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Foreword Proceedings HCSE 2017

The International Conference on Health Care Systems Engineering provides an
opportunity to discuss state-of-the-art operations management issues in healthcare
delivery systems. The third edition of this conference took place in Florence at the
Meyer Children’s Hospital—a unique location in a beautiful city. One facet of the
uniqueness of the Meyer Children’s Hospital is that it was built not to look like a
hospital. This inspiring atmosphere carried over directly to the participants. Sci-
entists and practitioners used the opportunity to discuss new ideas, methods, and
technologies and how they can be brought into practice.

Topics included predictive models and information systems in healthcare,
healthcare logistics, planning and location, clinical pathways, patient-centered
services, emergency department management, and many more.

What makes HCSE a very special conference is the broadness of the topics and
at the same time the dialogue between researchers and practitioners to better
evaluate the value of the presented ideas. Moreover, for each session, there is not
only a chair person assigned, but also a discussant. This improves the quality and
intensity of the discussion after each talk enormously.

The hospital tour at the Meyer Children’s Hospital as well as the perfect social
program completed the positive impression of HCSE 2017 in Florence. I am very
much looking forward to future editions of HCSE.

Prof. Stefan Nickel
Karlsruhe Institute of Technology—KIT, Karlsruhe

Germany
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Preface

This volume is dedicated to the peer-reviewed contributions accepted for presen-
tation at the Third International Conference on Health Care Systems Engineering
(HCSE 2017) that took place in Florence, Italy, from May 29–31, 2017. This
conference aims at giving evidence of how quantitative operations management
(OM) methods can support complex decisions arising in healthcare processes.

A distinguishing feature of the conference with respect to the other OM con-
ferences on similar topics is to bring together medical staff and OM people to
(i) share knowledge, (ii) share perspectives—often different and possibly conflicting
—with the aim of finally (iii) come to a problem solution. The conference is
purposely organized in plenary and single-stream regular sessions so as to foster the
discussions and collaborations between OM scientists and clinicians.

Another peculiar feature of the conference is the location which is quite unusual
for an OM conference: Each edition was hosted inside a hospital and for HCSE
2017 the hosting hospital was the Meyer Children’s Hospital in Florence. We
would like to express our gratitude to the General Director Dr. Alberto Zanobini for
letting us visit and use the (outstanding) hospital facilities throughout the
conference.

In this edition of the conference, we had the honor of host two keynote speakers
to whom we express our truly deep gratitude: Prof. Stefan Nickel from the Karl-
sruhe Institute of Technology—KIT (Germany) and Prof. Angela Testi from the
University of Genoa (Italy). Their contributions were perfectly fitting the objective
of the conference and were very much appreciated by the audience.

Each of the contributions submitted to the conference has undergone a
peer-review process which involved at least two reviewers selected by the Con-
ference Scientific Committee. A total of 29 contributions were finally accepted and
organized in six regular sessions (25 contributions) and a young session (4 con-
tributions). Each session was chaired by an academic and a clinician discussant,
both experts in the field. This conference was indeed multidisciplinary and inter-
national with 84 authors spread in 18 countries and in 3 continents.

The regular sessions cover a wide spectrum of topics in the management of
healthcare systems, and they feature the following topics: (i) predictive models and
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information system, (ii) planning and location, (iii) protection and analytical
approaches, (iv) emergency department management, (v) robustness management,
and (vi) scheduling.

Young session is a novelty of this edition: Young scholars, i.e., graduated stu-
dents and Ph.D. students, have been given the opportunity to submit an extended
abstract instead of a full paper and to present their ongoing research on emerging
topics in healthcare management in a dedicated session. Presentations have been
held in a friendly, inspiring, and bridge-building environment, where young
scholars received valuable feedback from the audience to finalize their research.
The most promising research was awarded by a committee made of members of the
Scientific Committee and experts in the field, and the winner was Fabian Schäfer
presenting the paper: F. Schäfer, M. Walther, A. Hübner, Patient-Bed Allocation in
Large Hospitals.

We would like to thank Prof. Nickel who accepted to write the foreword of this
volume, all the members of the Scientific Committee who gave us the opportunity
to host HCSE 2017, all the speakers, authors, attendees, discussants, and reviewers
for their valuable help in guaranteeing the quality of the accepted contributions.
Each of them has contributed to the success of HCSE 2017.

We are deeply indebted to the young people from the local organizing com-
mittee, i.e., to Caterina Caprara and Roberta Rossi because without their help
everything would have been more difficult to manage.

Finally, we would like to express our sincere wishes for the success of the next
edition of the conference, HCSE 2019!

Florence, Italy Paola Cappanera
Filippo Visintin
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How to Protect a Hospital Against Cyber
Attacks

Alain Guinet

Abstract Hospitals have not been prepared to face cyber attacks. Their core
objective is to take care about patients by curing them efficiently. In this paper we
propose a vulnerability assessment approach, to highlight the information system
weaknesses of a hospital. By defining a map of the information system which
considers the most critical assets (i.e., the units which manage the core informa-
tion), the most likely attack scenarios with the worst consequences are constructed.
By studying these scenarios, we suggest mitigation countermeasures, based on a
reorganization of the digital information system into isolated sub-systems. Our
objective is to be more resilient to cyber attacks, by increasing the required com-
plexity for hacker’s crimes and by limiting the damages of attacks.

keywords Cyber attacks ⋅ Hospital vulnerability
Information system mapping ⋅ Partitioning ⋅ Defence

1 Introduction

A study published by the Institute for Critical Infrastructure Technology in 2016,
specifies that 72% of the US health care societies have been targeted by cyber
attacks during 2012, 47% of the US people which accessed to the health care system
have been victims of corrupted medical data, due to hackers. The cyber attacks are a
sad reality in health care systems. Hospitals have not been prepared to face such a
cyber war. Their core objective is to take care about patients by curing them
efficiently. In this paper we propose a vulnerability assessment approach, to
highlight the weaknesses of the digital information system of a hospital. By
defining a map of the information system which considers the most critical assets
(i.e., the units which manage the core information), the most likely attack scenarios

A. Guinet (✉)
DISP, Institut National Des Sciences Appliquées de Lyon, (Université de Lyon),
21 Av. Jean Capelle, 69621 Villeurbanne, France
e-mail: alain.guinet@insa-lyon.fr
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with the worst consequences are constructed. By studying these scenarios, we
suggest mitigation countermeasures, based on a reorganization of the digital
information system into isolated sub-systems. Our objective is to be more resilient
to cyber attacks, by increasing the required complexity for hacker’s crimes and by
limiting the damages of hacker’s attacks.

In a second section, we present the different types of hackers and we illustrate
their motivations with some cyber attack stories, from the health care sector. In a
third section, we propose an approach to reduce the hospital vulnerability in cyber
attack situations. This approach is based on a consensus mapping of the information
system which enables us to find possible breaches which can be used by hackers.
After having defined some scenarios, we discuss in the fourth section how to use
the map of the hospital information system to define countermeasures, in order to
mitigate the cyber attack scenarios.

2 The Cyber Attack Sources

Cyber attacks can be motivated by claiming, illegal gains or violence, as described
hereafter.

2.1 Hacktivists

Hacktivists try to make propaganda by obtaining media attention in order to pro-
mote their values. These hackers can also act for enjoyable reasons. Cyber attacks
from hacktivits are disruptive. The most common hacktivist attack is a denial of
service (DDoS) attack, which overloads a hospital’s server with undesired traffics in
order to halt the regular operations of the server. A watering hole attack is another
cyber attack in which the hacktivist seeks to infect websites in order to send its
propaganda or malware to end users. The goal is to infect a server and gain access
to the end users by the compromised server. The capabilities of hacktivists are: a
low level of organisational support, a poor financial backing, a small network of
members and limited capacities for computing/networking.

On April 2014, protesting on a child custody case, who was being kept at Boston
Children’s hospital against the wishes of him/her parents, the hacktivist group
Anonymous launched multiple distributed denial-of-service attacks that targeted the
hospital’s servers and hamstrung its operations for a week (https://www.
bostonglobe.com/business/2014/04/24/hacker-group-anonymous-targets-children-
hospital-over-justina-pelletier-case/jSd3EE5VVHbSGTJdS5YrfM/story.html).

4 A. Guinet
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2.2 Terrorists

The main terrorist objectives are to spread terror and to kill people. Terrorists try to
cause violence and damage, in order to destabilize the hospital and the patients.
Cyber attacks from terrorists are destructive. The different forms of cyber attacks
are: espionage, theft, sabotage and personal abuse. A possible attack can be
information system hacking, in order to change patient prescription, medical test
results or the formulation of pharmaceutical receipts. The capabilities of terrorists
are: a high level of organisational support, a good financial backing, an efficient
network of members, numerous possibilities to subcontract to hackers without ethic
for computer virus developments.

At the Def Con hacking conference in 2011, Jay Radcliffe has suggested a
technique for attacking a insulin pump that it is used to deliver insulin to a patient. He
hacked into the pump by remotely accessing the wireless monitoring system. He
demonstrated that the approach could have been used to deliver lethal insulin doses to
a patient (http://www.reuters.com/article/us-rapid7-radcliffe-idUSKBN0E929K201
40529).

2.3 Criminals or State Sponsored Hackers

Cyber criminals try to generate profit through the exploitation or through the
racketeering of hospital data or patients’ data. Cyber attacks from criminals can be
disruptive or destructive. The most common criminal attack is the ransom-ware
attack, which encrypts files in an information system. If the hospital does not pay
the ransom, the files are destroyed. Phishing is another form of criminal attack
which consists to steal personal information data (e.g. bank identity) without vio-
lence. The user opens a malicious email from a false government agency and gives
confidential information about the hospital or a patient. A delinquent has the same
capacities such as a Hacktivist. The state sponsored hackers or cybercriminal
groups such as mafia versus triad can be viewed as terrorists. Criminals always seek
easier targets because they often do not have a plethora of resources.

On February 2016, a Southern California hospital was a victim of a cyber attack,
which interfered with day-to-day operations. The CEO said that the shutdown has
not affected patient care. Several hospital staff members said the computer system
was hacked and was being held on a ransom of 3.4 billion in bit coins, and in
exchange, the hackers would send back the key codes to restore the system. In
reality the California’s Hollywood Presbyterian Medical Centre shelled out 40 bit
coins, or about $17,000, in order to regain access to its electronic health records.
(http://www.nbclosangeles.com/news/local/FBI-LAPD-Investigating-Hollywood-
Hospital-Cyber-Attack-368703121.html).
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3 The Cyber Attack Approach

We propose the following vulnerability assessment approach to face the above
situations.

1. Find the threat sources: Reviewing historical data on cyber attacks, we specify
the adversary profile, their potential actions, their capabilities, and their moti-
vation, as done above.

2. Define critical assets: Identifying the care units and the technical units of the
hospital which use digital information as input or output or for management. We
locate the critical assets regarding to their contribution to the information sys-
tem, i.e. the units which are the most likely and the easiest to be faced with a
computer virus and which are the most damageable regarding to lost information
and the hospital added value … An IDEFØ model enables us to map the critical
assets.

3. Calculate critical asset attractiveness: Realize an analysis based on pairing of
each critical asset and of each threat source by brainstorming, in order to identify
potential vulnerabilities per adversary, and to better evaluate the ease of causing
damages, according to adversary’s motivation.

4. Define Threat Scenarios: Based on the attractiveness of the critical assets per
adversary, the most likely (i.e. the easiest target for the most motivated adver-
sary) attack scenarios with the worst consequences are constructed.

5. Assess Threat Scenarios: Scenarios are studied to evaluate their consequences,
to propose possible counter-measures in order to reduce the risk to an acceptable
level by a cost/benefit analysis. This step is repeated until all relevant scenarios
are mitigated and are instrumented with an efficient response plan. The IDEFØ
map of the critical assets is studied to mitigate the threats regarding to their
propagation, knowing that infection is propagated through digital exchanges.
A mixed linear program is proposed to help the decision maker regarding to
mitigation.

3.1 The Information System Mapping as a Tool

IDEFØ [1] is a method designed to model the events, data, and activities of an
organization or a system. The IDEFØ model helps to organize the analysis of a
system and allows promoting good communication between the analysts and the
users. It enhances user involvement and allows us to obtain consensus models [2]
which are a basic requirement when actors are multidisciplinary such as physicians,
nurses, technicians, engineers, administrative staff, managers, etc. The analysis of
the system is represented as a collection of hierarchically organized diagrams with a
limited number of elements: boxes which represent activities or physical units, or
equipment, and arrows to model physical, information, order flows, data stores etc.
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IDEFØ will assist us in identifying on one hand units and services which
manage digital information, i.e. which could be a source of computer virus by
Internet, USB keys, user access privileges, and on the other hand connections which
could be a propagation way for contamination by exploiting the data flows. An
IDEFØ model will be firstly created for our hospital analysis (Figs. 1 and 2) and it
will be used to identify the critical assets regarding to information management, and
secondly to generate a network mapping (Fig. 3) in order to evaluate the weak-
nesses of the network and to study scenarios including countermeasures. Arrows
model only information and data stores are represented as mechanism arrows. By
default, reading and writing are allowed for data stores.

In Fig. 1, the hospital units/services use different information files which contain
the core elements of their missions (bed planning for the central booking, patient
medical files for care units, etc.). The patient identification is the connexion data
between these different files to enforce the integrity of the information system but
could be a contamination way. Internet access is provided to each unit/service and it
defines a potential infection source. Regarding this user view, information is
decentralized and can be physically isolated, mainly if information is virtually
partitioned on the same server.

In Fig. 2, all of the units use the patient medical files, and can corrupt them.
Internet is reserved to hospital wards. The patient monitoring system is dedicated to
ICU but it is linked to other care units by the patient medical files. Information is
centralized and cannot be easily fragmented except maybe for ICU.
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Fig. 1 The global model of the hospital
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To calculate the information system mapping, we export from the IDEFØ model
the different connexions between the leaves (services/units) of the decomposition
tree of IDEFØ diagrams.

The result is modelled by a binary matrix (see Fig. 3) where the lines/columns
represent the leaves, and the intersections between lines and columns identify the
presence (1) or absence (0) of a digital connexion which could be a contamination
way between two critical assets. Such binary matrix will be used to define the most
resilient information system architecture. Data stores are supposed to be attached to
users. If two data stores of two different users are virtually partitioned on the same
server, a digital connexion between the two users is added in both ways, because a
potential infection risk exists by cohabitating on the same server. Demilitarized
zones can also be modelled specifying WIFI access as explained below.

3.2 The Critical Assets

According to the IDEFØ model (Figs. 1 and 2), some critical assets have been
identified. They represent the units which manage core information about patients,
activities, employees, etc.
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Fig. 2 The detailed model of the scheduled hospitalization
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Emergency department and scheduled hospitalization: The patient medical files
from emergency and hospitalization wards are collections of personal data about
patient diagnosis, patient treatments, patient laboratory tests, medical reports, etc.
The patient medical files are accessible by all the care units. They allow deciding:
the patient’s pathway, the laboratory exams, the drug prescriptions, etc.

Patient registration: The patient administrative files managed by the patient
registration unit contain information about personal data (names, addresses, phone
number, bank details, etc.), insurance identification, relatives’ information … The
patient administrative files enable the patient financial support, the communication
with patient’s relatives, etc. They are at the origin of all patient files. The database is
managed by a software suit, which links the medical files, the bed planning and the
operating room planning. Patient registration uses websites of health care insurance
companies.
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A5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

A6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 3 The information system mapping
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Patient registration and central bed booking: The patient registration enables to
manage remotely patient admissions by physician and the central bed booking
calculates the bed planning which assigns a bed to each patient over a horizon of
four weeks. The bed planning allows scheduling the activity of several care units:
radiology, surgery, nursing, pharmacy, etc. It is shared by all the care units, and
enables to supervise all the nursing and medical activities. The bed planning is also
a coordination tool between emergency and hospitalization wards.

Intensive care unit: The patient monitoring system of ICU supervises the
oxygen/drug supply to patient requiring intensive cares. The blood pressure, the
heart rate, the ECG signal, etc., are vital parameters which are monitored and can
trigger nursing/physician alerts. The SCADA system is used to manage the ICU
beds [3]. It manages the supervisory control, data acquisition system and pumps’
control. The SCADA (Supervisory Control And Data Acquisition) system is
potentially vulnerable to disruption of service [4], or to manipulation of data that
could result in lack of vital safety for patients.

3.3 The Critical Asset Attractiveness

Based on a brainstorming, the attractiveness of the critical assets has been dis-
cussed, by pairing each critical asset and each threat source. For “Scheduled hos-
pitalisation (Elective patient medical files) and Emergency department (Acute
patient medical files)”, the threats can be:

• Hacktivists: The identification of patients requiring an abortion or of the sur-
geons practicing abortion, and the diffusion of such information on social net-
works could be a goal of hacktivists.

• Criminals: The patient medical files contain confidential information about
patient test results and patients’ treatments. Such information can be sold to
malicious financial companies.

• Terrorists: Patients suffering from AIDS, could be identified by terrorists, and
could be individually targeted by further criminal actions. Patient’s blood types
can be changed to mass casualties.

3.4 The Threat Scenarios

The revenge: An employee has been recently fired. He/she approaches a hacker and
he convinces him to destroy the hospital network by encrypting the servers. The
hacker inserts a worm to get the network node plan, then she/he remotely jeopar-
dises the network introducing crypto-lockers. All the hospital activities are out of
order except the ones working with paper and autonomous equipment, i.e. diag-
nostic devices such as the radiology department. The emergency department has to
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stay closed and the elective activity must be stopped. The risk of errors is dra-
matically increased. The whole information system is corrupted. On the financial
side, the hospital probably lost $1 million a day in billing.

The murdering: An important politician is in a surgery unit. He/she has just
favoured in Parliament the approval of a law in favour of the abortion/euthanasia.
A criminal paid by domestic terrorists, infiltrates the hospital information system,
and next jeopardizes the patient monitoring system of ICU beds. After the surgery
the Politician requires an ICU bed. The politician is killed by disruption of ICU
monitoring system that has been compromised (drug dosage and/or ventilation).
The SCADA system which manages the supervisory control and data acquisition
system of ICU beds was unprotected. Data was not encrypted and could be easily
read and modified in order to deliver a lethal dose.

4 The Scenario Assessment with the Information
System Mapping

Most of works on information system defence are based on attack graphs to find
system breaches and to select countermeasures [5, 6]. Attack graphs have an
exponential complexity and are not easily understandable by users [7]. The archi-
tecture of the information system is very few questioned [8]. As countermeasures,
investments on software are favoured instead of investments on system architecture
which require heavier system upgrades due to information system integration. Since
this latter is less sensitive in hospital due to the job variety (surgery, nursing,
pharmacy, accommodation, etc.) and as the information system network is boun-
ded, we favour information system architecture study. This focus is recommended
by the French Network and Information Security Agency (ANSSI: Agence
Nationale de la Sécurité des Systèmes d’Information) [9].

4.1 The Strongly Connected Components
of the Information System

Figure 3 presents a map of the hospital information system. This map is modelled
by a matrix where the N nodes represent the critical assets and the arrows define the
digital exchanges between the critical assets. If we calculate the minimum number
of strongly connected components of this graph [10] with a computation com-
plexity of N3, we define sub-graphs which are totally linked and which can be easily
contaminated if one of the nodes of the sub-graph is infected. May be, a strongly
connected component can be easily compromised but the damages can be limited to
the sub-graph if it is physically isolated. The transitive closure gives us an idea of
the information system vulnerability.
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Our proposal is to create independent sub-graphs to reduce the damage conse-
quences caused by cyber attacks while minimizing the drawback of disconnected
sub-graphs [9]. Partitioning data through physically independent sub-systems on
one hand reduces the contamination (propagation of viruses by transitivity), also
increases the complexity of a potential cyber attack corrupting the whole data, and
on the other hand allows the information system to run partially after an attack. Five
strongly connected components have been identified in the IDEFØ graph. They lead
to define five natural sub-graphs which represent the elective patient activity (A1,
A2, A41, A42, A43, A44, A45), the acute patient activity (A31, A32, A33, A35,
A36), the pharmacy (A5), the sterilization unit (A6) and a single room (A34: the
waiting room of the emergency department which could be demilitarized and
enable the patient’s relatives to access WIFI). By isolating the information system
into five independent sub-systems, we do not enable the sharing of the patient
identification between units/services and of the units’ requests to the pharmacy/
sterilization, by a digital way. Encrypted barcodes identifying patients/products (i.e.
only little information) can be an efficient and secure way to exchange data via
paper. Information is transmitted by hand.

Asmitigation countermeasures, ourmatrix enables us: to complicate cyber-attacks
by partitioning the information system into independent subsystems, to favour the
service continuity limiting potential cyber-attacks, to specify attack graphs using
simulation [11], to define demilitarized zones for a safe use of internet, and to assess
the access rights by units or services, respecting confidentiality and security.

4.2 The K Partitioning Problem

The transitive closure proposes a natural partitioning of the graph into sub-graphs.
The strongly connected components represent the critical assets which share the
same information and cannot be separated without a heavy lost of digital infor-
mation exchanges. If we hypothesize that such partitions become physically inde-
pendent regarding to digital information exchanges, a minimum of information
exchanges is lost by partitioning the graph into sub-graphs corresponding to the
strongly connected components. To go further, we propose a mixed linear model to
partition the graph into at least K components, on one hand with weighted arcs in
order to take into account the information traffic level between nodes and on the
other hand with weighted critical assets to evaluate the damages of a corrupted
partition. The mixed linear model must be used after calculating the transitive
closure of the graph, in order to take into account all transitive links.

Data:

• N: number of system components, K: the minimum number of partitions,
• c (i, j): it is equal to 1 if system component i is linked as input with system

component j,
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• d (i): potential damage of critical asset i when corrupted (disruption of activity,
data restoration),

• w (i, j): data traffic from the system component i to the system component j,
expressed in working hours to evaluate the potential loss of digital traffic.

Variables:

• X (i, k): this binary variable is equal to 1 if i is assigned to partition k,
• Y (k): this binary variable is equal to 1 if at least one node has been assigned to

partition k,
• Loss (i, j): real variable, the link from i to j is deleted and it results a loss of w (i, j)

traffic,
• Dmax: real variable, maximum damage of a partition when corrupted.

Objective function:

Minimize Zð Þ= ∑N
i=1 ∑

N
j=1 Loss i, jð Þ+Dmax ð1Þ

We minimize the losses of traffic knowing that partitions are not linked, and the
maximum damages to a partition. We hypothesize an attack to only one partition
instead of the entire information system.

Constraints:

∑N
k=1 X i, kð Þ=1 ∀ i=1, . . . , N ð2Þ

A system component i must belong to one and only one partition.

X i, kð Þ+X j, kð Þ− 1≤ c i, jð Þ ∀ i, j, k=1, . . . , N ð3Þ

A pair of system components i and j belonging to the same partition, must
exchange traffic.

∑N
i=1 X i, kð Þ≤N*Y kð Þ ∀ k=1, . . . , N ð4Þ

∑N
i=1 X i, kð Þ≥Y kð Þ ∀ k=1, . . . , N ð5Þ

∑N
k=1 Y kð Þ≥K ð6Þ

A partition must contain at least 1 system component. We count the number of
partitions which must be greater than K.

Loss i, jð Þ≥w i, jð Þ*X i, kð Þ−w i, jð Þ *X j, kð Þ ∀ i, j, k=1, . . . , N ð7Þ

Loss i, jð Þ≥w i, jð Þ*X j, kð Þ−w i, jð Þ*X i, kð Þ ∀ i, j, k=1, . . . , N ð8Þ

The calculation of loss of traffic is done taking into account the links between
system components belonging to different partitions.
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∑N
i=1 d ið Þ*X i, kð Þ≤Dmax ∀ k=1, . . . , N ð9Þ

The calculation of the potential damages is done. The maximum damage is
sought.

Comments:
We have modelled a mixed linear program to solve a K partitioning problem, where
K is greater or equal than a given number, the number of nodes per partition is
unconstrained. We minimize on one hand the sum of the weighted arcs between
partitions (i.e. lost links), and on the other hand the partitioning risk depending on
the critical assets which belong to the same partition. We hypothesis a cyber attack
limited to only one sub-system. The resulting K partitioning problem is NP hard
[12]. The damages of critical assets are calculated regarding to the activity dis-
ruption which is evaluated by the lost turnover and the restoration cost of the
information system (i.e. the software loading, the backup recovery, the data update
due to the failure period). The traffic losses take into account the working hours to
transmit information by hand (data input, barcode scanning, data printing, etc.). All
costs are expressed in Euros. The cost horizon reference is one month.

We have solved our mathematical program with the Cplex solver in a few
seconds. If K is equal to the number of strongly connected components, the number
of partitions is most of the time equal to K and the assignment of components to
partitions is the same that was calculated by transitive closure. Only a great variety
of traffic costs or a large diversity of damage costs of critical assets introduces
changes in the number of partitions. If the graph is a strongly connected graph, than
it results just one partition. The mixed linear model will be of a great help to study
the partitioning problem with increasing successive values of K.

4.3 Feedback of Partitioning by Scenario

Regarding the revenge scenario, the hacker has to steal the authentication and the
identification of five employees who have an authorized access to the five partitions,
in order to corrupt the whole system. If the fired employee has still an access to one
of these partitions, the ransom-ware attack is limited. A paper kit system can be
used to enable the continuity of service of the damaged assets (unit/service) whose
data are encrypted [13], and the restoration of the corrupted equipments with an
offline redundant hardware can be part of the solution.

The murdering scenario is more complicated because the patient monitoring
system of ICU belongs to a partition which includes two kinds of data: SCADA
data and patient medical files. Both data could be corrupted to kill the VIP, the
medical prescription and/or the SCADA parameters. If we isolate the patient
monitoring system of ICU in a 6th partition, the parameters of the intensive care
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bed will be specified by the anaesthesiologist and the data will not be remotely
corrupted. The large information feedback from ICU monitoring which is no more
automatically transmitted to the patient medical files, can be transferred with an
encrypted USB key. Restrictive access to both systems managing the files, the
denial of unauthorized programs, adoption of redundant hardware offline with
backups, can be other ways to protect the hacked information sub-system.

Considering both scenarios, internet accesses are necessary: for bed booking
(allowing remotely accesses for physicians) patient registration (enabling accesses
to the insurance websites) and hospitalization wards, which define the first strongly
connected component, for the physicians of the emergency department (which
represents the second strongly connected component) and for pharmacy (which is
the fourth strongly connected component). However, some restrictions must be
recommended: the email access and internet access must be denied as far as pos-
sible for the emergency department and the pharmacy on the application server and
its connected objects; only physicians/pharmacists might have an email access and
internet access on their personal computers by an independent WIFI server; the non
encrypted USB keys must be prohibited, and internet accesses must be checked on a
daily basis for application servers [14].

5 Conclusion

In this paper we have proposed an approach to assess the vulnerability of hospitals
against cyber attacks. After potential hacker identification, we suggest first to define
the critical assets of information system in terms of units/services which manage
core information about patients, employees, etc. Second, the attractiveness of
critical assets is specified per adversaries. The modelling support to find the
weaknesses of the hospital information system is a map resulting from an IDEFØ
analysis. This map represents the digital exchanges between units/services. Third,
some scenarios which represent the most likely critical assets to be attacked with the
most potential damages are studied, and the consequences of cyber attacks are
analysed thanks to the information system map. By calculating the partitioning of
the information system by a transitive closure, we can propose mitigation coun-
termeasures. To go further, a mixed linear program has been modelled to find the
best set of sub-systems for the hospital information system, by minimizing losses of
digital traffic between the independent sub-systems and contamination damages to
components belonging to the same sub-system. This work is the continuation of the
Threats project: http://www.threatsproject.eu/project.html.
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Analytical Approaches to Operating Room
Management
Projects at Lucile Packard Children’s
Hospital Stanford

David Scheinker and Margaret L. Brandeau

Abstract In recent decades, healthcare has become increasingly expensive, creat-

ing pressure on healthcare providers to cut costs while maintaining or improving

quality. Operations research can play an important role in supporting such efforts. A

key challenge faced by hospital planners is scheduling and management of operating

rooms, as operating rooms typically provide highly specialized care, require signifi-

cant resources, and contribute significantly to a hospital’s bottom line. We describe

recent work on hospital operating room management at Lucile Packard Children’s

Hospital Stanford. We describe preliminary outcomes of three projects aimed at im-

proving the efficiency of the hospital’s operating rooms: machine learning to improve

surgical case length estimation; queuing analysis to improve operational efficiency;

and integer programming to schedule cases to reduce surgical delays.

Keywords Healthcare ⋅ Operations management ⋅ Optimization

Machine learning ⋅ Queueing

1 Introduction

In recent decades, healthcare has become increasingly expensive [17], creating pres-

sure on healthcare providers to cut costs while maintaining or improving quality. The

tools of operations research can play a key role in helping to improve the efficiency

and effectiveness of healthcare services. Operations research analyses can be used

to support high-level decisions such as facility planning (capacity, location, layout

and design), public health planning, planning for population health needs, and hu-

man resource planning; tactical decisions such as capacity planning, case mix plan-
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ning, resource management, patient and resource scheduling, staffing assignment,

and quality control and management; and operational decisions such as management

of patient flows, waitlists, and staffing levels [1].

A key area of focus in many hospitals is planning and management of the periop-

erative environment, consisting of the operating rooms and their supporting facilities

such as pre- and post-procedure units. Operating rooms typically provide highly spe-

cialized care, require significant resources, and contribute significantly to a hospital’s

bottom line. Even relatively minor delays in an operating room can have a significant

impact on quality of patient care, staff satisfaction, and hospital financial stability.

Indeed, the average cost of operating room time in the US is approximately $4000

per hour [15, 19] and it is estimated that each procedure that must be cancelled due

to operating room delays reduces hospital revenue by approximately $1500 per hour

[8].

For these reasons, many operations researchers have focused on developing mod-

els to improve the performance of hospital operating rooms. Extensive work has been

carried out in areas such as case mix planning and patient and staff scheduling. Work

on surgical procedure scheduling for the pediatric environment has combined opti-

mization and simulation (e.g., [2, 4, 5, 23]). For a recent review, see [6]. We note,

though, that many such planning models have not been implemented in practice. Ad-

ditionally, some models that have been implemented in practice are quite specific to

the hospital where they were developed and thus cannot be applied in other hospi-

tals. Our goal is to develop methods that can be implemented at our hospital but also

generalized to other hospitals.

In this paper we describe preliminary results from three projects in the periop-

erative environment that we are currently carrying out at Lucile Packard Children’s

Hospital Stanford (LPCH): using machine learning techniques to improve surgical

case length prediction [27]; using queuing analysis to improve the operational effi-

ciency of the perioperative process [10]; and using integer programming to schedule

cases to minimize surgical delays [12].

LPCH is a 312-bed hospital that is part of the Stanford University healthcare

system. The hospital has 7 operating rooms that are used to perform more than 6000

surgical procedures annually for 23 different services (e.g., cardiology, orthopedics).

An expansion that will be completed in 2017 will add 149 beds and 6 additional

operating rooms.

Planners at LPCH recently focused their attention on reducing delays in the oper-

ating rooms. The elective surgery process can be broken down into three stages: the

surgeon sees the patient in clinic and schedules the procedure; the patient prepares

for surgery at home, is prepared for surgery in the pre-operating room areas, and has

the surgery; and the patient recovers from the procedure in a specialized unit. Three

common causes of operating room delays and cancellations associated with these

stages at LPCH (and other pediatric hospitals) are: surgical cases are mis-scheduled

[3]; surgical preparation resources and processes are managed sub-optimally [13,

26]; and recovery beds for surgical patients are not immediately available [25]. We

developed projects to systematically improve performance in each of these stages,

as we now describe.
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2 Surgical Case Length Prediction

In order to schedule procedures in an operating room, an estimate of the time needed

to perform each procedure is required. Creating such estimates is particularly chal-

lenging in pediatric hospitals because pediatric patient populations tend to have

widely variable needs, even for the same type of procedure [20]. In theory, the op-

erating room time needed for each surgical case at LPCH is estimated by the sur-

geon after the surgeon examines the patient in clinic. Interviews with surgeons and

non-clinician schedulers working at the surgical clinic reveal that, in practice, the

scheduler estimates the time needed for surgery based on guidance from the surgeon

or based on a historical average. Estimates from the various clinics are then used

to manually create a schedule. This schedule is the basis for managing downstream

patient flow (e.g., in the post-anesthesia recovery unit).

Predicted procedure durations are often very different from actual durations.

When surgeries take less time than expected, operating rooms will be idle and pa-

tients may have to wait in the operating room for a recovery bed to become available.

When surgeries take longer than expected, delays are incurred for subsequent surg-

eries, overtime may be required, and in some cases procedures must be cancelled.

LPCH planners believed that better estimates of surgical case lengths would lead

to improved operating room utilization, fewer delays, and higher patient and staff

satisfaction.

We undertook a project to improve the prediction of surgical case lengths. Pre-

vious approaches to estimating surgical case length have included not only expert

opinion, as in the case of LPCH, but also various types of statistical analysis of his-

torical data (e.g., [11, 14, 21, 22, 24]). We used a prediction approach based on

supervised learning, as we describe below, and a classification approach based on

support vector machines that we do not describe here. Further details of our models

can be found in [27].

We developed tree-based automated models to predict surgical case length: three

automated models that use only patient and procedure characteristics and three semi-

automated models that additionally use surgeon case length prediction as a feature.

The simplest automated model, which we denote by DTR, is a single decision tree re-

gressor. We also use a random forest regressor, denoted by RFR, and a set of gradient-

boosted regression trees, denoted by GBR.

We designed and compared the models based on an operationally relevant loss

function: the percentage of cases that are significantly mis-scheduled relative to

their scheduled duration. Interviews with operating room staff and surgeons revealed

that relatively minor differences between actual and scheduled case length do not

cause significant disruptions. The impact of mis-scheduling depends on the sched-

uled length of the procedure. Consider a room in which 10 cases are scheduled, each

1 h long, and a room in which 2 cases are scheduled, each 5 h long. Scheduling er-

rors of 15 min will significantly disrupt the performance of the first room but not of

the second. We define a case as mis-scheduled if the actual duration differs from the

scheduled duration by more than 25% of the scheduled case length or 15 min.
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The automated models develop predictions based on the following features of

patients and procedures: sex, weight, age, American Society of Anesthesiologists

Physical Status Score (a score ranging from 1–6, indicating a range of health status

from normal good health to brain dead), identity of the primary surgeon performing

the procedure, location of the procedure (in an operating room or an ambulatory

procedures unit), patient class (inpatient or outpatient), and procedure name.

The semi-automated prediction models use the above features and, in addition,

use the surgeon’s case length estimate as a feature. We denote these semi-automated

models as DTR-S, RFR-S, and GBR-S, respectively, corresponding to the automated

approach of models DTR, RFR, and GBR.

We tested the prediction models on the 10 most common procedures performed

at LPCH from May 2014 through January 2015. The data set had a total of 3426

observations. We divided the data set into a training set and a tuning set of roughly

equal size: 1640 observations in the training set and 1846 observations in the tuning

set. For each procedure type, we compared the performance of our six prediction

methods to two benchmarks: the historical average duration for that procedure and

the expert estimate of the procedure duration (i.e., the value currently used when

developing the operating room schedules).

As described in [27], our simple DTR model was not better than either benchmark.

The other two automated methods, RFR and GBR, outperformed both benchmarks,

with GBR performing better than RFR in most cases. The semi-automated prediction

models DTR-S and RFR-S performed better than their automated counterparts, while

GBR-S had approximately the same performance as GBR. These results suggest that

the automated GBR method could be used as an adjunct to expert opinion when

estimating surgical case length.

In partnership with LPCH’s analytics provider, Qventus, we are now develop-

ing a system to implement the results of the work. To minimize disruption, surgical

schedulers will continue to submit their case length estimates to EPIC, the LPCH

electronic medical record, as they currently do. In real time, the estimate and all

relevant information will be transmitted to Qventus for analysis by a variant of our

algorithm. If the resulting predicted time differs significantly from the scheduled

time, then Qventus will text-message and email an alert to the scheduler with a sug-

gested time. The scheduler can then consult with the surgeon and modify the time

appropriately. We will measure the performance of this system using the loss func-

tion described above (the percentage of cases that are significantly mis-scheduled

relative to their scheduled duration).

Our model is readily generalizable to other hospitals and surgical centers where

the relevant patient data, or at least the subset of the most useful features, are col-

lected. For the GBR method, the most important features for prediction were pro-

cedure name, patient weight, and primary surgeon identity. For the GBR-S method,

the most important features were primary surgeon identity and the surgeon’s case

length estimate, followed by procedure name and patient weight. The model can be

implemented with minimal disruption to operating practices through automated no-

tifications of potential case length mis-estimates.
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3 Improving Operational Efficiency of the Perioperative
Process

Our second project focuses on the stage between when a surgical procedure is sched-

uled and when the patient completes surgery and goes to the post-anesthesia care

unit (PACU). Numerous interrelated factors contribute to operational inefficiency in

this process. These include, for example, variability in patient preferences and clini-

cal needs, lack of patient adherence to guidelines, equipment and supply availability,

variability in provider practice, scheduling errors, inefficient resource allocation, and

communication errors. In such a complex system, it may be difficult to identify the

areas of the process where interventions would most reduce delays. For example,

suppose that historical time stamps show that a patient entered the operating room

later than scheduled. This may be because the patient came late to the hospital, or

came on time and was delayed during preparation, or was prepared on time but de-

layed by the previous case running late.

We faced three major challenges in this project: identifying the factors that have

the most significant impact on efficiency; determining how to address those problems

without adverse impact on the wider system; and finding time for staff to implement

change while they continue to operate in a very busy environment. We partnered with

perioperative leaders, clinicians, and staff to address these challenges systematically.

To identify the factors that have the most significant impact on efficiency we cre-

ated a detailed queuing representation of patient flows in the system, estimated the

utilization and capacity of each step of the process using historical time stamp data,

and measured the frequency and magnitude of delays associated with each process.

We identified bottlenecks to determine how to make improvements that minimize

disruption to the broader system. To achieve change without unduly taxing the pe-

rioperative staff, we augmented the current process with several automated notifica-

tions powered by data already in the hospital’s electronic medical record. Below, we

describe the design, implementation, and results of the project. Further details are

provided in [10].

We first created a flow chart that maps the process starting from the days before

surgery, through the activities in the pre-operative area, to the completion of surgery

and the transfer of the patient to the PACU. The process flow is as follows: In the days

leading up to surgery, dedicated nurses, nurse practitioners, and physicians from the

hospital contact the patient’s family to collect relevant information (e.g., allergies

to medications) and instruct them to prepare for surgery (e.g., explain NPO guide-

lines and when to arrive to the hospital). After the patient is admitted and checked

in, a nursing assistant takes the patient’s vital signs, height and weight, and then

brings the patient to a consult room where the patient sees a nurse practitioner and

answers a number of questions. Then, depending on various circumstances such as

the scheduled time of surgery, the availability of a nurse, or whether the operating

room is running late, the nursing team will decide whether the patient needs to be

brought back to the waiting area or can immediately see a nurse in the consult room.

In both cases, the patient is eventually taken to the holding area, so that the nurse
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can complete the exam if necessary, and prepare the patient. At some point, the op-

erating room sends a notification that they expect the patient to be ready to see a

physician in the holding area within the next 20 min. The patient is then seen by an

anesthesiologist and a surgeon for final preparations and then taken to the operating

room. When the surgery nears completion, a nurse from the operating room contacts

the PACU to reserve a bed.

We interviewed nurses, physicians, and staff members to identify problems and

opportunities for improvement in the process flow. We identified several major

causes for delays: patients do not follow guidelines to not eat before surgery; on

the morning of surgery patients are missing needed paperwork; patients need an in-

terpreter but no interpreter is available; no nurse is available for room turnover; or the

PACU is full. In order to quantify the impact of each of these delays and to identify

other sources of delays we used a queuing representation. We used two years of his-

torical time stamps to estimate the capacity of each set of resources in the process, the

rate of patient arrivals during busy periods, and the frequency of associated delays.

The detailed process mapping revealed that we could relieve the burden of non-

clinical work on perioperative staff by using automated communication. We there-

fore implemented automated text-message reminders to patients to assist with the

communication of surgical guidelines such as not eating the morning of a procedure.

We redesigned the process for completing the pre-surgical documentation to be elec-

tronic rather than paper-based and to allow for automated alerts to notify physicians

and staff when documentation was missing. Additionally, we implemented several

other, similar interventions, as described in [10].

The queuing representation of the system revealed numerous days in which the

PACU was the bottleneck causing surgical delays. Since neither decreasing the num-

ber of arrivals to the PACU nor increasing PACU capacity were feasible options, we

considered ways to increase the rate of PACU service. A detailed study of the time

stamps revealed that the notification from the operating room to the PACU, intended

to be made 20 min before the patient is ready to exit the operating room, was fre-

quently premature. When the PACU receives such a notification, a bed is reserved

for the patient. Premature notifications thus effectively increase how long a patient

occupies a PACU bed.

We implemented our recommended just-in-time operating room notifications to

the PACU at the end of June 2016. LPCH’s surgical caseload is highest during the

summer months, as parents schedule procedures when children are not in school. In

the two months following the policy change, the percentage of patients who arrived

in the PACU more than 20 min after the notification fell from approximately 54%

to approximately 22%. The number of cases with a PACU hold fell from 45 with an

average length of 27 min in June, to 6 with an average length of 15 min in July and 16

with an average length of 14 min in August. The improvements were not related to

surgical volume, as the average number of weekday cases using the PACU remained

constant at approximately 30 per weekday in June, July, and August.

The transition to just-in-time bed requests increased the effective capacity of the

PACU. Other institutions that track bed request time stamps and patient arrivals

could reproduce our analysis to determine whether a similar intervention is appro-
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priate in their setting, and could explore the potential for implementing automated

notifications, using an approach similar to the one we have described.

4 Post-Anesthesia Care Unit Scheduling

Our third project focuses on reducing operating room delays caused by patients wait-

ing for a bed to become available in the PACU. Such delays are a common, exten-

sively studied problem. Research in this area can be categorized into projects that

estimate the resources, such as beds or staff, necessary to minimize such delays [7,

18] and projects that develop methods to adjust the order of cases to reduce delays

[9, 16]. Results of projects that involve adjusting the order of surgical cases have

been largely negative, yielding conclusions such as, “Although effective, such meth-

ods can be impractical because of large organizational change required and limited

equipment or personnel availability” [9] and “The uncoordinated decision-making

of multiple surgeons working in different operating rooms can result in a sufficiently

uniform rate of admission of patients into the PACU and holding that the indepen-

dent sequencing of each surgeon’s list of cases would not reduce the incidence of

delays in admission or staffing requirements” [16].

We undertook a project to develop an easily implementable surgical procedure

scheduling decision support tool that would create a level load of PACU bed and

staff utilization. We tested its performance to estimate the resulting improvements

and are in the process of implementing it. Below, we describe the current scheduling

system at LPCH, the design of the decision support tool, and its implementation.

At LPCH, after a surgical procedure in the operating room, patients are sent to one

of 10 recovery beds in the PACU. A patient cannot be assigned to the PACU unless a

bed is free and the appropriate staff are available to supervise the patient’s recovery.

If a bed and needed staff in the PACU are not available when the patient’s surgery

finishes, the patient must wait in the operating room for a PACU assignment. This

means that the next surgical procedure cannot begin and the next patient scheduled

for surgery must continue to wait in the pre-operative area. These delays lead to

inefficient use of operating rooms and staff as well as lowered patient satisfaction.

The current process to reduce PACU holds is as follows. Each day, starting in

the morning, a scheduler ‘builds’ the operating room case schedule for the following

day. Since each operating room is typically reserved for cases performed by a given

surgical service, building the schedule consists primarily of determining the order

of the cases in each room. The scheduler accounts for special considerations (e.g.,

patient characteristics, specialized equipment needs, or the need for more than one

surgeon for a case) that may require certain cases to be performed at specific times.

Each afternoon, by which time a preliminary schedule has been created, a meeting is

held to estimate the corresponding demand for PACU and other beds, make changes,

and finalize the schedule for the following day. If estimates based on the preliminary

schedule suggest that the PACU will reach capacity at a given time of day, then

the order of the procedures is shuffled to reduce the number of patients sent to the
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PACU during that time. After this process is complete, schedulers call patients to

notify them of their surgery time.

Our model uses as input the cases scheduled for the following day, patient infor-

mation relevant to forecasting PACU length of stay, and the patient and surgeon infor-

mation relevant to constraining when certain cases must be scheduled. The model

uses a random-forest-based method to estimate the likely duration of each patient

recovery in the PACU. An integer program is then used to determine the order in

which the procedures should be scheduled in each operating room so as to minimize

maximum overall PACU occupancy.

We used a discrete event simulation model to test the performance of the opti-

mization. We validated the simulation by reproducing 6 months of historical PACU

occupancy based on scheduled order of procedures, procedure durations, and re-

covery durations. After validation, we used the simulation to compare the histori-

cal PACU occupancy to that which would have resulted from scheduling with the

optimization. We found that 60% of operating room days finished earlier with the

optimized schedule compared to the actual schedule, suggesting that significant op-

erational improvements can be achieved with the optimized scheduling system. We

are now in the process of implementing the system at LPCH. For full details of the

design, testing, and implementation, see [12].

This model has the potential to improve on the current process in several ways.

First, the output of the model is automated; it does not require a scheduler to spend

time creating the preliminary schedule. Second, the order of procedures is deter-

mined based on case-specific estimates of PACU occupancy whereas the current

process assumes equal PACU recovery lengths for all cases. Third, the arrangement

of cases is optimal for minimizing maximum PACU occupancy, a combinatorial re-

sult not readily achievable with the current manual process. Additionally, implemen-

tation of the model is minimally disruptive, as it produces as output a preliminary

schedule that can be reviewed and revised at the current afternoon meeting.

Our model is readily generalizable to other healthcare institutions that finalize

their operating room schedule after the majority of cases are scheduled. The data

used to generate the forecast of PACU length of stay and to determine the order of

procedures are routinely tracked by institutions with an electronic medical record.

The preliminary schedule is easily modifiable by perioperative staff who can make

changes to satisfy ad hoc constraints that are not captured in the model. We are cur-

rently working with Stanford Health Care (the adult hospital at Stanford) to explore

implementation of our optimization model in their operating rooms.

5 Discussion

Many opportunities exist to improve the efficiency and effectiveness of healthcare

services, and operations research can play an important role in supporting such ef-

forts. The projects we are carrying out at Lucile Packard Children’s Hospital Stanford

demonstrate that a systematic, analytical approach to problems in hospital operating
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room management can help planners achieve significant operational improvements

without expanding resources or unduly taxing hospital staff.

An important goal of our projects is to develop solution approaches that not only

can be implemented in the specific setting under study, but that can also be general-

ized to other hospitals. The models we developed rely on data that are available in

almost any electronic medical record system. With the recent expansion of electronic

medical record systems, our models have potential usefulness in many settings.

The primary limitation of this work is that the projects described were designed

and implemented at a single pediatric hospital. To ensure that these tools are gener-

alizable, future work should implement the tools at a second hospital and report the

necessary modifications. We are currently exploring this possibility at the Stanford

adult hospital.

Another promising area for further research on improving operating room man-

agement is to determine the days on which elective surgery procedures are scheduled

so that surgical bed occupancy is balanced. If one knew exactly what the demand for

elective surgeries over time would be, then this problem could be solved as an inte-

ger program: an assignment problem with the goal of minimizing deviations from an

average surgical bed occupancy level. However, future demands for elective surgery

cannot all be known when assignments are being made. Thus, the challenge is to

develop a prospective algorithm that achieves solutions close to those that would

be found with perfect knowledge of future demand and the use of an optimization

model.
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A New Decomposition Approach
for the Home Health Care Problem

Nadia Lahrichi, Ettore Lanzarone and Semih Yalçındağ

Abstract Home Health Care (HHC) is a relatively new service that plays an impor-

tant role to reduce hospitalization costs and improve the life quality for patients.

Human resource planning is one of the most important processes in HHC systems,

for which service providers have to deal with several operational problems, e.g., the

assignment of operators to patients together with their routing process. In the lit-

erature, either these problems have been simultaneously solved, or decomposed by

first solving the assignment problem and then the routing problem. In this work,

we propose an alternative approach, where the decomposition is based on the First
Route and Second Assign (FRSA) approach. An instance generation mechanism is

developed as well, which generates instances inspired from real HHC providers, to

test the proposed FRSA approach under different circumstances. Preliminary exper-

iments show the effectiveness of the approach.

Keywords Home health care ⋅ Human resource planning ⋅ Matheuristic

decomposition ⋅ First route second assign

1 Introduction

Home Health Care (HHC) is a relatively new service that plays an important role

to reduce hospitalization costs and improve the life quality for patients, who receive

service at their homes. Due to population ageing and high hospitalization costs, the
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demand for HHC service is increasing all around the world. In 2011, there were about

4.7 million patients in the U.S. and 1 million patients in Canada who were served by

several HHC providers [7].

To balance the trade-off between cost and quality of service in HHC, providers

need to deal with several optimization problems. Among them, we focus in this work

on the patient assignment problem and the nurse (operator) routing problem. The first

consists of matching patients with operators, while the latter determines the sequence

of visits assigned to each nurse. These problems may be solved for a single period or

multiple periods; in this work, we focus on the weekly problem. Both the assignment

and the routing problems are handled by taking into account several features, such as

patient requirements (frequency of visits), expected duration of each visit, possible

visiting schedules (patterns) for patients, continuity of care, and nurse capacities.

We propose a new two-stage approach for the assignment and routing problem,

which exploits a new concept for the HHC services, where routing decisions antici-

pate assignment decisions. In other words, we decompose the problem by deciding

the routing at the first stage and the assignments at the second stage. Although this

might seem counterintuitive, the variety of contexts in which HHC is provided (e.g.,

urban vs rural, dense vs sparse) legitimate to investigate the trade-offs for which

focusing on the routing at the first stage can be beneficial. To validate the approach,

as different HHC providers have different structures and cover different areas, we cre-

ate a data generation mechanism to generate test instances which are able to mimic

several situations of real HHC providers from different countries.

The reminder of this paper is organized as follows. A brief literature review

and the problem description are presented in Sect. 2. The proposed methodology is

described in Sect. 3. The data generation mechanism with some preliminary results

are discussed in Sect. 4. Then, concluding remarks with future perspectives are pre-

sented in Sect. 5.

2 Problem Statement and Related Work

As discussed briefly in the previous section, the HHC assignment problem refers

to the decision of matching nurses with patients, while the routing problem speci-

fies visiting sequences of patients associated with each nurse. Several works related

to these problems have been classified and discussed in a recent literature review

[7]. Here, we present a short list of these works and classify them according to the

length of the planning period (i.e., Single Period or Multiple Periods) and how the

assignment and routing decision are held (i.e., Simultaneously or Sequentially).

The literature is mainly devoted to the simultaneous approach, where assignment

and routing decision are obtained together in a single model (Vehicle Routing Prob-

lem) both for a single period [1, 6] and multiple periods [3, 9].

Moreover, due to computational complexity and operational flexibility, recent

models based on two-stage First Assign and Second Route (FASR) approaches have

been developed, where the output of the patient assignment problem is integrated as
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an input to the routing problem of each nurse (Traveling Salesman Problem). Both

single planning period [11] and multiple planning period cases [10] have been inves-

tigated.

In this work, different from the HHC literature, we develop a new multiple periods

two-stage First Route and Second Assign (FRSA) approach. Since different providers

cover different areas (rural vs urban, different densities, etc.), such a model could be

beneficial where travels are the key issue. More generally, with the development of

the FRSA approach, a complete analysis can be conducted and the most appropriate

approach can be selected depending on the trade-offs and the corresponding key

issues of a given provider.

3 Methodology

We use the following notation:

∙ N: set of nurses, N = {1...n};

∙ P: set of patients, P = {1...m};

∙ D: set of days.

∙ Nd: subset of nurses available on day d;

∙ ai: capacity of nurse i (duration of a workday including service time to provide

visits and travel times);

∙ rj: total number of visits required by patient j in horizon D;

∙ H: set of patterns (patterns are defined as the days in which the patient may be

visited, e.g., for a frequency of two visits, patterns are: Monday and Thursday,

Tuesday and Friday, … );

∙ Hj: subset of patterns for patient j;
∙ tj: service time for each visit to patient j;
∙ cjk: cost (time, distance, etc.) between patient j and patient k.

We structure our two-stage FRSA approach as follows:

∙ Stage 1: Routing problem modeled as a Periodic Vehicle Routing Problem

(PVRP):

– total travel time minimization with respect to the overall capacity of nurses is

pursued;

– no nurse-to-patient assignment information is considered;

– patients are assigned a pattern.

Only the decisions regarding the pattern assignment to patients are kept for the next

stage.

∙ Stage 2: Nurse-to-patient assignment problem consists of splitting the giant

tours obtained in stage 1, with the objective of minimizing the maximum work-

load. At this stage, decisions regarding nurse-to-patient assignments are made.
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3.1 Stage 1: Route First

We model the HHC as a PVRP in which one vehicle only services all patients. We use

the typical route duration constraint for each day, adding up all nurses’ capacities ai.

Since the number of nurses is not explicitly considered, no attention is paid to the fact

that the nurses’ individual travel distances must be minimized after the assignments.

To account for this (and to ensure that the territory is covered every day), we add a

step before solving the PVRP to create seeds that will tie each nurse to a physical

territory.

(a) Creation of seeds

The objective is to select n seeds (as many as there are nurses) with a large distance

between them. They are selected using the existing Basic Territory Units (BTUs).

Let xs = 1 if BTU s is chosen to host a seed (and 0 otherwise) and ys1s2 = 1 if both

s1 and s2 are chosen to host a seed (and 0 otherwise). cs1s2 is the cost (time, distance,

etc.) between the centers of BTUs s1 and s2. We solve the following problem:

max
∑

s1

∑

s2

cs1s2 ys1s2 (1)

s.t.

∑

s∈S
xs = n ∀s ∈ S (2)

∑

s2∈S
ys1s2 ≤ nxs1 ∀s1 ∈ S (3)

ys1s2 ≤ xs2 ∀s1, s2 ∈ S (4)

xs ∈ {0, 1} ∀s ∈ S
ys1s2 ∈ {0, 1} ∀s1, s2 ∈ S

Constraints (2) force to choose n BTUs, while constraints (3) and (4) ensure that

ys1s2 = 1 only if both s1 and s2 are chosen. The objective (1) is to maximize the

distance between the chosen BTUs.

Once the n BTUs are selected, we choose in each of them the patient with the

highest number of visits; if there are several equivalent patients, we select the far-

thest from the depot. For this subset of patients ̃P ⊂ P chosen as seeds, we impose

a frequency of visits equal to |D| for solving the PVRP, while for all others we use

the frequency provided for by parameter rj.

(b) The PVRP algorithm

We use a tabu search algorithm (sketched in Algorithm 1 and based on [5]) that

proves to perform very well on the PVRP. Two movements are used to explore the

solutions space, i.e., changing the day combination or reinserting on a different route.
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The algorithm allows visiting unfeasible solutions but penalizes the objective func-

tion whenever an unfeasible solution is met. These penalties are dynamically adapted

during the search. Without loss of generality, the initial solution can be constructed

randomly or based on constructive heuristics. Readers are referred to [5] for details.

Algorithm 1 Major lines of the PVRP algorithm

Generate initial solution: patients are assigned a valid pattern of visits and sorted in increasing

order of the angle to the depot. Insertion into a route follows this order:

while Stopping criteria not reached do
for each patient do

for each day do
Search for the best insertion using the defined movements;

Implement best non tabu movement unless aspiration criteria is met;

Adapt dynamically penalty parameters;

Update tabu list and statistics.

end for
end for

end while

After solving the PVRP, each patient j is assigned to a pattern pj ∈ Hj.

3.2 Stage 2: Solving the Assignment Problem

After solving the PVRP, we obtain |D| routes (one per day) that need to be split into n
segments (one for each nurse). The splitting procedure must respect the continuity of

care, i.e., each patient is assigned to exactly one nurse; for this purpose, the splitting

is performed in parallel for all routes.

The procedure is summarized in Algorithm 2. We denote by x the solution

obtained after the splitting procedure, and by mu(x) the maximum average utilization.

x∗ and mu(x∗) refer to the best solution and its value, respectively. Initially, mu(x∗)
and mu(x) are set to a high value. The idea is inspired by the sweep algorithm where

a random angle 𝜔 is generated, and patients are collected counter clockwise until ai
is reached. If the solution is infeasible, i.e. the last nurse is overloaded, we introduce

parameter 𝛽1 equal to this observed overload divided by n, ensuring to spread the

“infeasibility” among all nurses. We repeat this procedure with ai+ = 𝛽1 until the

solution is feasible.

We illustrate how this procedure can be visualized for a given day in Fig. 1. Full

line represents the starting point for the collection of patients and the dotted line the

point where the capacity of the nurse is reached.

Once the splitting procedure is complete, an assignment of patients to nurses is

obtained (ij denotes the nurse assigned to patient j). We add a step to revisit the

assignment of a subset of patients either because the solution is not feasible after the
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Algorithm 2 Description of the splitting procedure

mu(x∗) = mu(x) = nai
for all |D| routes resulting from PVRP: do

Generate 𝜔 degrees (points);

Select a random point;

Order the nurses (according to: seniority, preferences or randomly);

for i = 1 to n do
for all routes corresponding to the days nurse i works; do

while capacity of nurse is not reached do
collect patients when pattern of visits and days of work coincide.

end while
if the problem is infeasible for at least one nurse: increase capacity by parameter 𝛽1 and

repeat the collection process starting from nurse 1.

end for
If mu(x) < mu(x∗) ∶ x∗ ← x and mu(x∗) = mu(x).

end for
end for

Fig. 1 Illustration of the

splitting procedure

splitting procedure, or as a post-optimization step. We create the set of patients P′
to

be reassigned as follows:

1. Include in P′
𝛾 patients from the beginning and 𝛾 patients from the end of each

nurse’s route. The larger the value of 𝛾 is, the more we destroy the routing solution

obtained in the previous stage.

2. Include in P′
all patients close to the depot.

3. Include in P′
all seeds in ̃P.

Patients belonging to P⧵P′
generate an initial fixed workload for each nurse.

To solve the assignment model, we use the formulation in [10]. For each patient

j, we define 𝜏j as the average traveling time to reach him. Moreover, five decision

variables are defined:

∙ uij = 1 if nurse i is assigned to patient j (and 0 otherwise);

∙ ud
ij = 1 if nurse i visits patient j on day d (and 0 otherwise);

∙ zjp = 1 if pattern p is assigned to patient j (and 0 otherwise);

∙ Wid: workload of nurse i in day d;

∙ mu: maximum of the average utilization over D among the nurses.
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The mathematical formulation of the problem is the following:

min mu (5)

s.t.

∑

i∈N
uij = 1 ∀j ∈ P (6)

∑

p∈Hj

zjp = 1 ∀j ∈ P (7)

Wid =
∑

j∈P
(t′j + 𝜏j) ⋅ ud

ij ≤ ai ∀i ∈ Nd,∀d ∈ D (8)

∑

i∈N
ud

ij =
∑

p∶p(d)=1
zjp ∀j ∈ P,∀d ∈ D (9)

ud
ij ≤ uij ∀i ∈ Nd,∀j ∈ P,∀d ∈ D (10)

∑

i∈N

∑

d∈D
ud

ij = rj ∀j ∈ P (11)

∑
d∈D Wid

|D| ⋅ ai
≤ mu ∀i ∈ N (12)

uijj = 1 ∀j ∈ P⧵P′
(13)

zjpj
= 1 ∀j ∈ P⧵P′

(14)

uij ∈ {0, 1} ∀i ∈ N, j ∈ P (15)

ud
ij ∈ {0, 1} ∀i ∈ N,∀j ∈ P,∀d ∈ D (16)

zjp ∈ {0, 1} ∀j ∈ P,∀p ∈ H (17)

Constraints (6) decide the assignments. Constraints (7) are the scheduling con-

straints. Constraints (8) control the daily workload of nurses and use 𝜏j to estimate

the travel time to reach patient j. Constraints (9) and (10) link together assignment

and scheduling decisions; specifically, constraints (9) state that exactly one nurse

per day must visit patient j only if a visit has been scheduled on that day for him/her

(p(d) = 1 refers to patterns p having a visit on day d), and constraints (10) guaran-

tee that a nurse can visit a patient only if she/he has been assigned to that patient.

Constraints (12) link the maximum utilization mu to the nurses’ workloads.

As mentioned earlier, the usual 8 h per day may not allow to visit all patients; thus,

parameter ai in (8) should be carefully fixed. In our context, we solve an optimiza-

tion problem to determine the smallest increase of this value that allows a feasible

solution. We denote this value 𝛽2, and ai = 8 h + 𝛽2.

Two constraints are added to the general model when used for partial reassign-

ment. Constraints (13) ensure that patients in P⧵P′
are assigned to the nurse from

the splitting procedure, and constraints (14) that they are assigned the pattern from

the PVRP solution.
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3.3 Obtaining the Operational Routes

Once the assignments to nurses and to patterns are obtained, a TSP is run for each

day and each nurse to get the actual routes to perform and, thus, the actual daily

workload for each nurse. We employ the genetic algorithm of [11], which provides

equivalent performance to benchmark solvers, e.g., the Concorde TSP Solver [4], for

the considered size of instances.

4 Data Generation and Preliminary Experiments

We create a mechanism to generate test instances, for the validation of our approach

in a variety of situations inspired from real HHC providers. In particular, we use

the characteristics of a large provider operating in the Northern Italy that has been

already adopted for other analyses [2, 8].

Let us consider a test instance with m patients. We fix a geographical distribution

of some BTUs, each one with a given center (latitude and longitude) and shape.

Each patient j is randomly assigned to a BTU according to given probabilities to

belong to each BTU; then, his/her coordinates are uniformly generated within the

assigned BTU. A Care Profile (CP) is also assigned to each patient j, according to

given probabilities to belong to each CP. Each CP is characterized by a range for the

number of visits and an associated discrete distribution; once a patient is assigned

to a CP, his/her demand is drawn from such distribution. Then, from the number

of visits, the list Hj of all possible patterns is derived. The duration of each visit is

finally generated from a uniform distribution within the interval [35, 45] minutes.

This mechanism is versatile and allows us to generate, for example, urban/rural

instances by imposing high/low number of patients in a small/large territory. For

example, we consider the average travel time 𝜏 between patients as metrics to char-

acterize an instance: 𝜏 = 7min refers to an urban instance and 𝜏 = 25min to a rural

context.

An illustration of patient scattering in the territory is presented in Fig. 2.

We test the approach on the instances reported in Table 1. Details about their fea-

tures are given in the first three columns. The following two columns show the solu-

tion obtained with the classical FASR decomposition in terms of maximum average

utilization mu and maximum workload Wmax observed over the horizon. Finally, the

last columns give the improvement (in %) when using the FRSA approach in two

settings: only using the splitting, or using the splitting and the partial reassignment.

FRSA generally outperforms FASR, and in particular FRSA with partial reas-

signment outperforms FASR in all instances when comparing mu. Moreover, results

show that the partial reassignment step after the FRSA is very important when small

distances are involved; however, the reassignment deteriorates the solutions when

the distances are large. With partial reassignment, the improvement ranges between

0.37% and 1.61% when the distances are small (𝜏j = 7), while the improvement is
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Fig. 2 Example of tested instance; each point represents a patient, whose size is proportional to

the number of visits required in the time horizon

Table 1 Comparison of utilization rates and workloads (in %) obtained with FASR and FRSA

Instance Classical FASR FRSA: only splitting FRSA: splitting

& partial reassignment

m n 𝜏 mu Wmax mu (%) Wmax (%) mu (%) Wmax (%)

300 18 7 90.51 95.26 +12.28 +9.14 −𝟏.𝟐𝟓 +6.60
87.34 93.82 +7.53 +10.93 −𝟎.𝟕𝟐 +8.31
94.71 96.03 +3.12 +10.39 −𝟏.𝟔𝟏 +6.04

300 20 7 82.63 94.91 +11.01 +9.87 −𝟎.𝟑𝟕 +8.64
79.40 92.40 +22.85 +12.34 −𝟎.𝟗𝟑 +6.97
85.60 94.64 +16.27 +12.06 −𝟎.𝟕𝟔 +6.35

300 18 25 113.60 117.44 −𝟒.𝟔𝟒 +1.61 −𝟐.𝟑𝟒 +1.00
122.58 128.13 −𝟗.𝟒𝟖 −𝟕.𝟓𝟏 −𝟐.𝟗𝟓 +0.79
118.27 121.07 −𝟏𝟏.𝟓𝟒 −𝟑.𝟑𝟕 −𝟒.𝟑𝟗 +0.91

300 20 25 106.26 111.04 −𝟒.𝟒𝟏 0.00 −𝟑.𝟎𝟓 +0.66
114.31 117.35 −𝟗.𝟎𝟒 −𝟒.𝟒𝟓 −𝟐.𝟕𝟎 −𝟎.𝟏𝟑
105.78 111.21 −𝟒.𝟒𝟎 +2.04 −𝟐.𝟏𝟓 −𝟎.𝟐𝟕

higher, up to the 11.54% without partial reassignments, when the distances are large

(𝜏j = 25). We remark that, in absolute terms, 1% improvement corresponds to 5 min

approximately. As for Wmax, we only observe an improvement with FRSA when the

distances are large.

Finally, we may observe that mu is higher than the 100% in some instances; in

fact, for 𝜏j = 25, we considered cases in which the staff is overloaded to test both

underloaded and overloaded situations.
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5 Conclusion and Perspectives

In this work we propose an alternative decomposition for the HHC problem. While

the literature usually proposes to first assign patients to nurses and then solve the

routing problem, we first consider the routing problem and then solve the assign-

ment problem. Moreover, to evaluate such approach in a variety of realistic cases,

we define a versatile mechanism to generate instances. Preliminary experiments are

promising, and seem to assess the appropriateness of our alternative decomposition.

In our future work, we will test additional instances considering in particular

large settings. Finally, we will further compare our FRSA approach with the clas-

sical FASR decomposition available in the literature [10, 11], to deeply investigate

for which types of instances our alternative decomposition performs better.
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1 Introduction

In the healthcare sector, governments around the world are facing significant
expenditure constraints, while at the same time trying to improve quality, cus-
tomization and access to healthcare services for population [1]. Although the quality
ofmedical care is improving formost types of illness, the attention to detail in business
systems and processes that transform resources into healthcare services has not kept
pace [2], resulting in long waiting times, patients lying on stretchers in hallways,
overburdened and stressed medical staff [3]. In this context, while the appropriate use
of traditional operations management (OM) concepts could be potentially of great
help relying on the hypothesis that the healthcare sector can benefit from the lessons
learned in the industrial sector [4], the use of methods, approaches and tools initially
established for manufacturing companies has been proved to be challenging because
of the differences between manufacturing and healthcare operations [5].

Existing studies in this area offer a collection of frameworks, models and clas-
sifications, providing some guidance on how to configure an operations strategy for
healthcare providers [6, 7], but are insufficient to provide a complete and detailed
picture of medical care delivery. In particular, most of the operations-oriented
studies focus narrowly on specific issues [8, 9], with a few examples integrating
long-term structural and intermediate operations decisions [4]. However, focusing
on one decision area is not enough; on the contrary, developing a congruent
operations strategy is the key to improve healthcare providers’ performance [2].
Moreover, though many organizations flounder on internal factors, failure of exe-
cution can also be related to environmental features and their evolution [10].

On these premises, this study will address the following research questions:
Which are the main variables characterising healthcare operations management?
How are the variables connected?

Therefore, a framework providing a set of leverages for strategic Operations
Management (OM) in healthcare will be proposed. The framework aims at cap-
turing the key characteristics of operations for healthcare providers, linking such
aspects to the overall healthcare system in which they function, including drivers
for change and factors that influence decision-making.

In the next section, the research methodology is described. Section 3 presents
the initial theoretical model. Section 4 is focused on the discussion of results from
an Italian case study and on the novel model for Healthcare Strategic OM in the
cardiac rehabilitation area. Section 5 closes the paper with contributions to theory
and practice, outlining future research directions.

2 Methodology

Given the explanatory nature of the research (“how”-type of questions), the orig-
inality of the field, as well as the criticality of the context, a case study methodology
was adopted [11]. In the first phase of the research, a conceptual framework was
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developed based on a literature review in the following research field: Healthcare,
Service and Manufacturing Operations Management and Strategy.

Research issues and interview questions were then developed and included in a
research protocol. Then, an in-depth case study was carried out. The case, the cardiac
rehabilitation (CR) unit of the “Ospedale Bolognini” (ASST Bergamo Est) in Seriate
(Bergamo, Lombardy region, Italy), with 500 patients/year, supported in refining the
theoretical model and in exploring how the context influence healthcare operations
management characteristics. In particular, the cardiac rehabilitation services, defined
as “comprehensive, long term programmes involving medical evaluation, prescribed
exercise, cardiac risk factor modification, education, and counselling. These pro-
grammes are designed to limit the physiological and psychological effects of cardiac
illness, reduce the risk for sudden death or re-infarction, control cardiac symptoms,
stabilise or reverse the atherosclerotic process, and enhance the psychosocial and
vocational status of selected patients” [12]. Multiple investigators and respondents
have been used as a form of triangulation to handle the richness of the contextual
data and provide more confidence in research findings. During two visits, six
informants from the CR unit have been interviewed: head of the unit, a physician, the
head of the physiotherapists, the head-nurse. In the third and final stage the theo-
retical framework was redefined and relationships between variables characterising
healthcare strategic operations management were identified.

3 Literature Review and Definition of the Theoretical
Model

The theoretical model is composed of two main dimensions, internal and external. It
is intended to capture the general characteristics of healthcare operations strategy.

3.1 Internal Factors

Internal factors represent the structural and infrastructural characteristics that
describe how operations are configured. Internal factors have been developed based
on the framework proposed by Baines et al. [13], further tailored on healthcare
distinctive features. Such framework represents a comprehensive model obtained
from the analysis and synthesis of a wide literature on strategic operations man-
agement (Table 1).

3.2 External Factors

The external environment is defined as all of the political, economic, social and
regulatory forces that influence on the organisation [20]. Drawing on the model
developed by Swayne et al. [16], five main areas are included in the framework:
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Table 1 Internal factors of the theoretical model

Process and technology A process can be defined as the chain of operations that need to be
performed to produce a particular service [14]. Vissers and Beech
[14] provide an overview of the most important characteristics of care
processes from an operations management point of view: emergency
versus elective; level of urgency; length of the process (number of
operations that constitute the chain); complexity (number of
diagnostic and therapeutic procedures, necessity to consult another
specialist, cyclic character); predictability (number of operations,
durations, routing); decoupling point. Moreover, this factor entails
also the range of technologies supporting the delivery of service

Capacity This factor covers decisions related to the definition and allocation of
key resources, such as personnel/specialist time (labour availability of
physicians, nurses and other providers), accommodation/facility
space (number of beds, treatment or examination rooms and clinics),
supply and other resources (cafeteria, parking and support services),
equipment and material (key medical technology and equipment) [2,
14, 15]. Such resources can be classified as: dedicated/shared;
leading/following; bottleneck; continuous/intermittently available
[14]. Capacity can also be distinguished between different types [14]:
potential capacity (total amount of resources available of one resource
type when all resources are used for production); available capacity
(total amount of capacity available, in principle, for production);
usable capacity (capacity normally available for production); utilised
capacity (available capacity actually used for production). It includes
both productive and non-productive purposes, such as set-up capacity

Facilities In the healthcare field, “facilities” represent the physical environment
in which health care is delivered [16]. Decisions concerning this
category refer to facility location (in terms of accessibility,
adaptability and availability) to achieve equitable healthcare access
and efficient delivery [15]

Supply chain positioning In healthcare, two main supply chain areas can be identified: care
development (upstream) and care delivery (downstream). With this
category, a healthcare actor can be positioned within the supply chain
and its vertical integration degree can be described, intended as “those
parts of the value network that belong to the company” [17]

Planning and control As defined by Hans et al. [18], healthcare operations planning and
control involves four key areas: medical planning (development of
new medical treatments), resource capacity planning (dimensioning,
planning, scheduling, monitoring and control of renewable
resources), materials planning (acquisition, storage, distribution and
retrieval of consumable resources), financial planning (how to
manage costs and revenue to achieve organizations’ objectives.)

Human resources Healthcare organizations must be able “to gather resources, skills and
knowledge in a unique way, coordinate diverse operational skills and
integrate multiple streams of technologies” [16]. Therefore, this
category describes the composition of the workforce, as well as how
the workforce will be scheduled and paid. In particular: personnel
mix (physicians, doctors, nurses, therapists, administration staff),
competences (technical and non-technical), workforce planning
recruitment, payment, training and rewarding [16]

(continued)
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• Legislative/Political/Regulatory—defining how governments and legislation
bodies intervene in the healthcare economy;

• Economic—related to healthcare economics;
• Social and demographic—describing gender, ethnicity, religious and cultural

aspects, as well as health consciousness, population growth rate, age distribu-
tion, living standards and income level;

• Technological—including R&D activity, automation, technology incentives and
the rate of technological change;

• Competitive—representing the strategic behaviour of competing actors.

4 Results from the Case Study

The description of the case using the theoretical model previously defined is pre-
sented in Table 2.

Table 1 (continued)

Quality control Donabedian [19] proposes a framework for quality assessment and
evaluation, that considers the quality of care into three fundamental
parts: structure, process, and outcome. The variable ‘structure’
describes the setting in which care is delivered including hospital
facilities and equipment, human resources and organizational
structure. The variable ‘process’ refers to the transactions between
patients and providers in which healthcare services and treatments are
provided. Finally, the dimension ‘outcomes’ refers to the health status
of patients and populations

Service range and new
service introduction

The range of healthcare delivery service includes inpatient service,
outpatient service, other community oriented activities (wellness
program, fitness centres, pharmacy information systems, health
promotion programs), and day care centres, as well as its
specialization degree (generalist service, market specialist, service
specialist, super specialist) [16]

Performance measurement In healthcare, three categories can be useful for evaluating
performance [20]: structural measures (assess the features of
operations management in delivery organizations); process measures
(assess the activities carried out to deliver healthcare services);
outcome measures (assess the impact of the healthcare service on the
health status of patients)

Stakeholder relations Different needs of different stakeholders can affect the delivery of the
final service [16]. More specifically, three main stakeholders’
categories can be identified: internal stakeholders (actors who operate
primarily within the organization, such as managers and employees,
medical staff and corporate officers), interface stakeholders (who
function both internally and externally) and external stakeholders
(community, third-party payers, competitors, clinics which operate
external the organization)
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Table 2 Case description

External factors

Legislative/Political/Regulatory Italian National Health Service: principles of universal
coverage and non-discriminatory access to the health care
services. Beveridge model (healthcare is provided and
financed by the government through tax payments).
“Livelli essenziali di assistenza” (basic assistance level)
defined at national level.
Clinical aspects defined by Italian and European guidelines.
Process standards defined by the Lombardy Region.
Promotion of the integration between hospitals and the
territory (general practitioner) (Regional law 23/2015)

Economic For CR services provided by public hospitals (or by licensed
private healthcare facilities), service delivery is reimbursed
by the regional healthcare system based on bed occupancy

Social and demographic Catchment area: 400.000 citizens (foreign citizen: 11%)/7
hospitals.
Gender is not discriminating

Technological Major technological trend of the last years: telemedicine for
rehabilitation and remote monitoring

Competitive Other cardiac rehabilitation unit in the territory (catchment
area): Romano di Lombardia (public service/hospital for
acute patients—no cardiology department); San Pellegrino
(no acute patients); Gavazzeni (private structure—not
specific for cardiac rehabilitation only); Trescore Balneario
(private structure)

Internal factors
Process and technology Minimum duration: 7 days (defined by legislation). The

duration is not deterministic (given the required minimum
duration) because it depends on patient’s pathology, clinical
trend; general complexity level. Each day the therapy can be
re-defined, based on patient’s conditions. Therefore, the
service delivery process is personalised. In order to reduce
variability, similar patients are clustered into groups.
After patient’s stabilization (in average 1 week), the process
continues with outpatient activities. If patients live far away
from the hospital, they continue with inpatient activities.
Telemedicine is extensively used for remote monitoring of
patients’ conditions (supporting function). Telemedicine
technology provides physicians with a large amount and
range of data (not related to cardiac aspects only). Such data
could be used by general practitioners to manage the patients.
To this end, the pilot project “Respirare” was launched a few
years ago, involving 10 general practitioners with access to a
platform containing patients’ data from telemedicine (for
selected relevant parameters). In 2015 “Respirare II” has
been approved to further develop such delivery service,
promoting integration between hospital and territory.
Internal protocols (defined by the Quality Department)
outline the service delivery process (clinical aspects defined
by Italian and European guidelines)

(continued)
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Table 2 (continued)

External factors

Capacity 18 beds for inpatients; outpatient departments; two gyms;
nursery room with tele-medicine control unit (12/18 patients
can be tele-monitored).
Additional 8 beds and 10 tele-monitoring units in another
hospital controlled by Ospedale Bolognini (Gazzaniga).
An additional outpatient department is going to be opened in
Calcinate for patients’ joint-management between the
hospital and the general practitioner (actual number of beds:
10—Expected number of beds: 30)

Facilities Activities are carried out in 2 different buildings, located in
the hospitals (lower degree of synergies). Ospedale Bolognini
is an urban hospital

Supply chain positioning The cardiac rehabilitation unit moved to the Bolognini
hospital (from Gazzaniga) 8 years ago as a strategic decision
to have acute and post-acute treatments in the same hospital.
Emergency medicine is also present to handle emergency
situations.
Moreover, there is a novel tendency to integrate CR activities
carried out by the hospital with follow-up activities
supervised by general practitioners. Therefore, a new unit is
going to be opened soon (Calcinate—see Capacity) where the
patients will be jointly managed

Planning and control Planned access to the department: max 2 patients/day in the
afternoon (from 2 p.m. to 5.30 p.m.)—1 additional
patient/day in exceptional situations (in the morning).
The head-nurse receives the requests (from cardiac surgery—
mostly from the Bolognini cardiac surgery department and
from Bergamo hospital; from general medicine and
cardiology departments—from all the Bergamo province,
with some patients coming also from the Brescia province)
by phone or by fax.
Planning meetings:
–8.30 a.m.: physiotherapists with their head to organise
morning activities; 2 physicians meet the night-shift nurse for
updates. Physicians starts their inpatient visits;
–12.00 a.m.: meeting with physicians, head nurse and nurses
to plan acceptance/discharge activities;
Planning the discharge (not only the acceptance) is very
important: the patients need to set-up its social and living
environment before being able to return to its home

Human resources 5 cardiologists; 5 physiotherapists (3 full-time and 2
part-time); 12 nurses (shared with 10 beds from the medicine
department—usually patients having cardiac problems)—
daily schedule: 4 part-time operators (2 for inpatient and 2 for
outpatient departments) and 1 full-time operator (outpatient
department); 6 supporting operators (4 full-time and 2

(continued)
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5 Towards a Reference Model for Strategic Operations
Management in Healthcare

The discussion on how both internal and external factors are connected (Table 3)
was the key step for the definition of a reference model for Strategic Operations
Management in Healthcare, with reference to cardiac rehabilitation.

From the analysis of the case studies, the following changes have been intro-
duced in the initial model:

• “Capacity” has been split into two variables: key resources (types of resources
for service delivery) and capacity utilisation (utilisation level of the resources);

• Internal context: including variables describing hospital clinical context (avail-
ability of health departments) and hospital operations strategy characteristics.
The internal context influences: CR human/key resources, facilities, supply
chain positioning and quality control.

Table 2 (continued)

External factors

part-time). Three shifts per day. All the workforce (including
doctors for nutrition and psychological consulting) is
employed by the hospital. There is a reward system for
personnel based on parameters defined by the Quality
Department.
A cultural intermediary is also available (shared with other
departments and made available by the hospital) to support
foreigner patients

Quality control Quality control parameters focus on process delivery aspects,
based on hospital’s certifications. Parameters cover inpatient
activities only. Long-term quality control (post-discharge) is
not implemented

Service range and new service
introduction

The cardiac rehabilitation unit is responsible for managing a
wide range of medical interventions, including nutrition and
psychological consultancy. Moreover, support services to
general practitioners will be available in the near future.
Cultural intermediary service is provided to support
communication between foreigner patients and institutional
staff

Performance measurement Measures related to process quality, defined by the Quality
Department, related to economic incentives for the personnel

Stakeholder relations The relationships with patients’ relatives and community is
fundamental (see planning and control).
Integration of the hospital with the territory (general
practitioners) is a key aspect introduced by legislation
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Table 3 Relationships between internal and external factors

Link with internal factors

External factors
Legislative/Political/Regulatory Process&Technology: for the definition of the minimum

length of stay for CR services and the promotion of the use
of innovative technologies.
Human resources: for the definition of the number of
nursing and supporting personnel based on several
parameters (defined at national/regional level).
Stakeholder relationships: for the integration of hospitals
with the territory (general practitioners).
Quality control: for the definition of quality standards (at
regional/national level)

Economic Planning&Control: related to the reimbursement of service
delivery by the regional healthcare system.
Performance measurement: for the definition of proper key
performance indicators

Social and demographic Process&Technology: patient’s social and demographic
characteristics influence the features of the delivery process
and the use of the technology.
Stakeholder relationships: patient’s community/relatives
characteristics have an influence on its relationships with
the hospital

Technological Process&Technology: the availability of new technologies
on the market is a necessary condition for their adoption.
Service range and new service introduction: the availability
of new technologies on the market enables the introduction
of new services or the process improvement of existing
health solutions

Competitive Not directly connected with internal factors. It is linked to
the operations strategy of the hospital

Internal factors
Process and technology Planning&Control: process delivery characteristics and the

adopted technologies influence planning and control
choices.
Human/Key resources (capacity): process delivery
characteristics and the adopted technologies influence the
required human/key resources for its implementation.
Facilities: in terms of decisions on facility location and
types.
Supply chain positioning: in terms of make or buy decisions

Capacity—Key resources Facilities: where the key resources are allocated/installed.
Planning&Control: related to the availability of key
resources than can be allocated during planning activities

Capacity—Utilisation It does not influence other internal factors
Facilities Human resources: in terms of possible synergies within the

same unit and also with other hospital departments
Supply chain positioning Human/Key resources (capacity): in terms of make or buy

decisions for human/key resources
(continued)
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6 Conclusion

Nowadays, healthcare delivery actors have to face an increasing number of chal-
lenges to create operational efficiency being at the same time financially viable.
Therefore, they must apply sound business and operations management, ensuring
improvements in clinical and organisational performance. In this context, an inte-
grated framework for strategic operations management was developed and then
relationships between variables were defined through an in-depth case study of an
Italian cardiac rehabilitation unit. The final framework is composed of internal
operations strategy factors as well as variables describing the context, both external
and internal. Moreover, it provides relationships between the identified variables
and how they influence each other. Therefore, the framework can be used as a tool
helping healthcare managers engineer and configure service delivery processes,
considering both the external and internal context. It also supports decision-making
processes, simulating how acting upon a specific variable or changes in the context
affect the other components of the operations strategy. Nevertheless, several limi-
tations and further developments can be outlined. Firstly, more case studies should
be carried out to validate the model (selected variables and their links), both for
other CR departments and other hospital units operating in different health systems.
Then, a system thinking model can be developed for running simulations and
scenario analysis to test and optimise configuration choices.

Table 3 (continued)

Link with internal factors

Planning and control Capacity utilization: planning activities determine the level
of utilisation of internal capacity

Human resources Planning&Control: related to the availability of human
resources than can be allocated during planning activities

Quality control Performance measurement: quality control aspects drive
the definition of proper key performance indicators

Service range and new service
introduction

Process&Technology: the choice of service offering
involves the definition of a proper delivery process and its
characteristics (including technological aspects).
Supply chain positioning: in terms of actors involved in
service delivery

Performance measurement Human resources: economic incentives are connected with
performance

Stakeholder relations Service range and new service introduction: services
supporting the establishment of relationships with
stakeholders (community and territory).
Planning&Control: for discharge planning, patient’s
community and relatives should be ready for its
homecoming
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Mining the Patient Flow Through
an Emergency Department to Deal
with Overcrowding

Davide Duma and Roberto Aringhieri

Abstract The Emergency Department (ED) management presents a really high

complexity due to the admissions of patients with a wide variety of diseases and dif-

ferent urgency, which require the execution of different activities involving human

and medical resources. This have an impact on ED overcrowding that may affect the

quality and access of health care. In this paper we apply Process Mining techniques

to a real case study: from the ED database, discovery techniques identify the possible

paths of a patient on the basis of the information available at the triage. Our purpose

is to obtain precise process models for replicating and predicting the patient paths.

Keywords Emergency department ⋅ Overcrowding ⋅ Process mining ⋅ Patient

flow

1 Introduction

The Emergency Department (ED) is a sub-unit of the hospital that operates 24 h

per day, 365 days per year, providing immediate treatments to patients. Although a

substantial number of patients is self-referred, but does not need emergency care,

EDs must ensure treatments to all of them. The ED management presents a really

high complexity due to the admissions of patients with a wide variety of diseases

and different urgency, which require the execution of different activities involving

human and medical resources. The uncertainty determined by the high heterogene-

ity of cases brings about different problems, such as the extension of waiting times

and the inefficient use of the available resources. For all these reasons, the ED over-

crowding represents an international phenomenon [8], which may affect the quality

and access of health care because of medical errors, delays in treatments, risks to
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patient safety and poor patient outcomes [3], but also high levels of stress, impair-

ment of the staff morale and increased costs [1].

The ED overcrowding is manifested through an excessive number of patients

in the ED, patients being treated in hallways, ambulance diversions, long patient

waiting times and patients leaving without treatment [5]. Since the perception of

the crowding level from the staff is subjective [9] and because of the need to ade-

quately prevent the phenomenon, several indices for the real-time measurement of

overcrowding have been introduced and studied. They are based on different indices

about the current operating status: the amount of available resources, the number of

patients in the ED involved in some activities or waiting for a resource, their waiting

times, the patient outcome and the predicted arrivals. However, the analysis in [4]

shown that none of most popular overcrowding measures is capable of providing

an adequate forewarning. Simulation has been widely used to understand causes of

the overcrowding and to analyse the impact of several interventions (patient flow

analysis, the bottlenecks detection, resource allocation) to alleviate its effects.

After interviewing the ED-staff operating on a real case study, we observed how

the patient paths can be different and intricate, since they depend on specific needs

that are not easily identifiable at the time of their arrival, taking into account many

variables that affect medical conditions, shifts of the ED staff, crowding of the ED

but also availability of beds for hospitalisation within the other wards. Although the

flowchart of the ED process can be easily designed interviewing the management

staff, rules defined by physicians are usually subjective and not sufficient precise

due to their complexity, the practical sense of physicians taking decisions and the

flexibility required by urgent actions. Then the replication of the patient flow is dif-

ficult without making significant assumptions, which do not allow us to act in real

time on the bottlenecks to prevent or relieve overcrowding.

Nowadays huge amounts of data are collected by EDs, recording diagnosis and

treatments of patients. Process Mining can exploit such data and provide an accurate

view on health care processes [7], ensuring their understanding in order to gener-

ate benefits associated with efficiency [10]. In literature there are several discovery

techniques that use specialised data-mining algorithms to extract knowledge from

datasets, creating a process model that takes into account dependency, order and fre-

quency of events, but also decision criteria and durations. However, the ED process

we would to mine has the characteristics of a Spaghetti process, that is an unstruc-

tured process in which the huge variety of sequences of events affects the trade-off

between simplicity and precision discovering the process.

In this paper we deal with the discovery of the ED process in a real case study. We

use several Process Mining techniques to identify the possible paths of each patient

on the basis of the only information known at the access of the patient. Our purpose

is to obtain precise process models for replicating and predicting patient paths. An

accurate replication of the patients paths allows us to simulate the process, generating

a resource demand that depends on decisions taken in the past activities. Then the

prediction of the future patient activities can be used to implement online approaches

for the resource allocation to act on bottlenecks.
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The paper is structured as follows. In Sect. 2 we describe a case study of a

medium-size Italian ED, providing an analysis of the patient population. The process

mining approach is presented in Sect. 3, discussing some preliminary results.

Section 4 closes the paper.

2 A Case Study

We present a real case study concerning the ED sited atOspedale Sant’Antonio Abate
di Cantù, which is a medium size hospital in the region of Lombardy, Italy. The ED

serves about 30000 patients per year, the urgency of which is classified by a code

from 1 (most urgent) to 5 (less urgent) assigned by the triage-nurse at the time of

their arrival, in accordance with Table 1. After the triage, the patient is visited in one

of the visit rooms by a physician, which can prescribe X-ray examinations, several

laboratory tests or therapies and a Short-Stay Observation (SSO). Certain patients are

visited in other special rooms, such as the shock-room that is properly equipped for

severely urgent interventions, and the Minor Codes Ambulatory (MCA), provided

by the ED from Monday to Friday in the time slot 8:00–16:00 for adult patients with

low urgency codes and good ambulation ability. In addition to all these ED tasks,

there are activities that can be performed outside the ED, that is several specialist

visits and the paediatric visit that is provided for non-urgent young patients instead

of the medical visit. After examinations, treatments and specialist visits, the patient

is revalued again by a physician of the ED, which establishes how to continue the

treatments, the need of hospitalisation or the discharge. In case of hospitalisation,

patients are observed in the SSO units until a bed is available within the assigned

hospital ward.

Table 1 Urgency codes: description and frequency over 2013–2015

Number Color Description Frequency (%)

1 Red Immediate danger of

Death

1.5

2 Yellow Need of a timely

medical visit

15.8

3 Green Need of treatments or

investigations

61.6

4 Blue Symptoms that could

be treated as primary

care

13.8

5 White Symptoms that could

be treated as primary

care

7.3
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Fig. 1 Comparison between territorial and patient age distributions

The resources available within the ED are: 4 beds for the medical visits placed

in 3 different visit rooms, in addition to one bed within the shock-room and another

one in the MCA, one X-ray machine, 5 SSO units, 10 stretchers and 10 wheelchairs

to transport patients with walking difficulties. The medical staff is composed of 4–6

nurses and 1–3 physician(s), depending on the time of day and the day of week, in

addition to the X-ray technician.

2.1 Patient Population

Thanks to the collaboration with the ED, we have available data concerning all

accesses made in the years 2013–2015. Such data contains sex (male 52.7% or female

47.3%) and age of the patient, type of access (autonomously 79.9% or with a rescue

vehicle 20.1%), the urgency code (1–5), the main symptom (undefined 35.2%, trauma

30.7%, abdominal pain 6.9%, flue 4.5%, chest pain 3.8%, dyspnea 3.4%, and other 25

options), timestamps and resources used during the activities, and type of discharge

(ordinary 82.0%, hospitalisation 8.0%, abandonment 6.9%, transfer to another facil-

ity 2.6%, death 0.3% or hospitalisation refusal 0.2%).

The patient population is quite uniformly distributed across the different ages,

with slight peaks for the age groups 5–9 and 35–54. To motivate this fact we com-

pared the access frequencies of the five-year age classes with the demographic dis-

tribution. As shown in Fig. 1, the almost uniform distribution of accesses among

the age classes is due to the balance between the lower percentage of children and

older people in the territorial area and the higher percentage of adults, which have a

lower number of accesses per person. For the comparison, we used ISTAT data about

2014 in the province of Como, in which Cantù is located, observing that Lombardy

Region and Italian territory have very similar distributions.
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Fig. 2 Patient accesses divided for urgency code

2.2 Retrospective Analysis

The ED of Cantù performed a retrospective analysis using the National Emergency

Department Overcrowding Scale (NEDOCS) [12] in the aftermath of several man-

agement changes, such as the introduction of the MCA or a new staff rostering. In

addition to inadequacy of this measure, proved in [4], the analysis performed by the

ED of Cantù has been affected by the lack of several information that has been dealt

with approximations. For all these reasons, we omit the NEDOCS results, focusing

on a brief retrospective analysis that describes the variability of demand over time.

The accesses have different fluctuations over the day, among the days of the week

and among the seasons, but also among the urgency classes. The higher arrival rate

fluctuations occur during the business hours of the day, as shown Fig. 2a, especially

for the minor codes, which usually go to the ED instead of relying on primary care.

For the same reason, a higher number of non-urgent arrivals has been registered

on Monday, as shown in Fig. 2b. Conversely, the urgency class 1 has the highest

coefficient of variation among the different months of the week, because of medical

and epidemiological reasons that cause more arrivals in winter. Nevertheless, from

Fig. 2c a uniform workload over the year (except for August) could be deducted,

in fact, the workload do not depend directly of the number of accesses. Then, we

report in Fig. 2d the average number of patients concurrently treated (including all

the activities between the first visit and the discharge), that is a more consistent indi-

cator with respect to the ED staff perception. The statistics in Table 2 justify this fact,

indeed more urgent patients have a longer average EDLOS (Emergency Department

Length-Of-Stay). Such a difference is due to the higher frequency of SSO for patients
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Table 2 Waiting times, LWBS and statistics on the treatment of patients

Urgency

code

Average

wait time

(min)

Percentage

of LWBS

(%)

Average

EDLOS (h)

Percentage

of SSO (%)

Average

SSO

duration (h)

Percentage

of hospitali-

sation

(%)

1 15 0.2 9 28.4 19 60.3

2 34 0.5 7 19.5 20 28.9

3 65 3.3 2.5 5.4 19 7.8

4–5 68 11.1 1 0.5 17 1.1

with urgency codes 1 and 2, caused by a higher percentage of hospitalisations. The

average waiting times confirm us that the priority among urgency codes is respected.

Finally, lower urgency codes also have an higher rate of patients Leaving Without

Been Seen (LWBS).

3 Process Modelling

In order to use discovery mining techniques, we need to preprocess the ED database

in order to create an event log, that consists of a set of traces (i.e. ordered sequences

of events of a single case), their multiplicity and other information about the single

events, such as timestamps and/or durations, resources, case attributes and event

attributes. In our case the events correspond to the activities concerning the patient

treatments recorded for each access within the ED of Cantù’s database, while each

trace identifies a patient path. Then, our objective is to discover a simple process

model that allows us: (i) to simulate accurately patient paths, resource allocation

and workload, and (ii) to predict the next activities and the required resources of

patients on the basis of their characteristics and their partial paths. All the process

mining techniques cited in this Section have been used as plug-ins of ProM 6.6.

3.1 Preprocessing

The event log has been generated taking into account the accesses of the year 2015,

removing all the accesses interrupted by death or a voluntary abandonment, because

in this cases we do not know what would be the continuation of the treatments. How-

ever, such data can be used to study the patient LWBS phenomenon and their impact

on performance. Each case of the event log consists in an access and events consists

in activities, which has been classified into 15 event classes: T (triage), V (medical
visit), K (shock-room treatment), A (MCA visit), P (paediatric visit), S (specialist
visit), R (revaluation visit), X (X-ray examinations), E (laboratory examinations),
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Y (therapy), O (SSO), H (hospitalisation), Z (hospitalisation refusal), F (transfer to
facility) and D (discharge). Consecutive events of the same event class were merged

because of the irrelevance from a control-flow perspective and because this allow us

to simplify the process models.

The event log is composed by 141 202 events regarding by 27 039 cases, which

generated 3 986 different traces. On average traces are formed by 5 events belonging

to distinct classes, but the number of events per trace ranges between 3 and 25. The

high number of traces with a low frequency is caused by three different factors, that

is medical reasons (i.e. patients need very different treatments), incorrect recordings

(i.e. noise) and incomplete data. For instance: some activities has been recorded later

and not always immediately at the end of their execution because of the need to deal

with an urgency; for technical reasons, revaluation visits are not recorded every time;

some traces contains both medical visit and paediatric visit but they refer to the same

activity.

3.2 Process Discovery

The huge number of traces suggests the use of discovery techniques that deal with

low frequent behaviour and noise. We used two different process miners, the Heuris-
ticMiner (HM) [11] and the Inductive Miner – infrequent (IMi) [6], both based on the

control-flow perspective. The HM takes into account the order and the causal depen-

dencies among the events within a trace, generating a model that uses the Heuristic

Net (HN) notation, which is flexible because it can be easily converted in other nota-

tions, for instance a Petri Net (PN). The IMi is an extension of the Inductive Miner
(IM), that is a divide-and-conquer approach based on dividing the events into dis-

joint sets taking into account their consecutiveness within traces, then the event log

Fig. 3 Process model mined with the HM: model H (heuristic net)
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Fig. 4 Process model mined with the IMi: model I (Petri net)

is splitted into sub-logs using these sets. The IMi uses the same approach but filters a

fixed percentage of traces representing infrequent behaviour to create a PN. Both the

techniques require low computational time, that is an important requirement because

of the dimension of our event log. We discovered from the event log two different

process models using the HM and the IMi, that are shown in Figs. 3 and 4, called

H and I.

The model H has been generated varying the parameters dependency and

relative-to-best of the HM in such a way to reach the best fitness, that is an index

of the capacity to reproduce the behaviour recorded in the event log, equal to 62%.

The obtained model H , as well all the other generated varying the parameters, is

a so-called Spaghetti process that is not sufficient simple to understand the whole

process.

The model I has been obtained varying the noise parameter of the IMi in order

to have a good precision avoiding or limiting infrequent behaviour. However, we

observed very slight deviations among the models ranging the noise percentage, that

has been fixed to 20%. Contrariwise to H , this model is very simple but not pre-

cise: the parallelisms among activities (represented by the grey boxes in the Fig. 4)

allowed by I implies additional behaviour that is not present in the event log.

3.3 Patient Clustering

In order to have a better balance of the four most important quality criteria of the

process modelling (i.e. fitness, precision, generalisation and simplicity), we use the

Decision-Tree Miner (DTM) described in [2], which analyses data flow to find rules

explaining why individual cases take a particular path. Although the approach that is

most straightforward and common in literature is the Trace Clustering (TC) [10], we

opt for the DTM because of its computational efficiency and the ability to determine

the most influential variables by itself. We execute the DTM using the event log,

which contains the patient attributes, and the PN of the model I that is easier to
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Table 3 Guards detected by the DTM on I (variables: age a, sex x, main symptom s, arrival mode

m and urgency code c)

Id Transition Predicate F1-score

G1 Paediatric visit a ≤ 17 0.954

G2 X-rays s = trauma ∨ (a ≥

66 ∧ m =
118-ambulance)

0.703

G3 Examinations s = abdominal-pain ∨
(c ≤ 2 ∧ a ≥ 61)

0.655

G4 Therapy (c ≤ 2 ∧ a ≥

19) ∨ (c = 3 ∧ a ∈
[19,70]

∧ s ≠ trauma ∧ x = F)

0.624

G5 Medical visit a ≥ 17 0.562

handle of H . We selected only the variables known at the access of the patient,

because we would classify the patients at their arrival and to predict their paths on

the basis of his/her cluster.

Several guards have been determined on a subset of the transitions of I . Such

guards are predicates that indicates a criterion to fire a transition, using the F1–score
as accuracy index. We denoted with white block transitions the performing of a

certain activity, while black block transitions fire when activities represented by their

parallel transitions are not executed.

The guards detected by the DTM are reported in Table 3. We remark that such

guards are more objective and accurate than the indications given by the medical

staff, for instance we are now able to determine exact boundary ages to classify the

patient behaviour. Furthermore, the guards involve the most relevant variables from

a control-flow perspective.

We clustered the patients in accordance with the characteristics determined by

the guards. We started from the guard G1 that have the highest F1–score and we split

the set of all the patients into 2 clusters on the basis of the guard satisfaction. We

repeated this operation on the clusters for all the other guards in decreasing order of

their F1–score, avoiding the splits when one of the two sub-cluster had less than 270
cases, that is 1% of all patients, in order to ensure significant samples.

The patient clustering determined 10 clusters that we used to create the same

number of event logs. The cases of the new event logs ranges between 355 and 6 493,

that is between the 1.3% and 24% of the initial event log. The number of different

traces within the same event log is significantly decreased, obtaining on average

585 and maximum 1 128 different traces per cluster. All the corresponding process

models mined through the HM are simpler than that in Fig. 3 because they have

less transactions between events, but they are also more precise than the model I
in Fig. 4 because of the absence of parallelisms. We report in Fig. 5 the model C
obtained using the event log of a single cluster and the HM. We observe that the
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Fig. 5 Model C (heuristic net) for the cluster that satisfies G1 ∧ G2

model C is considerably simpler than H but gives information about the behaviour

that is not deductible by H , such as sequential order of activities or frequencies of

the transactions between the same couple of events in different clusters.

The patient clustering may be further continued converting the new process mod-

els in PNs and run the DTM to discover new guards. Additional event attributes can

be taken into account in order to discover different decisions that depends on several

time variables (e.g. MCA visits are never performed over the weekend) or the system

state (e.g. degree of crowding). Furthermore, the HM compute frequencies of tran-

sition between two events, that could be very useful to estimate the probability of a

patient to follow a certain path and consequently to compute the expected waiting

and execution times.

4 Conclusions

In this paper we apply Process Mining techniques to a real case study in order to

obtain precise process models for replicating and predicting the patient paths. This

is an important starting point on the perspective of implementing online algorithms

for the patient flow optimisation with the aim of reducing overcrowding. Finally, the

computational inefficiency of some procedures, such as the TC or the ILP-Based

Process Discovery, suggests ad-hoc implementations of the process modelling tech-

niques.
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Abstract Satisfying the needs for healthcare services in medically under-served

areas (MUAs) is an important task to address in public health policies in many coun-

tries. Motivated by the Korean government’s MUA program, we develop a covering

location model to optimally establish a fixed number of medical facilities to best

serve MUAs. A unique feature of the proposed model lies in the definition of ser-

vice coverage, which considers both potential and realized accessibility to health-

care services. In this paper, we first review the operational definition for MUA the

Korean government currently uses, describe the proposed location model in detail,

and present the results of location solutions using the actual MUA data in Korea for

its obstetrics service. In particular, the effects of different MUA definitions and the

policy maker’s specific objectives on the location solutions are highlighted.
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1 Introduction

A medically under-served area (MUA) refers to a region where its residents do not

have a sufficient level of access to health care services. Satisfying the needs for health

care services in MUAs is an important task for public health policies in many coun-

tries. As such, there are many examples of MUA support programs around the world

that aim to filling the void in health care service provision for the population in

MUAs [1].

When the support for MUAs takes the form of establishing new care facilities

(or creating new capabilities in the existing care facilities), the decision problem in

MUA programs can be formulated as a facility location problem, a covering location

problem in particular. While the well-researched standard location models provide

a prescription for an approach to solve these problems (see for example [2]), what

is required beyond tailoring a standard covering location model is that the definition

of MUAs unique to the specific program in question must be considered.

In our problem, which is motivated by the Korean government’s MUA support

program, the unique feature comes from the definition of MUA adopted by the

Korean government. Two different aspects of accessibility to health care services

are considered, namely potential and realized accessibility [3]. The former measures

the accessibility by reflecting the service provider’s point of view. In this view, what

is achieved by the health care providers is the availability of health care services, and

it is assumed that the increased availability would lead to improved access to health

care services. It is thus referred to as the potential accessibility. The latter, on the

other hand, reflects the service consumer’s point of view; given the provided avail-

ability, it is through the patients’ choices that the actual use of health care service is

realized—hence, it is referred to as the realized accessibility.

To incorporate the MUA definition described above, we develop a covering loca-

tion model in which the definition of coverage is specifically constructed per the

MUA criteria the Korean government uses. To address the MUA definition by the

potential accessibility criteria, we newly introduce a constraint that determines the

service coverage. To address the realized accessibility criteria, we use a simple

choice model to represent the patients’ hospital selection behavior, thereby predict-

ing the actual volume of health care service use by the patients.

This paper is structured as follows. In Sect. 2.1, we first review the operational def-

inition for MUAs currently used by the Korean government, with a particular empha-

sis on the difference between the potential and realized accessibility. Section 2.2 then

presents the proposed location model and how MUA definitions have been translated

into the model is described in detail. In Sect. 3, we illustrate the characteristics of the

proposed model by presenting results of location solutions using actual MUA data in

Korea for its obstetrics service. In particular, the effects of different MUA definitions

and the policy maker’s specific objectives for the location solutions are highlighted.

Section 4 concludes the paper by highlighting the key contributions of this research.
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2 Problem Description

2.1 Operational Definitions for MUA

The Korean government’s MUA definition addresses two aspects of accessibility:

potential and realized accessibility. Potential accessibility is related to the geograph-

ical coverage for a district provided by nearby care facilities. Specifically, a district

is considered to have insufficient access to health care services if more than 30% of

its residents cannot reach a care facility within 60 min. For later use, let us define the

fraction of under-served population, 𝜆
p
, as follows:

𝜆
p =

Number of residents for whom no hospital is open within 60 min

Total number of residents

Thus, if 𝜆
p ≥ 30%, then the district is considered to be lacking sufficient access

to health care services. It is worth noting that it ignores the patient’s choice and only

indicates the presence of a nearby care provider regardless of its desirability to the

patients.

The second aspect of accessibility in the definition of MUA concerns the actual

use of health care services by MUA residents. If more than 70% of the health care

service use cases by its residents involve a trip to a care provider longer than 60

min, then the access to health care services in this district is considered insufficient.

That is, a district has insufficient access if 𝜆
r ≥ 70%, where 𝜆

r
denotes the fraction

of hospital visits that involved an excessively-long travel:

𝜆
r =

Hospital visits of longer than 60 min by residents

Total number of hospital visits by residents

Motivation for the government to use the potential accessibility criteria is quite

clear. From the policy planning purpose, the concept of potential accessibility is

intuitive and easy to measure—‘people in this town simply don’t have hospitals

nearby’. Also, perhaps more importantly, the lack of potential accessibility is directly

addressed by a policy intervention, i.e., by establishing a care provider in the right

location. On the other hand, the government knows that it has to respect the patients’

choice of care providers. Low realized accessibility may signal that the district may

suffer from accessibility issues other than the geographical accessibility issue. For

example, if a district has enough care providers to ensure sufficient potential acces-

sibility and yet shows poor realized accessibility, it most likely indicates the need for

other types of policy intervention than establishing additional capacities.
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2.2 Location Model

The primary objective of the MUA support program of the Korean government is

to establish a number of care facilities at locations that will maximally cover the

current MUAs. Given the MUA criteria by the Korean government, an MUA is said

to be covered in our problem if either 𝜆
p

is below 30% or 𝜆
r

is below 70%. This

section introduces a location model to determine optimal hospital locations to cover

MUAs. The novelty of the proposed model lies in how the MUA criteria has been

incorporated into a location model framework.

We use index k to denote a district, and it is at this level that the government

designates MUA. The set of MUAs is K, where k ∈ K. We let i be an index for a

demand region and I be the set of all demand regions. Practically, i represents the

smallest geographical unit for which necessary demand-related data (e.g., service use

records, demographics, etc.) is available. The size of demand which is interpreted as

the number of residents in region i is denoted by 𝜌i. Ik is the set of demand regions

that belong to district k. For hospitals, we use j as an index for a candidate site to

establish a hospital, with J denoting the set of all such sites. Finally, we let Ij represent

the set of demand regions that are within a specified distance standard, e.g., 60 min,

from hospital site j; likewise, Ji denotes the set of hospital sites that are within the

specified distance standard from demand region i.
Now, let us introduce six types of principal decision variables used in our model:

∙ yj, binary variable that indicates whether a hospital is open at candidate site j
(yj = 1 if it is open and 0 otherwise);

∙ xij, continuous, non-negative variable that represents the fraction of patients at

region i who (are expected to) choose the hospital located at j (xij ≥ 0);

∙ hi, binary variable that indicates whether there exists at least one hospital that can

be reached from region i within the time standard (hi = 1 if there is one or more

hospitals within the time standard and 0 otherwise);

∙ spk , binary variable that indicates whether the potential accessibility of district k is

at an acceptable level (spk = 1 if 𝜆
p
< 30%);

∙ srk, binary variable that indicates whether the realized accessibility of district k is

at an acceptable level (srk = 1 if 𝜆
r
< 70%);

∙ sk, binary variable that indicates the MUA status of district k (sk = 0 if district k
is MUA).

To express spk and srk in the math program, we define functions gpk and grk as follows:

gpk = 𝛬
p − 𝜆

p
k = 𝛬

p − (1 −
∑

i∈Ik 𝜌ihi
∑

i∈Ik 𝜌i
) (1)

grk = 𝛬
r − 𝜆

r
k = 𝛬

r − (1 −
∑

i∈Ik ,j∈Ji 𝜌ixij
∑

i∈Ik 𝜌i
) (2)
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where we use 𝛬
p

and 𝛬
r

to denote the threshold value for the two accessibility crite-

ria, 0.3 and 0.7, respectively. If gpk is positive, the fraction of the under-served pop-

ulation is less than the threshold value, and thus, district k has sufficient potential

accessibility. Similarly, a positive grk indicates that district k has sufficient realized

accessibility. Note that 𝜆
p
k is computed by using decision variable hi; the numerator

in the last term in (1) is the number of residents in district k for whom there is at

least one hospital within the time standard. To compute 𝜆
r
k, we use decision variable

xij. Recall that xij represents the fraction of patients at region i who are expected to

choose the hospital located at j. Then, the numerator in the last term in (2) is the

fraction of patients in district k who are expected to seek care at a hospital located

within the time standard.
1

By using the above definitions and terms, we now formulate a mathematical pro-

gram PMUA for the location problem as follows:

(PMUA) max
∑

k∈K
sk (3)

s.t.

∑

j∈Ji

xij ≤ 1 ∀i ∈ I (4)

xij ≤ pijyj ∀i ∈ I,∀j ∈ Ji (5)

hi ≤
∑

j∈Ji

yj ∀i ∈ I (6)

∑

i∈Ij

𝜌ixij ≤ cjyj ∀j ∈ J (7)

∑

j∈J
yj ≤ n (8)

gpks
p
k ≥ 0 ∀k ∈ K (9)

grks
r
k ≥ 0 ∀k ∈ K (10)

spk + srk ≥ sk ∀k ∈ K (11)

Objective function (3) maximizes the number of MUAs that are covered—i.e.,

changes its status to non-MUAs (sk = 1)—by the hospitals to be established. Con-

straint (4) requires that the sum of the fraction of patients in region i to choose hospi-

tal j should be no greater than 1 when summed over all reachable hospitals, Ji. Con-

straint (5) limits the fraction of patients in i to choose hospital j at its pre-determined

choice probability, pij. Note that pij is the probability that a patient in region i will

choose a hospital at j. A detailed explanation of pij will be given in Sect. 3. This

constraint also ensures that the fraction is set to zero if there is no hospital open at j.
Constraint (6) specifies that demand region i can only be served if there exists at least

one hospital within the time standard. Constraint (7) imposes a capacity limit, cj, for

each hospital. Constraint (8) limits the total number of hospitals to be established.

1
When we let 𝜆

r
k =

∑
i∈Ik ,j∈Ji 𝜌ixij∕

∑
i∈Ik 𝜌i, we are making an assumption that one patient equals

one hospital visit.
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Constraints (9)–(11) jointly specify that district k is considered covered, i.e., sk = 1,

if it has sufficient access in terms of either potential (spk = 1) or realized (srk = 1)

accessibility.

Note that PMUA contains nonlinear constraints (9) and (10). By introducing four

auxiliary variables (upk , vpk , urk, v
r
k), we linearize these constraints following techniques

suggested in [4]. Linearization of constraint (9) can be done as shown below:

upk =
∑

i∈Ik 𝜌ihi
∑

i∈Ik 𝜌i
∀k ∈ K (12)

vpk ≥ (1 − 𝛬
p
k)s

p
k ∀k ∈ K (13)

vpk ≥ upk +M(spk − 1) ∀k ∈ K (14)

vpk ≤ upk ∀k ∈ K (15)

vpk ≤ Mspk ∀k ∈ K (16)

Similarly, constraint (10) is linearized in the exactly same fashion.

In next section, we apply the above model to solve an obstetric care facility loca-

tion problem for Korea’s obstetrics MUA support problem.

3 Case: MUA Support Program in Korea for Obstetrics
Care

3.1 Case Illustration

To address the country’s low fertility rate issue, the Korean government is develop-

ing various policies and programs. One of the strategies is to foster a more favor-

able childbirth environment by establishing obstetrics care units especially in the

MUAs. Motivated by this program, we apply the proposed model described in pre-

vious Sect. 2.2 to the problem of locating obstetrics hospitals. For this study, we use

actual nationwide data and examine the characteristics of the location solutions from

the model.

Our case study uses data sets gathered from the prior nationwide study in which

the authors participated [5].
2

For the demand side, we use the residential locations

and obstetrics care records of women aged 15–49 years. By the MUA criteria of the

Korean government, there are 34 MUAs in 2015, and 209,933 women in the age

group live in these areas. On the supply side, there are 66 candidate sites to establish

an obstetric care capacity. Most of these sites are at a secondary care hospital level

(55 candidates), two are at a tertiary-care level, and nine sites are at a primary-care

2
This study was approved by the Institutional Review Board of National Medical Center in Korea.
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level. The maximum number of delivery cases that each hospital can handle is set at

20 cases per day.

Recall that our model addresses the realized accessibility by using variable xij,
which is the fraction of patients at region i who are expected to choose the hospital j.
In the planning stage, we do not know for sure how patients will respond to a newly

established care providers, and thus xij can only be guessed with some uncertain-

ties. Accurately predicting xij and properly incorporating it into the location model

requires significant research on its own, which is beyond the scope of this paper. Here

we adopt a simplifying approach by using an exogenously specified choice parame-

ter, pij. In our study, we set pij based on the actual obstetrics service use records

from the data set. In doing so, we made an assumption that travel time is the only

factor for patient’s choice of a hospital. From the care use records of a region i, if,

for example, a hospital j is 15 min from i, we approximate pij by counting the frac-

tion of visits by residents in i to hospitals that are between 10 to 20 min away from

i. While a better model based on rigorous analyses should be developed in future

work, this simple, distance-based model is still able to display the bypassing behav-

ior of patients, which is good enough to illustrate how our model works to capture

the realized accessibility.

Using these experimental settings, we conduct experiments to obtain location

solutions under various decision scenarios. Specifically, we examine the following

two questions:

(1) How significant is it to incorporate the realized accessibility in computing the

location solution?

Our model computes allocation decision variable xij by using the extrinsically

estimated parameter pij. xij represents the expected number of visits to hospital j from

region i, with which the (expected) realized accessibility is measured. We conjecture

that using realized accessibility in the location model would provide more accurate

prediction for how many MUAs will be actually covered by newly established hos-

pitals than a model that only looks at the potential accessibility. To investigate this

question, we compare solutions from PMUA with solutions obtained from its variant

P′
MUA. In P′

MUA, we replace constraint (5) with a new constraint that enforces that

patients choose a hospital closest to their residence.
3

This is a common assump-

tion in most of the standard location models. With the modification, solutions from

P′
MUA ignore the patient choice aspect of accessibility and represent location solu-

tions purely from the potential accessibility aspect.

(2) How much difference exists between the two sets of solutions when our objective

is (a) to minimize the number of remaining MUAs versus (b) to minimize the

size of under-served population by the investment?

To the government, the number of MUAs relieved by the investment made in

the program would be a direct measure of the program’s success in terms of the

investment efficiency, and as such PMUA uses the measure as its objective function.

3
∑

k∈Ji tikxik ≤ tij +M(1 − yj) ∀i ∈ I, j ∈ Ji ( tij denotes the travel time between i and j).
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However, such solutions, while minimizing the number of remaining MUAs, would

not necessarily minimize the under-served population. We develop a variant from

PMUA where
∑

𝜌ijxij replaces the current objective function and constraints (9)–(11)

are removed. The modified program P′′
MUA has the form of a capacitated maximum

covering location problem [6]. Considering that minimizing the volume of the under-

served population would also be a equally plausible goal for the policy makers, we

examine the difference between two models.

3.2 Results

We solve PMUA to see how many hospitals need to be established to serve the 34

obstetric MUAs in Korea. Figure 1 shows that establishing the first hospital, if opti-

mally located, can serve four MUAs providing sufficient accessibility to relieve them

from their MUA status. After the first hospital, the number of MUAs covered by the

established hospitals increases in proportion to the number of hospital, and 30 hos-

pitals will relieve all MUAs. The size of Medically Under-served Population (MUP)

also increases more or less proportional to the number of hospitals. Note that opening

more hospitals beyond 30 continues to contribute to further reducing MUP. Open-

ing hospitals in all 66 candidate sites will provide access to 138 thousand women,

reducing MUP to 35% of the initial size.

Now we discuss each of the two questions posed in Sect. 3.1. The first question is

on the significance of realized accessibility in obtaining the location solutions. Recall

that, to examine this question, we obtain location solutions from the original program

PMUA and its modified version P′
MUA which makes people always choose the nearest

hospital from them. The results show that for all scenarios, the objective function

Fig. 1 Number of covered MUAs and size of MUP (Medically Under-served Population) com-

puted from PMUA
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Fig. 2 Locations of the five hospitals obtained from P′
MUA and MUA regions (grey-colored): a 12

MUAs are expected to be relieved (hatched) b three (areas where the arrow points to) among the

12 MUAs turn out to remain MUAs

value,
∑

sk, is higher in P′
MUA than in PMUA. With the same number of hospitals, two

more MUAs, on average, are relieved under P′
MUA compared with PMUA. Although

it is not meaningful to compare the objective values of two different optimization

models, there is an important implication suggested by the observation: effectiveness

of investment to support MUAs can be overestimated if the expected, actual use of

new care capacity is not properly accounted for. Figure 2 shows an example of such

possible overestimation.

Figure 2a shows the location solution from P′
MUA for n = 5. It shows locations

of the five hospitals and the respective MUAs that these hospitals are expected to

relieve. As indicated in the figure as hatched areas, there are 12 MUAs that are

expected to become non-MUAs due to new service capacity provided by these hos-

pitals. To see if this expectation is realized, we take the location solution into PMUA
by fixing yj, and we solve PMUA to obtain sk. Then, sk indicates which MUAs have

been relieved by these five hospitals. This is shown in Fig. 2b. In the figure, we see

three districts that are expected to be relieved by the five hospitals, but it turns out

that they will remain as MUAs when we take into account their choices as dictated

by pij. The government invests its resources in new capacity with an expectation that

provision of the capacity will lead to its consumption by the residents in the target

MUAs. However, this expectation, when based solely on the potential accessibility

aspect, is only prognostic from the view point of a service supplier. To narrow the

gap between prognostic expectations and actual, realized use of service, it should be

pro-actively modeled so that location solutions are derived with a model that takes

into account the service consumers’ reaction to new capacity.

The second question concerns the choice of objective function for PMUA. Again,

we compare solutions from PMUA with solutions obtained from another modified
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Fig. 3 Pursuing the number of MUAs (PMUA) versus the size of MUP (P′′
MUA) produces very dif-

ferent location solutions

version, P′′
MUA. Potential and realized accessibility are reflected in both models, but

the two models differ in the objective function. PMUA maximizes the number of

MUAs to be relieved, whereas P′′
MUA maximizes the size of the under-served popula-

tion (MUP). Figure 3 clearly shows the contrast between the two sets of solutions. In

Fig. 3a, we see that solutions from PMUA relieve more MUAs, as many as eight, (See

the case of n = 25) than P′′
MUA. On the other hand, in terms of the number of women

benefited by the new capacity, solutions from P′′
MUA dominate PMUA, as shown in

Fig. 3b. Although this contrast is expected, the magnitude of the difference in the

size of covered MUP is simply too large to ignore. In case of n = 25, the difference

is as large as 21,000 women. In a sense, this 21,000 women can be thought of as the

cost of regional equity pursued in policy making. It is understandable that the gov-

ernment treats all districts equally and decides to relieve as many MUAs as possible,

but the cost of equity is potentially very significant such that it certainly warrants a

serious discussion.

4 Conclusion

Motivated by Korean government’s MUA support program, we develop a location

model to determine optimal locations to establish obstetric hospitals. Novel features

of the developed model are twofold. First, the government’s operational definition

of MUA requires to determine the service coverage at the aggregate geographical

unit (district). Individual regions are examined for their accessibility, and then the

results are rolled up at the district level to compute the size of low accessibility popu-

lation. This was achieved by defining auxiliary indicator functions—gpk and grk—and

using them to constrain the decision variable for accessibility at the district level, spk
and srk. The second feature is that we take expected responses of the MUA residents
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into consideration within the model. This was needed to properly describe the two

accessibility concepts as specified in the government’s MUA definition. While poten-

tial accessibility is represented in standard location models, realized accessibility is

rarely considered. We incorporate parameters pij to model the expected responses of

the MUA residents—how likely they will choose to use hospital at j.
As a case study, we apply the model to Korean government’s MUA support pro-

gram for obstetric care. The results have been provided to the government to aid in

their decision making for the program. In addition to the location solution, we found

important implications from the study. Effectiveness of the program’s investment

may be overestimated if the actual use of new care capacity is not properly predicted

and accounted for in the decision model. In the worst case, the government opens a

hospital that ends up being unused by the target residents. We also found that there is

a significant difference when the support program focuses on the number of MUAs

versus the size of underserved population. Pursuing the number of MUAs as the

policy objective is certainly justifiable since it is based on the premise of regional

equity. But the cost of regional equity is potentially very significant, and thus it is

worthwhile to discuss if it is possible and necessary to seek balance between the two

objectives.
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A Choice Model for Estimating Realized
Accessibility: Case Study for Obstetrics Care
in Korea

Kyosang Hwang, Hoon Jang, Taeho Lee, Minji Kim, Hansu Shin
and Taesik Lee

Abstract Improving accessibility to care in medically under-served areas(MUAs)

is the goal of MUA support program in public health policy. In the planning phase of

such programs, we often use geographical proximity of care facilities as a measure of

accessibility, and the programs resource is used to maximize the geographical acces-

sibility. While it is easy to assess the geographical accessibility, this is not always

an accurate assessment of the actual, realized accessibility because true accessibil-

ity is realized by the actual service use by patients. The choice of a specific care

provider by patients is made not just by a physical distance, but by many other fac-

tors including the size of a care provider, physician’s demographic, etc. Predicting

true accessibility thus requires a model that considers various factors in the patients

decision making, and in this paper, we use a choice model known as the conditional

logit model. We use the actual health insurance data from Korea to identify factors

affecting patients choice of care providers and model the provider choice behavior of

patients by using the MNL model. To validate the proposed model, we compare the

actual patient volumes for care providers with the model prediction, and the results

show a good agreement suggesting the MNL model is a promising approach to assess

true accessibility to care.
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1 Introduction

A medically under-served area (MUA) is a region where access to health care ser-

vices is limited. This is often caused by the lack of health care service capacity, hos-

pitals in most contexts. Often, public health authority installs policy interventions,

for example by establishing new care capacity, to improve accessibility to health care

for people residing in MUAs [1].

Accessibility has two components: potential accessibility and realized accessi-

bility [2]. Potential accessibility is measured by the existence of a hospital within

reasonable proximity, e.g. 60-min for obstetrics care. The term potential indicates

that the mere existence of a hospital does not necessarily mean it provides sufficient

access to the patients due to various factors; they may travel long distance to get care

from a hospital with higher quality of service or from a hospital with lower expenses.

Realized accessibility, as its name suggests, measures accessibility in terms of actual,

realized use of health care services.

While potential accessibility is prognostic and easy-to-measure in the planning

stage, realized accessibility can only be guessed at the time of planning. In planning

an intervention strategy, policy makers need to have a good understanding as to how

health service consumers would respond to newly established capacity. Without it,

they may invest in capacity that ends up being unused, yielding less-than-desired

outcomes.

A key to the accurate prediction is the understanding of health service consumers’

choice of care providers, and this type of problem has been analyzed by using what

is known as a discrete choice model [3, 4]. Discrete choice models, originally devel-

oped in economics, describe choices between two or more discrete alternatives. For

example, we can construct a model to describe patients’ decision regarding a choice

between available hospitals to visit to receive care. Specifically, the attributes of each

of the patient and the attributes of the available hospitals are statistically related to

the particular choice made by the patient.

In this paper, we develop a discrete choice model to capture patients’ choice

behavior for health care service providers. We use nation-wide data of MUAs for

obstetrics care in Korea. Using the data, we construct a conditional logit model,

which is one of the popular discrete choice models in economics and other relevant

studies. In the context of the MUA support program, such a model would offer an

opportunity to develop a location model that takes into account the future (expected)

consumer responses to the care providers to establish. If we develop an accurate

choice model with manageable degree of complexity, the expected responses can be

endogenized into a location model.

Remainder of this paper is structured as follows. Section 2 provides a brief

overview on discrete choice models. In Sect. 3 discusses the conditional logit model

and its specification, along with the data used in our study. Section 4 summarizes the
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results and discusses the major findings from the model. Finally, Sect. 5 concludes

with a few issues to address in future research.

2 Discrete Choice Model

Originated in psychology and economics, discrete choice models describe and

explain choices between two or more discrete alternatives. Specifically, discrete

choice models specify the probability that an individual decision maker chooses an

option among a set of alternatives. For example, we can construct a discrete choice

model to estimate the probability that a patient will choose to receive a tonsillec-

tomy or not, or the probabilities for each of five available hospitals that the patient

will choose to receive the surgery from. Such prediction is made by statistically relat-

ing the choice made by a decision maker to the attributes of the decision maker and

the attributes of the alternatives.

Discrete choice models assume that a decision maker chooses an alternative that

returns the greatest utility. Let Uni denote utility that decision maker n obtains from

alternative i. Then, the probability that decision maker n chooses alternative i is

Pni = Prob(Uni > Unj,∀j ≠ i) (1)

In discrete choice models, Uni is assumed to consist of two parts: Uni = Vni + 𝜀ni
where Vni is observable utility and 𝜀ni is unobservable utility. Vni depends on the

attributes that the modeller observes—the attributes of the decision maker n and the

attributes of alternative i faced by n. 𝜀ni represents the random effects of all factors

that are not observable to the modeller. It is assumed to follow some probabilistic

distribution, giving the stochastic nature to discrete choice models. With Vni and 𝜀ni,

(1) can be rewritten as follows:

Pni = Prob(Vni + 𝜀ni > Vnj + 𝜀nj,∀j ≠ i) (2)

= Prob(𝜀nj − 𝜀ni < Vni − Vnj,∀j ≠ i)

Different choices for a stochastic distribution of 𝜀ni give rise to different choice

models. For example, in the case of binary choices, assuming the extreme value

distribution for 𝜀ni yields the logit model. If 𝜀ni is assumed to follow the stan-

dard normal distribution, then the resulting choice model is the probit model. A

wide range of choice models have been developed, and the reader is referred to

[5, 6] for a full account of the discrete choice models.

In our application, we use the conditional logit model to describe hospital choices

by patients. The conditional logit model was introduced by McFadden [7], and has

been extensively used to estimate choice behaviors in numerous applications. In

the logit model, a decision maker faces more than two alternatives, hence multino-

mial choices, and its unobserved utility 𝜀ni is assumed to follow the extreme value
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distribution—the Gumbel distribution in particular. It is similar to the multinomial

logit model, a more basic version of the multinomial choice models, but differs in

its modeling scope. A key benefits of the conditional logit model is that a choice
among alternatives is treated as a function of the characteristics of the alternatives,
rather than (or in addition to) the characteristics of the individual making the choice
[8]. In the conditional logit model, we have a closed-form expression for the choice

probability that decision maker n chooses alternative i among the alternatives, J:

Pni =
exp(Vni)

∑
k∈J exp(Vnk)

(3)

Since Eq. (3) is a function of only the observable utilities, it can be easily calculated

as long as we have identified Vni in a functional form. Recall that the main motiva-

tion for us to develop a choice model is to use it in the context of location models.

The fact that Pni is easily computed under the conditional logit model enables us to

conveniently incorporate the choice probability, hence the expected responses from

the patients, into a location model.

3 Choice Model for Obstetrics Patients in Korea

This section presents the choice model that we construct to understand the hospi-

tal choice behavior of obstetrics patients in Korea. We first describe two modeling

components in Sect. 3.1. Specifically, we define two major modeling components: a

choice set J and decision maker n’s utility Vni. Then, we discuss the obstetrics care

data we used to construct the model in Sect. 3.2.

3.1 Model Components

The choice set is a set of alternatives available to the decision maker. For our problem,

the choice set consists of obstetric care providers in Korea. Korea runs its health care

system under the national health insurance program, which is mandated for every

resident to subscribe. Under the national health insurance program, individual health

service consumers—pregnant women in our study—are given complete freedom to

choose any obstetrics care provider.
1

In this sense, we may include all obstetric care

providers in Korea in the choice set for each pregnant woman. However, using the

entire set of obstetric care providers in Korea as the choice set for all decision maker

1
In general, health service consumers in Korea has “almost” complete freedom in a sense that there

exists a mechanism to induce appropriate use of health care resources. For example, the govern-

ment implements price differentiation between care providers in different tiers to prevent over- and

unwarranted use of high-tier care providers.
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Table 1 Selected factors for the patients’ hospital selection model

Group Factors Group Factors

Accessibility easy

access by transport

(e.g., public or own,

parking)

Travel time Staff Medical qualification;

Specialization/interest;

No. of staff per patient

Availability (e.g., open

hr)

Language

incentivizing by

insurers

Organization of care Convenience (e.g.,

open hours)

Type/Size of the

institution

Provider ownership

(e.g., public, for-profit,

private non-profit)

quality of facilities

provider size (e.g., no.

of beds)

Physician’s

demographic; Cost

Patient experience;

Gender; Age;

Out-of-pocket

expenses

does not seem very sensible. First, we conjecture that many of the cases of deliveries

at a hospital far away from their residence are possibly due to incomplete data, for

example mismatch between actual residence at the time of delivery and the address

on the national residence registry. Second, the actual data shows that majority of

women have chosen a hospital not too far away from them. It turns out that 91.6% of

the total delivery cases are handled by a hospital located within 120 minutes of travel

distance from the mother’s residence. Thus, we define the choice set for pregnant

woman n as a set of hospital located within 120-min of n’s residence.

Next, to define decision maker n’s utility, Vni, we need to identify the variables

that characterize the attributes of alternative i faced by decision maker n. Simply

put, we need to identify factors affecting the decision maker’s choice of a hospital.

In this paper, we follow the framework proposed by Victor et al. [9]. It identifies

various factors that are found to affect patients’ hospital selection. These factors are

classified into seven groups. See Table 1.

We examine each of the factors shown in Table 1 for their relevance to our problem

and availability of necessary data. Factors in the organization of care, cost groups,

and physician’s demographic are excluded due to data unavailability. Language and

insurance factors in the availability group are excluded as they are irrelevant to

Korean heath care environment. We adopt travel time factor in the Accessibility

group, while the easy-access-by-transport factors are excluded due to the data issue.

For the institution factors, we use two alternative factors that are available for our

study: level of a hospital and the degree of urbanization of the town a hospital is

located. For the Staff category, we adopt the number of obstetrics specialists as a

representative alternative for the factors identified above. We assume, albeit with-

out empirical evidence, these three factors are reasonable surrogates to capture the

attributes that the institution and staff factors intend to represent in [9].
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Let us use tni, Lvi, Urbi, and Numi denote the travel time, hospital level, urbaniza-

tion of the hospital location, and the number of obstetrics specialists, respectively.

Their operational definition used in our model is as follows.

∙ Level of hospital, Lvi
The level of a hospital is an important factor when patients choose the hospi-

tal to receive care. Like the health care systems in many other countries, medical

institutions in Korea are hierarchically structured—primary, secondary, and ter-

tiary.
2

For the purpose of our discussion here, we can further simplify it into a two-

tier system as there is not much difference between the primary and secondary hos-

pitals when it comes to obstetric care provision. Then, Lvi enters the model as a

dummy variable:

LvHi = 1 if i is a tertiary hospital, and 0 otherwise;

LvLi = 1 if i is an either primary or secondary hospital, and 0 otherwise.

∙ Urbanization of the hospital location, Urbi

It is expected that whether a hospital is located in a metropolitan area or a rural

county influences patient’s perception, hence their choice, of the hospital. In Korea,

for many types of health care services, it is believed that patients strongly prefer

hospitals located in metropolitan areas. Due to its categorical nature, this variable

enters the model as a dummy variable as well:

UrbMetroi = 1 if i is in a metropolitan region, and 0 otherwise;

UrbCityi = 1 if i is in a city region, and 0 otherwise;

UrbRurali = 1 if i is in a rural region, and 0 otherwise.

∙ Number of obstetrics specialists, Numi

The number of obstetrics specialists is another variable relevant to the size and qual-

ity of a hospital. It is also correlated to the number of female obstetrics physicians,

which is another presumably important factor when pregnant women choose a hospi-

tal for their delivery. According to our survey through obstetrics care providers’ web

page, the correlation coefficient between the number of physicians and the number

of female physicians is 0.82.

∙ Travel time, tni
Presumably, travel time is important consideration when choosing a hospital as it is

a primary determinant of physical accessibility. Note that, unlike the other variables,

tni depends on a patient-hospital pair, indicated by its double-index ni. We use the

hospital addresses and residential addresses to compute travel times for all {ni} pairs,

assuming automotive transportation.

2
The hierarchical structure in Korea’s healthcare system is a little more complicated than that, but

for the purpose of our discussion it suffices to use a three-tier (primary, secondary, and tertiary)

classification.
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With these four variables, our specification for Vni is as follows:

Vni = 𝛽Lv ∗ Lvi + 𝛽Urb ∗ Urbi + 𝛽Num ∗ Numi + 𝛽t ∗ tni (4)

Coefficients in Eq. (4) are estimated by the maximum likelihood estimation method,

and we use the MDC Procedure in SAS.

3.2 Data

We use the data for actual uses of obstetrics care providers by pregnant women for

their deliveries in Korea in year 2015. Given the model specification (4), we need

data, for each delivery case, on the mother’s residential address and identification of

the hospital she gave birth in. Then, for these hospitals, we need information on their

designation level, address, and the number of obstetrics specialists. These sets of data

have been obtained from three sources: National Health Insurance Service (NHIS),

Health Insurance Review & Assessment Service (HIRA), and National Transporta-

tion DB center. Using these data sources, we define the choice set (Fig. 1).

Birth data from NHIS consists of mothers’ residential addresses and the id code of

the hospitals they used. After excluding invalid entries, 291,126 delivery cases have

been obtained from the database. It should be noted that due to the NHIS privacy

requirement, we were not given an individual mother’s residential address; individual

birth records have been compiled at an aggregate geographical unit before being

made available for our analysis.

Hospital information is obtained from HIRA. There are 576 medical institutions

that has at least one case of delivery during year 2015. Some of these institutions

have less than 50 cases of deliveries in one year. Also there are some institutions for

which HIRA data shows no obstetricians. Our discussion with the government offi-

cials and public health experts suggests that these institutions do not provide delivery

services under nominal circumstances or as part of their regular services, and thus

we exclude these institutions from our analysis. This leaves us 480 hospitals across

the country. The HIRA database contains information on each hospital for their des-

ignation, address, number of beds and labor beds, number of obstetrics specialists

and physicians, number of nurses and other equipment.

The travel time between each geographical unit and hospitals is obtained by using

the network analysis tool offered in ArcGIS 10.0. For each unit, we use a population-

weighted centroid as its center point from which we measure the travel distance to

each of the hospitals. Traffic analysis network data from the National Transportation

DB Center is used to provide information on the road network and average vehicle

speed, etc.

Motivated by the MUA support program for obstetrics care in Korea, our objective

of constructing the choice model is to understand the choice behavior of prospective

mothers in MUAs. We conjectured that the choice behavior of prospective mothers

will be largely influenced by where they live. In particular, people who live in and
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Fig. 1 Flow chart to define the final data set

around MUAs are likely to choose a hospital on the different rationale than those

who have access to abundant alternatives. Thus from the entire records of delivery

cases in Korea, we include delivery cases from the rural regions. Note that 33 out of

34 MUAs are rural region and that 33 out of 82 rural regions in Korea are MUAs.

The final data used in our analysis is, for each of 82 rural regions, a list of hospitals

and the number of cases each hospital served. The descriptive statistics of hospitals

are shown in Table 2.



A Choice Model for Estimating Realized Accessibility . . . 81

Table 2 Descriptive statistics of alternatives

Categorical factor N Ratio (%)

Hospital level 468 100.0

LvL 370 79.1

LvH 98 20.9

Hospital location 468 100.0

UrbMetro 311 66.5

UrbCity 147 31.4

UrbRural 10 2.1

Numerical factor Mean Std. Min Max

Number of

obstetricians

Num 5.42 4.61 1 38

4 Result

Observable utility Vni of hospital i faced by pregnant women in region n is

Vni = − 1.0722 ∗ LvHi − 0.1738 ∗ UrbCityi − 0.8619 ∗ UrbRurali (5)

+ 0.1511 ∗ Numi − 0.0637 ∗ tni

The detailed results for the conditional logit model is shown in Table 3. All coeffi-

cients are statistically significant with their p-value very small. The last column of

Table 3 Results of the patients’ hospital choice model

Factor DoF Estimate Relative

risk

Standard

error

t-value p-value VIF

Hospital level

LvL (reference)

LvH

1 −1.0722 0.34 0.0287 −37.32 ≤ 0.0001 1.06

Hospital location

UrbMetro
(reference)

UrbCity

1 −0.1738 0.84 0.0305 −5.7 ≤ 0.0001 1.11

UrbRural 1 −0.8619 0.42 0.0499 −17.28 ≤ 0.0001 1.06

Number of

obstetricians

Num

1 0.1511 1.16 0.0023 65.22 ≤ 0.0001 1.17

Travel time

(min.) t
1 −0.0637 0.94 0.0001 −116.92 ≤ 0.0001 1.02

McFadden’s pseudo R-squared = 0.2748
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Table 3 shows the VIF values for the factor variables, which suggests they are not

correlated with each other.
3

Note that the model’s McFadden’s pseudo R squared is

0.2748, and thus the goodness of fit of the model is deemed appropriate [10]. In addi-

tion to the goodness of fit, we examine the validity of the model for its prediction.

We validated our model by 5-fold cross-validation [12]. Since the purpose of the

model is to predict the number of visits for each hospitals, we examine R2
between

the actual and the predicted number of visits in the test data set. R2
value for the

entire dataset is 0.7326. R2
is decreased to an average of 0.7195 (0.7389, 0.7062,

0.7006, 0.7319, 0.7199) in the 5-fold cross-validation, which is still acceptable.

The coefficient of each variable is interpreted via its relative risk as follows:

Pni|LvHi=1

Pnj|LvHj=0
=

eVni
∑

k eVnk

eVnj
∑

k eVnk

= e𝛽Lv⋆(LvHi=1)

e𝛽Lv⋆(LvHj=0)
= e𝛽Lv = e−1.0722 = 0.34 (6)

∙ Probability of choosing a high-level (tertiary) hospital is, with everything else

being equal, 0.34 times the probability of choosing a low-level hospital (primary

and secondary);

∙ Probability of choosing a hospital in a city region is 0.84 times the probability of

choosing a hospital in a metropolitan region;

∙ Probability of choosing a hospital in a rural region is 0.42 times than the proba-

bility of choosing a hospital in a metropolitan region;

∙ Probability of choosing a hospital in a city region is 2.0 times the probability of

choosing a hospital in a rural region;

∙ Probability of choosing a hospital that has one more obstetricians over the proba-

bility of choosing the hospital with one less obstetrician is 1.16;

∙ Probability of choosing a hospital that takes one additional minute of travel is 0.94

times the probability of choosing the hospital that takes one less minute to reach.

In the above results, there are a few notable findings from the results. First, preg-

nant women living in rural regions in Korea would choose a hospital of the lower

level (primary and secondary) over a tertiary hospital. This is probably due to the

fact that, under current obstetrics practices in Korea, those lower level hospitals pro-

vide care with reasonable quality. Also, getting care at a tertiary hospital generally

accompanies significant overhead and additional cost to patients, which can only be

justified for high risk delivery cases. Second, the results show that hospitals located

in a large, urban environment are favored over the ones in a more local and rural

setting. This will be a concern in the MUA support program for its possible impli-

cation; newly established obstetrics hospitals in MUAs may not effectively attract

and serve the target population. Third, the number of obstetricians influences the

choice of obstetric hospital. This can also be a concern since it will be practically

3
The multicollinearity between variables is judged by Variance Inflation Factor(VIF); if any of

the VIF values exceeds 5 (or 10), it implies that the associated regression coefficients are poorly

estimated because of multicollinearity. VIF of all variables in Table 3 is less than 1.2, so there is no

multicollinearity problem in our model.
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Table 4 Confusion matrix for the prediction from the choice model

Model prediction

MUA non-MUA

Actual MUA 28 28

non-MUA 2 194

very difficult to operate a hospital in MUAs—rural environment in general—with

many obstetrics specialists.

With the coefficients estimated from the data as shown in Eq. (5), now we can

evaluate Eq. (3) to determine the choice probability and assess the fidelity of the

derived choice model. We compare the model’s prediction on the choice of hospitals

with the actual choices in the data. Specifically, from the actual data we examine

the number of delivery cases in each region that were served by a hospital farther

than 60-min travel distance. From the model, we obtain Pni as given in Eq. (3) and

multiply the number of women between age 15–49 in regional unit n to compute the

counts of corresponding cases. Note that 60-min is the travel time standard used by

the Korean government to measure accessibility to obstetrics care. When the fraction

of delivery cases served beyond the 60-min travel distance is higher than 70%, then

the region is considered as an MUA from the realized accessibility criteria [11].
4

Thus, we obtain the model’s prediction on the MUA status for each region and com-

pare the prediction with the actual MUA status for the region. This is a relevant test

for us as the choice model will be used in answering the question of whether a new

obstetrics capacity will relieve the MUA status of the region it is intended to serve.

Table 4 shows that the overall accuracy of the prediction is 88%. Its sensitivity is

rather low at 50%, while specificity is very high at 99%; thus the MUA prediction

based on our model is highly specific but not sensitive. Our model rarely mistake a

region as an MUA when it actually is not (few false positives). On the other hand,

there is a good chance of overlooking many regions that are actually MUAs (many

false negatives). In the context of MUA support program, this can be overly conser-

vative, and its sensitivity should be enhanced.

While the results shown in Table 4 certainly suggest the need to improve the

underlying choice model, we would like to emphasize it is still much better than

the current practice. In the current practice of the MUA support program, location

decisions for new hospitals are made based on the potential accessibility. That is,

whether a region will be relieved from its MUA status is predicted purely by geo-

graphic proximity criteria. To examine the accuracy of the prediction based on such

simple model—i.e., using the geographic proximity as a rule for allocating patients to

hospitals, we conduct the same test and evaluate the prediction outcome. The results

4
The other criteria is the potential accessibility, which concerns geographical accessibility due to

the existence of care provider within the time standard. If more than 30% of a region’s patients do

not have a hospital within 60-min, then the region is MUA from the potential accessibility criteria

[11].
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Table 5 Confusion matrix for the prediction using the proximity-rule

Model prediction

MUA non-MUA

Actual MUA 18 38

non-MUA 0 196

are shown in Table 5. It turns out that the overall accuracy drops to 85%, primarily

due to its poor sensitivity at 32%.

5 Conclusion

In this paper, we construct a choice model to describe and predict the hospital choice

decision for obstetrics care in Korea. Specifically, we use the actual records of deliv-

ery cases during year 2015, and the data is fitted by a conditional logit model. The

resulting model confirms a prior notion that the distance to the hospital is an impor-

tant consideration, that the size of the hospital matters as well (measured by the

number of obstetrics specialists), and that the hospitals in a more urban region are

preferred. On the other hand, being a tertiary hospital does not translate into an attrac-

tive attribute as the data shows lower-level hospitals are in fact preferred.

These findings cast some implications for designing and implementing the MUA

support program in Korea. In the MUA support program, new obstetrics hospitals

are established within or near MUA regions with an expectation that this hospitals

will absorb the demand from the region, hence relieving its MUA status. But then

in most cases MUAs are rural regions, and practically it is difficult to expect more

than one obstetrics specialist in those hospitals. These newly established hospitals

may not be able to attract as many pregnant women for their deliveries as expected

in the planning phase. Our model allows to predict the obstetrics care consumers’

response to new hospitals in a way that the prediction can be incorporated into a

location decision model.

There are a few aspects in which the choice model developed in this study can be

improved. First, even though we adopt a conditional logit model, we use primarily

the hospital attributes. We need to refine and expand the current model by including

more attributes for the decision makers. Second, other than the distance variable,

the attributes in Vni are assumed to be independent of individual decision makers.

Certainly there are possibility that other multinomial choice models provide a better

description for the choice behavior, and further exploration into alternative models

is warranted.
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HandlingTime-RelatedDemands in theHome
Care Nurse-to-Patient Assignment Problem
with the Implementor-Adversarial Approach

Giuliana Carello, Ettore Lanzarone, Daniele Laricini and Mara Servilio

Abstract The nurse-to-patient assignment is one of the main decisions in planning

Home Care (HC) services under continuity of care. In the literature, this problem

has been tackled with several approaches to take demand variability into account.

However, patient’s demands at different time periods have been always assumed as

independent, while they are highly correlated in practice. In this work, we propose

a robust assignment model that includes the time-dependency of the demands in

the HC nurse-to-patient assignment problem, based on the implementor-adversarial

framework. Results from a relevant test case show the appropriateness of the ap-

proach and the capability to contain costs while respecting the continuity of care

constraints.

Keywords Home care ⋅ Nurse-to-patient assignments ⋅ Continuity of care

Time related demands ⋅ Implementor-adversarial approach

1 Introduction

Parameter uncertainty is common to several health care-related optimization prob-

lems, where patients evolve along with time and their future demands are affected

by high variability. This is particularly critical in some health care services, e.g. in

the Home Care (HC) service, where patients are usually assisted for a long time.
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A crucial task in HC is to assign nurses to patients over a planning horizon while

taking into account such variability and meeting all requirements from both operators

and patients. One of the main requirements, which is crucial for a good quality of

service, is the continuity of care, i.e. the assignment of a patient to the same reference
nurse during the entire care period. Thus, HC provider managers must assign nurses

to patients in order to satisfy the continuity of care, given the available operators and

the set of patients in the charge with their uncertain demands.

The HC nurse-to-patient assignment problem is solved over a planning horizon

usually divided into time slots. In the literature, this problem has been already tackled

under uncertain demands either applying the stochastic programming or the robust

optimization. However, to the best of our knowledge, the proposed solutions do not

take into account the correlation of each patient’s demands over the time periods.

On the contrary, in this work, we solve the problem assuming that the demands are

correlated over the periods.

Starting from a deterministic formulation in which three different continuity of

care requirements are considered at the same time, we propose a robust model for

the time-correlated demands, based on the so-called implementor-adversarial ap-

proach introduced by Bienstock for portfolio selection [5]. Briefly, the robust model

is viewed as a two-stage game: the implementor computes the nurse-to-patient as-

signments before the realization of the uncertainty, while the adversary generates the

worst demand evolution for that assignment.

The paper is structured as follows. A literature analysis of the HC nurse-to-patient

assignment problem is presented in Sect. 1.1. The deterministic assignment model

considered in this paper is described in Sect. 2. Then, our robust optimization ap-

proach is detailed in Sect. 3 including the formalization of the uncertainty set. The

computational tests and the results are presented in Sect. 4. A final discussion is

drawn in Sect. 5.

1.1 Related Works

Different features can be considered while solving the HC nurse-to-patient assign-

ment problem. If continuity of care is not required, the assignment problem turns out

to be an assignment of operators to visits rather than patients, and the different time

periods can be independently considered. In this case, the aim is usually to jointly

optimize the assignment of operators to visits and the scheduling and routing prob-

lems [12, 13]. On the contrary, when continuity is considered, the decisions related

to a time period affect the following ones.

Uncertainty inherently arises in HC due to changes in patients’ conditions and

needs, and several models have been developed to predict the uncertain demands in

order to support the management of HC services [2, 3, 8].

The nurse-to-patient assignment problem including both continuity of care and

uncertain demands has been addressed in the literature with stochastic programming,

robust approaches, and also heuristic policies.
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The problem has been tackled with stochastic programming based on scenario

generation in [9] where, due to the high number of demand scenarios, a limited

number of them has been considered for a computationally feasible solution; as a

consequence, a high expected value of perfect information and a low value of the

stochastic solution were found. Analytical policies have been developed in [10, 11],

based on strict assumptions regarding the workload probability density functions, the

number of new patients (one at a time), and the number of periods in the planning

horizon (equal to only one).

To overcome the drawbacks of the stochastic programming and the analytical

policies, a robust model based on the cardinality-constrained approach [4] has been

proposed in [6]. This approach avoids the scenario generation and at the same

time does not require the strict assumptions of the policies. More in general, the

cardinality-constrained approach has been recognized to be a useful tool for health

care problems [1]. However, the cardinality-constrained approach assumes that the

uncertain parameters in the different constraints are independent of each other. Thus,

it is not suitable for dealing with time-related demands in the HC nurse-to-patient

assignment problem.

The correlation can be considered with the implementor-adversarial approach [5].

However, such an approach has been never applied to HC and only once in health

care, to the hospital master scheduling problem [7].

2 Nurse-to-Patient Assignment Problem

We consider a set of patients P = {1,… ,P} who require care in a discrete planning

horizon T = {1,… ,T}, and we denote by rjt the demand required from patient j ∈
P at period t ∈ T . Set P is partitioned in three different subsets:

∙ Phc: patients requiring hard continuity of care, who must be assigned to a single

reference nurse during the entire planning horizon.

∙ Ppc: patients requiring partial continuity of care, who must be assigned to a single

nurse in each period t but can be assigned to different nurses in different periods.

Each time a patient j ∈ Ppc is reassigned to a different nurse from period to period,

a penalty 𝛽 affects the total assignment cost.

∙ Pnc: patients having no-continuity of care, who can be assigned to different oper-

ators even in the same period.

Finally, I = {1,… , I} is the set of all available nurses, and vi the working hours

associated with nurse i in each period of the planning horizon. When nurse i works

over vi, an overtime cost ci has to be paid for each extra hour.

The goal is to determine the minimum assignment cost (function of nurses’ over-

times and reassignment penalties) while assigning all patients in the charge to one

or more available nurses, according to their continuity of care requirements. The

following decision variables are used:
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∙ xij: equal to 1 if j ∈ Phc is assigned to i ∈ I , 0 otherwise;

∙ 𝜉

t
ij: equal to 1 if j ∈ Ppc is assigned to i ∈ I at period t, 0 otherwise;

∙ ytj: equal to 1 if j ∈ Ppc is reassigned from period t − 1 to t, 0 otherwise;

∙ 𝜒

t
ij ∈ [0, 1]: fraction of rjt for j ∈ Pnc assigned to i ∈ I at period t;

∙ wt
i ≥ 0: extra time of i ∈ I at period t;

∙ uti ≥ 0: idle time of i ∈ I at period t;
∙ 𝜂

t
i : equal to 1 if nurse i has positive overtime at period t, 0 otherwise.

The deterministic model (based on [6]) is:

min
⎧
⎪
⎨
⎪
⎩

∑

i∈I
ci
∑

t∈T
wt
i + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj

⎫
⎪
⎬
⎪
⎭

(1)

s.t.

∑

i∈I
xij = 1 j ∈ Phc (2)

∑

i∈I
𝜉

t
ij = 1 j ∈ Ppc, t ∈ T (3)

∑

i∈I
𝜒

t
ij = 1 j ∈ Pnc, t ∈ T (4)

𝜉

t
ij − 𝜉

t−1
ij ≤ ytj j ∈ Ppc, i ∈ I , 2 ≤ t ≤ T

(5)
∑

j∈Phc

rjtxij +
∑

j∈Ppc

rjt𝜉tij +
∑

j∈Pnc

rjt𝜒 t
ij − wt

i + uti = vi i ∈ I , t ∈ T (6)

wt
i ≤ vi𝜂ti i ∈ I , t ∈ T (7)

uti ≤ vi
(
1 − 𝜂

t
i
)

i ∈ I , t ∈ T (8)

Constraints (2)–(4) force the assignments of patients according to their continu-

ity requirements. Constraints (5) keep track of the reassignments for patients in Ppc.

Constraints (6) compute nurses’ overtimes and idle times based on the assigned pa-

tients and the capacities vi. Constraints (7) establish the maximum overtime at each

time period; without losing generality this maximum value is set equal to the ca-

pacity vi. Finally, constraints (8) prevent wt
i and uti from being both positive in the

optimal solution. Objective (1) minimizes the total assignment cost due to overtime

and reassignments of patients in Ppc. A reassignment is accepted if the overtime

cost would increase too much avoiding the reassignment; 𝛽 is the maximum over-

time cost we are willing to accept for preserving the continuity of care for one patient

and for one visit.
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3 The Robust Optimization Approach

According to the implementor-adversarial approach, the model is divided in two

stages, which are iteratively solved. In the first stage, the service manager (i.e. the

implementor) assigns the nurses to the patients according to the current demand and

respecting the requirements; in the second stage, the adversary chooses the worst

demand pattern for the current assignments selected by the implementor.

We assume that each patient j ∈ P is associated, at each time period t, with a

probability distribution describing his/her demand. Such distributions are divided

into H equiprobable bands, and a value rhjt is associated to each band (e.g. the upper

level of the interval). H = {1,… ,H} is the set of these bands. In this way, each

patient j is characterized by a set of values rhjt (h ∈ H ) for each period t. At the

beginning of the planning process, we consider that each demand belongs to band

h∗, thus defining the nominal demands r̄jt = rh∗jt .

The evolution of the demand for each patient is then modeled considering that

the actual demand may move from the nominal band h∗ to another band h in any

time period t. For this purpose, we define 𝛿

h
jt = rhjt − r̄jt as the deviation affecting

the demand when it moves towards band h. By constraining the deviations, we can

include the two following aspects in the robust model:

1. cardinality: deviations occur for a limited number of patients;

2. correlation: deviations at consecutive time periods are not independent.

The second one, in particular, is the innovative contribution of this work to the HC

nurse-to-patient assignment problem.

We remark that, in our framework, patients’ demands may evolve for two rea-

sons. First, demands at two different periods can be different for a given h (rhjt1 ≠ rhjt2 ,
t1 ≠ t2) because the probability distribution of the class which the patient belongs

to is moving over the periods. Second, the band can h may vary, meaning that the

patient is evolving in a different way than the global behavior of his/her class.

3.1 Uncertainty Set

We formalize the uncertainty setU as

{
r̃tj = r̄jt + 𝛿

h
jt, j ∈ P , t ∈ T , h ∈ H

}
, where

r̃jt represents the true demand of patient j at period t. Further restrictions are taken

into account to model the conditions cardinality and correlation mentioned above.

To this end, we define the following variables:

∙ phjt: equal to 1 if demand r̃jt belongs to band h, 0 otherwise;

∙ zhdjt : equal to 1 if demand r̃jt moves from band h towards band h + d from period

t − 1 to period t, and 0 otherwise.

The cardinality is modeled by adding to U the constraints:
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∑

j∈P

∑

h∈H
zhdjt ≤ 𝛼d t ∈ T ⧵ 1, 0 ≤ d ≤ H − h (9)

where 𝛼d is the maximum number of patients whose demand is allowed to move

from the actual band to another one at distance d. Observe that, as robust approaches

search for the worst realization, only forward jumps are of interest.

To model the correlation, we define 𝜃 as the maximum distance between two

demand bands at two consecutive time periods. Indeed, given 𝛿

h
j,t−1 and 𝛿

k
jt for patient

j at periods t − 1 and t, then |k − h| ≤ 𝜃. This requirement is expressed through the

following constraints:

∑

k∈{h+𝜃+1,…,H}
pkjt + phj,t−1 ≤ 1 j ∈ P , t ∈ T ⧵ {1}, h ∈ H (10)

∑

h∈H
phjt = 1 j ∈ P , t ∈ T (11)

ph+djt + phj,t−1 ≤ 1 + zhdjt j ∈ P , t ∈ T ⧵ {1}, h ∈ H , 0 ≤ d ≤ 𝜃 (12)

zhdjt ≤ phj,t−1 j ∈ P , t ∈ T ⧵ {1}, h ∈ H , 0 ≤ d ≤ 𝜃 (13)

zhdjt ≤ ph+djt j ∈ P , t ∈ T , h ∈ H , 0 ≤ d ≤ 𝜃 (14)

Observe that, with the definition of 𝜃, constraint (9) can be rewritten as:

∑

j∈P

∑

h∈H
zhdjt ≤ 𝛼d t ∈ T ⧵ 1, 0 ≤ d ≤ min{𝜃,H − h} (15)

Summing up, the uncertainty set U reads:

U = {r̃tj = r̄jt + 𝛿

h
jt, (10) − (15),

phjt ∈ {0, 1}, zhdjt ∈ {0, 1}, j ∈ P , t ∈ T , h ∈ H } (16)

3.2 Robust Model

Assuming that demands range in U, the robust assignment problem is:

min{
xij,𝜉tij,𝜒

t
ij,y

t
j

}
∈X

⎧
⎪
⎨
⎪
⎩

W (U) + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj

⎫
⎪
⎬
⎪
⎭

(17)

where X defines the feasible assignments induced by constraints (2)–(6) plus the

integrality clauses, and W (U) is the maximum (worst-case) overtime cost over U
for a given assignment solution

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
, which is determined as follows:
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max
∑

i∈I
ci
∑

t∈T
wt
i (18)

s.t.

∑

j∈Phc

r̃jtxij +
∑

j∈Ppc

r̃jt𝜉tij +
∑

j∈Pnc

r̃jt𝜒 t
ij − wt

i + uti = vi i ∈ I , t ∈ T

wt
i ≤ vi𝜂ti i ∈ I , t ∈ T

uti ≤ vi(1 − 𝜂

t
i ) i ∈ I , t ∈ T

𝜂

t
i ∈ {0, 1} i ∈ I , t ∈ T

wt
i, u

t
i ≥ 0 i ∈ I , t ∈ T

{
r̃jt
}
∈ U

Thus, problem (17) can be rewritten as:

min 𝛾 + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj (19)

s.t.

𝛾 ≥

∑

i∈I
ci
∑

t∈T
wt
i

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
∈ X,

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V ,

{
r̃jt
}
∈ U

where V defines the workloads that generate feasible overtimes, according to con-

straints (6)–(8) plus the integrality clauses.

3.3 Implementor-Adversarial Algorithm

As introduced above, the robust problem can be interpreted as an implementor-

adversarial iterative game. The implementor solves the following problem

min 𝛾 + 𝛽

∑

t∈T ⧵{1}

∑

j∈Ppc

ytj
{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
∈ X,

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V

{
r̃jt
}
∈ realizations generated so far (20)

for deciding the assignments x∗ij, 𝜉
t∗
ij , 𝜒

t∗
ij and yt∗j that minimize the costs over all

demand realizations generated so far.
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Table 1 Adopted implementor-adversarial algorithm

Initialization: D = constraints (6) associated with
{
r̄jt
}

Iterate:

1. Implementor problem: solve problem (20) with solution

{
x∗ij, 𝜉

t∗
ij , 𝜒

t∗
ij , y

t∗
j

}

2. Adversarial problem: solve problem (21) with solution

{
r∗jt,w

t∗
i , u

t∗
i , 𝜂

t∗
i

}

3. Test if 𝛾 ≥
∑

i∈I ci
∑

t∈T wt∗
i

then exit

else add (6) associated with

{
r∗jt
}

to D; go to 1

The adversary solves the following problem:

max
∑

i∈I
ci
∑

t∈T
wt
i

{
wt
i, u

t
i, 𝜂

t
i
}
∈ V ,

{
r̃jt
}
∈ U

last assignments

{
xij, 𝜉tij, 𝜒

t
ij, y

t
j

}
from the implementor (21)

for choosing the demands r∗jt that maximize the cost with respect to the last assign-

ments just selected by the implementor.

Both problems take into account constraints (6); however, the implementor satis-

fies them by choosing the assignments for fixed values of demand, while the adver-

sary does the very opposite. Let D be the set of constraints (6). We adapt the basic

template of the implementor/adversarial algorithm [5] as follows. Each run of the

adversarial problem provides a realization of the demand

{
r∗jt
}
∈ U and the cor-

responding workload variables
{
wt∗
i , u

t∗
i , 𝜂

t∗
i

}
∈ V . Either

∑
i∈I ci

∑
t∈T wt∗

i > 𝛾 or

𝛾 is already the maximum cost, where 𝛾 is the last cost given by the implementor

problem. In the former case, an equation of type

∑

j∈Phc

r∗jtxij +
∑

j∈Ppc

r∗jt𝜉
t
ij +

∑

j∈Pnc

r∗jt𝜒
t
ij − wt

i + uti = vi

is added to the implementor formulation, which is consequently reoptimized.

A sketch of the algorithm is illustrated in Table 1.

4 Computational Tests and Results

We test our robust approach on several instances generated by assuming several

mixes of patients, whose characteristics and demand evolution follow those in [8],

with either P = 70 or P = 98. The number of bands H is chosen either equal to
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6 or 10. Parameter 𝛼d takes the same value 𝛼 for any d = 1,… ,H − 1, and we

assume 𝛼 either equal to 1, 2 or 4. Moreover, we set 𝛼0 = P in such way that all

patients have the opportunity to remain in their current band without varying their

actual demand. Finally, we set the 𝛽 = 1, ci = 1 for each nurse i, and 𝜃 = 3.

The commercial framework IBM Cplex 12.5 and the language AMPL have been

used to solve and implement the model. Instances have been run on a 2-core Linux

processor clocked at 2 GHz with 16 GB of RAM. Time limits of 1200 and 300 s have

been imposed for the implementor and the adversarial problem, respectively. On the

one hand, we evaluate the choice of the parameters in terms of the computational

time spent for finding the optimal robust solution. On the other hand, we measure

the quality of the assignments with the aim of finding the best values for all of the

parameters involved.

Fig. 1 Boxplots of the robust vs the deterministic solution. Case 98 patients with T = 5, 𝜃 = 4;

𝛼d = 4 (a); case 98 patients with T = 5, 𝜃 = 4; 𝛼d = 1 (b); case 70 patients with T = 5, 𝜃 = 5;

𝛼d = 2 (c); case 70 patients with T = 8, 𝜃 = 5; 𝛼d = 1 (d)
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As for the computational times, we found that the maximum time spent for solving

a robust problem over the tested instances is 11,777 s, which is acceptable for a

weekly solution of the assignment problem in practice. We observed that the length

of T directly affects the number of the iterations, thus increasing the computational

time. Moreover, it seems that there is no correlation between the computational time

and the values of H and 𝛼.

As for the quality of the robust assignments, we have compared the deterministic

and the robust solutions when executed on a set of simulated scenarios. In particular,

we have generated 20 simulated scenarios by drawing the demands from their prob-

ability density functions with a Monte Carlo approach. Then, we have compared the

boxplots of the costs over the 20 scenarios from both solutions. Results are provided

in Fig. 1 for four tested configurations. We observed that, in all cases, the robust

solutions have a lower cost than the deterministic ones. The robust model is able

to decrease the cost needed to cope with the worst demand realization and, thus, it

allows to properly represent the real context.

Looking at the parameters, we observed that the best robust results occur when

both H and 𝛼 take small values.

5 Conclusions

In this work we consider, for the first time in the literature, time-related demands

in the HC nurse-to-patient assignment problem under continuity of care and uncer-

tain demands. The adopted implementor-adversarial approach [5] has proved to ade-

quately address the time-dependency of demands, and the results show good quality

solutions in terms of costs when executed in several scenarios.

Future work will extend the computational analyses. Moreover, we will improve

the approach by postponing the assignment decisions for patients without continuity

of care, to adapt the solution based on the actual demands, as in the real practice.
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A Cardinality-Constrained Robust Approach
for the Ambulance Location and Dispatching
Problem

Vittorio Nicoletta, Ettore Lanzarone, Valérie Bélanger and Angel Ruiz

Abstract Emergency Medical Services (EMS) systems aim to provide immediate

care in case of emergency. A careful planning is a major prerequisite for the suc-

cess of an EMS system, in particular to reduce the response time. Unfortunately,

the demand for emergency services is highly variable and uncertainty should not be

neglected while planning the activities. Several optimization models have been pro-

posed in the literature to deal with EMS planning-related problems, e.g. the Ambu-

lance Location and Dispatching Problem (ALDP). However, most of the models are

deterministic and neglect demand uncertainty. In this paper, we formulate and vali-

date a robust counterpart of the ALDP to deal with demand uncertainty, exploiting

the cardinality-constrained approach. Numerical experiments inspired by a real case

show promising results and prove the practical applicability of the approach.
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1 The Ambulance Location and Dispatching Problem

Emergency Medical Services (EMS) systems consist of the clinical activities and the

ambulance transportation in response to an emergency call. EMS plays an important

role in modern health care systems, as an adequate response to distress calls may have

a crucial impact on patients’ health conditions. In particular, one of the main issues

is to reduce, or to keep under a given threshold, the time between the distress call and

the arrival of the ambulance to the emergency site. The body of literature devoted to

EMS design and management is huge; we refer the interested reader to [2] and [6],

which report classifications of EMS problems, formulations, and solving approaches.

Unsurprisingly, both reviews identify uncertainty on the demand and availability of

ambulances upon a call arrival as open and important issues to address in future

research.

This paper deals with the Ambulance Location and Dispatching Problem (ALDP),

which aims to choose at the same time the location for the available ambulances and

a dispatch policy, which decides which ambulance should answer any arriving call.

Although most of location problems assume that any call is answered by the closest

available ambulance, this policy is not always optimal [3, 11]. Thus, we consider the

formulation proposed in [4, 5], where the dispatch policy takes the form of a list of

ambulances for each demand zone, in which the ambulances are sorted according to

their priority to answer the calls in the zone.

To deal with stochastic demands, we introduce a robust counterpart of the deter-

ministic ALDP, based on the cardinality-constrained approach [8]. Such an approach

has been recognized to be very effective to cope with uncertainty in health care prob-

lems [1] and has been successfully applied to other health care facilities [9], but it

has never been applied to EMS. In fact, although several works deal with uncertainty

in the context of ambulance location [7, 12], none of them has previously used this

approach.

The paper is organized as follows. The ALDP formulation and the proposed

robust counterpart are presented in Sect. 2. Computational experiments are detailed

in Sect. 3, and the results in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Robust Problem Formulation

2.1 Sets, Parameters and Decision Variables

The ALDP is defined on a graph G = (V ,E). V is given by I ∪ J, where I =
{v1,… , vn} and J = {vn+1,… , vn+m} represent all demand zones and potential wait-

ing positions, respectively. E = {(vi, vj) ∶ vi, vj ∈ V} is the set of the edges connect-

ing the nodes in the graph. A demand zone vi ∈ I is characterized by the coordinates

of its centroid and a demand di, which is considered to be uncertain in our frame-

work. A potential waiting position vj ∈ J is defined as a demand zone where pj
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vehicles (pj ≥ 1) can be located and from where they move to join the different calls.

A travel time tij is associated to each edge (vi, vj) ∈ E.

Moreover, K denotes the set of all available vehicles, and Zi the set of vehicles in

the dispatch list of vi ∈ I. Finally, we define the capacity Wi as the maximum number

of demands an ambulance i can serve in a given period, and the busy fraction qi as

the time fraction an ambulance i is expected to be busy (and therefore unavailable to

answer calls).

The ALDP considers two types of decisions: location decisions to select a waiting

position for each vehicle, and dispatch decisions.

The latter are made according to the list Zi of each demand zone i, choosing the

first available ambulance starting from the beginning of the list. However, for life-

threatening calls, the nearest available vehicle is sent to the scene of the incident. If

no vehicle is available in the dispatch list of a zone, the nearest available vehicle is

sent. Finally, if no vehicle is available at all, the call is placed on a waiting queue or

redirected to another service; in the latter case, we consider an arbitrary value T for

the response time.

The following assumptions are included (see [4, 5]):

1. Location and dispatch decisions are taken for a given planning horizon.

2. The number of vehicles available in the planning horizon is fixed and known.

3. All vehicles have the same workload capacity (Wi = W ∀i).
4. All vehicles have the same busy fraction (qi = q ∀i); although this assumption

needs to be empirically confirmed, it is broadly used in EMS design problems.

5. All of the dispatch lists have the same cardinality, without loss of generality.

Two groups of decision variables are defined to adequately consider location and

dispatch decisions. They are summarized in Table 1, together with problem sets and

parameters.

2.2 Objective Function and Constraints

A brief description of the deterministic model is given in the following; details can

be found in [4] and [5].

The ALDP aims at minimizing the overall expected response time. Based on the

dispatch lists, the expected response time for a demand zone is given by three contri-

butions: i) the sum of the response times of the vehicles in the dispatch list, weighted

by their probability to answer the call; ii) the time corresponding to the vehicles avail-

able to respond to emergency calls, but not in the dispatch list; iii) the time of the

calls placed in queue or referred to another service because no vehicle is available.

Only the first contribution is considered when formulating the ALDP; the others are

calculated afterwards when the solution is executed, based on the decisions and the

system characteristics.
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Table 1 ALDP sets, parameters and decision variables

Sets

I demand zones

J potential waiting positions for vehicles

K available vehicles

Zi dispatch list of zone i (all with the same

cardinality |Z|)
Parameters

di demand of zone i
tji travel time from zone j to zone i
pj maximum number of vehicles in j
W capacity, i.e. maximum number of demands a

vehicle can serve in the time

horizon (same for all vehicles)

q busy fraction (same for all vehicles)

Decision variables

wzk
i equal to 1 if vehicle k is in position z of the

dispatch list of zone vi,
0 otherwise

yzkij equal to 1 if vehicle k, located in zone vj, is in

position z of the dispatch list

of vi, 0 otherwise

The formulation is completed by three sets of constraints. The first set ensures that

each vehicle is located at a waiting position, guaranteeing that the maximum number

of vehicles pj is respected. The second set ensures that the demands assigned to a

vehicle respect its capacity, considering for each vehicle the busy fraction and the

presence in one or more dispatch lists. Finally, the third set imposes that a vehicle

cannot occupy more than one position in the dispatch list of each zone, and that

exactly one vehicle is at each position of each dispatch list.

2.3 Cardinality-Constrained Robust Formulation

To model the uncertain demands, we apply the cardinality-constrained approach to

the parts of the model in [4, 5] where parameters di appear. First, we convert the

objective function into a set of constraints by adding a new variable 𝜂k. Thus, the

new objective function is:

min

∑

k∈K
𝜂k (1)
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with the additional constraints:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1ditjiyzkij ≤ 𝜂k ∀k (2)

Then, we consider the uncertain demands as independent random variables ̃di
(i ∈ I). According to [8], each of them is characterized by a nominal value ̄di and a

maximum variation ̂di, i.e. ̃di ∈
[
̄di − ̂di, ̄di + ̂di

]
.

Thus, demands can be expressed as ̃di = ̄di + 𝛼i
̂di, where each 𝛼i ∈ [−1, 1] rep-

resents the deviation of the demand of zone i from its nominal value ̄di, standardized

by the half-length of the uncertainty interval ̂di. For example, 𝛼i = 0 corresponds to

̃di = ̄di, 𝛼i = 1 to ̃di = ̄di + ̂di, and 𝛼i = −1 to ̃di = ̄di − ̂di.
Demands ̃di appear in the new constraint (2) and in the workload capacity limit

for each vehicle (see [4, 5]) which are rewritten in the cardinality-constrained robust

framework as:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij +

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1(𝛼i ̂di)tjiyzkij ≤ 𝜂k ∀k (3)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i +
∑

z∈Z

∑

i∈i
(1 − q)qz−1(𝛼i ̂di)wzk

i ≤ W ∀k (4)

Satisfying constraints (3) and (4) for all possible demand realizations, i.e. for all

combinations of {𝛼i, i ∈ I}, would lead to a too conservative (and unrealistic)

solution. In fact, it is very unlikely that all of the demand coefficients assume their

worst (highest) values simultaneously (i.e. 𝛼i = 1 ∀i ∈ I). Thus, in the cardinality-

constrained approach, we limit the number of zones that ask for the highest demand,

in each constraint, by means of the robustness parameters {𝛤k, k ∈ K}. Indeed, the

robust cardinality-constrained solution guarantees that the solution remains feasible

if up to 𝛤k parameters 𝛼i go to the maximum value equal to 1 in each constraint,

while the others remain at the nominal value equal to 0.

In the following, we consider the same value 𝛤 for all vehicles (i.e. 𝛤k = 𝛤 ∀k);

however, the robust counterpart we derive can be easily extended to the case in which

the robustness parameters {𝛤k, k ∈ K} vary from vehicle to vehicle. Parameter 𝛤

controls the level of robustness of the solution and can be set equal to {0, 1,… , |I|}
(we consider only integer values). Fixing 𝛤 = 0 guarantees feasibility only if all of

the random variables assume their nominal value (deterministic solution), whereas

setting 𝛤 = |I| means no restrictions (most conservative solution).

We underline that, in our formulation, the optimal values 𝛼i can be different from

constraint to constraint. This simply increases the level of robustness of the solution

and has to be accounted while analyzing the impact of 𝛤 .
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Briefly, to derive the robust counterpart, (3) and (4) are rewritten as:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij + 𝛽k ≤ 𝜂k ∀k (5)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i + 𝛾k ≤ W ∀k (6)

where 𝛽k and 𝛾k are the optima of the two following knapsack problems (generated

for each k):

𝛽k =max
∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1(𝛼i ̂di)tjiyzkij

∑

i∈I
𝛼i ≤ 𝛤

𝛼i ∈ [0, 1] ∀i ∈ I

(7)

𝛾k =max
∑

z∈Z

∑

i∈i
(1 − q)qz−1(𝛼i ̂di)wzk

i

∑

i∈I
𝛼i ≤ 𝛤

𝛼i ∈ [0, 1] ∀i ∈ I

(8)

Applying the Strong Duality Theorem [8], we obtain their dual problems, which

can be substituted in (5) and (6) to obtain the following robust formulation:

min

∑

k∈K
𝜂k (9)

s.t.

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij + 𝛤aofk +

∑

i∈I
bofki ≤ 𝜂k ∀k (10)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i + 𝛤aconk +
∑

i∈I
bconki ≤ W ∀k (11)

aofk + bofki ≥ (1 − q)qz−1 ̂ditjiyzkij ∀k, i, z, j (12)

aconk + bconki ≥ (1 − q)qz−1 ̂diwzk
i ∀k, i, z (13)

∑

z∈Z
wzk
i ≤ 1 ∀k, i (14)

∑

k∈K
wzk
i = 1 ∀z, i (15)
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wzk
i =

∑

j∈J
yzkij ∀z, i, k (16)

wzk
i ∈ {0, 1} ∀z, i, k (17)

yzkij ∈ {0, 1} ∀z, i, k, j (18)

𝜂k, a
of
k , a

con
k ≥ 0 ∀k (19)

bofki , b
con
ki ≥ 0 ∀k, i (20)

Constraints (14)–(18) are the same as in the deterministic model, while (10)–(13)

and (19)–(20) are those modified or added in the robust counterpart. The new vari-

ables aofk , b
of
ki , a

con
k , bconki are the dual of those appearing in the two knapsack problems.

3 Computational Experiments

Numerical tests have been run considering a set of instances based on the case

of Montréal, QC, Canada. Instances (see [10]) have been generated using public

annual reports published by Urgences-santé (2006) and Statistics Canada (2011).

They include 30 demand zones, which represent the central part of the city of Mon-

tréal, whose nominal demands ̄di range from 41 to 496. Moreover, vehicle capacity

W has been set equal to 1500, and busy fraction q to 0.5.

The deterministic model has been solved considering the nominal demand ̄di for

each zone i ∈ I. Then, for the robust model, we have set the maximum variation ̂di
equal to 0.25 ̄di for each demand zone i ∈ I.

We analyze the impact of 𝛤 in terms of feasibility and price to pay for the

improved feasibility (price of robustness). For this purpose, we consider 11 values

of 𝛤 , ranging from 𝛤 = 0 (the deterministic model) to 𝛤 = |I| (the case in which

each demand takes its maximum value) as follows:

𝛤 = k
10

|I|, k ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Being |I| = 30, the considered values of 𝛤 are integer.

3.1 Execution and Solutions Evaluation

Three types of demand scenarios have been generated to evaluate the behavior of the

obtained solutions, based on the values ̄di and ̂di in each zone i:
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∙ normal scenarios: each di follows a Normal distribution centered in ̄di, and ̂di
represents about the 95% quantile, i.e. di ∼ N

(

𝜇 = ̄di, 𝜎 =
̄di+ ̂di
2

)

.

∙ uniform scenarios: each di is equal to ̄di + 𝛼i
̂di, where each 𝛼i follows a uniform

distribution in the interval [−1, 1].
∙ worst case scenarios: each di is equal to ̄di+𝛼i

̂di, where each 𝛼i follows a uniform

distribution in the interval [0, 1]. Unlike the previous cases, these demands are not

centered in their respective ̄di. Therefore, these scenarios refer to a situation in

which the demands have been underestimated, which represent an interesting case

for health care managers.

For each alternative, 100 Monte Carlo samples have been drawn from each demand

distribution, thus obtaining as many execution scenarios of each type.

To evaluate the feasibility of a solution in a scenario, we compute the maximum

value of the workload Wmax as:

Wmax = max
k∈K

∑

z∈Z

∑

i∈i
(1 − q)qz−1diwzk

i (21)

where di denotes here the demand in the scenario. A solution is considered to be

unfeasible if the associated Wmax is greater than the workload capacity W used to

solve the problem. Similarly, to evaluate the price of robustness in a scenario, we

first compute the value of the objective function OF as:

OF =
∑

i∈I

∑

z∈Z

∑

k∈K

∑

j∈J
(1 − q)qz−1ditjiyzkij (22)

where di denotes, once again, the demand in the scenario. Then, we compute the

price of the robust solution (i.e. its additional cost when executed) as the difference

ΔOF between the robust OF and the corresponding deterministic OF when 𝛤 = 0:

ΔOF = OFrobust − OFdeterministic (23)

4 Results

All instances have been solved to optimality within 1 hour, although the computa-

tional times increase from 108 up to 2514 seconds as the value of 𝛤 increases.

Results are provided in Fig. 1. Solutions are always feasible for 𝛤 ≥ 0.3|I| in the

normal and uniform scenarios, while more than the 75% of the solutions are feasible

for 𝛤 ≥ 0.5|I| in the worst case scenario. As for the price of robustness, we observe

that ΔOF values are always below 6 s; thus, considering that OF values are around
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Fig. 1 Feasibility Wmax (left column) and price of robustness ΔOF (right column) for normal sce-

nario (a), uniform scenario (b), and worst case scenario (c).
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1500 s, they can be considered negligible. In other words, we can conclude that the

price of robustness is highly affordable in order to guarantee feasible solutions.

5 Conclusions

In this paper, we propose and validate a robust counterpart of the ALDP in [4, 5]

based on the cardinality-constrained approach. Results from the application to a real-

istic test case show that demand variations with respect to the expected values impair

the feasibility of the deterministic solution, while its robust counterpart performs bet-

ter for proper values of parameter 𝛤 . In particular, in the considered test case, values

of 𝛤 between the 30 and the 50% of the demand zones (meaning that the 30−50% of

the demand zones assume the worst case value) allow the solution to remain feasible

when tested against several demand scenarios. At the same, the observed increase of

the objective function is negligible.

We may conclude that including the robustness in the ALDP problem is promis-

ing, at least in the tested case, because of the capability to increase the feasibility of

the solutions while keeping limited the price to pay in terms of increased objective

function value.
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A Practical Approach to Machine Learning
for Clinical Decision Support
Projects at Lucile Packard Children’s Hospital
Stanford in Partnership with Stanford Engineering

Daniel Miller, David Scheinker and Nicholas Bambos

Abstract Machine learning has produced effective clinical decision support tools.

The impact of such work is limited by the difficulty of implementing such tools

outside the institution where they were designed. The recent wide-spread adoption

of Electronic Medical Record systems (EMRs) makes possible the development and

application of tools across institutions. We describe three machine learning projects

to develop generalizable, EMR-based clinical decision support tools at the cardiac

care units of Lucile Packard Children’s Hospital Stanford: false alarm suppression,

detection of critical events, and automated identification and detection of drug-drug

interactions. These projects utilize flexible statistical and deep learning frameworks

to enable automated, patient-specific care. We focus on the practical challenges of

implementing such methodology and describe our progress on producing tools useful

for our institution.

Keywords Healthcare ⋅ Machine learning ⋅ Artificial intelligence ⋅ Decision

support ⋅ Electronic medical record ⋅ Neural networks ⋅ Deep learning

1 Introduction

Machine learning (ML) and artificial intelligence (AI) have been used to produce

useful clinical decision support tools (CDSTs). These tools range from those based

on a single, standard type of input data, e.g., tumor identification through imaging

[4] or ultrasound [29]; to those that collect data from a variety of patient streams and
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analyze these with a dedicated data infrastructure [9, 14]. The resources necessary

for a hospital to implement such tools can range from a small team project, to a

major organizational, multi-year partnership with a company such as IBM, Google,

or Apple.

Our goal is to design tools that can be easily modified and implemented at any

institution with an EMR. We illustrate this effor with our work on three ML-based

CDSTs at the Lucile Packard Children’s Hospital (LPCH) Children’s Heart Center.

Our specific contributions are:

∙ A flexible deep learning paradigm well suited to healthcare applications

∙ A detailed examination of a novel, highly acute pediatric population

∙ A unified approach to expanding the methods of this work beyond LPCH, to any

institution with a comparable EMR.

2 False Alarm Suppression

In hospital intensive care units, high rates of false arrhythmia alarms result in the fa-

tigue and desensitization of attending medical staff. This “false alarm fatigue” causes

workers’ response times to slow, and leads to detrimental decreases in the quality of

patient care [1]. Excessive alarms can also lead to sleep deprivation and depressed

immune systems among patients [3]. False alarm rates of up to 86% have been re-

ported in pediatric intensive care units [16]. Such high rates suggest the potential

for significant improvements by applying modern methods to identify and suppress

false alarms in real time.

False alarm (FA) suppression is a well-examined problem in the machine learn-

ing community. Advances have been driven by the recent rise in public availability

of well-curated and labeled data. One of the most prominent such databases is the

Medical Information Mart for Intensive Care (MIMIC), a set developed by the MIT

Lab for Computational Physiology which contains deidentified health data associ-

ated with roughly 40,000 critical care patients [13]. The MIMIC-II waveform dataset

was filtered, and used for the PhysioNet Computing in Cardiology Challenge 2015:

Reducing False Arrhythmia Alarms in the ICU [10]. Through its open nature, this

competition led many researchers to implement a wide range of techniques for solv-

ing this problem.

While we worked in parallel to construct the database of bedside monitor wave-

forms for LPCH, we reviewed the approaches used by competition participants, and

built a range of exploratory predictive models for this generalized dataset. We hy-

pothesize that applying modern machine learning algorithms can significantly im-

prove the specificity of the alarm system, while maintaining the true alarm sensitiv-

ity. Implementing these improvements in a modern, EMR-enabled hospital would

lead to a more efficient ICU environment by minimizing the detrimental effects of

alarm fatigue on both staff and patients.
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We now describe some technical insights from our false alarm work, the oppor-

tunity this work reveals for further development at LPCH, and the general lessons of

such an approach for any other EMR-enabled hospital.

We consider the five alarms triggered by the following critical conditions: asys-

tole, extreme bradycardia, extreme tachycardia, ventricular tachycardia, and ventric-

ular flutter/fibrillation. These are triggered by electrocardiogram (ECG) and pulsatile

waveforms recorded by bedside monitors. The standard criteria are simple thresholds

on the extracted vitals. For example, a ventricular tachycardia alarm triggers if the

heartrate exceeds 140 beats per minute for 17 consecutive beats. This alarm thresh-

old is a fixed value common to all patients, and disregards any potentially relevant

patient-specific information like age, diagnosis, or established historic baselines on

that patient’s heartrate.

Our previous work reviewed traditional classification models, including logis-

tic regression, support vector machines, decision trees, and random forests. These

models balance simplicity and efficiency with raw predictive power. In general, all

machine learning procedures conform to the following steps:

1. The data is prepared, and split into train and test sets.

2. Train data is used to develop the model, and estimate parameter values.

3. Model performance is evaluated on the distinct test set.

4. Predictions are generated, and inferences drawn from the results.

After comparing results, the most powerful model we built was a boosted clas-

sification tree trained on a range of heart rate, blood pressure, and signal quality

features extracted from the ECG, photoplethysmogram (PPG), and arterial blood

pressure (ABP) waveforms [27]. This feature selection was motivated by previous

competitors in the Physionet competition, and their subsequent work [2, 7]. While

the competitors focused on maximizing a specific weighted ratio of the true positive,

false positive, true negative, and false negative rates, we examined the full sensitivity

/specificity range for each arrhythmia type, providing a more holistic view of model

performance.

Our results provided significant false alarm suppression, and key insights by ex-

amining error types and relative variable importances. For example, the specific

model was far less important than the choice of variables–a common thread in ma-

chine learning. One factor limiting both traditional ML and basic statistical models

is a reliance on very specific, intelligent feature engineering. This process usually

requires a great deal of domain-specific knowledge. Often, what we call “machine

learning” requires a great deal of human learning and design of which model coef-

ficients to use. The machine simply performs the tedious numerical optimization to

find the precise coefficient values.

In contrast, these methods and their results have the advantage of broad gener-

ality and adaptability. The preliminary waveform data we examined was randomly

drawn from four different hospitals in the USA and Europe, and our analysis did not

rely on any hospital specific information. Despite this, the resulting models are both

general enough to be applied to a wide range of hospital types and environments, and
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adaptable enough to take advantage of the additional information and data available

in any EMR-enabled hospital.

For example, as we consider implementing a CDS system for quality improve-

ment in patient care at LPCH, our model can be extended to include patient-specific

information like age, length of stay, primary diagnosis, or other protected health in-

formation (PHI) not usable in a publicly available, de-identified dataset. Our current

work focuses on extracting these significant data from the LPCH EMR, cleaning

and filtering the data, and providing them as inputs to these types of models via an

accessible framework.

We are motivated by the opportunity to re-use these data. Often, datasets are col-

lected for a single, limited purpose, such as administrative record-keeping. Despite

the intended scope, the data often contain information usable for many different

problems. In each problem, a feature might be more relevant than in others. For

example, to determine a patient’s immediate vitals, we might consider the specific

attributes of recent QRS complexes in the ECG waveform. Alternatively, if primarily

concerned with the patient’s past treatment responses, we may examine long-term

trends or deviations from that patient’s established baseline. In each case we would

design a feature set uniquely tuned to the problem, and based on a clinical expert’s

knowledge.

Recent advancements in deep learning focus on automating this feature selection

process, emphasizing the artificial in artificial intelligence [25]. This automation of-

ten comes at the cost of model interpretability and simplicity, but has been validated

by raw performance improvements demonstrated in fields from language translation

to playing Go. These powerful, yet adaptable models allow us to reuse large col-

lections of data like the LPCH physiological waveforms to solve many previously

intractable and difficult problems.

3 Adverse Event Prediction with Deep Learning

Congestive Heart Disease (CHD) affects nearly 1% of all births in the US, at roughly

40,000 per year [12]. Of those born with CHD, roughly one in four do not survive

their first year [22]. Hospitalized patients often exhibit predictive indicators 24–48

h prior to experiencing a life-threatening event [6, 11]. Detecting and filtering these

predictors can enable early identification of patient decline, allowing preventative

measures to be taken. Current algorithms utilize select clinical variables for pre-

dictive modeling, but have generally excluded congenital heart disease due to the

heterogeneity of both patient and disease.

Standard methods for quantifying patient condition rely heavily on manually col-

lected data, such as vital signs, and other specifically selected discrete data points [8].

As with false alarm suppression, most systems for detecting patient decline rely on

simple methods like thresholding to a fixed range. In some cases this range may be

personalized to a degree, usually by allowing for age or weight input during the ini-

tial bedside monitor configuration. However, most patient-specific metrics available



A Practical Approach to Machine Learning for Clinical Decision Support 115

within the EMR often go unused. One reason is that the wealth of information au-

tomatically collected by bedside monitors and subsequently consolidated in EMR

databases is often difficult to extract and parse into a usable form. That these data

are not currently fully utilized for early warning systems suggests a significant op-

portunity.

We hypothesize that the information necessary to predict patient decline is em-

bedded within these continuous data streams. Recent advances in AI and deep learn-

ing allow for the autonomous selection and extraction of predictive features [25], of-

ten making manual feature selection unnecessary. By leveraging patterns deep within

our data, we can hope to achieve significant improvements in early warning of critical

patient events as compared to standard methods.

We next describe technical insights from our designs in adverse event prediction,

how this work may be adapted to address other problems at LPCH, and lessons in

applying this framework to a similar hospital.

Our data comes from two distinct datasets. The first is the EMR records for 2628

inpatients admitted to the LPCH ICU. These contain 33403 sparse clinical variables.

The second is a historical warehouse of the bedside monitor data for all LPCH pa-

tients. This contains waveform data for roughly 38,000 patients, with each waveform

sampled at 125 Hz, and pre-processed vital signs sampled once per minute. Addition-

ally, all alarms–and most notably all arrhythmia alarms–generated by the bedside

monitor are recorded here. The immensity of these data severely limits the options

for standard statistical methods, and requires the development of new techniques to

take advantage.

We are currently examining the application of convolutional neural networks

(CNNs) to these physiological waveform signals. CNNs are a deep learning frame-

work that have experienced a recent surge in popularity due to their groundbreak-

ing success in image classification in 2012 [15]. The CNN was originally inspired

by the visual cortex and its ability to focus on local regions to extract information

from a larger picture. Since then, these networks have been adapted to a variety of

data and applications ranging from speech recognition using auditory waveforms, to

epileptic diagnosis using EEG waveforms [21]. Most relevantly, CNNs have shown

success in analyzing multi-channel time series data like our physiological wave-

forms [30]. Motivated by these examples, we have designed and are refining an

adaptable multi-channel deep CNN for processing our physiological data. We de-

scribe here a specific use example, and present a simplified version of the CNN

structure. This basic network may be easily extended to increase the model’s pre-

dictive power, or adapted to incorporate additional sources of data, including both

general publicly available data, and patient-specific clinical or demographic infor-

mation.

As a motivational example, consider the basic problem to predict the risk of a pa-

tient experiencing a cardiopulmonary arrest (CPA) within the next 24 h. We assume

this prediction is performed at intervals of 1 hour, and that we have the patient’s

ECG, PPG, and respiratory waveforms for the full duration. We therefore define our

sample input as a (3 × L) matrix, with L our sampling frequency times the sample
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duration. We define labels as True/False if the patient experienced a CPA within the

24 h following the sample.

To solve this problem, we construct the following CNN from basic neural network

layers: We first construct a fixed-width filter to capture local waveform information.

This width controls whether the filter focuses on short-term patterns like those within

individual QRS complexes, or extracts longer-term trends, patterns, or interactions

like those between sequences of heartbeats. The filter will be applied to all 3 of our

waveforms concurrently to capture all available information in a specific time win-

dow. The filter is convolved, or slid across our waveform to extract a filtered output.

We next apply a non-linear function, allowing us to model a wider range of com-

plex, non-linear functions. This is a key step distinguishing neural networks from

traditional linear classifiers. Finally, we use a fully connected layer and a softmax to

generate an estimated probability for the CPA event, and predict the most probable

class. This network is then trained on a large historical dataset, empirically determin-

ing the values for all internal filters and parameters. Training a deep neural network

requires a large amount of both data, and computation. However, once the network

is trained, it can generate predictions extremely efficiently.

While an actual CNN used for this type of problem is more complex than the

above example, it shares many similarities, and the same basic layers. Full details

of the model we use to predict adverse events in CHD patients at LPCH are forth-

coming [20]. In general, we build this type of network empirically by providing a

computer with a large training and development set of data, and allowing it to semi-

autonomously decide the exact number of network layers, the ordering of these lay-

ers, the number of filters, and the exact sizes of each filter and weight. Finally, we

compare results with a simple statistical baseline model, and present the relative

performances. This type of hyper-parameter tuning is parallel by design, and can be

performed quickly on a modern GPU or similar parallel system. Furthermore, CNNs

were chosen specifically for their efficiency and capacity for parallelization. Deep

learning thereby allows us to automate the feature selection process, enabling agile

implementation on a variety of problems by sharing a flexible modeling framework.

For example, as we develop a CNN framework to predict adverse events from the

raw LPCH patients’ waveforms, we can also search the waveform data for critical

medication administrations, identify resting states, or perform diagnostics by simply

changing the labels used to train the CNN. Alternatively, we can improve prediction

results and allow for a wider range of applications by adding input channels for a

drug infusion pump or aligning discrete inputs for lab results. Where a traditional

machine learning model might require rigorous feature selection and re-design, we

can simply re-train the deep learning model in the new paradigm to learn the opti-

mal feature structure. Furthermore, by designing our data streams in a modular and

re-usable manner, we can build models that share resources between even funda-

mentally different problems.
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4 Drug-Drug Interaction Identification

The CHD patients who we have been discussing require a broad drug regimen to

maintain a delicate system balance, particularly between their heart and kidneys.

These drugs include ACE inhibitors and Beta Blockers to control blood pressure,

anticoagulants to prevent blood clots, and diuretics to counter fluid overload. Many

of these drugs may interact, and the effects of these interactions must be weighed

against their benefits. These drugs may also share toxicity, even if they do not other-

wise interact.

For each drug, a broad range of detailed information is available in public data-

bases. These databases are generally assembled manually by specialists reviewing

the assorted research, revising on a regular basis. For example, DrugBank contains

chemical, pharmacological and pharmaceutical drug data that was assembled over

several years by a team of archivists and annotators including two accredited phar-

macists, a physician, and three bioinformaticians with dual training in computing

science and molecular biology/chemistry [28]. Based on these data, many common

CHD medications are known to have specific types of pairwise interactions. One

issue forestalling us from directly using such data is its focus on general drug infor-

mation, with no specific relevance to the patient population, and no direct account

for patient-specific information. Furthermore, it relies on a static corpora that can-

not quickly adapt to the continuously published research on drug interactions and

applications.

We hypothesize that much of the CHD drug interaction information is not only

documented in the published literature, but can be extracted by a natural language

processing (NLP) system based on deep learning. Such a system would incorporate

information from a broad range of sources, and could continuously update and re-

evaluate previous results as new research is released. Though often less powerful

than statistical models that use a specifically designed feature set, NLP is able to

incorporate otherwise unusable free-text data, and may be ensembled with traditional

models to boost performance.

Extracting general drug-drug interactions from natural language corpora has been

well-studied in recent years, and has been the focus of several computing and ma-

chine learning challenges [26]. As is often the case with such challenges, the ready

availability of clean and labeled data led wide range of research and modeling tech-

niques to be applied to the problem [5]. Most of the best-performing methods have

incorporated data from multiple sources, and several notable results utilized deep

learning techniques [17].

We now describe technical insights from our DDI extraction work, how this work

may be implemented as a CDS tool at LPCH, and general considerations for applying

these methods to new patient populations at other hospitals.

Our work draws inspiration from previous general DDI extraction successes to

address the problem specific to pediatric CHD. The following supervised learning

problem examines how well NLP could identify known CHD drug interactions: We

begin by considering a set of pediatric cardiology drugs. For each cardiac drug, we



118 D. Miller et al.

extract from the DrugBank database all pairwise interactions between that cardiac

drug and any other drug. This forms the super-set of all drugs considered in this

analysis. As an input data source to this problem, we parsed the PubMed Central

Open Access Subset [24], a publicly available corpus of research publications which

currently includes a total of 663,597 papers. To reduce the size of this problem,

we consider only the paper abstracts. Any abstract that contains mention of at least

one of the relevant drugs is defined as a “Cardiac Abstract” and included in the

analysis. This filtering process left 69,713 remaining abstracts, roughly 10% of the

initial total.

For each cardiac drug, we create a pairwise sample for every other drug, and as-

sign a indicator label to the pair as (True,False) if the two drugs interact. This label

is used for the binary classification supervised learning problem, in which we pre-

dict whether two drugs interact. We also consider the type of interaction, as provided

by DrugBank. By removing the drug names in each interaction, we obtain 53 dis-

tinct interaction types. For example: “The serum concentration of (drug 1) can be
increased when it is combined with (drug 2).” These interaction types label a su-

pervised multi-class classification problem to predict the actual type of interaction

between two drugs, if any exists.

Thus far, we have examined a range of ML classification techniques using simple

word count statistics extracted from the relevant abstracts as input features. This ap-

proach demonstrated limited success using both support vector machines and Lasso

classifiers to handle the high dimensionality of the word counts [18]. We also ex-

amined the application of traditional classification techniques to lower-dimensional

representations using a bag-of-words model in conjunction with recently devel-

oped advances in semantic word embedding to vectorize our abstracts [23]. Our

current work focuses on using recurrent neural networks structures to extract se-

mantic embeddings from variable-length word sequence inputs, like the PubMed

research abstracts. This model allows us to maintain the syntactic relationships

present in word order. While computationally intensive, these recurrent networks

have demonstrated remarkable success in similar NLP tasks, and are central to nearly

all current dominant NLP models. More details on this approach are forthcom-

ing [19].

For this project, we considered a set of 44 drugs identified as specifically relevant

for treating CHD by pediatric cardiologists at Lucile Packard Children’s Hospital. By

examining the medical administration records for a cohort of 60 CHD patients, we

automatically identify when a patient receives two interacting medications within

a given time frame. Based on the level of associated risk predicted by our model,

we could use this type of event to trigger an automated alert for the primary care

physician to review the administered medications. Such a decision support tool pro-

vides significant value by automating the tedious task of literature review, therefore

reducing the workload on the physician and allowing them to more efficiently make

decisions.
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5 Discussion

Machine learning is an powerful tool to improve patient care, extract useful infor-

mation from dense data sources and provide clinical decision support. While not ap-

plicable to all CDS tasks–requiring sufficient data and infrastructure–these methods

present significant benefits where applicable. Our work builds a central framework

to bring together disparate and scattered sources of data, enabling discrete yet co-

operative projects to improve patient care. Sharing methodologies between projects

enables us to quickly address new problems.

By designing flexible models and using data sources standard to most EMR sys-

tems, we provide an adaptable framework that may be applied and tuned to specific

hospital environments, patient populations, and opportunities.

Acknowledgements Our work on these projects would not have been possible without the moti-

vation, and feedback received from LPCH physicians and staff. In particular, we thank Christopher

Almond, David Rosenthal, Shannon Feehan, Andrew Shin, and John Dykes.

References

1. Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R.G., Clifford, G.D.: Reducing false alarm rates

for critical arrhythmias using the arterial blood pressure waveform. J. Biomed. Informat. 41(3),

442–451 (2008)

2. Behar, J., Oster, J., Li, Q., Clifford, G.D.: Ecg signal quality during arrhythmia and its appli-

cation to false alarm reduction. Biomed. Eng. IEEE Trans. 60(6), 1660–1666 (2013)

3. Chambrin, M.C., et al.: Alarms in the intensive care unit: how can the number of false alarms

be reduced? Critic. Care London 5(4), 184–188 (2001)

4. Chang, R.F., Wu, W.J., Moon, W.K., Chou, Y.H., Chen, D.R.: Support vector machines for

diagnosis of breast tumors on us images. Acad. Radiol. 10(2), 189–197 (2003)

5. Chowdhury, M.F.M., Lavelli, A.: Fbk-irst: A multi-phase kernel based approach for drug-drug

interaction detection and classification that exploits linguistic information. Atlanta, Georgia,

USA 351, 53 (2013)

6. Churpek, M.M., Yuen, T.C., Huber, M.T., Park, S.Y., Hall, J.B., Edelson, D.P.: Predicting

cardiac arrest on the wards: a nested case-control study. CHEST J. 141(5), 1170–1176 (2012)

7. Couto, P., Ramalho, R., Rodrigues, R.: Suppression of false arrhythmia alarms using ECG and

pulsatile waveforms. In: Computing in Cardiology Conference (CinC), IEEE, pp. 749–752

(2015)

8. Cretikos, M., Chen, J., Hillman, K., Bellomo, R., Finfer, S., Flabouris, A., Investigators, M.S.,

et al.: The objective medical emergency team activation criteria: a case-control study. Resus-

citation 73(1), 62–72 (2007)

9. Eom, J.H., Kim, S.C., Zhang, B.T.: Aptacdss-e: a classifier ensemble-based clinical decision

support system for cardiovascular disease level prediction. Exp. Syst. Appl. 34(4), 2465–2479

(2008)

10. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mi-

etus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: (June 13)) PhysioBank, physioToolkit, and

physioNet: components of a new research resource for complex physiologic signals. Circula-

tion 101(23), e215–e220 (2000)

11. Hillman, K., Bristow, P., Chey, T., Daffurn, K., Jacques, T., Norman, S., Bishop, G., Simmons,

G.: Antecedents to hospital deaths. Intern. Med. J. 31(6), 343–348 (2001)



120 D. Miller et al.

12. Hoffman, J.I., Kaplan, S.: The incidence of congenital heart disease. J. Am. College Cardiol.

39(12), 1890–1900 (2002)

13. Johnson, A.E., Pollard, T.J., Shen, L., Lehman, LwH, Feng, M., Ghassemi, M., Moody, B.,

Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible critical care database. Sci-

entific Data 3 (2016)

14. Kohn, M., Sun, J., Knoop, S., Shabo, A., Carmeli, B., Sow, D., Syed-Mahmood, T., Rapp,

W., et al., Ibms Health Analytics and Clinical Decision Support. IMIA Yearbook pp. 154–162

(2014)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105

(2012)

16. Lawless, S.T.: Crying wolf: false alarms in a pediatric intensive care unit. Critic. Care Med.

22(6), 981–985 (1994)

17. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug-drug interaction extraction via convolutional

neural networks.In: Computational and Mathematical Methods in Medicine (2016)

18. Miller, D.: Automated Identification of Drug-Drug Interactions in Pediatric Congestive Heart

Failure Patients. Unpublished. arXiv: 1702.04615v1 (2016)

19. Miller, D.: Nlp and Deep Learning for DDI Identification in Pediatric Congestive Heart Failure,

Manuscript in preparation (2017)

20. Miller, D., Scheinker, D., Shin, A.: Application of Deep Learning to Predict Crisis Events in

Hospitalized Infants and Children with Congestive Heart Disease, Manuscript in preparation

(2017)

21. Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R.: Comparing svm and convolutional

networks for epileptic seizure prediction from intracranial eeg. In: Machine Learning for Signal

Processing, 2008. MLSP 2008. IEEE Workshop on, IEEE, pp. 244–249 (2008)

22. Oster, M.E., Lee, K.A., Honein, M.A., Riehle-Colarusso, T., Shin, M., Correa, A.: Temporal

trends in survival among infants with critical congenital heart defects. Pediatrics. peds–2012

(2013)

23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In:

Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

24. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V.,

Church, D.M., DiCuccio, M., Federhen, S., et al.: Database resources of the national center for

biotechnology information. Nucl. Acids Res. 39(suppl 1), D38–D51 (2011)

25. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117

(2015)

26. Segura-Bedmar, I., Martínez, P., Herrero-Zazo, M.: Lessons learnt from the ddiextraction-2013

shared task. J. Biomed. Informat. 51, 152–164 (2014)

27. Ward, A., Miller, D., Miller, K.: Reducing False Arrhythmia Alarms in the Intensive Care Unit.

Unpublished report: https://cs229.stanford.edu/proj2015/288_report.pdf (2015)

28. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z.,

Woolsey, J.: Drugbank: a comprehensive resource for in silico drug discovery and exploration.

Nucl. Acids Res. 34(suppl 1), D668–D672 (2006)

29. Gm, Xian: An identification method of malignant and benign liver tumors from ultrasonogra-

phy based on glcm texture features and fuzzy svm. Exp. Syst. Appl. 37(10), 6737–6741 (2010)

30. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels

deep convolutional neural networks. In: International Conference on Web-Age Information

Management, Springer, pp. 298–310 (2014)

http://arxiv.org/abs/1702.04615v1
https://cs229.stanford.edu/proj2015/288_report.pdf


User-Centered Development
of an Information System in Patient’s
Motor Capacity Evaluation

Justine Coton, D. Vincent-Genod, Guillaume Thomann,
Carole Vuillerot and François Villeneuve

Abstract Many medical devices are created and rejected because of their lack of
adequacy to the clinician needs and situation. The implication of a clinician in the
design process may prevents the creation of solution than seems pushed to the users
but on the contrary create a solution calibrated to their usages. In this paper a UCD
cycle was applied to the development of an information system for patients’ motor
evaluation using the motion analysis sensor Kinect. The system should support the
therapist in its evaluations and provide a way to improve the evaluation. The
context exploration, requirements definition, solution proposition and adequacy
evaluation was applied. The model allowed to emphasize the important design
aspects and those who were correctly answered but also the revisions needed for a
second UCD cycle to generate an acceptable device.

Keywords User-centered design ⋅ Medical device ⋅ Information system
Medical population investigation

1 Introduction

Technologies are invading all aspects of our life. They help manage our task, assist
the person by moderating, providing information or support etc. They can have
different aims: improve the quality, generate cost economy, or provide support by
given access to new information or by making a process more precise and effective.
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Medical Devices in Physiotherapy

The medical personals are led to use different types of medical devices or services
to help or support their activities. In the case of physiotherapy, a category of tools
exists to help them understand the movements and capacities of their patients.
Those devices are from the simplest, such as an assessment manual, to the more
complex such as for the gait analysis who use 3 different types of technologies: the
VICON, a motion analysis tools using infrared cameras and markers, a walk
structure equipped with Force plates, and EMG (electromyography) to monitor the
muscle activities. Lots of technologies are developed but a lot are also rejected or
abandoned for several reasons: they are too complex to use, take too much time, are
too expensive or need a specific place that is not available. Most of those aspects
could be prevented by having a better understanding of the factors impacting the
device. The inclusion of the users and the consideration of all stakeholders in the
design process may prevent the device rejection. In those case, the User-Centered
Design (UCD) process, a design method putting the users in the center of the
process, may be applied.

Design Process and User Centered Design

Different design processes exist to develop a product. Each process have its pro and
cons: some are adapted to short-terms projects, some support prototyping, some are
efficient for well-defined problem etc. In the case of a medical product there is a
clear gap of knowledge between the users (clinicians) and the designer team. In our
case it will be the first introduction of technologies into this type of practices which
means the impacts will be difficult to define clearly in advance. Those 2 facts mean
the process should emphasis the user research to define requirements and evaluate
their responses and comprehension with prototypes, it needs to accommodate to an
evolution of requirements. Classic systematic and linear models which used few to
no prototype such as the Pahl and Beitz approach [1] or even V-model risk to
deliver a product that is not in good accordance with the user’s needs. An iterative
process using prototypes will be needed, as with agile processes but the needs for a
clear study of the users’ needs make the User-Centered model more adapted even if
those two approaches are not necessarily exclusive [2].

The User-Centered Design (UCD) approach is to involve the final users into the
design process and was normalized by the ISO 9241-210 [3]. This process is
composed of 6 steps that should be iterated until the system matches correctly the
user’s needs (see Fig. 1). The aim is to calibrate the product to the users. The
functionalities should not be “pushed” to the users. The UCD has already be applied
into a wide variety of industries. Its main advantages is its capacities to improve the
qualities, effectiveness and usability of the solution. A major drawback is the
difficulty to maintain the users involved during the whole process [4]. Those fea-
tures are also valid for the medical device industry, as was investigated by Shah and
Robinson [5], notably the difficulty to have access to the users both in terms of time
and cost but the extracted knowledge about the users increase the possible success
of the product [6, 7].
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Context of This Study

In physiotherapy, technologies for motion analysis is mostly used in specific and
punctual analysis such as the gait analysis. Many technologies are also developed
for more regular needs such as in rehabilitation [8]. The apparition of affordable
motion analysis sensors, as the Kinect from Microsoft, has generated a renewed
interest for assessment and rehabilitation tools and/or e-health in general [9–11].
The development of such tools should be made in close relation with clinicians to
lower the risk of rejection.

This paper will present an application of the UCD model in collaboration with
physiotherapists to produce a motion analysis information system using the Kinect
sensor. This device has to help with the capture and analysis of the patients’
movements during an assessment used to define the motor capacities of patients with
progressive diseases: the Motor Function Measure (MFM) scale1 [12, 13]. This
scale, administrated once a year per patient, permits to quantify the patient’s motor
functions. It is composed of 32 exercises rated from 0 (fails to executes the activities)
to 3 (do the activities “normally” with controlled motion, regular speed etc.).

2 Case Study: Use of the Kinect Sensor in the MFM Scale

A first UCD cycle was applied (see Fig. 2) which included one therapist to explore
and manage the whole process and the punctual implication other therapists for the
requirements definition and the evaluation of the solution. Three mains steps will be
presented:

1. The context and requirements definition: In this step an analysis of the current
context was made and an investigation with 6 therapists was realized to produce
a lists of functions and criteria for the tool. The aim was to define the needs and

Fig. 1 UCD process [3]

1MFM website: http://www.motor-function-measure.org/ [17/02/2017].
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improvements needed for this tool but also to explore the changes and impacts
its introduction will have on the process, and its participants (therapists, patients,
hospital…).

2. A solution (in terms of physical installation, service and use) was proposed
based on those functions and criteria.

3. Evaluation: The tool was then evaluated in regards to the requirements. The
efficiency of some key functions were evaluated during a study including 4
therapists.

2.1 Context and Requirements Definition

The needs and opinions on this new tool were explored on one hand with the
inclusion of a physiotherapist throughout the whole process to evaluate the current
state of the process and to conduct the design evolution. And on the other hand with
an investigation based on the “Unified theory of acceptance and use of technol-
ogy” model [14] to define the impact this new technology may have on the process.

2.1.1 The MFM Assessment

An MFM assessment is realized in a space equipped with chairs and tables
(adaptable to the patient morphology) and a physiotherapist table. In addition to
those utilities the MFM include a manual as a reference for scoring and some
commonly found objects (a tennis ball, a pencil, sheet of paper and 10 coins).
The MFM is composed of 32 exercises. An exercise takes between less than a
minute to 2 min and the whole scale take on average 30 min.

Only one physiotherapist is needed. For each exercise the therapist gives the
instruction to the patient, he may ask if the patient think he can do it and adapt the
instruction to the patient’s capacities, and should check every time on the manual
the score levels. In case of doubt, the lesser score is chosen. The patient can do the
exercise twice to give the best score, doing anymore trials may be detrimental
because this type of patient is easily fatigable. During the whole evaluation the

Fig. 2 Application of the UCD process in the Kinect case study
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therapist stays near the patient to administrate care. If the patient is a child then the
parents may also stay during the evaluation.

Finally all scores and commentaries are noted on a paper scoring sheet which is
kept in the patient folder, the therapist should then compute the results in an excel
file to generate a graphic of the successives MFM and send the result to the MFM
database.

Several points can be extracted from this description:

• The MFM is a tool made to be easily accessible for clinicians: the objects used
are easily found in a “common” physiotherapist or even ergo-therapist room.

• The MFM is quick to administrate: up to 35 mn.
• There is a strong relationship between the therapist and its patients: the therapist

has to stay near the patient for his care but also to maintain him motivated and to
discuss with him, to adapt the exercise to its capacities and mood.

• The MFM manual is a reference that should always be at hand.
• A training is necessary.

But other points leave room for improvement:

• The clinician may miss a point if he is tired or concentrated on another point.
• Some movements can be difficult to explain or represent into commentaries.
• The storage of the result in the MFM database has to be manually done. This

tends to lead some clinicians to not update it.

2.1.2 The Impact of the Introduction of Technology in the MFM

The impacts of the introduction of this technology was investigated with
semi-structured interviews and questionnaires. For this investigation 2 groups of
therapists were mobilized (for a total of 6 therapists):

• 1 group of non-users: 3 therapists with no prior knowledge of the Kinect.
• 1 group of users: 3 therapists with prior knowledge of the Kinect as a tool for

evaluation.

The system acceptance seems to be correlated with 3 factors:

1. The system performance. It’s the condition sine qua none for its usability: the
data provided have to be reliable and the new information to be interesting
enough for the disease comprehension and score’s attribution.

2. Distributed cognition: the cognitive attention of the therapist, previously cen-
tered on the patient, will now be distributed between the patient and the
Kinect-system.

3. The social influence: this new system will impact the profession and the view on
the work done
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The resulting functions and factors are listed below:

System Performance

• The system should provide validated data (accurate, objective, reproducible, and
validated by the community etc.).

• The system should provide additional information useful for the analysis of the
disease and the assessment and facilitating the follow-up.

• The system should not stretch the duration of the assessment (limit the increase
of workload).

• The system should conserve the “simple and accessible” feature of the classical
MFM by remaining into a moderate pricing range and requiring technologies
easily accessible.

• The system is an information system and the therapist has to keep the control.
• The system has to be safe and hygienic.

Distributed Cognition

• The capture of the patient movements should be done without

– Hindering the evaluation capacity of the therapist.
– Taking too much additional time in installation and in use.

• The analysis of the movements and the data representations should allow the
therapist to understand and trust the system.

– The system should avoid the “black-box” effect.
– The system need to provide information calibrated to the clinician needs.
– The analysis should be quick and the access to desired data easy.

• The system should not hinder the relation between the therapist and the patient
but try to improve it. It should not distract the patient or the therapist.

Social Influence

• The system should not be seen as an intrusion or a surveillance tool.
• The therapists should not have the impression to lose the control.
• The system should not lead the therapists to lose their expertise.

2.2 The Application

The following installation, named KiMe2 (Kinect Medical Measurement), is pro-
posed. The patient realizes its activities in front of a Kinect sensor with the therapist
being at the patient side and able to touch him and interact with him. The therapist
is equipped with a tablet that contains its MFM manual and a wireless connection
with the computer linked to the Kinect sensor and the KiMe2 software (see Fig. 3).
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This tablet and software enable the therapists to see what the Kinect see and if
the system function correctly (if the patient is correctly positioned for the sensor and
for the activities etc.). The therapist can then ask the patient to do its exercises and
record them and then provide its decisions on the tablet which saves them and send
them into the database with the record of the movements. The results can be
analyzed by the software whom is described on the Fig. 4.

The therapist can use the tablet and thus software to analyze the exercises and
can revise or validate its decisions depending on the results. For this, the system
provides a score and its justifications. The justification indicates which components
(scoring criteria) were validated such as if “a support was used”, if a posture were
attained, etc. If the therapist has a doubt on a score or more specifically on a
component (scoring criteria) of the score, the system provides for each score the list
of the components (scoring criteria) mobilized and their states and the numerical
variables used for their calculations (see line 3 in Fig. 4). If the therapist has a doubt

Fig. 3 Physical installation

Fig. 4 Software architecture
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on a value in particular he can generate the plot of the variables (numerical variable,
see line 2 in Fig. 4). Those graphs are associated to the component to facilitate their
access. The exercise can also be reconstructed to re-visualize the exercise (see line 1
Fig. 4). This structure makes the scoring system more transparent to the therapist.

2.3 Adequacy of the Proposition to the Requirements

System’s Performance Adequacy

The system answered several requirements: (1) The system Tablet—Kinect—
Computer can easily be found and remains on a pricing range way lower than other
movement analysis tools on the market, but it should be noted that it is substantially
more complex and costly than the current MFM. (2) The system does not bring any
physically harm or any hygienic difficulties but the flow of data has to be secured.
(3) The therapist control over the final score was kept and comforting: the aim is to
provide reassurance and additional information. (4) The record of the exercise takes
more time than a classic MFM but stays in an admissible range. The analyzing
process takes a significant time that need to be improved. (5) The treatment process
(create the MFM graph of the disease and updating the result into the database)
could be facilitated and help provide more systematically data on rare disease.
(6) On the other hand it should be noted that the Kinect is not quite performant
enough for now. The measurement have to be made more accurate and robust.

Adequacy to the Distributed Cognitive Factors

The cognition distribution was evaluated with 4 therapists: they had to use the
system to see if they were able to record and analyze correctly the MFM exercises
with the KiMe2 tool.

In terms of capture: the therapists were able to easily position themselves in a
way that does not hinder the recording of the activities. However the system
presence itself made the therapists less incline, even if possible, to be near or in
contact with the patient which can be dangerous for the patient care. Globally the
system did not hinder the evaluation but the fact the therapist has to stay at the
patient’s side changes the patient’s stare orientation which can be bad for some
exercises. During the evaluation of a posture the fact to not be able to go in front of
the patient to check the posture is also an inconvenient and can hinder the therapist
evaluation.

In terms of analysis: The system enables the therapist to understand the software
results proposition. The therapists can know if they have to revise their judgments
or maintain it. They understood what were reasons for a score and if the software
were missing or misinterpreting a knowledge. They were able to see if this system
can monitor components that can be difficult to analyze or be overlooked. The
mobilized knowledge were easy to understand and the parallel between the
mobilized knowledge and the manual description was made even if the terms
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needed to be more medical oriented. The data were easily accessible: the graphs
were easy to find and generate. The therapists were able to find the sought infor-
mation (an angle, what was the knowledge mobilized etc.). The possibility to
represent the amplitudes and displacements of movements into graphs were an
interesting improvement of the system.

In general the relationship between the therapist and the patient remains the
same. The system may distract a bit the therapist from the patient, but it can also be
a tool to generate motivation and discussion with the patient. But therapists can
have difficulty in managing the patient, the activities and the system (too much
dispersion).

Several points were highlighted and will have to be corrected into the next UCD
cycle. This system make notable change on the therapists practices. The therapists
and the patient, not positioned as before, change their stares orientation which is not
straight anymore, the system makes the displacement around the patient more
difficult (since the therapist should not pass in front of the sensor) and naturally
tends to stay far from the view of the sensor, this makes the evaluation of posture
more difficult and may endanger the patient care. The introduction of the system
distracted a bit the therapists which did not behave as usual and thus made mistake
during their evaluation. Finally the installation and system increase the assessment
duration and the workload but the simplicity of the result and of the installation in
regards to other system as the VICON for the gait analysis was noted and the
capacity to understand the system analyze was well appreciated.

Adequacy to the Social Influence Factors

A formation will be needed to prevent the negative factors in the social influence
sphere. The formation should emphasis the fact that this tool does not monitor the
therapist’s activities and has to be seen as a support system for the therapists and not
a replacement for any role of the therapist (the therapist stays the main relation with
the patient, he keeps the control on the control and result, etc.). It should also
emphasis the fact that the system is not a perfect but that it may provide more
consistency on specific values or data but should in no way replace the therapist or
its expertise which will always be essential.

3 Conclusion

In this paper a UCD process, involving a physiotherapist, was applied to develop a
medical device for motion analysis during assessments. The process allows the
description of the needs, the creation of a solution and its evaluations. The eval-
uation of this systems provided 4 main good points to maintain:

1. The systems allows an easy capture of the exercises with a good visual feedback
to follow the assessment.
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2. The analysis allows a new standardized point of view.
3. The software analysis can be understood and interpreted by therapist. The

representations allowed a good transcription of the exercise.
4. The system may brought new information with new representation of the

movement such graphs of displacement and amplitude not available until now.

But the systems still need improvements on 4 mains points, and will ask for an
iteration of the process

5. The systems increases the assessment duration and the workload of the analysis.
The used of the representation tools taking times.

6. The system is still heavy for the cognitive: the therapist has to manage the
assessment, the patient and the system.

7. The system changes the practice and notably the position of the therapist and of
the patient that can hinder the assessment of some exercise.

8. The Kinect system needs to be perfected to provide more reliable score.

The UCD cycle allows to anticipate positive factors and prevents the negative
factors that will be corrected on the next cycle. This type of process should facilitate
the introduction of new medical device that may be helpful in common medical
practice.
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A Hybrid Simulation Approach to Analyse
Patient Boarding in Emergency
Departments

Paolo Landa, Michele Sonnessa, Marina Resta, Elena Tànfani
and Angela Testi

Abstract This paper deals with the problem of patient boarding in Emergency
Department (ED) due to the lack of availability of stay beds in inpatient hospital
wards. The boarding of emergent patients is a major reason of ED overcrowding,
which in turn creates long waiting times in ED, as well as patient and staff dis-
satisfaction. In this paper a hybrid simulation framework is proposed to describe
how emergent and elective patients flows interact each other inside the hospital. The
framework combines System Dynamics (SD) and Discrete Event Simulation
(DES). Flows are generated at macro level by the SD model, while in DES model
they are disentangled into single entities following a detailed process-oriented
pathway. The hybrid model has been then applied and validated to data from a
medium-size public hospital located in Genova (Italy). Furthermore, some metrics
(such as waiting times to be admitted in hospital, number of trolleys in ED,
inpatient bed occupancy rates and elective patients delayed) are proposed as key
indicators to assess the system performance.

Keywords Discrete event simulation ⋅ System dynamics ⋅ Patient flows
management ⋅ Bed management ⋅ Patient boarding ⋅ Emergency department
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1 Introduction and Problem Addressed

Overcrowding of Emergency Department (ED) together with long waiting lists for
elective surgery are two of the main topical issues in many healthcare systems. In
this paper, we focus on the problem of patient boarding in ED. This problem deals
with emergent patients that, after the first intervention and diagnosis into an ED,
should be admitted in a hospital inpatient ward to have further investigations and
treatments. If a bed is not available patients have to wait in ED for a free bed: this
status is called boarding. The literature stresses that the ED boarding is a major
reason of ED overcrowding and elective admission postponements [5]. Two main
issues therefore arise: first, how to guarantee the completion of care pathway timely
and properly for emergent patients that were already diagnosed and in charge of an
ED; second, how to avoid the delay of care delivery for elective patients waiting to
be admitted to receive their timely and proper care.

At a first glance, the ED boarding may be originated by the limited number of
inpatient ward beds. In recent years, the situation has worsened worldwide, due to
the reduction of inpatient beds owing to public budget restrictions. Indeed, the
optimal levels of beds should take into consideration the holding cost of unoccupied
resources together with the shortage cost of delaying care delivery [22]. However,
in the examined case, the issue is particularly tricky, because it is necessary to
assume a dynamic point of view. Supply and demand cannot match only on
average, but also dynamically, taking the patient flow variability into account.
Moreover, the same bed capacity engenders different costs and benefits depending
on how activity is organized.

In this paper, we do not focus on strategic issues (provided that the total number
of beds cannot be changed, as, currently, this is the more realistic assumption), but
rather on tactical and operational issues. This implies that the improvement of
performance and stakeholders’ (hospital, patients, society) utility is not only a
problem of insufficient resources, but it can be achieved also by organizational
changes. Thus, the objective of this paper is to develop a Simulation Framework for
modelling the overall ED and hospital system and predict the impact of organi-
zational changes without increasing the number of beds.

Simulation has been deeply explored as the technique for modelling complex
health care systems [16]. Many studies had focused on simulation models for the
analysis and improvement of ED performance [2, 3, 13, 21].

Discrete Event Simulation (DES) models generally capture details about the
supply side and service level of the system under study, and are therefore well
suited for modelling EDs and capturing their performance [11, 14, 18].

System Dynamics (SD) models, on the other hand, focus on feedback and
non-linear relationships so that they are a natural choice when the dynamic
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complexity of the patient flow modelling into EDs and its natural variability needs
to be considered [20, 23, 25].

Recently the attention has grown on the adoption of hybrid simulation models,
where the combination of DES and SD methodologies helps in having a wider and
holistic point of view of the system complexity, thus improving the analysis and the
achievement of objectives [6, 8]. Chahal and Eldabi [10] argued that the combi-
nation of SD and DES allows decision makers to face decisions from both the
microscopic (capturing detail up to individual level) and macroscopic (holistic
system wide interactions) viewpoints. In their work, they explored different modes
of governance in UK healthcare and the applicability of hybrid simulation with each
of them, proposing three possible ways of using hybrid simulation: Hierarchical,
Process-environment and Integrated. Brailsford et al. [9] analysed in detail the
approach of combining DES and SD modelling, describing weakness and strength
of the approaches and they apply them to two practical healthcare problems. Viana
et al. [24] have developed a composite model with the combination of DES and SD,
used to address the sexually transmitted infection Chlamydia. The authors analyzed
the results of both two techniques. The results show that the composite model better
captures longer term effects of untreated infections linked to the operational deci-
sions and clinic performance than the “SD only” model.

Other hybrid approaches deal with the adoption of DES and Agent-Based
(AB) simulation for system modelling of different services such as Radiology
service access [1] or Emergency Medical Services management [4, 17] where AB
models human behaviour in decision making and DES can capture the different
patient flows.

According Heath et al. [15] the hybrid simulation methodology is not precisely
defined yet, but in most cases, we can think of the combination of continuous and
discrete paradigms as a hybrid. Heath et al. [15] stressed how different simulation
techniques can represent different world views. While DES approach gives a
process-oriented world view, SD are able to model qualitative aspects through tools
like causal loop or influence diagrams.

In this paper, we start by a previous study examining the emergent and elective
patient flows using a SD model [19], and develop a Process-environment Hybrid
Simulation Framework. The framework is able to get more knowledge on the
ED/hospital system and to evaluate the performance of the system and the impact of
improvement organization strategies. Moreover behavioural aspects are introduced
to explain the intrinsic system adaptability and to reproduce coping mechanisms.

The paper is organized as follows. In Sect. 2 the Hybrid Simulation Framework
is analysed and the main elements and components explained, while in Sect. 3 the
real case study and data collection analysis are introduced. In Sect. 4 the validation
and some preliminary results, on the application of the framework to the real case
under study, are reported. Finally, conclusions and future research direction end the
paper.
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2 The Hybrid Simulation Framework

The modelling approach herein proposed combines SD and DES in a hybrid
simulation environment to model the overall ED/hospital system over time-based
fluctuations of incoming patient flows.

In order to design the roles of the sub-models it is very important to highlight the
feedbacks underneath the system going to be reproduced. As in [7], in SD mod-
elling, the concepts of feedback and causal effects are important and they should be
a priori deeply analysed by combining qualitative and quantitative aspects. They
seem to be very effective in catching qualitative phenomena, behaviours and
complex adaptive mechanisms difficult to be detailed as rules in a DES
environment.

In Fig. 1 the causal loop diagram of the whole system is reported.
Indeed, the evidence resulting from observable data is that the system can

generate ED overcrowding but it never blows up.
A possible explanation relies in the existence of some feedback maintaining the

system in equilibrium when peculiar events cause critical conditions.
Looking at Fig. 1, we assume three behavioural mechanisms described by the

red arrows. The first behavioural mechanisms is represented by the increase in the
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Fig. 1 Causal loop of the system under study
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ED productivity, here named Exit Rate Modifier (ERM). This behaviour is captured
by the balancing loop represented on the top left side of the diagram. The arrow
“Early discharges” refers to higher and faster discharges from ED, transferrals of
patients to other hospitals or other care facilities, trigged by increase in arrivals.

This increase, however, entails increasing the number of patient who require
admissions in inpatient (see the feedback loop labelled by ‘R’ centred in the Fig. 1).
At this point the second behavioural mechanism Elective Blocking”, is used, as in
the current practice this is the usual tool to allow emergent admission by reducing
the planned arrivals in inpatient wards.

Blocking elective patients, however, triggers the third behavioural mechanism:
when the waiting time to be admitted becomes too long for elective patients, some
of them in more critical conditions bypass the waiting list and address the ED
directly, thus further increasing the “ED arrivals”. Such effect is here called Arrival
Rate Modifier (ARM). This is due, partly, as a direct result of the worsening of their
health status and dissatisfaction and, partly, as a behavioural response of doctors
wishing to get their patients admitted ‘by the back door’.

The SD component of the hybrid model is intended to assess the mutual inter-
action of the three behavioural mechanism that are able to maintain equilibrium.

In conclusion, the SD component assumes a holistic view of the system at an
aggregate high level of patient flows. Thus, it is necessary to implement also the
DES component able to develop the productivity aspects, at a detailed individual
level [12]. In particular, it is possible to find out bottlenecks and excessive waiting.
The combination of SD and DES techniques can, therefore, offer significant benefits
to the ED-hospital modelling and assess the impact of organizational changes.

The hybrid model, represented in Fig. 2, considers the above described
environment.

The first component is the SD sub-model which generates the patient arrival
flows to ED using arrivals rates empirically derived by way of seasonal time series.
The SD sub-model applies an exit rate to patients’ stocks with a time delay. Such
exit flows are split into admitted and discharged patients. The
patients-to-be-admitted flow generated by the SD sub-model is then disentangled
into single entities, following process-oriented pathways described by the DES
sub-model. The SD model calibrates the stock of patients in the system by regu-
lating productivity rate (the ERM function). In this way it is then able to provide a
more realistic flow of patients to the DES model, in presence of sudden demand
variation. In addition, SD component is able to receive signals from the DES model
to modify the demand. In fact, a small part of the elective patients rejected by
blocked elective list are supposed to address the ED (the ARM function). The two
models are so forth interconnected: the output of the SD model gives the input to
the DES model, while the output of the DES component may modify the arrival
flows (for both emergent and elective patients) generated by the SD model. In
particular, the DES sub-model reproduces the pathways of elective and emergent
patients into inpatient wards. Each admitted patient is associated with a stochastic
LOS generated from empirical distributions. The DES sub-model implements the
so-called Bed Manager (BM) rule, which models the decision of the BM function
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inside the hospital system that may decide to activate the elective admissions
blocking when the number of patients boarding in ED reach a critical threshold
parameter a priori fixed.

3 Case Study

Thanks to the collaboration with the Local Health Authority of the Liguria region,
an observational analysis was conducted based on data collected over a 1-year
period (from January to December 2015) in a public hospital of a large city’s health
district. Inpatient hospital wards were classified as “Medicine” or “Surgery” main
specialty area. During the 1 year period under examination the total number of ED
accesses was equal to 44194; among them 6278 patients (the 14% of the total

Fig. 2 Hybrid simulation model representation
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number of ED accesses) needed to be admitted in a hospital wards for further
treatments, while 37916 (86%) had been discharged after the ED diagnosis and
treatment. During the same period, the total number of elective admissions
amounted to 4389 patients. The total number of admissions in hospitals was 10667,
the greatest percentage of admitted patients (59%) came from the ED, while the
remaining 41% was made up by programmed admissions. This created a great level
of complexity and uncertainty in the inpatient wards. In Table 1 the number and
percentage of total, emergent and elective admissions for each macro group of
specialties are reported.

A first look to the data highlights that of the 6278 emergent admissions, 4227
(67%) were directed to medical wards, while about a half of this number, i.e. 2051,
needed further treatments in surgical inpatient wards.

In deepest detail, looking at Table 1, row by row, one can then see that the
number of emergent and elective admissions were 4227 and 1276 respectively, in
the Medicine group; 2051 and 3118, respectively in the Surgery group. The total
number of admissions are almost the same for the two groups: 5503 and 5164,
respectively, for Medicine and Surgery. Thus, the proportion between emergent and
elective admissions is opposite in the two groups.

Moving to the supply side, Table 2 provides the number of available beds and
the average length of stay (LOS) for Medicine and Surgery. The number of beds
equals to 210 and 135, respectively. The average LOS for the Medicine group is
almost twice than in the Surgery.

In order to estimate the distributions of inter-arrivals for emergent and elective
patients, data have been analysed and ad hoc empirical distributions derived.

In Figs. 3 and 4 the emergent and elective patient admissions into medicine and
surgery hospital wards and the ED flows are reported. Different behaviours are
observed with respect to months, weekends and working days. In order to define
regularity, we developed 72 time slots.

Table 1 Number and percentage of hospital admission for each group of specialties

Ward Emergent admissions Elective admissions Total
# of patients % # of patients % # of patients %

Medicine 4227 67 1276 29 5503 52
Surgery 2051 33 3113 71 5164 48
Total 6278 100 4389 100 10667 100

Table 2 Number of beds and
average LOS for emergent
and elective admissions and
for each group of specialties

Ward Number of beds Average LOS (in days)
Emergent Elective

Medicine 210 13.2 10.5
Surgery 135 9.3 4.6
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The patient admissions in medicine and surgery ward present an interesting
seasonality. Medicine has a smoother variability than surgery, and the number of
elective admission is a small part of the overall number of admissions, while
surgery present a higher variability in terms of peaks of activities. This difference is
due to the shorter patient LOS in surgery than in medicine patients, and to the
different impact of emergent patient in surgery admissions. Also, ED admissions
and discharges present a high variability that influences the ward activities and the
overall bed availability.

Fig. 3 Emergent and elective patient admission into medicine and surgery wards

Fig. 4 ED admissions and discharges patient flows
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4 Validation and Preliminary Results

A baseline scenario has been defined with the following parameters and model
settings. The Bed Manager computes the ward beds available each hour as the sum
of the available beds to those that will be released in the next 2 h minus the number
of elective patients that will be admitted in the next 36 h. The BM activate a 72 h’
elective admissions blocking when more than 10 emergent patients are waiting to
be admitted in ED, i.e. boarded.

The hybrid model has been implemented using the simulation software Any-
logic. Special attention was devoted to validate the model to ensure that the sim-
ulation outputs were adequately represented in the system under investigation.
One-year steady state results, based on 20 IID replications (with different random
seeds) and a warm up period of 3 months, are reported. Validation is based on
t-Student test comparing the empirical and average simulated outputs of the
monthly ward occupancies. The null hypothesis (H0) was tested under a probability
of rejecting the model at the α = 0.01 level. The corresponding critical value of the
test was t19,0.99 = 2.539. Table 3 reports the statistical test for each month and ward
group. The results show the ability of the model to represent the real system and its
seasonality patterns.

The model well fits the empirical bed occupancy, which is the result of con-
curring parameters such as ED and elective arrivals, emergent and elective patient’s
length of stay, the coping behaviour of clinicians and nurses in day-by-day hospital
management, which changes over time.

Table 3 T-student test for ward occupancy

Months Medicine Surgery

Real
measures

Avg.
Simulated
output

Δopt T-test
(t19)

Real
measures

Avg.
Simulated
output

Δopt T-test
(t19)

1 190,52 184,41 0,03 1,20 89,52 90,99 −0,02 1,82

2 194,87 186,51 0,04 2,53 92,45 89,39 0,03 1,00

3 194,68 186,76 0,04 3,30 86,94 91,20 −0,05 1,58

4 191,61 195,06 −0,02 12,24 86,77 90,46 −0,04 2,44

5 186,55 191,86 −0,03 6,62 92,45 87,78 0,05 −0,12
6 174,19 184,96 −0,06 1,75 91,63 89,95 0,02 1,26

7 180,26 181,47 −0,01 −0,68 83,06 88,69 −0,07 −0,05
8 163.71 182,87 −0,12 0,24 81,45 90,43 −0,11 1,20

9 177,19 180,50 −0,02 −1,29 88,06 90,38 −0,03 1,27

10 183,57 192,12 −0,05 6,30 89,93 90,51 −0,01 2,04

11 177,03 187,95 −0,06 3,87 92,03 93,51 −0,02 4,22

12 174,65 181,48 −0,04 −0,62 87,70 91,52 −0,04 0,22

Total 2188,83 2235,94 −0,02 1062,00 1084,81 −0,02
90% confidence 2,539 2,539
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We then focused on the average time length to admit emergent diagnosed
patients, which is one of the most relevant measures to evaluate the about 1 h
waiting is needed to obtain a bed in the impatient wards. Drilling down this datum
into monthly dynamics, Fig. 5 shows how this time length varies from 0.11 h in
September to 2.4 h in May. Indeed, the regional NHS imposes the limit of 8 h for
patient waiting time for admissions as a constraint for every hospital. In the critical
month of May, the percentage of patients overtaking 8 h (outliers) waiting for
obtaining a bed reaches the 10% of all admitted patients.

Table 4 briefly compares the global outcomes of simulation model with
observable statistics. To such aim is noteworthy to observe that certain measures
such as, average time to be admitted, more than 8 h waiting and Blocked elective
measures cannot be evaluated in observable systems, because they are not included
in the hospital’s dataset.

The model is able to well mimic the ward occupancies. Due to the effect of the
ERM and ARM functions the balancing between arrivals and discharged patients is
not precise. Nevertheless the model is able to produces an input flow that reproduce
very accurately hospital inpatient ward dynamic. The validation on the model on
both the ED and ward flows can help to estimate very important measures likewise
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Fig. 5 Average time to be admitted and outliers

Table 4 Simulation results

Measure Simulated output Real measures

Ed admitted 6.235 6.278
Elective admitted 4.142 4.389
ED discharges 35.512 37.916
Average time to be admitted (h) 0.68 –

Average patients in ED 29.56 25.53
Medicine wards utilization rate (%) 86 85
Surgery wards utilization rate (%) 66 66
More than 8 h waiting 186.45 –

Blocked elective 226.00 –
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the time spent by emergent patients to obtain a free bed and so forth the number of
patients overtaking the 8 h limit imposed by Local Health policy. This measure is
currently not recorded by hospital information system despite its relevance in terms
of efficiency measurement. The model can be used to provide an estimation of this
parameter and it can be used to evaluate alternative what-if scenario analysis using
the hybrid model.

5 Conclusions and Further Works

The model herein developed well mimic the reality of the complex dynamics of
patient flows and interactions between Emergency department and hospital wards.

Provided the difficulty of adapting hospital systems, in short and medium
periods, in terms of resources and bed availability, adopting this hybrid model
might be useful for the hospital management to understand the system itself and the
dynamics that lead to the main problem related to ED boarding and bed manage-
ment. The introduction of behavioral aspects and auto-adaptive mechanisms allow
to better reproduce real life phenomena. The results from seasonality analysis and
validation show the model robustness and its ability to mimic internal dynamics and
to adapt the system response to external demand variations.

On the other hand, the introduction of adaptive behaviors as well as hypothesis
about capacity of the system to react to exogenous conditions introduces additional
challenges to perform an extensive model validation and results interpretation.

Future works will be oriented to use the model for a scenario analysis aimed at
comparing and evaluating the impact of alternative reorganization scenarios on
system performances (i.e. waiting times to be admitted in hospital, number of
trolleys in ED, inpatient bed occupancy rates and elective patients delayed).
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Estimation of Case Numbers at Pandemics
and Testing of Hospital Resource’s
Sufficiency with Simulation Modeling

Pınar Miç and Melik Koyuncu

Abstract Influenza pandemics have occured throughout the past two centuries,
killed millions of people worldwide. Although it is impossible to predict
when/where the next pandemic will occur, proper planning is still needed to
maximize efficient use of hospital resources and to minimize loss of life and pro-
ductivity. Thus, it is highly important to estimate case numbers and to test hospital
resources’ sufficiency to take actions about this area. One of the most common tools
used to estimate case numbers in an influenza pandemic is Basic Reproduction
Number ðR0Þ. In this study, we estimated case numbers using different R0 values for
a possible influenza pandemic. The developed simulation model used the estimated
case numbers as input parameters, for testing important healthcare resources’ suf-
ficiency, which are non-ICU (non-intensive care unit) hospital beds, ICU (intensive
care unit) hospital beds and ventilators.

Keywords Pandemic influenza ⋅ Basic reproduction number ðR0Þ
Simulation modelling ⋅ Health services

1 Introduction

Commonly known as flu, influenza is one of the long-lasting major health issues
throughout the world. This single disease alone causes hundreds of thousands of
deaths annually. The most severe known pandemic influenza is “The Spanish Flu”

P. Miç (✉) ⋅ M. Koyuncu
Engineering-Architecture Faculty, Industrial Engineering Department,
Cukurova University, Adana, Turkey
e-mail: pmic@cu.edu.tr; pinarmic@gmail.com

M. Koyuncu
e-mail: mkoyuncu@cu.edu.tr

© Springer International Publishing AG 2017
P. Cappanera et al. (eds.), Health Care Systems Engineering, Springer Proceedings
in Mathematics & Statistics 210, https://doi.org/10.1007/978-3-319-66146-9_13

145



(A/H1N1) pandemic of 1918–1919, estimated to be resulted in 20–50 million
deaths worldwide, with unusually high mortality among young adults [1]. “The
Asian Flu” (A/H2N2) at 1957 and “The Hong Kong Flu” (A/H3N2) at 1968
pandemics were less severe, with the highest mortality in the elderly [2]. Lots of
influenza pandemics emerged many times around the world until late history such
as at Hong Kong in 1997, at Thailand, Vietnam, Indonesia, Cambodia and China in
2003 and in 2006 at Turkey, Russia, Europe and some African nations resulting 225
cases [3].

This global threat requires advanced planning, early preparedness and rapid
action. Not only may it increase demand upon health services, but it may also result
in substantial socioeconomic problems and loss of life [5]. Because of these
important reasons, policymakers have begun to realize the severity of this threat and
they have started to develop preparedness plans across many layers of government
[4]. These plans are based on World Health Organization (WHO) guidelines
(published at 1999). But, with the emergence of H5N1 avian influenza virus in Asia
and the outbreaks in the Europe and elsewhere, concerns about human influenza
have grown up more [6]. Thus, in April 2005, WHO represented its concern about
the general lack of global preparedness for influenza pandemics and updated its
1999 global influenza preparedness plan to outline the components that each
country’s plan should involve [7].

In the Risk Assessment section of WHO checklist (updated at 2005); possible
case numbers (numbers of an instance of disease with its attendant circumstances
[9]), hospital admissions and deaths are asked for with conduct modelling [8]. In
addition, in the “Health Service Facilities” section of WHO checklist, it is requested
to determine potential alternative sites for medical care. Therefore, some of the most
important health care resources in an influenza pandemic are non-ICU hospital
beds, ICU hospital beds and ventilators [10]. It is required to estimate the need of
these resources at the recommended alternative sites as WHO checklist offered and
it should be suitable making these estimates with models.

By examining related literature, we realized that there is not any study of case
numbers in Turkey using Basic Reproduction Number ðR0Þ. Furthermore, there is
not common study testing hospital resource’s sufficiency based on this estimation in
a pandemic case. This paper aims to fill this gap at this area. In this way, hospitals
can rationalize their inadequate resources and can be prepared to the possible future
pandemic.

Thereby, we can divide our methodology into two sections; (1) Estimation of
case numbers by using different R0 and average duration of infectiousness
(D) (which is the duration of infection’s stay within individual’s body) values,
(2) Testing the most critical healthcare resources by a simulation model, which uses
estimated case numbers as input parameters.
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2 Materials and Methods

2.1 Estimation of Case Numbers

Estimation of case numbers’ methods can be divided into two main categories in
literature:

(i) Clinical attack rate: Clinical attack rate is defined as a biostatistical measure of
frequency of morbidity, or speed of spread, in an ‘at risk population’ [11]. An
‘at risk population’ is defined as one that has no immunity to the attacking
pathogen which can be either a novel or established pathogen [12].

(ii) Estimating case numbers by using Basic Reproduction Number [9]: The
second and more common method is Basic Reproduction Number and usually
denoted by “R0”. It is the most frequently used approach in the estimation of
case numbers to be occured in a pandemic and time-dependent case numbers
can be estimated using R0 [13].

2.1.1 Estimation of Case Numbers with Basic Reproduction Number

The basic reproduction number, R0, defined as the average number of secondary
cases generated by a primary case introduced into a completely susceptible popu-
lation, is a crucial quantity for identifying the intensity of interventions required to
control a pandemic [10].

At this point, the model structure should reflect the natural history of the
infection and therefore important disease categories and transitions need to be
described as well as important categories in the population itself. The
Susceptible-Pre-infectious-Infectious-Recovered (SEIR) model which shows fitting
spreading of the infection to the influenza is used in this study. Many researchers
used the SEIR model such as Chowell et al. [9], Flahault et al. [13], Dukic et al.
[14], Verikios et al. [15], Pollicott et al. [16] and Farah et al. [5] in their studies for
pandemic influenza.

Tables 1 and 2 are the summary of commonly used symbols and basic formulas
used in the study to estimate case numbers via R0 [11].

At Table 2, there are some notations need-to-know:

St+1 Number of susceptible individuals at time t + 1,
Et+1 Number of pre-infectious individuals at time t + 1,
It+1 Number of infectious individuals at time t + 1,
Rt+1 Number of immune individuals at time t + 1,
Rt=0 Number of immune individuals at time t = 0 (at the start),
Im 0ð Þ Rate of infectious individuals at the start,
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Inew t+1ð Þ Total number of new infectious individuals per unit time,
NCt+1 Total number of new reported case numbers per unit time,
CI Proportion of those infectious who are reported as cases.

In this study, case numbers are estimated with formulas explained above,
according to the method given in “An Introduction to Infectious Disease Model-
ling” by Vynnycky and White [14].

2.2 Analyzing the Healthcare Resource’s Sufficiency
with Simulation Model

For different values of R0, case numbers can be estimated as explained at
Sect. 2.1.1. A major part of these cases will get over the disease with mild
symptoms, but some patients will need critical medical interventions. The patients
will generally need non-ICU hospital beds, ICU hospital beds and ventilators for
these interventions [10].

Table 1 Summary of the commonly used symbols [14]

Symbol Definition

β Rate at which two specific individuals come into effective contact per unit time
(equivalent to the per capita rate at which two specific individuals come into
contact). This notation is used when we assume that individuals mix randomly

D Duration of infectiousness
Et Number of individuals who are infected but not yet infectious at time t

f Rate of onset of infectiousness
lt Number of individuals who are infectious at time t
λt Force of infection at time t (rate at which individuals are infected per unit time)
N Total population size
r Rate at which individuals recover from being infectious
Rt Number of individuals who are immune (‘recovered’) at time t

Ro Basic reproduction number (average number of secondary infectious persons
resulting from the introduction of an infectious person into a totally susceptible
population)

st Number of susceptible individuals at time t

te Average time to the infectiousness

Table 2 Summary of basic formulas used in the study [14]

β= R0
N ⋅D

λt = β ⋅ It f =1 ̸te r = 1/D

St+1 = St − λt ⋅ St Et+1 =Et+ λt ⋅ St− f ⋅Et It+1 = It + f ⋅Et − r ⋅ It Rt+1 =Rt+ r ⋅ It
Rt=0 =N ⋅ Im 0ð Þ NCt+1 =Et ⋅ f ⋅CI Inew t+1ð Þ =Et ⋅ f
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Developed simulation model enables to test the sufficiency of critical and
important resources under different scenarios. Figure 1 shows the flow chart of the
developed simulation model.

I. stage of model consists of input parameters which are the estimates of case
numbers calculated by the method detailed in Sect. 2.1.1 [14]

When a pandemic influenza emerged in a population, because of the illnesses in
the past and chronic diseases, all cases will not affected by the influenza at the same
severity. Within the population, a definite percentage of community may have more
medical risk. For this reason, it should be better to break down the population into
risk groups. For this reason, at II. stage of simulation model, the population is
divided into six risk groups according to age and medical risk. Table 3 shows the
notation of the risk groups and their assumed proportions in the total population.
Table 4 shows the hospitalization rates of these groups. Both Tables 3 and 4 are the
notations and values of some input parameters based on the references given.
Considering the past influenza pandemic data, its reasonable to consider that the

Fig. 1 The flow chart of developed simulation model
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severity of influenza pandemics are different. Therefore, the severity of the pan-
demic influenza is divided into three categories as of minimum, most likely and
maximum as at Table 4.

The patients grouped in the II. stage are sent to related hospital resources
(non-ICU hospital beds, ICU hospital beds and ventilators) according to the rates
determined by the user at the III. stage of the model. For the patients who will need
related hospital resources at a case of pandemic influenza, the sufficiency (whether
they are enough for all patients or not) of these resources are tested by developed
simulation model with the parameters identified by the user in the last and fourth
stage of the model.

3 Case Study and Results

3.1 Case Study

Table 5 shows the population and hospital resources in a county, Adana, Turkey,
which are used to test the developed simulation model.

For the I. stage of developed simulation model; case numbers are estimated
starting with R0 = 2 and it is increased by 0.5 range until R0 = 4 and these case
numbers are entered to the model as input parameters.

Table 3 The rates of high
and non-high risk groups [10]

Risk groups Age groups
0–19 20–64 65+

High risk %2.24 %8.32 %2.83
Non-high risk %32.88 %49.45 %4.25

Table 4 Population-based
rates (per 1000 persons) of
pandemic influenza
hospitalizations [10]

Influenza
outcome

Rate per 1000 persons
Minimum Most

likely
Maximum

Hospitalizations
High risk

0–19 years old 2,1 2,9 9
20–64 years old 0,83 5,14
65+ years old 4 13
Non-high risk

0–19 years old 0,2 0,5 2,9
20–64 years old 0,18 2,75
65+ years old 1,5 3
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The constant input parameters, which are used to estimate the case numbers in
this study, notations, definitions and assumed values are shown at Table 6.

Figure 2 shows the comparison of daily case number estimations for R0 = 2, 5
and D = 1, 5; 2 and 2, 5 values. For example, for D = 2 value, case numbers have
reached to the maximum level at about 45th day (6th week) and case numbers on
the peak of pandemic for D = 2 is approximately 65,000 cases.

Table 5 Inputs and assumptions (assumptions are based on [10])

Default
Inputs
Population of locale by age groups

0–19 753,159
20–64 1.241,61
65+ 130,863
Total non-ICU beds 6236
Assumed occupancy rate (%) 75
Total ICU beds 556
Assumed occupancy rate (%) 75
Total number of ventilators 452
Assumed occupancy rate (%) 75
Influenza pandemic duration (weeks) 28
Basic reproduction number (interval) 2,0–4
Assumptions

1. Average length of non-ICU hospital stay for influenza-related illness (days) 5
2. Average length of ICU hospital stay for influenza-related illness (days) 10
3. Average length of ventilator usage for influenza-related illness (days) 10
4. Average proportion of admitted influenza patients will need ICU care (%) 15
5. Average proportion of admitted influenza patients will need ventilators (%) 7,5

Table 6 The constant input parameters’ notation, definition and supposed values determined by
user

Notation Definition Supposed value

N Total population size 2.125.635 person
It = 0 Number of infectious individuals at the start 0,8 person
CI Proportion of those infectious who are reported as cases 0.77
PIt = 0 Proportion immune at the start 0.3
API Average pre-infectious period (days) 2 days
R0 Basic reproduction number [2–4]
D Average duration of infectiousness [1.5–2.5]
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3.2 Results

As a result of the analyses for all scenarios (maximum, most likely and minimum),
its concluded that all resources are insufficient for maximum scenario and its
necessary to increase them due to the possible needs. Due to the page limit, here we
present only some of maximum scenario analyses.

Figure 3.a shows the rejected patients for non-ICU hospital beds, ICU hospital
beds and ventilators. We estimated that increasing the number of non-ICU hospital
beds to 2270 instead of 1559, the number of ICU hospital beds to 570 instead of
139 and the number of ventilators to 280 instead of 113 will be sufficient even the
worst scenario.

4 Suggestions for Further Studies

Case numbers can be estimated with different parameter values. In addition,
grouping the population to non-high risk and high risk groups and the rates of
hospitalizations can be altered and revised in the simulation model; thereby this
process might bring a different approach to the analyses. Furthermore, the simu-
lation model can be developed and analyses can be carried out for larger districts
and countries.

Fig. 2 The comparison of daily estimated case numbers for D = 1,5; 2 and 2,5 and R0 = 2,5
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Empirical Data Driven Intensive Care Unit
Drugs Inventory Policies

Paola Cappanera, Maddalena Nonato and Roberta Rossi

Abstract This paper proposes a drugs inventory policy at point-of-use level, tai-

lored for the Intensive Care Unit (ICU) case study and aimed at relieving nurses of the

time-wasting task of drugs ordering and refilling. The policy aims at jointly reduc-

ing order occurrences and imposing service regularity, while keeping stock value

as low as possible. An optimization model is proposed and solved on a one-month

period real instance and on a set of realistic ones derived from drugs consumption

data collection at the ward. The potentially conflicting priorities of three stakehold-

ers (nurses, administration and clinicians) have been successfully incorporated and

their impact on order occurrences and stock value has been discussed. Computational

results suggest that it is possible to optimize the time-consuming order process cur-

rently adopted at the ICU case study. This study is part of a more comprehensive

project in which the optimization block will be integrated with a demand forecasting

tool and deployed in a rolling horizon framework.

Keywords Supply chain management ⋅ Drugs inventory policies ⋅ Replenishment

ICU ⋅ Antibiotics

1 Introduction

Drugs logistics optimization is crucial in containing steadily increasing healthcare

costs occurring in industrialized countries [9]. This study addresses drugs inven-

tory policies in an Intensive Care Unit (ICU) at a renowned hospital in Italy. World-

wide, ICUs represent highly peculiar settings [2] due to the following key-features:
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(i) severe clinical conditions of patients, (ii) extreme variability in patients’ Length

of Stay (LoS), (iii) clinical conditions may worse very quickly (great dynamicity),

(iv) few ward beds, (v) no stock-out is allowed. We propose an optimization model

aiming to: (i) reduce the nurse burden due to drug orders management (lower number

of orders in the planning period); (ii) allow service regularity in drug orders manage-

ment (for each drug, the same quantity is ordered every time an order is triggered for

that drug); (iii) control the value of stock, i.e., the amount of money corresponding

to the cost of the drugs daily stored at the ward.

Since stock value at ward is not such a direct financial cost as it is in other logistics

settings, inventory cost containment is not usually pursued at ICUs. On the contrary,

over stocking is often used as a means to prevent undesirable drug shortages which

would deeply affect critical patients. However, uncontrolled over stocking not only

gives rise to a suboptimal use of budget but, when it is due to frequent drug orders,

distracts nurses from patient care. Conversely, lowering the number of orders and

imposing regularity in the order process would increase the time nurses can spend

at bedside. We propose an Integer Linear Programming (ILP) model which reduces

order occurrences, imposes orders regularity, guarantees demand satisfaction and

incorporates capacity constraints.

Besides a basic version of the model, we propose three variants that introduce

the perspective of three possibly conflicting stakeholders (nurses, hospital’s General

Direction and clinicians) and we evaluate the resulting trade-offs on a realistic data

set.

Material logistics and inventory management have been largely studied in manu-

facturing and service industries setting. If applied to different settings such policies

require to be adapted and verified on the field. Indeed, recent attempts have been

made to customize classical inventory policies to account for healthcare settings [9]

and they have mainly been applied at pharmacy point-of-use and for large-scale sys-

tems [5]. The contribution of this paper is to adapt classical lot-sizing problem and

reorder quantity policies to a dynamic and highly peculiar setting such as ICU [10].

Differences mainly concern demand, which is extremely variable. The objective is

indeed significantly different: the attention is focused on order events and on the

number of different drugs ordered, since they reflect the amount of time spent to

manage drug reordering and refilling. Moreover there are no storage costs and stock

is, conversely, a value to prevent shortages (we don’t have perishable drugs and we

can reasonably assume that every ordered drug will be used before the expiry date).

With respect to the healthcare extant literature [9], our model reflects an inventory

policy based on a continuous review cycle rather than on a periodic one [8], on a con-

stant reorder quantity rather than on an order-up-to-level quantity [1], it is focused

on point-of-use inventory type rather than on a multi-echelon one [7], and on strict

demand coverage rather than on minimization of stock-out costs [6].

This study is the first step of an ongoing, more comprehensive, project, due to

develop and integrate the missing elements required to make it self sufficient as an

operative tool. In particular, the optimization module presented in this work will act

as the building block of a decision support system where it will be integrated with a

demand forecasting tool.
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2 Drugs Inventory Policy for ICU

2.1 Problem Description

This study focuses on antibiotics, which are crucial at ICUs since [3]: (i) they are

largely used, (ii) some are quite expensive, (iii) inappropriate prescriptions may

occur (iv) which might give rise to antibiotic resistance. Nurses are in charge of man-

aging drug orders, a very frequent and time-consuming task which distracts them

from patients care. In our case study, lead time is one day but on Saturday: drugs

ordered on Saturday will be available on the next Monday. Urgent orders have few

hours lead time but are restricted to emergencies. Orders are based on the patients

population at ward. There is no demand forecasting and ICU tends to order more

than required to avoid disruptions due to a sudden therapy switching. Indeed, when

clinicians suspect the presence of microorganisms, an empirical medical treatment

begins based on broad-spectrum antibiotics and a clinical test request is issued to the

microbiology laboratory. If test results confirm infection, a targeted medical treat-

ment starts consisting in antibiotics targeted to the identified microorganisms [4].

A therapy switching may also occur due to patients antibiotic resistance. Drugs are

stored in a medicine cabinet located in the inpatient room for prompt use and in other

shelving and cabinets for storage. Each drug has both its own dedicated storage space

and a shared space. Some drugs may have specific requirements, such as low tem-

perature. On these premises drugs are partitioned in groups where drugs in the same

group share a dedicated storage unit. When a storage unit is devoted to a single drug,

its capacity is expressed in terms of number of boxes of that drug; conversely, when

a storage unit can host different drugs, possibly with different boxes, its capacity is

expressed in terms of units of volume each drug box occupies.

2.2 Optimization Model

Tables 1 and 2 introduce the mathematical notation used in the problem formulation.

Then, the description of the model in terms of objective function and constraints is

given in (1)–(19). Observe that constraints (2)–(4) mirror the weak lot-sizing formu-

lation [10] but our model has a distinctive objective function with set up costs, no

time-dependent production costs and with time-independent storage costs.

A hierarchical objective function (1) characterizes the model that first minimizes

the number of order events (by means of Big-M) and at a lower level, keeps stock

down by minimizing the sum of daily stock value. Constraints (2)–(4) are classical

flow conservation constraints regulating the stock level respectively on the first day

of the planning horizon (2), on week days when an order occurred the previous day

increases the stock level (3), and on Sunday when no order is received (4). Without

loss of generality, we assume that the first day of the planning horizon (d = 0,w = 1)

is Sunday and that the initial stock of each drug (l f ) meets first day demand (q f
01).
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Table 1 Sets and parameters

F Set of drugs (indexed by f )
G Set of drug groups (indexed by g)—drugs in a

group share the same storage unit

Fg ⊆ F Set of drugs in group g ∈ G
D = {0,… , 6} Ordered set of days (indexed by d, 0

corresponds to Sunday, 1 to Monday etc.)

W Set of weeks (indexed by w, with w ≥ 1)

q f
dw Demand of drug f on day d of week w,

expressed in number of doses

Uf
Number of doses in each box of drug f

c f Cost of each dose of drug f
Bdw Maximum allowed stock monetary value on

day d of week w
l f Doses of drug f in ward at time 0

C f
Capacity of storage unit dedicated to drug f ,
expressed in number of boxes

C
f

Maximum number of drug f boxes in shared

storage unit

Vf
Volume of a drug f box in number of units in

shared storage unit

Vg Capacity of shared storage unit for group g,

expressed in number of units

𝛤

f = Cf + C
f

Upper bound on the maximum number of

boxes of drug f in stock

Table 2 Variables s fdw Stock level of drug f at the end of day d of week

w, expressed in number of doses

y fdw Order quantity of drug f on day d of week w,

expressed in number of boxes

𝜈

f
dw Equal to 1 when an order of drug f occurs on day

d of week w; 0 otherwise

𝜐dw Equal to 1 when an order occurs on day d of week

w; 0 otherwise

𝛥

f
Order quantity of drug f , expressed in number of

boxes

x f
dw Number of boxes of drug f in the shared storage

unit on day d of week w
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min M
∑

d∈D,w∈W
𝜐dw +

∑

f∈F

∑

d∈D,w∈W
c f s fdw (1)

s f01 = l f − q f
01 ∀f ∈ F (2)

s fdw = s fd−1,w − q f
dw + y fd−1,wU

f ∀f , ∀d ∈ D, d ≠ 0, ∀w ≥ 1 (3)

s fdw = s f6,w−1 − q f
dw ∀f ∈ F, d = 0, ∀w ≥ 2 (4)

s fdw ≤ U f
(
C f + x f

dw

)
∀f ∈ F, ∀d ∈ D, ∀w ∈ W (5)

x f
dw ≤ C

f
∀f ∈ F, ∀d ∈ D, ∀w ∈ W (6)

∑

f∈Fg

x f
dwV

f
≤ Vg ∀g ∈ G, ∀d ∈ D, ∀w ∈ W (7)

∑

f∈F
c f s fdw ≤ Bdw ∀d ∈ D, ∀w ∈ W (8)

𝜐dw = 0 d = 6, ∀w ∈ W (9)

𝛥

f
≤ 𝛤

f ∀f ∈ F (10)

y fdw ≤ 𝜈

f
dw𝛤

f ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (11)

y fdw ≤ 𝛥

f ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (12)

y fdw ≥ 𝛥

f − (1 − 𝜈

f
dw)𝛤

f ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (13)

𝜈

f
dw ≤ 𝜐dw ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (14)

y fdw ∈ Z+ ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (15)

x f
dw ∈ Z+ ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (16)

𝜐dw ∈ {0, 1} ∀d ∈ D, ∀w ∈ W (17)

𝜈

f
dw ∈ {0, 1} ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (18)

s fdw ≥ 0 ∀f ∈ F, ∀d ∈ D, ∀w ∈ W (19)

Stock level is computed at the end of the day and the quantity y fdw of drug f ordered

in day d can be used promptly to meet the demand of day d + 1. Constraints (5)–(7)

concern capacity. Specifically, (5) impose an upper bound on the maximum stock

level that a given drug may assume on a given day of the planning horizon, by taking

into account the quantity of that drug both in the dedicated and in the shared space

and by properly converting the number of boxes in number of doses. Constraints (6)

impose, for each drug and each day, an upper bound on the maximum number of

boxes present in the common storage space. Constraints (7) are knapsack-like con-

straints imposing that the overall volume of all the boxes sharing a common storage

unit g does not exceed its volume Vg. Constraints (8) guarantee that the cost of drugs

stocked at the end of a day does not exceed the daily budget Bdw; in addition to

storage constraints, they prevent over stocking. Constraints (9) impose that no order

takes place on Saturday. Constraints (10) impose an upper bound on the lot size of
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drug f which is the same during all the planning horizon. The same upper bound 𝛤

f

is used in (11) that fix variable y fdw to zero when drug f is not ordered on that day

(𝜈
f
dw = 0). Constraints (12) and (13) guarantee that if drug f is ordered on a specific

day, then the lot size is 𝛥

f
. Constraints (14) assure that the variable related to an

order event on a given day is equal to one if at least one drug is ordered on that day.

Finally, (15)–(19) define variable domain.

The ILP mathematical model described above aims at optimizing the time-

consuming management of drug orders related tasks that mainly depends on the

number of times orders take place during the planning horizon, what we call order
events. Further investigating in this direction, we observe that the drug supply chain

management involves at least the three following stakeholders: (i) head nurse, (ii)

hospital’s General Direction, and (iii) clinicians. Each of them has its own perspec-

tive in evaluating a solution, possibly conflicting with the others. On one side, nurses

in charge of orders management, besides minimizing the number of order events, ask

for homogeneous orders in terms of number of drugs in each order. This would allow

them to allot in advance a constant portion of their shift to accomplish drugs orders

related tasks and to better plan their activities. Indeed, the time required to store

drugs into cabinets and update the system data (so far on paper) mainly depends

on the number of different drugs involved in the order rather than on the number of

boxes, so they would like to keep this number steady. On the other side, the hospital’s

General Direction aims at minimizing the total quantity of drugs ordered exceeding

demand, possibly weighted by coefficients that reflect the importance of drugs or

their cost. Finally, clinicians are interested in maximizing the daily variety of drugs

involved in broad-spectrum therapy so as to reduce the latency of therapy switching

due to patient’s resistance to the currently prescribed antibiotic.

We are interested in evaluating the trade-offs arising when model (1)–(19) is

enriched with constraints that take into account stakeholders’ perspectives. To this

aim, we assume that a set I of scenarios is available, where I is a meaningful sample

of representative drug demand realizations in a monthly period. Then, scenario by

scenario, we solve (1)–(19) and record the three values representing the three per-

spectives above described. The average value of each criterion over the whole set

of scenarios can be computed. Then, perspective by perspective, model (1)–(19) is

tightened by a constraint imposing that the solution value according to the considered

criterion does not deviate too much from the average value of the criterion computed

over the set of scenarios. Specifically, we can manage this latter constraint with three

increasing levels of flexibility with respect to average value deviation: low, medium,

high. In the following, we denote by the superscript (i) the optimal value a variable

assumes in the optimal solution of instance i ∈ I. For example, 𝜈
f (i)
dw represents the

value variable 𝜈
f
dw assumes in the optimal solution obtained when model (1)–(19) is

run on instance i.
To take into account nurses’ perspective, we define, for each instance i ∈ I:
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𝜐

(i)
max

= max
d∈D,w∈W

∑

f∈F
𝜈

f (i)
dw as well as 𝜐

(i)
min

= min
d∈D,w∈W,

s.t. 𝜐
(i)
dw=1

∑

f∈F
𝜈

f (i)
dw

where 𝜐

(i)
max and 𝜐

(i)
min

denote respectively the minimum and maximum number of

drugs in an order over the planning period when model is run on instance i. Since

nurses consider orders as homogeneous when the difference between 𝜐

(i)
max and 𝜐

(i)
min

is low, the average difference over the set of instances I is computed as

𝜐 =

⌈
∑

i∈I
(𝜐(i)

max
− 𝜐

(i)
min

)∕|I|
⌉

and model (1)–(19) is run again with the following additional set of constraints:

∑

f∈F
𝜈

f
dw ≤ 𝜐

max
∀d ∈ D, ∀w ∈ W

𝜐
min

≤

∑

f∈F
𝜈

f
dw + (1 − 𝜐dw)|F| ∀d ∈ D, ∀w ∈ W

𝜐
max

− 𝜐
min

≤ 𝜐.

Concerning General Direction’s perspective, denote b f = ⌈∑d∈D,w∈W q f
dw∕U

f ⌉ as a

lower bound on drug f boxes required to satisfy demand and wf
as the weight asso-

ciated with drug f . Then, the average weighted number of boxes ordered in excess

with respect to the demand over all instances in I is:

𝛾 = 1
|I|

∑

i∈I

∑

f∈F
wf

(
∑

d∈D,w∈W
yf (i)dw − b f

)

and model (1)–(19) is run again with the following additional constraint:

∑

f∈F
wf

(
∑

d∈D,w∈W
y fdw − b f

)
≤ 𝛾.

In regards to clinicians’ perspective, we introduce the additional definitions: Fe
⊆ F

as the set of equivalent drugs in broad-spectrum therapy; n f
as drug f daily dosage;

T = {Tj
,Tj

⊆ Fe} as a set of therapies where each Tj
is a subset of drugs in Fe

; K
as the daily target number of available therapies. We compute how many days in

the planning period, averaged over I, stock exhibits the desired variety in terms of

equivalent therapies, namely 𝛿 and run model (1)–(19) with the following additional

set of constraints:
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𝛼

f
dw ≤ s fdw∕n

f ∀f ∈ Fe
, ∀d ∈ D, ∀w ∈ W

𝛽

Tj

dw = L(𝛼 f
dw with f ∈ Tj) ∀Tj

⊆ T , ∀d ∈ D, ∀w ∈ W

𝜆dw ≤

∑

j∶Tj
⊆T

𝛽

Tj

dw∕K ∀d ∈ D, ∀w ∈ W

∑

d∈D,w∈W
𝜆dw ≥ 𝛿

where 𝛼

f
dw is a binary variable equal to one when a surplus of at least n f

doses of

drug f ∈ Fe
is present on day d week w and zero otherwise; 𝛽

Tj

dw is a binary variable

equal to one when therapy Tj
is available on day d week w while 𝜆dw is a binary

variable equal to one when at least K therapies in T are available in surplus on day d
week w. Variables 𝛽

Tj

dw are the results of a logic function (∨ and ∧ predicates) of the

drugs involved in therapy Tj
that can be linearized in standard way.

3 Computational Results

We present and discuss the results obtained with several variants of the optimization

model on a realistic data set made of (i) a real instance related to drug consumption

in June 2016 and (ii) a set of realistic scenarios generated out of microbiology labo-

ratories data: for each patient for whom a request has been issued to the laboratory,

they contain the treatment plan of the drug which is most likely to stop infection. All

instances involve a monthly planning period. The ILP model was coded in Mosel and

solved by FICO ®XPress [11] on a Dell Latitude E6530, with Intel i7-3540M cpu.

The first set of experiments concerns the real instance and aims at investigating the

impact of the number of order events (OEs for short) on the financial records of the

process: these are stock value SV, i.e., the sum on each day of the value of stocked

drugs, and the excess cost EC, i.e., the amount spent on ordered drugs minus the

value of demand, respectively. To this aim, first we compute ̄
𝛶 , i.e., the minimum

number of OEs necessary to fulfill demand complying with capacity and budget con-

straints. Then, we solve a set of parametrized instances in which the number of OEs

ranges from ̄
𝛶 to almost an order per day, and minimize stock value on each such

instance, thus obtaining the Pareto front for the two criteria, i.e., OEs and SV, as

depicted in Fig. 1a. SV, reported in euro on the left vertical axis, is highest at ̄
𝛶 but

soon decreases and stabilizes around 8 OEs. This is quite reasonable since reducing

OEs requires to cluster different orders on the same day, which can only be accom-

plished by placing an order before usage much earlier than what lead time would

require. It follows that drugs stay longer in storage, thus increasing total SV. This is

not necessarily a minus, since at ICU SV is an opportunity cost rather than a real cost,

because it provides more flexibility if a quick change in therapy is needed. Regarding

the second financial indicator EC, we compute and plot its value for each instance

(see its scale on the right vertical axis of Fig. 1a). While EC is highest at ̄
𝛶 and
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decreases as the number of OEs increases, it still is a small fraction of demand value

(15122e), namely a mere 3%, which decreases to about 0.3% when OE doubles

(10 OEs). This comes at no surprise due to an important difference with production

logistics. In our case there are no time dependent production costs nor real inventory

costs but only the money spent on drugs, so that what is not consumed in the current

period will be the inventory at the next one, without additional costs. Indeed, the SV

on the last day yielded by the minimum OE policy is about twice the one yielded by

a double order frequency one (the “10 order events policy”), which in turns is about

1∕3 of initial SV. This is quite a trivial finding: the more order frequency increases

the closer the associated order policy gets to just in time. This would be a plus in

supply chain management; on the contrary, in healthcare and at ICU in particular,

less tangible values must be considered such as being able to quickly react to sudden

therapy changes or to critical patients admission, which means that in defining drug

inventory policies a trade-off must be searched between cost and robustness. Indeed,

we speak of stock value rather than inventory cost. This analysis leads us to approve

the policy based on (1)–(19), namely the minimum OE policy with constant lot size,

despite of the higher stock value since it allows to considerably reduce nurses effort

in drug inventory management in a financial sustainable manner, while complying

with storage and budget constraints. It is worth mentioning that in the real case 13
OEs take place to satisfy the same demand on the same set of drugs.

Now that the minimum OEs policy has been experimentally approved, we broaden

the discussion to take into account additional stakeholders and analyze how safe-

guarding their priorities may affect the number of OEs and SV. We present the results

of the method discussed above. We generated 15–30-days-demand scenarios involv-

ing 18 drugs (antibiotics) and set three thresholds for the right hand side of the addi-

tional constraints modeling the stakeholder priority. We consider one stakeholder at

a time (nurses, General Direction and clinicians) and present one boxplot for each

threshold regarding two criteria: the net increase of OEs and the percentage variation

of SV.

As mentioned, nurses value service regularity, such as dealing with about the

same number of drugs at each OE. Let us call as drug variance in order (DViO)

the difference between the maximum and the minimum number of different drugs

involved in a single order during the planning period. On the 15 instances, DViO

values range from 3 to 9 and the three integer rounded thresholds used as the right

hand side (𝜐) of the additional constraint modeling nurses perspective, namely 6, 4,

and 7, represent respectively the average, the average minus standard deviation, and

average plus standard deviation. For each instance, once constrained we obtain the

same number of OEs placed on the same days and with the same overall ordered

quantities, but some drug orders have been anticipated (with respect to the results of

the unconstrained version). For example, drug 14 in instance 1 is ordered 4 times and

lot size is 8 in both cases, but orders that took place on days 2, 9, 17, 26 now occur

on days 2, 9, 17, 22. As a result, the only variations are observed in SV as drugs tend

to stay longer in storage, the highest variation occurring for the lowest threshold. In

Fig. 1b the boxplots of SV for the three thresholds are depicted. Regarding General

Direction perspective, the runs on the 15 instances yielded 𝛾 = 588 and the thresh-
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Fig. 1 a Pareto front of OEs and SV (left axis) and OEs and extra cost (right axis) in e. b Boxplot

of SV for Nurses perspective

Fig. 2 Hospital General Direction perspective. Boxplots of OEs (a) and SV (b) on the 15 instances

when the cost of extra drugs is constrained below a threshold (function of 𝛾)

olds for extra cost are 187, 588 and 990e. This constraint impacts on OEs (Fig. 2a)

as well as on SV (Fig. 2b). If extra cost has to be reduced, then orders must further

adapt to demand irregular trends and then more chances for ordering are needed (a

request of 9 boxes is either met by 2 OEs of 5 boxes each at some extra cost, or by

3 OEs of 3 boxes each at no extra cost). As shown for the real case, SV decreases

when OEs increase. Finally, the request of drugs surplus not related to actual demand

acts as a shadow demand and affects OEs and SV only when the drugs involved in

the addressed therapies are not routinely used. Therefore, the instances in set I react

quite differently to the inclusion of clinician priorities in the drugs inventory pol-

icy. Again, we set three thresholds related to the number of days over the 30 days

planning horizon when surplus should be present, namely 20, 25 and 30. Boxplots

are depicted in Fig. 3. Note that since the binding constraints are of the ≥ kind, the

highest threshold is the most affecting one.
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Fig. 3 Clinicians perspective. Boxplots of OEs (a) and SV (b) on the 15 instances when the number

of days stock exhibits the desired variety is above a threshold (function of ̄
𝛿)

4 Conclusions

This paper proposes drugs inventory policies at point-of-use level which are specifi-

cally customized to take into account the features of the ICU case study, with its own

specific targets and constraints. The policy aims at partially relieving nurses from

the burden of drugs ordering and refilling by jointly reducing the number of order

events and imposing regularity on the orders in terms of drug order size, while keep-

ing stock value as low as possible. As expected, order regularity obtained by means

of constant lot size may increase drugs stay in storage. On the one hand, high stock

levels keep the value of stocked material high in the overall period. For this reason

our model includes the minimization of stock value as a secondary objective. On the

other hand, high stock levels seldom pose a challenge in terms of storage space in our

instances where storage space is not a tight resource. Computational results suggest

that the current time-consuming order process can be rather improved. In addition,

the perspectives of three, possibly conflicting, stakeholders have been successfully

incorporated in our inventory policies and their impact on orders occurrences and

stock value have been discussed.

In conclusion, this study simultaneously addresses: (i) continuous review, (ii) con-

stant order quantity, (iii) different stakeholders’ perspectives, and (iv) a peculiar set-

ting. The introduction of scenarios and of stakeholders’ perspectives is just one first

step in addressing demand variability that characterizes such a setting. The com-

prehensive project this study is part of, aims to integrate the optimization module,

which requires complete demand knowledge in the planning period, with a demand

forecasting tool and to deploy it in a rolling horizon framework. Further research

also concerns: including urgent orders into the inventory policies, tightening the ILP

model formulation, and investigating the mutual relations between stakeholders per-

spectives.
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A Decision-Making Tool
for the Calculation of a Robust Planning
for Home Service Employees

Maria Di Mascolo, Marie-Laure Espinouse, Pierre Gruau
and Jérôme Radureau

Abstract This paper deals with the scheduling and routing problem in a Home
Service organization, and we are more particularly interested in a real case problem,
taking place in Bourgoin Jallieu (France). The aim of this work is to create a
decision support tool to help the planners improving an existing planning. Many
constraints must be taken into account, as legislation, competences or preferences.
The planners face two key challenges: minimizing the travel time of the employees,
and replacing an absence. For the first one, we propose a local search heuristic, and
for the second one, we develop a dedicated heuristic. A tool with these two pro-
posals has been implemented and has been tested with real data.

Keywords Home Service ⋅ Scheduling ⋅ Routing ⋅ Robust planning
Decision-making tool

1 Introduction

Home Service consists in offering assistance in the daily living tasks, or direct
assistance to fragile persons (called beneficiaries), at their home. These beneficiaries
are dependent persons for whom certain activities of everyday life are impossible.
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This includes people with disabilities, temporary immobilization and, for the vast
majority, dependencies related to age. The offered services can be meal preparation,
medication reminders, laundry, light housekeeping, or transportation, among other
services. These home service solutions are increasingly popular because, for many
seniors, they are an alternative to retirement homes.

Home Service is provided by life assistants (LA), who visit beneficiaries at
home. One of the difficulties of this sector is the management of the turnover, for
beneficiaries (death, hospitalization), as well as for the life assistants. Indeed, the
emotional difficulty of the activity, as well as the very low social recognition of the
profession, does not help the stability of the staff. It is therefore important to try to
facilitate as much as possible the work of the LA to maintain a constant staff.

An issue, for good working conditions, is the building of a good planning for the
LA. Indeed, travel times between tasks can be long and difficult to bear for the
workers. In addition, high daily time range, as well as repeated breaks during the
day do not facilitate the activity of life assistants. The creation of these schedules is
a difficult and time-consuming task for planners. Many constraints and many
objectives have to be taken into account. The planning work is therefore complex
and requires taking into account the human factor.

Our goal is to propose a decision-making tool for planning,which, from an existing
planning, proposes alternative solutions to reduce the travel time of theLAand replace
the absences, and which is usable by planners, who are not specialists in optimization.

This paper is organized as follows: we define our problem in Sect. 2, and discuss
related work in Sect. 3. Section 4 proposes some algorithms for solving our
problem. Then, in Sect. 5, we describe the proposed tool. Some experiments are
presented in Sect. 6, before a conclusion and further issues given in Sect. 7.

2 Problem Description

In our partner organization, the planners build, on Friday, the plannings for each
employee for the next week. These plannings are build from previous plannings,
with the aim of minimizing the travel times and smoothing the employees’ work-
load. They have to take into account the following constraints:

Fixed tasks: when a new beneficiary is admitted, the times for the tasks to be
performed at his/her home are fixed, with a maximum flexibility of +/− 1 h.

Legal constraints, strongly linked to French legislation and collective agree-
ments: No more than 10 h of work (i.e. time spent by the employees to the ben-
eficiaries’ homes and travelling) per day—Less than 13 h for the time range of the
day (i.e. time between the start and the end of the working day, including breaks
and other interruptions)—A break of 20 min every 6 h of work—A maximum of
35 h per week—One day off per week.

Availability constraints for LA, which are strict constraints, expressed in terms
of availability time windows (in hours) during the week.

LA’s Skills: Each LA has a skill level (I to IV) and can therefore only perform
the services compatible with his/her level of competence.
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Continuity of care: It is crucial to maintain stability in the care and try to send
the same LA (or known LA) to each care, for the same beneficiary. Unlike avail-
abilities, continuity is a soft-constraint.

In addition to the building of these plannings, the planners also have to face last
minute modifications, due to employee absences.

We aim at proposing a tool to help planners to improve existing plannings, and
to manage the absence of employees. To be more accurate, our tool starts from an
existing planning, and proposes alternative solutions allowing to:

• reduce the travel time of LA: currently, the planners try to allocate the tasks in
order to create coherent tours, but without optimizing the travel times

• replace absences: absenteeism is common among staff, and planners spend a lot
of time re-allocating tasks, which should in no case be suppressed

We propose algorithms for recalculation of tours, based on local search methods
[10], and include them in a tool that is easy to use for non-specialists in optimization.

3 Problem Positioning Regarding the Literature

Home service is a relatively recent sector, but it is now in full-expansion in France
[14]. However, we found no article dealing specifically with this topic. We can note
that this sector is very close to Home Care, which consists in delivering medical and
paramedical services to patients at their home. Many papers in the literature con-
sider Home Care, and some of them also include service activities (see the works by
Duque et al. [3], Fikar and Hirsch [4], Heching and Hooker [7], Redjem and
Marcon [11], and Rest and Hirsch [12], for recent examples of studies considering
both, Home care and Home service, and dealing with real cases).

Several issues are considered in the literature when dealing with resource planning
in aHomeCare organization, such as resource dimensioning, partitioning patients and
resources into districts, admission of patients and their assignment to one or more
caregivers, and, of course, the scheduling and routing of human and material
resources. The first paper dealing with the problem of assignment and routing of
nurses to patients home is Cheng and Rich [1]. They propose a mixed integer math-
ematical model and a heuristic approach, and give results for just 4 staff members and
10 patients. Since then, there has beenmany papers on the subject, and we can note an
increasing interest in solving real-size instances, with up to 100 patients. The recent
literature review by Fikar and Hirsch [5] shows the large variety of problems that are
addressed when considering planning in Home Care organizations. Most works
present some problems closely related to the VRP problem. The most common
considered objective is the travel cost, and the most common considered constraints
are time windows, legislative rules, and skill requirement. Nevertheless, there are also
more andmore papers dealing with constraints, which are closer to real-life cases, like
time-dependency constraints, continuity of care, or preferences of patients.
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Most of the articles are dealing with the static problems, whereas in real life,
several uncertainties can affect the solutions, as traffic congestion, or absence of a
staff member, or cancellation of a visit by the patient (see the work by Lanzarone
and Matta [9] and Yuan et al. [13] for examples of robust assignment and
scheduling of daily operations).

The specificities of our Home Service planning problem are the following:

• staff members do not require to start and finish their tours at the organization
location, as it is the case when dealing with home care

• task duration can be very long, for example in case of housekeeping service.
• task dates are fixed, with very low flexibility
• a planning already exists and can not be entirely modified

To conclude this section, we can say that many of the characteristics encountered
in the literature are present in our problem: the minimization of travel times, the
consideration of skills, or the satisfaction of beneficiaries, are classical elements of
home care. A notable difference with most encountered works concerns tasks. In
many articles, the tasks are short (15 min duration) and must be done within a time
window (e.g. between 2 and 4 pm), whereas in our problem the tasks can be longer
(1–2 h) and must be done at fixed instants, contractualized between the benefi-
ciaries and the Home Service organization. Moreover, we are dealing with a
dynamic problem, since we aim at proposing a planning able to reallocate in an
existing planning the tasks that were assigned to an employee, who is finally absent.
The last characteristic of our work is that it provides a tool, usable in real situations
(with 200 beneficiaries, and 55 LA) and whose functioning is understandable and
convincing for planners who are not IT specialists.

4 Proposed Algorithms

4.1 Reduction of Travel Time

From an existing planning (which already takes into account the constraints con-
cerning time windows, skills, continuity of care…), we aim at reducing the travel
time of the LA by means of a descent with two operations, and without modifying
too much the existing planning. This solution has the advantage of being easy to set
up and relatively efficient. Local research is done here in an informed manner. First,
we sort the tasks according to the travel time of their associated employee (de-
creasing). The aim is to seek to make changes prioritarily for employees traveling a
lot. Two types of descents are carried out:

Insertion. The idea is to change the employee assigned to a task if this improves
the travel time. Several constraints are taken into account during this operation: skill
of the employee, legal constraints, respect of the hourly volumes of the contracts.
The algorithm scans the tasks and, for each of them, tries to insert it to another
employee, known by the beneficiary (in order to ensure the continuity of care),
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if this improves the solution. Tasks are sorted by the decreasing workload of
employees (one wants to remove tasks from the employees who are the most
loaded). Conversely, known employees are sorted by increasing load, in order to
favor the addition of tasks to employees who need more working hours. If we call
N the number of tasks on a day, and M the number of employees, we can calculate
the complexity of this algorithm. In the worst case, there are M employees known
by the beneficiary of the task. Moreover, the assignment of a task to an employee is
realized by a sort, and has thus a complexity of N * log(N). Finally, the complexity
of this algorithm is: θ(M * N2 * log(N)). Since the number of tasks is greater than
the number of employees, this complexity is no larger than: θ(N3 * log(N)).

In fact, eventhough this complexity seems important, the instances are not large
enough to not being solved in reasonable time. For one day, there are at most 150
tasks, and the number of employees known by a beneficiary never exceeds 10.

The 2-OPT. It is a local search algorithm proposed by Croes et al. [2] to solve
the problem of the commercial traveler by improving an initial solution. We
adapted it to our problem by keeping the same principle: take two tasks from two
different employees and exchange the employees if this improves the travel time.
Tasks and employees are sorted in order to give priority to exchanges involving
employees who make many travels. The constraints related to the skills of the
employee and the legal constraints are taken into account. Only LA known by the
two beneficiaries are considred. As for insertion, computation of complexity has
been carried out and by the same reasoning one obtains: θ(N3 * log(N)).

Insertion and 2-OPT are performed successively and repeated as long as the
objective is improved.

4.2 Replacement of an Employee

Our objective here is to help the planners to modify the existing planning in order to
re-allocate some tasks in case of last minute absences. This is a very common
situation (2–3 times per week). By giving the name of the employee who is absent,
the start date and the end date of the absence, we seek to reallocate the tasks to the
other employees, by respecting as much as possible the hourly volumes of the
contracts and by seeking to minimize additional travel times. For this, heuristics to
manage absences are inspired by the current functioning of the planners. The idea is
to consider all the possible modifications, and propose the “best” ones to planners.

Pseudo code to find modifications to be done. For each task to be replaced, the
algorithm will propose an enumeration of the possible modifications enabling to
reschedule it. These changes are saved in a list that will be processed later. The
services are first sorted according to LPT (Longest Processing Time) to insert first
the longest tasks (therefore the most difficult to insert). All the changes are based on
the same principle: try to insert the task to a known employee, and if there is a task
in conflict with the one to be inserted, the task in conflict is shifted. Contracts
between the Home Service Organization and the beneficiaries indicate that the
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tasks, which are fixed, can be shifted by more or less 1 h, if necessary. The most
complex modification moves two tasks, and thus affects the planning of three
employees. Moving more tasks would have been possible, from a complexity point
of view, but would have represented too many changes in reality. The complexity
of this search is θ(N5 * log(N)), and the algorithm takes less than one second to
reschedule each task, which is definitely acceptable.

Choice of the “best” modifications. The aim of this tool is not to find THE best
solution, but to offer options to the planners, by leaving them the choice. Thus, it
was agreed with the planners to present two alternatives for each task. The difficulty
was to choose these two modifications, taking into account the following criteria:

• Additional travel time: the reassignment of a service involves an additional
detour which can be significant

• Workload of the chosen employee: it is necessary to give the preference to the
employees whose workload is under the maximum value set in the contract

• Complexity of the modification: it is easier to change the schedule of an
employee rather than that of three employees

Algorithm 1. Replacement of an Absence

Sort the known employees by increasing workload
Sort the tasks according to LPT

For each task t to be replaced
For each employee e known by the beneficiary of task t

If (e can do t) 
ListOfPossibleModificationsFort Modification (e does t)

End If
Let L be the list of the tasks done by e which are not compatible with t

  If (size of L=1)
Let t’ be the task which is not compatible with t
For each employee e’ known by beneficiary for task t’

If (e’ can do t’) 
ListOfPossibleModificationsFort Modification (e does t and e’ does t’)

End If
Let L’ be the list of tasks done by e’ which are not compatible with t’

    If (size of L’ =1)
Let t’’ be the task which is not compatible with t’
For each employee e’’ known by beneficiary for task t’’

If (e’’ can do t’’)
ListOfPossibleModificationsFort Modification (e does t and e’’ does t’’) 

End If
End For

End If
End For

End If
If (size of L=2)

Let t’ and t’’ be the tasks which are not compatible with t
For each employee e’ known by beneficiary for task t’

For each employee e’’ known by beneficiary for task t’’
If (e’ can do t’ and e’’ can do t’’)

ListOfPossibleModificationsFort Modification (e does t, e’ does t’, and e’’ does t’’) 
End If

End For
End For

End If
End For
Choose and display the best two modifications

End For
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This multi-criteria objective makes it very difficult to choose the two modifi-
cations. We tried numerous configurations with the planners to get closer to their
needs, and the procedure is as follows: the possible modifications are first sorted
according to the additional travel time, and, the two smallest are taken. Then, if
other modifications have similar travel times (no more than 10 more minutes), and
the chosen employee has a smaller workload (10% less), they are chosen. Finally, if
several modifications have the same travel times and the same workload, the
simplest is chosen.

5 Description of the Proposed Tool

The software chosen to build the decision-making tool is Eclipse. Figure 1 illus-
trates the environment of the tool. First, the data is exported in Excel format in the
form of 3 files: a beneficiary file, an employee file, and a task file. In addition, a
matrix of travel times between municipalities is also needed. An interface has been
developed to allow planners to clearly express their demand in order to obtain the
best answers. Finally, the results are displayed in the Eclipse console. The proposed
modifications are presented on a daily basis. For each modification, the additional
travel time (or the gain) is given in minutes. In addition, the employee’s workload
before assignment is shown (as a percentage of his/her contract).

Calculation of travel times between the different beneficiaries. To do this, the
Quantum GIS mapping software was used. The address of the beneficiaries has
been approximated to their municipality of residence. Thus, calculating the travel
time between two beneficiaries is done by calculating the travel time between their
two municipalities.

To obtain these times, a cartography of the 350 municipalities of the Nord Isère
region was carried out. The centroids of these 350 municipalities were calculated in
order to obtain Euclidean distances. To make the connection between these
Euclidean distances and the distances by road, the formula of Gallez and Hivert [6]
was used. It connects the Euclidean distances (De) with the distances by the road
(D) in the rural area according to the expression: D = De(1.1 + 0,3 * eDe/20). This
formula is used in particular by ADEME, a public organization carrying out
numerous transport actions. We calculated the travel times considering an average
of 50 km/h.

A comparison of the obtained travel times was made with Google Maps (indi-
cating the exact addresses). The results of this comparison showed that the averages
are similar and that the standard deviation is 13%. We can therefore conclude
without loss of generality that this approximation is credible and in line with reality.
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6 Tests and Implementation

In order to validate the decision-making tool, it was important to carry out tests on
real data, both to evaluate the performance of the tool and to check its conformity
with reality. Thus, we tested the tool on real instances (55 employees, and 200
beneficiaries). The tool was implemented on a computer of the partner organization,
so that planners can use it easily. After each use, solutions are analyzed, any errors
corrected, and certain aspects (displays, options …) possibly modified.

We made a series of tests to evaluate and quantify the contribution of the
decision-making tool, using instances of April, May and June 2016. The evaluation
of the improvement in travel times was made over 12 weeks. The aim was to
minimize the sum of the travel times for employees. The results are given in
Table 1.

These results show that the tool provides a significant improvement for travel
times (around 8%). In addition, the calculation time is fast enough (10 s) for the
planners to use the tool.

We tested the replacement of an absence on real situations. The absence of an
employee during a week was simulated on 10 different employees during week 23.
The objective was to find one or more solutions to replace each task. The results in
Table 2 show that at least two solutions were found in more than 60% of cases and
only one in 15% of the cases (no other alternatives to replace it). The decision-making
tool therefore proposes at least one solution in 75% of the cases. Among the cases
where no solution is found, the majority are those where it is impossible to find them
(all the employees known by the beneficiary are on holiday) and where the decision

Task file  
Date

Start Time
End Time
Duration
Activity

Employee
Beneficiary

Employee file 
Employee identifier 

Last and First Names
Team
Town

Workload and time 
window

Beneficiary file 
Beneficiary identifier
Last and First Names

Team
Town

matrix 

of travel times 

between 

municipalities

DECISION
MAKING 

TOOL

Interface

Fig. 1 Environment of the proposed tool
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can only belong to the planners. Finally, the quasi-instantaneous calculation time
allows planners to use the tool as often as needed.

Experiments carried out on real-life situations made it possible to estimate the
time saving for planners at more than one hour for the replacement of an employee
absent during one week.

7 Conclusions and Future Issues

The central element of this work has been the development of a decision-support
tool for planners of a home service organization. The challenge was to find a
balance between advanced optimization and a tool usable in a real situation. Dif-
ferent approaches were studied before leading to the methods presented here. The
main difficulty has been to make this tool usable in a real situation and by
non-specialist users of optimization.

Implemented in Bourgoin Jallieu (France), the tool was greatly welcomed by the
teams who found a way to save time in their work and improve the working
conditions of planners. It is already usable on a daily basis, however, it could be
improved, for example by allowing the LA to be assigned to tasks requiring a lower
skill level (with a penalty), and considering real travel times between beneficiaries.

One future issue of this work could be to compare the results obtained by the
proposed heuristic to optimal results, which could be obtained when we know the
absence in advance and we allow modifying completely the original planning, or if
we allow modifying it while trying to minimize the modifications.

Another issue would be to consider public transportation modes rather than
private ones, as proposed by Fikar and Hirsch [4] and Rest and Hirsch [12] or
combining these last two, such as Hiermann et al. [8] and Rest and Hirsch [12].

Table 1 Tests for the improvements of the travel times

Week Total initial travel
time (min)

Gain
(min)

Gain
(%)

Calculation
time (s)

Number of
operations done

14 5361 390 7 10.2 32
15 5230 483 9 11.6 34
16 5474 426 8 12.1 34
17 6223 368 6 12.8 25
18 4978 311 6 11.3 23
19 4543 309 7 8.9 24
20 4268 244 6 8.6 19
21 4635 410 9 6.4 32
22 5367 452 8 6.1 27
23 4914 471 10 5.1 33

24 4901 539 11 6.9 43
25 4644 405 9 9.1 38
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In this chapter, it is proven that combining transportation modes is highly advan-
tageous to improve services and to decrease costs. That is why, considering this
feature will be appreciated to improve real-life applications.
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Service Reconfiguration in Healthcare
Systems: The Case of a New Focused
Hospital Unit

Alessandro Stefanini, Davide Aloini, Riccardo Dulmin
and Valeria Mininno

Abstract In the last years, hospitals have been pushed to change their services in
the final attempt to maximize both care effectiveness and efficiency. In particular,
emergent trends are prompting hospitals to reorganize current activities around
patients and their diagnoses rather than in discipline focused departments. This
research aims to support service reconfiguration by proposing a methodology
exploiting the benefits of process mining techniques in the healthcare systems. In
order to support decision makers during this process, the method mainly
identifies/analyzes the patient flow and estimates the resources necessary for
specific classes of patients. A case study also shows evidence deriving from its
application to a new Patient-Focused Care Unit.

Keywords Process mining ⋅ Service configuration ⋅ Resource planning
Patient-Focused Care (PFC) ⋅ Healthcare ⋅ Service Planning

1 Introduction

In the last 25 years, hospitals have taken sundry strategic improvement initiatives in
the organization of care activities.
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The benefits of a multidisciplinary approach in patient care, for example in
treating cancer but also in many chronicle diseases, has been widely recognized in
the healthcare literature [22] and boosted the dissemination of Patient-Focused Care
(PFC) principle [14]. In this direction, one of the most relevant initiative is the
creation of hospital service lines (or product line), in which care is organized around
an identifiable service (e.g. cardiac care), a segment of market (e.g., child patients),
or some combination of these two [12].

Positive expectations deriving from a centralized approach to specialist services
are mostly linked to the potential to reduce variations in care. Thus, innovative
“patient-centric” organizational models (e.g. specialized care units and patient care
pathways) were proposed and implemented in numerous healthcare organizations in
the attempt to offer patients the best chance of (1) receiving high quality medical
procedures, (2) being served by a team of specialists, which is able to tailor
treatment, and (3) guaranteeing access to specialist counselling, supportive care and
rehabilitation. Evidence of such a trend can be found in the cases of specialist
Breast Centres [2] and other specialized units which are currently largely diffused in
all Europe. See the German case for Prostate Cancer Units, and the British Uro-
logical Malignancies units.

This emergent trend is prompting hospitals to reorganize current activities
around patients and their diagnoses rather than in discipline focused departments
[13]. However, devising service lines, around a specific group of patients with
similar diagnosis and needs, entails the most substantial reconfiguration of hospital
operations and has a huge impact on the care process, particularly when the
resources to serve these patients are physically co-located [12]. Most critical
decisions belong to planning the necessary resources, organizing the workflow of
activities and the coordination of internal/external processes, defining the best
layout for the new unit [12]. In fact, while addressing the aim of improving the care
effectiveness, other conditions call for reducing costs by improving the system
efficiency. Therefore, a methodology supporting managerial decisions during the
reconfiguration process is extremely valuable.

Concluding, reorganizing activities for a specialized unit or simply a pathway
requires effort for process analysis and planning in order to explore the feasibility of
solutions: effective/efficient methods for pathways identification and analysis,
demand planning and forecasting, resource allocation and optimization systems.
This work aims to support decision makers in such reconfiguration process by
proposing a feasible and efficient method for patient flow identification/analysis and
for resource allocation. In so doing we also set the basis for an integrate modelling
and planning of activities within healthcare organizations.
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2 Theoretical Background: Resource Planning
and Patient-Flows

The planning of resources in healthcare organizations requires the balancing of two
opposite objectives: maximizing service levels and minimizing resource/capacity
costs [5]. More resources (like doctors, instruments, beds) reduce patient waiting
time, staff workloads and congestion. On the other hand, more resources increase
the operating costs of the unit. In balancing these two goals, the main problems are
the stochastic nature of the healthcare demand and the wide diversity of patients’
conditions. For this last reason, this context appears to be similar to the
engineer-to-order [11] or make-to-order environment in manufacturing.

The problem of planning resources and activities could be addressed with dif-
ferent decision horizon length. Hans et al. [11] and Vissers et al. [26] in their
healthcare planning frameworks identified the strategic level (very long term), the
operational level (short term), and an intermediate level (medium/long term) rec-
ognized as the tactical level. Until now, the researches focused particularly on the
operational level (OR scheduling and bed management), with very few works at
strategic level and, to a lesser extent, at tactical level [9, 11].

Literature shows a lack of efficient approaches for handling resource planning at
strategic-tactical level in healthcare systems. This is mostly due to the peculiar
characteristics of healthcare environment like heterogeneity, patient participation in
the service process, simultaneity of production and consumption [11]. Specifically,
one of the main limit in the medium-long term is the poor knowledge of the
patient-flows that instead is very important in order to plan resources and
organize/reorganize processes [4, 6, 10, 25].

Healthcare processes are in fact difficult to study: they are deeply interconnected,
dynamic, multidisciplinary in nature, numerous, and ad hoc for a single patient [1,
7, 15, 18, 27]. Thus, traditional approaches to business process analysis are low
effective and scarcely efficient in this context: they are often very time-consuming
and might not provide an accurate representation of the processes and patient-flows.

More recently, the pervasive adoption of information systems within healthcare
organizations and the development of effective data analysis techniques (e.g. pro-
cess mining) have raised data availability and contributed to overcome such
problems in finding and mapping patient-flows and analyzing the related healthcare
processes [17, 18, 21, 23, 24].

As a combination between data mining and traditional model-driven Business
Process Management, process mining aims to discover, analyze and improve pro-
cesses exploiting the event logs available in the information systems [23]. In so
doing, it tries to understand how processes are actually performed and which
resources are involved, rather then what is prescribed or supposed to happen [16].

Though various authors have already shown its suitability [17, 19], the use of
process mining technique to support healthcare management is a relatively new and
unexplored field still valuable to investigate in order to support the planning of
activities and resources inside healthcare organizations.
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3 Research Design

3.1 Research Objective

This research aims to develop a methodology supporting service reconfiguration in
healthcare systems. It exploits the process mining approach for identifying the
service workflow of activities and the related resources, which are necessary for a
specific class (/group) of patients. Knowledge is extracted from event logs by using
the information stored in the hospital information systems.

Specifically, supporting the process discovery, analysis and monitoring phases,
the following expected contributions can be identified:

1. Improvement of healthcare services planning: e.g. reduction of services frag-
mentation. Space, resources and timing of services could be easily analyzed and
reconsidered coherently to a patient-centric perspective.

2. Enhanced resource allocation. Resources (space and beds, equipment and staff)
could be organized more effectively and efficiently to provide sufficient
resources for the involved classes of patients. In a shorter view, the efficiency of
the method could allow managers to dynamically update and review plans.

3. Enabling an integrated resource planning at Hospital level. An extension of this
modelling approach to all classes of patients served by the hospital may support
managers to develop effective and integrate planning of resources in the
medium-long term.

In this paper, we report some preliminary evidence deriving from the application
of the methodology for the creation of a Patient-Focused Care Units, a Lung Cancer
Unit in Italy. The method was applied concurrently to the traditional approach
usually adopted by the management in order to test its suitability and compare
benefits/costs.

3.2 Methodology

The methodology draws on the process mining approach [3, 8, 23] and goes
through the following five main phases: Problem Statement; Log Preparation; Log
Inspection; Process Discovery; Activities and Resources Evaluation.

1. Problem Statement aims to define the unit of analysis i.e. the class(es) of patients
under investigation. For example, some selected groups of patients taken over
by a hospital focused unit, a specific Diagnostic Related Group (DRG) or any
other patient group identifiable inside the hospital.

2. Data Retrieval and Log Preparation create an adequate event log by prepro-
cessing the event data gathered from one or more information systems.
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3. The Log Inspection offers first insights about the followed patient-flows, permits
to filter incomplete and/or outlier cases, and provides some useful descriptive
statistics as the number of cases, the total number of events, the number of
different sequences, etc.

4. Process Discovery phase aims to find the patient-flows under investigation,
starting from the event log. It is possible to apply many techniques to act process
discovery like α-Algorithm, heuristic miner, fuzzy miner, genetic miner and
region-based miner. For complex environment, the most promising approaches
seems to be heuristic mining, genetic mining and fuzzy mining [23]. However,
in order to point out clear patient-flows it is sometimes useful to combine more
process maps obtained using various process mining algorithms. In this phase,
the involvement of experts (medical staff, physicians, nurses) can support to
review, refine and validate the achieved patient-flows.

5. Activities and Resources Evaluation aims to estimate the activities consump-
tions and the related resources required for a specific class(es) of patients,
starting from the patient-flows and using the process mining tools. Process
mining tools like ProM and Disco®, can help decision makers to identify an
“average” patient-flow with the correspondent expected demand of activities. In
order to connect the activities to the related resources, a Bill Of Resources
(BOR) could be used. The BOR is a BOM-like structure that includes all the
resources needed to perform a specific class of activity [20], including people
(doctors, physicians, nurses), instrumental resources, and materials.

4 Case Study

The methodology was applied to support a real case of service reconfiguration at the
University Hospital of Pisa. The management was considering to reorganize the
service for the lung cancer patients, by evaluating the creation of a Lung Cancer
Unit in order to provide a better care to this serious class of patients. Management
agreed that before to launch the new Patient-Focused Care Unit, it is important to
known the main patient-flow, the most relevant activities, their interactions and the
related resources. This is also interesting in order to evaluate the best layout for
providing the service.

As a first step, we started formalizing the patients with lung cancer as the class of
patients under investigation in order to set up a Lung Cancer Unit. Then, we created
an adequate event log with the all the relevant instances, by aggregating and
refining data coming from different information systems. We collected data of lung
cancer patients served in the year 2014. The generated event log comprised more
than 10000 events.

After a first inspection of log, we removed the outlier cases (after this operation,
the dataset contained 470 cases) and obtained some relevant statistics about the
process, such as the number of different activities, the number of different
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sequences/paths etc. For instance, descriptive stats revealed that the patients utilized
61 different activities, but that the 10 most frequent covered more than 95% of total
events.

During the process discovery phase, we applied different process mining algo-
rithms using two process mining tools (ProM and Disco®): the heuristic miner, the
fuzzy miner, and the inductive miner. Along with the medical experts, we reviewed
and refined the various process models obtained in order to achieve the most correct
patient-flow. Figure 1 shows the resultant patient-flow expressed in BPMN lan-
guage. We excluded from the map the less frequent and not pertinent activities.
Thanks to this evidence, it was possible to support the new service planning with
the purpose of reducing the services fragmentation in term of time, resources and
space. In fact, doctors and managers can get a tangible proof of which activities are
critically interconnected, those more relevant, which could be performed on the
same day, like general physic examination and CT scan, and thus they might

Fig. 1 Patient-flow resultant
for lung cancer patients
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organize appointments and physical layout accordingly. Furthermore, the process
map makes also possible to get relevant information on how to streamline the
current patient-flow and devise an ideal one for future improvements.

The last step, activities and resources evaluation, provided us the average vol-
ume of activities required by a patient affected by lung cancer. Exploiting ProM and
Disco®, it was possible to estimate the overall demand of activities requested by the
lung cancer patients. Starting from the total volumes of activities and observing the
patient-flow, we could calculate the activities necessary for an “average” patient.
Figure 2 reports the average demand of activities by a lung cancer patient.

Showing the average demand of activities, possibly its variability in time, and
related resource consumption, outcomes from this last step could really support
managers in taking decisions about the creation/implementation of the new Lung
Cancer Unit. For example, they can easily estimate the needing resources for the
service, starting from the average demand of activities and using the number of
patients as a parameter (in term of space, beds, equipment, and staff). Also, they can
evaluate the feasibility of the new focused unit in respect to a number of variables
as such as available space and resources, law and regulations concerning to the
specialized staff etc.

On a next step of the research, we aim to finalize the BORs in order to complete
the overall analysis of resources related to the patient-path. Moreover, this infor-
mation could also drive decisions about new investments or resource
centralization/sharing and enable what-if analysis, simulations, and other more
in-depth analysis.

Fig. 2 Activities for an average lung cancer patient

Service Reconfiguration in Healthcare Systems … 185



5 Discussion and Conclusions

This work respond to the need of a methodology supporting decision makers when
a healthcare organization is considering to reorganize the delivery of cares or to
introduce a new service in its portfolio. This is an increasingly frequent situation in
this service context [12]. The relevance of the proposal is confirmed by a lack of
efficient approaches and tools for supporting activity and resource planning in the
medium-long term, able to handle the peculiar characteristics of healthcare systems
[9, 11].

Findings suggest that the proposed approach can profitably support managers
during the re-organization of services (e.g. a new Patient-Focused Care Unit) by
estimating the patient-flows and the activities/resources which are necessary for
different classes of patients. This is valuable in order to improve the overall service
planning, reduce the services fragmentation and optimize resource allocation.
A deep comprehension of the patient-flows, in fact, enables to streamline business
processes and can support performance analysis.

Moreover, evidences from the case application also show that the proposed
method is quite efficient and easy to apply in a real environment. Thus, managers
could also periodically review the path in order to check if the service flow and the
related demand of activities and resources have changed. This would allow to
dynamically modify the service planning and resource allocation.

As an addition, the extension of the proposed approach to the entire organization
could enable an integrated planning of the activities and resources within the
healthcare organization. Specifically, the method would help managers firstly to
investigate each class of patients and the related patient-flows, and then to aggregate
their demands for activities and resources. In so doing, it could also provide
interesting insights to set-up (new investments) and manage efficiently several
hospital subunits (like X-ray) or other shared resources.

Finally, discovering the activities and resources linked to the different classes of
patients, this method could support cost accounting in an Activity Based Costing
perspective.

Clearly, some critical issues still remains, as for example the possible coexis-
tence of two or more diseases in the same patient. The service and resource
planning for these cases of comorbidity could be more difficult. Moreover, the case
application we assessed concerns just a single class of patients, therefore this cir-
cumstance could affect meaningfulness and generalizability of our investigation.

Nevertheless, the positive results of this preliminary study encourage us to
extend the research to a wider set of services and patient classes.
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Improving Emergency Medical Services
with Time-Region-Specific Cruising
Ambulances

Jiun-Yu Yu and Kwei-Long Huang

Abstract This study aims to propose a dynamic resource allocation policy for
Emergency Medical Service (EMS) of New Taipei City, Taiwan. Response time is
one of the major key performance indicators in EMS system since rapid ambulance
response provides patients better chances of recovering or surviving. Ambulances
in New Taipei City used to park in separate fire stations and wait for the calls from
emergency medical dispatch center (EMD). As an alternative, a dynamic resource
allocation policy is designed and proposed by dispatching ambulance to patrol on
the streets or stay at specific locations in the areas with high emergency events
demand time slots. These areas and time slots are determined by statistical analysis
of the historical emergency medical service data. The main idea of this dynamically
allocated ambulance policy is to increase the probability that an ambulance will be
on stand-by at the nearby area when an emergency event occurs. In addition, this
policy is investigated under the condition that no extra EMS resource is available.
A simulation model is developed to evaluate this dynamic resource allocation
policy, and the results of this study show that time-region-specific ambulance
cruising policy can significantly reduce the EMS response times.
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1 Research Objective

This study aims to achieve two goals. First, reduce the response time without
substantially increasing the amount of or significantly changing the allocation of the
current emergency medical service (EMS) resources. Second, propose a
time-region-specific cruising ambulances system which dispatches ambulance(s) to
patrol on the streets or stay at some specific locations in the high EMS demand
areas and time slots. This study is conducted based on the historical EMS data
provided by the fire department of New Taipei City, Taiwan.

2 Literature Review

Brotcorne et al. [1] review many OR/MS models for ambulance location and
allocation. These models usually focus on minimizing the number of ambulances
with the location set covering model (LSCM) or on maximizing the demand cov-
ered with the tools such as the maximal covering location problem (MCLP) model
and the double standard model (DSM) subject to two covering constraints. Many
models that contribute to location research afterward are introduced in this paper.

Green and Kolesar [2] conclude that emergency medical service system (EMSS)
has been significantly influenced by operations research and management science
(OR/MS) after reviewing the related literatures published from 1960s. Many papers
on EMSS management appear in 1970s, leading to implementation of new policies
in firefighting and policing. Lots of the practices and experiences from New York
City are then adopted by many other cities. Green and Kolesar also discuss how
original models affected EMSS, investigating the pace of new models in OR/MS
area and suggesting the future potential of OR/MS application.

Ingoldsson et al. [3] develop a discrete event simulation model to evaluate the
impacts of the different deployment scheme. In the simulation models, ambulances
having completed their missions are to be directed to certain location according to
the proposed “park search” algorithm. “Park search”, consisting of a prioritized list
of locations where ambulances should park, is conducted after ambulances transfer
patients to hospitals. The system allows ambulances to be available near the area
with high EMS risk.

3 Problem Description

New Taipei City is the most populated region in Taiwan, roughly 4 million people
living in a donut-shaped area of 2,000 km2. The north part of New Taipei City is
coastal area while the south part of it is covered by mountains more than 1,000 m
high. Due to the unique geographic characteristic, the inhabitants are densely living
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in the small west region, and the medical resources such as hospitals and fire
stations are unevenly distributed (Figs. 1 and 2). In sum, there are currently 66
EMS units within the 29 districts in New Taipei City.

The original ambulance operation is that each ambulance is standing-by at its
designated fire station. Once an emergency call is dispatched to a specific fire
station, its standing-by ambulance will be sent to the scene to execute the task. After
completing the task, the ambulance returns back to its designated fire station for
posted cleanup and then become ready for the next task. The historical data of
emergency medical service studied in this research is the record of location and time
of every emergency event occurred in New Taipei City. There are seven steps of
handling an incoming emergency call:

Fig. 1 Population density of New Taipei City
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1. Dispatch Center receives a call from an emergency scene.
2. Dispatch Center dispatches an available ambulance from the fire station which is

the nearest to the scene.
3. The ambulance arrives at the emergency scene.
4. After the EMTs finish the first aid emergency treatments, the ambulance leaves

for the nearest hospital or the hospital requested by the patient.
5. The ambulance arrives at the hospital.
6. The ambulance leaves the hospital and returns back to the fire station.
7. The ambulance arrived at the fire station and the task closes.

Due to the physical locations of fire stations, response times for some events may
be longer than the required standard and are not improvable inherently under the
current configurations and resources. Subjected to the resource constraint (e.g.,
without adding new ambulances and emergency medical technicians (EMTs)), new
ways of dynamically deploying the ambulances must be investigated and proposed.

Under the time-region-specific cruising policy, one or more ambulances will
patrol on some certain routes or stay at a specific location during a certain time slot
instead of residing at its designated fire station. It is expected that the dynamically

Fig. 2 Fire station locations in New Taipei City
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deployed ambulance(s) can more rapidly respond to the emergency events and
provide instant care to patients simply through the re-allocation of the current
resource.

4 Research Methods

In this study, a set of heat maps based on the Geographical Information System
(GIS) is developed to show the frequency of emergency events spread over in each
district in New Taipei City. Figure 3 is generated based on the data of emergency
events collected from 2010 to 2011. In this figure, New Taipei City is divided into
small grids, each 450 m2. The grid colored in red denotes the higher frequency of
events while the blues ones denotes the lower frequency.

After analyzing the historical data from the 29 districts, three busiest regions,
Banqiao, Sanchong, and Zhonghe, are selected for further investigation with the
time-region-specific cruising policy using simulation modeling. Since the EMS
demand is not time invariant on hourly base, each region is only simulated for two
time slots with high EMS event frequencies, namely, 17:00–19:00 and 21:00–
23:00. This simulation setting in fact increases the practicality of the
time-region-specific cruising policy under investigation as the ambulance(s) will
only have to be re-deployed in these time slots, if this policy is proved to be
significantly better and is then implemented in real practice.

The simulation model is developed using AnyLogic software, and the input
parameters used for simulation settings include (1) arrival rate of EMS events,
(2) location of each EMS event, (3) delay time between the call from EMD and the
ambulance leave the fire station, (4) ambulance average driving speed, (5) duration

Fig. 3 Example of heat map for New Taipei City
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time EMT stay at the scene, (6) duration time of paper work and patient transfer at
the hospital, and (7) number of ambulance in each fire station.

The simulation model is validated by comparing the simulated results with the
historical EMS data. Simulation results are obtained by random generation of EMS
events, the locations of which are based on historical data. Ambulances in the
simulation model are operated according to the original operations: standing-by in
the fire station and waiting for the calls from dispatch center. Kolmogorov-Smirnov
test and paired t-test are conducted to examine the difference between the simu-
lation results and the historical response time. The test results show that there are no
significant differences between the result generated by simulation model and the
historical response time (Fig. 4).

5 Simulation Analysis

In this study, two types of ambulance dynamic allocation policies are proposed and
investigated. In the Guarding mode, the ambulance is on standby at the gravity
location determined from the historical EMS events. In the Cruising mode, the
ambulance patrols on either a short or a long routes that are specifically designed
around the gravity location. Since vehicles are driving on the right-hand side in
Taiwan, making right-turn is more convenient and efficient than turning left. Thus,
in the Cruising mode the ambulance patrols on the designed routes clockwise.
Moreover, as some of the fire stations are equipped with two ambulances, it is also
good to know if the response times would be reduced if both ambulances are
operated under the proposed dynamic allocation policy. Figure 5 summarizes the
ambulance operation policies studied in the simulation.

Figure 6 demonstrated the simulation example of Banqiao region, in which the
dotted blue line illustrates the shorter route while the solid black line the longer
route. There are actually 6 fire stations in Banqiao region, locations of which are
also indicated in Fig. 6.

For each of the “One” ambulance operation policies listed in Fig. 4, Banqiao
region may have 6 possible arrangements as there are 6 stations; only one ambu-
lance is needed to run on this policy. Therefore, 18 different settings are to be

Region & 
time slots 

Banqiao 
17:00-
19:00 

Banqiao
21:00-
23:00 

Sanchong
17:00-
19:00 

Sanchong
21:00-
23:00 

Zhonghe
17:00-
19:00 

Zhonghe 
21:00-
23:00 

K-S test p-
value 

0.0068 0.0154 0.1155 0.0509 0.0507 0.4585 

Paired t-test 
p-value 0.5190 0.8738 0.8091 0.0670 0.2354 0.8488 

Fig. 4 Simulation model validation resutls
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simulated and examined in the model. Similarly, for each of the “Two” ambulance
operation policies, Banqiao region will have to choose from the 6 stations and the 4
policies, resulting in total 180 possible arrangements to be simulated.

In the time slot 17:00–19:00, the simulation results with “One” ambulance
operation policy for Banqiao is shown in Fig. 7. It is obvious that the response

Fig. 5 Ambulance operations policies studied via simulation

Fig. 6 Demonstration of simulation model for Banqiao region
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times for the 3 proposed “One” ambulance policy are all shorter than those of the
original practice. The average reduction in response times is 7.56%.

In the same time slot, the “Two” ambulance operation policy are examined under
6 different combinations, shown in Fig. 8. The simulation results of these 6 com-
binations are compared using Tukey’s Honest Significant Differences (HSD) Test,
which shows that the combinations C and D are significantly better than the other
four combinations (Fig. 9). This result suggest that in Banqiao for the time slot
17:00–19:00, sending one ambulance to stay at gravity center 2 and the other
ambulance to patrol on either shorter or longer route will significantly reduce the
response time, from 5.16 to 4.36 min, in average. Further simulation investigations
reveal that any two of the six stations can be chosen to implement these C or D
combination as the simulated performances are similar.

The same simulation investigation is conducted for Banqiao for the time slot
21:00–23:00 as well. The results show that again combinations C and D are sig-
nificantly better than the other four combinations. However, the performances are
not the same across the six stations. Tukey’s HSD Test shows that only the fol-
lowing practice produces significant reduction in response time: one ambulance

Fig. 7 Simulation results with One ambulance policy for Banqiao region, 17:00–19:00

Fig. 8 Policy combinations
for Two ambulance policy for
Banqiao region
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from Minsheng station stay at gravity center 2 and the other ambulance from
Daguan patrol on route 2 (Fig. 10). This set of collaboration reduced the average
response time from 4.74 to 3.82 min, 19.35% of reduction.

In sum, the simulation study shows that for Banqiao region, both One and Two
ambulance dynamic allocation policies generate significant reduction in response
time. But if the Two ambulance policy is to be implemented, different time slots
required different set of stations to collaborate to achieve the best result.

Similar simulation modeling and experimentations for the other two chosen
regions, Sanchong and Chonghe, are conducted as well for the two chosen time
slots, 17:00–19:00 and 21:00–23:00. The optimal ambulance dynamic allocation
policies for these time-region-specific combinations are all different, and significant
reductions in response time are all achieved.

Fig. 9 Tukey’s honest significant differences (HSD) test results for Two ambulance policy for
Banqiao region, 17:00–19:00
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6 Conclusion

This simulation study successfully achieved the two aforementioned aims. Given
the same limited amount of EMS resources, the time-region-specific cruising
ambulance scheme proposed and tested in this study helps to significantly reduce
response times for the chosen fire stations in New Taipei City. These dynamically
allocated ambulances help to reduce the EMS covering areas of every station. The
simulation model developed in this study is the prototype and can be suitably
extended to different time-region combinations.
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A Simulation Model for Optimizing
Staffing in the Emergency Department

Melik Koyuncu, Ozgur M. Araz, Wes Zeger and Paul Damien

Abstract In this study we used a nonparametric statistical approach estimate time
varying arrival rates to an Emergency Department (ED). These rates differ hourly
within each month in a year. The time varying arrival rates serve as a key input into
a new discrete-event simulation model for patient flow at an ED of the case study
hospital. Our simulation model estimated Length of Stay (LOS) and Door to Doctor
Time (DTDT) for patients in three different acuity groups. The simulation model
also used for optimizing the staffing allocations in three different shifts. The
methodological contributions are exemplified using real ED data from a major
teaching hospital.

Keywords Quality of service ⋅ Waiting time ⋅ Discrete event simulation
Optimization ⋅ Time-varying arrival rates

1 Introduction

Hospital emergency departments (EDs) are one of the most critical elements of the
national health system in the United States. According to the US Government
Accountability Office (GAO) report, hospital ED crowding continues to increase
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wherein some patients wait longer than the recommended times [1] thereby
receiving poor quality of service [2].

A commonly used performance measure for evaluating ED operations is Length
of Stay (LOS) defined as the time between the arrival to discharge of a patient from
an ED. Another measure is Door to Doctor Time (DTDT), i.e., the time difference
between arrival at an ED and the time a physician first sees the patient. LOS
generally consists of the sum of two components (a) processing times which are
related to patient acuity involving triage, physician examination, laboratory tests,
medical treatment; and (b) patient waiting times for reaching these processes, often
called process queue times. In some cases, LOS could be high for admitted patients
due to boarding, or some patients could be held in ED until their conditions are
stabilized. DTDT could be a more critical performance indicator for immediate and
critical patients due to the severity of their medical conditions. In the estimation of
DTDT and identification of operational strategies that could improve this measure,
acuity levels of patients should be taken into account, rather than taking the average
DTDT to increase service quality. Ang et al. [3] used a Q-lasso method that
combines statistical learning and fluid model estimators to predict ED wait times for
different patient acuity groups. Kuang and Chan [4] evaluated proactive patient
diversion policies by using predicted waiting time information to improve service
quality at an ED. Similar methodological approaches of integrating predictive
modeling with simulation were used by Saghafian et al. [5] in order to develop
patient streaming policies and sequencing to improve ED service responsiveness.

In this research we first present the analyses of patient arrivals data to an ED to
better parametrize a discrete event simulation model then using simulation opti-
mization in Arena software [6] we allocate the staff optimally in three shifts for staff
balancing. Althoguh there are extensive studies in the literature using queuing
theory principles and simulation-optimization approaches for EDs, most of them do
not consider seasonal or monthly variations in patient arrival rates. Saunders et al.
[7], Duguay and Chetouane [8], Kuo et al. [9] presented discrete event simulation
models for process flow of EDs and used simulation experiments for assessing ED
performance are some examples.

2 Patient Flow

Patient flow in the ED of the case study hospital involves triage, physician
examination, extra testing, nurse evaluation, minor treatment and major treatment
operations, and patient stabilization times. Patients arriving at the ED are evaluated
at the triage then categorized and prioritized according to their medical condition
wherein the acuity levels range between 1 (most critical) and 5 (least critical). If a
patient arrives to the ED as a walk-in, acuity level ranges between 2 and 5 most of
the time. However, if patients arrive in an ambulance, they could skip triage and are
considered acuity 1. All patients are examined by a physician based on the priority
rule that accounts for acuity level in the examination room. Physicians direct some
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patients to a test room to have their tests completed, following which they revisit
the physician for assessment. Patients could follow different routes after the
physician’s assessment; these routes along with routing probabilities are presented
in Fig. 1 based on 2014 ED visits data that was exported from the hospital’s
database. Total ED visits during that calendar year was 49,180—1% acuity 1
patients, 11% acuity 2, 52% acuity 3, 30% acuity 4, and 6% acuity 5.

3 Simulation Model

We developed a discrete event simulation model to analyze the patient flow in the
ED based on Fig. 1. The following discussion details each of the key inputs to be
used in the overall discrete-event simulation model.

Service (Processing) Times: The required service times for processes in the ED
include, examination time, extra test time, nurse evaluation time, major and minor
treatment times. We estimate these times from the hospital data and used feedback
from experts for verification purposes. As discussed in Kuo et al. [9], service times
do not have a consistent structure due to the urgency in any ED; hence it is difficult
to use statistical methods to estimate each of the service steps in the ED flow. The
staffing included physicians who are scheduled daily, lab technicians, (scheduled
only for week days), and nurses who are scheduled for a week. We estimated the
triage processing time from ED data as the average time patients spent from initial
arrival to the ED until completion of triaging at the nurses’ station. The other
processing times are estimated based on interviews with ED staff, and are presented
in Table 1. Given the inherent uncertainty in these data, we model them using
probability distributions that allow for considerable and realistic variability in these
input parameters.

Routing Probability: The routing probabilities are directly related to patient
acuity level in the ED. Using the hospital’s data these probabilities were calculated
as detailed in Fig. 1.

3.1 Time-Varying Poisson Arrival Rates

A Poisson distribution was fit to hourly arrivals data from which time varying hourly
arrival rates in a day were obtained: we have 24 parameters, λ ̂ tð Þ, (t = 1,…, 24), and
these are shown in Table 2. The distinction between these Poisson time-varying
rates and the ones detailed under time-varying rates is that no distribution
assumption is made in the latter. This, we believe, may be useful in this context
since, there’s considerable variability in the observed data that is quite difficult to fit
using a parametric model.
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3.2 Model Validation

To ensure that the model is a valid representation of real ED, we compare the real
patient arrivals with the simulated patient arrivals. While real data contain 48,140
patient records, simulated data generated 45,688 patients.

In addition we analyzed the observed LOS and simulated as presented in Fig. 2
to compare the distributions of both real and the simulated LOS. The simulated
LOS’s mean is 245.46 min and its standard deviation (SD) is 144.88 min and
observed mean of LOS is 243.81 min (SD = 148.49 min). We performed the
following hypothesis for testing whether they come from the same statistical dis-
tribution or not.
Hypothesis

H0: Observed length of stay (LOS) and the simulated LOS follow same statistical
distribution.
H1: Observed LOS and the simulated LOS do not follow same statistical
distribution.

Since both real LOS and simulated LOS distributions do not fit a theoretical
statistical distribution, we applied Mann Whitney U test, a non-parametric statistical
test, for the stated hypothesis. As a result of the Mann Whitney U test, null
hypothesis cannot be rejected with the p value of 0.19.

Table 1 Processing time estimates used in the discrete-event simulation

Process Distribution
parameters (min)

Resource(s) Reference

Triage TRI A(4.68:8.54; 15) Nurse Hospital
data

Examination UNIF(5,8) & UNIF
(4,7)*

Physician, bed Expert
view

Extra test TRIA (10,60,110) Technician Expert
view

Stabilization time for acuity 4–5
patients

UNIF (5,80) Bed Expert
view

Nurse last evaluation for acuity 4–5
patients

TRIA (10,15,25) Nuxse, bed Expert
view

Major treatment UNIF (45,90) Physician, bed Expert
view

Minor treatment UNIF (5,10) Phvsician.
nurse, bed

Expert
view

Stabilization time for acuity 2–3
patients

UNIF (20,440) Bed Expert
view

Nurse last evaluation for acuity 2–3
patients

UNIF (20,40) Nurse, bed Expert
view

*For returning patients, UNIF Uniform Distribution, TRIA Triangular Distribution
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Ambulance 
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Triage
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Patient 

Stabilization
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Evaulation 

Extra Tests

Dismiss 2

Dismiss 1 Nurse Last 
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Patient 
Stabilization

17 % 83 %

50 %

 50 %
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Acuity 4&5

Extra Tests ?

Major or Minor ?

No

Minor 

Major

64,57 % 
Acuity 2&3

1 % 
Acuity1

Yes

No

Yes

Fig. 1 Conceptual patient flow in the ED with routing probabilities
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4 Results and Discussion

This study presented a discrete-event simulation that modeled patient arrival
patterns to an ED during different times of the year.

Each day is divided into three time intervals: 00:00–08:00, 0800–16:00 and
16:00–23:59; labeled Shift I, Shift II and Shift III, respectively. Given predetermined

Table 2 Time varying Poisson rates

Time (h) Poisson rate Stand.
deviation

Time (h) Poisson rate Stand.
deviation

1 3.08 0.501 13 7.83 0.807
2 2.50 0.456 14 7.83 0.808
3 2.00 0.408 15 7.50 0.790
4 2.O8 0.416 16 7.41 0.786
5 1.75 0.381 17 7.75 0.803
6 1.75 0.381 18 7.50 0.790
7 2.08 0.416 19 7.50 0.791
8 2.91 0.493 20 6.83 0.754
9 4.25 0.595 21 6.75 0.750
10 6.50 0.735 22 5.83 0.697

11 7.16 0.772 23 5.25 0.661
12 7.50 0.790 24 4.16 0.589

Fig. 2 Actual versus simulated LOS box plots
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(acceptable) patient waiting times in the range of 5–30 min in 5-min increments,
and patient acuity levels, we aim to determine the minimum number of service
providers in each of the three shifts. As the number of providers increases, the
expected waiting times will obviously decrease; however the total staffing costs
would likely increase, and in many cases staffing may not be feasible due to
available providers.

Simulation with Time Varying (Non-Homogenous) Poisson process: Consider
the hourly arrivals data with λ (t), t≥ 0 shown in Table 2. We simulated the ED for
one year using these arrival rates and we calculated the LOS and DTDTs for
different waiting time in the queue levels.

Table 3 summarizes the obtained DTDTs and LOS for each patient group in all
three shifts using these arrival rates in the simulation. Other than acuity 1 patients in
Shift I, reductions on both DTDT and LOS can be achieved while optimizing
staffing decisions. Using the validated simulation model varying wait-time goals in
different stations, we used Arena OptQuest to optimize staffing in the ED. Table 4

Table 3 DTDTs and LOS in each shift for different maximum allowable waiting times in minutes
in the queue (Wq

*) using Time Varying Poisson arrival process (λ (t), t≥ 0)

Wq
* (min) 5 10 15 20 25 30 Current

Shift 1-Door to Doctor Time (DTDT)

Acuity 1 0.05 0.14 0.14 0.14 0.14 0.14 0.90
Acuity 2–3 6.96 7.07 7.07 7.07 7.07 7.07 8.09
Acuity 4–5 9.46 9.43 9.43 9.43 9.43 9.43 10.62
Shift 1-Length of Stay (LOS)

Acuity 1 106.16 113.88 113.88 113.88 111.88 113.88 101.75
Acuity 2–3 298.25 298.1 298.1 298.1 298.1 298.1 303.53
Acuity 4–5 95.52 96.08 56.08 96.08 96.08 96.08 97.71
Shift 2-Door to Doctor Time (DTDT)

Acuity 1 0.03 0.04 0.04 0.04 0.21 0.19 1.10
Acuity 2–3 7.05 7.03 7.08 7.08 7.13 7.44 8.34
Acuity 4–5 9.41 9.54 9.54 9.54 9.59 10.01 9.85
Shift 2-Length of Stay (LOS)

Acuity 1 107.76 107.75 107.26 107.26 108.1 107.04 116.77
Acuity 2–3 298.91 298.61 298.57 298.57 299.32 299.99 303.4
Acuity 4–5 95.4 92.26 95.57 95.57 95.78 96.65 100.84
Shift 3-Door to Doctor Time (DTDT)

Acuity 1 0.01 0.01 0.01 0.1 0.1 0.1 0.56
Acuity 2–3 7.02 6.97 6.97 7.23 7.23 7.23 7.97
Acuity 4–5 9.38 9.51 9.51 9.85 9.85 9.85 10.72
Shift 3-Length of Stay (LOS)

Acuity 1 107.3 107.43 107.43 103.51 103.51 103.51 117.22
Acuity 2–3 298.76 299.45 299.45 299.82 299.82 299.82 307.45
Acuity 4–5 95.04 95.77 95.77 96.50 96.50 96.5 102.60
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summarizes the staff distribution of ED to achive these predetermined goals for
waiting time in the queues.

This study presented a discrete-event simulation that modeled patient arrival
patterns to an ED during different times of the year. A simulation-optimization
framework using the DES optimized staffing in three different shifts after
accounting for patient acuity levels in each shift which is the main contribution of
this study to the current body of literature.
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Table 4 Staffing
distribution: non-parametric
time-varying arrival rates

Wq
(mins.)

Shift I Shift II Shift III
N P T N P T N P T

5 3 2 3 6 3 6 7 3 6
10 3 2 3 6 3 6 6 3 6
15 3 2 3 6 3 5 6 3 5
20 3 2 3 7 2 5 7 2 5
25 3 2 3 6 2 5 7 2 5
30 3 1 3 6 2 5 6 2 5
N Nurses, P Physicians, T Technicians
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Patient Pathways Discovery and Analysis
Using Process Mining Techniques:
An Emergency Department Case Study

Waleed Abo-Hamad

Abstract Acute hospitals are currently facing major pressures due to rising
demand, caused by population growth, ageing and high expectations of service
quality. Simulation studies have been used to overcome these challenges and to
drive improvements. However, the majority of these studies derive their process
models manually which is not only unrealistic but also time-consuming. Based on
process mining, this paper presents a methodology to analyze the complexity of
patients flow within an emergency department. Based on patients event log, process
mining techniques are used in this paper to discover the actual patient pathways;
understand the high variance in patient pathways taken by diverse groups of
patients; and gain insights into bottlenecks and resource utilization. The work is a
step forward towards minimizing the latency in the decision making process in such
complex healthcare systems.

Keywords Emergency department ⋅ Patient pathways ⋅ Process mining

1 Introduction

Health-care managers are currently under constant pressure to control rapidly
escalating expenses, while still responding to growing demands for both high-class
patient service levels and medical treatment. Resolving such challenges requires a
consistent understanding of health-care systems, which can be an overwhelming
task, given the high levels of uncertainty and interdependence. Overcrowding in
emergency departments (EDs) has become a significant international crisis that
negatively affects patient safety, quality of care, and patient satisfaction [5, 7, 8, 16].
The research on healthcare system efficiency improvement has attracted much
attention, in which Discrete Event Simulation (DES) based approach appears to be a
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dominant tool. Efforts to develop simulation models have advanced since the late
1980s when simulation was used to investigate the impact of key resources on
waiting times and patient throughputs [15], and it has since been used to study the
effect of a wide range of health interventions on health-care processes’ performance
[3, 4, 11, 12].

In spite of these advances in analyzing and improving healthcare processes, new
approaches are still needed for two reasons. First, the majority of reported studies
are not flexible and cannot be adapted or reused [9]. Second, due to the complexity
of healthcare process, it is challenging to get a precise view of the patient flow in
the health system with enough details. Therefore, the majority of DES studies
develop the process model from observations which is not only unrealistic but also
time-consuming. Process models are the core component of any DES projects;
therefore, it is essential for any successful DES project to develop process models
that are reusable and close reflection of reality. Using process mining mitigates
these issues by automatically discover process models from event logs [17].
Through the application of process mining techniques, healthcare organizations can
discover the actual patient pathways that are conducted in reality [14], understand
the high variance in clinical pathways taken by diverse groups of patients, and gain
insights into bottlenecks and resource utilization [13].

As process models form the foundation for a simulation model and based on the
abovementioned merits, this paper demonstrates how process mining can be applied
to support key modeling efforts by the discovery of process models from historical
event. Process mining techniques are used to analyze the event log from an Emer-
gency Department (ED), identify the critical resources and performance bottleneck.

2 Methodology

2.1 Project Background

The hospital studied in this paper is an acute, public, voluntary, and adult teaching
hospital that holds a unique place in the delivery of healthcare not only to the
community of North Dublin but also to the rest of Ireland. This 570-bed hospital
provides primary, specialized, and tertiary healthcare services, with a 24 h
‘‘on-call’’ ED which services over 55,000 patients annually. According to the task
force report in 2007, the overall ED physical space and infrastructure is inadequate.
Additionally, the hospital is operating at approximately 99% occupancy with
resultant difficulty in accommodating surges in numbers of ED admissions. This is
often aggravated by delays in patients transfer to critical care (ICU/HDC) beds.
Consequently, the hospital is not compliant with volume and wait time targets (6-h
patient experience time target). A detailed simulation model for the ED was
developed in [1, 2] and a number of improvement strategies were proposed to
achieve this target. Although these strategies were effective, the model was not
flexible to accommodate the constant changes in patient care pathways and to sustain
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improvement efforts. In order to overcome these issues, the process model of the ED
(that was developed manually) has to be updated to capture the changes in patient
flow. Following the manual process of developing and updating the ED process
model would take 6–8 weeks [1, 2]. Given the fast changes in healthcare process, by
the time the model is completed the process model will not be reflective. Therefore,
in order to minimize the latency between the occurrence of events and decision
making, process mining techniques were applied to automatically discover patients’
pathways from historical data. A collaborative project with the hospital was estab-
lished in order to achieve the following objectives: (1) discover the actual patient
pathways that are conducted in reality; (2) understand the high variance in patient
pathways taken by diverse groups of patients; (3) gain insights into bottlenecks and
resource utilization; and (4) minimize the latency in the decision making process.

2.2 Dataset and Methods

A real-time patient tracking information system was used to track the patient’s
journey within the ED. A 1-year historical data with anonymous patients’ records
have been provided by the hospital managers. The dataset was provided in an event
log structure with a total of 229,971 event logs representing 40,777 patients. Each
log in the table represents an event (i.e. one process stage of the patient journey in
the ED) with the following attributes (patient ID, Triage Category, Presenting
Complaint, Date of Birth, Gender, Event ID, Tracking Step Name, Tracking Step
Date Time, Location, By (Staff)). Events with the same name, patient ID and
timestamp were removed. This resulted in 210,180 event logs.

Due to the unstructured nature of ED processes, the fuzzy miner [10] is used in
this paper to discover the ED patient flow and to assess the variability of the flows
within the process. The fuzzy miner allows to observe complex processes at dif-
ferent levels of granularity. This is achieved by applying two fundamental metrics:
significance and correlation [10]. The significance metric assesses the relative
importance of a precedence relation between two event classes, i.e. the more often
two event classes are observed after one another, the more significant their prece-
dence relation. On the other hand, the correlation metrics indicates how closely two
events (i.e. activities) are following each other. Therefore, fuzzy mining could
reduce and focus the displayed event classes by applying the two metrics on the
discovered process map to achieve different levels of aggregation and abstraction.

3 Patient Pathway Discovery and Analysis

The main flow unit for the ED is the patient. A flow unit can be defined as an entity
that enter the system, where various activities are performed before exiting the
system. The event log for patients was analyzed to extract patients’ characteristics
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and types. Upon their arrival, patients are assigned a clinical priority (triage
category) according to the Manchester Triage System (MTS) that is widely used in
UK, Europe, and Australia [6]. The MTS uses a five level scale for classifying
patients according to their care requirements; immediate, very urgent, urgent,
standard, and non-urgent. Patients were grouped based in their triage category.
Immediate and very urgent patients represent 15%, urgent patients (triage category 3)
represent the largest group of attendees to the ED annually (59% average), while
standard and non-urgent patient 26% of all patients. As advised by ED consultants,
the analysis of these patients’ groups are critical as each group of patients can have a
different journey within the ED and hence a different pathway.

3.1 Patient Pathway Discovery

Themain building block of patient pathways are the activities that patients go through
their journey in the ED. Twenty-two different activities within the ED were identified
from the event log data. The fuzzy miner was then applied on the whole event log to
construct the first top-level process map of the overall ED (Fig. 1a). The resulted map
is too complex and is not interpretable due to the high variances in patients’ pathways.

This confirms the perception of the complex nature of patient journeys within the
ED, there will always be patients presenting to the ED with a unique characteristic

(a) ED process model with all 
activities and paths 

(b) The process model with main 
activities and paths

Fig. 1 The discovered patient flow model of the emergency department
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that would require the patient to follow a unique care pathway. Furthermore, this
complexity is what doctors and nurses deal with on a daily basis and it is one of the
main reasons they do not believe that system engineering techniques can contribute
to understand the complexity of patient flow. However, the fuzzy miner allows to
observe complex processes at different levels of granularity. This is achieved by
applying two fundamental metrics: significance and correlation. The significance
metric assesses the relative importance of a precedence relation between two event
classes, i.e. the more often two event classes are observed after one another, the
more significant their precedence relation. On the other hand, the correlation
metrics indicates how closely two events (i.e. activities) are following each other.
Therefore, fuzzy mining could reduce and focus the displayed event classes by
applying the two metrics on the discovered process map to achieve different levels
of aggregation and abstraction. The fuzzy process miner was therefore applied on
the data to show the main highway paths for patients and to hide less frequent paths
(Fig. 1b). The number inside the rectangle shows how many times an activity has
been executed. For instance, activity ‘Doctor Seen’ occurred 31,571 times.
The number on the arc represents the co-occurrence frequency between any two
activities. For example, the co-occurrence frequency between ‘Doctor Seen’ and
‘Referred for Admission’ is 7,205. Due to excluding low frequent paths there are
differences between the numbers of activities shown on incoming arrows and
activity boxes on the process maps. Further analysis of this model revealed that
there were 1,984 different patient pathway patterns (Table 1).

Over 60% of these patterns are one-off paths and only 31 of these patterns
account for 80% of ED patients. Therefore, the remaining 1,951 patterns, which
accounts to 20% of patients, were filtered out in order to reflect the common
behavior of the ED. The fuzzy miner was applied again on the resulted 31,447
patients to drive final top-level process map of the ED (Fig. 2). The most followed
paths are shown with thick arcs between activities. However, the analysis of
exceptional pathways (paths with very low frequency) can give deep insights for
medical professionals regarding the main factors behind these patterns.

3.2 Performance and Bottleneck Analysis

By considering the timestamp of events in the dataset, the ED performance and
bottlenecks can be identified and analyzed (Fig. 3). The numbers on the arcs rep-
resents the waiting time between any two activities. The average length of stay
(LOS) for all patients from arrival to departure (whether discharged or admitted to
the hospital) is 9.1 h which is 3 h above the national target of 6-h average length of
stay (LOS) in Ireland. However, the waiting time for admitted patients is 14 h on
average. Patients have to wait 3.3 h on average to be seen by a doctor and 5.1 h
afterwards to be discharged from the department. The main bottlenecks in the ED
are the “Seen by Doctor” and “Patients waiting admission” activities.
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To gain a deeper understanding of the process flow of patients and the causes of
these bottlenecks, the process model was analyzed at a more fine-grained level. The
“Triage Category” attribute was used to divide patients into three groups; Imme-
diate and very urgent, non-urgent and standard, and urgent patients. The process
map of each patient group was constructed using the fuzzy miner and pathway
patterns that reflect the common behavior for each group was analyzed (Fig. 4).
There are obvious variances in the associated pathways for patients with different
urgency categorization (i.e. triage). The first patient groups (Immediate and Very
Urgent) represents 15% of all patients with the majority of them have been admitted
to the hospital with an average waiting time of 13.7 h, for the admission process to
be completed (Fig. 4a). While 26% of all patients are Standard and Non Urgent
patients whom have a shorter pathway with a discharge outcome and 5.1 h average
length of stay. The “Did not Answer” activity for this group represents patients who
left the ED after being triaged without waiting to be investigated by a physician
(whether a doctor or advanced nurse practitioner) (Fig. 4b).

Fig. 2 The top-level process map of patient pathways
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Fig. 3 Performance analysis of the top-level process map

(a) Immediate & Very Urgent         (b) Standard & non-Urgent                   (c) Urgent patients 

Fig. 4 Performance analysis for patients with different triage categories
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Urgent patients represent almost 60% of all patients with 10.1 h average LOS.
This group are presented to the ED with a wide range of complaints with 27% are
referred for admission and the remaining are discharged with an average waiting
time of 5.2 h (Fig. 4c). The insights from this analysis enabled the ED decision
makers to identify the bottlenecks for each group of patients and the challenges that
they need to address.

3.3 Staff and Resources Analysis

Two types of resources were provided for each event; location and staff type.
Therefor resource requirement was analyzed for different activities in patients’
pathways (Table 2).

The resource analysis gives deep insights regarding the gap between the
guidelines that should be followed and what is actually happening. For example, the
triage activity should take place in the triage room by a registered nurse (RGN).
However, the analysis reveals that 68% this activity takes place in the triage room
and 77% of the times is performed by the RGN. This is a clear evidence of the
overcrowding of the ED and also quantify how fare this activity from the guide-
lines. Similarly, the “Doctor seen” activity is performed by senior hospital officer
(SHO) (58%) and registrars (20%) in the Majors area in the ED (55%) and in the
Resuscitation room (18%). This highlights the actual time spent by doctors in this
activity and the actual locations where this is happening. These insights helped the
ED managers to understand the actual allocation of staff and resources within the
ED and to identify the gaps between best practices and the actual performance.

4 Discussion and Conclusion

The different views of the analysis provided in previous sections (patient pathways,
performance and bottlenecks, and resources) enabled the ED managers in the
hospital partner to discover the actual patient pathways that are conducted in reality,
understand the high variance in patient pathways taken by diverse groups of
patients, and gain insights into bottlenecks and resource allocation and utilization.
In general, healthcare processes are highly complex, dynamic, and ad hoc in nature.
Therefore, there is a need for techniques that can cope with the intricate complexity
of healthcare systems. Healthcare information systems generates event log data that
track patient-care processes as they take place are a valuable source of data for
analyzing and studying these processes. Based on these event logs, process mining
techniques were used in this paper to discover patients’ pathway patterns that are
consistent with the observed dynamic behavior. Therefore, a more accurate process
model for patient journey were developed and hence more adequate decision
support. A current project with the partner hospital is in progress in order to
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integrate the process mining engine with the Hospital Information System to
provide a real-time tracking of the ED processes and to minimize the latency in the
decision-making process.
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A Decomposition Approach for the Home
Health Care Problem with Time Windows

Semih Yalçındağ and Andrea Matta

Abstract Optimization tools are necessary to efficiently plan service delivery for

patients at home in the context of Home Health Care services. In the scientific lit-

erature, Periodic Vehicle Routing Problem with Time Windows (PVRPTW) is pro-

posed to address the assignment, scheduling and routing processes with time win-

dows. However, PVRPTW is computationally difficult and not viable for large-size

problems. Thus, a practical approach is proposed to decompose the problem. Time

windows are considered at the assignment level using a probabilistic model with-

out the need of solving the routing problem. Mixed integer mathematical program-

ming models are proposed and solved by CPLEX solver. Numerical experiments

are executed to validate the performance of the proposed models with respect to the

PVRPTW.

Keywords Home health care ⋅ Decomposition ⋅ Periodic vehicle routing

problem ⋅ Time windows

1 Introduction

Home Health Care (HHC) services aim at satisfying people health and social needs

at their home by providing appropriate and high-quality health and social services. In

this work we mainly focus on the assignment, scheduling and routing problems of the

HHC services. The assignment problem is used to determine which operators will

deliver the care service to which patients. The scheduling problem determines the

days in which operators will visit the assigned patients with the use of a pattern struc-

ture (care plan). The routing problem specifies the sequence in which the patients are
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visited by the assigned operator on the assigned day. In the HHC literature these prob-

lems are modeled and solved via simultaneous or two-stage approaches [7]. In the

first approach, all the related decisions are held at the same time in a single model,

whereas in the latter one, the decisions are considered sequentially with two models.

The HHC literature on these problems is analyzed and discussed in a recent review

paper of Fikar and Hirsch [4]. Here we present a short list of some of the related

existing works. Single period simultaneous approach are presented in [1, 5]. Only

few works on the simultaneous approach are developed within the multiple planning

period framework [2, 6]. As for the two-stage approach, only few works are available

for both planning period alternatives [7, 8]. However, time window constraints are

not taken into account in none of these decomposition based models.

Although the simultaneous approach is theoretically the best alternative,

PVRPTW is a computationally difficult problem [3]. Since the efficiency of two-

stage approaches has already been shown in the previous works, in this paper a

new one based on the work of Yalçındağ et al. [7] is developed to decompose the

PVRPTW. In this approach, since the assignment process is held independently from

the routing process, exact visiting sequences of patients are not available. Thus, the

assignment decisions might result in infeasible operator routes due to the possibility

of overlapping of visits as the result of the time window constraints. To address this

problem, in the assignment stage, a goal programming model is proposed to prefer-

entially balance the utilization among operators and then avoid overlapping of visits.

Time windows are considered at this level by using a novel probabilistic model with-

out having the exact visiting sequences. The consideration of time windows at the

assignment level via probabilistic method represents the main contribution of this

work as well as the formulation of the goal programming model.

The rest of the paper is organized as follows. Problem definition is presented in

Sect. 2. In Sect. 3, the two-stage approach and probabilistic estimation method are

presented. Computational analysis for the preliminary results are reported in Sect. 4.

Finally, concluding remarks and future research directions are presented in Sect. 5.

2 Problem Definition, Assumptions and Notation

The assignment problem is used to assign a set of operators to a set of patients while

taking into account the care plans of each patient in the planning horizon W which is

assumed to be composed of multiple planning periods (i.e., a week). The scheduling

problem determines the days in which operators are planned to visit the assigned

patients via pattern structure. Lastly, the routing problem specifies the sequence in

which the patients are visited by each operator.

In this paper, we consider a complete directed network G = (N ,A ) that have

n nodes in the set N = {1,… , n}, where each node j corresponds to a patient. We

also have an additional node (node 0), which is used to denote the health care center

of operators. For each patient, a care plan qj is assumed to be known denoting the

the number of visits required by patient j in the considered planning horizon W .
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In particular, each patient is assumed to be visited according to the associated time

windows where earliest start time and latest finish time for each day d (d ∈ W =
{1,… ,W}) are represented by ESTd

j and LSTd
j respectively.

We consider that all the processes are held within a single category of operators

(nurse or doctor) with same professional capabilities (skills). Models are developed

under continuity of care where only one operator, i, from the set of all operators, O ,

can be assigned to each patient, j. Each operator is characterized by a deterministic

daily capacity, ai, which is the maximum amount of regular working time according

to his (her) working contract.

As described before, scheduling decision are taken with the use of pattern con-

cept. Patterns are a priori given possible care plans that are used to satisfy the care

requests of patients by selecting the most appropriate one from set P . For example,

if a patient requires two visits in a week, visits can be provided according to the pat-

tern Monday–Wednesday or Tuesday–Thursday. For each pattern p ∈ P , we define

p(d) = 0 if no service is delivered at day d whereas it is p(d) = 1 if a visit is provided

according to pattern p on day d.

In the following sections further notations and assumptions are described with

the proposed two-stage approach and the probabilistic method.

3 Two-Stage Approach

When assigning patients to operators, fair allocation of tasks among operators is the

primary objective, which is used to ensure equity among operators and improve their

satisfaction. The utilization variation between operators is taken as a measure for the

fairness of the task allocation.

Since routes of operators and the corresponding visiting sequences are not known

in the assignment level, constructing routes in the second stage with the use of assign-

ment decisions might not be feasible due to the time window constraints (i.e., two or

more visits might overlap). To this end, a good strategy to mitigate this risk would

be to minimize the number of visits that overlap in the same period. Hence, in the

assignment stage, a goal programming approach (with 2 steps) is adopted to prefer-

entially balance the utilization among operators and then avoid overlapping of visits

to reach the hierarchical optimization goals. For the latter case, a new probabilistic

approach is developed and integrated within the assignment stage.

3.1 Assignment Model Step (I): Workload Balancing

The considered assignment problem with the scheduling decisions consist in match-

ing operators with patients, and patients with patterns, in a way that the utilization

rates of operators are balanced. Minimization of the maximum daily operator uti-

lization strategy is used to pursue the workload balancing.
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The following mathematical formulation is a slightly modified version of the one

presented in [7].

min m (1)
∑

i∈O
uij = 1 ∀j ∈ N (2)

∑

p∈P
zjp = 1 ∀j ∈ N (3)

∑

i∈O
udij =

∑

p∶p(d)=1
zjp ∀j ∈ N ,∀d ∈ W (4)

udij ≤ uij ∀j ∈ N ,∀d ∈ W ,∀i ∈ O (5)

∑

i∈O

∑

d∈W
udij = qj ∀j ∈ N (6)

Did =
∑

j∈N
(𝛿j + 𝜏j) ⋅ udij ≤ ai ∀d ∈ W ,∀i ∈ O (7)

Did

ai
≤ m ∀d ∈ W ,∀i ∈ O (8)

uij ∈ {0, 1} j ∈ N , i ∈ O (9)

udij ∈ {0, 1} j ∈ N ,∀d ∈ W , i ∈ O (10)

zjp ∈ {0, 1} j ∈ N ,∀p ∈ P (11)

where variable uij is a binary variable to indicate whether the operator i is assigned

to the patient j or not. Similarly, the decision variable udij is also a binary variable

to indicate if the operator i visits patient j on day d or not. The decision variable zjp
takes the value 1 if the pattern p is assigned to patient j and 0 otherwise. The decision

variable Did is a continuous variable and is used to calculate the total workload of

operator i, which is based on the estimated average travel time to reach patient j (𝜏j)

and service time required to care patient j (𝛿j). The auxiliary variable, m, is used to

estimate the daily maximum utilization rate of the operators.

Constraints (2) are the assignment constraints. Constraints (3) are the scheduling

constraints. Constraints (4) and (5) link together assignment and scheduling deci-

sions; specifically, constraints (4) guarantee that, at each day, exactly one operator

must visit a patient for whom a visit is scheduled on that day, while constraints (5)

guarantee that an operator can visit a patient only if she/he has been assigned to that

patient. Constraints (6) are used to guarantee that each patient is visited according to

the associated care plan. Constraints (7) control the daily workload of the operators

and ensures that the operator capacities are not exceeded. Constraints (8) express

the maximum utilization rate m over the days which is minimized in the objective

function (1). Finally, the remaining constraints define the domain of the variables.
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3.2 Assignment Model Step (II): Avoiding Overlapping of
Visits

In this step, we want to avoid the overlapping of visits when assigning patients to

operators. To reach this goal, it is proposed to minimize the maximum expected

number of visits among operators to prevent scheduling more than one patient in the

same time unit.

As we are using goal programming approach, maximum daily utilization level

from the first step is incorporated as a constraint in the second step. Since the math-

ematical model in this step is similar to the one of the previous step, here we only

present and explain the additional ones.

min h (12)

Constraints (2) − (7) (13)

Did

ai
≤ m∗ ∀d ∈ W ,∀i ∈ O (14)

∑

j∈N
Pj(t) ⋅ udij ≤ h ∀d ∈ W ,∀t ∈ T ,∀i ∈ O (15)

Constraints (9) − (11) (16)

In constraints (14), m∗
is a parameter expressing the minimum value of the max-

imum utilization among operators that is obtained from the first assignment step. In

constraints (15), Pj(t) denotes the probability of patient j to be visited by an operator

in period t, with T = {1,… ,T}, denoting a time unit inside the planning horizon.

Hence, constraints (15) calculate the maximum expected number of visits of oper-

ators which is minimized in the objective function (12) to avoid overlapping visits.

In the following section, an analytical method for estimating the expected number of

visits is provided. In other words, details for the derivation process of the parameter

Pj(t) are presented.

3.3 An Analytical Method to Estimate the Expected Number
of Visits

As previously discussed, time window for a patient is defined as the time between

the earliest start time and the latest end time of the service. As patients should be

visited within their time windows, assigning two visits at the same period might

create an infeasible solution. This situation might be highly observed in the two-stage

approach as the result of unavailable visiting sequences of patients at the assignment

level. A good strategy to mitigate this risk would be to minimize the possibility of

overlapping two or more visits at the same period. For this reason, the maximum

expected number of visits per period per operator is minimized at the 2nd step of the
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assignment stage. However, estimating the number of visits assigned to an operator

in a time period is not an easy process.

In order to estimate the expected number of visits for operators, we firstly have to

calculate the probability that a patient will be served at period t. It is also assumed

that each choice to start the service in the time window is equally likely to occur. In

the generalized case, time horizon is divided into T time slots. Time slot associated

with the earliest start time (EST) of the service in the time window is expressed as l
and time slot corresponding to the latest start time (LST) of the service is expressed

as r−𝛿+1. In particular, here we also denote the earliest (EET) and latest (LET) end

times of the service as l+ 𝛿 − 1 and r respectively. As defined previously P(t) is the

probability of the patient to be visited at period t and 𝛺 is the set containing all time

slots at which the service can start from in the time window (for simplicity patient

index j is not included). Accordingly, here we also define the set 𝛺t containing all

time slots at which the service occurred in period t can start from, 𝛺t ⊆ 𝛺. Since no

other information is available, the distribution of the starting time can be assumed

to be uniform with:

P(t) =
|𝛺t|
|𝛺| , t ∈ [l, r] (17)

For time window [l, r], 𝛺 = [l, r−𝛿+1] and there are |𝛺| = r− l−𝛿+2 possible

service starting times. For all the services that can be delivered in the time window,

earliest start time of the service cannot be earlier than EST. Hence, the earliest start

time for the service being delivered at period t is max{t − 𝛿 + 1, l}. Also, the latest

start time (LST) for the service being delivered at period t is min{t, r}. In conclusion,

when the service is being delivered at period t, 𝛺t = {max{t−𝛿+1, l}, ...,min{t, r−
𝛿 + 1}}. Correspondingly |𝛺t| equals to min{t, r − 𝛿 + 1} − max{t − 𝛿 + 1, l} + 1
with the probability for the service occurred at period t as

P(t) = min{t, r − 𝛿 + 1} − max{t − 𝛿 + 1, l} + 1
r − l − 𝛿 + 2

, t ∈ [l, r] (18)

Depending on the service time interval, we can discuss two different cases: 𝛿 ≤
r−l+1

2
and 𝛿 >

r−l+1
2

. In the first case, the inequality l+ 𝛿 − 1 < r − 𝛿 + 1 is satisfied.

Thus, the EET is earlier than LST . In this first case (i.e., 𝛿 ≤
r−l+1

2
), the time window

[l, r] is divided into three intervals with EET and LST as the break points. These

three intervals are [l, l + 𝛿 − 1], (l + 𝛿 − 1, r − 𝛿 + 1] and (r − 𝛿 + 1, r]. When the

service is operated before EET , by considering t ≤ EET = l + 𝛿 − 1, we can obtain

max{t − 𝛿 + 1, l} = l. On the other hand, if the service is operated by considering

t ≤ LST = r − 𝛿 + 1, we can obtain min{t, r − 𝛿 + 1} = t. Hence, we can conclude

that the possible service starting choices can only be in space [l, t]. Therefore, the

probability for the patient to be visited at period t before EET is:

P(t) = t − l + 1
r − l − 𝛿 + 2

, t ∈ [l, l + 𝛿 − 1]. (19)
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The same procedure can be easily adapted to the other intervals and also to the

case of 𝛿 >

r−l+1
2

. Due to limited space, we just provide the derived formula. When

𝛿 ≤
r−l+1

2
, the probability for the patient to be visited at period t is:

P(t) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

t−l+1
r−l−𝛿+2

, l ≤ t ≤ l + 𝛿 − 1
𝛿

r−l−𝛿+2
, l + 𝛿 − 1 < t ≤ r − 𝛿 + 1

r−t+1
r−l−𝛿+2

, r − 𝛿 + 1 < t ≤ r
0, t < l, t > r

When 𝛿 >

r−l+1
2

is considered, the probability for the patient to be visited at period

t is:

P(t) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

t−l+1
r−l−𝛿+2

, l ≤ t ≤ r − 𝛿 + 1
1, r − 𝛿 + 1 < t ≤ l + 𝛿 − 1
r−t+1

r−l−𝛿+2
, l + 𝛿 − 1 < t ≤ r

0, t < l, t > r

3.4 Routing Model

At the routing phase (in the 2nd stage), several independent periodic TSP (PTSP)

models (as the number of operators) with time windows are solved on a subgraph

(G = (N ′
,A ′)) induced by the patients assigned to the considered operator (accord-

ing to the decision provided in the second step of the first stage).

The objective function is set as to minimize the maximum utilization among days

as in the first step of the assignment problem. Considered model is obtained by mod-

ifying the PTSP model that is used in the work of Yalçındağ et al. [7] and adding the

following time window constraints.

sdj′ + 𝛿j′ + trjj′ −M(1 − xdj′j) ≤ sdj ∀(j′, j) ∈ A ′
,∀d ∈ W (20)

sdj ≥ ESTd
j ∀j ∈ N ′

,∀d ∈ W (21)

sdj + 𝛿j ≤ LETd
j ∀j ∈ N ′

,∀(j′, j) ∈ A ′
,∀d ∈ W (22)

Constraints (20) establish the relationship between the operator departure time

from a patient and its immediate successor where, sdj is the decision variable denoting

the service starting time of serving patient j on day d, xdj′j is the binary variable that

takes value 1 if the operator travels along the arc (j′, j) (in the arch set A ) on day d,

trjj′ is the travel time required to reach patient j from patient j′ and M is a very large

number. In particular, constraints (21) and (22) guarantee that time windows (the

earliest start time and the latest end time of the service) restrictions are respected.
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4 Computational Study: Preliminary Analysis

In this section we analyze and compare the proposed two-stage approach with the

simultaneous approach (PVRPTW). The simultaneous approach is also adopted

from the work of Yalçındağ et al. [7] by including time window constraints.

The models are tested under four instance groups, G-1, G-2, G-3 and G-4 which

are mainly differentiated based on the average operator utilization (around %40 and

%60) and time window to service time ratio (
TW
𝛿

). Each group is composed of 5

randomly generated instances having 15 patients and 2 operators in which locations

(randomly sampled from a uniform distribution between 0 and 20 in a square grid),

time windows and visiting requirement (within the planning horizon) of patients are

randomly decided. Table 1 presents the main instance features.

The models have been implemented in Python and solved with CPLEX for opti-

mality on a computer with double CPU Intel Xeon Processor E5-2699 v4 2.20 GHz

and 256 GB of RAM. All of the results obtained with four instance groups are pre-

sented in Table 2.

In the table, objective function values of the corresponding models are shown

with ZOFV . Obtaining ZOFV for the simultaneous approach is trivial, whereas for the

two-stage approach is calculated after the routing stage by taking the maximum daily

utilization rate of all the operators. Similarly, Utimax is used to show the maximum

overall utilization rate (through the whole planning horizon) among all the opera-

tors. Brng corresponds to the workload balancing value which is calculated by taking

the difference of the maximum and minimum overall utilization values (workload

ranges) of the corresponding operators. CPU times are reported as well where this

value in the two-stage approach corresponds to aggregated CPU times of all the

stages (including independent routing calculations). Lastly, %△PVRPTW corresponds

to the percentage differences based on the objective function values (ZOFV ) between

the simultaneous (PVRPTW) and the two-stage approaches.

The results in Table 2 show that, if time window is not too tight and operators

are not fully utilized (i.e., instances of G-1), two-stage approach is able to provide

feasible solutions for all the instances that are close to the ones of the simultaneous

case (on the average 2.8% difference according to the ZOFV values). It can also be

observed that the computation effort required by the proposed two-stage approach

is significantly low with respect to the simultaneous approach. Even in these small

scaled instances, it takes up 8880 s for the simultaneous approach to provide solu-

tions whereas these values do not exceed 22.11 s in the two-stage case. In particular,

workload balancing levels, Brng, of both approaches are very close to each other.

Similar observations can be also seen in the instances where
TW
𝛿

are smaller (i.e.,

instances of G-2). In this case percentage differences between two approaches based

on the objective function values is slightly higher with the average value of %5.1.

For the G-3 instances where operators are more utilized with respect to the pre-

vious ones and
TW
𝛿

value is over 3, almost all the observations are similar to the pre-

viously explained ones. In some instances, simultaneous approach requires higher

computation times to reach optimality (up to 143694 s) which again indicates the
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Table 2 Results with instances

Group Instance ZOFV Utimax Brng CPU (sec) %△PVRPTW

1 0.614 0.491 0.014 130.47

2 0.481 0.403 0.022 8133.56

G-1 3 0.468 0.423 0.085 8880.08

PVRPTW 4 0.391 0.354 0.012 139.86

5 0.420 0.406 0.098 82.56

1 0.646 0.519 0.033 1.44 5.12

2 0.497 0.427 0.065 1.30 3.33

G-1 3 0.468 0.408 0.045 1.63 0.00

Two-Stage 4 0.403 0.360 0.007 11.89 3.08

5 0.432 0.406 0.081 22.11 2.75

1 0.486 0.405 0.017 1972.28

2 0.381 0.340 0.009 43.53

G-2 3 0.398 0.369 0.020 14.77

PVRPTW 4 0.499 0.426 0.001 449.13

5 0.523 0.448 0.046 241.84

1 0.503 0.399 0.002 6.77 3.51

2 0.388 0.365 0.043 1.31 1.89

G-2 3 0.418 0.378 0.025 1.33 5.16

Two-Stage 4 0.536 0.425 0.005 1.42 7.28

5 0.563 0.439 0.001 2.09 7.67

1 0.697 0.571 0.051 143694.17

2 0.532 0.477 0.012 983.61

G-3 3 0.514 0.476 0.001 1626.97

PVRPTW 4 0.584 0.496 0.030 21001.91

5 0.593 0.491 0.015 123517.44

1 0.722 0.556 0.020 14.49 3.58

2 0.549 0.511 0.035 13.53 3.22

G-3 3 0.522 0.478 0.006 8.41 1.62

Two-Stage 4 0.594 0.493 0.026 2.47 1.71

5 0.603 0.484 0.011 9.97 1.75

1 0.611 0.545 0.041 1043.06

2 0.640 0.590 0.126 2418.23

G-4 3 0.638 0.538 0.022 13643.09

PVRPTW 4 0.504 0.463 0.026 1331.25

5 0.631 0.578 0.106 3074.69

1 Inf. Inf. Inf. N.a N.a

2 0.677 0.574 0.036 594.52 5.73

G-4 3 Inf. Inf. Inf. N.a N.a

Two-Stage 4 0.529 0.480 0.023 473.03 5.04

5 Inf. Inf. Inf. N.a N.a
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importance of using decomposition approach (i.e., two-stage approach). In partic-

ular, the maximum value for the expected number of visits for this case is on the

average (of 5 instances) 1.25. For some instances the two-stage approach results in

infeasibilities (denoted with Inf.) in the routes of operators. The reason behind this

observation is due to having higher operator utilization rates and relatively smaller

time window lengths that result in a large maximum value for the expected number

of visits (on the average 1.87).

We can conclude that proposed two-stage approach is generally very successful

to decompose the PVRPTW model and obtains solutions with good qualities and

low computation efforts. For the cases where infeasibilities are observed, relaxing

the m∗
value (in the 2nd step of the assignment stage) might be helpful.

5 Conclusions

In this work, we decompose the PVRTW problem into assignment, scheduling and

routing problems via two-stages where scheduling decision is incorporated both into

the assignment and routing stages. In the assignment stage, a goal programming

approach is constructed to preferentially balance the utilization among operators and

then avoid overlapping of visits. Time windows are considered at assignment level

using a probabilistic model without the need of solving the routing problem.

Results indicate that the performance of the proposed methodology where time

windows are included in the assignment stage via probabilistic model is inspiring

since in most of the cases the two-stage approach provides similar solutions as the

PVRPTW approach provides. However, the results, observations and conclusions

reported in this paper suffer from limited experimentation, thus they have to be veri-

fied on extended experiments with larger sized instances. To this end, a future activ-

ity is to develop heuristic algorithms to be able to solve large sized instances for

both approaches. In particular, the proposed methodology can also be extended by

considering lunch breaks, synchronization and precedence operations.
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Discrete-Event Simulation of an
Intrahospital Transportation Service

Maxime Painchaud, Valérie Bélanger and Angel Ruiz

Abstract Several types of transportation are required daily to support medical

activities and services to the patient at a hospital. Intrahospital transportation ac-

tivities range from transporting inpatients with limited mobility from one location

to another to moving samples from one care unit to the hospital laboratory. In prac-

tice, patient and material transportations are often managed independently. However,

dealing with both types of requests in a centralized framework can help improve the

system performance and ensure a better use of resources. It also results in a more

complex decision-making process. Given the high level of uncertainty related to in-

trahospital transportation, especially regarding patients, adequate tools are required

to help hospital managers plan, organize, and operate such a service. In this study, we

propose a discrete-event simulation tool to support the management of an intrahospi-

tal transportation service. The tool is validated in the context of a Canadian hospital,

and used to evaluate and compare the system performance under several decisions.

Keywords Healthcare ⋅ Simulation ⋅ Patient transportation ⋅ Decision-support

1 Introduction

On a daily basis, intrahospital transportation activities are required so that every per-

son, material, furniture needed to perform or support clinical activities are available

at the right place and at the right time. Transportation activities range from picking

mail from a care unit and delivering them to the correct department to moving pa-

tients in critical situations from their care units to the operating room. Intrahospital
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transportation activities can be divided in two main categories: patient transporta-

tion and material transportation. They both include a combination of planned and

unplanned requests with specific requirements, characteristics and expected delays.

Patient transportation encompasses the movement of patients with limited mo-

bility that require safe and supervised transports from one location to another for

diagnosis or therapeutic reasons. When transportation is needed between units in the

same building, patients are generally transported by trained personnel using stretch-

ers or wheelchairs. When transportation is required between buildings of a same

institution, patients are transported by ambulances, owned by the organization or

by an ambulance transportation provider. Patient transportation requests show sev-

eral characteristics, including the level of priority, the need for particular equipment

(oxygen tanks, etc.), and the need for cleaning after transportation. In addition, they

need to be planned carefully to ensure the comfort and well-being of the patient, an

efficient use of the granted resources (stretchers, vehicles, etc.), and a reliable med-

ical activities execution (e.g. schedule of operating theatres or magnetic resonance

imaging services).

Material transportation covers the movement of mail, laboratory samples, med-

ical items, laundry and furniture performed within a hospital to support a patient

clinical pathway. When transportation has to be performed in the same building,

material is generally transported by personnel on foot. When transportation is re-

quired between buildings, material are moved by cars or trucks, either owned by the

organization or by an external transportation service provider. Material transporta-

tion needs to be performed efficiently and without unwanted delay to ensure a smooth

clinical pathway.

Typically, patient and material transportations are managed independently, and

sometimes in a decentralized manner. Indeed, not all hospitals can actually rely on

a centralized transportation service, meaning that trained personnel, often nursing

assistants, are still responsible for performing transportation activities originating

from their care units or departments. While a centralized system offer potential for

improved performance, implementing and operating a centralized transportation ser-

vice that deals with both types of requests yields a complex decision-making, includ-

ing the number of resources needed to provide such a service, the schedule of the

personnel, and the policy that rules the assignment of requests to porters. Given the

high level of uncertainty, especially with respect to patient transportation, it is im-

portant to provide decision makers with adequate tools to assess the impact of each

decision on the system performance.

In this paper, we present a generic discrete-event simulation tool to support the

management of a centralized intrahospital transportation service. We focus on a

transportation service that operates within the same building and is responsible for

the transportation of patients as well as the transportation of small medical items,

mail and laboratory samples. In the first part of this paper, the intrahospital trans-

portation process, from the initial request to the release of a porter, is described,

followed by a short literature review. The proposed simulation model is then pre-

sented and computation experiments are reported along with some results. Finally,

a discussion on future research concludes the paper.
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2 Intrahospital Transportation Process

This paper focuses on an intrahospital transportation service providing both the

transportation of patients and the transportation of material, including small medical

items, mail and laboratory samples. Such a transportation service receives several

requests daily, mostly unplanned requests with several characteristics and levels of

priority. When a specific clinical activity, e.g. X-ray scans, needs to be performed,

a nurse or a clerk from the patient’s care unit generally sends the appointment re-

quest to the corresponding department. The latter plans the activity and informs the

care unit of the expected schedule. At the right moment, a nurse or a nurse assistant

prepares the patient, and if needed, sends the transportation request, which will be

assigned a priority level. When a porter is dispatched to serve a request, the porter

moves to reach the patient, and transports him to his final destination. The porter is

finally released. When the patient is ready to go back, a transportation request is sent

again to the transportation service and a similar process is followed.

In the case of material transportation, a similar process is also followed except that

only one request, from the origin to the destination, is needed. Figs. 1 and 2 present

an overview of the transportation process from the initial request to the release of a

porter.

The design, planning and management of a centralized transportation service

involve several decisions, which can be classified according to the classical three

decision-making levels: strategic, tactical and operational. Strategic decisions in-

clude the choice of services to be provided, the hiring of staff, the definition of each

actor’s roles and responsibilities, and the choice of communication and informa-

tion system. The tactical level addresses decisions such as the working hours of the

transportation service as well as the scheduling of staff. Finally, operational deci-

sions, often taken in real-time, are concerned with short term decisions such as the

dispatching of requests. Each decision generally impacts each other, but more im-

portantly, they affect the system performance from the efficiency, patient experience,

quality of care and cost standpoints.

3 Literature Review

Logistics, including transportation, plays an important role in healthcare systems as

it ensures that everything or everyone that is needed to perform or support clinical

activities at the right place, at the right time. Facing a continuous pressure to deliver

high quality care at the least possible cost, healthcare organizations should not ne-

glect the improvement of transportation practices. Despite a growth in interest in the

past decade, research dedicated to hospital transportation, especially with respect to

patient transportation, remains limited. In this section, we review the main works re-

lated to intrahospital patient transportation. From a methodological standpoint, we

focus on papers from or close to the field of operations research. Table 1 summa-



236 M. Painchaud et al.

Fig. 1 Patient transportation process

Fig. 2 Material transportation process
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rizes the main studies reviewed. To categorize each article, we identify four main

characteristics: (1) the type of transport, (2) which decision problem the paper focus

on, (3) how the study deals with uncertainty, and (4) the methodology. Although not

presented in the table, it is important to mention that several constraints and char-

acteristics, such as the need for disinfection, the mix of vehicles or equipment, and

level of priorities, are generally incorporated into classical problems to account for

the specific aspects of intrahospital transportation.

As highlighted in Table 1, most studies focus on operational decision-making,

assuming decisions like the number of porters or teams and their work shifts as

already fixed. In particular, several studies address the problem of determining the

ambulance routes in the case of inter-building transportation. For intra-building

transportation, operational decisions that have been considered frequently are the

scheduling and the dispatching of requests to porters. In both cases, static and

dynamic versions of the underlying problems are studied, mostly in a determinis-

tic framework, assuming that all information about requests (e.g. the service time,

travel time, the duration of the corresponding appointment) is known when decisions

are taken, which is generally not the case in healthcare.

From a methodological standpoint, optimization models are generally proposed

and solved by means of heuristic approaches. In addition to optimization, Hanne et

al. [4] and Bowers et al. [2] also relied on simulation techniques to assess the im-

pact of using the proposed dispatching policies. Contrarily to previous studies, Hen-

shaw [5] adresses tactical decisions. Henshaw [5] developed a simulation model to

test several decisions such as adding porters at specific moments over a day.

In this paper, we aim to develop generic discrete-event simulation tool that will

provide a realistic representation of intrahospital transportation activities, allowing

the evaluation and comparison of several alternatives. One specific aspect of this tool

is that it will be flexible and generic enough to consider several types of requests in

an integrated manner and will allow the study of the interaction between several

levels of decision, including strategic, tactical, and operational decisions. In partic-

ular, as compared to the work of [5], the proposed simulation model will be able to

consider many dispatching strategies, ranging from simple heuristics to more sophis-

ticated optimization tools. We strongly believe that simulation provides a powerful

management tool to support decision-making at several points in a transportation

service lifetime, from its design to its continuous improvement.

4 Simulation Model

Simulation has been used for several years in healthcare to analyze, evaluate and

compare several types of decisions and scenarios. In this study, we propose a generic

discrete-event simulation tool to support the management of an intrahospital trans-

portation service with the aim of reducing patient wait time and improving the use of

resources. The proposed simulation model is built around five main components: the

input data, the demand and random variables generator, the simulation engine, the



240 M. Painchaud et al.

Fig. 3 Simulation architecture. [adapted from [7]]

decisions module, and the performance measures. Figure 3 illustrates the proposed

simulation framework followed by a short description of each of its components.

∙ Input data. Input data contains information about the hospital configuration as well

as the system itself. In particular, it defines each possible origin and destination,

along with their precision location. Input data also includes a matrix, which defines

times between each origin and each destination under normal operating conditions.

Finally, it comprises information related to the workforce, including work shifts

and breaks.

∙ Demand and Random Variables. Simulation models uncertain events using prob-

ability distributions. The demand and random variables generator samples these

probability distributions to determine specific values for uncertain events to be

used during the simulation execution. In the proposed simulation, the arrival of

calls and their origin/destination, the time spent by the porter at the origin and at

the destination, and the request priority level, are assumed to follow given proba-

bility distributions (see Sect. 5).

∙ Simulation Engine. The proposed simulation model is based on discrete-event

simulation (DES). The simulation includes two main types of entities, namely

the porters and the requests, both with their respective sets of possible states. The

simulation engine was developed based on the three-phase approach [10]. The lat-

ter allows the simulation clock to advance asynchronously from one event to the

next. The simulation engine works with a list of events sorted by their execution

time. Each time an event is executed, the system state is modified accordingly and

the simulation clock moves to the following event in the list. The three-phase ap-

proach distinguishes two types of events: bounded (B) and conditional (C). B-type

events are those that unconditionally occur at a given time, generated according
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to previous events. C-type events conditionally occur at a given time, depending

on the current system.

∙ Decisions module.During the simulation execution, some events trigger decisions.

Therefore, the simulator needs to reproduce as faithfully as possible the decision

processes carried out by operators or dispatchers, either based on current practices

or on potential ones.

∙ Performance measures. At the end of the simulation execution, performance mea-

surement is required to compare and analyse the tested scenarios. The performance

measures module records a complete history of the simulation, including all move-

ments and requests performed by each porter, and all the times at which the enti-

ties states changed. The simulation history is then used to calculate several perfor-

mance indicators allowing verification, validation and analysis [8]. Among others,

the patient wait time, the porters’ busy time, and the number of delayed activities

are computed.

The simulation model is implemented using a generic programming language

(Java) to allow more flexibility and easier integration of decision routines.

5 Computational Experiments

The proposed simulation tool is validated and used to test several improvement al-

ternatives in the context of a Canadian hospital. More precisely, the hospital under

consideration contains over 650 beds and performs more than 250,000 medical imag-

ing examinations, 500,000 surgeries, and 6,500,000 laboratory procedures yearly,

which will often result in transportation requests. Overall, the hospital centralized

transportation service, which operates 24/7, received approximately 385,000 trans-

portation requests also yearly. On average, the service performs 1,200 transports

daily on weekday and about 700 on weekend day, including both patient and ma-

terial transportation requests. Four levels of priority are actually considered by the

hospital, ranging from P1 to P4. The first three correspond to patient transportation,

P1 being the most urgent one, and the fourth one, P4, is used only in the case of mate-

rial transportation. Each level of priority is characterized by an expected delay or, in

other words, a due time. For instance, the hospital aims to serve all P1 requests right

away, P2 requests within 7 min, P3 requests within 20 min and P4 within 60 min.

Based on historical data, probability distributions were fitted to characterize un-

certain events (see Table 2). During the experiment, the simulation model can be

fed either by historical data or by values drawn from the uncertain event specific

probability distribution.

Once the number of porters and their schedule are fixed, transportation requests

need to be assigned to porter. The hospital transportation service currently uses a

specific software to support the real-time dispatching of requests. The latter considers

the priority level: each request having a given level of priority runs for a fixed delay

before being considered as a due request. When a porter completes a request, the due
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Table 2 Probability distributions

Distribution

Interarrival time Exponential (non-stationnary)

Origin Discrete

Destination Discrete

Priority level Discrete

Time at origin Triangular

Travel time Based on the distance matrix

Time at destination Triangular

Table 3 Computational results by work shift

S1 S2

Night Day Evening Night Day Evening

Nb. porters 7 19 6 8 20 7

Nb. transports 799 4268 1450 699 4319 1499

Transports/Porter 114 225 242 87 216 214

Busy time (%) 45 91 96 29 86 85

request with the higher level of priority is assigned. If there is no due request, the

closest one is assigned to the porter.

The objective of the current experiment is to verify and validate the simulation

model, and to show how this simulation model can be used to evaluate and compare

potential improvement solutions. For validation purpose, simulation runs that repli-

cate the current process of the hospital transportation service were performed, and

the results obtained were compared with historical data. Results indicate that the pro-

posed simulation model constitutes a faithful representation of the current situation.

Several scenarios with varying number of porters were then created to demonstrate

how this model can be used to evaluate and compare potential solutions. Tables 3

and 4 present some of the results obtained for two of these scenarios, which high-

light important issues. The first scenario presented includes 32 porters working each

week day (7 on night shifts, 19 on day shifts and 6 on evening shifts). As compared to

the first scenario, the second one includes one additional porter on each work shift.

Unsurprisingly, results presented in Tables 3 and 4 show that the service perfor-

mance increases with the number of porters. However, performance measures for

each priority level do not improve in the same proportion. When the number of

porters increases, the service provided for the most urgent patient requests (P1) im-

proves in a greater proportion. Then, the priority level that encounters the best im-

provement is P4, which corresponds to material transportation requests. Therefore,

increasing the number of porters seems to benefit more requests with low priority

level. This should be explained, at least partially, by the dispatching policies and the

concept of due request that rules it. This raises an important question, how to de-
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Table 4 Computational results by priority level

S1 S2

P1 P2 P3 P4 P1 P2 P3 P4

Nb. transports 19 2620 3472 406 19 2620 3472 406

Transports over

delay

9 946 1286 122 2 688 764 65

Av. wait time

(min)

1.4 6.2 30.2 85.9 0.2 4.4 12.4 27.3

termine the delay to attribute to each priority level? Our observations suggest that

the expected delay (or due time) influences significantly the overall performance as

it impacts the dispatching. Currently, the expected delay (or due time) is given as

a parameter in the software, but in practice, it is much more important than this.

The choice and definition of each priority level is an important issue that should be

further investigated.

6 Conclusion

The planning and management of a centralized intrahospital transportation services

involves many challenging decisions. Given the high level of randomness and dy-

namism with respect to the demand, the development of a simulation-based analysis

tool can be very useful to help managers in their decision-making process. In this

paper, we presented a flexible and generic discrete-event simulation model that can

represent all main operations related to intrahospital transportation activities. One

interesting aspect of this proposed tool is that it explicitly considers both patient and

material transportation requests, and can be adapted to incorporate easily more so-

phisticated dispatching policies. Computation experiments highlight the importance

of the definition of each priority level and the dispatching policy that rules the as-

signment of requests to porters, issues that should be further investigated.
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Appointment Overbooking and Scheduling:
Tradeoffs Between Schedule Efficiency and
Timely Access to Service

Yan Chen, Hari Balasubramanian and Yong-Hong Kuo

Abstract Appointment overbooking is one of the most popular ways to mitigate the

risk of no-shows. Although appointment overbooking can improve resource utiliza-

tion, it may also lead to adverse consequences such as increases in resource overtime

and patient waiting time. While the majority of research on appointment overbook-

ing focuses on the system performance within the session, our work aims to study the

tradeoffs between schedule efficiency and timely access to service. We integrate a

stochastic mixed-integer linear program, which assigns patients to appointment time

slots, into a queueing model, which evaluates the timeliness of access to service. Our

computational results suggest that when the session capacity is less than the appoint-

ment request rate, overbooking can greatly reduce appointment lead time and patient

abandonment rate and only slightly increases resource overtime and patient waiting

time. However, the benefits of overbooking become mild when the session capacity

is larger than the appointment request rate.

Keywords Appointment scheduling ⋅ Overbooking ⋅ Healthcare management

Stochastic programming ⋅ Simulation ⋅ Waiting time

1 Introduction

Scheduling of patients’ appointment requests has been an important subject for

healthcare service delivery and is critical for the efficiency of the appointment sys-
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tem. Due to the uncertainty arising from various components in an appointment sys-

tem (e.g., non-deterministic service time), the events and activities may not be ac-

tualized as planned and this problem creates challenges when designing an efficient

appointment schedule. When scheduling the appointment requests, one may need to

consider the interests of both the service providers (e.g., physicians) and the patients

[10]; a healthcare organization may wish that the patients have a shorter waiting

time (WT) for a better satisfaction with the service and the resources have a lower

idle time (IT) and overtime (OT) for a higher utilization and a lower operating cost.

However, the interests of the service providers and the patients can be conflicting; a

higher utilization of resources can lead to a longer patient waiting time.

The no-show phenomenon (i.e., patients not attending the scheduled appoint-

ments) has been observed in different types of healthcare units around the globe.

The unattended time slots increase resource idleness and, as a results, lead to lower

utilization and productivity. Furthermore, these no-show cases prevent patients from

accessing immediate medical services due to the long wait list. Different from the

time for physically waiting at a healthcare facility, this waiting time between the re-

ferral date and the appointment date is kind of “indirect”. In this study, we refer it

to the appointment lead time (LT). In practice, this appointment LT is of particular

importance and can be critical to an early diagnosis of diseases, which could re-

sult in more effective medical treatments. Therefore, such no-show phenomenon not

only is an issue regarding the profit or cost for a healthcare organization and patient

experience when attending their appointments, but also has a crucial impact on the

effectiveness of health services provided to patients. To mitigate its adverse impacts,

appointment overbooking is one of the most popular schemes suggested.

Although overbooking can reduce the resource IT and appointment LT, the over-

booked time slots can increase resource OT and patient WT (within the session) if

the patients show up more than expected. While the research on appointment over-

booking and scheduling is inclined to the performance of the appointment schedule

within the session, our paper aims to study the tradeoffs between the schedule ef-

ficiency (in terms of resource OT and IT and patient WT) and the timely access to

appointment (in terms of the appointment LT). In this paper, we integrate a stochastic

mixed-integer linear program (SMILP), which determines the optimal appointment

schedule within the session, into a queueing model, which evaluates the timeliness

of access to appointment with different levels of session capacity. (i.e., number of

patients scheduled per session).

2 Brief Literature Review

There has been vast research on appointment scheduling in healthcare settings; for

literature reviews or discussion, we refer the reader to Cayirli and Veral [2], Gupta

and Denton [7], and Ahmadi-Javid et al. [1].

Patient no-shows have been a prevalent and important issue for healthcare units

which offer appointment times slots for patients to access their services. Several stud-
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ies (e.g., [3, 8, 9]) suggest that patient no-shows have a great impact on appointment

system performance and is one of the most important factors that should be consid-

ered when designing the appointment scheme.

LaGanga and Lawrence [11] propose appointment overbooking to reduce the ad-

verse consequences of no-shows. They find that overbooking is more beneficial when

there are a larger number of patients, a higher no-show rate, and a less variated ser-

vice time. Muthuraman and Lawley [17] develop a stochastic overbooking model

to compensate for patient no-shows. They consider a setting where a schedule as-

signs patients to appointment time slots through a sequential call-in process and pro-

pose a sequential booking policy that is unimodal. Later, several extensions of their

work on sequential clinical scheduling have been studied, e.g., [4], [19] and [12].

LaGanga and Lawrence [11] develop an appointment scheduling and overbooking

model which trades off the benefit of servicing additional patients, reducing patient

WT costs, and clinic OT costs. Zacharias and Pinedo [18] consider the case that

patients have heterogeneous no-show probabilities and different weights, character-

ize features of optimal solutions, and develop a heuristic procedure for sequential

scheduling. Chen et al. [5] develop a simulation model to assess the effects of dif-

ferent overbooking schemes and conclude that overbooking may not necessarily in-

crease resource OT and the way of assigning overbooked patients does have a signif-

icant impact. According to Gupta and Denton [7], patients delays can be classified

into two types: direct (the time difference between arrival at the healthcare facility

and service start) and indirect (the difference between the time the request is made

and the appointment time). Most of these studies along this line of research consid-

ers direct patient WT, while indirect WT (i.e., appointment LT) has drawn relatively

less attention.

There are some studies which consider indirect WT. Liu et al. [14] consider pa-

tient no-shows and cancellation and propose dynamic policies for assigning an ap-

pointment date to each patient sequentially. Their objective is to maximize the long-

run average expected net reward. Liu and Ziya [15] consider that both panel size and

service capacity are decision variables and illustrate the effects of behavioral inter-

ventions to reduce no-show probabilities. Liu [16] studies the choice of appointment

scheduling window, where patient no-shows are present.

While there has been much research in the area of appointment scheduling and

overbooking, the majority of studies consider either the performance within the ses-

sion or the delay from the time the request is made to the appointment time. The re-

search that addresses the relationship between these two types of performance mea-

sures appears to be inadequate in the literature. In this paper, we aim to study the

tradeoffs between schedule efficiency and timely access to service.

3 Mathematical Models

Our methodology integrates a SMILP for an optimal assignment of patients to slots

into a queueing model for evaluation of appointment lead time. Our approach first
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computes optimal resource OT and IT and patient WT for different numbers of

patients scheduled per session, and these values will be used to calculate the key

performance metrics for the queueing model.

3.1 Optimization of Appointment Times Within the Session

We first present our mathematical model that optimizes the appointment schedule

within the session. This optimization model is based on the appointment scheduling

model with fixed-length time slots presented in [6].

The mathematical model requires the following sets and parameters:

n = the number of patients scheduled per session;

J = set of appointment time slots in the session;

N = set of patients, i.e., {1, 2, ..., n};

S = set of scenarios;

N1
s = set of patients who show up at the healthcare unit under scenario s;

N2
s = set of patients who do not show up at the healthcare unit under scenario s;
bj = beginning time of slot j;
dis = service duration for the ith patient under scenario s;

wOT
= penalty for each unit of resource OT;

wWT
= penalty for each unit of patient WT;

wIT
= penalty for each unit of resource IT; and

E = end time of the session.

In this model, the total number of patients scheduled per session, i.e., n, is fixed.

We do not impose any restriction on n and |J|. When n > |J|, overbooking is al-

lowed. We assume that all the patients are punctual. In other words, they arrive at

the healthcare facility according to the appointment times. Within a session, we con-

sider two dimensions of stochasticity for the appointment system: the presence of

each patient and his/her service duration. We adopt a deterministic-equivalent ap-

proach to model the uncertainty; i.e., the outcomes of the stochastic components are

realized under each independent and identically distributed scenario in the finite set

S. Under a scenario s, each patient i has a chance of not showing up, according to

the no-show rate, and, if the patient shows up, the service duration dis is realized via

random sampling from its probability distribution. If a patient i is not present under

scenario s, the value of dis is then set to 0. All scenarios are realized prior to solving

the optimization problem.

Our model determines the following decision variables:

xij =

{
1, if the ith patient in the schedule is assigned to the jth time slot;
0, otherwise

ai = appointment time of the ith patient in the schedule;

zstartis = start time of the service provided to the ith patient under scenario s;
zendis = end time of the service provided to the ith patient under scenario s;
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WTis = WT of the ith patient for receiving the medical service under scenario s;
ITis = resource IT between the ith and the (i + 1)th services under scenario s; and

OTs = OT of the resource under scenario s.

We aim to determine the optimal appointment times {ai ∶ 1 ≤ i ≤ n} in a session

such that the key performance metrics—resource OT and IT, and patient WT—are

optimized. Other decision variables act to ensure that the key events take place and

the performance metrics are measured properly.

Mathematical Model:

SMILP(n) ∶ minwOT
∑

s∈S
OTs + wIT

∑

i∈N,s∈S
ITis + wWT

∑

i∈N1
s ,s∈S

WTis

N1
s

(1)

subject to

ai =
∑

j∈J
bjxij ∀i ∈ N (2)

∑

j∈J
xij = 1 ∀i ∈ N (3)

ai+1 ≥ ai ∀i ∈ N∖{n} (4)

zstart1s = a1 = 0 ∀s ∈ S (5)

zstartis = ai +WTis ∀i ∈ N, s ∈ S (6)

zstartis + dis = zendis ∀i ∈ N, s ∈ S (7)

zstartis = zend(i−1)s + IT (i−1)s ∀i ∈ N∖{1}, s ∈ S (8)

zendns + ITns − OTs = E ∀s ∈ S (9)

ai, zstartis , zendis ,WTis, ITis,OTs ≥ 0 ∀i ∈ N, s ∈ S (10)

xij ∈ {0, 1} ∀i ∈ N, j ∈ J (11)

Objective (1) aims to minimize a weighted sum of the resource OT and IT and

average patient WT among all the scenarios. Constraints (2) assign the appointment

times to the patients. Constraints (3) ensure that exactly one time slot is assigned to

each patient. Constraints (4) ensure that the appointments are in chronological order.

Without loss of generality, Constraints (5) initialize the appointment time and ser-

vice start time of the first patient to the start time of the session. Constraints (6) and

(7) ensure that the patients are seen chronologically in the order in which they are

scheduled, start the services no earlier than their arrivals, and compute their WTs.

Constraints (8) measure the resource IT between the (i − 1)th and the ith patients.

Constraints (9) calculate the IT after the last appointment and OT of the resource.

Constraints (10) and (11) respectively impose non-negativity and integrality condi-

tion on the corresponding decision variables.

By solving SMILP(n), we obtain optimal {OTis, ITis,WTis ∶ i ∈ N, s ∈ S} so that

the average OT, IT and WT can be used for the queueing model in Sect. 3.2.
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3.2 Queueing Model for the Appointment System

In this queueing model, we consider a finite time horizon, discretized into sessions

{1, 2, ...,T} in which the patients are scheduled. We focus on the steady-state per-

formance and consider a large T such that the queueing model will run over many

successive sessions. Each session can accommodate at most C requests, i.e., maxi-

mum allowable appointments scheduled per session. For each session t, we assume

that the number of appointment requests Rt is a Poisson random variable with rate

𝜆, i.e., Rt ∼ Poi(𝜆), and if Rt > C, those requests which cannot be accommodated

for session t are scheduled for the earliest available session(s). Let Qt be the num-

ber of requests that have not been accommodated immediately after session t (i.e.,

those that have made a request but still are unable to access the service in session t or

earlier). Suppose that, between two consecutive sessions, each unaccommodated re-

quest in the wait list has a probability of 𝛼 that the patient will cancel the appointment

and leave the wait list and that each cancellation of appointment is independent of

each others. Thus, the number of requests in the wait list immediately before session

(t + 1), denoted by ̄Qt+1, is a binomial random variable, i.e., ̄Qt+1 ∼ Bin(Qt, 1 − 𝛼).
We have the following relationship:

Qt = ̄Qt + Rt − min{ ̄Qt + Rt,C} ∀t = 1, 2, ...,T (12)

To analyze the queueing model, we adopt a simulation approach which starts with

an empty system, i.e., ̄Q1 = 0. We set a warm-up period t0 such that the sessions on

or before t0 are excluded from the reported performance measures LT and patient

abandonment rate (AR). We approximate LT and AR with the following equations:

LT =
T∑

t=t0+1
Qt∕

T∑

t=t0+1
Rt (13)

AR = 1 −
T∑

t=t0+1
min{ ̄Qt + Rt,C}∕

T∑

t=t0+1
Rt (14)

Equation (13) is an estimate of LT based on Little’s law [13]. We note that if a pa-

tient leaves the wait list before the appointment date, LT is not defined for this patient.

We note that Eq. (13) is an overestimate of LT. In other words, it is a conservative

proxy of the actual LT.

For each session t, with SMILP(min{ ̄Qt + Rt,C}), OTt, ITt, and WTt can be pre-

determined. Therefore, the overall OT, IT, WT across the planning horizon can be

evaluated by the following equations:

OT =
T∑

t=t0+1
OTt∕(T − t0) (15)
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IT =
T∑

t=t0+1
ITt∕(T − t0) (16)

WT =
T∑

t=t0+1
(min{ ̄Qt + Rt,C} ×WTt)∕

T∑

t=t0+1
min{ ̄Qt + Rt,C} (17)

4 Computational Study

We conduct a computational study to examine the tradeoffs between schedule ef-

ficiency and timeliness of access to service. We consider a setting of the medical

imaging center presented in [6]. Currently, the medical center offers 12 appointment

slots for each session. Each session is of 240 min, i.e., E = 240, and each time slot

is of 20 min. We collected data from the medical imaging center about the appoint-

ment activities during the period of January to March, 2015. The dataset includes the

records about the date and time each appointment request was made, the scheduled

appointment date and time of the request, whether the patient showed up or not, and

the start times and end times of set up and service provided to the patient (if showed

up). In this computational study, we consider that the service duration is the total of

the set up time for the service and the duration of service provided to the patient. Dif-

ferent from [6] which presents the problem that patients did not fast as instructed such

that scheduled examinations could not be performed, we only consider the traditional

no-show definition (those who do not show up on the scheduled appointment dates).

The required information for our mathematical models is summarized in Table 1. In

this computational study, we adopt IBM ILOG CPLEX 12.6.2 as our mixed-integer

linear programming solver for solving SMILP(n) for optimal OT , IT , and OT for

different values of n. The weights in the objective function are chosen such that the

resource time is more valuable than the patients’: wOT = 6,wIT = 6, and wWT = 1.

We conduct our simulation experiments for the queueing model for the appointment

system, introduced in Sect. 3.2, on Microsoft Excel 2013. In the simulation exper-

iments, we run over 11,000 sessions and set the warm-up period to 1,000 sessions

(i.e., t0 = 1, 000 and T = 11, 000). We consider the cancellation rate 𝛼 = 0.01 and

evaluate the performance metrics for C = 10, 11, ..., 18.

We calculated from the data that the patient appointment request rate was 13.19

request per session. To analyze the performance metrics for different levels of patient

demand, we consider the empirical patient appointment request rate as the baseline,

and an increase and a decrease of 10% of this request rate. That is, we examine the

cases of which 𝜆 = 11.871, 13.19, and 14.509.

Figures 1, 2 and 3 respectively show the key performance metrics for 𝜆 = 11.871,

13.19, and 14.509. In the three figures, the primary vertical axis indicates the minutes

spent for average OT, IT and WT within a single session and the secondary vertical

axis denotes the number of sessions for appointment lead time and AR in percentage.

For each of these metrics, the lower the value, the better the performance it is. From
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Table 1 Summary statistics from empirical data

Random variable or

parameter

Mean (𝜇) Standard deviation (𝜎) Distribution

Examination time per

test (min.)

12.70 8.09 0.5 + 87⋅ BETA(2.3,

12.7)

Setup time for each

test (min.)

6.40 5.17 -0.5 + LOGN(7.01,

6.43)

No-show probability 0.176 - -

Fig. 1 Key performance metrics when 𝜆 = 11.871

the three figures, we observe the tradeoffs between schedule efficiency and timeliness

of access to service; as C increases, LT and AR decrease while OT and WT increase.

An interesting observation is that, the changes in the performance metrics appear to

be more significant when C < 𝜆. The reasons are that when C > 𝜆, it is less likely to

receive a sufficient number of appointment requests for filling all the C appointment

slots within the session and the wait list for accessing the appointment slots would be

kept at a short length (e.g., see LT at the points which C > 𝜆). In this case, increasing

C further from the request rate 𝜆 does not impact too much on the performance

metrics. Thus, the benefits of increasing C to a level beyond 𝜆 become mild and this

may lead to long resource OT and WT in occasional cases. We also observe that IT
decreases as C increases to a certain point where C is slightly greater than 𝜆; beyond

that point, IT increases again. The reason is that, for large C, it is less likely to form

a wait list and the idle time will be longer in sessions having new requests fewer than

expected. This suggests that C being too large may not necessarily reduce but may

increase IT .

Our solution methodology also facilitates to estimate the effects of different over-

booking levels for determining the right balance between schedule efficiency and

timeliness of access to service. Taking the current setting of the medical imaging
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Fig. 2 Key performance metrics when 𝜆 = 13.19

Fig. 3 Key performance metrics when 𝜆 = 14.509

center as an example (e.g., see 𝜆 = 13.19 in Fig. 2 and C = 12) as an example, an

increment of C from 12 to 13 slots only increases the patient WT from 21.32 to

25.39 min and the resource OT from 9.91 to 12.43 min, but its benefits can be sub-

stantial; the appointment LT and AR drop from 9.08 to 0.41 sessions, and 9.10 to

2.23%. This suggests that it may be beneficial to increment C from the current level

12 to 13, as the increases in WT and OT are both mild but the patients can receive the

service much earlier (almost 9 sessions earlier) and a higher percentage of patients

can be seen.
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5 Conclusion

The problem of patient no-shows has been reported in numerous healthcare units in

different parts of the world. Appointment overbooking is one of the popular ways to

mitigate the adverse effects of unattended time slots. While the majority of research

on appointment scheduling and overbooking focuses on the performance measures

within the session, our paper studies the tradeoffs between the schedule efficiency

and timely access to service. We develop a methodology that integrates a stochastic

program, which optimizes the appointment schedule of a session, into a queueing

model, which evaluates the appointment lead time and patient abandonment rate.

With the data collected from a medical imaging center, we conduct a computational

study to evaluate the tradeoffs by adjusting the number of patients scheduled per

session. The computational results suggest that overbooking can reduce the appoint-

ment lead time and abandonment rate significantly when the session capacity is less

than the appointment request rate. When the session capacity is greater than then

appointment request rate, the benefits become mild. Our solution methodology also

enables practitioners to assess the effects of overbooking and decide the optimal

overbooking level in the way which the increases in resource overtime and patient

waiting time are acceptable.
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Pattern Generation Policies to Cope
with Robustness in Home Care

Paola Cappanera and Maria Grazia Scutellà

Abstract We consider the Robust Home Care problem, where caregiver-to-patient

assignment, scheduling of patient requests and caregiver routing must be taken

jointly in a given planning horizon, and patient demand is subject to uncertainty.

We propose four alternative policies to fix scheduling decisions and experiment their

impact when used as a building block of a decomposition approach. Preliminary ex-

periments on large size instances show that such policies allow to efficiently compute

robust solutions of good quality in terms of balancing caregivers’ workload and in

terms of number of satisfied uncertain requests.

Keywords Home care ⋅ Patient demand uncertainty ⋅ Robust optimization

1 Introduction

Increasing age of population, societal changes occurred in taking care of elderly peo-

ple and the consequent increased hospitalization costs, compel health care providers

to circulate home care services. Home care services refer to medical, paramedical

and social services to be delivered at patient homes instead of in the hospital. They

involve several decisions such as caregiver-to-patient assignment, scheduling of pa-

tient requests and caregiver routing, which must be taken jointly in a given planning

horizon.

Although the related literature is growing at a high rate, very few works address

the issue of uncertainty in problem data. Specifically, service time uncertainty is

addressed in the assignment of a set of patients to a set of caregivers over a time

horizon [4], stochastic service times are considered both in home care, for schedul-

ing and routing problems [9] as well as for staff dimensioning problems [6], and in
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the field service context [7]. Finally, uncertainty on the availability of the caregivers

is investigated in [5]. Recently, a cardinality-constrained robust framework [1], tak-

ing into account the uncertainty of the patient demand, has been addressed in [3] by

extending the deterministic problem proposed in [2] to simultaneously take assign-

ment, scheduling and routing decisions in a multiple-day planning horizon. To cope

with the computational burden experimented by the robust approach especially on

large scale instances, in [3] a decomposition approach has been suggested along the

lines of the two-phase decomposition approaches proposed in [8] for the determin-

istic problem. The results of a wide set of experiments, reported in [8], reveal the

importance of anticipating in the first phase of the approach scheduling issues that

are then considered again in the second phase. Scheduling decisions, indeed, play

a preeminent role. Thus, the tool used to manage such decisions, namely pattern
generation, is crucial, where a pattern represents a template for scheduling patient

requests along the planning horizon.

The goal of this paper is to further investigate this algorithmic idea. Specifically,

we propose and experiment a decomposition approach where scheduling decisions

are fixed according to four alternative policies used to generate patterns. The pattern

generation policies incorporate information on uncertainty of patient demand and

adopt different strategies to pursue the common objective of spreading uncertain

visits along the planning horizon so as to increase robustness. Preliminary exper-

iments, also on instances of large size, show that the use of these policies allows

to efficiently compute robust solutions of good quality in terms of balancing of the

caregiver workload and in terms of number of satisfied uncertain requests.

2 Nominal Home Care

The nominal Home Care Problem (HCP), as introduced in [2], is defined on a com-

plete directed network G = (N ∪ {0},A), where each node j ∈ N = {1,… , n} cor-

responds to a patient, and node 0 denotes the “depot”. All caregivers start their tour

from the depot and come back to the depot at the end of their working day, for each

day of the planning horizon W. Od denotes the subset of the caregivers available on

day d, for each d ∈ W. Each caregiver 𝜔 ∈ Od is characterized by a “skill” s
𝜔

rep-

resenting the level of treatment the caregiver can provide when assisting a patient.

A hierarchical structure of the skills is assumed, so that a caregiver with skill k can

work requests with required skill up to k. For each patient j ∈ N, the care plan rj
specifies the number of visits of each skill required by j in the planning horizon.

In [2], assignment, scheduling and routing decisions have been coordinated by

means of the concept of pattern. More precisely, it is assumed that, for each patient

j, the requests expressed by the care plan rj can be operated according to a set Pj of

a priori given patterns. Formally, denoting by P = ∪n
j=1Pj the set of all patterns, and

assuming that each patient requires at most one visit per day, each pattern p ∈ P is

such that p(d) = 0 if no service is offered on day d, while p(d) = k indicates that a
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visit of skill k is operated according to pattern p on day d. The pattern selected for

patient j thus determines the scheduling of his requests and it has to be compatible

with the care plan of j, guaranteeing the exact number of visits of appropriate skill.

Given the input data above, HCP consists of three types of decisions: (i) assign-

ing a pattern from Pj to each patient j, so scheduling the requests of j, defined by

the care plan rj, during the planning horizon (care plan scheduling); (ii) assigning a

caregiver to each patient j for each day in which a request of j has been scheduled

(caregiver assignment); (iii) determining the tour of each caregiver for each sched-

uled day (routing decisions).
In addressing these decisions, the skill constraints (i.e. the compatibility between

the skills associated with the patient requests and the skills of the caregivers), the

continuity of care (i.e., at most T different caregivers can be assigned to each pa-

tient in W, for a given T), and caregiver workday length constraints, taking into

account the travel time along the links of the network, and the service time at the

patients, must be satisfied. Alternative objective functions, based on operating cost

minimization or social equity criteria (e.g., balancing the caregiver workloads) can

be considered.

3 Robust Home Care

In HCP the input data are assumed to be certain. In particular, all patient care plans

are assumed to be known in advance. However this assumption may be unrealistic,

since patient requests are usually subject to uncertainty in the considered time hori-

zon. To deal with this issue, we assume that at the moment of planning some requests

are certain, i.e. they will need to be served, while others might be cancelled. We refer

to the latter as uncertain requests.

The mathematical formulation of the robust model is given in details in [3], while

in this section the robust problem is described at a higher level with the aim of sta-

ting which kind of robustness is considered. The graphical example given in Fig. 1

supports this informal description. For each patient j, we are given both a certain
care plan r̄j, corresponding to the certain skilled requests of j, and an uncertain care

plan r̃j, corresponding to the uncertain skilled requests of j. Each patient node in G is

thus duplicated, by associating each patient j ∈ {1,… , n} with a corresponding un-

certain “copy”, denoted by j + n. Certain care plan r̄j is associated with node j, while

uncertain care plan r̃j is associated with node j + n. Certain and uncertain patterns

are then used to schedule certain and uncertain requests, respectively.

In HCP all patient requests, being certain, must be scheduled over the planning

horizon and served by the caregivers. Therefore, a solution to HCP is a collection

of tours, for each day d ∈ W and for each caregiver 𝜔 ∈ Od, such that each patient

request belongs to exactly one tour. Now, consider a set of tours, over W, which

includes all the certain and the uncertain requests. These tours, called a complete set
of tours, represent a very conservative solution, since they correspond to a scenario

where all the uncertain requests, in addition to the certain ones, are scheduled. But
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Fig. 1 A complete tour and some induced 𝛤 -tours

this is unlikely to happen, and only a subset of the uncertain requests will realize,

making this kind of solution unnecessarily expensive.

To achieve a compromise between degree of robustness and solution cost, we

consider scenarios where at most 𝛤 uncertain requests in each tour may realize,

where 𝛤 is a given parameter. Notice that any complete tour, say 𝜏, induces a set

of tours of this type, also called 𝛤 -tours. These 𝛤 -tours differ for the subset of

(at most𝛤 ) uncertain nodes of 𝜏 that they include. Specifically, robustness is achieved

by considering sequence-preserving 𝛤 -tours, i.e. 𝛤 -tours whose nodes represent a

subsequence of the corresponding complete tours. A sequence-preserving 𝛤 -tour is

thus obtained from a complete tour by deleting some uncertain nodes, without chang-

ing the order of the remaining nodes. Figure 1 shows an example of complete tour (a)

and a subset of induced 𝛤 -tours, for 𝛤 = 2 (b), (c), (d). The dark nodes are certain,

while the gray nodes are uncertain. Sequence-preserving 𝛤 -tours are desirable from

an operational perspective. In fact, usually caregivers prefer not to alter the order of

the patient visits, as planned via the complete set of tours, in case some uncertain

requests will be cancelled. We say that a complete set of tours C is a robust set of
tours with respect to 𝛤 if, for each tour 𝜏 ∈ C, all sequence-preserving 𝛤 -tours in-

duced by 𝜏 satisfy the workday length of the caregiver assigned to 𝜏. Coming back

to Fig. 1, this happens when the maximum of the length of tours in (b), (c), (d) does

not exceed the workday length of the caregiver, where the length of the tour is given

by the sum of the travel times and of the service times along the 𝛤 -tour. According

to the definition above, C is a robust solution, with respect to 𝛤 , if for each tour

𝜏 ∈ C the caregiver assigned to 𝜏 is able to perform the tour whatever the (at most

𝛤 ) uncertain requests of 𝜏 will possibly realize.

The resulting Robust Home Care problem, named the sequence-preserving 𝛤 -
Robust Home Care Problem (sRHC

𝛤

) [3], thus consists in jointly addressing: (i)

assigning a pattern to each patient j that is compatible with r̄j, and a pattern to its

uncertain “copy” j + n that is compatible with r̃j (care plan scheduling); (ii) assign-

ing caregivers to each patient j and to its uncertain “copy” j + n, for each day where

a request, respectively certain and uncertain, has been scheduled (caregiver assign-
ment); (iii) determining the tour of each caregiver for each scheduled day, so that

the resulting complete set of tours be a robust set of tours with respect to 𝛤 (daily
caregiver routing). As for the nominal case, the skill constraints and the continuity

of care have to be taken into account.
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4 Pattern Generation Policies

As previously remarked, the scheduling decisions rely on a set of patterns. Both exact

and decomposed approaches in [2, 8] are pattern based, i.e. they schedule the patient

visits according to patterns which are generated a priori. Specifically, a pattern is

generated for each patient j. However, to gain flexibility, at the end of the generation

process all those patterns that are compatible with the care plan of j become eligible

for j, i.e. they are used to form the set Pj, even if they have been generated for patients

other than j. Such sets of patterns are then given in input to the solver that decides

the optimal pattern-patient assignment while respecting the feasibility constraints.

When facing with robustness, problem solving may be both time and memory

consuming, especially on large instances. To limit this complexity, in [3] we pre-

liminary experimented a decomposition approach where each patient j is only as-

sociated with exactly the pattern determined for j in the pattern generation phase.

Therefore, the scheduling decisions are fixed. Here we move some further steps along

this line of research, by proposing and experimenting four alternative pattern gen-

eration approaches, one of them already introduced in [2] for the nominal problem.

All the approaches involve multicommodity flows on an auxiliary layered network

GW = (NW ,AW ), with |NW | = nw, having one layer for each considered day in the

planning horizon W, plus a source node (denoted by 1) and a destination node (de-

noted by nw). If K denotes the set of skills and k its cardinality, each layer in GW is

composed of k + 1 nodes: node 0, which indicates that no visit is scheduled on the

day corresponding to that layer, and a node k, for each k ∈ K, which represents the

scheduling of a visit of skill k. Let Ld denote the set of nodes in the layer correspond-

ing to day d ∈ W. Then, in GW there exists a directed arc from the source node to

the nodes in first layer, from each node in the last layer to the destination node, and

from each node in Ld to each node in Ld+1, for each d in the planning horizon but the

last, as depicted in Fig. 2.

Fig. 2 The layered graph

GW and a pattern example
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Any directed source-destination path in GW thus corresponds to a potential pat-

tern: if the node in Ld corresponding to skill k is visited, then a visit of skill k will

occur on day d; otherwise, i.e. node 0 is visited, then no visits will occur on d.

As an example, the path consisting of dashed arcs in Fig. 2, corresponds to pattern

(k, 1, 0, 0, 0) according to which exactly two visits will occur: one with maximum

skill on Monday and one with skill 1 on Tuesday.

LetN be the set of nodes corresponding to certain patients, and ̃N be the set of their

uncertain copies. The four alternative pattern generation policies, named Colored

flow based (Col), Flow Based (FB), Balanced (Bal) and Balanced w.r.t. Uncertain

visits (BalU), are based on multicommodity flow models on GW , where a binary

commodity is introduced for each patient j ∈ N ∪ ̃N and the related flow variables

{f jhi} model a directed path in the layered graph, from its origin to its destination.

Specifically, Col aims at minimizing the number of generated patterns for certain

patients and maximizing the number of generated patterns for the uncertain ones.

That is, it pursues the twofold aim of reducing the computational complexity due

to a high number of patterns and spreading the uncertain visits across the planning

period. FB is the particular case of Col arising when all the patients are considered as

certain, and therefore it tends to minimize the overall number of generated patterns.

Notice that Col generalizes the policy used in [2, 8] for the deterministic case, where

patient demand is known in advance. The last two policies are inspired by balancing

criteria. In fact, they take into account the number of visits occurring each day of

the planning period, and minimize the difference between the maximum and the

minimum such values over the whole planning horizon. The difference between the

two policies concerns the type of visits that are considered. Specifically, in Bal all

types of visits occurring in a day are considered, i.e. both certain and uncertain. On

the contrary, in BalU only uncertain visits are considered.

In the following the four auxiliary multicommodity flow models, each relevant to

a pattern generator policy, are presented in details.

4.1 Colored Multicommodity Flow Problem

The pattern generation policy Col is based on the following model:

(Col) min
∑

(h,i)∈AW

(qhi − q̃hi)

∑

(h,i)∈AW

f jhi −
∑

(i,h)∈AW

f jih =
⎧
⎪
⎨
⎪
⎩

−1, if i = 1,
1, if i = nw,
0, otherwise

∀i ∈ NW ,∀j ∈ N ∪ ̃N

(1)

∑

d∈W

∑

(h,k)∶k∈Ld

f jhk = r̄jk ∀j ∈ N,∀k ∈ K (2)
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∑

d∈W

∑

(h,k)∶k∈Ld

f jhk = r̃jk ∀j ∈ ̃N,∀k ∈ K (3)

∑

j∈N∪ ̃N

t′j
∑

k′≥k

∑

(h,k′)∶k′∈Ld

f jhk′ ≤ 𝜖 ⋅
∑

𝜔∈Od∶s𝜔≥k
D

𝜔

∀d ∈ W,∀k ∈ K (4)

∑

j∈N

f jhi ≤ |N| ⋅ qhi ∀(h, i) ∈ AW (5)

∑

j∈ ̃N

f jhi ≤ | ̃N| ⋅ q̃hi ∀(h, i) ∈ AW (6)

f jhi ∈ {0, 1} ∀(h, i) ∈ AW ,∀j ∈ N ∪ ̃N
(7)

qhi ∈ {0, 1} ∀(h, i) ∈ AW (8)

q̃hi ∈ {0, 1} ∀(h, i) ∈ AW . (9)

Constraints (1) are the classical commodity-wise flow conservation constraints.

Flow variables are used to guarantee the proper number of visits for each skill thanks

to constraints (2) and (3), and therefore model a pattern which is compatible with

the patient care plan. Constraints (4) take into account, skill by skill, the operators

availability on each day of the planning horizon. In fact they impose, separately for

each day and each skill k, that the sum of service time (t′j ) of scheduled visits does

not exceed the daily availability (D
𝜔

) of the set of the operators of skill at least k,

properly reduced by a parameter 𝜖. This parameter reduces the overall caregiver day

availability thus preventing infeasibilities that might occur when routing is consid-

ered: in fact, pattern generation neglects the traveling times. The auxiliary variables

qhi and q̃hi are introduced to detect which arcs are used to design patterns: specif-

ically, for a given arc (h, i), qhi will be set to one if the arc is used by a patient in

N, while q̃hi will be set to one when (h, i) is used by a patient in ̃N. Finally, con-

straints (5) and (6) link together the flow variables f jhi respectively with the design

variables qhi and q̃hi, and they guarantee that if arc (h, i) is used, i.e. qhi = 1 (res-

pectively q̃hi = 1), it can be crossed by any number of certain (uncertain) patients,

whereas if that arc is not used, i.e. qhi = 0 (respectively q̃hi = 0), then it cannot be

traversed.

By minimizing the total number of arcs used by certain patients and maximizing

the number of arcs used by uncertain patients, the model will tend to minimize,

in an implicit way, the number of generated patterns for certain patients, and to

maximize the number of generated patterns for uncertain ones, as previously ob-

served.

Since FB is the particular case of Col where all the patients are considered as

certain, in this case the objective function minimizes the total number of arcs used,

thus minimizing indirectly the total number of generated patterns.
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4.2 Balanced Multicommodity Flow Problem

The two additional models, both based on a balancing criterion, consider the number

of visits occurring each day, and minimize the difference between the maximum and

the minimum such values over W. This is done by means of two variables, namely,

z
min

and z
max

, which represent respectively the minimum and the maximum number

of visits occurring daily in the planning horizon. The difference between the two

models concerns the type of visits that are considered: specifically, in Bal both cer-

tain and uncertain visits occurring in a day are considered, whereas in BalU only

uncertain visits are taken into account. The first of the two models is the following:

(Bal) min z
max

− z
min

s.t.(1), (2), (3), (4)

z
min

≤

∑

j∈N∪ ̃N

∑

k∈K

∑

(h,k)∈Aw
s.t. k∈Ld

f jhk ≤ z
max

∀d ∈ W (10)

f jhi ∈ {0, 1} ∀(h, i) ∈ AW ,∀j ∈ N ∪ ̃N. (7)

As in the previous models, the block of constraints (1), (2), (3) and (4) is related to

the flow variables {f jhi} for each patient j. Then in (10), for each day, the total number

of visits performed on that day, independently of the skill, is bounded between the

lower bound z
min

and the upper bound z
max

. The difference between such lower and

upper bound is minimized in an attempt to spread the visits equally among the days.

The model BalU is exactly as Bal but for constraints (10), which are replaced by

the following counterpart, where the daily number of visits is computed by consid-

ering only uncertain patients:

(BalU) z
min

≤

∑

j∈ ̃N

∑

k∈K

∑

(h,k)∈Aw
s.t. k∈Ld

f jhk ≤ z
max

∀d ∈ W. (11)

5 Computational Results

We generated 26 robust instances starting from the data set used in [2] and in [8],

which is publicly available at http://www.di.unipi.it/optimize/. The robust data set

comprises 9 instances with 60 patients on a 5-day horizon, and 17 instances with

100 patients on a 6-day horizon. All the instances are characterized by 2 types of

hierarchical skills, 3 operators, travelling times obtained via Google Maps, a ser-

vice time at the patients equal to 45 min, a percentage of uncertain visits equal to

20% of all the visits and 𝛤 = 1. Instance names contain information on the name

of the corresponding original nominal instance and the percentage of certain visits

(0.8). The experiments, consisting in solving the robust mathematical formulation

http://www.di.unipi.it/optimize/
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under the pattern generation policies presented in Sect. 4, have been performed on an

Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz with 4 processors using Cplex 12.6, by

imposing a time limit (2 h) and a memory limit (2 GB), under a balancing criterion,

i.e. minimizing the maximum caregiver workload.

The number of patterns used to fix scheduling decisions greatly depends on the

approach used to generate them, namely Col, FB, Bal or BalU. However, as the

computational results in this section show, all the approaches are able to identify a

set of patterns which successfully allows obtaining solutions of good quality within

reasonable computational times.

In regards to computational efficiency, we report that, on the 9 instances with 60

patients, the average optimality gap is stable around 3.49% regardless of the pattern

generation tool used, and the average computational time is 1787.5 s with a number

of terminations due to memory limit equal to 34 over 36 runs. On the 17 instances

with 100 patients, the average optimality gap is still good (3.24%), and the average

computational time increases to 4449.33 s essentially due to a drastic reduction of the

occurrences of memory limit (38 on 68 runs) w.r.t the istances with 60 patients. This

phenomenon is basically due to the different structure of the two groups of instances.

In fact, although characterized by a lower number of patients, the instances with 60

patients proved to be more difficult to solve than the others.

In regards to solution quality, in the rest of the section we report information on

the impact of the pattern generation approaches on the distribution of the workload

among the caregivers and on the number of uncertain visits selected in robust solu-

tions. Specifically, Tables 1 and 2 report, separately for the two groups of instances,

the metric 𝛥UF, i.e. the average percentage difference between the maximum and the

minimum caregiver utilization factor. For the instances with 60 patients, the role of

the pattern generation tools guided by a balancing criterion is crucial to fairly dis-

tribute the workload, whereas on the instances with 100 patients all the 4 approaches

allow to obtain good results.

Figures 3 and 4, respectively for instances with 60 and 100 patients, report the

number of uncertain visits that are selected in the robust tours. The maximum

Table 1 60 patients: 𝛥UF

Instance FB Bal BalU Col

0106-0-0 1.14 1.26 1.25 0.81

0106-0-1 0.37 0.33 0.03 3.30

0106-0-2 0.50 0.30 0.07 0.63

0106-1-0 0.72 0.60 1.72 2.72

0106-1-1 8.53 0.33 0.13 10.17

0106-1-2 2.77 0.70 0.83 6.80

0106-2-0 0.63 0.54 0.69 2.03

0106-2-1 8.53 0.33 0.13 10.17

0106-2-2 2.77 0.70 0.83 6.80
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Table 2 100 patients: 𝛥UF

Instance FB Bal BalU Col

INS11-0.8-0 0.03 0.03 0.06 0.25

INS11-0.8-1 0.33 0.36 0.39 1.03

INS11-0.8-2 0.00 0.75 1.14 0.11

INS12-0.8-0 1.03 0.72 0.00 0.11

INS12-0.8-1 0.22 0.72 0.78 0.42

INS12-0.8-2 0.25 0.22 0.78 2.58

INS13-0.8-0 0.08 0.31 0.00 5.67

INS13-0.8-1 0.33 0.53 0.47 0.42

INS13-0.8-2 0.00 0.39 0.56 0.17

INS14-0.8-0 0.08 0.28 0.11 2.11

INS14-0.8-1 0.11 0.39 0.06 1.14

INS14-0.8-2 0.08 0.11 0.06 0.31

INS15-0.8-0 n.a. n.a. 10.92 n.a.

INS21-0.8-0 n.a. 0.00 n.a. n.a.

INS22-0.8-0 0.31 1.11 0.56 0.11

INS22-0.8-1 0.47 0.00 0.19 0.61

INS22-0.8-2 0.92 0.72 0.03 0.06

theoretical number of uncertain visits that can be scheduled is given by 𝛤 ⋅ |W| ⋅ |O|
where |O| is the number of caregivers, i.e. it is equal to 15 and 18 respectively for

instances with 60 and 100 patients. We observe that, on instances with 60 patients,

the approaches which take into account the uncertain visits explicitly, namely BalU
and Col, allow to obtain a number of selected visits greater than the one reported by

policies not discriminating between certain and uncertain visits. On instances with

100 patients, the tool Col is still the one that reports almost everywhere the highest

number of selected uncertain visits, whereas the tools based on balancing criteria

can allow to obtain solutions where the other tools fail. Also, FB exhibits a good

performance on this set of instances. Again, the different behaviour of the pattern

generation approaches on the two groups of instances is essentially due to the dif-

ferent instance structure, which appears to be computationally more complex in the

case of 60 patients.

Our conclusion, although preliminary, is that fixing the scheduling decisions al-

lows to efficiently compute robust solutions of good quality in terms of balancing

of the caregiver workload and in terms of number of satisfied uncertain requests.

Pattern generation policies taking into account the uncertain visits explicitly are

particularly effective in pursuing such objectives. We plan to extend the computa-

tional experiments to deeper understand the impact of the different pattern generation

policies in guiding the robust Home Care decisions. In particular, we plan to better
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Fig. 3 60 patients: number of selected uncertain visits

Fig. 4 100 patients: number of selected uncertain visits

investigate the role of parameter 𝛤 which represents the maximum number of satis-

fiable uncertain requests per tour, also addressing values of 𝛤 greater than 1.
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Outpatient Day Service Operations: A Case
Study Within Rheumatology Diseases
Management

Giuseppe Ielpa, Rosita Guido and Domenico Conforti

Abstract This work presents an innovative quantitative approach, based on an

optimization model, to manage outpatient Day Service operations. The main

objective of the research work is to maximize admitted patient flow in order to

use available resources efficiently. The model is designed with the help of Answer

Set Programming and implemented in Datalog with Disjunction (DLV) system. As

significant case study, we consider the Rheumatology domain. Preliminary results

are presented.

Keywords Patient admission planning ⋅ Access rules ⋅ Priority ⋅ Appointment

scheduling ⋅ Answer set programming ⋅ Day service

1 Introduction

Improving efficiency and value in healthcare systems consists in introducing new

health care models to reduce gaps in quality, safety, and equity. Primary care prac-

tices often have long waits for appointments. Improving health care delivery could

require process redesigns and innovative strategies to provide patients with health

care quality in an effective and efficient manner.

The Short Stay Unit (SSU), for instance, was introduced in the 1970s to meet

special needs of pediatric and surgical patients as an alternative to ordinary hospi-

tal wards. Patients require less than 5 days as hospitalization period and the same

levels of medical care as an ordinary ward are provided. Shorter hospitalization

periods, increased patient satisfaction, and improved resource utilization are some

of the advantages of this innovative system [1]. Similar to the SSU is the week
hospital, an innovative inpatient healthcare organization where hospital stay services
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are planned in advance and delivered on week-time basis to elective patients. A week

hospital model, which performs accurate diagnosis and appropriate treatments for a

Rheumatology department, was defined in [2]. An integer linear programming model

is formulated and solved to maximize the number of admitted patients, patients’

appointments in a given planning horizon, and reduce patient waiting time as much as

possible. In literature, innovative services were defined to improve service delivery,

like day surgery systems, also known as ambulatory surgery or outpatient surgery

system: its main characteristic is that patients are admitted for surgical procedures

and overnight hospital stay is not required [3]. These characteristics belong also to

the day hospital system. The Day Service system derives from the day hospital sys-

tem as model for clinical activities. More specifically, clinical day service cannot be

activated to treat emergencies, as it is suitable only for some specific diseases that

could request provision of multidisciplinary clinical services. Appointment schedul-

ing problems are broadly covered in literature, but approaches concerning Day Ser-

vice are very limited.

The need to use available resources efficiently led health systems to assess the

quality of the performed healthcare services in terms of hospital stay in order to

detect clinical problems inconvenient for hospital stay. For this reason many

services, formerly performed during hospital stay, are progressively transferred to

Day Hospital, Day Service, and Day Surgery care models, which have the same

effectiveness and can provide advantage in terms of efficiency for healthcare

systems. A short hospitalization and a day service allow to gain many social and eco-

nomic advantages, because they dramatically reduce hospitalization costs, determine

hospitalization appropriately, and foster a better availability of resources for patients

affected by severe diseases. Day service developments are due also to technologies

innovation in the healthcare field: advantages are shorter services time and reduced

care service needs thanks to new diagnostic and therapeutic techniques, which have

been becoming less risky and invasive. This results in demand decreasing of long

stay in hospital. Adopting of such healthcare models allows to gain efficiency in

health care systems, as a suitable use of available resources is guaranteed and, at the

same time, high quality of services is performed, by paying attention to individual

specific care needs.

This work proposes a Day Service model management for patients affected by

rheumatic diseases. The model takes into account of patient priority and patient

waiting time as key performance indicators, in order to manage Day Service. The

objective of this research is on a scheduling method for Day Service Unit by provid-

ing the basis for a decision support tool to make decisions, considering all appoint-

ment requests over a given planning horizon. Our model is implemented in Dat-
alog with Disjunction [4] (DLV) system [5], a state-of-the-art system for Answer

Set Programming (ASP). ASP is a declarative Logic Programming paradigm, devel-

oped in the area of Logic Programming and Nonmonotonic Reasoning, providing

fast prototyping and very high flexibility in the implementation of new requirement

specifications. ASP is suitable for academic research, as well as for industrial appli-

cations, and services operations [6]. Preliminary results on realistic instances show

good performance of the proposed model.
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2 Hospital Day Service

Hospital day service (HDS) is an organizational model to deliver diagnostic tests

and therapeutic treatments. This model does not require hospital stay and allows

patients to be followed up by a clinical doctor until diagnosis process ends and/or

an appropriate therapy is prescribed. The HDS is tailored on patient needs. All mul-

tidisciplinary clinical services are distributed in the form of complex ambulatory
packages (CAP)s. A CAP should be completed in thirty days. Since a CAP may

refer to heterogeneous clinical sectors, a healthcare point-of-service provides a high

clinical level and organizational management in order to allow patients to access

a suitable care process. Access planning and scheduling appointments are crucial

aspects of HDS. A well managed access to services can impact on quality of health

care in terms of reduction of waiting time and reduction of number of accesses to

hospital.

From an organizational point of view HDS can be seen as a development of the

Day Hospital model. HDS relieves the pressure on inpatient wards by providing an

alternative pathway for a certain case mix. Some benefits are elimination of lost, mis-

placed, or duplicate scheduling forms, and a unified form that significantly simplifies

scheduling processes.

The main goals of HDS are:

∙ Simplifying patient admissions to health care services and reduce administrative

burdens.

∙ Guaranteeing care continuity once a patient is followed up by a medical doctor.

∙ Enhancing level of management among different clinical departments.

∙ Defining a diagnosis or a therapy by performing clinical tests and treatments in

only one day or in a reduced number of admissions.

∙ Reducing either the need of long-term hospitalization or inappropriate delivery of

Day Hospital.

2.1 A Day Services Management Model

The proposed model manages a HDS system to schedule patient appointments by

taking into account of patient priority, patient waiting time, patient requirements,

and hospital resources availability. This model is patient-centered. A set of clini-

cal services, prescribed to a patient, has to be performed within a given number of

weeks, from the first admission. A patient admission begins every day a clinical ser-

vice, prescribed to the patient, is scheduled. Patient admissions are allowed during

a working day. Each working day consists in a number of time slots. Each time slot

has the same time length. For each waiting patient is known:

∙ a priority value, defined by his/her medical specialist on basis of patient status,

determining the time expected to complete the CAP,
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∙ a set of clinical services prescribed by the medical specialist, and

∙ the time the patient is still waiting for his/her first appointment.

An appointment is given as tuple (patient, clinical service, time slot). The following

constraints are defined:

∙ An appointment is planned for each prescribed clinical service s to patient p only

once during the planning horizon.

∙ A patient has at most one appointment per time slot.

∙ First appointment date defines patient first admission date to hospital and starting

date of PAC.

∙ Elapsed time between patient admission date and last appointment date should be

minimised.

Our problem definition is inspired to the timetabling problem representation [7]. We

assume that the reader is familiar with basic concepts of deductive databases and

logic programming. The programming language [8] used to represent the model

is an extension of Disjunctive Datalog by integrity constructs (so-called strong

constraints), optimal constructs (so-called weak constraints), and aggregate func-

tions [9]. Given any solution of the problem P , which is implemented on basis

of the designed model, has to satisfy all strong constraints. If a strong constraint is

violated, the related solution will be infeasible. If any of weak constraints is

violated, only those solutions, which minimise the sum of the weights of the

violated constraints, according to their priority level, will be considered.

This can be expressed by an objective function H for problem P and a candidate

solution A, for P , and an auxiliary function fP to map weak constraints weights in

function of their priority level:

fP(1) = 1
fP(n) = fP(n − 1) ×WCP × wP

max + 1, n > 1
HP

A =
∑lPmax

i=1(fP(n) ⋅
∑

N∈NA,P
i

wN)
where WCp

denotes the total number of weak constraints in P , wP
max and lPmax

denotes the maximum weight and maximum priority level of a weak constraint in

P , respectively; NA,P
i denotes the set of violated weak constraints in layer i; wN

denotes the weight of the weak constraint N. All candidate models, which satisfy

all strong constraints, and for which the objective function HP
M is minimal among

all candidate models, are considered the preferred models w.r.t. the candidate model

semantics.

The input is a set of m patients P = {p1,… , pm}, a set of n clinical exams or tests

T = {t1,… , tn}, a set of k time slots S = {s1,… , sk}, and a set of prescriptions R =
{(px; ty; rxy) ∣ p ∈ P, t ∈ T} modeling that a patient p, who is waiting to be admitted

since a certain number of days, has to receive clinical service t with some priority.

In addition, a test may be unavailable during certain periods, which is represented

as a set of periods for each test (∀t ∈ T ∶ Ut ⊆ S).
The problem now is to assign prescribed tests to periods in such a way that: no

patient is involved in more that one test during any period; that all of prescription

requirements are met; all unavailabilities are honored.
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More formally: Find a set A ⊆ {(p, t, s) ∣ p ∈ P, t ∈ T , s ∈ S}, such that:

∀p ∈ P; s ∈ S ∶ (p, tx, s) ∈ A ∧ (p, ty, s) ∈ A ⇒ x = y
∀t ∈ T , s ∈ S ∶ (px, t, s) ∈ A ∧ (py, t, s) ∈ A ⇒ x = y
∀(px, ty, rxy) ∈ R ∶

∑
s∈S 𝜒A(px, ty, s) = rxy

∀t ∈ T , p ∈ P ∶ p ∈ Ut(p, t, s) ∉ A
where 𝜒A is the characteristic function for A.

2.2 Disjunctive Logic Programming Implementation of the
Model

Now that we have introduced the problem in an abstract way, we can provide a con-

crete formalisation in our framework, with the help of DLV. A program can be used

to model a problem to be solved: the problem solutions correspond to the answer sets

of the program (which are computed by DLV). Therefore, a program may have no

answer set (if the problem has no solution), one answer (if the problem has a unique

solution) or several ones (if the problem has more than one possible solutions).

DLV system is the product of more than twenty years of research and develop-

ment, and it is nowadays one of the most relevant state-of-the art implementations

of ASP [6]. In the last few years its language has been exploited for industrial use,

and further improved and extended, in order to be compliant to ASP-Core-2 stan-

dard language [10]. The following is the main ASP-Core-2 implementation of a

Guess∕Check∕Optimise program [11]. The program consists in a set of rules and

constraints, composed by literals with variables. The implementation of the program

is fully declarative [12], i.e. focused on knowledge representation and on properties

expected by the solution of the problem itself, rather than on designing and coding

solving algorithms.

% Guess an allocation for a prescription of service T in slot S for patient P.
{ in(P,T,S) } :- prescription(P,Priority,DaysWaiting,T), slot(S),

not period_unavailability(S), not test_unavailability(T,S).

% Check 1. Patient P can access service T only once in the planned period.
:- in(P,T,S), in(P,T,S1), S != S1.

% Check 2. Patient P can access at most one service T during slot S.
:- in(P,T,S), in(P,T1,S), T != T1.

% Check 3. Service Capacity is the upper bound for the number
% of patients, who access service T during slot K of day D.

% Check 3.1. Monthly test_capacity(Test,Capacity,xmonth).
:- #count{P : in(P,T,S)} > C, test_capacity(T,C,xmonth).

% Check 3.2. Weekly test_capacity(Test,Capacity,xweek).
:- #count{P : in(P,T,S), slt(S,W,D,H)} > C, week(W), test_capacity(T,C,xweek).

% Check 4. Only one admission per service T is allowed, for each patient.
:- in(P,T,S), in(P1,T,S), P != P1.

% Check 5. All prescribed tests must be scheduled in the allowed period.
scheduled(P,T) :- in(P,T,S).
:˜ prescription(P,Priority,DaysWaiting,T), not scheduled(P,T).
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% Optimize 1. Makespan.
:˜ makespan(X,Priority). [X@Priority,X,Priority]
makespan(X,Priority) :- priority(Priority,Baseline),

X = #max{Delta : absolute_day(Delta,W,D),
slt(S,W,D,H), in(P,T,S),
prescription(P,Priority,DW,T)

}.

% Optimize 2. Possibly schedule first patients with a higher priority.
:˜ prescription(P,Priority,DaysWaiting,T), in(P,T,S),

slt(S,W,D,H), absolute_day(AbsoluteDay,W,D), priority(Priority,Baseline),
Delay=DaysWaiting+AbsoluteDay, Delay>Baseline,
Weight=Delay-Baseline. [ Weight@Priority,

P,T,S,W,D,H,AbsoluteDay,Delay,
Baseline,DaysWaiting,Priority,Weight

]

% Optimize 3. Possibly minimize patients admissions, in the same day or week.
:˜ in(P,T,S), in(P,T1,S1), slt(S,W,D,H), slt(S1,W,D1,H1),

T!=T1, S!=S1, D!=D1, prescription(P,Priority,DaysWaiting,T). [ 1@Priority,
Priority,DaysWaiting,P,T,S,T1,S1,W,D,H,D1,H1

]

:˜ in(P,T,S), in(P,T1,S1), slt(S,W,D,H), slt(S1,W1,D1,H1),
T!=T1, S!=S1, W!=W1, prescription(P,Priority,DaysWaiting,T). [ 1@Priority,

Priority,DaysWaiting,P,T,S,T1,S1,W,W1,D,H,D1,H1
]

The program below represents the Intensional part of the problem, which needs to

be instantiated with input data. Input data are also referred as the Extensional part of

the program, so-called facts, representing tuples of deductive databases. State of the

art ASP systems take into account of the instantiation process and of the reasoning

process, which lead to none, one or more solutions. For details on the instantiation

of the program the reader may refer to [13], while the reasoning process refers to

[14].

3 A Day Service System for Ankylosing Spondylitis: A Case
Study

The efficiency of the model is assessed on a set of real data provided by the Rheuma-

tology Department of Careggi Hospital in Florence, Italy. Data consist in a combi-

nation of clinical services, prescribed to 15 patients under the form of CAPs, for

a total amount of 70 prescribed services. Ankylosing Spondylitis (AS) is a chronic

rheumatic disease affecting bones, muscles, and backbone ligaments.

A waiting list of patients, affected by AS, has to be admitted to HDS.

Appointments for laboratory tests and diagnostic tests are managed accordingly to

the abovementioned requirements. Tables 1 and 2 reports the set of diagnostic tests

and laboratory tests in CAPs, with the related service capacity. Along with service

capacity was considered also a real calendar of services availability. In order to test

the proposed model in a certain case mix of patients, we use several instances of

waiting patients with different PACs, time slot length is set to 60 min, which leads to

8 time slots per day, from Monday to Thursday, only 4 time slots for Friday. The plan-

ning horizon is set to 4 weeks. Current patient appointment scheduling at Careggi
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Table 1 Diagnostic and laboratory services capacity

Diagnostic tests Laboratory tests

Code Description Capacity Code Description Capacity

T1 Sacroiliac pelvic

radiograph

10/month T13 Complete blood

counts,

erythrocyte

sedimentation

rate, chain

reaction

10/week

T2 Standard backbone

radiograph

10/month T14 SPE-serum

protein

electrophoresis

10/week

T3 Peripheral parts of the

body radiograph

10/month T15 HLA-B27 tissue

typing

10/week

T4 Chest radiograph 2/month T16 Total and

fractioned

immunoglobulin

10/week

T5 Electrocardiogram test 10/week T17 Phospho-calcium

metabolism

10/week

T6 Limbs ultrasonography 10/week

T7 Computed axial

tomography

2/month

T8 Sacroiliac nuclear

magnetic resonance

2/month

T9 Bone densitometry 2/month

T10 Pulmonary function test 2/month

T11 Echocardiogram 2/month

T12 Colonoscopy 1/month

Hospital has been done manually by one planner, who receives admission requests

from physicians of the Rheumatology department.

The scheduling is done in such a way that patients can perform clinical services

within a certain time. This time is called the required access time and is determined

by the physician. The objective function can be considered as a weighted sum of

patient and hospital performance measures: waiting time, clinical services capacity,

slots selected for patient appointments. Priority levels define the maximum number

of days a patient can wait to complete his/her PAC.

The data shown in the tables, along with time slots covering 4 weeks, 5 working

days, for a total amount of 36 working time slots per week, represent the Extensional
input needed to instantiate the declarative program, implemented in ASP-Core-2

language. For program execution we refer to DLV 2.0. This version of the DLV

system makes use of the I-DLV system [15] to perform the instantiation process; the

instantiated program is then solved with the help of the WASP system [16], an ASP

solver handling disjunctive logic programs under the stable model semantics.
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Table 2 Waiting patients list

Patient Priority Expected time

(days)

Waited time

(days)

Prescriptions

P1 3 10 20 T1, T7, T13, T14,

T16

P2 3 10 10 T1, T3, T5, T10,

T13, T15

P3 2 30 24 T2, T3, T5, T7,

T13

P4 1 60 12 T3, T8, T10, T15,

T16

P5 1 60 18 T2, T3, T13, T14

P6 2 30 24 T1, T6, T13

P7 2 30 24 T1, T3, T6, T13,

T15

P8 1 60 45 T4, T8, T12, T14

P9 3 10 11 T6, T7, T11

P10 2 30 44 T2, T6, T11, T12,

T13, T17

P11 3 10 44 T5, T7, T9, T10,

T13

P12 1 60 26 T4, T5, T14, T15

P13 1 60 17 T3, T4, T10, T15

P14 3 10 29 T1, T5, T9, T10,

T11, T13, T14,

T16

P15 1 60 17 T8, T13, T15

We ran three different experiments in order to test the model behaviour with

respect to three different inputs to the program:

1. Input with unlimited service capacity, and with service availability calendar,

which defines whether a service is available in given slots.

2. Input with unlimited service capacity, and without service availability calendar

(program is free to schedule the test to the best slot available).

3. Input with limited service capacity, and without service availability calendar (the

real case scenario).

For the third experiment the 5th strong constraint of theCheck part of the program

was relaxed to a weak constraint, hence moved to the Optimization part of the pro-

gram, in order to allow postponements for appointments that cannot be scheduled,

when maximum service capacity is reached. Here the solutions of the problem for

the three different cases are shown in the charts reported in Figs. 1, 2, and 3.

Bubbles represent patient appointments scheduled over a period of 4 weeks. Bub-

ble size is determined in function of the value of the cost to take into account in the
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Fig. 1 Solution with unlimited service capacity, and with service availability calendar

Fig. 2 Solution with limited service capacity, and without service availability calendar

Fig. 3 Solution with limited service capacity, and without service availability calendar (real case

scenario)

event an appointment is scheduled in a slot, which is over the time limit a patient is

expected to complete his/her CAP. The bigger is the bubble, the higher is the influ-

ence of the allocation on the overall cost of the solution. Labels in bubbles report

higher priority levels (i.e. 1, and 2), representing patients expected to complete the

CAP in 10, and 20 days, respectively. Figure 2 shows that in absence of availability

limitation, and a free allocation calendar, the program overlaps patients with higher

priority to the very beginning of the scheduling period, in order to minimize the

influence of their allocation on the cost of the solution. The majority of patients

completes the CAP within one admission only. Figure 3 shows that the solution has
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been affected by the real service capacity, since only 62 appointments were scheduled

versus the 70 candidate prescriptions. The prescriptions left-out of capacity either

reflect the low priority level of the patient, or the lack of services available, and are

reported in the note, which is visible in the figure.

4 Conclusions

In conclusion, Day Service represents an innovative and efficient health care model

and it may be adopted in many health care systems. Day Service application allows

to reduce costs dramatically.

This work mainly focused on an innovative approach to the design of patient

appointment scheduling using declarative languages of Answer Sets Programming,

such as the language supported by DLV. It is worth reminding that high

expressiveness of ASP comes at the price of a high computational cost in the worst

case, which makes the implementation of efficient systems a difficult task. ASP Pro-

gramming models were developed in order to maximize patient flow of admissions to

Day Service, such that each patient could do all the prescribed examinations. Results

obtained by the solution of the problem developed on basis of the designed model

were satisfactory. It is worth noting that, dealing with real case inputs, some exams

were not scheduled, since the admission is allowed only to patients with a high level

of priority, which is related to the severity of the disease, and with a longer waiting

time. The selection of patients that are going to be admitted is done according to the

availability of the resources needed to do the laboratory tests and the examinations.
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Abstract This study offers original insights to further the ongoing debate about the
stability of ‘hospital effect’ on performance with administrative data as a source of
evidence. The overall assumption behind is investigating the debate on organizing
the hospitals by learning from their previous performance to transform change. In
this way, one available evidence is the administrative data that are collected in
healthcare systems to document their activity and have had an administrative
rational behind. Using statistical tests (multi-level hierarchical logistic models) on
the variation of performance of the hospital, we used 78,907 records for Adult Heart
Failure (HF) patients from 117 hospitals in Lombardy Region considering only
Incident cases from 2010 to 2012 to answer to our research questions. what we
observed was that mortality and readmission were explained by a few different
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be the case of connection between hospital managers’ capabilities to implement
short-term improvement.

Keywords Administrative data ⋅ Hospital performance
Hierarchical linear model

R. Afsaneh (✉) ⋅ M. Cristina ⋅ L. Emanuele
Department of Management, Economics & Industrial Engineering,
Politecnico di Milano, Via Lambruschini 4/b, Milan, Italy
e-mail: afsaneh.roshanghalb@polimi.it

P. A. Maria
Department of Mathematics, Politecnico Di Milano,
La Nave, via Edoardo Bonardi, 9, Milan, Italy

© Springer International Publishing AG 2017
P. Cappanera et al. (eds.), Health Care Systems Engineering, Springer Proceedings
in Mathematics & Statistics 210, https://doi.org/10.1007/978-3-319-66146-9_25

281



1 Introduction

Nowadays, ranking organizations based on their performance measurement is
attracting attention from both business and academic sides. Although there may
come a variety of purposes from decision-makers in measuring and monitoring
performance in different fields (e.g., case mix and patients’ severity in healthcare),
there still a debate on existing of any impact from the organizations as a unique
factor affecting their performance to identify best practices and processes. Such
impact could be related to management practices and processes that may came out
successful/fail in improving performance over time. By having a longitudinal view,
many organizations like hospitals can organize themselves to pick to a better per-
formance in terms of effectiveness, safeness, and efficiency in healthcare. In
healthcare as many studies argue—e.g., [1]—there might be a variety of key
indicators need to be considered for measuring performance including a decrease in
the hospital length of stay (LoS), inside or outside hospital death, and readmission
cases. Considering these indicators, identifying and learning from higher per-
formers through benchmarking hospitals, will enable health managers, regulators
and consumers with a scientific base evidence to inform their decisions over time
[2, 3].

Moreover, lessons can transform from other professional industries like schools
or universities. By choosing and comparing a university, students or their families
are expecting to receive a superior education comparing to the others. This is what
the school efficiency literate call it as ‘school effect’ and it is based on the com-
bination of the schools and students characteristics [4]. While, respect to the lit-
erature in health care sector, such a terminology as ‘hospital effect’ is still not
diffused among scholars of health policy and health care management. Concerning
the hospital effect, having best available evidence—with the best level of confi-
dence—plays a key role. Both policy-makers and practitioners need reliable
information arisen from the best and worst performers. Following the literature
behind the use of administrative data for decision making processes, these data have
been employed for a variety of purposes; examples are epidemiological studies [5],
outcomes evaluation [6], and identification of risk factors [7, 8]. Within this
background, this study aims at furthering the ongoing debate on the use of
administrative data to identify if there is any ‘hospital effect’ on performance to
inform improvement strategies. In particular, this study offers original insights
gathered from benchmarking hospitals that deliver care to Heart Failure (HF) pa-
tients in the Lombardy Region (Northern Italy).

Despite the richness of past studies, four main identified limitations still puzzled
our mind for further analyses. First, many studies were anecdotal with limited
generalizability. Second, many studies collected perceptions and not actual per-
formances. Third, many studies used patient-level variables to explain different
performance, neglecting the hospital-level ones. Thus, this could be critical while
the aim of analyses is to gathering best information for shaping improvement
strategies on performances. Hospital-level variables like type of structure, number
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of hospitalizations, and percentage of DRG are potential key inputs for changing
the future decisions on hospital standards in a better way. In this study, by adopting
hierarchical statistical models, we tried to disentangle the contribution to perfor-
mance on behalf of both patients’ and hospitals’ characteristics. Multilevel or
hierarchical modeling is an analytic technique designed for complex nested data
structures [9], frequently used in different fields like educational, social and health
services research. Fourth, a limited number of studies explored the potential
informative power of administrative data. These is while, some un-official reports
are misleading and confusing healthcare payers, providers and citizens [10–12],
toward resource allocation and patient choice. Against this background, this study,
by leveraging on the opportunity to access to administrative health data, aims at
answering to four main research questions: (I) is there evidence of a ‘hospital effect’
on performances. (II) Which are the determinants of the ‘hospital effect’? (III) Is the
‘hospital effect’ stable over time? (IV) Which variables do drive performance
improvement or worsening over time?

2 Literature Review

2.1 Use of Administrative Health Data

Historically performance measurements aim at variety of purposes like marketing,
quality-improvement, accreditation, and comparisons between providers and plans
[13]. This is while, measuring and reporting current performances, by using
administrative data, aims at more specific decisions regarding to the both patient
and hospital. Administrative data by definition are large repositories of data col-
lected by healthcare providers for reimbursement or surveillance activities. These
datasets may contain variety of information like hospital admissions, outpatient care
services, emergency room services, and drug prescriptions [14]. Based on the lit-
erature, using administrative datasets includes both advantages and disadvantages.
The most important critical point facing these data is about the ‘quality’ of these
data, which is likely due to differences in data collection methodologies. Comparing
to the other datasets, like clinical registries, many studies argue that these data need
to be linked with the other official datasets (like chart reviews). This also will allow
researchers and practitioners to consider other patients’ level data in their analyses.
In our case, thanks to the vital statistics datasets, we include the date of the death for
mortality studies. The availability without any additional cost of such large
repositories of data, is another benefit in line with using the best available evidence
to emphasis on evidence-based decision-making, and brought an intense debate
about whether and how to use these data for informing political and managerial
decisions [15, 16]. In this study, we considered the well-established measures of
quality of treatment on short-term hard outcomes for HF patients, [17]. Considering
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these two main metrics for hospital performances, some advantages of using such
outcomes are: their availability without additional costs for their collection and their
use, their large volume, the presence of long follow-up periods with stable coding
procedures and population coverage [14]. As told, these data are collected during an
under way process, which allows researchers to work with very up-to-date data.
Moreover, administrative data offer the opportunity to perform studies based on the
so-called ‘real world’ data, with altering the order between identification of patients
and data collection they solved the unfavorable issues of small-size clinical trials or
observational studies.

One significant feature of administrative data is that they are collected contin-
uously without any pre-adjusted political or academicals purposes. This can enable
researchers to formalize their interested questions and hypotheses then seeking the
investigation through the already available datasets. Respectively, the first step is to
extract the right dataset that might carry the most relevant evidence needed to
answer to specific policy/research questions. The second step deals with the iden-
tification of the cases of interest. Typically, the process of choosing a specific
patients includes using codes of diagnoses or procedures in hospital discharge
forms or out-patient care datasets [14]. Each hospital is coding diagnoses and
procedures through the well-established International Classification of Diseases, 9th
Revision, Clinical Modification (ICD-9-CM). The ICD-9-CM is a classification
system that assigns codes to diagnoses and procedures commonly adopted in dif-
ferent countries. A good example of these two steps is the McCoy et al. [21] study
on ‘diabetes care quality’ by using and analyzing datasets from ‘patients in a
multispecialty integrated health system’ in chosen year while including patients
with the help of the specific code (ICD-9-CM code 250.xx). Based on clinical
similarities and resource absorption, hospital cases like discharge forms, will be
classified into one of the ‘originally 467 groups’ as so called Diagnosis Related
Group (DRG) system. The third step deals with checking the quality. As indicated
previously, as part of the administrative purposes the quality of these data may
affected. Typically, part of these data are subjected to quality controls by the
providers themselves, agencies or companies that are in charge for reimbursements
or providers’ evaluation like healthcare quality controls in Italy which are part of
the regional government responsibilities. In this view, basing a research on these
data needs an extensively knowledgeable researcher about the datasets in terms of
considering variety of details, such as ‘the metrics employed for each variable’ and
the ‘consistency of data collection process’.

Another aim of using administrative data in the literature is for proposing pre-
diction or performance evaluation models regarding the specific diseases. Many
studies like Bottle et al. [17], when studying hospital performances, are using
patient level variables for adjusting statistical models. One issue, while performing
statistical risk adjustment models, is the lack of clinical information; for example,
Tabak et al. [22] were using administrative data combined with medical records for
predicting mortality. Typically, past contributions used advanced algorithms for
comorbidity detection (e.g., [18]). As result of these algorithms plus the evaluation
of scores, researchers and practitioners can work on patients’ diseases and
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conditions that might affect the survival rates thus identify the need for supple-
mentary care. Considering performance measurements through administrative data,
many recent studies generally focused on so called ‘hard clinical outcomes’ like
patient survival, non-programmed hospital readmissions, and mean hospital length
of stay. Others which have more connection with the training, support or guidance
interventions such as quality adjusted life years or patient satisfaction less studied
using only administrative data, and thus specific information from interviews or
surveys have to be added.

3 Methodology

In this section, we will explain the definition of performance for each hospital and
their related variables then the kind of relevant data for our work will be described.
Moreover, in measuring performance the suitable statistical or mathematical models
should be considered. In our case, the choice of multilevel logistic model was based
on combining both patients’ and hospitals’ characteristics and making it coherent to
the hierarchical nature of our data. In fact, one of our expectation is that similar
outcomes will be arise from treating cases in the same hospital. Outlier detection is
an effort to go beyond ranking hospitals and put some further steps on identifying
the characteristics and skills related to each hospital that could transform the worst
performer to the first. To this end we used funnel plots as a correlative method for
displaying outliers are suggested for having ‘disaggregated outcomes at provider
level’ [19], and less biased in labelling outliers.

3.1 Hospital Performance

We started our work by choosing the 30-day mortality and 30-day readmission as
the most relevant outcomes suggested in the literature. By definition, 30-day
mortality refers to the total number of deaths for any cause within 30 days after the
incident HF admission and 30-day unplanned readmission refers to the total number
of non-programmed hospitalizations for any cause within 30 days after the incident
HF admission. In fact, HF patients have a high risk of mortality and a high prob-
ability of incurring multiple urgent admissions. Additionally, using HF data, it
needs considering the incident cases. By incident case, we mean the first ever
admission for any patient in each hospital for HF-related complications, which will,
resulted in a far better fitted comparison by excluding patients with terminal
comorbidities. Respectively, 30-day mortality was measured considering
intra-hospital and out–of–hospital mortality for all causes. Also using the Lombardy
Region’s registries about deaths; 30-day unplanned readmissions were measured
excluding the cases of patient being transferred from one hospital to another,
planned readmissions, and readmissions occurred more than 30 days after
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discharge. Additionally, to evaluate non-programmed readmissions, patients died
during the incident admission or within 7 days from discharge were excluded. The
latter choice was made to exclude patients who have decided, for personal reasons,
to die at home rather than in hospital. Finally, hospitals located outside the Lom-
bardy Region or with less than 100 HF hospitalizations were excluded from our
analysis.

3.2 Collection of Administrative Data

After targeting our outcomes, we used administrative data from hospital discharge
forms provided by Lombardy Region over 2010–2012 period. Generally, in
Lombardy, administrative data contain information on patient characteristics (e.g.,
sex and age) and hospital admission (e.g., date of admission and discharge, prin-
cipal diagnosis and comorbidities). Later on, the data combined with death statistics
and regional reports on hospitals’ activity. It helped us for gathering further
information like percentage of surgical DRGs from regional reports and information
about the date of death for patients who died. This enabled us to evaluate mortality
for both outside and inside of the hospital. By selecting HF data, we decided to
work on a leading cause of death in the most developed Countries, which is a key
priority for policy-makers and hospital managers on how to plan, administer and
pay for healthcare services. As result of the inclusion/exclusion criteria, 78,907
adult residents in the Lombardy Region and aged at least 18 were hospitalized for
the first time for HF in 117 hospitals were chosen for our analyses. As such, the
overall patient related variables are age, sex, length of stay, comorbidities score, and
number of hospitalizations within the previous six months, and type of admission
ward. Total hospital related variables are: number of ordinary hospitalizations,
mean length of hospital stay, percentage of surgical DRG, type of hospital (own-
ership and teaching status), number of admissions from other local healthcare
agencies, number of admissions from other Italian Regions or abroad.

4 Statistical Analysis

Using SAS statistical software (SAS 9.4 TS Level 1M3), our statistical analyses
started with combining two-level hierarchical logistic regressions and funnel plots
to identify outlier hospitals and track the trend of their improvement/worsening. In
this context, we consider outliers as those hospitals that differ from other hospitals
respecting the ratios of observed mortality/readmission cases out of expected ones
by the same pathology. The result could provide triggers to convert leads to main
decision makers, who are in charge of health care planning to set up their
improvement strategies in line with understanding the causes of these occurrences
[7]. First, we developed a multilevel logistic regression model that took into
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account the different characteristics of the data for both patient and hospital. Then,
we introduced each patient-level and hospital-level covariates consecutively as first
and second level of our hierarchical model. The choice of the explanatory variables
have been made on the basis of our available data and what literature were con-
tribute so far. Based on [20], we test our “null” model while evaluating the Inter-
class Correlation Coefficient (ICC) by introducing the first (patient) level variables
and the second (hospital) level variables respectively. Finally, at the end of the first
step in our statistical stage, the overall variables were included in our final statistical
model through a backward selection method. Second, the final model have been
used to shape the creation of funnel plots. The identified best and worst performers
are based in creating a ratio of expected cases (of mortality and readmissions) vs.
observed cases, as stated in the following formula:

Y=
∑
nj

i=1
yobsij

∑
nj

i=1
bpij

=
Oj

Ej

where yobsij is the observed outcome for patient ‘i’ treated in the hospital ‘j’, nj is the
number of patients treated in hospital ‘j’ and bpij is the corresponding expected value
for patient ‘i’ treated in hospital ‘j’. By including the hospital level variables, we
tried to understand if different hospital characteristics could shape the effectiveness
of each hospital in case of having less 30-day mortality and readmission.

5 Findings

As result of our statistical stage, we create the funnel plots for 2010, 2011, and 2013
respectively, showing the outliers of both readmission and mortality cases. With
respect to our first and second research questions, data confirm that some
hospital-level variables are significant in explaining the variance of hospital per-
formances, suggesting that there is a ‘hospital effect’ on performance. In this regard,
our data show that mortality and readmission are explained by different variables. On
the one hand, considering ‘30-day mortality’, all patient-level variables emerged as
significant together with two hospital-level variables, namely percentage of surgical
DRG and type of structure. On the other hand, considering ‘30-day readmission’, our
results identified as significant only the mean length of stay from hospital-level and it
also excluded the sex variable from the patient-level ones. One possible explanation
is that these variables are widely intertwined with managerial choices. Our results
show also that none of the outliers had different structural characteristics, confirming
that managerial practices more than structural characteristics are significant in
shaping hospital performance. This means that regardless of the special
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characteristics of admission cases, hospital managers have the opportunity to
improve hospital performance. Although the ‘readmission’ model has identified
more outliers rather than the ‘mortality’ one, in both cases the trend of outlier
movements during time is not fully captured by our set of explanatory variables.
Which was expected from the statistical point of view while doing analyses with
hospital level would probably reduce the probability of identifying outliers in the
final model. Still, despite within our timespan (2010 until 2012), in both cases some
hospitals improved their performance while some decreased their position and failed
in improving them. The overall mortality increased 32.5% while in readmission, it
ranged at 48.3% and the worsening over time was 34.2% for mortality and 19.8% for
readmissions. Finally, in the short-term none of the structural variables explains such
differences, meaning that the improvement is led by hospital managers’ capability to
implement change apart from the kind ownership.

6 Discussion

This study offers original insights to further the debate about the use of ‘real-world’
data to measure hospital performance and drive improvements. Administrative data
offers the opportunity to crystallize the ‘hospital effect’ and point-out the
hospital-level variables that affect performance. In this regard, scholars of operation
management in healthcare should take advantage of administrative data to further
explore those variables that differ between best and worst performers. Best practices
and managerial choices in place in best performers must be translated to the worst
performers to inform change while improving the situation for the worst performers
to the first. Administrative data offer large amount of ‘real-world’ data; however,
they proved to be not enough to fully explain performance evolution in the
short-term. In this regard, further research should take into account wider periods
(at least ten years) or integrate administrative data with clinical registries or surveys
to hospital managers.
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Crowding in Paediatric Emergency
Department, A Review of the Literature
and a Simulation-Based Case Study

Caterina Caprara, Filippo Visintin and Francesco Puggelli

Abstract In this study, we perform a systematic review of the literature concerned
with crowding in pediatric emergency departments and assess, via discrete-event
simulation, the impact of the implementation of triage-based protocols—which
consist in allowing triage nurses to prescribe diagnostic tests before the first
physician assessment- on the emergency department performance. The study is
based on real data from a leading Italian hospital.

Keywords Healthcare ⋅ Paediatric emergency department
Anticipated treatments ⋅ Crowding

Emergency Department (ED) overcrowding, is a common problem across the
globe. The imbalance between supply and demand for emergency service is
becoming bigger and bigger, especially in countries with sluggish economies where
healthcare is based on the principle of universal coverage (like Italy). Given its
relevance, ED overcrowding has been the object of a sizeable number of studies
examining the causes, effects, and solutions to ED overcrowding ([1], [2]). Over-
crowding in Paediatric EDs (PEDs) however, is still an under-investigated phe-
nomenon. PEDs differ from general EDs in a number of ways: (i) the overall acuity
of patients and (consequently) the number of admissions are lower (8–10% in PEDs
versus 15–20% in adult EDs [3]); (ii) arrivals peak in the afternoon, when parents
return home from work [3] and in the weekends, when availability of paediatricians
is limited; (iii) arrivals present a seasonal variation with peaks in winter months,
due to influenza and respiratory illnesses and in the summer months (when kids
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play outdoor) due to fractures and lacerations [4]; (iv) nurses and physician need to
interact with both patients and their parents.

In this study, we have performed a comprehensive and systematic review of the
literature on PED. Starting form a sample of 3607 papers, following a structured
classification procedure we consolidated a final sample of 47 papers analysing the
causes and proposing organisational solutions to address overcrowding problem in
PED. These papers were read and thoroughly coded. The analysis led to the
identification of 16 types of causes of overcrowding, 10 different types of organi-
sational solution to reduce or prevent it, as well as to the identification of the most
important performance indicators used in the literature to assess PED performances.
The literature suggests that a promising way to reduce patient length of stay in the
ED is to implement triage-based protocols—referred to as anticipated treatment—
that allow triage nurse to prescribe diagnostic tests before the first physician
assessment [5] [6]. The utilization of these protocols is supported by empirical
evidences showing that the appropriateness of nurse’s prescription doesn’t signif-
icantly differ from the physician’s one [7] [8] [9]. However, the literature concerned
with the implementation of triage based protocols in PED is still scant. Indeed, in
PED, the adoption of these protocols is discouraged by the anxiety characterizing
patient’s parents who claim for a physician assessment before child are subject to
hurting or harmful tests (e.g. blood or X-ray tests). Undoubtedly, a quantification of
the benefits in terms of efficiency that is possible to achieve through the imple-
mentation of this protocols can better inform managerial decisions.

For this reason, in this study we have investigated, via simulation [10], the
impact on 4 KPIs—waiting time (WT) from arrival to triage, WT from arrival to the
first physician assessment, length of stay (LOS) from arrival to discharge and LOS
from the first physician assessment to discharge—of the implementation in of
anticipated treatments in PEDs for two very common types of paediatric patients:
(i) those with suspected fractures, typically requiring X-Ray test; and (ii) those
affected by respiratory diseases typically, requiring blood test. The model was
developed using Arena and validated referring to the as-is configuration of a PED
that currently does not implement any anticipated treatment. Several experiments
have been carried out to assess the (main and interaction) effects associated with the
implementation of the anticipated treatments on the KPIs.

Preliminary results show that implementing anticipated treatments for trauma
patients and for patients affected by respiratory diseases significantly decreases their
LOS (up to 40% for white codes and up to 26% for green codes) without signifi-
cantly affecting the LOS of other patients. The waiting time for physician assess-
ment decreases up to 12% for white codes and doesn’t worsen for the other patients;
whereas the waiting time for triage increases with the implementation of the res-
piratory diseases pathway. However, we argue that these benefits may vary sea-
sonally since the number of patients potentially needing these types of treatments
varies according with the month of the year, the day of the week and hour of the
day. Future research will be thus devoted to develop a methodology to decide when,
based on a medium-to-short term forecast of the patient’s arrivals (both in terms of
mix and volume), certain protocols worth to be activated and when not. In addition
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an action research project [11] will be carried out to assess the impact of the
implemention of the described anticipated treatments in real hospital and to shed
light on those actions facilitating or hindering their introduction and use.
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Dealing with Stress and Workload
in Emergency Departments

Marta Cildoz, Fermin Mallor, Amaia Ibarra and Cristina Azcarate

Abstract Emergency Departments (EDs) are widely known for their stochastic
nature, unpredictable arrivals and—in recent years—overcrowding problems. These
could cause stress to physicians and, as a consequence, bad quality of patient’s
medical care. This problem is investigated in a Spanish ED by developing a
dynamic measure of stress, analyzing the patient flow control considering not only
waiting time but also physicians’ stress, and finally by suggesting a computer-based
tool to help triage nurses to manage the workload distribution among physicians.

Keywords Emergency department ⋅ Workload ⋅ Stress ⋅ Patient flow

1 Introduction

ED Physicians are usually exposed to more severe stress than other departments’
physicians [1]. Its principal sources are time pressure, critical decisions and amount
of work [2]. Patient Flow is managed after triage by nurses, in some cases by using
simple rotational rules, which look for workload equity among physicians. Nev-
ertheless, the randomness of patient arrivals results in inequality of stress experi-
enced by physicians. The main purpose of this presentation is to outline the current
research conducted to analyze physicians’ stress working in an ED. The analysis
has been divided in three steps: in the first one the issue of developing a dynamic
measure of stress is addressed, secondly policies for the patient flow control are
studied by incorporating the dynamic stress of physicians as a criterion (in addition
to the usual patient waiting time), and finally a computer-based tool implements the
best policy to assist the triage nurses to manage physicians’ workload.
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2 Measuring Stress and Workload

Physicians in ED reported that the stress they feel is caused mainly by three
components: workload (pending patients), uncertainty (unpredictable arrivals or
illness of patients not seen) and time pressure (overcrowding). It is being developed
a methodology to measure stress among physicians through their assessment of real
scenarios. These scenarios account for the workload assigned to a physician dis-
aggregated by type of patients (severity), their stage of medical care process,
waiting time targets and teaching duties. The collected scores are the primary data
used to estimate the stress assessment function.

3 Patient Flow Control

Patient Flow is controlled by the triage nurses. As soon as patients are triaged, they
are assigned to a physician rotationally. This control could be improved by ana-
lyzing different ways of distributing patients among physicians in order not only to
optimize patient waiting time but also stress among physicians.

4 Implementation

Our purpose is to implement a new tool to support decision making at triage based
on the previous flow control analysis. This system should be fair and easy to use as
patient flow management does not fall within the competence of triage nurses.
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Patient-Bed Allocation in Large Hospitals

Fabian Schäfer, Manuel Walther and Alexander Hübner

Abstract General Background. Allocating patients to beds is an everyday task in

hospitals, which is first of all driven by total bed capacity, patient compatibility, fluc-

tuations in lengths of stay (LOS), and emergency arrival rates. Historically speaking,

hospitals managed their patient-bed allocations on a first-come first-serve basis. In

addition, wards were typically dedicated to single departments with head nurses and

doctors managing actual patient-bed-assignment. To ensure profitability, occupancy

levels have to be held high to ensure high utilization of hospital resources. High oc-

cupancy rates however, greatly increase the probability of overflow situations which

require disproportionate amounts of additional organizational work. This holds es-

pecially true for large maximum-care hospitals, which by definition are obligated to

treat all incoming patients and have to deal with a lot of uncertainty due to a high

share of emergency patients.

Keywords Bed management ⋅ Operational patient allocation

Uncertainty management ⋅ Overflow management

Specific Problem Setting and Solution Approach. The solution space for assigning a

given patient to a bed usually does not comprise every available bed in the hospital.

Instead, wards are assigned to departments or groups of departments. Today, large

hospitals are starting to adopt shared ward spaces dedicated to specific groups of de-

partments (e.g., internal medicine) in an attempt to balance patient occupancy levels

across multiple wards (see for example [3]). This leads to pooled bed capacities of

sometimes more than 100 beds per department group. The challenge in this context,

is to devise a system that efficiently manages patient-bed allocations all while an-

ticipating future patient arrivals, optimizing workload for hospital staff, taking into

account current occupancies, and last but not least ensuring patient satisfaction. Fur-

thermore, such a system will need to be able to react instantaneously if it is to be

used on an operational level considering the high levels of volatility and uncertainty

regarding patient-specific parameters.
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To this end we have developed a decision support model to assign inpatients to

beds. The main advantage of our approach compared to approaches found in the

literature (see for example [1, 2]) is that it is designed to propose a specific bed

to the bed manager for every incoming patient at the exact time of their arrival,

based on all the information known at that particular moment. The idea is not to

predetermine an occupancy plan for a defined time period (e.g., a week) that is set

in stone, but to have a system with maximum flexibility that can update in real-

time, while still considering the impact of future inpatient arrivals. Furthermore,

our solution approach includes dedicated overflow buffer space, hence making it a

reliable decision support model for any real-life situation (e.g., personnel shortages,

deliberate deviations from preconceived occupancy plans, short-term cancellations).

Objectives and Constraints. There are typically three different stakeholders when

assigning patients to beds, namely patients, medical staff, and hospital management.

Patients want their stay to be as pleasant as possible while receiving top-notch med-

ical care. In our modeling approach this translates to having roommates within their

age group and with a similar illness or severity of their medical conditions. Patients

should also not be forced to change rooms if there is no medical need for it. This is

especially true for elective patients, as they are less likely to accept that a room and

bed is not “reserved” for their entire stay. One of the main issues for medical staff

is having a balanced workload. As nurse rosters and shift scheduling typically can-

not be changed on a short-term basis it is important to level out workload per ward

and week. Workload in this context is dependent on both the amount of patients as

well as the severity and types of illnesses exhibited. Finally, doctors want all of their

patients to only be on dedicated wards within their department-ward combination to

avoid having to cover large distances during rounds.

Last but not least, three hard constraints are considered. First, it is not allowed

to mix genders within a single room on a specific day. Second, medical isolation

requirements have to be adhered to. For example, infectious patients have to be sep-

arated from immunocompromised patients. Third, infrastructural requirements have

to be met for every patient (e.g., room has to be equipped with ECG-monitoring sys-

tem for certain cardiac diseases). We have built and tested our model using different

heuristic approaches as a full enumeration is not feasible in light of problem size and

scope. First results seem very promising and allow for high-quality solutions within

seconds.
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