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Abstract In recent decades, healthcare has become increasingly expensive, creat-

ing pressure on healthcare providers to cut costs while maintaining or improving

quality. Operations research can play an important role in supporting such efforts. A

key challenge faced by hospital planners is scheduling and management of operating

rooms, as operating rooms typically provide highly specialized care, require signifi-

cant resources, and contribute significantly to a hospital’s bottom line. We describe

recent work on hospital operating room management at Lucile Packard Children’s

Hospital Stanford. We describe preliminary outcomes of three projects aimed at im-

proving the efficiency of the hospital’s operating rooms: machine learning to improve

surgical case length estimation; queuing analysis to improve operational efficiency;

and integer programming to schedule cases to reduce surgical delays.

Keywords Healthcare ⋅ Operations management ⋅ Optimization

Machine learning ⋅ Queueing

1 Introduction

In recent decades, healthcare has become increasingly expensive [17], creating pres-

sure on healthcare providers to cut costs while maintaining or improving quality. The

tools of operations research can play a key role in helping to improve the efficiency

and effectiveness of healthcare services. Operations research analyses can be used

to support high-level decisions such as facility planning (capacity, location, layout

and design), public health planning, planning for population health needs, and hu-

man resource planning; tactical decisions such as capacity planning, case mix plan-
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ning, resource management, patient and resource scheduling, staffing assignment,

and quality control and management; and operational decisions such as management

of patient flows, waitlists, and staffing levels [1].

A key area of focus in many hospitals is planning and management of the periop-

erative environment, consisting of the operating rooms and their supporting facilities

such as pre- and post-procedure units. Operating rooms typically provide highly spe-

cialized care, require significant resources, and contribute significantly to a hospital’s

bottom line. Even relatively minor delays in an operating room can have a significant

impact on quality of patient care, staff satisfaction, and hospital financial stability.

Indeed, the average cost of operating room time in the US is approximately $4000

per hour [15, 19] and it is estimated that each procedure that must be cancelled due

to operating room delays reduces hospital revenue by approximately $1500 per hour

[8].

For these reasons, many operations researchers have focused on developing mod-

els to improve the performance of hospital operating rooms. Extensive work has been

carried out in areas such as case mix planning and patient and staff scheduling. Work

on surgical procedure scheduling for the pediatric environment has combined opti-

mization and simulation (e.g., [2, 4, 5, 23]). For a recent review, see [6]. We note,

though, that many such planning models have not been implemented in practice. Ad-

ditionally, some models that have been implemented in practice are quite specific to

the hospital where they were developed and thus cannot be applied in other hospi-

tals. Our goal is to develop methods that can be implemented at our hospital but also

generalized to other hospitals.

In this paper we describe preliminary results from three projects in the periop-

erative environment that we are currently carrying out at Lucile Packard Children’s

Hospital Stanford (LPCH): using machine learning techniques to improve surgical

case length prediction [27]; using queuing analysis to improve the operational effi-

ciency of the perioperative process [10]; and using integer programming to schedule

cases to minimize surgical delays [12].

LPCH is a 312-bed hospital that is part of the Stanford University healthcare

system. The hospital has 7 operating rooms that are used to perform more than 6000

surgical procedures annually for 23 different services (e.g., cardiology, orthopedics).

An expansion that will be completed in 2017 will add 149 beds and 6 additional

operating rooms.

Planners at LPCH recently focused their attention on reducing delays in the oper-

ating rooms. The elective surgery process can be broken down into three stages: the

surgeon sees the patient in clinic and schedules the procedure; the patient prepares

for surgery at home, is prepared for surgery in the pre-operating room areas, and has

the surgery; and the patient recovers from the procedure in a specialized unit. Three

common causes of operating room delays and cancellations associated with these

stages at LPCH (and other pediatric hospitals) are: surgical cases are mis-scheduled

[3]; surgical preparation resources and processes are managed sub-optimally [13,

26]; and recovery beds for surgical patients are not immediately available [25]. We

developed projects to systematically improve performance in each of these stages,

as we now describe.
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2 Surgical Case Length Prediction

In order to schedule procedures in an operating room, an estimate of the time needed

to perform each procedure is required. Creating such estimates is particularly chal-

lenging in pediatric hospitals because pediatric patient populations tend to have

widely variable needs, even for the same type of procedure [20]. In theory, the op-

erating room time needed for each surgical case at LPCH is estimated by the sur-

geon after the surgeon examines the patient in clinic. Interviews with surgeons and

non-clinician schedulers working at the surgical clinic reveal that, in practice, the

scheduler estimates the time needed for surgery based on guidance from the surgeon

or based on a historical average. Estimates from the various clinics are then used

to manually create a schedule. This schedule is the basis for managing downstream

patient flow (e.g., in the post-anesthesia recovery unit).

Predicted procedure durations are often very different from actual durations.

When surgeries take less time than expected, operating rooms will be idle and pa-

tients may have to wait in the operating room for a recovery bed to become available.

When surgeries take longer than expected, delays are incurred for subsequent surg-

eries, overtime may be required, and in some cases procedures must be cancelled.

LPCH planners believed that better estimates of surgical case lengths would lead

to improved operating room utilization, fewer delays, and higher patient and staff

satisfaction.

We undertook a project to improve the prediction of surgical case lengths. Pre-

vious approaches to estimating surgical case length have included not only expert

opinion, as in the case of LPCH, but also various types of statistical analysis of his-

torical data (e.g., [11, 14, 21, 22, 24]). We used a prediction approach based on

supervised learning, as we describe below, and a classification approach based on

support vector machines that we do not describe here. Further details of our models

can be found in [27].

We developed tree-based automated models to predict surgical case length: three

automated models that use only patient and procedure characteristics and three semi-

automated models that additionally use surgeon case length prediction as a feature.

The simplest automated model, which we denote by DTR, is a single decision tree re-

gressor. We also use a random forest regressor, denoted by RFR, and a set of gradient-

boosted regression trees, denoted by GBR.

We designed and compared the models based on an operationally relevant loss

function: the percentage of cases that are significantly mis-scheduled relative to

their scheduled duration. Interviews with operating room staff and surgeons revealed

that relatively minor differences between actual and scheduled case length do not

cause significant disruptions. The impact of mis-scheduling depends on the sched-

uled length of the procedure. Consider a room in which 10 cases are scheduled, each

1 h long, and a room in which 2 cases are scheduled, each 5 h long. Scheduling er-

rors of 15 min will significantly disrupt the performance of the first room but not of

the second. We define a case as mis-scheduled if the actual duration differs from the

scheduled duration by more than 25% of the scheduled case length or 15 min.
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The automated models develop predictions based on the following features of

patients and procedures: sex, weight, age, American Society of Anesthesiologists

Physical Status Score (a score ranging from 1–6, indicating a range of health status

from normal good health to brain dead), identity of the primary surgeon performing

the procedure, location of the procedure (in an operating room or an ambulatory

procedures unit), patient class (inpatient or outpatient), and procedure name.

The semi-automated prediction models use the above features and, in addition,

use the surgeon’s case length estimate as a feature. We denote these semi-automated

models as DTR-S, RFR-S, and GBR-S, respectively, corresponding to the automated

approach of models DTR, RFR, and GBR.

We tested the prediction models on the 10 most common procedures performed

at LPCH from May 2014 through January 2015. The data set had a total of 3426

observations. We divided the data set into a training set and a tuning set of roughly

equal size: 1640 observations in the training set and 1846 observations in the tuning

set. For each procedure type, we compared the performance of our six prediction

methods to two benchmarks: the historical average duration for that procedure and

the expert estimate of the procedure duration (i.e., the value currently used when

developing the operating room schedules).

As described in [27], our simple DTR model was not better than either benchmark.

The other two automated methods, RFR and GBR, outperformed both benchmarks,

with GBR performing better than RFR in most cases. The semi-automated prediction

models DTR-S and RFR-S performed better than their automated counterparts, while

GBR-S had approximately the same performance as GBR. These results suggest that

the automated GBR method could be used as an adjunct to expert opinion when

estimating surgical case length.

In partnership with LPCH’s analytics provider, Qventus, we are now develop-

ing a system to implement the results of the work. To minimize disruption, surgical

schedulers will continue to submit their case length estimates to EPIC, the LPCH

electronic medical record, as they currently do. In real time, the estimate and all

relevant information will be transmitted to Qventus for analysis by a variant of our

algorithm. If the resulting predicted time differs significantly from the scheduled

time, then Qventus will text-message and email an alert to the scheduler with a sug-

gested time. The scheduler can then consult with the surgeon and modify the time

appropriately. We will measure the performance of this system using the loss func-

tion described above (the percentage of cases that are significantly mis-scheduled

relative to their scheduled duration).

Our model is readily generalizable to other hospitals and surgical centers where

the relevant patient data, or at least the subset of the most useful features, are col-

lected. For the GBR method, the most important features for prediction were pro-

cedure name, patient weight, and primary surgeon identity. For the GBR-S method,

the most important features were primary surgeon identity and the surgeon’s case

length estimate, followed by procedure name and patient weight. The model can be

implemented with minimal disruption to operating practices through automated no-

tifications of potential case length mis-estimates.
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3 Improving Operational Efficiency of the Perioperative
Process

Our second project focuses on the stage between when a surgical procedure is sched-

uled and when the patient completes surgery and goes to the post-anesthesia care

unit (PACU). Numerous interrelated factors contribute to operational inefficiency in

this process. These include, for example, variability in patient preferences and clini-

cal needs, lack of patient adherence to guidelines, equipment and supply availability,

variability in provider practice, scheduling errors, inefficient resource allocation, and

communication errors. In such a complex system, it may be difficult to identify the

areas of the process where interventions would most reduce delays. For example,

suppose that historical time stamps show that a patient entered the operating room

later than scheduled. This may be because the patient came late to the hospital, or

came on time and was delayed during preparation, or was prepared on time but de-

layed by the previous case running late.

We faced three major challenges in this project: identifying the factors that have

the most significant impact on efficiency; determining how to address those problems

without adverse impact on the wider system; and finding time for staff to implement

change while they continue to operate in a very busy environment. We partnered with

perioperative leaders, clinicians, and staff to address these challenges systematically.

To identify the factors that have the most significant impact on efficiency we cre-

ated a detailed queuing representation of patient flows in the system, estimated the

utilization and capacity of each step of the process using historical time stamp data,

and measured the frequency and magnitude of delays associated with each process.

We identified bottlenecks to determine how to make improvements that minimize

disruption to the broader system. To achieve change without unduly taxing the pe-

rioperative staff, we augmented the current process with several automated notifica-

tions powered by data already in the hospital’s electronic medical record. Below, we

describe the design, implementation, and results of the project. Further details are

provided in [10].

We first created a flow chart that maps the process starting from the days before

surgery, through the activities in the pre-operative area, to the completion of surgery

and the transfer of the patient to the PACU. The process flow is as follows: In the days

leading up to surgery, dedicated nurses, nurse practitioners, and physicians from the

hospital contact the patient’s family to collect relevant information (e.g., allergies

to medications) and instruct them to prepare for surgery (e.g., explain NPO guide-

lines and when to arrive to the hospital). After the patient is admitted and checked

in, a nursing assistant takes the patient’s vital signs, height and weight, and then

brings the patient to a consult room where the patient sees a nurse practitioner and

answers a number of questions. Then, depending on various circumstances such as

the scheduled time of surgery, the availability of a nurse, or whether the operating

room is running late, the nursing team will decide whether the patient needs to be

brought back to the waiting area or can immediately see a nurse in the consult room.

In both cases, the patient is eventually taken to the holding area, so that the nurse
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can complete the exam if necessary, and prepare the patient. At some point, the op-

erating room sends a notification that they expect the patient to be ready to see a

physician in the holding area within the next 20 min. The patient is then seen by an

anesthesiologist and a surgeon for final preparations and then taken to the operating

room. When the surgery nears completion, a nurse from the operating room contacts

the PACU to reserve a bed.

We interviewed nurses, physicians, and staff members to identify problems and

opportunities for improvement in the process flow. We identified several major

causes for delays: patients do not follow guidelines to not eat before surgery; on

the morning of surgery patients are missing needed paperwork; patients need an in-

terpreter but no interpreter is available; no nurse is available for room turnover; or the

PACU is full. In order to quantify the impact of each of these delays and to identify

other sources of delays we used a queuing representation. We used two years of his-

torical time stamps to estimate the capacity of each set of resources in the process, the

rate of patient arrivals during busy periods, and the frequency of associated delays.

The detailed process mapping revealed that we could relieve the burden of non-

clinical work on perioperative staff by using automated communication. We there-

fore implemented automated text-message reminders to patients to assist with the

communication of surgical guidelines such as not eating the morning of a procedure.

We redesigned the process for completing the pre-surgical documentation to be elec-

tronic rather than paper-based and to allow for automated alerts to notify physicians

and staff when documentation was missing. Additionally, we implemented several

other, similar interventions, as described in [10].

The queuing representation of the system revealed numerous days in which the

PACU was the bottleneck causing surgical delays. Since neither decreasing the num-

ber of arrivals to the PACU nor increasing PACU capacity were feasible options, we

considered ways to increase the rate of PACU service. A detailed study of the time

stamps revealed that the notification from the operating room to the PACU, intended

to be made 20 min before the patient is ready to exit the operating room, was fre-

quently premature. When the PACU receives such a notification, a bed is reserved

for the patient. Premature notifications thus effectively increase how long a patient

occupies a PACU bed.

We implemented our recommended just-in-time operating room notifications to

the PACU at the end of June 2016. LPCH’s surgical caseload is highest during the

summer months, as parents schedule procedures when children are not in school. In

the two months following the policy change, the percentage of patients who arrived

in the PACU more than 20 min after the notification fell from approximately 54%

to approximately 22%. The number of cases with a PACU hold fell from 45 with an

average length of 27 min in June, to 6 with an average length of 15 min in July and 16

with an average length of 14 min in August. The improvements were not related to

surgical volume, as the average number of weekday cases using the PACU remained

constant at approximately 30 per weekday in June, July, and August.

The transition to just-in-time bed requests increased the effective capacity of the

PACU. Other institutions that track bed request time stamps and patient arrivals

could reproduce our analysis to determine whether a similar intervention is appro-
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priate in their setting, and could explore the potential for implementing automated

notifications, using an approach similar to the one we have described.

4 Post-Anesthesia Care Unit Scheduling

Our third project focuses on reducing operating room delays caused by patients wait-

ing for a bed to become available in the PACU. Such delays are a common, exten-

sively studied problem. Research in this area can be categorized into projects that

estimate the resources, such as beds or staff, necessary to minimize such delays [7,

18] and projects that develop methods to adjust the order of cases to reduce delays

[9, 16]. Results of projects that involve adjusting the order of surgical cases have

been largely negative, yielding conclusions such as, “Although effective, such meth-

ods can be impractical because of large organizational change required and limited

equipment or personnel availability” [9] and “The uncoordinated decision-making

of multiple surgeons working in different operating rooms can result in a sufficiently

uniform rate of admission of patients into the PACU and holding that the indepen-

dent sequencing of each surgeon’s list of cases would not reduce the incidence of

delays in admission or staffing requirements” [16].

We undertook a project to develop an easily implementable surgical procedure

scheduling decision support tool that would create a level load of PACU bed and

staff utilization. We tested its performance to estimate the resulting improvements

and are in the process of implementing it. Below, we describe the current scheduling

system at LPCH, the design of the decision support tool, and its implementation.

At LPCH, after a surgical procedure in the operating room, patients are sent to one

of 10 recovery beds in the PACU. A patient cannot be assigned to the PACU unless a

bed is free and the appropriate staff are available to supervise the patient’s recovery.

If a bed and needed staff in the PACU are not available when the patient’s surgery

finishes, the patient must wait in the operating room for a PACU assignment. This

means that the next surgical procedure cannot begin and the next patient scheduled

for surgery must continue to wait in the pre-operative area. These delays lead to

inefficient use of operating rooms and staff as well as lowered patient satisfaction.

The current process to reduce PACU holds is as follows. Each day, starting in

the morning, a scheduler ‘builds’ the operating room case schedule for the following

day. Since each operating room is typically reserved for cases performed by a given

surgical service, building the schedule consists primarily of determining the order

of the cases in each room. The scheduler accounts for special considerations (e.g.,

patient characteristics, specialized equipment needs, or the need for more than one

surgeon for a case) that may require certain cases to be performed at specific times.

Each afternoon, by which time a preliminary schedule has been created, a meeting is

held to estimate the corresponding demand for PACU and other beds, make changes,

and finalize the schedule for the following day. If estimates based on the preliminary

schedule suggest that the PACU will reach capacity at a given time of day, then

the order of the procedures is shuffled to reduce the number of patients sent to the
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PACU during that time. After this process is complete, schedulers call patients to

notify them of their surgery time.

Our model uses as input the cases scheduled for the following day, patient infor-

mation relevant to forecasting PACU length of stay, and the patient and surgeon infor-

mation relevant to constraining when certain cases must be scheduled. The model

uses a random-forest-based method to estimate the likely duration of each patient

recovery in the PACU. An integer program is then used to determine the order in

which the procedures should be scheduled in each operating room so as to minimize

maximum overall PACU occupancy.

We used a discrete event simulation model to test the performance of the opti-

mization. We validated the simulation by reproducing 6 months of historical PACU

occupancy based on scheduled order of procedures, procedure durations, and re-

covery durations. After validation, we used the simulation to compare the histori-

cal PACU occupancy to that which would have resulted from scheduling with the

optimization. We found that 60% of operating room days finished earlier with the

optimized schedule compared to the actual schedule, suggesting that significant op-

erational improvements can be achieved with the optimized scheduling system. We

are now in the process of implementing the system at LPCH. For full details of the

design, testing, and implementation, see [12].

This model has the potential to improve on the current process in several ways.

First, the output of the model is automated; it does not require a scheduler to spend

time creating the preliminary schedule. Second, the order of procedures is deter-

mined based on case-specific estimates of PACU occupancy whereas the current

process assumes equal PACU recovery lengths for all cases. Third, the arrangement

of cases is optimal for minimizing maximum PACU occupancy, a combinatorial re-

sult not readily achievable with the current manual process. Additionally, implemen-

tation of the model is minimally disruptive, as it produces as output a preliminary

schedule that can be reviewed and revised at the current afternoon meeting.

Our model is readily generalizable to other healthcare institutions that finalize

their operating room schedule after the majority of cases are scheduled. The data

used to generate the forecast of PACU length of stay and to determine the order of

procedures are routinely tracked by institutions with an electronic medical record.

The preliminary schedule is easily modifiable by perioperative staff who can make

changes to satisfy ad hoc constraints that are not captured in the model. We are cur-

rently working with Stanford Health Care (the adult hospital at Stanford) to explore

implementation of our optimization model in their operating rooms.

5 Discussion

Many opportunities exist to improve the efficiency and effectiveness of healthcare

services, and operations research can play an important role in supporting such ef-

forts. The projects we are carrying out at Lucile Packard Children’s Hospital Stanford

demonstrate that a systematic, analytical approach to problems in hospital operating
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room management can help planners achieve significant operational improvements

without expanding resources or unduly taxing hospital staff.

An important goal of our projects is to develop solution approaches that not only

can be implemented in the specific setting under study, but that can also be general-

ized to other hospitals. The models we developed rely on data that are available in

almost any electronic medical record system. With the recent expansion of electronic

medical record systems, our models have potential usefulness in many settings.

The primary limitation of this work is that the projects described were designed

and implemented at a single pediatric hospital. To ensure that these tools are gener-

alizable, future work should implement the tools at a second hospital and report the

necessary modifications. We are currently exploring this possibility at the Stanford

adult hospital.

Another promising area for further research on improving operating room man-

agement is to determine the days on which elective surgery procedures are scheduled

so that surgical bed occupancy is balanced. If one knew exactly what the demand for

elective surgeries over time would be, then this problem could be solved as an inte-

ger program: an assignment problem with the goal of minimizing deviations from an

average surgical bed occupancy level. However, future demands for elective surgery

cannot all be known when assignments are being made. Thus, the challenge is to

develop a prospective algorithm that achieves solutions close to those that would

be found with perfect knowledge of future demand and the use of an optimization

model.
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