the 3D layout of the pipes [5] required to connect the equipment in a chemical
plant. The aim is to obtain a layout that minimizes the cost of the pipes and their
support structures, while satisfying the constraints needed to ensure the safety
and proper functioning of the plant. The pipe routing problem, as we will refer
to this application, occurs in many different industries, from water desalination
to natural gas production. It is part of the more general process plant layout
problem [9], which is in turn a special case of the spatial packaging problem [15].

While there has been some research in optimization methods to solve these
problems (e.g., [9,12,15,19–21]), the approaches that consider more realistic pipe
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 321–337, 2017.
DOI: 10.1007/978-3-319-66158-2 21

322 G. Belov et al.

routing scenarios are based on local/heuristic search methods. Realistic scenarios
include not only a reasonably large amount of pipes, but also take into account
features like pipe flexibility constraints (which deal with the ability for each pipe
to cope with the stress inflicted by thermal expansion), and pipe supporting
structures (such as pipe racks and other equipment). These features are crucial
for the correct functioning and costing of the plant. Currently, producing layouts
for such realistic scenarios is a manual task and may take multiple engineers
several years to complete.

This paper presents a new model for the 3D pipe routing problem that aims
for optimality and explicitly incorporates flexibility constraints and supporting
structures, while solving the largest problem instance considered in the liter-
ature. The model, which has been developed in collaboration with engineers
from Woodside Energy Ltd. for their Liquefied Natural Gas (LNG) plants, is
implemented in MiniZinc [13], a high-level, solver-independent Constraint Pro-
gramming (CP) modeling language for combinatorial optimization and satisfia-
bility problems. This has allowed us to produce a high-level but quite realistic
model relatively quickly, and then explore different solving approaches to this
model: from constraint propagation solvers with a variety of search strategies,
to mixed-integer linear programming (MIP) solvers with different translations
for non-linear constraints.

Our aim is to build a tool that will allow plant designers and piping engineers
at Woodside to explore and evaluate alternative layouts for realistic pipe routing
scenarios and, thus, support them in designing a better plant in a shorter amount
of time. Note that we are not attempting to algorithmically compute the final
plant layout without human intervention, as we do not believe this is yet feasible.
This is both due to the huge complexity of modern plants and to the amount
of “undocumented” requirements that seem to exist mainly in the head of the
plant and pipe layout engineers. Therefore, while it is important for our system
to find a high quality layout solution to a realistic pipe routing scenario, it is
also important to display the solution via a visual interface that allows engineers
to interrogate the proposed solution, as well as guide the optimization process
by requesting changes to various parameters and constraints. We have already
performed the first steps towards such an interactive optimization system, in
the form of a 3D visualization tool that is connected to our modeling system.
This visualization tool enables engineers to explore the produced layout, and to
evaluate and validate the proposed solution in a familiar way.

The rest of the paper is structured as follows. Section 2 discusses the related
literature and past work on the general plant design problem. Section 3 describes
the problem in greater detail and provides the decision variables, constraints and
search strategies used in our MiniZinc model. Section 4 briefly describes how the
non-linear constraints in the model are appropriately translated by MiniZinc for
MIP and CP solvers. Section 5 presents a series of experiments aimed at evaluat-
ing the scalability and accuracy of our model. Section 6 describes the interactive
3D visualization tool we have developed for communicating and exploring the

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 323

results provided by the model. Finally, Sect. 7 presents our conclusions and future
work.

2 Literature Review

Solving the overall plant design problem requires finding 3D location coordinates
for all the equipment and connecting pipes within a plant’s volume (referred to
as the container cuboid), in such a way as to minimize the total cost of the plant
while, at the same time, ensuring its safety and correct functionality. For small
problem instances, Sakti et al. [15] successfully apply an integrated approach for
a satisfaction version of the simultaneous equipment and piping layout design
problem, where the aim is to find any feasible solution that places the equipment
and connects the pipes within the given container cuboid. In particular, they
considered 10 equipment pieces and up to 15 pipes with 4 segments on average.

For larger, more realistic problem instances, and those where the goal is to
find an optimal (or high quality) solution, their integrated approach does not
scale. In these cases the problem is naturally divided into two phases [9]. The
first phase aims at positioning the equipment, that is, obtaining the 3D location
coordinates for each piece of equipment, while minimizing an approximate total
cost of the plant. In this phase the focus is on the equipment, ensuring it is
supported, safely positioned and can correctly function, while the cost of the
pipes is approximated using rough measures, such as Manhattan distances. The
second phase aims at determining an optimal layout of the pipes connecting
the already positioned equipment. The focus this time is on the pipe routing,
taking into consideration issues such as pipe stress and flexibility, the need to
support the pipes and the cost associated to these supports. Theoretically, this
separation into phases can lead to infeasibilities in the later phases, which can
be made less probable using ample safety distances between equipment.

There has already been some research devoted to this problem. However,
most of it (e.g., [19,20]) focuses only on the efficient modeling and solving of the
first phase (equipment location), which is considerably simpler than the second.
While there has been research that includes the second phase (e.g., [9,15]) or even
focuses on it (e.g., [12,21]), the existing approaches do not satisfy Woodside’s
requirements.

On the one hand, the more realistic approaches, which take into account the
simultaneous optimized routing of several pipes (including branching pipes and
support placement), are based on heuristic algorithms (rather than complete
search methods), such as the ant-colony evolutionary algorithms used by [7,12].
This is not our focus, as Woodside is more interested in pursuing complete
approaches.

On the other hand, it is difficult to extend the approaches that rely on com-
plete search methods to take into account some of the required constraints,
particularly flexibility constraints. In its basic version, single-pipe routing can
be modeled as a 3D rectilinear shortest path problem solvable by Dijkstra’s algo-
rithm. One of the most realistic of the complete approaches is that of Guirardello

324 G. Belov et al.

and Swaney [9], which provides a detailed MIP model for solving phase one and
a general overview of a network-flow MIP model for solving phase two. This
second MIP model relies on the construction of a reduced connection graph that
limits the possible routes of the pipes. This is used to route pipes one by one,
since they suggest that simultaneous routing of the pipes is too costly for a MIP
model. While they do not give enough details regarding how the connection
graph is constructed, an approach to construct such a connection graph is given,
e.g., by de Berg et al. [6], who present a higher-dimensional rectilinear shortest
path model that considers bend costs. A more hierarchical method using cuboid
free space decomposition is given by Zhu and Latombe [21] and applied to pipe
routing. Unfortunately, even if these methods are used, it is not clear how [9]
performs sequential pipe routing when pipes interfere with each other ([9] talks
about “some tuning by hand” which might be required for these cases). Further,
none of these methods can be easily extended to take pipe flexibility constraints
into account. In fact, we are not aware of any published results on a general pipe
routing method that incorporates flexibility constraints. While [9] mentions the
use of Guided Cantilever flexibility constraints in an iterative barrier method to
eliminate over-stressed pipe solutions, extending their method to achieve this is
not straightforward, and their work provides no information on how to do so.

3 Problem Description and Associated Model

As mentioned before, this paper focuses on the second phase of the process plant
layout problem, where the equipment has already been positioned safely and
correctly within the container cuboid, and the aim now is to determine the best
routing for the pipes that connect the equipment (see the rightmost picture in
Fig. 2 for a final solution to our full benchmark). While we have also implemented
a MiniZinc model for solving phase one that provides the equipment locations,
due to space considerations we will not provide details regarding this model.

As done in the literature, we limit our pipe routing approach to rectilinear
axis-parallel routing; in particular, we constrain all bends to be 90◦. This is
acceptable as non-90◦ bends are extremely rare in real plants, and can be added
later by a post-process step that looks for possible pipe simplifications based on
the addition of such bends and non-axis-parallel segments. Further, we approx-
imate pipe segments by cuboids with a square cross-section and ignore bend
radius at this stage. This simplification is also acceptable since the resulting loss
of space in a large process plant (versus, say, the pipe routing in a jet engine
as performed in [15]) is negligible. In this form, the resulting model extends the
one in [15] to account for supports and flexibility constraints, and is related to
3D orthogonal packing [14,17].

3.1 Input and Derived Data

The input data to the second phase includes the following:

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 325

– Dimensions of the container cuboid (integer values in millimeters) and an
associated discretization parameter K ≥ 1 for placement positions, where K
is the size of the model’s length unit in mm. The smaller the value of K, the
higher the number of possible position points for placing pipes and, thus, the
more difficult the problem to solve.

– Set M of equipment and their locations as provided by phase one, which
models each equipment piece m ∈ M as a cuboid with given length, width
and height Wm ∈ ZZ3 (depending on the chosen rotation), and returns its
location as the 3D coordinates Xm ∈ ZZ3 of the corner with the smallest
x, y and z values. The elements of M can be of several types, including
vessels, heat exchangers, pumps, the pipe rack (a multi-platform structure
that traverses the entire plant), and the source/sink points that connect the
main pipe to parts of the plant not considered by the problem instance.
Note that, in this second phase, the elements of M represent either support
structures or obstacles to which some pipes are attached via “nozzles”. Only
some of these elements (mostly vessels and racks) can provide support to
nearby pipes.

– Two pieces of information for each nozzle: its location modeled as the 3D
coordinates of the center of the attachment area (i.e., the intersection of
the equipment surface and the pipe axis), and its direction, modeled as a
value from the set {0, . . . , 5}, where values {0, 1, 2} indicate the nozzle has
a positive direction along the x, y, z-axis, respectively, and values {3, 4, 5}
indicate a negative direction along the same axes.

– Set P of pipes and, for each pipe p ∈ P, the following information: external
diameter Dp (corresponding to the length of any side of the square cross-
section), cost per length unit CL

p , cost per bend CB
p , maximal number of

pipe segments allowed NS
p , safety distance to equipment and other pipes sMp ,

thermal expansion unit ep, elasticity modulus Ep (which is associated to p’s
material), and maximum stress allowed (stress capacity) SA

p . We also input
lower/upper pipe segment length bounds, where segment length denotes the
distance between the segment’s defining nodes, and a node is either a bend
(assuming bend radius zero) or the pipe nozzle attachment point.

– Set SZ of cuboid support zones (i.e., areas that can support pipes), and
for each j ∈ SZ the following information: its location as the smallest corner
Xj ∈ ZZ3 and a length, width, and height vector W j ∈ ZZ3 as above, together
with the cost penalty CSZ

jp for any pipe p that uses j. Note that some of these
support zones are associated to equipment (mostly vessels), while some are
associated to each of the platforms in the pipe rack. We currently have only
two cost classes for support zones: CSZ

jp ∈ {0, CSZ
p } with the zero value being

the one given to the rack’s platform support levels.

From the above input data, our model derives the following parameters for each
pipe p ∈ P:

– Set Sp of pipe segment indices Sp = {1, . . . , NS
p }. Note that if the number n

of segments of p is less than the maximum allowed (n < NS
p), the length of

all segments j : n < j ≤ NS
p will be 0.

326 G. Belov et al.

– Set Np of pipe node indices: Np = {1, . . . , NS
p + 1}, where the first and last

nodes are the nozzle attachment points (and thus, they are known as they
were set in phase one), and the rest correspond to pipe bends. If n < NS

p , the
position of all nodes j : n < j ≤ NS

p + 1 will be the same.

3.2 Decision Variables

The solution to the problem is expressed in terms of the values of the decision
variables representing for each pipe p ∈ P, the pipe node positions Xp

i ∈ ZZ3

of each i ∈ Np, subject to the container cuboid. The objective function (and
associated decision variable obj) is the sum of the cost penalties associated to
the length, bends and supports of each pipe.

In addition to the decision variables associated to the solution representation
and objective function, the following intermediate decision variables are used in
our model to better express the required constraints and/or search strategy:

– Pipe segment existence flags f∃p
i ∈ {0, 1}, p ∈ P, i ∈ Sp, with f∃p

i = 1 iff
segment i of pipe p has length greater than 0.

– Pipe segment directions dpi ∈ {0, . . . , 5}, p ∈ P, i ∈ Sp using the same con-
vention as for nozzles, that is, values {0, 1, 2} indicate segment i of pipe p has
a non-negative direction along the x, y and z axes, respectively, while values
{3, 4, 5} indicate a non-positive direction along the same axes. Note that the
values for the first and last nodes (the nozzles) are given as input.

– Absolute pipe segment lengths Lp
ix, Lp

iy, L
p
iz for each pipe p ∈ P and segment

i ∈ Sp along the axes x, y, z, respectively.
– Pipe segment cuboid hulls as the smallest-corner coordinates X̃p

i ∈ ZZ3 and
sizes W̃ p

i ∈ ZZ3 (ignoring bend radius), for each pipe p ∈ P, similar to the
notation for equipment and support zone cuboids.

3.3 Constraints

Symmetry Breaking Constraints. We want to avoid searching for symmetric solu-
tions, that is, solutions where the flags f∃p

i are either 0 at the end, or 0 at the
beginning of a pipe. The following symmetry breaking constraints ensure only
those with 0 s at the end are considered solutions, by imposing a non-increasing
order among the segment existence flags of every pipe:

f∃p
i ≥ f∃p

i+1, p ∈ P, i ∈ Sp \ {max{Sp}} (1)

Orthogonal Direction Change Constraints. They ensure consecutive segments of
a pipe do not form a line by, imposing a change in pipe segment direction for
any two consecutive segments of every pipe:

0 = f∃p
i+1

∨
dpi mod 3 �= dpi+1 mod 3, p ∈ P, i ∈ Sp \ {max{Sp}} (2)

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 327

Object Non-overlapping Constraints. They ensure the pipes do not overlap with
other pipes and any other equipment (note that the non-overlapping among
equipment has already been achieved in phase one) and take into account the
required safety distances. They are implemented by disjunctions over the coor-
dinate points at each of the three axes, similarly to [14,17]. For example, for
ensuring non-overlapping between pipes and other equipment, the constraints
are as follows:

∨3
c=1

(
X̃p

ic+W̃ p
ic+sMp ≤ Xm

c ∨Xm
c +Wm

c +sMp ≤ X̃p
ic

)
, p ∈ P, i ∈ Sp,m ∈ M (3)

For subsets of objects with equal safety distances, we could have instead used
the diffn k global constraint [1]. However, among the solvers we tested only
OR-Tools [8] has it, and it is not enough to express the support constraints.

Support Constraints. Each bend’s base point (the intersection of the neighboring
segments’ base lines) is required to be in a provided support zone, whose cost
penalty is the one added to the objective function. Supporting only bends can
be an under approximation, as long segments might also need to be supported.
However, this seems to happen very rarely (once in our biggest benchmark).

The placement of bends within a support zone is modeled as a reified form
of condition (3), namely we denote this placement by a boolean variable bSZ

pij for
each pipe p, bend i and support zone j:

bSZ
pij ↔ ∧3

c=1

(
X̃p

ic ≥ Xj
c ∧ X̃p

ic ≤ Xj
c + W j

c

)
, p ∈ P, i ∈ Sp\{1}, j ∈ SZ (4)

To ensure each bend is placed within a valid support zone, we demand:

∃jb
SZ
pij , p ∈ P, i ∈ Sp \ {1} (5)

According to our cost assumption, namely CSZ
jp ∈ {0, CSZ

p } ∀j ∈ SZ, p ∈ P, with
the zero cost belonging to (disjoint) rack support levels, we add to the objective
function the following variables for each bend’s support cost:

CS
pi = CSZ

p f∃p
i

(
1 − ∑

j:CSZ
jp =0 bSZ

pij

)
, p ∈ P, i ∈ Sp \ {1} (6)

Flexibility Constraints. Several approximate methods are described in [5], includ-
ing the Guided Cantilever Method (GCM), which is the one implemented by our
model, as it is reasonably accurate and not too complex. This method assumes
that pipes are only fixed at the nozzle attachment points and their bends are
rectilinear. The thermal expansion of pipe p ∈ P along axis x is defined as:

Δp
x = Lp

xep, (7)

where Lp
x is the x-distance between p’s nozzles and ep is the unit thermal expan-

sion of p. The Δp
y and Δp

z are defined similarly.

328 G. Belov et al.

According to the GCM, a segment i ∈ Sp with a non-zero length L in the
y or z direction (with length L = Lp

iy or L = Lp
iz, respectively), absorbs the

following portion of the thermal expansion in the x-direction:

δx =
L3

∑
i(L

p
iy)3 +

∑
i(L

p
iz)3

Δp
x, (8)

where δx is the segment’s lateral deflection in the x-direction, Δp
x is the overall

thermal expansion of p in the x-direction given by (7), and
∑

i(L
p
iy)

3 +
∑

i(L
p
iz)

3

is the sum of the cubed lengths of all pipe segments of p that are perpendicular
to x. Similar equations can be written for the lateral deflections of a segment in
the y- and z-directions.

Also, the deflection capacity δ̄ of a segment under the method’s assumptions
can be given as:

δ̄ =
48L2SA

p

EpDp
, (9)

where SA
p is the allowable stress range for p, L is the segment length, Ep is the

modulus of elasticity associated to p’s material, and Dp is the external diameter
of pipe p, all in appropriate units. Finally, the expansion stress on p’s segment
is permissible when:

max{δx, δy, δz} ≤ δ̄. (10)

For δx this can be re-written as:

κL ≤ ∑
i(L

p
iy)

3 +
∑

i(L
p
iz)

3 (11)

with κ = Δp
xEpDp/SA

p /48. We add inequalities (11) and their y-, z-counterparts
to the model. Value max{δx, δy, δz}/δ̄ is called the stress ratio of the segment.

3.4 Search Strategy

MiniZinc allows us to specify a custom search strategy for the current opti-
mization model being solved. One of the advantages of constraint programming
solvers is that they can benefit from such a custom search strategy, either fol-
lowing it strictly or interleaved with their own search strategy. Our MiniZinc
code declared the following strategy for routing each pipe p: the search first
explores the values of search pairs (f∃p

i , dpi) in the order of the pipe’s seg-
ments i ∈ Sp. For each variable, the value selection strategy uses binary search
(called indomain split in MiniZinc), which first splits the domain of the vari-
able around the integer mean of its lower and upper bounds, and then searches
within the lower half, followed by the upper half. Search strategies are simply
ignored by MIP solvers.

4 MiniZinc and Its Solver-Specific Redefinitions

We have implemented the above model in the MiniZinc language [13] and solved
it using several CP and MIP solvers. This is despite constraints (6) and (11) being

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 329

non-linear and, thus, not directly supported by MIP solvers. The MIP interface
of MiniZinc [2] handles this by using an automatic solver-specific redefinition
mechanism for constraints defined as predicates or functions: when the model is
compiled for a target solver, the front-end looks for a solver-specific redefinition
of each predicate or function used in the model. If none is provided, MiniZinc
uses the default decomposition appearing in its standard library or forwards the
constraint to the solver backend. For example, the standard library definition
for the pow function of an integer variable, is as follows:

1 /** @group builtins.arithmetic Return \(\a x ^ {\a y}\) */
2 function var int: pow(var int: x, var int: y) =
3 let {
4 int: yy = if is_fixed(y) then fix(y) else -1 endif;
5 } in
6 if yy = 0 then 1
7 elseif yy = 1 then x else
8 let { var int: r;
9 constraint int_pow(x,y,r);

10 } in r
11 endif;

which calls predicate int pow(x,y,r). As no solver we tested handles this
predicate, we defined it to represent x3 as x · x · x for CP solvers, and as
∑ub(x)

v=lb(x) v3(x = v) for MIP ones. For example, the latter was achieved by adding
the following MiniZinc code to the linearization library:

1 predicate int_pow(var int: x, var int: y, var int: r) =
2 let {
3 array[int , int] of int: x2y
4 = array2d(lb(x)..ub(x), lb(y)..ub(y),
5 [pow(X, Y) | X in lb(x)..ub(x), Y in lb(y)..ub(y)])
6 } in
7 r == x2y[x, y];

5 Evaluation

We have performed several experiments aimed at evaluating the scalability and
accuracy of our method. All these experiments were executed as a 1-thread
process on an Intel(R) Core(TM) i7-4771 CPU @ 3.50 GHz. Figure 2 provides a
view of solutions obtained for the largest benchmark.

5.1 Default Benchmark

All our benchmarks modify a default benchmark by considering either subsets of
its M and P sets, or a different discretization parameter. This default benchmark
models the acid gas removal unit of an existing LNG plant. Its container cuboid
is sized 76×40×43 m length by width by height, and its discretization parameter
is K = 200 mm, which gives 381 × 201 × 216 position points along axes x, y, z,
respectively. It also has a set P with 27 pipes, with diameters Dp between 50 and
750 mm, and a set M, with the following 17 equipment pieces already positioned
by phase one:

330 G. Belov et al.

– 4 column vessels, with heights between 17 and 40 m
– 1 horizontal drainage vessel, grounded, with a footprint of 7× 2.5 m
– 3 heat exchanger groups and 2 individual heat exchangers. Two of the groups

are fin-fan blocks of sizes 17 × 15 × 2.5 m and 10 × 15 × 2.5 m. The two indi-
vidual exchangers are 21 × 3 × 3 m each and the third group is 8× 2 × 3 m

– 4 pump groups, grounded, of sizes from 3× 1 × 1.5 to 15 × 8 × 1.5 m
– a source point and a sink point connecting the current unit to other parts of

the plant
– a pipe rack of size 13 × 13 m cross-section running through the container

cuboid length-wise (see below for details on support areas).

The set SZ of support zones, where all pipe bends must be located, is as follows:

– 3 m zones around the 5 vessels, the 2 individual heat exchanges, one of the
heat exchanger groups, and the multi-level pipe rack

– 50 cm thick “preferred levels” at heights 3, 6, 9, and 12 m in the pipe rack,
corresponding to the established platforms in the rack

– 0–3 m layer above ground.

The above pipes, bends and support zones have the following costs:

– length cost CL
p : $25–$400 per meter, depending on diameter and routing

requirements
– bend cost CB

p : twice the per-meter cost
– support cost CSZ

jp : 10× the per-meter length cost of p for all bends except
those located in the 0–3 m “ground level zone” or in the “preferred rack levels”
at heights 3, 6, 9, and 12 m, which have no cost.

All benchmarks require a safety distance SM
p of 75 mm between pipes and

between pipes and equipment. The upper bound for the length of a nozzle seg-
ment is 6 m. The lower bound for the length of any segment is 2× the diameter.
Finally, all benchmarks impose the following flexibility/stress capacity require-
ments on all pipes in the plant, which are taken from the example in Sect. 4.5
in [5]:

– e = 0.078 in/ft, corresponding to the temperature range from 70 to 480 ◦F
– E = 29 · 106 psi
– SA = 21625 psi.

While the costs and stress values given above are not the real ones, we use them
to report on the approach (the actual values cannot be disclosed).

5.2 Overall Approach

The overall approach follows a single-pipe configuration strategy, where each
pipe is routed in sequence and the resulting route becomes an obstacle for the
next pipe to be routed. In other words, the first pipe is routed in the context
of the equipment, plus other pipes’ nozzle segments, as obstacles. The second

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 331

pipe is routed in the same context plus the obstacles resulting from the segments
of the first pipe routed, and so on. We experimented with several pipe orders,
including widest pipe first (according to diameter), and largest-surface pipe first
(according to a combined measure of approximated length× width). With a
minimal advantage for the latter, we choose it for the experiments. As shown
below, the loss in accuracy due to our single-pipe routing is small.

Each pipe starts with 10 as the maximal number NS
p of segments, and

increases it if infeasible. Also, each pipe is first routed without the GCM flexibil-
ity constraints, and subsequently re-routed with them if stress violations occur
(i.e., if the stress is greater than that allowed by SA

p). For example, Fig. 1 shows
the result of routing pipes without GCM constraints (left), and the subsequent
loops added to reduce the stress down to allowable levels (right).

Fig. 1. Left: shows pipes routed without flexibility considerations, where dashed pipes
indicate pipe segments with greater than the allowable stress SA

p : the shorter the dashes
the higher the stress. Right: shows re-routed pipes with extension loops to relieve stress.

5.3 Results for Solvers Gurobi, IBM ILOG CPLEX, Chuffed,
Gecode, and OR-Tools

The wide choice of solver backends for MiniZinc allowed us to try several solvers,
including the two state-of-the-art MIP solvers Gurobi 7.0.2 [10] and IBM ILOG
CPLEX 12.7.1 [11]. In terms of CP solvers, we tried the following three: Chuffed
[4], one of the best solvers to combine constraint propagation with (SAT-style)
clause learning, compiled from the develop branch on [3]; OR-Tools FlatZinc
5.1.4045 [8], Google’s fast and portable suite for combinatorial optimization;
and Gecode 5.1.0 [16], one of the most popular CP solvers based on traditional
constraint propagation. All these solvers have shown prominent performance in
the annual MiniZinc Challenges [18].

For the MIP solvers it proved best to use the simple ‘big-M ’ translation of
logical constraints, cf. [2]. For CP solvers, OR-Tools did not produce any feasible
solutions in the 1800-seconds time limit allowed per benchmark, while the best
results for Chuffed were produced with option -f (free search).

332 G. Belov et al.

Table 1. Results for routing default benchmark without flexibility constraints. The
total objective value is different among solvers despite every pipe being routed opti-
mally. This is due to the sequential routing approach

Solver Ncalls N init
obst N last

obst Nopt tmin tmax
opt tTotal L S Obj NB NOS rmax

CPLEX 27 68 152 27 3.1 14 150 741 982 1765 111 55 2809%

Gurobi 27 68 153 27 3.6 71 318 741 982 1769 114 60 2755%

Chuffed 27 68 153 27 0.5 565 2038 753 985 1757 114 61 2809%

Gecode 27 68 155 27 0.3 261 685 764 987 1758 116 59 2809%

indep. 27 16 16 27 1.0 3 49 758 1004 1660 106 48 2809%

The top part of Table 1 shows the results of sequentially routing each of the
27 pipes in the default benchmark without flexibility constraints using CPLEX,
Gurobi, Chuffed and Gecode. The meaning of each column is as follows: number
of routing instances N calls attempted (would be larger than 27 if there is at least
one pipe that needs more than 10 segments, or such a solution is hard to find);
number of obstacles (i.e., already placed equipment or pipe segments) N init

obst and
N last

obst for the first and last pipe, respectively; number of optimally solved pipes
Nopt (would be less than 27 if any pipe timed-out); minimum solving time tmin;
maximum solving time for an optimally solved instance tmax

opt ; total time spent
tTotal; total pipe length L, total pipe surface S, total objective value Obj; total
number of bends NB; total number of overstressed segments NOS; and maximal
stress ratio rmax. All times are given in seconds, lengths (surface area) in (square)
meters, and objective values in multiples of $1000. Note that the initial number
of obstacles is larger than the cardinality of set M, because the start and end
nozzle segments of each pipe are also considered as obstacles for all other pipes.
Also note that no pipe needed more than 10 segments (as N calls = 27).

All four solvers produce similar solutions, solving each pipe optimally. Thus,
differences in the total objective value are explained only by the sequentiality of
the approach (pipe after pipe) and the possibly different optimal solutions found
by each solver. Since CPLEX is the fastest overall, we select CPLEX to perform
the initial routing of each pipe without GCM constraints.

The last line of Table 1 presents a computation (with CPLEX) where each
pipe was routed independently, i.e., ignoring other pipes. The total objective
value is 6.2% smaller than the worst one among sequential approaches, giving a
lower bound on what can be achieved with simultaneous routing. Note that this
lower bound is independent of the solver, as long as every pipe is optimal.

As shown in Table 1, the maximal stress ratio rmax is well above the allowed
100%, which is why flexibility constraints are needed. Table 2 shows the results
for the full method, where we first try each pipe without flexibility constraints
and only re-solve with GCM flexibility constraints if the stress is over the allow-
able limit. The first four rows of Table 2 show the results for the default bench-
mark, which is the same as that in Table 1 (27 pipes in P, 17 elements in M, and
discretization parameter K = 20 cm), and different solvers for GCM routing:

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 333

Table 2. Comparison of various configurations of routing with GCM constraints

Config |P| Npipes
GCM Ninit

obst N lst
obst Nopt tmin tmax

opt tTotal L S Obj NB rmax

Default CPLEX 27 22 72 181 22 8.0 925 2361 1002 1379 2089 144 98%

Gurobi 27 21 72 180 18 13.9 1501 104 1010 1381 2048 143 99%

Chuffed 27 23 72 181 23 1.1 441 1476 997 1362 2105 144 99%

Gecode 27 23 72 181 23 0.9 1661 3711 1008 1378 2053 144 98%

indep. 27 22 16 16 22 2.8 691 1228 1008 1380 1999 133 99%

Decrease |M| = 13 17 13 44 108 13 1.5 420 925 656 889 1270 88 96%

|M| = 9 10 6 30 59 6 1.8 121 234 419 631 573 51 98%

|M| = 5 3 3 8 19 3 1.9 267 281 252 594 389 18 97%

Discr CPLEX 27 22 68 175 21 12.2 328 2414 1009 1377 1948 144 98%

Chuffed 27 23 68 182 20 4.1 823 8531 1016 1387 2218 151 99%

CPLEX, Gurobi, Chuffed and Gecode. The data shown is similar to that of
Table 1, with the addition of Npipes

GCM , which shows the number of pipes that
needed to be re-routed with GCM constraints. Again, no pipes needed more
than 10 segments (data not shown).

The next row shows, again, a computation where each pipe was routed (with
CPLEX) independently of other pipes. The objective value improvement from
the worst sequential approach is 5%. Interestingly, independent routing with the
chosen objective function reduces the number of bends, but not the total length.

The next three rows show the results for decreasing numbers of equipment
(and thus, of associated pipes) as follows: we first removed from the original M
all but 1 heat exchanger, leaving 13 elements; then removed all pump groups,
leaving 9; and finally removed all but the 2 main components of the plant unit
plus the source, sink, and pipe rack. GCM routing was done with Chuffed. The
results show that even with fewer obstacles, routing remains a hard problem,
probably due to the GCM constraints.

The final two rows show the results for the default benchmark with a smaller
discretization parameter: K = 10 cm. CPLEX had a timeout on one pipe but the
total objective value is 6.7% smaller than its own with K = 20 cm and smaller
than independent routing with K = 20 cm. This shows that finer discretization
can lead to qualitatively better solutions for the current model.

6 Visualization of Layout Solutions

The solutions to our model are text-based geometric descriptions of the opti-
mized plant layout. These descriptions list the positions and dimensions of the
equipment and pipe racks (from phase one), and the routes for the pipes as a
series of intermediate bend locations (from phase two). This format is not under-
stood by humans as easily as an image of the 3D layout. Moreover, plant layout
and piping engineers are nowadays used to working with technical drawings and
interactive 3D CAD models that allow them to zoom in and out and rotate the
model in three dimensions in order to fully understand it.

334 G. Belov et al.

We have developed an interactive 3D visualization that enables engineers to
explore the produced layout, and to evaluate and validate the proposed solu-
tion in a familiar way (see Fig. 2 for two examples). This visualization displays
pipes in different colors, drawing them as cylinders (rather than cuboids) of the
appropriate diameter with visual bends.

Fig. 2. Solutions for our largest problem instance with (right) and without (left) GCM
constraints. The brown base represents the ground level. The cuboids represent equip-
ment. The pipe rack is comprised of the four stacked plane-like cuboids that span most
of the length of the volume. Pipes are depicted in different colors to differentiate them.
(Color figure online)

Our visualization is displayed in a web-based 3D viewer, allowing the 3D
model to be rotated, panned and zoomed. We attach additional metadata to
objects in the 3D model, such as equipment and pipe IDs and pipe segment
stress. Engineers can see this information by selecting these elements and viewing
their properties. We also attach high-level information (such as parameters of
the optimization model) to the base of the container cuboid, allowing this to
be easily viewed. We have also experimented with using colors or dashes to
visualize stress on pipe segments when it is over the allowable levels, although
this is mainly for our own benefit while working on the optimization model, since
our final solutions must always keep stress within allowable levels.

We have found that using 3D visualizations during our discussions with
Woodside engineers not only leads to a more fluid discussion, but allows them
to quickly identify layouts that look very different from what they would expect.
Often this means there is some requirement we were not aware of. In this case
a nice benefit of the problem being specified as a high-level constraint model is
that these additional requirements can generally be encoded as constraints and
easily added to the model. This has happened multiple times resulting in an iter-
ative evolution of our MiniZinc model and the overall approach over time. On
other occasions, the unexpected results did not violate any requirement. Instead,
they challenged Woodside engineers to reconsider long-held process plant con-

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 335

struction and layout conventions, where diverging from the status quo has the
potential to result in significant cost savings.

While discussing various solutions and visualizations, Woodside engineers
have identified the need to easily evaluate the quality of various solutions. This
requires us to annotate the 3D models with information regarding pipe and
support structure material costs, on a pipe-by-pipe basis. These annotations
will allow engineers to compare multiple potential solutions and compare the
costs of particular subsets of the plant.

We are currently extending our plant layout visualization in two ways. The
first extension allows engineers at different physical locations to explore the same
visualization in a collaborative way, as is required in, say, a video conference set-
ting. This extension allows the interactions (e.g., rotations and pipe selections)
made in one location to be seen at all other locations. The second extension
will allow engineers to modify parameters and constraints, such as safety dis-
tances or location of some equipment and/or pipes, thus either triggering a
re-optimization step (for the pipes connected to the moved equipment) or a re-
evaluation step to obtain the new stress and length values for the moved pipes.
While re-optimization steps might take hours (depending on how many pipes
need to be re-computed), this can be a significant improvement from the current
manual process. A comparison between the two layouts will be performed in both
cases. The aim is for both extensions to eventually form part of an interactive
optimization tool for plant layout that can be used directly by plant layout and
piping engineers and be closely integrated into the design process.

7 Conclusions and Outlook

We have presented a MiniZinc model to solve the 3D pipe routing problem under
thermal expansion requirements (modeled by the Guided Cantilever Method)
and support constraints, thus addressing the major constraints of the practical
problem to a certain degree of detail. Different MIP and CP solvers were used
to solve this model for the largest benchmark presented in the literature, and
the results used to fine-tune a solving method that was shown to achieve near-
optimal results with reasonable efficiency. The flexibility constraints represent
a major challenge in the current version, significantly increasing the optimal
subproblem solving times (which are nevertheless a step forward compared to
the manual design process). We plan to extend this model to include maintenance
constraints and other units within the plant.

We have also developed a 3D visualization of solutions as a first step towards
an interactive optimization system. While it already allows users to evaluate and
validate a solution, the aim is to transform the current version into an interactive
visual interface that allows users to make changes of the optimization model via
direct manipulation of a 3D model. These actions would trigger the optimization
software to compute a new solution, which is then visualized and compared to
the previous one.

336 G. Belov et al.

Acknowledgments. This research was funded by Woodside Energy Ltd. We thank all
our Woodside collaborators, particularly Solomon Faka, for the many useful discussions,
as well as for the enlightening visit to their LNG plant.

References

1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints 12(1), 21–62 (2007)

2. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint
programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49–65.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 4

3. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed –
a lazy clause solver (2017). https://github.com/chuffed/chuffed. Accessed 23 Mar
2017

4. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis (2011)
5. M.W. Kellogg Company: Design of Piping Systems. Wiley series in Chemical Engi-

neering. Wiley, Hoboken (1956)
6. de Berg, M., van Kreveld, M., Nilsson, B.J., Overmars, M.: Shortest path queries

in rectilinear worlds. Int. J. Comput. Geom. Appl. 02(03), 287–309 (1992)
7. Furuholmen, M., Glette, K., Hovin, M., Torresen, J.: Evolutionary approaches to

the three-dimensional multi-pipe routing problem: a comparative study using direct
encodings. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.
71–82. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5 7

8. Google: Google optimization tools (2017). https://developers.google.com/
optimization/

9. Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe
routing. Comput. Chem. Eng. 30(1), 99–114 (2005)

10. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual Version 7.0.
Houston. Gurobi Optimization, Texas (2016)

11. IBM: IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual (2017)
12. Jiang, W.-Y., Lin, Y., Chen, M., Yu, Y.-Y.: A co-evolutionary improved multi-ant

colony optimization for ship multiple and branch pipe route design. Ocean Eng.
102, 63–70 (2015)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

14. Padberg, M.: Packing small boxes into a big box. Math. Methods Oper. Res. 52(1),
1–21 (2000)

15. Sakti, A., Zeidner, L., Hadzic, T., Rock, B.S., Quartarone, G.: Constraint pro-
gramming approach for spatial packaging problem. In: Quimper, C.-G. (ed.)
CPAIOR 2016. LNCS, vol. 9676, pp. 319–328. Springer, Cham (2016). doi:10.1007/
978-3-319-33954-2 23

16. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2017). www.gecode.org

17. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey,
P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85958-1 4

18. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Con-
straints 15(3), 307–316 (2010)

http://dx.doi.org/10.1007/978-3-319-44953-1_4
https://github.com/chuffed/chuffed
http://dx.doi.org/10.1007/978-3-642-12139-5_7
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-319-33954-2_23
http://dx.doi.org/10.1007/978-3-319-33954-2_23
www.gecode.org
http://dx.doi.org/10.1007/978-3-540-85958-1_4
http://dx.doi.org/10.1007/978-3-540-85958-1_4

An Optimization Model for 3D Pipe Routing with Flexibility Constraints 337

19. Xu, G., Papageorgiou, L.G.: A construction-based approach to process plant layout
using mixed-integer optimization. Ind. Eng. Chem. Res. 46(1), 351–358 (2007)

20. Xu, G., Papageorgiou, L.G.: Process plant layout using an improvement-type algo-
rithm. Chem. Eng. Res. Des. 87(6), 780–788 (2009)

21. Zhu, D., Latombe, J.C.: Pipe routing-path planning (with many constraints). In:
Proceedings of 1991 IEEE International Conference on Robotics and Automation,
vol. 3, pp. 1940–1947 (1991)

Optimal Torpedo Scheduling

Adrian Goldwaser1,3(B) and Andreas Schutt2,3(B)

1 The University of New South Wales, Sydney, Australia
adrian.goldwaser@gmail.com

2 The University of Melbourne, Melbourne, Australia
3 Decision Sciences, Data61, CSIRO, Melbourne, Australia

andreas.schutt@data61.csiro.au

Abstract. We consider the torpedo scheduling problem in steel pro-
duction, which is concerned with the transport of hot metal from a blast
furnace to an oxygen converter. A schedule must satisfy, amongst other
considerations, resource capacity constraints along the path, the loca-
tions traversed and the sulfur level of the hot metal. The goal is first to
minimize the number of torpedo cars used during the planning horizon
and second to minimize the time spent desulfurizing the hot metal. We
propose an exact solution method based on Logic-based Benders Decom-
position using Mixed-Integer and Constraint Programming, which opti-
mally solves and proves, for the first time, the optimality of all instances
from the ACP Challenge 2016 within 20 min. In addition, we adapted
our method to handle large-scale instances. This adaptation optimally
solved all challenge instances within one minute and was able to solve
instances of up to 100,000 hot metal pickups.

1 Introduction

Steel production is a complex process of sequential stages from raw materials to
a final product in the form of, e.g., wire plate coils. In the first stage, the iron
making, raw materials are melted in a blast furnace. In the second stage, the
steel making, the hot metal is loaded in torpedo cars, or torpedoes, transported
to different locations for improving its quality, and finally brought to an oxygen
converter, in which it is poured. Once at the oxygen converter, the hot metal is
further refined before the last two stages of continuous casting and hot trip mill.
This work focuses on the rotation of the torpedoes between the blast furnace
and oxygen converter in the steel making stage. At the steel making area, there
are a number of blast furnaces producing hot metal of different qualities. At
certain times or events, the hot metal in the blast furnace has to be loaded into
a torpedo. Then the torpedo moves on a rail network to different locations for
improving the quality of the hot metal if needed. After that, the hot metal is
transported to the oxygen converter and poured into it at a pre-defined event
time. Now, the empty torpedo is available for the next pick up of hot metal.

We study the torpedo scheduling problem that was proposed by Schaus et
al. [12] for the ACP Challenge 2016. This problem focuses on the assignment

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 338–353, 2017.
DOI: 10.1007/978-3-319-66158-2 22

Optimal Torpedo Scheduling 339

dsoc fb

bfeb

∞ 1

4 34
1, 1

20, ∞

1, 12, 1

4, 1

1, 1

Fig. 1. The graph for Example 1.

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

ep

Fig. 2. A small example of a torpedo scheduling problem.

of blast furnace events to oxygen converter events and the scheduling prob-
lem of transporting the hot metal through different locations while satisfying
all scheduling constraints and the quality constraint, sulfurization level, on the
hot metal. Figure 1 shows the rail network considered. There are five different
locations: blast furnace (bf), full buffer (fb), desulfurization station (ds), oxygen
converter (oc), and empty buffer (eb). The full and empty buffers are waiting
areas for full and empty torpedoes, whereas at the desulfurization station the
sulfur level of the hot metal can be reduced by chemical processes. Each location
has a torpedo capacity, which is shown above the node. Each link or edge has a
minimal transition time and a torpedo capacity, which is shown next to the edge
in the same order. The dashed edge from bf to eb represents the emergency pit,
in which hot metal can be dumped if required. The objective is a lexicographical
one, first to minimize the number of torpedoes and second to minimize the total
time spent at the desulfurization station by torpedoes.

Example 1. Figure 2 shows a small problem with five blast furnace 1, 2, . . . , 5
and four converter events 6, 7, 8, 9. Each event is specified by its due date and
(maximal) sulfur level given above or below its node. We assume that the loading
time at the blast furnace, the unloading time at the oxygen converter, and the
time to desulfurize the hot metal by one level are 5 time units. The transition
times between different locations and the torpedo capacities are shown in Fig. 1,
e.g., the blast furnace bf has torpedo capacity 1 and the emergency trip (dashed
line) a transition time of 20 and no capacity limit. A solution is depicted by the
arrows between the events, which shows the usage of three torpedoes. The first
torpedo serves the events 1, 6, 4, 8, the second one only 2, and the third one 3,
7, 5, 9 in this order. For fulfilling the demands for oxygen converter events 6, 7,
and 8, a total of 20 time units have to be spent for desulfurization. ��

340 A. Goldwaser and A. Schutt

To best of our knowledge, the torpedo scheduling problem we study was pro-
posed at the ACP Challenge 2016. From ten teams, who took part, we are only
aware of the publication of the winning team [8] and the third placed team [4].
Kletzander and Musliu [8] propose a two-stage simulated annealing approach.
The first stage minimizes the number of torpedoes by tracking the maximal
number of torpedoes simultaneously used at any one time, whereas the second
stage minimizes the desulfurization time. They relax some constraints, but add
penalty terms to their objective. One iteration of the method takes between
four to ten minutes time for the ACP challenge instances. They run 50 itera-
tions to get their best results, which is a runtime of more than 3 h. Geiger [4]
proposes a Branch-and-Bound method, which branches over the assignments of
converter events to blast furnace events in a depth first manner with chrono-
logical backtracking. In each node, a resource-constrained scheduling problem is
solved by a serial generation scheme with variable neighborhood search [3]. In
order to reduce the search tree size, Geiger removes infeasible assignments in a
preprocessing step and after a solution is found. Both methods [4,8] are incom-
plete and thus cannot prove optimality of an instance, unless the lower bound
of the objective is the optimal value.

Different aspects on the torpedo scheduling problem have been studied in the
literature: the routing of torpedoes through the rail network while minimizing
the transportation time of the hot metal [2,7,10], the molten iron allocation
problem [13], the molten scheduling problem [6,9], and the locomotive scheduling
problem [14]. All those works use different solution methods such as local search,
mixed integer programming, and column generation, but none use Logic-based
Benders Decomposition [5] and Constraint Programming (CP) as we do in the
present paper.

We propose a Logic-Based Benders Decomposition [5] method, in which the
assignment problem and the lexicographical objective is handled in the master
problem. The remaining scheduling is partitioned, if possible, and solved mini-
mizing the desulfurization time. The master problem is solved by a Mixed Inte-
ger Programming (MIP) solver whereas the scheduling problems by CP solver
with Nogood Learning applying Lazy Clause Generation (LCG) [11]. In pre-
processing, we simplify the problem by removing symmetries. To the best of our
knowledge, our method is the first published complete method for the torpedo
scheduling and proves the optimality of found solutions of the simulated anneal-
ing approach [8] for all ACP challenge instances, in an even shorter runtime.
We modified our method for handling large scale problems, but with the price
of losing optimality. The modified method improved the runtime by orders of
magnitude and was able to solve instances with 100,000 events in 70 min.

2 Torpedo Scheduling

The torpedo scheduling problem consists of a set of blast furnace events N =
{1, 2, . . . , n}, a set of (oxygen) converter events M = {n + 1, n + 2, . . . , n + m},
and a set of locations L = {bf, fb, ds, oc, eb} in the production plant. In addition,

Optimal Torpedo Scheduling 341

the torpedo graph G = (L,P) is a directed graph which specifies the two possible
traversals of the torpedoes through the plant. The oxygen converter trip delivers
the hot metal to the converter and visits the locations in this order eb, bf, fb,
ds, oc, and eb, whereas the emergency pit trip dumps the hot metal at the
emergency pit and visits the locations in this order eb, bf, and eb. Thus, P =
{(eb, bf), (bf, eb), (bf, fb), (fb, ds), (ds, oc), (oc, eb)}.

Each location l ∈ L has a torpedo capacity capl where capbf = 1 and capep =
∞. We extend this notation for edges p ∈ P , which is capp. All edges p ∈
P \ {(bf, eb)} have a unit capacity capp = 1, whereas cap(bf,eb) = ∞. A torpedo
traversing the edge p requires a minimal transition time of ttp.

Each blast furnace event i ∈ N is characterized by a due date, ddbfi ∈ N
0,

at which hot metal is picked up by exactly one empty torpedo, and a sulfur
level, sulbfi ∈ {1, 2, . . . , 5}, of the hot metal. Each oxygen converter event j ∈ M
has a due date, ddoc

j ∈ N
0, at which hot metal from exactly one full torpedo is

poured into the converter, and a maximal sulfur level, sulocj ∈ {1, 2, . . . , 5}, of
the hot metal. Loading of a torpedo takes durbf ∈ N time periods at the blast
furnace, while unloading takes duroc ∈ N time periods at the oxygen converter.
Reducing the sulfur level of hot metal by one unit requires durds ∈ N time
periods at the desulfurization station.

Following [8], a torpedo run i is either a converter or emergency pit trip.
In the former case, it is specified by variable departure times depli, variable
arrival times arrli for locations in {eb, bf, fb, ds, oc}, and the variable converter
event oci ∈ M , that it serves. For the latter case, it is specified by the variable
departure and variable arrival times for only the locations eb and bf. We denote
by epi whether it is a converter trip epi = 0 or an emergency pit trip epi = 1.

Definition 1 (Torpedo Scheduling Problem). A torpedo scheduling prob-
lem consists of a triplet (N,M,G = (L,P)). A solution S = (1, 2, . . . , n) is a
vector of n torpedo runs, in which the i-th run picks up the hot metal of the
i-th blast furnace event, matches the blast furnace event to an oxygen converter
event or an emergency pit trip, and assigns all corresponding arrival and depar-
ture times. A solution satisfies the capacity constraints on each location (1) and
on each edge (2),

∑
i∈S:arrli≤t<depl

i

1 ≤ capl ∀l ∈ L,∀t ∈ N
0 (1)

∑
i∈S:depl

i≤t<arrki
1 ≤ cap(l,k) ∀(l, k) ∈ P,∀t ∈ N

0 (2)

the minimal transition times for oxygen converter (3) and emergency pit
trips (4),

arrki − depli ≥ tt(l,k) ∀i ∈ S : epi = 0,∀(l, k) ∈ P \ {(bf, eb)} (3)

arrki − depli ≥ tt(l,k) ∀i ∈ S : epi = 1,∀(l, k) ∈ {(eb, bf), (bf, eb)} (4)

the loading constraints at the blast furnace (5), the unloading constraints (6),
and the maximal sulfurization level (7) at the oxygen converter.

342 A. Goldwaser and A. Schutt

arrbfi ≤ ddbf
i ∧ ddbf

i + durbf ≤ depbfi ∀i ∈ S (5)
arroci ≤ ddoc

oci ∧ ddoc
oci + duroc ≤ depoci ∀i ∈ S : epi = 0 (6)

suli −
⌊

depdsi − arrdsi
durds

⌋
≤ suloci ∀i ∈ S : epi = 0 (7)

All torpedoes, which are identical, are located at eb at time 0. Here, we are
interested in a solution that minimizes two objective functions in lexicographic
order. The primary objective (8) is to minimize the number of torpedoes used,
which can be stated as minimizing the maximal number of “active” torpedo runs
at any time [4,8]. The secondary objective (9) is to minimize the total time spent
at the desulfurization station.

min maxt∈N0 |{i ∈ S | depebi ≤ t ∧ t < arrebi }| (8)

min
∑

i∈S:epi=0
depdsi − arrdsi (9)

Note that the solution does not provide an assignment of individual torpedoes
to the torpedo runs. But such an assignment can be computed in polynomial
time with respect to the number of torpedo runs using a stack for torpedoes
in the empty buffer and a return queue of torpedoes sorted ascending by their
arrival (return) times to the empty buffer. The algorithm would iterate over
due dates of blast furnace events and the arrival times in the return queue in
chronological order. Depending on the case, it either pops a torpedo from the
stack and pushes it into the return queue or vice versa.

Moreover, as already observed in [4,8] the possible oxygen event matches for
a blast furnace event can be reduced by simply calculating the minimal travel
time including a minimal time for desulfurization from the blast furnace to the
oxygen converter. We denote X = {(b, o) ∈ N × M | ddbfb + tt(bf,fb) + tt(fb,ds) +
tt(ds,oc)+durds ·max(0, sulb−sulo) ≤ ddoc

o } the set of possible matchings of blast
furnace to oxygen converter events. In addition, they also observed that there is
no reason to delay a departure of a torpedo from the blast furnace in the case
of an emergency trip due to the uncapacitated path (bf, eb) and empty buffer.
Thus, we can fix depbfi = ddbf

i + durbf and arrebi = depbfi + tt(bf,eb) if the torpedo
run i goes to the emergency pit.

Example 2. Given the example from Example 1. Then, X = {(1, 6), (1, 7),
(1, 8), (1, 9), (2, 7), (2, 8), (2, 9), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9), (5, 9)} and the
departure times at bf respectively are 10, 20, 30, 52, and 75 for events 1, 2,
3, 4, and 5 if they go to the emergency pit. Note that only bf event 1 can deliver
hot metal for event 6, we leave such simple reductions to the solver.

3 Preprocessing

Before solving the problem, we perform preprocessing steps in order to simplify
the problem and setup the structure needed for our solution approach.

Optimal Torpedo Scheduling 343

Algorithm 1. Computation of departure times from the oxygen converter.
Input: M an array of m oxygen converter events sorted in chronological order.

1 j; = M [1]; depOC[j] := ddocj + duroc; arrEB[j] := depOC[j] + tt(oc,eb);
2 for jj := 2 to m do
3 j := M [jj];
4 depOC[j] := max(arrEB[M [jj − 1]], ddocj + duroc);
5 arrEB[j] := depOC[j] + tt(oc,eb);

3.1 Departure Times from the Oxygen Converter

The empty buffer has unlimited capacity, this means that is it never suboptimal
to get an empty torpedo there earlier rather than later as it can be reused earlier,
it frees space at the oxygen converter earlier, and clears the path from the oxygen
converter to the empty buffer earlier. Thus, an empty torpedo should leave the
oxygen converter as early as possible, which is the latest time of the completion
unloading the torpedo, i.e., ddoc

i + duroc, and the arrival time of the previous
torpedo at the empty buffer from the oxygen converter, i.e., arrebj .

Since the due dates for the oxygen converter events are known a priori,
the departure dates from the oxygen converter and the arrival times to the
empty buffer can be computed in linear time with the respect to the num-
ber of those events, if the events are given in chronological order, as shown in
Algorithm 1. Note that the order of torpedoes serving oxygen converter events
remains unchanged by the algorithm. It is obvious that the following holds.

Proposition 1. Algorithm 1 computes the earliest departure times for each oxy-
gen converter event without changing the order of their corresponding earliest
arrival times at the empty buffer and without creating an overload on the path
between both locations.

Example 3. Given the example from Example 1 from page 2. Then Algorithm 1
respectively computes departure times 35, 62, 67, and 85 for the oxygen converter
events 6, 7, 8, and 9. ��

3.2 Arrival Times at the Blast Furnace

A similar observation to the departure times at the oxygen converter can be seen
for the arrival times at the blast furnace. Since the empty buffer is uncapacitated
and the hot metal cannot be picked up before its due date, it is never suboptimal
to get an empty torpedo there later than rather earlier.

Algorithm 2 is symmetric to Algorithm 1 for the arrival times at the blast
furnace. It computes the times in reverse-chronological order of the blast furnace
events. With similar arguments as in the oxygen converter case, the following
claim holds.

Proposition 2. Algorithm 2 computes the latest arrival time for each blast fur-
nace event and their latest departure time from the empty buffer without creating
an overload on the path between both locations.

344 A. Goldwaser and A. Schutt

Algorithm 2. Computation of arrival times at the blast furnace.
Input: N an array of n blast furnace events sorted in chronological order.

1 i := N [n]; arrBF [i] = ddbfi ; depEB[i] := arrBF [i] − tt(eb,bf);
2 for ii := n − 1 down to 1 do
3 i := N [ii];

4 arrBF [i] := min(depEB[N [ii + 1]], ddbfi);
5 depEB[i] := arrBF [i] − tt(eb,bf);

Algorithm 3. Computation of a backward matching.
Input: N an array of n blast furnace events sorted in chronological order.
Input: M an array of m oxygen converter events sorted in chronological order.

1 dep := Alg. 1(M);
2 for o = 1 to m do bm[o] := ∞;
3 bb := 1; oo := 1;
4 while bb ≤ n and oo ≤ m do
5 b := N [bb]; o := M [oo];

6 if dep[o] + tt(oc,eb) + tt(eb,bf) ≤ ddbfb then bm[o] := b; bb++; oo++ ;
7 else bb++ ;

Note that for torpedo runs using the emergency pit, we can now fix its remain-
ing departure and arrival times. Thus, we only have to decide which run is an
emergency pit trip.

Example 4. Given the example from Example 1 from page 2. Then Algorithm 2
respectively computes arrival times 4, 14, 24, 46, and 69 for the events 1, 2, 3,
4, and 5. ��

Since the blast furnace and oxygen converter events are independent of each
other, hence it follows that an optimal solution exists, which has the same arrival
and departure times for the corresponding events as computed in Algorithms 1
and 2. Thus, fixing the corresponding variables to those times removes symme-
tries from the problem.

3.3 Backward Matching

We introduce the concept of backward matches, i.e., matches from oxygen con-
verter events to blast furnace events. The meaning of such a match is that a
torpedo fulfilling the demand for the oxygen converter event o ∈ M is used to
serve the request for the blast furnace event b ∈ N . In other words, the torpedo
used for o is reused for b.

Since the torpedoes are identical and each blast furnace event requires exactly
one torpedo, it does not matter which empty torpedo serves the event if more
than one can be at the blast furnace in time. Algorithm 3 computes a backward
matching in linear time with respect to the number of blast furnace events, when
these events and the oxygen converter events are already sorted. Let bm : M →

Optimal Torpedo Scheduling 345

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

Fig. 3. The backward matching for Example 1.

N ∪ {∞} denote the backward matching returned by Algorithm 3. Note that
some of the last oxygen converter events can not be matched with any blast
furnace event. We represent this case by a match to ∞.

Example 5. Given the example from Example 1 from page 2. Then Algorithm 3
computes the backward matching as shown by the arrows in Fig. 3, in which
events 8 and 9 do not get a match. ��

Theorem 1. Let (N,M,G) be a torpedo scheduling problem. Then there exists
an optimal solution S using the backward matching computed by Algorithm 3 for
the reuse of torpedoes.

Proof. Let S′ be an optimal solution. We can assume that S′ uses the departure
times at the oxygen converter computed by Algorithm 1. We will construct a
solution S by swapping torpedoes in S′. Consider the first blast furnace event b1
which uses a torpedo t1 other than the assigned one t2 in the backward match-
ing bm. Without loss of generality, we assume that b2 is the next blast furnace
event that t2 serves. Since b1 is the earliest event that t2 can serve after finishing
its oxygen converter run, it holds ddbf

b1
≤ ddbf

b2
. Now, we distinguish regarding

the origin of torpedo t1. If the torpedo t1 was never used before or returns from
an emergency pit run then, clearly, we can swap the torpedoes for b1 and b2. If
the torpedo t1 returned from an oxygen converter trip then the departure time
from the oxygen converter must be later than for t2, otherwise S′ would deviate
earlier from the backward matching. Since Algorithm 3 matched t2 with the
earliest possible blast furnace event, it holds that ddbfb1 ≤ ddbf

b2
. Therefore, the

torpedoes can be swapped. ��
Given a backward matching, it divides the blast furnace events into the set

of matched events, i.e., V = bm(M) \ {∞}, and the set of unmatched events,
i.e., U = N \ bm(M). Our solution method presented in the next section will
extend this matching by matching torpedoes used for an emergency pit trip to
unmatched events. As all departure and arrival times are known in the case of
those trips, we reduce possible matchings to R = {(i, j) ∈ N ×U | arrbfi +durbf+
tt(bf,eb) + tt(eb,bf) ≤ arrbfj }.

Example 6. Given the example from Example 5. Then, V = {4, 5} and U =
{1, 2, 3}. The time cost for an emergency trip is from bf (including loading) back

346 A. Goldwaser and A. Schutt

to it is 5 + 20 + 1 = 26. Thus, no torpedo serving any blast furnace events
would be able to return to bf in time for one of the unmatched one, i.e., R = ∅.
Therefore, the backward matching cannot be extended.

4 Solution Method

At first, we preprocess an instance for determining the various arrival and depar-
ture times, and the backward matching bm as described in the previous section.
After that, we start the Benders decomposition, which alternates between solv-
ing the master and scheduling problems until an optimal solution is found. The
master problem is formulated as a MIP, in which each oxygen converter event
is assigned to a torpedo run, unmatched blast furnace events are matched with
emergency pit trips, and the lexicographic objective of the problem is minimized.
Then the remaining scheduling problem is split into smaller sub-problems using
the optimal matching from the MIP solution. Each sub-problem is then solved
as a constraint optimization problem minimizing the total time spent at the
desulfurization station. If all sub-problems are feasible and the total time spent
at the desulfurization station equals the corresponding lower bound in the MIP
solution then we have found a globally optimal solution. If some sub-problems
are not feasible, we compute minimal Benders cuts, add them to the MIP prob-
lem, and re-optimize the MIP. If some sub-problems require extra desulfurization
time, we add optimality cuts, which forces the objective to take into account the
extra desulfurization time, and re-optimize the MIP.1 The optimality cuts can
also make the MIP problem infeasible. In this case, it proves that the last found
solution was the optimal one.

4.1 MIP Model

The MIP model tries to find the mapping of blast furnace events to converter
events and reuse of torpedoes after emergency trips such that the number of
torpedoes is minimized and for the minimal number of torpedoes, the lower
bound on the desulfurization time is minimized.

Contrary to [4,8], the idea of counting the number of torpedoes used is not
based on how many torpedoes are doing an emergency pit or an oxygen converter
trip at the same time, but rather to model it via the reuse of torpedoes. The
backward matching bm already provides the reuse of torpedoes used for oxygen
converter trips. Solving the MIP model just extends this backward matching for
torpedoes used for emergency trips.

Besides the binary variables epi from the torpedo run, the MIP model uses the
following binary variables. For each (i, o) ∈ X, we create a variable xio ∈ {0, 1}
expressing whether the torpedo run i serves the demand of the oxygen converter

1 Note that this case never occurred for generated instances and was only tested on
handcrafted instances.

Optimal Torpedo Scheduling 347

event o. For each (i, j) ∈ R, the variables rij ∈ {0, 1} models whether the torpedo
from torpedo run i is reused for the blast furnace event j.

min durds · n · obj1 + obj2 (10)

s.t. obj1 = |U | −
∑

(i,j)∈R
rij (11)

obj2 =
∑

(i,o)∈X
xio · max(0, suli − sulo) · durds (12)

∑
(i,o)∈X

xio = 1 ∀o ∈ M (13)

epi +
∑

(i,o)∈X
xio = 1 ∀i ∈ N (14)

∑
i∈N

epi = N − M (15)
∑

(i,j)∈R
rij ≤ epi ∀i ∈ N (16)

∑
(i,j)∈R

rij ≤ 1 ∀j ∈ U (17)

Constraint (10) states the objective of the MIP, which is split into two parts. The
first part (11) models the minimization of the number of torpedoes, by maximiz-
ing the number of reused torpedoes for unmatched blast furnace events. We scale
this objective by the product of number of blast furnace events and the duration
for desulfurizing the hot metal by one sulfur level in order to account for the
lexicographic problem objective. Constraint (13) ensures each oxygen converter
event is matched by one blast furnace event, whereas (14) matches each blast
furnace event to an oxygen converter event or emergency trip. Constraint (15)
ensures that there are the right number of emergency pit trips. Constraint (16)
models that a torpedo used for an emergency trip can be reused for an unmatched
blast furnace event, whereas (17) ensures that at most one torpedo is reused for
each unmatched blast furnace event. Note that the reuse of torpedoes for an
oxygen converter trip is already determined by the backward matching bm, and
thus can be left out of the model.

A MIP solution provides not only the matching of torpedo runs to oxygen
converter events and the matching for the reuse of torpedoes, but also a lower
bound on the desulfurization time, which is used as a quality measurement for
the scheduling solution.

4.2 The CP Model

Once, we have a mapping of blast furnace to oxygen converter events, we can
split the remaining scheduling problem into several smaller ones. The idea is to
split the problem at those blast furnace events serving an oxygen converter event,
that do not interfere with any previous torpedo runs serving oxygen converter
events. Algorithm 4 computes all sub-problems.

Example 7. Given the example from Example 1 from page 2. Algorithm 4 will
split the problem into three sub-problems as depicted in Fig. 4.

348 A. Goldwaser and A. Schutt

Algorithm 4. Computation of the sub-problems.
Input: N an array of n blast furnace events sorted in non-decreasing order of

the due dates.
Input: oc a mapping from blast furnace events to oxygen converter events

or ∞.
1 latestDepDS := −∞; A := ∅; B := ∅;
2 for ii := 2 to n do
3 if oc(N [ii]) = ∞ then continue ;

4 i := N [ii]; earliestArrDS := ddbfi + tt(bf,fb) + tt(fb,ds);
5 if latestDepDS ≤ earliestArrDS then
6 B := B ∪ {A}; A := {i};
7 else A := A ∪ {i};
8 latestDepDS := max(latestDepDS, ddococ(i) − tt(ds,oc));

9 return B;

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

ep

Fig. 4. Partition of the scheduling given the shown matching.

Each sub-problem is then modeled as a constraint optimization problem using
the same model, but restricted to torpedo runs in the sub-problem, as in Defin-
ition 1 on page 4 except for the torpedo capacity constraints and an additional
constraint enforcing an upper bound on the departure times at the blast furnace
for avoiding an overload (18).

min
∑

i∈S′ depdsi − arrdsi

s.t. (3–7)

depbfi ≤ arrbfi+1 ∀i ∈ S′ \ {n} (18)

disjunctive((depli)i∈S′ , (arrki − depli)i∈S′) ∀(k, l) ∈ P ′

cumulative((arrli)i∈S′ , (depli − arrli)i∈S′ , (1)i∈S′ , capl) ∀l ∈ L \ {bf}

where S′ are the torpedo runs of the sub-problem, P ′ = {(bf, fb), (fb, ds),
(ds, oc)}, and disjunctive and cumulative are global constraints modeling unary
and non-unary resources. Note that for each torpedo run i ∈ S, Algorithms 1
and 2 provide the arrival times at bf and eb, and the departure times at oc
and eb. In the case of an emergency trip, we also know depbfi . Due to these pre-
assigned times, the CP model only has to take care of oxygen converter trips
from the blast furnace to the converter.

Optimal Torpedo Scheduling 349

We employ a sequential search over sub-searches, which represent a location
or a path. Each sub-search branches over the duration of the torpedoes i used
for the location l or the path (k, q), i.e., depli − arrli and arrqi − depki . The most
constrained duration variable is selected first and its smallest possible duration
is assigned to it. The sub-searches are explored in this order ds, (fb, ds), (ds, oc),
oc, (bf, fb), and bf. There are two important ingredients for this search. First,
the first sub-search is objective driven, because it tries to minimize the duration
spent at ds. Second, branching on the durations rather than on the departure or
arrival times keeps the schedule flexible while providing some propagation on the
departure and arrival time variables. Other searches tested, that did not follow
both ingredients, were inferior.

Note that in order to avoid resolving sub-problems from scratch, we cached
all sub-problems and their solution in a hash map.

4.3 Benders Cuts

The scheduling problem can have three possible outcomes. First, it is infeasible.
Second, it is schedulable, but not with the lower bound on the desulfurization
time from the MIP solution. Last, it is schedulable with the same desulfurization
time. Only in the first two cases do we need to create Benders cuts in terms of
the decision variables in the master problem. In the third case, the combined
MIP and CP solution is an optimal solution of the entire problem.

We express the cuts in terms of the variables xio from the MIP problem. Let
oc be the mapping from the MIP restricted to the sub-problem and N ′ the blast
furnace events in the sub-problem.

Infeasibility Cuts. The sub-problem is infeasible, which is a direct result of
the mapping. Thus,

∑
i∈N ′ xioc(i) < |N ′| is valid cut, because it forces the MIP

solver to choose a different oxygen converter event for at least one torpedo run.
To strengthen the cut, we rerun |N ′|-times the CP model, but with a small

modification. For each rerun, we remove one torpedo run including the matched
oxygen converter event from the model. If the model is still infeasible then this
run does not contribute to the infeasibility and we can leave it out; otherwise it
contributes to the infeasibility and we reinsert it. The removals are performed
in chronological order of the blast furnace events. At the end of the process,
we obtain a minimal unsatisfiable set of torpedo runs N ′′ ⊆ N ′ leading to the
stronger cut

∑
i∈N ′′ xioc(i) < |N ′′|, which is minimal too. In preliminary testing,

this minimization resulted in an order of magnitude less MIP iterations.
We also investigated more general cuts by relaxing the conditions on the

start time of a torpedo trip instead of removing it completely, but they were not
beneficial for the overall runtime.

Optimality Cuts. The sub-problem is schedulable with minimal desulfurization
time β, but the desulfurization time α from the MIP solution is smaller, i.e., α < β.
In this case, we introduce a new binary variable b for the MIP model, add the term

350 A. Goldwaser and A. Schutt

(β − α) · b to the objective (10), and add the constraint
∑

i∈N ′ xioc(i) − (|N ′| −
1) ≤ b to the MIP model. The variable b takes value 1 if and only if the MIP uses
the same mapping oc for the sub-problem. In that case, the added objective term
accounts for the difference in the desulfurization time derived by the CP model.
If the variable b takes value 0 then the MIP model is forced to take a different
mapping due to the added constraint and the added objective term is zero.

4.4 Limited Forward Matchings

The size of the MIP model, i.e., the number of constraints, variables, and the
size of constraints, depends on the number of blast furnace and oxygen converter
events. For example, the objective (12) has a quadratic size of O(nm). For large
problems, the MIP model is so large that the MIP solver runs out of memory or
is extremely slow. A way to reduce the size is to limit the oxygen converter events
to which a blast furnace event can be matched, for example to the 10 next closest
oxygen converter events which it can reach. The same is also done for the reuse of
torpedoes after emergency trip events. Not only does this drastically shrink the
model size, but also significantly speeds up the solving time. The drawback is that
we cannot prove the optimality of the original problem and the optimal solution of
this relaxed problem can be worse than the one from the original problem. How-
ever, from a practical point of view, it might be the preferred mode because a
matching of a blast furnace to an oxygen converter event far in the future can be
seen as not preferable or sub-optimal due to cooling of the molten metal. In the
experiments, we show the sweet spot for the number of forward matchings.

5 Experiments

We conducted experiments on the ACP 2016 Challenge instances and created
larger ones using the instance generator provided at the ACP Challenge web-
site. All generated solutions were checked using the provided ACP solution
checker. We grouped all instances in the test sets small having 15 instances
with 30 to 500 blast furnace events, comp having 6 ACP challenge instances
with 850 to 2500 blast furnace events, medium having 19 instances with
1000 to 3000 blast furnace events, and large having 3 instances with 10000
blast furnace events. All instances are available at https://github.com/AdGold/
TorpedoSchedulingInstances. We ran all our experiments on a machine with an
Intel(R) Core(TM) i7-5500U CPU at 2.40 GHz and 8 GB RAM unless otherwise
stated. The solution was implemented in Python 3.5.2 interfacing Gurobi 7.0.1
using the Python library gurobipy. Gurobi was used for solving the MIP problem
and Chuffed [1] for solving the CP problem. No runtime limit was imposed.

Unlimited Forward Matchings. Table 1 shows the results on the set comp
for each instance. We list the number of torpedoes (#T), the desulfurization time
spent at ds (Desulf), the total runtime (RT), the percentage of the total runtime
that was used by the MIP solver (MT), the number of iterations (#I), the cache

https://github.com/AdGold/TorpedoSchedulingInstances
https://github.com/AdGold/TorpedoSchedulingInstances

Optimal Torpedo Scheduling 351

Table 1. Detailed results on comp.

Inst #T Desulf RT MT #I CHR #SP SSR S1 SAve SMax

instance01 4 7695 41 s 88% 1 0% 10 100% 70% 264 316

instance02 4 5302 119 s 88% 1 0% 43 100% 67% 98 774

instance03 3 27150 415 s 97% 1 0% 583 100% 84% 17 123

instance04 3 10676 35 s 92% 1 0% 839 100% 84% 2 4

instance05 4 16308 575 s 97% 3 50% 1074 99% 83% 14 410

instance06 4 7755 1134 s 97% 2 48% 34 98% 62% 237 755

Table 2. Results on each test set excluding infeasible instances.

Inst #T Desulf RT MT #I CHR #SP SSR

small 3.5 362 2 s 51% 1.1 3% 26 99.2%

comp 3.7 12481 386 s 93% 1.5 16% 431 99.7%

medium 4.4 1224 484 s 95% 1.2 4% 170 99.6%

large 4.5 6481 124093 s 99% 2.0 31% 848 99.9%

hit rate for sub-problems (CHR), the number of total sub-problems stores (#SP),
the success rate of sub-problems (SSR), i.e., no cuts needed to be generated, and
the percentage of sub-problems with size 1 (S1), the average size of sub-problems
with size greater than 1 (SAvg), and the maximal size of sub-problems (SMax).
All ACP challenge instances were optimally solved in less than 20 min, which is
much quicker than the winning method presented in [8]. The results also reveal
that the MIP solver used the majority of the runtime and the sub-problems had
almost 100% success, which lead to a very low number of iterations. In addition,
most sub-problems were small and only a few contained 100 s of blast furnace
events. Note that the nogood learning solver Chuffed was essential for quickly
solving the sub-problems. In particular on larger and infeasible ones, we had to
terminate the process if using Gecode.

Table 2 presents the results on all test sets excluding infeasible instances. The
table shows a subset of columns, but each entry is an average over the number
of feasible instances. The results show a similar picture to the ACP challenge
instances. However, for the large size instances in large, the runtime was more
than 30 h and we needed to run it on a machine with extra RAM in order to be
able to solve the MIP. The machine used was an Intel(R) Xeon(R) CPU E5-2660
at 2.60 GHz with 128 GB RAM which is not practical in most cases.

Limited Forward Matchings. Figures 5, 6 and 7 show the development of the
optimality gap on the desulfurization time spent, of the percentage of instances
optimally solved, and of the runtime when the limit on the forward matchings
increases. Note that Fig. 7 uses logarithmic scale for the y-axis. The optimality
gap on the desulfurization time spent converges quickly on each test set. Between

352 A. Goldwaser and A. Schutt

Fig. 5. Optimality gap in desulfurization
time.

Fig. 6. Percent of instances solved
optimally.

Fig. 7. Total runtime.

a limit of 30 and 40 the last optimal solution was found even on the test set large.
The runtime could be reduced by orders of magnitude for medium and large scale
problems, especially for large scale instances where the runtime was reduced to
less than 10 min. All ACP challenge instances were solved in less than one minute,
down from 20 min. In order to test the limit of our method, we created three
instances with 50,000 and 100,000 blast furnace events, respectively. The average
total runtime of the 50 k instances were below 20 min except for a limit of 7 as
shown in Fig. 7. Interestingly, the same optimal solutions were generated with
limits of at least 10. The 100 k instances were solved between 70 min and 3.5 h
for a limit of 20.

6 Conclusion

We propose a logic-based Benders decomposition solution method for the indus-
trial problem of torpedo scheduling in the steel production. The master problem
was modeled as a MIP, which takes care of the assignment component of the
problem and the lexicographical objective. The remaining scheduling problem
was split into smaller sub-problems and solved by a CP solver with nogood
learning. This solution method is the first exact one for the torpedo scheduling
problem and is the first one, that could prove the optimality of all instances from
the ACP 2016 Challenge in less than 20 min. Thus, it outperforms the previous
state of the art. A limited version of our method, which cannot guarantee opti-
mality, could reduce the runtime by an order of magnitude and was able to find
optimal solutions very quickly for even larger instances that we created.

Optimal Torpedo Scheduling 353

Acknowledgments. This work was partially supported by the Asian Office of
Aerospace Research and Development grant 15-4016.

References

1. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011). http://hdl.handle.net/11343/36679

2. Deng, M., Inoue, A., Kawakami, S.: Optimal path planning for material and prod-
ucts transfer in steel works using ACO. In: The 2011 International Conference on
Advanced Mechatronic Systems, pp. 47–50, August 2011

3. Geiger, M.J.: A multi-threaded local search algorithm and computer implemen-
tation for the multi-mode, resource-constrained multi-project scheduling problem.
Eur. J. Oper. Res. 256(3), 729–741 (2017)

4. Geiger, M.J.: Optimale Torpedo-Einsatzplanung – Analyse und Lösung eines
Ablaufplanungsproblems der Stahlindustrie. In: Spengler, T., Fichtner, W.,
Geiger, M.J., Rommelfanger, H., Metzger, O. (eds.) Entscheidungsunterstützung
in Theorie und Praxis, pp. 63–86. Springer, Wiesbaden (2017). doi:10.1007/
978-3-658-17580-1 4

5. Hooker, J., Ottosson, G.: Logic-based benders decomposition. Math. Program.
96(1), 33–60 (2003)

6. Huang, H., Chai, T., Luo, X., Zheng, B., Wang, H.: Two-stage method and appli-
cation for molten iron scheduling problem between iron-making plants and steel-
making plants. IFAC Proc. 44(1), 9476–9481 (2011)

7. Kikuchi, J., Konishi, M., Imai, J.: Transfer planning of molten metals in steel
works by decentralized agent. In: Memoirs of the Faculty of Engineering, vol. 42,
pp. 60–70. Okayama University (2008)

8. Kletzander, L., Musliu, N.: A multi-stage simulated annealing algorithm for the
torpedo scheduling problem. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 344–358. Springer, Cham (2017). doi:10.1007/
978-3-319-59776-8 28

9. Li, J.Q., Pan, Q.K.P., Duan, P.Y.: An improved artificial bee colony algorithm
for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans.
Cybern. 46(6), 1311–1324 (2016)

10. Liu, Y.Y., Wang, G.S.: The mix integer programming model for torpedo car
scheduling in iron and steel industry. In: International Conference on Computer
Information Systems and Industrial Applications - CISIA 2015, pp. 731–734.
Atlantis Press (2015)

11. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

12. Schaus, P., Dejemeppe, C., Mouthuy, S., Mouthuy, F.X., Allouche, D., Zytnicki,
M., Pralet, C., Barnier, N.: The torpedo scheduling problem: description (2016).
http://cp2016.a4cp.org/program/acp-challenge/problem.html. Accessed 28 April
2017

13. Tang, L., Wang, G., Liu, J.: A branch-and-price algorithm to solve the molten
iron allocation problem in iron and steel industry. Comput. Oper. Res. 34(10),
3001–3015 (2007)

14. Wang, G., Tang, L.: A column generation for locomotive scheduling problem in
molten iron transportation. In: 2007 IEEE International Conference on Automation
and Logistics, pp. 2227–2233, August 2007

http://hdl.handle.net/11343/36679
http://dx.doi.org/10.1007/978-3-658-17580-1_4
http://dx.doi.org/10.1007/978-3-658-17580-1_4
http://dx.doi.org/10.1007/978-3-319-59776-8_28
http://dx.doi.org/10.1007/978-3-319-59776-8_28
http://cp2016.a4cp.org/program/acp-challenge/problem.html

Constraint Handling in Flight Planning

Anders Nicolai Knudsen, Marco Chiarandini(B), and Kim S. Larsen

Department of Mathematics and Computer Science,
University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

{andersnk,marco,kslarsen}@imada.sdu.dk

Abstract. Flight routes are paths in a network, the nodes of which rep-
resent waypoints in a 3D space. A common approach to route planning
is first to calculate a cheapest path in a 2D space, and then to opti-
mize the flight cost in the third dimension. We focus on the problem of
finding a cheapest path through a network describing the 2D projection
of the 3D waypoints. In European airspaces, traffic flow is handled by
heavily constraining the flight network. The constraints can have very
diverse structures, among them a generalization of the forbidden pairs
type. They invalidate the FIFO property, commonly assumed in short-
est path problems. We formalize the problem and provide a framework
for the description, representation and propagation of the constraints in
path finding algorithms, best-first, and A∗ search. In addition, we study
a lazy approach to deal with the constraints. We conduct an experimen-
tal evaluation based on real-life data and conclude that our techniques
for constraint propagation work best together with an iterative search
approach, in which only constraints that are violated in previously found
routes are introduced in the constraint set before the search is restarted.

1 Introduction

The Flight Planning Problem (FPP) aims at finding 3D paths for an aircraft in
an airway network, minimizing the total cost determined by fuel consumption
and flying time. The motivation is financial and environmental. Airway net-
works can be huge, due to the added dimension compared with road networks,
and side constraints complicate the problem further. Most of the constraints
are determined by a central control institution, e.g., Eurocontrol in Europe and
FAA in USA, and change rapidly with time in order to take traffic conditions
into account and to minimize the need for later changes by the institution itself.
Therefore, the common practice is to determine the precise flight route only a few
hours before take-off. For this to be feasible and bring any advantage, the route
determination must be quite fast, say on the order of a few seconds. If neces-
sary, the route can then be adjusted during the flight by real-time optimization,
considering more up-to-date information. Over the last years, the strain on the
European airspace has increased to a level where the network must be heavily

K.S. Larsen—was supported in part by the Danish Council for Independent
Research, Natural Sciences, grant DFF-1323-00247.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 354–369, 2017.
DOI: 10.1007/978-3-319-66158-2 23

Constraint Handling in Flight Planning 355

constrained to ensure safe flights. This also implies increased difficulty in finding
cost-efficient routes respecting the constraints.

We focus on the problem of finding 2D routes in European airspaces in an
off-line setting. Normally, waypoints are defined for one or more intervals of
flight levels, but here we assume that flights are cruising at a given altitude.
This version of the problem is relevant because a common approach to flight
planning in industry is to decompose the problem into two subproblems: finding
a 2D route and expanding it in the third dimension. For both problems, there
are constraints to satisfy and costs to minimize. Moreover, costs are resource-
dependent because they depend on the weather conditions, which vary with time,
and on the weight of the aircraft. This latter depends on the fuel level, the initial
amount of which is also a decision variable of the problem. We use an estimate
based on a great circle distance for this initial amount of fuel and assume that its
more precise determination is done during the vertical route optimization (see
[1], for instance).

The classic shortest path problem has been the focus of considerable amounts
of research for many years. For an extensive survey on recent advances, see [2].
However, many of the new advances rely on preprocessing techniques, most of
which we deem inapplicable in the flight planning context, due to the impact
of the constraints. The problem of finding cheapest flight routes with resource-
dependent costs was studied in [3,4], and more recently in [5]. The latter focuses
on a 2D version, presenting three A∗ algorithms with different heuristic functions.
However, constraints are not taken into account in these works while they are
the main focus of our work.

The constraints in the European airspaces come in three different forms: Con-
ditional Routes (CDR), Route Availability Document (RAD), and Restricted
Airspaces (RSA). These are all published by the European air traffic manage-
ment institution, Eurocontrol. RAD constraints are the most general and chal-
lenging. They include local constraints affecting the availability of airways and
airspaces at certain times, but they are primarily conditional types of constraints.
For example, if the route comes from a given airway, then it can only continue
through another airway. Or some airways can only be used if coming from, or
arriving to, certain airspaces. Or flights between some locations are not allowed
to fly over certain airways. Or short-haul and long-haul are segregated in con-
gested zones. RAD constraints must be handled during the route construction
or checked later. There are more than 16,000 of these constraints and they can
be updated several times a day, although most of them remain unchanged for
longer time periods.

Some of these constraints are generalizations of the forbidden pairs type,
which make the problem at least as hard as the path avoiding forbidden pairs
problem that was shown to be NP-hard [6]. Given a topological sorting of the
nodes, restricting to certain structures of forbidden pairs makes the problem
polynomially solvable [7]. However, none of these structures can be guaranteed
in the European airspace network.

356 A.N. Knudsen et al.

Our contribution is the design of a framework for the representation and
propagation of RAD constraints during the search. We formalize the constraints
and extend path finding algorithms, such as best-first and A∗ search [8], to
handle them. In particular, we propose an ad hoc tree structure to represent the
constraints and to check their satisfiability and implications and to simplify their
structure during the search. Then, we study two lazy approaches to constraint
propagation. In one approach, we postpone the expansion of partial paths that
cannot be dominated due to the constraints, but that are less promising than
others in terms of costs. We then reconsider them only if it becomes necessary.
In the other approach, which is similar to a Bender’s decomposition with nogood
cuts, we ignore all constraints in an initial search. If the path found is feasible,
then we found a solution. Otherwise, we include only those constraints that are
violated by the current path and iterate the whole process until a feasible solution
is found. Additionally, we consider an exact and a heuristic approach to removing
active constraints during the search based on geographical considerations.

This work is in collaboration with an industrial partner. Their core business is
in flight route planning. Many of their customers are owners of private planes who
plan their flights shortly before departure. Once they have chosen a destination,
they send a query for a route from some portable device and they expect an
almost immediate answer. Hence, this company is interested in an algorithm
that can solve the problem within a few seconds. The size of the network used
by this company is approximately 100,000 nodes and 3,000,000 edges and we use
these real life data to test our ideas.

2 The Constrained Horizontal Flight Planning Problem

The European airspace is a network of waypoints that can be traversed at differ-
ent altitudes (flight levels). Waypoints are connected across different flight levels
by airways. The overall network could be described as a layered digraph, with
several nodes for each waypoint representing different flying altitudes and arcs
connecting these nodes if they belong to different waypoints. We simplify the sit-
uation by only allowing flights at a single flight level. The flight level is chosen to
be the best cruising altitude for the tested aircraft. Hence, we represent the Euro-
pean airspace as a 2D network formed by a directed graph D = (V,A), where the
nodes in V represent waypoints defined by latitude and longitude coordinates
and the arcs in A represent feasible airways between the waypoints. Each arc has
associated resource consumptions and costs. The resource consumption for flying
through an arc a ∈ A is defined by a pair τ a = (τx

a , τ t
a) ∈ R

2
+, where the super-

scripts x and t denote the fuel and time components of the consumption, respec-
tively. The cost ca is a function of the resource consumption, i.e., ca = f(τ a).1 A
2D (flying) route is an (s, g)-path in D represented by n waypoints plus a depar-
ture node (source) s and an arrival node (goal) g, that is, P = (s, v1, . . . , vn, g),

1 The total cost is calculated as a weighted sum of time and fuel consumed. In our
specific case, we have used 3$ per gallon of fuel and 1000$ per hour.

Constraint Handling in Flight Planning 357

with s, vi, g ∈ V for i = 1..n, vivi+1 ∈ A for i = 1 . . . n − 1, and sv1, vng ∈ A.
The cost of a route is defined as cP = csv1 +

∑
i=1..n−1 cvivi+1 + cvng.

The route must satisfy a set C of constraints imposed on the path. These
constraints are of the following type: if a set of nodes or arcs A is visited then
another set of nodes or arcs B must be avoided or visited. The visit or avoidance
of the sets A and B can be further specified by restrictions on the order of the
elements, on the time window, and on the flight level range (although the latter
does not play a role in our 2D setting).

Definition 1 (Constrained Horizontal Flight Planning Problem). Given
a network N = (V,A, τ , c), a departure node s, an arrival node g, and a set of
side constraints C, find an (s, g)-path P in D that satisfies all constraints in C
and that minimizes the total cost, cP .

We use the abbreviation CHFPP for the above.
In most common shortest path problems, a property that usually holds is

the First In First Out (FIFO) property. It states that a path P ′ reaching a node
with a cost worse than another path P reaching the same node cannot become
part of the final solution and can, therefore, be discarded. This property plays
a fundamental role in the efficiency of both Dijkstra and A∗ algorithms.

However, this property does not hold in our CHFPP. Indeed, a path P ′

arriving at a node with a cost worse than another path P reaching the same node
cannot be discarded, because if the conditions activated during the path P ′ are
less stringent than those activated during the path P , then P ′ could still become
part of the best route. Moreover, the performance on a given arc is influenced
by the weight (which in turn depends on the fuel consumed up to that arc) and
by the time at which the arc is traversed (due to the possibly changing weather
conditions). These dependencies of the resource consumptions on the path up to
a given point are reflected in the cost of the next arcs, which, therefore, cannot
be statically determined. Therefore, because of these dependencies of the cost
function, the FIFO property would not hold even if there were no constraints.
However, our experiments (see Sect. 4) show that for the real cases studied,
no optimal solution is missed by assuming the FIFO property on cost. Hence,
to simplify the presentation, we will assume the FIFO property on cost, but
emphasize that we will not assume the FIFO property on constraints.

2.1 Definition of RAD Constraints

RAD constraints are implications of two types: forbidden and mandatory. They
consist of an antecedent expression p and a consequent expression q. The expres-
sions are Boolean and contain identifiers of locations visited during the flight and
relationships between these. A RAD constraint is satisfied when the antecedent
is false or when an antecedent is true and the consequent is true (in the manda-
tory case) or false (in the forbidden case). Thus, the interpretation is p → q for
the mandatory and p → ¬q for the forbidden case. On the other hand, a RAD
constraint is violated if it is mandatory and p → q is false or if it is forbidden

358 A.N. Knudsen et al.

and p → ¬q is false. In Fig. 1, we have defined a grammar to specify all possible
types of RAD constraints.

constraint : ’Forbidden:’ ID ’Antecedent:’ expr ’Consequent:’ expr
| ’Mandatory:’ ID ’Antecedent:’ expr ’Consequent:’ expr

expr_list : expr
| expr expr_list

expr : ’(’ AND expr expr_list ’)’
| ’(’ OR expr expr_list ’)’
| ’(’ SEQ expr expr_list ’)’
| ’(’ NOT expr ’)’
| term
| term time

term : point | airway | airspace | arrival | departure
point : ’Point:’ ID

| ’Point:’ ID ’FL:’ FLIGHT_LEVELS
airway : ’Airway: from’ ID ’to’ ID

| ’Airway: from’ ID ’to’ ID ’FL:’ FLIGHT_LEVELS
airspace : ’Airspace:’ ID ’FL’ FLIGHT_LEVELS
departure : ’Dep:’ ID
arrival : ’Arr:’ ID
time : ’Time:’ date ’to’ date ’-’ time ’to’ time ’-’ WEEKDAYS

Fig. 1. Bison (yacc) grammar for RAD constraints

Expressions are written in prefix notation using non-binary operators.
Besides well-known operators, there is SEQ (sequence) for which all operands
must be satisfied in the same order as they are presented in the constraint. The
terms represent the possible flight choices, such as waypoint, airways between
them, airspaces, and departure/arrival airports. ID’s are the identifiers of the
respective terms. Note that flight levels, included in the grammar for complete-
ness, are not relevant in this exposition. Terms that have a time associated with
them, are only satisfied if they are visited within the specified time window. An
example of a constraint can be seen to the left in Fig. 2.

Forbidden: ID xxxx
Antecedent: (AND (OR Airspace: eg Airspace: ee) (NOT

Point: mohni))
Consequent: Point: petot FL: 0-200
Time: 03-07-16 to 20-12-16 - 08:00 to 16:00 - FrSaSu

AND

AND petot

NOT

mohni

OR

eeeg

Fig. 2. Example of a forbidden constraint and its tree representation.

3 Path Finding Algorithms

In this section, we present path finding algorithms for solving the CHFPP to
optimality. We consider classic best-first and A∗ search modified to take the
constraints and the cost dependencies into account. Then, we introduce lazy
approaches to deal with constraints, both during the search and after the search,
leading to an iterated search process.

Constraint Handling in Flight Planning 359

3.1 Handling the Constraints

In our path finding algorithms, constraints are checked while the route is con-
structed. Each RAD constraint is encoded in a tree data structure, where leaves
are terms and internal nodes are operators (see Fig. 2, right). The truth values
of the leaves are propagated up to the root, which must evaluate to false for the
route to be feasible with respect to the corresponding constraint. Initially, all
terms are in an unknown state. Then, if a term is resolved, the respective term
is removed from the tree and the truth value is propagated upwards.

The set of constraints C is translated into a dictionary of constraint trees
Γ with constraint identifiers as keys and the corresponding trees as values. For
a constraint γ ∈ Γ , we let ι(γ) denote the constraint identifier and T (γ) the
corresponding tree. Then, for each node, v ∈ V , and each arc, uv ∈ A, we
maintain a set of identifiers of the constraints that have those nodes or arcs,
respectively, as leaves in the corresponding tree. We denote these sets Ev and
Euv, with Ev = {ι(γ) | γ ∈ Γ, v appears in γ} and Euv defined similarly.

Partial paths under construction are represented by labels. A label � is asso-
ciated with a node φ(�) = u ∈ V and contains information about a partial route
from the departure node s ∈ V to the node u. It is written as � = (P�, c�,Δ�),
where P� = (s, . . . , u) is the path taken, c� is the cost of the path, and Δ� is
the set of constraint trees of active constraints for the label �. Active constraints
are those where at least one term in the antecedent or consequent part has been
determined, but where the complete satisfaction of the constraint has not yet
been decided. Note that the constraint trees in Δ� are different from the initial
ones in Γ because some terms may have been resolved and the tree consequently
reduced. Formally, Δ� = {ρ(γ, P�) | ι(γ) ∈ Eu ∪ Euv, uv ∈ P�}, where ρ(γ, P�) is
the tree T (γ) after propagation of the terms in P�. However, active constraints
preserve the original identifiers, that is, I(Δ�) = {ι(γ) | γ ∈ Δ�} = {ι(γ) ∈
Eu ∪ Euv, uv ∈ P�}. Depending on whether the term is negated or not, some
locations can be advantageous or disadvantageous for a label to visit, opening
up or restricting possibilities ahead. This can be determined for each term while
building the constraints and active constraints are flagged as belonging to one
of the two categories when a term is resolved.

All labels created are maintained in a structure Q, called the open list. The
expansion of a label is the operation of extracting a label from Q and inserting a
new label into Q for any node in D reachable by an outgoing arc from the node
of the label under expansion. When a label � with φ(�) = u ∈ V is expanded
along an arc uv ∈ A, a new label �′ = ((s, . . . , u, v), c� + cuv,Δ�′) is created.
The new set of constraint trees is obtained by copying the trees from Δ�, and
the trees from Γ identified by Ev and Euv. While performing these operations,
the trees are reduced based on the satisfaction of u and/or uv. If the root of a
constraint tree in Δ�′ evaluates to true, then the label �′ is deleted, because the
corresponding route would be infeasible. On the other hand, if a root evaluates
to false, then the corresponding constraint tree is resolved but is kept in Δ�′ to
prevent re-evaluating it if, at a later stage, one of the terms that were logically

360 A.N. Knudsen et al.

deduced appears in the path. Formally, Δ�′ = {ρ(γ, P�′) | γ ∈ Δ�} ∪ {ρ(γ, P�′) |
ι(γ) ∈ Eφ(�′) ∪ Eφ(�)φ(�′)}.

For efficiency reasons, we use the following conservative approximation of
logical implication between sets of constraints. We say that Δ�a is implied by Δ�b

if no constraints in I(Δ�b)\I(Δ�a) are marked as advantageous, no constraints in
I(Δ�a) \ I(Δ�b) are marked as disadvantageous, and the trees of all constraints
in I(Δ�a) ∩ I(Δ�b) are identical, in the sense that they are isomorphic when
regarded as ordered trees (sorted in the order of the input of the corresponding
constraints).2 Further, we hash a post-order traversal of the tree so that identity
check is fast. The traversal is performed anew any time the tree is evaluated
(during an expansion) and the hash function is recomputed and stored at the
same time. If we hash to a 64 bit value, false positives are extremely unlikely.

A label �a is dominated by another label �b if φ(�a) = φ(�b), c�a > c�b and
Δ�b is implied by Δ�a . A label that is dominated is removed from the open
list and deleted. If φ(�a) = φ(�b), c�a > c�b but Δ�b is not implied by Δ�a ,
then we say that �a is partly dominated by �b. Partly dominated labels cannot
be removed from the open list. As an example, consider the scenario in Fig. 3.
Let C1 = ((a ∨ b) ∧ c) be the only constraint relevant to the example. Let
�1 = ((s, a, x), 3, {C1}), �2 = ((s, d, x), 4, ∅) and �3 = ((s, b, x), 2, {C1}) be the
only three labels at x. The label �1 is dominated by �3 and can be discarded.
The route is cheaper and Δ�3 is implied by Δ�1 , as they both contain only C1.
On the other hand, �2 is only partly dominated by �3, because Δ�3 is not implied
by Δ�2 . Hence, �2 is not discarded. Indeed, �2 leads to the cheapest route to g,
since �3 must avoid c while �2 does not have to.

s

d

a

b

x c
g

3

2

1

1

1

1

1 1

5

Fig. 3. An example where a partly dominated label leads to an optimal route. The
labels are �1 = ((s, a, x), 3, {C1}), �2 = ((s, d, x), 4, ∅) and �3 = ((s, b, x), 2, {C1}).

3.2 Best-First and A* Algorithms

Our algorithms are based on classic best-first and A∗ algorithms. These algo-
rithms expand labels from an open list Q until a path from source to goal is
proven optimal. When we extract a label from the open list, we choose one of
2 Note that a more accurate determination of subsumption between two trees, accu-

rately reflecting semantic logical implication, would require solving a subgraph iso-
morphism that can be quite costly due to its NP-completeness.

Constraint Handling in Flight Planning 361

smallest cost (best-first) or smallest sum of the cost of the label and a heuristic
estimate of the cost from the corresponding node to the goal (A∗). The algorithm
terminates when the goal g has been reached and the incumbent best path to
g is cheaper than the cheapest label in Q. In best-first, the solution returned is
optimal. In A∗, the solution returned is optimal if the heuristic is both admissible
(the estimated cost must never overestimate the cost from a node to the goal)
and consistent (for every node u, the estimated cost of reaching the goal must
not be greater than the cost of getting to a successor v plus the estimated cost of
reaching the goal from v). Consistency can be shown to be a stronger property as
it also implies admissibility. As heuristic, we use the cheapest path determined
by preprocessing the graph with a backward breadth-first search from the goal
to all other nodes. The guarantee of admissibility and consistency of these esti-
mates is obtained by disregarding the constraints and assuming a cost on each
arc that is a lower bound of the corresponding costs. The lower bound can be
computed by choosing the best weather conditions in the period between the
departure time and an upper bound on the arrival time.

A baseline of the resulting path finding algorithm for solving CHFPP is
given in Algorithm 1. The function FindPath takes the initial conditions of the
aircraft as input, i.e., the initial fuel load τx

0 , the departure time τ t
0, a network

N = (D, τ , c) built using information from the airspace, aircraft performance
data, and weather conditions. Here, τ and c are intended as data tables. The time
and fuel consumption for an arc is looked up in these tables using the inputs: (i)
the fixed flight level, (ii) weight, (iii) international standard atmosphere deviation
(i.e., temperature), (iv) wind component, and (v) cost index.3 Inputs (ii), (iii),
and (iv) depend on the partial path.

Differently from classic path finding algorithms, the algorithm in Algorithm1
includes an extra comparison with respect to constraints for the domination of
labels (lines 20–21 and 23). Under the FIFO assumption, it would be possible
to determine a strict domination among labels and to add nodes of expanded
labels to a closed list. As a consequence, at most one label per node would
be expanded. However, in our case, domination of labels also needs to take
constraints into account, for which the FIFO property does not hold. Thus, partly
dominated labels cannot be discarded and the closed list becomes unnecessary.
As a consequence, more than one label from a node can be expanded.

Finally, although D contains cycles and although, theoretically, the cycles
could be profitable because of the time dependency of costs, labels are not
allowed to expand to already visited vertices because routes with cycles would
be impractical.

3 The cost index is an efficiency ratio between the time-related cost and the fuel cost
that airlines use to specify how to operate the aircraft, determining the speed of the
aircraft. It is decided upon at a strategic level and cannot be changed during the
planning phase.

362 A.N. Knudsen et al.

1 Function FindPath((τx
0 , τ t

0),N = (D(V, A), τ , c),Γ)
2 initialize the open list Q by inserting �s = ((s), 0, {})
3 initialize �r = ((), ∞, {})
4 while Q is not empty do
5 � ← extract the cheapest label from Q
6 if (c� > c�r) then break � termination criterion
7 if (φ(�) = g) and (c� < c�r) then
8 �r ← �
9 continue

10 foreach node v such that uv in A do
11 �′ ← label at v expanded from �
12 evaluate constraint trees in Δ�′

13 if one or more constraints in Δ�′ are violated then
14 continue

15 Insert(�′,Q)

16 return P�r and c�r

17 Function Insert(�′, Q)
18 foreach label � ∈ Q with φ(�) = φ(�′) do
19 if (c� > c�′) then
20 if (Δ� is implied by Δ�′) then � � is dominated
21 remove � from Q
22 else if (c′

� > c�) then
23 if (Δ� is implied by Δ�′) then return � �′ is dominated

24 insert �′ in Q
25 return

Algorithm 1. A general template for solving CHFPP

3.3 Lazy Expansion

In Algorithm 1, partly dominated labels are also added to Q, so only few labels
can actually be dominated. To speed up the algorithm, we attempt a lazy app-
roach to expansions by postponing the expansion of partly dominated labels.
This is achieved as follows. At each node v ∈ V , we maintain a waiting list of
labels, ωv. Then, instead of adding partly dominated labels at a node v to Q,
we add them to ωv. The idea is that if all successors of the cheapest label at v,
� = ((s, . . . , v), c�,Δ�), are able to expand throughout the cheapest path from
φ� to g without being affected by constraints in Δ�, then there is no label that
was partly dominated by � that would lead to a better route. However, if there
is a successor �′ of � that cannot expand to the next node in the cheapest path
from φ�, then one of the labels in ωv could potentially lead to a better route,
and thus must be inserted into Q. This is done by backtracking through every
node in the path of the label �′ and, at each node in P�′ , inserting into Q the
cheapest label from the corresponding waiting list.

Constraint Handling in Flight Planning 363

Backtracking is triggered whenever a label cannot be expanded to a reachable
node because a constraint becomes violated and the path infeasible or whenever a
label is dominated. An example of backtracking due to infeasibility was presented
in Fig. 3. There the label l2 is partly dominated by l3 and hence set in ωx, but
when l3 fails to expand to c, l3 is backtracked, resuming l2, which is moved from
ωx to Q. For an example where backtracking is needed because of domination,
consider the situation in Fig. 4 (left). The only relevant constraint is C2 = (a∧b).
At the node x, we have the labels: �1 = ((s, a, x), 2, {C2}) and �2 = ((s, x), 3, ∅)
with �2 in ωx because of being partly dominated by �1. At the node y, the
labels are: �3 = ((s, a, x, y), 4, {C1}) (which is the expansion of �1) and �4 =
((s, a, y), 3, {C1}). When the label �3 is discovered to be dominated by �4, it
cannot simply be removed because then we would lose the label �2 that, when
expanded to y, becomes �5 = ((s, x, y), 5, ∅), which is only partly dominated by
�4. Hence, we need to backtrack �3 and include �2 in Q.

s

a

x y b

g

1

3

1
2

2 1 1
s

x

a y b

g

4

1

1

1

1 1 1

Fig. 4. Backtracking triggered by domination (left) and cycling (right)

When we backtrack a label � to a given node u, we select the cheapest label
�′ from the waiting list at u and add that to the open list. We only need to
backtrack � once, since backtracking �′ will trigger further moves to the open
list, if it becomes necessary. Therefore, we associate a backtracking indicator
with each label to prevent backtracking from the same label a second time.

Particular care must be devoted to potential cycles. Routes are not allowed to
visit the same node twice, so the detection of cycling in D can also be the cause
of a label not being expanded. Consider the situation in Fig. 4 (right). The only
relevant constraint is C3 = (a ∧ b). The labels at x are �1 = ((s, a, y, x), 3, {C3})
and �2 = ((s, x), 4, ∅), with �2 in ωx because of being partly dominated by �1.
Further, at b, we have the label �3 = ((s, a, y, b), 3, {C3}). When we try to expand
�1, we discover it cannot be expanded anywhere without creating a cycle. Then
we consider �3, and discover that it has become infeasible. However, backtracking
�3 does not allow us to resume �2 from ωx because we do not pass through x.
Thus, �2 would never be added to Q and we would not find the one feasible
route. Hence, backtracking must be triggered also when cycles are detected.

To handle this efficiently, we equip all labels � with a dictionary, H, asso-
ciating nodes with labels. The keys of such a dictionary are the nodes of the
path P�, and the associated value, H(u), is the label at u which is eventually
expanded into �. We use a small hash table and get expected constant time look-
ups. After the initialization of the dictionary, cycles can be detected in constant

364 A.N. Knudsen et al.

time by a look-up. Additionally, we let π(�) denote the label associated with the
predecessor of the last node in P�.

Further, it should be noted that, when backtracking is caused by domination
or cycle detection, it can be delayed. Let �′ be a label that we need to backtrack
and let � be the blocking label, that is either the dominating label (domination
case) or H(u) if �′ is trying to expand to a node u that is already in P�′ . Let B�′

denote the set of labels that would be added to Q, if �′ were to be backtracked
immediately. Since the labels in B�′ were all partly dominated predecessors of �′,
any successor of those reaching φ(�′) would be more expensive than �′ and thus
they would be (partly) dominated by � as well. Therefore, backtracking can be
delayed until � is backtracked, which would allow the successors of labels in B�′

to reach farther than φ(�).
To implement delayed backtracking, we add to the information maintained

with each label � a list β� of labels that were blocked by � at some point. Thus,
whenever a label �′ is blocked by � and should be backtracked, we do the follow-
ing. If � has already been backtracked, we backtrack �′ immediately, but other-
wise, we delay and add �′ to β� instead. When � itself is backtracked, besides
π(�), also all labels in β� are backtracked.

Theorem 1. Algorithm1 with lazy expansion returns optimal routes.

Proof. The algorithm is derived from Algorithm 1, which is optimal, by adding
lazy expansion. To show that lazy expansion maintains optimality, we need to
show that all labels that are still in any waiting list when the algorithm termi-
nates cannot be part of an optimal (s, g)-path.

Let � be a label at v ∈ V , stored in ωv when the algorithm terminates. Since �
is in ωv, there must exist a label �′ which partly dominated �, i.e., c�′ < c�. Since
� is still in ωv when the algorithm terminates, none of the expanded successors
of �′ can have caused a backtrack. Thus, any possible path from v to any node
in V originating from � has also been explored by the expanded successors of �′

and is also cheaper.

3.4 Further Elements: Lazy Constraints and Constraint Pruning

Lazy Constraints and Iterative Path Finding. An alternative approach is to
ignore the constraints initially and to iterate the search, adding constraints only
when they are actually violated in the route found. First, a route is found with-
out considering any RAD constraints. Then, the route is checked against all
constraints. If no constraints are violated, the route is valid and the algorithm
terminates. Otherwise, if one or more constraints are violated, the constraints
are added to the input data of the path finding algorithm and a new search
is started. The advantage of this procedure is that it avoids considering many
constraints that never turn out to be relevant for the optimal route.

Heuristic Constraint Pruning. Some active constraints may become very unlikely
to be violated if their terms correspond to locations that are already passed by

Constraint Handling in Flight Planning 365

the label or far from the direct route between the current node of the label and
the goal. Thus, whenever during expansion a label � evaluates a constraint, we
try to estimate heuristically whether it is still relevant or not. More precisely,
we compare a lower bound and an upper bound for the length of a route from
φ(�) ∈ V to the destination passing through the location u ∈ V (or uv ∈ A)
represented by the term. If the lower bound is larger than the upper bound, then
we declare the term not satisfiable. Let d(P) be the flying distance covered by a
path P and gcd(u, v) be the great circle distance between two airway points u
and v. The lower bound is given by d(P�) + gcd(φ(�), u) + gcd(u, g). We use two
different heuristic values for the upper bound. One is the current result : once
the search finds any feasible (s, g)-path, with �′ being the final label, d(P�′) is
saved as the upper bound. If a better (s, g)-path is found, the bound is updated.
The second heuristic is the remaining distance. It uses d(P�)+(1.3 ·gcd(φ(�), g))
as the upper bound. The factor 1.3 was determined by observing the maximal
deviation of historical routes from the great circle distance. This heuristic is dis-
abled when close (i.e., within 20 nautical miles) to the departure or destination,
as the procedures to exit and enter airports are unpredictable and can deviate
considerably from great circle distances.

4 Experimental Results

Experimentally, we have compared different algorithms obtained from the com-
bination of the elements presented in the previous sections. We consider compu-
tation time, number of labels expanded, and the quality of the routes.

We use real-life data provided by our industrial partner. This data consists
of aircraft performance data, weather forecast data in standardized GRIB2 for-
mat, and a navigation database containing all the information for the graph.
The graph consists of approximately 100,000 nodes and 3,000,000 edges. The
aircraft performance data refers to one single aircraft and tests are run on the
optimal cruising flight level of that aircraft, i.e., the one that yields the best
cost on average weather conditions. The data for the weather forecast is given at
intervals of three hours on specific grid points that may differ from the airspace
waypoints. They are then interpolated both in space and time. A test instance is
specified by a departure airport and time, and a destination airport. A set of 13
major airports in Europe was selected uniformly at random to pursue a uniform
coverage of the constraints in the network. Among the 156 possible pairings,
14 were discarded because of short distance, resulting in 142 pairs that were
used as queries. Great circle distances range from 317 to 1721 nautical miles.
All algorithms were implemented in C# and the tests were conducted on a vir-
tual machine in a cloud environment with an Intel Xeon E5-2673 processor at
2.40 GHz and with 7 GB RAM. To account for fluctuations in CPU time mea-
surement, each algorithm was run 5 times on each instance and only the fastest
was recorded. A preliminary comparison between A∗ and best-first unveiled that
best-first is impracticable. Within a time limit of one minute, it terminates only
in 11 instances against 103 of A∗.

366 A.N. Knudsen et al.

Assessment of the FIFO Assumption on Costs. We tested whether assuming
the FIFO property on costs would lead to suboptimal results. Removing the
FIFO property means that labels in the open list are never dominated. More
specifically, we tested two versions of A∗, one that assumes FIFO, and thus is as
described in the previous sections, and one where the lines 18–23 of the Insert
function in Algorithm1 are omitted. With a timeout of 10 min, A∗ without the
FIFO assumption solved 78 out of 142 instances, and in these instances, all
returned solutions were of the same cost as A∗. Thus, we conclude that at least
for our real-life setting, assuming the FIFO property on costs seems to be a good
heuristic that does not affect the optimality of results. Henceforth, we continue
to assess only algorithms that use this assumption.

Empirical Run-Time. We include in the run-time of the path finding algorithms
both the time used for preprocessing (determining lower bounds for each vertex)
and the time spent for actually performing the search. Initially, we compare the
run-time time of 4 different algorithms: A∗, A∗ with the upper bound heuristic
to ignore constraints (A∗UB), A∗ with the remaining distance heuristic (A∗RD),
and iterative A∗ (iA∗). We use A∗ as a baseline algorithm and calculate the
percentage deviation of running time per instance of the other algorithms with
respect to A∗. A scatter plot of the run-time percentage deviations from A∗

is shown in Fig. 5 (left column), where the x-axis represents different instances
sorted by great circle distance between query airports. A time limit of one minute
was used in these experiments. Within this time limit, A∗ did not terminate in
39 queries. These cases are detectable by the lack of points for some ordinate
in the first panel in Fig. 5. There does not seem to be a correlation between the
size of the instance and the non-termination of A∗.

Fig. 5. Regular algorithms (left) and lazy expansion (right).

Constraint Handling in Flight Planning 367

We observe that A∗UB keeps returning optimal solutions (not shown), only
results in minor runtime improvements compared to A∗, and does not terminate
in the same 39 instances. Separately, we observed that A∗ does little work after
finding the first path to the goal, indicating that the heuristic cost value used for
selection in all our A∗ algorithms must be very close to the exact value. Thus,
since A∗UB has an impact only after an (s, g)-path has been found, the space
for improvement is small.

A∗RD is considerably faster than A∗ and the number of instances unsolved
within 1 min is reduced to 15. Unfortunately, the omission of constraints is some-
times too optimistic, leading to suboptimal routes due to the inaccurate dom-
ination of some labels. This happens in 11 out of the 142 instances where the
solution quality was within 0.1–0.6% of the optimal solution. This effect can be
controlled by increasing the 1.3 factor in the remaining distance heuristic, but
this increases the running time. On the other hand, we never experienced that
A∗RD returned infeasible solutions (which could theoretically happen).

The winner of the comparison is by far iA∗. The reduction in computation
time with respect to A∗ is up to 99% in all instances going from running times
of the order of seconds to running times of the order of milliseconds. It solves
all cases where A∗ does not terminate, taking 12 s in the worst case (which is an
extreme outlier in iA∗ running times). The number of iterations ranges between
1 and 10 and although the overall number of expanded labels can in some cases
become comparable to that of A∗, the reduction in computation time from not
having to handle a large number of constraints is huge.

In the right column of Fig. 5 we assess the impact of the lazy expansion to all
four algorithms. The deviations are still calculated with respect to the results of
the baseline A∗ algorithm. The visual comparisons performed row-wise inform us
that the lazy expansion improves the running time of the algorithms only in few
cases. While in many instances there is a reduced number of label expansions,
the overhead in run-time due to maintaining the waiting and backtracking lists
is sometimes larger than the time saved.

Instance Complexity. In Fig. 6, we investigate the scaling of the algorithms with
respect to instance size. We removed iA∗ from the analysis because its run-
ning times and number of constraints activated are too small (note that iA∗ is
however using A∗ and hence it is implicitly represented). The plots are on a
semi-logarithmic scale with the run-time expressed in milliseconds on the y-axis.
In the left column, we show the dependency on the great circle distance between
the departure and destination airports of the query. We observe that there is
no pattern in the points, indicating that this distance is not a good predictor
for the complexity of the search. In the right column, we show the dependency
of the run-time on the number of constraints that became active during the
search. The plots indicate that this can be an important regressor hinting at an
exponential relationship. Unfortunately, the number of constraints that become
active is known only after the search has taken place. An analysis of the corre-
lation between great circle distance and number of constraints was found to be

368 A.N. Knudsen et al.

Fig. 6. Time complexity of the search as a function of distance (left) and as a function
of constraints activated (right). The search is truncated at a time limit of one minute.

inconclusive, hinting at the fact that it is not the length of the route but rather
the density of constraints in the area it crosses that is important.

5 Conclusions

We have studied constraint handling in path finding algorithms for 2D route
planning. We formalized the structure of these constraints and represented them
with an ad hoc tree structure that makes it efficient to gradually update con-
straints and eliminate terms that become irrelevant during the search. We showed
that from a collection of 16,000 constraints arising in a real-life setting, up to
4,000 were activated during the search of the algorithms. We concluded that a
combination of constraint handling during the search and iterating A∗, intro-
ducing only relevant constraints, leads to significantly better running times than
including all constraints from the beginning. We regarded this approach as a
lazy constraint approach, but it can also be seen as a form of logic-based Ben-
ders decomposition driven by nogood cuts [9]. In our experiments, this approach
reduced the running time of A∗ from a few seconds to a few milliseconds. We
also investigated another type of lazy approach, where the label expansions in
path finding algorithms is conducted lazily. However, our experimental evalu-
ation indicated that in our specific real-life instances, the contribution of this
technique is not as pronounced as the lazy constraint approach. The handling
of constraints during the search was new for our industrial partner, who decided
to implement our algorithms in their product, obtaining an increased robustness
and considerable reductions in running times.

We have also approached the problem with a generic purpose solver via mixed
integer programming. If costs are considered static, the model is a classic min
cost flow model with additional constraints derived from the RAD constraints
that break the total unimodular structure of the constraint matrix. Preliminary
results showed that this approach is slow. The instances were solved on average
in about 12 min on an 8 core machine using about 10 GB of memory. However,
this approach cannot deal with the—here fundamental—resource dependency
structure of the costs. We expect this to be an issue with SAT solvers as well.

Constraint Handling in Flight Planning 369

Throughout we have assumed a static flight level chosen as the one with best
average performance. As future work, we plan to include the vertical dimension
in our flight planning. The size of the network grows dramatically, and this leads
to entirely new challenges.

References

1. Knudsen, A.N., Chiarandini, M., Larsen, K.S.: Vertical optimization of resource
dependent flight paths. In: Twentysecond European Conference on Artificial Intel-
ligence (ECAI). Frontiers in Artificial Intelligence and Applications, vol. 285, pp.
639–645. IOS Press (2016)

2. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, M., Sanders, T.,
Wagner, D., Werneck, R.F.: Route planning in transportation networks. Technical
report. arXiv:1504.05140 [cs.DS] (2015)

3. Olivares, A., Soler, M., Staffetti, E.: Multiphase mixed-integer optimal control
applied to 4D trajectory planning in air traffic management. In: Proceedings of the
3rd International Conference on Application and Theory of Automation in Com-
mand and Control Systems (ATACCS), pp. 85–94. ACM (2013)

4. de Jong, H.M.: Optimal Track Selection and 3-Dimensional Flight Planning: Theory
and Practice of the Optimization Problem in air Navigation Under Space-Time
Varying Meteorological Conditions. Staatsuitgeverij, Madison (1974)

5. Blanco, M., Borndörfer, R., Hoang, N.-D., Kaier, A., Schienle, A., Schlechte, T.,
Schlobach, S.: Solving time dependent shortest path problems on airway networks
using super-optimal wind. In: 16th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems (ATMOS), pp. 12:1–12:15. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2016)

6. Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discret. Appl.
Math. 74(1), 85–92 (1997)

7. Kováč, J.: Complexity of the path avoiding forbidden pairs problem revisited. Dis-
cret. Appl. Math. 161(10–11), 1506–1512 (2013)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

9. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program.
96(1), 33–60 (2003)

http://arxiv.org/abs/1504.05140

NightSplitter: A Scheduling Tool to Optimize
(Sub)group Activities

Tong Liu1(B), Roberto Di Cosmo2, Maurizio Gabbrielli1, and Jacopo Mauro3

1 DISI, University of Bologna, Bologna, Italy
{t.liu,maurizio.gabbrielli}@unibo.it

2 INRIA and University Paris Diderot, Paris, France
roberto@dicosmo.org

3 Department of Informatics, University of Oslo, Oslo, Norway
jacopom@ifi.uio.no

Abstract. Humans are social animals and usually organize activities
in groups. However, they are often willing to split temporarily a big-
ger group in subgroups to enhance their preferences. In this work we
present NightSplitter, an on-line tool that is able to plan movie and din-
ner activities for a group of users, possibly splitting them in subgroups
to optimally satisfy their preferences. We first model and prove that this
problem is NP-complete. We then use Constraint Programming (CP)
or alternatively Simulated Annealing (SA) to solve it. Empirical results
show the feasibility of the approach even for big cities where hundreds of
users can select among hundreds of movies and thousand of restaurants.

1 Introduction

Nowadays, most of the city activities such as restaurants, cinemas, museums,
theaters have complete and detailed information on web pages and offer a vari-
ety of online services and options for consulting programs, making reservations,
buying tickets, etc. One of the main problems that the customer has to face in
order to take advantage of this huge offer is to master the information overload
which comes with it. For example, in Paris, our reference town for this work,
there are more than 13500 restaurants and around 100 cinemas with 150 movies
each night. Hence, the apparently simple task of organising a night out with a
movie followed by a dinner can already turn into a serious planning exercise.

When there are several persons involved, e.g., a family or a group of friends,
with different ideas, preferences, and needs, coordinating the activities of the
group becomes significantly more complex. It is quite natural, in order to satisfy
all the preferences of the members of a group, to take a pragmatic approach and
split the group of persons into several sub-groups performing different activities,
in order to enhance the individual satisfactions: some groups will watch the latest
Hollywood blockbusters, while some others will prefer an indie movie, provided,
of course, this can take place approximately at the same time, and in the same
movie theater, or in movie theaters not too far apart.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 370–386, 2017.
DOI: 10.1007/978-3-319-66158-2 24

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 371

And that’s not all: one needs to take into account both time constraints (e.g.,
we need to be home before midnight) and spatial constraints (e.g., we do not
have the car and we do not want to walk for one hour). The planning of a night
out can therefore easily become a daunting task.

Recommender systems and planners provide tools that can help users to
manage these difficulties by filtering information, suggesting solutions, predicting
some needs and planning the activities. However, most of the existing tools
focus on a single user, so they cannot be used when several users interact and
participate in a group activity [7,17]. Tools considering group experiences exist
[3,5,20] but they mainly focus on methods for aggregating preferences for a fixed
group of users in order to optimize (some notions of) group satisfaction.

Only a few research papers [4,18] consider the problem of sub-group for-
mation and group splitting, but they do not take into account time and space
constraints or they impose the same subgroups for all the activities, thus for-
bidding the most interesting cases, like a group that splits into subgroups to see
different movies, but then joins at the same restaurant.

In this work we present NightSplitter, an on-line tool that is able to plan
movie and dinner activities for a group of users, possibly splitting them in sub-
groups to optimally satisfy their preferences. We first model this problem and
prove that it is NP-complete. We then use Constraint Programming (CP) or
alternatively Simulated Annealing (SA) to solve it. Empirical results, obtained
on real data for the city of Paris, show the feasibility and scalability of the app-
roach even when hundred of users can select among hundreds of movies and
thousand of restaurants.

It is worth noticing that even though, for the sake of clarity and concreteness,
in this paper we focus on the above mentioned activities, our approach is com-
pletely general and our tool can be easily adapted to any problem which has the
following features: (1) there is a group of users who have to perform a sequence
of n activities; (2) each user can express some preferences on these activities;
(3) the group can be divided in several sub-groups, each one performing a dif-
ferent activity at a given time frame; (4) temporal and spacial constraints can
be added on the different activities; (5) the aim of the tool is to optimize the
overall satisfaction of all the users involved in the activities.

Structure of the Paper. In Sect. 2 we describe NightSplitter from the user
perspective. In Sect. 3 we first formalize the problem solved by NightSplitter
proving its NP-hardness while in Sect. 4 we present how CP and SA techniques
are used to solve it. Section 5 presents the experiment results that validate
the use of NightSplitter. Related work and conclusions are in Sects. 6 and 7
respectively.

2 NightSplitter

NightSplitter, the tool we have developed and that we present in this Section,
is a web application for planning movie and restaurant activities in the city of

372 T. Liu et al.

Paris. It may be used by a group of users and it can split them in subgroups
to optimally satisfy their preferences. The application uses real data for (cur-
rently) 13598 restaurants and 93 cinemas with 153 movies, which are stored in
a database and are constantly updated by a crawler embedded in the applica-
tion. Using NightSplitter, an initial user dubbed group initiator can create
a “group event” for a certain date. The group initiator is able to tune several
parameters and constraints such as the number of possible subgroups, the size
of subgroups, the total time window for performing the activities, the maximal
time one is forced to wait between the activities. The group initiator can then
invite other members to participate to the group by sharing a reference link. The
invited member, by clicking on the link, is included automatically into the group
and will be able to express his/her preferences, possibly inviting other persons
to join the group.

As can be seen from Fig. 1 showing a screenshot of NightSplitter, by using
some simple menus each user can express preferences on movies and restaurants
in Paris. Social interaction among group members is possible, since each user
can see the preferences of others and can instantly see the results of updat-
ing or modifying his/her own preferences. The main interface is divided in two
parts: a dashboard for preferences and a digital map for showing the solutions.
In the preference dashboard (right side of Fig. 1), users can input their preferred
movie and restaurant names (or alternatively movie and cuisine categories). The
introduction of this information is facilitated by an autocomplete function that
suggest possible values. The expressed preference is represented by a tag with
color, where the tag shows the name of the preference and the color indicates
its scale: deep blue to signal a strong like, light blue for like, yellow for dislike,
red for strong dislike, and gray for neutral. On the top of the dashboard, there

Fig. 1. NightSplitter screenshot (Color figure online)

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 373

is a summary of the group preferences, where in each tag, next to the activ-
ity name, there is an aggregated score. Each time a user enters or modifies a
preference, the preference dashboard will be updated in real time and the sys-
tem will start to compute a new solution.1 The computation, as later detailed
in Sect. 4, uses either a Constraint Programming or Simulated Annealing tech-
nique. The averages of the individual preferences and the public ratings of the
selected activities are weighted and combined to form a unique evaluation met-
ric to establish the quality of every solution (cf. Definition 6). The 3 solutions
with highest aggregated preference are provided and displayed on-the-fly to the
users, both in textual form and on the digital map. The text informs the user
about their tentative scheduled activities while the map provides a global view of
the subgroups activities with their cinema-restaurant paths. Given the different
solution plans, group members have the option to like or dislike them by clicking
“Plan A/B/C” as shown in the upper part of Fig. 1. Based on these votes the
group initiator can finalize the decision and pick up the plan for the entire group.

The online version of NightSplitter is available at [29]2.

3 NightSplit

In this section we formalize the definition of the optimization problem solved
by NightSplitter and dubbed NightSplit. The key elements of NightSplit
are the users and the activities that users can perform. We therefore assume
the following finite disjoint sets: U for users range over by u1, u2, . . . , AM and
AR for the movie and restaurant activities respectively. We will denote with
A = AM ∪ AR a generic activity ranged over by a1, a2,

Activities have properties such as a possible starting time or the location
where they are performed. The planning problem therefore needs to consider
two dimensions: time and space. As far as the time is concerned, for NightSplit
we consider only a fixed time window assuming that we want to plan all the
activities within a given time range. In particular, for simplicity we use a discrete
notion of time dividing the time window in time slots of fixed duration. Simi-
larly, we discretize also the space by dividing it into a finite number of different
locations. The granularity of the time and the space can be arbitrarily improved
by reducing the duration of the time slot or considering smaller locations. In the
following we denote with TIME = {1, . . . , Tmax} and Loc = {1, . . . , Locmax}
the time slots and the locations where Tmax and Locmax are the number of time
slots and the number of locations. In our examples, we consider 5 min as the
time slot unit. We can therefore define the general properties of an activity as
follows.

Definition 1 (Activity Proprieties). Given a set of activities A we denote
with:

1 Currently preferences are visible to all the users. However, mechanisms to hide the
individual preferences such as differential privacy [8] are under consideration.

2 We are developing the tool for commercial use.

374 T. Liu et al.

– startTime the total function A → TIME that associates to an activity its
starting time slot (i.e., when the movie starts or when the restaurant opens),

– endTime the total function A → TIME that associates to an activity its
finishing time slot (i.e., when the movie ends or when the restaurant closes),

– duration the total function A → TIME that associates to an activity the
user’s duration in time slots.

– area the total function A → Loc that associates to an activity the location
where it takes place.

– publicRating a complete function A → N that associates to an activity a
possible rating.3 Ratings are represented with natural numbers: the bigger the
rating, the better the activity is considered.

With a slight abuse of notation, given an activity a and a property p we
denote with a.p (rather than with p(a)) the value of the propriety p for activity a.

Example 1. A restaurant activity a ∈ Ar might be characterized by
a.startTime = 228, meaning that the restaurant opens at 19:00 (assuming
a time slot of 5 min 228 corresponds to 19), a.endTime = 276, meaning that
the restaurant closes at 23:00, a.duration = 18 meaning that the dinner will
last 90 min, a.area = 5 meaning that the location is identified with id 5, and
a.publicRating = 3 meaning that the public rating is 3.

As far as preferences are concerned, based on findings such as those reported
in [23], we avoid using a very refined scale and we allow only 5 values: from
−2 indicating a strong dislike to a +2 indicating a strong preference, and 0
indicating a neutral opinion. Formally user preferences are defined as follows.

Definition 2 (Activity Preferences). Given a set of users U and a set
of activities A, an activity preference is a total function pref : U × A →
{−2,−1, 0, 1, 2}.

Since the user has to move between different locations, to properly define
a valid plan we need a metric that evaluates the distance between different
activities. We are only interested in the time to go from one activity to another.
Hence, we abstract from physical details such as GPS coordinates and means
of transportation and we simply consider a distance metric between locations
which is given in terms of times slots (needed to go from one location to the
other).

Definition 3 (Distance Metric). Given a set of locations Loc and a set of
time slots TIME = {1, . . . , Tmax} a distance metric is a total function dist :
Loc × Loc → TIME.

We are now ready to define what is a plan: a simple association of activities
to the users.

3 Specifically, the rating value of activity ranges from 0 to 5, where 0 means “no rating
information is given”.

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 375

Definition 4 (Plan). Let us consider a set of users U , two sets of activities
AM and AR and a set of time slots TIME. A plan is a total function plan :
U → (AM × TIME) × (AR × TIME) that associates to a user a movie and
restaurant activity with their beginning time slots.

Example 2. A plan plan(u) = ((a1, 108), (a2, 138)) means that to the user u is
assigned the activity a1 that starts at 9:00 and the activity a2 at 11:30.

Not all the plans are valid: For instance a plan may schedule two overlapping
activities for a user. For this reason, we introduce the notion of plan validity
that captures the constraints that a feasible plan must possess.

Definition 5 (Plan Validity). Given a positive integer maxGroupNum rep-
resenting the maximal number of sub-groups allowed, a positive integer
minCardinality representing the minimal size of a group, and a positive integer
maxWait ∈ TIME representing the maximal waiting time between two activities,
a plan plan is said valid iff:

– starting and ending time are satisfied. Formally, for each user u ∈ U , if
plan(u) = ((am, tm), (ar, tr)) then startTime(am) ≤ tm ≤ endTime(am) −
duration(am) and startTime(ar) ≤ tr ≤ endTime(ar) − duration(ar);

– activities do not overlap. Formally, ∀u ∈ U , if plan(u) = ((am, tm), (ar, tr))
then tr ≥ tm + duration(am) + dist(area(am), area(ar));

– activities are not too far apart. Formally, ∀u ∈ U , if plan(u) =
((am, tm), (ar, tr)) then tr ≤ tm + duration(am) + maxWait;

– the number of groups is limited by maxGroupNum. Formally, |{(am, tm) | ∀u ∈
U . plan(u) = ((am, tm), (ar, tr))}| ≤ maxGroupNum and |{(ar, tr) | ∀u ∈
U . plan(u) = ((am, tm), (ar, tr))}| ≤ maxGroupNum ;

– the cardinality of the group is bounded by minCardinality. Formally, for
all activities am ∈ Am, and time slots tm ∈ Time |{u | ∀u ∈ U . plan(u) =
((am, tm), (ar, tr))}| is 0 or greater or equal than minCardinality. Similarly,
for all activities ar ∈ AR, and time slots tr,∈ Time |{u | ∀u ∈ U . plan(u) =
((am, tm), (ar, tr))| is 0 or greater or equal than minCardinality.

In order to simplify the presentation, given a plan plan(u) = ((a1, t1), (a2, t2))
in the following we will use plan(u).am for denoting a1, plan(u).ar for a2,
plan(u).tm for t1, and plan(u).tr for t2 (m stands for movie, r for restaurant).

We are now ready to define the NightSplit optimization problem. Intu-
itively, the NightSplit goal is to find a valid plan that optimizes the individual
activity preferences and the public activity preferences. Different criteria may be
used to combine these preferences. NightSplit allows a great flexibility combin-
ing all these objectives into one by summing them according to some weights.

Definition 6 (NightSplit). Let η be a real number ∈ [0, 1] representing the
weight associated to the individual activity preferences and the public prefer-
ences4. The NightSplit problem is to find the valid plan plan∗ that maximizes
4 Public preferences are useful to break the ties when users have very general individual

preferences (e.g., I like all the movies).

376 T. Liu et al.

the following objective function.

obj(plan) = η · sumact(plan) + (1 − η) · sumpub(plan) (1)

where sumact and sumpub are the sum of the individual activities preferences and
public preferences as define below:

sumact(plan) =
∑

u∈U
(pref(u, plan(u).am) + pref(u, plan(u).ar)) (2)

sumpub(plan) =
∑

u∈U
(plan(u).am.publicRating+ plan(u).ar.publicRating)

(3)

As can be expected, even tough this formulation is rather simple, NightSplit
is an NP-hard problem.

Theorem 1 (NP-hardness). The NightSplit is NP-hard.

Proof. To prove hardness, we reduce the NP-complete problem Perfect Expected
Component Sum (PECS) [4] to the decision version of NightSplit, i.e., the
problem to find whether there exists a valid plan such that the objective function
obj is greater or equal than a given value.5 An instance of PECS consists of a
collection V of m-dimensional boolean vectors, i.e., V ⊂ {0, 1}m and a number
k. The problem is to determine whether there exists a disjoint partition of V
into k subsets V1, . . . , Vk such that

∑k
i=1 max1≤j≤m(

∑
v̄∈Vi

v̄|j|) = |V |.
Given an instance of PECS we map every vector v̄i ∈ V as a user ui having

some preferences over m different movies. The intuition behind the hardness
proof is to exploit the planning of the movie activities to find a solution for PECS.
We assume that there is only one location, that the m movie activities start at
the time slot 0 and end at time slot 1 with duration 1. Similarly, we assume that
there are m different restaurant activities that start at time slot 1 and end at
time slot 2 with duration 1. We set maxGroupNum to k, minCardinality to 1,
maxWait to 1, and we assume that the function dist is the constant function 0.
In this way all the movie activities are compatible with the restaurant activities
and all the possible plans that have a maximal number of k groups are valid.
We set the preferences of the movie activities to reflect the values of the vector
v̄. Formally, for all 1 ≤ i ≤ |V | and 1 ≤ j ≤ m we define pref(ui, aj) = v̄|j|. We
set to 0 instead the preferences for all the restaurant. We set the weight of the
user preferences η to 1 while we discard the public preferences with 1 − η = 0.

Based on the definition of NightSplit, it is easy to see that
∑k

i=1 max1≤j≤m

(
∑

v̄∈Vi
v̄|j|) = |V | iff the obj of the NightSplit problem is equal to |V |. The

partition induced on the users performed by NightSplit corresponds to the
partition of V into the k set of vectors V1, . . . , Vk. �
5 The decision version of the problem requires the “greater or equal” operator. Similar

to the theorem presented in [4], our theorem holds because the sum of the preferences
is never greater than V .

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 377

3.1 Useful Extensions

While NightSplit is already NP-hard, there are some useful extensions of it
that do not alter its complexity class and its nature. In the following we just
comment on some of them that are considered in the online NightSplitter.
For space reasons they are not formally defined here, however their definition is
straightforward.

First observe that the notion of a valid plan can be further restricted con-
sidering additional constraints. For example, it may be useful to allow users to
indicate that they are not available before or after a given time. Moreover, the
minimal number of people required to form a group or the number of groups
can vary depending on the activity (e.g., it may be the case that for going to
the movie we accept to split the group in two while to eat in a restaurant we do
not allow any split). Other useful extensions concern the definition of different
kinds of user preferences. For instance, usually users like to hang out in certain
locations and they want to minimize the traveling time between the activities,
minimize the waiting time, start the activities as soon as possible, etc. All these
preferences may be considered by adding further terms to the objective function
that we optimize in NightSplit, possibly reducing its weight by an appropriate
parameter. NightSplitter has been designed to be easily extensible and take
into account new sources of user preferences or constraints. For instance, the
preferences over some areas can can be easily defined in the profile menu of the
user and then taken into account when generating the plans.

Finally, we could also relax the limit of two activities, considered in this paper,
and we could extend our system to applications where more activities can be
performed in sequence, especially in the tourism industry, following, e.g., [18,25].

4 Solution Approaches

To solve the NightSplit problem we propose two different approaches. The first
one relies on Constraint Programming (CP) and allows us, in principle, to obtain
the optimal solution. The second approach uses Simulated Annealing (SA), a
probabilistic local search procedure which, under certain conditions for its para-
meters, is known to find the optimal solution with a probability approaching
one. In this section we briefly describe the CP and SA approaches, while we
defer to Sect. 5 for their comparison.

4.1 NightSplit and Constraint Programming

Constraint Programming (CP) [24,26] is a widely adopted approach for solving
NP-hard problems. The CP paradigm enables to express complex relations in
form of constraints to be satisfied. In particular a Constraint Satisfaction Prob-
lem (CSP) P = (X ,D, C) consists of a finite set of variables X , each of which
associated with a domain Dx ∈ D of possible values that it could take, and a
set of constraints C that defines all the admissible assignments of values to the

378 T. Liu et al.

variables [19]. Given a CSP the goal is normally to find a solution, i.e., an assign-
ment to the variables that satisfies all the constraints of the problem. When an
objective function needs to be minimized or maximized we deal instead with a
Constraint Optimization Problems (COPs), i.e., a generalized CSP where the
goal is not only to find a solution but among all possible solutions the one that
maximizes or minimizes the objective function.

Clearly the NightSplit problem can be seen as a COP. For every user u we
have introduced:

– a variable Mu representing the selection of the movie activity. The domain of
this value is the finite domain of all the possible movie activities;

– a variable Ru representing the selection of the restaurant. The domain of this
value is the finite domain of all the possible restaurant activities;

– two variables Su,1, Su,2 representing the beginning of the activities. The
domain of these variables is the finite set of the possible time slots;

– two variables Gu,1, Gu,2 representing the subgroup to which user u belongs
(for the first and second activity respectively). The domain of these variables
depend on the maximal number of groups allowed for activity.

With these variables it is possible to state all the constraints as listed in
Definition 5. For instance, the first constraint bounding the starting time of the
activities might be expressed by stating that movie start[Mu] ≤ Su,1 where
movie start is the array storing the movies starting time. This constraint is
simply a disequality between two expressions: the first retrieves the concrete
value from an array while the second is the variable Su,1. Note that CP solvers
can employ efficient techniques to handle this kind of equalities or disequalities
(global constraints). Moreover, for this particular case, the constraint setting x as
the value taken by the y-th value of the array is known as element constraint [24],
which is often supported by constraint solvers that adopt ad-hoc propagation
algorithms to speed up the search of solutions.

To model all the constraints we used MiniZinc [21], which is the de-facto lan-
guage to define CSPs and COPs and is supported by a huge variety of constraint
solvers. Since the majority of the solvers does not support real variables, we
restrict the use of the preference weights η to rational numbers only. A detailed
explanation of the MiniZinc model and all the constraints defined is outside the
scope of this paper. For more information we invite the reader to consult [14].

Remark 1. Beside CP, we have also tried to encode the NightSplit to
exploit Satisfiability-Modulo-Theories (SMT) solvers. SMT solving extends and
improves upon SAT solving by introducing the possibility of stating constraints
in some expressive theories, e.g., arithmetic or bit-vector expressions. While all
the constraints of NightSplit can be encoded in SMT, we were not able to
provide an encoding linear w.r.t. the number of activity locations. Indeed, differ-
ently to what happens in CP where the element constraint can be used [24], in
the SMT case the encoding of the traveling time between two activities requires
the introduction of a quadratic number of constraints w.r.t. the number of loca-
tions. Based on our test, since we had more than 300 locations, the addition

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 379

of these quadratic number of constraints hindered the use of SMT solvers. For
this reason, in Sect. 5, we will compare only the performances of the CP and SA
approaches.

4.2 NightSplit and Simulated Annealing

Simulated Annealing (SA) [1] is a local search technique inspired by the anneal-
ing process in metallurgy. SA has been widely used for approximating the global
optimum of a given function. Given an initial solution, random moves are made
to produce new potential solutions. A new solution that improves the previous
one is (usually) always accepted. Solutions that worsen the current solution are
instead accepted with a probability that, like the temperature in the anneal-
ing process, is gradually decreasing. Accepting worse solutions is a fundamental
property because it allows for a more extensive search for the optimal solution,
possibly avoiding getting stuck in local optima.

Contrary to the CP technique described before, SA can not guarantee that
the final solution obtained is optimal. However, for discrete and large search
spaces, SA scales better and could produce (sub)optimal solution very quickly.

Among all the different implementations of SA available we rely on the re-
implementaiton in PHP of the python SA module [22]. After some manual tun-
ing, we have fixed the parameters to control the decreasing of the temperature
and the number of iterations (50000). The temperature exponentially decreases
as the algorithm progresses. As customary, a move causing a decrease in state
energy (i.e., an improvement of the NightSplit objective function) was always
accepted. Moves instead increasing the state energy (i.e., a worse solution) but
within the bounds of the temperature are also accepted.

The initial solution is obtained by randomly generating the assignments from
users to activities. To obtain instead a valid plan from a current solution we pro-
ceed as follows: (i) we randomly select movie activity assignments or restaurants
activity assignments and modify them; (ii) we randomly select a subset of users
U ; (iii) we assign a new activity a to the selected users in U . This activity is
randomly chosen among all the activities for which the aggregated preference of
the U users is positive. Intuitively, this avoids selecting an activity that no user
in U wants to perform; (iv) if the assigned activity is not compatible with other
existing ones (e.g., if for user u we select a movie activity a that overlaps with
his/her restaurant activity) we delete these activities; (v) for every user u that
has no activity assigned we look at the activities assigned to other users, check
if any of them is compatible with the updated activity and if so we assign this
activity to the user u assuming that this does not violate the group constraints.

5 Empirical Experiment

In this section we describe the experiments performed in order to validate the
scalability of NightSplitter and we discuss the results.

380 T. Liu et al.

We have considered for the experiments real data from the city of Paris: The
movies information - for 93 cinemas and currently 153 different movies (with 1950
projections a day) - is retrieved from Allociné [2,10], restaurant data - for 13598
restaurants - from Tripadvisor [30]. OpenStreetMap and GoogleMaps were also
used to identified 317 positions of metro stations: for each activity we considered
its nearest metro station as its location. The data related to the preferences was
collected from Movielens [12] and Yelp [31]. These datasets, originally defined
for activities in the U.S., were converted for Paris activities. This was done by
mapping the names of the Paris activities to the activity existing in the preference
dataset while preserving the activity category and the public rating. After that,
we randomly sampled 8,000 users for the restaurant activity and 5.300 users for
the movies activity to use their individual preferences for the experiments. The
statistics related to the activities and preference data are summarized in Table 1
where the last column indicates the average preferences of the users. Note that
if a restaurant was open for two separate intervals (e.g., from 11 to 15 and from
19 to 23) this was captured by considering two separate activities.

Table 1. Summary statistics of the dataset

Activity type Activities Users Avg. pref

Movies 1950 5300 6

Restaurants 17069 8000 2

Since the goal is to provide a responsive tool, for the experiments we fixed
a timeout of 60 s taking the best solution found by the tested approach within
this time frame. For each testing scenario we repeated the experiment 30 times.
For every experiment we match the chosen number of user with random user
from the dataset using their preferences. We allow the subgroups to be formed
by at least 2 people, the time slot unit to be 5 min assuming that the duration
for a dinner/lunch is 90 min. The experiments were run on an Ubuntu Intel Core
3.30 GHz machine with 8 GB of RAM.

We compared the performance of three different state-of-the-art CP solvers,
namely Chuffed [6], Or-Tools [11], and HCSP [13],6 and the SA method described
in the previous section.

We first compare the three different CP solvers for different number of users,
assuming to have only 2 subgroups and not taking into account the public ratings
(i.e., η = 1). Figure 2 shows the average times needed by the solvers to find

6 We selected these solvers based on the recent results of the MiniZinc Challenge 2016
[27]. In particular Or-Tools won a golden medal in the Fixed category and HCSP
won a golden medal in Free and Parallel category. Chuffed was the second best solver
of the entire Challenge after LCG-Glucose-free which is not publicly available. We
would remark also that our problem instances have been submitted to the incoming
MiniZinc Challenge 2017 [28].

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 381

the optimal value by varying the number of users, where the filled icons mean
that the solver has proven the optimality of the solution for all the 30 repeated
tests. Chuffed has always computed the optimal solution for values up to 9
users and it is the fastest among the three solvers. The Or-Tools cannot find
the optimal solution within the timeout for more than 5 users, while the HCSP
solver performs slightly better than Or-Tools and occasionally it is still capable
to prove optimal solution for up to 13 users. Similar results are obtained when
increasing the number of subgroups or when public ratings are taken into account
by lowering the value of the η parameter. Since Chuffed outperforms the other
solvers in our application, in the following we show only the performance of this
solver for the comparison with SA approach.

Fig. 2. CP Solvers comparison.

We compare the performance of Chuffed and SA in terms of quality of the
solution for a number of users ranging between 4 and 40, assuming 2 subgroups
could be formed, and the weight associated to the individual preference η to be
1. Figures 3 and 4 depicts respectively the average solution score and the average
time needed to find the best solution for the 30 repeated tests (the green dot in
Fig. 3 representing the number of tests such that CP proves solution optimality).
The plots show that for a limited number of users SA is competitive with Chuffed,
while for more than 15 users SA is definitely better. The advantage of the CP
solution is that for less than 10 users the solutions are proven optimal while some
SA solutions were suboptimal. From the plot it is however possible to see that
the number of solutions that could be proven optimal in less than 60 s decreases
at the increase of the number of users. With more than 20 users no solution
was proven optimal. It is clearly visible that Chuffed is better only for a limited
number of users while the SA is often able to find the best solution within the
first 15 s.

We then compare the two approaches by varying the number of possible
subgroups from 1 to 8. In Fig. 5 we present the plots obtained considering 32,

382 T. Liu et al.

Fig. 3. CP vs SA comparison.

Fig. 4. Time to find the best solution.

(a) 32 users (b) 64 users (c) 128 users

Fig. 5. Comparison of CP and SA varying the number of subgroups.

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 383

64, and 128 users. From the plots it can be seen that the CP technique is only
suitable with few users and when no more than 2 subgroups can be formed. When
the number of users increases or more than 2 groups can be formed the solutions
provided by the CP solver within 60 s are worse than the ones produced by the
SA. In our biggest scenario, considering 128 users, the SA is the only viable choice
because unfortunately the CP solver is not even able to provide a single solution
(hence the lack of points for Chuffed in Fig. 5c). We conduct experiments also
varying the weights used to aggregate the individual and public preferences. In
these cases there are no significant changes, except that the final score increases.
Figure 6 shows for instance the performances of Chuffed and SA while varying
the parameter η considering 32 users and 2 subgroups. In particular, Fig. 6a
presents the average time when the best value is found while Fig. 6b presents
the average score found after 60 s. As long as the user’s preferences are accounted
for (i.e., η 	= 0), it is immediately visible that with this amount of users the SA
approach is better than Chuffed since SA is able to find better values in a short
amount of time and Chuffed is not able to prove the optimality of the solutions
within 60 s.

(a) Time to find the best solution. (b) Average score of best solutions.

Fig. 6. Comparison of CP and SA varying η.

Summarizing, we may conclude that when considering two subgroups and
few users the CP approach may be useful and even prove the optimality of the
solution. For more subgroups and more users the SA approach is better. For those
experiments where the optimality of the solutions was proven, the SA approach
was able to propose competitive solutions. We conjecture that this holds also for
big instances where we were not being able to prove the optima.

6 Related Work

The literature on recommender or planning systems is very large and we omit
all the references to works which consider the case of a single user only, with

384 T. Liu et al.

the exception of [25], which uses CSP techniques for building a tourist recom-
mendation and planning application. Concerning group recommender systems,
[5] provide a survey on several existing approaches while [9] presents a recom-
mender system for tourism based on the tastes of the users, their demographic
classification and the places they have visited in former trips. More recently,
the idea of group splitting has appeared in some papers. Notably [4] proposes an
approach for forming groups of users in order to maximize satisfaction. The work
[18] introduces the problem of group tour recommendation which includes the
problem of forming tour groups whose members have similar interests. Differently
from our case, all the above mentioned papers consider groups or sub-groups as
fixed entities, which once are created cannot be modified. With our approach,
instead, for each activity we have a different group formation, that is, we can
have two users who are in the same group for the first activity (the movie) and
are in different groups for the second one (the dinner). Moreover, the above
papers focus on the theoretical aspects rather than presenting a tool.

There exist also several works which address the problem of group preference
modeling and the definition of an appropriate notion of “group satisfaction”
[16,20]. In general these are difficult tasks, since it is hard to find a definition
which takes into account all the various aspects involved in the group dynam-
ics. An interesting approach is presented in [3], where the notion of disagree-
ment between group members is formally defined and, on its basis, a consensus
function is introduced in order to formally define a satisfactory semantics for
group recommendation. In some cases, users preferences depend on the con-
textual information in a dynamic domain, thus making even more difficult to
make recommendation for groups. Recently Context-Aware Recommender Sys-
tems [15] have been proposed in order to address this issue. All the above men-
tioned approaches to the modeling of preferences, while interesting and relevant,
are somehow orthogonal to the problem that we are considering in our paper.
Indeed, we could easily change the preference model without major changes in
our tool.

To conclude we would like to mention also the works conducted in [7,17,25]
which present recommendation and planning systems targeting a single user only
but are interesting for us since they consider models of generating itineraries (for
touristic applications) which could be integrated with our tool.

7 Conclusions and Future Work

We have presented NightSplitter, an on-line tool that is able to plan movie
and dinner activities for a group of users, possibly splitting them in subgroups
to optimally satisfy their preferences. The tool is based on a formal model and
two different technologies - Constraint Programming and Simulate Annealing -
which can be easily adapted to other applications. The tests we have conducted
show that our tool can be effectively used on real data for the city of Paris, with
thousands of activities and hundred of users. The comparison between CP and
the simulated annealing approach show that the latter can scale up to consider

NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities 385

larger number of users, making our approach feasible also for quite different
social applications.

We are now extending our work along several directions: First, we are con-
sidering a greater number of different activities and we are adding some more
features such as, e.g., the selection of a preferred limited area for the activities
(this is done by selecting an area on the map). Second, the recommendation
semantics adopted in our model is aggregated preference: we are now explor-
ing different notions of group recommendation semantics such as least misery,
most pleasure, Borda count, etc. [20]. In particular we would like to see whether
the semantics proposed in [4] with the related algorithms could improve our
approach. Third, we would like to investigate techniques for group definition
using social factors and group dynamics as those suggested in [16]. Fourth, we
would like to explore possible improvements for the CP approach by using, e.g.,
linearizion of the constraints, column generation methods, or the use of presolve.

References

1. Aarts, E.H., Korst, J.H.: Simulated annealing. ISSUES 1, 16 (1988)
2. AlloCiné (2016). http://www.allocine.fr
3. Amer-Yahia, S., Roy, S.B., Chawlat, A., Das, G., Yu, C.: Group recommendation:

semantics and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)
4. Basu Roy, S., Lakshmanan, L.V., Liu, R.: From group recommendations to group

formation. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 1603–1616. ACM (2015)

5. Boratto, L., Carta, S.: State-of-the-art in group recommendation and new
approaches for automatic identification of groups. In: Soro, A., Vargiu, E.,
Armano, G., Paddeu, G. (eds.) Information Retrieval and Mining in Distrib-
uted Environments, vol. 324, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16089-9 1

6. Chu, G., de la Banda, M.G., Mears, C., Stuckey, P.J.: Symmetries and lazy clause
generation. In: Proceedings of the 16th International Conference on Principles and
Practice of Constraint Programming (CP 2010) Doctoral Programme, pp. 43–48
(2010)

7. Di Bitonto, P., Di Tria, F., Laterza, M., Roselli, T., Rossano, V., Tangorra, F.: A
model for generating tourist itineraries. In: 2010 10th International Conference on
Intelligent Systems Design and Applications, pp. 971–976. IEEE (2010)

8. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79228-4 1

9. Garcia, I., Sebastia, L., Onaindia, E.: On the design of individual and group rec-
ommender systems for tourism. Expert Syst. Appl. 38(6), 7683–7692 (2011)

10. Gauvin, E.: Allocine helper (2016). https://github.com/etienne-gauvin/
api-allocine-helper

11. Google: Google or-tools (2016). https://developers.google.com/optimization/
12. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM

Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)
13. Ivrii, A., Ryvchin, V., Strichman, O.: Mining backbone literals in incremental SAT.

In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 88–103. Springer,
Cham (2015). doi:10.1007/978-3-319-24318-4 8

http://www.allocine.fr
http://dx.doi.org/10.1007/978-3-642-16089-9_1
http://dx.doi.org/10.1007/978-3-642-16089-9_1
http://dx.doi.org/10.1007/978-3-540-79228-4_1
https://github.com/etienne-gauvin/api-allocine-helper
https://github.com/etienne-gauvin/api-allocine-helper
https://developers.google.com/optimization/
http://dx.doi.org/10.1007/978-3-319-24318-4_8

386 T. Liu et al.

14. Jacopo Mauro, T.L.: Minizinc model (2017). http://cs.unibo.it/t.liu/nightsplitter/
mzn.html

15. Khoshkangini, R., Pini, M.S., Rossi, F.: A self-adaptive context-aware group rec-
ommender system. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.)
AI*IA 2016. LNCS, vol. 10037, pp. 250–265. Springer, Cham (2016). doi:10.1007/
978-3-319-49130-1 19

16. Kompan, M., Bielikova, M.: Group recommendations: survey and perspectives.
Comput. Inform. 33(2), 446–476 (2014)

17. Le Berre, D., Marquis, P., Roussel, S.: Planning personalised museum visits. In:
ICAPS (2013)

18. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Towards next generation touring:
personalized group tours (2016)

19. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

20. Masthoff, J.: Group recommender systems: combining individual models. In: Ricci,
F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook,
pp. 677–702. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3 21

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

22. Perry, M.: Python module for simulated annealing (2017). https://github.com/
perrygeo/simanneal

23. Preston, C.C., Colman, A.M.: Optimal number of response categories in rating
scales: reliability, validity, discriminating power, and respondent preferences. Acta
psychol. 104(1), 1–15 (2000)

24. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

25. Sebastia, L., Garcia, I., Onaindia, E., Guzman, C.: E-Tourism: a tourist recommen-
dation and planning application. Int. J. Artif. Intell. Tools 18(5), 717–738 (2009).
http://dx.doi.org/10.1142/S0218213009000378

26. Smith, B.M.: Modelling for constraint programming. In: Lecture Notes for the First
International Summer School on Constraint Programming (2005)

27. Minizinc Team: Minizinc challenge 2016 (2016). http://www.minizinc.org/
challenge2016/challenge.html

28. Minizinc Team: Minizinc challenge 2017 (2017). http://www.minizinc.org/
challenge2017/challenge.html

29. Liu, T., Mauro, J., Di Cosmo, R., Gabbrielli, M.: Nightsplitter (2017). http://cs.
unibo.it/t.liu/nightsplitter

30. TripAdvisor (2016). https://www.tripadvisor.com
31. Yelp: Yelp dataset challenge (2016). http://yelp.com/dataset challenge/

http://cs.unibo.it/t.liu/nightsplitter/mzn.html
http://cs.unibo.it/t.liu/nightsplitter/mzn.html
http://dx.doi.org/10.1007/978-3-319-49130-1_19
http://dx.doi.org/10.1007/978-3-319-49130-1_19
http://dx.doi.org/10.1007/978-0-387-85820-3_21
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
https://github.com/perrygeo/simanneal
https://github.com/perrygeo/simanneal
http://dx.doi.org/10.1142/S0218213009000378
http://www.minizinc.org/challenge2016/challenge.html
http://www.minizinc.org/challenge2016/challenge.html
http://www.minizinc.org/challenge2017/challenge.html
http://www.minizinc.org/challenge2017/challenge.html
http://cs.unibo.it/t.liu/nightsplitter
http://cs.unibo.it/t.liu/nightsplitter
https://www.tripadvisor.com
http://yelp.com/dataset_challenge/

Time-Aware Test Case Execution Scheduling
for Cyber-Physical Systems

Morten Mossige1,3, Arnaud Gotlieb2, Helge Spieker2(B), Hein Meling3,
and Mats Carlsson4

1 ABB Robotics, Bryne, Norway
morten.mossige@uis.no

2 Simula Research Laboratory, Lysaker, Norway
{arnaud,helge}@simula.no

3 University of Stavanger, Stavanger, Norway
hein.meling@uis.no

4 RISE SICS, Kista, Sweden
mats.carlsson@ri.se

Abstract. Testing cyber-physical systems involves the execution of test
cases on target-machines equipped with the latest release of a software
control system. When testing industrial robots, it is common that the
target machines need to share some common resources, e.g., costly hard-
ware devices, and so there is a need to schedule test case execution
on the target machines, accounting for these shared resources. With a
large number of such tests executed on a regular basis, this scheduling
becomes difficult to manage manually. In fact, with manual test execu-
tion planning and scheduling, some robots may remain unoccupied for
long periods of time and some test cases may not be executed.

This paper introduces TC-Sched, a time-aware method for automated
test case execution scheduling. TC-Sched uses Constraint Programming
to schedule tests to run on multiple machines constrained by the tests’
access to shared resources, such as measurement or networking devices.
The CP model is written in SICStus Prolog and uses the Cumulatives
global constraint. Given a set of test cases, a set of machines, and a set of
shared resources, TC-Sched produces an execution schedule where each
test is executed once with minimal time between when a source code
change is committed and the test results are reported to the developer.
Experiments reveal that TC-Sched can schedule 500 test cases over 100
machines in less than 4 min for 99.5% of the instances. In addition, TC-
Sched largely outperforms simpler methods based on a greedy algorithm
and is suitable for deployment on industrial robot testing.

1 Introduction

Continuous integration (CI) aims to uncover defects in early stages of software
development by frequently building, integrating, and testing software systems.

A. Gotlieb and H. Spieker—These authors are supported by the ResearchCouncil of
Norway (RCN) through the research-based innovation center Certus, under the SFI
programme.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 387–404, 2017.
DOI: 10.1007/978-3-319-66158-2 25

388 M. Mossige et al.

When applied to the development of cyber-physical systems (CPS)1, the process
may include running integration test cases involving real hardware components
on different machines or machines equipped with specific devices. In the last
decade, CI has been recognized as an effective process to improve software quality
at reasonable costs [13,14,27,35].

Different from traditional testing methods, running a test case in CI requires
tight control over the round-trip time, that is, the time from when a source code
change is committed until the success or failure of the build and test processes
is reported back to the developer [15]. Admittedly, the easiest way to mini-
mize the round-trip time is simply to execute as many tests as possible in the
shortest amount of time. But the achievable parallelism is limited by the avail-
ability of scarce global resources, such as a costly measurement instrument or
network device, and the compatible machines per test case, targeting different
machine architecture and operating systems. These global resources are required
in addition to the machine executing the test case and thereby require parallel
adjustments of the schedule for multiple machines.

Thus, computing an optimal test schedule with minimal round-trip time is a
challenging optimization problem. Since different test cases have different exe-
cution times and may use different global resources that are locked during exe-
cution, finding an optimal schedule manually is mostly impossible. Nevertheless,
manual scheduling still is state-of-the-practice in many industrial applications,
besides simple heuristics. In general, successful approaches to scheduling use
techniques from Constraint Programming (CP) and Operations Research (OR),
additionally metaheuristics are able to provide good solutions to certain schedul-
ing problems. We discuss these approaches further in Sect. 2.

Informally, the optimal test scheduling problem (OTS) is to find an execution
order and assignment of all test cases to machines. Each test case has to be
executed once and no global resource can be used by two test cases at the same
time. The objective is to minimize the overall test scheduling and test execution
time. The assignment is constrained by the compatibility between test cases and
machines, that is, each test case can only be executed on a subset of machines.

This paper introduces TC-Sched, a time-aware method to solve OTS. Using
the Cumulatives [1,5] global constraint, we propose a cost-effective constraint
optimization search technique. This method allows us to (1) automatically filter
invalid test execution schedules, and (2) find among possible valid schedules,
those that minimize the global test execution time (i.e., makespan). To the best
of our knowledge, this is the first time the problem of optimal scheduling test
suite execution is formalized and a fully automated solution is developed using
constraint optimization techniques. TC-Sched has been developed and deployed
together with ABB Robotics, Norway.

An extensive experimental evaluation is conducted over test suites from
industrial software systems, namely an integrated control system for industrial
robots and a product line of video-conferencing systems. The primary goal in
this paper is to demonstrate the scalability of the proposed approach for CI

1 CPS can simply be seen as communicating embedded software systems.

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 389

processes involving hundreds of test cases and tens of machines, which corre-
sponds to a realistic development environment. Furthermore, we demonstrate
the cost-effectiveness of integrating our approach within an actual CI process.

2 Existing Solutions and Related Work

Automated solutions to address the OTS problem are not yet common practice.
In industrial settings, test engineers manually design the scheduling of test case
execution by allocating executions to certain machines at a given time or fol-
lowing a given order. In practice, they manage the constraints as an aggregate
and try to find the best compromise in terms of the time needed to execute the
test cases. Keeping this process manual in CI is paradoxical, since every activity
should, in principle, be automated.

Regression testing [28], i.e. the repeated testing of systems after changes
were made, in CI covers a broad area of research works, including automatic
test case generation [9], test suite prioritization and test suite reduction [14].
There, the idea of controlling the time taken by optimization processes in test
suite prioritization is not new [12]. In test suite prioritization, [38] proposed to
use time-aware genetic algorithms to optimize the order in which to execute the
test cases. Zhang et al. further refined this approach in [39] by using integer
linear programming. On-demand test suite reduction [17] also exploits integer
linear programming for preserving the fault-detection capability of a test suite
while performing test suite reduction. Cost-aware methods are also available for
selecting minimal subsets of test cases covering a number of requirements [16,23].
All these approaches participate in a general effort to better control the time
allocated to the optimization algorithms when they are used in CI processes.
Note however that test suite execution scheduling is different to prioritization or
reduction as it deals with the notion of scheduling in time the execution of all
test cases, without paying attention to any prioritization or reduction.

Scheduling problems have been studied in other contexts for decades and
an extensive body of research exists on resource-constrained approaches. The
scheduling domain is divided into distinct areas such as process execution
scheduling in operating systems and scheduling of workforces in a construction
project. The scheduling problem of this paper belongs to a scheduling category
named resource-constrained project scheduling problem (RCPSP; see [7,8,18] for
an extensive overview). RCPSP is concerned with finding schedules for resource-
consuming tasks with precedence constraints in a fixed time horizon, such that
the makespan is minimized [18]. From the angle of RCPSP, global resources can
be expressed as renewable resources which are available with exactly one unit
per timestep and can therefore only be consumed by a single job per timestep.

RCPSP has been addressed by both exact methods [22,30,32,36], as well as
heuristic methods [19,21]. Due to the vast amount of literature, we will focus
on CP/OR-methods most closely related to the work of this paper. The clear
trend in both CP and OR is to solve such problems with hybrid approaches, like,
for instance, the work by Schutt et al. [29] or Beck et al. [3]. Furthermore, dis-
junctive scheduling problems, a subfamily of RCPSP addressing unary resources

390 M. Mossige et al.

(in our terms global resources), have been effectively solved, e.g. by lazy clause
generation [33].

RCPSP is considered to be a generalization of machine scheduling problems
where job shop scheduling (JSS) is one of the best known [20]. JSS is the special
case of RCPSP where each operation uses exactly one resource, and FJSS (flex-
ible job shop scheduling) further extends JSS such that each operation can be
processed on any machine from a given set. The FJSS is known to be NP-hard [4].

While OTS is closely related to FJSS, and efficient approaches to FJSS are
known [6,31], there are some differences. First, in OTS, execution times are
machine-independent. Second, each job in OTS consists of only one operation,
while in FJSS one job can contain several operations, where there are precedences
between the operations. Finally, some operations additionally require exclusive
access to a global resource, preventing overlap with other operations.

3 Problem Modeling

This section contains a formal definition of the OTS problem for test suite execu-
tion on multiple machines with resource constraints. Based on this definition, we
propose a constraint optimization model using Cumulatives global constraint.

3.1 Optimal Test Case Execution Scheduling

Optimal test case scheduling2 (OTS) is an optimization problem
(T ,G,M, d, g, f), where T is a set of n test cases along with a function
d : T −→ N giving each test case a duration di; a set of global resources G
along with a function g : T −→ 2G that describes which resources are used by
each test case; and a set of machines M and a function f : T −→ 2M that
assigns to each test case a subset of machines on which the test case can be
executed. The function d is usually obtained by measuring the execution time of
each test case in previous test campaigns and by over-approximating each dura-
tion to account for small variations between the different execution machines.
OTS is the optimization problem of finding an execution ordering and assign-
ment of all test cases to machines, such that each test case is executed once, no
global resource is used by two test cases at the same time, and the overall test
execution time, Tt, is minimized. We define Tt as the time needed to compute the
schedule (Ts) plus the time needed to execute the schedule (C∗), Tt = Ts + C∗.
Machine assignment and test case execution ordering can be described either by
a time-discretized table containing a line per machine or a starting time for each
test case and its assignment to a given machine.

The problem addressed in this paper aims to execute each test case once
while minimizing the total duration of the execution of the test cases. That is,
to find an assignment a : T −→ M and an execution order for each machine to
run its test cases.

2 OTS was part of the Industrial Modelling Competition at CP 2015.

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 391

In its basic version, the OTS problem includes the following constraints:

Disjunctive Scheduling: Two test cases cannot be executed at the same time
on a single machine.

Non-preemptive Scheduling: The execution of a test case cannot be tem-
porarily interrupted to execute another test case on the same machine.

Non-shared Resources: When a test case uses a global resource, no other test
case needing this resource can be executed at the same time.

Machine-Independent Execution Time: The execution time of a test case is
assumed to be independent of the executing machine. This is reasonable for test
cases in which the time is dominated by external physical factors such as a robot’s
motion, the opening of a valve, or sending an Ethernet frame. Such test cases
typically have execution times that are uncorrelated with machine performance.
In any case, a sufficient over-approximation will satisfy the assumption.

There are cases where OTS can be trivially solved, e.g. with only one machine
executing all test cases in sequence. Indeed, the global execution time remains
unchanged, whatever the execution order. Similarly, when there are no global
resources and when test cases can be executed on any available machine, then
simply allocating the longest test cases first to the available execution machine
easily calculates a best-effort solution.

Example. Considering the test suite in Table 1, we present a small example. Let
T be the test cases {1, . . . , 10}, G be the global resources {1, 2}, and M be the
machines {1, 2, 3}. The machines on which each test case in T can run is given
in Table 1. This table can be extracted by analyzing the test scripts or querying
the test management. By sharing the same resource 1, test cases 2, 3, 4 cannot
be executed at the same time, even if their execution is scheduled on different
machines. Since test case 7 can only be executed on machine 1, test case 8 on
machine 2, test case 9 on machine 3, and test case 10 on machines 1 or 3, we
have to solve a complex scheduling problem. One possible optimal schedule is
given in Fig. 1, where the time needed to execute the test campaign is C∗ = 11.
For this small problem the solving time, Ts, can be assumed to be very short, so
the total execution time will be Tt ≈ C∗.

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1

m. 2

m. 3

test 1 test 7 test 2(res. 1) test 3(res. 1)

test 4(res. 1) test 5 test 6 test 8

test 9 test 10(res. 2)

C∗

Fig. 1. An optimal solution to the scheduling problem given in Table 1. Test cases in
light gray require exclusive access to a global resource

392 M. Mossige et al.

Table 1. Test suite for example.

Test Duration Executable on Use of global resource

1 2 1, 2, 3 -

2 4 1, 2, 3 1

3 3 1, 2, 3 1

4 4 1, 2, 3 1

5 3 1, 2, 3 -

6 2 1, 2, 3 -

7 1 1 -

8 2 2 -

9 3 3 -

10 5 1, 3 2

3.2 The Cumulatives Global Constraint

The Cumulatives global constraint [5] is a powerful tool for modeling cumula-
tive scheduling of multiple operations on multiple machines, where each opera-
tion can be set up to consume a given amount of a resources, and each machine
can be set up to provide a given amount of resources.

Cumulatives([O1, . . . , On], [c1, . . . , cp])3 constrains n operations on p
machines such that the total resource consumption on each machine j does not
exceed the given threshold cj at any time [10]. An operation Oi is typically repre-
sented by a tuple (Si, di, Ei, ri,Mi)4 where Si (resp. Ei) is a variable that denotes
the starting (resp. ending) instant of the operation, di is a constant representing
the total duration of the operation, ri is a constant representing the amount of
resource used by the operation. Si, Ei and Mi are bounded integer variables. Si

and Ei have the domains esti . . . leti, where esti denotes the operation’s earliest
starting time and leti denotes its latest ending time and leti ≥ esti + di. Mi is
bounded by the number of machines available, that is 1, . . . , p. By reducing the
domain of Mi it is possible to force a specific operation to be assigned to only
a subset of the available machines, or even to one specific machine. It is worth
noting that this formalization implicitly uses discrete time instants. Indeed, since
esti and leti are integers, a function associating each time instant to the current
executed operations can automatically be constructed. Formally, if h represents
an instant in time, we have:

rhi =
{
ri if Si ≤ h < Si + di
0 otherwise

3 In [5] an additional third argument to Cumulatives, Op ∈ {≤,≥} is defined. We
omit it throughout our work and always set Op = ≤.

4 Throughout the paper, lower-case characters are used to represent constants and
upper-case characters are used to represent variables.

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 393

Cumulatives holds if and only if, for every operation Oi, Si +di = Ei, and, for
all machines k and instants h,

∑
i|Mi=k r

h
i ≤ ck. In fact, Cumulatives captures

a disjunctive relation between different scenarios and applies deductive reasoning
to the possible values in the domains of its variables. This constraint provides a
cost-effective process for pruning the search space of some impossible schedules.

3.3 Modeling Test Case Execution Scheduling

This section shows how the Cumulatives constraint can be used to model a
schedule. In this small example, we disregard the use of global resources, and the
constraints that some operations can only be executed on a subset of the available
machines, since that will be covered in Sect. 3.4. By the schedule in Fig. 1, we have
ten operations O = {O1, . . . , O10} and three available machines. By encoding
the data from Table 1, we get O1 = (S1, 2, E1, 1,M1), O2 = (S2, 4, E2, 1,M2) . . .,
O10 = (S10, 5, E10, 1,M10), c1 = 1, c2 = 1, c3 = 1. Note that each operation has
a resource consumption of one and all three machines have a resource capacity
of one. This implies that one machine can only execute one operation at a time.
Here, a resource refers to an execution machine and not to a global resource.

3.4 Introducing Global Resources

As mentioned above, global resources corresponding to physical equipment such
as valves, air sensors, measurement instruments, or network devices, have limited
and exclusive access. To avoid concurrent access from two test cases, additional
constraints are introduced. Note that global resources must not be confused with
the resource consumption or resource bounds of operations and machines.

The Cumulatives constraint does not support native modelling of these
global resources without additional, user-defined constraints. However, there are
ways to model exclusive access to such global resources by means of further
constraints. The naive approach to prevent two operations from overlapping
is to consider constraints over the start and stop time of the operations. For
instance, if O1 and O2 both require exclusive access to a global resource, then
the constraint E1 ≤ S2 ∨ E2 ≤ S1 can be added. A less naive approach is to
use a Disjunctive(Ok) constraint per global resource k, where Ok is the set of
tasks that require that global resource, and Disjunctive prevents any pair of
tasks from overlapping.

Referring to the example in Fig. 2, there are ten operations to be scheduled
on three machines, and two global resources, 1 and 2. The basic scheduling con-
straint is set up as explained in Sect. 3.3. Yet another way to model the global
resources is to treat each resource as a new quasi-machine 1′ corresponding to
c1′ = 1 and 2′ corresponding to c2′ = 1. For each operation requiring a global
resource, we create a “mirrored” operation of the corresponding quasi-machine:
O′

1 = {O′
2, O

′
3, O

′
4} and O′

2 = {O′
10}. Finally, we can express the schedule with a

single constraint: Cumulatives(O ∪ O′
1 ∪ O′

2, [c1, c2, c3, c1′ , c2′]). For each oper-
ation in O′

1 and O′
2 we also reuse the same domain variables for start-time,

394 M. Mossige et al.

duration and end-time. The operation O4 will be forced to have the same start-
/end-time as O′

4, while they are scheduled on two different machines 2 and 1′

(Fig. 2).

4 The TC-Sched Method

This section describes our method, TC-Sched, to solve the OTS problem. It is
a time-constrained cumulative scheduling technique, as (1) it allows to keep fine-
grained control over the time allocated to the constraint solving process (i.e.,
time-constrained), (2) it encodes exclusive resource use with constraints (i.e.,
constraint-based), and (3) it solves the problem by using the Cumulatives con-
straint. The TC-Sched method is composed of three elements, namely, the con-
straint model described in Sect. 4.1, the search procedure described in Sect. 4.2,
and the time-constrained minimization process described in Sect. 4.3.

t

1 2 3 4 5 6 7 8 9 10 11 12

m. 1

m. 2

m. 3

m. 1′

m. 2′

test 1 test 7 test 2(res. 1) test 3(res. 1)

test 4(res. 1) test 5 test 6 test 8

test 9 test 10(res. 2)

test 2′(res. 1) test 3′(res. 1)test 4′(res. 1)

test 10′(res. 2)

Fig. 2. Modeling global resources by creating quasi-machines and Cumulatives

4.1 Constraint Model

We encode the OTS problem with one Cumulatives(O, C) constraint, one
Disjunctive(Ok) constraint per global resource k, using the second scheme from
Sect. 3.4, and a search procedure able to find an optimal schedule among many
feasible schedules. Each test case i is encoded as an operation (Si, di, Ei, 1,Mi)
as explained in Sect. 3.2. O is simply the array of all such operations and C is
an array of 1s of length equal to the number of machines. Suppose that there
are three execution machines numbered 1, 2, and 3; then, to say that test i can
be executed on any machine, we just add the domain constraint Mi ∈ {1, 2, 3},
whereas to say that test i can only be executed on machine 1, we replace Mi

by 1. Finally, to complete the model, we introduce the variable MakeSpan rep-
resenting the completion time of the entire schedule and seek to minimize it.
MakeSpan is lower bounded by the ending time of each individual test case. The
generic model is captured by:

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 395

Cumulatives(O, C)∧
∀ global resource k : Disjunctive(Ok)∧
∀ 1 ≤ i ≤ n : Mi ∈ f(i)∧
∀ 1 ≤ i ≤ n : Ei ≤ MakeSpan ∧
Label(Minimize(MakeSpan), [S1,M1, . . . , Sn,Mn])

(1)

Note that the ending times depend functionally on the starting times. Thus, a
solution to the OTS problem can be obtained by searching among the starting
times and the assignment of test cases to execution machines.

4.2 Search Procedure

Our search procedure is called test case duration splitting, and is a branch-and-
bound search that seeks to minimize the Makespan. The procedure makes two
passes over the set of test cases. A key idea is to allocate the most demanding
test cases first. To this end, the test cases are initially sorted by decreasing ri
where ri is the number of global resources used by test case i, breaking ties by
choosing the test case with the longest duration di.

In Phase 1, two actions are performed on each test case. First, in order to
avoid a large branching factor in the choice of start time and to effectively fix
the relative order among the tasks on the same machine or resource, we split
the domain of the start variable, forcing an obligatory part of the corresponding
task, as described in [34, Sect. 3.6]. Next, in order to balance the load on the
machines, we choose machines in round-robin fashion. These two choices are of
course backtrackable, to ensure completeness of the search procedure.

Note that at the end of Phase 1, the constraint system effectively forms a
directed acyclic graph where every node is a task and every arc is a precedence
constraint induced by the relative order. It is well known that such constraint
systems can be solved without search by topologically sorting the start variables
and assigning each of them to its minimal value. This is Phase 2 of the search.

In this procedure, the load-balancing component has shown to be particularly
effective in a CI context and makes the first solution found a good compromise
between solving and execution time of the schedule, which is one of the key fac-
tors in CI. Our preliminary experiments concluded, that the presented strategy
provided the best compromise between cost and solution quality. Furthermore,
we tried a more precise but costlier load-balancing scheme, but it did not signifi-
cantly improve the quality. We also tried to sort the tests by decreasing di·(ri+1),
which did not significantly improve the quality, either.

4.3 Time-Constrained Minimization

The third necessary ingredient of the TC-Sched method is to perform branch-
and-bound search under a time contract. That is, to settle on the schedule with
the shortest MakeSpan found when the time contract ends. When the number
of test cases grows to be several hundred, finding a globally optimal schedule

396 M. Mossige et al.

may become an intractable problem5, but in practical applications it is often
sufficient to find a “best-effort” solution. This leads to the important question
to select the most appropriate contract of time for the minimization process, as
the time used to optimize the schedule is not available to actually execute the
schedule. We address this question in the experimental evaluation.

5 Implementation and Exploitation

This section details our implementation of the TC-Sched method and its inser-
tion into CI. We implemented the TC-Sched method in SICStus Prolog [11].
The Cumulatives constraint is available as part of the clpfd library [10]. The
clpfd library also provides an implementation of the time-constrained branch-
and-bound with the option to express individual search strategy (see Sect. 4.2).
Using clpfd, a generic constraint model for the TC-Sched method is designed,
which takes an OTS problem as input and returns an (quasi-)optimal schedule
(Fig. 3).

TC-Sched
Test case
execution

Repository

m1

mm

Fig. 3. Integration of TC-Sched into a CI process. The test case schedule solved by
TC-Sched is transmitted for execution to the machines in the machine pool, M. The
results including actual test case durations are then feed back into the repository

Since TC-Sched is designed to run as part of a CI process, we describe how it
can be integrated within the CI environment. Because CI environments change
and test cases and agents are constantly added or removed, TC-Sched has to be
provided with a list of test cases and available machines at runtime. Further-
more, an estimation of the test case durations on the available agents has to be
provided. This can either be gathered from historical execution data and then
(over-)estimated to account for differences in execution machines, or, for some
kinds to test suites, they are fixed and can be precisely given [26], e.g. for robotic
applications where the duration is determined by the movement of the robot.

A test campaign in a CI cycle is typically initiated upon a successful build of
the software being tested. As a first step, all machines available for test execu-
tion are identified and updated with the newly built software. Then, TC-Sched

5 The general cumulative scheduling problem is known to be NP-hard [2].

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 397

takes as input the test cases of the test campaign and the previous test case exe-
cution times from the storage repository. After TC-Sched calculated an optimal
schedule, that schedule is handed over to a dedicated dispatch server which is
responsible for distributing the test cases to the physical machines and the actual
execution. Finally, after the test execution finished, the overall result of the test
campaign is reported back to the users and the storage repository is updated
with the latest test case execution times. Of course, minimizing the round-trip
time leads to earlier notifications of the developers in case the software system
fails and helps to improve the development cycle in CI.

6 Experimental Evaluation

This section presents our findings from the experimental evaluation of TC-Sched.
To this end, we address the following three research questions:

RQ1: How does the first solution provided by TC-Sched compare with simpler
scheduling methods in terms of schedule execution time? This research question
states the crucial question of whether using complex constraint optimization is
useful despite simpler approaches being available at almost no cost to implement.
RQ2: For TC-Sched, will an increased investment in the solving time in TC-
Sched reduce the overall time of a CI cycle? This question is about finding the
most appropriate trade-off between the solving time and the execution time of
the test campaign in the proposed approach.
RQ3: In addition to random OTS problem instances, can TC-Sched efficiently
and effectively handle industrial case studies? These cases can lead to structured
problems which exhibit very different properties than random instances.

All experiments were performed on a 2.7 GHz Intel Core i7 processor with
16 GB RAM, running SICStus Prolog 4.3.5 on a Linux operating system.

6.1 Experimental Artifacts

To answer RQ1, we implemented two scheduling methods, referred to as the
random method and the greedy method.

The random method works as follows: It first picks a test case at random
and then picks a machine at random such that no resource constraint is vio-
lated. Finally, the test case is assigned the lowest possible starting time on
the selected machine. The greedy method is more advanced. At first, it assigns
test cases by decreasing resource demands. Afterwards, test cases without any
resource demands are assigned to the remaining machines. For each assignment,
the machine that can provide the earliest starting time is selected. Note that
none of the two methods can backtrack to improve upon the initial solution.

The reason we have chosen to compare with these two methods is threefold:
(1) As explained in Sect. 2, we are not aware of any previously published work
related to test case execution scheduling, which means that there is no baseline
to compare against; (2) From cooperation with our industrial partners, we know

398 M. Mossige et al.

that this is, in the best case, the industrial state of the art (i.e., non-optimal
schedules computed manually); (3) We manually checked the results on simple
schedules and found them to be satisfactory, so they are a suitable comparison.

To answer our research questions, we have considered randomly generated
benchmarks and industrial case studies. Although there are benchmark test
suites for both JSS and FJSS, e.g., [37] or [4], they cannot be used as a com-
parison baseline. Furthermore, as our method approaches testing applications, a
thorough evaluation on data from the target domain is justifiable.

We generated a benchmark library containing 840 OTS instances6. The
library is structured by data collected from three different real-world test suites,
provided by our industrial partners: a test suite for video conferencing systems
(VCS) [24], a test suite for integrated painting systems (IPS) [26], and a test
suite for a mobile application called TV-everywhere.

VCS is a test suite for testing commercial video conferencing systems, devel-
oped by CISCO Systems, Norway. It contains 132 test cases and 74 machines.
The duration of test cases varies from 13 s to 4 h, where the vast majority has a
duration between 100 s and 800 s. The IPS test suite aims at testing a distributed
paint control system for complex industrial robots, developed at ABB Robotics,
Norway. It contains 33 test cases, with duration ranging from 1 s to 780 s, and 16
distinct machines. There are two global resources for this test suite, an airflow
meter and a simulator for an optical encoder. TV-everywhere is a mobile appli-
cation that allows users to watch TV on tablets, smart phones, and laptops. Its
test suite only contains manual test cases, but, in our benchmark, it serves as
a useful example of a test suite with a large number of constraints limiting the
number of possible machines for each test case.

Based on data from the three industrial test suites, we composed 14 groups
of test suites, denoted TS1-TS14, with randomized assignments of test cases to
machines and exclusive usages of global resources. Let |T | be the number of test
cases, and |M | be the number of machines, and |R| = {3, 5, 10} be the number
of resources. Table 2 gives an overview of the groups of test suites. For test suite
TSx, we write TSxR3, TSxR5, or TSxR10 to indicate the number of resources.

For each of the 14 ·3 variants, we generated 20 random test suites. The dura-
tion of each test case was chosen randomly between 1 s and 800 s, and each test
case had a 30% chance of using a global resource. The number of resources was
chosen randomly between 1 and |R|. A total of 80% of the tests were considered
to be executable on all machines, while the remaining 20% were executable on
a smaller subset of machines. For these tests, the number of machines on which
each test case could be executed was selected randomly between 1% and 40% of
the number of available machines. This means that a test case was executable
either on all machines (part of the 80% group) or only on at most 40% of the
machines. In total, we generated 14 · 3 · 20 = 840 different test suites.

6 All generated instances are available in CSPLib, a library of test problems for con-
straint solvers [25].

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 399

6.2 RQ1: How Does TC-Sched Compare with Simpler Scheduling?

To compare our TC-Sched method with the greedy and random methods, we
recorded the first solution, C∗

f , found by TC-Sched. We also recorded the last
solution, C∗

l . This is either a proved optimal solution, or the best solution
found after 5 min of solving time. For each of the 840 test suites, we computed
the differences between the random and greedy , C∗

f and greedy , and C∗
l and

greedy , where greedy is the baseline of 100%. The results show that random is
30%–60% worse than greedy , which means that random can clearly be discarded
from further analysis. Our findings are summarized in Fig. 4, showing the dif-
ference between TC-Sched and greedy . For all test suites but the hardest subset
of TS1 and some instances of TS2, C∗

f is better than greedy . We also observe
that for larger test suites, i.e., TS11–TS14, there is only a marginal difference
between C∗

f and C∗
l . Hence, running the solver for a longer time has only little

benefit.
Furthermore, to evaluate the effectiveness of the test case duration splitting

search strategy, we compared it to standard strategies available in SICStus Pro-
log’s clpfd with the same constraint model on the test suites TS1 and TS14.
The search first enumerates on the machine assignments increasingly, i.e. with-
out load-balancing, and afterwards assigns end times via domain splitting by
bisecting the domain, starting from the earliest end times. As variable selection

TS1

R3 5 10

TS2

R3 5 10

TS3

R3 5 10

TS4

R3 5 10

TS5

R3 5 10

TS6

R3 5 10

TS7

R3 5 10

TS8

R3 5 10

TS9

R3 5 10

TS10

R3 5 10

TS11

R3 5 10

TS12

R3 5 10

TS13

R3 5 10

TS14

R3 5 10

80

100

120

D
iff

e
re

n
c
e

fr
o
m

g
re
ed

y
[%

]

Fig. 4. The differences in schedule execution times produced by the different methods
for test suites TS1–TS14, with greedy as the baseline of 100%. The blue is the difference
between the first solution C∗

f and greedy and the red shows the difference between the
final solution C∗

l and greedy . (Color figure online)

Table 2. Randomly generated test suites.

machines # of tests

20 30 40 50 100 500

100 - - - - - TS11

50 - - - - TS8 TS12

20 - TS2 TS4 TS6 TS9 TS13

10 TS1 TS3 TS5 TS7 TS10 TS14

400 M. Mossige et al.

strategies, we tested both the default setting, selecting the leftmost variable, and
a first-fail strategy, selecting the variable with the smallest domain. Additionally,
we tried sorting the variables by decreasing resource usage.

All variants of the standard searches performed substantially worse than
test case duration splitting, with first-fail search on sorted variables being the
best. After finding an initial solution, further improvements are rare and the
makespan of the final solution is in average 4 times larger compared to using
test case duration splitting with the same time contract of 5 min.

6.3 RQ2: Will Longer Solving Time Reduce the Total Execution
Time?

RQ2 aims at finding an appropriate trade-off between the time spent in solving
the constraint model, Ts, and the time spent in executing the schedule, C∗. As
mentioned in Sect. 1, the round-trip time is critical in CI and has to be kept
low. It is therefore crucial to determine the most appropriate timeout for the
constraint optimizer. The ultimate goal being to generate a schedule which is
quasi-optimal w.r.t. total execution time, Tt = Ts + C∗.

As mentioned above, TC-Sched can be given a time-contract for finding a
quasi-optimal solution when minimizing the execution time of the schedule. More
precisely, with this time-constrained process four outcomes are possible.

No Solution with Proof : TC-Sched proves that the OTS problem has no
solution due to unsatisfiable constraints.

No Solution Without Proof : TC-Sched was not able to find a solution within
the given time. Thus, there could be a solution, but it has not been found.

Quasi-Optimal Solution: At the end of the time-contract, a solution is
returned, but TC-Sched was interrupted while trying to prove its optimality.
Such a best-effort solution is usually sufficient in the examined industrial set-
tings.

Optimal Solution: Before the end of the time-contract, TC-Sched returns an
optimal solution along with its proof. This is obviously the most desired result.

Each solution i generated by TC-Sched can be represented by a tuple
(C∗

i , Ts,i) where C∗
i is the makespan of solution i and Ts,i is the time the solver

spent finding solution i. The goal of RQ2 is to find the value of Ts,i that mini-
mizes (C∗

i + Ts,i),∀ i and use this value as the time-contract.
To answer RQ2, we executed TC-Sched on all 840 test suites, with a time-

contract of 5 min. During this process, we recorded all intermediate search results
to calculate the optimal value of Ts for each test suite.

Figure 5 shows the distribution in solving time for the first solution found by
TC-Sched, the last solution and also how the optimal value of Ts is distributed.
For the group of 600 test suites containing up to 100 test cases (TS1–TS10), the
results show that a solution that minimizes the total execution time, noted Tt,
is found in Ts < 5 s for 96.8% of the test suites. If we extend the search time to
Ts < 10 s, the number grows to 98% of the test suites. For this group, the worst

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 401

case optimal solving time was Ts = 122.3 s. We see that a solution is always
found in less than 0.1 s. For the group of 240 test suites containing 500 test cases
(TS11–TS14), the results show that a solution that minimizes Tt is found in
Ts < 120 s for 97.5% of the test suites. A solution minimizing Tt is found in less
than 240 s for all test suites, except one instance with Tt = 264 s.

TS1

R3 R5 R10

TS2

R3 R5 R10

TS3

R3 R5 R10

TS4

R3 R5 R10

TS5

R3 R5 R10

TS6

R3 R5 R10

TS7

R3 R5 R10

0.1

1

S
o
lv

in
g

ti
m

e
T
s

[s
]

TS8

R3 R5 R10

TS9

R3 R5 R10

TS10

R3 R5 R10

TS11

R3 R5 R10

TS12

R3 R5 R10

TS13

R3 R5 R10

TS14

R3 R5 R10

1

10

60

500

S
o
lv

in
g

ti
m

e
T
s

[s
]

Fig. 5. The black boxes show the distribution in solving time, Ts, for the first solution
found by TC-Sched. The blue boxes show the distribution in Ts where the total execu-
tion time, Tt, is optimal. Finally, the red boxes show the distribution in Ts for the last
solution found by TC-Sched, which can be the optimal value or the last value found
before timeout. The timeout was set to 5 min. (Color figure online)

An increased investment in the solving part does not seem to necessarily pay
off if one considers the total execution time. The reported experiments give hints
to evaluate and select the optimal test contract for the solving part.

6.4 RQ3: Can TC-Sched Efficiently Solve Industrial OTS Problems?

To answer RQ3, we consider two of the three industrial case studies, namely,
IPS and VCS. These case studies are composed of automated test scripts, which
makes the application of the TC-Sched method especially pertinent.

In both case studies, the guaranteed optimal solution is already found as
the first solution in less than 200 ms. This avoids the necessity to compromise
between C∗ and Ts for these industrial applications.

When applying TC-Sched to the IPS test suite, we find the optimal solution,
C∗ = 780 s, at Ts = 10 ms. For the VCS test suite, the optimal solution, C∗ =
14637 s is found at Ts = 160 ms.

In summary, TC-Sched can easily be applied to both VCS and IPS, and in
both cases, the best result is achieved when C∗ is minimized and Ts is neglected.

402 M. Mossige et al.

7 Conclusion

This paper introduced TC-Sched, a time-aware method for solving the optimal
test suite scheduling (OTS) problem, where test cases can be executed on multi-
ple execution machines with non-shareable global resources. TC-Sched exploits
the Cumulatives global constraint and a time-aware minimization process, and
a dedicated search strategy, called test case duration splitting. To our knowledge,
the OTS problem is rigorously formalized for the first time and a method is pro-
posed to solve it in CI applications. An experimental evaluation performed over
840 generated test suites revealed that TC-Sched outperforms simple scheduling
methods w.r.t. total execution time. More specifically, we showed that automatic
optimal scheduling of 500 test cases over 100 machines is reachable in less than
4 min for 99.5% instances of the problem. By considering trade-offs between the
solving time and the total execution time, the evaluation allowed us to find the
best compromise to allocate time-contracts to the solving process. Finally, by
using TC-Sched with two industrial test suites, we demonstrated that finding
the guaranteed optimal test execution time is possible and that TC-Sched can
effectively solve the OTS problem in practice.

Further work includes consideration of test case priorities, non-unitary share-
able global resources, as well as explicit symmetry breaking in the model. Addi-
tional evaluation and comparison against heuristic methods, such as evolutionary
algorithms, or Mixed-Integer Linear Programming could extend the presented
work and support the integration of TC-Sched in practical CI processes.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Modell. 17(7), 57–73 (1993)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Busi-
ness Media, Berlin (2001)

3. Beck, J.C., Feng, T.K., Watson, J.P.: Combining constraint programming and local
search for job-shop scheduling. INFORMS J. Comput. 23(1), 1–14 (2011)

4. Behnke, D., Geiger, M.J.: Test instances for the flexible job shop scheduling prob-
lem with work centers. Technical report RR-12-01-01, Helmut-Schmidt University,
Hamburg, Germany (2012)

5. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 63–79.
Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3 5

6. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search.
Ann. Oper. Res. 41(3), 157–183 (1993)

7. Brucker, P., Knust, S.: Complex Scheduling (GOR-Publications). Springer-Verlag
New York Inc., Secaucus (2006)

8. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models, and methods. Eur. J. Oper.
Res. 112(1), 3–41 (1999)

http://dx.doi.org/10.1007/3-540-46135-3_5

Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems 403

9. de Campos, J., Arcuri, A., Fraser, G., de Abreu, R.: Continuous test generation:
enhancing continuous integration with automated test generation. In: ASE 2014,
Väster̊as, Sweden, pp. 55–66 (2014)

10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). doi:10.1007/BFb0033845

11. Carlsson, M., et al.: SICStus Prolog user’s manual, release 4. Technical Report,
SICS - Swedish Institute of Computer Science (2007)

12. Do, H., Mirarab, S., Tahvildari, L., Rothermel, G.: The effects of time constraints
on test case prioritization: a series of controlled experiments. IEEE Trans. Soft.
Eng. 36(5), 593–617 (2010)

13. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Pearson Education, London (2007)

14. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing
in continuous integration development environments. In: FSE 2014 (2014)

15. Fowler, M., Foemmel, M.: Continuous integration (2006). http://martinfowler.
com/articles/continuousIntegration.html

16. Gotlieb, A., Marijan, D.: Flower: optimal test suite reduction as a network maxi-
mum flow. In: ISSTA 2014, San José, CA, USA, pp. 171–180 (2014)

17. Hao, D., Zhang, L., Wu, X., Mei, H., Rothermel, G.: On-demand test suite reduc-
tion. In: ICSE 2012, pp. 738–748 (2012)

18. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

19. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics
for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127(2),
394–407 (2000)

20. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project
scheduling: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302
(1998)

21. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

22. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer,
Cham (2015). doi:10.1007/978-3-319-23219-5 19

23. Lin, C., Tang, K., Kapfhammer, G.: Test suite reduction methods that decrease
regression testing costs by identifying irreplaceable tests. Inf. Softw. Technol. 56,
1322–1344 (2014)

24. Marijan, D., Gotlieb, A., Sen, S.: Test case prioritization for continuous regression
testing: an industrial case study. In: ICSM 2013, Eindhoven, The Netherlands
(2013)

25. Mossige, M.: CSPLib problem 073: test scheduling problem. http://www.csplib.
org/Problems/prob073

26. Mossige, M., Gotlieb, A., Meling, H.: Using CP in automatic test generation for
ABB robotics’ paint control system. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol.
8656, pp. 25–41. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 6

27. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:
FOSE 2014, Hyderabad, India, pp. 117–132 (2014)

28. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-
tems. In: FSE 2014, pp. 241–251. ACM Press, Newport Beach (2004)

http://dx.doi.org/10.1007/BFb0033845
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://dx.doi.org/10.1007/978-3-319-23219-5_19
http://www.csplib.org/Problems/prob073
http://www.csplib.org/Problems/prob073
http://dx.doi.org/10.1007/978-3-319-10428-7_6

404 M. Mossige et al.

29. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–
761. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7 58

30. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29828-8 24

31. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 47

32. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. J. Sched. 16(3), 273–289 (2013)

33. Siala, M., Artigues, C., Hebrard, E.: Two clause learning approaches for disjunctive
scheduling. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 393–402. Springer,
Cham (2015). doi:10.1007/978-3-319-23219-5 28

34. Simonis, H., O’Sullivan, B.: Search Strategies for rectangle packing. In: Stuckey,
P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85958-1 4

35. Stolberg, S.: Enabling agile testing through continuous integration. In: AGILE
2009, pp. 369–374. IEEE (2009)

36. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained
project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 31

37. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

38. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Time-aware test suite
prioritization. In: ISSTA 2006, Portland, Maine, USA, pp. 1–12 (2006)

39. Zhang, L., Hou, S., Guo, C., Xie, T., Mei, H.: Time-aware test-case prioritization
using integer linear programming. In: ISSTA 2009, Chicago, IL, USA, pp. 213–224
(2009)

http://dx.doi.org/10.1007/978-3-642-04244-7_58
http://dx.doi.org/10.1007/978-3-642-29828-8_24
http://dx.doi.org/10.1007/978-3-642-40627-0_47
http://dx.doi.org/10.1007/978-3-319-23219-5_28
http://dx.doi.org/10.1007/978-3-540-85958-1_4
http://dx.doi.org/10.1007/978-3-540-85958-1_4
http://dx.doi.org/10.1007/978-3-319-44953-1_31

Integrating ILP and SMT for Shortwave Radio
Broadcast Resource Allocation and Frequency

Assignment

Linjie Pan1,4, Jiwei Jin6, Xin Gao2, Wei Sun5, Feifei Ma1,3,4(B),
Minghao Yin2(B), and Jian Zhang1,4

1 State Key Laboratory of Computer Science,
Institute of Software Chinese Academy of Sciences, Beijing, China

maff@ios.ac.cn
2 College of Computer Science, Northeast Normal University, Changchun, China

ymh@nenu.edu.cn
3 Laboratory of Parallel Software and Computational Science,

Institute of Software Chinese Academy of Sciences, Beijing, China
4 University of Chinese Academy of Sciences, Beijing, China

5 Administration Bureau of Radio Stations, State Administration of Press,
Publication, Radio, Film and Television of the People’s Republic of China,

Beijing, China
6 Shan Dong Jiaotong University, Jinan, China

Abstract. Shortwave radio broadcasting is the principal way for broad-
casting of voice in many countries. The broadcasting quality of a radio
program is determined not only by the parameters of the transmission
device, but also by the radio frequency. In order to optimize the over-
all broadcasting quality, it is desirable to designate both devices and
frequencies to radio programs, subject to various constraints including
the non-interference of radio programs. In this paper, we propose a two-
phase approach to this constrained optimization problem. It integrates
ILP and SMT solving, as well as a local search algorithm. These methods
are evaluated using real data, and the results are promising.

Keywords: Integer Linear Programming · Satisfiability modulo
theories · Shortwave radio broadcast

1 Introduction

Shortwave radio is a significant medium in long distance broadcasting transmis-
sion, which uses shortwave frequencies ranging from 2 to 30 megahertz(MHz). [5]
introduced the history of shortwave radio broadcasting. Nowadays, it remains
the principal way for broadcasting of voice in many countries. There are various
factors affecting the broadcasting quality of shortwave radio programs. How to
arrange these factors properly is critical to shortwave broadcasting.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 405–413, 2017.
DOI: 10.1007/978-3-319-66158-2 26

406 L. Pan et al.

In the past, the staff with the Division of Radio Frequency Assignment
of State Administration of Press,Publication,Radio,Film and Television (SAP-
PRFT) of the People’s Republic of China have been managing the allocation
of broadcast resource manually. In [10], Ma et al. studied the shortwave radio
broadcast resource allocation problem (SRBRA), which concerns how to allocate
proper transmission devices to radio programs so that the overall broadcasting
quality is optimized. They proved the NP-hardness of the SRBRA problem, and
proposed a Pseudo-Boolean formulation and a local search algorithm.

In the SRBRA problem [10], the frequencies for the programs were assigned
in advance. In real applications, it may be necessary to find a suitable frequency
for each program, without introducing any interference among the programs. The
frequency assignment problem (FAP) is another important problem in broadcast-
ing transmission [1]. In the literature, FAP has been solved via several kinds of
techniques, such as CSP and Local Search [8,9,11]. But in our application, FAP
interleaves with broadcast resource allocation, hence cannot be solved separately.
Thus we extend the SRBRA problem further to embody frequency assignment.
In [10], only 87 programs were used in the empirical evaluation. (There are 87
programs in a single region.) But in total, there are 948 programs, if all regions
are considered. This paper tries to deal with such challenges and investigates
new approaches to the extended SRBRA problem.

The contributions of this paper include (1) extending the SRBRA problem
to the Shortwave Radio Broadcast Resource Allocation and Frequency Assign-
ment Problem (SRBRAFA), which involves both device allocation and frequency
assignment, and (2) developing a two-phase approach to the SRBRAFA problem
which integrates Integer Linear Programming (or local search) with Satisfiability
Modulo Theories (SMT) [4]. Our methods are evaluated using real data from
SAPPRFT, and the results are promising.

2 Problem Description

Given a set of programs P = {P1, P2, ..., Pn}, a set of transmission devices D =
{D1,D2, ...,Dm}, and a set of frequencies F = {F1, F2, ..., Fl}, the SRBRAFA
problem involves allocating devices and assigning frequencies to programs, and
maximizing the broadcasting quality. It is an extension of the SRBRA problem
which only allocates devices to programs [10]. We use Ai = <Pi,Dj , Fk> to
represent the allocation of device Dj and frequency Fk to program Pi. The
allocations should not conflict with each other or interfere with each other.

Conflicting Allocations. A program, which has predetermined target area
and time span, can only be transmitted with one device and one frequency.
If two programs Pi and Pj overlap by the broadcasting time span, then they
are called overlapping programs, denoted by overlap(Pi, Pj). A transmission
device is assembled by a transmitter and an antenna. If two devices Di and Dj

share the same transmitter or antenna, then they are called conflicting devices,
denoted by conflict(Di,Dj). For any two allocations Ai = <Pi,Dj , Fk> and

Integrating ILP and SMT for SRBRA and Frequency Assignment 407

Ai′ = <Pi′ ,Dj′ , Fk′>, if overlap(Pi, Pi′) and conflict(Dj ,Dj′) hold, then they
are called conflicting allocations.

Interfering Allocations. The broadcasting quality of an allocation at a mon-
itoring site is measured by field strength and circuit reliability. Their values can
be calculated through dedicated programs such as REC533 [2] or VOACAP [3].
The broadcasting quality at a monitoring site is considered to be acceptable by
the SAPPRFT if the field strength is above 38 dB. The site is qualified if the
field strength is above 55 dB and the circuit reliability is above 70%. Suppose
that there are two allocations Ai and Ai′ , they have a monitoring site in common
and the field strengths at the site are both acceptable. If the absolute difference
between the field strengths of these two allocations is less than 18 dB, and the
absolute difference of their frequencies is no larger than 5 kHz, then the two
allocations will interfere each other and weaken the broadcasting quality.

Bands and Frequencies. A band is a frequency interval, denoted by B with
subscript. According to the requirement of SAPPRFT, frequencies in the same
band have equivalent quality in broadcasting.

Diplomatic Programs. Besides the domestic program broadcasted by the
SAPPRFT of China, there are also diplomatic programs broadcasted by other
countries and regions with the fixed devices and frequencies. Unless otherwise
specified, the term program is referred to as domestic program in this paper.

Optimization Goal. For an allocation <Pi,Dj , Fk>, if at least 60% of the
sites in the target area of Pi (Ri) are acceptable, then the allocation is admis-
sible. We use N<i,j,k> to represent the number of qualified sites in Ri. The
optimization goal of the SRBRAFA problem is to maximize the total coverage
rate (

∑
Pi∈P N<i,j,k>/|Ri|) in the target areas of all programs. In [10], Ma et al.

use the total number of qualified sites as the optimization goal. One drawback
of this objective function is that the programs with large target areas will domi-
nate those with small target areas. However, according to the Division of Radio
Frequency Assignment of SAPPRFT, all programs are equally important. So we
use the total coverage rate as the optimization goal in this paper.

In summary, the SRBRAFA problem can be defined in the following way.

Definition 1. (The Shortwave Radio Broadcast Resource Allocation and Fre-
quency Assignment Problem (SRBRAFA)). Given n radio programs, m trans-
mission devices and l frequencies, for each program Pi select a device Dj and a
frequency fk such that:

– The allocation <Pi,Dj , Fk> is admissible.
– For any two allocations Ai and Aj, Ai and Aj don’t conflict with each other.
– For any two allocations Ai and Aj, Ai and Aj don’t interfere with each other.
– The total coverage rate (

∑
Pi∈P N<i,j,k>/|Ri|) is maximized.

Since the decision version of the SRBRA problem, which is proved to be NP-
complete [10], is a special case of the decision version of the SRBRAFA problem,
the SRBRAFA problem is NP-hard.

408 L. Pan et al.

3 The Two-Phase Approach

3.1 The Framework

In the previous section, we know that the broadcasting quality, i.e. field strength
and circuit reliability is determined by device and band, not by frequency. This
observation motivates us to use band instead of frequency for assignment in the
first phase. After the allocations of devices and the assignments of bands, we will
assign frequencies with consideration for interference. There are two advantages
to the two-phase approach. Firstly, since it uses band instead of frequency in
the first phase, the number of variables and constraints in the model is reduced.
Secondly, it only takes consideration of interference in the second phase which
means the number of allocation pairs which are potentially interfering is reduced.

Fig. 1. The framework of the two-phase approach

The framework of the two-phase approach is shown in Fig. 1. In phase 1, an
ILP-based method and a local search method are designed to solve problems
under different scopes. They allocate one device and assign one band to each
program, assuring no conflicting allocation exists and the total coverage rate
is maximized. In phase 2, the algorithm constructs an SMT model based on
the results of phase 1 to assign frequencies to programs with the condition that
interference is not admitted. If a solution is found, it will be returned as the final
solution. Otherwise, a new constraint representing that the previous results is not
allowed will be added to phase 1 to avoid being stuck on these false allocations.
The process repeats until the algorithm gets a final solution or no solution if the
model of phase 1 is unsatisfiable.

3.2 Phase 1: Device Allocation and Band Assignment

The ILP Model. We first introduce two sets of 0–1 integer variables {Yi,j} and
{Zi,k} to indicate whether device Dj and band Bk is allocated to program Pi

respectively. For clarity, we also introduce two sets QYi and QZi to represent
available devices and bands for program Pi respectively:

QYi = {j|∃k, allocation <Pi,Dj , Bk> is admissible}
QZi = {k|∃j, allocation <Pi,Dj , Bk> is admissible}

Integrating ILP and SMT for SRBRA and Frequency Assignment 409

Recall that N<i,j,k> is the number of qualified sites, the objective function
is as follows (quadratic):

Maximize
∑

Pi∈P

∑

j∈QYi

∑

k∈QZi

(N<i,j,k>/|Ri| × Yi,j × Zi,k) (1)

There are two kinds of linear integer constraints. One represents that one
program is allocated only one device and is assigned only one band:

∑

j∈QYi

Yi,j = 1, ∀Pi ∈ P (2)

∑

k∈QZi

Zi,k = 1, ∀Pi ∈ P (3)

The other represents that no conflicting allocation is allowed.

Yi,u + Yj,v ≤ 1, ∀overlap(Pi, Pj), conflict(Du,Dv), u ∈ QYi, v ∈ QYj (4)

The objective function (1) is a quadratic objective. In order to improve the
performance of the approach, we rewrite it to a linear objective by introduc-
ing a set of variables {Xi,j,k} to indicate whether device Dj and frequency Fk

are allocated to Pi. We introduce Qi to represent all pairs <j, k> which make
allocation <Pi,Dj , Bk> admissible for Pi:

Qi = {<j, k>|allocation <Pi,Dj , Bk> is admissible}
The linear objective is as follows (linear):

Maximize
∑

Pi∈P

∑

<j,k>∈Qi

(N<i,j,k>/|Ri| × Xi,j,k) (5)

In order to build connection between the two groups of variables, we need
the following constraints to represent Xi,j,k ↔ Yi,j ∧ Zi,k:

Yi,j + Zi,k − Xi,j,k ≤ 1, ∀ <j, k> ∈ Qi (6)
Zi,k − Xi,j,k ≥ 0, ∀ <j, k> ∈ Qi (7)
Yi,j − Xi,j,k ≥ 0, ∀ <j, k> ∈ Qi (8)

The Local Search Method. The local search method is an extension to the
one in [10], which only allocates devices to programs. We modify the search
procedure for device allocation and band assignment.

The local search method introduced in [10] consists of three steps, i.e. Con-
struct, Swap and Substitute. Band assignment is completed in the process
of Construct. For each unassigned program Pi, if <Pi,Dj , Bk> is admissible,
then we assign the band Bk and Dj to Pi so that N<i,j,k> is maximized and
<Pi,Dj , Bk> is consistent with the solution S. That is to say, we apply a greedy
strategy in band assignment. Similarly, in the process of Swap and Substitute,
if we allocate a new device to a program, then we choose the band which can
maximize the coverage rate of the program.

410 L. Pan et al.

3.3 Phase 2: Frequency Assignment

In Phase 2, we determine the frequencies of the programs on the basis of the
band assignment in Phase 1. The potential interfering program pairs (denoted
by IP (Pi, Pj)) can be derived from the result of Phase 1. Suppose Pi and Pj

are a pair of such programs, whose frequencies are denoted by FPi
and FPj

respectively. Generally, the domain of frequency is limited to the multiples of
five, such as 6015 kHz and 7200 kHz. In order to avoid interference between Pi

and Pj , the difference between FPi
and FPj

should be larger than 5, or formally:

FPi
− FPj

> 1 ∨ FPj
− FPi

> 1, ∀IP (Pi, Pj), Pi ∈ P, Pj ∈ P (9)

Note that the difference of frequency between interfering programs is larger than
1 instead of 5 since we divide the value of frequency by 5 in calculation.

Recall that there are diplomatic programs with fixed devices and frequencies.
In order to deal with the interference of such programs, we divide the band of
a program into several domains. Suppose that the band assigned to program Pi

is [7000, 7040]. In order to prevent interference from a diplomatic program with
frequency 7020 kHz, FPi

should be greater than 7025 kHz or less than 7015 kHz.
As a result, the domain of FPi

is divided into two intervals, [7000, 7010] and
[7030, 7040]. We denote the collection of the domains for FPi

by Ci. Each C ∈ Ci

is an interval [f, f ′] of frequencies. The following constraint ensures that FPi

should fall in one of these intervals.
∨

C∈Ci

f ≤ Fpi
≤ f ′, ∀Pi ∈ P (10)

The above constraints naturally form an SMT formula on difference logic
(SMT(DL)). If the SMT formula is unsatisfiable, it suggests that the allocations
in Phase 1 would inevitably lead to interference. By extracting the unsatisfiable
core of the SMT formula, we can identify the allocations responsible for this
inconsistency. Suppose FUC is the set of frequency variables involved in the
unsatisfiable core, then X IC = {Xi,j,k|FPi

∈ FUC ,Xi,j,k = 1} is the set of
allocations with interference. In order to avoid the same inconsistency, we add
the following constraint to the ILP model:

∑

Xi,j,k∈X IC

Xi,j,k ≤ |X IC | − 1 (11)

This trick also applies to the local search procedure by adding the unsat core to
a taboo list.

4 Experimental Results and Analysis

This section evaluates the proposed approach on the entire data set of the Divi-
sion of Radio Frequency Assignment of SAPPRFT. There are 948 programs
in total. The total number of transmission devices is 7061, on the premise that

Integrating ILP and SMT for SRBRA and Frequency Assignment 411

the transmitters and antennas located in the same shortwave radio station can
be fully connected. However, due to the limitation of the current circuits, only
873 devices are available in practice. So our experiments were conducted on two
sets of devices: the practical devices, and the fully connected devices. We employ
CPLEX [6] as the ILP solver, and Z3 [7] for SMT solving. All instances are avail-
able on the website1. The experiments were performed in windows 7 on 2.8 GHz
Intel processor with 16 GB RAM.

Tables 1 and 2 show the comparison of ILP against local search (LS) in Phase
1, on the instances with practical devices, and the instances with fully connected

Table 1. Experimental results on the practical devices

|P| |D| ILP Local search

Obj Time(s) Max(avg) Time(s)

100 100 0.706 1.201 0.651(0.632) 0.06

100 200 0.763 1.716 0.699(0.682) 0.01

200 100 - 2.59 - -

200 200 0.716 7.769 - -

200 300 0.802 7.191 0.707(0.697) 0.01

300 200 - 9.797 - -

300 300 0.795 21.403 - -

300 400 0.855 24.944 0.741(0.730) 0.03

400 300 0.753 39.281 - -

400 400 0.836 57.346 - -

400 500 0.851 50.576 0.711(0.702) 0.05

500 400 0.810 111.478 - -

500 500 0.835 88.499 0.692(0.676) 5.84

500 600 0.850 82.977 0.715(0.702) 0.12

600 500 0.823 153.661 - -

600 600 0.844 135.736 - -

600 700 0.856 126.439 0.713(0.70) 0.2

700 600 0.841 240.039 - -

700 700 0.855 186.952 0.707(0.701) 0.19

700 800 0.870 250.569 0.717(0.711) 0.28

800 700 0.849 248.26 0.708(0.693) 0.24

800 800 0.863 333.359 0.719(0.709) 0.27

800 873 0.869 385.182 0.726(0.715) 0.36

948 800 0.847 447.145 0.703(0.690) 0.7

948 873 0.854 599.059 0.707(0.696) 0.86

1 http://lcs.ios.ac.cn/∼maff/.

http://lcs.ios.ac.cn/{~}maff/

412 L. Pan et al.

Table 2. Experimental results on the fully connected devices

|P| |D| ILP Local search

Obj Time(s) Max(avg) Time(s)

100 1000 0.663 63.679 - -

200 2000 0.790 387.148 0.624(0.611) 0.87

300 3000 0.788 1567.12 0.606(0.590) 0.43

400 4000 OM OM 0.596(0.587) 0.71

500 5000 OM OM 0.702(0.693) 1.19

600 6000 OM OM 0.701(0.693) 2.07

700 7000 OM OM 0.713(0.703) 3.23

948 7061 OM OM 0.694(0.684) 4.6

devices respectively. Since all instances are solved in a single iteration of the
two phases, and Phase 2 only took less than one second, we only perform the
comparison for Phase 1. The instances in Table 1 are randomly taken from 948
programs and 873 practical devices. In Table 2, the instances are randomly taken
from 948 programs and 7061 fully connected devices. For clarity, the obj shown
in the table is the average of coverage rate rather than the sum of coverage rate.
The time limit for LS is 10 s and for CPLEX is 3600 s. The LS method is executed
10 times for each instance, and both the maximum and average rates are listed.
The average time for LS to reach a locally optimal solution is also listed. The
symbol - indicates the instance has no solution, or LS failed to find a solution,
and OM indicates that CPLEX ran out of memory.

We can observe from Table 1 that CPLEX can solve all these instances within
10 min. By constrast, LS failed on nearly half of the instances. For the rest, the
coverage rates provided by LS is less optimal than CPLEX, but the time for LS
to find the locally optimal solution within the time limit is always less than 1
second. The reason for the unsatisfactory performance of LS on these instances
is that the ratios of the numbers of programs to the numbers of devices are
much larger than those in [10], making it very hard for a stochastic algorithm to
find a legal solution. In Table 2, there are much more devices in each instance.
CPLEX ran out of memory for the larger instances, while LS can always provide
a solution very quickly for most of the instances besides the first one.

5 Conclusions

In this paper, we studied the SRBRAFA problem. We proposed a two-phase
approach integrating ILP (or local search) with SMT to solve the problem. The
approach is evaluated using real data from the Division of Radio Frequency
Assignment of SAPPRFT, and the results are promising. In the current artificial
plan, the average coverage rate is only 0.534, and there are as many as 40 pairs

Integrating ILP and SMT for SRBRA and Frequency Assignment 413

of interfering programs. By contrast, we can achieve the optimal coverage rate
0.854 with CPLEX, and 0.696 with local search. Moreover, no interference exists.

Overall, the ILP method can solve the current problem of SAPPRFT com-
pletely. It achieves optimal solution for real-world instances with practical
devices (up to 873 devices). But on instances with fully connected devices (up to
7061 devices), ILP doesn’t scale and we use local search as an alternative. In the
future, our aim is to solve larger-scale instances with better approach.

Acknowledgements. The authors are supported in part by the CAS/SAFEA Inter-
national Partnership Program for Creative Research Teams and the National Science
Foundation of China under Grant 61370156. Besides, we are grateful to the anonymous
reviewers for their helpful comments.

References

1. Frequency Assignment Problem. http://fap.zib.de/
2. General information on the REC533 propagation prediction model. http://www.

voacap.com/itshfbc-help/rec533-general.html
3. VOACAP Quick Guide. http://www.voacap.com
4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-

ries. Handb. Satisf. 185, 825–885 (2009)
5. Conrad, F.: Short-wave radio broadcasting. Proc. Inst. Radio Eng. 12(6), 723–738

(1924)
6. ILOG CPLEX 11.0 users manual. ILOG S.A., Gentilly, France, p. 32 (2007)
7. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

8. Hao, J.-K., Dorne, R., Galinier, P.: Tabu search for frequency assignment in mobile
radio networks. J. Heuristics 4(1), 47–62 (1998)

9. Idoumghar, L., Debreux, P.: New modeling approach to the frequency assignment
problem in broadcasting. IEEE Trans. Broadcast. 48(4), 293–298 (2002)

10. Ma, F., Gao, X., Yin, M., Pan, L., Jin, J., Liu, H., Zhang, J.: Optimizing shortwave
radio broadcast resource allocation via pseudo-boolean constraint solving and local
search. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 650–665. Springer,
Cham (2016). doi:10.1007/978-3-319-44953-1 41

11. Yokoo, M., Hirayama, K.: Frequency assignment for cellular mobile systems using
constraint satisfaction techniques. In: Proceedings of the IEEE Vehicular Technol-
ogy Conference, vol. 2, pp. 888–894 (2000)

http://fap.zib.de/
http://www.voacap.com/itshfbc-help/rec533-general.html
http://www.voacap.com/itshfbc-help/rec533-general.html
http://www.voacap.com
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-44953-1_41

Constraint-Based Fleet Design Optimisation
for Multi-compartment Split-Delivery Rich

Vehicle Routing

Tommaso Urli(B) and Philip Kilby

CSIRO Data61, Australian National University (ANU),
Tower A, Level 3, 7 London Circuit, Canberra, ACT 2601, Australia

{tommaso.urli,philip.kilby}@data61.csiro.au

Abstract. We describe a large neighbourhood search (LNS) solver
based on a constraint programming (CP) model for a real-world rich
vehicle routing problem with compartments arising in the context of fuel
delivery. Our solver supports both single-day and multi-day scenarios
and a variety of real-world aspects including time window constraints,
compatibility constraints, and split deliveries. It can be used both to plan
the daily delivery operations, and to inform decisions on the long-term
fleet composition. We show experimentally the viability of our approach.

1 Introduction

The vehicle routing problem (VRP) is considered “one of the biggest success
stories in operations research” [19]. One of the reasons behind this success is
its direct applicability in industrial contexts, which motivated researchers and
practitioners to extend the original formulation to include aspects arising in
real-world scenarios (see [14]). Examples of such extensions are, for instance,
time windows, multiple commodities, driver breaks, and heterogeneous fleets,
for which dedicated formulations and techniques have been proposed. In a typ-
ical industrial application, several of such extensions coexist, along with client-
specific constraints. The space of possible combinations is enormous. The effort
to model and solve increasingly complex VRP variants generated a family of
problems known as “rich” VRPs (see [7] for a survey).

In this paper we present an industrial application in the context of fuel-
distribution. Our work stands at the intersection of three important VRP exten-
sions: multi-compartment VRP (MCVRP, see [12]), split delivery VRP (SDVRP,
see [1]), and fleet size and mix VRP (FSMVRP, see [18]). The defining feature
of MCVRPs is that the vehicles have a number of isolated compartments, allow-
ing them to carry different goods without mixing them. Such problems arise in
the contexts of food and fuel delivery. SDVRP is a generalisation of the classic
VRP in which the demand of one customer can be cumulatively satisfied by
multiple vehicles. It has been shown [16] that SDVRPs can yield substantial
savings compared to classic VRPs. Finally, the FSMVRP is a generalisation of
the standard VRP in which, in addition to the routing aspects, one also needs to
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 414–430, 2017.
DOI: 10.1007/978-3-319-66158-2 27

Constraint-Based Fleet Design Optimisation 415

decide the fleet composition considering both fixed costs, e.g., acquisition, and
operational costs, e.g., fuel and salaries. The main contributions of this work are
the following. First, we introduce a constraint programming (CP) formulation of
a multi-day multi-compartment fleet size and mix rich vehicle routing problem
with split deliveries. Our formulation supports several real-world aspects, such as
an heterogeneous fleet, time window constraints, compatibility constraints, and
route length limits. Second, we describe a constraint-based large neighbourhood
search (LNS) procedure tailored around the aforementioned model. Third, we
propose two different fleet design techniques that rely on the developed solver.
We compare the proposed approaches experimentally on real-world data, and
draw some important conclusions the applicability of the approaches and on the
most promising future directions of this work.

2 Related Work

In this section we survey most significant literature on MCVRP, restricting our-
selves to fuel distribution applications. We also briefly review the most important
works on SDVRP and FSMVRP.

2.1 Multi-compartment Vehicle Routing

[5] describe the modelling of a US-based fuel distribution infrastructure. They
model the dispatch process as an augmented assignment problem in which round
trips must be assigned to trucks. Routing aspects are not considered, nor are
split deliveries. The problem is initially solved using mixed integer program-
ming (MIP) however, a heuristic approach is proposed to solve problems of
practical size. In [4], the authors extend [5] by introducing features such as less-
than-truckload orders (multi-stop routes), routing of vehicles, and assignment of
orders to bulk terminals before the dispatch.

Later works follow the rich VRP tradition and consider a variety of side
constraints. [6] describe an oil distribution supply chain in the Netherlands. The
authors take into account several strategic and tactical level decisions, i.e., depot
location, customer selection, and fleet design. [2] present a branch-and-price algo-
rithm for the solution of a fuel distribution problem for a small company. The
company controls a central depot and a fleet of heterogeneous vehicles with
compartments. The problem is subject to several limitations, for instance each
compartment must be either completely full or completely empty at all times. [8]
formalise the petrol station replenishing problem (PSRP), and present an exact
method to solve it. They consider an unlimited fleet of vehicles with different
compartment configurations, thus providing insights on what is the best fleet on
each day. In [9], the authors describe a heuristic approach to optimise the replen-
ishment of a number of petrol stations as soon as the demand of any of the fuel
types exceeds the available stock. The work is similar to [8], but cast in a multi-
period context. As for earlier works, the model assumes that compartments must

416 T. Urli and P. Kilby

be emptied completely at the delivery location1. [25] study a situation very close
to the one described above. They look at a multi-compartment vehicle routing
problem with incompatible product types and uncertain demands. They formu-
late the problem as a two-stage stochastic optimisation problem, with a recourse
action of returning to depot to unload or restock. They describe a memetic
algorithm to find feasible solutions for problems with up to 484 customers. [10]
describe a multi-depot fuel delivery problem. The solution method is based on
the concept of trips, i.e., routes from a depot through one or more service sta-
tions and back to the depot. A trip selection heuristic is used to simultaneously
choose trips and to concatenate trips into a workday for a given driver.

The literature includes also some more general formulations of MCVRP. [12]
generalise the type of problems seen in fuel and food delivery, and define a so-
called VRP with compartments (VRPC). Each compartment can have capacity
constraints, compatibility constraints with given products, and compatibility
constraints between different products in the same compartment. The authors
propose a heuristic based on Adaptive Large Neighbourhood Search (ALNS, see
[28]). [21] describe a VRP with compartments where the compartment partitions
can move. Hence, the number of compartments can vary, and the capacity of each
can be changed subject to a constraint on the sum. A Variable Neighbourhood
Search (VNS) procedure is proposed to solve the resulting problem. Finally, [22]
describe a VRP with multiple compartments, multiple product types, multiple
trips for each vehicle, and multiple time windows. A MIP formulation is solved
using a commercial solver for up to 15 customers.

2.2 Split Delivery Vehicle Routing

Split delivery vehicle routing problems (SDVRP) have received a notable amount
of attention in the literature. We mention here only the seminal works and some
more recent surveys and results. The first MIP formulation of SDVRP was ini-
tially proposed in [16,17]. In [15] the formulation was extended with several
additional valid cuts and sub-tour elimination constraints that are shown to be
effective in reducing the integrality gap at the root node. [1] provide an exten-
sive survey of split delivery vehicle routing, along with a classic mixed integer
programming formulation and a thorough discussion of complexity aspects and
lower bounds. [3] describe a scatter search approach to solve the fleet mix prob-
lem for the daily split delivery vehicle routing problem. The proposed approach
includes some fleet design aspects, however these are limited to single-day and
single-commodity scenarios.

2.3 Fleet Size and Mix Vehicle Routing

[11] present a heuristic solution to FSMVRP for the capacitated VRP with time
windows. The approach is based on a linear programming formulation of the

1 Such constraints are rather common in the literature, and reflect the presence or
absence of flow (or debit) meters at the replenishing plant or on the vehicles.

Constraint-Based Fleet Design Optimisation 417

problem. [32] propose a component-based framework to solve a variety real-
world VRP variants, including FSMVRP. The approach doesn’t handle split
deliveries or multiple commodities, however it appears to be very well engi-
neered to solve a range of problems of industrial interest. While the literature
on FSMVRP is ample, most of the existing approaches focus on single-day and
single-commodity delivery problems, and only a small amount of works mention
the tactical aspects. The main reason for this is that many FSMVRP approaches
target rich VRP formulations, in which even single-day scenarios are complex to
solve.

One of the main contributions of our work is to bring together three complex
extensions of the VRP problem. To the best of our knowledge, although there is
a lot of existing literature on each independent extension, no prior work exists
at their intersection.

3 Problem Definition

In this section we describe the problem as presented to us by our industrial
partner. The problem is initially cast in a single-day scenario and then extended
to multiple days.

Our client serves a number of petrol stations c ∈ C across Australia, and
is responsible for replenishing them with different fuel types k ∈ K. In the
following, we will make use of the term customer to refer to a petrol station.
Each customer c corresponds to a location lc ∈ L, we will therefore often refer to
customer as locations and vice versa. The full set of locations L comprises the
customers C and the depot p, i.e., L = C ∪ {p}.

On a given day each customer C can issue a request for one or more fuels.
Each request is defined by

– a time window [twc, twc] for the start of the activity,
– a demand qc,k ≥ 0,∀k ∈ K, and
– a set Bc of compatible route types onto which the visit can be scheduled.

A route type b ∈ B combines a vehicle type tb ∈ T and a time window defined
by a earliest departure time twb and a final arrival time twb, representing a
working shift, e.g., morning or afternoon. The existence of a route of some type
b with an associated vehicle v ∈ V of type tb means that that vehicle is available
to carry out deliveries in the specified shift. A maximum duration mb for the
route is provided to enforce driver break policies. With a slight abuse of notation,
all the properties of a vehicle type t ∈ T , e.g., number of compartments, capacity,
etc., are inherited by the routes Bt ∈ {b ∈ B | tb = t}. Note that a vehicle v ∈ V
can be associated with multiple routes as long as they don’t overlap, e.g., the
same vehicle can have a morning route and an afternoon route.

The requests are fulfilled by dispatching a fleet of vehicles from the depot to
the customers. Because of the limited capacity of the compartments, each vehicle
might do several round trips per day. The fleet of vehicles is heterogeneous, each
vehicle being of a given type t ∈ T with different characteristics

418 T. Urli and P. Kilby

– the number of compartments ut,
– the total capacity gt,k for each fuel k ∈ K,
– the time needed for loading the vehicle ot,
– the time needed for unloading the vehicle ot,
– the dollar cost per metric (see below),
– the (amortised) daily fixed dollar cost ft for owning the vehicle, and
– the maximum number at of vehicles of type t allowed in the fleet2.

Informally, the rules for the deliveries are the following: (i) different fuels
must be carried in different compartments, (ii) the assignment of fuels to the
compartments of a vehicle can be changed, but only when the vehicle stops at the
depot as the compartments must be washed, (iii) the demand of each customer
must be completely fulfilled, but more than one vehicle can be used to do so,
(iv) each activity at a given customer c must begin within the specified time
window, and (v) each visit to a customer c must be scheduled on a compatible
route r ∈ Bc ⊂ B.

The set of locations L represent the nodes of a connected digraph. For every
edge e = (l1, l2),∀l1, l2 ∈ L a set of weights is provided. Each weight corresponds
to a distance separating the two locations expressed according to some metric,
e.g., seconds or meters. One among all the metrics is marked as the time metric
and needs special handling. In addition to these, our formulation supports any
number of vehicle-dependent metrics defined as linear combinations of base met-
rics whose weights depend on the type of the vehicle. One such metric represents
the overall cost, in Australian dollars (AUD).

The objective of the problem is to minimise the total amortised fixed costs
for owning the selected fleet of vehicles, and the operation costs measured as the
dollar metric.

Multi-day Extension. In the context of fuel distribution, the problem
described above arises daily. When considering a multi-day scenario, all of the
above definitions and rules still apply, the only difference being how the fleet-
specific costs are handled. In a single-day scenario, the fleet is composed by the
vehicles needed to serve the demand of the given day. In a multi-day scenario,
the fleet is composed by all vehicles used at least once on any day. Since the
amortised fixed costs are daily, we need to multiply the fixed cost of the fleet
by the number of days in the horizon. In the next section, we will see that this
aspect of the problem can be represented very naturally in our CP model.

4 Model

We model our problem with a step-based formulation similar in spirit to the
one used in [13]. Unlike classic CP successor-based VRP models, where for each
customer c ∈ C a successor variable encodes the next visit in a route, in a step-
based formulation the routes are sequences of visits of fixed length (see Fig. 1).
2 This limit allows to optimise the routing using an existing fleet.

Constraint-Based Fleet Design Optimisation 419

Fig. 1. Step-based model vs. successor-based model.

The main advantages of the step-based formulation is that we can trivially
model split deliveries. In contrast, with a successor-based formulation we would
have to decide in advance how many times a certain location can be visited. This
aspect is important for fuel distribution applications, where the length of the
round trips to the depot is usually small (typically between 2 and 4 stops), and
several round trips can be performed in a day. A disadvantage of this modelling
is that we need to explicitly provide bounds on the maximum length of a route,
and introduce a virtual “null” location to model routes that are shorter than the
bound (see Fig. 1). Another difference with the standard VRP models is that we
make a distinction between routes and vehicles. This allows, for instance, to use
the same vehicle in different shifts, which makes handling the fleet design aspect
easier.

Our model needs therefore two parameters, r and s which represent, respec-
tively, the maximum number of routes that we are allowed to use (coming from
the FSMVRP formulation) and the maximum length of such routes (coming from
the step-based formulation). If such parameters are not provided, the solver tries
to guess them by heuristically constructing a feasible solution, and then setting
r and s as a function of the identified number and length of routes.

4.1 Horizon-Wide Variables and Constraints

In our problem, the fleet is represented by an array v type of integer variables
of length v. Each variable in the array encodes a vehicle type t ∈ T ∪{v}, where
v represents a zero-cost and zero-capacity null vehicle that unused routes can
be assigned to. Additionally, an auxiliary binary variable array used models
whether a vehicle is part of the overall fleet. A small set of fleet constraints keep
these variables consistent. Constraint 1 says that if a vehicle is used then it has
a proper type, and Constraint 2 limits the number of vehicles of a given type
according to the input data.

usedv ⇔ v typev �= v, ∀v ∈ V (1)

| {v ∈ V | v typev = t} |≤ at, ∀t ∈ T (2)

420 T. Urli and P. Kilby

4.2 Daily Variables and Constraints

The first set of daily constraints links the daily fleets to the overall fleet. For
each day d ∈ H and vehicle v ∈ V , a variable array used ond,v models whether
v is used on d. Such a variable can be only true if the corresponding usedv is
(Constraint 3).

used ond,v ⇒ usedv, ∀d ∈ H, v ∈ V (3)

For each route r ∈ Rd, d ∈ H we have an integer variable vehicled,r map-
ping it to a vehicle in the fleet, and an integer variable r typed,r with domain
B ∪ {r} representing its type, where r represents a null route, i.e., a route which
is not used. Constraint 4 makes sure that a route is always assigned to a vehicle
of the right type (the only compatible vehicle for r being v).

v typevehicled,r = tr typed,r
(4)

Constraint 5 ensures that all vehicles marked as used on some day d ∈ H
execute at least one route on that day. Additionally, we use a scheduling con-
straint for unary resources (see [33]) to guarantee that a vehicle is used by at
most one route at a time.

used ond,v ⇔| {r ∈ Rd | vehicled,r = v} |> 0, ∀v ∈ V, d ∈ H. (5)

The next set of variables and constraints concern the structure of the routes.
First, an array of integer variables visitd,r of length sd models the list of suc-
cessive locations visited by route r on day d. To represent routes shorter than
sd we include a null location l, where nothing can happen, in the domains of
the visitd,r variables. Since visitd,r is in fact a string, we can use regular lan-
guage membership constraints (see [26]) to make sure that the routes have the
correct structure. Constraint 6 imposes that a route be either completely empty
(sd visits to l) or have the structure of a feasible route, i.e., a visit to the depot,
followed by a visit to a customer, followed by any number of visits to the depot
(to refill) or customers, ended by a visit to the depot followed by zero or more
visits to l.

visitd,r ∈ reg ((pCd(Cd | pCd) ∗ pl∗) | l{sd}) , ∀d ∈ H, r ∈ Rd (6)

Constraint 7 guarantees that, if the first visit is to v, then the route is of
type r (and as such must be assigned to a vehicle of type v).

visitd,r,0 = l ⇔ r typer = r (7)

On top of the above constraints, we define a number of additional redundant
constraints whose aim is to reduce the search space. For instance, no customer
can be visited in two consecutive steps. Since these constraints are rather obvious,
we exclude them from the present discussion.

The above constraints and variables deal with the routing aspects of the
problem. We also need to model the activity performed at each step of the

Constraint-Based Fleet Design Optimisation 421

route. For each r ∈ Rd, for each fuel k ∈ K, and for each step s ∈ Sd we
therefore introduce two integer variable arrays, loadd,r,k,s and activityd,r,k,s,
respectively modelling the amount of fuel k that is left on the truck executing
route r after the visit at step s, and the amount of fuel k that is transferred
from the truck executing route r during the visit at step s. The two sets of
variables are connected in the obvious way, i.e., the activity at a given step is
the difference in load between the current and the previous step. We require the
following activity constraints. First, the activity at l and final depots (visits to
depots followed by visits l, or whose index is the last in the route) must always
be zero. The activity for any commodity at the starting and intermediate visits
to the depot must be greater or equal to zero, and the total sum of activity must
be strictly greater than zero. Similarly, at the petrol stations the activity for
each commodity has to be less than or equal to zero, but the sum of the activity
must be strictly less than zero. The trucks must always be completely emptied
before any visit to the depot.

Since a vehicle is organised in compartments that can only transport one
type of fuel at a time, the capacity constraints are slightly more complex than
in a traditional VRP. For each r ∈ Rd, for each step s ∈ Sd, and for each fuel
type k ∈ K an array of integer variables compartmentsd,r,k,s model how many
compartments are dedicated, at each step, to each fuel. Constraint 8 enforces
that the sum of the compartments dedicated to each fuel to be less than or
equal to the number of compartments on each vehicle. Constraint 9 states that
the total load of a given fuel must be less than or equal to the capacity of the
compartments for that fuel multiplied by the number of compartments dedicated
to it.

∑

k∈K

compartmentsd,r,k,s ≤ur typer

∀d ∈ H, r ∈ Rd, s ∈ Sd (8)

loadd,r,k,s ≤ compartmentsd,r,k,s·
(
gr typer,k

/ur typer

)

∀d ∈ H, r ∈ Rd, s ∈ Sd, k ∈ K (9)

Our model allows to change the allocation of compartments by means of the
above variables; Constraint 10 restricts such changes in the visits to the depot.

compartmentsd,r,k,s �=compartmentsd,r,k,s−1 ⇒ visitd,r = p

∀d ∈ H, r ∈ Rd, s ∈ Sd, s �= 0, k ∈ K (10)

Another set of constraints maintains the values of the cumulative metrics along
the routes in the obvious way based on the distance matrix provided as input. All
the metrics are initialised to zero at step s = 0, except for the time metric which is
initialised to the earliest start time twr typer

. As for the time metric, at each visit
we also consider the loading time o or the unloading o time, according to whether
the activity is positive or negative. Time windows constraints are enforced at
each step by bounding the time variable according to the time window of the
location being served at that step. Arbitrary waiting times are implemented by

422 T. Urli and P. Kilby

constraining the time metric at a step s to be greater or equal to its value at s−1
plus the travel time between the two locations. Finally, for each route and each
vehicle-dependent metric, we keep a variable whose value is computed from the
value of the base metrics at the last step of the route, and the vehicle-dependent
coefficients. Note that one of such metrics is used to represent the routing costs
of the solution. A final set of constraints ensures that all the demand is satisfied.
Since our model supports split deliveries, these constraints must make sure that
the sum of the activity carried out at each customer c ∈ C is exactly the negation
of the demand of c. These constraints are rather trivial and we won’t describe
them in detail here.

The objective of the model is the sum of the variables for each day d ∈ H
and r ∈ Rd representing the routing costs, and the v type variables weighted by
the coefficients ft with t ∈ T and multiplied by h (the length of the horizon).

5 Search Strategy

Our search strategy is a large neighbourhood search (LNS) scheme based on the
above model and on two custom branching strategies. Each strategy is composed
of a variable selection heuristic and a set of value selection heuristics. Both
branching strategies terminate when all the demand on a given day is satisfied.
The remaining free variables are assigned the minimum value in their domain.

It should be noted that our branching strategies are incomplete: decision
variables are sometimes assigned heuristically in the hope of obtaining feasi-
bility earlier, but some of the values in their domains are never tried. This is
somewhat similar to the concept of “streamlined constraint reasoning” [20], a
technique to prioritise promising areas of the search space. Streamlining uses
additional artificial constraints to enforce properties that are satisfied in solu-
tions of smaller problem instances, and has obtained good scaling properties on
some domains. Both approaches have their merits. Streamlining can, in principle,
be complete since it prioritises the search by only postponing the exploration of
non-promising parts of the search space. On the other hand, incomplete branch-
ing heuristics are easier to design, and they don’t necessarily require studying
the properties of solutions to smaller instances of the problem.

Route-First Branching. The first strategy aims at fully constructing a route
before moving on to the next one. The variable selection heuristic first iterates
over the existing routes, trying to identify one in which the visit at the last step
has not yet been fixed. If no such route exists, a new route must be created
and the variable to be branched upon is r typer where r is the index of the
first unused route. Conversely, if such a route r exists, the heuristic tries to
identify the first step s which is incomplete, i.e., for which one among visitr,s,
activityr,s,k where k ∈ K, and metrictime,r,s (in this order) has not been
assigned. The heuristic branches on the corresponding variable. Once a variable
x has been selected for branching, a value selection heuristic sorts the values in
its domain depending on the type if x.

Constraint-Based Fleet Design Optimisation 423

– The heuristic for r typer sorts the route types based on how many unsatisfied
customers are compatible with each route type. Route types with a larger
number of unsatisfied compatible customers are tried first.

– The heuristic for visitr,s sorts the remaining unsatisfied visits lexicograph-
ically based on (i) the earliest start time for the activities at the customer,
and (ii) the maximum amount of activity that can be carried out at the cus-
tomer. If there is no residual capacity on the vehicle executing the current
route, the next visit is (by propagation) the depot.

– The heuristic for activityr,s,k sorts the commodities based on the amount
that can be unloaded at the current customer, and then sets the unloaded
amount to the maximum value in the domain (this heuristic, therefore, intro-
duces incompleteness since intermediate quantities are never tried).

– The heuristic for metrictime,r,s assigns the smallest value in the domain of
the variable (this is always a safe assumption).

Customer-First Branching. The second strategy tries to completely satisfy
a customer (the current customer) before moving on to the next. Because a cus-
tomer’s demand may be fulfilled collectively by more than a route, an unknown
number of branching steps may be needed to completely satisfy it. For this rea-
son, we use a temporary cache (curr) to keep track of the customer being cur-
rently handled, and we keep its value fixed throughout the branching steps until
the work on customer is completed. If the current customer has been selected
but not completely satisfied, the heuristic looks for an existing route in which
the activityr,s,k (for some k ∈ K) at the last visit has not been assigned. Since,
by design, the previously selected customer must have been completely satisfied,
such a visit must be to the current customer. If such a route exists, the heuristic
chooses activityr,s,k as the variable to branch upon. A similar step is performed
to set the metrictime,r,s variable. If all the last visits of all the existing routes
have been finalised, the heuristic tries to find a compatible existing route where
to insert a new visit to the current customer. During this search if the heuristic
finds a route compatible with the visit, but without capacity left, it inserts a
visit to the depot (a refill) so as to restore the capacity. If, at the end of this
search, there is at least one route where a visit to the current customer can
be inserted, the heuristic branches on the insertion. This branching is somewhat
reversed with respect to a classic CP branching, in that the value of the visitr,s
variable is known in advance, however the route r and the step s indices have to
be chosen among the compatible ones. If there are no existing compatible routes
where to insert a visit to the current customer, the branching strategy branches
on r typer where r is the first unused route, thus initialising a new route of type
compatible with the current customer. The following value selection heuristics
are used to decide how to finalise the variable assignments and choose the next
current customer.

– The heuristic for curr sorts the unsatisfied customers based on their earliest
time window start. In this sense, we are trying to pack the routes so that
there is the smallest amount of slack time between the visits.

424 T. Urli and P. Kilby

– The branching on r tries each compatible open route in turn, and appends a
visit to the current customer as the last step of the selected route.

– Finally, the heuristic for r typer sorts the route types according to the earliest
time in which it is possible to start the activity at the current customer.

The value selection heuristics for activityr,s,k and metrictime,r,s are identical
to the ones in the route-first branching strategy.

None of the above branching strategies ever branches on the
compartmentsd,r,k,s variables. When the activity for some commodity k at a
given step is assigned, the lower bound on the number of compartments dedi-
cated to k is updated by the propagation engine.

5.1 Large Neighbourhood Search

Large neighbourhood search (LNS, see [27,30]) is a local search meta-heuristic
based on the principle that exploring large neighbourhoods of a solution helps
avoiding local optima. To reduce the time needed to explore the neighbour-
hood, filtering techniques, e.g., constraint propagation [23], are often used. In
our approach, we use the model presented in Sect. 4 to prune the set of explored
neighbours of a solution during the search. At each iteration, a destroy step is
performed to unassign part of the incumbent solution, and a repair step is per-
formed to re-optimise it. To obtain the initial solution, we start from an empty
solution and we apply the route-first branching strategy described in Sect. 5 until
termination.

Destroy Step. We employ four different destroy strategies. Three of these are
used both in single-day and multi-day scenarios, one is available in multi-day
scenarios only. A parameter dr (the destruction rate) controls, albeit indirectly3,
how many variables are unassigned at each destroy step. In our approach dr is
initialised to a value dr, a parameter of the solver, and can increase during search
up to dr, also a parameter of the solver.

The destruction strategies are the following

– Destroy dr routes. We choose dr routes uniformly at random, and reset
all the relative variables to their original domains. The first unused route, if
available, is also destroyed.

– Destroy dr vehicles. We choose dr vehicles uniformly at random, and reset
all the variables relative to the routes assigned to these vehicles to their
original domains.

– Destroy dr days. The solver chooses dr days uniformly at random, and
resets all of the variables to their original domains. Only in multi-day mode.

3 Depending on the destruction strategy, the same value of dr can cause different
numbers of variables to be relaxed. The per-variable timeout used in the repair step
mitigates this disparity. Moreover, relaxing the problem “semantically” rather than
randomly allows us to preserves the structure of the solution.

Constraint-Based Fleet Design Optimisation 425

– Repack fleet. We reset all the fleet variables, i.e., vehicle types and assign-
ment of routes to vehicles, to achieve a better reassignment of routes to com-
patible vehicles.

The relative probabilities of choosing one strategy over the others are parameters
to the solver.

Repair Step. Once a solution has been partially destroyed it is re-optimised
applying the two branching strategies presented in Sect. 5. These are used in a
branch & bound scheme to reassign the variables unassigned in the destroy step.
The branching heuristics are chosen at random according to probabilities that
are parameters to the solver. The branch & bound procedure is run to a time
limit tmax = tvar · nfree where tvar is a parameter of the solver, and nfree is the
number of variables that have been relaxed in the destroy step. At each repair
step we constrain the cost of the next solution to be lower than the cost of the
incumbent. Of course it is not guaranteed that a new solution is found during
the repair step. If the repair step fails, a counter ii (idle iterations) is increased.
When the number of idle iterations exceeds a threshold iimax, the destroy rate
dr is increased by one. When an improving solution is found, or when dr reaches
dr, the dr is reset to dr4.

6 Fleet Design

We present two different approaches to address the fleet design problem. Both
are based on the CP model and LNS strategy presented above, but differ in
terms of computational requirements.

Union Fleet. The first method is composed of two phases. In the first phase,
we run the solver on each day of the horizon independently, so as to generate
a specialised fleet for each day. We encode such fleets as multi-sets, e.g., if on a
given day i the solver identified an i-specific fleet with 2 vehicles of type A and 1
vehicle of type B, we represent such fleet with the multi-set Fi = {A : 2, B : 1}.
In the second phase, we compute the multi-set union of the fleets, and obtain an
union fleet that is guaranteed to be feasible across the whole horizon. Building
on the previous example, suppose that on another day j the solver identified the
j-specific fleet Fj = {A : 1, B : 3}, then the union fleet is Fo = Fi ∪ Fj = {A :
2, B : 3}.

Multi-day Fleet. The second method is a generalisation of [24], where a multi-
day fleet size and mix problem is solved to generate a multi-day fleet that is
guaranteed to work on the whole horizon. The problem considered here is much
4 Because only a limited number of attempts is made at each dr level, restarting the

search with dr = dr allows us to try (again) non-expensive relaxations in case we
previously missed a possibility for improvement.

426 T. Urli and P. Kilby

richer than the one in [24] but the multi-day fleet design approach is essentially
the same. Note that the Pareto-based pre-processing step used in [24] to reduce
the amount of days that need to be considered cannot be used in the present
scenario.

7 Experimental Analysis

In this section we present experimental results obtained on a set of benchmark
instances based on real-world data.

The CP model and the branching heuristics were implemented in C++ and
modelled in Gecode 5.0.0 [29]. The LNS solver was implemented through the
Gecode-LNS search engine5. All the experiments were run on an Ubuntu
16.04.1 machine equipped with an Intel R© CoreTM i7-4770 at 3.40 GHz and
16 GB of RAM. The results presented in this section are based on benchmark
instances based on real-world data provided to us by our industrial partner. The
data represents the demand requested to a fuel distribution centre in Queensland,
Australia, in the span of one month. Since some of the days had zero demand,
the set of instances contains only 25 days. On each day, the set of customers
may change, and the number of visits varies between 1 and 30.

7.1 Results on Individual Days

Table 1 reports the results obtained by running our solver 10 times on each single-
day instance using a timeout of 10 min. The instances are sorted by number
of customers. We report both the mean overall cost (cost) and its standard
deviation (σcost), as well as a breakdown of the costs (costrouting and costfleet)
and the median number of routes and vehicles required by the solutions. The
last column is a sparkline [31] showing the convergence of our search algorithm
on a random run of each instance.

Such experiments form the basis upon which we built our union fleet. Note
that the total fleet cost reported in the table is the sum of the fixed costs of the
daily fleets, and thus represents a lower bound to the fixed costs, which is in
general not obtainable by a single fleet.

7.2 Union Fleet

The union fleet generated is reported in Table 2. Such a fleet has a fixed cost of
59, 177 AUD (amortised over 25 days) and a mean routing cost of 50, 619 AUD.
The total routing cost has been obtained by running the single-day instances
using only vehicles from the union fleet with fixed costs equal to zero. Note
that the routing cost found is smaller than the one reported in Table 1, because
(1) small-demand days now can access larger vehicles for free, and (2) the search
space is much smaller, because we have fewer daily fleets to choose amongst.
Overall, the mean total cost of owning and operating the fleet on the whole
horizon is therefore 109, 796 AUD.
5 Available at https://github.com/tunnuz/gecode-lns.

https://github.com/tunnuz/gecode-lns

Constraint-Based Fleet Design Optimisation 427

Table 1. Aggregated results over 10 runs (with different random seeds) of 10 min on
every single-day instance in fleet-size and mix mode.

Instance Stat. cost σcost costrouting costfleet Mroutes Mvehicles Convergence

Inst-13 1 750.93 0.00 378.33 372.60 1 1

Inst-6 3 580.12 0.00 207.52 372.60 1 1

Inst-20 3 957.26 0.00 584.66 372.60 2 1

Inst-28 4 1060.21 0.00 687.61 372.60 1 1

Inst-21 6 1582.72 44.29 1210.12 372.60 2 1

Inst-14 8 3379.90 56.76 2538.54 841.36 4 2

Inst-22 8 4649.36 41.59 3472.66 1176.70 5 3

Inst-24 8 1830.22 27.68 988.86 841.36 3 2

Inst-8 9 2469.93 90.53 1724.73 745.20 3 2

Inst-25 9 2408.67 115.14 1652.87 755.80 3 2

Inst-17 10 1814.35 26.62 1059.54 754.82 3 2

Inst-16 11 3531.78 183.43 2637.54 894.24 4 2

Inst-5 12 2818.32 117.05 2066.06 752.27 4 2

Inst-4 12 5306.76 132.70 4092.80 1213.96 6 3

Inst-11 12 3921.77 137.67 2782.33 1139.44 5 3

Inst-3 13 2549.90 95.39 1795.08 754.82 4 2

Inst-18 13 5697.15 453.40 4332.95 1364.20 6 3

Inst-12 13 2738.46 159.49 1941.86 796.60 4 2

Inst-10 13 3147.88 32.50 2373.83 774.05 4 2

Inst-9 14 3876.72 133.30 2734.95 1141.77 4 3

Inst-15 14 2538.77 161.92 1793.57 745.20 4 2

Inst-23 15 3735.99 173.88 2618.19 1117.80 5 3

Inst-26 16 3321.97 148.53 2258.25 1063.72 4.5 3

Inst-19 17 3118.33 144.19 1970.48 1147.85 5 3

Inst-27 30 9384.37 198.81 6972.15 2412.22 11 6

Total − 77171.9 − 54875.5 22296.4 - - -

7.3 Multi-day Fleet

We also run the solver on a multi-day instance generated by merging the 25 days
in the considered benchmark. In order to carry out a fair comparison with the
union fleet approach, we use a timeout of 250 min (corresponding to the total
time used to solve the 25 independent runs used to generate the union fleet). The
best multi-day fleet generated from 10 repetitions of such experiment is reported
in Table 3. Notably, the obtained fleet has the same number of vehicles as the
union fleet, but a different composition. This reflects in the fixed cost (58, 294
AUD) which is ∼1.5% smaller than the one of the union fleet, and also in the
routing cost (50, 805 AUD) which is, as expected, slightly higher. The mean total
cost of owning and operating the fleet on the whole horizon is therefore 109, 099
AUD, only a small improvement over the union fleet.

428 T. Urli and P. Kilby

Table 2. Union fleet specification.

Vehicle type Amount

Veh-4 2

Veh-20 2

Veh-26 1

Veh-60 1

Table 3. Multi-day fleet
specification.

Vehicle type Amount

Veh-4 2

Veh-20 3

Veh-26 0

Veh-60 1

7.4 Discussion

We need to make some observation about the computational aspects of our fleet
design approaches. In the union fleet, each day is solved independently. This
allows to leverage multi-core or cluster architectures to handle large planning
horizons, e.g., years. Conversely, distributing the computational load within a
single multi-day run is much harder and depends on the capabilities of the under-
lying CP solver. Moreover, the amount of memory required to solve a multi-day
problem of n days is usually much higher than the one required to solve n
single-day problems. This can slow down the convergence of the multi-day fleet
approach towards a good quality solution. In terms of convergence, memory is
not the only issue. In order to reduce the size of a fleet, a multi-day solver must
first get all the days to agree on using a smaller fleet. The probability of this
happening is rather small. In fact the union fleet approach obtained smaller fleets
more often than the multi-day fleet approach.

The tractability of the union fleet approach suggests that decomposing the
overall fleet design problem is a promising strategy as the horizon grows longer.
However, it is clear that the independence of the runs prevents the solver from
optimising globally. This suggests that a decomposition approach in which the
single-day runs can share knowledge about the overall fleet could obtain better
results than any of the proposed approaches.

8 Conclusions

In this paper we proposed a rich VRP model based on a step-based formulation
to solve a fuel delivery problem at the request of a fuel distribution company.
Along with the operational level aspects, such as the loading and routing of
vehicles, we also considered fleet design decisions that belong to the tactical
level problem, and that have a long term impact on the company operations.

We have implemented our model as a CP-based large neighbourhood search
(LNS) solver, and proposed two different methods for automatically obtaining
feasible fleet designs to support the operations across the planning horizon. We
compared these approaches on a set of real-world problem instances provided to

Constraint-Based Fleet Design Optimisation 429

us by our industrial partner. Our results suggest that the most promising direc-
tion to inform fleet design decisions might be problem decomposition methods,
which can retain both scalability and quality of solutions.

References

1. Archetti, C., Speranza, M.G.: The split delivery vehicle routing problem: a survey.
In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest
Advances and New Challenges, Operations Research/Computer Science Interfaces,
vol. 43, pp. 103–122. Springer, Boston (2008). doi:10.1007/978-0-387-77778-8 5

2. Avella, P., Boccia, M., Sforza, A.: Solving a fuel delivery problem by heuristic and
exact approaches. Eur. J. Oper. Res. 152(1), 170–179 (2004)

3. Belfiore, P., Yoshizaki, H.T.: Heuristic methods for the fleet size and mix vehicle
routing problem with time windows and split deliveries. Comput. Ind. Eng. 64(2),
589–601 (2013)

4. Brown, G.G., Ellis, C.J., Graves, G.W., Ronen, D.: Real-time, wide area dispatch
of mobil tank trucks. Interfaces 17(1), 107–120 (1987)

5. Brown, G.G., Graves, G.W.: Real-time dispatch of petroleum tank trucks. Manag.
Sci. 27(1), 19–32 (1981)

6. van der Bruggen, L., Gruson, R., Salomon, M.: Reconsidering the distribution
structure of gasoline products for a large oil company. Eur. J. Oper. Res. 81(3),
460–473 (1995)

7. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle
routing problem: survey. ACM Comput. Surv. (CSUR) 47(2), 32 (2015)

8. Cornillier, F., Boctor, F.F., Laporte, G., Renaud, J.: An exact algorithm for the
petrol station replenishment problem. J. Oper. Res. Soc. 59(5), 607–615 (2008)

9. Cornillier, F., Boctor, F.F., Laporte, G., Renaud, J.: A heuristic for the multi-
period petrol station replenishment problem. Eur. J. Oper. Res. 191(2), 295–305
(2008)

10. Cornillier, F., Boctor, F.F., Renaud, J.: Heuristics for the multi-depot petrol sta-
tion replenishment problem with time windows. Eur. J. Oper. Res. 220, 361–369
(2012)

11. Dell’Amico, M., Monaci, M., Pagani, C., Vigo, D.: Heuristic approaches for the
fleet size and mix vehicle routing problem with time windows. Transp. Sci. 41(4),
516–526 (2007)

12. Derigs, U., Gottlieb, J., Kalkoff, J., Piesche, M., Rothlauf, F., Vogel, U.: Vehicle
routing with compartments: applications, modelling and heuristics. OR Spectr.
33(4), 885–914 (2011)

13. Di Gaspero, L., Rendl, A., Urli, T.: Balancing bike sharing systems with constraint
programming. Constraints 21(2), 318–348 (2016)

14. Drexl, M.: Rich vehicle routing in theory and practice. Logist. Res. 5(1–2), 47–63
(2012)

15. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with split deliveries. Discret.
Appl. Math. 50(3), 239–254 (1994)

16. Dror, M., Trudeau, P.: Savings by split delivery routing. Transp. Sci. 23(2), 141–
145 (1989)

17. Dror, M., Trudeau, P.: Split delivery routing. Nav. Res. Logist. (NRL) 37(3), 383–
402 (1990)

http://dx.doi.org/10.1007/978-0-387-77778-8_5

430 T. Urli and P. Kilby

18. Golden, B., Assad, A., Levy, L., Gheysens, F.: The fleet size and mix vehicle routing
problem. Comput. Oper. Res. 11(1), 49–66 (1984)

19. Golden, B., Raghavan, S., Wasil, E. (eds.): Preface. Operations Research/
Computer Science Interfaces, vol. 43. Springer, US (2008)

20. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 22

21. Henke, T., Speranza, M.G., Wäscher, G.: The multi-compartment vehicle routing
problem with flexible compartment sizes. Eur. J. Oper. Res. 246(3), 730–743 (2015)

22. Kabcome, P., Mouktonglang, T.: Vehicle routing problem for multiple product
types, compartments, and trips with soft time windows. Int. J. Math. Math. Sci.
2015 (2015)

23. Kilby, P., Shaw, P.: Vehicle routing. In: Handbook of Constraint Programming,
pp. 799–834 (2006)

24. Kilby, P., Urli, T.: Fleet design optimisation from historical data using constraint
programming and large neighbourhood search. Constraints 21(1), 2–21 (2016)

25. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic
algorithm for the multi-compartment vehicle routing problem with stochastic
demands. Comput. Oper. Res. 37(11), 1886–1898 (2010)

26. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30201-8 36

27. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 399–419. Springer, Boston
(2010). doi:10.1007/978-1-4419-1665-5 13

28. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

29. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with gecode.
In: Schulte, C., Tack, G., Lagerkvist, M.Z. (eds.) Modeling and Programming with
Gecode. Self-published (2015). Corresponds to Gecode 4.4.0

30. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998). doi:10.1007/3-540-49481-2 30

31. Tufte, E.R.: Beautiful Evidence. Graphics Press LLC, Cheshire (2006)
32. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework

for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673
(2014)

33. Vilım, P.: Global constraints in scheduling. Ph.D. thesis, Charles University in
Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic, KTIML MFF, Universita Karlova, Praha 1, Czech
Republic (2007)

http://dx.doi.org/10.1007/978-3-540-30201-8_22
http://dx.doi.org/10.1007/978-3-540-30201-8_22
http://dx.doi.org/10.1007/978-3-540-30201-8_36
http://dx.doi.org/10.1007/978-1-4419-1665-5_13
http://dx.doi.org/10.1007/3-540-49481-2_30

Integer and Constraint Programming for Batch
Annealing Process Planning

Willem-Jan van Hoeve(B) and Sridhar Tayur

Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, USA

{vanhoeve,stayur}@andrew.cmu.edu

Abstract. We describe an optimization application in the context of
steel manufacturing, to design and schedule batches for annealing fur-
naces. Our solution approach uses a two-phase decomposition. The first
phase groups together orders into batches using a mixed-integer linear
programming model. The second phase assigns the batches to furnaces
and schedules them over time, using constraint programming. Our solu-
tion has been developed for operational use in two plants of a steel man-
ufacturer in North America.

1 Introduction

We present an application of optimization technology for a steel manufacturer in
North America, that operates two plants with annealing capability. Annealing
is used in the steel industry as a heat treatment to modify the structure of the
metals. For example, it may remove stresses, soften the steel, or refine the grain
structure. In our case, the annealing process is performed in box furnaces, which
can hold a specific number of steel coils. The furnaces are a primary (bottleneck)
resource of the plants, which means that related operations are scheduled subject
to the furnace annealing schedules. Since the existing approach for creating and
scheduling batches for the box furnaces requires substantial manual interaction,
the purpose of our project was to automate and improve this process.

Optimization models for batch design and scheduling in steel plants have
been proposed before. For example, in [6] a mixed-integer programming (MIP)
model is proposed for annealing batch scheduling in a general industrial setting,
with fixed batches. Their allocation and scheduling of batches to furnaces is
similar to our setting, but the authors consider different resources such as crane
movements as well. In [4] a genetic algorithm to this problem is proposed. An
excellent survey of batch scheduling is presented in [5].

In [3], a decomposition approach is proposed for a more general steel produc-
tion problem (not just annealing). Conceptually, we follow a similar approach. A
main difference is that we utilize constraint programming (CP) for the schedul-
ing of batches, whereas [3] uses MIP. Furthermore, because we work with a more
specific application, we can streamline our batch design MIP model using addi-
tional constraints. Lastly, [2] combines the batch composition and scheduling,

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 431–439, 2017.
DOI: 10.1007/978-3-319-66158-2 28

432 W.-J. van Hoeve and S. Tayur

Table 1. Main sets for the problem.

OL Set of locked orders

OW Set of work orders

OP Set of planned orders

O Set of all orders OL ∪ OW ∪ OP

A Set of anneal cycles

F Set of furnaces

H Integer time horizon (in minutes)

Table 2. Characteristics of the orders.

ci ∈ A Anneal cycle of i ∈ O

wi ∈ R
+ The weight of one coil in i ∈ O

ni ∈ [K] The number of coils in i ∈ O

ri ∈ H Release date of i ∈ O

di ∈ H Due date of i ∈ O

gi ⊆ F Furnace group of i ∈ OL

Π ⊂ O × O Set of precedences (i, j)

as we do in this work. Their batch design is restricted to the size of the batch,
however, and does not group together different orders for example.

In summary, the main novelty of our approach is the combination of a rich
batch design problem (solved with MIP) with a batch scheduling problem (solved
with CP). Decomposing the problem into two parts (MIP for batch design and
CP for scheduling) was crucial to make the approach scalable: Our two-phase
approach scales to problems with (at least) 22 furnaces and 600 orders, creating
a detailed schedule for about 7 days, within 15 to 30 min of computing time.

2 Problem Description

The input to our problem is a set of annealing orders O. Each order consists of
a number of steel coils that need to be annealed using a specific recipe (anneal
cycle) in box furnaces. The set of all anneal cycles is denoted by A. The set
of all furnaces is denoted by F . The orders are grouped together in batches of
a fixed maximum size, depending on the furnace capacity. For our application,
the furnace capacity differs per plant, but the furnaces have uniform capacity K
(total number of coils that can be loaded per batch) for a given plant.

After the batches have been created, they need to be allocated and scheduled
on the available furnaces, given a discrete time horizon H. Table 1 summarizes
the main sets of our problem, including a partition of the orders in three types:

– Locked orders (denoted by the set OL) have been committed in the previous
planning phase. They have been grouped together in a batch, and assigned
to a furnace group for execution. These batches cannot be changed and must
be scheduled as soon as possible.

– Work orders (denoted by the set OW) are partially committed in the previous
planning phase. They have a fixed number of coils that cannot be changed,
but their batches have not yet been decided.

– Planned orders (denoted by the set OP) are not yet committed, but are
available to be scheduled. The given number of coils of a planned order may
be reduced to complete the size of a batch, but not split into separate orders.

Integer and Constraint Programming for Batch Annealing Process Planning 433

Each order has a number of characteristics, as presented in Table 2.1 For each
order, the number of coils (ni) is at most K. Also, for some orders the due date di
may come before the release date ri. These orders are identified as late, and are
given high preference to be scheduled as early as possible. Only orders for which
the due date is at most a given date D (for example, day two) are required to
be scheduled. Lastly, there exist pairwise precedence relations (i, j) for i, j ∈ O:
order j must be scheduled at least three days after order i finishes. In fact, i and
j represent two annealing operations for the same set of coils.

Table 3. Characteristics of the anneal cycles.

pa,f ∈ N Processing time of anneal cycle a ∈ A on furnace f ∈ F (in
minutes)

ta,a′,f ∈ N Sequence-dependent switchover time from anneal cycle a to a′

on furnace f (in minutes)

Ca,a′ ∈ {0, 1} Whether a ∈ A and a′ ∈ A are compatible and can be
combined

Γa,a′ ∈ {a, a′} Anneal cycle that determines the processing time of the
combined cycle, for a, a′ ∈ A such that Ca,a′ = 1

The characteristics of the anneal cycles are given in Table 3. Some orders with
different anneal cycles can be combined in one batch, if they are compatible. In
that case, one of the cycles will determine the anneal recipe for the compatible
batch. At most one other compatible cycle can be added to a batch. An order is
not allowed to be both reduced and added as a compatible order to a batch.

Since not all anneal recipes can be performed on each furnace, we introduce
a Boolean parameter Tf,a to indicate whether furnace f ∈ F can perform anneal
cycle a ∈ A. Furthermore, each furnace can only handle a maximum of M
‘heavy’ coils that have a weight of at least W , within one batch. The maximum
coil weight that can be processed on f is denoted by wmax

f .
The problem is to (1) group together orders into batches (the batch design

problem), and (2) allocate the batches to furnaces and sequence them over time
(the batch scheduling problem). The purpose of the solution is to create a near-
term schedule (about six days), in which we will operationally commit batches
that are scheduled in the first two days. Therefore, the qualitative goals are:

– Minimize furnace idle time, especially in the first two to three days;
– Minimize unfilled furnace capacity (i.e., maximize the batch sizes), especially

in the first two to three days;
– Minimize the number of late coils.

1 We use the common shorthand [n] to denote the set {1, . . . , n} for an integer n.

434 W.-J. van Hoeve and S. Tayur

Table 4. Variables used in the mixed-integer programming model.

xi,a,k ∈ {0, 1} Allocate order i to ba,k, for i ∈ OW ∪ OP , a ∈ A such
that ci = a and k ∈ [Na]

yi,a,k ∈ {0, 1} Allocate i as reduced order to ba,k, for i ∈ OP , a ∈ A
such that ci = a and k ∈ [Na]

zi,a,k ∈ {0, 1} Allocate i as compatible order to ba,k, for
i ∈ OW ∪ OP , a ∈ A such that Cci,a = 1, and k ∈ [Na]

y′
i,a,k ∈ [0, (K−1)

K
] Fraction of coils from (reduced) order i that will be used

in ba,k, for i ∈ OP , a ∈ A such that ci = a and k ∈ [Na]

ua,k ∈ {0, 1} Whether ba,k is in use, for a ∈ A, k ∈ [Na]

z′
a,k,a′ ∈ {0, 1} Whether ba,k is in use as compatible batch for a′, for

a ∈ A, a′ ∈ A, a �= a′, Ca,a′ = 1, k ∈ [Na]

ea,k ∈ {0, . . . , K − 1} Number of empty positions in ba,k, for a ∈ A, k ∈ [Na]

la,k ∈ {0, 1} Whether ba,k contains a late order, for a ∈ A, k ∈ [Na]

ma,k ≥ 0 Maximum release date of orders in ba,k, for
a ∈ A, k ∈ [Na]

m′
a,k ≥ 0 Release date violation of first-day batches ba,k, for

a ∈ A, k ∈ [Na], k ≤ kI
a

3 Phase 1: Batch Design

We next describe our MIP model for the batch design problem. We recall that
the locked orders in OL are already grouped in batches, so we consider here
the work orders OW and planned orders OP . The first step is to define the
possible batches that we can assign the orders to. Since orders will be grouped
by anneal cycle, we create a set {ba,1, . . . , ba,Na

} for a ∈ A, representing the
possible batches for anneal cycle a. The size Na of this set depends on the total
number of coils that can be assigned to cycle a, the furnace capacity K, and the
precedence constraints between orders, and is computed in advance.

Our MIP model will not keep track of time in full detail, as this will be the
responsibility of the batch scheduling model. However, we do need to take timing
considerations into account, for example by aiming to group together orders with
the same release date. We will therefore associate an earliest release date with
each batch, and our model is designed to create batches such that the release
date of ba,k is at most the release date of ba,k+1, if both are used.

In addition, we wish to avoid grouping first-day orders with orders that
have a later release date, to create enough batches to schedule on the first
day of the horizon. To that end, we identify all orders (for a given anneal
cycle a ∈ A) that can start on the first day of the horizon, and determine
(approximately) the number of batches that can start on the first day as kI

a =
�(∑i∈OW ∪OP :ci=a,ri≤1 ni)/K�. We will use this information to group together
first-day orders (only) in as many batches as possible.

Integer and Constraint Programming for Batch Annealing Process Planning 435

The MIP model is as follows (the variables are presented in Table 4):

min
∑

a∈A,k∈[Na]

(γlla,k + γe
a,kea,k) +

∑

i∈OP ,a∈A,k∈[Na]:
ci=a

γyyi,a,k +

∑

i∈OW ∪OP ,
a∈A,k∈[Na]:Cci,a

=1

γzzi,a,k +
∑

a∈A,k∈[Na]:

k≤kI
a

γmm′
a,k (1)

s.t.
∑

a∈A,k∈[Na]:ci=a

xi,a,k +
∑

a∈A,k∈[Na]:Cci,a

zi,a,k ≤ 1 ∀i ∈ OW (2)

∑

a∈A,k∈[Na]:ci=a

(xi,a,k + yi,a,k) +
∑

a∈A,k∈[Na]:Cci,a

zi,a,k ≤ 1 ∀i ∈ OP (3)

∑

i∈OP ∪OW :
ci=a,di<ri

(xi,a,k + yi,a,k) +
∑

i∈OP ∪OW :
Cci,a

=1,di<ri

zi,a,k ≤ Kla,k ∀a ∈ A, k ∈ [Na] (4)

∑

i∈O:ci=a

(nixi,a,k + niy
′
i,a,k) +

∑

i∈O:Cci,a

nizi,a,k = Kua,k − ea,k ∀a ∈ A, k ∈ [Na]

(5)

y′
i,a,k ≤yi,a,k(ni − 1)/ni ∀i ∈ OP , a ∈ A, ci = a, k ∈ [Na] (6)

y′
i,a,k ≥ yi,a,k/ni ∀i ∈ OP , a ∈ A, ci = a, k ∈ [Na] (7)

∑

i∈OP :ci=a

yi,a,k ≤ 1 ∀a ∈ A, k ∈ [Na] (8)

∑

i∈O:ci=a′
nizi,a,k ≤ z′

a,k,a′(K − 1) ∀a ∈ A, k ∈ [Na], a′ ∈ A : Ca,a′ = 1 (9)

∑

a′∈A:Ca,a′=1

z′
a,k,a′ ≤ 1 ∀a ∈ A, k ∈ [Na] (10)

∑

a∈A,k∈[Na]:
ci=a,wi≥W

ni(xi,a,k + y′
i,a,k) +

∑

a∈A,k∈[Na]:
Cci,a

,wi≥W

nizi,a,k ≤ M ∀a ∈ A, k ∈ [Na] (11)

∑

a∈A,
k∈[Na]:
ci=a

k(xi,a,k + yi,a,k) +
∑

a∈A,
k∈[Na]:
Cci,a

=1

kzi,a,k ≤
∑

a∈A,
k∈[Na]:
cj=a

k(xj,a,k + yj,a,k) +
∑

a∈A,
k∈[Na]:
Ccj,a

=1

kzj,a,k

− 1 + (1 + Nci)

⎛

⎜⎜⎜⎜⎜⎝
1 −

∑

a∈A,
k∈[Na]:
cj=a

(xj,a,k + yj,a,k) +
∑

a∈A,
k∈[Na]:
Ccj,a

=1

zj,a,k

⎞

⎟⎟⎟⎟⎟⎠

∀(i, j) ∈ Π :
ci = cj ∨ Cci,cj = 1

(12)

436 W.-J. van Hoeve and S. Tayur

∑

a∈A,
k∈[Na]:
cj=a

(xj,a,k+yj,a,k)+
∑

a∈A,
k∈[Na]:
Ccj ,a

=1

zj,a,k ≤
∑

a∈A,
k∈[Na]:
ci=a

(xi,a,k+yi,a,k)+
∑

a∈A,
k∈[Na]:
Cci,a

=1

zi,a,k ∀(i, j) ∈ Π

(13)

∑

a∈A,
k∈[Na]:
ci=a

xi,a,k +
∑

a∈A,
k∈[Na]:
Cci,a

zi,a,k ≥
∑

a∈A,
k∈[Na]:
cj=a

xj,a,k

∑

a∈A,
k∈[Na]:
Ccj,a

zj,a,k
∀i, j ∈ OW ∪ OP :

(ci = cj ∨ Cci,cj
= 1)

di < dj

(14)

∑

a∈A,
k∈[Na]:
ci=a

yi,a,k ≥
∑

a∈A,
k∈[Na]:
cj=a

yj,a,k

∀i, j ∈ OP :
(ci = cj ∨ Cci,cj

= 1)

di < dj

(15)

K

⎛

⎜
⎜
⎝

∑

i∈OW ∪OP :
ci=a

xi,a,k +
∑

i∈OW ∪OP :
Cci=a=1

zi,a,k

⎞

⎟
⎟
⎠ ≥

∑

i∈OW ∪OP :
ci=a

xi,a,k+1 + (16)

∑

i∈OW ∪OP :
Cci=a=1

zi,a,k+1 ∀a ∈ A, k ∈ [Na − 1]

∑

a∈A,k∈[Na]:
ci=a

xi,a,k +
∑

a∈A,k∈[Na]:
Cci,a

zi,a,k = 1 ∀i ∈ OW ∪ OW : di ≤ D (17)

ma,k ≥ ri(xi,a,k + yi,a,k) ∀a ∈ A, k ∈ [Na], i ∈ OW ∪ OP : ci = a (18)

ma,k ≥ rizi,a,k ∀a ∈ A, k ∈ [Na], i ∈ OW ∪ OP : Cci,a = 1 (19)
ma,k ≤ ma,k+1 ∀a ∈ A, k ∈ [Na − 1] (20)

ma,k ≤ 1 + m′
a,k ∀a ∈ A, k ∈ [Na] : k ≤ kI

a (21)

The objective (1) is a weighted sum of penalty terms representing the number
of batches with late orders, the number of empty slots, the number of reduced
orders, the number of compatible orders, and the tardiness of first-day orders.
Each term has its associated penalty parameter, denoted by γl, γe

a,k, γ
y, γz, and

γm, respectively (listed here by decreasing emphasis). Parameter γe
a,k is defined

as γe
a,k = 1 + 0.1(Na − k)/Na. It decreases for larger k, giving higher priority to

filling earlier batches. The other penalty parameters are taken in [0.01, 1.0].
Constraints (2) and (3) allocate the work orders and planned orders, respec-

tively. Constraints (4) define a late batch with respect to the late orders. Con-
straints (5) define the capacity of the furnaces and the number of empty slots.
Constraints (6) and (7) link the fraction of coils for reduced orders to the associ-
ated binary variable, while constraints (8) ensure that each planned order can be
used at most once as reduced order. Constraints (9) define compatible batches

Integer and Constraint Programming for Batch Annealing Process Planning 437

with respect to compatible orders, while constraints (10) ensure that each batch
can be compatible with at most one other anneal cycle. Constraints (11) limit
the number of heavy coils that can be allocated to a batch. Constraints (12) and
(13) represent the precedence constraints. The model ensures feasibility by allo-
cating orders i and j, with (i, j) ∈ Π, to different batches. If they are allocated
to different anneal cycles, this is already guaranteed. Otherwise, if ci = cj or
Cci,cj = 1, constraints (12) ensure that order i is placed in a batch with a lower
index k than j. Constraints (13) ensure that j is not allocated if i is not. Con-
straints (14) and (15) state that if two orders are equivalent in terms of anneal
cycle, then the one with earlier due date is allocated first, for work orders and
planned orders, respectively. Constraints (16) impose that batch ba,k+1 can only
be used if ba,k is. Constraints (17) ensure that all near-term orders (with di ≤ D)
are allocated. Constraints (18) and (19) define the release dates of the batches.
Constraints (20) ensure that batches are ordered by non-decreasing release date.
Constraints (21) define the release violation (m′

a,k) of first-day batches.

4 Phase 2: Batch Scheduling

For the batch scheduling problem we employ a constraint programming model,
following the constraint-based scheduling concepts of activities and resources
[1]. In the model syntax below, we follow the definitions of AIMMS [7]. An
activity represents a task to be scheduled over time, by means of four implied
variables: begin, length, end, and presence. When an activity is optional, its
presence can be either 0 (absent) or 1 (present). When an activity is present,
it respects the relation ‘begin+length=end’. Resources, for example machines,
represent constraints on activities. In this paper, we only consider sequential (or
disjunctive) resources that limit the execution to at most one activity at a time.
In addition, the sequential resource can enforce sequence-dependent setup (or
switchover) times between two consecutive activities.

Table 5. Characteristics of the batches and their definition.

Our model is based on the problem definition from Sect. 2 and the MIP
solution from Sect. 3. We first define the set of batches B as the union of the
locked batches (denoted by BL) and the batches ba,k that are used in the MIP
model, i.e., for which ua,k = 1 (for a ∈ A, k ∈ [Na]). We use O(b) ⊆ O to denote
the orders that are assigned to batch b. We define the associated parameters of
a batch in Table 5. We introduce the following activities:

438 W.-J. van Hoeve and S. Tayur

Lb: the execution of batch b, for b ∈ B
Lopt
b,f : the execution of batch b on furnace f , for b ∈ B, f ∈ F : w̄b ≤ wmax

f ,
Tf,c̄b = 1, and f ∈ ḡb if b ∈ BL

We define the schedule domain for both types of activities as [r̄b,H], for b ∈ B.
Activities Lopt

b,f are optional, while activities Lb must always be present. The
processing time for both Lb and Lopt

b,f is given by pc̄b,f .
We introduce a sequential resource Rf for each furnace f ∈ F . As arguments

it receives the activities Lopt
b,f , as well as the sequence-dependent switchover times

ta,a′,f . These resources will ensure that all activities Lb,f that are present do not
overlap in time, and respect the switchover times.

The additional constraints for our CP model are as follows:

Alternative(Lb, {Lopt
b,f }f∈F , 1) ∀b ∈ B (22)

EndBeforeBegin(Lb, Lb′ , 4320) ∀(b, b′) ∈ Π̄ (23)

EndBeforeBegin(Lopt
b,f , Lopt

b′,f) ∀b, b′ ∈ B, f ∈ F : b
= b′, r̄b = r̄b′ , (24)

d̄b < d̄b′ , n̄b = K, (b′, b) /∈ Π̄

(Lb).end ≤ d̄i + vb ∀b ∈ B (25)

The Alternative constraints (22) ensure that exactly one optional activity
Lopt
b,f is present for each b ∈ B, and it coincides with the execution of activity

Lb. The precedence constraints are defined by constraints (23).2 Constraints
(24) are added to streamline the solutions, by ordering pairs of activities on a
furnace by due date. Lastly, we introduce an integer variable vb, for b ∈ B, that
represents its due date violation (or tardiness), as defined in constraint (25). In
this constraint (and in the objective function below), .end is used to retrieve
the end variable of an activity.

We conclude with the objective function, which is a weighted sum of com-
pletion times and tardiness over different groups of activities:

min γ̄L
∑

b∈BL

(Lb).end + γ̄I
∑

b∈BI

n̄b(Lb).end + γ̄V
∑

b∈B

n̄bvb (26)

Here, BI refers to the batches that contain first-day orders (these refer to the
batches ba,k with k ≤ kI

a). The weights γ̄L, γ̄I , and γ̄V have decreasing value in
the range (0, 100], placing most emphasis on locked orders and first-day orders.

5 Implementation and Results

We implemented our MIP and CP models in the optimization modeling system
AIMMS, using IBM ILOG CPLEX 12.4 for solving the MIP and CP models.
We also used AIMMS to build an end-user interface for operational use.

2 Recall that b′ must be scheduled at least three days (4320min) after b finishes.

Integer and Constraint Programming for Batch Annealing Process Planning 439

The purpose of our tool is to plan, or revisit, the design and scheduling
of annealing batches on a daily basis. A typical run may receive about 600
orders (with 100 locked orders, in 60 batches). The batch design MIP model
for the remaining 500 orders has about 20,000 variables (18,000 integer) and
30,000 constraints. A feasible integer solution (with optimality gap 30%) is found
within a couple seconds, while a near-optimal solution (1% optimality gap) is
found within 15 min. The model creates about 190 batches, which together with
the locked batches makes around 250 batches to be scheduled. For about 15
available furnaces, the resulting CP model has about 8,000 variables and 25,000
constraints. It finds a feasible solution instantly, and typically returns solutions
in about 2 min that are not necessarily optimal, but are considered of good
quality by the client with respect to the goals listed in Sect. 2.

6 Conclusion

We introduced a two-phase optimization approach to design and schedule
batches for box annealing furnaces. We first allocate a given set of orders to
batches using a mixed-integer programming model. We then solve the batch
scheduling problem using a constraint programming model. Using this decom-
position, our approach is able to compute operational schedules for a one-week
planning horizon within 15 to 30 min of computation time.

References

1. Baptiste, P., Le Pape, C., Nuijten, W., Scheduling, C.-B.: Applying Constraint Pro-
gramming to Scheduling Problems. Kluwer Academic Publishers, Dordrecht (2001)

2. Castro, P.M., Erdirik-Dogan, M., Grossmann, I.E.: Simultaneous batching and
scheduling of single stage batch plants with parallel units. AIChE J. 54(1), 183–193
(2008)

3. Harjunkoski, I., Grossmann, I.E.: A decomposition approach for the scheduling of
a steel plant production. Comput. Chem. Eng. 25(11–12), 1647–1660 (2001)

4. Liu, Q., Wanga, W., Zhanb, H., Wanga, Z., Liua, R.: Optimal scheduling method
for a bell-type batch annealing shop and its application. Control Eng. Pract. 13(10),
1315–1325 (2005)

5. Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-the-
art review of optimization methods for short-term scheduling of batch processes.
Comput. Chem. Eng. 30, 913–946 (2006)

6. Moon, S., Hrymak, A.N.: Scheduling of the batch annealing process - deterministic
case. Comput. Chem. Eng. 23(9), 1193–1208 (1999)

7. Roelofs, M., Bisschop, J.J.: AIMMS 4.2: The Language Reference. AIMMS B.V.
(2014)

Machine Learning and CP Track

Minimum-Width Confidence Bands via
Constraint Optimization

Jeremias Berg1(B), Emilia Oikarinen2, Matti Järvisalo1, and Kai Puolamäki2

1 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
{jeremias.berg,matti.jarvisalo}@helsinki.fi

2 Finnish Institute of Occupational Health, Helsinki, Finland

Abstract. The use of constraint optimization has recently proven to be
a successful approach to providing solutions to various NP-hard search
and optimization problems in data analysis. In this work we extend the
use of constraint optimization systems further within data analysis to a
central problem arising from the analysis of multivariate data, namely,
determining minimum-width multivariate confidence intervals, i.e., the
minimum-width confidence band problem (MWCB). Pointing out draw-
backs in recently proposed formalizations of variants of MWCB, we pro-
pose a new problem formalization which generalizes the earlier formula-
tions and allows for circumvention of their drawbacks. We present two
constraint models for the new problem in terms of mixed integer pro-
gramming and maximum satisfiability, as well as a greedy approach.
Furthermore, we empirically evaluate the scalability of the constraint
optimization approaches and solution quality compared to the greedy
approach on real-world datasets.

1 Introduction

The use of constraint programming systems has recently proven to be a suc-
cessful approach to providing solutions to various NP-hard search and optimiza-
tion problems in data mining and machine learning, using a variety of con-
straint optimization paradigms such as constraint programming (CP), mixed
integer programming (MIP), Boolean satisfiability (SAT), maximum satisfia-
bility (MaxSAT), and answer set programming (ASP). Compared to the more
typical in-exact, problem-specific local search style algorithms, the benefits of
constraint reasoning and optimization lie on one hand in the ability to provide
provably optimal solutions, translating into more accurate solutions to the data
analysis task at hand, and on the other hand by generality of algorithmic solu-
tions resulting from the declarative approach, allowing for capturing different
problem variants simply by enforcing additional or slightly modified constraints.

This work was financially supported by Academy of Finland (grants 251170 COIN,
276412, 284591, 288814); Tekes (Revolution of Knowledge Work); and DoCS Doc-
toral School in Computer Science and Research Funds of the University of Helsinki.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 443–459, 2017.
DOI: 10.1007/978-3-319-66158-2 29

444 J. Berg et al.

In this work we extend the use of constraint optimization systems further
within data analysis to a central problem arising from the analysis of multivari-
ate data, namely, determining minimum-width multivariate confidence intervals.
Confidence intervals are commonly used to summarize distributions over reals,
e.g., to denote ranges of data, to specify accuracies of estimates of parameters, or
in Bayesian settings to describe the posterior distribution. Represented with an
upper and a lower bound, confidence intervals are also easy to interpret together
with the data. In contrast to p-values, which only convey information about
statistical significance—a problem which has been long and acutely recognized
in many disciplines [4,20,23,25]—confidence intervals give information on both
the statistical significance of the result as well as the effect size. Indeed, statisti-
cally significant results can be meaningless in practice due to the small effect size
[23,25]. The proposed solution is not to report p-values at all, but use confidence
intervals instead [20]. Optimizing the width of multivariate confidence intervals
is NP-hard, and furthermore, expectedly even hard to approximate [11], which
motivates the use of constraint optimization systems for the task.

The problem of estimating the confidence interval of a distribution based on a
finite-sized sample from the distribution has been extensively studied, see e.g. [7].
However, most effort has focused on describing a single univariate distribution
over real numbers, and there are surprisingly few approaches to multivariate
confidence intervals. In the time series domain, multivariate confidence inter-
vals [9,11], namely confidence bands, have been defined in terms of the minimum-
width envelope (MWE). The only exact approach to MWE (in this paper denoted
by MWCB(k) as motivated later on) that we are aware of is the very recent inte-
ger programming model of [21]. However, as explained in [10], solving MWE can
result in very conservative confidence bands when there are local deviations from
what constitutes as normal behaviour in the data at hand. To overcome this,
an alternative definition as what we will refer to as MWCB(k, s) was recently
introduced in [10], and a greedy approach to solving this variant was provided;
to the best of our understanding no exact algorithms for MWCB(k, s) have been
proposed. However, as we will shortly explain, MWCB(k, s) can result in optimal
solutions exhibiting extremely narrow parts in the confidence band even when
there is no clear explanation for this behaviour in the data.

In this paper, we focus on the combinatorial variant of the minimum-width
confidence band problem, and specifically, on constraint optimization approaches
to obtaining optimal solutions to a new variant MWCB(k, s, t) of the multivariate
minimum-width confidence interval problem. In more detail, our contributions
are the following. (i) We demonstrate that minimum-width (k, s)-confidence
bands as defined in [10] tend to have very narrow parts without a clear intuitive
meaning. (ii) We propose an alternative definition to overcome this undesirable
property, denoted as the MWCB(k, s, t) problem. (iii) As a novel application
domain of declarative constraint optimization, we provide two constraint mod-
els for MWCB(k, s, t) in terms of MIP and MaxSAT as the constraint languages
of choice at this time. (iv) We also provide a greedy algorithm for MWCB(k, s, t),
which provides more scalability, but also allows for analyzing the benefits of exact

Minimum-Width Confidence Bands via Constraint Optimization 445

constraint optimization for the problem in terms of the quality of obtained solu-
tions. (v) To this end, we present an overview of an empirical evaluation on the
scalability of the constraint optimization approaches and solution quality.

The rest of this paper is organized as follows. We start with the previously
proposed variants MWCB(k) and MWCB(k, s) of the multivariate confidence
interval problem, pointing out their drawbacks, and motivated by these we pro-
pose the focus of this work, the MWCB(k, s, t) problem (Sect. 2). We then intro-
duce constraint optimization models for MWCB(k, s, t) in terms of MIP and
MaxSAT (Sect. 3), as well as a first greedy approach to MWCB(k, s, t) for com-
paring with the constraint models (Sect. 4). Overview of an empirical evalua-
tion of the constraint models is presented in Sect. 5 using real-world time series
datasets, and related work discussed further in Sect. 6.

2 The Minimum-Width Confidence Band Problem

We consider a set of n data vectors xi, each of length m, represented by a
matrix X ∈ R

n×m. Let xij ∈ X denote the j-th element of xi. The data X
can, for instance, represent time series data, i.e., each xi is a sequence of values
taken at successive points in time. (In the general setting, preprocessing may be
necessary as one needs to make sure that the variables or at least their scales
are comparable.)

A confidence band is defined as a pair (l, u) of vectors, where l, u ∈ R
m and

lj ≤ uj for all j. The size of the confidence band CB = (l, u) is size(CB) =∑m
j=1(uj − lj). In order to capture the relationship between a confidence band

and a dataset, we use the concept of an error of a confidence band w.r.t. the
data at hand. An indicator function (unity if the condition � is satisfied and
zero otherwise) is denoted by I[�].

Definition 1. Given a data vector xi and a confidence band CB = (l, u), the
error of xi w.r.t. CB is the number of points in xi that lie outside of CB, i.e.,
error(xi, CB) =

∑m
j=1 I[xij < lj ∨ uj < xij].

There are several possible ways to control the error. In [9,11] a data vector
is considered an outlier or extreme if it is outside the confidence band in at least
one dimension. In the minimum-width confidence band (MWCB(k)) problem
the number of extreme data vectors is controlled by a parameter k.

Definition 2 (MWCB(k)). [9,11] Given a dataset X ∈ R
n×m, any

confidence band CB∗ ∈ arg min size(CB) over those CB for which∑n
i=1 I[error(xi, CB) > 0] ≤ k is a solution to the MWCB(k) problem.

The above definition results in well-defined confidence bands which gives the
user control over the error in analogy to the family-wise error rate. However, as
argued in [10], the resulting confidence bands can be too conservative in cases in
which there are local deviations from what constitutes as normal behaviour in the
data at hand. To overcome this feature, a relaxed variant of the MWCB(k) problem
allowing local deviations from the confidence band was recently proposed [10,24].

446 J. Berg et al.

Fig. 1. An example of time series data with n = 50 time series of length m = 64
(represented with purple lines) for which an MWCB(k, s) confidence band (green lines)
has very narrow parts, while the respective MWCB(k, s, t) confidence band (orange
lines) does not. Here we have used k = t = 5 and s = 6, each value representing
approximately 10% of the respective dimension. (Color figure online)

Definition 3 (MWCB(k, s)). [10] Given a dataset X ∈ R
n×m and two inte-

gers k and s, any confidence band CB∗ ∈ arg min size(CB) over those CB for
which

∑n
i=1 I[error(xi, CB) > s] ≤ k is a solution to the MWCB(k, s) problem.

Now, one may observe that a solution to the MWCB(k, s) problem can be
very narrow at places. This was in fact pointed out in [10], where it was further
argued that in real datasets with non-trivial marginal distributions and corre-
lation structure this was unlikely to happen, and the confidence band would be
approximately of similar width across columns. However, we note that optimal
solutions to the MWCB(k, s) problem on real data are likely to contain narrow
intervals with no clear explanation. For example, consider Fig. 1. The data con-
sists of 50 time series of length 64 sampled from the mitdb data (see Sect. 5
for details). The green lines represent a confidence band that is a solution to
MWCB(5, 6) problem. We can observe that the confidence band is very narrow
at the peak, i.e., around the time interval [25, 30]. One should notice that we
use a real data set here to demonstrate the unwanted behaviour, and obviously
it is not difficult to craft synthetic instances for which an optimal solution to
the MWCB(k, s) problem has extremely narrow parts in the confidence band.

These observations suggest that there should be a mechanism to control the
amount of column-wise error in addition to the row-wise constraints, and to
this end we propose the concept of a minimum-width (k, s, t)-confidence band in
terms of the MWCB(k, s, t) problem as follows.

Definition 4 (MWCB(k, s, t)). Given a dataset X ∈ R
n×m and integers k, s,

and t, any confidence band CB∗ ∈ arg min size(CB) over those CB = (l, u) for
which

∑n
i=1 I[error(xi, CB) > s] ≤ k and

∑n
i=1 I[xij < lj ∨ xij > uj] ≤ t for

all 1 ≤ j ≤ m, is a solution to the MWCB(k, s, t) problem.

As straightforward connection between the MWCB(k, s, t) and MWCB(k, s)
problems is the following.

Minimum-Width Confidence Bands via Constraint Optimization 447

Proposition 1. A confidence band CB for a dataset X ∈ R
n×m is a solution

to the MWCB(k, s) problem iff it is a solution to the MWCB(k, s, n) problem.

The additional parameter t gives the user control over the amount of outliers
allowed column-wise. If local deviations are likely to not to happen too often,
setting the value of t equal to, or slightly larger than, k is a reasonable choice.
For example, in Fig. 1, the orange lines represent a confidence band that is a
solution to MWCB(5, 6, 5). One can observe that, indeed, for each time point
a majority (90%, i.e., 45 out of 50 to be exact) of the time series are inside the
confidence band. Furthermore, at most 10% of the time series deviate from the
confidence band in more than 6 time points. Based on experimentation, it seems
that for the real datasets we consider in this work, the size of the confidence
band is approximately the same for t ∈ {k, k+1, . . . , 2k} (assuming k � n), and
thus a conservative choice, e.g., t = (1 + ε)k for ε < 1, seems to be a reasonable
one.

3 Constraint Optimization Models for MWCB(k, s, t)

Recently, a MIP model for the MWCB(k) problem was proposed in [21]. How-
ever, to the best of our knowledge, no efficient exact algorithms for solving the
MWCB(k, s) problem (nor the more general MWCB(k, s, t) problem) exist. Two
heuristic algorithms are provided in [10], with no guarantee of solution quality.
Korpela et al. [10] do provide a MIP model for the special case of one-sided
confidence bands. However, this model is only used to show an approximability
result and does not yield a practically efficient method, even for the special case.

In the following we present two constraint optimization models for
MWCB(k, s, t), one using mixed integer programming and the other using max-
imum satisfiability. For notation, let N = {1, . . . , n} and M = {1, . . . , m}. Both
of our constraint models use a column ordering for the data X. Thus, we assume
that we have an ordering for each of the columns using dense-rank1 (as provided
in R) and denote by rmax

j the maximum rank in column j. In the following, for
a given r ∈ {1, . . . , rmax

j }, we use (r) to denote the index i such that xij has
rank r in column j.

3.1 Mixed Integer Programming Model

For our MIP model, we use the band-wise reduction procedure suggested in [22],
similarly to [21]. However, in our model, instead of looking for whole data vector
to exclude from the confidence band, we need to allow the exclusion of indi-
vidual data points while maintaining both the column-wise and the row-wise
constraints.

Our MIP model is presented in detail in Fig. 2. We introduce variables lj , uj ∈
R for each j ∈ M for the confidence band, and the objective (1) is to minimize
1 In case of ties, both elements get the same rank r and the next greatest element gets

rank r + 1.

448 J. Berg et al.

Fig. 2. Mixed integer programming model for MWCB(k, s, t).

the size of the confidence band, i.e., the sum of (uj − lj)’s over all columns j.
We introduce n × m binary variables dij with the interpretation dij = 1 iff the
jth element of xi is outside the confidence band, i.e., xij < lj or xij > uj .
Furthermore, we use n binary variables yi with the interpretation yi = 1 iff xi is
outside the confidence band in at least s positions, i.e.,

∑m
j=1 I[xij < lj ∨ xij >

uj] > s.
For the band-wise reduction procedure [22], we can make use of the following

observation: since we have the column-wise constraint that at most t data points
can be outside the confidence band at each column, we know that the value with
rank t + 1 has to be inside the lower band. Thus, we include the constraints
(2). Respective constraints for the upper band are provided in (3). Next, the
constraints (4) (resp. (5)) encode the choice that either a value xij is inside the
lower (resp. upper) band or it is outside. Here we use constant vectors Ml =
(M l

1, . . . , M
l
m) and Mu = (Mu

1 , . . . , Mu
m) defined as

M l
j = x(t+1)j − min(x1j , . . . , xnj) and

Mu
j = max(x1j , . . . , xnj) − x(rmax

j −t)j .

Now, if dij = 1, the constraints are de-activated, and if dij = 0 the constraints
(4) and (5) together ensure that lj ≤ xij ≤ uj . Here we once more use the
property that at most t values can be outside the confidence band. The con-
straints (6) enforce this. We use the constraints (7) to represent the relationship
between dij ’s and yi. If yi = 0, then at most s variables dij for each j ∈ M can
have value 1. On the other hand, if yi = 1, then each constraint (7) reduces to∑m

j=1 dij ≤ m which is always satisfied. Finally, the constraint (8) makes sure
that at most k data vectors have more that s elements outside the confidence
band.

Minimum-Width Confidence Bands via Constraint Optimization 449

Fig. 3. The base clauses in our MaxSAT encoding for MWCB(k, s, t).

3.2 Maximum Satisfiability

Before presenting our second constraint optimization model for MWCB(k, s, t),
we give a brief background on maximum satisfiability. For a more extensive
review we direct the reader to [2].

For a Boolean variable x there are two literals, the positive literal x and the
negative literal ¬x. A clause is a disjunction (∨) of literals and a conjunctive
normal form (CNF) formula is a conjunction (∧) of clauses. Equivalently, a clause
is a set of literals and a CNF formula a set of clauses. A truth assignment τ is
a function from Boolean variables to {0, 1}. A truth assignment τ satisfies a
clause C (τ(C) = 1) if it assigns a positive literal x ∈ C to 1 or a negative literal
¬x ∈ C to 0, and else τ falsifies the clause (τ(C) = 0). Assignment τ satisfies
a CNF formula F if it satisfies all clauses in F . An instance of the (weighted
partial) maximum satisfiability (MaxSAT) problem (Fh, Fs, w) consists of two
CNF formulas, the set of hard clauses Fh and the set of soft clauses Fs, together
with a function w : Fs → N assigning a positive weight to each soft clause. Any
truth assignment τ that satisfies all hard clauses is a solution to the MaxSAT
problem. A solution τ is optimal if it minimizes the sum of the weights of the
soft clauses it falsifies, i.e., if

∑
C∈Fs

(1 − τ(C))w(C) ≤ ∑
C∈Fs

(1 − τ ′(C))w(C)
for all solutions τ ′.

Our MaxSAT model makes extensive use of cardinality networks [1]. For
our purposes, given a set of literals L, a literal lB and an integer bound K, a
cardinality network produces a set of clauses

CNF(
∑

l∈L

l > K → lB)

450 J. Berg et al.

that encodes the property that whenever more than K literals from the set
L are assigned to 1, then so is the literal lB . We use CNF(

∑
l∈L l ≤ K) as

shorthand for the CNF formula CNF(
∑

l∈L l > K → lB) ∧ (¬lB). Notice that
the clauses in CNF(

∑
l∈L l ≤ K) together essentially enforce that at most K

literals of the set L can be assigned to 1. As an important special case we also
use CNF(

∑
l∈L l = 1) as shorthand for CNF(

∑
l∈L l ≤ K) ∧ (

∨
l∈L l), enforcing

that exactly one of the literals in L has to be assigned to 1.
Figure 3 gives the clauses in our MaxSAT encoding. We start by describing

the intuition behind the Boolean variables used. Note that for every solution
CB = (l, u) to the MWCB(k, s, t) problem and every j ∈ M, there exists a
r ∈ {1, . . . , t + 1} (resp. r ∈ {rmax

j − t, . . . , rmax
j }) such that lj = x(r)j (resp.

uj = x(r)j). For each column j, we use Rj
m to denote the set of possible r

for which lj = x(r)j can hold. Since at most t points can lie outside the lower
band for any j ∈ M, we have Rj

m = Rm = {1, . . . , t + 1}. Similarly we use
Rj

M = {rmax
j − t, . . . , rmax

j } to denote the set of possible indices r for which
uj = x(r)j can hold. We introduce variables lrj and uh

j for j ∈ M, r ∈ Rm

and h ∈ Rj
M with the interpretation lrj = 1 (resp. uh

j = 1) iff lj = x(r)j (resp.
uj = x(h)j). In addition, we use the variables dij and yi with the same semantics
as in the MIP model.

Next we describe the hard clauses enforcing these semantics. The constraints
(9) enforce that at most k data vectors are outside the confidence band in more
than s elements. The constraints (10) enforce the correct semantics for the yi
variables, i.e., whenever xi lies outside the confidence band in more than s ele-
ments, the variable yi is also set to true. Next, the constraints (11) enforce that
at most t data points lie outside the confidence band in each column. The con-
straints (12) and (13) enforce that the value of lj and the value of uj is uniquely
defined in each column j, i.e., exactly one of the lrj and uh

j variables are true
for each j. The constraints (14) enforce the correct semantics for the lrj vari-
ables: whenever a data point x(r)j is inside the lower confidence band lj , i.e.,
d(r)j = 0, then the value of lj is at most the value of x(r)j . In order to get
shorter clauses in the final MaxSAT instance, we use instead an equivalent con-
dition stating that whenever d(r)j = 0, the value of lj is not equal to x(r′)j for
any r′ ∈ {r + 1, . . . , t + 1}. The constraints (15) enforce a similar condition for
the uh

j variables. The soft clauses (16) enforce that the confidence band defined
by the lhj and uh

j variables is of minimum size. For a fixed column j, the clause
(¬lrj ∨ ¬uh

j) is falsified if both lrj and uh
j are true, corresponding to lj = x(r)j

and uj = x(h)j . The cost of the clause is set to be x(h)j − x(r)j = uj − lj , i.e.,
the contribution of that column to the size of the final confidence band. Notice
that due to the hard clauses in the encoding, exactly one soft clause per column
will be falsified.

Redundant Constraints. The clauses just described are enough to guaran-
tee soundness. However, the encoding also includes redundant clauses meant to
improve performance of the MaxSAT algorithms. These are based on the fact
that at most t data points can lie outside the confidence band in each column.

Minimum-Width Confidence Bands via Constraint Optimization 451

For a fixed column j this implies that there are certain pairs of indices r ∈ Rm,
h ∈ Rj

M for which the variables uh
j and lrj cannot both be set to true.

As an example, the variables ur
j and lt+1

j for r = rmax
j −t cannot be set to true

simultaneously, since this would require 2t data points, namely x(1)j , . . . , x(t)j

and x(rmax
j)j , . . . , x(rmax

j −(t−1))j to be outside of the confidence bands in col-
umn j. Hence the clause (¬ur

j ∨ ¬lt+1
j) for r = rmax

j − t is always satisfied,
making it redundant as a soft clause in our encoding. However, we can instead
introduce it as a hard clause to improve propagation during search. Generalizing
the above observation, for a fixed variable lrj we introduce the clause (¬lrj ∨¬uh

j)
as hard clause instead of a soft one for all h ∈ {rmax

j −t, . . . , rmax
j −(t−(r−1))}.

4 A Greedy Approach to MWCB(k, s, t)

In this section we present a greedy algorithm for finding (typically non-optimal)
solutions for the MWCB(k, s, t) problem. The overall idea is to exclude individual
data points greedily as long as the row-wise and column-wise constraints remain
satisfied. The general idea is similar to the greedy algorithm proposed in [11],
but instead of excluding a data vector fully, we consider excluding a single data
point at a time.

The greedy algorithm is presented in pseudocode as Algorithm 1. We use an
ordering structure R (line 2) that allows us O(1) time access to the largest and
the second to largest (resp. the smallest and the second to smallest) element in
each column. The ordering structure consists of a doubly-linked list Rj for each
column j, and can be initialized in O(mn log n) time. We use vectors rmdC and
rmdR to keep track of the number of excluded values for each column and row,
respectively, as well as a counter rmdcnt to keep track of the number of rows for
which more than s elements are excluded. Let gains(R) on line 4 be a method
returning the possible gains for each of the columns, i.e., x(2)j − x(1)j for the
lower band and x(rmax

j)j − x(rmax
j −1)j for the upper band in O(m) time. The

values are stored in a priority queue G in O(m) time.
The main part of the algorithm is the while-loop on lines 5–15. The loop is

repeated at most O(mn) times and each iteration takes O(log m) time. We use
a Boolean b ∈ {0, 1} to keep track of whether the current gain is obtained from
the lower band (b = 0) or the upper band (b = 1). At each iteration the element
with largest gain is used as a candidate for removal. On line 7, idx(Rj , b) returns
the index of the currently highest/lowest ranked value in Rj . On line 8, we have
the condition under which it is possible to exclude a value from the confidence
band (realized by removing the respective element from the ordering structure
R). In every case we have to maintain the column-wise constraint, i.e., check
that less than t values have been excluded from the column in previous steps.
Furthermore, the row-wise constraints can be satisfied in two ways. The first
condition rmdR(i) �= s summarizes two cases: if rmdR(i) < s, it is always safe to
exclude the candidate. On the other hand, if rmdR(i) > s, then the data vector
with index i is already among the k possible outliers with more than s elements
excluded, and thus the current value can be excluded as well. The remaining

452 J. Berg et al.

input : dataset X ∈ R
n×m, integers k,s,t

output: CB ∈ R
m×2

1 begin
2 R ←ordering structure for observations in X
3 rmdC ←zeros(m); rmdR ←zeros(n); rmdcnt ← 0
4 G ←priorityQueue(gains(R))
5 while G �= ∅ do
6 (val, j, b) ←getMaximumElement(G)
7 i ←idx(Rj , 1, b)
8 if rmdC(j) < t and (rmdR(i) �= s or rmdcnt < k) then
9 R ←remove(Rj , b)

10 if rmdR(i) == s then
11 rmdcnt++
12 rmdR(i)++
13 rmdC(j)++
14 val ← value(Rj , 1, b)− value(Rj , 2, b)
15 G.add(key=val, col=j, bit=b)

16 for j ∈ 1 : m do
17 CB(j, :) ← [value(Rj , 1, 0), value(Rj , 1, 1)]
18 return CB

Algorithm 1. Greedy algorithm for MWCB(k, s, t).

case rmdR(i) == s requires that no more than k − 1 data vectors have more
than s elements excluded.

The respective counters are then updated (lines 10–13). On lines 14 and
15, a new candidate gain is computed and pushed to the priority queue. Here
val(Rj , r, b) is the value of the lowest (b = 0) or the highest (b = 1) ranked
element still present in Rj for r = 1, resp. the value of the second lowest/highest
ranked element for r = 2. Finally, the confidence band to be returned is directly
obtained from the ordering structure. The overall time complexity for the greedy
algorithm is O(mn log mn) and memory complexity O(mn).

5 Experiments

We present an overview of an empirical evaluation on the scalability of the MIP
and MaxSAT models using state-of-the-art solvers on MWCB(k, s, t) instances
constructed from real-world time series datasets, as well as on the relative quality
of solutions provided by exact constraint optimization and the greedy approach.

For the experimental evaluation, we used the state-of-the-art commercial
mixed integer programming system CPLEX version 12.7.1 from IBM [8], and
the MaxSAT solvers QMaxSAT [12], MSCG [19], and MaxHS [3]. The MaxSAT
solvers are representatives of state-of-the-art solvers based on different types of
algorithms: QMaxSAT is a so-called model-guided SAT-based solver (using a
SAT solver to search for increasingly good solutions until no better solutions
can be found), MSCG is a core-guided SAT-based solver (using a SAT solver to

Minimum-Width Confidence Bands via Constraint Optimization 453

extract and rule out unsatisfiable cores of a MaxSAT instance until a satisfying
assignment is found), and MaxHS is a hybrid SAT-IP solver for MaxSAT, imple-
menting a so-called implicit hitting set approach. The experiments were run on
2.83-GHz Intel Xeon E5440 quad-core machines with 32-GB RAM and Debian
GNU/Linux 8 using a per-instance timeout of 3600 s.

We implemented the greedy procedure (recall Sect. 4) in R. As the greedy
procedure has much better running time scalability than the constraint solvers
on finding provably-optimal solutions, here we focus on comparing the improve-
ments in solution costs provided by the exact approaches to those provided by
the greedy procedure.

5.1 Datasets

For the experiments, we obtained benchmark instances based on the following
real-world time series datasets.

Milan temperature data (milan). We use the max-temp-milan dataset from
[11]. The raw data is obtained from Global Historical Climatology Network
(GHCN) daily dataset [16,17] from US National Oceanic and Atmospheric
Administration’s National Climatic Data Center (NOAA NCDC)2. The pre-
processed data contains average monthly maximum temperatures for a station
located in Milan for the years 1763–2007, resulting in n = 245 time series with
length m = 12.

UCI-Power data (power). The UCI-Power dataset is the individual household
electric power consumption data3 from the UCI machine learning repository
[13]. It consists of hourly averages of the variable active.power, resulting in
a dataset with n = 1417 time series with m = 24 time points.

Heartbeat data (mitdb). We use the preprocessed datasets heartbeat-
normal and heartbeat-pvc from [11]. These datasets are obtained from
the MIT-BIH arrhythmia database available at Physionet [5]. The data con-
tains annotated 30-min records of normal and abnormal heartbeats [18].
There are 1507 observations in heartbeat-normal and 520 observations in
heartbeat-pvc both with m = 253 time points.

As a preprocessing step, we shifted the data so that all values are non-negative.
To assess the scalability of our constraint models, we used the datasets to produce
instances with varying dimensions. To obtain an instance with n′ time series, we
randomly sample n′ time series from the respective dataset. For the heartbeat
data, we create instances with n′ observations by sampling at random 0.9n′

time series from heartbeat-normal and 0.1n′ time series from heartbeat-pvc.
Furthermore, in order to obtain instances with m′ < 253 while maintaining the
autocorrelation structure, we take every jth time point for j ∈ {2, 4, 6, 8, 10}.
Table 1 summarizes the datasets and the parameters of the instances sampled
from the datasets.
2 http://www.ncdc.noaa.gov/.
3 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+con

sumption.

http://www.ncdc.noaa.gov/
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

454 J. Berg et al.

Table 1. Summary of datasets and the instances generated.

Dataset Sample sizes for n Sample sizes for m

milan (n = 245, m = 12) 50, 100, 150, 200, 245 12

power (n = 1417, m = 24) 200, 400, 600, 800, 1000 24

mitdb (n = 2027, m = 253) 100, 150, 200, 250, 300 26, 32, 43, 64, 127, 253

5.2 Results

Due to the large parameter value space, we will present selected views on the
results which provide interesting insights into the performance of the MIP and
MaxSAT approaches for the problem, as well as quality of solutions obtained.

Scalability of the Exact Approaches. We start the overview of the empirical
results with the scalability of the exact approaches, i.e., CPLEX on the proposed
MIP model and the three considered state-of-the-art MaxSAT solvers on the
MaxSAT encoding.

Results from this comparison are provided in Figs. 4 and 5. Figure 4 (left)
shows the number of instances solved by each of the four solvers under different
per-instance time limits on instances based on the milan dataset using the
parameter values k ∈ {0.01n, 0.02n, 0.05n}, s ∈ {1, 2}, and t ∈ {k, k + 2},
rounding values below 1 to 1, and the rest to the nearest integer. To increase the
number of instances, we used k ∈ {1, 2, 3} for the smallest value n = 50. This
results in 60 instances in total. Out of the three MaxSAT solvers, the model-
guided QMaxSAT performs the best. However, CPLEX on the MIP model solves
each of the instances very fast, surpassing in performance the MaxSAT solvers
on the MaxSAT encoding.

Based on this, we take a further look at the performance of CPLEX and
QMaxSAT as the two most promising out of the considered solvers. Figure 4
(right) shows the number of solved instances generated from all of the three
benchmark datasets (milan, power, and mitdb) using parameter values

Fig. 4. Comparison of solver scalability. Left: milan dataset, right: all datasets.

Minimum-Width Confidence Bands via Constraint Optimization 455

Fig. 5. The solving times for the instances sampled from the mitdb data with m = 43
using the MIP model. Left: t = k, right: t = k + 2.

Fig. 6. The solving times for the instances sampled from the mitdb data with m = 127
using the MIP model. Left: t = k, right: t = k + 2.

k ∈ {0.01n, 0.02n, 0.05n}, t ∈ {k, k + 2} and s = {0.01m, 0.02m, 0.05m} (720
instances in total), and gives further support for the fact that CPLEX domi-
nates in performance the MaxSAT approach.

One should note that the value of t has a direct impact on the size of the
search space. Values t < k are allowed by the definition, but can result in unin-
tuitive solutions. Thus, we consider values t ≥ k. As an increase in the value of t
can intuitively drastically increase the hardness of an instance (in the worst case
all nm values need to be considered for removal), we assessed the effect of t on
the solution quality, i.e., the size of the optimal confidence bands. Experimen-
tation with instances from the mitdb and power dataset with 200–400 time
series showed that increasing the value of t from k to 2k for k = 0.05n decreased
the size of an optimal solution by less that 1%. Thus, to assess the scalability of
our approach, we chose to use the conservative values t ∈ {k, k +2}. One should
note, however, that the best value for t depends on the dataset at hand and the
expected distribution of local and global outliers.

Figures 5 and 6 give further insights into the scalability of the MIP approach,
using instances based on the mitdb dataset with m = 43 and m = 127. As
parameters values we consider s = {0.02m, 0.05m} and t ∈ {k, k + 2}. For

456 J. Berg et al.

instances with m = 43, we use k ∈ {0.01n, 0.02n, 0.05n, 0.10n}, and for instances
with m = 127 we use k ∈ {0.01n, 0.02n, 0.05n}.

First, we consider the effect of data dimensions on the solving time. We
observe that an increase in the length of the time series m affects the solving
time more than an increase in the number of time series n, i.e., the instances
based on the mitdb data with n = 250 and m = 127 are easier to solve than
instances with n = 100 and m = 253 (detailed results for mitdb-m253 not
reported due to space constraints).

As for the scalability w.r.t. parameter k, typically one would be interested
in 95% or 90% confidence intervals. The 95% confidence intervals correspond to
setting k =
0.05�, and our MIP model can handle k =
0.05n� with instances
up to n = 300 and m = 127. For the instances based on mitdb data with
m = 253, instances with up to n = 100 and power data with m = 24 instances
with up to n = 600 can be solved. In the case corresponding to 90% confidence
intervals, mitdb instances with m = 43 up to n = 200 (with s = 0.05m) can be
solved before timeout. In Figs. 5 and 6 the effect of parameter s on solving time
seems smaller than that of parameter k. This is to some extend to due to the
fact that for the actual values used, namely 1 ≤ s ≤ 6, the number of possible
combinations stays reasonable. For larger s, the effect becomes more visible.

Finally, as expected, typically an increase on the value of parameter t results
in an increase in solving times. However, in contrast to the other parameters,
the solving times do not monotonically increase upon increasing t. In fact, there
are some instances with t > t′ for which it is faster to solve the MWCB(k, s, t)
problem than the MWCB(k, s, t′) problem, e.g., the mitdb-m43 instance with
n = 200.

Overall, based on the empirical results, CPLEX on the proposed MIP model
for MWCB(k, s, t) scales reasonably well on the real-world datasets under various
parameter value combinations.

Solution Quality: Exact vs Greedy. Finally, we look at the relative quality
of solutions obtained on one hand using the exact MIP approach and, on the
other hand, using the greedy algorithm presented in Sect. 4. Here we focus on the
question of whether the higher computational cost of exact optimization pays
off by offering in cases better solutions than the greedy approach.

As witnessed by the results presented in Fig. 7, the optimal solutions are in
cases non-negligibly better than those provided by the greedy approach. In more
detail, the histograms in Fig. 7 show the counts of the relative costs of greedy
and optimal solutions, defined as size(CBgr)/size(CBopt), for instances based
on the mitdb (m = 43) dataset with t = k (left) and t = k + 2 (right).

We observe that there are greedy solutions that have a cost of up to approx-
imately 127.5% of that of the optimal solution, while on average the cost of the
greedy solution is 108% of the optimum for the mitdb-m43 instances.

Furthermore, we observed that the MIP approach can provide solutions with
a low cost (without proving them optimal) often much faster than what it takes
for CPLEX to prove the solutions found optimal. In detail, for 91 out of the 120

Minimum-Width Confidence Bands via Constraint Optimization 457

 0

 5

 10

 15

 20

 25

 30

[1.00,1.05]
[1.05,1.10]

[1.10,1.15]
[1.15,1.20]

[1.20,1.25]
[1.25,1.30]

C
ou

nt

greedy cost / optimal cost

k=1% s=2%
k=1% s=5%

k=1% s=10%
k=2% s=2%
k=2% s=5%

k=2% s=10%
k=5% s=2%
k=5% s=5%

k=5% s=10%
k=10% s=2%
k=10% s=5%

k=10% s=10%

 0

 5

 10

 15

 20

 25

 30

[1.00,1.05]
[1.05,1.10]

[1.10,1.15]
[1.15,1.20]

[1.20,1.25]
[1.25,1.30]

greedy cost / optimal cost

Fig. 7. Comparison of the relative cost of greedy and optimal solutions of solutions
for the mitdb instances with m = 43 and n ∈ {100, 150, 200, 250, 300}. Left: t = k,
right: t = k + 2. The other parameter values used were k ∈ {0.01n, 0.02n, 0.05n, 0.1n}
and s ∈ {0.02m, 0.05m, 0.1m}. The relative cost is provided for the 110 (out of 120)
instances for which a provably optimal solution is found in 3600 s.

instances considered in Fig. 7, CPLEX provided a provably optimal solution in
less than one minute on our MIP model. For 28 out of the remaining 29 instances,
CPLEX provided within 60 s solutions with 7% lower cost on average compared
to the solutions provided by the greedy algorithm. Thus we observed that even
in cases in which an optimal solution cannot be found fast, our MIP model can
be typically used to obtain better than greedy solutions relatively fast.

These observations motivate the exact approach presented in this work,
as well as future work on ways of further improving the scalability of exact
approaches for the MWCB(k, s, t) problem. On the other hand, if solutions to
very large instances of MWCB(k, s, t) are needed very fast, our greedy algorithm
is also a viable option.

6 Related Work

The univariate confidence interval of a distribution based on a finite-sized sample
from the distribution has been extensively studied (see, e.g., [7]). However, there
are surprisingly few approaches to multivariate confidence intervals and most of
the effort has been focused on describing univariate distributions. Another alter-
native are the confidence regions (see, e.g., [6]), which however require making
assumptions about the underlying distributions or which cannot be described
simply by upper and lower bounds; e.g., confidence regions for multivariate
Gaussian data are ellipsoids.

In the time series domain, multivariate confidence intervals [9,11], namely
confidence bands have been defined in terms of the minimum-width envelope
(MWE) problem: a time series is within a confidence band if it is within the
confidence interval of every time point, also see [14,15,21] for similar approaches.
While this definition has desirable properties, it can result in very conservative
confidence bands if there are local deviations from what constitutes as normal

458 J. Berg et al.

behaviour. To overcome this limitation, an alternative definition was recently
introduced in [10,24], where a data vector is within a confidence band if it is
outside the confidence intervals of at most s elements, yielding the MWCB(k, s)
problem extended further in this work.

MWCB(k, s) becomes quickly unfeasible as data/parameter values grow, as
each of the points is potential for exclusion. Furthermore, as explained in Sect. 2,
solutions to MWCB(k, s) can be problematic. In terms of greedy procedures for
obtaining confidence intervals, the closest work to ours is [10] which focuses on
MWCB(k, s). The quality of solutions of our greedy algorithm for MWCB(k)
and MWCB(k, s) compared to those in [10,11] depends on the data. In the
typical case of n > m, [11] has higher time complexity than us. In terms of
using exact constraint optimization to determining confidence bands, the only
and closest work to our is [21] where a MIP model is provided for MWCB(k);
we generalize here to MWCB(k, s, t). Our approach applies also to the special
case of MWCB(k), although for capturing at the same time the more general
setting considered here we use n × m binary variables (as compared to n binary
variables in [21]).

7 Conclusions

We focused on the combinatorial optimization problem of determining tight
(minimum-width) multivariate confidence bands as a central yet NP-hard opti-
mization problem in data analysis. Pointing out drawbacks in earlier charac-
terizations of the problem, we proposed a generalization MWCB(k, s, t) cir-
cumventing some of the earlier drawbacks. We proposed two constraint mod-
els allowing for exactly solving instances of MWCB(k, s, t), as well as a greedy
algorithm for the problem. We studied the scalability of mixed integer program-
ming and maximum satisfiability solvers on the respective constraint models,
and observed that mixed integer programming especially provides good scalabil-
ity on MWCB(k, s, t) instances based on real-world data. The greedy algorithm,
on the other hand, can provide relatively good solutions very fast. However,
we also showed empirically that the optimal solutions provided by the exact
constraint-based approach can at times provide noticeably better solutions than
the greedy approach, and can also provide relatively fast better quality solutions
(without proving optimality). The study of potential alternative characteriza-
tions (e.g., objective functions) of the minimum-width confidence band prob-
lem which would still have the same benefits as MWCB(k, s, t) compared to
MWCB(k) and MWCB(k, s) is one interest aspect for further work.

References

1. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Fron-
tiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam
(2009)

Minimum-Width Confidence Bands via Constraint Optimization 459

3. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5 13

4. Gardner, M.J., Altman, D.G.: Confidence intervals rather than P values: estimation
rather than hypothesis testing. Br. Med. J. (Clin. Res. Ed.) 292(6522), 746–750
(1986)

5. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark,
R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, Phys-
ioToolkit, and PhysioNet: components of a new research resource for complex phys-
iologic signals. Circulation 101(23), e215–e220 (2000)

6. Guilbaud, O.: Simultaneous confidence regions corresponding to Holm’s step-down
procedure and other closed-testing procedures. Biom. J. 50(5), 678 (2008)

7. Hyndman, R.J., Fan, Y.: Sample quantiles in statistical packages. Am. Stat. 50(4),
361–365 (1996)

8. IBM ILOG: CPLEX optimizer (2017). http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/

9. Kolsrud, D.: Time-simultaneous prediction band for a time series. J. Forecast.
26(3), 171–188 (2007)

10. Korpela, J., Oikarinen, E., Puolamäki, K., Ukkonen, A.: Multivariate confidence
intervals. In: Proceedings of SDM, pp. 696–704. SIAM (2017)

11. Korpela, J., Puolamäki, K., Gionis, A.: Confidence bands for time series data. Data
Min. Knowl. Discov. 28(5–6), 1530–1553 (2014)

12. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. J. Satisf. Boolean Model. Comput. 8(1/2), 95–100 (2012)

13. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

14. Liu, W., Jamshidian, M., Zhang, Y., Bretz, F., Han, X.: Some new methods for
the comparison of two linear regression models. J. Stat. Plan. Inference 137(1),
57–67 (2007)

15. Mandel, M., Betensky, R.A.: Simultaneous confidence intervals based on the per-
centile bootstrap approach. Comput. Stat. Data Anal. 52(4), 2158–2165 (2008)

16. Menne, M., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., Anthony,
S., Ray, R., Vose, R., Gleason, B., Houston, T.: Global Historical Climatology
Network – Daily (GHCN-Daily), version 3.11 (2012)

17. Menne, M., Durre, I., Vose, R., Gleason, B., Houston, T.: An overview of the
global historical climatology network-daily database. J. Atmos. Ocean. Technol.
29, 897–910 (2012)

18. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE
Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

19. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 41

20. Nuzzo, R.: Scientific method: statistical errors. Nature 506, 150–152 (2014)
21. Schüssler, R., Trede, M.: Constructing minimum-width confidence bands. Econ.

Lett. 145, 182–185 (2016)
22. Staszewska-Bystrova, A., Winker, P.: Constructing narrowest pathwise bootstrap

prediction bands using threshold accepting. Int. J. Forecast. 29(2), 221–233 (2013)
23. Trafimow, D., Marks, M.: Editorial. Basic Appl. Soc. Psychol. 37(1), 1–2 (2015)
24. Wolf, M., Wunderli, D.: Bootstrap joint prediction regions. J. Time Ser. Anal.

36(3), 352–376 (2015)
25. Woolston, C.: Psychology journal bans P values. Nature 519, 9 (2015)

http://dx.doi.org/10.1007/978-3-642-39071-5_13
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-319-10428-7_41

Constraint Programming for Multi-criteria
Conceptual Clustering

Maxime Chabert1,2(B) and Christine Solnon1

1 Université de Lyon, INSA Lyon, LIRIS, 69622 Villeurbanne, France
maxime.chabert@liris.cnrs.fr

2 Infologic, Bourg-lès-Valence, France

Abstract. A conceptual clustering is a set of formal concepts (i.e.,
closed itemsets) that defines a partition of a set of transactions. Finding
a conceptual clustering is an NP-complete problem for which Constraint
Programming (CP) and Integer Linear Programming (ILP) approaches
have been recently proposed. We introduce new CP models to solve this
problem: a pure CP model that uses set constraints, and an hybrid model
that uses a data mining tool to extract formal concepts in a preprocess-
ing step and then uses CP to select a subset of formal concepts that
defines a partition. We compare our new models with recent CP and ILP
approaches on classical machine learning instances. We also introduce a
new set of instances coming from a real application case, which aims at
extracting setting concepts from an Enterprise Resource Planning (ERP)
software. We consider two classic criteria to optimize, i.e., the frequency
and the size. We show that these criteria lead to extreme solutions with
either very few small formal concepts or many large formal concepts, and
that compromise clusterings may be obtained by computing the Pareto
front of non dominated clusterings.

1 Introduction

Clustering is a non-supervised classification approach which aims at partitioning
a set of objects into homogeneous clusters. Conceptual clustering provides, in
addition to clusters, a description of clusters by means of formal concepts [5,15].
In this paper, we introduce new Constraint Programming (CP) models to solve
this problem, and we evaluate these models on classical academic instances, but
also on a new set of instances that comes from a real application case.

Presentation of the Applicative Context. Enterprise Resource Planning (ERP)
softwares are generic softwares for managing companies. They address many
functional goals ranging from commercial management to production or stock
management [11]. While the same ERP can be used by many companies, it has
to be customized specifically to fit each company needs. This is done thanks to
parameters which are used to customize the ERP functionalities to each company
depending on his structural and organizational needs. However, the large range

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 460–476, 2017.
DOI: 10.1007/978-3-319-66158-2 30

Constraint Programming for Multi-criteria Conceptual Clustering 461

of functional goals makes the customization process complex and time consum-
ing. We have studied the customization process of the Copilote ERP, developed
by Infologic and specialized in food industry management. As pointed out in
[21], it appears that most of the time of the customization process is dedicated
to the parameterization step: this step basically involves assigning values to
parameters in such a way that the ERP fulfills the client needs. The complexity
of this step comes from the fact that the ERP has a large number of parame-
ters with strong implicit interactions. Moreover, several studies have shown that
this time-consuming parameterization step is less important than human factors
(user training, personalized support, for example) [1,16]. Therefore, an impor-
tant challenge is to reduce the time needed to parameterize an ERP in order to
spend more time on human factors.

To reduce the time needed to parameterize an ERP, our goal is to (partially)
automate this step. To this aim, we have collected a database of existing para-
meter settings, corresponding to recent installations of the Copilote ERP for
400 clients. We propose to identify relevant groups of parameter settings, and
to associate them with functional needs. As many functional needs are common
to several clients, these parameter setting groups will be reused when customiz-
ing the ERP for a new client with similar needs. To identify relevant parameter
setting groups, we propose to partition the database of parameter settings into
clusters. As we do not have a relevant measure to evaluate the similarity of dif-
ferent parameter settings, and as most parameters are symbolic ones, we propose
to use conceptual clustering to achieve this task: this approach does not assume
that there exists a similarity measure, and allows us to describe each cluster by a
set of parameter values which are shared by all parameter settings in the cluster.

Contributions and Organization of the Paper. We introduce the background
on conceptual clustering in Sect. 2. In particular, we describe two declarative
approaches which have been recently proposed: [4], that uses Constraint Pro-
gramming (CP), and [17], that uses Integer Linear Programming (ILP). These
declarative approaches are very relevant in our applicative context because they
allow us to easily model new constraints or objective functions: a main issue is
to find relevant objective functions and constraints to extract setting concepts
which make sense for our ERP experts.

In Sect. 3, we introduce two new CP models to compute optimal conceptual
clusterings: the first one is a full CP model; the second one is an hybrid model
that uses a dedicated tool to extract formal concepts and uses CP to select the
subset of formal concepts that defines an optimal partition.

We experimentally evaluate these models in Sect. 4. This evaluation is done
on some classical academic instances. We also introduce a new benchmark com-
posed of seven instances that have been extracted from our database of parame-
ter settings. In this first evaluation, we mainly consider two objective functions
to optimize: the size of the concepts (corresponding to the number of parameters
that are common to several clients), and the frequency of the concepts (corre-
sponding to the number of clients that share a common setting). We evaluate

462 M. Chabert and C. Solnon

scale-up properties of the different approaches when the number of clusters is
fixed and when it is not fixed, for each of these objectives separately.

The two objective functions that we consider are complementary and are
related to the number of clusters: when maximizing concept sizes, optimal clus-
terings have many clusters of small frequencies; when maximizing concept fre-
quencies, optimal clusterings have very few clusters of small sizes. In Sect. 5,
we propose to compute the Pareto front of all non-dominated solutions, and we
introduce and compare different ways for achieving this with our CP models.

2 Background on Conceptual Clustering

Formal Concepts. Formal Concept Analysis is a way of grouping together objects
sharing a same set of attribute values [5]. In this paper, we use the transactional
database terminology: objects are called transactions, and attribute values are
called items. More formally, let T be a set of m transactions (numbered from 1 to
m), I a set of n items (numbered from 1 to n), and R ⊆ T ×I a binary relation
that relates transactions to items: (t, i) ∈ R denotes the fact that transaction
t has item i. We note itemset(t) the set of items associated with t, i.e., ∀t ∈
T , itemset(t) = {i ∈ I : (t, i) ∈ R}. Given a set E, we note P(E) the set of all
its subsets, and #E its cardinality.

The intent of a subset T ⊆ T of transactions is the intersection of their
itemsets, i.e., intent(T) = ∩t∈T itemset(t). The extent of a set I ⊆ I of items is
the set of transactions whose itemsets contain I, i.e., extent(I) = {t ∈ T : I ⊆
itemset(t)}. These two operators induce a Galois connection between P(T) and
P(I), i.e., ∀T ⊆ T ,∀I ⊆ I, T ⊆ extent(I) ⇔ I ⊆ intent(T). A formal concept is
a couple (T, I) ∈ P(T) × P(I) such that T = extent(I) and I = intent(T). We
note F the set of all formal concepts. The frequency of a formal concept (T, I)
is the number of transactions, i.e., freq(T, I) = #T , and its size is the number
of items, i.e., size(T, I) = #I.

For example, we display in Table 1 a transactional dataset and its associ-
ated set F of formal concepts. The couple ({t1, t2}, {i1}) is not a formal con-
cept because intent({t1, t2}) = {i1, i4} �= {i1} and extent({i1}) = {t1, t2, t5} �=
{t1, t2}.

Table 1. Left: example of transactional dataset with m = 5 transactions and n = 4
items. Right: set F of formal concepts for this dataset.

Constraint Programming for Multi-criteria Conceptual Clustering 463

Formal Concepts and Closed Itemset Mining. Formal concepts correspond to
closed itemsets [18] and the set F may be computed by using algorithms dedi-
cated to the enumeration of frequent closed itemsets, provided that the frequency
threshold is set to 1. In particular, LCM [24] is able to extract all formal concepts
of F in linear time with respect to #F . As there is usually a huge number of
closed itemsets, we may add constraints or optimization criteria to identify rele-
vant concepts. For example, we may search for closed itemsets whose frequency
is greater than some threshold and whose size is maximal. We may also combine
several criteria, and search for the Pareto front of non dominated formal con-
cepts (where a concept c1 is dominated by another concept c2 if c2 is at least as
good as c1 on all criteria but one, and strictly better on this last criterion). This
Pareto front is also called the skyline [2].

CP for Itemset Mining. Using CP to model and solve itemset search problems
is a topic which has been widely explored during the last ten years [7,8,12,20].
Indeed, CP allows one to easily model various constraints on the searched item-
sets, corresponding to application-dependent constraints for example. These con-
straints are used to filter the search space during the mining process, and allow
CP to be competitive with dedicated mining tools such as LCM. Most recently,
[14] introduced a global constraint for extracting frequent closed itemsets. This
global constraint enforces domain consistency in polynomial time, and it is quite
competitive with LCM: if it is an order slower on basic queries, it is more effi-
cient for complex queries where extra constraints are added. Also, [23] proposed
to use CP to extract skyline patterns, i.e., non-dominated patterns according to
several criteria: they use a dynamic approach, where constraints are added each
time a new solution is found in order to forbid solutions dominated by it.

Conceptual Clustering. Clustering is an unsupervised classification approach the
goal of which is to group objects into homogeneous clusters. Conceptual clus-
tering provides, in addition to clusters, a description of clusters by means of
formal concepts: each cluster corresponds to a formal concept. More precisely,
a conceptual clustering is a set of k formal concepts C = {(T1, I1), . . . , (Tk, Ik)}
such that {T1, . . . , Tk} is a partition of the set T of transactions.

Different optimization criteria may be considered. In this article, we consider
two classical criteria: minFreq, to maximize the minimal frequency of a clus-
ter; and minSize, to maximize the minimal size of a cluster. For example, let us
consider the set F of formal concepts displayed in Table 1. Two examples of clus-
terings are P1 = {c1, c2} and P2 = {c1, c7, c8}. According to minFreq, the best
clustering is P1 (as the minimal frequency is 2 for P1 and 1 for P2). According
to minSize, both clusterings are equivalent as their minimal size is 1.

The number k of clusters is an important parameter which has a great influ-
ence on the size and the frequency of the clusters: small values for k favor clusters
with larger frequencies and smaller sizes, whereas large values favor clusters with
smaller frequencies and larger sizes.

464 M. Chabert and C. Solnon

CP for Conceptual Clustering. Conceptual clustering is related to closed item-
set mining, as each cluster corresponds to a closed itemset. However, the goal is
no longer to find closed itemsets that satisfy some constraints or optimize some
criteria, but to find a subset of closed itemsets which partitions the set of trans-
actions and optimizes some criteria. Conceptual clustering is a special case of
k-pattern set mining, as introduced in [9]: the conceptual clustering problem is
defined by combining a cover and a non-overlapping constraint, and a CP model
based on boolean variables is proposed to solve this problem.

[3] describes a CP model for clustering problems where a dissimilarity mea-
sure between objects is provided. In this case, the goal is to find a partition
of the objects which satisfies some constraints and optimizes an objective func-
tion defined by means of this dissimilarity measure. This CP model has been
extended to conceptual clustering in [4]. Experimental results reported in [4]
show that this model outperforms the binary model of [7]. This model assumes
that the number of clusters is defined by a constant k. There is an integer vari-
able Gt for each transaction t ∈ T : Gt represents the cluster of t and its domain
is D(Gt) = [1, k]. Symmetries (due to the fact that cluster numbers may be
swapped) are broken by adding a precede(G, [1, k]) constraint [13]. Each cluster
is enforced to have at least one transaction by the constraint: atLeast(1, G, k).
For each cluster c ∈ [1, k], a set variable Intentc represents the intent of the set
of transactions in c, i.e., the intersection of their itemsets. Its domain is the set of
all possible itemsets, i.e., D(Intentc) = P(I). The extent constraint is expressed
by: ∀c ∈ [1, k],∀t ∈ T , Gt = c ⇔ Intentc ⊆ itemset(t). It is implemented thanks
to k × m reified constraints (with m = #T). The intent constraint is expressed
by: ∀c ∈ [1, k], Intentc = ∩t∈T ,Gt=citemset(t). It is implemented thanks to k
constraints, and each of these k constraints needs n reified domain constraints
to build the set of all transactions in cluster c, and a set element global con-
straint to select the corresponding itemsets and intersect them. An objective
variable is introduced. Depending on the optimization criterion, this variable is
constrained to be equal either to the minimal cardinality of all Intentc variables
(minSize), or the minimal number of G variables assigned to a same cluster
thanks to atLeast(obj,G, c) constraints (minFreq).

The model proposed in [4] assumes that the number of clusters is fixed to a
constant value k. It may easily be extended to the case where this number is not
known, by introducing an integer variable k, whose domain is bounded between
2 and m − 1. However, performance is degraded when k is not fixed.

ILP for Conceptual Clustering. [17] proposes to compute conceptual clusterings
by combining two exact techniques: in a first step, a dedicated closed itemset
mining tool (i.e., LCM [24]) is used to compute the set F of all formal concepts
and, in a second step, ILP is used to select a subset of F that is a partition of the
set T of transactions and that optimizes some given criterion. More precisely,
for each formal concept f ∈ F , there is a binary variable xf such that xf = 1 iff
f is selected. The subset of selected formal concepts is constrained to define a
partition of T by posting the constraint: ∀t ∈ T ,

∑
f∈F atfxf = 1, where atf = 1

if transaction t belongs to the extension of concept f , and 0 otherwise. Contrary

Constraint Programming for Multi-criteria Conceptual Clustering 465

to the CP approaches of [3,7], the number of clusters is not fixed and it is a
variable k which is constrained to be equal to the number of selected concepts
by posting the constraint: k =

∑
f∈F xf . In [17], the goal is to maximize the

sum of the sizes of the selected concepts. Therefore, the objective function to
maximize is:

∑
f∈F vfxf where vf is the size of the concept f . If the case is not

explicitly discussed in [17], we may easily extend this ILP model to maximize the
minimal size (resp. frequency) of the selected concepts: we introduce a variable
vmin and enforce this variable to be smaller than or equal to the size (resp.
the frequency) of the selected concepts by adding the constraint ∀t ∈ T, vmin ≤
vfxf+M(1−xf), where M is a positive constant greater than the largest possible
size (resp. frequency), and vf is the size (resp. frequency) of the concept f .

3 New CP Models

In this section, we introduce two new CP models for computing optimal con-
ceptual clusterings. The first model (described in Sect. 3.1) may be seen as an
improvement of the CP model of [3]. The second model (described in Sect. 3.2)
follows the two step approach of [17]: the first step is exactly the same; the sec-
ond step uses CP to select formal concepts. These models are experimentally
evaluated and compared with the approaches of [3,17] in Sect. 4.

For both models, we do not assume that the number of clusters is fixed: k
is a variable whose domain is [kmin, kmax], where kmin and kmax are two given
bounds such that 2 ≤ kmin ≤ kmax < m.

3.1 New Full CP Model

Like the CP model of [3], we use Gc integer variables to model clusters. However,
we associate the Intent set variables to transactions instead of associating them
to clusters. This simplifies the propagation of the intent constraint. Another
reason for associating Intent set variables to transactions instead of clusters is
that, when k is strictly lower than kmax, each Intentc set variable such that
c > k should be empty. This would imply to use reification to compute the
minimal intent size, as we must not consider Intentc variables such that c > k
(otherwise, the minimal size would be equal to 0 whenever k < kmax). Also, we
introduce new set variables to explicitly model extents and these set variables are
associated with transactions to ease the computation of the minimal frequency.
Finally, we introduce redundant set variables which model concept extents and
are associated with clusters: these variables are used to add a redundant partition
constraint which improves the solution process.

More formally, we use the following variables:

– an integer variable k (with D(k) = [kmin, kmax]), which represents the number
of clusters;

– for each transaction t ∈ T :
• an integer variable Gt (with D(Gt) = [1, kMax]), which represents the

cluster of t;

466 M. Chabert and C. Solnon

• a set variable Intentt (with D(Intentt) = P(itemset(t))), which repre-
sents the set of items in the intent of the cluster of t;

• a set variable Extentt (with D(Extentt) = P(T)), which represents the
set of transactions in the extent of the cluster of t;

– for each cluster c ∈ [1, kmax], a set variable ExtentClusterc (with
D(ExtentClusterc) = P(T)), which represents the set of transactions in
c;

– two integer variables minFreq (with D(minFreq) = [1,m−1]) and minSize
(with D(minSize) = [1, n − 1]), which represent the minimal frequency and
size, respectively.

As proposed in [3,4], we break symmetries (due to the fact that clusters may be
swapped) by posting the constraint: precede(G, [1, kmax]).

We relate extentt and extentClusterc variables by posting the constraint:
∀t ∈ T , Extent[t] = ExtentCluster[Gt], and we relate ExtentClusterc and Gt

variables by posting the constraint

∀t ∈ T ,∀c ∈ [1, kmax], t ∈ ExtentClusterc ⇔ Gt = c

We add a redundant partition constraint that enforces extent to be a partition
of T : partition(ExtentCluster, T). This constraint is redundant because each
transaction is already enforced to belong to exactly one cluster by G variables.
However, its propagation both reduces the search space and the CPU time.

We reify m(m−1)/2 equality constraints between G variables to ensure that
two transactions are in a same cluster iff they have the same intent, and this
intent is included in their itemsets: ∀{t1, t2} ⊆ T

(Gt1 = Gt2) ⇔ (Intentt1 = Intentt2) ⇔ (Intentt1 ⊆ itemSet(t2))

This constraint ensures the extent property as any transaction t1 such that
itemset(t1) ⊇ Intentt2 is constrained to be in the same cluster as t2. However,
this constraint only partially ensures the intent property: for each transaction t, it
ensures Intentt ⊆ ∩t′∈T ,Gt=Gt′ itemset(t′) whereas the intent property requires
that Intentt is equal to the itemset intersection. However, given any solution
that satisfies the constraint Intentt ⊆ ∩t′∈T ,Gt=Gt′ itemset(t′), we can easily
transform it to ensure that it fully satisfies the intent property by adding to
Intentt every item i ∈ (∩t′∈T ,Gt=Gt′ itemset(t′)) \ Intentt. Hence, each time a
solution is found, for each cluster c, we compute its actual intent by intersecting
the intersection of all its transaction itemsets. This ensures that each cluster
actually is a formal concept, and therefore this ensures correction. Completeness
is ensured by the fact that our constraint is a relaxation of the initial constraint.

Finally, we compute the minimal size and frequency by posting the con-
straints: minSize = mint∈T #Intentt and minFreq = mint∈T #Extentt.

The search strategy depends on the objective function: if the goal is to max-
imize minFreq, then we first assign k to its lower values (as a smaller number
of clusters usually leads to concepts with larger frequencies), whereas if the goal
is to maximize minSize, then we first assign k to its higher values (as a larger
number of clusters usually leads to concepts with larger sizes).

Constraint Programming for Multi-criteria Conceptual Clustering 467

3.2 New Hybrid Model

This model solves the problem in two steps as in [17]: in a first step, we extract
the set F of all formal concepts with a dedicated tool (LCM), and in a second
step we use CP to select the subset of F forming an optimal clustering.

We have designed and compared several CP models for this second step. In
particular, we have designed a model that associates a set variable Extentc with
each cluster c (such that Extentc contains all transactions in the extent of c),
and then post a partition global constraint on these variables to ensure that
they form a partition of T . This model is always outperformed by the model
described below.

Our CP model for the second step uses the following variables:

– an integer variable k (with D(k) = [kmin, kmax]), which represents the number
of clusters (i.e., the number of selected concepts);

– a set variable P (with D(P) = P(F)), which represents the set of selected
formal concepts that define an optimal clustering;

– for each transaction t ∈ T , an integer variable Conceptt (with D(Conceptt) =
{f ∈ F | t ∈ extent(f)}), which represents the concept that contains t in its
extent (each transaction must belong to exactly one selected concept);

– two integer variables minFreq (with D(minFreq) = [1,m−1]) and minSize
(with D(minSize) = [1, n − 1]), which represent the minimal frequency and
size, respectively.

To ensure that Conceptt belongs to P , for each transaction t ∈ T , we post the
constraint: ∀t ∈ T ,member(Conceptt, P).

To ensure that the selected concepts define a partition of T , we ensure that
each transaction t is contained in the extent of exactly one selected formal con-
cept. To this aim, we compute, for each transaction t, the set CF (t) of all the
concepts of F that contain t in their extent, i.e.,

∀t ∈ T , CF (t) = {f ∈ F : t ∈ extent(f)}

and we ensure that the set variable P contains exactly one element of CF (t) by
posting the constraint: ∀t ∈ T ,#(CF (t)) ∩ P) = 1.

Finally, we compute the minimal size and frequency by posting the con-
straints: minSize = mint∈T #intent(Ct) and minFreq = mint∈T #extent(Ct).

The number of clusters of the solution is constrained in two different ways
according to the objective function:

– If the goal is to maximize minFreq, optimal solutions often have a small
number of clusters and, in this case, we ensure that k is equal to the number
of distinct values contained in C by posting the constraint: nV alue(C, k).

– If the goal is to maximize minSize, optimal solutions often have a large
number of clusters and, in this case, we ensure that k is equal to the cardinality
of P by posting the constraint #P = k.

468 M. Chabert and C. Solnon

The search strategy also depends on the objective function. The idea is to first
select concepts with large sizes (resp. frequency) when the goal is to maximize
minSize (resp. minFreq). To this aim, we sort formal concepts by decreasing
size (resp. frequency), and use this order as value ordering heuristic for Ct. We
use a First fail strategy to select the variable with the smallest domain as next
variable.

Furthermore, when the goal is to maximize minFreq, we use the ObjectiveS-
trategy proposed by Choco [19], which performs a dichotomous branching over
the domain of minFreq.

4 Experimental Comparison for Single Objective
Problems

We compare our new models with the CP model of [3] and the ILP model of [17]
for computing conceptual clusterings that optimize a single objective.

Experimental Protocol. All experiments were conducted on Intel(R) Core(TM)
i7-6700 with 3.40 GHz of CPU and 65 GB of RAM. The approach of [4] (called
FullCP1) is implemented in Gecode v4.3. The approach of [17] (called ILP) uses
LCM to extract formal concepts and Cplex v12.7 to solve the selection problem.
Our CP model described in Sect. 3.1 (called FullCP2) is implemented in Choco
v.4.0.3 [19]. Our hybrid approach described in Sect. 3.2 (called HybridCP) uses
LCM v5.3 to extract formal concepts and Choco v.4.0.3 to solve the selection
problem. We have limited the CPU time of each run to 1000 s.

Test Instances. We consider four classical machine learning instances, coming
from the UCI database: zoo, vote, tic-tac-toe, and soybean. We also introduce
seven new instances (called ERPi, with i ∈ [1, 7]) that have been extracted from
our ERP database. Our ERP database contains 400 parameter settings: each
setting corresponds to the customization of the ERP for a different client, and
specifies the values of almost 450 different parameters. Each parameter can only
take a finite number of values, and most of them are symbolic attributes. For
each parameter/value couple, we have created a boolean item (set to 1 iff the
parameter is assigned to the value in the setting). We have split this database
into smaller ones by focusing on different groups of parameters, thus obtaining
seven instances of various sizes1. All instances are described in Table 2.

Computation of F with LCM. Table 2 displays the time spent by LCM to extract
all formal concepts, for each instance. This time is proportional with the size of
F , as the complexity of LCM is linear with respect to #F . CPU time is smaller
than one second for all instances but two, and it is smaller than seven seconds
for the instance that has the largest number of formal concepts (soybean).

1 These instances are available on http://liris.cnrs.fr/csolnon/ERP.html.

http://liris.cnrs.fr/csolnon/ERP.html

Constraint Programming for Multi-criteria Conceptual Clustering 469

Table 2. Test instances: each row gives the number of transactions (#T), the number
of items (#I), the density (d), the number of formal concepts (#F), and the CPU
time (in seconds) spent by LCM to extract all formal concepts.

Comparison of Scale-Up Properties of the Different Approaches. Table 3 dis-
plays the times for computing optimal clusterings when the goal is to maximize
minFreq (upper part) or minSize (lower part). We report times when k is fixed
to 2, 3, and 4, respectively, and then when k is not fixed (with kmin = 2 and
kmax = m − 1). Times displayed for ILP and HybridCP both include the time
spent by LCM to extract all formal concepts.

Table 3. Times when the goal is to optimize minFreq (upper part) and minSize (lower
part): each line gives the time of the four approaches when k is fixed to 2, 3, and 4,
respectively, and when k is not fixed (N). ‘-’ is reported when time exceeds 1000 s.

ILP FullCP1 FullCP2 HybridCP

k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N

Objective = Maximize minFreq

ERP1 0.2 0.9 1.0 0.8 0.0 0.0 0.3 0.2 0.2 0.7 4.3 0.3 0.2 0.9 1.4 0.3

ERP2 1.5 2.7 2.3 1.0 0.0 0.4 4.8 0.5 0.1 0.2 2.8 0.1 4.4 1.5 4.6 0.3

ERP3 1.5 2.5 3.2 1.7 0.0 0.3 20.0 2.4 0.2 1.5 1.6 0.3 9.2 24.7 2.4 0.6

ERP4 7.5 15.0 20.9 13.6 0.0 0.3 36.6 1.2 0.3 2.8 37.9 0.4 1.4 100.6 153.1 0.8

ERP5 12.5 18.3 83.7 18.3 0.0 1.4 773.6 125.3 0.5 5.0 91.9 1.5 172.2 634.4 - 10.6

ERP6 52.6 145.8 339.6 143.3 0.0 10.3 302.7 51.7 0.5 2.7 101.1 1.1 8.6 - - 8.0

ERP7 - - - - 0.0 82.9 - 973.4 2.8 26.8 742.9 5.0 - - - -

Zoo 1.0 2.2 3.0 1.5 0.0 0.0 0.8 0.1 0.2 0.2 4.5 0.3 0.5 0.6 1.0 0.2

Vote 40.6 - - 55.2 0.0 2.0 292.6 - 1.6 19.2 370.5 33.1 17.8 150.0 95.4 20.8

Tic-tac-toe 61.3 80.6 - 718.6 0.2 0.3 106.0 - 32.5 75.9 - 179.7 10.9 25.2 - 33.3

Soybean - - - - 0.1 160.1 - - 1.4 7.9 166.0 - 63.7 980.2 - -

Objective = Maximize minSize

ERP1 0.2 0.3 0.3 0.4 0.0 0.1 1.0 0.2 0.3 0.7 2.5 0.2 0.2 0.4 1.6 0.1

ERP2 1.7 1.6 1.6 0.8 0.0 0.5 19.9 - 0.1 0.2 0.8 0.0 4.6 17.7 7.2 0.1

ERP3 1.6 1.6 1.7 1.2 0.0 0.6 252.9 - 0.3 2.0 7.0 0.1 9.6 42.5 61.6 0.2

ERP4 7.5 8.3 7.2 18.3 0.0 0.8 184.8 2.1 0.5 4.6 34.4 0.5 22.0 103.4 329.5 0.3

ERP5 13.1 21.1 40.6 12.5 0.0 2.2 - - 0.6 6.1 58.4 0.3 - - - 1.5

ERP6 63.4 93.3 648.3 - 0.0 14.2 9.6 7.2 0.8 7.5 54.2 0.5 645.0 - - 1.9

ERP7 - - - - 0.0 191.1 - 47.2 4.4 69.2 682.5 2.3 - - - 39.5

Zoo 1.1 0.9 1.2 2.0 0.0 0.0 1.4 0.5 0.2 1.7 7.7 0.1 0.7 6.8 9.4 0.1

Vote 40.8 243.5 249.7 - 0.0 3.9 969.4 - 3.3 12.2 191.8 20.4 16.2 69.0 - 17.2

Tic-tac-toe 60.7 80.4 - 254.5 0.4 0.3 105.6 - 33.2 54.1 - - 10.9 25.9 - 18.7

Soybean - - - - 0.0 145.7 - - 2.5 7.1 93.3 22.2 93.4 460.6 - 342.4

470 M. Chabert and C. Solnon

For all approaches and all instances, time increases when increasing k from
2 to 4. FullCP1 and FullCP2 are more efficient when k = 2 than when k is
not fixed, and they are more efficient when k is not fixed than when k = 4.
HybridCP approach needs more time to solve the problem when k = 2 than
when k is not fixed for all instances but three (vote, tic-tac-toe and soybean)
whereas ILP approach needs more time only for the smallest ERP instances.

When k = 2, the best approach is FullCP1, which is able to solve all instances
in less than 0.1 s (except tic-tac-toe). However, when increasing k from 2 to 3,
times of FullCP1 are strongly increased (up to 191 s for ERP7 with minSize) and
FullCP1 is outperformed by FullCP2 for 8 instances. When further increasing k
to 4, FullCP2 becomes the only approach able to solve all instances but tic-tac-
toe, though ILP is able to solve 8 instances quicker.

When k is not fixed, the best performing approaches are fullCP2 (which is
able to solve all instances but soybean for minFreq) and HybridCP (which is
able to solve all instances for minSize).

Maximization of the Sum of Sizes. In [17], the objective function to maximize
is the sum of the sizes of the selected concepts, and the proposed ILP model
scales well for this objective: when k is not fixed, the time needed to find the
optimal solution is 0.1, 0.4, 0.7, 1.7, 5.9, 14.0, and 183.2 for ERP1 to ERP7,
respectively, and it is 0.3, 51.9, 32.0, and 120.0 for zoo, vote, tic-tac-toe, and
soybean, respectively. Hence, ILP is more efficient for maximizing the sum of
the sizes than for maximizing minSize. None of the CP models considered here
scales well when the goal is to maximize the sum of the sizes, and they are far
slower than ILP in this case: they usually very quickly find the optimal solution,
but they are not efficient to prove optimality. However, we noticed that the
optimal solutions found with the two criteria sum of sizes and minSize are very
similar (and often equal). Indeed, when maximizing the minimal size, we also
tend to maximize the size of all concepts.

Comparison of Frequencies, Sizes, and Number of Clusters of Optimal Solutions.
Table 4 displays the values of minFreq, minSize, and k for the optimal solutions
(tic-tac-toe does not have clusterings when k ∈ {2, 4}, and soybean does not
have clusterings when k = 2). It shows us that when k is fixed, the optimal
values of minFreq and minSize often greatly vary when modifying the value of
k. For example, let us consider instance ERP4: minFreq decreases from 42 to 27
and 18 (resp. minSize increases from 3 to 6 and 8) when k is increased from 2
to 3 and 4. From an applicative point of view, finding the relevant value for k
is not straightforward. When k is not fixed, we obtain extreme solutions: when
the goal is to maximize minFreq, there are only 2 clusters (except for tic-tac-toe,
as there is no solution with k = 2), and when the goal is to maximize minSize,
there are m− 1 clusters for all instances but 4 (ERP2, ERP3, ERP5 and vote),
whereas for the remaining instances the value of k is rather high.

Table 4 also displays the values of minFreq, minSize, and k when optimizing
the two criteria in a lexicographic order and not fixing k. Let us call Freq+Size
the solution that maximizes MinFreq while breaking ties with MinSize, and

Constraint Programming for Multi-criteria Conceptual Clustering 471

Table 4. Experimental comparison of frequencies, sizes, and number of clusters: each
line displays the optimal values of minFreq and minSize when k is set to 2, 3, and
4, and when k is not fixed (N), followed by the value of k in the optimal solution
(in brackets). Finally, it displays the optimal values of minFreq and minSize when
maximizing minFreq and breaking ties with minSize (Freq+Size), and when maximizing
minSize and breaking ties with minFreq (Size+Freq). In this case, k is not fixed and
its value in the optimal solution is displayed in brackets.

k Maximize minFreq Maximize minSize Freq+Size Size+Freq

2 3 4 N (k) 2 3 4 N (k) Freq Size (k) Freq Size (k)

ERP1 21 14 11 21 (2) 4 5 6 12 (49) 21 4 (2) 1 12 (49)

ERP2 21 15 11 21 (2) 6 11 13 16 (42) 21 6 (2) 2 16 (8)

ERP3 31 22 18 31 (2) 3 4 6 12 (59) 31 2 (2) 1 12 (59)

ERP4 42 27 18 42 (2) 3 6 8 18 (83) 42 3 (2) 1 18 (83)

ERP5 41 30 22 41 (2) 3 6 7 16 (79) 41 2 (2) 1 16 (79)

ERP6 42 31 22 42 (2) 8 11 9 28 (94) 42 8 (2) 1 28 (94)

ERP7 70 50 35 70 (2) 5 8 11 29 (159) 70 5 (2) 1 29 (159)

Zoo 28 19 14 28 (2) 2 3 5 15 (58) 28 2 (2) 1 15 (58)

Vote 102 34 34 102 (2) 1 1 1 15 (317) 102 1 (2) 1 5 (317)

Tic-tac-toe 250 250 (3) 1 7 (957) 250 1 (3) - − −
Soybean 2 5 − - 1 1 6 (302) − - - 1 6 (302)

Size+Freq the solution that maximizes MinSize while breaking ties with Min-
Freq. These solutions correspond to very different situations: for Freq+Size, k
is always equal to 2 (except for tic-tac-toe) and minSize is rather low (ranging
between 1 and 8); for Size+Freq, k is equal to m− 1 for 6 instances, and rather
large for the other instances, while minFreq is always equal to 1, except for ERP2.
From an applicative point of view, these solutions are not very interesting, and
we need to find better compromises between size and frequency.

5 Multi-criteria Optimization

As the two optimization criteria tend to produce extreme solutions which are
not very meaningful for our application, we propose to compute the Pareto front
of non dominated solutions. A clustering C1 is dominated by another clustering
C2 if the size and the frequency of C1 are smaller than or equal to the size and
the frequency of C2. Non dominated solutions correspond to different compro-
mises between the two criteria. The two extrema of the Pareto front are the
solutions called Size+Freq and Freq+Size in the previous Section. In Sect. 5.1,
we experimentally evaluate the efficiency of our two CP models for computing
these extrema. Then, in Sect. 5.2, we propose and compare different approaches
for computing the whole Pareto front.

472 M. Chabert and C. Solnon

5.1 Computation of Extrema Solutions

Table 5 displays the time spent by FullCP2 and HybridCP to compute the two
extrema solutions of the Pareto front: Size+Freq is computed by first maximizing
MinSize, fixing MinSize to its optimal value, and then maximizing MinFreq;
Freq+Size is obtained by first maximizing MinFreq, fixing MinFreq to its optimal
value, and then maximizing MinSize.

Table 5. Times needed to compute Size+Freq (left part) and Freq+Size (rightpart)
for FullCP2 and HybridCP. For each solution, we first give the time needed to optimize
the first criterion (1st), then the time needed to optimize the second criterion (2nd),
and finally the total time (‘-’ if total time exceeds 1000 s).

Instance Size+Freq Freq+Size

FullCP2 HybridCP FullCP2 HybridCP

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total

ERP1 0.1 0.2 0.3 0.3 0.3 0.6 0.4 0.2 0.7 0.2 0.1 0.4

ERP2 - - - 0.1 0.3 0.4 0.2 0.1 0.3 0.3 0.3 0.6

ERP3 - - - 0.2 0.4 0.6 0.4 0.3 0.7 0.7 0.3 1.0

ERP4 0.4 6.9 7.3 0.6 1.5 2.1 0.5 0.5 1.0 0.8 0.1 0.9

ERP5 - - - 1.6 34.7 36.3 1.1 0.6 1.6 10.6 13.0 23.5

ERP6 0.5 1.4 1.9 4.0 94.2 98.2 1.6 0.7 2.3 8.0 59.8 67.9

ERP7 3.7 975.1 978.8 - - - 6.3 2.9 9.2 − − -

Zoo 0.1 1.0 1.1 0.2 0.2 0.4 0.4 0.3 0.7 0.3 0.0 0.3

Vote 20.0 6.2 26.2 18.3 648.7 667.0 26.5 13.5 40.0 − − -

Tic-tac-toe - - - - - - 230.9 152.1 383.0 31.6 19.1 50.7

Soybean - - - 325.0 342.1 667.1 − − - − − -

For Freq+Size, FullCP2 outperforms HybridCP on 6 instances and it is
able to solve all instances except soybean while HybridCP is not able to solve
ERP7, vote and soybean. However, for Size+Freq, FullCP2 is not able to solve
5 instances, while HybridCP is able to solve all instances but 2.

5.2 Computation of the Pareto Front

[3] describes a CP approach to compute non dominated bi-criteria clusterings
by iteratively solving single criterion optimization problems while alternating
between the two criteria. [6] describes a more dynamic CP approach to com-
pute Pareto front: the idea is to search for all solutions, and dynamically add a
constraint each time a new solution is found to prevent the search from comput-
ing solutions that are dominated by it. This idea has been improved in [10,22].
We have experimentally compared these two approaches, and found that the
dynamic approach of [6] is more efficient than the static approach of [3] for our
problem. Hence, we only consider this approach in this section. It proceeds as

Constraint Programming for Multi-criteria Conceptual Clustering 473

follows: we build an initial model as described in Sect. 3, and ask the solver to
search for all solutions. Each time a solution sol is found, we dynamically post
the constraint (minFreq > f) ∨ (minSize > s) where f and s are the values of
minFreq and minSize in sol, and go on the search for all solutions. The search
stops when there is no more non-dominated solutions.

We have evaluated this dynamic approach with FullCP2 and HybridCP.
FullCP2 is able to solve ERP1 in ten minutes, but fails to solve all other instances
within a time limit of two hours. HybridCP is much more efficient, and is able
to solve 6 instances within this time limit. Hence, we only consider HybridCP
in our experiments.

We have compared different variants of this dynamic approach. For all vari-
ants, we use the two extrema solutions to reduce the search space in an a priori
way. More precisely, let fFreq+Size and sFreq+Size (resp. fSize+Freq and sSize+Freq)
be the value of minFreq and minSize in the solution Size+Freq (resp. Freq+Size).
We set the domain of minFreq to [fSize+Freq + 1, fFreq+Size − 1] and the domain
of minSize to [sFreq+Size + 1, sSize+Freq − 1].

The first two variants correspond to the dynamic approach described below,
with different search heuristics: freqseq (resp. sizeseq) uses the search heuristics
dedicated to the minFreq (resp. minSize) objective as described in Sect. 3.2.
These two variants find complementary solutions at the beginning of the search
process: freqseq first finds clusterings with large frequencies, whereas sizeseq first
finds clusterings with large sizes. Hence, the variant freqSizepar takes advantage
of this complementarity and launches the two variants in two parallel threads
which communicate their solutions to update the non-dominated area: each time
a solution is found by one thread, it dynamically adds constraints to filter the
solutions dominated by this solution, and it also checks whether the other thread
has found new solutions and dynamically adds constraints if ever.

The variant freq+Dseq (resp. size+Dseq) decomposes the problem into two
subproblems by separating the domain of minFreq (resp. minSize) in two equal
parts. The two subproblems are solved sequentially. We first solve the subprob-
lem corresponding to the upper part of the domain, as no solution of this prob-
lem can be dominated by a solution of the other subproblem. Then, we solve
the second subproblem while preventing it from computing solutions that are
dominated by the solutions of the first subproblem by adding constraints. The
variants freq+Dpar and size+Dpar are similar to freq+Dseq and size+Dseq: the
only difference is that they solve the two subproblems in two parallel threads.
In this case, only one subproblem (the one with the upper part of the domain)
communicates its solutions to the other thread.

Table 6 compares times of these different variants on 6 instances with a
time limit of 2 h (all other instances cannot be solved in less than 2 h). For
all instances, sizeseq is much more efficient than freqseq. Launching these two
approaches in two parallel threads does not pay off: freqSizepar is faster than
sizeseq for only two instances. This may come from the fact that freqseq is really
not efficient compared to sizeseq. Decomposing the problem into two subprob-
lems appears to be a better idea, even when solving the two subproblems sequen-

474 M. Chabert and C. Solnon

tially, for the freq-based variants: freq+Dseq is always much faster than freqseq.
However, size+Dseq is faster than sizeseq for two instances only. Finally, solving
the two subproblems on two parallel threads always pays-off for the freq-based
variants, whereas it degrades the solving time for 4 instances for the size-based
variants. Figure 1 displays the Pareto fronts for ERP4 and ERP5.

Table 6. Times to find all non-dominated solutions with different variants (‘-’ if
time exceeds 2 h). seq

par
gives the speed-up between sequential and parallel variants

(for freqSizepar, we consider the best sequential time).

ERP1 Zoo ERP4 ERP3 ERP2 ERP5

Time seq
par

Time seq
par

Time seq
par

Time seq
par

Time seq
par

time seq
par

freqseq 2.3 24.4 6048.7 145.7 41.7 5542.5

sizeseq 1.4 8.6 211.8 42.3 11.1 873.9

freqSizepar 1.4 1.0 7.0 1.2 216.5 1.0 36.0 1.2 12.7 0.9 1029.9 0.8

freq+Dseq 0.8 4.7 236.8 15.0 12.6 1579.6

freq+Dpar 0.8 1.0 4.5 1.0 210.0 1.1 10.2 1.5 11.8 1.1 1006.9 1.6

size+Dseq 0.8 10.6 264.3 24.8 12.4 2912.9

size+Dpar 1.1 0.7 15.0 0.7 166.0 1.6 59.1 0.4 24.4 0.5 2131.6 1.4

Fig. 1. Pareto front of ERP4 and ERP5: each point (x, y) corresponds to a non-
dominated solution with x=minFreq and y=minSize. The number k of clusters of
the solution is displayed close to the point.

6 Conclusion

We have introduced new CP models for computing optimal conceptual cluster-
ings. These models are able to quickly find solutions that maximize either the

Constraint Programming for Multi-criteria Conceptual Clustering 475

minimal size or the minimal frequency, even when the number of clusters is not
fixed. Computing the Pareto front for these two criteria is a more challenging
problem, and our CP models are able to solve this problem in less than two
hours for six instances only. Further work will mainly aim at improving this.
In particular, we plan to combine different decompositions to obtain more than
two subproblems, e.g., both decompose the domains of minFreq and minSize to
obtain four subproblems that may be solved in four parallel threads. We also
plan to evaluate scale-up properties of ILP for this problem, and combine ILP
with CP if we observe complementary performance. Finally, we plan to evaluate
the interest of combining our CP model with the propagation algorithm of [14].

Acknowledgments. We thank Jean-Guillaume Fages and Charles Prud’homme for
enriching discussions on Choco, and authors of [4] for sending us their Gecode code.

References

1. Ahmad, M.M., Cuenca, R.P.: Critical success factors for ERP implementation in
SMEs. Robot. Comput.-Integr. Manuf. 29(3), 104–111 (2013)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the 17th IEEE International Conference on Data Engineering, pp. 421–430 (2001)

3. Dao, T.B.H., Duong, K.C., Vrain, C.: Constrained clustering by constraint pro-
gramming. Artif. Intell. 244, 70–94 (2015)

4. Dao, T.B.H., Lesaint, W., Vrain, C.: Clustering conceptuel et relationnel en pro-
grammation par contraintes. In: JFPC 2015, Bordeaux, France, June 2015

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1997). doi:10.1007/978-3-642-59830-2

6. Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Pro-
ceedings of the 15th European Conference on Artificial Intelligence, ECAI 2002,
Amsterdam, The Netherlands, pp. 136–140. IOS Press (2002)

7. Guns, T.: Declarative pattern mining using constraint programming. Constraints
20(4), 492–493 (2015)

8. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

9. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

10. Hartert, R., Schaus, P.: A support-based algorithm for the bi-objective pareto
constraint. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2014, pp. 2674–2679. AAAI Press (2014)

11. Hossain, L.: Enterprise Resource Planning: Global Opportunities and Challenges.
IRM Press, Hershey (2001)

12. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-
ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15396-9 44

13. Law, Y.C., Lee, J.H.M.: Global constraints for integer and set value precedence.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30201-8 28

http://dx.doi.org/10.1007/978-3-642-59830-2
http://dx.doi.org/10.1007/978-3-642-15396-9_44
http://dx.doi.org/10.1007/978-3-540-30201-8_28

476 M. Chabert and C. Solnon

14. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C.,
Boizumault, P.: A global constraint for closed frequent pattern mining. In:
Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016).
doi:10.1007/978-3-319-44953-1 22

15. Michalski, R.S.: Knowledge acquisition through conceptual clustering: a theo-
retical framework and an algorithm for partitioning data into conjunctive con-
cepts. Report, Department of Computer Science, University of Illinois at Urbana-
Champaign (1980)

16. Motwani, J., Subramanian, R., Gopalakrishna, P.: Critical factors for successful
ERP implementation: exploratory findings from four case studies. Comput. Ind.
56(6), 529–544 (2005)

17. Ouali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., Loukil, L.:
Efficiently finding conceptual clustering models with integer linear programming.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 647–654 (2016)

18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol.
1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7 25

19. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)

20. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, 24–27 August 2008, pp.
204–212 (2008)

21. Robert, L., Davis, A.R., McLeod, A.: ERP configuration: does situation aware-
ness impact team performance? In: 2011 44th Hawaii International Conference on
System Sciences (HICSS 2011), pp. 1–8 (2011)

22. Schaus, P., Hartert, R.: Multi-objective large neighborhood search. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 611–627. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40627-0 46

23. Ugarte, W., Boizumault, P., Crémilleux, B., Lepailleur, A., Loudni, S., Plantevit,
M., Räıssi, C., Soulet, A.: Skypattern mining: from pattern condensed representa-
tions to dynamic constraint satisfaction problems. Artif. Intell. 244, 48–69 (2017)

24. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumer-
ating closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.)
DS 2004. LNCS, vol. 3245, pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30214-8 2

http://dx.doi.org/10.1007/978-3-319-44953-1_22
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1007/978-3-642-40627-0_46
http://dx.doi.org/10.1007/978-3-642-40627-0_46
http://dx.doi.org/10.1007/978-3-540-30214-8_2
http://dx.doi.org/10.1007/978-3-540-30214-8_2

A Declarative Approach to Constrained
Community Detection

Mohadeseh Ganji1,2(B), James Bailey1, and Peter J. Stuckey1,2

1 Department of Computing and Information Systems,
University of Melbourne, Melbourne, Australia

sghasempour@student.unimelb.edu.au, {baileyj,pstuckey}@unimelb.edu.au
2 Data61, CSIRO, Canberra, Australia

Abstract. Community detection in the presence of prior information
or preferences on solution properties is called semi-supervised or con-
strained community detection. The task of embedding such existing kinds
of knowledge effectively within a community discovery algorithm is chal-
lenging. Indeed existing approaches are not flexible enough to incorporate
a variety of background information types. This paper provides a frame-
work for semi-supervised community detection based on constraint pro-
gramming modelling technology for simultaneously modelling different
objective functions such as modularity and a comprehensive range of con-
straint types including community level, instance level, definition based
and complex logic constraints. An advantage of the proposed framework
is that, using appropriate solvers, optimality can be established for the
solutions found. Experiments on real and benchmark data sets show
strong performance and flexibility for our proposed framework.

1 Introduction

Community detection is the task of identifying densely connected sub-graphs
in networks. Although most research on community detection has focused on
unsupervised learning, which only relies on network topology, there is emerging
interest in semi-supervised or constrained community detection which benefits
from existing side information as well. This can result in more efficient and
actionable solutions.

More generally, the increasing flexibility of data mining techniques to deal
with complex constraints has attracted increasing attention. The topic of
constrained-based mining aims to develop data mining techniques that can han-
dle complex and domain-specified constraints. This has been shown to be possible
for some data mining tasks such as pattern and sequence mining, item set mining
and constrained clustering using constraint solving technology (e.g. [14,18,27]).

There are two main motivations for constrained (semi-supervised) community
detection:

Quality Solutions: The community detection process can benefit from prior
information to improve the quality of solutions. For example, the supervision
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 477–494, 2017.
DOI: 10.1007/978-3-319-66158-2 31

478 M. Ganji et al.

effect has been studied in the presence of noisy links in the network and it has
been shown that semi-supervised community detection approaches are usually
more robust to noise than topology-based approaches [15].

Figure 1 illustrates the effect of supervision on the quality of solutions of
two different community detection problems. Figure 1a is a network of a clique
of size 50 connected to two small cliques of size 5. The left figure shows how
pure modularity maximization merges the two small cliques to one community
while adding a supervision constraint to force the number of communities to be
3 leads to more meaningful communities (right figure). Figure 1b shows a circle
structure of 30 cliques of size 5. The communities found using the modularity
criterion (left figure) are unconvincing, since adjacent cliques are grouped into
one community. Imposing a size constraint of between 5 to 9 on this community
detection problem reveals the intuitively correct communities (right figure).

Fig. 1. The effect of adding (a) a bound on the number of communities and (b) bound
on size of communities. Each figure shows partitions before (left) and after (right)
applying the constraints.

Complex Problem Solving: Constrained community detection is the only
way to tackle some challenging problems, in which different types of constraints
must be satisfied at the same time. Constraints arise by the imposition of user
preferences on community properties, or natural complexity of some problems
with a variety of requirements to be satisfied simultaneously. As an example,
consider finding groupings for a class of students engaged on a project. One may
desire to balance the number of female and male students in each group. To
make teamwork smoother, we may also require that everyone has several of his
Facebook friends or classmates in the group. These are examples of user and ad
hoc constraints to help detect communities with desired properties.

Some attempts have been made to adapt existing community detection algo-
rithms to incorporate background knowledge [2,15]. However, they are limited
in the types of prior information that can be used. This lack of flexibility nar-
rows the scope of problems they can tackle. For example, some algorithms can
only incorporate pairwise instance level supervision [2,15] while others are only
capable of finding size-constrained communities [11]. When more than one type

A Declarative Approach to Constrained Community Detection 479

of supervision exists for a community detection task, it is not clear how to inte-
grate the results of such different algorithms. In other words, none of the exist-
ing approaches and algorithms has the flexibility to be able to solve complex
problems by incorporating both classic and ad-hoc types of supervision and
user-defined constraints at the same time. In this paper, we propose a generic
constraint programming framework for the constrained community detection task
with the flexibility to be able to capture a wide variety of possible supervision
types.

Constraint programming (CP) [35] is a paradigm for modelling solving com-
binatorial optimization problems where relations between variables are repre-
sented by constraints. One of the strengths of the CP approach is that the
constraints can be arbitrary. CP provides state of the art solutions to many
industrial scheduling and routing problems, and has been successfully used for
constrained data mining problems [18]. Constraint programming modelling tech-
nology has the power to express different sorts of logical and mathematical con-
straints, which provides flexibility in modelling a variety of classic and ad-hoc
user defined constraints for constrained community detection. We can use con-
straint programming modelling technology without committing to a particular
solving methodology. If we use complete solving methods, it has the advantage
of being able to prove optimality of a solution. But we can also use incomplete
solving methods.

Many community detection problems are of large size and cannot currently
be solved to optimality using complete methods in reasonable time. However,
finding optimal solutions to small constrained community detection problems
can give us better insight about the task itself and the characteristics of optimal
communities. In addition, there are some small data problems which are natu-
rally very complex and sufficiently important to justify the resources required
to find an optimal solution. When dealing with bigger problems, existing CP
systems can find feasible solutions to complex community detection problems
even without hope of proving optimality. Complete solver technology can often
find good feasible solutions in a reasonable time, and continue to improve them
given more time. Using incomplete solver technology can often generate better
solutions in less time, although we give up the possibility of proving optimality.
But in any case there is no competing approach we are aware of for tackling
complex constrained community detection problems.

A summary of our contributions in this paper are:

– We examine new types of community level constraints based on community
definitions and complex logic constraints to dynamically capture properties
of interest during the community detection process.

– We show how to model constrained community detection problems with mod-
ularity maximization or other objective functions using constraint program-
ming models. This allows the expression of instance level, community level,
definition based and other ad hoc and complex logic constraints.

– We demonstrate via experiments that the framework, using modern complete
solving technology, can effectively solve smaller scale, complex problems to

480 M. Ganji et al.

optimality. And it is the only approach to solve very complex real world
constrained community detection problems.

– We demonstrate we can use the same models, using incomplete solving tech-
nology to scale to larger problems, although we may give up the possibility
of satisfiying all constraints.

2 Background

Given a graph G = (V,E) of vertices V and edges E, many community detection
algorithms optimize a criterion such as modularity [30] to find the best commu-
nities. Two vertices v1 and v2 are in the same community if x(v1) = x(v2).

The modularity value of a partition is given by Eq. (1) where W is the mod-
ularity matrix which quantifies the deviation of the network from randomness:
Wij = (Aij − di×dj

2|E|) where Aij is 1 if (i, j) ∈ E and 0 otherwise and di is the
degree of node i ∈ V . The modularity of a partition is the summation of the
modularities between pairs of the same community.

Q =
1

2|E|
∑

i,j

Wij(x(i) = x(j)) (1)

It has been shown that finding a partition with maximum modularity is an
NP-hard problem [7]. One of the main heuristics for modularity maximization
was proposed by Blondel et al. [6]. It is a greedy hierarchical algorithm which
merges communities in each phase to improve the partition’s modularity value
and continues till no more improvement is possible. Aloise et al. [3] introduced
a column generation based exact method for finding communities by modularity
maximization which can solve small size problems to optimality.

Rather than optimizing a criterion, in other schemes, any partition sat-
isfying some conditions is a solution to the community detection task. Two
of such conditional definitions were proposed by Radicchi et al. [34], termed
“communities in the strong and weak sense.” Let nbh(v) = {v′ | (v, v′) ∈ E}
be the neighbours of v in G. Given a community mapping x, the in-degree
of a vertex v, in(v) is the number of neighbours in the same community,
i.e. in(v) = |nbh(v) ∩ {v′ ∈ V |x(v) = x(v′)}|. Similarly the out-degree of a
vertex v, out(v) is the number of neighbours in a different community, i.e.
out(v) = |nbh(v)∩{v′ ∈ V |x(v) �= x(v′)}|. A sub-graph S is a strong community
if and only if each vertex in S has more in-degree than out-degree:

∀v ∈ S in(v) > out(v) (2)

A sub-graph S is a community in the weak sense if and only if the sum of the
internal degrees of the community is larger than the sum of its external degrees:

∑

v∈S

in(v) >
∑

v∈S

out(v) (3)

A Declarative Approach to Constrained Community Detection 481

Later on, Hu et al. [19] introduced a comparative definition of community or
semi-strong community. Sub-graph S is a community in the semi-strong sense
if and only if all its vertices have more neighbours within the community than
the maximum number of neighbours in any other community, where m is the
number of communities.

∀v ∈ S in(v) > max
t=1,...,m
t�=x(v)

|nbh(v) ∩ {v′ ∈ V | x(v′) = t}| (4)

Similar to the above mentioned criteria, Cafieri et al. [8] defined another relaxed
version of strong community called communities in the almost strong sense and
they designed a heuristic algorithm based on a set of rules to find such commu-
nities in networks. Sub-graph S is a community in the almost strong sense if and
only if each of its vertices of degree other than two shares more edges within the
sub-graph S than with the rest of the network.

∀v ∈ S||nbh(v)| �= 2 in(v) > out(v)
∀v ∈ S||nbh(v)| = 2 in(v) > 0 (5)

Among different supervision types for constrained community detection, size-
constrained community detection has been studied by Ciglan and Nørv̊ag [11].
They proposed a greedy algorithm based on label propagation to find sized
constrained communities based on the semi-strong community definition.

Background knowledge can also be represented as known labels and pairwise
constraints which model whether a pair of vertices must lie within the same
community (must-link or ML) or lie within different communities (cannot-link
or CL). Allahverdyan et al. [2] studied the problem of community detection in
networks where community assignments for a fraction of vertices are known in
advance. They designed a so called planted bisection graph model and investi-
gated the effect of such supervision scheme on detectability threshold of com-
munities.

Eaton and Mansbach [15] proposed a spin-glass model for incorporating pair-
wise constraints in a modularity maximization scheme. Their model penalizes
partitions violating the guidance by adding/subtracting a fixed term to modu-
larity value of pairs involved in must-link/cannot-link constraints.

Cafieri et al. [9] extended the column generation model in [3] for modularity
maximization to incorporate cohesion constraints as in general, it is recognized
that communities found by modularity maximization do not necessarily satisfy
variations of strong community conditions (cohesions). However, their column
generation algorithm doesn’t incorporate other constraint types.

Although there is a lack of flexibility in encoding different supervision types
in constrained community detection approaches, there are some studies in con-
strained clustering schemes to address the flexibility and exact solving tech-
nology. Babaki et al. [4] incorporated pairwise constraints in an exact column
generation scheme for minimum-sum-of-square constrained clustering with pair-
wise constraints. Berg and Järvisalo [5] proposed a MAXSAT approach for

482 M. Ganji et al.

constrained correlation clustering. Davidson et al. [12] proposed a SAT based
approach and Duong et al. [13] used constraint programming to encode several
instance and cluster level constraints in clustering problems.

However, in spite of the high level similarity of clustering and community
detection tasks, their optimization criteria are often different i.e. modularity vs
sum-of-squared-distances. In addition, clustering methods rely on measures of
distance between two points, rather than measures based on the network config-
uration. Hence community detection typically involves very different constraints
which are not applicable in clustering schemes, for example, community defi-
nition based constraints, such as strong/weak community constraints. Minimal
distance and max diameter constraints which are important for constrained clus-
tering do not usually make sense for community detection. Much of the other
focus of work on constrained clustering, e.g. within cluster sum of dissimilarities,
is often not applicable to communities since there is no standard notion of dis-
similarity. In addition, capturing complex community level constraints requires
a dual viewpoint to the partitioning problem which makes the modelling of con-
strained community detection different to constrained clustering.

This paper addresses the existing gap in the literature for constrained com-
munity detection to propose a flexible and generic CP based framework to handle
a variety of constraint types at the same time.

3 Preliminaries

Constraint programming [35] is an effective and generic paradigm to address and
solve constraint satisfaction problems (CSP), or constraint optimisation prob-
lems (COP). A CSP P = (X,D,C) consists of a set of variables X, a finite
domain D for each variable x ∈ X that defines the possible values that it can
take, and a set of constraints C. A COP is a CSP together with an objective
function f which maps a solution θ on X to an objective value f(θ). The aim
is then to find a solution that maximizes (or w.l.o.g. minimizes) the objective
function.

The strength of constraint programming arises from the ability to combine
arbitrary different constraints in the same model. This naturally gives rise to very
expressive modelling. Traditional complete CP solvers are able to tackle this het-
erogeneous constraint solving problem by using propagators to infer information
from individual constraints, communicating through shared variable domains.

Because of this approach the community has developed many global con-
straints which define important combinatorial substructures that reoccur in
many problems, and algorithms to propagate them. An example is the constraint
alldifferent([x1, ..., xn]) which requires all the variables x1, ..., xn to be pair-
wise distinct. Global constraints have a custom propagator able to exploit the
semantics of constraints. This leads to more efficient solving than if one would
decompose that constraint as the conjunction of several simple logical or math-
ematical constraints.

The existence of global constraints further enriches the modelling capabilities
for CP, as we try to understand discrete optimization problems as a combination

A Declarative Approach to Constrained Community Detection 483

of combinatorial substructures. It is this rich modelling approach that will allow
us to express constrained community detection problems succinctly.

We will make use of a few global constraints in capturing community detec-
tion problems.

The global cardinality low up global constraints is a generaliza-
tion of alldifferent constraint. The global cardinality low up([x1, . . . ,
xn], [d1, . . . , dm], [l1, . . . , lm], [u1, . . . , um]) requires each value dj is assigned to
at least lj and at most uj of the variables x1, . . . xn for each 1 ≤ j ≤ m.

The value precede chain([d1, . . . , dm], [x1, . . . , xn]) requires di precedes
di+1 in [x1, . . . , xn] for each 1 ≤ i ≤ m − 1. This global constraint is very use-
ful in value symmetry breaking of CP models and avoiding multiple symmetric
representations of the same solution.

4 Constraint Based Community Detection

We now show how we can model constrained community detection problems
using constraint programming. We study four main categories of constraints
including instance level, community level, definition based and complex logic
constraints which have not been simultaneously applied for constrained commu-
nity detection before.

The input to our CP model is the network’s number of vertices (n) and, if
needed, the modularity matrix (or some variations, e.g. the generalized modu-
larity matrix [16]) denoted by W which is used for building the objective func-
tion. We also assume a maximum number of communities parameter m, which
by default can be n, and a description of the adjacency relation either as an
adjacency matrix, A, or the neighbourhood function nbh where nbh(v) are the
vertices adjacent to v. Without loss of generality, we assume vertices are indexed
from 1 to n and we refer to them by their index.

4.1 Decision Variables

The critical decisions of the problem are for each vertex which community it
belongs to. A one dimensional array x represents the communities to which each
(index) vertex belongs. The length of x is equal to the number of vertices n. The
domains of x are 1..m where m is the maximum number of communities possible
(in the worst case it can be n). While using |x| variables is the most natural way
to model the problem (it directly encodes the community mapping) and enables
us to use efficient global constraints, it has limitations in modelling some of the
community level constraints.

There is a dual viewpoint for the problem. For each community, describe
which vertices are contained in that community. We denote this by an array
of sets of vertices S indexed from 1 to m. Since we have multiple viewpoints
concerning the same decisions, we need to connect them via channeling con-
straints [10], as follows:

∀j ∈ 1..m, ∀i ∈ V i ∈ S[j] ⇔ x[i] = j (6)

484 M. Ganji et al.

Note that if the dual viewpoint is not needed to express any constraints, then
the S variables and the channelling constraints (6) can be omitted.

4.2 Constraints on Representation

In the solution represented by an array x, more than one representation exists
for a unique solution. e.g. x = [1, 1, 2, 2, 2] and x = [2, 2, 1, 1, 1]. This is called
value symmetry [33] which can dramatically effect the ability of complete solvers
to find solutions, and in particular to prove optimality of solutions. For any
solution with k communities there are k! symmetric solutions by permuting
the community numbers. To avoid these situations we use the global constraint
value precede chain([i|i ∈ 1..m], x) which ensures that no community i can
have a vertex j unless all communities 1...i−1 have at least one lower numbered
vertex (less than j) as a member. This constraint enforces a unique commu-
nity numbering for any particular partition. It can be viewed as a lexicographic
ordering constraint on the assignment of vertices to communities. This value
symmetry removal is essential for efficiency of the complete solution methods.
Note that the addition of the symmetry breaking constraint is typically counter
productive for incomplete solving methods, since it creates an artificial constraint
that they must satisfy. It is omitted (rewritten away by preprocessing) when we
use incomplete solving methods.

4.3 Objective

The modularity objective is defined as follows:

OBJ =
∑

i,j∈V

(x[i] = x[j]) ∗ W [i, j]

One of the advantages of the CP system is the ability to encode logical
expressions. The expression (x[i] = x[j]) will evaluate to 1 if the expression is
true or 0 otherwise.

Although the primary objective function studied in this paper is modularity
maximization, the CP framework can encode a variety of other complex arbi-
trary objective functions. For example, minimizing the differences in sizes of the
communities is encoded as minimizing the variable OBJ :

OBJ = max
t∈1..m

|S[t]| − min
t∈1..m

|S[t]|

4.4 Modelling Instance Level Supervision

Instance level supervision is usually represented by pairwise must-link and
cannot-link constraints which is given to the model by a set of pairs of indices
denoted by ML (CL). Similar to [14], the pairwise constraints for constrained
community detection then can be encoded as follows:

∀(m1,m2) ∈ ML x[m1] = x[m2]
∀(c1, c2) ∈ CL x[c1] �= x[c2]

A Declarative Approach to Constrained Community Detection 485

4.5 Modelling Community Level Supervision

The CP framework enables incorporating a vast range of community level con-
straint types. For instance:

– Maximum number of communities: This is implicit in the representation given
by the integer m.

– Minimum number of communities: We can enforce that the first l communities
are non-empty by simply

∀i ∈ 1..l |S[i]| > 1

We can do the same without using the dual viewpoint using the global car-
dinality constraint

global cardinality low up(x, [i|i ∈ 1..l], [1|i ∈ 1..l], [n|i ∈ 1..l])

– Minimum and maximum community size:

∀i ∈1..m (|S[i]| ≥ minsize) ∧ (|S[i]| ≤ maxsize)

Again we can avoid the dual viewpoint using global cardinality constraints.
We can also set just a minimum or maximum by using a trivial bound for the
other end of the range (0, or n).

– Minimum community size and unknown number of communities: For this
combination of constraints we need to make use of the dual viewpoint.

∀i ∈ 1..m |S[i]| ≥ minsize ∨ |S[i]| = 0

– Minimum separation between communities: this is defined based on the max-
imum number of edges between communities which can be set to be less than
a predefined threshold T as follows.

∀l, l′ ∈ 1..m where l < l′
∑

i∈S[l],j∈S[l′]

A[i, j] < T

– Distribution of different tags in communities. This is an example of user
preferences in networks with known tags. For example, consider a scientific
collaboration network in which each vertex has a tag: student (St), faculty
(F) or research staff (R). The university is interested in the collaboration
communities where the ratio of students to faculty is less than p in each
group.

∀l ∈ 1..m
∑

i∈S[l]

(i ∈ St) < p ×
∑

i∈S[l]

(i ∈ F)

486 M. Ganji et al.

4.6 Modelling Definition Based Constraints

We can encode various community definitions as constraints to the CP model.
In this case, the CP model will find the partitions satisfying the local commu-
nity definitions with the maximum possible modularity (objective) value. This
flexibility enables us to benefit from both categories of definitions. Below we
model some community definition constraints for our CP framework (recall the
definitions from Sect. 2).

– Communities in the strong sense (Eq. 2):

∀i ∈ V
∑

j∈nbh[i]

(x[i] = x[j]) > |nbh[i]|/2

– Communities in the weak sense (Eq. 3):

∀t ∈ 1..m
∑

i,j∈S[t]

A[i, j] >
∑

i∈S[t],j∈nbh[i]

1 − (j ∈ S[t])

– Communities in the semi-strong sense (Eq. 4):

∀i ∈ V, ∀t ∈ 1..m t �= x[i] −→
∑

j∈nbh[i]

(x[i] = x[j]) >
∑

j∈nbh[i]

(j ∈ S[t])

– Communities in the almost-strong sense (Eq. 5):

∀i ∈ V |nbh[i]| > 2 →
∑

j∈nbh[i]

(x[i] = x[j]) >
∑

j∈nbh[i]

(x[i] �= x[j])

∀i ∈ V |nbh[i]| = 2 →
∑

j∈nbh[i]

(x[i] = x[j]) > 0

The CP framework can provide further flexibility. Using implication one can
require a proportion of the network to follow a community definition based on
other constraints.

4.7 Modelling Complex Logic Constraints

Unlike any other existing approaches for semi-supervised community detection,
CP modelling technology can enable encoding complex logic supervision such as
conjunction, disjunctions, negation and implication of any instance level, com-
munity level and definition based constraints. For example, the constraint “when
instance i belongs to a community, the size of that community should be bounded
by α and β” can be modelled as follows.

∀t ∈ 1..m (i ∈ S[t]) → (|S[t]| < β) ∧ (|S[t]| > α)

A Declarative Approach to Constrained Community Detection 487

The above constraint is just an illustration that any logic constraint can be
captured by a CP modelling framework. In practice, complex logic constraints
may arise in different applications in real world problems. For example, in power
grid networks, complex requirements may have to be imposed to implement
strategies for network reliability and improving the network behaviour in cas-
cading events [32].

5 Experimental Results

In this section, we present experiments on real and benchmark data sets to
evaluate the performance and flexibility of the proposed framework. The con-
strained community detection problems are written in Minizinc 2.0.12 [28]. All
the experiments are performed using the Gecode [37] or OSCAR CBLS [31] CP
solver with a timeout of one hour on a Macbook with 8 GB RAM and 2.7 GHz
Intel Core i5.

The main questions we address in this section are:

Q1: How the solutions found by the CP framework compare with other con-
strained community detection methods?
Q2: Can the quality of the solutions be improved by adding community level
supervision to instance level constraints?
Q3: Can the modelling framework enable us to simultaneously encode differ-
ent constraint types on a complex real problem?
Q4: How scalable can approaches based on constraint programming modelling
be?

5.1 Comparison to Other Methods

The proposed modelling framework can encode a variety of objectives as well as
classic and arbitrarily complex instance and community level constraints at the
same time while there is no other approach in the literature with such ability
for semi-supervised community detection. However, to address the question Q1
and compare the proposed modelling framework to an state-of-the-art algorithm
in constrained community detection, we limit the supervision type to only ML
and CL pairwise constraints and set the objective to modularity maximization.
There exist some approximate approaches for incorporating pairwise constraints
in modularity optimization scheme [15,24,39]. Here we compare the proposed
framework with the spin-glass model [15], discussed in Sect. 2, because it is based
on modularity and it is shown to perform better than some other approaches
[15]. To implement this approach, we set the parameters according to [15] and
used GenLouvain algorithm [20] for optimizing the spin-glass model.

Since we have the ground truth of the data sets, for evaluating quality of the
solutions, we use the Normalized Mutual Information (NMI) measure (Eq. 7)
proposed by Danon et al. [22].

Inorm(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log(NijN/Ni.N.j)

∑CA
i=1 Ni. log(Ni./N) +

∑CB
j=1 N.j log(N.j/N)

(7)

488 M. Ganji et al.

In Eq. (7), A represents the real communities and B represents the detected
communities while CA and CB are the number of communities in A and B
respectively. In this formula, N is the confusion matrix with rows representing
the original communities and columns representing the detected communities.
The value of Nij is the number of common vertices that are in the original
community i but found in community j. The sum over the ith row is denoted
by Ni. and the sum over the jth column is denoted by N.j .

For each data set listed in Table 1, in the second column section we give
the size, number of constraints, the ground truth number of communities k and
maximum number of communities use in the CP model m. For each data set, we
generated 5 different sets of random constraints (equally divided to ML and CL)
based on the ground truth. To have more rigorous comparison, we executed the
spin-glass model 50 times on each data set and reported the NMI correspond
to the best solution (the highest number of constraints satisfied and modularity
score) in the third column section of Table 1. In addition, we also report the run
time and number of constraint violations for the spin-glass method. The average
NMI and runtime of the complete solver Gecode on the model are reported in the
fourth column of Table 1. In the model, the maximum number of communities m
are set according to the solution of the corresponding unconstrained modularity
maximization problem. Note that the solutions found by the CP framework sat-
isfy all of the constraints, hence the number of constraint violations is zero. The
P-value corresponding to Friedman statistical test is reported in the last line of
Table 1. The null hypothesis of this test is two algorithms have no significant dif-
ference in their performance. This hypothesis is rejected based on the very small
p-values, indicating that Gecode applied to the model statistically significantly
outperforms the spin-glass method in solution quality.

Using Gecode on the CP model finds high quality solutions while it is often
very fast as well. In addition, Gecode can prove optimality in reasonable time for
solutions of smaller problems. For bigger problems sizes such as Political blogs,
Gecode could not prove optimality within one hour. Still Gecode could find a
better solution (NMI = 0.88) than the spin-glass solution (NMI = 0.59) in 17 s
and it kept searching for better solutions within the timeout. This shows the

Table 1. Comparison to other methods and effect of community level constraints

Data n #const k m Spin-glass (pairwise) CP (pairwise) CP (pairwise+ community-level)

NMI Time #viol NMI Time NMI Time Supervision type

Sampson [36] 25 24 2 4 0.82 <1 0.6 0.88 <1 0.96 <1 Weak

Strike [26] 24 24 3 5 0.72 <1 1.5 0.78 <1 0.81 <1 # of community

Zachary [38] 34 34 2 4 0.85 <1 0.19 0.87 <1 0.9 <1 Weak

Mexican [17] 35 34 2 4 0.32 <1 0.44 0.45 60 0.53 35 Weak

Dolphin [23] 62 124 2 5 0.81 <1 4.76 0.95 <1 0.98 <1 Almost strong

Adjacent words [29] 112 224 2 4 0.05 <1 51.92 0.52 73 0.8 1.7 Cardinality

Political books [21] 105 210 3 5 0.67 <1 18.7 0.94 15 0.95 2.5 Cardinality

Political blogs [1] 1490 2980 2 4 0.59 1.2 145.6 0.88 3600(17) 0.97 142(14) # of community

p-value 0.0047 Baseline 0.0047

A Declarative Approach to Constrained Community Detection 489

ability of the CP modelling framework to produce promising results even in big
problem instances in reasonable time where proving optimality is not possible.

5.2 Effect of Community Level Supervision

To address the second question, we add community level constraints to pairwise
ML and CL constraints for the data sets of Table 1 agreeing with their ground
truth. The results of adding community level constraints including communities
in weak and almost-strong sense (Eqs. 3 and 5), number of communities and size
(cardinality) constraints are shown in the last column section of Table 1. For the
cardinality constraint, we generated 10 sets of random samples from the ground
truth and set the minimum and maximum size of the communities according to
the observed number of samples from each community.

Comparing the last two column sections of Table 1 shows that adding com-
munity level supervision can lead the community detection process to more accu-
rate solutions, while often enhancing the runtime of the optimization algorithm.
For instance, in the Political Blogs dataset, adding the number of community
constraints leads to a significant improvement in runtime and solution quality
comparing to considering just pairwise constraints. The significancy of the results
are verified using Friedman statistical test and the very low p-value.

5.3 Case Study

To address question Q3, we consider contacts and friendship relations between
students in a high school in Marseilles, France, in December 2013. Students
were asked to record their contacts with other students in a diary and also
list their friends at school. The Facebook network is available for a subset of
these students. Gender, student ID and the teaching class of each student is also
reported. We consider the network of 81 students whose Facebook and friendship
information is known [25].

We consider a hypothetical scenario in which the School Principal wants to
group the students based on their Facebook communications network, while at
the same time, desiring certain properties to hold based on students’ friend-
ships and contacts information. For example, students who had more than 1 h
contact during the data collection period, must be assigned to the same com-
munity and students who declared friendship and had contact during the data
collection period also must be in the same community. These kinds of proper-
ties can be captured by a set of must-link constraints. 50 must-link constraint
were extracted based on the above mentioned requirements on individual stu-
dent assignments. For balancing group populations, suppose the School Principal
wants each community to have 15–25 students and having 4 groups of students
is desired. The School Principal also wants to balance the gender distribution
in groups by requiring the difference in number of male and female students to
be less than or equal to 5. To make students feel more comfortable, it is also
required that each student has at least two other students from their original
class for the new group they are assigned into.

490 M. Ganji et al.

Table 2. Community profiling of the case study

Methods Size Gender Class distribution

Spin glass 39 F = 29, M = 10 4, 7, 25, 2, 1

38 F = 15, M = 23 3, 1, 20, 5, 9

4 F = 3, M = 1 4

CP just ML 40 F = 23, M = 17 3, 2, 12, 18, 5

30 F = 20, M = 10 1, 5, 13, 3, 6, 1, 1

11 F = 4, M = 7 2, 1, 8

CP final 25 F = 12, M = 13 3, 17, 5

25 F = 15, M = 10 4, 4, 14, 3

15 F = 10, M = 5 3, 3, 9

16 F = 10, M = 6 3, 5, 5, 3

There is no existing community detection algorithm capable of automati-
cally incorporating these complex instance and community level constraints at
the same time. For example, the spin-glass model [15] can only incorporate must-
link and cannot-link constraints. The best solution found by the spin-glass model
from 1000 executions is shown in first row section of Table 2 satisfying all the
must-link constraints. The size column shows the cardinality of each community
and the next column shows the number of females and males in each commu-
nity respectively. The class distribution column shows the number of classmates
based on original class labels for each of the new communities. Based on this
information, it is clear that the solution found by the spin-glass model violates
all the other constraints.

Real world problems such as this example often include a large number of
varying requirements on communities which often cannot be satisfied by existing
approaches. However, our modelling framework can easily deal with various com-
plex constraints at the same time. Within the timeout of one hour, a solution of
the model just considering must-link constraints (to compare with the spin-glass
solution), using the complete solver Gecode, and a full solution also incorpo-
rating size, number of community, gender and class distribution constraints are
shown in the second and third rows of Table 2. As shown in Table 2, the solution
found using Gecode satisfies all the constraints required by the School Principal.

5.4 Scalability

One of the advantages of using a solver-independent modelling framework is that
we do not commit to a particular solving technology. While complete solving
methods are effective on constrained supervision problems which are not too
large, by their nature they do not scale as well as incomplete methods. We
can use an incomplete solver to tackle the same model. Indeed since we use

A Declarative Approach to Constrained Community Detection 491

MiniZinc [28] we can send the same model to both solvers.1 Incomplete solvers
are typically more scalable, but may struggle to satisfy all the constraints of the
problems.

We consider solving the problem using the Oscar CBLS solver [31]. On the
smaller examples of Table 1 Gecode is uniformly better than Oscar, in both time
to solve and NMI of resulting solution, but as the size of the graphs grow Oscar
becomes quicker to find solutions.

Figure 2 shows the best modularity value of the solution over time using
Gecode, Oscar and the spin-glass on the Political Blogs example. The spin-glass
method repeatedly run keeping either the lexicographic best solution (modu-
larity, number of constraints satisfied) or the lexicographic best solution in the
other order. Clearly the spin-glass concentrates on modularity maximization,
and never satisfies all constraints (never finds a feasible solution), and reaches
much higher modularity values.

Figure 3 shows the plot of the same solutions, but here ranked on NMI value.
Clearly the spin glass method never achieves a good NMI, but tracking solu-
tions that satisfy more constraints is preferable for NMI. Oscar quickly gets a
good solution to the problem with high NMI and gradually improves. Interesting
Gecode actually finds the best solution in terms of NMI as its first solution, then
gradually degrades as it optimizes the modularity objective. The first solution
found by Gecode requires 24 s, while the first solution found by Oscar requires
only 3.5 s.

time(s)
0 100 200 300 400 500 600

M
od

ul
ar

ity

0.3

0.35

0.4

0.45

0.5

0.55

OSCAR CBLS
Gecode
Spin-glass(#sat,modul)
Spin-glass (modul,#sat)

Fig. 2. Modularity over time for Politi-
cal Blogs data set using Gecode, Oscar
and spin-glass methods

time(s)
0 100 200 300 400 500 600

N
M

I

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

OSCAR CBLS
Gecode
Spin-glass (#sat,modul)
Spin-glass (modul,#sat)

Fig. 3. NMI over time for Political
Blogs data set using Gecode, Oscar and
spinglass methods

1 Note that we also tried running MIP solvers on the models, but they were non-
competitive, which is unsurprising since the linear relaxation of these problems is
very weak.

492 M. Ganji et al.

6 Conclusion

The challenging problem of constrained community detection with a variety of
constraint types and objective functions has been explored in this paper. We
proposed a generic framework based on constraint programming modelling app-
roach, which enables including a variety of instance and community level, defin-
ition based and complex logic supervision types as constraints. Our models are
able to prove optimality of the solutions, when using complete solving methods,
and in our experiments we have shown it can work with real networks and com-
plex problems. An obvious direction for future work is to consider specialized
propagators for community definitions, for example a stronger propagator for
globally strong communities seems clearly possible.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election:
divided they blog. In: Proceedings of Link Discovery, pp. 36–43. ACM (2005)

2. Allahverdyan, A.E., Ver Steeg, G., Galstyan, A.: Community detection with and
without prior information. Europhys. Lett. 90(1), 18002 (2010)

3. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column
generation algorithms for exact modularity maximization in networks. Phys. Rev.
E 82(4), 046112 (2010)

4. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation.
In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438–454. Springer, Cham
(2014). doi:10.1007/978-3-319-07046-9 31

5. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artificial Intelligence (2015)

6. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. JSTAT 2008(10), P10008 (2008)

7. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–
188 (2008)

8. Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Costa, A.: Finding communities
in networks in the strong and almost-strong sense. Phys. Rev. E 85(4), 046113
(2012)

9. Cafieri, S., Costa, A., Hansen, P.: Adding cohesion constraints to models for mod-
ularity maximization in networks. J. Complex Netw. 3(3), 388–410 (2015)

10. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Removing propagation redundant con-
straints in redundant modeling. ACM Trans. Comput. Log. 8(4), 23 (2007)

11. Ciglan, M., Nørv̊ag, K.: Fast detection of size-constrained communities in large
networks. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol.
6488, pp. 91–104. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17616-6 10

12. Davidson, I., Ravi, S.S., Shamis, L.: A SAT-based framework for efficient con-
strained clustering. In: SIAM Data Mining, pp. 94–105 (2010)

13. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013. LNCS, vol. 8190, pp. 419–434. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40994-3 27

http://dx.doi.org/10.1007/978-3-319-07046-9_31
http://dx.doi.org/10.1007/978-3-642-17616-6_10
http://dx.doi.org/10.1007/978-3-642-40994-3_27
http://dx.doi.org/10.1007/978-3-642-40994-3_27

A Declarative Approach to Constrained Community Detection 493

14. Duong, K.-C., Vrain, C., et al.: Constrained clustering by constraint programming.
Artificial Intelligence (2015)

15. Eaton, E., Mansbach, R.: A spin-glass model for semi-supervised community detec-
tion. In: AAAI, Citeseer (2012)

16. Ganji, M., Seifi, A., Alizadeh, H., Bailey, J., Stuckey, P.J.: Generalized modularity
for community detection. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama,
J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 655–670.
Springer, Cham (2015). doi:10.1007/978-3-319-23525-7 40

17. Gil-Mendieta, J., Schmidt, S.: The political network in Mexico. Soc. Netw. 18(4),
355–381 (1996)

18. Guns, T., Dries, A., Nijssen, S., Tack, G., De Raedt, L.: MiningZinc: a declarative
framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

19. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of
community and corresponding identifying algorithm. Phys. Rev. E 78(2), 026121
(2008)

20. Jutla, I.S., Jeub, L.G.S., Much, P.J.: A generalized Louvain method for commu-
nity detection implemented in MATLAB (2012). http://netwiki.amath.unc.edu/
GenLouvain

21. Krebs, V.: www.orgnet.com/
22. Daz-Guilera, A., Danon, L., Arenas, A.: The effect of size heterogeneity on com-

munity identification in complex networks. JSTAT 2006, P11010 (2006)
23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:

The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

24. Ma, X., Gao, L., Yong, X., Lidong, F.: Semi-supervised clustering algorithm for
community structure detection in complex networks. Phys. A: Stat. Mech. Appl.
389(1), 187–197 (2010)

25. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a
comparison between data collected using wearable sensors, contact diaries and
friendship surveys. PloS ONE 10(9), e0136497 (2015)

26. Michael, J.H.: Labor dispute reconciliation in a forest products manufacturing
facility. Forest Prod. J. 47(11/12), 41 (1997)

27. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Cham (2015). doi:10.1007/978-3-319-18008-3 20

28. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

29. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

30. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

31. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
32. Pahwa, S., Hodges, A., Scoglio, C., Wood, S.: Topological analysis of the power

grid and mitigation strategies against cascading failures. In: 2010 4th Annual IEEE
on Systems Conference, pp. 272–276. IEEE (2010)

33. Puget, J.-F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP
2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002). doi:10.1007/
3-540-46135-3 30

http://dx.doi.org/10.1007/978-3-319-23525-7_40
http://netwiki.amath.unc.edu/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain
www.orgnet.com/
http://dx.doi.org/10.1007/978-3-319-18008-3_20
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
https://bitbucket.org/oscarlib/oscar
http://dx.doi.org/10.1007/3-540-46135-3_30
http://dx.doi.org/10.1007/3-540-46135-3_30

494 M. Ganji et al.

34. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proc. Nat. Acad. Sci. 101(9), 2658–2663 (2004)

35. Rossi, F., van Beek, P., Walsh, T.: Handbook of CP. Elsevier, Amsterdam (2006)
36. Sampson, S.F.: A novitiate in a period of change: an experimental and case study

of social relationships. Cornell University (1968)
37. Schulte, C., et al.: Gecode (2016). http://www.gecode.org/
38. Zachary, W.W.: An information flow model for conflict and fission in small groups.

J. Anthropol. Res. 33, 452–473 (1977)
39. Zhang, Z.-Y.: Community structure detection in complex networks with partial

background information. EPL (Europhys. Lett.) 101(4), 48005 (2013)

http://www.gecode.org/

Combining Stochastic Constraint Optimization
and Probabilistic Programming

From Knowledge Compilation to Constraint Solving

Anna L.D. Latour1(B), Behrouz Babaki2, Anton Dries2, Angelika Kimmig2,
Guy Van den Broeck3, and Siegfried Nijssen4(B)

1 LIACS, Leiden University, Leiden, The Netherlands
a.l.d.latour@liacs.leidenuniv.nl

2 Department of Computer Science, KU Leuven, Leuven, Belgium
3 Computer Science Department, UCLA, Los Angeles, USA

4 ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
siegfried.nijssen@uclouvain.be

Abstract. We show that a number of problems in Artificial Intelligence
can be seen as Stochastic Constraint Optimization Problems (SCOPs):
problems that have both a stochastic and a constraint optimization com-
ponent. We argue that these problems can be modeled in a new language,
SC-ProbLog, that combines a generic Probabilistic Logic Programming
(PLP) language, ProbLog, with stochastic constraint optimization. We
propose a toolchain for effectively solving these SC-ProbLog programs,
which consists of two stages. In the first stage, decision diagrams are
compiled for the underlying distributions. These diagrams are converted
into models that are solved using Mixed Integer Programming or Con-
straint Programming solvers in the second stage. We show that, to yield
linear constraints, decision diagrams need to be compiled in a specific
form. We introduce a new method for compiling small Sentential Decision
Diagrams in this form. We evaluate the effectiveness of several variations
of this toolchain on test cases in viral marketing and bioinformatics.

1 Introduction

Two important areas in Artificial Intelligence are those of probabilistic reasoning
and constraint optimization. Constraint optimization problems involve finding
the best assignment to given variables satisfying constraints on these variables.
The best-known probabilistic inference problems are arguably those that involve
calculating the marginal conditional probability P (X | Y) for given sets of vari-
able assignments X and Y in a probability distribution.

In recent years it has become increasingly clear that these areas are closely
related to each other. For example: calculating P (X | Y) can be understood as

A.L.D. Latour wishes to thank KU Leuven, since the inspiration for this work came
during a research visit to its Computer Science Department. She also wishes to thank
Université catholique de Louvain, since the work itself was done during a research
visit to its ICTEAM institute.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 495–511, 2017.
DOI: 10.1007/978-3-319-66158-2 32

496 A.L.D. Latour et al.

weighted model counting, i.e., calculating a weighted sum over all assignments
to variables that satisfy constraints [9]. Similarly, maximum a posteriori (MAP)
inference, the problem of computing the most likely assignment to given variables
in a distribution, can be seen as a constraint optimization task [23]. Optimization
problems over distributions are closely linked to constraint optimization prob-
lems under soft constraints [4]. Mixed networks essentially combine probabilistic
graphical models and constraint networks [18].

One combination of constraint programming (CP) and probabilistic inference
is the focus of this paper: stochastic constraint programming (SCP) [27], which is
closely related to chance constraint programming [8] and probabilistic constraint
programming [25]. The key idea in SCP is to introduce stochastic constraints and
stochastic optimization criteria in CP. An example of a stochastic constraint is
that the probability of the occurrence of an event should not exceed a threshold.

Three key limitations of the state of the art of SCP are the basis for this
work. First: most publications on SCP are focused on specific types of prob-
lems: scheduling and planning problems, typically (see [1,17] for some recent
examples). Second: there is no generic language for modeling Stochastic Con-
straint Optimization Problems (SCOPs). Third: there is no automatic toolchain
for solving SCOPs written in such a modeling language. The aim of this work is
to advance the state of the art in SCP on these dimensions.

We will use two motivating examples to illustrate that SCP is not only useful
in planning and scheduling, but also in data mining and bioinformatics:

Viral marketing [16]. We are given a social network of individuals whose trust
relationships are probabilistic: the behaviour of one person inspires each of
their friends to do the same with a certain probability. We have budget to
distribute marketing material to k nodes in this network. Which people do
we target for marketing to such that we (indirectly) influence the largest
expected number of people?

Signaling-regulatory pathway inference [21]. We are given a network of
genes, proteins and their interactions, where the interactions are probabilistic.
Furthermore, we are given knock-out pairs: pairs of nodes for which positive
or negative change in the expression level of one node is observed when the
other node is knocked out. Paths of interactions can explain the positive or
negative effect of one node on another. In order to better understand these
interactions, we want to extract the part of the network that best explains the
positive effect (theory compression [13]). We ask: which interactions should
we select such that in the resulting extracted network the expected number
of positive effects is maximized, but the expected number of negative effects
is limited by a constant?

Clearly, these problems also involve a combination of constraint optimization
and probabilistic reasoning. They can be considered instances of SCP, as they
involve finding an assignment to discrete variables, such that a probabilistic
optimization criterion is maximized and a probabilistic constraint is satisfied.

A specific property of these problems is however that the decision problem
is specified over a very different type of distribution than common in existing

Combining SC Optimization and Probabilistic Programming 497

SCP systems: probabilistic networks, i.e., networks in which edges exist with a
certain probability. To the best of our knowledge, no tools currently exist that
are sufficiently general that they allow for modeling and solving these SCOPs.
The second aim of this paper is to introduce a system that can be used to model
and solve these SCOPs, and potentially many other SCOPs. As common in CP,
our system consists of two components: a modeling and a solving component.

For the modeling component we propose to exploit the fact that in recent
years, significant progress has been made in the development of probabilistic pro-
gramming languages1. These languages allow programmers to program distrib-
utions. Until now, however, they have rarely been linked to constraint program-
ming. In this paper, we expand a probabilistic programming language, ProbLog
[14], which is especially suited for programming distributions over probabilis-
tic networks, such that it can be used to formalize SCOPs as well; we call the
resulting language SC-ProbLog (Stochastic Constraint Probabilistic Logic Pro-
gramming). This extension of ProbLog builds on an earlier version of ProbLog
for solving decision-theoretic problems (DT-ProbLog) [26]; compared to DT-
ProbLog, SC-ProbLog adds support for hard constraints.

For the solving component we propose to build a toolchain on technology
that is taken both from the probabilistic reasoning and constraint programming
literature. For the probabilistic reasoning component, we focus on the compila-
tion of Sentential Decision Diagrams (SDDs) [12], as they are known to lead to
smaller representations of distributions than for instance Ordered Binary Deci-
sion Diagrams (OBDDs) [7]. We use these SDDs to generate arithmetic circuits
(ACs) and formalize deterministic constraints based on these ACs. For constraint
solving we use both CP solvers and Mixed Integer Programming (MIP) solvers.
A key technical contribution of this paper is that we show that SDDs need to
satisfy strict criteria in order for them to yield linear representations of proba-
bilistic constraints. We introduce a new algorithm for minimizing SDDs within
this normal form. This allows us to reduce the size of the resulting ACs.

This paper is organized as follows. First, we introduce the range of SCOPs
that are the focus of this work, showing by example how problems can be modeled
in the proposed SC-ProbLog language. In Sect. 3 we provide background on
how probabilities are defined and calculated in ProbLog, which is necessary
to understand the first stage of our proposed method. In Sect. 4 we describe
our method: we introduce the aforementioned normal form and our new SDD
minimization algorithm. Experiments are presented in Sect. 5.

2 Modeling Problems in SC-ProbLog: An Example

As common in (one-stage) SCP [27], we assume given two types of variables:
decision variables (denoted as di) and mutually independent stochastic vari-
ables (denoted as ti). The aim is to find an assignment to the decision vari-
ables, such that stochastic constraints and optimization criteria are satisfied.

1 See http://probabilistic-programming.org/ for a recent list of systems.

http://probabilistic-programming.org/

498 A.L.D. Latour et al.

Constraints and optimization criteria are considered to be stochastic if their
definition involves the use of stochastic variables.

We consider a limited choice of constraints and variables in this work. First,
we restrict our attention to problems in which all variables take Boolean values.
As a consequence, each stochastic variable is independently true or false with a
given a probability. Second, we only consider constraints of the following kind:

∑

i

rivi ≤ θ and/or
∑

i

rivi ≥ θ, (1)

where vi represents either a decision variable di or the conditional probabil-
ity Pi (ϕi | σi) that a stochastic Boolean formula ϕi evaluates to true given an
assignment to decision variables σi. We let ri ∈ IR be a reward for decision vari-
able di or formula ϕi evaluating to true, and let θ be a constant threshold. This
constraint can be thought of as expressing a bound on expected utilities: we sum
rewards for events, each of which could happen with a certain probability, given
an assignment to the decision variables. Whether an event happens in a cer-
tain situation, is expressed using a Boolean logical formula ϕi that includes the
stochastic variables; hence the formula ϕi is only true with a certain probability.

For reasons of simplicity, we limit ourselves in this paper to the case that
ri = 1, although it is trivial to extend our approach to settings in which ri �= 1.
Optimization criteria are of a similar linear form.

The viral marketing problem [16] is an example of a SCOP in this class of
SCOPs. We illustrate this on the network of Fig. 1. The nodes represent people;
they are either targeted directly in a marketing campaign or not (the decisions).
The (undirected) edges represent probabilities that one person trusts another,
and vice versa. These probabilities are indicated by variables such as pab on the
edges of the graph. We formalize this problem as a SCOP as follows:

a b

c

d

pab

pbc

pbd

pcd

da db
dc

dd

Fig. 1. A social network with a viral marketing problem superimposed on it. Nodes
are people, undirected edges indicate trust relationships, where the probability that
person i and person j trust each other is pij . The decision whether or not to target
person i directly is indicated by variable di.

– for each node i in the graph we create a decision variable di;
– for each edge (i, j) in the graph we create a stochastic variable tij ; the prob-

ability that the variable tij is true is equal to that of the edge, pij ;
– as constraint we impose the requirement that

∑
i di ≤ k;

Combining SC Optimization and Probabilistic Programming 499

– as optimization criterion we use the function
∑

i P (ϕi | d1, . . . , dn); intu-
itively, the aim is that P (ϕi | d1, . . . , dn) represents the conditional prob-
ability that node i is reached if an advertisement is sent to exactly those
people indicated by the variables d1, . . . , dn. By summing these probabilities,
we obtain an expected number of persons that is reached.

An important idea is hence to formalize the probability that a person is reached
as the probability that some given logical formula ϕi evaluates to true given an
assignment to decision variables.

We propose the development of a language, SC-ProbLog, for writing down
these constraints and the distributions P (ϕi | d1, . . . , dn) in a systematic man-
ner. This language extends the ProbLog language [14,15]. An example of a pro-
gram in SC-ProbLog is given below. Lines 1–9 are written in ProbLog; lines 10–14
are specific to SC-ProbLog. As this example demonstrates, ProbLog’s notation
is similar to that of Prolog; its main extension is the ability to add probabilities
to facts (lines 5 and 6). These facts become stochastic variables.

1. % Background knowledge
2. person(a). person(c).
3. person(b). person(d).

4. % Probabilistic facts
5. 0.7::directed(a,b). 0.4::directed(b,d).
6. 0.2::directed(b,c). 0.6::directed(c,d).

7. % Relations
8. trusts(X,Y) :- directed(X,Y). buys(X) :- marketed(X).
9. trusts(X,Y) :- directed(Y,X). buys(X) :- trusts(X,Y), buys(Y).

10. % Decision variables
11. ?::marketed(P) :- person(P).

12. % Constraints and optimization criteria
13. { marketed(P) => 1 :- person(P). } 8.
14. #maximize { buys(P) => 1 :- person(P). }.

The example program reflects several assumptions in lines 8–9. First, the
trust relationship is bidirectional. Second, if a person is targeted directly, they
will certainly buy the product. Third, if a person i trusts another person j and
j buys the product, then i buys the product.

Traditional ProbLog would allow for the calculation of a success probability
for a given query, such as :- buys(a)., based on lines 1–9, for a given set of
facts marketed(X).

In the syntax of lines 10–14, we draw inspiration from DT-ProbLog, a version
of ProbLog with support for optimization, but not constraints [26], and Answer
Set Programming, to formalize constraints. Line 11 defines a decision variable for
each person; it defines a search space of facts that can be added to the ProbLog
program. Subsequently, we specify optimization criteria and constraints. Line 13
defines a reward (a weight ri) of 1 for each person that marketing materials are
sent to, and we bound the number of targeted persons to 8. Line 14 adds a prob-
abilistic query buys(P). for each person P to the optimization criterion. Here
we effectively maximize the expected number of people that buy the product.

500 A.L.D. Latour et al.

3 Background

To understand the model in the previous setting, and to understand our newly
proposed method, it is important to understand in more detail how the calcu-
lation of a conditional probability in ProbLog can be formalized as calculating
the probability that a formula over decision variables and stochastic variables
evaluates to true. We will use our earlier example to illustrate this. For a full
introduction, the reader is referred to the literature [14].

As an example we consider calculating the probability that person a in our
network buys a product, given decision variables for each person. The key insight
is that for the query buys(a), the following grounded formula in Disjunctive
Normal Form (DNF) can be constructed:

ϕa = da ∨ (tab ∧ db) ∨ (tab ∧ tbc ∧ dc) ∨ (tab ∧ tbd ∧ dd)
∨ (tab ∧ tbd ∧ tdc ∧ dc) ∨ (tab ∧ tbc ∧ tcd ∧ dd) ,

(2)

This formula can be derived using Selective Linear Definite clause resolution,
or SLD-resolution [3,14], from the original ProbLog program. For example: the
clause (tab ∧ db) reflects the possibility that person a buys the product if it is
marketed to b and the edge between nodes a and b is present. As earlier, db is a
decision variable; tab is a stochastic variable with probability pab of being true.

Assume that the product is only marketed to person d. In this case, the
formula reduces to ϕa = (tab ∧ tbd)∨(tab ∧ tbc ∧ tcd) . What is now the probability
that person a will buy the product? The key idea that underlies both SCP
and ProbLog is that the stochastic variables are considered to be true with a
probability that is independent from the other stochastic variables. One possible
model for formula ϕa is: tab = tbd = �, tbc = tcd = ⊥. The probability for this
model (its weight) is pab ×pbd × (1−pbc)× (1−pcd). The probability of the query
ϕa is defined to be sum of the weights of all the models of the above formula.
Hence, this problem is a weighted model counting (WMC) problem [9].

Calculating the WMC by enumerating all models is usually not efficient. A
more efficient calculation is the following: pab × pbd + pab × (1 − pbd) × pbc × pcd.
The first product corresponds to the first possible path, the second product to
the second path. Note that this formula includes a term (1 − pbd). This term
is necessary as we would otherwise count the model tab = tbd = tbc = tcd = �
twice. This problem is known as the disjoint sum problem.

As the previous example makes clear, computing the probability of a DNF
formula is hard due to the disjoint sum problem; in general, it is known to be
#P-complete [24]. This makes solving this type of SCP particularly hard. How-
ever, several practical approaches have been proposed to make WMC feasible in
practice. One such approach is based on compiling the logical formula into a deci-
sion diagram, and constructing an AC from this diagram [11]. Two well-studied
types of decision diagrams are Ordered Binary Decision Diagrams (OBDDs) [7]
and Sentential Decision Diagrams (SDDs) [12]. The latter type of decision dia-
grams has recently been shown to generalize OBDDs, and can be exponentially
more compact [6]. For this reason, we focus on SDDs.

Combining SC Optimization and Probabilistic Programming 501

An SDD consists of decompositions, disjunctions and terminals (see Fig. 2 for
an example SDD for a formula f that is similar to the formula considered earlier,
but that illustrates the concept of SDDs better). A decomposition consists of a
prime p and a sub s, and one decomposition represents the logical formula (p ∧ s).
Disjunction nodes represent the disjunction of two or more decompositions. The
shape of the SDD is completely determined by a tree structure over the variables
present in it. This tree structure is called a vtree [22]. Two examples of vtrees are
given in Fig. 2. A vtree induces a total variable order for an SDD when traversed
from left to right. We now discuss how vtrees relate to SDDs.

1

B 2

A 3

D C

right-linear

1

B

2

A

3

D C

balanced

1

� C ¬B

2 2 3

B A ¬B ⊥ B ¬A D C ¬D ⊥

disjunction

primes

subs

terminals

decompositions

Fig. 2. Two examples of vtrees (left, center), each for variable order B < A < D < C.
An SDD (right) for logic formula f = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D), which respects the
balanced vtree. Example from Darwiche [12].

All disjunctions are required to respect specific nodes in the corresponding
vtree. A disjunction respects a vtree node i if for all its child decompositions, each
variable occurring in the sub-SDD rooted at the prime (sub) of the decomposition
occurs in the sub-vtree rooted at the left (right) child of i. Thus, the disjunctions
labeled ‘2’ in Fig. 2 each respect vtree node 2 in the balanced vtree shown in
the same figure. An SDD that respects a right-linear vtree is essentially an
OBDD [12]; hence, SDDs generalize OBDDs. As with OBDDs, the size of an
SDD is influenced by the total variable order that is induced by the vtree it
respects. The shape of the vtree also influences the size of that SDD.

Once the SDD is compiled, WMC can be performed in time linear in the size
of the SDD. In a bottom-up fashion the SDD is first turned into an arithmetic
circuit (AC). In this AC, we assign the appropriate probabilities and decision
values to the leafs of the circuit. The transformation of the SDD into an AC
is simple: each decomposition node is replaced by a product node between its
prime and its sub; each disjunction node is replaced by a summation node over
the child nodes.2 The properties of an SDD ensure that the disjoint sum problem
is taken care of in the resulting circuit.
2 This method was used for counting models of a Boolean formula in decomposable
Deterministic Negation Normal Form (d-DNNF) [11], and can be applied to SDDs
because SDDs are a proper subset of d-DNNFs [12].

502 A.L.D. Latour et al.

4 Approach

We first make some observations, then aggregate them in a proposed algorithm.

SCOP Solving with MIP Solvers. Given an SC-ProbLog program that models
a certain SCOP instance, the naive way of solving this SCOP is the follow-
ing. Compile each of the queries present in the program into an AC containing
decision variables and stochastic variables. For each possible assignment to the
decision variables, fill in their values in the AC. Calculate the probabilities using
the AC. Use the resulting probabilities to compute the objective value and to
check for constraint satisfaction. Continue until the optimal strategy is found.

Given that the number of possible assignments is exponential in the num-
ber of decision variables, this approach is feasible for none but the smallest of
problems. A more efficient approach may be to encode the AC in a constraint
programming model, similar to [2], and to use a CP solver on the resulting
model. We explore a new approach, which involves mapping the SDD into a
mixed integer programming (MIP) model.

From SDD to MIP Model. Mapping arithmethic circuits into quadratic programs
is relatively easy. Essentially, we introduce an additional variable for each node
in the AC, which we constrain to equal the product or the sum of its children.

For MIP solvers the quadratic constraints in this näıve model can however be
problematic. As the constraints can be shown to be nonpositive semidefinite, we
cannot apply QCQP solvers either. It is important that we are able to linearize
the products in our model, i.e., that we can transform the model in a set of
equivalent linear constraints. As a short reminder, a constraint of the form a =
b × c can be linearized in these cases3: (1) at least one of the two variables in
{b, c} is a constant; (2) at least one of the two variables in {b, c} is a Boolean
variable. Therefore, we need to ensure that in a decomposition node of the SDD,
variables representing the two children satisfy these requirements.

Special vtrees. Next, we show that it suffices to constrain the vtrees to ensure
that SDDs can be linearized. Recall that for each SDD decomposition node, the
respected vtree determines the variables that can occur in the prime and in the
sub. We observe the following: if all left-hand (right-hand) descendants of an
internal vtree node n are stochastic variables, then for each SDD decomposition
node m whose parent respects n, it holds that all variables occurring in m’s prime
(sub) are stochastic as well. A similar property holds for decision variables.

If a prime contains only probabilities, which can be considered as constants
for the model, we can precompute the corresponding value for the prime, effec-
tively eliminating the MIP model variable associated with that prime. Similarly:
since we can linearize all operations on Boolean variables [19], any prime con-
taining only decision variables can be expressed by a Boolean variable with linear

3 Using the big M-approach [19] with M ≤ 1, as all real values are probabilities.

Combining SC Optimization and Probabilistic Programming 503

relations to other variables. Thus, in each of these two cases, the expression rep-
resented by the prime can be linearized and hence the product represented by
the SDD decomposition node as well. The same holds for subs.

This leads us to define the concept of mixed and pure nodes in a vtree. A
pure node is an internal node whose leaf descendants all are variables of the same
type (either stochastic or decision), while a mixed node is an internal node that
has leaf descendants of both types. We state that an SDD can be linearized into
a MIP model if the vtree that it respects has the single mixed path property.

Definition 1. Given a vtree on variables of two distinct classes (e.g. decision
and stochastic). This vtree has the single mixed path (SMP) property (and is
called an SMP vtree) if, for each of its internal nodes n, the following holds:
either both children of n are pure nodes, or one child of n is pure and the other
child is mixed. As a consequence, if an SMP vtree has mixed nodes, all mixed
nodes occur on the same path from the root of the vtree to the lowest mixed node.

Minimizing SDDs. Recall that SDDs that respect right-linear vtrees are essen-
tially OBDDs. One can easily verify that a right-linear vtree has the SMP prop-
erty: if it has an SMP, it is on the right spine of the vtree. From this follows that
OBDDs can be linearized. However: right-linear vtrees generally do not yield the
smallest SDDs. Since the size of the SDD determines the size of the resulting
MIP model, and thus the solving time, small SDDs are preferable as input for
the MIP model builder.

Choi and Darwiche have proposed a local search algorithm for SDD minimiza-
tion [10]. This algorithm considers three operations on the vtree: right-rotate,
left-rotate (each well-known operations on binary trees) and swap. When a swap
operation is applied to an internal node, the sub vtrees rooted at its children
are swapped. Given a (sub) vtree, the greedy local search algorithm of Choi and
Darwiche loops through its neighbourhood of different vtrees by applying con-
secutive rotate and swap operations, trying to find a vtree that yields a smaller
SDD. Since OBDD minimization is NP-hard [5], we expect SDD minimization
to also be NP-hard, but we are not aware of any published proof of this.

Generally, this minimization produces vtrees that do not have the SMP prop-
erty, even if the initial vtree did; the rotate moves may remove this property.

A desirable property of Choi and Darwiche’s algorithm is the following: the
three local moves considered are sufficient to turn any vtree on a certain set of
variables into any other vtree on the same set of variables. Consequently, the
local moves in principle allow complete traversal of the search space of vtrees.

Here, we propose a simple modification of Choi and Darwiche’s algorithm:
we use the same local moves as their algorithm does, but any move that leads
to a vtree that violates the SMP property is immediately rejected.

While this modification is conceptually easy, a relevant fundamental question
is whether under this modification it is still possible to traverse the space of SMP
vtrees on a fixed set of variables completely. We show that this is indeed the case.

In the following we refer to the leaf node that represents the variable that is
lowest in the order associated with a vtree as LL (lowest leaf).

504 A.L.D. Latour et al.

Lemma 1. Let v be the parent and x the grandparent of the LL in an SMP
vtree. Right rotate on x maintains the SMP property for the vtree rooted at v.

Proof. Consider the left SMP vtree in Fig. 3. Given that this vtree satisfies the
SMP property by assumption, sub vtrees b and c cannot both be mixed, but one
of them can be. Now consider the following cases:

Both b and c are pure and of the same class as LL: Lemma 1 holds trivially.
Both b and c are pure, not each of the same class as LL: Any class

assignment to b and c will preserve the SMP property.
Node b is pure, node c is mixed: Since b is of the same class as LL (by

assumption), node v is pure and node x is mixed. After applying right-rotate
on node v, both v and x are mixed, and the SMP property is preserved.

Node b is mixed, node c is pure: Node c can belong to any class, since both
node v and node x are mixed before as well as after applying right-rotate to
v, preserving the SMP property under rotation.

x

v

LL b

c

rr(x)

lr(v)

v

LL x

b c

Fig. 3. Rotate operations on an SMP vtree. Node LL is the lowest variable in the
variable induced by these vtrees. Nodes v and x are internal; b and c are sub vtrees.

Note that the SMP vtree described above may be a sub vtree of a larger
vtree. The fact that the right-rotate operation does not change the nature (mix
or pure) of the root of this sub vtree, leads to the following corollary:

Corollary 1. A right-rotate operation on the grandparent of the LL node does
not change the SMP status of the full vtree.

Lemma 2. Given an SMP vtree with node LL in order O. We can always obtain
an SMP vtree on the same order O in which the LL is the left child of the root,
through a series of right-rotate operations, without ever in the process transform-
ing it into a vtree that violates the SMP property.

Proof. A right-rotate operation on an internal vtree node decreases its left child’s
distance to the root of the vtree by one. Repeated applications of right-rotate on
LL’s grandparent ultimately makes LL’s parent the vtree’s root. By Lemma 1
and Corollary 1, the SMP status of the vtree never changes in this process.

Combining SC Optimization and Probabilistic Programming 505

Lemma 3. Given an SMP vtree on order O, we can always obtain a right-linear
vtree on the same order, through a series of right-rotate operations, without ever
in the process transforming it into a vtree that violates the SMP property.

Proof. By Lemma 2 we can turn any SMP vtree in one for which the LL is the
left child of the root. This vtree can be made right-linear by recursively applying
this method to the root’s right child.

Lemma 4. A right-linear SMP vtree with variable order O can be transformed
in any SMP vtree on the same variable order by a series of left-rotate operations
without ever in the process transforming into a vtree without the SMP property.

Proof. Since left-rotate is the dual operation of right-rotate, a sequence of right-
rotate moves transforming any vtree to a right-linear one through right-rotate
operations, can simply be reversed through left-rotate operations to turn a right-
linear vtree in any other (on the same variable order).

Note that rotate operations preserve the variable order in the vtree, only chang-
ing its shape. However, the space of possible vtrees on a fixed set of variables is
larger, since different variable orders exist. The order of variables is changed by
the application of swap operations.

Lemma 5. Any right-linear vtree on variable order O can be transformed into
a right-linear vtree on any other variable order O ′ through a series of rotate
and swap operations without ever in the process transforming into a vtree that
violates the SMP property.

Proof. Observe that any right-linear vtree satisfies the SMP property. Observe
that if we can reverse the mutual order of two adjacent variables (e.g. A <
B < C < D becomes A < C < B < D), we can create any variable order by
repeatedly reversing the orders of adjacent variables.

This order reversal is simple. Suppose that node b in the right vtree of Fig. 3
is a single variable, as is LL. We can make LL and b swap places by applying
a left-rotate on v, resulting in the left vtree of Fig. 3, and then applying a swap
operation on v, followed by a right-rotate operation on x.

Theorem 1. Any SMP vtree can be transformed into any other SMP vtree on
the same variable through a series of rotation and swap moves, without ever in
the process transforming into a vtree that does not have the SMP property.

We conclude that an SMP-preserving minimization algorithm that applies only
swap and rotate operations can in principle convert any SMP vtree into any
other SMP vtree on the same variables.

Summary. These observations spark the following algorithm for solving SCOPs:

1. ground formulas for the queries present in the SCOP;
2. compile SMP vtree respecting SDDs for all these queries (ProbLog’s default

mechanism uses right-linear vtrees, so this is automatically satisfied);

506 A.L.D. Latour et al.

3. apply the SMP-preserving local search algorithm to minimize these SDDs;
4. convert the SDDs into arithmetic circuits and then into sets of constraints;
5. add the optimization criterion and linear constraints of the SCOP to the

MIP model, ensuring e.g. that for an upper-bounded stochastic constraint
the model variables representing the root of each relevant query are added
using a linear model constraint of the form

∑
i rivi ≤ θ;

6. apply a MIP solver or a CP solver to find a solution.

For CP solvers, the unconstrained minimization algorithm can be used to obtain
smaller SDDs. ProbLog’s compilation strategy yields SDDs respecting right-
linear vtrees. Thus, without minimization, the SDDs are essentially OBDDs.

5 Experiments

We state some questions that we wish to answer for the approach described in
the previous section. Then we describe the experiments we use to answer these
questions.

Questions. Recall that the size of a MIP or CP model is linear in the size of the
SDDs it is built on. We expect smaller models to be faster to solve. However:
minimizing an SDD takes time. Furthermore, when quadratic constraints are
allowed, we expect to obtain smaller SDDs; however, solving quadratic problems
using CP may take longer than solving MIPs. We pose the following questions:

(Q2) How do SDD sizes depend on the choice of minimization algorithm?
(Q3) How do the calculation times for the full toolchain compare for CP and

MIP solvers, with and without appropriate minimization?
(Q4) How do the computation times for different phases of the algorithm com-

pare to each other?

To answer these questions, and to demonstrate that SC-ProbLog programs can
be solved in practice, we apply our algorithms to different SCOPs. Of course,
the constraints determine problem hardness, which begs the question:

(Q1) Which threshold settings are useful for an evaluation of the solving times?

Description of Test Data. Our experiments focus on two types of real data sets:
a social network and a gene-protein interaction network. As social network
we use the High-energy theory collaborations network [20], which was also used
in earlier publications on viral marketing [16]. This collaboration network of
7610 authors (nodes) has 15751 undirected weighted edges, which we turn into
probabilities following Kempe’s approach [16]. Initial experiments showed that
the full network is too large to ground the problem’s programs. We use Gephi ’s4

implementation of the Louvain algorithm for weighted community detection to

4 Available at https://gephi.org/.

https://gephi.org/

Combining SC Optimization and Probabilistic Programming 507

extract communities. We consider two specific communities, referred to as hep-
th47 and hep-th5. Compared to our earlier viral marketing ProbLog program,
in our experiments we include additional stochastic variables such that a person
does not automatically buy a product if it is marketed to them.

As DNA-protein and protein-protein interaction network we use the
Signaling-regulatory Pathway INference [21] (or SPINE) network, with 4696
nodes representing genes and proteins. It contains 15147 undirected protein-
protein edges, and 5568 directed protein-gene edges. The set provides probabili-
ties for both the undirected protein-protein edges, and the directed protein-gene
edges. We again use Gephi ’s community detection, where we take care to ensure
that both negative and positive knockout pairs are contained in our samples. We
consider models referred to as spine16 and spine27 in our experiments. We use
a specific path definition that requires paths to end in a protein-DNA edge.

Optimization and Constraint Settings. We consider several combinations of opti-
mization and constraint settings on the programs described above. We use the
following abbreviations. maxSumProb denotes a maximization over stochastic
variables, while maxTheory denotes a maximization over the sum of decision
variables set to true (theory size). For constraints we use these abbreviations:
ubSumProb denotes a constraint in which we impose an upper bound on an
expectation; ubTheory denotes a constraint in which we impose an upper bound
on the theory size. We also define minimization and lower bound counterparts
of these settings. Table 1 lists the four datasets that we use, along with the tasks
we evaluate on each dataset. For instance, the combination (maxSumProb,
ubTheory) is the viral marketing setting we considered earlier in this paper.

Software and Hardware. We use Gurobi 6.52 as MIP solver and Gecode 5.0.0
as CP solver5. For each phase of the toolchain (grounding of the program, SDD
compilation, building of the constraint model and solving it) we use a timeout
on our experiments of 3600 s. They were implemented in Python 3.4, using
ProbLog 2.16 for the grounding of programs. ProbLog 2.1 uses version 1.1.1
of UCLA’s sdd library7, which is implemented in C, for SDD compilation. They
were run on a machine with an Intel Xeon E5-2630 processor and 512 GB RAM,
under Red Hat 4.8.3-9.

Results. To answer (Q1), Fig. 4 shows solving times for the hep-th47 problem in
the (maxSumProb, ubTheory) setting, for different thresholds. As expected,
we find that thresholds that are not very strict or loose, require the longest
solving times. We performed similar experiments for the other problem settings
to systematically identify the threshold for which each problem was the hardest,
which we then chose as test cases for the SCOP solving method comparison.

To answer (Q2), Fig. 5 shows a comparison of the size reductions obtained
by the SMP-minimization algorithm and the default minimization algorithm
5 Available at www.gurobi.com and www.gecode.org.
6 Availabe at https://dtai.cs.kuleuven.be/problog/.
7 Available at http://reasoning.cs.ucla.edu/sdd/.

www.gurobi.com
www.gecode.org
https://dtai.cs.kuleuven.be/problog/
http://reasoning.cs.ucla.edu/sdd/

508 A.L.D. Latour et al.

Table 1. Performance in seconds of the different methods on the hardest instances
of the testcases for the full toolchain. We give the problem set, optimization and con-
straint setting, number of decision variables nd, number of ProbLog queries nq that
comprise the objective function and/or constraint, threshold θ and objective value vobj
(N/A denotes a problem that has no solution for that threshold). We show the solving
times for the default SDD with no minimization (tnone), SMP minimization (tsmp) and
default minimization (tdefault) for Gurobi and Gecode. We indicate a timeout with t/o.

Instance Characteristics Gurobi Gecode

Problem opt. cst. nd nq θ vobj tnone tsmp tnone tdefault

spine16 maxSumPr. ubTh. 36 23 15 14.40 3.9 3.4 1389.5 591.4

spine16 minTh. lbSumPr. 36 23 6.9 8 4.1 3.9 70.9 31.4

spine27 maxSumPr. ubSumPr. 86 26 1.3 9.51 443.2 471.3 t/o t/o

spine27 maxSumPr. ubTh. 76 13 25 10.18 5.9 5.6 t/o t/o

spine27 maxTh. ubSumPr. 71 13 6.5 52 23.3 21.9 222.9 8.6

spine27 minTh. lbSumPr. 76 13 6.5 8 4.7 5.7 t/o 1878.2

hep-th47 maxSumPr. ubTheory 20 20 10 3.21 545.83 412.7 t/o 130.9

hep-th47 minTh. lbSumPr. 20 20 2 6 188.61 163.8 2859.9 6.9

hep-th5 maxSumPr. ubTh. 33 10 20 2.81 2076.83 1185.7 t/o t/o

hep-th5 minTh. lbSumPr. 33 10 5 N/A 364.62 346.4 t/o t/o

0 5 10 15 20
threshold [theory size]

0

500

ti
m

e
[s

]

Fig. 4. Example of performance of
Gurobi with non-minimized SDD on dif-
ferent thresholds, for problem hep-th47
with maxSumProb, ubTheory.

0 25 50 75

without minimization [x 10,000]

0

20

40

60

80

w
it
h

m
in

im
iz

at
io

n
[x

10
,0

00
]

equal size
smp
default

Fig. 5. Comparison of size reduction
by SDD minimization algorithms.

provided by the sdd library. We find that the SMP minimization algorithm
typically halves the size of the initial SDD. The default minimization typically
reduces the size of the SDD by one or two orders of magnitude.

To answer (Q3), we summarize the performance of the four methods on
our test cases in Table 1. For the hep-th5 problem we selected the ten highest-
degree nodes for the queries, since the program could not be grounded within
one hour if we selected all 33 nodes in the problem for querying. This reduced

Combining SC Optimization and Probabilistic Programming 509

0 20 40 60
without minimization [s]

0

20

40

60
w

it
h

m
in

im
iz

at
io

n
[s

]

equal time
smp
default

Fig. 6. Comparison of SDD compila-
tion times.

0

10
00

20
00

without minimization [s]

0

1000

2000

w
it
h

m
in

im
iz

at
io

n
[s

]

equal time
smp (Gurobi)
default (Gecode)

Fig. 7. Comparison of full toolchain
solving times for the two solvers.

the grounding time to about 120 s. For the other test cases we have selected all
queries in the problem, with grounding times in the range of 1–5 s.

We observe that without any minimization of the SDD, Gurobi consistently
outperforms Gecode. Furthermore, we observe that the difference made by SDD
minimization is larger for the Gecode methods than for the Gurobi methods.
This can largely be explained by the results in Fig. 5, and by those in Fig. 6,
which answer question (Q4). The latter show that generally, compiling SDDs is
a matter of seconds, whether they are being minimized or not. The exception is
the hep-th5 problem, which takes tens of seconds to compile into an SDD when
using SMP minimization. Observe from the table that minimization is still useful
here, as it reduces solving time enough to make up for the extra minimization
time. We note that the minimization algorithms are based on heuristics, and
minimization speed-up may lie in the improvement of these heuristics.

Finally, Fig. 7 shows that the time that is gained during the optimization
part of the entire solving chain, can be orders of magnitude larger than the time
lost by minimizing the SDD. We do note that, since compiling the SDD can be
done in seconds, this effect is less noticable for the smaller problems.

6 Conclusions

We introduced a specific class of SCOPs, in which we can impose constraints and
optimization criteria based on expected utilities over probabilistic programs. We
demonstrated that a viral marketing problem and a problem in bioinformatics
can be considered instances of such SCOPs. We showed how generic probabilistic
programming technology can be combined with constraint optimization solvers
to solve these problems, and introduced an SDD minimization algorithm that
preserves properties that ensure linearizability of the SDD to a MIP model, while
reducing the size of the SDD. While the results are encouraging, an important
remaining challenge is scalability; local search and sampling algorithms could
be of interest here for the probability calculation, the optimization, and the

510 A.L.D. Latour et al.

minimization of circuit sizes. We believe that the methods here presented can
also be applied in other contexts than those studied here. Many possibilities
remain for the further integration of CP and probabilistic programming, given
the limitations on the type of constraints and probabilistic models considered in
this work.

Acknowledgements. We thank Luc De Raedt for his support, for his advice and
for the numerous other ways in which he contributed to this work. This research was
supported by the Netherlands Organisation for Scientific Research (NWO) and NSF
grant #IIS-1657613.

References

1. Babaki, B., Guns, T., De Raedt, L.: Stochastic constraint programming with and-or
branch-and-bound. In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence (2017, to appear). doi:10.24963/ijcai.2017/76

2. Babaki, B., Guns, T., Nijssen, S., De Raedt, L.: Constraint-based querying for
Bayesian network exploration. In: Fromont, E., De Bie, T., van Leeuwen, M.
(eds.) IDA 2015. LNCS, vol. 9385, pp. 13–24. Springer, Cham (2015). doi:10.1007/
978-3-319-24465-5 2

3. Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer Pub-
lishing Company, Incorported, Heidelberg (2012). doi:10.1007/978-1-4471-4129-7

4. Bistarelli, S., Rossi, F.: Semiring-based soft constraints. In: Degano, P., De Nicola,
R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp.
155–173. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68679-8 11

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996). doi:10.1109/12.537122

6. Bova, S.: SDDs are exponentially more succinct than OBDDs. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 929–935.
AAAI Press (2016)

7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). doi:10.1109/TC.1986.1676819

8. Charnes, A., Cooper, W.W.: Chance-constrainted programming. Manag. Sci. 6,
73–79 (1959)

9. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008). doi:10.1016/j.artint.2007.11.002

10. Choi, A., Darwiche, A.: Dynamic minimization of sentential decision diagrams.
In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2013, pp. 187–194. AAAI Press (2013)

11. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non-Class. Log. 11(1–2), 11–34
(2001). doi:10.3166/jancl.11.11-34

12. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2011, vol. 2, pp. 819–826. AAAI Press (2011). doi:10.
5591/978-1-57735-516-8/IJCAI11-143

13. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing
probabilistic Prolog programs. Mach. Learn. 70(2), 151–168 (2008). doi:10.1007/
s10994-007-5030-x

http://dx.doi.org/10.24963/ijcai.2017/76
http://dx.doi.org/10.1007/978-3-319-24465-5_2
http://dx.doi.org/10.1007/978-3-319-24465-5_2
http://dx.doi.org/10.1007/978-1-4471-4129-7
http://dx.doi.org/10.1007/978-3-540-68679-8_11
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1016/j.artint.2007.11.002
http://dx.doi.org/10.3166/jancl.11.11-34
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
http://dx.doi.org/10.1007/s10994-007-5030-x
http://dx.doi.org/10.1007/s10994-007-5030-x

Combining SC Optimization and Probabilistic Programming 511

14. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence, IJCAI 2007, pp. 2468–2473. Morgan Kaufmann
Publishers Inc., San Francisco (2007)

15. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory Pract. Log. Program. 15(03), 358–401
(2015). doi:10.1017/S1471068414000076

16. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM,
New York (2003). doi:10.1145/956750.956769

17. Lombardi, M., Milano, M.: Allocation and scheduling of conditional task graphs.
Artif. Intell. 174(7–8), 500–529 (2010). doi:10.1016/j.artint.2010.02.004

18. Mateescu, R., Dechter, R.: Mixed deterministic and probabilistic networks. Ann.
Math. Artif. Intell. 54(1–3), 3–51 (2008). doi:10.1007/s10472-009-9132-y

19. McKinnon, K.I.M., Williams, H.P.: Constructing integer programming models
by the predicate calculus. Ann. Oper. Res. 21(1), 227–245 (1989). doi:10.1007/
BF02022101

20. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl.
Acad. Sci. 98(2), 404–409 (2001). doi:10.1073/pnas.021544898

21. Ourfali, O., Shlomi, T., Ideker, T., Ruppin, E., Sharan, R.: SPINE: a framework
for signaling-regulatory pathway inference from cause-effect experiments. Bioinfor-
matics 23(13), i359–i366 (2007). doi:10.1093/bioinformatics/btm170

22. Pipatsrisawat, K., Darwiche, A.: New compilation languages based on structured
decomposability. In: Proceedings of the 23rd National Conference on Artificial
Intelligence, AAAI 2008, vol. 1, pp. 517–522. AAAI Press (2008)

23. Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov
logic. In: Proceedings of the 24th Conference in Uncertainty in Artificial Intelli-
gence, UAI 2008, Helsinki, Finland, 9–12 July 2008, pp. 468–475 (2008)

24. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996). doi:10.1016/0004-3702(94)00092-1

25. Tarim, S.A., Hnich, B., Prestwich, S.D., Rossi, R.: Finding reliable solutions:
event-driven probabilistic constraint programming. Ann. OR 171(1), 77–99 (2009).
doi:10.1007/s10479-008-0382-6

26. Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTPROBLOG:
a decision-theoretic probabilistic Prolog. In: Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1217–1222. AAAI
Press (2010)

27. Walsh, T.: Stochastic constraint programming. In: Proceedings of the 15th Euro-
pean Conference on Artificial Intelligence, ECAI 2002, Lyon, France, July 2002,
pp. 111–115 (2002)

http://dx.doi.org/10.1017/S1471068414000076
http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1016/j.artint.2010.02.004
http://dx.doi.org/10.1007/s10472-009-9132-y
http://dx.doi.org/10.1007/BF02022101
http://dx.doi.org/10.1007/BF02022101
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1093/bioinformatics/btm170
http://dx.doi.org/10.1016/0004-3702(94)00092-1
http://dx.doi.org/10.1007/s10479-008-0382-6

Learning the Parameters of Global Constraints
Using Branch-and-Bound

Émilie Picard-Cantin1(B), Mathieu Bouchard2, Claude-Guy Quimper1,
and Jason Sweeney2

1 Université Laval, Quebec City, Canada
emilie.picard-cantin.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

2 PetalMD, Quebec City, Canada
mathbouchard@gmail.com, jason.pierre.sweeney@gmail.com

Abstract. Precise constraint satisfaction modeling requires specific
knowledge acquired from multiple past cases. We address this issue with
a general branch-and-bound algorithm that learns the parameters of a
given global constraint from a small set of positive solutions. The idea
is to cleverly explore the possible combinations taken by the constraint’s
parameters without explicitly enumerating all combinations. We apply
our method to learn parameters of global constraints used in timetabling
problems such as Sequence and SubsetFocus. The later constraint is
our adaptation of the constraint Focus to timetabling problems.

Keywords: Constraint acquisition · Timetabling · Machine learning ·
CSP · Global constraints · Brand-and-Bound

1 Introduction

Modeling a constraint satisfaction problems requires specific knowledge acquired
from multiple past cases, each model being different from the last. For example,
CSPs of nurse timetabling problems for two different hospitals most likely use
similar constraints but with different parameters. A hospital might require to
work in the emergency ward no more than 3 days out of 7 while another hospital
might set the limit to no more than 4 days out of 9. A system able to determine
the parameters that created a set of existing solutions would greatly speedup
the modeling process. This explains the popularity of modeling automation in
the recent years.

A global constraint has variables, encoding solutions, and known parameters
that define the relation between the variables. In our context, we are given a
global constraint and example solutions, so the variables are known but the
parameters are unknown. We want to learn the parameters that generated the
examples.

The main contribution of this paper is an algorithm that learns the parame-
ters of given global constraints from a small pool of examples. This algorithm
can be applied to constraints such as Among and Sequence, commonly used in
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 512–528, 2017.
DOI: 10.1007/978-3-319-66158-2 33

Learning the Parameters of Global Constraints Using Branch-and-Bound 513

timetabling. We use a branch-and-bound to quickly and cleverly travel through
all the combinations of parameters of the constraint and to determine which
combination best describes the given examples.

We also introduce SubsetFocus, a constraint useful in the modelization of
timetabling problems, and we show how to learn its parameters from examples.

2 Background

We present the global constraints that are studied in this paper. We then report
important past contributions related to the automation of constraint modeling
and to the learning of parameters for global constraints.

2.1 Global Constraints

Let C(X,a) be a global constraint where X = [X1, . . . , Xn] are integer variables
denoted in upper case and a = [a1, . . . , am] are parameters denoted in lower
case. Let SC(a) be the solution set for C with parameters a and let SCi

(x,a) =
SC(a1, . . . , ai−1, x, ai+1, . . . , am), where all aj in a are fixed except for ai.

We present global constraints that are studied in this paper. Let sij = {i, i+
1, . . . , j} be a sequence. The constraint Focus(X, Y, l, k) [28] is satisfied if and
only if X and Y are such that there exists a set S of disjoint sequences sij such
that

1. |S| ≤ Y
2. Xb > k ⇐⇒ ∃sij ∈ S s.t. b ∈ sij , ∀b ∈ [1, . . . , n]
3. j − i + 1 ≤ l, ∀sij ∈ S
Focus controls the number and the length of subsequences of variables greater
than k.

Example 1. Suppose we have Focus([X1, . . . , X7], Y, l = 2, k = 1) with
dom(Xi) = {1, 2, 3, 4} and dom(Y) = {2, 3}. Then, [2, 1, 3, 3, 1, 1, 1] and
[2, 3, 4, 1, 1, 2, 1] are solutions because S = {s11, s34} and S = {s12, s33, s66}
are valid sets. [2, 1, 2, 1, 2, 1, 2] is not a solution because the cardinality of the
only possible set S = {s11, s33, s55, s77} is greater than max(dom(Y)).

Some global constraints are applied to a subset of values in their original
definition. We choose to encode this set with a vector z. zv = 1 if the value
v is in the set and zv = 0 otherwise. In other words, the vector z is the bitset
encoding of a set. By abuse of notation, we will consider z sometimes as a binary
vector, sometimes as a set of values.

We propose a new constraint SubsetFocus(X, l,m,z) (SF), a generaliza-
tion of Focus, that controls the number and the length of subsequences of
variables that belong to a set of values. SubsetFocus(X, l,m,z) is satisfied if
X is such that there exists S, a set of disjoint sequences sij , such that:

514 É. Picard-Cantin et al.

1. |S| ≤ m
2. Xb = v ∧ zv = 1 ⇐⇒ ∃sij ∈ S s.t. b ∈ sij , ∀b ∈ [1, . . . , n]
3. j − i + 1 ≤ l, ∀sij ∈ S
4. sij ∈ S ⇒ sj+1,j′ /∈ S, ∀j′ ≥ j + 1.

In other words, SubsetFocus(X, l,m,z) is satisfied if the assignment X
has fewer than m stretches of maximum length l with values in the set defined
by z. SubsetFocus can be used to limit the number of stretches of night shifts
to m while limiting the length of the stretches to l in a medical timetabling
problem.

We introduce SubsetFocus to fulfill a request from PetalMD, the company
financing this research, to create medical schedules with clusters of night shifts.
The set S represents sequences of consecutive night shifts. In our context, two
consecutive night shifts should not be considered as two separate stretches of
work as it could be with Focus. Hence the fourth condition of SubsetFocus.

Example 2. Suppose we have SubsetFocus([X1, . . . , X7], l = 2,m = 2,z =
[0, 1, 1, 1]) with dom(Xi) = {1, 2, 3, 4}. Then, [2, 1, 3, 3, 1, 1, 1] is a solution
because S = {s11, s34} is a valid set. [2, 3, 4, 1, 1, 1, 1] is not a solution because
s13 is not a valid sequence according to condition 3 and all other combinations
would violate condition 4.

Among(X, l, u,z) [4] ensures that at most u and at least l variables take
values in z. Sequence(X, l, u, w,z) (Seq) [4] ensures that for every subset of
w consecutive variables in [X1, . . . , Xn] Among([Xi, . . . , Xi+w−1], l, u,z) holds.

Let occv = |{i : Xi = v}| be the number of occurrences of value v
in X. GCC(X, [l1, . . . , lm], [u1, . . . , um]) (or GlobalCardinality constraint)
[30] ensures that occv ∈ [lv, uv], for each value v ∈ {1, . . . , m}. AtMost-

NValue(X, k) (AtLeastNValue(X, k)) [26] ensures that the variables take
at most (at least) k different values.

Balance(X, b) [9] ensures that the balance b is the difference between the
most occurring value and the least occurring value, among assigned values only.

b = max
v∈{Xi}n

i=1

occv − min
v∈{Xi}n

i=1

occv .

The constraint AtMostBalance(X, b) [16] ensures that the balance is at
most b. The variant AtMostBalance*(X, b) also takes into consideration non-
occurring values, i.e.: b ≥ maxv occv −minv occv.

Pesant et al. [27] count the solutions for multiple global constraints. In partic-
ular, they propose a dynamic programming approach to count the solutions sat-
isfying Regular([X1, . . . , Xn],A), that ensures the word [X1, . . . , Xn] belongs
to the regular language described by the finite automaton A. The idea is to
encode Regular as a layered graph and then recursively count all paths, from
the last layer to the first.

Learning the Parameters of Global Constraints Using Branch-and-Bound 515

2.2 Constraint Acquisition

There exist multiple approaches to learn, from a set of solutions, which con-
straints form a model. The model seeker [5,8] learns a CSP from positive exam-
ples. It lists the global constraints satisfied by all examples using the constraint
seeker [6,7], which uses multiple criteria to order the constraints according to
pertinence. One criterion is the number of assignments that satisfy the con-
straint. If this number is small, that indicates that the solution come from a
small subset of possible assignments. This is more likely to occur if the con-
straint was imposed.

Many propose interactive constraint acquisition systems learning a complete
CSP from examples by asking queries to the user. Among the most recent
publications: Bessiere et al. [10,14,15], Daoudi et al. [20], and Arcangioli and
Lazaar [1].

Bessiere et al. [12,13], Barták et al. [2], and Charnley et al. [19] study the
acquisition of implied constraints from a CSP in order to improve the resolution
time. Bessiere et al. [11] use the examples to remove redundant constraints from
the model during the constraint acquisition phase.

Kiziltan et al. [21], Little et al. [23], and Lopez and Lallouet [25] study the
translation of a problem description written in natural language into a formal
model.

Machine learning techniques can also be used to learn part of a model.
Bonfietti et al. [17], Bartolini et al. [3], and Lombardi et al. [24] train neural
networks or decision trees to recognize a solution to a problem and then embed
the trained neural network or the trained decision trees into a global constraint.

Campigotto et al. [18] and Kolb [22] study the acquisition of the utility
function of the optimization model.

Suraweera et al. [31] propose a system that learns parameters for template
constraints previously defined from historical schedules. The quality of a para-
meter set is the distance to the real set of parameters that created the examples.
They choose the parameters with the highest quality.

2.3 Learning Parameters of a Global Constraint

Picard-Cantin et al. [29] consider a global constraint C(X,a) whose scope X
is known and want to learn its parameters a from a small set of examples
E = {e1, . . . ,eq}. Each parameter ai must take a value from a predefined set of
values called domain denoted dom(ai). They list all combinations of parameters
satisfied by the examples and choose the combination with the lowest proba-
bility of being satisfied, since it has the highest chance of being imposed by a
mathematical model. Let GC(a) be the probability that a random assignment
X satisfies C(X,a). The goal is to solve the following optimization problem.

min
a

GC(a)

s.t.
∧

e∈E C(e,a)
ai ∈ dom(ai)

516 É. Picard-Cantin et al.

The method assumes that the domains of Xi ∈ X are identical. Let pv =
P [Xi = v], the probability of assigning the value v to any variable. Recall that
SC(a) is the solution set for C with parameters a. Therefore, P [e] =

∏n
i=1 pei

and GC(a) is the sum of the probabilities of each solution.

GC(a) =
∑

e∈SC(a)

P [e] =
∑

e∈SC(a)

n∏

i=1

pei
(1)

Picard-Cantin et al. encode the constraints using an automaton that they
transform into a Markov chain by adding on each transition the probability of
reading the associated value. The Markov chain efficiently computes the proba-
bility GC(a). To solve the optimization problem, they iterate over all combina-
tions of parameters a while avoiding dominated parameters.

With this method, Picard-Cantin et al. [29] learn the parameters of global
constraints that can be encoded as Regular, such as Sequence and Among.
The drawback is that listing all combinations of parameters for a global con-
straint quickly becomes infeasible, specifically when a parameter is a set. For
example, there are n2

2

∑k
i=1

(
k
i

)
combinations of parameters for SubsetFo-

cus([X1, . . . , Xn], l,m, [z1, . . . , zk]). In this case, having a clever way to explore
those combinations becomes crucial.

3 Methodology

We present a more refined approach to explore the space of parameters. We also
show how to compute GC(a) for the constraints described in Sect. 2.1.

We propose a general branch-and-bound to explore the values that can be
given to the parameters. The objective of the algorithm is to find the parame-
ter values minimizing the probability function G for a given global constraint.
Therefore, the bounding algorithm needs to compute a lower bound on G.

The branch-and-bound is presented in Algorithm1 and it requires two
sub-algorithms specific to the global constraint for which we wish to learn
the parameters. The first, FilterParametersC([dom′(a1), . . . ,dom′(am)], E),
filters the domains of the parameters using the given examples. The sec-
ond, ComputeLowerBoundC([dom′(a1), . . . ,dom′(am)]), computes an opti-
mist lower bound on the probability function G. Those two are called at each
node of the search tree.

3.1 Monotonicity

We also identify a situation where a subset of parameters can be fixed to their
extreme values for the computation of the lower bound on G, simplifying bound
computation. These parameters are such that the probability function G is
monotonic w.r.t. those parameters (see Sect. 3.1).

Let F : Dn → R be a multivariate function. F is said to be monotonic w.r.t.
ai if and only if Fi(x,a) = F (a1, . . . , ai−1, x, ai+1 . . . , am) is monotonic.

Learning the Parameters of Global Constraints Using Branch-and-Bound 517

Algorithm 1. BranchAndBound(C, [dom(a1), . . . ,dom(am)], E)
1 S ← {〈0, [dom(a1), . . . , dom(am)]〉}
2 BestSolution ← null
3 BestBound ← ∞
4 while min{lb | 〈lb, [dom(a1), . . . , dom(am)]〉 ∈ S} < BestBound do
5 〈lb, [dom(a1), . . . , dom(am)]〉 ← arg min

〈lb,[dom(a1),...,dom(am)]〉∈S

lb

6 Remove 〈lb, [dom(a1), . . . , dom(am)]〉 from S
7 if | dom(ai)| = 1 ∀i ∈ {1, . . . ,m} then
8 BestSolution ← [dom(a1), . . . , dom(am)]
9 BestBound ← lb

10 else
11 Choose ai such that | dom(ai)| > 1
12 for v ∈ dom(ai) do
13 for j ∈ {1, . . . ,m}\{i} do
14 dom′(aj) = dom(aj)

15 dom′(ai) = {v}
16 FilterParametersC([dom′(a1), . . . , dom′(am)], E)
17 lb′ ← ComputeLowerBoundC([dom′(a1), . . . , dom′(am)])
18 S ← S ∪ {〈lb′, [dom′(a1), . . . , dom′(am)]〉}

19 return BestSolution,BestBound

Theorem 1. A global constraint C(X,a) has a monotonic probability function
GC(a) w.r.t. ai if either

x ≤ y ⇒ SCi(x,a) ⊆ SCi(y,a), ∀x, y ∈ dom(ai)

or

x ≤ y ⇒ SCi
(y,a) ⊆ SCi

(x,a), ∀x, y ∈ dom(ai).

Proof. Suppose that for all x, y ∈ dom(ai), x ≤ y implies SCi(x,a) ⊆ SCi(y,a).
Then, for all x, y ∈ dom(ai) such that x ≤ y.

GC(a1, . . . , ai−1, y, ai+1, am)

=
∑

e∈SCi
(y,a)

P [e]

=
∑

e∈SCi
(x,a)

P [e] +
∑

e∈SCi
(y,a)\SCi

(x,a)

P [e]

≥GC(a1, . . . , ai−1, x, ai+1, am)

A similar argument holds when x ≤ y ⇒ SCi
(y,a) ⊆ SCi

(x,a),∀x, y ∈
dom(ai). �

518 É. Picard-Cantin et al.

If GC(a) is monotonic w.r.t ai for all i ∈ {1 . . . ,m}, then we can easily
compute the lower bound on GC(a) at each node of the branch-and-bound.
We only need to fix the parameters to their extreme values. To ensure that
the examples satisfy the constraint, we apply filtering techniques to prune the
domains of the parameters. Note that the parameter n is always known in our
case.

Corollary 1. GSubsetFocus(n, l,m,z) is monotonic w.r.t l and m, but not z.

Proof. For all l1 ≤ l2, we have j − i + 1 ≤ l1 ≤ l2 for all sij ∈ S, therefore
SSubsetFocus(n,X, l1,m,z) ⊆ SSubsetFocus(n,X, l2,m,z). For all m1 ≤ m2,
we have |S| ≤ m1 ≤ m2, so SSubsetFocus(n,X, l,m1,z) ⊆ SSubsetFocus(n,X,
l,m2,z). By Theorem 1, GSF(n, l,m,z) is monotonic w.r.t parameters l and m.

Let p1 = 0.73, p2 = 0.23, and n = 3. We have GSubsetFocus(3, 3, 1, [1, 1]) =
1.0, GSubsetFocus(3, 3, 1, [1, 0]) ≈ 0.8561, GSubsetFocus(3, 3, 1, [0, 1]) ≈ 0.9468,
and GSubsetFocus(3, 3, 1, [0, 0]) = 1.0. Therefore, GSubsetFocus(n, l,m,z) is not
monotonic w.r.t. any zi. �
Corollary 2. GAmong(n, l, u,z) is monotonic w.r.t. l and u, but not z.

Proof. For all l1, l2 such that 0 ≤ l1 ≤ l2 ≤ u, if
∑

v∈z occv ≥ l2 then we have∑
v∈z occv ≥ l1. Therefore, SAmong(n,X, l2, u,z) ⊆ SAmong(n,X, l1, u,z). For

all u1, u2 such that u1 ≤ u2 ≤ n, if
∑

v∈z occv ≤ u1 then we have
∑

v∈z occv ≤
u2. Meaning that SAmong(n,X, l, u1,z) ⊆ SAmong(n,X, l, u2,z). Therefore, by
Theorem 1 GAmong(n, l, u,z) is monotonic w.r.t. l and u.

Let p1 = 0.73, p2 = 0.23, and n = 3. We have GAmong(3, 2, 2, [1, 0]) ≈
0.2878, GAmong(3, 2, 2, [1, 1]) = 0.0, GAmong(3, 3, 3, [1, 1]) = 1.0 and
GAmong(3, 3, 3, [1, 0]) ≈ 0.389. Therefore, GAmong(n, l, u,z) is not monotonic
w.r.t. any zi. �
Corollary 3. GSeq(n, l = 0, u, w,z) is monotonic w.r.t. u and w, but not z.

Proof. For all 0 ≤ u1, u2 s.t. u1 ≤ u2 ≤ n, if
∑

v∈z occv ≤ u1 then
∑

v∈z occv ≤
u2 and SSeq(n,X, 0, u1, w,z) ⊆ SSeq(n,X, 0, u2, w,z). If

∑
v∈z occv ≤ u for

all subsequences of length w2 and if w1 ≤ w2, then
∑

v∈z occv ≤ u for all
subsequences of length w1 and SSeq(n,X, 0, u, w2,z) ⊆ SSeq(n,X, 0, u, w1,z).
Therefore, by Theorem1 GSeq(n, 0, u, w,z) is monotonic w.r.t. u and w. By
Corollary 2, GSeq(n, 0, u, w,z) is not monotonic w.r.t. z when n = w = 3. �
Corollary 4. GSeq(n, l, u = n,w,z) is monotonic w.r.t. l and w, but not z.

Proof. For all l1, l2 such that 0 ≤ l1 ≤ l2 ≤ n, if
∑

v∈z occv ≥ l2 for all
subsequences of length w then

∑
v∈z occv ≥ l1 and SSeq(n,X, l2, u, w,z) ⊆

SSeq(n,X, l1, u, w,z). If w1 ≤ w2 and if
∑

v∈z occv ≥ l for all subsequences of
length w1, then we have

∑
v∈z occv ≥ l for all subsequences of length w2 and

SSeq(n,X, l, u, w1,z) ⊆ SSeq(n,X, l, u, w2,z). Therefore, GSeq(n, l = 0, u, w,z)
is monotonic w.r.t. u and w by Theorem 1. GSeq(n, l, u = n,w,z) is not
monotonic w.r.t. z by Corollary 2 using n = w = 3. �

Learning the Parameters of Global Constraints Using Branch-and-Bound 519

Corollary 5. GGCC(n, l,u) is monotonic w.r.t. each li and each ui.

Proof. For any v ∈ {1, . . . , m}, if lv ≤ l′v and uv ≤ u′
v, then lv ≤ l′v ≤ occv ≤

uv ≤ u′
v1. Therefore, SGCC(n, l,u) ⊆ SGCC(n, [l1, . . . , lv−1, l

′
v, lv+1, . . . , lm],u)

and SGCC(n, l,u) ⊆ SGCC(n, l, [u1, . . . uv−1, u
′
v, uv+1, . . . um]). �

Corollary 6. Both GAtMostNValue(n, k) and GAtLeastNValue(n, k) are
monotonic w.r.t. k.

Proof. Solutions with at most k values form a subset of the solutions with at
most k + 1 values. A symmetric argument holds for AtLeastNValue. �
Corollary 7. Both GAtMostBalance(n, b) and GAtMostBalance*(n, b) are
monotonic w.r.t. b.

Proof. Solutions with a balance no greater than b form a subset of solutions with
a balance no greater than b + 1, regardless of how the balance is computed. �

The previous theorem and corollaries are used in the computation of the
bound on G in the branch-and-bound algorithm. These results show that we can
temporarily fix the monotonic parameters to their extreme values to compute
an optimist bound.

3.2 Bounding and Filtering Specific Constraints

We show how to implement the functions FilterParametersC and
ComputeLowerBoundC for the constraints Among, Sequence, Subset-

Focus, GCC, AtMostNValue, AtLeastNValue, AtMostBalance, and
AtMostBalance*.

SubsetFocus. We define the function ComputeLowerBoundSubsetFocus that
computes a lower bound on the probability GSubsetFocus(n, l,m,z). To take into
consideration the other parameters, we consider the probability p that a variable
Xi is assigned to a value v such that zv = 1. During the branch-and-bound, the
set z is only partially defined depending on which parameter zv is assigned.
However, this partial assignment allows bounding of the probability p as follows.
The summations apply on instantiated parameters.

α :=
∑

v:zv=1

pv, β := 1 −
∑

v:zv=0

pv, α ≤ p ≤ β

A solution e can be mapped to a binary vector y such that yi = 1 ⇐⇒
ei = v ∧ zv = 1. The satisfiability of the constraint can be tested simply by
checking the number and the length of the stretches of ones in the vector y. Let
γ(e) = |{i | ei = v ∧ zv = 1}| =

∑n
i=1 yi be the number of variables assigned

to a value in the considered set for a given solution e. Let A(n, l,m, k) be the
number of vectors y of size n with exactly k components set to 1 that satisfies

520 É. Picard-Cantin et al.

the constraint with parameters l and m. The probability GSubsetFocus(n, l,m,z)
can be computed as follows.

GSF(n, l,m,z) =
∑

e∈SSF(a)

P [e] =
∑

e∈SSF(a)

pγ(e)(1 − p)n−γ(e) (2)

=
n∑

k=0

A(n, l,m, k)pk(1 − p)n−k. (3)

Therefore, the probability GSubsetFocus(n, l,m,z) can be bounded with

GSF(n, l,m,z) ≥
n∑

k=0

A(n, l,m, k) min
α≤p≤β

pk(1 − p)n−k.

Differentiating xk(1 − x)n−k yields the optima k/n, 0, 1. Since 0 ≤ α ≤ β ≤ 1
and since k/n is a maximum, the bound used in the branching algorithm is

n∑

k=0

A(n, l,m, k) min
p∈{α,β}

pk(1 − p)n−k. (4)

We now have to show how to compute the function A(n, l,m, k). Let D(l, k,m)
be the number of ways to split a sequence of length k into exactly m subsequences
of length at most l. The function D(l, k,m) can be recursively computed.

D(l, k,m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if k = m = 0
0 if m = 0 ∧ k > 0
0 if m > 0 ∧ k = 0
min(k,l)∑

j=1

D(l, k − j,m − 1) otherwise

To count the number of feasible binary vectors y, we count how many ways
we can segment a sequence of k 1s into exactly i sequences using the function
D(l, k, i). We insert i − 1 zeros, one between each segment. There exist

(
n−k+1

i

)

ways to insert the remaining n − k − (i − 1) zeros before or after the segments
to obtain a vector of length n. Finally, we let the number of segments i vary
between 1 and m.

A(n, l,m, k) =
m∑

i=1

D(l, k, i)
(

n − k + 1
i

)

.

Since GSF(n, l,m,z) is monotonic w.r.t. m and l by Corollary 1, the function
ComputeLowerBoundSubsetFocus returns the bound (4) by setting l and m to
their smallest value in their domains.

During the branch-and-bound, we apply a minimal filtering to the domains
of parameters l and m. Here is how we define FilterParametersSubsetFocus.
We suppose that all uninstantiated variables zi could be instantiated to zero. In
that situation, we compute the length of the largest stretch in an example e ∈ E

Learning the Parameters of Global Constraints Using Branch-and-Bound 521

and set this length as a lower bound on dom(l). To compute a lower bound on
dom(m), for each example e ∈ E, we create a binary vector y by setting yi = zei

if zei
is instantiated. When zei

is uninstantiated, we greedily assign a value to yi

to minimize the number of stretches in y. We set min(dom(m)) to the maximum
number of stretches observed in one example. The parameters z are not filtered.

Lemma 1. The bound on GSubsetFocus(n, l,m,z) from (4) is tight when vari-
ables are instantiated.

Proof. Since z are fixed, then
∑

v:zv=1 pv = α = β = p. Therefore, (4) is equal
to (3) and the bound is tight. �

Sequence. Consider the Sequence constraint whose parameter l is known
to be 0. We therefore need to learn parameters u, w, and z. The probability
GSeq(n, u,w,z) can be bounded in a similar way as we did for SubsetFocus.
Let B(n, u,w, k) be the number of binary vectors y of length n such that exactly
k components are set to one and the sum of any subsequence of w components
is at most u. Therefore, the function ComputeLowerBoundSequence returns
the following lower bound on GSeq(n, u,w,z).

GSeq(n, u,w,z) =
n∑

k=0

B(n, u,w, k)pk(1 − p)n−k (5)

≥
n∑

k=0

B(n, u,w, k) min
p∈{α,β}

pk(1 − p)n−k (6)

Since GSeq(n, u,w,z) is monotonic w.r.t. u and w by Corollary 3, we com-
pute B(n, u,w, k) with u fixed to its minimal value and w fixed to its maximal
value. We use dynamic programming to compute the function B(n, u,w, k). Let
F (n, u,w, k, [s1, . . . , sw]) be the number of feasible binary vectors y of length
n with exactly k components set to one and whose last w components are
[s1, . . . , sw].

F (n, u, k, [s1, . . . , sw]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if
∑n

i=1 si > min(u, k)
0 if n − w +

∑n
i=1 si < k

1 if n = w
F (n − 1, u, k − sw, [0, s1, . . . , sw−1])
+F (n − 1, u, k − sw, [1, s1, . . . , sw−1]) otherwise

B(n, u,w, k) = F (n + w, u, k, [0, . . . , 0
︸ ︷︷ ︸
w times

])

The two first cases in function F occur when there are too many or two few
ones in the sequence [s1, . . . , sw] to be extended to a feasible sequence of length
n. The third case occurs when n = w and [s1, . . . , sw] is a feasible solution.
The last case computes the number of solutions with one fewer component. The
function B(n, u,w, k) gives the number of sequences of length n + w whose last
w components are null.

522 É. Picard-Cantin et al.

We define FilterParametersSequence. Once the parameter w is instanti-
ated, the parameter u can be filtered. For every solution e ∈ E and for every
subsequence of length w in e, we count the number of variables that must belong
to z. The largest encountered value gives a lower bound on u.

Lemma 2. The bound on GSeq(n, u,w,z) from (6) is tight when variables are
instantiated.

Proof. Since z are fixed, then
∑

v:zv=1 pv = α = β = p. Therefore, (6) is equal
to (5) and the bound is tight. �

Among. The probability that a random assignment has exactly k variables
assigned to a value v such that zv = 1 follows a binomial distribution. The
probability to satisfy the constraint Among with parameters l, u, and z is
therefore

GAmong(n, l, u,z) =
u∑

k=l

(
n

k

)

pk(1 − p)n−k (7)

As we did for SubsetFocus, the function ComputeLowerBoundAmong

returns the following lower bound.

GAmong(n, l, u,z) ≥
u∑

k=l

(
n

k

)

min
p∈{α,β}

pk(1 − p)n−k (8)

By Corollary 2, we can simply fix u to its minimal value and l to its maximal
value for the bound computation.

During the search, one can filter the parameters l and u using the function
FilterParametersAmong. Let M = {v | zv = 1} be the set of values that are
considered and C = {v | zv = 1 ∨ zv is uninstantiated} be the set of values that
might be considered. One can set the lower bound of dom(l) to mine∈E |{i | ei ∈
M}| and the upper bound of dom(u) to maxe∈E |{i | ei ∈ C}|.
Lemma 3. The bound on GAmong(n, l, u,z) from (8) is tight when variables are
instantiated.

Proof. Since z are fixed, then
∑

v:zv=1 pv = α = β = p. Therefore, 8 is equal to
7 and the bound is tight. �

Other Constraints. Unlike with SubsetFocus, Sequence, and Among,
the parameters for GCC, AtMostNValue, AtLeastNValue, AtMostBal-

ance, and AtMostBalance* are all monotonic and independent. This means
that the branch-and-bound finds the optimal solution for these last constraints
without backtracking. For the GCC for example, the optimal choice is always
min(dom(li)) when branching on a li parameter and max(dom(ui)) when branch-
ing on a ui parameter by Corollary 5. The algorithm finds the optimal solution
on the first try with the help of the filtering algorithm for the parameters.

Learning the Parameters of Global Constraints Using Branch-and-Bound 523

4 Experiments

We test our branch-and-bound algorithm on two different benchmarks, one for
SubsetFocus and one for Sequence, both solved on an Intel Core i7 3.40 GHz
with 4 Gb of RAM running Linux. All the code was written in Python, except
for the brute force algorithm that learns the parameters of Sequence, for which
Picard-Cantin et al. [29] provided their code written in R.

Since Among is a specific case of Sequence, we do not experiment on this
constraint. Furthermore, we do not need to experiment on GCC, AtMost-

NValue, AtLeastNValue, AtMostBalance or AtMostBalance* since
the solution is found without backtracks.

Random timetables were generated for the benchmark. A sequence is the
schedule of an employee where each component of the sequence corresponds to a
task for a given time slot. The task 0 is a special task that corresponds to a day
off. This value is known not to belong to the considered set and therefore z0 = 0
for both experiments: the one with SubsetFocus and the one with Sequence.

Note that the generated example have no particular structure as they are cho-
sen uniformly among solutions that satisfy either SubsetFocus or Sequence

with the given parameters and therefore they have maximal entropy. The exam-
ples are not real, but they are possibly not tight, meaning that they satisfy
constraints stricter than the one imposed.

4.1 SubsetFocus

The benchmark for SubsetFocus is composed of 600 randomly generated
instances. An instance is composed of a set of d + 1 values {0, . . . , d}, a vec-
tor of assignment probability for the values p = [p0, . . . , pd] (pv = P [Xi = v]),
a horizon n, and the set of parameters (l,m,z). We generated instances with
d ∈ {10, 30}, l ∈ {1, . . . , 10}, m ∈ {1, . . . , 10}, and n ∈ {100, 200, 300}. The vec-
tor p is generated such that

∑
v pv = 1 and

∑
v:zv=1 pv ∈ {0.2, 0.8}. Finally, for

each instance defined by (d,z,p, l,m, n), we generate ten (10) solutions that sat-
isfy SubsetFocus with parameters l,m,z and whose task occurrences are pro-
portional to their probabilities p. The learning algorithms are given {0, . . . , d},
p, n, and a subset of the ten solutions (according to the experiment). Their goal
is to learn the parameters (l,m,z) that generated the solutions.

We compare the branch-and-bound algorithm described earlier with a brute
force algorithm that lists all possible sets z (with z0 = 0), that computes lower
bounds on l and m from examples, that uses the monotonicity to fix l and m
to their minimums, and that finally computes the probability of each resulting
combination of parameters for SubsetFocus. This later technique is equivalent
to the one proposed by Picard-Cantin et al. [29].

Figure 1 shows the resolution time to learn the parameters of SubsetFo-

cus from a single solution. The branch-and-bound dominates the brute force by
solving every instance in fewer than 73 s while the brute force sometimes reaches
the 6-min timeout. Figure 2 compares the number of times that the probabil-
ity of the constraint for given parameters is computed using (3). That is once

524 É. Picard-Cantin et al.

per node for the branch-and-bound and once per parameter combination for
the brute force. Once again, the branch-and-bound dominates the brute force.
Figure 3 shows how many times, in percentages, the algorithms correctly pre-
dict the parameters given the number of examples that are provided. Since both
algorithms return the same parameters when they solve an instance under the
time limit, we only consider the branch-and-bound algorithm for this analysis.
The low success rates are not alarming since the initial constraints were overly
permissive in many cases. Therefore, the examples produced tend to satisfy more
restrictive constraints that the algorithms detect.

●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●

●●●●●●
●●
●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●
●●●
●

●●
●●

●
●

●●
●

●

●●●
●

●

●

●
●●

●

●
●

●
●●
●

●●●
●
●
●
●●
●
●
●
●

●

●

●

●
●●●
●
●●●

●●●●
●●●
●
●●
●●
●

●

●

●●
●
●

● ●●●●●
●
●●●●

●

●●
●

●
●

●

●
●
●
●●

●●●
●

●
●

●

●
●

●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●

0

100

200

300

0 100 200 300
Time for BnB (seconds)

Ti
m

e
fo

r
B

F
(s

ec
on

ds
)

Fig. 1. Resolution
time (log scale) for
SubsetFocus

●●

●●
●
●

●

●●
●

●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●●

●

●●

●

●

●

●●
●

●

●●●

●

●●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

● ●●

●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●
●
●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●
●●●●●●●●
●●
●●●●●●
●●●●●●●●●●
●●
●●

●●0 k

50 k

100 k

150 k

200 k

250 k

0 k 50 k 100 k 150 k 200 k 250 k
Probability computation for BnB

Pr
ob

ab
ili

ty
 c

om
pu

ta
tio

n
fo

r
B

F

Fig. 2. Number of prob-
ability computations for
SubsetFocus

0%

10%

20%

30%

40%

1 2 3 4 10
Number of examples

Fig. 3. Percentage of cor-
rectly learned instances
for SubsetFocus

More details are given in Table 1 on the prediction quality of the learning
algorithm according to the number of examples considered. For this comparison,
we keep the three best predictions for each instance, meaning we keep the three
sets of parameters for SubsetFocus satisfying the examples and with the low-
est probability GSubsetFocus. The rank of an instance is the place of the initial
constraint in the prediction list. If the initial constraint was not in the best three
sets of parameters returned by the algorithm, then we consider the rank to be ∞.

Table 1. Results for SubsetFocus. Number of instances for which the initial con-
straint was ranked first, second, third or was not found.

Num. of examples Rank of initial constraint Num. of instances

1 2 3 ∞
1 8 46 1 545 600

2 42 119 0 439 600

3 78 148 0 374 600

4 105 172 0 323 600

5 139 170 0 291 600

10 261 117 0 222 600

Learning the Parameters of Global Constraints Using Branch-and-Bound 525

The results of the first column are represented in Fig. 3. From these results, we
can say that if the learning algorithm has to give a short list of candidates from
which the user would choose to add to the mathematical model, it would return
the correct constraint in the first two choices 63% of the time, considering ten
(10) examples. Moreover, the correct constraint seldom takes the third position.

4.2 Sequence

The benchmark for Sequence is composed of 84 randomly generated instances.
An instance is composed of a set of values {0, . . . , d}, a vector of assignment
probability for the values p = [p0, . . . , pd] (pv = P [Xi = v]), a horizon n, and
the set of parameters (u,w,z). We fix l = 0 for all instances.

We generated instances with d ∈ {10, 30}, w ∈ {5, 6, 7}, u ∈ {1 + 3k |
1+3k ≤ w∧k ∈ N}, and n ∈ {100, 200, 300}. The vectors z and p are generated
such that

∑
v pv = 1 and

∑
v:zv=1 pv ∈ {0.2, 0.8}. Finally, for each instance

defined by (d,z, p, u, w, n), we generate ten (10) solutions that satisfy Sequence

with parameters u,w,z and whose task occurrences are proportional to their
probabilities p.

Figure 4 shows the computation times. We can separate the instances into
two subsets according to the number of values d ∈ {10, 30}. When the number
of values is small, the brute force algorithm is faster because it does not have
to keep track of partial problems like the branch-and-bound does. When the
number of values is large, the brute force algorithm has too many combinations
to test and the branch-and-bound is faster. Therefore, the branch-and-bound
algorithm for Sequence is more useful when the problem to solve is large.
Figure 5 explains why the branch-and-bound is faster on larger instances as it
shows that the number of probability computations is smaller for the branch-
and-bound algorithm. Figure 6 shows how many times the algorithms correctly
predict the parameters given the number of examples that are provided. As for
SubsetFocus, we give more information about the prediction quality of the
algorithm in Table 2. For Sequence, we observe that the correct constraint is
returned by the learning algorithm among the first two choices 59.5% of the time
when we consider ten examples.

●●●●●●●
●●●●●●● ● ●●●●● ●●

●
●

●●●●
●

●
●● ●●●

●
●

●● ●●●

0

100

200

300

0 100 200 300
Time for BnB (seconds)

Ti
m

e
fo

r
B

F
(s

ec
on

ds
)

Number
of Tasks

● 10

30

Fig. 4. Resolution
time (log scale) for
Sequence

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Probability computation for BnB

Pr
ob

ab
ili

ty
 c

om
pu

ta
tio

n
fo

r
B

F

Number
of Tasks

10

30

Fig. 5. Number of prob-
ability computations for
Sequence

0%

20%

40%

1 2 3 10
Number of examples

Fig. 6. Percentage of cor-
rectly learned instances
for Sequence

526 É. Picard-Cantin et al.

Table 2. Results for Sequence. Number of instances for which the initial constraint
was ranked first, second, third or was not found.

Num. of examples Rank of initial constraint Num. of instances

1 2 3 ∞
1 19 7 0 58 84

2 29 7 0 48 84

3 32 8 0 44 84

10 48 2 0 34 84

4.3 Discussion

The proposed branch-and-bound is more efficient than the state-of-the-art algo-
rithms and it can be applied to multiple global constraints. We explained how
to compute a lower bound on GC for eight global constraints.

A drawback of the technique is that it does not detect overly permissive
constraints with either algorithm, the branch-and-bound or the brute force. This
is due to the fact that a permissive constraint has a lot of solutions and those
solutions might satisfy more restrictive constraints. To avoid overfitting and
therefore learning constraints that are too restrictive, one needs to increase the
number of examples. In our experiments, we obtained satisfying results with only
ten examples. We didn’t test overly permissive constraints as we are certain not
to find them as the most probable constraints and probably not even in the
top 3. Having prediction errors on permissive constraints is not as important as
missing tight constraints since the former have a smaller impact on the solutions.

5 Conclusion

We showed how a branch-and-bound can be used to learn the parameters of
global constraints from positive examples. We showed how the monotonicity can
be exploited to obtain tight bounds on the probability that a random assignment
satisfies a constraint. Some constraints have for parameter a set of values z. The
set is used to limit the number of occurrences of its values. This parameter is not
monotonic. Nevertheless, we presented a technique to bound the probability by
counting the number of solutions that satisfy the constraint with a fixed number
of values belonging to a set. Experiments show that the new technique is more
time efficient than the state of the art algorithms, based on benchmarks inspired
from timetabling problems.

References

1. Arcangioli, R., Lazaar, N.: Multiple constraint acquisition. In: Proceedings of
the 2015 International Conference on Constraints and Preferences for Configu-
ration and Recommendation and Intelligent Techniques for Web Personalization,
CPCR+ITWP 2015, vol. 1440, pp. 16–20. CEUR-WS.org (2015)

Learning the Parameters of Global Constraints Using Branch-and-Bound 527

2. Barták, R., Čepek, O., Surynek, P.: Discovering implied constraints in precedence
graphs with alternatives. Ann. Oper. Res. 180(1), 233–263 (2010)

3. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 11

4. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Model. 20(12), 97–123 (1994)

5. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40627-0 54

6. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 4

7. Beldiceanu, N., Simonis, H.: Using the global constraint seeker for learning struc-
tured constraint models: a first attempt. In: The 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011), Perugia, Italy, pp. 20–34
(2011)

8. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7 13

9. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints 12(1), 21–62 (2007)

10. Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Mechqrane, Y., Bouyakhf, E.H.:
Boosting constraint acquisition via generalization queries. In: ECAI, pp. 99–104
(2014)

11. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Principles and Practice
of Constraint Programming-CP 2004, pp. 123–137 (2004)

12. Bessiere, C., Coletta, R., Petit, T.: Acquiring parameters of implied global con-
straints. In: Principles and Practice of Constraint Programming-CP 2005, pp. 747–
751 (2005)

13. Bessiere, C., Coletta, R., Petit, T.: Learning implied global constraints. In: IJCAI,
pp. 44–49 (2007)

14. Bessiere, C., et al.: New approaches to constraint acquisition. In: Bessiere, C., De
Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Min-
ing and Constraint Programming. LNCS, vol. 10101, pp. 51–76. Springer, Cham
(2016). doi:10.1007/978-3-319-50137-6 3

15. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. (2015, in press)

16. Bessiere, C., Hebrard, E., Katsirelos, G., Kiziltan, Z., Picard-Cantin, É., Quim-
per, C.-G., Walsh, T.: The balance constraint family. In: O’Sullivan, B. (ed.)
CP 2014. LNCS, vol. 8656, pp. 174–189. Springer, Cham (2014). doi:10.1007/
978-3-319-10428-7 15

17. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random
forests in constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol.
9075, pp. 74–90. Springer, Cham (2015). doi:10.1007/978-3-319-18008-3 6

18. Campigotto, P., Passerini, A., Battiti, R.: Active learning of combinatorial features
for interactive optimization. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683,
pp. 336–350. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 25

http://dx.doi.org/10.1007/978-3-642-23786-7_11
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-642-40627-0_54
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-642-33558-7_13
http://dx.doi.org/10.1007/978-3-319-50137-6_3
http://dx.doi.org/10.1007/978-3-319-10428-7_15
http://dx.doi.org/10.1007/978-3-319-10428-7_15
http://dx.doi.org/10.1007/978-3-319-18008-3_6
http://dx.doi.org/10.1007/978-3-642-25566-3_25

528 É. Picard-Cantin et al.

19. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
ECAI 141, 73–77 (2006)

20. Daoudi, A., Lazaar, N., Mechqrane, Y., Bessiere, C., Bouyakhf, E.H.: Detecting
types of variables for generalization in constraint acquisition. In: 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 413–
420. IEEE (2015)

21. Kiziltan, Z., Lippi, M., Torroni, P.: Constraint detection in natural language prob-
lem descriptions. In: Proceedings of the Twenty-fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, USA, 9–15 July 2016

22. Kolb, S.: Learning constraints and optimization criteria. In: Proceedings of the
First Workshop on Declarative Learning Based Programming (2016)

23. Little, J., Gebruers, C., Bridge, D., Freuder, E.C.: Using case-based reasoning to
write constraint programs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 983.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8 107

24. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif.
Intell. 244, 343–367 (2017). Elsevier

25. Lopez, M., Lallouet, A.: On learning CSP specifications. In: The 15th Interna-
tional Conference on Principles and Practice of Constraint Programming Doctoral
Program Proceedings, p. 70 (2009)

26. Pachet, F., Roy, P.: Automatic generation of music programs. In: International
Conference on Principles and Practice of Constraint Programming, pp. 331–345
(1999)

27. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012)

28. Petit, T.: Focus: a constraint for concentrating high costs. In: Milano, M.
(ed.) CP 2012. LNCS, pp. 577–592. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33558-7 42

29. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning para-
meters for the sequence constraint from solutions. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 405–420. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1 26

30. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 13th National Conference on Artificial Intelligence, AAAI 1996,
vol. 1, pp. 209–215. AAAI Press (1996)

31. Suraweera, P., Webb, G.I., Evans, I., Wallace, M.: Learning crew scheduling con-
straints from historical schedules. Transp. Res. Part C: Emerg. Technol. 26, 214–
232 (2013)

http://dx.doi.org/10.1007/978-3-540-45193-8_107
http://dx.doi.org/10.1007/978-3-642-33558-7_42
http://dx.doi.org/10.1007/978-3-642-33558-7_42
http://dx.doi.org/10.1007/978-3-319-44953-1_26
http://dx.doi.org/10.1007/978-3-319-44953-1_26

CoverSize: A Global Constraint
for Frequency-Based Itemset Mining

Pierre Schaus1(B), John O.R. Aoga1,2 , and Tias Guns3,4

1 UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium
{pierre.schaus,john.aoga}@uclouvain.be

2 UAC, ED-SDI, Abomey-Calavi, Benin
3 VUB Brussels, Brussels, Belgium

tias.guns@vub.be
4 KU Leuven, Leuven, Belgium
tias.guns@cs.kuleuven.be

Abstract. Constraint Programming is becoming competitive for solving
certain data-mining problems largely due to the development of global
constraints. We introduce the CoverSize constraint for itemset mining
problems, a global constraint for counting and constraining the number
of transactions covered by the itemset decision variables. We show the
relation of this constraint to the well-known table constraint, and our
filtering algorithm internally uses the reversible sparse bitset data struc-
ture recently proposed for filtering table. Furthermore, we expose the size
of the cover as a variable, which opens up new modelling perspectives
compared to an existing global constraint for (closed) frequent itemset
mining. For example, one can constrain minimum frequency or compare
the frequency of an itemset in different datasets as is done in discrimi-
native itemset mining. We demonstrate experimentally on the frequent,
closed and discriminative itemset mining problems that the CoverSize
constraint with reversible sparse bitsets allows to outperform other CP
approaches.

1 Introduction

Frequent itemset mining (FIM) is one of the well-known and most studied data
mining problems [8] and first introduced in [2]. Guns et al. [19] showed that
FIM problems could be modelled and solved using Constraint Programming
(CP) with the additional benefit that new constraints can easily be integrated
into the models. Since then several CP (also SAT) approaches have been pro-
posed for other data-mining problems such as frequent sequence mining [22,29],
dominance-based pattern mining [28] and closed FIM [20,21,24].

The flexibility of adding constraints when using a generic CP solver typically
comes at the cost of efficiency; a well-known tradeoff. We can hence look at item-
set mining papers in terms of where they are on the efficiency versus generality
scale. Most works in itemset mining focus primarily on efficiency [8,39], while
typical constraint-based mining papers hard-code a select number of constraints

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 529–546, 2017.
DOI: 10.1007/978-3-319-66158-2 34

http://orcid.org/0000-0002-7213-146X

530 P. Schaus et al.

based on properties like (anti-)monotonicity [32]. Earlier papers on using CP for
itemset mining focus mostly on generality and decompose the itemset mining
constraints into many (reified) linear constraints [19] at the cost of efficiency. In
line with recent works in CP for sequence mining [3,4,22], Lazaar et al. [24] have
shown that a single global constraint for closed frequent itemset mining can out-
perform a decomposition approach. This comes at significant cost for generality
though, because (1) by encapsulating all but the itemset variables, only syntactic
constraints on the items can be added; (2) only closed frequent patterns can be
found and adding syntactic constraints can have unwanted side-effects [6].

In this paper, we aim to maximize both generality and efficiency while
employing a global constraint for itemset mining. We achieve this by introducing
the CoverSize global constraint, which (1) computes a lower and upper-bound on
the frequency and synchronizes this with a decision variable, meaning that the
frequency can be used in other separate constraints; (2) internally, the filtering
algorithm uses the reversible sparse bitset data structure which was introduced
to efficiently filter table constraints [14]. This CoverSize constraint can be com-
bined with a CoverClosure constraint to enforce the closed property [24,34] or
with a discriminative optimization constraint (such as χ2) to solve the correlated
itemset mining problem as in [31].

In contrast to most constraints in CP, what is typical about global constraints
for data mining is that they must be able to handle large amounts of data. A
traditional global constraint that shares this property is the table constraint,
which has a rich history in CP literature [5,12,25,35]. Its link with a global
constraint for itemset mining (IM) is even stronger, as both can be seen as
operating on a binary matrix; for IM the columns are items (Boolean variables)
and for table the columns are (variable, value) pairs. The use of bitvectors and
fast bitvector operations is common in itemset mining implementations, indeed,
it was also used for the closed FIM constraint [24]. Related, a column-based
bitvector representation for the table constraint was recently proposed [14], and
the propagator was shown to outperform all other approaches. Inspired by this
relation, we show that the reversible sparse bitset data structure that was devised
for table can also be used to implement efficient itemset mining propagators. Our
scaling experiments on large and sparse data indicate the benefit of this.

Furthermore, our proposed CoverSize global constraint propagates from the
item variables to a variable representing the frequency and back. This means that
the same constraint can be used to enforce a minimum and maximum frequency
of a set in a table/database. We show that domain-consistent filtering is NP-
hard, though good results can be obtained with weaker filtering. We showcase
the added flexibility of such a choice by using it as a building block for modelling
closed frequent itemset problem [24] and correlated itemset mining problem [31].
For closed, we argue for and propose a separate global constraint.

Our contributions are hence as follows: we show how advances in data
structures for table constraints can benefit global constraints for itemset min-
ing too; we propose that global constraints for itemset mining expose the fre-
quency through a variable, and demonstrate how this allows, for example, to

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 531

solve discriminative itemset mining too; and empirically our experiments with
a generic CP solver show that this approach outperforms other CP approaches
and is on par with a special-purpose CP solver, thereby decreasing the gap to
the highly efficient specialized itemset miners.

2 Background

2.1 Itemset Mining

Frequent itemset mining is concerned with finding a set of items that appears
frequently in a database of sets [2]. The database is often called a transaction
database, and each entry in the database is called a transaction (such as a
purchase of products). Itemset mining has applications in market basket analysis,
web log mining, bio-informatics and more [1].

More formally, given a set I of n possible items and a transaction database
of size m: H = {(t, T) | t ∈ {1, . . . , m}, T ⊆ I}. Figure 1a shows an example
database with I = {A,B,C,D}. The goal of the frequent itemset mining problem
is to enumerate all sets I ⊆ I such that |{(t, T) ∈ H | I ⊆ T}| ≥ θ with θ a user-
supplied threshold.

Fig. 1. (a–c) Three equivalent representations of itemset databases, (d) χ2 ZDC func-
tion and (e) Filtering of the ZDC(|D+|, |D−|, p, n, score) constraint. Note: c+ = p,
c− = n, (a) Horizontal sparse - H, (b) Vertical sparse - V (c) Vertical dense - D

The set of transactions that contain the itemset {(t, T) ∈ H | I ⊆ T} is
called the cover. Computing this set efficiently is a core aspect of itemset min-
ing algorithms. Different algorithms have used different representations of the
transaction database. Figure 1(a–c) shows three of them. In a vertical represen-
tation, the intersection is the key operation. Let V(i) be the set of transaction
identifiers of item i, then |{(t, T) ∈ H | I ⊆ T}| = |{

⋂
i∈I V(i)}|. In case of a

vertical dense bitvector representation, efficient bitwise operations can be used
for the intersection, which scales very well in practice.

Many other variations on frequent itemset mining have been investigated.
For example, closed frequent itemset mining adds the additional restriction that
an itemset must not have a superset with the same frequency: �I ′ ⊃ I : {(t, T) ∈
H | I ′ ⊆ T} = {(t, T) ∈ H | I ⊆ T}; and maximal frequent itemset mining

532 P. Schaus et al.

has additional restriction that an itemset must not have any frequent superset:
�I ′ ⊃ I : |{(t, T) ∈ H | I ′ ⊆ T}| ≥ θ [1]. Other constraints on items and
transactions have been investigated as well [32].

In an optimization setting, one can search for the most or least frequent
itemsets (typically under a number of other constraints) or find the most dis-
criminating itemsets. Given two databases H+ and H− (for example, from two
consecutive months), the goal is to find the itemset(s) that best discriminate
between the two; such as an itemset that is very frequent in one and barely
frequent in the other. A range of discriminative measures, also called correla-
tion measures, have been studied [27]. A property that we will exploit later is
that these measures can be computed using just information on the frequency
of the sets plus the total number of transactions of the databases. We can hence
denote these measures by a function f(|H+|, |H−|, p, n) where p, n represents the
frequency of the itemset in the two databases.

Modeling Itemsets. Following [13], we use an array of Boolean decision variables
I = [I1, I2, . . . , In] to represent an itemset X ⊂ I. Each Ii is a binary variable
with domain dom(Ii) = {0, 1} and an item i ∈ X ⇐⇒ Ii = 1. We say that
Ii is unbound if there is more than one value in dom(Ii). Ii is bound to 1 (0)
means the item i is part (not part) of the itemset. Hence, one assignment to I
corresponds to one itemset.

The decomposition formulation of frequent itemset mining [19] introduces an
extra array of Boolean decision variables T = [T1, T2, . . . , Tm], one for each of the
m transactions. A Boolean variable Tt indicates whether the transaction with
identifier t belongs to the cover {(t, S) ∈ H | I ⊆ S}. This is enforced with a
constraint for every transaction as follows: ∀(t, S) ∈ H : Tt = 0 ⇐⇒

∨
i/∈S Ii. In

other words: if an item i is in the itemset and not in the transaction (t, S) then
this transaction is not covered by the itemset and equivalently if a transaction is
not covered none of the items i in the itemset do belong to (t, S). The size of the
cover can then be constrained as follows:

∑
t Tt ≥ θ. This model is not domain

consistent for the frequent itemset mining problem that aims to enumerate all
frequent patterns for a certain θ. As suggested in [13], one can further add the
redundant constraints ∀i : Ii = 1 =⇒ (

∑
(t,S)∈H,i∈S Tt) ≥ θ to achieve domain

consistency for the frequent itemset problem: these constraints enforce that an
item is only supported if adding it to the current itemset will not violate the
frequency constraint.

2.2 Table Constraint and Reversible Sparse Bit-Sets

A table constraint enforces that an array of integer decision variables [V1, . . . , Vn]
corresponds to one of the provided tuples Γ = {(t, τ)}|t ∈ {1, . . . , m}}, where
t is the tuple identifier and each tuple τ = (v1, . . . , vn) consists of n values
corresponding to the n variables: table([V1, . . . , Vn], Γ) ⇐⇒ ∃(t, τ) ∈ Γ : V1 =
τ1∧. . .∧Vn = τn. A key property to maintain is the set of tuples supported by the
current domain: currTable = {(j, τ) ∈ Γ | τ1 ∈ dom(V1) ∧ . . . ∧ τn ∈ dom(Vn)}.
In [14], a reversible sparse bitset was proposed to maintain the set of tuple

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 533

indices during search. In the propagator, a dense vertical representation of Γ
is used: for every variable/value combination (Vi, v), v ∈ dom(Vi), a bitvector
support[Vi, v] = {(j, τ) ∈ Γ | τi = v} is precomputed that stores the tuple
identifiers in which the pair (Vi, v) appears. The indices of currTable and the
consistency of each (Vi, v) is computed using bitwise operations, e.g. (Vi, v) is
supported if support[Vi, v] ∩ currTable = ∅.

We briefly recall the RSparseBitSet data structure [14] which we will use in
our propagators. The pseudo-code of this data structure is given in Algorithm1
and some illustrative methods are also shown. The Reversible Sparse BitSet
represents a set as a bitset (array of 64-bit Long words) and is “reversible”
means that it is able to restore itself on backtrack. The reversibility relies on
a global trail mechanism well known in the folklore of constraint programming
(see [23] for an introduction to trailing and time-stamping).

The originality of this structure is that it borrows the idea of reversible
sparse-sets [37] to discard all-zero words. When a bitvector is sparse (contains
many zero words), this can save unnecessary iterations and computations over
those words.

The following class invariant is maintained to ignore zero words: the number
of non-zero words is a reversible integer denoted limit; and the limit first
entries of index are indexes to the non-zero words in the bitvector. All the
words beyond that limit are the indexes of zero words.

For the intersect method, which is also crucial for itemset mining, one can
see how this is maintained by exchanging a detected zero word with the last
non-zero one before decreasing the limit (swapping).

Apart from skipping entire words, the bitvector representation allows using
highly efficient operations over entire words such as and and bitCount.

3 Global Constraints for Frequency-Based Itemset
Mining

There is a close relation between a table constraint that reasons over a binary
representation of the table and itemset mining. Each variable/value pair (Vi, v)
is a column and can be seen as an item (in the itemset mining problem), and
internally a vertical dense representation of the table can be used. Because each
tuple in table Γ is of size n, in a binary representation of the table there will
be exactly n non-zero entries per row. Further knowing that there are exactly
n variables that each must be assigned one value, one can see that checking
whether the set representation of V : {(Vi, v) | Vi = v ∈ V } is a subset of
the set representation of a tuple τ : {(Vi, τi) | τi ∈ τ} coincides with checking
whether they can be equal as both sets will have equal length when V is fully
assigned. The cover relation of itemset mining is hence equivalent to the table
support relation in this case, and the table constraint can be seen as enforcing
a minimum frequency constraint with θ = 1.

Earlier work has proposed a single global constraint for minimum frequent
closed itemset mining. For efficiency reasons, we propose to use the reversible

534 P. Schaus et al.

sparse bitset to maintain the set of transactions that can still be covered. For
generality reasons, we propose to separate the computation of the frequency
from the minimum (or maximum) frequency restriction and to separate that
from enforcing the closedness property.

3.1 Computing Frequency: The CoverSize Constraint

Given a set of boolean variables I representing the pattern (selected items),
a vertical dense bitvector representation of the database D (see Fig. 1c for an
example), and an integer variable c, the CoverSize global constraint enforces the
relation

CoverSize([I1, . . . , In],D, c) ⇐⇒ c =

∣
∣
∣
∣
∣

⋂

Ii=1

D(Ii)

∣
∣
∣
∣
∣

such that c represents the number of bits set in the intersection of the vertical
bitvectors (D) of the selected items. Using bitwise operations it can be formulated
as

CoverSize([I1, . . . , In],D, c) ⇐⇒ c = size(&Ii=1D(Ii)).

For example in Fig. 1c and for itemset {C,D}, c = |D(IC)&D(ID))| = 2.
Lazaar et al. [24] have argued that a global constraint is preferred over a

decomposition into a constraint per transaction because the many constraints
that need to be handled create overhead for the solver. This was shown earlier
in [30], which proposed a CP-inspired dedicated solver with a global constraint
for (reified) matrix-wide operations over bitvector variables.

When not exporting the cover as individual Boolean variables, we can use
an internal data structure to store the cover such as RSparseBitSet. Note that
not exposing the cover also limits the generality of the approach: no constraints
can be put on the cover so that constraints such as closedness, maximality,
non-frequency-based quality measures, etc. either require changes to the global
constraint, or a separate global constraint that recomputes the cover. However,
there are a number of constraints that depend only on the size of the cover and
hence for added flexibility we propose to hide the cover but expose the cover
size.

Consistency of CoverSize. Theorem 1 is used to demonstrate that it is NP-
hard to check the consistency for CoverSize.

Theorem 1. Given a collection of sets {S1, . . . , Sn}, the problem of finding a
subset of these such that their union is of fixed cardinality k is NP-hard.

Proof. We build a reduction from the NP-hard exact cover by three sets (X3C)
problem: given a collection {C1, C2, . . . , Cn} of 3-element subsets built from a
universe X with |X| = 3q (a multiple of 3), can we find exactly q subsets
of C to cover X? We reduce this X3C problem into our problem such that
Si = Ci∪{ai

1, . . . , a
i
|X|+1} ∀i ∈ {1, . . . , n}. All the artificial ai

j elements added are
different and not in universe X. Each set Si has thus a cardinality of 3+|X|+1 =

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 535

4 + 3q. We are looking for a collection of sets such that their union is of size
k = q(4+3q). Only q sets can be selected; even when counting just the artificial
elements (|X| + 1 = 3q + 1 per set), more than q sets is not possible because
k − ((q + 1) · (3q + 1)) < 0. Fewer then q sets is also not possible because
k − ((q − 1) · (3q + 1)) > |X| and hence there would need to be more than |X|
unique elements in universe X to achieve cardinality k. For exactly q sets, one
can verify that these q sets will cover |X| after the removal of the q(|X| + 1)
added elements: q(4 + 3q) − q(|X| + 1) = q(4 + 3q − 3q − 1) = 3q = |X|. �

Corollary 1. Given a collection of sets {S1, . . . , Sn}, the problem of finding a
subset of these such that their intersection is of fixed cardinality k is NP-hard.

Proof. We reduce the problem of Theorem 1. Let X =
⋃

i Si be the universe
and Si = X \ Si the complement set of Si w.r.t. X. There exists a subset
Ω ⊆ {1, . . . , n} such that

∣
∣⋃

i∈Ω Si

∣
∣ = k if and only if

∣
∣⋂

i∈Ω Si

∣
∣ = |X| − k. �

Theorem 2. Determining the satisfiability for CoverSize is NP-hard.

Proof. The problem of Corollary 1 is reduced to finding a feasible solution for
CoverSize([I1, . . . , In],D, c = k) with D(Ii) the bitvector representation for set
Si. �

Despite this hardness result, we can still propagate many conditions effi-
ciently. The hardest part is to propagate from an upper bound on c to the item
variables.

CoverSize Propagator. We denote by U = {Ii ∈ I | dom(Ii) = {0, 1}} the
set of undecided items and by P = {Ii ∈ I | dom(Ii) = {1}} the set of included
items. The filtering rules for CoverSize are:

1. (Rule 1) computes the maximum cover size (exact upper-bound) that corre-
sponds to discarding all the undecided items: max(c) ≤

∣
∣
∣
⋂

Ij∈P D(Ij)
∣
∣
∣ .

2. (Rule 2) computes the minimum cover size (exact lower-bound) that corre-
sponds to including all the undecided items min(c) ≥

∣
∣
∣
⋂

Ij∈(P∪U) D(Ij)
∣
∣
∣ .

3. (Rule 3) discards item Ii if including it would result in a cover size that is
below the minimum threshold. ∀Ii ∈ U :

∣
∣
∣
⋂

Ij∈P D(Ij) ∩ D(Ii)
∣
∣
∣ < min(c) =⇒

Ii = 0. This rule is also implemented in [24] and can be achieved in the
decomposition with a redundant constraint for each item separately.

4. (Rule 4) detects mandatory items. If the lower-bound is equal to the max-
imum allowed cover size, then if the cover size lower-bound would increase
while excluding an item Ii then this item Ii is mandatory. ∀Ii ∈ U :∣
∣
∣
⋂

Ij∈(P∪U) D(Ij)
∣
∣
∣ = max(c) ∧

∣
∣
∣
⋂

Ij∈(P∪U) D(Ij)
∣
∣
∣ <

∣
∣
∣
⋂

Ij∈(P∪U)\{Ii} D(Ij)
∣
∣
∣

=⇒ Ii = 1.

Algorithm 2 gives the filtering algorithm for the CoverSize constraint imple-
menting the Rules 1–4. N denotes the newly bound item variables since the
previous call to the propagate method. The algorithm is thus incremental.

536 P. Schaus et al.

The block at Line 5 updates the current cover to reflect the new items
included in the itemset1. The second block at Line 8 filters out the items that
if included would induce a cover size below the allowed threshold min(c). This
corresponds to Rule 3.

Line 11 computes the upper-bound of the cover size according to Rule (1). The
lower-bound (Line 12) is obtained by including all the unbound items according
to Rule (2).

Line 13 is triggered when the smallest possible intersection size (lb) is the
largest allowed size of the frequency variable (max(c)). In this case, all the items
that are mandatory to reach the lower-bound can be forcefully included (this is
not necessarily true when min(c) = max(c) as min(c) can be externally set
resulting in min(c) > lb). An unbound item I is mandatory if it is the only item
that does not contain a transaction that all the other unbound and included
ones do; in that case lb would increase to lb′ > max(c). In the algorithm,
m ← cover &Ij∈U\Ii D(Ij) is the cover if one would include all unbound items
except I. If m � D(Ii) then m ∩ D(Ii) would be a smaller set than m and hence
Ii is mandatory to obtain the smallest cover size lb. For the example of Fig. 1,
let C be included then lb = 1, ub = 3. Let max(c) = 1 then A is mandatory:
not including it results in m = {2, 4},m � {1, 3, 4} because of transaction 2.
This condition is equivalent to Rule 4 but slightly more efficient to compute as
it does not require to consider every non-zero words by returning true as soon
as one word of m is not included.
Algorithm 1. Class RSparseBitSet. t[0] denotes the first element of array
t and 0k denotes a sequence of k bits set to 0.
1 words: array of rlong // reversible longs, array length = p

2 index: array of int // array length = p

3 limit: rint // a reversible integer

4 Method intersect (m: array of long)
/* this ← this & m */

5 foreach i from limit downto 0 do
6 o ← index[i]
7 w ← words[o] & m[o] // bitwise AND

8 words[o] ← w
9 if w = 064 then

10 swap(index[i], index[limit])
11 limit ← limit − 1

12 Method contains(m: array of long): bool
/* m ⊆ this */

13 foreach i from 0 to limit do
14 o ← index[i]
15 if (words(o) & ˜ m[o]) �= 064 then
16 return false

17 return true

1 This is similar to the update of currTable in [14] for filtering table constraints.

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 537

Algorithm 2. Class CoverSize([I1, . . . In],D, c)
1 cover: RSparseBitSet // Current cover

2 N, U // New bound variables, Unbound variables

3 D // D[Ii] = bit-set for item Ii

4 Method propagate()
/* update current cover */

5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover ← cover & D[Ii]

/* remove items that if included induce cover < min(c) */

8 foreach variable Ii ∈ U do
9 if size(cover & D[Ii]) < min(c) then

10 Ii ← 0

/* cover bounds */

11 ub ← size(cover); max(c) ← min(max(c), ub)
12 lb ← size(cover &Ii∈U D[Ii]); min(c) ← max(min(c), lb)

/* propagating maximum size */

13 if lb < ub ∧ lb = max(c) then
14 foreach variable Ii ∈ U do

/* include items mandatory for a cover size = lb */

15 m ← cover &Ij∈U\Ii D[Ij]

16 if m � D[Ii] then
17 Ii ← 1

The time complexity for executing propagate is O(|I| × m/64) with |I| the
number of items and m/64 the number of words necessary to represent the cover.
In practice, the reversible sparse bitset will only iterate on the non-zero words
in the cover bitvector. The space complexity is O(|I| × m) similar to that of
other approaches and due to the space needed to store the database.

Since domain consistency CoverSize is NP-hard we can unfortunately not
clearly characterize2 the filtering of Algorithm2. Only in the case of an uncon-
strained max(c) (for instance for the frequent itemset problem), the filtering
reaches domain consistency.

3.2 Closed Itemsets: The CoverClosure Constraint

The idea of mining for closed frequent itemsets is to reduce the set of extracted
itemsets to a smaller, more interesting one. The intuitive idea is that if a frequent
pattern has a cover that is exactly the same as a super pattern, then only the
super pattern should be enumerated.

2 As for many NP-hard global constraints like bin-packing, cumulative, circuit, etc.

538 P. Schaus et al.

An itemset is hence a closed itemset if there is no superset with the same
cover: �I ′ ⊃ I : {(t, T) ∈ H | I ′ ⊆ T} = {(t, T) ∈ H | I ⊆ T}. Hence, the closure
of an itemset can be computed by verifying which items could be added to the
itemset without changing the cover:

cloH(I) = I ∪ {j /∈ I | {(t, T) ∈ H | I ∪ {j} ⊆ T} = {(t, T) ∈ H | I ⊆ T}} (1)

As argued in [6] there are two ways of interpreting the closed property when
combined with other constraints: (1) of all closed itemsets, keep only those that
satisfy the constraints (2) take the closure such that the new itemset satisfies all
constraints

This can have far-reaching consequences. Let us take the database in Fig. 1,
where item B is in all transactions and so will be in all closed itemsets. If we now
add the constraint ′B′ /∈ I, then under interpretation 1 there would not be any
valid itemset, while under interpretation 2 there is D,C,AD and ACD namely all
closed itemsets when ignoring B. It should be clear that interpretation (1) should
not be taken by default. On the other hand, enforcing interpretation (2) requires
one to reason not in terms of local constraints but over valid solutions to the
CSP, for example with dominance properties [28]. Nonetheless, interpretation
(1) is valid as long as all constraints have the property that adding a cover-
preserving item to the set can never violate another constraint; for example, one
can freely add a minimum size or maximum frequency constraint [6]. In case of
such constraints it must be expressed as a preference over solutions of the CSP,
e.g. by adding constraints each time a solution is found [28]. We hence propose to
offer the widely used unconstrained closure operator as a separate CoverClosure
constraint.

Another argument for separating the closure constraint is that in case of
discriminative itemset mining, we may want to enforce closedness on only one
of the two databases or on the entire database [19]. A separate constraint allows
this freedom.

CoverClosure Propagator. Two filtering rules are enforced similar to [24]:

1. (Rule 5) Closure inclusion. This rule checks for each unbound item Ii if includ-
ing it would result in an unchanged cover. If yes, this item should be included
in the final pattern. More formally

∀Ii ∈ U : (
⋂

Ij∈P

D(Ij) ∩ D(Ii)) =
⋂

Ij∈P

D(Ij) =⇒ Ii = 1

2. (Rule 6) Closure exclusion. This rule detects if extending the pattern with
an item would result in a cover for which there is an already excluded item
that should be added by the closure operator. Hence, including the first item
would lead to an inconsistency and so it should be excluded. More formally,
assuming Ik ∈ I, Ik = 0 represents the excluded items:

∀Ii ∈ U, Ik ∈ I, Ik = 0 : ((
⋂

Ij∈P

D(Ij)) ∩ D(Ii)) ⊆ ((
⋂

Ij∈P

D(Ij)) ∩ D(Ik)) =⇒ Ii = 0

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 539

Algorithm 3 implements the domain consistent filtering for the CoverClosure
constraint. This constraint also uses the RSparseBitSet data structure to store
the cover. It has a complexity of O(|I|2 × m/64).

A faster (but not domain consistent) filtering is obtained by replacing Rule 6
with a consistency check verifying that for each discarded item (Ii = 0), including
it changes the cover: ∀Ik ∈ I, Ik = 0 : (

⋂
Ij∈P D(Ij)∩D(Ik)) =

⋂
Ij∈P D(Ij) =⇒

fail. This version has a complexity of O(|I| × m/64), similar to CoverSize.

4 Frequency-Based Itemset Mining with CoverSize and
CoverClosure

4.1 Frequent Itemset Mining

Our model for frequent itemset mining contains just one CoverSize and a con-
straint that the size of the cover is above a fixed minimum frequency θ:

enumerate CoverSize([I1, . . . , In],D, c) ∧ c ≥ θ

Notice that as c is a variable, one can also add a maximum frequency constraint,
or use it in branch-and-bound to search for the most frequent itemsets under
constraints such as a minimum itemset cardinality:

maximize c, s.t. CoverSize([I1, . . . , In],D, c) ∧
∑

i

Ii ≥ β

4.2 Closed Frequent Itemset Mining

Looking for the frequent closed itemset amounts to adding CoverClosure:

enumerate CoverSize([I1, . . . , In],D, c) ∧ c ≥ θ ∧ CoverClosure([I1, . . . , In],D)

As explained in Sect. 3.2, other constraints should only be added if they do
not constrain the addition of (frequency-preserving) items.

4.3 Discriminative (Closed) Itemset Mining

Given a split database D+ and D− containing positive (+) and negative (−)
transactions defined on a same set of items, the objective is to find the high-
est scoring itemsets (discriminating one class over another) w.r.t. a correlation
(discriminative) measure such as accuracy, information gain, χ2 measure, Gini
index, etc. Those itemsets are interesting as classification rules directly [9,11,16],
or as features (if the itemset is present or not) for another classifier [10,15].

Using accuracy as a discriminative measure leads to the following problem:

maximize p − n, s.t.

CoverSize([I1, . . . , In],D+, p) ∧ CoverSize([I1, . . . , In],D−, n)

540 P. Schaus et al.

Algorithm 3. Class CoverClosure([I1, . . . In],D)
1 cover: RSparseBitSet // Current cover

2 N, U // New bound variables, Unbound variables

3 D // D[Ii] = bit-set for item Ii
4 Method propagate()

/* update current cover */

5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover ← cover & D[Ii]

/* Rule 5 */

8 foreach variable Ii ∈ U do
9 if cover = (cover & D[Ii]) then

10 Ii ← 1

/* Rule 6 */

11 foreach variable Ii ∈ U do
12 foreach variable Ik ∈ I with Ik = 0 do
13 if (cover & D[Ii]) ⊆ (cover & D[Ik]) then
14 Ii ← 0; break

Another standard discriminative measure is the χ2 one depicted on Fig. 1d.
As explained in [31] the standard discriminative functions such as χ2 have the
property that they are zero on the diagonal (relative to the possible values of p, n)
and convex (denoted by ZDC). A general ZDC-based model for discriminative
itemset mining is composed of

– two constraints CoverSize([I1, . . . , In],D+, p) and CoverSize([I1, . . . , In],
D−, n) to compute the cover size on the positive and negative transactions;

– a Zero Diagonal Convex constraint ZDC(|D+|, |D−|, p, n, score) that links p,
n and score using a discriminative function (such as χ2) to maximize;

– optionally CoverClosure([I1, . . . , In],D− ∪D+) to obtain the closedness prop-
erty. Note that posting CoverClosure separately on the positive (negative) can
decrease p (n) and is hence not allowed for symmetric ZDC measures.

This approach which employs a separate ZDC constraint that takes only the
cardinalities p and n as input, is novel and favors reusability in a different con-
text: it is itemset-agnostic, meaning that it could also be used for example to
find discriminating sequences instead of itemsets. In [31] the authors also employ
a global constraint for the discriminative itemset mining problem, but one that
reasons at the transaction level with one variable per transaction. The filter-
ing they achieve is stronger than our decomposition into three constraints. They
perform what they call a redundant look-ahead filtering3 on each item separately.

3 A related generic technique in CP is shaving [26].

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 541

We briefly describe our filtering for ZDC, illustrated in Fig. 1e. Because of
the ZDC property, the minimum and maximum is located at one of the four
corners of the box [min(p),max(p)] × [min(n),max(n)], and hence only these
extremes need to be computed for pruning min(score). Given a minimum value
for min(score), for example as enforced during branch-and-bound maximization,
the value of max(p) and max(n) can be reduced as illustrated on Fig. 1e. On
this figure, the iso-curve corresponding to min(score) is visualized. The ZDC
property implies that any larger score must lay outside of the region enclosed by
the iso-curves. The gray zone on Fig. 1e corresponds to inconsistent combinations
for p and n, hence discovering the new minimum for p requires to find v such
that ZDC(|D+|, |D−|, v,max(n)) = min(score). Any value larger than v for p
would be inconsistent. The upper-cardinality of p is constrained and therefore
the filtering of CoverSize([I1, . . . , In],D+, p) based on this upper cardinality is
important to prune the search tree. A similar reasoning is used to prune min(n).

5 Experiments

In this section, we report the experimental results on frequent, closed as well as
discriminative itemset mining. Each experiment is driven by a concrete question.
All experiments were run in the JVM with maximum memory set to 8 GB on
PCs with Intel Core i5 64 bits processor (2.7 GHz) and 8 GB of RAM running
Linux Mint 17.3. Execution time is limited to 1000 s.

Datasets and Mining Algorithms. We use data from the FIMI4 repository and
from the CP4IM5 website. The properties of the datasets are presented in Table 1
(first column) and Table 2a (these latter are labelled positive/negative datasets).
We compare with the following methods:

– Frequent Itemset Mining: FIMCP [19] using the Gecode solver [17],
DMCP [30] a custom CP bitvector solver, and four dedicated algorithms
namely Borgelt’s Apriori and Eclat implementations [7], Nonordfp [36] and
LCMv36 [39].

– Closed Frequent Itemset Mining: FIMCP, DMCP, Borgelt’s Apriori and
LCMv3 again, as well as ClosedPattern [24] using the or-tools solver [18].

– Discriminative Itemset Mining: CIMCP [19] based on Gecode and the spe-
cialised algorithm corrmine [31].

We denote our approach by CoverSize and it uses the OscaR solver [33]7.

Q1: What is the impact of using a reversible “sparse”-bitset over a
reversible non-sparse one? In Table 1 CoverSize-bitset is the same imple-
mentation as CoverSize but using a reversible bitset implementation that does
not check for zero words. The results on Frequent in Table 1 convincingly show
4 http://fimi.ua.ac.be/data/.
5 https://dtai.cs.kuleuven.be/CP4IM/datasets/.
6 http://research.nii.ac.jp/∼uno/codes.htm (v3 is fastest of all versions in our experi-

ments).
7 https://sites.uclouvain.be/cp4dm/fim/.

http://fimi.ua.ac.be/data/
https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://research.nii.ac.jp/~uno/codes.htm
https://sites.uclouvain.be/cp4dm/fim/

542 P. Schaus et al.

Table 1. CPU runtime for several algorithms vs CoverSize. (TO ≡ TimeOut;
∗ ≡ CoverSize + CoverClosure; ρ ≡ density = 1

|T |×|I|
∑

t∈T ,i∈I Dti)

that using the sparse data structure is always better and sometimes an order of
magnitude faster, especially on large and sparse datasets.

For closed, we can also compare Coversize-DC* to ClosedPattern [24] which
uses the same filtering rules but in a single global constraint and with a differ-

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 543

ent solver and non-reversible non-sparse bitsets [24]. We only have the binaries
and though different solvers will perform differently, or-tools has won MiniZinc
challenge [38] gold medals and so the remarkable difference in runtime with our
method provides strong evidence that the reversible sparse bitset is a well suited
and very scalable data structure for itemset propagators.

Q2: Is domain consistency interesting for closed frequent itemset min-
ing? In [24] the authors concluded that using the domain consistent version of
Rule 6 dominates the simpler non-domain consistent one because of the result-
ing reduction in number of explored nodes. We reran the same experiment,
CoverSize-DC* and CoverSize* in Table 1, and the conclusion changes when
using reversible sparse bitsets: while on pumsb and pumsb-star the runtime
increases when using the simpler non-DC version, on the other datasets it is
similar or faster to use the simpler one. For the largest and sparsest datasets
retail and online-retails, the difference is even up to an order of magnitude.

Q3: How does CoverSize compare with existing approaches? The Cov-
erSize approach clearly outperforms the decomposition-based FIMCP. For fre-
quent, CoverSize is on par (sometimes somewhat better or worse) with DMCP,
the dedicated CP solver which uses bitvector variables. By profiling the execution
we observed that for the instances where DMCP was faster (such as mushroom)
only 1% of the time was spent in CoverSize. The remaining time is devoted to the
solver (propagation management, search, trailing, ...), which a dedicated solver
like DMCP has less overhead in. Hence, here we show that similar performance
can be achieved with a generic solver, through the use of global constraints with
carefully designed data structures.

For closed, our approach outperforms FIMCP, and also ClosedPattern as
discussed in Q2. The differences between CoverSize and DMCP become more
varied and pronounced, for example for the sparsest retail and online-retails
dataset in favor of DMCP, and for BMSWebView1 in favor of CoverSize.

Specialised Algorithms. There remains a significant gap between CP-based meth-
ods and specialised methods though, and especially the highly praised LCMv3
algorithm lives up to its reputation. It should be pointed out that these algo-
rithms do not allow any constraints, and for example a version of LCM (LCMv5)
that allow some constraints is also remarkably slower. For denser datasets, our
method does typically outperform Apriori.

Q4: What is the difference in performance for discriminative itemset
mining with CoverSize? The state-of-the-art for this problem is the generic
CP-based CIMCP method and the specialized corrmine method which imple-
ment the same bounds [31]. Table 2b shows a comparison using Information
Gain as the ZDC measure, which is the one implemented in corrmine. Despite
the stronger filtering of CIMCP, CoverSize outperforms CIMCP for the most
difficult instances showing the importance of globals with a good data structure.
corrmine is superior though specialized to this specific problem.

544 P. Schaus et al.

Table 2. Runtimes, in seconds, for discriminative itemset mining

6 Conclusion and Perspectives

We showed that compared to the ClosedPattern approach [24] of using a global
constraint for frequent closed itemset mining, both generality and efficiency can
be significantly improved. Generality can be improved by a separation of con-
cerns in terms of global constraints. We propose to use one global constraint
that exposes the frequency through a decision variable which can then be used in
other constraints. For example frequency constraints, objective functions or dis-
crimination scores. Another global constraint can be used to enforce the closure
property, though care has to be taken when combining it with other constraints.

Efficiency-wise we showed the connection with a well-known constraint that
also has to handle a lot of data: the table constraint. Using the Reversible Sparse
bitset data structure that was recently proposed [14] allows our global constraints
to scale to even larger and sparser datasets while still in a generic CP solver.
This is relevant not just for frequency-based itemset mining, but also for other
existing as well as novel data mining problems in CP, and perhaps beyond.

Acknowledgments. The research is supported by the FRIA-FNRS (Fonds pour la
Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium) and FWO
(Research Foundation – Flanders). We also thank Willard Zhan for his help with the
reduction proof.

References

1. Aggarwal, C.C.: An introduction to frequent pattern mining. In: Aggarwal, C.C.,
Han, J. (eds.) Frequent Pattern Mining, pp. 1–17. Springer, Cham (2014). doi:10.
1007/978-3-319-07821-2 1

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. Int. Conf. Manag. Data (SIGMOD) 22(2), 207–216 (1993)

3. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent
sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco,
G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS, vol. 9852, pp. 315–330. Springer,
Cham (2016). doi:10.1007/978-3-319-46227-1 20

http://dx.doi.org/10.1007/978-3-319-07821-2_1
http://dx.doi.org/10.1007/978-3-319-07821-2_1
http://dx.doi.org/10.1007/978-3-319-46227-1_20

CoverSize: A Global Constraint for Frequency-Based Itemset Mining 545

4. Aoga, J.O., Guns, T., Schaus, P.: Mining time-constrained sequential patterns with
constraint programming. Constraints 22, 1–23 (2017)

5. Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: prelim-
inary results. In: International Joint Conference on Artificial Intelligence (IJCAI)
(1997)

6. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Fourth
IEEE International Conference on Data Mining, ICDM 2004, pp. 35–42, November
2004

7. Borgelt, C.: Efficient implementations of Apriori and Eclat. In: FIMI: Workshop
on Frequent Itemset Mining Implementations (2003)

8. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 2(6), 437–456 (2012)

9. Bringmann, B., Zimmermann, A.: Tree 2 – decision trees for tree structured data.
In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS, vol. 3721, pp. 46–58. Springer, Heidelberg (2005). doi:10.1007/11564126 10

10. Bringmann, B., Zimmermann, A., Raedt, L., Nijssen, S.: Don’t be afraid of sim-
pler patterns. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS, vol. 4213, pp. 55–66. Springer, Heidelberg (2006). doi:10.1007/11871637 10

11. Cheng, H., Yan, X., Han, J., Philip, S.Y.: Direct discriminative pattern mining for
effective classification. In: IEEE 24th International Conference on Data Engineer-
ing, ICDE 2008, pp. 169–178. IEEE (2008)

12. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

13. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pp. 204–212 (2008)

14. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C.,
Schaus, P.: Compact-table: efficiently filtering table constraints with reversible
sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 14

15. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data
Eng. 17(8), 1036–1050 (2005)

16. Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., Verscheure, O.:
Direct mining of discriminative and essential frequent patterns via model-based
search tree. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 230–238. ACM (2008)

17. Gecode Team: Gecode: generic constraint development environment (2006). http://
www.gecode.org

18. Google: Google optimization tools (2015). https://developers.google.com/
optimization/

19. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

20. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using
top-k SAT problem. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.)
ECML PKDD 2013. LNCS, vol. 8190, pp. 403–418. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40994-3 26

21. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework.
Artif. Intell. 244, 30–47 (2017)

http://dx.doi.org/10.1007/11564126_10
http://dx.doi.org/10.1007/11871637_10
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://www.gecode.org
http://www.gecode.org
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://dx.doi.org/10.1007/978-3-642-40994-3_26

546 P. Schaus et al.

22. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: PREFIX-
PROJECTION global constraint for sequential pattern mining. In: Pesant, G.
(ed.) CP 2015. LNCS, vol. 9255, pp. 226–243. Springer, Cham (2015). doi:10.1007/
978-3-319-23219-5 17

23. Knuth, D.: The Art of Computer Programming: Combinatorial Algorithms, vol. 4.
Addison-Wesley, Upper Saddle River (2015)

24. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizu-
mault, P.: A global constraint for closed frequent pattern mining. In: Rueher, M.
(ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016). doi:10.1007/
978-3-319-44953-1 22

25. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

26. Lhomme, O.: Quick shaving. In: Proceedings of the 20th National Conference on
Artificial Intelligence, vol. 1. pp. 411–415. AAAI Press (2005)

27. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning.
In: Vianu, V., Gottlob, G. (eds.) Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 15–17 May
2000, Dallas, Texas, USA, pp. 226–236. ACM (2000)

28. Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for
itemset mining. In: 2013 IEEE 13th International Conference on Data Mining
Data Mining (ICDM), pp. 557–566. IEEE (2013)

29. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Cham (2015). doi:10.1007/978-3-319-18008-3 20

30. Nijssen, S., Guns, T.: Integrating constraint programming and itemset min-
ing. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010. LNCS, vol. 6322, pp. 467–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15883-4 30

31. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space:
a constraint programming approach. In: International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 647–656. ACM (2009)

32. Nijssen, S., Zimmermann, A.: Constraint-based pattern mining. In: Aggarwal,
C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 147–163. Springer, Cham (2014).
doi:10.1007/978-3-319-07821-2 7

33. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
34. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-

sets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol.
1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7 25

35. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). doi:10.1007/978-3-319-10428-7 44

36. Rácz, B.: nonordfp: an FP-growth variation without rebuilding the FP-tree. In:
FIMI: Workshop on Frequent Itemset Mining Implementations (2004)

37. de Saint-Marcq, V.l.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain
implementation. In: CP workshop on - Techniques foR Implementing Constraint
programming Systems (TRICS), pp. 1–10 (2013)

38. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the minizinc challenge. Con-
straints 15(3), 307–316 (2010)

39. Uno, T., Kiyomi, M., Arimura, H.: LCM Ver. 3: collaboration of array, bitmap and
prefix tree for frequent itemset mining. In: Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementa-
tions (OSDM 2005), pp. 77–86. ACM (2005)

http://dx.doi.org/10.1007/978-3-319-23219-5_17
http://dx.doi.org/10.1007/978-3-319-23219-5_17
http://dx.doi.org/10.1007/978-3-319-44953-1_22
http://dx.doi.org/10.1007/978-3-319-44953-1_22
http://dx.doi.org/10.1007/978-3-319-18008-3_20
http://dx.doi.org/10.1007/978-3-642-15883-4_30
http://dx.doi.org/10.1007/978-3-642-15883-4_30
http://dx.doi.org/10.1007/978-3-319-07821-2_7
https://bitbucket.org/oscarlib/oscar
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1007/978-3-319-10428-7_44

Operations Research and CP Track

A Column-Generation Algorithm for Evacuation
Planning with Elementary Paths

Mohd. Hafiz Hasan(B) and Pascal Van Hentenryck

University of Michigan, Ann Arbor, MI 48109, USA
{hasanm,pvanhent}@umich.edu

Abstract. Evacuation planning algorithms are critical tools for assist-
ing authorities in orchestrating large-scale evacuations while ensuring
optimal utilization of resources. To be deployed in practice, these algo-
rithms must include a number of constraints that dramatically increase
their complexity. This paper considers the zone-based non-preemptive
evacuation planning problem in which each evacuation zone is assigned
a unique evacuation path to safety and the flow of evacuees over time for
a given zone follows one of a set of specified response curves. The starting
point of the paper is the recognition that the first and only optimization
algorithm previously proposed for zone-based non-preemptive evacua-
tion planning may produce non-elementary paths, i.e., paths that visit
the same node multiple times over the course of the evacuation. Since
non-elementary paths are undesirable in practice, this paper proposes a
column-generation algorithm where the pricing subproblem is a least-cost
path under constraints. The paper investigates a variety of algorithms
for solving the subproblem as well as their hybridization. Experimental
results on a real-life case study show that the new algorithm produces
evacuation plans with elementary paths of the same quality as the ear-
lier algorithm in terms of the number of evacuees reaching safety and the
completion time of the evacuation, at the expense of a modest increase
in CPU time.

Keywords: Column generation · Evacuation planning · k-shortest
paths · Mixed-integer programming · Constraint programming

1 Introduction

Large-scale evacuations are critical to the preservation of safety and lives of
residents in regions threatened by man-made or natural disasters like floods,
hurricanes, and wildfires. Once rare events, evacuations have been increasing
in frequency, with emergency services around the world struggling to define
practical evacuation plans, especially for urban environments with significant
population growth.

This paper studies prescriptive evacuations where emergency services provide
detailed instructions on when and how to evacuate. Prescriptive evacuations
(e.g., [1–4,7,10,11,14–16]) are gaining traction around of the world thanks to
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 549–564, 2017.
DOI: 10.1007/978-3-319-66158-2 35

http://orcid.org/0000-0002-1930-822X
http://orcid.org/0000-0001-7085-9994

550 M.H. Hasan and P. Van Hentenryck

their ability to manage the flow of evacuees more effectively compared to self-
evacuations, which are often sub-optimal and unpredictable. For prescriptive
evacuations, emergency services are almost always interested in designing zone-
based evacuation plans which assign a unique evacuation path to each residential
zone. These plans are attractive for two main reasons: They make it possible to
(1) communicate clear evacuation instructions to the community and (2) control
the evacuation process accurately, while balancing the load on the transportation
network over time. Zone-based evacuation planning however is computationally
challenging and has been approached using optimization algorithms based on
column generation and Benders decomposition.

Almost all zone-based evacuation planning algorithms are preemptive: They
treat evacuees in a zone as flows and assume their evacuation rates can be
changed and controlled easily. As a result, they typically produce preemptive
evacuation schedules with widely fluctuating departure rates for a given zone,
which makes them impractical to implement. To our knowledge, Pillac et al.
[13] were the first to address this issue; they proposed an evacuation algorithm
that utilizes response curves to control the evacuation flow of a zone over time.
The resulting non-preemptive plan can then be enforced in practice by using a
mobilization force to ensure the proper response for each evacuation zone. Pil-
lac et al. [13] proposed a column-generation algorithm [5] for non-preemptive
zone-based evacuations. They show that the resulting evacuation plans achieve
roughly the same quality as preemptive plans in terms of the number of evac-
uees and the clearance time. Unfortunately, we discovered that some of the paths
generated by their algorithm are non-elementary, i.e., they visit the same node
multiple times. Figure 1 illustrates one such evacuation path generated for the

Fig. 1. The evacuation path (in red) for zone 43 (top-left) to a safe node (green triangle)
containing a cycle (circled in green). (Color figure online)

A Column-Generation Algorithm for Evacuation Planning 551

Hawkesbury-Nepean region, west of Sydney. Such non-elementary paths are
attractive from an optimization standpoint: They may be used to artificially
delay evacuees so they arrive at a node (transit node 267 in the figure) at the
right time to maximize the use of a bottleneck (the blue colored arc). Unfortu-
nately, emergency services will never adopt such evacuation paths and evacuees
will not comply with such plans in practice.

This paper remedies this shortcoming and proposes a pricing subproblem that
generates elementary evacuation paths. The subproblem is a constrained least-
cost path problem in the time-expanded graph that is significantly more challeng-
ing computationally. To solve the pricing subproblem, the paper explores three
different approaches and hybridizes them, exploiting their respective strengths.
Experimental results on a real-life case study show that the approach produces
effective plans with an acceptable overhead in computation time.

The rest of this paper is organized as follows. Section 2 introduces the nota-
tion and concepts used throughout the paper. Section 3 reviews the column-
generation algorithm proposed in [13]. Section 4 details our proposed solution
for computing elementary evacuation paths. Section 5 presents the experimental
results. Finally, Sect. 6 provides some concluding remarks.

2 Notation and Preliminaries

Figure 2 depicts a scenario where square 0 represents an evacuation node (e.g.
a residential zone), triangles A and B represent safe nodes (final evacuation
destinations), circles 1–3 represent transit nodes (road intersections), and arcs
represent roads connecting the nodes. Times on each arc indicate when each
road will become unavailable (e.g. due to being flooded) and the time on the
evacuation node indicates its evacuation deadline.

The scenario can be abstracted into a static evacuation graph G = (N =
E ∪ T ∪ S,A) where E , T , and S are the set of evacuation, transit, and safe
nodes respectively, and A is the set of all arcs. Each evacuation node k ∈ E

Fig. 2. A sample evac-
uation scenario.

Fig. 3. The static evac-
uation graph of the sce-
nario in Fig. 2.

Fig. 4. The time-expanded
graph of the static graph in
Fig. 3.

552 M.H. Hasan and P. Van Hentenryck

has a demand dk representing the number of vehicles to be evacuated and an
evacuation deadline fk, while each arc e ∈ A has a travel time se, a capacity ue,
and a deadline fe after which the road becomes unavailable. Figure 3 shows the
static evacuation graph for the scenario of Fig. 2. The evacuation node is labeled
with its demand and evacuation deadline while the arcs are labeled with their
travel times, capacities, and deadlines. Note that the evacuation node has no
incoming arcs and the safe nodes have no outgoing arcs.

To reason about traffic flows over time, the static graph is converted into a
time-expanded graph Gx = (N x = Ex∪T x∪Sx,Ax). The conversion is performed
by discretizing the time horizon H into time steps of identical length t, creating
a copy of all nodes at each time step, and replacing each arc e = (i, j) with
arcs et = (it, jt+se

) for each time step where e is available. Figure 4 shows the
time-expanded graph constructed from the static graph of Fig. 3, in which each
arc is labeled with its capacity. Infinite capacity arcs are introduced connecting
the evacuation and safe nodes at each time step to model evacuees staying at
these locations. Nodes that cannot be reached from any evacuation or safe node
within the time horizon are removed from the graph (they are grayed out in
Fig. 4).

The algorithm uses response curves to model evacuation behaviors [12]. A
response curve f is a function that realistically models the flow of evacuees
over time. For a response curve f , the number of evacuees Dk(t, t0) departing
evacuation node k at time t given that evacuation of k started at start time t0
is defined as

Dk(t, t0) =

{
0 if t < t0

f(t − t0) if t ≥ t0.
(1)

Dk(t, t0) precisely specifies a non-preemptive evacuation schedule for evacuation
node k. Figure 5 shows Dk(t, t0) for four different types of response curves. The
step response curve, in which evacuees depart at a constant rate after t0 until
the region is completely evacuated, is the type of response curve used in our
experiments, since its simplicity also makes it attractive for emergency services.
The results however apply to arbitrary curves.

Fig. 5. The number of evacuees Dk(t, t0) departing evacuation node k as a function of
time using four different types of response curves (from [13]).

An evacuation plan contains two components: (1) a set of evacuation paths,
each of which is a sequence of connected nodes in the static graph from an evac-

A Column-Generation Algorithm for Evacuation Planning 553

uation node to a safe node specifying the route to be taken by residents of each
evacuation node, and (2) a set of evacuation schedules indicating the number of
vehicles that need to depart from each evacuation node at each time step. The
Evacuation Planning Problem (EPP) amounts to designing an evacuation plan
that maximizes the number of evacuees reaching safety.

3 The Column-Generation Algorithm

The column-generation algorithm consists of a master problem (MP) and pricing
subproblem (PSP). The MP is a mixed-integer program (MIP) and the column-
generation algorithm uses its linear relaxation. After convergence of the column-
generation process, the MP is solved exactly as a MIP. The final MP solution
is an upper bound of the optimum and the column generation provides a lower
bound. Together, they can be used to compute the duality gap.

The Master Problem. The MP selects time-response evacuation plans from the
set Ω′ of available plans in order to maximize the number of evacuees reaching
safety and minimize total evacuation time. A time-response evacuation plan
p = 〈k, f, P, t0〉 consists of an evacuation node k, a response curve f ∈ F (where
F is a set of predefined response curves), a path P in G from k to a safe node,
and an evacuation start time t0. The MP uses a binary variable xp to indicate
whether a plan p ∈ Ω′ is selected. In the formulation, cp denotes the cost of plan
p, Ωk ⊂ Ω′ is the subset of plans for evacuation node k, ω(e) ⊂ Ω′ is the subset
of plans that utilize arc e, and ap,et

denotes the flow of evacuees along arc e at
time t induced by plan p. The MP can then be formulated as

min
∑
p∈Ω′

cp · xp (2)

subject to∑
p∈Ωk

xp = 1 ∀k ∈ E (3)

∑
p∈ω(e)

ap,et
· xp ≤ uet

∀e ∈ A,∀t ∈ H (4)

xp ≥ 0 ∀p ∈ Ω′. (5)

The cost cp linearly penalizes the late arrival times of evacuees at the safe nodes
and heavily penalizes the number of evacuees that cannot reach safety (non-
evacuees). More precisely, cp is given by:

cp =
∑
e∈p

∑
t∈H

cet
· ap,et

+ c̄ · āp (6)

where āp denotes the number of non-evacuees in plan p, and cet
and c̄ are defined

as follows:

554 M.H. Hasan and P. Van Hentenryck

cet
= c(i,j)t =

{
t

|H| if j ∈ S
0 otherwise

(7)

c̄ = 100 max
e∈A,t∈H

{cet
} · max

k∈E
{dk} (8)

The cost cp represents a lexicographic objective function that first minimizes
the number of non-evacuees and then late evacuations. Constraints (3) ensure
only one plan is selected for each evacuation node and Constraints (4) enforce
all arc capacities. The variables (5) are continuous during the column-generation
procedure; they become integral in the final iteration of the MP.

The Original Pricing Subproblem. The PSP is responsible for identifying new
time-response evacuation plans with negative reduced cost. The reduced cost rp

of plan p is given by:

rp = −πk + c̄ · āp +
∑
e∈p

∑
t∈H

(cet
− πet

) · ap,et
(9)

where the πk and πet
values denote the duals of Constraints (3) and (4) respec-

tively. The PSP finds a plan p that minimizes the last two terms of Eq. (9) for
each k ∈ E and f ∈ F . We denote these two terms as cost(p):

cost(p) = c̄ · āp +
∑
e∈p

∑
t∈H

(cet
− πet

) · ap,et
(10)

Moreover, since these plans are independent of each other, the PSP for each
k ∈ E and f ∈ F can be solved concurrently in parallel.

An evacuation plan that minimizes cost(p) can be obtained from a dedicated
time-expanded graph Gx with carefully chosen arc costs and a virtual super-sink
v to which all safe nodes s ∈ Sx connect with the arcs in Ax

s = {(s, v) | s ∈ Sx}.
Let Ax

w denote the set of all infinite capacity arcs used to model evacuees waiting
at the evacuation nodes. Then, for a given k ∈ E and f ∈ F , a path P x in Gx

from node k0 (node k at time 0) to v precisely specifies a plan p = 〈k, f, P, t0〉,
where P is given by the sequence of nodes visited by P x excluding v, and t0
corresponds to the time of the first non-waiting arc leaving evacuation node k.
For instance, path P x represented by the red colored arcs in Fig. 6 corresponds
to P = 〈0, 1,A〉 and t0 = 10:00 (other arcs in Ax

s are omitted from the figure to
reduce clutter). Arc costs csp

et
for each arc et ∈ Ax are then defined as follows:

csp
et

=
|H|∑
t′=t

(cet′ − πet′) · f(t′ − t) ∀et ∈ Ax \ (Ax
w ∪ Ax

s) (11)

csp
et

= c̄ · (dk − F (|H| − t)) ∀et ∈ Ax
s (12)

csp
et

= 0 ∀et ∈ Ax
w. (13)

Equation (11) aggregates all the costs along arc e over time for a plan p that
visits arc e first at time t. Equation (12) accounts for the cost of non-evacuees

A Column-Generation Algorithm for Evacuation Planning 555

Fig. 6. Path P x in the dedicated time-expanded graph. (Color figure online)

for plans that end with that arc (F is the cumulative density function associated
with f).

With these arc costs, the total cost of any path P x from k0 to v using f is
equivalent to cost(〈k, f, P, t0〉):

∑
et∈Px

csp
et

= c̄ · (dk − F (|H| − t)) +
∑

et∈Px\Ax
s

|H|∑
t′=t

(cet′ − πet′) · f(t′ − t) (14)

= c̄ · āp +
∑
e∈p

∑
t∈H

(cet
− πet

) · ap,et
(15)

Hence, the PSP can be solved by any shortest-path algorithm in order to find a
path P x of minimal cost for each k ∈ E and f ∈ F . Observe that the algorithm
only needs to find a path from k0 (node k at time 0), since evacuation node k
at time t is connected with an uncapacitated arc to node k at time t + 1.

4 Revisiting the Pricing Subproblem

The original PSP does not preclude least-cost paths from visiting the same
transit node in Gx at multiple time steps. While such paths are acyclic since
Gx is acyclic by construction, their projection onto G results in non-elementary
paths as the same transit node is visited more than once. Application of the
original algorithm on a real-world evacuation scenario from the Hawkesbury-
Nepean region revealed that approximately 44% of plans in the MP had non-
elementary paths, with some being selected by the final MIP. This is problematic
since these paths do not lead to realistic evacuation plans in practice.

This section outlines a new PSP that only generates time-response evacuation
plans with elementary paths and proposes several algorithms for this task. Let
Λ(i) denote the set of time-expanded nodes in Gx for a node i ∈ T , i.e., Λ(i) =
{it | t ∈ H}. A path P x in Gx corresponds to an elementary path P in G if and
only if P x visits at most a single node in Λ(i) for each node i ∈ T . As a result,
instead of finding a least-cost path in Gx with arc costs defined by (11)–(13),
the revised PSP must find a least-cost path that corresponds to an elementary
path in the static graph.

556 M.H. Hasan and P. Van Hentenryck

This problem is a shortest-path problem with resource constraints [8]. It is
NP-hard and, for our case study, must be solved for a graph Gx with approx-
imately 30000 nodes and 75000 arcs. The rest of this section explores several
methods to solve this problem: (1) a MIP model, (2) a constraint programming
(CP) model, (3) a k-shortest-path (KSP) algorithm, and (4) a hybrid algorithm.
A general labeling algorithm [6] may also be used to solve the problem, however
it was not explored as it does not provide any formal guarantees of optimality.

A Mixed-Integer Programming Method for the PSP. The PSP can be solved
with a MIP model, which uses a binary decision variable xet

to indicate whether
arc et is selected in the optimal path. Let δ−(i) and δ+(i) to denote the set of
incoming and outgoing arcs of node i respectively. The MIP model is defined
in Fig. 7. Objective function (16) specifies that the objective of the problem is
to minimize total cost of the path. Constraint (17) specifies that exactly one
path should emanate from source node k0, while Constraint (19) ensures the
path ends at super-sink node v. Constraints (18) enforce path continuity at
every node other than the source and the sink. Finally, Constraints (20) are the
elementary path constraints which guarantee that each transit node is visited
by the path at most once over the time horizon.

Fig. 7. The MIP model for the PSP.

A Constraint Programming Method for the PSP. Figure 8 presents a constraint
program to find a constrained least-cost path. The model uses two decision
variables: the float variable sp[j] that denotes the cost of a path from k0 to
node j and the Boolean variable absent[i] that indicates whether node i is
absent or present in the optimal path. α−(j) denotes the set of predecessors of
node j. The objective function specifies that the goal is to minimize cost of the
path from k0 to v.1

1 The model does not use the traditional predecessor and successor variables, since
the solver runs out of memory due to the large number of element constraints.

A Column-Generation Algorithm for Evacuation Planning 557

Fig. 8. The CP model for the PSP.

The first three constraints of the model specify that v and k0 must be present
in the optimal path and that the least-cost path to the source k0 is zero. The
next set of constraints

forall(j in N x \ {k0})
sp[j] = min(i in α−(j)) sp[i] + c(i,j) + M*absent[i];

specify the least-cost path from k0 to a node j in terms of the least-cost paths to
the predecessors of j. The constraints use a large number M for the predecessors
that are not in the least-cost path and c(i,j) denotes the arc costs defined by
Eqs. (11)–(13). The next set of constraints:

forall(j in N x \ {k0})
sum(i in α−(j)) absent[i] >= |α−(j)| - 1;

specify that for each node j, at most one of its predecessors can be present in
the optimal path. Finally, the last set of constraints

forall(i in T)
sum(n in Λ(i)) absent[n] >= |Λ(i)| - 1;

specify that each transit node may only occur once in the optimal path over the
time horizon.

A k-Shortest-Path Algorithm for the PSP. The third algorithm is indirect; it uses
a k-shortest-path algorithm to generate paths in increasing order of costs. The
algorithm completes as soon it generates an elementary path in the static graph.
Our implementation uses the Recursive Enumeration Algorithm (REA) [9] to
enumerate shortest paths from k0 to v. The REA computes k shortest paths
from a source s to a sink t in a graph G = (N ,A) in O(|A| + k|N | log(|A|/|N |))

558 M.H. Hasan and P. Van Hentenryck

time. It does so by recursively solving a set of equations which generalize the
Bellman equations for the shortest-path problem.

Let P k(j) denote the kth-shortest path from source s to node j, P k(i) · j
denote a path from s to j formed by appending arc (i, j) to the end of path
P k(i), Ck(j) be the set of candidate paths from s to j from which P k(j) can be
chosen, and L(P) be the length of path P . The key intuition behind the REA is
that if Πk(j) is the set of k shortest paths from s to j, then each path in Πk(j)
must reach j through some node i ∈ α−(j). Therefore, to find P k(j), one needs
to consider all shortest paths from s to i ∈ α−(j) and concatenate them with arc
(i, j) while making sure that they are different from P k−1(j). To facilitate this,
the algorithm constructs, for each node j, a set of candidates Ck(j) from which
P k(j) can be chosen. This set contains at most one path from s to i ∈ α−(j)
appended with arc (i, j). P k(j) can then be obtained by selecting the shortest
path in Ck(j).

The KSP algorithm first computes P 1(j) for all j ∈ N using a one-to-all
shortest-path algorithm (e.g., Bellman-Ford). If this already produces a path
from s to t that satisfies the elementary path constraints, then the algorithm
terminates. Otherwise, the procedure NextPath(t, k) (Algorithm 1) is called
repeatedly, with increasing values of k, to compute the kth-shortest path to
the sink t. Procedure NextPath(j, k) is recursive and constructs Ck(j) from
Ck−1(j). Lines 2–3 handle the base case where j is the source in which no new
path is produced. Line 5 initializes the candidate set for the second shortest
path to j using the original shortest paths. Lines 6–10 represent the recursive
case and compute a new candidate path by refining the k − 1th-shortest path.
They select the predecessor i of j that led to the k − 1th-shortest path to j (i.e.,
P k′

(i) · j = P k−1(j) for some k′ < k) and generate a new path to i. This path,
if it exists, is concatenated with j and inserted in Ck(j) together with the paths
in Ck−1(j). Lines 12–16 select the shortest path P k(j) and remove the shortest
path from Ck(j), which will be used when computing Ck+1(j). Note that, in
the actual implementation, it is sufficient to keep a single set C(j) for all the
shortest-path candidates to j. Algorithm 1 can easily be adapted to do so.

A Hybrid Algorithm for the PSP. Empirical evaluations indicate that the KSP
algorithm is very fast in finding an optimal elementary path in most cases.
However, there are PSP instances for which the algorithm needs to enumerate
an extremely large number of paths (k > 106). Moreover, in some instances, k
is so large that the algorithm runs out of memory before finding an elementary
path. These observations indicate that a hybridization of MIP or CP with the
KSP algorithm should exploit the strengths of both approaches. The hybrid
algorithm first enlists the KSP algorithm to enumerate all the k-shortest paths
up to a fixed k-threshold. If no elementary path is found before the threshold
is reached, the MIP or CP model is solved. As long as the threshold is set
appropriately, the hybrid algorithm harnesses the speed benefits of the KSP
algorithm while addressing its limitation.

A Column-Generation Algorithm for Evacuation Planning 559

Algorithm 1. Next Shortest Path Algorithm
Require: P 1(j), P 2(j), . . . , P k−1(j), k > 1
1: procedure NextPath(j, k)
2: if j = s then
3: return ⊥
4: if k = 2 then
5: Ck−1(j) ← {P 1(i) · j | i ∈ α−(j)} \ {P 1(j)}
6: Let i be a node and k′ be an index such that P k′

(i) · j = P k−1(j)

7: if P k′+1(i) has not been computed then

8: P k′+1(i) ←NextPath(i, k′ + 1)

9: if P k′+1(i) �= ⊥ then

10: Ck(j) ← Ck−1(j) ∪ {P k′+1(i) · j}
11: if Ck(j) �= Ø then
12: P k(j) ← arg minP∈Ck(j)L(P)

13: Ck(j) ← Ck(j) \ {P k(j)}
14: return P k(j)
15: else
16: return ⊥

5 Experimental Results

The algorithms were evaluated on a real case study: the evacuation scenario of
the Hawkesbury-Nepean (HN) region located north-west of Sydney, Australia,
in case of a breach of the Warragamba dam. The evacuation graph consists of
80 evacuation nodes, 184 transit nodes, 5 safe nodes, and 580 arcs. While the
region has a total of 38343 vehicles to be evacuated, the experimental results also
consider scenarios with increased demand by linearly scaling the vehicle count
by factor x ∈ [1.0, 3.0]. We refer to a particular scenario as HN80-Ix with x
representing the scaling factor. These scenarios are realistic given the significant
population growth in the West Sydney region.

Each evacuation plan is given a time horizon of H = 10 h discretized into
5 min time steps. F is populated with step response curves with flow rates of
γ ∈ {2, 6, 10, 25, 50} vehicles per time step. The original PSP is solved using the
Bellman-Ford algorithm as in [13]. All algorithms were implemented in C++
with Gurobi 6.5.2 being invoked to solve all LPs and MIPs. In each iteration
of the column-generation procedure, the PSPs for each k ∈ E and f ∈ F are
solved in parallel using OpenMP, and all negative reduced cost columns found
are added to the MP. IBM CP Optimizer 12.6.2 is used for the CP method.
All experiments were conducted on a high-performance computing cluster with
8 cores of a 2.5 GHz Intel Xeon E5-2680v3 processor and 64 GB of RAM. CPU
time limits of 96 h and 24 h are imposed on the column-generation phase and
the final iteration of the master problem.

560 M.H. Hasan and P. Van Hentenryck

5.1 Comparing the Three Approaches

The results first compare the performance of the KSP, MIP, and CP methods for
solving the PSPs for instance HN80-I1.0. The results report the time spent for
solving each PSP, together with the k value of the KSP algorithm. The average
computation times are summarized in Fig. 9. The KSP algorithm was terminated
when k reached 106 due to its memory issues. The KSP algorithm is consistently
the fastest across the various ranges of k values, although its average solution
time experiences a sharp increase for k > 105. The MIP method comes in second
while the CP method is always the slowest. These results led us to combine
the KSP algorithm with the MIP method in the hybrid algorithm. Figure 10
shows the fraction of PSP instances solved for each range of k values. The figure
indicates that the majority of PSP instances are solvable by the KSP algorithm
with small k values and only approximately 10% of them require k > 106. This
makes the prospect of utilizing the hybrid algorithm very promising. With a
properly tuned k-threshold, the hybrid method will solve a large fraction of the
PSP instances with the fast KSP algorithm.

5.2 Tuning k-Threshold for the Hybrid Algorithm

Figure 11 shows the average solution times of the KSP-MIP hybrid algorithm
with k-threshold values of 105 and 106 for instance HN80-I1.0. The figure illus-
trates the trade-off involved when selecting the threshold. The algorithm with
a 106-threshold solves the PSP faster when k ∈ (105, 106] as its k-threshold is
not exceeded, whereas the algorithm with the 105-threshold resorts to using the
slower MIP method. However, when k > 106, the situation is reversed. While the
thresholds of both algorithms are exceeded, the 105 algorithm spends less time
trying to solve the PSP using the KSP algorithm. The 106 algorithm applies the
KSP algorithm until k = 106 before switching to the MIP method and hence
wastes more time. This suggests that an algorithm with a 105-threshold would

0.1

1.0

10.0

100.0

1000.0

10000.0

A
ve

ra
ge

 ti
m

e
(s

)

Range of k

KSP MIP CP

Fig. 9. Average computation times of
the algorithms as a function of the
range of k in the KSP algorithm.

0%
10%
20%
30%
40%
50%
60%
70%
80%

Fr
ac

tio
n

of
 a

ll
PS

Ps

Range of k

Fig. 10. Distribution of the k value
needed by the KSP algorithm for find-
ing an elementary path.

A Column-Generation Algorithm for Evacuation Planning 561

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

A
ve

ra
ge

 ti
m

e
(s

)

Range of k

KSP
MIP
Hybrid k-threshold = 105
Hybrid k-threshold = 106

Fig. 11. Computation times of the
KSP-MIP algorithm with thresholds
k = 105 and k = 106.

0
20
40
60
80

100
120
140
160
180
200
220

HN80-I1.0 HN80-I1.1 HN80-I1.2 HN80-I1.4

A
ve

ra
ge

 ti
m

e
(s

)

Original PSP k = 10³
k = 104 k = 105
k = 106

Fig. 12. Computation times for the
KSP-MIP algorithm during column
generation.

be faster overall if the fraction of PSP instances with k > 106 is larger than
those with k ∈ (105, 106].

To get a better sense of threshold values that would result in the shortest
PSP times, we executed the column-generation algorithm with the KSP-MIP
algorithm with k-threshold ∈ {103, 104, 105, 106} on HN80-Ix instances with x
∈ {1.0, 1.1, 1.2, 1.4} and recorded the total time spent solving only the PSP
in each iteration. The experiment was not extended to larger instances due to
their prohibitively expensive computation times. Figure 12 reports the results
with the error bars describing the standard error. The average times of the
original PSP (i.e., without the elementary restrictions) are also included as a
reference baseline. For instances HN80-I1.0 and HN80-I1.2, the differences in
average computation times across various threshold values are not statistically
significant. However, in the other instances, a k-threshold of 105 resulted in
either the smallest or among the smallest average computation times. Therefore,
a k-threshold of 105 is used for the hybrid KSP-MIP algorithm in all subsequent
experiments.

5.3 Overall Performance of the Evacuation Planning Algorithm

Results of the column-generation phase of the algorithm with the original and ele-
mentary path formulations on all HN80-Ix instances are summarized in Table 1.
The table shows the number of iterations, the number of columns generated,
the final objective values, and the CPU time consumed during the column-
generation phase of both algorithms. The key result is that the new formulation
successfully produces time-response evacuation plans with elementary paths while
maintaining the same final objective values as the original in all instances. The
minor difference in objective values for some instances (e.g. HN80-I2.5) could be
attributed to the column-generation phase being terminated before convergence.
This means that the elementary path constraints do not induce any quality loss
for the scenarios tested. Furthermore, for instances where the phase converged

562 M.H. Hasan and P. Van Hentenryck

Table 1. Results of column-generation phase using original and elementary path PSP
formulations.

Instance Original PSP Elementary path PSP

Iter Column Final CPU time Iter Column Final CPU time

obj. val. (mins) # # obj. val. (mins)

HN80-I1.0 79 12251 8816 39 79 11678 8816 124

HN80-I1.1 104 15072 10405 136 95 13853 10405 218

HN80-I1.2 229 22571 12116 799 190 19543 12116 834

HN80-I1.4 152 20184 15935 690 108 17048 15935 404

HN80-I1.7 178 21871 22635 1312 120 19883 22635 2760

HN80-I2.0 197 31418 30490 5760 145 25051 30490 5760

HN80-I2.5 121 22806 46189 5760 129 23513 46188 5760

HN80-I3.0 132 31726 1.96 × 109 5760 87 21233 1.96 × 109 5760

before the CPU time limit (i.e., x ∈ [1.0, 1.7]), the new formulation generally
converges in fewer iterations and produces fewer columns than the original for-
mulation. This can be attributed to the new formulation considering a smaller
subset of all possible paths (only elementary ones) while the original considers
all possible paths. The CPU time of the new formulation is consistently higher
in almost all instances. This is not surprising since the new PSP formulation
involves solving an NP-hard problem whereas the original is solved using a low
polynomial-time algorithm. The challenge of solving a harder PSP is alleviated
by the reduced number of iterations and the efficiency of the hybrid algorithm,
which eventually results in only a modest increase in CPU time.

The results of the final MIP are summarized in Table 2 for both the orig-
inal and new formulations. It shows the duality gap, evacuation percentage,
evacuation end time, and total CPU time (column generation plus final MIP)
consumed by both formulations on all HN80-Ix instances. The duality gap is cal-
culated using zMP,MIP−zMP,LP

zMP,MIP
where zMP,LP and zMP,MIP are the final objective

values of the MP LP and MP MIP respectively, the evacuation percentage is the
fraction of evacuees reaching the safe nodes at the end of the time horizon, and
the evacuation end time is simply the time at which the last evacuee reaches its
safe destination. Aside from the final MIP of the new formulation successfully
producing final evacuation plans with only elementary paths in all instances,
the results across both formulations are approximately even. The 24 h time limit
for the final MIP was reached in all instances for both formulations. Both also
attained 100% evacuation in the first four instances, producing duality gaps of
less than 15% in the first three. Both formulations have 100% duality gaps for x
∈ [1.7, 2.5], which can be attributed to the huge penalty incurred in the objec-
tive value of the final MIP due to not being able to evacuate everyone when its
linear relaxation did. The new formulation also manages to complete evacuation
earlier in two instances, HN80-I1.0 and HN80-I1.2.

A Column-Generation Algorithm for Evacuation Planning 563

Table 2. Results of entire column-generation algorithm using original and elementary
path PSP formulations.

Instance Original PSP Elementary path PSP

Duality Evac. Evac. CPU Duality Evac. Evac. CPU

gap perc. end time gap perc. end time

(%) (%) (mins) (mins) (%) (%) (mins) (mins)

HN80-I1.0 13.7 100.0 580 1479 12.3 100.0 550 1564

HN80-I1.1 13.6 100.0 510 1576 12.3 100.0 510 1658

HN80-I1.2 14.1 100.0 575 2239 14.7 100.0 565 2274

HN80-I1.4 15.1 100.0 600 2130 16.3 100.0 600 1844

HN80-I1.7 100.0 98.3 - 2752 100.0 96.2 - 4200

HN80-I2.0 100.0 89.9 - 7200 100.0 91.0 - 7200

HN80-I2.5 100.0 94.7 - 7200 100.0 92.5 - 7200

HN80-I3.0 69.1 77.3 - 7200 59.6 82.7 - 7200

6 Conclusion

This paper considered zone-based non-preemptive evacuation plans, where each
zone is assigned a unique path to safety and the flow of evacuees over time in the
zone follows one of a set of specified response curves. It proposes a generaliza-
tion of the column-generation approach in [13] which was discovered to contain
a critical shortcoming: The algorithm can produce non-elementary evacuation
paths, i.e., evacuation paths that visit the same node multiple times over the
course of an evacuation. Non-elementary paths are undesirable in practice and
evacuees are highly unlikely to follow such plans.

This paper addressed this limitation and formulated a novel pricing subprob-
lem, which can be modeled as a constrained least-cost path in the time-expanded
graph. The paper also explored four approaches to solve the pricing subprob-
lem: a MIP model, a CP model, and an algorithm based on the k-shortest-path
problem, as well as their hybridization. Experimental results on a real case study
showed that the hybridization of a k-shortest-path algorithm and a MIP model
is most effective in practice. The paper also shows that the threshold to switch
from the k-shortest-path algorithm to the MIP model can be tuned to provide
an optimal switching point. Experimental results on the real case study of the
Hawkesbury-Nepean region show that the new optimization algorithm generates
evacuation plans with elementary paths that match the objective value and dual-
ity gap of the original formulation in [13]. Moreover, these practical evacuation
plans can be obtained at the cost of a modest increase in CPU time.

This paper thus provided the first optimization approach to produce zone-
based, non-preemptive evacuation plans with elementary paths. These evacua-
tion plans are inherently practical. They provide paths that evacuees will feel
comfortable complying to. Moreover, emergency services often have mobilization

564 M.H. Hasan and P. Van Hentenryck

teams to ensure that the response curves are implemented properly as is the
case in New South Wales. Future research will be devoted to studying how to
integrate the proposed algorithm with convergent plans [7,15] and expansion
planning, and speeding up the constraint program using a global shortest-path
constraint.

References

1. Bish, D.R., Sherali, H.D., Hobeika, A.G.: Optimal evacuation planning using stag-
ing and routing. J. Oper. Res. Soc. 65(1), 124–140 (2014)

2. Bish, D.R., Sherali, H.D.: Aggregate-level demand management in evacuation plan-
ning. Eur. J. Oper. Res. 224(1), 79–92 (2013)

3. Bretschneider, S., Kimms, A.: Pattern-based evacuation planning for urban areas.
Eur. J. Oper. Res. 216(1), 57–69 (2012)

4. Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing.
Transp. Res. Part A: Policy Pract. 37(7), 579–604 (2003)

5. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation, vol. 5.
Springer Science & Business Media, Berlin (2006)

6. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

7. Even, C., Pillac, V., Van Hentenryck, P.: Convergent plans for large-scale evacua-
tions. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, pp. 1121–1127. AAAI Press (2015)

8. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In:
Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 33–
65. Springer, Boston (2005). doi:10.1007/0-387-25486-2 2

9. Jiménez, V.M., Marzal, A.: Computing the K shortest paths: a new algorithm
and an experimental comparison. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE
1999. LNCS, vol. 1668, pp. 15–29. Springer, Heidelberg (1999). doi:10.1007/
3-540-48318-7 4

10. Lim, G.J., Zangeneh, S., Baharnemati, M.R., Assavapokee, T.: A capacitated net-
work flow optimization approach for short notice evacuation planning. Eur. J.
Oper. Res. 223(1), 234–245 (2012)

11. Miller-Hooks, E., Sorrel, G.: Maximal dynamic expected flows problem for emer-
gency evacuation planning. Transp. Res. Record: J. Transp. Res. Board 2089,
26–34 (2008)

12. Pel, A.J., Bliemer, M.C.J., Hoogendoorn, S.P.: A review on travel behaviour mod-
elling in dynamic traffic simulation models for evacuations. Transportation 39(1),
97–123 (2012)

13. Pillac, V., Cebrian, M., Van Hentenryck, P.: A column-generation approach for
joint mobilization and evacuation planning. Constraints 20(3), 285–303 (2015)

14. Pillac, V., Van Hentenryck, P., Even, C.: A conflict-based path-generation heuristic
for evacuation planning. Transp. Res. Part B 83, 136–150 (2016)

15. Romanski, J., Van Hentenryck, P.: Benders decomposition for large-scale prescrip-
tive evacuations. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 3894–3900. AAAI Press (2016)

16. Xie, C., Lin, D.Y., Waller, S.T.: A dynamic evacuation network optimization prob-
lem with lane reversal and crossing elimination strategies. Transp. Res. Part E:
Logist. Transp. Rev. 46(3), 295–316 (2010)

http://dx.doi.org/10.1007/0-387-25486-2_2
http://dx.doi.org/10.1007/3-540-48318-7_4
http://dx.doi.org/10.1007/3-540-48318-7_4

Job Sequencing Bounds from Decision Diagrams

J.N. Hooker(B)

Carnegie Mellon University, Pittsburgh, USA
jh38@andrew.cmu.edu

Abstract. In recent research, decision diagrams have proved useful for
the solution of discrete optimization problems. Their success relies on
the use of relaxed decision diagrams to obtain bounds on the optimal
value, either through a node merger or a node splitting mechanism. We
investigate the potential of node merger to provide bounds for dynamic
programming models that do not otherwise have a practical relaxation,
in particular the job sequencing problem with time windows and state-
dependent processing times. We prove general conditions under which a
node merger operation yields a valid relaxation and apply them to job
sequencing. Computational experiments show that, surprisingly, relaxed
diagrams prove the optimal value when their size is only a small fraction
of the size of an exact diagram. On the other hand, a relaxed diagram of
fixed size ceases to provide a useful bound as the instances scale up.

1 Introduction

Decision diagrams have historically been used for circuit design and verification
[1,12,22,23] and a variety of other purposes [24,27]. Recent research indicates
that decision diagrams provide an alternative approach to discrete optimization
and constraint solving [2,9,14]. Of special interest to optimization is the fact that
decision diagrams are well suited to dynamic programming (DP) formulations,
because the diagrams are essentially state transition graphs. Viewing DP from
the perspective of decision diagrams opens the door to new techniques for solving
DP problems, such as branch-and-bound methods [9].

A key element of this development is the use of relaxed decision diagrams to
derive a bound on the optimal value. Optimization bounds are useful not only in
branch-and-bound methods, but for assessing the quality of solutions obtained
by heuristics, and perhaps for proving their optimality. Because the exact (non-
relaxed) diagram tends to grow exponentially with the number of variables, it is
vital to find relaxed diagrams of limited size.

Two methods for constructing relaxed decision diagrams of limited size were
introduced in [2]: node merger and node splitting. Node merger reduces the size
of the diagram by introducing some infeasible solutions. Node splitting works in
the opposite direction: by beginning with a diagram that represents all possible
solutions and creating new nodes to exclude some infeasible solutions.

We investigate here the potential for node merger to relax DP formulations,
particularly those for which good relaxations are not currently available. While
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 565–578, 2017.
DOI: 10.1007/978-3-319-66158-2 36

566 J.N. Hooker

a great advantage of DP is that it does not presuppose convexity, linearity,
or even a closed-form description of the problem, this very generality often
makes it difficult to find a good relaxation. The problem may also be difficult to
solve due to the exponential growth of the state space, known as the “curse of
dimensionality”.

We focus on a job sequencing problem in which processing times are state-
dependent. Due to this state dependency, the problem does not have a practical
mixed-integer or other formulation for which a relaxation is readily available. We
wish to determine whether relaxed decision diagrams of limited size can provide
a useful bound and therefore assist in finding an optimal solution.

Node merger has not previously been applied to job sequencing problems, or
apparently to any problems for which no effective relaxation is known. While
various types of sequencing problems are solved by decision diagrams in [14],
the relaxed diagrams are created by node splitting rather than merger. It is
therefore important to investigate the potential of node merger as a relaxation
technique for DP. Because the job sequencing problem studied here is a simple
representative of a broad class of sequencing problems, the results could have
wider implications.

After a brief review of previous work, we begin with a description of exact and
relaxed decision diagrams and how they relate to DP, using the job sequencing
problem as an example. We then prove general sufficient conditions under which
node merger yields a valid relaxed diagram, since conditions of this kind have
never appeared in the literature. They allow us to show that a proposed merger
rule for the job sequencing problem produces a valid relaxation. We then describe
alternative heuristics for selecting nodes to merge, because an effective merger
heuristic is essential to obtaining tight bounds.

We report computational experiments that show the somewhat surprising
result that bounds obtained from relaxed diagrams reach the optimal value
rather quickly, when the diagrams are only a small fraction of the size of an
exact diagram. This allows relaxed diagrams to prove the optimality of a heuris-
tically obtained solution in much less time than would otherwise be necessary.
On the other hand, relaxed diagrams of any given fixed size cease to prove a
useful bound as the instances scale up. In the conclusion, we suggest a research
direction that addresses this issue.

2 Previous Work

Decision diagrams were first proposed as an optimization method by [16,20].
Other early applications to optimization include cut generation for integer pro-
gramming [4], post-optimality analysis [15,16], and vertex and facet enumeration
[5]. The idea of a relaxed decision diagram was introduced by [2] for constraint
programming. Subsequent applications are described by [6,17–19]. Relaxed dia-
grams were used to obtain optimization bounds in [7,11]. Branching within a
relaxed diagram was introduced by [9]. Connections between decision diagrams

Job Sequencing Bounds from Decision Diagrams 567

and deterministic dynamic programming, including nonserial dynamic program-
ming, are discussed in [21]. A comprehensive survey of decision diagrams as an
optimization technique appears in [8].

Relaxation of a decision diagram is superficially related to state space relax-
ation in dynamic programming [3,13,25,26], but there are several fundamental
differences. A relaxed decision diagram is created by splitting or merging nodes
rather than mapping the state space into a smaller space. It can be tightened by
filtering techniques. It is constructed dynamically as the diagram is built, rather
than by defining a mapping a priori. It uses the same state variables as the exact
formulation, which allows the relaxed diagram to be used as a branching frame-
work for an exact branch-and-bound method. The relaxation can be calibrated
to provide a bound of any desired quality, up to optimality, simply by adjusting
the maximum width to be observed by the diagram while it is created.

3 Decision Diagrams

For our purposes, a decision diagram can be defined as a directed, acyclic multi-
graph in which the nodes are partitioned into layers. Each arc of the graph is
directed from a node in layer j to a node in layer j + 1 for some j ∈ {1, . . . , n}.
Layers 1 and n + 1 contain a single node, namely the root r and the terminus
t, respectively. Each layer j is associated with a finite-domain variable xj ∈ Dj .
The arcs leaving any node in layer j have distinct labels in Dj , representing pos-
sible values of xj at that node. A path from r to t defines an assignment to the
tuple x = (x1, . . . , xn) as indicated by the arc labels on the path. The decision
diagram is weighted if there is a length (cost) associated with each arc.

Any discrete optimization problem with variables x1, . . . xn and a separable
objective function

∑
j fj(xj) can be represented by a weighted decision diagram.1

The diagram is constructed so that its r–t paths correspond to the feasible
solutions of the problem, and the cost of an arc with label vj leaving layer j is
fj(vj). The length (cost) of any r–t path is the objective function value of the
corresponding solution. If the objective is to minimize, the optimal value is the
length of a shortest r–t path.

Many different diagrams can represent the same problem, but for a given
variable ordering, there is a unique reduced diagram that represents it [12,21]. A
diagram is reduced when for any pair of nodes u, u′ in a given layer j, the set of
u–t paths and their costs is different from the set of u′–t paths and their costs.
That is, the two sets correspond to different sets of assignments to xj , . . . , xn or
different costs.

As an example, consider a small instance of the job sequencing problem with
time windows (Table 1). The jobs must be sequenced so that each job j begins
processing no earlier than the release time rj and requires processing time pj . We
assume that for a given sequencing, the start time of job j is sj = max{rj , si+pi},
where i is the immediately preceding job in the sequence, and the first job
1 Problems with nonseparable objective functions can also be represented, as described

in [21], but to simplify exposition we omit this possibility.

568 J.N. Hooker

starts at its release time. The objective is to minimize total tardiness, where the
tardiness of job j is max{0, sj + pj − dj}, and dj is the job’s due date.

Table 1. A small instance of a job scheduling problem.

j rj pj dj

1 0 3∗ 4

2 1 2 3

3 1 2 5
∗2 when job 2
has previously
been processed.

We can make the processing time state-dependent by supposing that it
depends on which jobs have already been processed. This frequently occurs in
practice, as processing one job may involve the fabrication of parts that can be
used when processing another job. In the example, we suppose that the process-
ing time p1 for job 1 is 2 (rather than 3) when job 2 has been processed.

Figure 1 shows a reduced decision diagram that represents the problem. Vari-
able xj represents the jth job in the sequence. Each arc indicates its label and
immediate cost (the latter in parentheses). Each r–t path encodes a feasible
schedule, and any shortest (minimum-cost) r–t path indicates an optimal solu-
tion of the problem.

x1

x2

x3

r

1(0)
2(0)

3(0)

2(2) 3(0) 1(1)
3(0)

2(2) 1(2)

t

3(2)

2(4)
3(2)

1(3)

2(5)

Fig. 1. Decision diagram for the job sequencing instance of Table 1.

When a problem is formulated recursively, a simple top-down compilation
procedure yields a decision diagram that represents the problem. A general recur-
sive formulation can be written

hj(Sj) = min
xj∈Xj(Sj)

{
cj(Sj , xj) + hj+1

(
φj(Sj , xj)

)}
(1)

Job Sequencing Bounds from Decision Diagrams 569

Here, Sj is the state in stage j of the recursion, Xj(Sj) is the set of possible
controls (values of xj) in state Sj , φj is the transition function in stage j, and
cj(Sj , xj) is the immediate cost of control xj in state Sj . We assume there is
single initial state S1 and a single final state Sn+1, so that hn+1(Sn+1) = 0 and
φn(Sn, xn) = Sn+1 for all states Sn and controls xn ∈ Xn(Sn). The quantity
hj(Sj) is the cost-to-go for state Sj in stage j, and an optimal solution has value
h1(r).

In the job sequencing problem, the state Sj is the tuple (Vj , fj), where Vj is
the set of jobs scheduled so far, and fj is the finish time of the last job scheduled.
Thus the initial state is r = (∅, 0), and Xj(Sj) is {1, . . . , n} \ Vj . The transition
function φj(Sj , xj) is given by

φj

(
(Vj , fj), xj

)
=

(
Vj ∪ {xj}, max{rxj

, fj} + pxj
(Vj)

)

Note that the processing time pxj
(Vj) depends on the current state Vj as well

as the control xj . The immediate cost cj((Vj , fj), xj) is the tardiness that results
from scheduling job xj in state (Vj , fj), namely (max{rxj

, fj}+pxj
(Vj)−dxj

)+,
where α+ = max{0, α}.

We recursively construct a decision diagram D for the problem by associating
a state with each node of D. The initial state S1 is associated with the root node
t and the final state Sn+1 with the terminal node t. If state Sj is associated with
node u in layer j, then for each vj ∈ Xj(S) we generate an arc with label vj
leaving u. The arc terminates at a node associated with state φj(S, vi). Nodes
on a given layer are identified when they are associated with the same state.

The process is illustrated for the job sequencing example in Fig. 2. Each
node is labeled by its state (Vj , fi), followed (in parentheses) by the minimum
cost-to-go at the node. The cost-to-go at the terminus t is zero.

x1

x2

x3

r

{}0(3)

{1}3(4) {2}3(3) {3}3(5)

1(0)
2(0)

3(0)

{12}5(2) {13}5(4) {12}5(2) {23}5(3) {13}6(5)

2(2) 3(0) 1(1)
3(0)

2(2) 1(2)

t

3(2)

2(4)
3(3)

1(3)

2(5)

Fig. 2. Decision diagram, with states and minimum costs-to-go, for the job sequencing
instance of Table 1.

570 J.N. Hooker

4 Relaxed Decision Diagrams

A weighted decision diagram D′ is a relaxation of diagram D when D′ represents
every solution in D with equal or smaller cost, and perhaps other solutions as
well. To make this more precise, suppose layers 1, . . . , n of both D and D′ corre-
spond to variables x1, . . . , xn with domains X1, . . . , Xn. Then D′ is a relaxation
of D if every assignment to x represented by an r–t path P in D is represented
by an r–t path in D′ with length no greater than that of P . The shortest path
length in D′ is a lower bound on the optimal value of the problem represented
by D. We will refer to a diagram that has not been relaxed as exact.

We can construct a relaxed decision diagram by top-down compilation, again
based on the recursive model (1). The procedure is as before, except that rather
than simply identify nodes in each layer that are associated with the same states,
we may also merge some nodes. That is, we may identify some nodes that are
associated with different states. The object is to keep the width of the diagram
(the maximum number of nodes in a layer) within a predetermined bound W .
When we merge nodes with states S and T , we associate a state S ⊕ T with the
resulting node. The operator ⊕ is chosen so as to yield a valid relaxation of the
given recursion.

It is frequently necessary to introduce additional state variables to define a
suitable merger operation [9], and this is the case in the job sequencing example.
The state at a node will consist of (V,U, f), where V and f are as before, and
U contains the jobs that occur along some path from the root. The processing
time pxj

(U) of a job xj depends on the jobs in U . The transition function is

φj

(
(V,U, f), xj

)
=

(
V ∪ {xj}, U ∪ {xj},max{rxj

, f} + pxj
(U)

)

and the immediate cost is cj((V,U, f), xj)=(max{rxj
, f}+pxj

(U)−dxj
)+. Merg-

ing states (V,U, f) and (V ′, U ′, f ′) results in state (V ∩ V ′, U ∪ U ′,min{f, f ′}).
We will see in the next section that this merger operation results in a valid
relaxation.

x1

x2

x3

r

{}{}0(2)

{1}{1}3(4) {2}{2}3(2) {3}{3}3(4)

1(0)
2(0)

3(0)

{12}{12}5(2) {13}{13}5(4) {2}{123}5(2) {13}{13}6(5)

2(2) 3(0) 1(1)

3(0)
2(2) 1(2)

t

3(2)

2(4)
3(2)

1(3)

2(5)

Fig. 3. A relaxation of the decision diagram in Fig. 2.

Job Sequencing Bounds from Decision Diagrams 571

The merger operation is illustrated in Fig. 3, which is the result of merging
states ({1, 2}, 5) and ({2, 3}, 5) in layer 3 of Fig. 2. The expanded states (V,U, f)
are shown at each node, followed by the minimum cost-to-go in parentheses. The
shortest path now has cost 2, which is a lower bound on the optimal cost of 3 in
Fig. 2.

5 Conditions for Node Merger

We now develop general sufficient conditions under which node merger results
in a relaxed decision diagram. Such conditions have apparently not be explicitly
stated in the literature. It is shown in [19] that it suffices for the merged state
to be a union of the states merged, but it is not useful to represent the merged
state as a union of states. The merged state must be given in terms of the state
variables in the states merged, so that the construction of the relaxed diagram
can proceed with the same transition function and immediate cost function as
at other nodes.

We will say that a state S′ in layer j relaxes a state S in layer j when (a) all
feasible controls in state S are feasible in state S′, and (b) the immediate cost
of any given feasible control in S is no less than its immediate cost in S′. That
is, Xj(S) ⊆ Xj(S′), and cj(S, xj) ≥ cj(S′, xj) for all xj ∈ Xj(S). Then node
merger results in a valid relaxation when two conditions are satisfied. One is a
condition on the transition function generally: when one state relaxes another,
this must continue to hold when the same control is applied to both states.
That is,

(C1) If state S′ relaxes state S, then given any control v that is feasible in S,
φ(S′, v) relaxes φ(S, v).

The second condition places a requirement on the merger operation specifically.
Namely, when two states are merged, the resulting state relaxes both of the
states that are merged.

(C2) S ⊕ T relaxes both S and T .

We can now prove the relevant theorem. Let c(P) be the cost (length) of path
P in a decision diagram. It is also convenient to let D′

k be the first k layers of
the relaxed diagram D′ obtained during top-down compilation, but just before
identifying and merging nodes in layer k. Thus D′

n+1 = D′.

Theorem 1. If conditions (C1) and (C2) are satisfied, the merger of nodes with
states S and T within a diagram D results in a valid relaxation of D.

Proof. Let D be the exact decision diagram that results from top-down compi-
lation, and let D′ be the diagram that results from top-down compilation with
node merger. It suffices to show claim (Hk) inductively for k = 1, . . . , n + 1:

572 J.N. Hooker

(Hk) Consider any path P from r to any u in layer k of D. Then D′
k contains a

path P ′, from r to a node u′ in layer k, that represents the same assignment
to (x1, . . . , xk−1). Furthermore c(P) ≥ c(P ′), and the state S′ at u′ relaxes
the state S at u.

Claim (H1) is trivially true. We therefore suppose (Hk) is true and show (Hk+1).
Consider a path P̄ from r to ū in layer k+1 of D. We must show that D′

k+1 con-
tains a path P̄ ′, from r to ū′, that represents the same assignment to (x1, . . . , xk).
Furthermore, we must show that c(P̄) ≥ c(P̄ ′), and that the state S̄′ at ū′ relaxes
the state S̄ at ū.

Let P be the portion of path P̄ that extends from r to a node u in layer k
of D. By the induction hypothesis (Hk), D′

k contains a path P ′, terminating at
some node u′ in layer k, that represents the same assignment to (x1, . . . , xk−1).
Now D′

k+1 is formed by identifying and merging nodes in layer k of D′
k and

generating arcs from the resulting nodes. Thus if S′ is the state at u′ in D′
k, S′

is merged with zero or more other states to form a state T . If v is a control that
extends P to P̄ , then v is likewise a feasible control in state T . This is because
T relaxes S′ by condition (C2), and S′ relaxes S by (Hk), which implies that T
relaxes S. Now we can let P̄ ′ be the path in D′

k+1 that results from extending
P ′ at state T with control v. To see that c(P̄) ≥ c(P̄ ′), note that

c(P̄) = c(P) + ck(S, v) ≥ c(P ′) + ck(S′, v) ≥ c(P ′) + ck(T, v) = c(P̄ ′)

where the first inequality is due to (Hk), and the second inequality is due to
condition (C2). To show that S̄′ relaxes S̄, we note again that T relaxes S. This
and condition (C1) imply that S̄′ relaxes S̄, as desired. �

The merger operation defined earlier for the job sequencing problem satis-
fies conditions (C1) and (C2). To see that (C1) is satisfied, suppose (V ′, U ′, f ′)
relaxes (V,U, F), which means that V ′ ⊆ V , U ′ ⊇ U , and f ′ ≤ f . Then if control
v is applied to either state, we have V ′ ∪ {v} ⊆ V ∪ {v} and U ′ ∪ {v} ⊇ U ∪ {v}.
Also

min{rv, f
′} + pv(U ′) ≤ min{rv, f} + pv(U)

because f ′ ≤ f and pv(U ′) ≤ pv(U), the latter due to the fact that U ′ ⊇ U . So
φj((V ′, U ′, f ′), v) relaxes φj((V,U, f), v), and (C1) follows. To show (C2), recall
that (V,U, f) and (V ′, U ′, f ′) are merged to form (V ∩ V ′, U ∪ U ′,min{f, f ′}).
The merger relaxes the two states that are merged because V ∩ V ′ ⊆ V, V ′,
U ∪ U ′ ⊇ U,U ′, and min{f, f ′} ≤ f, f ′.

6 Merging Heuristics

We now address the question of which nodes to merge in a given layer so as
to reduce the width to W . The merger strategy should be designed so that the
diagram remains exact, to the extent possible, along paths that are likely to
be optimal. Merging nodes in the remainder of the diagram will not affect the
optimal solution and therefore the bound. The merger strategy is particularly

Job Sequencing Bounds from Decision Diagrams 573

important when processing times are state-dependent, because the additional
state variable U results in smaller values for the state variable f and therefore
shorter paths in the diagram, yielding a weaker bound.

We therefore need some indication of whether a given node is likely to lie
on a shortest path. The most readily available indication is the state variable
f , since it represents the finish time of the most recent job processed. If f is
large, then the cost of a path through the node is more likely to be large. We
can merge two nodes with the largest values of f and repeat the process until
the width is reduced to W . We will refer to this as the finish time heuristic.

Another possibility is to compute the shortest path to a given node from the
root. If the shortest path is already long, it is likely to be still longer by the time
it reaches the terminus. We therefore merge nodes to which the shortest path
from the root is longest. We will refer to this as the shortest path heuristic.

In the next section, we compare the effectiveness of these heuristic against a
control heuristic that consists of randomly selecting nodes to merge.

7 Computational Experiments

The aim of the computational experiments is to determine how the quality of the
bound depends on the width of the relaxed decision diagram. To our knowledge,
there are no benchmark sets for sequence-dependent processing times, and so we
ran tests on randomly generated problem instances. A meaningful assessment
of the bound quality requires that we be able to solve the instances exactly,
because the optimal values vary widely from zero to a rather large number. We
must therefore generate instances that are small enough to be solved exactly in
reasonable time.

Dynamic programming is the only viable method for exact solution of
problems with general state dependence, including problems with sequence-
dependent processing times. Since the state space becomes impracticably large
for instances with more than 14 jobs, we generated and solved instances with 12
and 14 jobs. We found that the results are quite consistent over these instances,
which suggests that the pattern may continue for larger instances.

Instances are generated as follows. The normal processing time pj is drawn
uniformly from the interval [pmin, pmax]. To make the processing time state
dependent, we reduce it to pj/2 when j is even and job j − 1 has already been
processed. The release time is drawn uniformly from [0, npmin/2], where n is the
number of jobs. The due date is dj = rj + pj + slackj , where slackj is drawn
uniformly from [kpmin, kpmax]. We used k = 4 for 12 jobs and k = 5 for 14 jobs
to obtain minimum tardiness values that are generally positive but not unrealis-
tically large. We also set [pmin, pmax] = [10, 16]. The first 5 random instances are
used for each problem size, after discarding those with zero minimum tardiness,
because they provide no information about the quality of the bound.

Figures 4 and 5 show the results, using the finish time heuristic. The bound
is plotted against the width of the relaxed diagram, where the latter is on a
logarithmic scale. The bounds are sampled at 10 points per factor of 10 for 12

574 J.N. Hooker

0

10

20

30

40

50

60

70

80

10 100 1000 10000 100000

Bo
un

d

Maximum width

41 s

1.0 s

3.2 s 27 s

2.4 s

1.2 s 30 s

4.3 s 46 s

0.4 s 39 s

1.4 s

Fig. 4. 12-job instances: relaxation bound versus decision diagram width, up to the
width of an exact diagram. Selected computation times are shown.

0

10

20

30

40

50

60

100 1000 10000 100000

Bo
un

d

Maximum width

142 s 1297 s

17 s
39 s 956 s

72 s 1568 s

136 s 1003 s

56 s

932 s

Fig. 5. 14-job instances: relaxation bound versus decision diagram width, up to the
width of an exact diagram. Selected computation times are shown.

Job Sequencing Bounds from Decision Diagrams 575

jobs, and 20 points per factor of 10 for 14 jobs. The far right end of each curve
represents an exact decision diagram for the instance, which is equivalent to the
state transition graph for the dynamic programming formulation of the problem.
Selected computation times are shown on the curves. The computation time for
a given width is very similar across all instances of a given size. The computation
time for the exact diagram indicates the time necessary to solve the problem by
dynamic programming.

The curves follow a different pattern than those reported for other types of
problems, which tend to approach the optimal value asympotically [7]. Once the
curves begin to rise above zero, they increase rapidly and level off at the optimal
value when the width is less than one-tenth the width of an exact diagram.
Specifically, when there are 12 jobs, the optimal value is achieved for diagrams
that are between 1/32 and 1/15 the width of an exact diagram, and when there
are 14 jobs, between 1/26 and 1/10 the width of an exact diagram. On the other
hand, the bound does not rise above zero until the width of the relaxed diagram
is roughly 1/1000 to 1/25 the width of an exact diagram. This indicates that
diagrams of a fixed maximum width, such as 1000 or 10000, cease to provide
useful bounds as the instances scale up. The curves are not always monotonic
because the the bound depends on the merging heuristic, which may happen to
perform better for a smaller width than a slightly larger one.

Figure 6 compares the performance of three merging heuristics for one of the
12-job instances, namely the finish time, shortest path, and random selection
heuristics. The choice of heuristic is clearly key, as the finish time heuristic is
vastly superior to the others. Examination of the shortest paths from the root
at various nodes reveals why the shortest path heuristic fails. The shortest path
length tends to remain at zero in the upper layers of the diagram, which means
there is no guidance for node merger, resulting in bad merger decisions that

0

10

20

30

40

50

60

70

80

10 100 1000 10000

Bo
un

d

Maximum width

Finish me heuris c
Shortest path heuris c
Random merge

Fig. 6. Comparison of bound quality of three node merging heuristics on a 12-job
instance.

576 J.N. Hooker

propagate through the remainder of the diagram. Random merger is even worse,
resulting in no useful bounds until the diagram is nearly exact.

8 Conclusions

We undertook a preliminary investigation of the potential of node merger as a
relaxation mechanism for dynamic programming problems, particularly those for
which no practical relaxation method exists. We focused on the job sequencing
problem with time windows and state-dependent processing times, because it
has no known mixed integer programming or other model that yields a useful
relaxation.

We first proved two conditions that are jointly sufficient for a node merger
operation to yield a valid relaxation, one a condition on the transition function of
the dynamic programming model, and one a condition on the merger operation
itself. We then formulated a merger rule for the job sequencing problem and
used the conditions to show that it results in a relaxed diagram.

Computational testing revealed that relaxed diagrams for this problem have
different characteristics than have been reported for other types of problems.
The relaxed diagram yields the optimal value when its width is a small fraction
of the width of an exact diagram. This allows a relaxed diagram to prove the
optimality of a solution obtained heuristically, using much less computation than
would otherwise be necessary.

On the other hand, diagrams of a fixed maximum width cease to provide
useful bounds as the instances scale up. A intriguing line of research would be to
use Lagrangian methods to strengthen the bounds provided by smaller diagrams.
These methods adjust the arc costs in the relaxed diagram to exclude poor
solutions while retaining a valid bound [10]. They have been used successfully in
other contexts and could prove a valuable enhancement of node merger for the
relaxation of dynamic programming models.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516
(1978)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 118–132. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7 11

3. Baldacci, R., Mingozzi, A., Roberti, R.: New state-space relaxations for solving
the traveling salesman problem with time windows. INFORMS J. Comput. 24(3),
356–371 (2012)

4. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut
framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463.
Springer, Heidelberg (2005). doi:10.1007/11427186 39

5. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Pro-
ceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX),
pp. 158–165. SIAM (2007)

http://dx.doi.org/10.1007/978-3-540-74970-7_11
http://dx.doi.org/10.1007/11427186_39

Job Sequencing Bounds from Decision Diagrams 577

6. Bergman, D., Ciré, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29828-8 3

7. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS J. Comput. 26, 253–268 (2013)

8. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for
Optimization. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42849-9

9. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with binary decision diagrams. INFORMS J. Comput. 28, 47–66 (2016)

10. Bergman, D., Ciré, A.A., van Hoeve, W.J.: Lagrangian bounds from decision dia-
grams. Constraints 20, 346–361 (2015)

11. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations
for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR
2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21311-3 5

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. C–35, 677–691 (1986)

13. Christofides, N., Mingozzi, A., Toth, P.: State-space relaxation procedures for the
computation of bounds to routing problems. Networks 11(2), 145–164 (1981)

14. Ciré, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Oper. Res. 61, 1411–1428 (2013)

15. Hadžić, T., Hooker, J.N.: Postoptimality analysis for integer programming using
binary decision diagrams. Carnegie Mellon University, Technical report (2006)

16. Hadžić, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 program-
ming. In: Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp.
84–98. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72397-4 7

17. Hadžić, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compila-
tion of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 30

18. Hadžić, T., Hooker, J.N., Tiedemann, P.: Propagating separable equalities in an
MDD store. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.
318–322. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68155-7 30

19. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15396-9 23

20. Hooker, J.N.: Discrete global optimization with binary decision diagrams. In:
GICOLAG 2006, Vienna, Austria, December 2006

21. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sell-
mann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38171-3 7

22. Hu, A.J.: Techniques for efficient formal verification using binary decision dia-
grams. Thesis CS-TR-95-1561, Stanford University, Department of Computer Sci-
ence, December 1995

23. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38, 985–999 (1959)

24. Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining
frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010)

http://dx.doi.org/10.1007/978-3-642-29828-8_3
http://dx.doi.org/10.1007/978-3-319-42849-9
http://dx.doi.org/10.1007/978-3-642-21311-3_5
http://dx.doi.org/10.1007/978-3-642-21311-3_5
http://dx.doi.org/10.1007/978-3-540-72397-4_7
http://dx.doi.org/10.1007/978-3-540-85958-1_30
http://dx.doi.org/10.1007/978-3-540-85958-1_30
http://dx.doi.org/10.1007/978-3-540-68155-7_30
http://dx.doi.org/10.1007/978-3-642-15396-9_23
http://dx.doi.org/10.1007/978-3-642-38171-3_7

578 J.N. Hooker

25. Mingozzi, A.: State space relaxation and search strategies in dynamic program-
ming. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, p. 51.
Springer, Heidelberg (2002). doi:10.1007/3-540-45622-8 4

26. Righini, G., Salani, M.: New dynamic programming algorithms for the resource
constrained shortest path problem. Networks 51, 155–170 (2008)

27. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications. Soci-
ety for Industrial and Applied Mathematics (2000)

http://dx.doi.org/10.1007/3-540-45622-8_4

Branch-and-Check with Explanations
for the Vehicle Routing Problem

with Time Windows

Edward Lam1,2(B) and Pascal Van Hentenryck3

1 CSIRO Data61, Eveleigh, NSW 2015, Australia
2 University of Melbourne, Parkville, VIC 3010, Australia

ed@ed-lam.com
3 University of Michigan, Ann Arbor, MI 48109-2117, USA

Abstract. This paper proposes the framework of branch-and-check with
explanations (BCE), a branch-and-check method where combinatorial
cuts are found by general-purpose conflict analysis, rather than by spe-
cialized separation algorithms. Specifically, the method features a mas-
ter problem that ignores combinatorial constraints, and a feasibility sub-
problem that uses propagation to check the feasibility of these constraints
and performs conflict analysis to derive nogood cuts. The BCE method
also leverages conflict-based branching rules and strengthens cuts in a
post-processing step. Experimental results on the Vehicle Routing Prob-
lem with Time Windows show that BCE is a potential alternative to
branch-and-cut. In particular, BCE dominates branch-and-cut, both in
proving optimality and in finding high-quality solutions quickly.

1 Introduction

Vehicle Routing Problems (VRPs) generalize the Travelling Salesman Problem
(TSP). The Capacitated Vehicle Routing Problem (CVRP) is a basic variant
that aims to design routes of minimal travel distance that deliver all requests
from a single depot while respecting vehicle capacity constraints. The Vehicle
Routing Problem with Time Windows (VRPTW) additionally requires requests
to be delivered within a given time window.

VRPs have been studied extensively over the past several decades, resulting
in significant computational progress (e.g., [31]). Solution techniques include
constraint programming (e.g., [7,8,28]), branch-and-bound, branch-and-cut
(e.g., [4,18,21]), branch-and-price (e.g., [10]), and combinations thereof (e.g.,
[3,13,16,25,26]). Branch-and-cut (BC) methods are of particular interest to this
paper. Their key idea is to omit difficult constraints from the original formula-
tion and to remove solutions that violate these constraints using cuts generated
by separation algorithms. Separation algorithms are typically problem-specific,
which limits their applicability and reuse in other problems. Furthermore, devel-
oping and implementing separation algorithms often require significant expertise,
hindering their use in many applications.
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 579–595, 2017.
DOI: 10.1007/978-3-319-66158-2 37

580 E. Lam and P. Van Hentenryck

This paper addresses the following research question: Is it possible to use
a general-purpose mechanism to generate cuts, and hence, avoid the difficult
aspects of BC. This paper proposes branch-and-check with explanations (BCE) as
one possible answer to this question. BCE divides an optimization problem into a
master problem that ignores a number of difficult constraints, and a subproblem
that checks the feasibility of these constraints and generates cuts using conflict
analysis from constraint programming (CP) and Boolean satisfiability (SAT).
More precisely, BCE uses CP for three purposes: (1) to fix variables in the master
problem through propagation; (2) to generate cuts in the master problem using
conflict analysis; and (3) to probe the feasibility of linear programming (LP)
relaxation solutions and to derive additional cuts through conflict analysis if the
probing process fails. Since the master problem does not operate on the same
decision variables as the subproblem, the conflict analysis needs to continue until
the variables involved in a nogood appear in the master problem.

BCE opens some interesting opportunities. First, it has the advantage of
relying on a general-purpose CP engine for inference and cut separation. Second,
it permits conflict-based branching rules. Finally, BCE can recognize special
classes of cuts after conflict analysis and then strengthen them using well-known
techniques. As a result, BCE offers a natural integration of LP, CP and SAT.

The BCE method is evaluated on the VRPTW. Experimental results indicate
that BCE outperforms a BC algorithm: it proves optimality on more instances
and finds significantly better solutions to instances for which BC cannot prove
optimality. The results also show that a conflict-based branching rule is particu-
larly effective in BCE and that cut strengthening produces interesting improve-
ments to the lower bounds.

The rest of this paper is structured as follows. Section 2 reviews relevant
methods for solving the VRPTW. Section 3 develops the BCE model. Section 4
discusses cut strengthening. Section 5 presents experimental results that com-
pare the BCE model with the BC model. Section 6 discusses the limitations and
potential improvements of the BCE approach for the VRPTW, as well as its
relevance to branch-and-price. Section 7 concludes this paper.

2 Background

BC algorithms for VRPs are often based on a two-index flow model, which
generalizes the standard formulation of the TSP. The two-index model omits
the subtour elimination, vehicle capacity and time window constraints, which
are added as required through cutting planes. At every node of the search tree,
BC solves separation subproblems to determine if the LP relaxation solution is
feasible with respect to the omitted constraints. If the solution is infeasible, the
solution is discarded using a cut, forcing the solver to find another candidate
solution. Branching and cutting are repeated until the search tree is explored,
upon which the solver proves optimality or infeasibility.

Branch-and-Check with Explanations 581

Branch-and-Cut. BC models of the VRPTW rely on several types of cuts. The
BC model in [4] inherits the capacity cuts from BC models of the CVRP. Capac-
ity cuts generalize the subtour elimination cuts of the TSP to consider vehicle
capacity. Hence, they serve the purpose of excluding both subtours and partial
paths that exceed the vehicle capacity. This model also implements infeasible
path cuts to exclude partial paths that violate the time windows. Infeasible path
cuts require at least one arc in an infeasible partial path to be unused. The BC
algorithm from [18] uses subtour elimination constraints from the TSP instead
of the capacity cuts. Vehicle capacity constraints are enforced by the same infea-
sible path cuts that enforce the time windows. The authors also prove that both
the subtour elimination cuts and the infeasible path cuts can be strengthened
using ideas conceived in [22].

Branch-and-Check. Branch-and-check [5,29] is a form of logic-based Benders
decomposition [15]. The method divides a problem into a master and checking
problem. The master problem is first solved to find a candidate solution, which
is checked using the checking subproblem. If the checking subproblem is infeasi-
ble for a candidate solution, a constraint prohibiting this solution, and hopefully
many others, is added to the master problem. Branch-and-check iterates between
the master problem and the checking subproblem until a globally optimal solu-
tion is found. It has been used successfully in various applications (e.g., [14,30]).
The key difference between BC and branch-and-check is that checking subprob-
lems encompass an entire optimization problem, whereas separation subproblems
only check specific aspects of the problem (i.e., they find cuts from one family).

Constraint Programming. CP with large neighborhood search was instrumental
in finding many best solutions to VRPs more than a decade ago [7,8,28]. The
main difficulty with CP is proving optimality since VRP objective functions are
usually linear, which are known to have weak propagators. This limitations can
be alleviated using the WeightedCircuit global constraint [6], for example.

Conflict Analysis. Conflict analysis has a long history in artificial intelligence
and CP (e.g., [9,17]). Its popularity grew in the last two decades through the
development of SAT solvers (e.g., [11,23]) and their integration in CP solvers
(e.g., [12,24]). In CP solvers, propagators generate clauses that explain the infer-
ences for an underlying SAT solver. When a propagator fails, the SAT solver
performs conflict analysis, i.e., it walks the implication graph to derive a con-
straint, known as a nogood, that prevents the same failure from reoccurring in
other parts of the search tree. Conflict analysis can also be implemented in mixed
integer programming (MIP) solvers but its performance is still an open question
[1].

3 The Branch-and-Check Model of the VRPTW

This section proposes the BCE model of the VRPTW. The model is organized
around a MIP master problem and a CP checking subproblem.

582 E. Lam and P. Van Hentenryck

Table 1. Data and decision variables of the two-index flow model of the VRPTW. Sets
enclosed in braces (resp. square brackets) are integer-valued (resp. real-valued).

Name Description

T > 0 Time horizon

T = [0, T] Time interval

Q ≥ 0 Vehicle capacity

Q = [0, Q] Range of vehicle load

R ∈ {1, . . . ,∞} Number of requests

R = {1, . . . , R} Set of requests

s = 0 Start node

e = R + 1 End node

N = R ∪ {s, e} Set of all nodes

A Arcs of the network. Defined in Eq. 4

ci,j ∈ T Distance cost and travel time along arc (i, j) ∈ A
qi ∈ Q Vehicle load demand of i ∈ N
ai ∈ T Earliest service start time at i ∈ N
bi ∈ T Latest service start time at i ∈ N
xi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A

The MIP Master Problem. The BCE model includes the traditional two-index
model. Its data and decision variables are listed in Table 1. The arcs in the
network are given by

A = {(s, i)|i ∈ R}∪
{(i, j)|i, j ∈ R, i �= j, ai + ci,j ≤ bj , qi + qj ≤ Q}∪
{(i, e)|i ∈ R}.

(4)

The initial constraints of the model are shown in Fig. 1. The objective func-
tion, Eq. (1), minimizes the total distance cost. Constraints (2) and (3) require
every request to be visited exactly once. Through its LP relaxation, the MIP
master problem provides the lower bounds to the objective value and generates
candidate solutions to be tested in the CP subproblem.

The CP Checking Subproblem. The BCE model uses a CP subproblem to check
the solutions found by the master problem for feasibility of the subtour elim-
ination, vehicle capacity and time window constraints. The decision variables
are listed in Table 2. Using the y binary variables, instead of the conventional
successor and predecessor variables, provides a one-to-one mapping between the
y variables and the x variables of the master problem. The initial constraints
(without the nogoods) are presented in Fig. 2. Constraints (5) to (8) ensure that
every request is visited exactly once. Constraint (9) is a global constraint that
prevents subtours. Its propagator is a simple checking algorithm that prevents

Branch-and-Check with Explanations 583

min
∑

(i,j)∈A
ci,jxi,j (1)

subject to

∑

h:(h,i)∈A
xh,i = 1 ∀i ∈ R, (2)

∑

j:(i,j)∈A
xi,j = 1 ∀i ∈ R. (3)

Fig. 1. Initial constraints of the two-index model of the VRPTW.

the head of a partial path from connecting to its tail. Constraints (10) and (11)
enforce the vehicle capacity and travel time constraints.

Table 2. Decision variables of the CP subproblem.

Name Description

yi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A
li ∈ [qi, Q] ⊆ Q Vehicle load after service at request i ∈ N
ti ∈ [ai, bi] ⊆ T Time that a vehicle begins service at request i ∈ N

∨

h:(h,i)∈A
yh,i ∀i ∈ R, (5)

∨

j:(i,j)∈A
yi,j ∀i ∈ R, (6)

¬yh,i ∨ ¬yh,j ∀h, i, j ∈ N : (h, i) ∈ A, (h, j) ∈ A, i 	= j, (7)

¬yh,j ∨ ¬yi,j ∀h, i, j ∈ N : (h, j) ∈ A, (i, j) ∈ A, h 	= i, (8)

NoSubtour(y), (9)

yi,j → lj ≥ li + qj ∀(i, j) ∈ A, (10)

yi,j → tj ≥ ti + ci,j ∀(i, j) ∈ A. (11)

Fig. 2. Initial constraints of the CP subproblem.

Communication Between the Two Models. The two models communicate in three
ways: (1) variable assignments in the CP model are transmitted to the MIP
model, (2) candidate solutions from the LP relaxation are probed using the CP
model to determine if they are valid for the VRPTW and (3) nogoods found by
conflict analysis in the CP model are translated into cuts in the MIP model.

584 E. Lam and P. Van Hentenryck

Extended Conflict Analysis. When a failure occurs in the CP solver, conflict
analysis derives a First Unique Implication Point (1UIP) nogood that is added
to the CP subproblem. This constraint should also be added to the master
problem but sometimes it cannot be translated into a cut for the master problem
because it contains variables that do not appear in the master problem (i.e., the
load and time variables). As a result, the BCE algorithm features an extended
conflict analysis that continues explaining the failure until the the nogood only
contains variables in master problem. This nogood has the form

∨

(i,j)∈C1

yi,j ∨
∨

(i,j)∈C2

¬yi,j ,

where C1, C2 ⊆ A are sets of arcs. This nogood can be rewritten as the cut
∑

(i,j)∈C1

xi,j +
∑

(i,j)∈C2

(1 − xi,j) ≥ 1.

It is always possible to obtain these cuts since the solver only branches on vari-
ables in the master problem. Observe that the BCE algorithm provides a general-
purpose mechanism to separate cuts in the master problem via the extended con-
flict analysis. These cuts, which we call MIP-1UIP nogoods, are automatically
generated and do not rely on specialized separation algorithms.

Probing the LP Relaxation. The BCE algorithm probes whether the current
LP solution is feasible with respect to the subtour elimination, vehicle capacity
and time constraints. It temporarily assigns every yi,j variable to the value of
its corresponding xi,j variable in the LP relaxation, provided that this value is
integral. The resulting tentative assignment can then be propagated by the CP
solver. If a failure occurs, conflict analysis generates nogoods for both the CP
and MIP models. The MIP cut will exclude the current LP solution, forcing it
to find another candidate solution and improving the lower bound.

The Search Algorithm. The BCE algorithm, detailed in Fig. 3, includes the com-
ponents described earlier. It blends depth-first and best-first search since best-
first search is more effective for hard optimization problems, such as VRPs, but
complicates the implementation of CP solvers with conflict analysis. The node
selection strategy selects the node with the lowest lower bound from the set of
open nodes and then explores the node subtree using depth-first search until
it reaches a limit on the maximum number of open nodes per subtree. Once it
reaches this limit, all unsolved siblings in the subtree are moved into the set
of open nodes, and then the algorithm starts a new depth-first search from the
node with the next lowest lower bound. Section 6 explains the rationale behind
this search procedure.

Once a node is selected (step 1), the CP subproblem infers the implications
of the decision (step 2). In the case of failure, the CP solver generates nogoods
for both models and then backtracks (step 5b). If the test succeeds, the BCE
algorithm checks for suboptimality using the LP relaxation (step 3). If the node

Branch-and-Check with Explanations 585

1. Node Selection: Select an open node. Terminate if no open nodes remain.
2. Feasibility Check: Solve the CP model to determine the implications of the

branching decision of the node. If propagation fails, perform conflict analysis, add
the 1UIP and the MIP-1UIP nogoods to both the CP and MIP models, and go to
step 5b. Otherwise, fix xi,j in the MIP model to the values of the yi,j variables.

3. Suboptimality Check: Solve the LP relaxation. If the objective value is worse
than the incumbent solution, go to step 5b.

4. LP Probing: For all xi,j variables with a value of 0 or 1 in the LP relaxation,
temporarily fix the yi,j variables in the CP model to the same value. Propagate
the CP model. If it fails, perform conflict analysis, generate the 1UIP and the
MIP-1UIP nogoods and go back to step 3.

5. Branching and Backtracking: If all xi,j variables are integral, store the LP
relaxation solution as the incumbent solution and go to step 5b. Otherwise, go to
step 5a because the node is fractional.

(a) Branching: Create two children nodes from a fractional xi,j variable. Fix the
variable to 0 in one child node and to 1 in the other.

(b) Backtracking: If the number of nodes in the current subtree exceeds the limit
or if the subtree is entirely solved, move all unsolved siblings in the subtree
to the set of open nodes and go back to step 1. Otherwise, backtrack to an
ancestor with an unsolved child node, select the child node and go to step 2.

Fig. 3. The BCE search algorithm.

is suboptimal, it backtracks (step 5b). Otherwise, the BCE algorithm checks
the LP relaxation solution against the omitted constraints and separates cuts
using conflict analysis if necessary (step 4). The BCE algorithm iterates between
the LP relaxation and the feasibility test until no cuts are generated. Then,
if the node is fractional and not suboptimal, the BCE algorithm executes a
branching step (step 5a). Two branching rules are implemented. The first selects
the most fractional variable and the second selects the variable with the highest
activity, which is defined as the number of nogoods in which the variable has
previously appeared. This branching rule, known as activity-based search or
variable state independent decaying sum (VSIDS) in the literature, guides the
search tree towards subtrees that can be quickly pruned due to infeasibility.

Illustrating the Extended Conflict Analysis. The following discussion illustrates
the extended conflict analysis procedure using the example in Figs. 4 and 5.
Literals shown in a grey are fixed by the data at the root level, and hence, are
always true. They are discarded in the explanations but are shown for clarity.

The BCE solver first branches on ¬y4,6, making it true. The travel time
constraint (Constraint (11)) propagates �t6 ≥ 30� with the reason

¬y4,6 ∧ �t3 ≥ 25� ∧ �c3,6 = 10� ∧ �t5 ≥ 20� ∧ �c5,6 = 10� → �t6 ≥ 30�

because the predecessor of request 6 must be either 3 or 5, and the earliest time
to reach 6 is at time min(min(t3)+c3,6,min(t5)+c5,6) = 30. The BCE solver then

586 E. Lam and P. Van Hentenryck

0

[0, 0]

1

[30, 60]

2

[20, 60]

3[25, 40]

4 [10, 40]

5

[20, 40]

6 [20, 40]

7 [30, 40]

Others

Others

Fig. 4. Example of a network. Next to every request is its time window. The travel
time across any arc is 10 units of time. The load demands are not shown as they are
not relevant to the discussion.

¬y4,6

t3 ≥ 25

c3,6 = 10

t5 ≥ 20

c5,6 = 10

t6 ≥ 30

¬y3,6

y5,6

¬y5,7 ¬y5,2

y0,1 y6,2

¬y6,7 t2 ≥ 40

y2,7

c6,2 = 10

c2,7 = 10

t7 ≤ 40false

Fig. 5. Example of an implication graph after making the decisions ¬y4,6, ¬y3,6, y0,1
and y6,2 on the network in Fig. 4. Yellow literals are branching decisions. Blue literals
are propagations. Grey literals are propagated at the root level, and hence, can be
excluded from the nogoods since they are always true. (Color figure online)

Branch-and-Check with Explanations 587

branches on ¬y3,6. Constraint (5) requires every request to have a predecessor,
which leads to the assignment of y5,6 with the reason

¬y3,6 ∧ ¬y4,6 → y5,6.

Constraint (8) then propagates

y5,6 → ¬y5,2

and
y5,6 → ¬y5,7.

The BCE solver then branches on y0,1, which does not produce any inference,
and then branches on y6,2, which produces the inferences:

y6,2 → ¬y6,7,

¬y6,7 ∧ ¬y5,7 → y2,7,

y6,2 ∧ �t6 ≥ 30� ∧ �c6,2 = 10� → �t2 ≥ 40�.

Then, the travel time propagator fails with

y2,7 ∧ �t2 ≥ 40� ∧ �c2,7 = 10� ∧ �t7 ≤ 40� → false.

Conflict analysis deduces the following:

y2,7 ∧ �t2 ≥ 40� ∧ �c2,7 = 10� ∧ �t7 ≤ 40� → false
y2,7 ∧ �t2 ≥ 40� ∧ true ∧ true → false

(¬y6,7 ∧ ¬y5,7) ∧ (y6,2 ∧ �t6 ≥ 30� ∧ �c6,2 = 10�) → false
y6,2 ∧ ¬y5,7 ∧ �t6 ≥ 30� ∧ true → false

y6,2 ∧ ¬y5,7 ∧ �t6 ≥ 30� → false. (12)

This explanation contains exactly one literal (y6,2) at the current depth, and
hence, is rewritten as the 1UIP clause

¬y6,2 ∨ y5,7 ∨ �t6 < 30�,

which is added to the CP model. Conflict analysis must continue because the
nogood contains a time literal. It explains �t6 ≥ 30� in Eq. (12), which results in
the MIP-1UIP explanation

y6,2 ∧ ¬y5,7 ∧ ¬y4,6 → false.

This explanation is rewritten into the disjunction

¬y6,2 ∨ y5,7 ∨ y4,6, (13)

and then into the cut

(1 − x6,2) + x5,7 + x4,6 ≥ 1.

Note that the literal y5,7 was not assigned by the search.

588 E. Lam and P. Van Hentenryck

4 Nogood Strengthening

The BCE algorithm presented so far uses a completely general-purpose mech-
anism for cut separation. Despite its generality, conflict analysis routinely dis-
covers classical cuts. These cuts can be strengthened using proven techniques
whenever they are recognized. This section presents a post-processing step that
recognizes then strengthens several types of cuts.

Infeasible Path Cuts. Failure of the load or time constraints (Constraints (10)
and (11)) frequently results in an infeasible partial path cut. Let P =
i1, i2, . . . , ik, with all i1, . . . , ik ∈ N distinct, be a partial path. The partial
path P is infeasible with respect to the load constraint if

∑k
u=1 qiu > Q, and it

is is infeasible with respect to the time constraint if tik > bik , where ti1 = ai1

and tiu = max(aiu , tiu−1 +ciu−1,iu) for u = 2, . . . , k. When a load or time window
constraint fails, conflict analysis will usually produce the nogood

∨

(i,j)∈A(P)

¬yi,j , (14)

where A(P) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of P . This nogood requires one
arc of P to be unused. It can be written equivalently as requiring at least one
arc that exits P , i.e., ∨

(i,j)∈Δ+(P)

yi,j ,

where Δ+(P) =
⋃k−1

u=1{(iu, j) ∈ A|j �= iu+1}. This nogood can be translated into
the cut ∑

(i,j)∈Δ+(P)

xi,j ≥ 1.

Using existing techniques [18], such a cut can be strengthened into
∑

(i,j)∈˜Δ+(P)

xi,j ≥ 1,

where

Δ̃+(P) =
k−1⋃

u=1

({
(iu, j) ∈ A : iu ∈ R, j ∈ R, j �= i1, . . . , iu+1,

u∑

v=1

qiv + qj ≤ Q, tiu + ciu,j ≤ bj

}
∪ {(iu, e) ∈ A}

)

is the arcs that branch off P to a feasible request. In other words, the strength-
ening discards arcs that are not feasible when taking into account the load and
time window constraints.

Branch-and-Check with Explanations 589

Subtour Elimination Cuts. The propagator of Constraint (9) will fail if the solu-
tion contains a subtour S = i1, i2, . . . , ik, where i1 = ik and all i1, i2, . . . , ik−1 ∈
R are distinct. Conflict analysis will usually find the nogood

∨

(i,j)∈A(S)

¬yi,j , (15)

where A(S) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of S. Using the same reasoning
as for the infeasible path cuts, this nogood can be rewritten as the cut

∑

(i,j)∈Δ+(S)

xi,j ≥ 1. (16)

If aj + cj,i > bi, then no vehicle can depart j for i while respecting the time
windows. Hence, i must precede j with respect to time, written as i ≺ j. Let
π(j) = {i ∈ N|i ≺ j} be the set of requests that precedes j with respect to time.
Proposition 1 strengthens Constraint (16) using these precedence relations [18].
Constraint (16) can also be similarly strengthened using the precedence relations
in reverse, i.e., successor relations.

Proposition 1. Let S̄ = N \ S be the nodes not in a subtour S, then for any
u ∈ S, Constraint (16) can be strengthened to

∑

(i,j)∈A:
i∈S\π(u),
j∈S̄\π(u)

xi,j ≥ 1.

Proof. Consider a subtour S and a feasible path F that visits the request u. Let
v ∈ R be the last request of F visited by S. By definition, v is visited by S, i.e.,
v ∈ S. Furthermore, since F is a feasible path, v cannot precede u with respect
to time, i.e., v /∈ π(u). Hence, v ∈ S \ π(u). Now consider the successor of v,
denoted by succ(v) ∈ N . By the definition of v, succ(v) cannot be visited by S,
i.e., succ(v) /∈ S. Again, succ(v) cannot precede u with respect to time since F
is a feasible path. Hence, succ(v) ∈ S̄ \ π(u). Considering every request in S as
v results in the proposition.

General Cuts. Conflict analysis can derive cuts that are do not have the form of
Constraint (14) nor Constraint (15). These cuts contain both true literals and
false literals, such as those of Constraint (13). They originate from fixing an
arc to be unused (i.e., setting xi,j = 0 for some (i, j) ∈ A), which can result
in tightening the bounds of a time or load variable. Consequently, an assigned
arc can become infeasible. Hence, the originating nogood will contain both true
and false literals. We are not aware of VRP cuts in the literature that mix true
literals and false literals. This is possibly because tightening bounds is too costly
for every call to a separation algorithm. CP maintains the bounds internally as
part of propagation, and hence, the bounds are readily available. Because of this,
these cuts seem to be fundamentally linked to CP. It is an open research issue
to understand whether these cuts can be strengthened.

590 E. Lam and P. Van Hentenryck

5 Experimental Results

The Solvers. The BCE solver includes a small CP solver and calls Gurobi 6.5.2
to solve the LP relaxations. The algorithm presented in Fig. 3 has a limit of 500
nodes for the depth-first search. This number was chosen experimentally as it
was superior to limits of 100, 1,000, 5,000, and 10,000 nodes. The experiments
consider four versions of the solver: with and without cut strengthening, and
with the two branching rules. The four versions are compared against published
results of a BC model [18], as well as a pure CP model and a pure MIP model.
The CP model is the standard VRPTW model based on successor variables
(e.g., [19,27]), and is solved using Chuffed. The MIP model is the three-index
flow model (e.g., [31]), and is solved using Gurobi. The reported results for the
BC model are given an hour of CPU time on a Pentium III CPU at 600 MHz.
To be fair, our solvers are run for 10 min on a Xeon E5-2660 V3 at 2.6 GHz.

The Results. The solvers are tested on the Solomon benchmarks with 100
requests. The results are reported in Table 3. The pure CP model failed to find
any feasible solution and is omitted from the table. The pure MIP model proves
optimality on only one instance and finds poor solutions to three other instances.
These results were expected and are given to confirm the need for the other
approaches. The rest of this section compares the BC and BCE approaches.

Upper Bounds. The four BCE methods find the same or better solutions than
the BC algorithm for all instances except C204. Of the best solutions found, all
but two (R201, C204) can be found using the activity-based branching rule. For
the C instances, BC and BCE with activity-based search and cut strengthening
are comparable since they both dominate on seven of the eight instances. For
the R and RC instances, BCE with activity-based search improves upon the BC
method, which generally finds solutions with costs about five times higher.

Lower Bounds. First observe that BCE with activity-based search and cut
strengthening proves optimality on one more instance (RC201) than BC, which
is quite remarkable. The bounds found by the BC model are superior to those
from all BCE methods except for instance RC201, on which BCE with activity-
based search and cut strengthening finds a tighter bound. This is not surprising
since the BC algorithm implements families of cuts not present in the BCE
model. These families of cuts capture logic that the constraints in the checking
subproblem do not. As will be mentioned in Sect. 6, stronger dual bounds should
be available once the BCE model is expanded with optimization constraints.

The Impact of Branching Rules. Activity-based branching performs significantly
better than most-fractional branching. Without cut strengthening, activity-
based branching finds solutions better than most-fractional branching on all
instances except C201, on which all four BCE methods prove optimality.
With cut strengthening, activity-based search performs better on 19 of the 27
instances, and worse on only one instance. This is not surprising given that

Branch-and-Check with Explanations 591

T
a
b
le

3
.

S
o
lu

ti
o
n
s

to
th

e
S
o
lo

m
o
n

in
st

a
n
ce

s
w

it
h

1
0
0

re
q
u
es

ts
.

T
h
e

ta
b
le

re
p
o
rt

s
th

e
lo

w
er

b
o
u
n
d
,

u
p
p
er

b
o
u
n
d

a
n
d

ti
m

e
to

p
ro

v
e

o
p
ti

m
a
li
ty

fo
r

ea
ch

o
f
th

e
so

lv
er

s.
T

h
e

b
es

t
u
p
p
er

b
o
u
n
d

fo
r

ea
ch

in
st

a
n
ce

is
sh

ow
n

in
b
o
ld

.
T

h
e

C
P

m
o
d
el

is
o
m

it
te

d
a
s

it
is

u
n
a
b
le

to
fi
n
d

fe
a
si

b
le

so
lu

ti
o
n
s

to
a
n
y

in
st

a
n
ce

.

B
ra

n
c
h
-a

n
d
-c
h
e
c
k

–
m

o
st
-f
ra

c
ti
o
n
a
l

B
ra

n
c
h
-a

n
d
-c
h
e
c
k

–
a
c
ti
v
it
y
-b

a
se

d

N
o

st
re

n
g
th

e
n
in

g
W

it
h

st
re

n
g
th

e
n
in

g
N
o

st
re

n
g
th

e
n
in

g
W

it
h

st
re

n
g
th

e
n
in

g
B
ra

n
c
h
-a

n
d
-c
u
t

M
IP

In
st
a
n
c
e

L
B

U
B

T
im

e
L
B

U
B

T
im

e
L
B

U
B

T
im

e
L
B

U
B

T
im

e
L
B

U
B

T
im

e
L
B

U
B

T
im

e

R
2
0
1

1
0
5
5
.8

1
1
9
8
.0

-
1
1
1
7
.7

1
1
4
3
.3

-
1
0
5
4
.7

1
1
7
7
.6

-
1
1
1
4
.3

1
1
4
9
.9

-
1
1
3
2
.7

1
1
5
5
.6

-
9
7
5
.6

-
-

R
2
0
2

7
6
2
.8

1
2
1
3
.0

-
8
5
2
.1

1
2
1
9
.6

-
7
6
3
.2

1
1
3
3
.4

-
8
5
0
.7

1
1
0
9
.3

-
8
8
8
.6

4
9
8
0
.0

-
7
1
5
.3

-
-

R
2
0
3

6
6
0
.1

1
2
4
4
.8

-
7
0
9
.8

1
2
5
3
.6

-
6
5
9
.9

1
0
2
5
.2

-
7
0
7
.7

1
0
5
2
.2

-
7
4
8
.1

4
9
8
0
.0

-
6
2
0
.3

-
-

R
2
0
4

6
2
5
.3

1
1
6
6
.7

-
6
3
9
.2

1
1
9
3
.3

-
6
2
5
.8

8
5
8
.4

-
6
3
8
.3

8
8
7
.4

-
6
6
1
.9

4
9
8
0
.0

-
5
8
4
.9

-
-

R
2
0
5

7
9
6
.3

1
2
2
2
.0

-
8
8
9
.6

1
0
6
9
.9

-
7
9
4
.3

1
0
9
1
.3

-
8
7
6
.9

1
0
5
2
.5

-
9
0
0
.0

4
9
8
0
.0

-
7
3
2
.3

-
-

R
2
0
6

6
8
6
.3

1
1
7
1
.6

-
7
5
1
.4

1
1
5
7
.4

-
6
8
6
.0

1
0
4
0
.1

-
7
4
5
.3

1
0
1
8
.9

-
7
8
3
.6

4
9
8
0
.0

-
6
4
4
.8

-
-

R
2
0
7

6
4
8
.1

1
1
8
7
.5

-
6
8
1
.5

1
1
6
8
.5

-
6
4
7
.5

9
4
0
.7

-
6
8
5
.8

9
4
1
.4

-
7
1
4
.8

4
9
8
0
.0

-
6
0
3
.1

-
-

R
2
0
8

6
2
3
.2

1
0
9
7
.4

-
6
3
3
.5

1
1
8
7
.7

-
6
2
3
.4

8
5
5
.0

-
6
3
5
.3

8
3
2
.5

-
6
5
1
.8

4
9
8
0
.0

-
5
7
7
.2

-
-

R
2
0
9

6
8
7
.5

1
2
3
8
.1

-
7
5
6
.6

1
1
7
2
.5

-
6
8
6
.5

1
0
4
6
.6

-
7
5
3
.1

1
0
7
3
.8

-
7
8
5
.8

4
9
8
0
.0

-
6
4
8
.2

-
-

R
2
1
0

6
7
9
.7

1
2
2
5
.6

-
7
4
9
.9

1
2
4
0
.3

-
6
7
9
.8

1
1
0
5
.6

-
7
5
0
.8

1
0
2
4
.9

-
7
9
8
.3

4
9
8
0
.0

-
6
3
6
.6

-
-

R
2
1
1

6
2
1
.2

1
3
3
5
.5

-
6
3
3
.0

1
3
5
5
.9

-
6
2
1
.2

1
0
0
4
.2

-
6
3
2
.1

1
0
6
5
.1

-
6
4
5
.1

4
9
8
0
.0

-
5
7
7
.2

4
2
2
4
.9

-

C
2
0
1

5
8
9
.1

5
8
9
.1

0
.0

5
8
9
.1

5
8
9
.1

0
.0

5
8
9
.1

5
8
9
.1

0
.0

5
8
9
.1

5
8
9
.1

0
.0

5
8
9
.1

5
8
9
.1

1
1
.5

5
8
9
.1

5
8
9
.1

1
5
.2

C
2
0
2

5
4
8
.7

6
7
9
.8

-
5
8
9
.1

5
8
9
.1

1
3
1
.2

5
4
8
.2

6
2
9
.9

-
5
8
9
.1

5
8
9
.1

1
2
.6

5
8
9
.1

5
8
9
.1

2
0
2
.9

5
2
4
.3

-
-

C
2
0
3

5
2
6
.5

9
4
8
.3

-
5
6
3
.4

6
7
2
.2

-
5
2
4
.7

6
8
6
.5

-
5
6
5
.9

6
0
1
.2

-
5
8
6
.0

6
3
2
.3

-
5
0
7
.3

-
-

C
2
0
4

5
1
6
.3

9
4
6
.7

-
5
5
2
.9

1
0
8
6
.7

-
5
1
4
.7

8
8
4
.5

-
5
5
5
.9

6
6
0
.9

-
5
8
4
.4

5
9
7
.1

-
4
8
8
.3

-
-

C
2
0
5

5
4
6
.9

6
8
5
.8

-
5
8
6
.4

5
8
6
.4

0
.2

5
4
6
.5

6
1
3
.1

-
5
8
6
.4

5
8
6
.4

1
6
.3

5
8
6
.4

5
8
6
.4

3
3
4
.4

5
1
1
.4

-
-

C
2
0
6

5
3
9
.9

7
7
6
.9

-
5
8
6
.0

5
8
6
.0

1
1
.8

5
3
8
.2

7
0
2
.6

-
5
8
6
.0

5
8
6
.0

1
0
.6

5
8
6
.0

5
8
6
.0

4
1
9
.0

5
0
4
.7

4
9
9
7
.5

-

C
2
0
7

5
4
2
.7

8
5
1
.1

-
5
8
5
.8

5
8
5
.8

2
0
.6

5
3
8
.3

6
3
5
.2

-
5
8
5
.8

5
8
5
.8

8
.3

5
8
5
.8

5
8
5
.8

5
2
7
.5

5
0
3
.9

-
-

C
2
0
8

5
3
4
.5

8
5
7
.2

-
5
8
5
.8

5
8
5
.8

6
0
.0

5
3
3
.1

6
5
2
.4

-
5
8
5
.8

5
8
5
.8

1
1
.2

5
8
5
.8

5
8
5
.8

5
6
9
.7

5
0
0
.3

-
-

R
C
2
0
1

1
0
8
6
.5

1
4
0
3
.6

-
1
2
4
5
.8

1
2
6
1
.8

-
1
0
8
1
.0

1
3
3
8
.3

-
1
2
6
1
.8

1
2
6
1
.8

4
4
.5

1
2
5
0
.1

1
2
8
8
.2

-
9
3
8
.3

-
-

R
C
2
0
2

7
0
4
.5

1
4
6
5
.9

-
9
1
2
.7

1
4
1
8
.6

-
6
9
9
.2

1
2
0
4
.2

-
9
1
6
.9

1
1
5
2
.3

-
9
4
0
.1

6
6
0
9
.4

-
6
4
1
.0

-
-

R
C
2
0
3

6
1
5
.0

1
4
0
2
.7

-
7
5
0
.2

1
3
5
9
.6

-
6
1
0
.8

1
1
4
9
.0

-
7
4
8
.8

1
1
1
7
.6

-
7
8
1
.6

6
6
0
9
.4

-
5
6
3
.1

-
-

R
C
2
0
4

5
8
3
.9

1
4
1
0
.2

-
6
5
7
.8

1
3
5
2
.4

-
5
8
1
.0

1
0
0
7
.1

-
6
5
7
.0

9
2
3
.5

-
6
9
2
.7

6
6
0
9
.4

-
5
3
2
.4

-
-

R
C
2
0
5

8
2
2
.5

1
5
1
1
.6

-
1
0
7
5
.5

1
3
0
7
.0

-
8
1
8
.8

1
2
4
9
.8

-
1
0
5
5
.8

1
2
4
0
.9

-
1
0
8
1
.7

6
6
0
9
.4

-
7
4
6
.3

-
-

R
C
2
0
6

7
8
5
.4

1
4
8
5
.4

-
9
6
4
.3

1
2
7
3
.9

-
7
8
4
.9

1
2
7
0
.2

-
9
5
0
.7

1
2
0
2
.8

-
9
7
4
.8

6
6
0
9
.4

-
6
9
8
.2

-
-

R
C
2
0
7

6
4
7
.3

1
4
8
6
.3

-
7
9
4
.6

1
4
2
4
.5

-
6
4
2
.9

1
1
9
3
.5

-
8
0
0
.9

1
1
7
2
.1

-
8
3
2
.4

6
6
0
9
.4

-
5
9
4
.9

-
-

R
C
2
0
8

5
7
2
.7

1
6
2
9
.8

-
6
2
4
.0

1
7
7
6
.1

-
5
7
3
.9

1
0
3
9
.5

-
6
2
4
.3

1
0
7
8
.4

-
6
4
7
.7

6
6
0
9
.4

-
5
2
7
.1

5
2
9
9
.5

-

592 E. Lam and P. Van Hentenryck

branching on the most fractional variable is known to perform worse than ran-
dom selection [2].

The Impact of Cut Strengthening. Cut strengthening improves the lower bounds
for both branching rules. For the C instances, cut strengthening is critical for
proving optimality. For the RC instances except RC208, BCE with activity-based
branching and cut strengthening finds solutions better than the other methods.
Cut strengthening interferes with the activity-based branching rule for about
half of the R instances. The cause of this interference is not yet understood.

The results indicate that BCE is an interesting avenue for solving hard VRPs.
The BCE model finds superior primal solutions despite its simplicity and the
fact that it is missing many families of cuts and that the checking subproblem
does not reason about optimality nor variables with fractional values in the LP
relaxation solution. For practitioners without the expertise in BC, BCE provides
an interesting and practically appealing alternative.

6 Future Research Directions

The BCE algorithm, presented in this paper as a proof-of-concept, can be
improved in many ways. This section explores some potential improvements.

Branching. The branching rules simply assign a fractional variable to 0 in one
child and 1 in the other. These branching rules make the search tree highly
unbalanced, considerably degrading the performance of the solver. Future imple-
mentations should test branching on cutsets, which is the standard branching
rule seen in BC models of VRPs. It would also be interesting to test branching
on variables in the CP model (e.g., branching on time windows) by propagating
these decisions and enforcing the implications in the MIP model.

Search Strategy. VRPs greatly benefit from best-first search. For simplicity, the
BCE implementation uses depth-first search, which allows literals to be stored
in a stack data structure. It is obviously possible to implement conflict analysis
in best-first search but efficient implementations remain an open question today.
As explained in Sect. 3, the BCE implementation blends depth-first search with
periodic best-first selection to explore attractive parts of the search tree.

Subtour Elimination. The propagator of Constraint (9) is extremely simple and
only eliminates assignments that would create a cycle. This contrasts with sep-
aration algorithms, which are able to separate cuts using fractional solutions.
It would be highly desirable to study the impact of more advanced propagators
and explanations for subtour elimination in CP.

Cut Strengthening. The CP model contains all the omitted constraints; namely,
the subtour elimination, vehicle capacity and time window constraints. As a
result, conflict analysis can deduce nogoods based on the combined infeasibility

Branch-and-Check with Explanations 593

of multiple constraints. In contrast, separation algorithms only reason about one
family of cuts. It is an open question whether conflict analysis can automatically
strengthen the cuts by reasoning about a conjunction of constraints. This will
reduce the need to develop dedicated cut strengthenings.

Optimization Constraints. The objective function has been omitted from the
checking subproblem because propagators for linear function are known to be
weak. Sophisticated propagators for the WeightedCircuit constraint should
be implemented, as they may produce considerably stronger nogoods.

Application to Branch-and-Price. Branch-and-cut-and-price, which includes col-
umn generation and cut generation, is the current state-of-the-art exact method
for solving classical VRPs. Preliminary experiments with an existing branch-
and-price solver show that BCE is not beneficial with column generation for the
VRPTW as nogoods will not be generated in step 4 of Fig. 3 because the paths
already respect the time and capacity constraints. However, step 2 can fail due
to incompatibility between the branching decisions of a node. This infeasibility
cannot be detected by the pricing problem because it has no knowledge of the
global problem, nor detected by the master problem until all paths are generated
because artificial variables satisfy the constraints in the interim. Incompatible
branching decisions can induce nogoods but this seldom occurs in branch-and-
price because its LP relaxation bound is asymptotically tight, allowing it to dis-
card nodes due to suboptimality much earlier than infeasibility. Hence, branch-
and-price-and-check is unlikely to prove useful in solving classical VRPs. It is,
however, useful for rich VRPs with inter-route constraints (e.g., [20]) because
the pricing subproblem, being a shortest path problem, has no knowledge of the
interactions between routes in the parent problem.

7 Conclusion

This paper proposed the framework of branch-and-check with explanations
(BCE) as a step towards the grand unification of linear programming, constraint
programming and Boolean satisfiability. BCE finds cuts using general-purpose
conflict analysis instead of specialized separation algorithms. The method fea-
tures a master problem, which ignores a number of constraints, and a checking
subproblem, which uses inference to check the feasibility of the omitted con-
straints and conflict analysis to derive nogood cuts. It also leverages conflict-
based branching rules and can strengthen cuts using traditional insights from
branch-and-cut in a post-processing step.

Experimental results on the Vehicle Routing Problem with Time Windows
show that BCE is a viable alternative to branch-and-cut. In particular, BCE
dominates branch-and-cut, both in proving optimality (with cut strengthening)
and in finding high-quality solutions.

BCE offers an intalternative to existing branch-and-cut approaches. By using
a general-purpose constraint programming solver to derive cuts, BCE can greatly

594 E. Lam and P. Van Hentenryck

simplify the modelling of problems that traditionally use branch-and-cut. This,
in turn, avoids the need for dedicated separation algorithms. BCE is also capa-
ble of identifying well-known classes of cuts and strengthening them in a post-
processing step. Finally, BCE significantly benefits from conflict-based branching
rules, opening further opportunities typically not available in branch-and-cut.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim.
4(1), 4–20 (2007)

2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005)

3. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res. 59(5), 1269–1283 (2011)

4. Bard, J.F., Kontoravdis, G., Yu, G.: A branch-and-cut procedure for the vehicle
routing problem with time windows. Transp. Sci. 36(2), 250–269 (2002)

5. Beck, J.C.: Checking-up on branch-and-check. In: Cohen, D. (ed.) CP
2010. LNCS, vol. 6308, pp. 84–98. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15396-9 10

6. Benchimol, P., Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

7. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle
routing problem with time windows. Transp. Sci. 38(4), 515–530 (2004)

8. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Comput. Oper. Res. 33(4), 875–893
(2006)

9. Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Pro-
ceedings of the 5th National Conference on Artificial Intelligence, Philadelphia,
PA, 11–15 August 1986. Science, vol. 1, pp. 178–185 (1986)

10. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

12. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 29

13. Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M.P., Reis, M., Uchoa, E.,
Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle rout-
ing problem. Math. Program. 106(3), 491–511 (2006)

14. Gendron, B., Scutellà, M.G., Garroppo, R.G., Nencioni, G., Tavanti, L.: A branch-
and-benders-cut method for nonlinear power design in green wireless local area
networks. Eur. J. Oper. Res. 255(1), 151–162 (2016)

15. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.) PPCP
1994. LNCS, vol. 874, pp. 336–349. Springer, Heidelberg (1994). doi:10.1007/
3-540-58601-6 111

16. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities
applied to the vehicle-routing problem with time windows. Oper. Res. 56(2), 497–
511 (2008)

http://dx.doi.org/10.1007/978-3-642-15396-9_10
http://dx.doi.org/10.1007/978-3-642-15396-9_10
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/3-540-58601-6_111
http://dx.doi.org/10.1007/3-540-58601-6_111

Branch-and-Check with Explanations 595

17. Jussien, N., Barichard, V.: The palm system: explanation-based constraint pro-
gramming. In: Proceedings of TRICS: Techniques foR Implementing Constraint
Programming Systems, a Post-conference Workshop of CP 2000, pp. 118–133
(2000)

18. Kallehauge, B., Boland, N., Madsen, O.B.G.: Path inequalities for the vehicle rout-
ing problem with time windows. Networks 49(4), 273–293 (2007)

19. Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints
5(4), 389–414 (2000)

20. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21(3), 394–412 (2016)

21. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Math. Program. 100(2), 423–445 - 0025–
5610 (2004)

22. Mak, V.: On the asymmetric travelling salesman problem with replenishment arcs.
Ph.D. thesis, University of Melbourne (2001)

23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

24. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

25. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol.
8494, pp. 393–403. Springer, Cham (2014). doi:10.1007/978-3-319-07557-0 33

26. Ropke, S., Cordeau, J.F.: Branch and cut and price for the pickup and delivery
problem with time windows. Transp. Sci. 43(3), 267–286 (2009)

27. Rousseau, L.M., Gendreau, M., Pesant, G.: Using constraint-based operators to
solve the vehicle routing problem with time windows. J. Heuristics 8(1), 43–58
(2002)

28. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998). doi:10.1007/3-540-49481-2 30

29. Thorsteinsson, E.S.: Branch-and-check: a hybrid framework integrating mixed
integer programming and constraint logic programming. In: Walsh, T. (ed.) CP
2001. LNCS, vol. 2239, pp. 16–30. Springer, Heidelberg (2001). doi:10.1007/
3-540-45578-7 2

30. Tran, T.T., Araujo, A., Beck, J.C.: Decomposition methods for the parallel machine
scheduling problem with setups. INFORMS J. Comput. 28(1), 83–95 (2016)

31. Vigo, D., Toth, P.: Vehicle Routing: Problems, Methods, and Applications, 2nd
edn. Society for Industrial and Applied Mathematics, Philadelphia (2014)

http://dx.doi.org/10.1007/978-3-319-07557-0_33
http://dx.doi.org/10.1007/3-540-49481-2_30
http://dx.doi.org/10.1007/3-540-45578-7_2
http://dx.doi.org/10.1007/3-540-45578-7_2

Solving Multiobjective Discrete Optimization
Problems with Propositional Minimal Model

Generation

Takehide Soh1(B), Mutsunori Banbara1, Naoyuki Tamura1,
and Daniel Le Berre2

1 Information Science and Technology Center, Kobe University, Kobe, Japan
soh@lion.kobe-u.ac.jp, {banbara,tamura}@kobe-u.ac.jp

2 CRIL-CNRS, Université d’Artois, Lens, France
leberre@cril.fr

Abstract. We propose a propositional logic based approach to solve
MultiObjective Discrete Optimization Problems (MODOPs). In our app-
roach, there exists a one-to-one correspondence between a Pareto front
point of MODOP and a P -minimal model of the CNF formula obtained
from MODOP. This correspondence is achieved by adopting the order
encoding as CNF encoding for multiobjective functions. Finding the
Pareto front is done by enumerating all P-minimal models. The beauty
of the approach is that each Pareto front point is blocked by a single
clause that contains at most one literal for each objective function. We
evaluate the effectiveness of our approach by empirically contrasting it
to a state-of-the-art MODOP solving technique.

1 Introduction

Due to recent remarkable improvements in efficiency, propositional logic based
approaches, e.g., Satisfiability Testing (SAT), Max-SAT, Answer Set Program-
ming (ASP), Pseudo Boolean (PB), and Satisfiability Modulo Theories (SMT)
solvers, have succeeded in solving many combinatorial (optimization) problems
in diverse areas, such as scheduling, automated planning, constraint satisfaction,
model checking, robotics, systems biology, etc. [7].

Especially for constraint satisfaction, encoding finite linear Constraint Sat-
isfaction Problems (CSPs) into Conjunctive Normal Form (CNF) formulas and
solving them by using CDCL solvers has proven to be highly effective method by
the award-winning CP solver Sugar1. The encoding of Sugar relies on the order
encoding [11,38,39], one of the most studied CNF encodings for CSP solving
in recent years. Moreover, single-objective discrete optimization problems like
Max-CSP can be efficiently solved by the order encoding [40].

P-minimal model [21,28] is a model which satisfies subset minimality with
regard to a specific set of atoms (referred as to P). More precisely, let M and

1 http://bach.istc.kobe-u.ac.jp/sugar/.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 596–614, 2017.
DOI: 10.1007/978-3-319-66158-2 38

http://bach.istc.kobe-u.ac.jp/sugar/

Solving Multiobjective Discrete Optimization Problems 597

M ′ be models of a CNF formula over a set of propositional variables V . Let P
be a set such that P ⊆ V . Suppose that there is a model M such that there is
no model M ′ that satisfies M ′ ∩P ⊂ M ∩P . Then, M ∩P is called a P -minimal
model. P -minimal model generation has been used for solving single-objective
job-shop scheduling problems [21].

MultiObjective Discrete Optimization Problem. (MODOP; [14]) is a problem
involving multiple objective functions that should be considered separately and
optimized simultaneously. MODOP is therefore well suited for modeling many
real world applications involving multiple criteria, such as decision making [4,15],
scheduling [10,18], automated planning [1,44], product design [42], etc. In this
paper, we consider a problem of solving finite domain MODOP, and refer to it
as MODOP.

The goal of MODOP is finding the Pareto front (viz. the set of Pareto front
points) defined by Pareto optimality. Finding the Pareto front is known to be
difficult. Several methods have been proposed for MODOP solving, such as
approximation methods [12,13,45,46], quality-guaranteed approximation meth-
ods [25,33], exact methods [6,8,19,23,24,33,34,41], and many others. However,
so far, little attention has been paid to using propositional logic based approaches
to MODOP.

In this paper, we describe an approach to solve MODOPs based on proposi-
tional P -minimal model generation. From the viewpoint of propositional logic,
we gain insights into the relation between Pareto optimality and subset minimal-
ity. In our approach, there exists a one-to-one correspondence between a Pareto
front point of MODOP and a P -minimal model of the CNF formula obtained
from MODOP. This correspondence is achieved by adopting the order encoding
as CNF encoding for multiobjective functions2. More precisely, propositional
variables obtained from multiobjective functions by the order encoding are used
as P in P -minimal model generation. Finding the Pareto front is done by enu-
merating all P -minimal models. For this, due to the nice property of the order
encoding, each Pareto front point can be elegantly blocked by a single clause
contains at most one literal for each objective function.

Our propositional logic based approach opens up the possibilities of new
application field of minimal model generation to MODOP. However, the ques-
tion is whether it competes with state-of-the-art MODOP solving techniques in
performance. We answer this question by empirically contrasting our approach
to an efficient MODOP solving technique based on Binary Decision Diagram
(BDD) proposed in [6].

In the sequel, we assume some familiarity with CNF encodings as well as
minimal model generation. A comprehensive survey for CNF encodings can be
found in [20]. Although we provide a brief introduction to MODOP in the next
section, we refer the reader to the literature [14] for a broader perspective.

2 MODOP other than multiobjective functions can be encoded by existing CNF encod-
ings: direct, multivalue, support, log, and hybrid encodings.

598 T. Soh et al.

2 Preliminaries

We begin with the definition of CSPs and then define MODOPs. We also give a
brief introduction to P -minimal models.

Definition 1 (Finite Linear CSP). A tuple (X,D ,C) is called a CSP when:

– X is a finite set of variables,
– D is a function specifying each variables’ domain (a set of possible values) as

a bounded Integer interval,
– C is a finite set of constraints over X.

We here consider CSPs that consist of linear expressions on finite domain
Integers. We use lb(x) and ub(x) as the lower and upper bounds of D(x) respec-
tively, for each variable x ∈ X. An assignment of a CSP (X,D ,C) is a function
α : X → Z such that it satisfies α(x) ∈ D(x) for all variables x ∈ X. A solution
of a CSP (X,D ,C) is an assignment which satisfies all constraints C ∈ C . A
CSP is satisfiable if there exists a solution, otherwise unsatisfiable.

For illustration, consider a CSP (X,D ,C) with X = {x, y, z} where D(x) =
D(y) = {0, 1, 2, 3, 4}, and D(z) = {0, 1}, and C = {x + y ≥ 3, (x �= 1) ∨ (y �=
2) ∨ (z = 1), (x �= 2) ∨ (y �= 1) ∨ (z = 1)}. We have 31 solutions, one of which
is given by α(x) = 0, α(y) = 3, and α(z) = 0. For convenience, we represent a
solution α as a vector of Integer values, i.e., (x, y, z) = (0, 3, 0).

Definition 2 (Finite domain MODOP). A tuple (−→o , (X,D ,C)) is called
a finite domain MODOP when:

– Multiobjective variables −→o = (o1, . . . , om) is a finite vector of m objective
variables to be minimized simultaneously.

– (X,D ,C) is a CSP.

Without loss of generality, we use objective variables instead of objective func-
tions to make our approach more understandable3.

We simply refer to finite domain MODOPs as MODOPs. The goal of
MODOP is to find the Pareto front defined by the concept of Pareto optimality.
A feasible solution of a MODOP (−→o ,CSP) is a solution of CSP.

Definition 3 (Dominance). A feasible solution α dominates α′ (α ≺ α′) if α
and α′ satisfies the following conditions:

– α(oi) ≤ α′(oi) for all i ∈ {1, . . . , m},
– α(oi) < α′(oi) for some i ∈ {1, . . . , m}.

We extend the definition of assignment to multiobjective variables −→o . For
an assignment α, we use α(−→o) to express a cost vector, i.e., α(−→o) =
(α(o1), . . . , α(om)). We also use α(−→o) ≺ α′(−→o) to express that α(−→o) dominates
α′(−→o).

3 Note that there is no essential differences between them.

Solving Multiobjective Discrete Optimization Problems 599

X = {x, y, z, o1, o2}

D(x) = D(y) = {0, 1, 2, 3, 4}
D(z) = {0, 1}
D(o1) = {1, . . . , 5}
D(o2) = {1, . . . , 6}

C = {x + y ≥ 3,
(x = 1) ∨ (y = 2) ∨ (z = 1),
(x = 2) ∨ (y = 1) ∨ (z = 1),
(o1 = x + 1),
(o2 = y + 2z + 1)}

1 2 30

1

2

3

4

5

4 o
1

o
2

5

6

Fig. 1. An example of MODOP ((o1, o2), (X,D ,C))

Definition 4 (Pareto Optimality). A feasible solution α is Pareto optimal
if there is no other feasible solution α′ such that α′(−→o) ≺ α(−→o). A cost vector
α(−→o) is a Pareto front point (also called nondominated point) if α is Pareto
optimal. The Pareto front is the set of all Pareto front points.

Figure 1 shows an example of MODOP having two objective variables. Again,
we have 31 feasible solutions, since the main part is the same as the previous CSP
example. Among them, feasible solutions (x, y, z) = (0, 3, 0), (2, 2, 0), and (3, 0, 0)
correspond to cost vectors (o1, o2) = (1, 4), (3, 3) and (4, 1) respectively. These
cost vectors marked by • in Fig. 1 are Pareto front points. Since there is no other
Pareto front points, we have the nonconvex Pareto front {(1, 4), (3, 3), (4, 1)}.

P -Minimal Model. A propositional variable is a variable whose value is either
0 (false) or 1 (true). A literal is a propositional variable v or its negation ¬v.
A clause is a disjunction of literals and is also identified with a set of literals.
A Conjunctive Normal Form (CNF) formula is a conjunction of clauses and
is also identified with a set of clauses. An assignment of a CNF formula is a
function β : V → {0, 1} where V is the set of propositional variables of the
formula. A model of a CNF formula is an assignment which satisfies all clauses
of the formula. A CNF formula is satisfiable if there exists a model, otherwise
unsatisfiable. For convenience, we represent a model by a set of propositional
variables which are assigned to 1s. For instance, consider a model β such that
β(v1) = 0, β(v2) = 1, and β(v3) = 0. This model is represented by {v2}.

A P -minimal model is a model which satisfies subset minimality with regard
to a set of propositional variables P . The following definition is based on [21,28].

Definition 5 (P -Minimal Model). Let M and M ′ be models of a CNF
formula over a set of propositional variables V . Let P be a set such that P ⊆ V .
Suppose that there is a model M such that there is no model M ′ that satisfies
M ′ ∩ P ⊂ M ∩ P . Then, M ∩ P is called a P -minimal model.

600 T. Soh et al.

Closely related to P -minimal models, a P -minimum model is a model which
satisfies minimum cardinality with regard to a set of propositional variables P .

Definition 6 (P -Minimum Model). Let M and M ′ be models of a CNF
formula over a set of propositional variables V . Let P be a set such that P ⊆ V .
Suppose that there is a model M such that there is no model M ′ that satisfies
|M ′ ∩ P | < |M ∩ P |. Then, M ∩ P is called a P -minimum model.

For illustration, consider the following CNF formula:

(¬v1 ∨ ¬v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ ¬v3) ∧ (v2 ∨ v3) ∧ (¬v2 ∨ ¬v3)

All models of this formula are {v1, v2, v4}, {v1, v3, v4}, {v2, v4}, {v1, v3}, and
{v2}. Let P be {v1, v2, v3}. The P -minimal models are {v1, v3} and {v2}. Note
that {v1, v3} and {v1, v3, v4} are not distinct when we consider P -minimal mod-
els. In contrast, the P -minimum model of the formula is {v2}.

3 A Propositional Logic Based Approach to MODOP

In this section, we first give a brief introduction to the order encoding and show
some properties. We then prove that there exists a one-to-one correspondence
between a Pareto front point of MODOP and a P -minimal model of CNF formula
obtained from MODOP. Finally, we present a method for finding the Pareto front
by enumerating all P -minimal models.

3.1 Order Encoding and Some Properties

Order encoding is a method that encodes finite linear CSPs into CNF formulas
[11,38,39]. The benefit of the order encoding is the natural representation of
the order relation on Integers. Encoding CSP into CNF formulas by the order
encoding and solving them by modern SAT solvers is an effective method for
CSP solving in a sense that it keeps the bounds consistency of CSP by unit
propagation. In recent years, the order encoding and related ones have succeeded
in solving a wide range of CSPs [2,3,11,16,26,29].

In the order encoding, for a given CSP (X,D ,C), a propositional variable
px,d is introduced for each Integer variable x ∈ X and each domain value d ∈
D(x) except lb(x). The variable px,d is intended to express x ≥ d. The variable
px,lb(x) is unnecessary, since x ≥ lb(x) is always true. We use δ(x) to express the
set of px,d’s, i.e., δ(x) = {px,d | lb(x) + 1 ≤ d ≤ ub(x)}.

Then, the following axiom clauses are introduced to ensure that each Integer
variable x ∈ X takes an exactly one value from D(x). The axiom clauses consists
of two literals and represent the order relation on Integer variables.

px,d ∨ ¬px,d+1 (d = lb(x) + 1 . . . ub(x) − 1) (1)

Intuitively, this clause means that x is greater than or equal to d if x is greater
than or equal to d + 1.

Solving Multiobjective Discrete Optimization Problems 601

For illustration, let us consider an Integer variable x with D(x) = {0, . . . , 4}
in Fig. 1. For this, four variables δ(x) = {px,1, px,2, px,3, px,4} are introduced, and
this example is encoded into the following axiom clauses:

px,1 ∨ ¬px,2 px,2 ∨ ¬px,3 px,3 ∨ ¬px,4

The possible models of the axiom clauses are shown in a table below.

Models px,1 px,2 px,3 px,4 Assignment

{} 0 0 0 0 x = 0

{px,1} 1 0 0 0 x = 1

{px,1, px,2} 1 1 0 0 x = 2

{px,1, px,2, px,3} 1 1 1 0 x = 3

{px,1, px,2, px,3, px,4} 1 1 1 1 x = 4

Each model represents an assignment of Integer value x, e.g., a model
{px,1, px,2} representing an assignment x = 2. Moreover, we can observe in the
table that the order relation between Integer values is represented by the sub-
set relation between models, and vice versa. For instance, it is easy to see that
{px,1} ⊆ {px,1, px,2} means 1 ≤ 2. In general, the order encoding has the follow-
ing property:

Property 1. Let x be a Integer variable, ψ be a CNF formula obtained from x
by the order encoding. Let α and α′ be assignments of x respectively obtained
from models M and M ′ of ψ. Then, α(x) ≤ α′(x) ⇐⇒ M ⊆ M ′ holds.

From this property, minimizing an Integer variable x can be done by finding
the minimal model of ψ. In our example of x with D(x) = {0, . . . , 4}, the minimal
model {} represents the minimum value x = 0.

Constraints are encoded into clauses representing conflict regions rather than
conflict points. For illustration, consider a constraint x + y ≥ 3 with D(x) =
D(y) = {0, 1, 2, 3, 4} in Fig. 1. Encoding Integer variables x and y is done in a
similar way. The constraint is encoded into the following three clauses:

px,1 ∨ py,3 px,2 ∨ py,2 px,3 ∨ py,1

These clauses represents conflict regions x ≤ 0 ∧ y ≤ 2, x ≤ 1 ∧ y ≤ 1, and
x ≤ 2 ∧ y ≤ 0 from left to right respectively. We obtain nineteen models from
the clauses. Among them, for instance, a model {px,1, py,1, py,2, py,3} represents
a solution (x, y) = (1, 3) of the original constraint x + y ≥ 3.

Property 1 can be extended to a whole CSP as follows:

Property 2. Let (X,D ,C) be a CSP, ψ be a CNF formula obtained from CSP,
and P be the set of propositional variables obtained from x ∈ X by the order
encoding, i.e., P = δ(x). Let α and α′ be solutions of CSP respectively obtained
from models M and M ′ of ψ. Then, α(x) ≤ α′(x) ⇐⇒ M ∩ P ⊆ M ′ ∩ P holds.

602 T. Soh et al.

From this property, finding the optimal value of CSP (X,D ,C) with a single
objective variable o ∈ X can be done by finding the P -minimal model of ψ with
P = δ(o).

3.2 Correspondence Between a Pareto Front Point
and a P -Minimal Model

We now present a one-to-one correspondence between a Pareto front point of
MODOP and a P -minimal model of CNF-encoded formula from MODOP. This
correspondence relies on the order encoding to encode multobjective variables
into CNF.

First, we extend Property 2 to MODOPs as follows:

Lemma 1. Let Ω = (−→o , CSP) be a MODOP, ψ be a CNF formula obtained
from CSP , and P be the set of propositional variables from multiobjective vari-
ables −→o = (o1, . . . , om) by the order encoding, i.e., P = δ(o1) ∪ · · · ∪ δ(om). Let
α and α′ be feasible solutions of Ω respectively obtained from models M and
M ′ of ψ. Then, α(−→o) ≺ α′(−→o) ⇐⇒ M ∩ P ⊂ M ′ ∩ P holds.

Proof. (⇐=) From the hypotheses M ∩ P ⊂ M ′ ∩ P , the following holds.

– M ∩ δ(oi) ⊆ M ′ ∩ δ(oi) for all i (1 ≤ i ≤ m),
– M ∩ δ(oi) ⊂ M ′ ∩ δ(oi) for some i (1 ≤ i ≤ m).

By Property 2, the following holds from the above.

– α(oi) ≤ α′(oi) for all i (1 ≤ i ≤ m),
– α(oi) < α′(oi) for some i (1 ≤ i ≤ m).

By Definition 3 (Dominance), α(−→o) ≺ α′(−→o) holds.
(=⇒) From the hypothesis α(−→o) ≺ α′(−→o) and Definition 3 (Dominance), the

following holds:

– α(oi) ≤ α′(oi) for all i (1 ≤ i ≤ m),
– α(oi) < α′(oi) for some i (1 ≤ i ≤ m).

By Property 2, the following holds from the above.

– M ∩ δ(oi) ⊆ M ′ ∩ δ(oi) for all i (1 ≤ i ≤ m),
– M ∩ δ(oi) ⊂ M ′ ∩ δ(oi) for some i (1 ≤ i ≤ m).

Then, M ∩ P ⊂ M ′ ∩ P holds. ��
From this lemma, it can be seen that the ≺-relation between feasible solutions

is represented by the ⊂-relation between sets of the intersection of models and
P = δ(o1)∪· · ·∪δ(om), and vice versa. As mentioned, any existing CNF encodings
can be used to encode CSP of Ω by adding channeling constraints between P
and propositional variables of a target encoding if necessary. By using Lemma1,
the following proposition holds.

Solving Multiobjective Discrete Optimization Problems 603

Proposition 1. Let Ω = (−→o , CSP) be a MODOP, ψ be a CNF formula
obtained from CSP , and P be a set of propositional variables from multiob-
jective variables −→o = (o1, . . . , om) by the order encoding, i.e., P = δ(o1) ∪ · · · ∪
δ(om). Then, there is one-to-one correspondence between a Pareto front point
of Ω and a P -minimal model of ψ.

Proof. (⇐=)
Let M ′∩P be a P -minimal model of ψ, and α′ be a feasible solution of Ω obtained
from M ′ of ψ. By Definition 5 (P -Minimal Model), there is no model M of ψ
that satisfies M ∩ P ⊂ M ′ ∩ P . Then, by Lemma 1, there is no feasible solution
α that satisfies α(−→o) ≺ α′(−→o). Thus, by Definition 4 (Pareto Optimality), the
feasible solution α′ is Pareto optimal, and a cost vector α′(−→o) is a Pareto front
point.

(=⇒) Let α′(−→o) be a Pareto front point of Ω, and M ′ be any model of ψ
representing the feasible solution α′ of Ω. By Definition 4 (Pareto Optimality),
there is no feasible solution α that satisfies α(−→o) ≺ α′(−→o). Then, by Lemma 1,
there is no model M of ψ that satisfies M∩P ⊂ M ′∩P . Therefore, by Definition 5
(P -Minimal Model), M ′ ∩ P is a P -minimal model. ��

For illustration, let us go back to an example in Fig. 1, a MODOP
((o1, o2), CSP) with o1 ∈ {1, . . . , 5} and o2 ∈ {1, . . . , 6}. Table 1 shows all possi-
ble P -minimal models of a CNF formula obtained from CSP and corresponding
Pareto front points, where

P = {po1,2, po1,3, po1,4, po1,5, po2,2, po2,3, po2,4, po2,5, po2,6}.

It can be seen that there is one-to-one correspondence between a Pareto
front point and a P -minimal model: {po2,2, po2,3, po2,4} and (1,4), {po1,2, po1,3,
po2,2, po2,3} and (3,3), and {po1,2, po1,3, po1,4} and (4,1).

3.3 Finding the Pareto Front

Due to one-to-one correspondence from Proposition 1, finding the Pareto front
is done by enumerating all P -minimal models. Here, the important thing is how
we block4 each P -minimal model.

Let us consider a MODOP ((o1, . . . , om), CSP). Let ψ be a CNF formula
obtained from CSP . Suppose that we obtain the following P -minimal model
which represent a Pareto front point (d1, . . . , dm), where lb(oi) ≤ di ≤ ub(oi) for
each i.

{po1,lb(o1)+1, . . . , po1,d1} ∪ · · · ∪ {pom,lb(om)+1, . . . , pom,dm
}

4 The terminology “block” is often used in SAT/MaxSAT communities to denote
adding a constraint which prevents a solution to be found again (to “block” it) in
an iterative process.

604 T. Soh et al.

Table 1. Possible P -minimal models for a MODOP in Fig. 1

P -minimal models po1,2 po1,3 po1,4 po1,5 po2,2 po2,3 po2,4 po2,5 po2,6 Pareto
front
points

{po2,2, po2,3, po2,4} 0 0 0 0 1 1 1 0 0 (1,4)

{po1,2, po1,3, po2,2, po2,3} 1 1 0 0 1 1 0 0 0 (3,3)

{po1,2, po1,3, po1,4} 1 1 1 0 0 0 0 0 0 (4,1)

Region A blocked by ¬po2,4

Region B blocked by ¬po1,3 ∨ ¬po2,3

Region C blocked by ¬po1,4

1 2 30

1

2

3

4

5

4 o
1

o
2

5

6

C

B

A

Fig. 2. Regions pruned by blocking clauses

Naively, this P -minimal model is blocked by the following clause.

m∨

i=1

di∨

j=lb(oi)+1

¬poi,j

By taking advantage of axiom clauses (1) of the order encoding, we can reduce
it to the following clause which contains at most one literal for each objective
variable. Note that ¬poi,lb(oi) is treated as false.

m∨

i=1

¬poi,di

The beauty of the approach is that each P -minimal model (i.e., Pareto front
point) is blocked by the above reduced clause.

For instance, the first P -minimal model {po2,2, po2,3, po2,4} representing the
Pareto front point (1, 4) in Table 1 is naively blocked by ¬po2,2 ∨¬po2,3 ∨¬po2,4.
This blocking clause is reduced to ¬po2,4 by resolution with axiom clauses po2,2∨
¬po2,3 and po2,3 ∨ ¬po2,4. In a similar way, {po1,2, po1,3, po2,2, po2,3} representing
(3, 3) and {po1,2, po1,3, po1,4} representing (4, 1) are respectively blocked by the
reduced clauses ¬po1,3∨¬po2,3 and ¬po1,4. Figure 2 illustrates the regions of cost
vectors pruned by blocking clauses. The upper right region of A© dominated by a
Pareto front point (1, 4) is pruned by a blocking clause ¬po2,4. In a similar way,

Solving Multiobjective Discrete Optimization Problems 605

the upper right regions of B© dominated by (3, 3) and C© dominated by (4, 1) are
pruned by blocking clauses ¬po1,3 ∨ ¬po2,3 and ¬po1,4 respectively.

Input: a MODOP Ω = ((o1, . . . , om), CSP)
Output: the Pareto front of Ω
1: ψ := a CNF formula obtained from CSP
2: P := δ(o1) ∪ · · · ∪ δ(om)
3: YN := ∅
4: while (findP -MinimalModel(ψ, P))
5: YN := YN ∪ {MP } # add an obtained P -minimal model to YN
6: ψ := ψ ∧ block(MP)
7: return decode(YN)

Fig. 3. Basic algorithm for finding the Pareto front

A basic algorithm for finding the Pareto front is shown in Fig. 3. For a given
MODOP Ω = ((o1, . . . , om), CSP), a CNF formula obtained from CSP is set
to ψ in Line 1. Propositional variables obtained from multiobjective variables
(o1, . . . , om) by the order encoding is set to P in Line 2. Line 3 initializes YN
that stores P -minimal models. The method findP -MinimalModel(ψ, P) in
Line 4 returns true if a P -minimal model of ψ is found, otherwise false. The loop
in Line 4-6, every time a P -minimal model MP is found, puts it to YN and then
adds the blocking clause block(MP) to ψ. Finally, Line 7 returns the Pareto
front of Ω when no more P -minimal model is found.

3.4 P -Minimal Model Versus P -Minimum Model

Obviously, Single-Objective Discrete Optimization Problem (SODOP) is a special
case of MODOP where the number of objective variables is restricted to only
one. Several SODOPs have been successfully solved so far by using the order
encoding and incremental solving techniques [5,17,27,37,39].

In the order encoding, finding the optimal value of SODOP, i.e., CSP
(X,D ,C) with a single objective variable o ∈ X, can be done by finding the
P -minimum model as well as the P -minimal model of CNF formula obtained
from CSP with P = δ(o).

However, this is not the case for MODOPs having multiple objective vari-
ables. Indeed P -minimum model generation can provide some Pareto front points
of MODOP, but it cannot always provide the Pareto front. For instance, a Pareto
front point (3, 3) of Fig. 1 cannot be obtained by P -minimum model generation,
since its cardinality (6) is greater than the ones of the other two Pareto front
points (1, 4) and (4, 1).

606 T. Soh et al.

4 Experiments

We implemented the proposed approach presented in the previous section. The
resulting solver sucre reads a MODOP instance and encodes it into PB con-
straints, which are subsequently solved by a PB-based P -minimal solver that
returns P -minimal models representing the Pareto front as well as its subset of
the original MODOP instance. Note that PB constraints can be considered as a
generalization of CNF formula.

For PB encoding, we choose a hybrid encoding integrating the order and
log encodings [36]. This is because the recent results in [36] showed that the
hybrid encoding scales to larger CSP instances than the order encoding. We
implemented the hybrid encoding in Scala, where multiobjective variables are
encoded by the order encoding. For finding P -minimal models, we implemented
a P -minimal solver based on PB optimization. We use the clasp solver5 as a
back-end PB solver.

To evaluate the effectiveness of our approach, we carry out experiments on
the Multicriteria Set Covering Problem (MSCP). MSCP has four parameters,
the number of items, sets, objective functions, and the range of coefficients of
objective functions.

#Items #Sets #Objectives Range of Coefficients
{100, 150} {20, 30, 50, 100, 200} {3, 4, 5} {[1, 10], [1, 100]}
We use the combination of parameter values shown above for our compre-

hensive evaluation6. This combination is an extension of one used in a related
work [6] with #Sets = {50, 100, 200} and Range of Coefficients = [1, 10]. For the
six combinations from (100, 20, {3, 4, 5}, [1, 100]) and (150, 30, {3, 4, 5}, [1, 100]),
we use 60 instances (10 instances per combination) which are available from the
web7. For other combinations, we uniformly generate 10 instances at random for
each combination in the similar way with [6].

We contrast our approach with a state-of-the-art MODOP solving technique
based on Binary Decision Diagram (BDD) proposed by Bergman and Cire [6].
It first constructs a BDD representing all feasible solutions of MODOP and
then computes possible candidates of Pareto front points on BDD, which are
subsequently guaranteed to be Pareto optimal. The results in [6] shows that the
BDD-based solver can outperform existing exact methods [19,31].

We ran the instances on a Mac OS equipped with Intel Core i7 3 GHz CPU
and 16 GB RAM. We impose a time-limit of 3,600 s for each run. For the BDD-
based solver, we compiled its C++ source code with clang-800.0.42.1 and linked
it to ILOG CPLEX 12.7.18.

5 https://potassco.org/.
6 #Sets = 20 is used only for #Items = 100. #Sets = 30 is used only for #Items =

150.
7 http://www.andrew.cmu.edu/user/vanhoeve/mdd/.
8 We confirmed in our computational environment that the BDD solver was able to

solve 55 instances out of the 60 MSCP instances, compared with 53 in [6].

https://potassco.org/
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

Solving Multiobjective Discrete Optimization Problems 607

44 29 96

BDD (136) P-minimal (188)

Fig. 4. Venn diagram for solved instances

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

T
im

e
(s

ec
)

#Solved

BDD
P-minimal

Fig. 5. Cactus plot of benchmark results on MSCP

First, we analyze the difference between the proposed approach and the BDD-
based one. Overall, out of all 480 instances, our P -minimal-based solver sucre
found the Pareto fronts of 188 instances, compared with 136 of the BDD-based
solver. The inclusion relation of the solved instances obtained by the two solvers
is shown in Figure 4. Out of 232 solved instances, 96 of them are obtained only
by sucre, 44 obtained only by the BDD-based solver, and 92 commonly obtained
by both solvers. For CPU time, a cactus plot of the results is shown in Fig. 5. In
the following, we discuss more details of our experimental results.

Tables 2 and 3 contrast the results obtained from the sucre solver (denoted
by P -minimal) and the BDD-based solver (denoted by BDD). In both tables,
the number of items, sets, and objective functions are given at the top. For each
combination, the average size of the Pareto front (viz. the number of Pareto
front points) and the number of solved instances are shown. For example, sucre
found the Pareto fronts of all 10 instances for a combination (100, 50, 3, [1, 100]),
and the BDD-based solver found the ones of 4 instances. The symbol “—” means
that both solvers failed to find the Pareto fronts of all 10 instances. We highlight
the best result for each combination. The difference of the two tables is the range

608 T. Soh et al.

Table 2. Results on MSCP instances when the range of coefficients is [1, 100]

#Items #Sets m = 3 m = 4 m = 5

#Pareto
front
points

BDD
P -minimal
(#solved)

#Pareto
front
points

BDD
P -minimal
(#solved)

#Pareto
front
points

BDD P -
minimal
(#solved)

100 20 117 10 10 428 10 7 1171 10 4

100 50 186 4 10 515 2 4 2336 3 0

100 100 157 4 10 466 3 4 1783 3 1

100 200 178 0 5 — 0 0 — 0 0

150 30 305 10 5 1178 8 0 5182 7 0

150 50 252 0 3 — 0 0 7124 2 0

150 100 213 0 6 344 0 1 — 0 0

150 200 — 0 0 — 0 0 — 0 0

Table 3. Results on MSCP instances when the range of coefficients is [1, 10]

#Items #Sets m = 3 m = 4 m = 5

#Pareto
front
points

BDD P -
minimal
(#solved)

#Pareto
front
points

BDD P -
minimal
(#solved)

#Pareto
front
points

BDD P -
minimal
(#solved)

100 20 53 10 10 170 10 10 519 10 8

100 50 70 5 10 227 3 10 466 2 4

100 100 87 2 10 323 7 9 696 2 4

100 200 79 0 8 184 0 3 — 0 0

150 30 114 4 8 334 4 2 369 1 1

150 50 121 0 7 230 0 2 — 0 0

150 100 101 0 7 342 0 1 — 0 0

150 200 119 0 4 — 0 0 — 0 0

of coefficients of objective functions which affects the size of the Pareto front:
Table 2 for [1, 100] and Table 3 for [1, 10].

In Table 2, out of 24 combinations, both solvers gave the best results of 9
combinations and failed to find the Pareto fronts of all instances for 7 com-
binations marked by “—”. The sucre solver performs better for combinations
with #Set = {50, 100, 200} and m = {3, 4} than the BDD-based solver. We can
observe that sucre scales to #Set = 200 and solved 5 instances for a combina-
tion (100, 200, 3, [1, 100]), while the BDD-based solver gave no solution. We note
that the BDD-based solver failed to construct BDDs for 9 instances and did not
complete the computation for 1 instance in the time-limit.

On the other hand, sucre does not match the BDD-based solver in perfor-
mance for combinations with #Set = {20, 30} or m = 5. We can observe that the
BDD-based solver solved 7 instances for a combination (150, 30, 5, [1, 100]), while
sucre gave no solution. One of the reasons for this limitation is that sucre can-

Solving Multiobjective Discrete Optimization Problems 609

not complete the enumeration of Pareto optimal points in the time-limit, since
the number of objective functions is higher, the size of Pareto front becomes
large.

Table 3 shows the results on MSCP instances when the range of coefficients
of objective functions is [1, 10]. The sucre solver outperforms the BDD-based
solver. Compared with [1, 100], sucre solved more instances, but the BDD-based
solver solved less instances. Both solvers failed to find the Pareto fronts of all
instances for 5 combinations marked by “—”.

Table 4. Size of partial Pareto fronts of hard MSCP instances

#Items #Sets #Objectives Range of coefficients #Pareto front points

Average Minimum Maximum

100 200 4 [1, 100] 216 119 446

100 200 5 [1, 100] 204 91 431

150 50 4 [1, 100] 178 76 359

150 100 5 [1, 100] 157 46 375

150 200 3 [1, 100] 169 43 335

150 200 4 [1, 100] 97 8 209

150 200 5 [1, 100] 77 16 215

100 200 5 [1, 10] 115 35 210

150 50 5 [1, 10] 221 45 469

150 100 5 [1, 10] 157 17 321

150 200 4 [1, 10] 102 13 261

150 200 5 [1, 10] 112 20 241

It is often impractical to find the Pareto front for hard MODOP instances
because of a large number of Pareto front points. Actually, as can be seen in
Tables 2 and 3, both solvers failed to find the Pareto fronts of all instances for
12 combinations (120 instances in total). From a practical point of view, finding
a subset of Pareto front is extremely useful for such instances. For this, the
proposed approach has an obvious advantage of a one-to-one correspondence
between a Pareto front point and a P -minimal model.

Table 4 shows the size of partial Pareto fronts (a set of Pareto front points)
obtained from those hard instances by the sucre solver. In Table 4, the number
of items, sets, objective functions, and the range of coefficients for objective
functions are given at first. Then for each combination, the average, minimum,
and maximum number of Pareto front points for 10 instances are shown. The
sucre solver succeeded in computing around 150 Pareto front points in average
for the hard instances, which were unsolvable by the BDD-based solver.

610 T. Soh et al.

5 Related Work

At first, to the best of our knowledge, so far, no approach has been proposed
to solving MODOPs based on a one-to-one correspondence between a Pareto
front point of MODOP and a P -minimal model of CNF formula obtained from
MODOP via the order encoding.

A study by Koshimura et al. [21] is the most relevant related work. They
solved single-objective job-shop scheduling problems by using P -minimal model
generation. As we discussed in Sect. 3.4, finding optimal values of single-objective
optimization problems can be done by finding the P -minimum model as well as
the P -minimal model. The study is therefore a special case of the proposed
approach presented in this paper.

There have been several proposals for solving MODOPs such as approxima-
tion methods and exact methods. The majority of the approximation meth-
ods is based on metaheuristics-based algorithms [12,13,45,46]. Those meth-
ods can deal with large instances but cannot guarantee the Pareto optimal-
ity of obtained solutions. To obtain qualified solutions, some quality-guaranteed
approximation methods have been proposed such as [25,33]. Among them, the
best-first AND/OR search algorithm [25] computes a relaxed Pareto front using
ε-dominance [32].

On the other hands, several exact methods have been proposed [6,8,19,24,
31,33,34]. Among them, the methods recently proposed in [19,31] are extensions
of ε-constraint method [22], which iteratively searches on sub-problems having
subsets of objective functions. The results in [6] showed that a BDD-based solver,
empirically contrasted to the proposed approach in this paper, can outperform
those two exact methods [19,31]. Very recently, Boland et al. have proposed an
approach to MODOP solving based on Integer Programming (IP) [8]. In our
preliminary experiments on MSCP, the IP-based solver was able to find Pareto
fronts for more instances compared with sucre and a BDD-based solver [6]. In
future work, we will investigate the pros and cons of these solvers on a wide
range of MODOP instances.

From the viewpoint of propositional logic based methods, a SAT-based one
[23] solves multiobjective PB problems. This method is based on a standard
iterative procedure for finding a feasible solution and for pruning its dominated
region while maintaining candidates of Pareto front points. Moreover, as with the
BDD-based method above, it cannot guarantee Pareto optimality of candidates
until a whole procedure terminates.

From the viewpoint of declarative programming paradigm, there have been
several studies on MultiObjective Constraint Optimization Problems (MO-COP)
[24,25,30,41,43] in Constraint Programming. For Answer Set Programming,
asprin [9] has been implemented for preference handling, which is closely related
to multiobjective optimization.

Solving Multiobjective Discrete Optimization Problems 611

6 Conclusion

We presented an approach to solve MODOPs based on propositional P -minimal
model generation. We proved that there exists a one-to-one correspondence
between a Pareto front point of MODOP and a P -minimal model of CNF for-
mula obtained from MODOP. This correspondence is achieved by adopting the
order encoding as CNF encoding for multiobjective functions. We also showed
that finding the Pareto front is done by enumerating all P -minimal models. In
particular, each Pareto front point can be elegantly blocked by a single clause
contains at most one literal for each objective function due to the nice property
of the order encoding.

The resulting solver sucre relies on the correspondence we proved and del-
egates the solving task to a general-purpose P -minimal solver. Our empirical
analysis used Multicriteria Set Covering Problems (MSCPs) and confirmed that
sucre performs well on MSCPs which involves the large number of sets as well as
the small range of coefficients of objective functions. We contrasted the perfor-
mance of sucre with the results obtained by an efficient exact MODOP solver
based on BDD. The sucre solver demonstrated that the proposed approach
allows to compete with state-of-the-art MODOP solving techniques. The source
code of sucre and the benchmark instances will be available from the web9.

Modern real-world applications in Artificial Intelligence involve multiple cri-
teria that should be considered separately and optimized simultaneously. It is
therefore often impractical to find the whole Pareto front. From this point of
view, the proposed approach has a great advantage of finding a subset of Pareto
front. Our empirical analysis confirmed that sucre is extremely useful to find
such partial Pareto front on hard MSCP instances.

Our future work includes experiments with real-world applications as well
as classical problems in diverse areas. Our P -minimal-based approach can be
applied to a wide range of propositional logic based approaches, such as SAT,
Max-SAT, ASP, PB, SMT, etc. Moreover, it can be further extended in selecting
a representative subset of Pareto front (e.g., [35]) by introducing variable selec-
tion heuristics for blocking clauses in back-end P -minimal solvers. In future, we
will investigate such possibilities, and the results will be applied to solving more
practical MODOPs.

References

1. Alarcon-Rodriguez, A., Ault, G., Galloway, S.: Multi-objective planning of distrib-
uted energy resources: a review of the state-of-the-art. Renew. Sustain. Energy
Rev. 14(5), 1353–1366 (2010)

2. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 1–15. Springer, Heidelberg (2005). doi:10.1007/11527695 1

9 http://kix.istc.kobe-u.ac.jp/∼soh/sucre/.

http://dx.doi.org/10.1007/11527695_1
http://kix.istc.kobe-u.ac.jp/~soh/sucre/

612 T. Soh et al.

3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45193-8 8

4. Ballestero, E., Bravo, M., Pérez-Gladish, B., Parra, M.A., Plà-Santamaria, D.:
Socially responsible investment: a multicriteria approach to portfolio selection com-
bining ethical and financial objectives. Eur. J. Oper. Res. 216(2), 487–494 (2012)

5. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating combinatorial test
cases by efficient SAT encodings suitable for CDCL SAT solvers. In: Fermüller,
C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 112–126. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16242-8 9

6. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In:
Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016).
doi:10.1007/978-3-319-44953-1 6

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications (FAIA), vol. 185. IOS Press,
Amsterdam (2009)

8. Boland, N., Charkhgard, H., Savelsbergh, M.W.P.: A new method for optimizing
a linear function over the efficient set of a multiobjective integer program. Eur. J.
Oper. Res. 260(3), 904–919 (2017)

9. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: customizing answer
set preferences without a headache. In: Proceedings of the 29th National Confer-
ence on Artificial Intelligence (AAAI 2015), pp. 1467–1474 (2015)

10. Burke, E.K., Li, J., Qu, R.: A pareto-based search methodology for multi-objective
nurse scheduling. Ann. Oper. Res. 196(1), 91–109 (2012)

11. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfi-
ability algorithms to scheduling problems. In: Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994), pp. 1092–1097 (1994)

12. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.
1007/3-540-45356-3 83

13. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

14. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). doi:10.1007/
3-540-27659-9

15. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State
of the Art Surveys. International Series in Operations Research & Management
Science. Springer, Heidelberg (2005). doi:10.1007/b100605

16. Gent, I.P., Nightingale, P.: A new encoding of alldifferent into SAT. In: Proceedings
of the 3rd International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems (2004)

17. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competi-
tive and cooperative approach to propositional satisfiability. Discrete Appl. Math.
154(16), 2291–2306 (2006)

18. Iturriaga, S., Dorronsoro, B., Nesmachnow, S.: Multiobjective evolutionary algo-
rithms for energy and service level scheduling in a federation of distributed data-
centers. Int. Trans. Oper. Res. 24(1–2), 199–228 (2017)

19. Kirlik, G., Sayin, S.: A new algorithm for generating all nondominated solutions of
multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488
(2014)

http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1007/978-3-642-16242-8_9
http://dx.doi.org/10.1007/978-3-319-44953-1_6
http://dx.doi.org/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1007/3-540-27659-9
http://dx.doi.org/10.1007/3-540-27659-9
http://dx.doi.org/10.1007/b100605

Solving Multiobjective Discrete Optimization Problems 613

20. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility. Addison-Wesley Professional, Boston (2015)

21. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model gener-
ation with respect to an atom set. In: Proceedings of the the 7th International
Workshop on First-Order Theorem Proving (FTP 2009), pp. 49–59 (2009)

22. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation
scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper.
Res. 169(3), 932–942 (2006)

23. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Solving multi-objective pseudo-
boolean problems. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 56–69. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 9

24. Marinescu, R.: Exploiting problem decomposition in multi-objective constraint
optimization. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 592–607. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04244-7 47

25. Marinescu, R.: Best-first vs. depth-first AND/OR search for multi-objective con-
straint optimization. In: Proceedings of the 22nd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2010), pp. 439–446 (2010)

26. Metodi, A., Codish, M., Lagoon, V., Stuckey, P.J.: Boolean equi-propagation for
optimized SAT encoding. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 621–636.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 47

27. Nabeshima, H., Soh, T., Inoue, K., Iwanuma, K.: Lemma reusing for SAT based
planning and scheduling. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling 2006 (ICAPS 2006), pp. 103–112 (2006)

28. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Miglioli, P.,
Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071,
pp. 278–294. Springer, Heidelberg (1996). doi:10.1007/3-540-61208-4 18

29. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

30. Okimoto, T., Joe, Y., Iwasaki, A., Matsui, T., Hirayama, K., Yokoo, M.: Inter-
active algorithm for multi-objective constraint optimization. In: Milano, M.
(ed.) CP 2012. LNCS, pp. 561–576. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33558-7 41

31. Ozlen, M., Burton, B.A., MacRae, C.A.G.: Multi-objective integer programming:
an improved recursive algorithm. J. Optim. Theory Appl. 160(2), 470–482 (2014)

32. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)

33. Rollon, E., Larrosa, J.: Bucket elimination for multiobjective optimization prob-
lems. J. Heuristics 12(4–5), 307–328 (2006)

34. Rollon, E., Larrosa, J.: Multi-objective russian doll search. In: Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI 2007), pp. 249–254
(2007)

35. Schwind, N., Okimoto, T., Konieczny, S., Wack, M., Inoue, K.: Utilitarian and
egalitarian solutions for multi-objective constraint optimization. In: Proceedings
of the 26th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2014), pp. 170–177. IEEE Computer Society (2014)

36. Soh, T., Banbara, M., Tamura, N.: Proposal and evaluation of hybrid encoding of
CSP to SAT integrating order and log encodings. Int. J. Artif. Intell. Tools 26(1),
1–29 (2017)

http://dx.doi.org/10.1007/978-3-540-72788-0_9
http://dx.doi.org/10.1007/978-3-642-04244-7_47
http://dx.doi.org/10.1007/978-3-642-23786-7_47
http://dx.doi.org/10.1007/3-540-61208-4_18
http://dx.doi.org/10.1007/978-3-642-33558-7_41
http://dx.doi.org/10.1007/978-3-642-33558-7_41

614 T. Soh et al.

37. Soh, T., Inoue, K., Tamura, N., Banbara, M., Nabeshima, H.: A SAT-based method
for solving the two-dimensional strip packing problem. Fundam. Inf. 102(3–4),
467–487 (2010)

38. Tamura, N., Banbara, M., Soh, T.: PBSugar: Compiling pseudo-boolean con-
straints to SAT with order encoding. In: Proceedings of the 25th IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 1020–
1027. IEEE, November 2013

39. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

40. Tanjo, T., Tamura, N., Banbara, M.: Sugar++: a SAT-based Max-CSP/COP
solver. In: Proceedings of the 3rd International CSP Solver Competition, pp. 77–82
(2008)

41. Ugarte, W., Boizumault, P., Crémilleux, B., Lepailleur, A., Loudni, S., Plantevit,
M., Räıssi, C., Soulet, A.: Skypattern mining: from pattern condensed representa-
tions to dynamic constraint satisfaction problems. Artif. Intell. 244, 48–69 (2017).
https://doi.org/10.1016/j.artint.2015.04.003

42. Wang, L., Ng, A.H.C., Deb, K. (eds.): Multi-objective Evolutionary Optimisation
for Product Design and Manufacturing. Springer, Heidelberg (2011). doi:10.1007/
978-0-85729-652-8

43. Wilson, N., Razak, A., Marinescu, R.: Computing possibly optimal solutions for
multi-objective constraint optimisation with tradeoffs. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 815–822
(2015)

44. Yi, D., Goodrich, M.A., Seppi, K.D.: MORRF*: sampling-based multi-objective
motion planning. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015), pp. 1733–1741 (2015)

45. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Proceedings of the 4th
International Conference of Evolutionary Methods for Design, Optimisation and
Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100
(2002)

46. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Pro-
ceedings of the 8th International Conference on Parallel Problem Solving from
Nature (PPSN VIII), pp. 832–842 (2004)

https://doi.org/10.1016/j.artint.2015.04.003
http://dx.doi.org/10.1007/978-0-85729-652-8
http://dx.doi.org/10.1007/978-0-85729-652-8

Analyzing Lattice Point Feasibility
in UTVPI Constraints

K. Subramani and Piotr Wojciechowski(B)

LDCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu, pwojciec@mix.wvu.edu

Abstract. This paper is concerned with the design and analysis of a
time-optimal and space-optimal, certifying algorithm for checking the
lattice point feasibility of a class of constraints called Unit Two Vari-
able Per Inequality (UTVPI) constraints. A UTVPI constraint has at
most two non-zero variables and the coefficients of the non-zero vari-
ables belong to the set {+1,−1}. These constraints occur in a number of
application domains, including but not limited to program verification,
abstract interpretation, and operations research. As per the literature,
the fastest known model-generating algorithm for checking lattice point
feasibility in UTVPI constraint systems runs in O(m ·n+n2 · log n) time
and O(n2) space, where m represents the number of constraints and
n represents the number of variables in the constraint system. In this
paper, we design and analyze a new algorithm for checking the lattice
point feasibility of UTVPI constraints. The presented algorithm runs
in O(m · n) time and O(m + n) space. Additionally, it is certifying in
that it produces a satisfying assignment in the event that it is presented
with feasible instances and a refutation in the event that it is presented
with infeasible instance. Our approach for the lattice point feasibility
problem in UTVPI constraint systems is fundamentally different from
existing approaches for this problem.

1 Introduction

In this paper, we propose a new certifying algorithm for checking the lattice
point (integer) feasibility of a conjunction of Unit Two Variable Per Inequality
(UTVPI) constraints. A UTVPI constraint is a linear constraint of the form:
ai · xi + aj · xj ≤ cij , where ai, aj ∈ {−1, 0, 1} and cij is an integer constant. A
conjunction of such constraints is called a UTVPI constraint system. Observe

K. Subramani—This work was supported by the Air Force Research Laboratory
under US Air Force contract FA8750-16-3-6003. The views expressed are those of
the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
P. Wojciechowski—This research was supported in part by the National Science
Foundation through Award CCF-1305054.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 615–629, 2017.
DOI: 10.1007/978-3-319-66158-2 39

616 K. Subramani and P. Wojciechowski

that UTVPI systems subsume difference constraint systems [NO05], since in the
latter, ai and aj must have opposite signs.

This paper deals with the integer feasibility problem in UTVPI systems.
UTVPI constraint systems find applications in a number of problem domains,
including but not limited to real-time scheduling, program verification and oper-
ations research (see Sect. 3).

The algorithm that we present runs in O(m ·n) time and uses O(m+n) space
on a UTVPI constraint system with n variables over m constraints. This is a
marked improvement over the current state-of-the-art model-generating algo-
rithm which runs in O(m ·n+n2 · log n) time and O(n2) space [LM05]. We note
that the fastest known strongly polynomial time algorithm for checking linear
feasibility in difference constraints is the Bellman-Ford procedure (or one of its
variants), which runs in O(m · n) time and O(m + n) space. It is important to
note that unlike difference constraints linear feasibility does not imply lattice
point feasibility in UTVPI constraints (see Sect. 2).

We reiterate the fact that our algorithm is certifying, i.e., in the event that
the given UTVPI system is feasible, we provide a satisfying assignment and
in the event that it is infeasible, we provide a refutation, which explains the
infeasibility.

The important contributions of this paper are:

1. a certifying algorithm (IA) for checking integer feasibility in UTVPI con-
straint systems, and

2. establishing that determining integer feasibility of an UTVPI constraint sys-
tem can be determined by examining a 1

2 -neighborhood of a linear solution.

The rest of this paper is organized as follows: Sect. 2 formally specifies the
problem under consideration in this paper. Section 3 enumerates the domains
in which UTVPI constraints occur and also motivates the need for certifying
algorithms. Section 4 describes the related work in the literature. Section 5 details
the new algorithm for the lattice point feasibility problem in UTVPI constraint
systems. A detailed proof of correctness of this algorithm is provided in Sect. 6.

2 Statement of Problem

In this section, we formally define the integer feasibility problem in UTVPI
constraints and also define the various terms that will be used in the rest of the
paper.

Definition 1. A constraint of the form ai · xi + aj · xj ≤ cij is said to be a
Unit Two Variable Per Inequality (UTVPI) constraint if ai, aj ∈ {−1, 0,+1}
and cij ∈ Z.

Definition 2. A constraint of the form xi ≤ ci or −xi ≤ ci, where ci ∈ Z, is
called an absolute constraint.

Analyzing Lattice Point Feasibility in UTVPI Constraints 617

Observe that an absolute constraint is a UTVPI constraint, in which one of
the coefficients (ai or aj) is 0. Such a constraint can be converted into constraints
of the form: ai · xi + aj · xj ≤ cij , where both ai and aj are non-zero [SW17].

Definition 3. A conjunction of UTVPI constraints is called a UTVPI con-
straint system and can be represented in matrix form as A · x ≤ c. If the con-
straint system has m constraints over n variables, then A has dimensions m×n.

A UTVPI system defines a polyhedron in n-dimensional space. Given such a
system, we are interested in the following question: Does the defined polyhedron
enclose a lattice point? This problem is called the Integer Feasibility problem
(IF).

Several authors ([LM05,Rev09]) have used the following two inference rules
in analyzing UTVPI constraints:

1.

ai · xi + aj · xj ≤ cij −aj · xj + ak · xk ≤ cjk
ai · xi + ak · xk ≤ cij + cjk

This rule is called the transitive inference rule and it is solution preserving.
The constraints generated by the transitive inference rule correspond to the
constraints generated by Fourier-Motzkin elimination.

2.

ai · xi + aj · xj ≤ cij ai · xi − aj · xj ≤ c′
ij

ai · xi ≤ � cij+c′
ij

2 �
This rule is called the tightening rule and it is lattice-point preserving. The
constraints generated by the transitive and tightening inference rules corre-
spond to the constraints generated by Fourier-Motzkin with rounding.

Our goal is to design a certifying algorithm for the IF problem. In other
words, our algorithm should produce models (satisfying solutions) for feasible
instances and refutations for infeasible instances. Our algorithm incorporates the
following properties of UTVPI constraints:

(i) Fourier-Motzkin with rounding (FMR) is a sound and complete procedure
for detecting integer feasibility in UTVPI constraints (see [Sub04]).

(ii) For a UTVPI constraint system which is integer infeasible, there exists a
certificate of integer infeasibility consisting of at most 2 · n constraints.

(iii) Given a solution to the LF problem in a UTVPI system, we can obtain a
lattice point solution (or establish that none exists) in O(m · n) time, by a
specialized rounding procedure (see Sects. 5 and 6).

618 K. Subramani and P. Wojciechowski

3 Motivation

In this section, we briefly motivate the study of UTVPI constraints and discuss
the importance of certifying algorithms.

UTVPI constraints occur in a number of problem domains including but not
limited to program verification [LM05], abstract interpretation [Min06,CC77],
real-time scheduling [GPS95] and operations research. Indeed many software
and hardware verification queries are naturally expressed using this fragment
of integer linear arithmetic. For instance, when the goal is to model indices of
an array or queues in hardware or software, rational solutions are meaningless
[LM05]. Other application areas include spatial databases [SS00] and theorem
proving. UTVPI constraints are also known as Generalized 2SAT constraints
[Sub04] and are the invariants of the octagon abstract domain in [Min06].

The field of certifying algorithms is concerned with validating the results
of implementations of algorithms. A method for generating both feasibility and
infeasibility certificates for general linear programs is covered in [FMP13].

4 Related Work

In this section, we briefly review some of the important milestones in the design
of algorithms for checking integer feasibility in UTVPI constraint systems.

The first known decision procedure for checking the integer feasibility of a
system of UTVPI constraints is detailed in [JMSY94]. This algorithm runs in
O(m · n2) time and uses O(n2) space. Furthermore, it is not certifying. [HS97]
improves on the approach in [JMSY94] from an ease-of-implementation stand-
point, by combining the transitive and tightening closures into a single step.
However, the additional wrinkle does not improve the asymptotic complexity of
the algorithm in [JMSY94]; nor does it provide certificates.

A rather different approach was used in [Sub04] to decide integer feasibility
in UTVPI systems, while also producing a model. This algorithm uses Fourier-
Motzkin elimination [DE73] to project the polyhedral representation of a sys-
tem of UTVPI constraints to a single variable in a solution-preserving man-
ner, thereby determining bounds for that variable. The algorithm then works in
reverse order to assign values to the rest of the variables. The algorithm takes
O(n3) time and O(n2) space.

Recently, there has been some work on incremental satisfiability of UTVPI
constraints. For instance, [SS10] describes an algorithm for incremental (inte-
ger) satisfiability checking in UTVPI constraints. Their algorithm adds a single
constraint to a set of UTVPI constraints in O(m + n · log n) time. Incremen-
tal algorithms are extremely important from the perspective of SAT Modulo
Theories [NOT04].

Analyzing Lattice Point Feasibility in UTVPI Constraints 619

5 Checking for Integer Feasibility

In this section, we introduce our algorithm for integer feasibility for systems of
UTVPI constraints. This algorithm extends the linear feasibility algorithm in
[SW17].

We use Produce-Integer-Solution() to determine if a system of UTVPI
constraints, U, encloses a lattice point. The principal idea underlying our app-
roach is the following: We start with a half-integral solution a, then perform
a rounding procedure which finds a lattice point within a 1

2 -neighborhood
of a. (A 1

2 -neighborhood of a point a, is the set of all points b, such that
ai − 1

2 ≤ bi ≤ ai + 1
2 , ∀i = 1, 2, . . . , n.) Furthermore, if no such lattice point

exists, then U does not enclose a lattice point.
Let x = a denote a half-integral solution to the UTVPI system U : A · x ≤ c.

We can obtain a in O(m · n) time [SW17]. There are three types of roundings
used by Produce-Integer-Solution(), viz.,

1. Forced roundings : These are roundings in which one of the possible roundings
of a variable, xi, causes an immediate contradiction. These are the roundings
performed by Forced-Rounding().

2. Optional roundings : These are roundings in which a variable xi can be set
to either �ai� or �ai�, without causing an immediate contradiction. These are
the roundings performed by Optional-Roundings().

3. Resultant roundings : These are roundings which are necessitated by a forced
rounding or an optional rounding. Note that a resultant rounding could cause
subsequent roundings; these roundings are also called resultant roundings.
These are the roundings performed by Check-Dependencies().

A rounding causes an immediate contradiction, if rounded value violates a
constraint derivable from U by a single application of the tightening rule.

Example 1. Let U denote the following system of UTVPI constraints:
l1 : x1 + x2 ≤ 0 and l2 : x1 − x2 ≤ 1. Assume that x1 = a1 = 1

2 . Rounding x1 up
sets x1 = 1. Note that the constraint l3 : x1 ≤ 0 is obtained from l1 and l2 by
the tightening rule. Clearly, the new value for x1 violates l3. This means that x1

is forced to be rounded down.

After rounding a variable xi, we check to see if any of the variables sharing
a constraint with xi needs to be rounded, in order to satisfy all the constraints
involved.

If rounding xi in one direction eventually causes a contradiction, then xi is
rounded in the other direction. If that rounding also results in a contradiction,
then the system is declared infeasible.

After a variable has been successfully rounded, and all the resultant roundings
have been performed, no future roundings will violate any constraint containing
any of these variables (see Lemma 4). Thus, xi will not be rounded again. This
is true on account of the structure of UTVPI constraint systems. Observe that
a general integer program does not have such a structure.

620 K. Subramani and P. Wojciechowski

5.1 Algorithms

The task of finding an integer solution is handled by the following sub procedures.

1. Produce-Integer-Solution() - This algorithm either returns a feasible
integer solution or a certificate of integer infeasibility.

2. Forced-Rounding() - This algorithm rounds a variable xi, only if the round-
ing is a direct consequence of the tightening inference rule. The roundings
performed by this algorithm are forced roundings.

3. Optional-Roundings() - This algorithm attempts to round each vari-
able that has been left unrounded by Forced-Rounding() and Check-
Dependencies(). The roundings performed by this algorithm are optional
roundings.

4. Check-Dependencies() - This algorithm rounds all variables that need to
be rounded as a consequence of performing a forced or optional rounding on
a variable. The roundings performed by this algorithm are resultant round-
ings. As indicated previously, a resultant rounding could result in additional
(resultant) roundings.

The algorithm Produce-Integer-Solution() finds an integral solution to
the input system of UTVPI constraints U, or demonstrates that none exists. It
starts with a half-integral solution a, and proceeds to round the variables until
a solution is found, or a contradiction is established.

The algorithm creates an array Z to store the integer solution being con-
structed. In the algorithm, the variable M simply represents an arbitrary value
that is much larger than ||a||∞. Note that it is necessary to check whether or
not a variable is rounded and Z aids in this determination. The queue Q is used
to store the variables that need to be rounded due to resultant roundings. The
algorithm also creates a tree structure T , which will be used to return the con-
straints that demonstrate the integer infeasibility of the system. The root of T
contains the new variable x0. Each subsequent node of T consists of a variable xi

of the original system that has been rounded, and the set constraints that were
used to round xi. This set contains either one constraint or three constraints. It
contains three constraints, if xi was rounded because of a forced rounding, and
one constraint, if it was rounded because of an optional rounding or a resultant
rounding.

The parent of a node xi, represents the rounding that necessitated the round-
ing of xi. The children of the node represent all of the resultant roundings which
stem from rounding xi. Since each variable is rounded at most once, each node
will occur at most once in the tree.

Produce-Integer-Solution() does not alter the integer values of the lin-
ear solution a, since they will also be part of the rounded solution. On the frac-
tional values of a, it calls Forced-Rounding(), to perform forced roundings,
as needed.

The algorithm Forced-Rounding() checks to see if a variable takes part in
a forced rounding. If the variable is forced to be rounded, then that rounding

Analyzing Lattice Point Feasibility in UTVPI Constraints 621

Function Produce-Integer-Solution (system of UTVPI constraints U, and linear
solution a of U)

1: {This is the main function that calls all the other functions. It returns either a
feasible integral solution or a proof that none exist.}

2: for (each variable xi) do
3: Zi = M .
4: end for
5: Create tree T of constraints with node x0 at the root.
6: Create empty queue Q of variables.
7: for (each variable xi) do
8: if (ai is an integer) then
9: Zi = ai. {xi already has an integer value and so does not need to be rounded.}

10: else
11: Forced-Rounding(xi, Z, a, T , U, Q).
12: end if
13: end for
14: Check-Dependencies (Z, a, T , U, Q). {Perform all roundings that are a

consequence of previous roundings.}
15: for (every constraint in U) do
16: if (constraint is violated by current assignments to some Zi and Zj) then
17: return (violated constraint and constraints obtained by backtracking in T

from xi to x0 and xj to x0).
18: end if
19: end for
20: S ← Subset of U restricted to constraints consisting of only variables with Zi = M .
21: O ← Optional-Roundings(S, Z, T , a, Q).
22: {Try to round all remaining unrounded variables. This function either returns a

satisfying lattice point or a proof that no satisfying lattice point exists.}
23: return O.

Algorithm 1: Produce-Integer-Solution

is performed and the appropriate constraints are added to the tree T . Check-
Dependencies() then checks to see if other variables need to be rounded as a
consequence of variables being rounded by Forced-Rounding().

Once the forced and resultant roundings have been performed, Produce-
Integer-Solution() checks to see if any constraint is violated. If a constraint
involving the variables xi and xj is violated, then that constraint and all the con-
straints that caused xi and xj to be rounded to the current values, are returned
as proof of integer infeasibility. To determine which constraints caused variable
xi to be rounded, the algorithm starts with node xi in the tree T and proceeds to
traverse up the tree until the root node is reached returning all of the constraints
stored in the nodes traversed. This is then repeated for variable xj .

If no constraint is violated, then Optional-Roundings() is called to perform
optional roundings.

The algorithm Optional-Roundings() handles the rounding of vari-
ables that were left unaffected by the forced roundings and the subsequent
resultant roundings. It first rounds a variable (say xi) down and then calls

622 K. Subramani and P. Wojciechowski

Function Forced-Rounding (variable xi, variable values Z, linear solution a, con-
straint tree T , system U, queue Q)

1: for (each xj that is involved in a constraint with xi) do
2: Define R as the set of constraints in U involving both xi and xj .
3: if ({xi + xj ≤ ai + aj , xi − xj ≤ ai − aj} ⊆ R) then
4: {We know that 2 · xi ≤ 2 · ai.}
5: Zi = �ai�. {The tightening rule forces xi to be rounded down.}
6: Create branch xi from x0 in T .
7: Add {xi + xj ≤ ai + aj , xi − xj ≤ ai − aj , and xi ≤ �ai� to T under xi}.
8: Add xi to Q.
9: end if

10: if ({−xi − xj ≤ −ai − aj , xj − xi ≤ aj − ai} ⊆ R) then
11: {We know that −2 · xi ≤ −2 · ai.}
12: Zi = �ai�. {The tightening rule forces xi to be rounded up.}
13: Create branch xi from x0 in T .
14: Add {−xi − xj ≤ −ai − aj , xj − xi ≤ aj − ai, and −xi≤ −�ai� to T under

xi}.
15: Add xi to Q.
16: end if
17: end for

Algorithm 2: Forced-Rounding

Check-Dependencies() to evaluate all of the resultant roundings. Subse-
quently, it stores all of the new values in a temporary version of Z called ZT .
For each rounding performed (the initial rounding of xi and all subsequent resul-
tant roudings), the constraints responsible for that rounding are stored in T as
discussed previously.

If this rounding of xi succeeds, then the temporary values are made perma-
nent and the algorithm proceeds onto the next unrounded variable. If rounding
xi down fails, then the algorithm stores the constraints that cause a contradiction
when xi ≤ �ai� to the structure L and clears the temporary assignments.

Optional-Roundings() then attempts to round xi up, again evaluating all
of the resultant roundings. This time, TT , a temporary version of the tree T ,
is used to store the constraints responsible for each rounding. If this rounding
of xi succeeds, then all temporary assignments are made permanent and the
algorithm proceeds onto the next unrounded variable. If this rounding also fails,
then the constraints that cause a contradiction when −xi ≤ −�ai� are added to
L, and L is returned as a certificate of integer infeasibility.

The list of constraints L can be divided into two parts. The constraints in
the first part of L can be added together to form the constraint −2 ·xi ≤ −2 ·ai,
thereby showing that the system U ∪ {xi ≤ �ai�} is inconsistent. Likewise, the
constraints in the second part show that the system U ∪ {−xi ≤ −�ai�} is
inconsistent.

The algorithm Check-Dependencies() checks to see if rounding any of the
variables in Q results in a constraint being violated. If a violation occurs, other
variables are rounded and added to Q.

Analyzing Lattice Point Feasibility in UTVPI Constraints 623

Function Optional-Roundings (set S of constraints, variable values Z, tree T , linear
solution a, queue Q)

1: {Recall that S is the subset of U restricted to constraints consisting of only variables
with Zi = M .}

2: Create tree TT of constraints with node x0 at the root.
3: Create array ZT of temporary variable assignments.
4: Create list L of constraints to be returned in case of infeasibility.
5: for (each variable xi) do
6: if (Zi = M) then
7: for (each variable xj) do
8: ZT

j = M .
9: end for

10: ZT
i = �ai�. {Try to round xi down.}

11: Create branch xi from x0 in T .
12: Add xi ≤ �ai� to T under xi.
13: Add xi to Q.
14: Check-Dependencies (ZT , a, T , S).
15: {Perform all roundings that are a consequence of rounding xi down.}
16: for (each constraint l in S) do
17: if (l is violated by current assignments to some ZT

j and ZT
k) then

18: Add the violated constraint l and the constraints in T along paths
from xj to xi and xk to xi to L.

19: for (j = 1 to n) do
20: ZT

j = M . {Reset temporary variable assignments.}
21: end for
22: ZT

i = �ai�. {Try to round xi up, since rounding down failed.}
23: Create branch xi from x0 in TT .
24: Add −xi ≤ −�ai� to TT under xi.
25: Add xi to Q.
26: Check-Dependencies (ZT , a, TT , S).
27: {Perform all roundings that are a consequence of rounding xi up.}
28: for (each constraint l in S) do
29: if (l is violated by current assignments to some ZT

j and ZT
k) then

30: Add the violated constraint l and the constraints in TT along paths
from xj to xi and xk to xi to L.

31: return (set L of constraints.) {Both attempts to round xi failed.}
32: end if
33: end for
34: for (j = 1 to n) do {Rounding xi up succeeded.}
35: if (ZT

j 	= M) then
36: Zj ← ZT

j . {Make temporary assignments permanent.}
37: end if
38: end for
39: break{Exits for loop commencing on Line 16.}
40: end if
41: end for

624 K. Subramani and P. Wojciechowski

42: if (no constraints violated as a result of rounding xi down) then
43: for (j = 1 to n) do {Rounding xi down succeeded.}
44: if (ZT

j 	= M) then
45: Zj ← ZT

j {Make temporary assignments permanent.}
46: end if
47: end for
48: end if
49: Empty L. Empty TT and T and set them to single-node trees with root x0.
50: end if
51: end for
52: return (Z as a valid integer solution.)

Algorithm 3: Optional-Roundings

5.2 Resource Analysis

In this subsection, we analyze the time and space complexity of our lattice
point feasibility algorithm. We first establish the time complexities of the three
constituent algorithms.

(i) Forced-Rounding() - Observe that a single call to Forced-Rounding()

(say on variable xi) takes O(n) time, since the call merely examines all the
constraints which involve xi.

(i) Check-Dependencies() - As each variable is rounded, the resultant round-
ings of the new assignment are deduced using Check-Dependencies(). Dur-
ing these deductions each variable is assigned a value at most once. Further-
more, each constraint is examined at most twice. It follows that Check-

Dependencies)() takes O(m) time.
(i) Optional-Roundings() - For each variable, Optional-Roundings() calls

Check-Dependencies() at most twice (once when rounding up and once
when rounding down).
If both roundings for a single variable fail, then Optional-Roundings()

backtracks along the tree T to obtain a negative cycle. This takes at most
O(n) time and only happens once. It follows that Optional-Roundings()

runs in O(m · n) time.

We are now ready to analyze the resources taken by Produce-Integer-
Solution(). Observe that the initialization steps can be accomplished in O(n)
time. Although a single call to Forced-Rounding() takes O(n) time, a sequence
of n successive calls to Forced-Rounding(), one for each variable, takes O(m)
time. This is because each constraint is examined at most twice during the
successive calls, once for each variable involved in defining that constraint.

The call to Check-Dependencies() takes O(m) time. If these roundings
variable fail, then Produce-Integer-Solution() backtracks along the tree T
to obtain a negative cycle. This takes at most O(n) time and only happens once.
We finally note that the call to Optional-Roundings() takes O(m · n) time.
It thus follows that Produce-Integer-Solution() takes O(m · n) time.

Analyzing Lattice Point Feasibility in UTVPI Constraints 625

Function Check-Dependencies (vector ZT of assignments, a linear solution, tree T
of UTVPI constraints, system U of constraints, queue Q)

1: while (Q is not empty) do
2: Let xi be the first element of Q.
3: Remove xi from Q.
4: for (each variable xj involved in a constraint with xi) do
5: Set R to be the set of constraints involving both xi and xj .
6: if (ZT

i = �ai�) then {xi was rounded down.}
7: if (−xi + xj ≤ −ai + aj ∈ R and ZT

j = M) then
8: Zj ← �aj�. {xj needs to be rounded down.}
9: Create branch xj from xi in T .

10: Add −xi + xj ≤ −ai + aj to T under xj .
11: Add xj to Q.
12: end if
13: if (−xi − xj ≤ −ai − aj ∈ R and ZT

j = M) then
14: Zj ← �aj�. {xj needs to be rounded up.}
15: Create branch xj from xi in T .
16: Add −xi − xj ≤ −ai − aj to T under xj .
17: Add xj to Q.
18: end if
19: end if
20: if (ZT

i = �ai�) then {xi was rounded up.}
21: if (xi + xj ≤ ai + aj ∈ R and ZT

j = M) then
22: Zj ← �aj�. {xj needs to be rounded down.}
23: Create branch xj from xi in T .
24: Add xi + xj ≤ ai + aj to T under xj .
25: Add xj to Q.
26: end if
27: if (xi − xj ≤ ai − aj ∈ R and ZT

j = M) then
28: Zj ← �aj�. {xj needs to be rounded up.}
29: Create branch xj from xi in T .
30: Add xi − xj ≤ ai − aj to T under xj .
31: Add xj to Q.
32: end if
33: end if
34: end for
35: end while

Algorithm 4: Check-Dependencies

The only auxiliary data structures used by Produce-Integer-Solution()
are the variable structures Z and ZT , the trees T and TT , the structure storing
the proof of infeasibility L, and the queue of variables Q. All of these structure
use O(m + n) space. Additionally, O(n) space is used for auxiliary storage. It
follows that Produce-Integer-Solution() can be implemented in O(m + n)
space.

626 K. Subramani and P. Wojciechowski

6 Correctness of Integer Feasibility Algorithm

In this section, we establish the correctness of Produce-Integer-Solution().
Note that Produce-Integer-Solution() starts with a feasible, half-integral
solution and performs a sequence of roundings as needed, on variables which are
not integral. In the proof, we shall demonstrate that every rounding results from
a deducible constraint. Furthermore, we shall show that if a variable cannot be
rounded without creating an inconsistency, then the input UTVPI system does
not enclose a lattice point.

Lemma 1. Each forced rounding results from a constraint that can be deduced
from U by the tightening inference rule.

Proof. Let xi be the variable that undergoes a forced rounding. Assume that the
initial value of xi is ai.

If xi is rounded down by Forced-Rounding(), then there must exist a
variable xj , with initial value aj , such that there exist constraints xi−xj ≤ ai−aj
and xi + xj ≤ ai + aj . Using the tightening inference rule we can deduce the
constraint xi ≤ �ai−aj+ai+aj

2 � = �ai�. This is the deduced constraint that causes
xi to be rounded down.

Likewise, if xi is rounded up by Forced-Rounding(), then there must exist
a variable xj , with initial value aj , such that there exist constraints −xi − xj ≤
−ai − aj and −xi + xj ≤ −ai + aj . Using the tightening inference rule we
can deduce the constraint −xi ≤ �−ai−aj−ai+aj

2 � = −�ai�. This is the deduced
constraint that causes xi to be rounded up.
�
Lemma 2. Every resultant rounding caused by rounding xk down results from
a constraint that can be deduced from U∪{xk ≤ �ak�} by the transitive inference
rule.

Proof. All the resultant roundings caused by rounding xk correspond to nodes in
the tree T that are descendants of the node xk (see Check-Dependencies()).
Let Tk denote the sub-tree of T rooted at xk. We will show that the rounding of
each variable in Tk corresponds to a constraint deducible from U∪{xk ≤ �ak�}.

Rounding xk down results from the constraint xk ≤ �ak� which is trivially
deducible from U ∪ {xk ≤ �ak�}.

We now assume that all the roundings of all variables at depth d in Tk result
from constraints deducible from U∪ {xk ≤ �ak�}. Let xj be a variable of depth
(d+1) in Tk, and let xi be the parent of xj . Since xi is at a depth of d in Tk, we
know that its rounding results from a constraint deducible from U∪{xk ≤ �ak�}.
Let ai and aj denote the initial values of xi and xj respectively. We can assume
without loss of generality that both ai and aj are odd multiples of 1

2 .
There are four cases that need to be considered. We establish the proof

in one case. The proofs for the remaining cases are analogous. Assume that
xj is rounded down as a result of xi being rounded down. As per Check-
Dependencies(), there must be a constraint of type −xi + xj ≤ −ai + aj
in U. Since xi was rounded down, the constraint xi ≤ �ai� = ai − 1

2 is deducible

Analyzing Lattice Point Feasibility in UTVPI Constraints 627

from U∪ {xk ≤ �ak�}. Using the transitive inference rule, we get the constraint
xj ≤ −ai + aj + ai − 1

2 = aj − 1
2 = �aj�. This is the deduced constraint that

caused xj to be rounded down.
Thus, all the resultant roundings caused by rounding xk down, can be

deduced from U ∪ {xk ≤ �ak�}.
�
Lemma 3. Each resultant rounding caused by rounding xk up results from a
constraint that can be deduced from U ∪ {−xk ≤ −�ak�} by the transitive infer-
ence rule.

The proof of this lemma is analogous to the proof of Lemma2. Lemmas 1, 2,
and 3 lead to the following theorem.

Theorem 1. Each resultant rounding caused by a forced rounding results from a
constraint that can be deduced from U by the transitive and tightening inference
rules.

Let xj be a variable that was rounded, as a result of a forced rounding or
an optional rounding. Let V be the set containing xj and all of the variables
rounded as a result of xj being rounded.

Let xi be any variable that remains unrounded even after xj was rounded.
It is clear that ai is an odd multiple of 1

2 . We will show that xi can be rounded
up or rounded down, without violating a constraint involving variables in V.
Thus, if no constraint is violated as a result of rounding xj , and performing all
subsequent resultant roundings, the values of the variables in V can be considered
permanent. This follows, since no subsequent roundings will violate a constraint
involving any of these variables.

Lemma 4. Any unrounded variable not in V can be rounded up or down, without
violating any constraints shared with a variable in V.
Proof. Let xi be an unrounded variable, such that xi �∈ V. Let xk ∈ V. Let us
assume the contrary, i.e., we assume that a constraint involving xi and xk is
violated, when xi is rounded in a certain direction. Clearly, we are concerned
only with constraints of the form: ±xi ± xk ≤ cik.

There are four cases that need to be considered. We establish the proof in
one case. The proofs for the remaining cases are analogous.

Assume that xk was rounded down, and that rounding xi down results in a
violation. In this case, there is a constraint that was satisfied when xi = ai and
xk = ak, but violated when xi = ai − 1

2 and xk = ak − 1
2 . Thus, the violated

constraint is of the form −xi−xk ≤ cik (since rounding down results in constraint
violation). We know that −ai−ak ≤ cik and that −ai−ak +1 > cik. This means
that cik = −ai −ak. Thus, the violated constraint must be −xi −xk ≤ −ai −ak.
However, this constraint would cause Check-Dependencies() to round xi up,
as a result of rounding xk. But this contradicts our assumption that xi was
unrounded to begin with.

Since all four cases result in a contradiction, it follows that no constraint
involving xk can be violated when xi is rounded and the lemma follows.
�

628 K. Subramani and P. Wojciechowski

Theorem 2. If Produce-Integer-Solution() declares the input UTVPI sys-
tem U to be feasible, then the system has integral solutions.

Proof. Produce-Integer-Solution() declares U to be feasible, only if an inte-
ger value is assigned to each variable. In Produce-Integer-Solution() and
Optional-Roundings(), we check every constraint in U to see if it is vio-
lated by the current assignment. We only return an integer solution, if every
constraint in U is satisfied. Thus, the integer solution returned by Produce-
Integer-Solution() is a valid integral solution.
�
Theorem 3. If Produce-Integer-Solution() declares the input UTVPI sys-
tem U to be infeasible, then U does not enclose a lattice point, and L is a proof
of infeasibility for U.

Proof. The algorithms can declare the system infeasible as a result of a forced
rounding, and the subsequent resultant roundings, or as a result of an optional
rounding and the subsequent resultant roundings.

If the system is declared infeasible as a result of a forced rounding (and the
subsequent resultant roundings), then there is a constraint between some xi and
xj that is violated, when all the resultant roundings have been computed. Since
we started with a valid linear solution, if both xi and xj are unrounded, then
the constraint is still satisfied. Similarly, by the proof of Lemma4, if only one of
xi or xj is unrounded, the constraint is still satisfied. This means that both xi

and xj must already have been rounded. There are four cases which need to be
considered, depending on the type of constraint violated. We establish this for
one case. The proofs for the remaining cases are analogous.

Assume that the violated constraint is of the form l1 : xi + xj ≤ cij . Since
the initial (linear) solution, a, was valid, we know that ai + aj ≤ cij . Thus, for
l1 to be violated, xi and xj must both have been rounded up. It follows that
cij < ai + aj + 1.

Since xi and xj were rounded up, from Theorem1, we know that the con-
straints l2 : −xi ≤ −�ai� = −ai − 1

2 and l3 : −xj ≤ −�aj� = −aj − 1
2 , are

deducible from U. When the constraints l1, l2, and l3 are added together, we get
0 ≤ cij −ai −aj −1 < 0, which is a contradiction. This contradiction establishes
the integer infeasibility of U.

By construction, the constraint xi + xj ≤ cij , the constraints used to derive
−xi ≤ −�ai�, and the constraints used to derive −xj ≤ −�aj� are all in L. Thus
L is a proof of integer infeasibility for U.

If the system is declared infeasible as a result of an optional rounding (and
the subsequent resultant roundings), then for some variable xk, rounding xk

and performing all subsequent resultant roundings result in or more violated
constraints. Note that this holds when xk is rounded up and when xk is rounded
down. From Lemmas 2 and 3, and the arguments made above, we know that
both U ∪ {xk ≤ �ak�} and U ∪ {−xk ≤ −�ak�} are infeasible. We can also
conclude that the constraints used to establish these infeasibilities are in L.
Since all possible integer values of xk are covered by these the two systems, we
can conclude that U has no integer solutions.
�

Analyzing Lattice Point Feasibility in UTVPI Constraints 629

As discussed above, Produce-Integer-Solution() starts with an arbitrary
half integral solution and always maintains �ai� ≤ Zi ≤ �ai�, for each Zi �= M .
Thus, we have the following corollary.

Corollary 1. If a system U of UTVPI constraints is integer feasible, and a is
a valid half-integral solution to U, then there exists an integral solution Z such
that for each i = 1 . . . n, �ai� ≤ Zi ≤ �ai�.

References

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, pp. 238–252 (1977)

[DE73] Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J.
Comb. Theory (A) 14, 288–297 (1973)

[FMP13] Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness
certificates for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich,
M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38856-9 19

[GPS95] Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-
time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

[HS97] Harvey, W., Stuckey, P.J.: A unit two variable per inequality integer con-
straint solver for constraint logic programming. In: Proceedings of the 20th
Australasian Computer Science Conference, pp. 102–111 (1997)

[JMSY94] Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains.
In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer,
Heidelberg (1994). doi:10.1007/3-540-58601-6 92

[LM05] Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI
constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS, vol. 3717, pp. 168–
183. Springer, Heidelberg (2005). doi:10.1007/11559306 9

[Min06] Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput.
19(1), 31–100 (2006)

[NO05] Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propaga-
tion and its application to difference logic. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg
(2005). doi:10.1007/11513988 33

[NOT04] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract
DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2005.
LNCS, vol. 3452, pp. 36–50. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-32275-7 3

[Rev09] Revesz, P.Z.: Tightened transitive closure of integer addition constraints.
In: SARA (2009)

[SS00] Sitzmann, I., Stuckey, P.J.: O-trees: a constraint-based index structure. In:
Australasian Database Conference, pp. 127–134 (2000)

[SS10] Schutt, A., Stuckey, P.J.: Incremental satisfiability and implication for
UTVPI constraints. INFORMS J. Comput. 22(4), 514–527 (2010)

[Sub04] Subramani, K.: On deciding the non-emptiness of 2SAT polytopes with
respect to first order queries. Math. Log. Q. 50(3), 281–292 (2004)

[SW17] Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm
for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208
(2017)

http://dx.doi.org/10.1007/978-3-642-38856-9_19
http://dx.doi.org/10.1007/3-540-58601-6_92
http://dx.doi.org/10.1007/11559306_9
http://dx.doi.org/10.1007/11513988_33
http://dx.doi.org/10.1007/978-3-540-32275-7_3
http://dx.doi.org/10.1007/978-3-540-32275-7_3

A Constraint Composite Graph-Based ILP
Encoding of the Boolean Weighted CSP

Hong Xu(B) , Sven Koenig, and T.K. Satish Kumar

University of Southern California, Los Angeles, CA 90089, USA
{hongx,skoenig}@usc.edu, tkskwork@gmail.com

Abstract. The weighted constraint satisfaction problem (WCSP)
occurs in the crux of many real-world applications of operations research,
artificial intelligence, bioinformatics, etc. Despite its importance as a
combinatorial substrate, many attempts for building an efficient WCSP
solver have been largely unsatisfactory. In this paper, we introduce a
new method for encoding a (Boolean) WCSP instance as an integer lin-
ear program (ILP). This encoding is based on the idea of the constraint
composite graph (CCG) associated with a WCSP instance. We show that
our CCG-based ILP encoding of the Boolean WCSP is significantly more
efficient than previously known ILP encodings. Theoretically, we show
that the CCG-based ILP encoding has a number of interesting proper-
ties. Empirically, we show that it allows us to solve many hard Boolean
WCSP instances that cannot be solved by ILP solvers with previously
known ILP encodings.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a combinatorial opti-
mization problem. It is a generalization of the constraint satisfaction problem
(CSP) in which the constraints are no longer “hard.” Instead, each tuple in a
constraint—i.e., an assignment of values to all variables in that constraint—is
associated with a non-negative weight (sometimes referred to as “cost”). The goal
is to find a complete assignment of values to all variables from their respective
domains such that the total weight is minimized [2], called an optimal solution.

More formally, the WCSP is defined by a triplet 〈X ,D, C〉, where X =
{X1,X2, . . . , XN} is a set of N variables, D = {D(X1),D(X2), . . . , D(XN)}
is a set of N domains with discrete values, and C = {C1, C2, . . . , CM} is a set
of M weighted constraints. Each variable Xi ∈ X can be assigned a value in its
associated domain D(Xi) ∈ D. Each constraint Ci ∈ C is defined over a certain
subset of the variables S(Ci) ⊆ X , called the scope of Ci. Ci associates a non-
negative weight with each possible assignment of values to the variables in S(Ci).
The goal is to find a complete assignment of values to all variables in X from
their respective domains that minimizes the sum of the weights specified by each
constraint in C [2]. This combinatorial task can equivalently be characterized by
having to compute

arg min
a∈A(X)

∑

Ci∈C
ECi

(a|S(Ci)), (1)

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 630–638, 2017.
DOI: 10.1007/978-3-319-66158-2 40

http://orcid.org/0000-0001-7874-4518

A CCG-Based ILP Encoding of the Boolean Weighted CSP 631

where A(X) represents the set of all |D(X1)| × |D(X2)| × . . . × |D(XN)| com-
plete assignments to all variables in X . a|S(Ci) represents the projection of a
complete assignment a onto the subset of variables in S(Ci). ECi

is a function
that maps each a|S(Ci) to its associated weight in Ci. The Boolean WCSP is
the WCSP with only variables of domain size 2, i.e., ∀X ∈ X : |D(X)| = 2. It is
representationally as powerful as the WCSP.

There are many ways to solve a given WCSP instance. The state-of-the-art
methods include best-first AND/OR search [10] and branch-and-bound algo-
rithms that exploit soft arc consistencies [4]. Unfortunately, none of these WCSP
solvers make use of the power of integer linear programming (integer LP, ILP)
solvers, such as the Gurobi Optimizer [3] and lp solve [1]. ILP solvers are highly
optimized and are extensively used for solving problems in operations research.
An efficient ILP encoding of the WCSP would therefore create an important
nexus between constraint programming and operations research.

An ILP encoding of the WCSP can be borrowed from the probabilistic rea-
soning community. Here, the WCSP arises as the max-a-posteriori (MAP) prob-
lem.1 Although this ILP encoding is popularly used in probabilistic reasoning [5,
Sect. 13.5], it does not scale to large instances since it creates an unwieldy num-
ber of variables and constraints. In the rest of the paper, we refer to this ILP
encoding as the “direct” ILP encoding.

In this paper, we introduce a new ILP encoding of the WCSP that is based
on the idea of the constraint composite graph (CCG) [7–9]. We refer to this
encoding as the “CCG-based” ILP encoding. We compare it with the direct ILP
encoding in [5, Sect. 13.5] for the Boolean WCSP. We first derive and compare
the theoretical bounds on the number of variables, the number of constraints and
the number of variables in each constraint in the ILPs generated by these two
ILP encodings. We then experimentally compare the efficiency of solving the
ILPs generated by the two ILP encodings. Finally, we establish an important
theoretical property of the CCG-based ILP encoding.

2 ILP Encodings of the WCSP

In this section, we describe two methods to encode a given WCSP instance
as an ILP: One is the direct ILP encoding adapted from [5, Sect. 13.5] and
the other one is our proposed CCG-based ILP encoding. For notational con-
venience, throughout this section, we consider the WCSP instance B = 〈X =
{X1,X2, . . . , XN},D = {D(X1),D(X2), . . . , D(XN)}, C = {C1, C2, . . . , CM}〉.

2.1 Direct ILP Encoding

For each C ∈ C and a ∈ A(S(C)), we introduce an ILP variable qCa . Here,
A(S(C)) is the set of all assignments of values to variables in constraint C

1 A MAP problem instance on a probabilistic graphic model, such as a Belief Network,
can be formulated as a WCSP instance by taking the negative logarithm on the
individual probabilities.

632 H. Xu et al.

(therefore |A(S(C))| =
∏

X∈S(C) |D(X)|). qCa is either 0 or 1: If qCa = 1, then
the assignment a to the variables in C is part of the to-be-determined optimal
solution a∗, i.e., a∗|S(C) = a; otherwise it is not. The direct ILP encoding of
B is

minimize
qCa :qCa ∈q

∑

C∈C

∑

a∈A(S(C))

wC
a qCa (2)

s.t. qCa ∈{0, 1} ∀qCa ∈ q (3)
∑

a∈A(S(C))

qCa =1 ∀C ∈ C (4)

∑

a∈A(S(C)):a|S(C)∩S(C′)=s

qCa =
∑

a′∈A(S(C′)):a′|S(C)∩S(C′)=s

qC
′

a′ ∀C,C′ ∈ C and (5)

s ∈ A(S(C) ∩ S(C′)),

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, wC
a denotes the weight of assignment a

specified by constraint C, and a|S(C) ∩ S(C ′) is the projection of the complete
assignment a onto the set of common variables in C and C ′. The cardinality of
q is

∑
C∈C

∏
X∈S(C) |D(X)|. Here,

– Equation (3) represents the ILP constraints that enforce the Boolean prop-
erty for all qCa ’s. It consists of

∑
C∈C

∏
X∈S(C) |D(X)| = O

(
|C|D̂Ĉ

)
ILP

constraints, where Ĉ = maxC∈C |S(C)| and D̂ = maxX∈X |D(X)|.
– Equation (4) represents the ILP constraints that enforce a unique assign-

ment of values to variables in each WCSP constraint. It consists of |C| ILP
constraints, each of which has |A(S(C))| =

∏
X∈S(C) |D(X)| = O

(
D̂Ĉ

)

variables.
– Equation (5) represents the ILP constraints which enforce that every two

assignments in two WCSP constraints must be consistent on their shared
variables. It consists of O

(
|C|2D̂Ĉ

)
ILP constraints. Each of these ILP con-

straints has O
(
D̂Ĉ

)
variables.

Therefore, if B is a Boolean WCSP instance, the direct ILP encoding has
|q| = O

(
|C|D̂Ĉ

)
= O

(
|C|2Ĉ

)
variables and O

(
|C|2D̂Ĉ

)
= O

(
|C|22Ĉ

)
ILP

constraints. Each of these ILP constraints has O
(
D̂Ĉ

)
= O

(
2Ĉ

)
variables.

2.2 CCG-Based ILP Encoding

The CCG [7–9] is a combinatorial structure associated with the WCSP. It pro-
vides a unifying framework for simultaneously exploiting the graphical structure
of the variable interactions in the WCSP as well as the numerical structure of
the constraints in it. The task of solving the WCSP can be reformulated as the
task of finding a minimum weighted vertex cover (MWVC) (namely the MWVC
problem) on its associated CCG [7–9]. CCGs can be constructed in polynomial
time and are always tripartite [7–9]. A subclass of the WCSP has instances with

A CCG-Based ILP Encoding of the Boolean Weighted CSP 633

bipartite CCGs. This subclass is tractable since an MWVC can be found in
polynomial time on bipartite graphs using a staged maxflow algorithm [6]. The
CCG also enables the use of kernelization methods for the MWVC problem,
such as the Nemhauser-Trotter reduction, for solving the WCSP [14]. Empir-
ically, the min-sum message passing algorithm often produces better solutions
for the MWVC problem on the CCG than directly on the WCSP [14].

We can encode a WCSP instance as an ILP after transforming it to an
equivalent MWVC problem instance on its CCG G = 〈V,E,w〉. The resulting
CCG-based ILP encoding is

minimize
xi:vi∈V

|V |∑

i=1

wixi (6)

s.t. xi ∈ {0, 1} ∀ vi ∈ V (7)
xi + xj ≥ 1 ∀ (vi, vj) ∈ E, (8)

where variable xi represents the presence of vi in the MWVC, i.e., xi = 1 and
xi = 0 indicate that vi is and is not in the MWVC, respectively [13]. The numbers
of ILP variables and constraints are determined by the CCG. We now assume
that B is a Boolean WCSP instance. We can compute the number of vertices
and edges in the CCG by following the CCG construction procedure in [7].2 A
constraint C can be represented by the multivariate polynomial

∑

T∈P(S(C))

[
cT

∏

X∈T

X

]
, (9)

where P(S(C)) is the power set of S(C) and the cT ’s are constants. The CCG
gadget corresponding to term cT

∏
X∈T X has O(|T |) vertices and edges. The

CCG gadget corresponding to constraint C therefore has an upper bound of

O
⎛

⎝
∑

T∈P(S(C))

|T |
⎞

⎠ = O
⎛

⎝
|S(C)|∑

|T |=0

(|S(C)|
|T |

)
|T |

⎞

⎠ = O
(
2|S(C)|−1|S(C)|

)
(10)

vertices and edges. Therefore, if B is a Boolean WCSP instance, the CCG has
O

(
|C|2ĈĈ

)
vertices and edges constituting the ILP variables (Eq. (7)) and con-

straints (Eq. (8)), respectively, with each of these ILP constraints having at most
2 variables.

2.3 Comparison

We compare various parameters of the two ILP encodings for the Boolean WCSP
in Table 1. For any non-trivial Boolean WCSP instances, the CCG-based ILP
2 As shown in [8], our techniques can also be generalized to the WCSP with variables

of domain sizes larger than 2. However, for a proof of concept, this paper focuses on
the Boolean WCSP.

634 H. Xu et al.

encoding has a huge advantage over the direct ILP encoding with respect to the
number of variables per constraint. This is true even if Ĉ is bounded because,
in the direct ILP encoding, the number of variables in an ILP constraint corre-
sponding to a WCSP constraint C in Eq. (4) is 2|S(C)| ≥ 2. For the number of
constraints, while different values of the parameters lead to different trade-offs,
the most interesting real-world applications of the WCSP have a large number
|C| of constraints and a bounded arity Ĉ of the individual constraints. Under such
assumptions, the CCG-based ILP encoding is more advantageous than the direct
ILP encoding with respect to the number of constraints as well. For the number
of variables, the CCG-based ILP encoding loses by a factor of Ĉ. However, as
argued before, in many real-world applications, Ĉ is bounded, and therefore the
number of variables for both ILP encodings are of the same order. In general,
when Ĉ is bounded, the CCG-based ILP encoding retains the same order of the
number of variables as the direct ILP encoding and significantly wins on the
number of constraints and the number of variables per constraint.

Table 1. Shows the numbers of variables, constraints, and variables per constraint in
the two ILP encodings of Boolean WCSP instance B = 〈X ,D, C〉.

Encoding Direct CCG-based

Number of variables O
(
|C|2Ĉ

)
O
(
|C|2ĈĈ

)

Number of constraints O
(
|C|22Ĉ

)
O
(
|C|2ĈĈ

)

Number of variables per constraint O
(
2Ĉ
)

≤2

3 Experimental Evaluation

In this section, we experimentally evaluate the efficiencies of solving the Boolean
WCSP using the two ILP encodings. We refer to the two algorithms that use
these ILP encodings as the direct algorithm and the CCG-based algorithm.

In our experiments, the benchmark instances were generated from the UAI
2014 Inference Competition3. Here, MAP inference queries with no evidence on
the PR and MMAP benchmark instances can be formulated as Boolean WCSP
instances by first taking the negative logarithms of the probabilities in each
factor and then normalizing them. The experiments were performed on those
160 benchmark instances with only Boolean variables. We set a running time
limit of 120 s for each algorithm on each benchmark instance.

We used the Gurobi Optimizer version 7.0.2 [3] as the ILP solver. All default
settings of the Gurobi Optimizer were kept except that it was configured to
use only one CPU thread. The ILP encoding procedures and the CCG con-
struction algorithm were implemented in C++ and were compiled by the GNU
Compiler Collection (GCC) 6.3.0 with the “-O3” option. We used the Boost

3 http://www.hlt.utdallas.edu/∼vgogate/uai14-competition/index.html.

http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html

A CCG-Based ILP Encoding of the Boolean Weighted CSP 635

graph library [11] to implement the graph representations and operations. We
performed our experiments on a GNU/Linux workstation with an Intel Xeon
processor E3-1240 v3 (8 MB Cache, 3.4 GHz) and 16 GB RAM.

Table 2 shows the number of benchmark instances on which both algorithms
terminated within the running time limit. The number of benchmark instances
on which only the CCG-based algorithm terminated is much larger than the
number of benchmark instances on which only the direct algorithm terminated.
On 118 out of 160 benchmark instances, both terminated within the running
time limit. However, even in this category, the CCG-based algorithm was much
more efficient.

Table 2. Shows the number of benchmark instances on which the direct and CCG-
based algorithms terminated within a running time limit of 120 s.

Termination status Total CCG-based only Direct only Neither Both

Number of benchmark
instances

160 23 5 14 118

20 40 60 80 100
Running Time of the CCG-Based Algorithm

20

40

60

80

100

R
un
ni
ng

T
im
e
of

th
e
D
ire
ct

A
lg
or
ith

m

Fig. 1. Compares the efficiencies of the direct and CCG-based algorithms on the bench-
mark instances on which both algorithms terminated within a running time limit of
120 s. Each point represents a benchmark instance. The x and y coordinates of each
point show the running times of the CCG-based and direct algorithm on its corre-
sponding benchmark instance, respectively. The dashed diagonal line represents equal
running times. Points above and below this line are colored red and blue, respectively.
Red and blue points represent benchmark instances on which the CCG-based and direct
algorithm terminated more quickly, respectively. There are 110 red points and 8 blue
points. (Color figure online)

Figure 1 compares the efficiencies of the two algorithms on the 118 benchmark
instances on which both of them terminated within the running time limit.

636 H. Xu et al.

The CCG-based algorithm was more efficient on 110 benchmark instances (red
points), and the direct algorithm was more efficient on 8 benchmark instances
(blue points). Most red points are far from the dashed diagonal line, meaning
that the gap between the running times of the two algorithms was very large
for those benchmark instances on which the CCG-based algorithm was more
efficient. On the other hand, all blue points are close to the dashed diagonal
line, meaning that the direct algorithm only marginally outperformed the CCG-
based algorithm on these benchmark instances in terms of running time.

4 A Theoretical Property of CCG-Based ILP Encoding

Since an ILP itself can be interpreted as a WCSP instance with an infinite weight
marking the violation of an ILP constraint and unary constraints representing
the ILP objective function, the concept of the CCG is well defined for ILPs. It
can be constructed in polynomial time for an ILP and can be used to generate
the CCG-based ILP encoding of the given ILP. A desirable property of the
CCG-based ILP encoding is therefore its ability to preserve the integrality of
the vertices of the feasible region of its LP relaxation.

ILPs can be relaxed to LPs by removing all integrality constraints on their
variables. LPs have convex feasible regions and can therefore be solved efficiently
(in polynomial time). If the feasible region of the LP relaxation of an ILP has
only integer vertices (equivalent to an ILP having a totally unimodular (TUM)
constraint matrix [12]), an optimal solution of the LP also yields an optimal
solution of the ILP.

An ILP can be viewed as a WCSP instance as follows. Each ILP constraint
translates to a WCSP constraint with weights of values zero or infinity. The ILP
objective function translates to a set of unary WCSP constraints. The CCG-
based ILP encoding of an ILP produces a new ILP. If the original ILP has only
integer vertices in the feasible region of its LP relaxation, it is desirable for the
new ILP to also have the same property. This would mean that, if the original
ILP is solvable through LP relaxation, the new ILP is also solvable through LP
relaxation. In this section, we show that this property of the CCG-based ILP
encoding in fact holds for an important subclass of such ILPs, namely, ILPs that
model MWVC problem instances on bipartite graphs.

The MWVC problem on a given vertex-weighted graph G = 〈V,E,w〉 is
formulated as an ILP of the same form of Eqs. (6) to (8), where we simply
associate a 0/1 variable xi with each vertex vi ∈ V of non-negative weight wi

indicating the presence of vi in the MWVC. If G is bipartite, its constraint matrix
is TUM. Therefore, the LP relaxation of this ILP has only integer vertices in
its feasible region [12]. We can formulate this ILP as a WCSP instance with the
two types of constraints shown in Table 3.

Now we show that the CCG created for the MWVC problem on any given
bipartite graph is also bipartite, which establishes that the LP relaxation of the
CCG-based ILP encoding has only integer vertices in its feasible region. Consider
an edge (vi, vj) ∈ E. The CCG gadget that represents the constraint of covering

A CCG-Based ILP Encoding of the Boolean Weighted CSP 637

Table 3. Shows the two types of WCSP constraints for the MWVC problem ((a)The
binary constraint that represents the requirement of covering each edge (vi, vj) ∈
E,(b)The unary constraint for each vertex vi that represents a term in the objective
function of minimizing the total weight of the vertex cover)

xi

xj
0 1

0 +∞ 0

1 0 0

(a) The binary constraint that repre-
sents the requirement of covering each
edge (vi, vj) ∈ E

xi 0 1

Value 0 wi

(b) The unary constraint for each ver-
tex vi that represents a term in the ob-
jective function of minimizing the total
weight of the vertex cover

this edge involves auxiliary vertices A and A′ [7]. The CCG gadget itself has
the edges (vi, A), (A,A′) and (A′, vj). If the original graph is bipartite, then
its vertices can be colored using either of two colors, red and blue, such that
every edge connects a red vertex and a blue vertex. Without loss of generality,
we assume that vi is colored red and vj is colored blue. We then color A blue
and A′ red. Such a coloring of the vertices ensures that the edges of the gadgets
also always connect a red vertex and a blue vertex. This means that the CCG is
also bipartite. Hence, we establish the desired property of the CCG-based ILP
encoding for the MWVC problem on any given bipartite graph.

5 Conclusions and Future Work

In this paper, we introduced the CCG-based ILP encoding of the WCSP. We
compared it to the direct ILP encoding adapted from the probabilistic reasoning
community. Theoretically, we showed that the CCG-based ILP encoding has
several advantages over the direct ILP encoding with respect to the number of
variables per constraint and the number of constraints. Empirically, we showed
that the CCG-based algorithm significantly outperforms the direct algorithm
with respect to the running time on benchmark instances. Finally, we showed
that MWVC problem instances on bipartite graphs, whose corresponding ILPs
have only integer vertices in the feasible regions of their LP relaxations, preserve
this property in their CCG-based ILP encodings as well.

It is future research to prove properties of the CCG-based ILP encoding for
ILPs with TUM constraint matrices, to use our techniques to make ILP-based
approaches competitive with other approaches for solving the WCSP, and to
extend our results to the WCSP with variables of domain sizes larger than 2.

Acknowledgment. The research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) under grant numbers 1409987 and
1319966. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies or the U.S. government.

638 H. Xu et al.

References

1. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve 5.5 open source (mixed integer)
linear programming software (2004). http://lpsolve.sourceforge.net/5.5/

2. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

3. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2017) http://www.
gurobi.com

4. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,
de Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints 21(3), 413–434 (2016)

5. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

6. Kumar, T.K.S.: Incremental computation of resource-envelopes in producer-
consumer models. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 664–678.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8 45

7. Kumar, T.K.S.: A framework for hybrid tractability results in Boolean weighted
constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202,
pp. 282–297. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1 19

8. Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems.
In: The International Symposium on Artificial Intelligence and Mathematics (2008)

9. Kumar, T.K.S.: Kernelization, generation of bounds, and the scope of incremental
computation for weighted constraint satisfaction problems. In: The International
Symposium on Artificial Intelligence and Mathematics (2016)

10. Marinescu, R., Dechter, R.: Best-first AND/OR search for graphical models. In:
The AAAI Conference on Artificial Intelligence, pp. 1171–1176 (2007)

11. Siek, J., Lee, L.Q., Lumsdain, A.: The Boost Graph Library: User Guide and
Reference Manual. Addison-Wesley, Boston (2002)

12. Sierksma, G.: Linear and Integer Programming: Theory and Practice, 2nd edn.
CRC Press, Boca Raton (2001)

13. Xu, H., Kumar, T.K.S., Koenig, S.: A new solver for the minimum weighted vertex
cover problem. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 392–
405. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2 28

14. Xu, H., Kumar, T.K.S., Koenig, S.: The Nemhauser-Trotter reduction and lifted
message passing for the weighted CSP. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 387–402. Springer, Cham (2017). doi:10.
1007/978-3-319-59776-8 31

http://lpsolve.sourceforge.net/5.5/
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.1007/978-3-540-45193-8_45
http://dx.doi.org/10.1007/978-3-540-85958-1_19
http://dx.doi.org/10.1007/978-3-319-33954-2_28
http://dx.doi.org/10.1007/978-3-319-59776-8_31
http://dx.doi.org/10.1007/978-3-319-59776-8_31

Satisfiability and CP Track

Reduced Cost Fixing in MaxSAT

Fahiem Bacchus1(B), Antti Hyttinen2, Matti Järvisalo2, and Paul Saikko2

1 Department of Computer Science, University of Toronto, Toronto, Canada
fbacchus@cs.toronto.edu

2 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
matti.jarvisalo@helsinki.fi

Abstract. We investigate utilizing the integer programming (IP) tech-
nique of reduced cost fixing to improve maximum satisfiability (MaxSAT)
solving. In particular, we show how reduced cost fixing can be used within
the implicit hitting set approach (IHS) for solving MaxSAT. Solvers
based on IHS have proved to be quite effective for MaxSAT, especially
on problems with a variety of clause weights. The unique feature of IHS
solvers is that they utilize both SAT and IP techniques. We show how
reduced cost fixing can be used in this framework to conclude that some
soft clauses can be left falsified or forced to be satisfied without influ-
encing the optimal cost. Applying these forcings simplifies the remaining
problem. We provide an extensive empirical study showing that reduced
cost fixing employed in this manner can be useful in improving the state-
of-the-art in MaxSAT solving especially on hard instances arising from
real-world application domains.

1 Introduction

Maximum satisfiability (MaxSAT) [17] is a thriving constraint optimization par-
adigm, successfully applied in a growing number of NP-hard real-world problem
domains. The currently most successful MaxSAT solvers are SAT-based, i.e.,
rely on Boolean satisfiability solver technology [4]. In particular, they use SAT
solvers to iteratively extract unsatisfiable cores (unsatisfiable sets of soft clauses)
and block these cores from the search in the later iterations, until a solution is
found. One of the currently most successful algorithmic approaches—as wit-
nessed by the most recent MaxSAT Evaluations [2]—are solvers implementing
the so-called implicit hitting set (IHS) approach for MaxSAT. IHS MaxSAT
solvers [8,9,11,23,24] employ a hybrid approach that exploits both a SAT solver
for core extraction and an integer programming (IP) solver for obtaining mini-
mum cost hitting sets of the accumulated cores.

Work supported in part by Academy of Finland (grants 251170 COIN, 276412,
284591 and 295673), the Research Funds and DoCS Doctoral School in Computer
Science of the University of Helsinki, and the Natural Sciences and Engineering
Research Council of Canada.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 641–651, 2017.
DOI: 10.1007/978-3-319-66158-2 41

642 F. Bacchus et al.

Despite the success and recent algorithmic advances in MaxSAT solvers, the
SAT-based MaxSAT solvers do not—as witnessed by the empirical results pre-
sented in this paper—currently harness the full potential of bounds-based prob-
lem simplification during search. Focusing on IHS as the approach which solved
the most instances in the general weighted partial category of the 2016 MaxSAT
Evaluation, we propose to take advantage of classical ideas from the realm of
integer programming to further improve state-of-the-art MaxSAT solvers. In
more detail, we show how to integrate reduced cost fixing [6,7,22], a standard
technique in IP solving that uses bounds on the optimal cost derived during
search for inferring variables whose values can be fixed while preserving at least
one optimal solution. As we will explain in detail, in terms of MaxSAT search,
reduced cost fixing amounts to using upper bounds obtained during search to
harden or falsify specific soft clauses, i.e., to force them to be satisfied or falsified.
The IHS approach to MaxSAT is a prime candidate for integrating reduced cost
fixing since the reduced costs of soft clauses can be readily obtained by solving a
linear (LP) relaxation of the hitting set problem maintained during IHS search.
Putting this idea into practice, we extend the IHS solver MaxHS with reduced
cost fixing, and provide an extensive empirical evaluation showing that reduced
cost fixing considerably speeds up MaxHS.

In terms of related work, different techniques of using lower and lower bounds
for speeding up MaxSAT solver have studied in varying contexts, including
branch-and-bound for MaxSAT [15,16,18,19], use of bounds for MaxSAT solvers
in general [13], and hardening based on SAT inferred costs of residual formulas
in pure SAT-based core-guided MaxSAT solving [1,21]. However, to the best
of our knowledge, linear programming relaxation based reduced cost fixing has
not been previously proposed in the context of MaxSAT. There has, however,
been a number of related works exploiting the technique of reduced cost fixing
in constraint programming, IP/constraint logic programming, and IP/constraint
programming, e.g., [12,26,28].

After background on MaxSAT (Sect. 2), we give a bounds-based view of the
IHS approach to MaxSAT (Sect. 3), explain how to integrate reduced cost fixing
into it (Sect. 4), and present empirical results on the effectiveness of reduced cost
fixing in speeding up the IHS solver MaxHS (Sect. 5).

2 Maximum Satisfiability

We work with propositional formulas expressed in conjunctive normal form
(CNF). Satisfaction of CNF formulas is defined as usual. Whenever conve-
nient we treat a clause as a set of literals and a CNF formula as a set of
clauses. An instance of (weighted partial) maximum satisfiability (MaxSAT) F =
(Fh, Fs,wt) consists of two CNF formulas: the hard clauses Fh, the soft clauses
Fs and a weight function wt : Fs → Q associating a positive rational weight to
each soft clause. Given such an instance, any truth assignment τ that satisfies the
hard clauses is a solution to F . The cost of a solution τ , cost(F, τ), is the sum
of the weights of the soft clauses it falsifies: cost(F, τ) =

∑
{τ �|=C|C∈Fs} wt(C).

Reduced Cost Fixing in MaxSAT 643

A solution τ is optimal if cost(F, τ) ≤ cost(F, τ ′) for all solutions τ ′. Given
an instance F the MaxSAT problem is to find an optimal solution to F . We
denote the cost of optimal solutions to F by opt cost(F). We also use cost(S),
for any set of soft clauses S, to denote the sum of weights of the soft clauses in
S: cost(S) =

∑
c∈S wt(c). For a MaxSAT instance F = (Fh, Fs,wt), an unsat-

isfiable core of F is any subset S ⊆ Fs of soft clauses such that Fh ∪ S is
unsatisfiable.

3 The SAT-IP Implicit Hitting Set Approach to MaxSAT

IHS MaxSAT solvers [8–11,23,24] utilize the so-called implicit hitting set app-
roach [14,20,25] to solve weighted partial MaxSAT. These solvers use a SAT
solver to accumulate cores and an IP solver to compute a minimum-cost hitting
set of the accumulated cores. Since each core is unsatisfiable, any solution must
falsify at least one soft clause in every core, i.e., the set of soft clauses falsified
by any solution must form a hitting set of the set of cores. Therefore, the cost of
any solution is lower-bounded by the cost of the minimum-cost hitting. Further,
if these costs are equal, then the solution must be optimal. As first described in
[8] an iteration can be set up that ensures that the IHS solver finds an optimal
solution after producing a finite number of cores.

Algorithm 1. The IHS approach to MaxSAT (generalized from [8])
1 IHS-MaxSAT

(
F = (Fh, Fs,wt)

)

2 (sat, κ, τ) ← SolveSAT(Fh) /* If unsat return a core κ, else a solution τ */
3 if not sat then return “No solutions since Fh is UNSAT”
4 UB ← cost(F, τ); best τ ← τ ; LB = 0 /* Initial bounds */
5 Optimizer.initialze(wt); new cores ← ∅; hs is sat ← hs is opt ← false
6 while UB > LB do
7 (hs is opt ,HS) ← Optimizer(new cores,UB)
8 if hs is opt then LB = cost(HS)
9 (hs is sat , κ, τ) ← SolveSAT(Fh ∪ (Fs \ HS))

10 if not hs is sat then
11 repeat
12 new cores ← new cores ∪ κ
13 (sat, κ, τ) ← SolveSAT(Fn ∪ (Fs \ (HS ∪⋃κ∈new cores κ)))

14 until sat

15 if cost(τ) < UB then UB ← cost(τ); best τ ← τ

16 return best τ

This original algorithm does not, however, provide the upper bounds needed
for reduced cost fixing. Upper bounds can be obtained by using non-optimal
hitting sets as described in [11]. We give, in Algorithm 1, a new more general
formalization of the algorithm described in [11] and a more general correctness
condition.

644 F. Bacchus et al.

The algorithm first computes an initial model by solving Fh. The returned τ
is also a solution to F , and provides an initial upper bound once we check which
clauses of Fs are satisfied by τ .

The Optimizer maintains the set of cores passed to it, adding the cores in
new cores to this set (line 7). It always returns a hitting set HS of its current
set of cores, and a flag (hs is opt) indicating whether it has verified HS to be
of minimum cost. (HS might be of minimum cost even if the Optimizer has
not verified this.) If HS is of minimum cost, its cost is a valid lower bound on
opt cost(F) and we can update LB . Note that Optimizer’s set of cores can only
grow so the cost of a minimum-cost hitting set cannot decrease and the updates
never decrease LB .

The SAT solver tests if removing HS from Fs results in satisfiability; if not
we obtain a new core, κ, and add it to the set of new cores. We then enter a loop
where we accumulate more cores, repeatedly removing all of the soft clauses in
HS and all newly discovered cores (cf. the “disjoint, g” strategy in [24]). At each
step a new core is found and the set of soft clauses passed to the SAT solver
is further reduced. Since Fh is satisfiable, the loop must terminate as we will
eventually remove enough soft clauses to obtain satisfiability. We then update
the upper bound if the found solution has lower cost.

The algorithm terminates when it finds a solution whose cost achieves the
lower bound. Such a solution must be optimal; hence Algorithm1 always returns
an optimal solution. We also have that Algorithm1 must terminate as long
as Optimizer satisfies the following general condition. During Algorithm1 a
sequence of calls are made to Optimizer (once every iteration of the while
loop). In each call Optimizer computes a hitting set of the accumulated set of
cores passed to it in the current and all previous calls, and during that call UB
is the best known upper bound.

Definition 1 (Correctness Condition). Optimizer always returns a hitting
set of its accumulated set of cores. And, for every i there exists an k > i such
that the k’th call to Optimizer returns a hitting set, HS, such that either (a)
cost(HS) < UB or (b) HS is a minimum-cost hitting set.

Theorem 1. If Optimizer satisfies the correctness condition, then Algorithm1
must eventually terminate returning an optimal solution.

Proof. We show that the sequence of calls to Optimizer is finite, and thus the
while loop must terminate. In fact, we need only consider the sub-sequence calls
consisting of those calls where Optimizer returns a minimum-cost hitting set
or a hitting set with cost less than the current upper bound. By the correctness
condition this sub-sequence is infinite iff Algorithm 1 fails to terminate. We say
that a hitting set HS returned by Optimizer is infeasible if Fh ∪ (Fs \ HS) is
unsatisfiable, otherwise it is feasible. Note that when HS is feasible, we will have
cost(τ) ≤ cost(HS) for the returned model τ , and UB ≤ cost(HS) after line 15.

Optimizer cannot return an infeasible hitting set HS more than once: HS
will cause a core to be added to Optimizer that HS does not hit, so HS will

Reduced Cost Fixing in MaxSAT 645

not be a hitting set for any subsequent calls. In the sub-sequence Optimizer
can never return a feasible hitting set HS more than twice. After HS is returned
we have that UB ≤ cost(HS). If Optimizer also returned hs is opt = true,
then LB will become equal to UB and the algorithm will terminate. Otherwise,
if hs is opt = false, the lowered UB implies that if HS is returned once more in
the subsequence it must be with hs is opt = true, which will cause termination.
There are only a finite number of hitting sets, so the sub-sequence must be finite,
and Algorithm 1 must terminate. �

In the version of MaxHS reported on in our empirical evaluation Optimizer
utilizes both a heuristic greedy solver and an exact IP solver (IBM CPLEX). It
always uses the greedy solver unless it is passed an empty set new cores (which
happens when the previous call to Optimizer returned a feasible hitting set).
For an empty new cores it uses the IP solver to compute a hitting set. However,
it does not ask the IP solver to compute a minimum-cost hitting set. Rather
it stops the IP solver as soon as a hitting set with cost less than UB has been
found. When UB is already equals the optimal cost, the IP solver will run to
completion as a lower cost hitting set will never be found. In this case the IP
solver will find a hitting set that it can verify to be of minimum cost, and this
hitting set and hs is opt = true is returned. This scheme is used to reduce the
number of times the hitting set problem needs to be solved to optimality [11].

4 Reduced Cost Fixing

Reduced cost fixing is a standard technique in OR [6,7,22,27]. It uses an upper
bound and reduced costs obtained from an LP relaxation to fix variables in an IP.
Given a minimization IP P containing Boolean (0/1) variables, we can solve P as
an LP by allowing the Boolean variables to take on intermediate values between
0 and 1. The cost of the LP solution will be a lower bound on the optimal cost of
P . The LP solver also provides a reduced cost for the non-basic1 variables set at
0 or 1 in the LP solution. These reduced costs specify the influence of changing
a non-basic variable at 0 (1) to 1 (0) on the cost of the LP. Suppose we know a
feasible IP solution to P with cost z. If changing a non-basic variable causes the
LP solution to increase in cost beyond z, then we can fix that variable to the
value it has in the LP solution. Since the LP solution is a lower bound, putting
such variables at their opposite values would cause the cost of the IP to increase
beyond the cost of an already known feasible solution.

Here we explain how this technique can be used within IHS MaxSAT solvers.
In contrast with standard uses of reduced cost fixing we do not want to fix
variables of the IP (our IP is the IP of the hitting set problem). Rather we want
to fix variables of the MaxSAT problem from which the IP has been derived.
This can be done as follows.

1 The variables in the LP solution are either basic or non-basic. All of the non-basic
variables will be at their upper or lower bounds in the LP solution [5].

646 F. Bacchus et al.

Theorem 2. For a MaxSAT problem F = (Fh, Fs,wt), suppose we have (a)
B = {b1, . . . , bn} a set of Boolean variables where each bi = 0 (bi = 1) represents
the satisfaction (falsification) of soft clause ci ∈ Fs, (b) IPHS an IP over the bi

representing the minimum-cost hitting set problem over the current set of cores,
(c) LPHS the LP relaxation of IPHS , (d) best τ a feasible solution to F , (e) an
optimal solution to LPHS with cost zLPHS

opt , and (f) LP reduced costs rc(bi) at the
optimal basis.

Then the following simplifications can be performed without changing
opt cost(F). (1) For every non-basic variable bi set to 0 in the optimal LPHS

solution we can make soft clause ci hard in F if zLPHS
opt + rc(bi) > cost(best τ)

or if zLPHS
opt + rc(bi) = cost(best τ) and ci is satisfied in best τ . (2) For every

non-basic variable bi set to 1 in the optimal LPHS we can make soft clause ci

false in F if zLPHS
opt −rc(bi) > cost(best τ) or if zLPHS

opt −rc(bi) = cost(best τ) and
ci is falsified in best τ .

Proof. Let bi be a non-basic variable at its lower bound in the optimal solution
to LPHS . Then either bi = 1 is feasible in LPHS or it is not.2 If it is not, then,
since LPHS is a relaxation of IPHS , bi = 1 is also infeasible in IPHS . Furthermore,
since every core is a logical consequence of F , IPHS is a relaxation of F and thus
ci = false must be infeasible in F , and we can harden ci. On the other hand, if
bi = 1 is feasible in LPHS , then by the properties of reduced costs, forcing bi = 1
will increase the optimal cost of LPHS by at least rc(bi) [3]. Stated a different
way, if LP+ is LPHS with the added constraint bi = 1, then its optimal cost will
be at least zLPHS + rc(bi). LP+ is the linear relaxation of IP+, which is IPHS

with the added constraint bi = 1; and IP+ is a relaxation of F+ which is F ∪¬ci.
Hence, cost(F+) >= zLPHS + rc(bi) and if zLPHS + rc(bi) > cost(best τ), or if
zLPHS + rc(bi) = cost(best τ) and ci is satisfied in best τ , then we can force ci

to be satisfied in F while still preserving at least one of the optimal solutions of
F . The argument for bi at its upper bound is analogous. �

In Algorithm 1 reduced cost fixing can be utilized whenever UB − LB
decreases and is small enough to allow the forcing of some unforced soft clause.
In particular, rc(bi) is upper-bounded by wt(ci) and hence ci cannot be forced
if (UB −LB) > wt(ci). We use CPLEX to solve the LP relaxation of the hitting
set problem to obtain the reduced costs; we do this just before invoking CPLEX
in Optimizer.

5 Experiments

We implemented reduced cost fixing in MaxHS v2.9.8 which entered the 2016
MaxSAT Evaluation. This version of MaxHS included a number of other features
shown to improve the solver, described in [9,11,23]. We compare the perfor-
mance of MaxHS with and without reduced cost fixing, with all other features
2 In a hitting set problem bi = 1 is always feasible. However, MaxHS can also add

other constraints to the hitting set problem via a process of constraint seeding [9].
It is not difficult to show that all of our results continue to hold with seeding.

Reduced Cost Fixing in MaxSAT 647

unchanged. We utilized IBM CPLEX v12.7 as the IP/LP solver, and ran our
experiments on computing nodes with Xeon 2.8-GHz cores and 256-GB RAM.
We limited MaxHS to 1800 s and 3.5 GB on each instance. We also report on
longer 5-h (18,000 s), 5-GB runs on Xeon 2.0-GHz cores and 256-GB RAM.

We experimented with all non-random instances that have been collected
by and made available by the MaxSAT Evaluation during the years 2008 to
2016. These include extra submitted benchmarks never used in the evalua-
tion. After pruning duplicate instances this yielded 6290 MaxSAT instances
(4361 unweighted, 1929 weighted). For the 5-h runs, however, we omitted 507
unweighted instances with no hard clauses (MS instances) most of which encode
MaxCut on random graphs. Core-based solvers, including IHS solvers, perform
poorly on such instances, and we did not expect any of these instances to com-
plete in 5 h with or without reduced cost fixing. This left 5783 instances to run
in these longer experiments (4361 unweighted, 1422 unweighted).

First we examine how frequently reduced cost fixing occurs in our benchmark
suite. Figure 1 left shows a histogram of the instances grouped by the number
of soft clauses that become fixed during solving. In 5024 of the 6290 instances
no reduced cost fixing ever occurs (3953 unweighted, 1071 weighted), but in the
remaining 1266 instances fixing can be quite common—in 791 of these instances
100 or more fixings occurred. In extreme cases over a million soft clauses were
fixed by the technique (this makes average number of soft clauses fixed mislead-
ingly large). There was little difference in the histograms between weighted and
unweighted instances once the zero fixing instances were removed; in fact, the
instance with the most fixings was unweighted.

The second question is how much overhead does reduced cost fixing incur,
particularly since the LP is solved even when no fixing occurs. There were 26
instances where fixing took more than 100 s. However, 25 of these were not
solvable with or without fixing (22 were MaxCut on random graphs). On one
solved instance fixing required 214 s out of a total solve time of 835 s (this instance
was solved in 416 s without fixing). Of the remaining 6264 instances, on 1782
instances fixing took zero seconds (LP solving was never invoked since the gap
between UB and LB was never small enough), on 3746 instances fixing took less
than 1 s, on 298 instances fixing took between 1 and 10 s, and on 438 instances
fixing took more than between 10 and 100 s. Figure 1 right shows, however, that
on these 438 instances fixing is well worth the time it takes. The scatter plot
shows that fixing provides a significant speedup for most of these instances,
especially on the harder instances.

In the rest of our plots we omit data from the 5024 instances on which no
reduced cost fixing occurred. We omitted these instances because their run times
will only vary by the overhead of fixing (and experimental variances induced
by varying cluster loads), and we have already provided data in the previous
paragraph showing that this overhead is not significant.

Figure 2 shows scatter plots for all instances, all unweighted instances and
all weighted instances. The plots show that fixing generally provides a speedup,
and that speedups occur on both weighted and unweighted instances.

648 F. Bacchus et al.

Fig. 1. Left: distribution of the frequency reduced cost fixing forces a soft clause to be
relaxed or hardened. Right: scatter plot showing that fixing on instances where fixing
takes significant time also pays off.

Fig. 2. Speedup histograms over instances on which reduced cost fixing would force
some variables in terms of log2 of CPU time with fixing and without fixing. Left: under
30-min per-instance time limit, Right: under 5-h per-instance time limit.

In Fig. 3 we show in more detail the performance improvement obtained
from reduced cost fixing. Here we computed the speedup ratio for each instance,
i.e., the CPU time taken without reduced cost fixing divided by the CPU time
taken when reduced cost fixing is used. As this ratio will be between 0 and 1,
for instances that are slowed down by fixing we took log2 of this ratio which
produces a symmetry between speedups and slowdowns. The plots are in the
form of histograms showing for how many instances experience various ranges of
the log speedup. Figure 3 left shows the log speedup ratio for all instances, while
on the right we examine the 4361 instances that were run under a per-instance
time limit of 5 h.

These histograms verify the value of our technique for exploiting reduced cost
fixing in IHS based MaxSAT solvers. When we look at the data from the 5-h
runs we see an even more pronounced effect with fewer instances being slowed
down, and a smoother distribution for the instances being speeded up.

Reduced Cost Fixing in MaxSAT 649

Fig. 3. Scatter plots of CPU times with and without reduced cost fixing, omit-
ting instances 5024 where no fixing occurred. Left: all instances; Middle: unweighted
instances; Right: weighted instances.

6 Conclusions

We proposed the use of reduced cost fixing—a standard approach in IP—in
MaxSAT solving as a means of utilizing bounds information during search to
infer knowledge of soft clauses which are satisfied or left falsified by some opti-
mal solutions. We explained how reduced cost fixing can be integrated into the
implicit hitting set approach to MaxSAT by performing reduced cost analy-
sis directly on the LP relaxation of the hitting-set IP already utilized in the
IHS search routine. We showed through an extensive empirical evaluation that
reduced cost fixing can provide considerable speedups improving on the overall
performance of MaxHS.

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted)
partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 12

2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluation (2016). http://
maxsat.ia.udl.cat/introduction/. Accessed 27 Apr 2017

3. Bajgiran, O.S., Cire, A.A., Rousseau, L.-M.: A first look at picking dual vari-
ables for maximizing reduced cost fixing. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 221–228. Springer, Cham (2017). doi:10.
1007/978-3-319-59776-8 18

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

5. Chvátal, V.: Linear Programming. Freeman, New York (1983)
6. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear pro-

gramming problems. Oper. Res. 31(5), 803–834 (1983)
7. Danzig, G., Fulkerson, D., Johnson, S.: Solution of a large-scale traveling-salesman

problem. Oper. Res. 2, 393–410 (1954)

http://dx.doi.org/10.1007/978-3-642-40627-0_12
http://maxsat.ia.udl.cat/introduction/
http://maxsat.ia.udl.cat/introduction/
http://dx.doi.org/10.1007/978-3-319-59776-8_18
http://dx.doi.org/10.1007/978-3-319-59776-8_18

650 F. Bacchus et al.

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-23786-7 19

9. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5 13

10. Davies, J.: Solving MAXSAT by decoupling optimization and satisfaction. Ph.D.
thesis, University of Toronto (2013). http://www.cs.toronto.edu/∼jdavies/Davies
Jessica E 201311 PhD thesis.pdf

11. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40627-0 21

12. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-48085-3 14

13. Heras, F., Morgado, A., Marques-Silva, J.: Lower bounds and upper bounds for
MaxSAT. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 402–407.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8 35

14. Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In: Amir,
A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, p. 151. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13509-5 14

15. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Transforming inconsistent
subformulas in MaxSAT lower bound computation. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 582–587. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 46

16. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In: Proceedings of AAAI, pp. 86–91. AAAI
Press (2006)

17. Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfia-
bility, pp. 613–631. IOS Press, Amsterdam (2009)

18. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-SAT
solving. In: Proceedings of IJCAI, pp. 2334–2339 (2007)

19. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound com-
putation in Max-SAT solving. In: Proceedings of AAAI, pp. 351–356. AAAI Press
(2008)

20. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
Oper. Res. 61(2), 453–468 (2013)

21. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary
search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol.
7317, pp. 284–297. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8 22

22. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, Hoboken (1999)

23. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 34

24. Saikko, P.: Re-implementing and extending a hybrid SAT-IP approach to maximum
satisfiability. Master’s thesis, University of Helsinki (2015). http://hdl.handle.net/
10138/159186

25. Saikko, P., Wallner, J.P., Järvisalo, M.: Implicit hitting set algorithms for reasoning
beyond NP. In: Proceedings of KR, pp. 104–113. AAAI Press (2016)

http://dx.doi.org/10.1007/978-3-642-23786-7_19
http://dx.doi.org/10.1007/978-3-642-39071-5_13
http://www.cs.toronto.edu/~jdavies/Davies_Jessica_E_201311_PhD_thesis.pdf
http://www.cs.toronto.edu/~jdavies/Davies_Jessica_E_201311_PhD_thesis.pdf
http://dx.doi.org/10.1007/978-3-642-40627-0_21
http://dx.doi.org/10.1007/978-3-540-48085-3_14
http://dx.doi.org/10.1007/978-3-540-48085-3_14
http://dx.doi.org/10.1007/978-3-642-34413-8_35
http://dx.doi.org/10.1007/978-3-642-13509-5_14
http://dx.doi.org/10.1007/978-3-540-85958-1_46
http://dx.doi.org/10.1007/978-3-540-85958-1_46
http://dx.doi.org/10.1007/978-3-642-31612-8_22
http://dx.doi.org/10.1007/978-3-319-40970-2_34
http://hdl.handle.net/10138/159186
http://hdl.handle.net/10138/159186

Reduced Cost Fixing in MaxSAT 651

26. Thorsteinsson, E.S., Ottosson, G.: Linear relaxations and reduced-cost based prop-
agation of continuous variable subscripts. Ann. Oper. Res. 115(1–4), 15–29 (2002)

27. Wolsey, L.A.: Integer Programming. Wiley, Hoboken (1998)
28. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization prob-

lems. Oper. Res. 58(2), 342–356 (2010)

Weight-Aware Core Extraction in SAT-Based
MaxSAT Solving

Jeremias Berg(B) and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
{jeremias.berg,matti.jarvisalo}@helsinki.fi

Abstract. Maximum satisfiability (MaxSAT) is today a competitive
approach to tackling NP-hard optimization problems in a variety of AI
and industrial domains. A great majority of the modern state-of-the-art
MaxSAT solvers are core-guided, relying on a SAT solver to iteratively
extract unsatisfiable cores of the soft clauses in the working formula
and ruling out the found cores via adding cardinality constraints into
the working formula until a solution is found. In this work we propose
weight-aware core extraction (WCE) as a refinement to the current com-
mon approach of core-guided solvers. WCE integrates knowledge of soft
clause weights into the core extraction process, and allows for delaying
the addition of cardinality constraints into the working formula. We show
that WCE noticeably improves in practice the performance of PMRES,
one of the recent core-guided MaxSAT algorithms using soft cardinality
constraints, and explain how the approach can be integrated into other
core-guided algorithms.

1 Introduction

Several recent breakthroughs in algorithmic techniques for the constraint opti-
mization paradigm of maximum satisfiability (MaxSAT) are making MaxSAT
today a competitive approach to tackling NP-hard optimization problems in a
variety of AI and industrial domains, from planning, debugging, and diagnosis
to machine learning and systems biology, see e.g. [8,11,13,14,17,25,34].

A great majority of the most successful MaxSAT solvers today are based
on the so-called core-guided MaxSAT solving paradigm, see e.g. [4,12,16,29–
31]. Such solvers iteratively use Boolean satisfiability (SAT) solvers for finding
unsatisfiable cores, i.e., sets of soft clauses that together with the hard clauses
are unsatisfiable, of the input MaxSAT instance. After finding a new core, the
core is essentially compiled into the MaxSAT instance via adding a cardinality
constraint enforcing that one of the soft clauses in the core cannot be satisfied. An
in-built property of core-guided solvers is hence that the MaxSAT instance grows

Work supported by Academy of Finland (grants 251170 COIN, 276412, 284591); and
DoCS Doctoral School in Computer Science and Research Funds of the University
of Helsinki.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 652–670, 2017.
DOI: 10.1007/978-3-319-66158-2 42

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 653

at each iteration due to compiling a new core into the instance. This can lead
to the instance becoming bloated, as many, possibly large, cores are compiled,
intuitively making the job of the SAT solver increasingly difficult. One way of
improving core-guided solvers is to develop more efficient ways of compiling the
cores, decreasing the blow-up of the instance. Most recently, progress in core-
guided solvers has been made by developing new ways of compiling the cores via
soft cardinality constraints [12,30,31].

In this work we propose weight-aware core extraction (WCE) as a technique
that refines the process of how cores are extracted and when they are compiled
into the working formula during core-guided MaxSAT search. WCE integrates
knowledge of soft clause weights into the core extraction process, and allows
for delaying the addition of cardinality constraints into the working formula by
enabling the extraction of more cores between compilation steps, thereby also
intuitively making the job of the core extractor (SAT solver) easier. In this paper
we explain in detail how a specific implementation of clause cloning allows inte-
grating WCE into PMRES, the first algorithm making use of soft cardinality
constraints [31]. We also show empirically that WCE noticeably improves the
performance of PMRES in practice on standard weighted partial MaxSAT bench-
marks from the most recent MaxSAT solver evaluation. Going beyond PMRES,
we also explain how ideas behind WCE can be integrated into other core-guided
algorithms employing soft cardinality constraints, and to what extent the pre-
sented ideas can be used in some of the other MaxSAT approaches utilizing SAT
solvers for core extraction.

In terms of related work, ideas underlying WCE have been previously applied
for computing lower bounds for MaxSAT instances [18,20–23]. Specifically,
the lower bounds are applied in the context of core-guided MaxSAT solving
before the actual search in [18]. Furthermore, WCE also bears some resem-
blance with the (weaker) approaches to obtaining bounds during branch-and-
bound search for MaxSAT based on detecting unsatisfiable cores by e.g. unit
propagation [20–23].

The rest of the paper is organized as follows. After necessary background on
MaxSAT (Sect. 2) and a detailed description of the PMRES algorithm (Sect. 3),
we present our main contributions, weight-aware core extraction in the context
of PMRES (Sect. 4). We then present empirical results on the speed-ups obtained
via WCE on PMRES (Sect. 5), and further, explain how and to what extent the
presented technique can be integrated into other SAT-based MaxSAT algorithms
(Sect. 6).

2 Maximum Satisfiability

For background on weighted partial maximum satisfiability (MaxSAT in short),
recall that for a Boolean variable x, there are two literals, the positive x and
the negative ¬x. A clause is a disjunction (∨) of literals, and a CNF formula a
conjunction (∧) of clauses. When convenient, we treat a clause as a set of literals
and a CNF formula as a set of clauses. We assume familiarity with other logical

654 J. Berg and M. Järvisalo

connectives and denote by CNF(φ) a set of clauses logically equivalent to the
formula φ; we can assume without loss of generality that the size of CNF(φ) is
linear in the size of φ [33].

A MaxSAT instance consists of a set of hard clauses Fh, a set of soft clauses
Fs, and a function w : Fs → N that associates a positive integral cost to each
of the soft clauses. We extend w to a set S ⊆ Fs of soft clauses by w(S) =∑

C∈S w(C). Further, let wmin
S = minC∈S{w(C)}, i.e., the smallest weight among

the clauses in S. If w(C) = 1 for all C ∈ Fs, the instance is unweighted.
A truth assignment τ is a function from Boolean variables to true (1) and

false (0). A clause C is satisfied by τ if τ(l) = 1 for a positive or τ(l) = 0 for a
negative literal l ∈ C. A CNF formula is satisfied by τ if τ satisfies all clauses
in the formula. If some τ satisfies a CNF formula, the formula is satisfiable, and
otherwise unsatisfiable. An assignment τ is a solution to a MaxSAT instance
F = (Fh, Fs, w) if τ satisfies Fh. We denote the set of soft clauses not satisfied
by τ by Fτ̄ , i.e., Fτ̄ = {C ∈ Fs | τ(C) = 0}. The cost of τ is w(Fτ̄). A solution τ
is optimal (for F) if w(Fτ̄) ≤ w(Fτ̄ ′) for every solution τ ′ to F . We denote the
cost of optimal solutions to F by Cost(F). Without loss of generality, we will
assume that a MaxSAT instance always has a solution, i.e., that Fh is satisfiable.

A central concept in modern SAT-based MaxSAT algorithms is that of
(unsatisfiable) cores. For a MaxSAT instance F = (Fh, Fs, w), a subset S ⊆ Fs of
soft clauses is an unsatisfiable core of F iff Fh∪S is unsatisfiable. An unsatisfiable
core S is minimal (an MUS) of F iff Fh ∪ S′ is satisfiable for all S′ ⊂ S.

3 The PMRES Algorithm

In order to explain weight-aware core extraction, we will use the PMRES algo-
rithm [31]. Figure 1 gives PMRES in pseudo-code. When invoked on a MaxSAT

1 PMRES(Fh, Fs, w):
2 (F w

h , F w
s) ← (Fh, Fs)

3 while true do
4 (result, κ, τ) ← SATSOLVE(F w

h ∪ F w
s)

5 if result=”satisfiable” then return τ ;
6 else
7 R ← ∅
8 wmin

κ ← min{w(C) | C ∈ κ}
9 for Ci ∈ κ do
10 F w

s .remove(Ci)

11 if w(Ci) > wmin
κ then

12 F w
s .add(CL(Ci))

13 w(CL(Ci)) ← w(Ci)−wmin
κ

14 F w
h ← F w

h .add((Ci ∨ ri))
15 R.add(ri)

16 RELAX(wmin
κ , R)

1 RELAX(wmin
κ , R):

2 n ← |R|
3 F w

h .add((r1 ∨ . . . ∨ rn))
4 for i=1. . . n-1 do
5 F w

h .add(CNF(di ↔ (ri+1 ∨di+1)))
6 F w

s .add((¬ri ∨ ¬di))

7 w((¬ri ∨ ¬di)) ← wmin
κ

Fig. 1. The PMRES algorithm.

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 655

instance (Fh, Fs, w) PMRES works by iteratively calling a SAT solver (line 4)
on a working formula, initialized to Fh ∪ Fs, i.e., considering all hard and soft
clauses of the input formula as a SAT instance (line 2). If the working formula
is satisfiable (line 5), PMRES returns the satisfying assignment reported by
the SAT solver, which is guaranteed to be an optimal solution to the MaxSAT
instance [31]. Otherwise the SAT solver returns an unsatisfiable core κ of the
working formula. PMRES then proceeds by removing all of the soft clauses in
the core from the working formula and cloning a subset of them; clause cloning
is a common way of extending MaxSAT algorithms from unweighted to weighted
MaxSAT [3,6,12,30,31], and works as follows. First the minimum-weight wmin

κ of
clauses in the core κ is determined (line 8). Then each clause in core is removed
(line 10), and a soft clone CL(C) of each clause C ∈ κ with w(C) > wmin

κ is
introduced to the working formula and given the weight w(C) − wmin

κ (lines
11–13).

After clause cloning, PMRES extends each C ∈ κ by a fresh relaxation
variable r and adds the extended clause C ∨ r as hard to the working formula
(line 14). The intuition here is that setting r = 1 allows for the corresponding soft
clause to be left unsatisfied, while setting r = 0 forces the corresponding clause to
be satisfied. Finally, PMRES relaxes the found core by adding a soft cardinality
constraint over the introduced r variables via the function RELAX(wmin

κ ,R)
(line 16). The added cardinality constraint is encoded as hard and soft clauses
using additional new variables d1, . . . , d|κ|−1, and essentially enforces that either
exactly one of the introduced relaxation variables is set to true, or some soft
clause corresponding to (ri → ¬di) is falsified (lines 2–7 of RELAX). In order
to see this, notice first that the hard clause (r1 ∨ . . . ∨ r|κ|) forces at least one
relaxation variable to be set to true, Assume then that two variables rk and rt for
some k < t are both set to true. Then the hard clauses of form di ↔ (ri+1∨di+1)
imply that dj is set to true for all j < t. Specifically the variable dk is set to
true, and the soft clause encoding (rk → ¬dk) will become falsified.

We end this section by discussing two improvements that have been proposed
for PMRES and other similar core-guided MaxSAT algorithms; the so-called
stratification and hardening rules [4,5,26]. Assume that PMRES in invoked on
a MaxSAT instance F = (Fh, Fs, w). The stratification rule aims at prioritizing
the extraction of cores κ for which wmin

κ is large. Since the sum of the mini-
mum weights of the extracted cores is a lower bound on the optimal cost of
the MaxSAT instance, the goal in extracting cores with large minimum weights
is to decrease the total number of iterations required for termination. More
precisely, PMRES extended with stratification maintains a bound wmax, initial-
ized by a heuristic. During solving, PMRES does not invoke the SAT solver on
Fw

h ∪ Fw
s , i.e., all of the clauses of the working formula, but rather, only on a

subset of them consisting of all hard clauses and the soft clauses with weight
greater than wmax. Whenever this subset of the working formula is satisfiable,
the algorithm checks if the SAT solver was invoked on the whole working for-
mula, i.e., whether wmax = 1. If that is the case, the algorithm terminates.
Otherwise the value of wmax is decreased heuristically, and the search continues.

656 J. Berg and M. Järvisalo

Several different strategies for updating wmax have been proposed [4,5]. A fairly
simple one is to initialize wmax to the maximum weight of the soft clauses, i.e.,
wmax = max{w(C) | C ∈ Fs} and update it by decreasing it to the highest
weight of soft clauses that is lower than the current value of wmax.1

The hardening rule attempts to further exploit information that can be
obtained from the satisfying assignments obtained during solving in conjunction
with stratification. For some intuition, notice that all subsets of the working for-
mula that PMRES with stratification invokes the SAT solver on, always include
Fh. Hence whenever the SAT solver returns satisfiable, the returned assignment
τ is a solution to the MaxSAT instance, and as such an upper bound on the opti-
mal cost of the instance. The hardening rule exploits this fact by noting that
any solution τ2 that does not satisfy a clause C ∈ Fw

s with w(C) > w(Fτ̄) will
have w(Fτ̄2) > w(Fτ̄) and as such can not be an optimal solution to F . Hence
all such soft clauses have to be satisfied by any optimal solution to F and can
therefore be hardened, i.e., turned into hard clauses.

Even though the presentation here is specific to PMRES, the stratification
and hardening rules can be used in conjunction with several different core-guided
MaxSAT algorithms. This is also the case for weight-aware core extraction pre-
sented next.

4 Weight-Aware Core Extraction for PMRES

We now describe weight-aware core extraction (WCE), a generic technique
designed to improve performance of PMRES and other similar MaxSAT algo-
rithms. WCE delays the addition of cardinality constraints to the working for-
mula with the aim of extracting more valid cores (or “core mining”) from the
working instance before adding more constraints to the formula.

Clause Cloning Through Assumptions (Without Cloning). WCE requi-
res clause cloning to be implemented in a specific way through assumptions which
essentially avoid actual clause cloning (copying) altogether. A similar approach
to clause cloning is taken in [1]. For more details, we first need to overview how
core extraction is usually implemented in SAT-based MaxSAT solving. Several
modern SAT solvers allow querying for the satisfiability of a CNF formula under
a set of assumptions, represented as a partial assignment of the variables in the
formula. Whenever the formula is unsatisfiable under those assumptions, the
SAT solver returns some subset of the assumptions that are required in the proof
of unsatisfiability. Notice that not only are unsatisfiable formulas unsatisfiable
under all assumptions, but a satisfiable formula may also be unsatisfiable under
some assumptions. For example, consider the CNF formula F = {(x ∨ y), (¬x)}.
Although the formula is satisfiable, it is unsatisfiable when assuming x = 1 or
y = 0.
1 In our implementation used in the experiments of this work, we use the slightly more

sophisticated diversity heuristic [5] which attempts to balance the number of new
soft clauses introduced and the amount that wmax is decreased.

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 657

Core-guided MaxSAT solvers make use of the assumptions interface in SAT
solvers by extending each soft clause C ∈ Fs with a fresh assumption variable
a(C) and sending the extended clause C ∨a(C) to the SAT solver. During each
SAT solver call, all assumption variables are assumed false, thus reducing all
extended clauses C ∨ a(C) to C. Whenever the working formula is unsatisfi-
able, the SAT solver will return the extracted core κ in terms of the subset
of assumption variables corresponding to the clauses in κ. Importantly for the
PMRES algorithm, this means that each clause Ci ∈ κ is already extended with
the variable a(Ci) and that variable can be reused as the relaxation variable ri

that would otherwise be introduced on lines 15–16 in the algorithm described
in Fig. 1. Notice that whenever the SAT solver is invoked without assuming the
value of a(Ci) and the variable only appears in the extended clause Ci ∨ a(Ci),
it can be set to true by the SAT solver, thereby satisfying the extended clause
and effectively removing the clause from the formula. The same argument does
not hold as soon as other constraints involving a(Ci) are added to the formula.

With this, clause cloning through assumption variables is implemented as
follows. Assume that a clause C ∈ κ extended with the assumption variable a(C)
needs to be cloned, i.e., it is a member of some extracted core κ and w(C) > wmin

κ .
A simple way of improving on the naive description of clause cloning in Sect. 3 is
to introduce a new soft clause C ′ = (¬a(C)) with weight w(C ′) = w(Ci)−wmin

κ .
The correctness of this follows by noting that the extended clause (C ∨ a(C))
will be hard in all subsequent SAT solver calls. Thus satisfying C ′ forces the
clause C to be satisfied as well, achieving the same effect as cloning the whole
C. To further improve on this, notice that as C ′ would be added as a soft
clause, it would also be extended with an assumption variable and the extended
clause C ′ ∨a(C ′) would be sent to the SAT solver. This creates the logical chain
¬a(C ′) → ¬a(C) → C. The basic form of clause cloning would then assume
the variable a(C ′) to false in subsequent SAT solver calls, thus forcing C as
well. To refine this, note that the same affect is achieved by simply assuming
the value of a(C) to false instead, thus removing the need of introducing the
clause C ′ at all. In more detail, when a core κ is extracted, the minimum weight
wmin

κ is computed. Then the weight of each clause C ∈ κ is decreased by wmin
κ .

In subsequent SAT calls, the assumption variable of each clause C with weight
w(C) > 0 is assumed false, essentially treating that clause as soft. All other
clauses are treated as hard. Refining clause cloning in this way blurs the line
between hard and soft clauses. When discussing PMRES with clause cloning
implemented through assumptions we say that a clause C is soft as long as the
internal SAT solver is invoked assuming a(C) = 0, i.e., as long as w(C) > 0.
When w(C) drops to 0, the extended clause (C ∨ a(C)) becomes hard. Notice
that in order for w(C) to become 0, the clause C has appeared in at least one
core. Hence we have added a cardinality constraint over a(C) so not assuming
the value of it does not remove the clause C from the formula.

Except for removing the need of introducing clones to the formula, imple-
menting clause cloning through assumptions also results in tighter cardinality
constraints, as illustrated by the following example.

658 J. Berg and M. Järvisalo

Example 1. Let F = (Fh, Fs, w) be a MaxSAT instance Fh = {(x ∨ y), (y ∨ z)},
Fs = {C1 = (¬x), C2 = (¬y), C3 = (¬z)}, and w(C1) = 1 and w(C2) = w(C3) =
2. Assume that we invoke the basic version of PMRES, i.e., the algorithm in
Fig. 1, on F and that it first extracts the core {C1, C2}. After relaxing the core
the working instance (Fw

h , Fw
s , w) consists of Fw

h = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧
CNF(r1 + r2 = 1)h, Fw

s = CL(C2) ∧ C3 ∧ CNF(r1 + r2 = 1)s with w(CL(C2)) =
1, w(C3) = 2. Here we use CNF(r1 + r2 = 1)h and CNF(r1 + r2 = 1)s to denote
the hard and soft clauses, respectively, introduced in the Relax subroutine.
If PMRES next extracts and relaxes the core {CL(C2), C3}, the final working
formula will have the hard clauses Fw

h = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧ (CL(C2) ∨
r3) ∧ (C3 ∨ r4) ∧ CNF(r1 + r2 = 1)h ∧ CNF(r3 + r4 = 1)h and the soft clauses
Fw

s = CL(C3) ∧ CNF(r1 + r2 = 1)s ∧ CNF(r3 + r4 = 1)s. This instance is
satisfiable by setting r2 = r3 = 1 and r1 = r4 = 0. In total there are 4 different
ways of satisfying the added cardinality constraints. A similar argument holds
even if we use the assumption variables of soft clauses in cores when encoding
the cardinality constraints and introduce the negations of those variables as soft
clauses when performing clause cloning.

If we instead use assumptions to implement clause cloning, the final working
formula will have the hard clauses Fw

h = Fh ∧ (C1 ∨ a(C1)) ∧ (C2 ∨ a(C2)) ∧
CNF(a(C1) + a(C2) = 1)h ∧ CNF(a(C2) + a(C3) = 1)h and the soft clauses
Fw

s = C3 ∧ CNF(a(C1) + a(C2) = 1)s ∧ CNF(a(C2) + a(C3) = 1)s with
w(C1) = w(C2) = 0 and w(C3) = 1. As w(C3) > 0, the final SAT call will
be made assuming a(C3) = 0. Under the assumption, there is only a single way
of satisfying the added cardinality constraints. Even disregarding the assump-
tions, there are only 2 ways of satisfying the added cardinality constraints with
one of them resulting in the rest of the instance becoming satisfiable. �

WCE. Having discussed clause cloning in conjunction with WCE, we now turn
to describing WCE in detail. For some intuition, consider the following example.

Example 2. Consider again the MaxSAT instance F from Example 1 and assume
that PMRES with clause cloning implemented through assumptions first extracts
{C1, C2}. The working formula (Fw

h , Fw
s , w) will then become Fw

h = Fh ∧ (C1 ∨
a(C1)) ∧ CNF(a(C1) +a(C2) = 1)h and Fw

s = C2 ∧ C3 ∧ CNF(a(C1) +a(C2) =
1)s with w(C2) = 1, w(C3) = 2. The only core of the instance is {C2, C3}.
Notice, however, that ignoring the added cardinality constraints at this stage and
invoking the SAT solver on the (simpler) subset of the working formula consisting
of Fw

h = Fh ∧ (C1 ∨a(C1)) and Fw
s = C2 ∧C3 with w(C2) = 1, w(C3) = 2 would

result in the exact same core being extracted. �

The pseudocode of PMRES extended with WCE is shown in Fig. 2. Before invok-
ing its SAT solver, PMRES with WCE first adds an assumption a(C) = 0 for
all soft clauses C with w(C) > 0 (line 5). Then it invokes the SAT solver on
the working formula with these assumptions. If a core κ is extracted, wmin

κ is
computed and the weight of all clauses in the core decreased by wmin

κ (lines 14
and 16). However, instead of immediately calling RELAX(wmin

κ ,R), the tuple

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 659

1 PMRES+WCE(Fh, Fs, w):
2 (F w

h , F w
s) ← (Fh, Fs)

3 R ← ∅
4 while true do
5 A ← {A(C) = 0 | Ci ∈ F w

s , w(C) > 0}
6 (result, κ, τ) ← SATSOLVE(F w

h ∪ F w
s , A)

7 if result=”satisfiable” AND |R| = 0 then return τ ;
8 else if result=”satisfiable” then
9 for (R, wmin

κ) ∈ R do
10 RELAX(wmin

κ , R)
11 R ← ∅
12 else
13 R ← ∅
14 wmin

κ ← min{w(C) | C ∈ κ}
15 for C ∈ κ do
16 w(C) ← w(C) − wmin

κ

17 R ← R ∪ {A(C)}
18 R.add((R, wmin

κ))

Fig. 2. PMRES+WCE, the PMRES algorithm with WCE. In the pseudocode, the
assumption variable of a soft clause C used in core extraction is given by a(C).

(R, wmin
κ) is added to the set R (line 18). Then the SAT solver in invoked again

with a new set of assumptions. Notice that at each iteration, the weight of at
least one soft clause C is dropped to 0. In subsequent SAT solver calls the value of
a(C) is not assumed anymore, effectively removing that clause from the formula
until the cardinality constraints are added, which is why the working formula
will eventually become satisfiable. The algorithm then checks if new cores have
been extracted since the last time cardinality constraints were added. If so, the
corresponding cardinality constraints are added to the formula and the loop iter-
ates (lines 8–11). If there are no new cores, the algorithm terminates and returns
the satisfying truth assignment as an optimal MaxSAT solution (line 7).

Similarly to the stratification rule, all working formulas of PMRES extended
with WCE contain the original hard clauses Fh. As such, whenever the working
formula is satisfiable, the algorithm obtains an upper bound on the cost of the
optimal solutions. The bound might in some cases allow PMRES with WCE to
terminate even before all cardinality constraints have been added to the working
formula.

Example 3. Consider the MaxSAT instance F from Examples 1 and 2. Invoke
PMRES with WCE on F and assume that the first core it extracts is again
κ1 = {C1, C2}. Now the addition of cardinality constraints is delayed and the
SAT solver is invoked on Fw

h = Fh∧(C1∨a(C1)) and Fw
s = C2∧C3 with w(C1) =

0, w(C2) = 1 and w(C3) = 2. As w(C1) = 0, the variable a(C1) is not assumed
to any value and the clause (C1 ∨ a(C1)) can be satisfied by setting a(C1) = 1.
Nevertheless, PMRES+WCE still extracts the core κ2 = {C2, C3}. On the third

660 J. Berg and M. Järvisalo

iteration the SAT solver is invoked on Fw
h = Fh ∧ (C1 ∨a(C1)∧ (C2 ∨a(C2)) and

Fw
s = C3 with w(C1) = w(C2) = 0 and w(C3) = 1 assuming a(C3) = 0. This

instance is satisfiable. Next the algorithm adds cardinality constraints to form
the same (satisfiable) final working instance as shown in Example 1. Then it
would invoke the SAT solver on that instance, find it satisfiable, and terminate.

However, by investigating the second to last SAT solver call we see that
PMRES+WCE might be able to terminate without adding any cardinality con-
straints at all. First note that after extracting the cores κ1 and κ2 we know that
Cost(F) ≥ wmin

κ1 + wmin
κ2 = 1 + 1 = 2. Now, the second to last SAT solver call is

performed on the clauses (x∨y), (y∨z), (¬x∨a(C1)), (¬y∨a(C2)), (¬z ∨a(C3))
assuming a(C3) = 0. The assumption propagates z = 0 which in turn propa-
gates y = 1 and a(C2) = 1. At this point, all clauses except for (¬x ∨ a(C1))
are already satisfied. If the internal SAT solver now satisfies the clause by set-
ting x = 0, the cost of the assignment it returns will be 2, thus proving that
Cost(F) ≤ 2 and allowing the algorithm to terminate early. Although we in
general can not guarantee early termination, empirically we found that it does
happen. �

The correctness of WCE is based on the correctness of PMRES. For more intu-
ition, note that all cores that are extractable by PMRES with WCE are a subset
of the cores that could be extracted by PMRES with clause cloning implemented
through assumptions, and that the final working instance of both algorithms is
the same.

Related Work. The method presented in [18] for computing MaxSAT lower
bounds is equivalent to running Algorithm2 until the working instance becomes
satisfiable for the first time, returning the sum

∑
wmin

κ over all of the cores
extracted; already this lower bounding step is shown in [18] to improve the per-
formance of specific MaxSAT algorithms compared to starting search with the
trivial bound of 0. Alternatively, WCE can be seen as a more thorough integra-
tion of the bound computation and the MaxSAT algorithm itself by performing
the lower bound computation in-between each core compilation step. Compu-
tation of lower bounds has also received significant interest in the context of
branch-and-bound MaxSAT solvers [20–23], which rely heavily on good lower
bounds in order to prune the search tree. For example, in [21] the authors pro-
pose a technique in which unit propagation is used to extract several cores of
the working instance in order to compute a lower bound. The main difference to
WCE is that WCE is not limited to cores detectable by unit propagation.

Integrating Stratification and Hardening. We end this section by dis-
cussing how the commonly used stratification and hardening rules can be inte-
grated with WCE. There are two obvious ways of integrating stratification in
conjunction with WCE. The first one is to prefer WCE to stratification: initialize
the bound wmax heuristically [5] and assume the assumption variable a(C) to
false only for each of the clauses C with w(C) ≥ wmax. Then iteratively extract

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 661

cores over the subset of soft clauses under consideration, delaying the addition of
cardinality constraints until the instance becomes satisfiable. At that point, add
the cardinality constraints and continue. Whenever the instance remains satis-
fiable after the addition of cardinality constraints, harden any possible clauses
and decrease the bound wmax. The algorithm can terminate when no new cores
can be extracted and the SAT solver has been invoked on all soft clauses.

Another, dual way of integrating the two is to prefer stratification to WCE,
i.e., to delay the addition of cardinality constraints until wmax has been decreased
to 1, at which point all cardinality constraints are added and the bound wmax

is reinitialized. However, the choice between preferring stratification or WCE to
the other influences the applicability of the hardening rule and the quality of the
satisfiable assignments produced by WCE and stratification. Preferring WCE to
stratification we know that, whenever the bound wmax needs to be lowered, all
clauses C with w(C) ≥ wmax are satisfied, thus allowing for the hardening of
several soft clauses. In contrast, when preferring stratification to WCE, sound use
of the hardening rule requires considering the delayed soft cardinality constraints,
of which the SAT solver has had no information during search. The empirical
results presented next support this intuition, as preferring WCE to stratification
leads to performance boosts within PMRES, while preferring stratification to
WCE actually degrades performance compared to PMRES without using WCE.

5 Experiments

We investigate how WCE affects the performance of the PMRES algorithm in
practice. Since the implementation of PMRES by the original authors—coined
Eva500a as it participated in MaxSAT Evaluation 2014 [9]—is not available
in open source, we re-implemented PMRES on top of the open-source core-
guided MaxSAT solver Open-WBO [29], following the description in the paper
introducing the algorithm [31] using Glucose [10] as the underlying incremental
SAT solver.

In the experiments we compare the following MaxSAT algorithms.

– PMRES: our re-implementation of the PMRES algorithm using stratification,
implemented using assumption variables on soft clauses, hardening, and clause
cloning implemented through assumptions.

– PMRES+WCE: PMRES extended with WCE, preferring WCE to stratifica-
tion.

– PMRES+WCE (S/to/WCE): PMRES extended with WCE, preferring strat-
ification to WCE.

– Eva500a [31]: the closed-source implementation of PMRES that participated,
and won the industrial category of the 2014 MaxSAT Evaluation.

For reference, we also provide a comparison with MSCG15b [30], a closed-
source as the best-performing core-guided MaxSAT solver using soft cardinality
constraints in 2016 MaxSAT evaluation. As we will explain later in Sect. 6, WCE

662 J. Berg and M. Järvisalo

could also be integrated into MSCG.2 As benchmarks we used the weighted par-
tial industrial (630) and crafted (331) instances from the 2016 MaxSAT Evalu-
ation [9]. The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core
machines with 32-GB RAM and Debian GNU/Linux 8 using a per-instance
timeout of 3600 s.

An overview of the results, comparing the performance of Eva500a and
the variants PMRES, PMRES+WCE, and PMRES+WCE (S/to/WCE) of our
implementation, is provided through Figs. 3, 4, and Table 1. The “cactus” plot
of Fig. 3 gives the number of instances solved (x-axis) by the individual solvers
under different per-instance time limits (y-axis) over all benchmarks. More
detailed results are provided in Table 1, with the industrial and crafted bench-
marks separated by domain, showing the number of instances from each domain,
and the number of solved instances and the cumulative running time used for
solving the solved instances for each solver. First, note that our PMRES re-
implementation is competitive in terms of overall performance with Eva500a;
on the industrial instances PMRES solves three more instances overall and uses
cumulatively only 55% of the running time that Eva500a uses on the respec-
tively solved instances. On the crafted instances, PMRES solves two instances
less than Eva500a but still uses noticeably less time over all solved instances.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 460 480 500 520 540 560

T
im

eo
ut

Instances

PMRES+WCE
PMRES
Eva500

PMRES+WCE (S/to/WCE)

Fig. 3. Solver comparisons: number of instances solved (x-axis) by the individual
solvers under different per-instance time limits (y-axis).

Turning to the influence of WCE on the performance of PMRES, we observe
that PMRES+WCE (preferring WCE to stratification) has noticeably improved
performance wrt PMRES (and thus also Eva500a), solving 11 more indus-
trial and 3 more crafted instances (14 and 1 more than Eva500a). Notice
that of all three solvers, PMRES+WCE is the best performing on both indus-
trial and crafted benchmarks. Most interestingly, PMRES+WCE uses at the
same time much less time on the solved instances; on the industrial instances

2 Unfortunately, we do not have access to the source code of MSCG.

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 663

Table 1. Comparison of Eva500a, PMRES, and PMRES+WCE: number of solved
instances (#) and the cumulative running time used for solving the instances (Σ) for the
individual solvers, divided into the industrial (top) and crafted (bottom) benchmarks
according to the individual domains with the number of instances from each domain
given in parentheses.

Eva500a PMRES PMRES+WCE

Solved Time (s) Solved Time (s) Solved Time (s)

Σ # Σ # Σ

Industrial domain (#instances)

abstraction refinement (11) 6 3670 9 2842 10 2147

BTBNSL (60) 9 403 16 6142 19 679

correlation clustering (129) 18 17630 11 4559 19 4499

haplotyping pedigrees (100) 100 7321 100 3409 100 1374

hs-timetabling (14) 1 477 1 1858 1 2596

packup-wpms (99) 99 2981 95 969 94 191

preference planning (29) 29 1416 29 311 29 264

railway transport (11) 2 126 3 603 3 340

relational inference (9) 5 8391 8 1431 8 1360

timetabling (26) 12 1818 12 1846 12 878

upgradeability (100) 100 2996 100 54 100 59

wcsp spot5 dir (21) 14 30 14 13 14 24

wcsp spot5 log (21) 14 61 14 1975 14 17

Total industrial (630) 409 47319 412 26012 423 14426

Crafted domain (#instances)

auctions (40) 40 6111 39 2691 38 1759

causal discovery (35) 10 9325 6 1267 6 1357

CSG (10) 7 610 8 1056 8 1370

frb (34) 20 3310 12 4461 17 4041

min-enc (48) 32 198 36 758 36 455

miplib (12) 5 1558 5 247 5 437

ramsey (15) 1 1 3 2282 3 2073

random-net (32) 13 4001 13 1196 13 5

set-covering (45) 9 2069 10 1520 9 155

staff-scheduling (12) 1 0 2 1069 2 1406

wmaxcut (48) 1 44 3 3208 3 2960

Total crafted (331) 139 27226 137 19756 140 16018

664 J. Berg and M. Järvisalo

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

PMRES

abstraction-refinement
BTBNSL

correlation-clustering
haplotyping-pedigrees

hs-timetabling
packup-wpms

preference_planning
railway-transport

relational-inference
timetabling

upgradeability-problem
wcsp_spot5_dir
wcsp_spot5_log

auctions
causal-discovery

CSG
frb

min-enc
miplib

ramsey
random-net

set-covering
staff-scheduling

wmaxcut

Fig. 4. Solver comparisons: per-instance running time comparison of PMRES (x-axis)
and PMRES+WCE (y-axis), with the ticks below the y = x line representing instances
on which PMRES+WCE is faster than PMRES.

PMRES+WCE uses in total 55% of the time PMRES uses and 30% of the time
Eva500a uses, even though PMRES+WCE solves more instances than PMRES
and Eva500a individually. A similar observation can be made of the crafted
instances; PMRES+WCE uses 81% of the time used by PMRES and 59% of the
time used by Eva500a, again solving more instances than either one. The scatter
plot of Fig. 4 gives a per-instance running time comparison on a log-log scale of
PMRES+WCE and PMRES, with the ticks below the y = x line representing
instances on which PMRES+WCE is faster that PMRES. The colors of the ticks
distinguish between the benchmark domains listed in Table 1.

Next, we consider the question of the relative influence of preferring
stratification or WCE within PMRES. Here we observe that PMRES+WCE
(S/to/WCE)—preferring stratification over WCE—actually harms the overall
performance of PMRES noticeably, making it perform worse than Eva500a over-
all (see Fig. 3). This supports the earlier discussed intuition that preferring WCE
to stratification assures that whenever the bound wmax needs to be lowered, all
clauses C with w(C) ≥ wmax are satisfied, thus allowing for hardening several
soft clauses. In contrast, when preferring stratification to WCE, sound use of
the hardening rule requires considering the delayed soft cardinality constraints,
of which the SAT solver has had no information during search.

Finally, we consider the relative performance of PMRES+WCE and
MSCG15b. Here we note that this is not a direct comparison of the influence of
WCE in the sense that MSCG15b does not implement the PMRES algorithm
of Eva500a, but rather a different core-guided algorithm using soft cardinality
constraints, OLL [2,30]. As we will explain later in Sect. 6, WCE can also be inte-
grated into the OLL algorithm. However, we could not implement WCE directly
to MSCG as MSCG is not available in open source. Nevertheless, a comparison of
the performance of PMRES+WCE and MSCG15b is provided in Table 2. Over-
all MSCG15b solves 12 more industrial instances than PMRES+WCE. How-

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 665

Table 2. Comparison of MSCG15b and PMRES+WCE: percentage (%) and number
(#) of solved instances and the cumulative running time used for solving the instances
(Σ) for the individual solvers, divided into industrial (top) and crafted (bottom) bench-
marks according to the individual domains with the number of instances from each
domain given in parentheses.

MSCG15b PMRES+WCE

Solved Time (s) Solved Time (s)

% # Σ % # Σ

Industrial domain (#instances)

abstraction refinement (11) 90.9 10 17096 90.9 10 2147

BTBNSL (60) 21.7 13 885 31.7 19 679

correlation clustering (129) 25.6 33 19780 14.7 19 4499

haplotyping pedigrees (100) 100.0 100 1343 100.0 100 1374

hs-timetabling (14) 7.1 1 167 7.1 1 2596

packup-wpms (99) 100 99 410 95.0 94 191

preference planning (29) 100 29 2021 100 29 264

railway transport (11) 27.3 3 283 27.3 3 340

relational inference (9) 44.4 4 3167 88.9 8 1360

timetabling (26) 46.2 12 764 46.2 12 878

upgradeability (100) 100.0 100 118 100.0 100 59

wcsp spot5 dir (21) 81.0 17 2776 66.7 14 24

wcsp spot5 log (21) 66.7 14 19 66.7 14 17

Total industrial (630) 435 50333 423 14426

Crafted domain (#instances)

auctions (40) 60.0% 24 313 95.0% 38 1759

causal discovery (35) 82.9% 29 6851 17.1% 6 1357

CSG (10) 100.0% 10 825 80.0% 8 1370

frb (34) 73.5% 25 4298 50.0% 17 4041

min-enc (48) 66.7% 32 27 75.0% 36 455

miplib (12) 41.7% 5 56 41.7% 5 437

ramsey (15) 13.3% 2 1335 20.0% 3 2073

random-net (32) 100.0% 32 288 40.6% 13 5

set-covering (45) 46.7% 21 1530 20.0% 9 155

staff-scheduling (12) 16.7% 2 1244 16.7% 2 1406

wmaxcut (48) 10.4% 5 3651 6.3% 3 2960

Total crafted (331) 187 20417 140 16018

666 J. Berg and M. Järvisalo

ever, at the same time MSCG used considerably more time per solved instance;
this can be observed by inspecting the total cumulative running times: while
PMRES+WCE uses 14416 s to solve 423 instances, MSCG15b uses a noticeable
35917 s more to solve additional 12 instances. Looking more closely at the results
on a benchmark domain basis, we notice that the main advantage of MSCG15b is
within the correlation clustering domain, where the solver also uses a noticeably
amount of time to solve an additional 14 instances; furthermore, notice that the
correlation clustering domain is over-represented among the full benchmark set
with 129 instances. On the other hand, PMRES solves twice as many instances
as MSCG15b within the relational inference domain, using at the same time
only 43% of the cumulative running time of MSCG15b. The abstraction refine-
ment domain provides another example where PMRES+WCE solves instances
cumulatively noticeably faster than MSCG15b: here the solvers solve the same
number of instances, but the cumulative running time of PMRES+WCE is less
than 13% of that of MSCG15b (i.e., an 8x speed-up relative to MSCG15b).
Turning to the crafted domains, we observe that MSCG15b clearly dominates
on several of them. This is an interesting observation, also in that Eva500a never
participated in the crafted MaxSAT evaluation categories.

6 WCE and Other SAT-Based MaxSAT Algorithms

In this section we discuss WCE in a more general setting and the question of to
what extent it could be applied to other recently proposed MaxSAT algorithms.

The key to integrating WCE with a core-guided MaxSAT algorithm is
whether clause cloning can be implemented through assumptions in the algo-
rithm. As far as we understand, the reason clause cloning through assumptions
can be added to PMRES is the fact that no clause ever appears in a core more
than once. In more detail, let κ be a core extracted by PMRES during solving
and assume C ∈ κ needs to be cloned, i.e., that w(C) > wmin

κ . Since the extended
clause C ∨a(C) is added to the working formula as hard, that clause is not going
to be extracted in any subsequent cores, but rather, only its clone CL(C) or some
of the soft clauses added in RELAX(wmin

κ ,R). This simple observation is a key
to implementing clause cloning through assumptions.

WPM1. As an example of an algorithm in which clause cloning seems to be dif-
ficult to implement through assumptions, consider the WPM1 algorithm [3,24].
WPM1 works similarly to PMRES in the sense that it uses a SAT solver to
extract and relax unsatisfiable cores of the input instance F . Given a core κ,
WPM1 clones its clauses similarly to PMRES and extends each clause Ci ∈ κ
(now of weight wmin

κ) with a fresh relaxation variable ri. For WCE, the key
difference between PMRES and WPM1 is that WPM1 leaves all extended
clauses Ci ∨ ri as soft in the working formula and adds a cardinality constraint
CNF(

∑
ri = 1) as hard clauses. Hence the extended clause might appear in

subsequent cores, making it difficult if not impossible to also reuse it as its own
clone.

Finally, we point out MaxSAT algorithms to which WCE can be integrated.

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 667

OLL and K. Two algorithms that closely resemble PMRES3 are OLL [2,30]
and K [1]. Both extract cores iteratively, harden and clone the clauses in cores,
and compile them into the formula using soft cardinality constraints. In contrast
to PMRES, OLL makes use of cardinality networks in order to dynamically
modify the previously added cardinality constraints while K uses parametrized
constraints for bounding their size. In both cases the clauses in the extracted
cores are hardened and do not appear in subsequent cores, and as such WCE
could be incorporated into both algorithms. Indeed, at least the K algorithm
does implement clause cloning through assumptions [1]. The MSCG15b MaxSAT
solver considered in Sect. 5 implements OLL.

WPM3 [7] maintains a set of at-most constraints, initialized to not allow any
soft clauses to be falsified. During solving all clauses are treated as hard and the
at-most constraints as soft, and hence all cores are subsets of these constraints.
After finding a new core, WPM3 performs clause cloning and then merges the
constraints to form new ones that make effective use of the global core structure.
In contrast to OLL and PMRES, the cardinality constraints in the extracted
cores are not hardened, but instead removed from the instance. To the best
of our understanding, the version of WPM3 presented in [7] does not use the
SAT solver iteratively, but instead rebuilds it on each iteration. Hence the idea
of implementing clause cloning through assumptions is not applicable to this
version of WPM3, even though it might be if the algorithm is extended with
incremental cardinality constraints in the spirit of [28]. However, the discussed
requirement of a clause in a core not appearing in any subsequent cores is satisfied
by the algorithm. Thereby delaying the modification of cardinality constraints
could be incorporated to the presented version of WPM3.

WMSU3 [27] maintains a single cardinality constraint
∑

r∈R r = λ over the
set R of relaxation variables of clauses appearing in cores extracted so far. When
a new core κ is extracted, all the assumption variables a(C) of clauses C ∈ κ
are reused as relaxation variables, i.e., added into the set R, after which a new
bound λ is computed and the solver invoked again. Here λ is a lower bound on
the optimal cost of the instance. As noted in Sect. 4, WCE can be viewed as an
extension of the lower bounding technique from [18], the difference being that
WMSU3 extended with WCE would perform such a core mining step in between
each modification of the cardinality constraint, not only before the cardinality
constraint is added.

SAT-IP Hybrids. Finally, also the SAT-IP hybrid solvers MaxHS [15] and
LMHS [32], based on the implicit hitting set approach to MaxSAT, could poten-
tially make use of specific ideas related to WCE. Specifically, WCE could be

3 Originally in [31] PMRES was formalized as a special case of the so-called
MAXRES [19] rule; the specific special case is equivalent to the formalization of
PMRES used here.

668 J. Berg and M. Järvisalo

incorporated into the disjoint core extraction phase—that is very important in
terms of performance in practice [15]—in this context in a straight-forward way:
instead of ruling out each clause C in a core κ from the working instance during
the disjoint phase, lower the weight of all clauses in the core by wmin

κ , and rule
out only those clauses whose weight is lowered to 0.

7 Conclusions

We proposed weight-aware core extraction (WCE) as a refinement to the app-
roach taken by various core-guided MaxSAT solvers for compiling the cores
extracted at each iteration of search. WCE allows for extracting multiple cores
of the same working formula by taking into account the residual weights of the
current soft clauses, thereby postponing the compilation step and allowing the
SAT solver to work on a less bloated working formula. We detailed WCE in
the context of PMRES, a representative of the most recent line of core-guided
MaxSAT solvers that use soft cardinality constraints in the compilation step, and
showed empirically that WCE noticeably improves the performance of PMRES
on standard weighted partial MaxSAT benchmarks. We also outlined how to
integrate ideas behind WCE into other core-guided MaxSAT algorithms. The
empirical results obtained for PMRES suggests that integrating WCE into other
recent MaxSAT solvers may provide further improvements to the state of the
art.

References

1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press
(2015)

2. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Proceedings of ICLP Technical Communications, LIPIcs, vol.
17, pp. 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 39

4. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

5. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSat solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-33558-7 9

6. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSAT. In: Proceedings of IJCAI, pp. 283–289. AAAI Press (2015)

7. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-
based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)

8. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux
upgradeability problems using Boolean optimization. In: Proceedings of LoCoCo.
Electronic Proceedings in Theoretical Computer Science, vol. 29, pp. 11–22 (2010)

http://dx.doi.org/10.1007/978-3-642-02777-2_39
http://dx.doi.org/10.1007/978-3-642-33558-7_9

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving 669

9. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT Evaluations. http://maxsat.
ia.udl.cat/

10. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39071-5 23

11. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian
networks via maximum satisfiability. In: Proceedings of AISTATS, JMLR Work-
shop and Conference Proceedings, vol. 33, pp. 86–95 (2014). JMLR.org

12. Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction
sets. In: Proceedings of IJCAI, pp. 246–252. AAAI Press (2015)

13. Bunte, K., Järvisalo, M., Berg, J., Myllymäki, P., Peltonen, J., Kaski, S.: Optimal
neighborhood preserving visualization by maximum satisfiability. In: Proceedings
of AAAI, pp. 1694–1700. AAAI Press (2014)

14. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.: Automated design debug-
ging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 29(11), 1804–1817 (2010)

15. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSaT. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5 13

16. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
doi:10.1007/11814948 25

17. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfi-
ability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33558-7 67

18. Heras, F., Morgado, A., Marques-Silva, J.: Lower bounds and upper bounds for
MaxSAT. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 402–407.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8 35

19. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: Proceedings of IJCAI, pp. 193–198. Professional Book Center
(2005)

20. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in MaxSAT. Constraints 15(4), 456–484 (2010)

21. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005). doi:10.1007/
11564751 31

22. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In: Proceedings of AAAI, pp. 86–91. AAAI
Press (2006)

23. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound com-
putation in Max-SAT solving. In: Proceedings of AAAI, pp. 351–356. AAAI Press
(2008)

24. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 45

25. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Proceedings of IJCAI, pp. 1966–1972.
AAAI Press (2015)

http://maxsat.ia.udl.cat/
http://maxsat.ia.udl.cat/
http://dx.doi.org/10.1007/978-3-642-39071-5_23
http://jmlr.org/
http://dx.doi.org/10.1007/978-3-642-39071-5_13
http://dx.doi.org/10.1007/11814948_25
http://dx.doi.org/10.1007/978-3-642-33558-7_67
http://dx.doi.org/10.1007/978-3-642-34413-8_35
http://dx.doi.org/10.1007/11564751_31
http://dx.doi.org/10.1007/11564751_31
http://dx.doi.org/10.1007/978-3-642-02777-2_45

670 J. Berg and M. Järvisalo

26. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343
(2011)

27. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. CoRR abs/0712.1097 (2007)

28. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 39

29. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver’.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). doi:10.1007/978-3-319-09284-3 33

30. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 41

31. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of AAAI, pp. 2717–2723. AAAI Press (2014)

32. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 34

33. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. 2: Classical Papers on
Computational Logic 1967–1970. Symbolic Computation, pp. 466–483. Springer,
Heidelberg (1983)

34. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maxi-
mum satisfiability and backbones. In: Proceedings of FMCAD, pp. 63–66. FMCAD
Inc. (2011)

http://dx.doi.org/10.1007/978-3-319-10428-7_39
http://dx.doi.org/10.1007/978-3-319-09284-3_33
http://dx.doi.org/10.1007/978-3-319-10428-7_41
http://dx.doi.org/10.1007/978-3-319-40970-2_34

Optimizing SAT Encodings for Arithmetic
Constraints

Neng-Fa Zhou1(B) and H̊akan Kjellerstrand2

1 CUNY Brooklyn College & Graduate Center, New York, USA
zhou@sci.brooklyn.cuny.edu
2 hakank.org, Malmö, Sweden

Abstract. The log encoding has been perceived to be unsuited to arith-
metic constraints due to its hindrance to propagation. The surprising
performance of PicatSAT, which is a pure eager SAT compiler based on
the log encoding, in the MiniZinc Challenge 2016 has revived interest in
the log encoding. This paper details the optimizations used in PicatSAT
for encoding arithmetic constraints. PicatSAT adopts some well-known
optimizations from CP systems, language compilers, and hardware design
systems for encoding constraints into compact and efficient SAT code.
PicatSAT is also empowered by a novel optimization, called equivalence
reasoning, for arithmetic constraints, which leads to reduction of code
size and execution time. In a nutshell, this paper demonstrates that
the optimized log encoding is competitive for encoding arithmetic con-
straints.

1 Introduction

The drastic enhancement of SAT solvers’ performance has made SAT a viable
backbone for general CSP (Constraint Satisfaction Problem) solvers [8,21,30,33,
34]. Many real-world combinatorial problems involve arithmetic constraints, and
it remains a challenge to efficiently encode arithmetic constraints into SAT. The
sparse encoding [20,36] and order encoding [13,25,34] can easily blow up the
code size, and the log encoding [18,22] is perceived to be a poor choice, despite
its compactness, due to its failure to maintain arc consistency, even for binary
constraints. This dilemma of the eager approach has led to the emergence of
the lazy approach, as represented by SMT solvers that use integer arithmetic as
a theory [6,14,26] and the lazy clause generation (LCG) solver that combines
SAT and constraint propagation [17,29]. Both the eager and lazy approaches
have strengths and weaknesses [27]. For problems that require frequent checking
of arithmetic constraints the lazy approach may not be competitive due to the
overhead, even when checking is done incrementally and in a priori manner.
From an engineering perspective, the eager approach also has its merit, just like
the separation of computer hardware and language compilers is beneficial.

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 671–686, 2017.
DOI: 10.1007/978-3-319-66158-2 43

672 N.-F. Zhou and H. Kjellerstrand

The surprising performance of the PicatSAT compiler in the MiniZinc Chal-
lenge 2016 is thought-provoking.1 PicatSAT is a pure SAT compiler that trans-
lates CSPs into log-encoded SAT code. PicatSAT adopts the sign-and-magnitude
log encoding for domain variables. For a domain with the maximum absolute
value n, it uses log2(n) Boolean variables to encode the domain. If the domain
contains both negative and positive values, then another Boolean variable is
employed to encode the sign. Each combination of values of the Boolean vari-
ables represents a valuation for the domain variable. The addition constraint is
encoded as logic adders, and the multiplication constraint is encoded as logic
adders using the shift-and-add algorithm.

PicatSAT adopts some well-known optimizations from CP systems, language
compilers, and hardware design systems for encoding constraints into compact
and efficient SAT code: it preprocesses constraints before compilation in order to
remove no-good values from the domains of variables whenever possible; it elim-
inates common subexpressions so that no primitive constraint is duplicated; it
uses a logic optimizer to generate optimized code for adders. These optimizations
significantly improve the quality of the generated code.

This paper proposes a new optimization, named equivalence reasoning, for
log-encoded arithmetic constraints. Equivalence reasoning identifies information
about if a Boolean variable is 0 or 1, if a Boolean variable is equivalent to
another Boolean variable, or if a Boolean variable is the negation of another
Boolean variable. This optimization can reduce both the number of Boolean
variables and the number of clauses in the CNF code.

The experimental results show that equivalence reasoning reduces code sizes,
and for some benchmarks, significantly reduces the solving time. The MiniZinc
Challenge 2016 results show that PicatSAT outperformed some of the fastest
CP solvers in the competition. Our new comparisons of PicatSAT with fzn2smt,
an SMT-based CSP solver, and Chuffed, a cutting-edge LCG solver, also reveal
the competitiveness of PicatSAT.

2 The PicatSAT Compiler

PicatSAT is offered in Picat as a module named sat. In addition to the sat
module, Picat offers two other solver modules, named cp and mip, respectively.
All these three modules implement the same set of basic linear constraints over
integer domains and Boolean constraints. The cp and sat modules also imple-
ment non-linear and global constraints, and the mip module also supports real-
domain variables. The common interface that Picat provides for the solver mod-
ules allows seamless switching from one solver to another.

In order to give the reader a complete picture of the PicatSAT compiler, we
give in this section an overview of the compiler, including the adopted optimiza-
tions. A description of a preliminary version of PicatSAT with no optimizations
is given in [38].
1 PicatSAT with the Lingeling SAT solver won two silver medals and one bronze medal

in the competition (http://www.minizinc.org/challenge2016/results2016.html).

http://www.minizinc.org/challenge2016/results2016.html

Optimizing SAT Encodings for Arithmetic Constraints 673

2.1 Preprocessing and Decomposition

In general, a constraint model consists of a set of decision variables, each of
which has a specified domain, and a set of constraints, each of which restricts
the possible combinations of values of the involved decision variables. A con-
straint program normally poses a problem in three steps: (1) generate variables;
(2) generate constraints over the variables; and (3) call solve to invoke the solver
in order to find a valuation for the variables that satisfies the constraints and
possibly optimizes an objective function.

PicatSAT preprocesses the accumulated constraints when the solve predi-
cate is called. For binary equality constraints, PicatSAT excludes no-good values
from the domains to achieve arc consistency, unless the domains are too big.2 For
instance, for the constraint X = 9 ∗ B + 1, where B is a Boolean variable that
has the domain 0..1, PicatSAT narrows X’s domain to {1, 10}. For other types of
constraints, including binary equality constraints that involve large-domain vari-
ables, PicatSAT narrows the bounds of domains to archieve interval consistency.

PicatSAT decomposes arithmetic constraints into basic constraints, including
primitive, reified, and implication constraints. A primitive constraint is one of
the following: Σn

i Bi r c (r is =, ≥, or ≤, and c is 1 or 2),3 X r Y (r is =, �=, >,
≥, <, or ≤), X + Y = Z, and X × Y = Z, where Bi is a Boolean variable, and
X, Y , and Z are integers or integer domain variables. A reified constraint, after
decomposition, takes the form B ⇔ C, and an implication constraint has the
form B ⇒ C, where B is a Boolean variable, and C is a primitive constraint.

For a linear constraint, PicatSAT sorts the terms by the variables. This
ordering facilitates merging terms of the same variables, but is hardly optimal
for generating efficient SAT code. PicatSAT breaks down Pseudo-Boolean (PB)
constraints, including cardinality constraints, in the same way as other linear
constraints, unless they are cardinality constraints of the form Σn

i Bi r c (c =1
or 2). For example, the cardinality constraint U +V +W +X ≤ 3, where all the
variables are Boolean, is split into the following primitive constraints:

U + V = T1

W + X = T2

T1 + T2 = T3

T3 ≤ 3

This method of decomposing PB constraints is simple, and generates compact
code. For a cardinality constraint that has n variables, this method introduces
O(n) auxiliary integer-domain variables, which require a total number of O(n×
log2(n)) Boolean variables to encode.4

2 The default bounds of small domains are -3200 and 3200, which can be reset by using
the built-in fd vector min max(LB,UB).

3 The cardinality constraint is treated as a normal linear constraint when c > 2.
4 This information is disclosed here in order to give the reader a complete picture

of PicatSAT. A study is underway to investigate how this adder-based encoding
compares with other encodings, such as sorting networks [16], totalizers [5], BDDs
[7], and the decomposition method for adders by [37].

674 N.-F. Zhou and H. Kjellerstrand

During decomposition, PicatSAT introduces auxiliary variables to combine
terms in the same way as language compilers break expressions into triplets.
PicatSAT makes efforts not to create variables with both positive and negative
values in their domains, if possible, because such a domain requires a sign bit and
cannot be encoded compactly. For example, for the constraint U−V +W−X ≤ 3,
PicatSAT merges U with W , and V with X so that no auxiliary variables have
negative values in their domains if the domains of the original variables do not
contain negative values.

PicatSAT eliminates common subexpressions in constraints. Whenever Picat-
SAT introduces an auxiliary variable for a primitive constraint, it tables the
constraint. When the same primitive constraint is encountered again, Picat-
SAT reuses the auxiliary variable, rather than introducing a new variable for
the constraint. For example, when a reification constraint B ⇔ C is generated,
PicatSAT tables it and reuses the variable B, rather than introducing a new
variable for the primitive constraint C, when C is encountered again in another
constraint. The algorithm used in PicatSAT for identifying common subexpres-
sions is not as sophisticated as those used in [4,28]. It incurs little overhead on
compilation, but fails to eliminate common subexpressions in many cases.

2.2 The Sign-and-Magnitude Log Encoding

PicatSAT employs the log-encoding for domain variables. For a domain vari-
able, �log2(n)	 Boolean variables are used, where n is the maximum absolute
value in the domain. If the domain contains both negative and positive values,
then another Boolean variable is employed to represent the sign. In this paper,
for a log-encoded domain variable X, X.s denotes the sign, X.m denotes the
magnitude, which is a vector of Boolean variables < Xn−1Xn−2 . . . X1X0 >.

This sign-and-magnitude encoding requires a clause to disallow negative zero
if the domain contains values of both signs. Each combination of values of the
Boolean variables represents a valuation for the domain variable: Xn−1 ×2n−1 +
Xn−2×2n−2+ . . .+X1×2+X0. If there are holes in the domain, then not-equal
constraints are generated to disallow assigning those hole values to the variable.
Also, inequality constraints (≥ and ≤) are generated to prohibit assigning out-
of-bounds values to the variable if either bound is not 2k − 1 for some k.

For small-domain variables, PicatSAT calls the logic optimizer, Espresso [9],
to generate an optimal or near-optimal CNF formula. For example, for the
domain constraint X:: [−2,−1, 2, 1], one Boolean variable, S, is utilized to encode
the sign, and two variables, X1 and X0, are employed to encode the magnitude.
A naive encoding with conflict clauses [18] for the domain requires four clauses:

¬S ∨ ¬X1 ∨ ¬X0

¬S ∨ X1 ∨ X0

S ∨ X1 ∨ X0

S ∨ ¬X1 ∨ ¬X0

Optimizing SAT Encodings for Arithmetic Constraints 675

These clauses correspond to four no-good values: -3, -0, 0, and 3, where -0 denotes
the negative 0. Espresso only returns two clauses for the domain:

X0 ∨ X1
¬X0 ∨ ¬X1

Note that the sign variable is optimized away.

2.3 Encoding Basic Constraints

The encodings for the addition and multiplication constraints will be described
in later sections. This subsection briefly describes the Booleanization of other
basic constraints.

The at-least-one constraint Σn
i Bi ≥ 1 is encoded into one CNF clause:

B1 ∨ B2 ∨ . . . ∨ Bn

The at-least-two constraint Σn
i Bi ≥ 2 is converted into n at-least-one constraints:

for each n−1 variables, the sum of the variables is at least one. The at-most-one
constraint ΣiBi ≤ 1 is encoded into CNF by using the two-product algorithm
[12]. The at-most-two constraint is converted into n at-most-one constraints.
The exactly-one constraint Σn

i Bi = 1 is converted into a conjunction of an at-
least-one constraint and an at-most-one constraint. The exactly-two constraint
is compiled similarly.

A recursive algorithm is utilized to compile binary primitive constraints. For
example, consider X ≥ Y . This constraint is translated to the following:

X.s = 0 ∧ Y .s = 1 ∨
X.s = 1 ∧ Y .s = 1 ⇒ X.m ≤ Y .m ∨
X.s = 0 ∧ Y .s = 0 ⇒ X.m ≥ Y .m

PicatSAT simplifies the formula if the variables’ signs are known at compile time.
Let X.m = <Xn−1Xn−2 . . . X1X0>, Y .m = <Yn−1Yn−2 . . . Y1Y0>.5 PicatSAT
introduces auxiliary variables T0, T1, . . ., Tn−1 for comparing the bits:

T0 ⇔ (X0 ≥ Y0)
T1 ⇔ (X1 > Y1) ∨ (X1 = Y1 ∧ T0)

...
Tn−1 ⇔ (Xn−1 > Yn−1) ∨ (Xn−1 = Yn−1 ∧ Tn−2)

PicatSAT then encodes the constraint X.m ≥ Y .m as Tn−1. When either X
or Y is a constant, PicatSAT compiles the constraint without introducing any
auxiliary variables.6

5 The two bit strings are made to have the same length after padding with zeros.
6 This is done by using a recursive algorithm. When X or Y is a constant, the number

of clauses in the generated code is still O(n) even though no auxiliary variables are
used.

676 N.-F. Zhou and H. Kjellerstrand

The reified constraint B ⇔ C is equivalent to B ⇒ C and ¬B ⇒ ¬C, where
¬C is the negation of C. Let C1 ∧ . . . ∧ Cn be the CNF formula of C after
Booleanization. Then B ⇒ C is encoded into C ′

1 ∧ . . . ∧ C ′
n, where C ′

i =
(Ci ∨ ¬B) for i = 1, ..., n.

3 Equivalence Reasoning

Equivalence reasoning is an optimization that reasons about a possible value for
a Boolean variable or the relationship between two Boolean variables. This rea-
soning exploits the properties of constraints. For example, consider the domain
constraint X :: [2, 6]. The magnitude of X is encoded with three Boolean vari-
ables X.m =< X2,X1,X0 >. PicatSAT infers X1 = 1 and X0 = 0 from the fact
that the binary representations of both 2 and 6 end with 10. With this reasoning,
PicatSAT does not generate a single clause for this domain.

The following gives several constraints on which PicatSAT performs equiva-
lence reasoning:

X = abs(Y) ⇒ X.m = Y .m, X.s = 0
X = −Y ⇒ X.m = Y .m
X = Y mod 2K ⇒ X0 = Y0, X1 = Y1, . . ., Xk−1 = Yk−1

X = Y div 2K ⇒ X0 = YK , X1 = YK+1, . . .

Note that the constraint X.m = Y .m is enforced by unifying the corresponding
Boolean variables of X and Y at compile time. Equivalence reasoning consid-
erably eases encoding for some of the constraints. For example, the following
clause encodes the constraint X = −Y , regardless of the sizes of the domains:7

¬X.s ∨¬Y .s

and no clause is needed to encode the constraint X = abs(Y).
Equivalence reasoning can be applied to those addition and multiplication

constraints that involve constants. We call this kind of equivalence reasoning
constant propagation. The remaining of this section gives the propagation rules.
In order to make the description self-contained, we include the encoding algo-
rithms for addition and multiplication constraints described in [38].

3.1 Constant Propagation for X + Y = Z

For the constraint X + Y = Z, if either X or Y has values of mixed signs in
its domain, then PicatSAT generates implication constraints to handle different
sign combinations [38]. In the following we assume that both operands X and
Y are non-negative (i.e., X.s = 0 and Y .s = 0), so the constraint X + Y = Z
can be rewritten into the unsigned addition X.m+Y .m = Z.m.

Let X.m = Xn−1 . . . X1X0, Y .m = Yn−1 . . . Y1Y0, and Z.m = Zn . . . Z1Z0.
The unsigned addition can be Booleanized by using logic adders as follows:
7 Recall that since no negative zeros are allowed, the domain constraints already guar-

antee that X.m = 0 ⇒ ¬X.s and X.m = 0 ⇒ ¬Y .s.

Optimizing SAT Encodings for Arithmetic Constraints 677

Xn−1 . . . X1 X0

+ Yn−1 . . . Y1 Y0

Zn Zn−1 . . . Z1 Z0

A half-adder is employed for X0 +Y0 = C1Z0, where C1 is the carry-out. For
each other position i (0 < i ≤ n− 1), a full adder is employed for Xi +Yi +Ci =
Ci+1Zi. The top-most bit of Z, Zn, is equal to Cn. This encoding corresponds
to the ripple-carry adder used in computer architectures.

The full adder Xi +Yi +Cin = CoutZi is encoded with the following 10 CNF
clauses when all the operands are variables:

Xi ∨ ¬Yi ∨ Cin ∨ Zi

Xi ∨ Yi ∨ ¬Cin ∨ Zi

¬Xi ∨ ¬Yi ∨ Cin ∨ ¬Zi

¬Xi ∨ Yi ∨ ¬Cin ∨ ¬Zi

¬Xi ∨ Cout ∨ Zi

Xi ∨ ¬Cout ∨ ¬Zi

¬Yi ∨ ¬Cin ∨ Cout

Yi ∨ Cin ∨ ¬Cout

¬Xi ∨ ¬Yi ∨ ¬Cin ∨ Zi

Xi ∨ Yi ∨ Cin ∨ ¬Zi

If any of the operands is a constant, then the code can be simplified. For example,
if Cin is 0, then the full adder becomes a half adder, which can be encoded with
7 CNF clauses.

For the half adder Xi + Yi = CoutZi, if any of the operands is a constant,
PicatSAT infers that the other two variables are equal or one variable is the
negation of the other. PicatSAT performs the following inferences when X or Z
is a constant:

Rule-1: Xi = 0 ⇒ Cout = 0 ∧ Zi = Yi.
Rule-2: Xi = 1 ⇒ Cout = Yi ∧ Zi = ¬Yi.
Rule-3: Zi = 0 ⇒ Cout = Xi ∧ Xi = Yi

Rule-4: Zi = 1 ⇒ Cout = 0 ∧ Xi = ¬Yi.

Similar inference rules apply when Yi is a constant.
For example, consider the addition:

X2 X1 X0

+ 1 0 0
Z3 Z2 Z1 Z0

PicatSAT infers the following equivalences:

X0 = Z0

X1 = Z1

¬X2 = Z2

X2 = Z3

678 N.-F. Zhou and H. Kjellerstrand

Consider, as another example, the addition:

X2 X1 X0

+ Y2 Y1 Y0

1 0 1 1

PicatSAT infers the following equivalences:

¬X0 = Y0

¬X1 = Y1

X2 = Y2

X2 = 1
Y2 = 1

The last two equivalences, X2 = 1 and Y2 = 1, are obtained by Rule-3 and the
fact that Z3 = 1.

When PicatSAT infers an equivalence between two variables or between one
variable and another variable’s negation, PicatSAT only uses one variable in the
CNF code for the two variables, and eliminates the two CNF clauses for the
equivalence.

4 Constant Propagation for X × Y = Z

PicatSAT adopts the shift-and-add algorithm for multiplication. Let X.m be
Xn−1 . . . X1X0. The shift-and-add algorithm generates the following conditional
constraints for X × Y = Z.

X0 = 0 ⇒ S0 = 0
X0 = 1 ⇒ S0 = Y
X1 = 0 ⇒ S1 = S0

X1 = 1 ⇒ S1 = (Y << 1) + S0

...
Xi = 0 ⇒ Si = Si−1

Xi = 1 ⇒ Si = (Y << i) + Si−1

...
Xn−1 = 0 ⇒ Sn−1 = Sn−2

Xn−1 = 1 ⇒ Sn−1 = (Y << (n − 1)) + Sn−2

Z = Sn−1

The operation (Y << i) shifts the binary string of Y to left by i positions. Let
the length of the binary string of Y be u. The length of S0 is u, that of S1 is
u + 1, and so on. So the total number of auxiliary Boolean variables that are
created to hold the sums is Σ(n+u−2)

i=u i plus the number of auxiliary variables
used for carries in the additions. Note that because Sn−1 is the same as Z, Sn−1

is never created.

Optimizing SAT Encodings for Arithmetic Constraints 679

If either X or Y is a constant, the basic algorithm can be improved to reduce
the number of auxiliary variables. In the following of this subsection, we assume
that X is a constant.

In the conditional constraints:

Xi = 0 ⇒ Si = Si−1

Xi = 1 ⇒ Si = (Y << i) + Si−1

If Xi is 0, then Si is the same as Si−1, and the variables in Si−1 can be reused
for Si. If Xi is 1, then the lowest i bits of Si are the same as the lowest i bits
of Si−1, and these i variables can be copied from Si−1 to Si. The following two
rules perform these propagation:

Rule 5: Xi = 0 ⇒ copy all of the bits of Si−1 into Si.
Rule 6: Xi = 1 ⇒ copy the lowest i bits of Si−1 into Si.

Let Xi be the lowest bit of X that is 1, meaning that Xj = 0 for j ∈ 0..i− 1.
Then Zi is the same as Y0, the lowest bit of Y , and Zk = 0 for k ∈ 0..i− 1. Here
is the rule that performs this propagation:

Rule 7: X.m =<Xn−1 . . . Xi0 . . . 0>∧Xi = 1 ⇒
Zi = Y0 ∧ Zk = 0 for k ∈ 0..(i − 1).

In particular, if X is a power of 2, then Z is the result of shifting Y to left
by n − 1 positions, and no auxiliary variables are needed.

The number of additions performed by the shift-and-add algorithm is the
number of 1 s in the binary string of X. If X is a constant that is not a power
of 2 but is close to a power of 2, then PicatSAT converts the multiplication into
an addition. The following rules perform this optimization:

Rule-8: X = 2K − 1 ⇒
rewrite X × Y = Z into 2K × Y = Z + Y .

Rule-9: X = 2K − 2 ⇒
rewrite X × Y = Z into 2K × Y = Z + 2 × Y .

For example, PicatSAT converts the constraint 7×X = Z to 8×X = Z+X,
which requires one addition while the original constraint requires three additions.

5 Experimental Results

PicatSAT, which is implemented in Picat, has about 8,000 lines of code, exclud-
ing comments. PicatSAT connects to Lingeling SAT solver (version 587f) through
a C interface.

We have done two experiments in order to evaluate the compiler using Picat
version 2.1.8 In the first experiment, we ran PicatSAT on several benchmark
problems that involve arithmetic constraints, and measured the code size and
8 http://picat-lang.org.

http://picat-lang.org

680 N.-F. Zhou and H. Kjellerstrand

the execution time of each of the benchmarks. These results show how effective
equivalence reasoning is on reducing the code size and the execution time.

In the second experiment, which was conducted on Linux Ubuntu 14.04LTS
with an Intel i7-5820K 3.30 GHz CPU and 32 GHz RAM, we compared Picat-
SAT with Chuffed9 and fzn2smt version 2.0.02.10 Chuffed is a cutting-edge LCG
solver. The fzn2smt solver, which took the second place in MiniZinc Challenge
2012, translates FlatZinc11 into SMT that is solved by Yices12.

This section does not include comparisons of PicatSAT with many other
state-of-the-art CSP solvers. In the free search category of the MiniZinc Chal-
lenge 2016, an old version of PicatSAT outperformed some of the fastest CSP
solvers, and was only second to HaifaCSP13 by a small margin.

Table 1 evaluates how effective equivalence reasoning is on reducing the code
size (#vars, the number of variables, and #cls, the number of clauses). The first
three benchmarks are well known puzzles in the CP community. The next three
are instances of the magic square problem for the grid sizes of 7 × 7, 8 × 8,
and 9 × 9. The remaining 5 benchmarks are integer programming benchmarks

Table 1. Evaluation of effectiveness of equivalence reasoning (code size)

Benchmark PicatSATnor PicatSAT
#vars #cls #vars(%) #cls(%)

crypta 3445 15374 1893 (54) 11537 (75)

eq10 10212 46087 6043 (59) 36696 (79)

eq20 19292 86469 11397 (59) 68869 (79)

magic square 7 3543 81588 3463 (97) 81428 (99)

magic square 8 6882 56324 6864 (99) 56288 (99)

magic square 9 10306 86268 10226 (99) 85908 (99)

maxclosed 10 100 10 3778 23219 3091 (83) 21150 (91)

maxclosed 10 100 100 25420 162110 21128 (83) 148580 (91)

maxclosed 10 200 10 3066 18864 2559 (83) 17418 (92)

maxclosed 20 100 1000 221454 1577283 198137 (89) 1464492 (92)

maxclosed 30 200 1000 417816 3078098 379477 (90) 2881243 (93)

9 https://github.com/chuffed/chuffed, released in December 2016.
10 The fzn2smt solver (http://ima.udg.edu/recerca/lap/fzn2smt) has not been updated

since 2012. There have been no significant speedups in the past five years in SAT
solvers, on which both PicatSAT and SMT are based. PicatSAT uses Lingeling ver-
sion 587f, which was released in February 2011 but is still faster than recent versions
on most MiniZinc Challenge benchmarks. Therefore, this comparison is still relevant,
if not completely up to date.

11 http://www.minizinc.org.
12 http://yices.csl.sri.com.
13 http://strichman.net.technion.ac.il/haifacsp/.

https://github.com/chuffed/chuffed
http://ima.udg.edu/recerca/lap/fzn2smt
http://www.minizinc.org
http://yices.csl.sri.com
http://strichman.net.technion.ac.il/haifacsp/

Optimizing SAT Encodings for Arithmetic Constraints 681

taken from [30].14 The column PicatSATnor shows the results obtained with the
equivalence reasoning optimization disabled, and the column PicatSAT shows
the results obtained when the optimization was enabled.

As can be seen, the optimization led to certain amounts of reduction in the
code size for each of the benchmarks. For crypta, the reduction in code size is
most significant; the number of variables is reduced to 54%, and the number of
clauses is reduced to 75%. For magic square, whose code size is dominated by
an all-different constraint, the reduction in code size is only 1%.

Table 2 evaluates how effective equivalence reasoning is on reducing the com-
pile time (comp) and the solving time (solve). The solving time of the CNF code
was measured using Lingeling version 587f on a Cygwin notebook computer with
2.60 GHz Intel i7 and 64 GB RAM. Interestingly, while the code reduction for
magic square is the least significant, the speedups are the most significant. Over-
all, the optimization reduces both the compile time and the solving time, and
the results show that the equivalence reasoning optimization is worthwhile to
incorporate.

Table 2. Evaluation of effectiveness of equivalence reasoning (time, seconds)

Benchmark PicatSATnor PicatSAT
comp solve comp(%) solve(%)

crypta 0.18 0.337 0.17 (94) 0.310 (91)

eq10 0.32 1.177 0.26 (81) 1.000 (84)

eq20 0.61 1.239 0.48 (80) 1.134 (91)

magic square 7 0.50 2.414 0.47 (94) 1.020 (42)

magic square 8 0.57 14.908 0.56 (98) 6.835 (45)

magic square 9 0.66 37.501 0.63 (95) 25.326 (67)

maxclosed 10 100 10 0.43 0.420 0.40 (93) 0.393 (93)

maxclosed 10 100 100 2.50 2.041 2.36 (94) 1.877 (91)

maxclosed 10 200 10 0.23 0.353 0.25 (108) 0.306 (86)

maxclosed 20 100 1000 29.00 14.809 28.47 (98) 14.352 (96)

maxclosed 30 200 1000 42.713 31.030 39.58 (92) 28.584 (92)

Table 3 compares PicatSAT with fzn2smt and Chuffed on the instances used
in the MiniZinc Challenge 2012.15 All of the instances were translated from
MiniZinc into FlatZinc using each individual solver’s global constraints.16 The
time limit was set to 15 min per instance, which limits the total of the conversion
14 Instances that can be solved by the preprocessor are not included.
15 The benchmarks of MiniZinc 2012 were used because fzn2smt took the second place

in that competition, and didn’t compete ever since.
16 fzn2smt, which does not have any solver-specific globals, uses MiniZinc’s default

decomposer.

682 N.-F. Zhou and H. Kjellerstrand

time and the solving time. For each benchmark, the number in the parentheses
is the total number of instances, and the number in each column indicates the
number of completely solved instances by the solver. For optimization problems,
an instance is considered solved if an optimal solution was given and its opti-
mality was proven. PicatSAT solved 77 instances, while fzn2smt solved 52, and
Chuffed solved 67 instances. This experiment demonstrates the competitiveness
of PicatSAT in comparison with two lazy-approach-based solvers. When equiv-
alence reasoning was disabled, PicatSAT solved 75 instances. This result also
shows the worthiness of the optimization.

Table 3. A comparison of three CSP solvers (solved instances)

Benchmark PicatSAT PicatSATnor fzn2smt Chuffed

amaze (6) 6 6 5 5

amaze2 (6) 6 6 6 6

carpet-cutting (5) 1 0 0 2

fast-food (5) 5 5 5 4

filters (5) 4 3 2 3

league (6) 3 3 2 2

mspsp (6) 6 6 6 6

nonogram (5) 5 5 5 5

parity-learning (7) 7 7 0 2

pattern-set-mining-k1 (2) 1 1 0 0

pattern-set-mining-k2 (3) 2 2 1 1

project-planning (6) 5 5 0 6

radiation (5) 3 3 0 2

ship-schedule (5) 5 5 5 5

solbat (5) 5 5 5 5

still-life-wastage (5) 5 5 3 5

tpp (7) 7 7 7 7

train (6) 1 1 0 1

vrp (5) 0 0 0 0

total (100) 77 75 52 67

6 Related Work

A wide variety of problems have been encoded into SAT and solved by SAT
solvers. SAT is also the backbone of many logic language systems, such as formal
methods [23], answer set programming [10,19], and NP-SPEC [11]. PicatSAT is

Optimizing SAT Encodings for Arithmetic Constraints 683

a compiler that translates high-level constraints into SAT. Other SAT compilers
include BEE [25], FznTini [21], meSAT [33], and Sugar [34]. PicatSAT, like
FznTini, adopts the log encoding, while the other compilers are based on the
order encoding.

Despite the compactness of the log encoding, it has received little atten-
tion for CSP solving, probably because of its weak propagation strength and
its requirement of engineering efforts. FznTini was the only known log-encoding
based CSP solver before PicatSAT. FznTini employs the 2’s complement encod-
ing for domain variables, while PicatSAT uses the sign-and-magnitude encoding.
FznTini demonstrated the promise of the log encoding, but it lacks optimiza-
tions, and is not considered competitive with recent CP solvers [30].

The perception that eager SAT-encoding approaches are not suited to arith-
metic constraints has motivated the development of lazy approaches such as
SMT [6,27] and lazy clause generation [17,29] that integrates CP and SAT solv-
ing techniques. Recent MiniZinc competitions have been dominated by LCG
solvers; the HaifaCSP solver [35] also performs learning during search.

Encodings, such as BDDs [1,7] and sorting networks [16], have been pro-
posed for special form of arithmetic constraints, such as Boolean cardinality
constraints and Pseudo-Boolean (PB) constraints. Linear arithmetic constraints
can be compiled into SAT through PB constraints [2]. This encoding through PB
constraints is less compact than the adder-based log encoding, but has stronger
propagation power. The hybrid encoding that integrates order and log encod-
ings [32] compiles linear constraints that involve large-domain variables into SAT
through PB constraints.

The idea of identifying equivalences and exploiting them to reduce code sizes
has been explored in both SAT compilation and SAT solving. The BEE compiler
[25] performs equi-propagation, which takes advantage of the properties of the
order-encoding to infer equivalences. Although equivalences could be detected
to some extent by SAT solvers, it is always beneficial to do the reasoning at
compile time, because SAT solvers are unaware of the meaning of the original
constraints, and it is expensive to detect equivalences at preprocessing time [15]
or reason about them at solving time [24].

PicatSAT embodies optimizations used in CP systems for processing con-
straints [31], in language compilers for eliminating sub-expressions [3], and in
hardware design systems for optimizing logic circuits [9]. The equivalence reason-
ing optimization, which is specific to the log encoding, has not been implemented
in any other SAT compilers.

7 Conclusion

In this paper we have presented the PicatSAT compiler and its optimizations.
PicatSAT employs the log encoding, which has received little attention by SAT-
based CSP solvers for its lack of propagation strength. PicatSAT adopts opti-
mizations from CP systems (preprocessing constraints to narrow the domains
of variables), language compilers (decomposing constraints into basic ones and

684 N.-F. Zhou and H. Kjellerstrand

eliminating common subexpressions), and hardware design systems (using a logic
optimizer to optimize codes for adders and other basic constraints). Furthermore,
PicatSAT reasons about equivalences in arithmetic constraints, and exploit them
to eliminate variables and clauses. With these optimizations, PicatSAT is able
to generate more compact and faster code for arithmetic constraints.

This work has shed a light on the debate between the eager and lazy
approaches to constraint solving with SAT. The failed attempts to find effi-
cient encodings for arithmetic constraints have motivated the development of
the lazy approaches. This paper has shown that the eager approach based on
the optimized log encoding is not as bad for arithmetic constraints as it was per-
ceived before. A comparison with an SMT-based CSP solver and a LCG solver
shows the competitiveness of PicatSAT.

In addition to the optimizations, including the novel equivalence reason-
ing optimization, and the engineering effort, the success of PicatSAT is also
attributed to Picat, the implementation language. The log encoding is arguably
more difficult to implement than the sparse and order encodings. Picat’s features,
such as attributed variables, unification, pattern-matching rules, and loops, are
all put into good use in the implementation. There are hundreds of optimiza-
tion rules, and they can be described easily as pattern-matching rules in Picat.
Logic programming has been proven to be suitable for language processing in
general, and for compiler writing in particular; PicatSAT has provided another
testament.

The success of PicatSAT does not in any way undermine the lazy approaches:
there are certainly many problems for which the lazy approaches prevail, and
many theories incorporated in SMT solvers do not yet have efficient SAT encod-
ings. A comprehensive comparison of eager encoding and lazy approaches is on
the stack for future work.

PicatSAT still has plenty of room for improvement, especially concerning
global constraints and special constraints. One direction for future work is to
carry out these improvements.

The optimizations reported in this paper could be only the tip of the ice-
berg. Numerous algorithms and optimizations have been proposed for hardware
design systems, such as multi-bit and multi-operand adders and multipliers.
When multiple bits are considered at once, there will be more reasoning oppor-
tunities opening up. Another direction for future work is to investigate these
algorithms for SAT encodings.

Acknowledgement. The authors would like to thank the anonymous reviewers for
helpful comments. This project was supported in part by the NSF under grant number
CCF1618046.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for Pseudo-Boolean constraints. J. Artif.
Intell. Res. (JAIR) 45, 443–480 (2012)

Optimizing SAT Encodings for Arithmetic Constraints 685

2. Ab́ıo, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: O’Sullivan, B.
(ed.) CP 2014. LNCS, vol. 8656, pp. 75–91. Springer, Cham (2014). doi:10.1007/
978-3-319-10428-7 9

3. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles. Techniques.
Addison-Wesley, Tools Boston (2007)

4. Araya, I., Neveu, B., Trombettoni, G.: Exploiting common subexpressions in
numerical CSPs. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 342–357.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1 23

5. Bailleux, O., Boufkhad, Y., Roussel, O.: New Encodings of Pseudo-Boolean Con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 19

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885 (2009)

7. Bartzis, C., Bultan, T.: Efficient BDDs for bounded arithmetic constraints. Int. J.
Softw. Tools Technol. Transf. (STTT) 8(1), 26–36 (2006)

8. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: a comparative survey. ACM Comput. Surv. 38(4), 1–54 (2006)

9. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Dordrecht (1984)

10. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

11. Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artif. Intell.
162(1–2), 89–120 (2005)

12. Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proceedings of
the 9th International Workshop of Constraint Modeling and Reformulation (2010)

13. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfia-
bility algorithms to scheduling problems. In: AAAI, pp. 1092–1097 (1994)

14. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). doi:10.1007/11499107 5

16. Eén, N., Sörensson, N.: Translating Pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

17. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 29

18. Gavanelli, M.: The log-support encoding of CSP into SAT. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 815–822. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 59

19. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: IJCAI, p. 386 (2007)

20. Gent, I.P.: Arc consistency in SAT. In: ECAI, pp. 121–125 (2002)
21. Huang, J.: Universal booleanization of constraint models. In: Stuckey, P.J. (ed.)

CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 10

22. Iwama, K., Miyazaki, S.: SAT-varible complexity of hard combinatorial problems.
In: IFIP Congress, vol. 1, pp. 253–258 (1994)

http://dx.doi.org/10.1007/978-3-319-10428-7_9
http://dx.doi.org/10.1007/978-3-319-10428-7_9
http://dx.doi.org/10.1007/978-3-540-85958-1_23
http://dx.doi.org/10.1007/978-3-642-02777-2_19
http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1007/978-3-540-74970-7_59
http://dx.doi.org/10.1007/978-3-540-74970-7_59
http://dx.doi.org/10.1007/978-3-540-85958-1_10
http://dx.doi.org/10.1007/978-3-540-85958-1_10

686 N.-F. Zhou and H. Kjellerstrand

23. Jackson, D., Abstractions, S.: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

24. Li, C.M.: Integrating equivalency reasoning into davis-putnam procedure. In:
AAAI, pp. 291–296 (2000)

25. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE.
Theor. Pract. Log. Program. 12(4–5), 465–483 (2012)

26. Nieuwenhuis, R.: The intsat method for integer linear programming. In: O’Sullivan,
B. (ed.) CP 2014. LNCS, vol. 8656, pp. 574–589. Springer, Cham (2014). doi:10.
1007/978-3-319-10428-7 42

27. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM
53(6), 937–977 (2006)

28. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in savile row.
In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Cham (2015).
doi:10.1007/978-3-319-23219-5 23

29. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

30. Petke, J.: Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial
Intelligence: Foundations, Theory, and Algorithms. Springer, Heidelberg (2015)

31. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

32. Soh, T., Banbara, M., Tamura, N.: Proposal and evaluation of hybrid encoding of
CSP to SAT integratin order and log encodings. Int. J. Artif. Intell. Tools 26(1),
1–29 (2017)

33. Stojadinovic, M., Maric, F.: meSAT: multiple encodings of CSP to SAT. Con-
straints 19(4), 380–403 (2014)

34. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

35. Veksler, M., Strichman, O.: Learning general constraints in CSP. Artif. Intell. 238,
135–153 (2016)

36. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000). doi:10.1007/3-540-45349-0 32

37. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

38. Zhou, N.-F., Kjellerstrand, H.: The picat-SAT compiler. In: Gavanelli, M., Reppy,
J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 48–62. Springer, Cham (2016). doi:10.
1007/978-3-319-28228-2 4

http://dx.doi.org/10.1007/978-3-319-10428-7_42
http://dx.doi.org/10.1007/978-3-319-10428-7_42
http://dx.doi.org/10.1007/978-3-319-23219-5_23
http://dx.doi.org/10.1007/3-540-45349-0_32
http://dx.doi.org/10.1007/978-3-319-28228-2_4
http://dx.doi.org/10.1007/978-3-319-28228-2_4

Test and Verification and CP Track

Constraint-Based Synthesis of Datalog Programs

Aws Albarghouthi1(B), Paraschos Koutris1, Mayur Naik2, and Calvin Smith1

1 University of Wisconsin–Madison, Madison, USA
aws@cs.wisc.edu

2 Unviersity of Pennsylvania, Philadelphia, USA

Abstract. We study the problem of synthesizing recursive Datalog pro-
grams from examples. We propose a constraint-based synthesis approach
that uses an smt solver to efficiently navigate the space of Datalog pro-
grams and their corresponding derivation trees. We demonstrate our
technique’s ability to synthesize a range of graph-manipulating recursive
programs from a small number of examples. In addition, we demonstrate
our technique’s potential for use in automatic construction of program
analyses from example programs and desired analysis output.

1 Introduction

The program synthesis problem—as studied in verification and AI—involves con-
structing an executable program that satisfies a specification. Recently, there has
been a surge of interest in programming by example (pbe), where the specification
is a set of input–output examples that the program should satisfy [2,7,11,14,22].
The primary motivations behind pbe have been to (i) allow end users with no
programming knowledge to automatically construct desired computations by
supplying examples, and (ii) enable automatic construction and repair of pro-
grams from tests, e.g., in test-driven development [23].

In this paper, we present a constraint-based approach to synthesizing Data-
log programs from examples. A Datalog program is comprised of a set of Horn
clauses encoding monotone, recursive constraints between relations. Our pri-
mary motivation in targeting Datalog is to expand the range of synthesizable
programs to the new domains addressed by Datalog. Datalog has been used
in information extraction [28], graph analytics [4,26,32], and in specifying static
program analyses [29,33], amongst others. We believe a pbe approach to Datalog
has the potential to simplify programming in an exciting range of applications.
We demonstrate how our approach can automatically synthesize a popular static
analysis from examples. We envision a future in which developers will be able to
automatically synthesize static analyses by specifying examples of information
they would like to compute from their code. For instance, the synthesizer can
live in the background of an ide and learn what kind of information a developer
likes to extract. Our approach is a concrete step towards realizing these goals.

To synthesize Datalog programs, we exploit a key technical insight: We are
searching for a Datalog program whose least fixpoint—maximal derivation tree—
includes all the positive examples and none of the negative ones. Encoding the
c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 689–706, 2017.
DOI: 10.1007/978-3-319-66158-2 44

690 A. Albarghouthi et al.

search space of all Datalog programs and their fixpoints in some first-order theory
results in a complex set of constraints. Instead, we construct a set of quantifier-
free constraints that encode (i) all sets of clauses up to a given size and (ii) all
derivations—proof trees—of a fixed size for all those clauses. In other words, we
encode underapproximations of the least fixpoints. We then employ an inductive
synthesis loop (as shown in Fig. 1) to ensure the program is correct and restart
otherwise.

Our choice of a constraint-based synthesis technique is advantageous in
(i) simulating execution of Datalog programs and (ii) steering synthesis towards
desirable programs. First, we exploit the axioms of the McCarthy’s first-order
theory of arrays [18] to encode Datalog proof trees. Second, we define the notion
of clause templates: additional constraints that impose a certain structure on syn-
thesized clauses. Clause templates (i) constrain the search space and (ii) steer
the synthesizer towards programs satisfying certain properties: for example, if
we want programs in the complexity class nc—i.e., efficiently parallelizable—we
can apply a template that ensures that all clauses are linear.

The field of inductive logic programming (ilp) has extensively studied the
problem of inducing logic programs from examples [8,20]. Generally, the empha-
sis there has been on synthesizing classifiers, and therefore more examples are
used and not all examples need be classified correctly. Our emphasis here is on
programming-by-example, where the user provides a small number of examples
and we want to match all of them. Our technical contribution can be viewed as
a novel ilp technique that completely delegates the combinatorial search to an
off-the-shelf smt solver. To the best of our knowledge, this is the first such use
of smt solvers in synthesizing logic programs. We refer to Sect. 7 for a detailed
comparison with related works.

Datalog

()

Datalog program D (solution to constraints)

D does not satisfy examples (blocking constraints)

D solves
synthesis
problem

Synthesis
constraints

Fig. 1. High-level view of inductive synthesis loop.

Contributions. First, we demonstrate that constraint solving can be applied to
the problem of synthesizing recursive Datalog programs. Second, we demonstrate
how to constrain the search using logical encodings of clause templates. Third,
we implement our approach and use it to synthesize a collection of recursive
Datalog programs. In addition to efficiently synthesizing a range of standard
Datalog programs, we demonstrate our approach’s novel ability to synthesize
program analyses from examples.

Constraint-Based Synthesis of Datalog Programs 691

2 Overview and Examples

2.1 Datalog Overview

Datalog is a logic programming language where programs are composed of a set
of Horn clauses over relations. For illustration, let us fix the domain (universe)
to be U = {a, b, c, d, e, . . .}. Suppose that we are given the binary relation E =
{(a, b), (b, c), (c, d), (d, c)}. We can think of relations as (hyper-)graphs, where
nodes are elements of the universe U and (hyper-)edges denote that a tuple is in
the relation. Pictorially, we can view E as representing a graph, where there is
an edge from node x to node y iff (x, y) ∈ E, i.e., E(x, y) is a fact.

To compute the transitive closure of the input relation
E, we can write the Datalog program in Fig. 3(a), where
T is an output relation that will contain the transitive
closure after executing the program. X,Y, and Z are interpreted as universally
quantified variables. For instance, the second clause says: for all values of X,Y
and Z picked from U , if (X,Z) ∈ E and (Z, Y) ∈ T , then (X,Y) must also be
in T .

One can view the execution of a Datalog program as a sequence of deriva-
tions, where in each step we add a new tuple to the output relation, until we
reach a fixpoint. Figure 2 pictorially illustrates the process of deriving the tran-
sitive closure for our example. T starts out as the empty set, denoted T0. By
instantiating variables in the first Horn clause with constants, we can derive the
edge (a, b) and add it to T , resulting in T1. After 9 derivations, we arrive at the
fixpoint, T9, which is the full transitive closure.

Fig. 2. Derivation sequence for transitive closure example.

2.2 Illustrative Examples

Transitive Closure. Assume we have the same input relation E as above—the
graph for which we want to compute the transitive closure. We can now supply
positive and negative examples of what edges should appear in T . For instance,

Ex+ = {(a, b), (b, c), (a, c), (a, d)}, Ex− = {(a, a)}

692 A. Albarghouthi et al.

The synthesis problem is: Find a set of Horn clauses C, defining the relation
T , such that: (i) Ex+ ⊆ T , and (ii) Ex− ∩ T = ∅. In other words, we want all
positive examples to appear in T , but none of the negative ones.

Our synthesis technique employs an inductive synthesis loop, where in each
iteration (i) a set of clauses C are synthesized, and (ii) C are verified to ensure
that they derive all positive examples and none of the negative ones. We illustrate
two iterations below.

(a) T (X, Y) ← E(X, Y).

T (X, Z) ← E(X, Y), T (Y, Z).

(b) T (X, Y) ← E(X, Y).

T (X, Z) ← E(X, Y), E(Y, Z).

(c) T (X, Y) ← E(X, Y).

T (X, Z) ← T (X, Y), T (Y, Z).

Fig. 3. Transitive closure example.

Iteration 1: Synthesis Phase. To
synthesize a set of clauses C, we fix
the maximum number of clauses in C
and the maximum number of atoms in
the body of a clause. Assume we fix the
number of clauses to 2 and the number
of atoms to 2. Then we are looking a
set of two clauses, where each clause is
of the form �(�, �) ← �(�, �),�(�, �).
Intuitively, we would like to replace the
�’s with relation symbols and the �’s
with variables. To do so, the synthesis phase constructs a set of constraints Φcl ,
where every model of Φcl is one possible completion of the above. A näıve way to
proceed here is to simply sample models of Φcl and verify whether the completion
derives all positive examples and none of the negative ones. This guess-and-check
process would take a very long time due to the large number of possible Datalog
programs comprised of two clauses.

Therefore, we need to be able to add a new constraint specifying that the least
fixpoint of the completed Horn clauses should contain all the positive examples
and none of the negative ones. This, however, is a complex constraint, as it
requires encoding the least fixpoint in first-order smt theories. Instead, we create
a weaker constraint, one that encodes every possible derivation of some finite
length d, for every possible completion of the above clauses. That is, instead of
encoding derivations up to fixpoint, we fix a bound d, thus encoding an under-
approximation of the least fixpoint. These simulation constraints Φsim allow us
to look for a completion that has a high chance of solving the synthesis problem.
Specifically, we can now find a model for Φcl ∧Φsim ∧Ex, where Ex is a constraint
that specifies that none of the negative examples are derived in the bounded
derivation, and most of the positive examples are derived—in other words, we
want to maximize the number of derived positive examples. This is because not
all positive examples may be derivable in the bounded derivation. A possible
solution for the above constraints is the set of clauses shown in Fig. 3(b).

Iteration 1: Verification Phase. The verification phase will compute the
fixpoint of these clauses and determine that they do not derive all the positive
examples. As a result, the verification phase produces a blocking constraint Φneg

that avoids all similar sets of clauses.

Constraint-Based Synthesis of Datalog Programs 693

Iteration 2: In the second iteration, the synthesis phase computes a new set of
clauses that satisfy the following constraints: Φcl ∧Φsim ∧Ex∧Φneg . As a result,
it might synthesize the correct set of clauses in Fig. 3(c).

Notice that the second clause is non-linear, meaning that an output relation,
T , appears more than once in its body. Due to the symbolic encoding, it is
simple to impose additional constraints that steer synthesis towards programs
of a specific form: we call these constraints clause templates. For instance, if we
impose a template specifying that all clauses are linear, then we synthesize the
equivalent transitive closure program in Fig. 3(a).

Andersen’s Pointer Analysis. In static program analysis, many analyses
are routinely written as Datalog programs. A given program to be analyzed is
represented as a set of input relations. The Horn clauses then compute the results
of the static analysis from these input relations. Pointer analysis is a popular
target for Datalog, where the output relation is an over-approximation of which
variables point to which other variables.

We can specify a slice of the
desired output of a static analysis,
and have our synthesizer automati-
cally detect and produce the desired
analysis in the form of a Datalog pro-
gram. Indeed, we show that our technique is able to synthesize Andersen’s pointer
analysis [3] from examples (shown above). Specifically, here we specify examples
of tuples that should or should not appear in the relation pt, where pt(a,b) spec-
ifies that variable a points to (the location of) variable b in the program. The
rest of the relations are input relations specifying the program to be analyzed.
For example, addressOf(a, b) indicates that there is a statement in the program
of the form a = &b.

3 Preliminaries

Horn Clauses. A term t is either a variable X,Y,Z, . . ., or a constant a, b, c,
A predicate symbol P is associated with an arity arity(P). An atom is an applica-
tion of a predicate symbol to a vector of variables and constants, e.g., P (X,Y, a)
for a predicate P with arity 3. A ground atom is an application of a predicate
symbol to constants, e.g., P (a1, . . . , an), where {ai}i are constants. A substitu-
tion θ is a mapping from variables to constants. Applying θ to an atom yields
a ground atom. For example, if θ = {X �→ a, Y �→ b}, then H(X,Y)θ is the
ground atom H(a, b). When clear from context, we simplify notation to Hθ.

A Horn clause c is of the form: H(X) ← B1(X1) ∧ . . . ∧ Bn(Xn), where
H(X), B1(X1), . . . , Bn(Xn) are atoms. The atom H(X) is called the head of
the clause, denoted head(c); the set of atoms {Bi(Xi)} are the body of the clause,
denoted body(c). As is standard, we replace conjunctions (∧) in the body of with
commas (,). We use C to denote a finite set of Horn clauses {c1, . . . , cn}.

694 A. Albarghouthi et al.

Herbrand Interpretations. We define the semantics of Horn clauses using
Herbrand interpretations. First, assume we have a fixed Herbrand Universe U ,
which is a set of constants that can appear in atoms, e.g., U = {a, b, c, . . .}. A
Herbrand interpretation I of a set of Horn clauses C is a set of ground atoms
with constants drawn from U . For example, an interpretation I of our transitive
closure example (Sect. 2) could be: {T (a, b), E(b, c), T (c, d)}.

Definition 1 (Herbrand models and minimality). A Herbrand interpreta-
tion M for a set of clauses C is a Herbrand model for C iff for every clause
H ← B1, . . . , Bn ∈ C, for all substitutions θ, if {B1θ, . . . , Bnθ} ⊆ I, then Hθ ∈
I. A Herbrand model M is a minimal model for C iff for all M ′ ⊂ M , M ′ is
not a Herbrand model of C.

Datalog Programs. A Datalog program C is a finite set of Horn clauses. The
predicates of the program can be partitioned into two disjoint sets, Rin(C) and
Rout(C): Rin(C) are the predicates that appear only in the bodies of clauses in
C, and are called the input relations. Rout(C) are the predicates that appear at
the heads of clauses in C, and are called the output relations.

Semantics and Derivations. The input of a Datalog program C is a finite set
of facts F , which are ground atoms over the input relations Rin(C). A Herbrand
model M of C with input F is a model of C such that F ⊆ M . The interpretation
of a Datalog program C with input F is its minimal model M . Computing the
minimal model M is done using the clauses in C to derive all possible facts until
the least fixpoint is reached. We denote the minimal model M as C(F).

There always exists a unique minimal model, thus, semantics are well-defined.
Figure 4 encodes the least fixpoint computation of C(F) as two rules that
monotonically populate the model M with more facts. The rule init initial-
izes M to the set of facts F . The rule derive uses clauses in C to derive a new
fact to be added to M . Observe that (i) the set M is monotonically increasing
and (ii) the fixpoint computation eventually terminates, as the derived facts
can only contain constants from the set of facts F , which is finite.

Definition 2 (Derivation sequence). Given a Datalog program C with input

F , a derivation sequence is a sequence of sets of ground atoms: M0

ci1 ,θ1−−−−→
M1

ci2 ,θ2−−−−→ M2

ci3 ,θ3−−−−→ · · · cin ,θn−−−−→ Mn, where M0 = F , and Mj is the set of
ground facts resulting from applying derive to Mj−1 with the clause cij ∈ C
and substitution θj. A maximal derivation sequence is one where derive cannot
be applied to Mn, i.e., Mn = C(F).

Datalog Synthesis Problem. A Datalog synthesis problem S, or synthesis
problem for short, is a tuple (R, F,E), where: (i) R = (Rin , Rout) is a pair of
input and output predicate sets that are disjoint. (ii) F is a finite set of facts—
ground atoms over predicates in Rin ; (iii) E = (E+, E−): E+ is a finite set of
positive examples, which are ground atoms over predicates in Rout . E− is a finite
set of negative examples, which are also ground atoms over predicates in Rout .
We assume that E+ ∩ E− = ∅.

Constraint-Based Synthesis of Datalog Programs 695

init

M ← F

H ← B1, . . . , Bn ∈ C

{B1θ, . . . , Bnθ} ⊆ M Hθ �∈ M
derive

M ← M ∪ {Hθ}
θ is an arbitrary substitution

Fig. 4. Rules for deriving minimal Herbrand model.

Definition 3 (Solution to Datalog synthesis problem). A solution to a
synthesis problem S = (R, F,E) is a Datalog program C with Rin(C) = Rin and
Rout(C) = Rout such that the following two conditions hold: (i) E+ ⊆ C(F),
i.e., all positive examples are in the minimal model of C; and (ii) E−∩C(F) = ∅,
i.e., C does not derive any of the negative examples.

4 Constraint-Based Synthesis Algorithm

We now formally define our synthesis algorithm. Recall that, given a synthesis
problem S = (R, F,E), our goal is to discover a set of clauses C where the least
fixpoint C(F) contains all positive examples and none of the negative ones.

To avoid encoding least fixpoints, we will encode derivations of a fixed size—
i.e., we encode under-approximations of the least fixpoint—and search for a set
of clauses with a bounded derivation that derives most positive examples and
none of the negative ones. In Sects. 4.1 and 4.2, we show how to encode the
space of clauses and bounded derivations. In Sect. 4.3, we present an inductive
synthesis loop that alternates between synthesizing clauses and verifying them
until arriving at a solution.

4.1 Clause Constraints

Preliminaries. We describe here the clause constraints, a set of first-order
constraints that define the space of all possible Datalog programs of a given size.

Throughout this section we shall assume a fixed Datalog synthesis problem
S = (R, F,E), where Rin = {R1, . . . , Rn} and Rout = {Rn+1, . . . , Rm}. With-
out loss of generality, we shall assume that all predicates are of arity 2. In Sect. 6,
we describe how we implement the algorithm for arbitrary arities. Our goal is to
synthesize a solution C. We shall fix the maximum number of clauses, nc > 0, to
appear in C and a maximum number of body atoms per clause, nb > 0. We will
construct the clause constraints such that they capture every set of nc clauses
C = {c1, . . . , cnc

}, where for each ci ∈ C, |body(ci)| = nb.

Variables and Constraints. For each clause ci, for i ∈ [1, nc], we will introduce
the following integer variables:

hi, bi,1, . . . , bi,nb
(Vpreds)

vhi,1, vhi,2, vbi,1, vbi,2, . . . , vbi,2nb−1, vbi,2nb
(Vargs)

696 A. Albarghouthi et al.

The variables hi denote the predicate symbol in the head of the clause ci; sim-
ilarly, bi,j denote the j’th predicate symbol in the body of ci. Specifically, the
value of the variable will be the index of the predicate symbol to appear at that
location. For instance, if h2 = 5, then the head of clause c2 will be R5 ∈ Rout .
The variables Vargs denote the arguments (variables) in the atoms of the clauses.
For instance, vhi,1 and vhi,2 denote the arguments to the head of clause ci.

Since heads of clauses can only be output predicates, and body predicates
can be any predicate in Rin ∪ Rout , we formulate the following constraints:

ϕh
cl �

∧

i∈[1,nc]

n + 1 ≤ hi ≤ m ϕb
cl �

∧

i∈[1,nc]

∧

j∈[1,nb]

1 ≤ bi,j ≤ m

We do not impose any constraints on Vargs; we will simply use their values to
partition arguments into equivalence classes. For instance, if vhi,1 = vhi,2, the
head of ci will be an atom of the form R(X,X), for some predicate R ∈ Rout ;
otherwise, if vhi,1 = vhi,2, it would be of the form R(X,Y). Finally, the clause

constraints are defined as follows: Φcl � ϕh
cl ∧ ϕb

cl

Denotation and Properties. A model m of Φcl , denoted m |= Φcl , maps
every variable in Vpreds ∪ Vargs to an integer. We now show how to transform
a model m into a set of clauses C. We start by defining the function �.�m as
follows:

�hi�m = Rm(hi) �bi�m = Rm(bi) �vhi�m = vmap(vhi) �vbi�m = vmap(vbi)

where m(x) is the value of variable x in model m. Let us partition Vargs into
equivalence classes, defined by m(.)—i.e., x, y ∈ Vargs are equivalent iff m(x) =
m(y). We shall now assign to each equivalence class a unique argument from
the set {X,Y,Z, . . .}. The function vmap maps each variable in Vargs to the
argument assigned to its equivalence class. Using �.�m, the head of clause ci is
�hi�(�vhi,1�, �vhi,2�), and the j’th body atom of ci is �bi,j�(�vbi,2j−1�, �vbi,2j�).
We abuse notation and use �m� to represent the set of clauses C denoted by m.

Example 1. The above constraints and their solution are best demonstrated
through a simple example. Suppose that Rin = {R1} and Rout = {R2}, and sup-
pose that nc = 1 and nb = 2. Φcl will then be ϕh

cl ∧ ϕb
cl , where ϕh

cl � 2 ≤ h1 ≤ 2
and ϕb

cl � 1 ≤ b1,1 ≤ 2 ∧ 1 ≤ b2,2 ≤ 2. Suppose we solve Φcl and get the model
m |= Φcl :

m =
[

h1 �→ 2 b1,1 �→ 1 b1,2 �→ 2 vh1,1 �→ 1
vh1,2 �→ 3 vb1,1 �→ 1 vb1,2 �→ 2 vb1,3 �→ 2 vb1,4 �→ 3

]

The denotation �m� is the clause R2(X,Z) ← R1(X,Y), R2(Y,Z). Observe that
the first argument of the head and the first argument of the first body atom are
the same; this is because m(vh1,1) = m(vb1,1). Observe also that the predicate
symbol in the head is R2 and the first symbol in the body is R1; this is because
m(h1) = 2 and m(b1,1) = 1.

Constraint-Based Synthesis of Datalog Programs 697

Theorem 1. Let C be the set of all Datalog programs with nc clauses, nb atoms
per clause, and no constants in atoms. Let L be the set of models of Φcl . Then,
for each C ∈ C, there exists a model m ∈ L such that �m� is equivalent to C.

4.2 Simulation Constraints

Arrays and Monotonic Derivations. The goal of the simulation constraints
is to encode all derivation sequences of the set of clauses represented by the
clause constraints, Φcl . Due to the complexity of encoding all maximal derivation
sequences (least fixpoints), we place a bound d on the number of derivations.1

That is, the simulation constraints will encode all derivations with exactly d
steps. It is critical to recall that a derivation, as we define it in this paper,
always produces a new fact. Contrast this with the standard database-theoretic
definition, where we can derive the same fact multiple times.

Recall that, given a Datalog program C with input F , a derivation sequence

of length d is M0

ci1 ,θ1−−−−→ M1

ci2 ,θ2−−−−→ M2

ci3 ,θ3−−−−→ · · · cid ,θd−−−−→ Md. Thus, we will
create a set of constraints Φsim that encode all possible derivations of length d
from all possible sets of clauses C defined by Φcl .

A key observation in our technique is that Mi grows monotonically, that is,
∀i ∈ [0, d− 1].Mi � Mi+1. We exploit this property of Datalog to encode the set
of true facts after every derivation using McCarthy’s theory of arrays [18]. An
array arr : X → Y is a map from some domain X to another domain Y . The i’th
element of an array is denoted arr [i]. We shall therefore use arrays to represent
input and output relations. Specifically, the arrays will be of the type U2 → B,
that is, from pairs of elements of the universe to a Boolean value indicating
whether the pair is in the relation. The axiom of the theory of arrays that allows
us to model derivations is read-over-write. Specifically, read-over-write allows us
to model adding one element to the relation, without explicitly having to state
the frame condition—that all other array elements remain unchanged.

We decompose the definition of simulation constraints into (i) constraints
encoding the initial state of all relations, (ii) constraints encoding a single appli-
cation of derive, and (iii) constraints encoding derivation sequences.

Encoding the Initial State. For each Ri ∈ Rin , we create an array variable

ini : U2 → B (Vinrels)

The universe U is set to be all constants appearing in facts F and examples E.2

For each output relation Ri ∈ Rout , we create a set of arrays:

out i,0, . . . , out i,d (Voutrels)

1 Encoding maximal derivations requires unrollings up to the size of the Herbrand
base, along with universal quantification.

2 For Datalog without constants, we can assume w.l.o.g. that the constants in the
examples E are a subset of the constants in F .

698 A. Albarghouthi et al.

where out i,j will represent what facts have been derived over Ri after the first j
applications of derive. The input and output arrays are constrained as follows:

ϕRin
init �

∧

Ri∈Rin

∧

d∈U2

ini[d] ⇐⇒ Ri(d) ∈ F ϕRout
init �

∧

Ri∈Rout

∧

d∈U2

¬out i,0[d]

Encoding a Single Derivation. We now show how to encode a single step
of the derivation sequence (the i’th derivation): Mi−1 −−→ Mi. We define the
formula derivei,j to encode the effect of applying clause j in the i’th derivation.

To formally define derivei,j , we need to first introduce a set of variables
representing the substitution θi that is used in the i’th derivation. Specifically,
we introduce the following variables of type U , for i ∈ [1, d]:

shi,1, shi,2, sbi,1, sbi,2, . . . , sbi,2nb−1, sbi,2nb
(Vsubs)

where (shi,1, shi,2) denote the substitutions to the arguments in the head of the
clause used in the i’th derivation, and (sbi,2j−1, sbi,2j) denote the substitutions
to the arguments in the j’th body atom of the clause used in the i’th derivation.
We constrain these variables such that they adhere to the arguments of the clause
used in the i’th derivation. For example, if a body atom is R(X,X), then we
want to ensure that any substitution is of the form R(a, a), for a ∈ U . Therefore,
we introduce the constraint latchesi,j , which indicates that, if any two arguments
in atoms of clause j are the same variable, then they should always get the same
substitution at position i in the derivation:

latchesi,j �
∧

vxj,k,vxj,l∈Vargs

vxj,k = vxj,l ⇒ σ(vxj,k) = σ(vxj,l)

where the notation vxj,k denotes any variable vhj,k or vbj,k in Vargs, and the
function σ is defined such that σ(vhj,k) = shi,k and σ(vbj,k) = sbi,k; that is, σ
encodes the correspondence between the argument variables of the j’th clause
and the substitution variables in the i’th derivation.

Now, derivei,j is a conjunction of two constraints: (i) deriveb
i,j , which specifies

that all ground atoms in the body of clause j should be true in Mi−1, and
(ii) deriveh

i,j , which specifies the new fact derived by applying the clause j at
point i of the derivation. (We ensure that no fact is derived more than once.)

derivebi,j �
∧

k∈[1,n]

∧

l∈[1,nb]

bj,l = k ⇒ ink[(sbi,2l−1, sbi,2l)]

∧
∧

k∈[n+1,m]

∧

l∈[1,nb]

bj,l = k ⇒ outk,i−1[(sbi,2l−1, sbi,2l)]

derivehi,j �
∧

k∈[n+1,m]

hj = k ⇒ (¬outk,i−1[(shi,1, shi,2)] ∧ outk,i[(shi,1, shi,2) �→ true])

Encoding All Derivation Sequences. Now that we have defined how to
encode a single step of the derivation, we can present the encoding of a derivation
sequence of a fixed length d. First, we introduce the following integer variables:

Constraint-Based Synthesis of Datalog Programs 699

s1, . . . , sd (Vderivcls)

where si encodes which clause is applied in the i’th point in the derivation
sequence. Since Φcl fixes the number of clauses to nc, we require the condition
ϕc
sim �

∧
i∈[1,d] 1 ≤ si ≤ nc.

We now encode the effect of an application of derive. The following con-
straint specifies, for every value si could take (from 1 to nc), the effect on the
output arrays in the i’th step of the derivation sequence.

ϕder
sim �

∧

i∈[1,d]

∧

j∈[1,nc]

si = j ⇒ derivei,j ∧ latchesi,j

Finally, the simulation constraints are defined as follows:

Φsim � ϕRin
init ∧ ϕRout

init ∧ ϕc
sim ∧ ϕder

sim

Correctness. The following theorem states correctness of simulation constraints
by showing that, for a fixed set of clauses C, the models of Φsim have a one-to-
one correspondence with the derivations of C of length d. Intuitively, the facts
true in the output relation after d steps of a derivation are encoded in the input
arrays ini and final output arrays out i,d. Given a model m |= Φsim , we define
final(m) to denote the set of all facts at the end of the derivation defined by m:
final(m) = {Rk(a) | a ∈ U2,m(outk,d(a)) = true ∨ m(ink(a)) = true}.

Theorem 2. Let m |= Φcl . Let T be the set of all unique derivation sequences
of �m� of length d. Let L be the set of all models m′ |= Φsim , where m′ agrees
with m on valuations of Vpreds,Vargs. There is a bijection f : L → T s.t., for all
m ∈ L and t ∈ T , if f(m) = t then final(m) = Md (final set of facts in t).

4.3 Inductive Synthesis Loop

We now present our inductive synthesis loop (Fig. 5), given a synthesis problem
S = (R, F,E). We fix the maximum number of clauses nc, the maximum num-
ber of body atoms nb, and we assume that the simulation is of length d ≤ |E+|
(otherwise, the simulation constraint may be unsat). synth begins by con-
structing the clause and simulation constraints, Φcl and Φsim . It then employs
a synthesize–verify loop.

Synthesis Phase. In line 6, synth finds a model m for the constraints, which
denotes a set of clauses C = �m�. This can be performed using an off-the-shelf
smt solver. We impose two additional constraints. First, ψ− ensures that no
negative examples in E− are derived in the d steps of the derivation sequence.
Second, ψ+

soft is a soft constraint that attempts to maximize the number of pos-
itive examples derived in the d steps of the derivation sequence. This is because
not all positive examples may be derivable in d derivations.

Verification Phase. In line 8, synth verifies whether C results in a solution
to the synthesis problem. Specifically, it computes the fixpoint C(F) and checks

700 A. Albarghouthi et al.

whether all positive examples are in the fixpoint and none of the negative ones.
If so, a solution is found and synth terminates. The verification step can be
performed using an off-the-shelf Datalog solver.

Blocking Constraints. If verification fails, we create a set of constraints,
block(m), that removes sets of Horn clauses equivalent to �m�. Specifically, we
first characterize a set of models whose denotation is equivalent to m:

∧

i∈[1,nc]

⎛

⎝
∧

v∈Vi
preds

v = m(v) ∧
∧

v,v′∈Vi
args

,m(v)=m(v′)

v = v′

⎞

⎠

where Vi
args

and Vi
preds

denote the respective subsets of Vargs and Vpreds of the
i’th clause. Therefore, the above constraint specifies all models whose denotation
is syntactically equivalent to �m�, modulo variable renaming. block(m) is the
negation of the above constraint. Note that characterizing all models whose
denotation is equivalent to �m� is an undecidable problem [1].

The following theorem states soundness and completeness of synth, relative
to a fixed nc and nb. Note that, in point 2, if synth terminates with no solution,
then this means that we have proven non-existence of a solution with ≤ nc clauses
and ≤ nb atoms. Point 2 is true because all programs that are smaller than nc

and nb can be written as a program with exactly nc clauses and nb body atoms—
simply by duplicating clauses and body atoms.

Theorem 3 (Soundness and completeness). (1) If synth(S) returns a
Datalog program D, then D is a solution to S. (2) If synth(S) terminates with
no solution, then no solution exists with ≤ nc clauses and ≤ nb atoms per body
of each clause. (3) synth(S) terminates in finitely many steps.

1: function synth(Synthesis problem S)
2: Construct Φcl and Φsim for S
3: Φneg ← true

4: ψ− ← ∧
Ri(d)∈E− ¬outi,d[d]

5: ψ+
soft ← maximize |{Ri(d) ∈ E+ | outi,d[d] = true}|

6: while ∃m |= Φcl ∧ Φsim ∧ Φneg ∧ ψ− ∧ ψ+
soft do

7: C ← m

8: if E+ ⊆ C(F) and E− ∩ C(F) = ∅ then
9: return C

10: Φneg ← Φneg ∧ block(m)

11: return no solution exists for S

Fig. 5. Inductive synthesis loop.

5 Encoding Templates

We now present clause templates: additional constraints that exploit the use of
the symbolic encoding to impose a certain structure on the synthesized clauses.

Constraint-Based Synthesis of Datalog Programs 701

Non-recursive Clauses. The most natural clause template is the one that
ensures that at least one of the clauses is a base case—with no output relation
in the body. To define this template, we designate one of the clauses (say the
first) to be the base case. Recall that the predicate symbols appearing in the
body of the first clause are b1,1, . . . , b1,nb

, where each b variable holds a value
from 1 to m indicating the index of the predicate symbol. Since all indices of
input relations are in [1, n], all we need to impose is the following constraint:
basecase �

∧
i∈[1,nb]

b1,i ≤ n. If we specify that every clause is non-recursive,
then we syntactically restrict the solution to be in the class of Unions of Con-
junctive Queries (ucqs), a fundamental query class [1], since it captures the
class of positive sql queries.

Linear Clauses. A clause is linear when there is at most one occurrence of
an output predicate in its body. Linear Datalog programs—a strict subset of
Datalog—are in the complexity class nc (Nick’s class): the set of problems solv-
able in polylogarithmic time with a polynomial number of processors. Informally,
a problem in nc is inherently parallel. In addition to their theoretical niceties,
linear Datalog programs have also proven useful in distributed processing [27].
In order to synthesize linear programs, we impose the following constraint:

linear �
∧

i∈[1,nc]

¬
∨

j,k∈[1,nb],j �=k

bi,j ≥ n + 1 ∧ bi,k ≥ n + 1

The above constraint states that for every clause i, no two predicate symbols in
the body, bi,j and bi,k, refer to output relations.

Connected Clauses. It is most often the case that arguments in the head of a
clause also appear in its body. For instance, the clause H(X,Y) ← B(Z,W) will
end up deriving every possible tuple in U2 (assuming B is not empty), which
is unlikely a program of interest. To avoid programs that are able to derive all
possible tuples, we can impose the following constraint:

conn �
∧

i∈[1,nc]

⎛

⎝
∨

j∈[1,2nb]

vhi,1 = vbi,j ∧
∨

k∈[1,2nb]

vhi,2 = vbi,k

⎞

⎠

6 Implementation and Evaluation

We have implemented the presented synthesis technique in a new tool called
Zaatar. Zaatar utilizes the open-source Z3 smt solver [19] for satisfiability check-
ing and evaluating Datalog programs (using Z3’s fixpoint engine [13]).

Our implementation takes as input a synthesis problem where relations can
be of arbitrary arities. The encoding in Sect. 4 assumes that all relations are
binary. We extend the encoding to assume that all relations have the same arity,
the maximum arity amongst all relations in R. For example, if the maximum
arity is 4, we describe a binary relation R(X,Y) by disregarding the variables
in Vargs that represent the third and fourth arguments.

702 A. Albarghouthi et al.

Benchmarks. We collected a set of Datalog programs comprised of recursive
and non-recursive programs. The benchmarks are fully listed in Table 1. The
non-recursive benchmark programs include (i) path extraction programs (path3
and path4, which extract all paths of length 3 or 4 from a graph); (ii) cycle
and triangle extraction from a graph (cycle and triangle); and (iii) path
extraction with alternating edge colors (redblue and redblueUnd). Our recur-
sive benchmarks include standard Datalog programs, like transitive closure of a
graph (TC and TCUnd) and same generation (samegen), which extracts all indi-
viduals of the same generation from a family tree. In addition to the standard
graph-manipulating Datalog programs, we also synthesized (i) least inductive
invariant generation (leastInvariant), which, given a finite-state program and
its least inductive invariant, returns the initiation and consecution rules defin-
ing an inductive invariant [5]; and (ii) pointer analysis programs (andersenFull
and andersenSimple).

Experimental Results. The experimental results are shown in Table 1. For
each synthesis problem, we instantiated it with a small number of facts F in
the input relations (3–8 facts per benchmark). Then, we supplied a small and
sufficient number of positive and negative examples that describe the problem.

Table 1. Experimental results. Mac OS X 10.11; 4 GHz Intel Core i7; 16GB RAM.

Constraint-Based Synthesis of Datalog Programs 703

The number of positive/negative examples required per benchmark are shown in
Table 1 (see columns |E+| and |E−|). For all benchmarks, we fixed the derivation
bound d to be the number of positive examples |E+|. The only templates we
used were basecase (to force a base case in recursive programs) and conn (see
Sect. 5). (Without the conn template imposed, most recursive benchmarks do
not terminate within a reasonable amount of time: they keep synthesizing trivial
programs with head arguments disjoint from body arguments, and therefore keep
iterating through the synthesis loop.)

Our results indicate that our approach can synthesize non-trivial programs
within a small amount of time. For most benchmarks, Zaatar synthesizes the cor-
rect solution within 0–5 s. The longest running benchmark—Andersen’s analysis,
andersenFull—requires around 2 min. Furthermore, the correct solution is usu-
ally discovered within the first iteration of synth (see column #Iters. in Table 1).
This result indicates that, using our approach, a small number of examples is
sufficient to describe a non-trivial graph-based computation.

For most benchmarks, a very small number of negative examples is required—
often none. We notice that the numbers of required negative examples increases
with the size of the desired program (as defined by nc and nb) and the arities
of relations. For example, in the triangle benchmark, there are many non-
recursive programs correlating triples of vertices; we thus needed to supply 8
negative examples to ensure that the program is indeed only extracting triples
that form triangles. Other benchmarks that require multiple negative examples
are pathsOdd and pathsMod3, which have 3 and 4 atoms in the bodies of their
clauses.

Discussion. Our results demonstrate the merit of our approach at synthesizing
a range of different Datalog programs in a small amount of time and with a
small number of examples. It is important, however, to state the limitations.
First, our search process imposes an upper bound on the number of clauses and
atoms that can appear in programs. Second, as the size of the desired program
increases, the number of examples required increases (and, therefore, the size of
the derivation bound d), thus stressing the smt solver.

7 Related Work and Discussion

Synthesis of Recursive Programs. We are not the first to synthesize recur-
sive functions. Recent synthesis works from the community have focused on func-
tional programs—for example, [2,10,15,16,22,24,24,31]. Our work synthesizes
recursive graph-/relation-manipulating programs. While we can encode relations
in a functional programming language, the synthesis task becomes tedious. Dat-
alog is a more natural fit for relation manipulation.

Inductive Logic Programming. Our synthesis target is closest in nature to
the rich field of inductive logic programming (ilp) [8,20]. Generally speaking,
a primary focus of ilp research has been on inducing theories, e.g., a program
explaining a biological process. The formulation, however, is very similar to

704 A. Albarghouthi et al.

our setting, with the addition of background knowledge encoded as clauses. The
search technique in ilp is often a bottom-up or top-down search for a theory. In
the bottom-up setting, the synthesizer begins with no clauses, and incrementally
grows the set of clauses (by climbing up a subsumption lattice of clauses) using
the provided positive and negative examples; the top-down setting proceeds in
the opposite direction. Our search strategy is rather different: we consider all
examples at once and present a novel encoding that delegates the process to
an smt solver. Naturally, our approach directly benefits from future advances
in smt techniques. Additionally, ilp techniques often require a large number of
examples. In our approach, our goal is to utilize only a small number of examples.

Synthesis of recursive clauses has not received as much attention in ilp.
Flener and Yilmaz [9] provide a survey of ilp in the recursive setting. A recent
line of work by Muggleton et al. presents a meta-interpretive learning (mil) tech-
nique for synthesizing recursive clauses for various domains [6,17,21]. Compared
to our technique, mil requires meta-rules (similar to our clause templates) that
can constrain the search towards recursive clauses. Meta-rules, however, are very
specific: they (i) fix all the variables in the rule, (ii) exactly specify which rela-
tions in the rule are recursive, and (iii) fix the size of a rule. Thus, the only
parameters of the search are the relations to appear in the body and the head
of a clause. Our templates can encode meta-rules and are strictly more gen-
eral than meta-rules. In practice, we do not restrict the variables at all (we only
use conn to eliminate ill-formed rules). Further, mil tools like Metagol require a
total ordering on the Herbrand base, which might not exist for certain examples,
e.g., transitive closure and Andersen, where graphs are cyclic. Nonetheless, mil
also addresses predicate invention, the problem of introducing new predicates.
This is an interesting and difficult problem that relates to synthesizing auxiliary
procedures in the more general program synthesis setting.

Constraint-Based Synthesis. Our technique is inspired by symbolic synthesis
techniques [12,14,25,30].Techniques like [12] encode all loop-free programs of
up to a certain size, along with the examples, as a formula to be solved by an smt

solver. We encode the search for Horn clauses along with bounded derivations of
the clauses as a first-order formula. Since efficient symbolic encodings can only
express loop/recursion-free executions, we use bounded derivations to induce
recursive programs symbolically, without having to encode the least fixpoint.

Acknowledgements. This work is supported by NSF awards 1566015, 1652140, and
a Google Faculty Research Award.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 67

http://dx.doi.org/10.1007/978-3-642-39799-8_67

Constraint-Based Synthesis of Datalog Programs 705

3. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis, University of Cophenhagen (1994)

4. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E.,
Veldhuizen, T.L., Washburn, G.: Design and implementation of the logicblox sys-
tem. In: Proceedings of 2015 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1371–1382. ACM (2015)

5. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Proce-
dures with Applications to Verification. Springer Science and Business Media,
Heidelberg (2007). doi:10.1007/978-3-540-74113-8

6. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involv-
ing composable objects. In: Proceedings of 24th International Joint Conference
Artificial Intelligence (IJCAI 2015), pp. 3423–3429 (2015)

7. Cropper, A., Tamaddoni-Nezhad, A., Muggleton, S.H.: Meta-interpretive learning
of data transformation programs. In: Proceedings of 24th International Conference
on Inductive Logic Programming (2015)

8. De Raedt, L.: Logical and Relational Learning. Springer Science and Business
Media, Heidelberg (2008)

9. Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: achievements
and prospects. JLP 41, 141–195 (1999)

10. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: POPL. ACM (2016)

11. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. CACM 55, 97–105 (2012)

12. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

13. Hoder, K., Bjørner, N., De Moura, L.: µZ–an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 36

14. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE (2010)

15. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: an expla-
nation based generalization approach. JMLR 7, 429–454 (2006)

16. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA (2013)

17. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.: Bias reformulation
for one-shot function induction. In: ECAI, pp. 525–530 (2014)

18. McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R.,
Fetzer, J.H., Rankin, T.L. (eds.) Program Verification. SCS, vol. 14, pp. 35–56.
Springer, Dordrecht (1993)

19. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

20. Muggleton, S.: Inductive logic programming. N. Gener. Comput. 8, 295–318 (1991)
21. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive

learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)
22. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: PLDI

(2015)
23. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In:

PLDI (2014)

http://dx.doi.org/10.1007/978-3-540-74113-8
http://dx.doi.org/10.1007/978-3-642-22110-1_36
http://dx.doi.org/10.1007/978-3-540-78800-3_24

706 A. Albarghouthi et al.

24. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: Proceedings of 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 522–538. ACM (2016)

25. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
doi:10.1007/978-3-319-21668-3 12

26. Seo, J., Guo, S., Lam, M.S.: Socialite: datalog extensions for efficient social net-
work analysis. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 278–289. IEEE (2013)

27. Shaw, M., Koutris, P., Howe, B., Suciu, D.: Optimizing large-scale semi-näıve
datalog evaluation in hadoop. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0
2012. LNCS, vol. 7494, pp. 165–176. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32925-8 17

28. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: Proceedings of
33rd international conference on Very large data bases, pp. 1033–1044. VLDB
Endowment (2007)

29. Smaragdakis, Y., Balatsouras, G., et al.: Pointer analysis. Found. Trends Program.
Lang. 2, 1–69 (2015)

30. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS (2006)

31. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23702-7 23

32. Wang, J., Balazinska, M., Halperin, D.: Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines. Proc. VLDB Endow. 8, 1542–1553
(2015)

33. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144. ACM (2004)

http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-23702-7_23

Search Strategies for Floating Point
Constraint Systems

Heytem Zitoun1(B), Claude Michel1, Michel Rueher1, and Laurent Michel2

1 CNRS, I3S, Université Côte d’Azur, Nice, France
{heytem.zitoun,claude.michel,michel.rueher}@i3s.unice.fr

2 University of Connecticut, Storrs, CT 06269-2155, USA
ldm@engr.uconn.edu

Abstract. The ability to verify critical software is a key issue in embed-
ded and cyber physical systems typical of automotive, aeronautics or
aerospace industries. Bounded model checking and constraint program-
ming approaches search for counter-examples that exemplify a property
violation. The search of such counter-examples is a long, tedious and
costly task especially for programs performing floating point computa-
tions. Indeed, available search strategies are dedicated to finite domains
and, to a lesser extent, to continuous domains. In this paper, we intro-
duce new strategies dedicated to floating point constraints. They take
advantage of the properties of floating point domains (e.g., domain den-
sity) and of floating point constraints (e.g., floating point arithmetic) to
improve the search for floating point constraint problems. First experi-
ments on a set of realistic benchmarks show that such dedicated strate-
gies outperform standard search and splitting strategies.

1 Introduction

A key issue while verifying programs with floating point computations is the
search of floating point arithmetic errors that produce results quite different
from the expected result over the reals. Consider foo, a program doing floating
point computations:

void f oo (){
f loat a = 1 e8 f ;
f loat b = 1 .0 f ;
f loat c = −1e8 f ;
f loat r = a + b + c ;
i f (r >= 1.0 f)

doThenPart () ;
else doElsePart () ;

}

This work was partially supported by ANR COVERIF (ANR-15-CE25-0002).

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 707–722, 2017.
DOI: 10.1007/978-3-319-66158-2 45

708 H. Zitoun et al.

Over the reals, r is equal to 1.0 and the doThenPart function is called. How-
ever, over the floats with a“round to the nearest” rounding mode, an absorption
phenomenon occurs: a+ b is equal to a and, thus, r is assigned to 0. As a result,
the doThenElse function is called instead of the doElsePart function. This sim-
ple example illustrates how the flow of a very simple program over the floats
(F) can differs from the expected flow over the reals (R). Such a flow discrep-
ancy might have critical consequences if, for instance, the condition is related to
decide whether to brake or not in an ABS system.

Constraint programming has been used to verify such properties [5,16] in a
bounded model checking framework [6,7]. However, the search of such counter-
examples is a long, tedious and costly task especially for programs performing
floating point computations. The use of standard search technique to solve con-
straints over F lacks efficiency. Numerous search strategies over finite domains
have been proposed [4,8,14,15,17] and, to a lesser extent, over continuous
domains [11,12]. But, such strategies do not adapt well to floating point numbers.
A subset of integers bounded by two integers is a finite and uniformly distributed
set which can be enumerated. A subset of reals bounded by two floating point
numbers is an infinite set of reals that cannot be enumerated and thus, search
strategies over continuous domains rely on interval arithmetic, bisection and
mathematical properties to prove the existence of solutions in some small inter-
val [1]. A contrario, the set of floating point numbers is a finite set with a huge
cardinality and a non-uniform distribution (half of the floating point numbers
belongs to the interval [−1, 1]). The aforementioned technique like enumeration
are not well suited to floating point number density and distribution. Though
floating point number approximate real numbers, they do not benefit from the
same properties such as continuity. It is thus difficult to reuse search strategies
designed for the reals with floating point variables.

The purpose of this paper is to introduce new search strategies dedicated
to floating point numbers to ease and, perhaps more importantly, speed-up the
solving of verification problems. Preliminary experiments performed on a limited
but realistic set of benchmarks show that such dedicated strategies outperform
standard search and splitting strategies.

2 Notations and Definitions

2.1 Floating Point Numbers

Floating point numbers were introduced to approximate real numbers. The
IEEE754-2008 standard for floating point numbers [10] sets floating point for-
mats, as well as, some floating point arithmetic properties. The two most com-
mon formats defined in the IEEE754 standard are simple and double floating
point number precision which, respectively, use 32 bits and 64 bits. A floating
point number is a triple (s,m, e) where s ∈ {0, 1} represents the sign, the p bits
m, the significant or mantissa and, e the exponent [9]. A normalized floating
point number is defined by:

(−1)s1.m × 2e

Search Strategies for Floating Point Constraint Systems 709

To allow gradual underflow, IEEE754 introduces de-normalized numbers whose
value is given by:

(−1)s0.m × 20

Note that simple precision are represented with 32 bits and a 23 bits mantissa
(p = 23) while doubles use 64 bits and a 52 bits mantissa (p = 52).

2.2 Absorption

Absorption occurs when adding two floating point numbers with different order
of magnitude. The result of such an addition is the furthest from zero. For
instance, in C, using simple floating point numbers with a rounding mode set to
“round to nearest”, 108 + 1.0 evaluates to 108. Thus, 1.0 is absorbed by 108.

2.3 Cancellation

Cancellation occurs when most of the most significant bits are lost. For instance,
it appears when subtracting the close results of two operations. Consequences of
cancellation increase with the accumulation of rounding errors. Such a phenom-
enon is highlighted by subtracting two close operands [18].

For instance, evaluating1 ((1.0f - 1.0e-7f) - 1.0f) * 1.0e+7f in C
using simple floating point numbers and a rounding mode sets to “round to
nearest” yields 1.1920928955078125 instead of −1.0. Indeed, over F subtracting
1.0 to the result of 1.0 − 10−7 leads to loose the most significant bits. The sub-
traction result is then used in a product that amplifies this loss in the mantissa.

2.4 Notations

In the sequel, x, y and z denote variables and x, y and z, their respective
domains. When required, xF, yF and zF denote variables over F and xF, yF and
zF, their respective domains while xR, yR and zR denote variables over R and xR,
yR and zR, their respective domains. Note that xF = [x

F
, xF] = {xF ∈ F, x

F
≤ xF ≤

xF} with x
F

∈ F and xF ∈ F. Likewise, xR = [x
R
, xR] = {xR ∈ R, x

R
≤ xR ≤ xR}

with x
R

∈ F and xR ∈ F. Let xF ∈ F, then x+
F

is the smallest floating point
number strictly superior to xF and x−

F
is the biggest floating point number

strictly inferior to xF. In addition, given a constraint c, vars(c) denotes the set
of floating point variables appearing in c.

3 Properties of Floating Point Domains, Variables
and Constraints

This section defines properties on floating point domains and constraints that are
useful to build dedicated search strategies. Domain properties like cardinality or
1 One must take care to annotate all literals with ‘f’ to force floating point constants

and to decompose the expression into elementary arithmetic operations to prevent
the compiler from evaluating at compile time.

710 H. Zitoun et al.

density capture the structure of the domains of the floating point variables.
Constraint properties take into account floating point arithmetic properties
like absorption or cancellation. They also capture structural properties by, for
instance, taking advantage of the derivative.

3.1 Properties of Floating Point Domains and Variables

Definition 1 (Width). Let w(xF) the width of domain xF be defined as

w(xF) = xF − x
F

The domain width is defined by the distance between its two bounds. It is a
rather historical criteria. On finite domains, many strategies rely on this criteria,
especially one of the most widespread, namely minDom [14]. Selecting variables
with the smallest domain aims at focusing on the most constrained variables.
However, over the floats, this criteria is questionable because of the non uniformly
distributed floating point values. Here, a smaller width does not necessarily mean
a smaller number of values.

Example 1 (Width versus size). Let xF and yF be two simple floating point vari-
ables and xF = [1, 2], yF = [10, 12] be their respective domains. While w(xF) = 1
and w(yF) = 2, xF contains 8388608 values and yF contains 2097152 values. Thus,
the most constrained variable is yF rather than xF.

Definition 2 (Cardinality). Let |xF| denotes the cardinality of domain xF.
Given xF = [x

F
, xF] with x

F
≥ 0 one can define |xF| with

|xF| = 2p ∗ (exF
− ex

F
) + mxF

− mx
F
+ 1

where exF
and ex

F
are the exponents of, respectively, xF and x

F
, and mxF

and mx
F

are the mantissa of, respectively, xF and x
F
while p is the length of the mantissa.

This formula can be extended to other cases by exploiting symmetries. Figure 1
illustrates how the cardinality of a floating point interval is computed. The bold
double ended arrow represents the interval xF. The main idea is to compute the
number of floating point values contained in the interval [2exF , 2exF] (computed
by 2p ∗ (exF

− ex
F
) + 1) represented by the simple double ended arrow. Then,

it withdraws the number of floats in [2exF , x
F
) (i.e., mx

F
floats) and adds the

number of floats in (2exF , xF] (i.e., mxF
floats).

2ex 2ex

x = m12
ex x = m22

ex

��
��

��
�� ��

Fig. 1. Computing cardinality of floating point intervals

Search Strategies for Floating Point Constraint Systems 711

Notice that, over finite domains, width and cardinality return nearly the same
values (especially when there are no ‘holes’ in the finite domains). However, over
the floats, these two properties are not correlated. Width and cardinality play
different roles over the floats. Cardinality could be used to identify either the
domain with the smallest number of floats, i.e., the variable that constraint the
most the problem, or the domain with the biggest number of floats, i.e., the
variable with a high potential of solutions.

Definition 3 (Density). Let ρ(xF) the density of xF be defined as

ρ(xF) =
|xF|

w(xF)

Intuitively, density captures the proximity of floating point values within a given
domain. It helps identifying domains that have a small number of values on
a big domain or a big number of values on a small domain (with respect to
the width). The former allows to reach easily values that should correspond to
various behaviors while the latter potentially contains many values corresponding
to the same behavior. Remember that, over the floats, density increases near zero.

Definition 4 (Magnitude). Let mag(xF) be the magnitude of xF and defined
as

mag(xF) =
ex

F
+ exF

2 · emax

where emax is the biggest exponent in F.

In practice, the magnitude of [0, 1] should be near zero while magnitude of
[1036, 1037] should be near 1. In essence, the property helps identifying domains
that mainly hold big values or small values. More precisely, magnitude has a
dual purpose. First, the property helps selecting variables involved in an absorp-
tion, for instance when a big magnitude domain and a small magnitude domain
are both involved in an addition. This is easier to implement but less precise
than the dedicated property defined in the upcoming Definition 8. Second, this
property might help selecting domains with extreme values. Extreme values are
those that are often associated to undesirable behaviors.

Definition 5 (Degree). Let degree(xF) denote the degree of a variable xF and
be defined as the number of constraints in which xF appears. It is defined as

degree(xF) =
∑

c∈C

(xF ∈ vars(c))

where C is the set of constraints.

Naturally, the degree definition mirrors its counterpart in finite-domain solvers.
It is a static property. The higher the degree of xF, the more xF plays an impor-
tant role in the solving process. Many strategies over finite domains take advan-
tage of this property like the weighted degree strategy [4].

712 H. Zitoun et al.

Definition 6 (Occurrences). Let occur(xF) denote the maximum number of
occurrences of xF among all constraints in a set C be defined as

occur(xF) = max
c∈C

count(xF, c)

where count(xF, c) is the number of xF occurrences in constraint c.

Multiple occurrences is a recurring problem in handling floating point variables.
While solutions have been proposed to handle this problem [2,13], identifying
variables with multiple occurrences, might help by, for instance, choosing a more
adapted filtering process and fixing these variables as soon as possible.

3.2 Properties of Floating Point Constraints

This section introduces properties that take advantage of floating point arith-
metic operators used within constraints. The properties will be helpful to define
constraint-driven branching strategies.

To appreciate the first property, consider a floating point addition constraint
zF = xF⊕yF in which the rounding more is set to “round to nearest even”. If the
domain xF has a significantly larger magnitude than yF, some values in yF may
simply be absorbed when carrying out the addition. Measuring which fraction
of yF is obliterated in this way is the purpose of the absorption property.

Definition 7 (Absorption). Let absorb(yF,xF) denote the absorption of yF by
xF and be defined as:

absorb(yF,xF) =
|[−2emax−p−1, 2emax−p−1] ∩ yF|

|yF|
Namely, it is the number of yF values that are absorbed by at least a value of xF.
In the above, emax is the exponent of max{abs(x

F
), abs(xF)}.

Note how uF = [−2emax−p−1, 2emax−p−1] ∩ yF captures the part of yF that is
absorbed by the biggest value in magnitude in xF. Thus, if none of the values
of yF are absorbed by xF, uF will be empty and absorb(yF,xF) will be equal to
0. On the contrary, when all values of yF are absorbed by xF, uF will be equal
to y and absorb(yF,xF) will be equal to 1. Selecting variables that are involved
in an absorption could help improving the quality of the software and providing
counter-examples that instantiate an absorption (see Fig. 2).

The next property only applies to subtraction constraints.

Definition 8 (Cancellation). Given a floating point subtraction constraint
zF = xF � yF where � is the floating point subtraction with the rounding more set
to “round to nearest even”, let cancellation denote the number of bits canceled
by the subtraction and be defined as

cancellation = max{ex
F
, exF

, ey
F

, ey
F
} − min{ezF , zF ∈ zF}

Search Strategies for Floating Point Constraint Systems 713

Fig. 2. Illustration of absorption phenomena

The cancellation definition was extracted from [3]. It increases with the num-
ber of canceled bits and whenever it becomes strictly positive, some bits are
potentially lost.

Definition 9 (Derivative). Given a constraint c : e1 ♦ e2 in which ♦ ∈ {=,≤
,≥, <,>}, c can be rewritten as f : e1−e2♦0. If f is a monovariate function, its
derivate can be evaluated using interval arithmetic and gives rise to the definition
of c’s derivative as

derive(c) = f ′(x) ≈ f(x + h) − f(x)
h

The approach generalizes to the case where f is a multivariate function. Its jaco-
bian J gives the variation of each of the variables of f according to other variables
of f . Using this matrix, either component-wise or by computing an aggregation
of the variation of each variable according to the others, the involvement of a
variable of f in the variation of f can be estimated.

Over the floats, a big variation of f might introduce some holes in the repre-
sentation of the function while a small variation is often represented by the same
floating point value. It thus provides useful information to drive the search.

4 Search Strategies for the Floats

As usual, search strategies over floats are based on a combination of variable
selection heuristics and splitting techniques. The next subsection introduces dif-
ferent variable selection heuristics based on the above-mentioned properties. The
subsection wraps up with four splitting techniques used in the experiments.

4.1 The Choice of a Variable

Single Property Strategies
Single property based strategies select the variable that either maximizes or
minimizes the chosen properties. For instance, one can choose the variable that
maximizes the domain density or the one that minimizes this density. That’s to
say, maxDens = maxxF∈X ρ(xF) (ditto for minDens).

714 H. Zitoun et al.

Other constraint properties deserve a more specialized approach. For
instance, absorb or cancellation can be maximized or minimized while the min-
imization or maximization of derive should be done according to its absolute
value. The absorb property is based on constraints of the form z = x + y. So, to
implement this property, we pick up the subset of constraints from C that are
additions (form z = x + y) and for which absorb(y, x) > 0.

Finally, degree and occur are static properties whose value stays the same
along the search tree.

Multi Property Strategies
In the following, we define two strategies that are based on two properties:
absWDens and densWAbs.

absWDens selects the variable that maximizes density from a subset of vari-
ables that are involved in an absorption (absorb > 0).

densWAbs selects the variable that maximizes absorption among the subset
of variables that satisfies density ≥ maxDens+minDens

2 .

4.2 Domain Splitting Strategies

Problems over the floating point numbers are characterized by huge domains and
non uniformly distributed values. As a result, an enumeration strategy like the
one often used in finite domains would fail to quickly find a solution, spending
most of the time to exhaustively enumerate all possible combinations of values.
It would also fail by missing the opportunity to reduce the size of the domains
which is offered when a classical domain splitting strategy like a simple bisection
is followed by a filtering process. However, in the presence of a lot of solutions,
a simple bisection (Fig. 3a) quickly reaches its limits, the filtering applied after
each bisection being unable to reduce domain sizes. On the other hand, problems
with no solution should benefit from a simple bisection.

min mid mid+ max

(a) Bisection

min mid−

mid

mid+ max

(b) Split 3 way

min

min+ mid−

mid

mid+ max−

max

(c) Split 5 way

min

min+ mid−

mid mid+

mid++ max−

max

(d) Split 6 way

Fig. 3. Different splitting strategies

To overcome these difficulties, we use 3 splitting strategies that mix bisection
and enumeration ad that are derived from the strategies introduced in [5]. Instead

Search Strategies for Floating Point Constraint Systems 715

of just splitting the domain in two parts, some of the floating point values at the
boundaries of the split are isolated and used as enumerated values. Figures 3b–d
illustrate the new splitting strategies that combine bisection and enumeration.
These combinations begin always with the enumeration of the selected values
before handling the two remaining sub-domains. These splitting strategies are
called partial enumeration splittings.

4.3 Semi-dynamic and Dynamic Strategies

Two alternatives are possible when it comes to composing variable selection and
domain splitting. The semi-dynamic strategy can first choose a variable and
then recursively split that variable until it becomes bound. This approach does
not reconsider other variables until the chosen one is grounded. Note that it
is possible to leverage any splitting strategy, including the partial enumeration.
The dynamic strategy adopts a more permissive view. At each node of the search
tree, it selects a variable, splits its domain according to some strategy and moves
on to possibly select a different variable at the next node. It does not insist on
fully instantiating the chosen variable.

5 Experiments

We combined the different variable selection heuristics and splitting techniques
on a set of 8 realistic benchmarks. A standard strategy based on a lexicographic
order variable selection and dynamic 2 way split (i.e., a classical bisection) serves
as reference value.

All the experiments were carried out on a MacBook Pro i7 2.3 GHz with
8 GB of memory. All strategies have been implemented in the Objective-CP
solver enhanced with floating point constraints. All floating point computations
are done with simple precision floats and a rounding mode set to “nearest even”.

5.1 Benchmarks

The benchmarks used in these experiments come from test and verification of
floating point software.

Heron. The heron function compute the area of a triangle from the lengths of
its sides a, b, and c with Heron’s formula:

√
s ∗ (s − a) ∗ (s − b) ∗ (s − c) where

s = (a + b + c)/2. The next C program implements this formula, where a is the
longest side of the triangle.

// Precondi t ion : a > 0 and b > 0 and c > 0 and a > b and b > c
f loat heron (f loat a , f loat b , f loat c) {

f loat s , squared area ;

squared area = 0 .0 f ;
i f ((a + b >= c) && (b + c >= a) && (a + c >= b)) {

716 H. Zitoun et al.

s = (a + b + c) / 2 .0 f ;
squared area = s ∗(s−a)∗ (s−b)∗ (s−c) ;

}
return s q r t (squared area) ;

}

The first benchmark verifies that if a ∈ (5.0, 10.0], b ∈ (0.0, 5.0] and c ∈ (0.0, 5.0],
then squared area < 105. The second verifies that with the same input domains,
squared area > 156.25 + 10−5) [5].

Optimized Heron. Optimized heron is a variation of heron which uses a more
reliable floating point expression to compute squared area.

// Precondi t ion : a > 0 and b > 0 and c > 0 and a > b and b > c
f loat opt imized heron (f loat a , f loat b , f loat c) {

f loat s , squared area ;

squared area = 0 .0 f ;

i f ((a + b >= c) && (b + c >= a) && (a + c >= b)) {
squared area = (((a+(b+c))∗ (c−(a−b))∗

(c+(a−b))∗ (a+(b−c))) / 1 6 . 0 f) ;
}

return s q r t (squared area) ;
}

Here, one test verifies that if a ∈ (5.0, 10.0], b ∈ (0.0, 5.0] and c ∈ (0.0, 5.0], then
squared area < 105 while the second verifies that with the same input domains,
squared area > 156.25+10−5). Note that the latter benchmark has no solution.

Cubic. The solve cubic benchmark was extracted from the Gnu Scientific
Library. It seeks a set of input values that reach the first condition of the pro-
gram.

int s o l v e c ub i c (double a , double b , double c ,
double ∗x0 , double ∗x1 , double ∗x2) {

double q = (a ∗ a − 3 ∗ b) ;
double r = (2 ∗ a ∗ a ∗ a − 9 ∗ a ∗ b + 27 ∗ c) ;
double Q = q / 9 ;
double R = r / 54 ;
double Q3 = Q ∗ Q ∗ Q;
double R2 = R ∗ R;
double CR2 = 729 ∗ r ∗ r ;
double CQ3 = 2916 ∗ q ∗ q ∗ q ;
i f (R == 0 && Q == 0) {

. . .

Search Strategies for Floating Point Constraint Systems 717

Square 2. The next benchmark checks that the square product of a float cannot
be equal to 2.

// i n v s q u a r e i n t t r u e −unreach−c a l l . c
int f (int x) {

f loat y , z ;
// assume (x >= −10 && x <= 10) ;
y = x∗x − 2 . f ;
// a s s e r t (y != 0 . f) ;
z = 1 . f / y ;
return 0 ;

}

As a matter of fact, there is no simple floating point value whose square equal
to 2 with the standard rounding mode. Thus, this bench has no solution.

Square 4. A variation checks that the square of a float cannot be equal to 4.

// f l o a t i n t i n v s q u a r e f a l s e −unreach−c a l l . c
int g (int x) {

f loat y , z ;
// assume (x >= −10 && x <= 10) ;
y = x∗x − 4 . f ;
// a s s e r t (y != 0 . f) ;
z = 1 . f / y ;
return 0 ;

}

A solution for this problem is well known and this benchmark has solutions.

Slope. The slope function computes an approximation of the derivative of the
square function.

f loat s l ope (f loat x0 , f loat h) {
f loat x1 = x0 + h ; f loat x2 = x0 − h ;
f loat fx1 = x1∗x1 ; f loat fx2 = x2∗x2 ;
f loat r e s = (fx1 − fx2) / (2 . 0∗h) ;
return r e s ;

}

The benchmark checks that for x0 = 13, the result is always inferior or equal to
25 for all value of h ∈ [10−9, 10−6].

5.2 Results

In the tables, the variable choice column contains two columns, the strategy
column (short name “strat.”) and the dynamic column (short name “dyn.”).
The strategy column specifies the kind of strategy used to choose the variable
whose domain will be split. It is a minimization or a maximization of the defined
properties (noted “min” or “max” followed by the first letters of the property

718 H. Zitoun et al.

name) or one of the combinations of density and absorption that we have defined.
Note that we have not implemented the derivate property yet. The dynamic
column takes the value “full” when a different variable is chosen at each node of
the search tree or “semi” when the variable choice is postponed until the curent
variable is fully instantiated.

Column “split” gives the number of generated values and subdomains. Thus,
2 stands for Fig. 3a, that is to say, a classical bisection, 3 stands for Fig. 3b, 5
for Fig. 3c and 6 for Fig. 3d. Column

∑
t gives the total amount of milliseconds

required to solve all the benchmarks, or all the benchmarks with or without
solutions, according to the selected strategies. When available, the “#OUT”
column gives the number of timeout and memory out. Note that the timeout is
180 s and that each memory out is accounted as a time out.

Table 1 gathers three subtables that give the total amount of time required to
solve all the benchmarks (Table 1a), all the benchmarks with solutions (Table 1b)
and all the benchmarks without solution (Table 1c) according to a given combi-
nation of variable choice and splitting strategy. Note that these tables reports
only the ten best cases and the ten worst cases among the 144 combinations of
variable choice and splitting strategies tested, as well as the time required to
solve the related set of benchmarks using the reference strategy.

Tables 2, 3 and 4 give the total amount of time to solve all benchmarks,
all benchmarks with solutions, and all benchmarks without solution according
to one of the criteria introduced in our search strategies, i.e., respectively, the
variable choice strategy, the nature of the variable choice (semi- or fully-dynamic)

Table 1. Total time to solve benchmarks according to variable choice and splitting

variable choice split.
∑

t
strat. dyn. (ms)

maxAbs semi 6 4883
maxAbs full 6 4930
maxDens semi 6 5059
densWAbs full 6 7517
maxCard semi 6 180191
densWAbs semi 6 180194
maxDegree full 6 180307
maxDegree semi 6 180310
maxAbs full 5 184613
maxDens semi 5 184796

...
ref 550988

...
minDegree semi 3 906285
minOcc semi 3 906285

maxWidth semi 3 906607
minCard semi 3 911526
maxMagn semi 3 1077852
absWDens full 3 1080002
maxWidth semi 2 1080004
minDens semi 3 1080005
absWDens full 5 1080147
absWDens full 5 1440000

(a) all

variable choice split.
∑

t
strat. dyn. (ms)

maxAbs semi 6 187
maxCard semi 6 189
densWAbs semi 6 191
densWAbs full 6 196
maxAbs full 6 202
maxDens semi 6 217
maxDegree full 6 305
maxDegree semi 6 307
maxWidth full 6 31244
minDens full 6 38332

...
ref 540011

...
minDens semi 3 720005
minDegree semi 2 720005
minDegree full 2 720005
minAbs full 3 720005
maxDens full 3 720006
minOcc semi 2 720006
minAbs full 2 720006

absWDens full 5 720147
maxWidth semi 2 900002
absWDens full 5 1080000

(b) with solutions

variable choice split.
∑

t
strat. dyn. (ms)

maxAbs semi 2 2376
maxAbs full 2 2379
maxAbs full 3 2410
maxDens semi 2 2439
maxCard full 3 4405
maxAbs semi 5 4451
maxAbs full 5 4467
maxCard full 2 4594
maxDens semi 5 4626
maxAbs semi 6 4696

...
ref 10977

...
maxMagn semi 3 360000
minMagn semi 3 360000
maxDegree semi 3 360000
minDegree semi 3 360000
minOcc semi 3 360000

absWDens semi 2 360000
absWDens semi 3 360000
absWDens semi 5 360000
absWDens semi 6 360000
densWAbs semi 3 360000

(c) without solution

Search Strategies for Floating Point Constraint Systems 719

Table 2. Total time to solve benchmarks according to variable choice strategy

Variable choice All With solution Without solution

Strat.
∑

t (ms) #OUT
∑

t (ms) #OUT
∑

t (ms) #OUT

maxWidth 4330019 21 2962680 14 1367339 7

minWidth 3762938 19 3470297 18 292641 1

maxCard 3231581 16 1962573 9 1269008 7

minCard 4315427 25 4023103 24 292324 1

maxDens 2573614 13 2323093 12 250521 1

minDens 4936905 27 3316894 18 1620011 9

maxMagn 4881081 24 3261049 15 1620011 9

minMagn 3722681 19 2761916 14 960765 5

maxDegree 3413676 17 1793656 8 1620020 9

minDegree 5259904 27 3639886 18 1620018 9

maxOcc 3360986 17 3071415 16 289571 1

minOcc 5259433 27 3639415 18 1620018 9

maxAbs 2728996 15 2521099 14 207897 1

minAbs 3784212 20 3492984 19 291228 1

maxCan 3360698 17 3071986 16 288712 1

minCan 3356934 17 3068356 16 288578 1

absWDens 5065493 27 3391300 18 1674193 9

densWAbs 2344948 11 1418791 6 926157 5

Table 3. Total time to solve benchmarks according to semi or full dynamic search

Variable choice All With solution Without solution

Dyn.
∑

t (ms) #OUT
∑

t (ms) #OUT
∑

t (ms) #OUT

Semi 37278081 192 27144829 138 10133252 54

Full 33851636 173 27485876 141 6365760 32

Table 4. Total time to solve benchmarks according to splitting strategy

Split. All With solution Without solution
∑

t(ms) #OUT
∑

t(ms) #OUT
∑

t (ms) #OUT

2 23444527 124 20325639 108 3118888 16

3 23539280 123 17177874 89 6361406 34

5 13654772 72 10155196 54 3499576 18

6 10491138 46 6971996 28 3519142 18

720 H. Zitoun et al.

and the number of fragments created by splits. Thus, each line of Table 2 sum
64 cases, each line of Table 3, 576 cases and each line of Table 4 288 cases.

5.3 Analysis

As shown in Table 1a, the best strategy outperforms the standard strategy by a
factor of more than 110. These performances are even better for problems with
solution (see Table 1b) where the gain factor is of more than 2800. On the other
hand, the improvement for benchmarks without solution is only 4 times. Thus,
the best tested strategies can significantly improve the search of a first solution
whenever such a solution exist.

Combining wisely two properties can also be helpful to select useful solutions:
the densWabs combination improves the density property while selecting solution
that provide an absorption phenomena.

Thanks to Table 2, we can compare the different variable choice strategies.
Here, the tested combination of strategies have the overall best behavior, espe-
cially, on benchmarks with solutions.

Table 3 shows that the fully dynamic strategy brings the best results on
average, though the semi dynamic strategy is slightly better on benchmarks
with solutions. However, these results are somewhat unbalanced by two of the
variable strategies, namely the occurence and degree strategies. Such properties
are static properties whose values stay the same along the search tree. As a
consequence, once a variable is chosen according to this property, it will be
chosen in the next node of the search tree until it cannot be chosen anymore,
i.e., when fully instantiated. Thus, these two properties, whether maximized
or minimized, behave alike the semi-dynamic strategy and penalize the fully
dynamic results.

Table 4 confirms that the 2 splits or bisection is a better choice for problem
without solution while the 6 splits have better performances on problems with
solutions.

On the whole the most successful strategies are based on the absorption prop-
erty, a purely floating point property. The goal when maximizing the absorption
is to generate floating point errors, that’s to say values for which the control flow
over the floats differs from the expected flow over the reals. This is precisely the
case of the benchmarks derived from Heron’s formula.

6 Conclusion

This paper introduced a set of properties to choose a variable in a search for
solving constraints over the floating point numbers. These maximized or min-
imized properties have been used to choose a variable during the search and
combined with a semi dynamic and fully dynamic choice of variable, as well as,
4 splitting strategies. Preliminary experiments have shown that some of these
combinations outperforms the standard strategy by two order of magnitude for

Search Strategies for Floating Point Constraint Systems 721

all kind of benchmarks and three order of magnitude for benchmarks with solu-
tions. Further works include experimenting on a broader set of benchmarks,
exploring other properties and evaluating which combination of properties could
benefit to the search.

References

1. Alefeld, G.E., Potra, F.A., Shen, Z.: On the existence theorems of Kantorovich,
Moore and Miranda. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis:
With Special Emphasis on Nonlinear Problems, vol. 15, pp. 21–28. Springer, Vienna
(2001). doi:10.1007/978-3-7091-6217-0 3

2. Belaid, M.S., Michel, C., Rueher, M.: Boosting local consistency algorithms
over floating-point numbers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 127–140.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7 12

3. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-
point accuracy problems. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2012, Beijing, China, 11–16 June 2012,
pp. 453–462 (2012)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI 2004, pp. 146–150 (2004)

5. Collavizza, H., Michel, C., Rueher, M.: Searching critical values for floating-point
programs. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol.
9976, pp. 209–217. Springer, Cham (2016). doi:10.1007/978-3-319-47443-4 13

6. Collavizza, H., Rueher, M., Van Hentenryck, P.: CPBPV: A constraint-
programming framework for bounded program verification. Constraints 15(2), 238–
264 (2010)

7. Collavizza, H., Le Vinh, N., Rueher, M., Devulder, S., Gueguen, T.: A dynamic
constraint-based BMC strategy for generating counterexamples. In: 26th ACM
Symposium On Applied Computing (2011)

8. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). doi:10.1007/978-3-319-23219-5 10

9. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

10. IEEE: IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard,
754 (2008)

11. Jussien, N., Lhomme, O.: Dynamic domain splitting for numeric CSPs. In: ECAI,
pp. 224–228 (1998)

12. Kearfott, R.B.: Some tests of generalized bisection. ACM Trans. Math. Softw.
13(3), 197–220 (1987)

13. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proceedings of 13th
International Joint Conference on Artifical Intelligence, IJCAI 1993, vol. 1, pp.
232–238. Morgan Kaufmann Publishers Inc., San Francisco (1993)

14. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies
for mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999)

15. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29828-8 15

http://dx.doi.org/10.1007/978-3-7091-6217-0_3
http://dx.doi.org/10.1007/978-3-642-33558-7_12
http://dx.doi.org/10.1007/978-3-319-47443-4_13
http://dx.doi.org/10.1007/978-3-319-23219-5_10
http://dx.doi.org/10.1007/978-3-642-29828-8_15
http://dx.doi.org/10.1007/978-3-642-29828-8_15

722 H. Zitoun et al.

16. Ponsini, O., Michel, C., Rueher, M.: Verifying floating-point programs with con-
straint programming and abstract interpretation techniques. Autom. Softw. Eng.
23(2), 191–217 (2016)

17. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8 41

18. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall Series in Automatic
Computation. Prentice-Hall, Upper Saddle River (1973)

http://dx.doi.org/10.1007/978-3-540-30201-8_41

Author Index

Albarghouthi, Aws 689
Amadini, Roberto 3
Aoga, John O.R. 529
Arafailova, Ekaterina 21, 38

Babaki, Behrouz 495
Bacchus, Fahiem 641
Bailey, James 477
Banbara, Mutsunori 596
Beldiceanu, Nicolas 21, 38
Belov, Gleb 321
Berg, Jeremias 443, 652
Bilgory, Erez 55
Bin, Eyal 55
Bofill, Miquel 71
Bouchard, Mathieu 512
Boussemart, Frederic 129
Briant, Olivier 114

Cambazard, Hadrien 114
Carlsson, Mats 387
Chabert, Maxime 460
Chiarandini, Marco 354
Coll, Jordi 71
Cruz, Waldemar 189
Czauderna, Tobias 321

Dalmau, Víctor 80
de Givry, Simon 97
Deville, Yves 297
Di Cosmo, Roberto 370
Dries, Anton 495
Dzaferovic, Amel 321

Feydy, Thibaut 308
Fioretto, Ferdinando 278

Gabbrielli, Maurizio 370
Gange, Graeme 3
Ganji, Mohadeseh 477
Gao, Xin 405
Garcia de la Banda, Maria 321
German, Grigori 114

Glorian, Gael 129
Goldwaser, Adrian 338
Gotlieb, Arnaud 387
Guns, Tias 529

Ham, Lucy 139
Hasan, Mohd. Hafiz 549
Hooker, J.N. 565
Hyttinen, Antti 641

Jackson, Marcel 139
Järvisalo, Matti 443, 641, 652
Jin, Jiwei 405
Johnson, Greg 189
Jost, Vincent 114

Katsirelos, George 97
Kilby, Philip 414
Kimmig, Angelika 495
Kjellerstrand, Håkan 671
Knudsen, Anders Nicolai 354
Koenig, Sven 630
Koutris, Paraschos 689
Kumar, T.K. Satish 630

Lagerkvist, Victor 157
Lagniez, Jean-Marie 129, 172
Lam, Edward 579
Larsen, Kim S. 354
Latour, Anna L.D. 495
Le Berre, Daniel 596
Le, Tiep 278
Lecoutre, Christophe 129, 297
Liu, Fanghui 189
Liu, Tong 370

Ma, Chujiao 189
Ma, Feifei 405
Marquis, Pierre 172
Mauro, Jacopo 370
Mazure, Bertrand 129
McCreesh, Ciaran 206
Meling, Hein 387
Michel, Claude 707

Michel, Laurent 189, 707
Mossige, Morten 387

Naik, Mayur 689
Nijssen, Siegfried 495

O’Sullivan, Barry 262
Oikarinen, Emilia 443

Pan, Linjie 405
Paparrizou, Anastasia 172
Perez, Guillaume 226
Picard-Cantin, Émilie 512
Pralet, Cédric 243
Prosser, Patrick 206
Puolamäki, Kai 443

Quimper, Claude-Guy 512

Régin, Jean-Charles 226
Rueher, Michel 707

Saikko, Paul 641
Schaus, Pierre 297, 529
Schutt, Andreas 308, 338
Siala, Mohamed 262
Simonis, Helmut 21, 38
Simpson, Kyle 206
Smith, Calvin 689
Soh, Takehide 596
Solnon, Christine 460
Spieker, Helge 387
Stuckey, Peter J. 3, 477

Subramani, K. 615
Sun, Wei 405
Suy, Josep 71
Sweeney, Jason 512

Tabakhi, Atena M. 278
Tack, Guido 3
Tamura, Naoyuki 596
Tayur, Sridhar 431
Trimble, James 206

Urli, Tommaso 414

Van den Broeck, Guy 495
Van Hentenryck, Pascal 549, 579
van Hoeve, Willem-Jan 431
Verhaeghe, Hélène 297
Villaret, Mateu 71

Wahlström, Magnus 157
Wallace, Mark 321
Wojciechowski, Piotr 615
Wybrow, Michael 321

Xu, Hong 630

Yeoh, William 278
Yin, Minghao 405
Young, Kenneth D. 308

Zhang, Jian 405
Zhou, Neng-Fa 671
Zitoun, Heytem 707
Ziv, Avi 55

724 Author Index

	Preface
	Tutorials and Workshops
	Conference Organization
	Journal Fast Track (Abstract)
	Improved Filtering for the Bin-Packing with Cardinality Constraint
	Ranking Constraints
	Modeling with Metaconstraints and Semantic Typing of Variables
	MaxSAT-Based Large Neighborhood Search for High School Timetabling
	Android Database Attacks Revisited
	Hybrid Optimization Methods for Time-Dependent Sequencing Problems (Abstract)
	Learning Rate Based Branching Heuristic for SAT Solvers
	Three Generalizations of the FOCUS Constraint
	Conditions Beyond Treewidth for Tightness of Higher-Order LP Relaxations
	Contents
	Technical Track
	A Novel Approach to String Constraint Solving
	1 Introduction
	2 Preliminaries
	3 Dashed Strings
	3.1 Definition
	3.2 Equating Dashed Strings

	4 Constraint Solving
	4.1 Constraints
	4.2 Search

	5 Evaluation
	6 Conclusions
	References

	Generating Linear Invariants for a Conjunction of Automata Constraints
	1 Introduction
	2 Background
	3 Generating Linear Invariants
	3.1 Constructing the Invariant Digraph for a Conjunction of Automaton Constraints Wrt a Linear Function
	3.2 Finding the Relative Coefficients of the Linear Invariant
	3.3 Finding the Constant Term of the Linear Invariant

	4 Conditional Linear Invariants
	4.1 Linear Invariants with the Non-default Value Condition
	4.2 Generating Guards for Transitions of the Intersection of Several Automata

	5 Evaluation
	6 Conclusion
	References

	AMONG Implied Constraints for Two Families of Time-Series Constraints
	1 Introduction
	2 Time-Series Constraints Background
	3 Deriving AMONG Implied Constraint
	3.1 Characteristics of Regular Expressions
	3.2 Deriving an AMONG Implied Constraint for the MAX_SURF_ and the SUM_SURF_ Families

	4 Evaluation
	5 Conclusion
	References

	Solving Constraint Satisfaction Problems Containing Vectors of Unknown Size
	1 Introduction
	2 Problem Description
	3 Our Solution
	3.1 Constructing and Solving a Vector Size Sub-problem

	4 Experimental Results
	5 Conclusions
	References

	An Efficient SMT Approach to Solve MRCPSP/max Instances with Tight Constraints on Resources
	1 Introduction
	2 The Multi-mode RCPSP with Minimum and Maximum Time Lags (MRCPSP/max)
	3 Formulation
	4 Optimization Procedure
	5 New Benchmark Datasets for MRCPSP/max
	6 Results and Conclusions
	References

	Conjunctions of Among Constraints
	1 Introduction
	2 Preliminaries
	3 Network Hypergraphs
	4 Restricting Only the Scope or the Range
	5 A Flow-Based Algorithm
	6 Some Applications
	6.1 Disjoint Constraints
	6.2 Domains Consisting of Subsets
	6.3 The Sequence Constraint
	6.4 TFO model
	6.5 Conjunction of Among Constraints with Full Domain
	6.6 Adding New Among Constraints to a GCC constraint

	References

	Clique Cuts in Weighted Constraint Satisfaction
	1 Introduction
	2 Background
	3 Clique Cuts
	3.1 Cliques in WCSPs
	3.2 Propagating Clique Constraints
	3.3 Issues with Virtual Arc Consistency
	3.4 Clique Selection and Ordering Heuristic

	4 Related Work
	5 Experimental Results
	6 Conclusions
	References

	Arc Consistency via Linear Programming
	1 Introduction
	2 Notations
	3 Traditional Filtering Using LP: Reduced-Cost Filtering
	4 A New Generic Filtering Algorithm Based on LP
	5 Ideal Linear Formulations of Polynomial Global Constraints
	5.1 AllDifferent and GlobalCardinality
	5.2 The Family of Sequence Constraints

	6 Numerical Results
	6.1 LP and Reduced-Cost Filtering for the AllDifferent constraint
	6.2 Filtering One Sequence Constraint
	6.3 The Car-Sequencing Problem

	7 Conclusion and Future Work
	References

	Combining Nogoods in Restart-Based Search
	1 Introduction
	2 Preliminaries
	3 Increasing Nogoods
	4 Reasoning with Increasing Nogoods
	4.1 Reasoning with Watched Negative Decisions
	4.2 Combining Increasing Nogoods of Similar
	4.3 Combining Increasing Nogoods Using Pivots

	5 Experiments
	6 Conclusion
	References

	All or Nothing: Toward a Promise Problem Dichotomy for Constraint Problems
	1 Introduction
	2 Constraints and Implied Constraints
	3 Primitive Positive Formulæ and Robust Satisfiability
	4 Primitive Positive Definability and Polymorphisms
	5 Main Results
	6 Preliminary Development: F-Types and Claw Formulæ
	7 Step 1. Reflection
	8 Step 2. Stability of Robustness over Primitive-Positive Reductions
	9 Step 3. (k,)-Robustness of (3k+3)SAT
	10 Step 4. (k,F)-Robustness of 3SAT
	11 Step 5: Idempotence and the Algebraic Method
	12 Proof of ANT, Corollaries and Theorem7
	13 Discussion and Extensions
	References

	Kernelization of Constraint Satisfaction Problems: A Study Through Universal Algebra
	1 Introduction
	2 Preliminaries
	2.1 The Constraint Satisfaction Problem and Kernelization
	2.2 Operations and Relations

	3 Maltsev Embeddings and Kernels of Linear Size
	4 Partial Polymorphisms and Lower Bounds
	5 Concluding Remarks and Future Research
	References

	Defining and Evaluating Heuristics for the Compilation of Constraint Networks
	1 Introduction
	2 Formal Preliminaries
	3 Heuristics for Compiling CNs
	3.1 Heuristics Targeting the MDD Language
	3.2 Heuristics Targeting the MDDG Language

	4 Empirical Evaluation
	5 Conclusion
	References

	A Tolerant Algebraic Side-Channel Attack on AES Using CP
	1 Introduction
	2 Modeling AES and Side-Channel Information
	3 IP Approach
	4 Constraint Programming
	4.1 Bit-Vector Domains
	4.2 Bit-Vector Constraints

	5 CP Approach
	6 Experimental Setup
	7 Conclusion
	References

	On Maximum Weight Clique Algorithms, and How They Are Evaluated
	1 Introduction
	2 Maximum Weight Clique Algorithms
	3 Current Practices in Benchmarking
	4 Experimental Setup
	5 Does Weight Allocation Affect Algorithm Design?
	6 Other Families of Problem Instances
	6.1 Kidney Exchange
	6.2 Colouring Instances
	6.3 Error-Correcting Codes
	6.4 The Winner Determination Problem
	6.5 The Research Excellence Framework
	6.6 Experiments

	7 Conclusion
	References

	MDDs: Sampling and Probability Constraints
	1 Introduction
	2 Preliminaries
	2.1 Probability Distribution
	2.2 Markov Chain
	2.3 Multi-valued Decision Diagram (MDD)

	3 Sampling and MDD
	3.1 PMF and Independent Variables
	3.2 Markov Chain
	3.3 Incremental Modifications

	4 MDDs and Probabilities Based Constraints
	5 Evaluation
	5.1 PMF Constraint and Sampling
	5.2 Markov Chain and Sampling

	6 Conclusion
	References

	An Incomplete Constraint-Based System for Scheduling with Renewable Resources
	1 Introduction
	2 RCPSP with Sequence-Dependent Setup Times (SDST-RCPSP)
	3 A Lazy Precedence Graph Generation Scheme
	4 Incremental Schedule Maintenance Techniques
	5 Differentiability of the Invariant
	6 Generic Local Search Neighborhoods
	7 Search Strategy
	8 Experiments
	9 Conclusion and Future Work
	References

	Rotation-Based Formulation for Stable Matching
	1 Introduction
	2 Constraint Programming
	3 Stable Matching
	4 A Rotation-Based Formulation
	4.1 A SAT Encoding
	4.2 Properties Related to Unit Propagation

	5 Arc Consistency
	6 Experimental Results
	7 Conclusion
	References

	Preference Elicitation for DCOPs
	1 Introduction
	2 Background
	3 Motivating Domain: Smart Home Device Scheduling Problem
	3.1 DCOP Representation

	4 Encoding and Eliciting Preferences in SHDS
	5 Preference Elicitation in DCOPs
	5.1 The Preference Elicitation Problem
	5.2 Preference Elicitation Heuristics

	6 Related Work
	7 Empirical Evaluation
	7.1 Random Graphs
	7.2 Smart Home Device Scheduling (SHDS) Problems

	8 Conclusions and Future Work
	References

	Extending Compact-Table to Basic Smart Tables
	1 Introduction
	2 Technical Background
	3 CT on Ordinary and Short Tables
	4 CT on Basic Smart Tables
	4.1 Handling =v
	4.2 Handling <op>v, with <op>{<,,,>}
	4.3 Handling S (and -.25ex-.25ex-.25ex-.25exS)

	5 Compression
	6 Experimental Results
	7 Conclusion
	References

	Constraint Programming Applied to the Multi-Skill Project Scheduling Problem
	1 Introduction
	2 Literature Review
	3 Problem Definition
	4 Constraint Programming Model
	4.1 Basic Variables and Constraints
	4.2 Unary Resource Constraints
	4.3 Redundant Constraints
	4.4 Search Procedures

	5 Computational Experiments
	6 Conclusion
	References

	Application Track
	An Optimization Model for 3D Pipe Routing with Flexibility Constraints
	1 Introduction
	2 Literature Review
	3 Problem Description and Associated Model
	3.1 Input and Derived Data
	3.2 Decision Variables
	3.3 Constraints
	3.4 Search Strategy

	4 MiniZinc and Its Solver-Specific Redefinitions
	5 Evaluation
	5.1 Default Benchmark
	5.2 Overall Approach
	5.3 Results for Solvers Gurobi, IBM ILOG CPLEX, Chuffed, Gecode, and OR-Tools

	6 Visualization of Layout Solutions
	7 Conclusions and Outlook
	References

	Optimal Torpedo Scheduling
	1 Introduction
	2 Torpedo Scheduling
	3 Preprocessing
	3.1 Departure Times from the Oxygen Converter
	3.2 Arrival Times at the Blast Furnace
	3.3 Backward Matching

	4 Solution Method
	4.1 MIP Model
	4.2 The CP Model
	4.3 Benders Cuts
	4.4 Limited Forward Matchings

	5 Experiments
	6 Conclusion
	References

	Constraint Handling in Flight Planning
	1 Introduction
	2 The Constrained Horizontal Flight Planning Problem
	2.1 Definition of RAD Constraints

	3 Path Finding Algorithms
	3.1 Handling the Constraints
	3.2 Best-First and A* Algorithms
	3.3 Lazy Expansion
	3.4 Further Elements: Lazy Constraints and Constraint Pruning

	4 Experimental Results
	5 Conclusions
	References

	NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities
	1 Introduction
	2 NightSplitter
	3 NightSplit
	3.1 Useful Extensions

	4 Solution Approaches
	4.1 NightSplit and Constraint Programming
	4.2 NightSplit and Simulated Annealing

	5 Empirical Experiment
	6 Related Work
	7 Conclusions and Future Work
	References

	Time-Aware Test Case Execution Scheduling for Cyber-Physical Systems
	1 Introduction
	2 Existing Solutions and Related Work
	3 Problem Modeling
	3.1 Optimal Test Case Execution Scheduling
	3.2 The Cumulatives Global Constraint
	3.3 Modeling Test Case Execution Scheduling
	3.4 Introducing Global Resources

	4 The TC-Sched Method
	4.1 Constraint Model
	4.2 Search Procedure
	4.3 Time-Constrained Minimization

	5 Implementation and Exploitation
	6 Experimental Evaluation
	6.1 Experimental Artifacts
	6.2 RQ1: How Does TC-Sched Compare with Simpler Scheduling?
	6.3 RQ2: Will Longer Solving Time Reduce the Total Execution Time?
	6.4 RQ3: Can TC-Sched Efficiently Solve Industrial OTS Problems?

	7 Conclusion
	References

	Integrating ILP and SMT for Shortwave Radio Broadcast Resource Allocation and Frequency Assignment
	1 Introduction
	2 Problem Description
	3 The Two-Phase Approach
	3.1 The Framework
	3.2 Phase 1: Device Allocation and Band Assignment
	3.3 Phase 2: Frequency Assignment

	4 Experimental Results and Analysis
	5 Conclusions
	References

	Constraint-Based Fleet Design Optimisation for Multi-compartment Split-Delivery Rich Vehicle Routing
	1 Introduction
	2 Related Work
	2.1 Multi-compartment Vehicle Routing
	2.2 Split Delivery Vehicle Routing
	2.3 Fleet Size and Mix Vehicle Routing

	3 Problem Definition
	4 Model
	4.1 Horizon-Wide Variables and Constraints
	4.2 Daily Variables and Constraints

	5 Search Strategy
	5.1 Large Neighbourhood Search

	6 Fleet Design
	7 Experimental Analysis
	7.1 Results on Individual Days
	7.2 Union Fleet
	7.3 Multi-day Fleet
	7.4 Discussion

	8 Conclusions
	References

	Integer and Constraint Programming for Batch Annealing Process Planning
	1 Introduction
	2 Problem Description
	3 Phase 1: Batch Design
	4 Phase 2: Batch Scheduling
	5 Implementation and Results
	6 Conclusion
	References

	Machine Learning and CP Track
	Minimum-Width Confidence Bands via Constraint Optimization
	1 Introduction
	2 The Minimum-Width Confidence Band Problem
	3 Constraint Optimization Models for MWCB(k,s,t)
	3.1 Mixed Integer Programming Model
	3.2 Maximum Satisfiability

	4 A Greedy Approach to MWCB(k,s,t)
	5 Experiments
	5.1 Datasets
	5.2 Results

	6 Related Work
	7 Conclusions
	References

	Constraint Programming for Multi-criteria Conceptual Clustering
	1 Introduction
	2 Background on Conceptual Clustering
	3 New CP Models
	3.1 New Full CP Model
	3.2 New Hybrid Model

	4 Experimental Comparison for Single Objective Problems
	5 Multi-criteria Optimization
	5.1 Computation of Extrema Solutions
	5.2 Computation of the Pareto Front

	6 Conclusion
	References

	A Declarative Approach to Constrained Community Detection
	1 Introduction
	2 Background
	3 Preliminaries
	4 Constraint Based Community Detection
	4.1 Decision Variables
	4.2 Constraints on Representation
	4.3 Objective
	4.4 Modelling Instance Level Supervision
	4.5 Modelling Community Level Supervision
	4.6 Modelling Definition Based Constraints
	4.7 Modelling Complex Logic Constraints

	5 Experimental Results
	5.1 Comparison to Other Methods
	5.2 Effect of Community Level Supervision
	5.3 Case Study
	5.4 Scalability

	6 Conclusion
	References

	Combining Stochastic Constraint Optimization and Probabilistic Programming
	1 Introduction
	2 Modeling Problems in SC-ProbLog: An Example
	3 Background
	4 Approach
	5 Experiments
	6 Conclusions
	References

	Learning the Parameters of Global Constraints Using Branch-and-Bound
	1 Introduction
	2 Background
	2.1 Global Constraints
	2.2 Constraint Acquisition
	2.3 Learning Parameters of a Global Constraint

	3 Methodology
	3.1 Monotonicity
	3.2 Bounding and Filtering Specific Constraints

	4 Experiments
	4.1 SubsetFocus
	4.2 Sequence
	4.3 Discussion

	5 Conclusion
	References

	CoverSize: A Global Constraint for Frequency-Based Itemset Mining
	1 Introduction
	2 Background
	2.1 Itemset Mining
	2.2 Table Constraint and Reversible Sparse Bit-Sets

	3 Global Constraints for Frequency-Based Itemset Mining
	3.1 Computing Frequency: The CoverSize Constraint
	3.2 Closed Itemsets: The CoverClosure Constraint

	4 Frequency-Based Itemset Mining with CoverSize and CoverClosure
	4.1 Frequent Itemset Mining
	4.2 Closed Frequent Itemset Mining
	4.3 Discriminative (Closed) Itemset Mining

	5 Experiments
	6 Conclusion and Perspectives
	References

	Operations Research and CP Track
	A Column-Generation Algorithm for Evacuation Planning with Elementary Paths
	1 Introduction
	2 Notation and Preliminaries
	3 The Column-Generation Algorithm
	4 Revisiting the Pricing Subproblem
	5 Experimental Results
	5.1 Comparing the Three Approaches
	5.2 Tuning k-Threshold for the Hybrid Algorithm
	5.3 Overall Performance of the Evacuation Planning Algorithm

	6 Conclusion
	References

	Job Sequencing Bounds from Decision Diagrams
	1 Introduction
	2 Previous Work
	3 Decision Diagrams
	4 Relaxed Decision Diagrams
	5 Conditions for Node Merger
	6 Merging Heuristics
	7 Computational Experiments
	8 Conclusions
	References

	Branch-and-Check with Explanations for the Vehicle Routing Problem with Time Windows
	1 Introduction
	2 Background
	3 The Branch-and-Check Model of the VRPTW
	4 Nogood Strengthening
	5 Experimental Results
	6 Future Research Directions
	7 Conclusion
	References

	Solving Multiobjective Discrete Optimization Problems with Propositional Minimal Model Generation
	1 Introduction
	2 Preliminaries
	3 A Propositional Logic Based Approach to MODOP
	3.1 Order Encoding and Some Properties
	3.2 Correspondence Between a Pareto Front Point and a P-Minimal Model
	3.3 Finding the Pareto Front
	3.4 P-Minimal Model Versus P-Minimum Model

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Analyzing Lattice Point Feasibility in UTVPI Constraints
	1 Introduction
	2 Statement of Problem
	3 Motivation
	4 Related Work
	5 Checking for Integer Feasibility
	5.1 Algorithms
	5.2 Resource Analysis

	6 Correctness of Integer Feasibility Algorithm
	References

	A Constraint Composite Graph-Based ILP Encoding of the Boolean Weighted CSP
	1 Introduction
	2 ILP Encodings of the WCSP
	2.1 Direct ILP Encoding
	2.2 CCG-Based ILP Encoding
	2.3 Comparison

	3 Experimental Evaluation
	4 A Theoretical Property of CCG-Based ILP Encoding
	5 Conclusions and Future Work
	References

	Satisfiability and CP Track
	Reduced Cost Fixing in MaxSAT
	1 Introduction
	2 Maximum Satisfiability
	3 The SAT-IP Implicit Hitting Set Approach to MaxSAT
	4 Reduced Cost Fixing
	5 Experiments
	6 Conclusions
	References

	Weight-Aware Core Extraction in SAT-Based MaxSAT Solving
	1 Introduction
	2 Maximum Satisfiability
	3 The PMRES Algorithm
	4 Weight-Aware Core Extraction for PMRES
	5 Experiments
	6 WCE and Other SAT-Based MaxSAT Algorithms
	7 Conclusions
	References

	Optimizing SAT Encodings for Arithmetic Constraints
	1 Introduction
	2 The PicatSAT Compiler
	2.1 Preprocessing and Decomposition
	2.2 The Sign-and-Magnitude Log Encoding
	2.3 Encoding Basic Constraints

	3 Equivalence Reasoning
	3.1 Constant Propagation for X+Y = Z

	4 Constant Propagation for XY = Z
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Test and Verification and CP Track
	Constraint-Based Synthesis of Datalog Programs
	1 Introduction
	2 Overview and Examples
	2.1 Datalog Overview
	2.2 Illustrative Examples

	3 Preliminaries
	4 Constraint-Based Synthesis Algorithm
	4.1 Clause Constraints
	4.2 Simulation Constraints
	4.3 Inductive Synthesis Loop

	5 Encoding Templates
	6 Implementation and Evaluation
	7 Related Work and Discussion
	References

	Search Strategies for Floating Point Constraint Systems
	1 Introduction
	2 Notations and Definitions
	2.1 Floating Point Numbers
	2.2 Absorption
	2.3 Cancellation
	2.4 Notations

	3 Properties of Floating Point Domains, Variables and Constraints
	3.1 Properties of Floating Point Domains and Variables
	3.2 Properties of Floating Point Constraints

	4 Search Strategies for the Floats
	4.1 The Choice of a Variable
	4.2 Domain Splitting Strategies
	4.3 Semi-dynamic and Dynamic Strategies

	5 Experiments
	5.1 Benchmarks
	5.2 Results
	5.3 Analysis

	6 Conclusion
	References

	Author Index

