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Abstract The nurse-to-patient assignment is one of the main decisions in planning

Home Care (HC) services under continuity of care. In the literature, this problem

has been tackled with several approaches to take demand variability into account.

However, patient’s demands at different time periods have been always assumed as

independent, while they are highly correlated in practice. In this work, we propose

a robust assignment model that includes the time-dependency of the demands in

the HC nurse-to-patient assignment problem, based on the implementor-adversarial

framework. Results from a relevant test case show the appropriateness of the ap-

proach and the capability to contain costs while respecting the continuity of care

constraints.

Keywords Home care ⋅ Nurse-to-patient assignments ⋅ Continuity of care

Time related demands ⋅ Implementor-adversarial approach

1 Introduction

Parameter uncertainty is common to several health care-related optimization prob-

lems, where patients evolve along with time and their future demands are affected

by high variability. This is particularly critical in some health care services, e.g. in

the Home Care (HC) service, where patients are usually assisted for a long time.
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A crucial task in HC is to assign nurses to patients over a planning horizon while

taking into account such variability and meeting all requirements from both operators

and patients. One of the main requirements, which is crucial for a good quality of

service, is the continuity of care, i.e. the assignment of a patient to the same reference
nurse during the entire care period. Thus, HC provider managers must assign nurses

to patients in order to satisfy the continuity of care, given the available operators and

the set of patients in the charge with their uncertain demands.

The HC nurse-to-patient assignment problem is solved over a planning horizon

usually divided into time slots. In the literature, this problem has been already tackled

under uncertain demands either applying the stochastic programming or the robust

optimization. However, to the best of our knowledge, the proposed solutions do not

take into account the correlation of each patient’s demands over the time periods.

On the contrary, in this work, we solve the problem assuming that the demands are

correlated over the periods.

Starting from a deterministic formulation in which three different continuity of

care requirements are considered at the same time, we propose a robust model for

the time-correlated demands, based on the so-called implementor-adversarial ap-

proach introduced by Bienstock for portfolio selection [5]. Briefly, the robust model

is viewed as a two-stage game: the implementor computes the nurse-to-patient as-

signments before the realization of the uncertainty, while the adversary generates the

worst demand evolution for that assignment.

The paper is structured as follows. A literature analysis of the HC nurse-to-patient

assignment problem is presented in Sect. 1.1. The deterministic assignment model

considered in this paper is described in Sect. 2. Then, our robust optimization ap-

proach is detailed in Sect. 3 including the formalization of the uncertainty set. The

computational tests and the results are presented in Sect. 4. A final discussion is

drawn in Sect. 5.

1.1 Related Works

Different features can be considered while solving the HC nurse-to-patient assign-

ment problem. If continuity of care is not required, the assignment problem turns out

to be an assignment of operators to visits rather than patients, and the different time

periods can be independently considered. In this case, the aim is usually to jointly

optimize the assignment of operators to visits and the scheduling and routing prob-

lems [12, 13]. On the contrary, when continuity is considered, the decisions related

to a time period affect the following ones.

Uncertainty inherently arises in HC due to changes in patients’ conditions and

needs, and several models have been developed to predict the uncertain demands in

order to support the management of HC services [2, 3, 8].

The nurse-to-patient assignment problem including both continuity of care and

uncertain demands has been addressed in the literature with stochastic programming,

robust approaches, and also heuristic policies.
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The problem has been tackled with stochastic programming based on scenario

generation in [9] where, due to the high number of demand scenarios, a limited

number of them has been considered for a computationally feasible solution; as a

consequence, a high expected value of perfect information and a low value of the

stochastic solution were found. Analytical policies have been developed in [10, 11],

based on strict assumptions regarding the workload probability density functions, the

number of new patients (one at a time), and the number of periods in the planning

horizon (equal to only one).

To overcome the drawbacks of the stochastic programming and the analytical

policies, a robust model based on the cardinality-constrained approach [4] has been

proposed in [6]. This approach avoids the scenario generation and at the same

time does not require the strict assumptions of the policies. More in general, the

cardinality-constrained approach has been recognized to be a useful tool for health

care problems [1]. However, the cardinality-constrained approach assumes that the

uncertain parameters in the different constraints are independent of each other. Thus,

it is not suitable for dealing with time-related demands in the HC nurse-to-patient

assignment problem.

The correlation can be considered with the implementor-adversarial approach [5].

However, such an approach has been never applied to HC and only once in health

care, to the hospital master scheduling problem [7].

2 Nurse-to-Patient Assignment Problem

We consider a set of patients P = {1,… ,P} who require care in a discrete planning

horizon T = {1,… ,T}, and we denote by rjt the demand required from patient j ∈
P at period t ∈ T . Set P is partitioned in three different subsets:

∙ Phc: patients requiring hard continuity of care, who must be assigned to a single

reference nurse during the entire planning horizon.

∙ Ppc: patients requiring partial continuity of care, who must be assigned to a single

nurse in each period t but can be assigned to different nurses in different periods.

Each time a patient j ∈ Ppc is reassigned to a different nurse from period to period,

a penalty 𝛽 affects the total assignment cost.

∙ Pnc: patients having no-continuity of care, who can be assigned to different oper-

ators even in the same period.

Finally, I = {1,… , I} is the set of all available nurses, and vi the working hours

associated with nurse i in each period of the planning horizon. When nurse i works

over vi, an overtime cost ci has to be paid for each extra hour.

The goal is to determine the minimum assignment cost (function of nurses’ over-

times and reassignment penalties) while assigning all patients in the charge to one

or more available nurses, according to their continuity of care requirements. The

following decision variables are used:
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∙ xij: equal to 1 if j ∈ Phc is assigned to i ∈ I , 0 otherwise;

∙ 𝜉

t
ij: equal to 1 if j ∈ Ppc is assigned to i ∈ I at period t, 0 otherwise;

∙ ytj: equal to 1 if j ∈ Ppc is reassigned from period t − 1 to t, 0 otherwise;

∙ 𝜒

t
ij ∈ [0, 1]: fraction of rjt for j ∈ Pnc assigned to i ∈ I at period t;

∙ wt
i ≥ 0: extra time of i ∈ I at period t;

∙ uti ≥ 0: idle time of i ∈ I at period t;
∙ 𝜂

t
i : equal to 1 if nurse i has positive overtime at period t, 0 otherwise.

The deterministic model (based on [6]) is:

min
⎧
⎪
⎨
⎪
⎩

∑

i∈I
ci
∑

t∈T
wt
i + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj

⎫
⎪
⎬
⎪
⎭

(1)

s.t.

∑

i∈I
xij = 1 j ∈ Phc (2)

∑

i∈I
𝜉

t
ij = 1 j ∈ Ppc, t ∈ T (3)

∑

i∈I
𝜒

t
ij = 1 j ∈ Pnc, t ∈ T (4)

𝜉

t
ij − 𝜉

t−1
ij ≤ ytj j ∈ Ppc, i ∈ I , 2 ≤ t ≤ T

(5)
∑

j∈Phc

rjtxij +
∑

j∈Ppc

rjt𝜉tij +
∑

j∈Pnc

rjt𝜒 t
ij − wt

i + uti = vi i ∈ I , t ∈ T (6)

wt
i ≤ vi𝜂ti i ∈ I , t ∈ T (7)

uti ≤ vi
(
1 − 𝜂

t
i
)

i ∈ I , t ∈ T (8)

Constraints (2)–(4) force the assignments of patients according to their continu-

ity requirements. Constraints (5) keep track of the reassignments for patients in Ppc.

Constraints (6) compute nurses’ overtimes and idle times based on the assigned pa-

tients and the capacities vi. Constraints (7) establish the maximum overtime at each

time period; without losing generality this maximum value is set equal to the ca-

pacity vi. Finally, constraints (8) prevent wt
i and uti from being both positive in the

optimal solution. Objective (1) minimizes the total assignment cost due to overtime

and reassignments of patients in Ppc. A reassignment is accepted if the overtime

cost would increase too much avoiding the reassignment; 𝛽 is the maximum over-

time cost we are willing to accept for preserving the continuity of care for one patient

and for one visit.
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3 The Robust Optimization Approach

According to the implementor-adversarial approach, the model is divided in two

stages, which are iteratively solved. In the first stage, the service manager (i.e. the

implementor) assigns the nurses to the patients according to the current demand and

respecting the requirements; in the second stage, the adversary chooses the worst

demand pattern for the current assignments selected by the implementor.

We assume that each patient j ∈ P is associated, at each time period t, with a

probability distribution describing his/her demand. Such distributions are divided

into H equiprobable bands, and a value rhjt is associated to each band (e.g. the upper

level of the interval). H = {1,… ,H} is the set of these bands. In this way, each

patient j is characterized by a set of values rhjt (h ∈ H ) for each period t. At the

beginning of the planning process, we consider that each demand belongs to band

h∗, thus defining the nominal demands r̄jt = rh∗jt .

The evolution of the demand for each patient is then modeled considering that

the actual demand may move from the nominal band h∗ to another band h in any

time period t. For this purpose, we define 𝛿

h
jt = rhjt − r̄jt as the deviation affecting

the demand when it moves towards band h. By constraining the deviations, we can

include the two following aspects in the robust model:

1. cardinality: deviations occur for a limited number of patients;

2. correlation: deviations at consecutive time periods are not independent.

The second one, in particular, is the innovative contribution of this work to the HC

nurse-to-patient assignment problem.

We remark that, in our framework, patients’ demands may evolve for two rea-

sons. First, demands at two different periods can be different for a given h (rhjt1 ≠ rhjt2 ,
t1 ≠ t2) because the probability distribution of the class which the patient belongs

to is moving over the periods. Second, the band can h may vary, meaning that the

patient is evolving in a different way than the global behavior of his/her class.

3.1 Uncertainty Set

We formalize the uncertainty setU as

{
r̃tj = r̄jt + 𝛿

h
jt, j ∈ P , t ∈ T , h ∈ H

}
, where

r̃jt represents the true demand of patient j at period t. Further restrictions are taken

into account to model the conditions cardinality and correlation mentioned above.

To this end, we define the following variables:

∙ phjt: equal to 1 if demand r̃jt belongs to band h, 0 otherwise;

∙ zhdjt : equal to 1 if demand r̃jt moves from band h towards band h + d from period

t − 1 to period t, and 0 otherwise.

The cardinality is modeled by adding to U the constraints:
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∑

j∈P

∑

h∈H
zhdjt ≤ 𝛼d t ∈ T ⧵ 1, 0 ≤ d ≤ H − h (9)

where 𝛼d is the maximum number of patients whose demand is allowed to move

from the actual band to another one at distance d. Observe that, as robust approaches

search for the worst realization, only forward jumps are of interest.

To model the correlation, we define 𝜃 as the maximum distance between two

demand bands at two consecutive time periods. Indeed, given 𝛿

h
j,t−1 and 𝛿

k
jt for patient

j at periods t − 1 and t, then |k − h| ≤ 𝜃. This requirement is expressed through the

following constraints:

∑

k∈{h+𝜃+1,…,H}
pkjt + phj,t−1 ≤ 1 j ∈ P , t ∈ T ⧵ {1}, h ∈ H (10)

∑

h∈H
phjt = 1 j ∈ P , t ∈ T (11)

ph+djt + phj,t−1 ≤ 1 + zhdjt j ∈ P , t ∈ T ⧵ {1}, h ∈ H , 0 ≤ d ≤ 𝜃 (12)

zhdjt ≤ phj,t−1 j ∈ P , t ∈ T ⧵ {1}, h ∈ H , 0 ≤ d ≤ 𝜃 (13)

zhdjt ≤ ph+djt j ∈ P , t ∈ T , h ∈ H , 0 ≤ d ≤ 𝜃 (14)

Observe that, with the definition of 𝜃, constraint (9) can be rewritten as:

∑

j∈P

∑

h∈H
zhdjt ≤ 𝛼d t ∈ T ⧵ 1, 0 ≤ d ≤ min{𝜃,H − h} (15)

Summing up, the uncertainty set U reads:

U = {r̃tj = r̄jt + 𝛿

h
jt, (10) − (15),

phjt ∈ {0, 1}, zhdjt ∈ {0, 1}, j ∈ P , t ∈ T , h ∈ H } (16)

3.2 Robust Model

Assuming that demands range in U, the robust assignment problem is:

min{
xij,𝜉tij,𝜒

t
ij,y

t
j

}
∈X

⎧
⎪
⎨
⎪
⎩

W (U) + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj

⎫
⎪
⎬
⎪
⎭

(17)

where X defines the feasible assignments induced by constraints (2)–(6) plus the

integrality clauses, and W (U) is the maximum (worst-case) overtime cost over U
for a given assignment solution

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
, which is determined as follows:
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max
∑

i∈I
ci
∑

t∈T
wt
i (18)

s.t.

∑

j∈Phc

r̃jtxij +
∑

j∈Ppc

r̃jt𝜉tij +
∑

j∈Pnc

r̃jt𝜒 t
ij − wt

i + uti = vi i ∈ I , t ∈ T

wt
i ≤ vi𝜂ti i ∈ I , t ∈ T

uti ≤ vi(1 − 𝜂

t
i ) i ∈ I , t ∈ T

𝜂

t
i ∈ {0, 1} i ∈ I , t ∈ T

wt
i, u

t
i ≥ 0 i ∈ I , t ∈ T

{
r̃jt
}
∈ U

Thus, problem (17) can be rewritten as:

min 𝛾 + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj (19)

s.t.

𝛾 ≥

∑

i∈I
ci
∑

t∈T
wt
i

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
∈ X,

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V ,

{
r̃jt
}
∈ U

where V defines the workloads that generate feasible overtimes, according to con-

straints (6)–(8) plus the integrality clauses.

3.3 Implementor-Adversarial Algorithm

As introduced above, the robust problem can be interpreted as an implementor-

adversarial iterative game. The implementor solves the following problem

min 𝛾 + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj
{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
∈ X,

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V

{
r̃jt
}
∈ realizations generated so far (20)

for deciding the assignments x∗ij, 𝜉
t∗
ij , 𝜒

t∗
ij and yt∗j that minimize the costs over all

demand realizations generated so far.
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Table 1 Adopted implementor-adversarial algorithm

Initialization: D = constraints (6) associated with
{
r̄jt
}

Iterate:

1. Implementor problem: solve problem (20) with solution

{
x∗ij, 𝜉

t∗
ij , 𝜒

t∗
ij , y

t∗
j

}

2. Adversarial problem: solve problem (21) with solution

{
r∗jt,w

t∗
i , u

t∗
i , 𝜂

t∗
i

}

3. Test if 𝛾 ≥
∑

i∈I ci
∑

t∈T wt∗
i

then exit

else add (6) associated with

{
r∗jt
}

to D; go to 1

The adversary solves the following problem:

max
∑

i∈I
ci
∑

t∈T
wt
i

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V ,

{
r̃jt
}
∈ U

last assignments

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
from the implementor (21)

for choosing the demands r∗jt that maximize the cost with respect to the last assign-

ments just selected by the implementor.

Both problems take into account constraints (6); however, the implementor satis-

fies them by choosing the assignments for fixed values of demand, while the adver-

sary does the very opposite. Let D be the set of constraints (6). We adapt the basic

template of the implementor/adversarial algorithm [5] as follows. Each run of the

adversarial problem provides a realization of the demand

{
r∗jt
}
∈ U and the cor-

responding workload variables
{
wt∗
i , u

t∗
i , 𝜂

t∗
i

}
∈ V . Either

∑
i∈I ci

∑
t∈T wt∗

i > 𝛾 or

𝛾 is already the maximum cost, where 𝛾 is the last cost given by the implementor

problem. In the former case, an equation of type

∑

j∈Phc

r∗jtxij +
∑

j∈Ppc

r∗jt𝜉
t
ij +

∑

j∈Pnc

r∗jt𝜒
t
ij − wt

i + uti = vi

is added to the implementor formulation, which is consequently reoptimized.

A sketch of the algorithm is illustrated in Table 1.

4 Computational Tests and Results

We test our robust approach on several instances generated by assuming several

mixes of patients, whose characteristics and demand evolution follow those in [8],

with either P = 70 or P = 98. The number of bands H is chosen either equal to
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6 or 10. Parameter 𝛼d takes the same value 𝛼 for any d = 1,… ,H − 1, and we

assume 𝛼 either equal to 1, 2 or 4. Moreover, we set 𝛼0 = P in such way that all

patients have the opportunity to remain in their current band without varying their

actual demand. Finally, we set the 𝛽 = 1, ci = 1 for each nurse i, and 𝜃 = 3.

The commercial framework IBM Cplex 12.5 and the language AMPL have been

used to solve and implement the model. Instances have been run on a 2-core Linux

processor clocked at 2 GHz with 16 GB of RAM. Time limits of 1200 and 300 s have

been imposed for the implementor and the adversarial problem, respectively. On the

one hand, we evaluate the choice of the parameters in terms of the computational

time spent for finding the optimal robust solution. On the other hand, we measure

the quality of the assignments with the aim of finding the best values for all of the

parameters involved.

Fig. 1 Boxplots of the robust vs the deterministic solution. Case 98 patients with T = 5, 𝜃 = 4;

𝛼d = 4 (a); case 98 patients with T = 5, 𝜃 = 4; 𝛼d = 1 (b); case 70 patients with T = 5, 𝜃 = 5;

𝛼d = 2 (c); case 70 patients with T = 8, 𝜃 = 5; 𝛼d = 1 (d)
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As for the computational times, we found that the maximum time spent for solving

a robust problem over the tested instances is 11,777 s, which is acceptable for a

weekly solution of the assignment problem in practice. We observed that the length

of T directly affects the number of the iterations, thus increasing the computational

time. Moreover, it seems that there is no correlation between the computational time

and the values of H and 𝛼.

As for the quality of the robust assignments, we have compared the deterministic

and the robust solutions when executed on a set of simulated scenarios. In particular,

we have generated 20 simulated scenarios by drawing the demands from their prob-

ability density functions with a Monte Carlo approach. Then, we have compared the

boxplots of the costs over the 20 scenarios from both solutions. Results are provided

in Fig. 1 for four tested configurations. We observed that, in all cases, the robust

solutions have a lower cost than the deterministic ones. The robust model is able

to decrease the cost needed to cope with the worst demand realization and, thus, it

allows to properly represent the real context.

Looking at the parameters, we observed that the best robust results occur when

both H and 𝛼 take small values.

5 Conclusions

In this work we consider, for the first time in the literature, time-related demands

in the HC nurse-to-patient assignment problem under continuity of care and uncer-

tain demands. The adopted implementor-adversarial approach [5] has proved to ade-

quately address the time-dependency of demands, and the results show good quality

solutions in terms of costs when executed in several scenarios.

Future work will extend the computational analyses. Moreover, we will improve

the approach by postponing the assignment decisions for patients without continuity

of care, to adapt the solution based on the actual demands, as in the real practice.

References

1. Addis, B., Carello, G., Grosso, A., Lanzarone, E., Mattia, S., Tànfani, E.: Handling uncer-

tainty in health care management using the cardinality-constrained approach: advantages and

remarks. Oper. Res. Health Care 4, 1–4 (2015)

2. Argiento, R., Guglielmi, A., Lanzarone, E., Nawajah, I.: A Bayesian framework for describing

and predicting the stochastic demand of home care patients. Flex. Serv. Manuf. J. 28(1–2),

254–79 (2016)

3. Argiento, R., Guglielmi, A., Lanzarone, E., Nawajah, I.: Bayesian joint modeling of the health

profile and demand of home care patients. IMA. J. Manag. Math. (2017). https://doi.org/10.

1093/imaman/dpw001

4. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

5. Bienstock, D.: Histogram models for robust portfolio optimization. J. Comput. Financ. 11,

1–64 (2007)

https://doi.org/10.1093/imaman/dpw001
https://doi.org/10.1093/imaman/dpw001


Handling Time-Related Demands in the Home Care . . . 97

6. Carello, G., Lanzarone, E.: A cardinality-constrained robust model for the assignment problem

in home care services. Eur. J. Oper. Res. 236, 748–762 (2014)

7. Holte, M., Mannino, C.: The implementor/adversary algorithm for the cyclic and robust

scheduling problem in health-care. Eur. J. Oper. Res. 226, 551–559 (2013)

8. Lanzarone, E., Matta, A., Scaccabarozzi, G.: A patient stochastic model to support human

resource panning in home care. Prod. Plan. Control 21, 3–25 (2010)

9. Lanzarone, E., Matta, A., Sahin, E.: Operations management applied to home care services:

the problem of assigning human resources to patients. IEEE Trans. Syst. Man Cybern. A 42,

1346–1363 (2012)

10. Lanzarone, E., Matta, A.: A cost assignment policy for home care patients. Flex. Serv. Manuf.

J. 24, 465–495 (2012)

11. Lanzarone, E., Matta, A.: Robust nurse-to-patient assignment in home care services to mini-

mize overtimes under continuity of care. Oper. Res. Health Care 3, 48–58 (2014)

12. Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew scheduling problem:

preference-based visit clustering and temporal dependencies. Eur. J. Oper. Res. 219, 598–610

(2012)

13. Trautsamwieser, A., Hirsch, P.: Optimization of daily scheduling for home health care services.

J. Appl. Oper. Res. 3, 124–136 (2011)


	Handling Time-Related Demands in the Home Care Nurse-to-Patient Assignment Problem with the Implementor-Adversarial Approach
	1 Introduction
	1.1 Related Works

	2 Nurse-to-Patient Assignment Problem
	3 The Robust Optimization Approach
	3.1 Uncertainty Set
	3.2 Robust Model
	3.3 Implementor-Adversarial Algorithm

	4 Computational Tests and Results
	5 Conclusions
	References


