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Abstract
Potato is a highly heterozygous and tetraploid crop and therefore it was a
major challenge to decipher the potato genome. This chapter highlights the
developmental stories of the potato genetic stock used for the whole
genome sequencing by the Potato Genome Sequencing Consortium
(PGSC).

4.1 Introduction

As difficulties arose with sequencing attempts on
heterozygous potato germplasm, assembly of a
draft sequence of the potato genome was con-
tingent upon the utilization of a completely
homozygous cultigen in this highly heterozygous
tetraploid (2n = 4x = 48) crop that declines
rapidly on inbreeding. Cultivated potatoes all fall
within Solanum tuberosum L. but have been
divided taxonomically into indistinct Groups,
including Group Tuberosum (tetraploid com-
mercial cultivars grown throughout Europe and
North America), and eight landrace populations
grown in South America (Ajanhuiri Group,
Andigenum Group, Chaucha Group, Chilotanum
Group, Curtilobum Group, Juzepczukii Group,

Phureja Group, and Stenotomum Group) (Huá-
man and Spooner 2002). Ploidy was thought to
distinguish the Groups: Ajanhuiri, Phureja and
Stenotomum were diploid; Juzepczukii and
Chaucha were triploid; Tuberosum, Andigenum
and Chilotanum were tetraploid; Curtilobum was
pentaploid. However, exceptions to the ploidy
classification were common. The similarity
between Groups Tuberosum and Andigenum
have been demonstrated graphically in two
independent studies where diverse populations of
tetraploid Andigenum landraces have been bred
to resemble commercial potato cultivars through
recurrent selection (Glendinning 1975; Huarte
and Plaisted 1984). Spooner et al. (2007) later
used simple sequence repeat (SSR) markers to try
to distinguish a collection of 742 landraces and
reclassified the previous eight landrace Groups
into four species, with two Groups [Andigenum
(now including Andigenum, Phureja, Stenoto-
mum and Chaucha) and Chlotanum] within S.
tuberosum and Groups Ajanhuiri, Juzepczukii
and Curtilobum elevated to species. The
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Andigenum Group then encompassed the genet-
ically indistinct diploids, triploids and tetraploids
whereas the other more genetically distinct
Groups and species retained the ploidy status of
their previous Groups. So, potato presents a
wealth of germplasm from primitive cultivars to
advanced tetraploid commercial clones with little
difference genetically among them, justifying the
use of a primitive cultivar to represent the potato
genome. For the sake of clarity, we will continue
to use the now extinct Group Phureja designation
in this review.

There are only a few reports of inbreeding in
tetraploid Group Tuberosum germplasm. Krantz
(1946) reported an extensive study of inbreeding
through self-pollination in five different families
where the average tuber yield of subsequent
generations declined from 83% of the original
plant material in the S1 generation to 19% in the
S6 generation. The data for the S6 generation
were limited to only one of the five starting
families due to a high proportion of weak plants
that failed to flower in other families. The rapid
decline of tetraploid potatoes after even a single
generation of inbreeding has been confirmed in a
wide range of germplasm, especially if starting
with the most productive cultivars (Golmirzaie
et al. 1998a, b; Hagberg and Tedin 1951). Many
studies have been conducted on potato dihap-
loids, i.e., derivatives of tetraploid selections
with the diploid chromosome number
(2n = 2x = 24) obtained by prickle pollination
(Uijtewaal et al. 1987a) or anther culture (Wenzel
et al. 1979). Most dihaploids exhibit reduced
vigor compared to the tetraploid progenitors,
averaging only 50% of the yield and most do not
shed functional pollen (Rokka 2009), limiting
their utility in breeding. In an extensive study of
5377 dihaploids extracted from 31 different tet-
raploid clones, Hutten et al. (1995) found that
39% of a subset of the most vigorous did not
tuberize and 32% did not flower. Although
dihaploids have reduced heterozygosity com-
pared to tetraploid cultivars, they still exhibit
considerable heterozygosity and are therefore
unsuitable nominees for sequencing as the dif-
ferences in intergenic DNA on homologous
chromosomes defied assembly using the

sequencing platforms available in 2011. Reduc-
tion of dihaploids to the monoploid level
(2n = 1x = 12) requires functional female
gametes using prickle pollination or functional
male gametes using anther culture, assuming that
the genetic load were sufficiently light to obtain a
viable monoploid genome. Uijtewaal et al.
(1987b) obtained true monoploids (synonymous
with monohaploids) from two different dihaploid
families by prickle pollination; after chromosome
doubling, these are the only reported truly
homozygous plants obtained primarily from
Solanum tuberosum Group Tuberosum germ-
plasm. Yet, even in this case, a close look at the
parental material reveals that Group Phureja
diploids comprised either 3/8 (M9 family) or ½
(H78.01 family) of their composition (De Vries
et al. 1987; Uijtewaal et al. 1987b). The mono-
ploids and doubled monoploids obtained were
extremely weak with little or no tuber set
(Uijtewaal et al. 1987b). Because of the heavy
genetic load of tetraploid Group Tuberosum
germplasm revealed in these studies of chromo-
some reduction, it was an unlikely source of a
suitable homozygous clone for sequencing. In
any case this source of plant material was no
longer available at the time when sequencing was
first seriously envisioned.

Due to the lack of availability of a homozy-
gous line derived from tetraploid Tuberosum
germplasm, an alternative source of homozygous
potato lines was necessary. Diploid accessions of
Group Andigenum germplasm would be expec-
ted to carry a less crippling genetic load than
tetraploids as they would have been subjected to
more purifying selection through sexual propa-
gation as well as reduced masking of deleterious
alleles at the diploid compared to the tetraploid
level. In order to demonstrate the possibility of
homozygous potato germplasm, we embarked on
a program starting in the 1980s to extract
monoploids from diploid Phureja germplasm
(Fig. 4.1). Our starting material was sexually
propagated derivatives of the Phureja population
bred for photoperiod adaptation to long days in
North Carolina (Haynes 1972). We screened
selected seedlings randomly from crosses among
diplandrous (2n pollen-producing) clones within
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a diverse population (Veilleux and Lauer 1981)
for their ability to form embryos in anther culture
(Fig. 4.2) using the protocol described by Wen-
zel et al. (1979). The rationale of using diplan-
drous clones was to derive monoploid plants
from reduced pollen grains while retaining the
ability of the resulting monoploids or their sex-
ually derived hybrids to generate 2n pollen
through fused or parallel spindles at the second
division of microsporogenesis, thereby providing
building blocks for sexual polyploidization in
future applications. The corollary, however, was

that the embryos generated from heterozygous
2n microspores in anther culture would be more
vigorous and outcompete the relatively weak
sought-after monoploid embryos from 1n mi-
crospores. Another complication was that
diploids derived by anther culture would include
heterozygous 2n pollen-derived clones as well as
homozygous clones from spontaneously doubled
1n embryos or even 2n plants from somatic
anther tissue. All diploids were routinely dis-
carded as the effort of sorting homozygous from
heterozygous clones using whatever marker

Fig. 4.1 Tubers of a diverse
population of adapted Phureja

Fig. 4.2 Anther-derived
embryos of diploid potato
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system was in vogue at the time was deemed too
great (Veilleux et al. 1995). Instead, verified
monoploids were subjected to a leaf disc regen-
eration protocol (Hulme et al. 1992) resulting in
diploidization (Fig. 4.3) either through regener-
ation from pre-existing endoreduplication in leaf
explants or spontaneous endoreduplication dur-
ing regeneration from callus (Paz and Veilleux
1999).

The first set of anther-derived embryos and
plants derived from the adapted Phureja popula-
tion was recovered from a single seedling that
responded positively to anther culture (Veilleux
et al. 1985). The homozygous plants, though
weak compared to their heterozygous diploid
anther donor, were sufficiently viable for green-
house trials, field trials (Lough et al. 2001) and,
once doubled (Fig. 4.3), crosses as stylar parents
to various heterozygous pollinator plants
(M’Ribu and Veilleux 1992). A modest effort was
made to enlarge the germplasm base by screening
for other anther culture-competent selections
within the adapted Phureja seedling population to
generate a more genetically diverse homozygous
Phureja germplasm base (Johnson et al. 2001).
Over the years, various efforts were made to
improve the vigor of Phureja monoploids through
somatic hybridization (Haynes 1972; Johnson
et al. 2001; Lightbourn and Veilleux 2007) and
outcrossing followed by re-extraction of

monoploids (M’Ribu and Veilleux 1992; Paz and
Veilleux 1997). The monoploids and doubled
monoploids were maintained in vitro for many
years at Virginia Tech and some were deposited
in the Potato Gene Bank (http://www.ars-grin.
gov/nr6/; most easily found by searching for
germplasm developed by Veilleux) or provided to
the International Potato Center (accession CIP
801092). One of the heterozygous anther donor
clones, BARD 1-3, is also maintained at the US
Potato Gene Bank as accession GS 224. As the
response to anther culture was found to be a
highly hereditable trait (Taylor and Veilleux
1992), seedling families obtained from crosses
between anther-derived doubled monoploids and
a range of heterozygous pollinators can be
expected to respond to anther culture. Such
seedling families have been generated at CIP,
Virginia Tech and elsewhere. Likewise, tetraploid
somatic hybrids derived by intermonoploid pro-
toplast fusions (Lightbourn and Veilleux 2007)
also respond positively to anther culture and
represent heterozygous potato germplasm where
all alleles would have passed through the mono-
ploid sieve (Wenzel et al. 1979). One of these
somatic hybrids is maintained by the US Potato
Gene Bank as accession GS 220 (https://
npgsweb.ars-grin.gov/gringlobal/accessiondetail.
aspx?id=1648798). Hence, a limited variety of
homozygous potato germplasm has been made

Fig. 4.3 Monoploid and
isogenic doubled monoploid
potato
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available in recent years; most generated through
haploid extraction with the aim of facilitating
genetic studies rather than direct breeding
applications.

When the Potato Genome Sequencing Con-
sortium (PGSC) became frustrated with attempts
to assemble the sequence of the heterozygous
dihaploid potato clone, RH89-039-16, a search for
homozygous potato germplasm that might be
more amenable to sequencing using available
Sanger, Roche 454 Pyrosequencing and Illumina
Sequencing by Synthesis platforms was initiated.
DM BARD 1-3 516 R44 (DM) was available at
both Virginia Tech and CIP, facilitating its distri-
bution to partner institutions in the PGSC. It had
been extracted as one of many monoploids from
heterozygous adapted Phureja clone BARD 1-3,
then subjected to chromosome doubling by leaf
disc regeneration (Paz and Veilleux 1999). The
designation R44 is simply the 44th shoot regen-
erated that was later identified as a diploid. As with
most selections of Phureja, DM prefers a cool
season (22 °C days/16 °C nights); under these
conditions, it will grow slowly but, once estab-
lished, will flower (white flowers) and set fruit
when pollinated by a fertile diploid potato selec-
tion. Although it produces stainable pollen, there
are no reports of pollen fertility. It tuberizes after a
few weeks, sooner if grown under a short 12 h
photoperiod, later if grown under a long 16 h
photoperiod. The tubers (Fig. 4.4) are fingerling,
yellow fleshed, slightly and variably red-skinned
and have poor keeping quality as they often exhibit
tuber end rot evenwhen still attached to themother
plant. Because of its homozygosity in intergenic as
well as genic regions of the genome, the DM
genome sequence was assembled rapidly and
published in 2011 (The Potato Genome

Sequencing Consortium 2011) where 86% of the
844 Mb genome was assembled and some 39,000
genes predicted. The genome assembly was later
improved through marker analysis of a backcross
population of DD x (DM x DD) where DD was a
heterozygous clone of S. tuberosum Group Andi-
genum Goniocalyx cultivar group (Sharma et al.
2013).

4.2 Conclusion

As of March, 2017, the original publication of
the DM sequence has been cited more than 500
times, providing a framework for studies of gene
families (Charfeddine et al. 2015; Gao et al.
2016; Ma et al. 2016; Schreiber et al. 2014; Seo
et al. 2016; Tang et al. 2016; Van Harsselaar
et al. 2017), a scaffold for alignment of tran-
scriptomic data (Campbell et al. 2014; Gong
et al. 2015; Goyer et al. 2015; Liu et al. 2015;
Morris et al. 2014; Tang et al. 2014) or a refer-
ence genome against which to discover genomic
variation (Hardigan et al. 2016), to cite just a
few. As sequencing platforms improve, the DM
assembly will likely be supplanted by that of a
more robust commercial potato line. In the
meantime, it will have served its purpose to bring
this genetically clumsy, yet important, crop into
the genomic era.
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