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Abstract Home Health Care (HHC) is a relatively new service that plays an impor-

tant role to reduce hospitalization costs and improve the life quality for patients.

Human resource planning is one of the most important processes in HHC systems,

for which service providers have to deal with several operational problems, e.g., the

assignment of operators to patients together with their routing process. In the lit-

erature, either these problems have been simultaneously solved, or decomposed by

first solving the assignment problem and then the routing problem. In this work,

we propose an alternative approach, where the decomposition is based on the First
Route and Second Assign (FRSA) approach. An instance generation mechanism is

developed as well, which generates instances inspired from real HHC providers, to

test the proposed FRSA approach under different circumstances. Preliminary exper-

iments show the effectiveness of the approach.

Keywords Home health care ⋅ Human resource planning ⋅ Matheuristic

decomposition ⋅ First route second assign

1 Introduction

Home Health Care (HHC) is a relatively new service that plays an important role

to reduce hospitalization costs and improve the life quality for patients, who receive

service at their homes. Due to population ageing and high hospitalization costs, the
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demand for HHC service is increasing all around the world. In 2011, there were about

4.7 million patients in the U.S. and 1 million patients in Canada who were served by

several HHC providers [7].

To balance the trade-off between cost and quality of service in HHC, providers

need to deal with several optimization problems. Among them, we focus in this work

on the patient assignment problem and the nurse (operator) routing problem. The first

consists of matching patients with operators, while the latter determines the sequence

of visits assigned to each nurse. These problems may be solved for a single period or

multiple periods; in this work, we focus on the weekly problem. Both the assignment

and the routing problems are handled by taking into account several features, such as

patient requirements (frequency of visits), expected duration of each visit, possible

visiting schedules (patterns) for patients, continuity of care, and nurse capacities.

We propose a new two-stage approach for the assignment and routing problem,

which exploits a new concept for the HHC services, where routing decisions antici-

pate assignment decisions. In other words, we decompose the problem by deciding

the routing at the first stage and the assignments at the second stage. Although this

might seem counterintuitive, the variety of contexts in which HHC is provided (e.g.,

urban vs rural, dense vs sparse) legitimate to investigate the trade-offs for which

focusing on the routing at the first stage can be beneficial. To validate the approach,

as different HHC providers have different structures and cover different areas, we cre-

ate a data generation mechanism to generate test instances which are able to mimic

several situations of real HHC providers from different countries.

The reminder of this paper is organized as follows. A brief literature review

and the problem description are presented in Sect. 2. The proposed methodology is

described in Sect. 3. The data generation mechanism with some preliminary results

are discussed in Sect. 4. Then, concluding remarks with future perspectives are pre-

sented in Sect. 5.

2 Problem Statement and Related Work

As discussed briefly in the previous section, the HHC assignment problem refers

to the decision of matching nurses with patients, while the routing problem speci-

fies visiting sequences of patients associated with each nurse. Several works related

to these problems have been classified and discussed in a recent literature review

[7]. Here, we present a short list of these works and classify them according to the

length of the planning period (i.e., Single Period or Multiple Periods) and how the

assignment and routing decision are held (i.e., Simultaneously or Sequentially).

The literature is mainly devoted to the simultaneous approach, where assignment

and routing decision are obtained together in a single model (Vehicle Routing Prob-

lem) both for a single period [1, 6] and multiple periods [3, 9].

Moreover, due to computational complexity and operational flexibility, recent

models based on two-stage First Assign and Second Route (FASR) approaches have

been developed, where the output of the patient assignment problem is integrated as
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an input to the routing problem of each nurse (Traveling Salesman Problem). Both

single planning period [11] and multiple planning period cases [10] have been inves-

tigated.

In this work, different from the HHC literature, we develop a new multiple periods

two-stage First Route and Second Assign (FRSA) approach. Since different providers

cover different areas (rural vs urban, different densities, etc.), such a model could be

beneficial where travels are the key issue. More generally, with the development of

the FRSA approach, a complete analysis can be conducted and the most appropriate

approach can be selected depending on the trade-offs and the corresponding key

issues of a given provider.

3 Methodology

We use the following notation:

∙ N: set of nurses, N = {1...n};

∙ P: set of patients, P = {1...m};

∙ D: set of days.

∙ Nd: subset of nurses available on day d;

∙ ai: capacity of nurse i (duration of a workday including service time to provide

visits and travel times);

∙ rj: total number of visits required by patient j in horizon D;

∙ H: set of patterns (patterns are defined as the days in which the patient may be

visited, e.g., for a frequency of two visits, patterns are: Monday and Thursday,

Tuesday and Friday, … );

∙ Hj: subset of patterns for patient j;
∙ tj: service time for each visit to patient j;
∙ cjk: cost (time, distance, etc.) between patient j and patient k.

We structure our two-stage FRSA approach as follows:

∙ Stage 1: Routing problem modeled as a Periodic Vehicle Routing Problem

(PVRP):

– total travel time minimization with respect to the overall capacity of nurses is

pursued;

– no nurse-to-patient assignment information is considered;

– patients are assigned a pattern.

Only the decisions regarding the pattern assignment to patients are kept for the next

stage.

∙ Stage 2: Nurse-to-patient assignment problem consists of splitting the giant

tours obtained in stage 1, with the objective of minimizing the maximum work-

load. At this stage, decisions regarding nurse-to-patient assignments are made.
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3.1 Stage 1: Route First

We model the HHC as a PVRP in which one vehicle only services all patients. We use

the typical route duration constraint for each day, adding up all nurses’ capacities ai.

Since the number of nurses is not explicitly considered, no attention is paid to the fact

that the nurses’ individual travel distances must be minimized after the assignments.

To account for this (and to ensure that the territory is covered every day), we add a

step before solving the PVRP to create seeds that will tie each nurse to a physical

territory.

(a) Creation of seeds

The objective is to select n seeds (as many as there are nurses) with a large distance

between them. They are selected using the existing Basic Territory Units (BTUs).

Let xs = 1 if BTU s is chosen to host a seed (and 0 otherwise) and ys1s2 = 1 if both

s1 and s2 are chosen to host a seed (and 0 otherwise). cs1s2 is the cost (time, distance,

etc.) between the centers of BTUs s1 and s2. We solve the following problem:

max
∑

s1

∑

s2

cs1s2 ys1s2 (1)

s.t.

∑

s∈S
xs = n ∀s ∈ S (2)

∑

s2∈S
ys1s2 ≤ nxs1 ∀s1 ∈ S (3)

ys1s2 ≤ xs2 ∀s1, s2 ∈ S (4)

xs ∈ {0, 1} ∀s ∈ S
ys1s2 ∈ {0, 1} ∀s1, s2 ∈ S

Constraints (2) force to choose n BTUs, while constraints (3) and (4) ensure that

ys1s2 = 1 only if both s1 and s2 are chosen. The objective (1) is to maximize the

distance between the chosen BTUs.

Once the n BTUs are selected, we choose in each of them the patient with the

highest number of visits; if there are several equivalent patients, we select the far-

thest from the depot. For this subset of patients ̃P ⊂ P chosen as seeds, we impose

a frequency of visits equal to |D| for solving the PVRP, while for all others we use

the frequency provided for by parameter rj.

(b) The PVRP algorithm

We use a tabu search algorithm (sketched in Algorithm 1 and based on [5]) that

proves to perform very well on the PVRP. Two movements are used to explore the

solutions space, i.e., changing the day combination or reinserting on a different route.
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The algorithm allows visiting unfeasible solutions but penalizes the objective func-

tion whenever an unfeasible solution is met. These penalties are dynamically adapted

during the search. Without loss of generality, the initial solution can be constructed

randomly or based on constructive heuristics. Readers are referred to [5] for details.

Algorithm 1 Major lines of the PVRP algorithm

Generate initial solution: patients are assigned a valid pattern of visits and sorted in increasing

order of the angle to the depot. Insertion into a route follows this order:

while Stopping criteria not reached do
for each patient do

for each day do
Search for the best insertion using the defined movements;

Implement best non tabu movement unless aspiration criteria is met;

Adapt dynamically penalty parameters;

Update tabu list and statistics.

end for
end for

end while

After solving the PVRP, each patient j is assigned to a pattern pj ∈ Hj.

3.2 Stage 2: Solving the Assignment Problem

After solving the PVRP, we obtain |D| routes (one per day) that need to be split into n
segments (one for each nurse). The splitting procedure must respect the continuity of

care, i.e., each patient is assigned to exactly one nurse; for this purpose, the splitting

is performed in parallel for all routes.

The procedure is summarized in Algorithm 2. We denote by x the solution

obtained after the splitting procedure, and by mu(x) the maximum average utilization.

x∗ and mu(x∗) refer to the best solution and its value, respectively. Initially, mu(x∗)
and mu(x) are set to a high value. The idea is inspired by the sweep algorithm where

a random angle 𝜔 is generated, and patients are collected counter clockwise until ai
is reached. If the solution is infeasible, i.e. the last nurse is overloaded, we introduce

parameter 𝛽1 equal to this observed overload divided by n, ensuring to spread the

“infeasibility” among all nurses. We repeat this procedure with ai+ = 𝛽1 until the

solution is feasible.

We illustrate how this procedure can be visualized for a given day in Fig. 1. Full

line represents the starting point for the collection of patients and the dotted line the

point where the capacity of the nurse is reached.

Once the splitting procedure is complete, an assignment of patients to nurses is

obtained (ij denotes the nurse assigned to patient j). We add a step to revisit the

assignment of a subset of patients either because the solution is not feasible after the
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Algorithm 2 Description of the splitting procedure

mu(x∗) = mu(x) = nai
for all |D| routes resulting from PVRP: do

Generate 𝜔 degrees (points);

Select a random point;

Order the nurses (according to: seniority, preferences or randomly);

for i = 1 to n do
for all routes corresponding to the days nurse i works; do

while capacity of nurse is not reached do
collect patients when pattern of visits and days of work coincide.

end while
if the problem is infeasible for at least one nurse: increase capacity by parameter 𝛽1 and

repeat the collection process starting from nurse 1.

end for
If mu(x) < mu(x∗) ∶ x∗ ← x and mu(x∗) = mu(x).

end for
end for

Fig. 1 Illustration of the

splitting procedure

splitting procedure, or as a post-optimization step. We create the set of patients P′
to

be reassigned as follows:

1. Include in P′
𝛾 patients from the beginning and 𝛾 patients from the end of each

nurse’s route. The larger the value of 𝛾 is, the more we destroy the routing solution

obtained in the previous stage.

2. Include in P′
all patients close to the depot.

3. Include in P′
all seeds in ̃P.

Patients belonging to P⧵P′
generate an initial fixed workload for each nurse.

To solve the assignment model, we use the formulation in [10]. For each patient

j, we define 𝜏j as the average traveling time to reach him. Moreover, five decision

variables are defined:

∙ uij = 1 if nurse i is assigned to patient j (and 0 otherwise);

∙ ud
ij = 1 if nurse i visits patient j on day d (and 0 otherwise);

∙ zjp = 1 if pattern p is assigned to patient j (and 0 otherwise);

∙ Wid: workload of nurse i in day d;

∙ mu: maximum of the average utilization over D among the nurses.
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The mathematical formulation of the problem is the following:

min mu (5)

s.t.

∑

i∈N
uij = 1 ∀j ∈ P (6)

∑

p∈Hj

zjp = 1 ∀j ∈ P (7)

Wid =
∑

j∈P
(t′j + 𝜏j) ⋅ ud

ij ≤ ai ∀i ∈ Nd,∀d ∈ D (8)

∑

i∈N
ud

ij =
∑

p∶p(d)=1
zjp ∀j ∈ P,∀d ∈ D (9)

ud
ij ≤ uij ∀i ∈ Nd,∀j ∈ P,∀d ∈ D (10)

∑

i∈N

∑

d∈D
ud

ij = rj ∀j ∈ P (11)

∑
d∈D Wid

|D| ⋅ ai
≤ mu ∀i ∈ N (12)

uijj = 1 ∀j ∈ P⧵P′
(13)

zjpj
= 1 ∀j ∈ P⧵P′

(14)

uij ∈ {0, 1} ∀i ∈ N, j ∈ P (15)

ud
ij ∈ {0, 1} ∀i ∈ N,∀j ∈ P,∀d ∈ D (16)

zjp ∈ {0, 1} ∀j ∈ P,∀p ∈ H (17)

Constraints (6) decide the assignments. Constraints (7) are the scheduling con-

straints. Constraints (8) control the daily workload of nurses and use 𝜏j to estimate

the travel time to reach patient j. Constraints (9) and (10) link together assignment

and scheduling decisions; specifically, constraints (9) state that exactly one nurse

per day must visit patient j only if a visit has been scheduled on that day for him/her

(p(d) = 1 refers to patterns p having a visit on day d), and constraints (10) guaran-

tee that a nurse can visit a patient only if she/he has been assigned to that patient.

Constraints (12) link the maximum utilization mu to the nurses’ workloads.

As mentioned earlier, the usual 8 h per day may not allow to visit all patients; thus,

parameter ai in (8) should be carefully fixed. In our context, we solve an optimiza-

tion problem to determine the smallest increase of this value that allows a feasible

solution. We denote this value 𝛽2, and ai = 8 h + 𝛽2.

Two constraints are added to the general model when used for partial reassign-

ment. Constraints (13) ensure that patients in P⧵P′
are assigned to the nurse from

the splitting procedure, and constraints (14) that they are assigned the pattern from

the PVRP solution.
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3.3 Obtaining the Operational Routes

Once the assignments to nurses and to patterns are obtained, a TSP is run for each

day and each nurse to get the actual routes to perform and, thus, the actual daily

workload for each nurse. We employ the genetic algorithm of [11], which provides

equivalent performance to benchmark solvers, e.g., the Concorde TSP Solver [4], for

the considered size of instances.

4 Data Generation and Preliminary Experiments

We create a mechanism to generate test instances, for the validation of our approach

in a variety of situations inspired from real HHC providers. In particular, we use

the characteristics of a large provider operating in the Northern Italy that has been

already adopted for other analyses [2, 8].

Let us consider a test instance with m patients. We fix a geographical distribution

of some BTUs, each one with a given center (latitude and longitude) and shape.

Each patient j is randomly assigned to a BTU according to given probabilities to

belong to each BTU; then, his/her coordinates are uniformly generated within the

assigned BTU. A Care Profile (CP) is also assigned to each patient j, according to

given probabilities to belong to each CP. Each CP is characterized by a range for the

number of visits and an associated discrete distribution; once a patient is assigned

to a CP, his/her demand is drawn from such distribution. Then, from the number

of visits, the list Hj of all possible patterns is derived. The duration of each visit is

finally generated from a uniform distribution within the interval [35, 45] minutes.

This mechanism is versatile and allows us to generate, for example, urban/rural

instances by imposing high/low number of patients in a small/large territory. For

example, we consider the average travel time 𝜏 between patients as metrics to char-

acterize an instance: 𝜏 = 7min refers to an urban instance and 𝜏 = 25min to a rural

context.

An illustration of patient scattering in the territory is presented in Fig. 2.

We test the approach on the instances reported in Table 1. Details about their fea-

tures are given in the first three columns. The following two columns show the solu-

tion obtained with the classical FASR decomposition in terms of maximum average

utilization mu and maximum workload Wmax observed over the horizon. Finally, the

last columns give the improvement (in %) when using the FRSA approach in two

settings: only using the splitting, or using the splitting and the partial reassignment.

FRSA generally outperforms FASR, and in particular FRSA with partial reas-

signment outperforms FASR in all instances when comparing mu. Moreover, results

show that the partial reassignment step after the FRSA is very important when small

distances are involved; however, the reassignment deteriorates the solutions when

the distances are large. With partial reassignment, the improvement ranges between

0.37% and 1.61% when the distances are small (𝜏j = 7), while the improvement is
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Fig. 2 Example of tested instance; each point represents a patient, whose size is proportional to

the number of visits required in the time horizon

Table 1 Comparison of utilization rates and workloads (in %) obtained with FASR and FRSA

Instance Classical FASR FRSA: only splitting FRSA: splitting

& partial reassignment

m n 𝜏 mu Wmax mu (%) Wmax (%) mu (%) Wmax (%)

300 18 7 90.51 95.26 +12.28 +9.14 −𝟏.𝟐𝟓 +6.60
87.34 93.82 +7.53 +10.93 −𝟎.𝟕𝟐 +8.31
94.71 96.03 +3.12 +10.39 −𝟏.𝟔𝟏 +6.04

300 20 7 82.63 94.91 +11.01 +9.87 −𝟎.𝟑𝟕 +8.64
79.40 92.40 +22.85 +12.34 −𝟎.𝟗𝟑 +6.97
85.60 94.64 +16.27 +12.06 −𝟎.𝟕𝟔 +6.35

300 18 25 113.60 117.44 −𝟒.𝟔𝟒 +1.61 −𝟐.𝟑𝟒 +1.00
122.58 128.13 −𝟗.𝟒𝟖 −𝟕.𝟓𝟏 −𝟐.𝟗𝟓 +0.79
118.27 121.07 −𝟏𝟏.𝟓𝟒 −𝟑.𝟑𝟕 −𝟒.𝟑𝟗 +0.91

300 20 25 106.26 111.04 −𝟒.𝟒𝟏 0.00 −𝟑.𝟎𝟓 +0.66
114.31 117.35 −𝟗.𝟎𝟒 −𝟒.𝟒𝟓 −𝟐.𝟕𝟎 −𝟎.𝟏𝟑
105.78 111.21 −𝟒.𝟒𝟎 +2.04 −𝟐.𝟏𝟓 −𝟎.𝟐𝟕

higher, up to the 11.54% without partial reassignments, when the distances are large

(𝜏j = 25). We remark that, in absolute terms, 1% improvement corresponds to 5 min

approximately. As for Wmax, we only observe an improvement with FRSA when the

distances are large.

Finally, we may observe that mu is higher than the 100% in some instances; in

fact, for 𝜏j = 25, we considered cases in which the staff is overloaded to test both

underloaded and overloaded situations.
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5 Conclusion and Perspectives

In this work we propose an alternative decomposition for the HHC problem. While

the literature usually proposes to first assign patients to nurses and then solve the

routing problem, we first consider the routing problem and then solve the assign-

ment problem. Moreover, to evaluate such approach in a variety of realistic cases,

we define a versatile mechanism to generate instances. Preliminary experiments are

promising, and seem to assess the appropriateness of our alternative decomposition.

In our future work, we will test additional instances considering in particular

large settings. Finally, we will further compare our FRSA approach with the clas-

sical FASR decomposition available in the literature [10, 11], to deeply investigate

for which types of instances our alternative decomposition performs better.
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