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Abstract
This chapter presents a summary of published work on the development,
achievements and interconnections of research on potato somatic cell
genetics. To maintain genetic stability the main topics include the
establishment and maintenance of in vitro cultures, micropropagation,
shoot and meristem culture, somatic embryogenesis, production of micro-
and mini-tubers and conservation of germplasm. In the second section, the
methods presented are based on the induction and utilization of genetic
variability (diversity): production of haploids, somatic hybridization via
protoplast fusion, somaclonal variation and gene transfer. Another
significant aspect of this review is the presentation of numerous methods
used in clonal propagation, the production of healthy plants, germplasm
conservation for medium-term and long-term storage, potato breeding and
utilization of germplasm for the production of advanced breeding clones
and potato cultivars with improved resistance to pathogens, pests and
abiotic stress, and of high quality and with other specific traits for other
purposes. Finally, new methods of breeding, including molecular marker
development and genome editing, are briefly described to indicate the
potential of somatic cell genetics for the future improvement of potato.

13.1 Introduction

Each plant cell contains one complete set of
chromosomes with the genetic information for
the development of an individual plant, which is
the basis of the ability to regenerate a plant from
cells in culture. Starting with the first report of
the cultivation of potato plants in vitro (Stewart
and Caplin 1951) diverse biotechnological tech-
niques have been successfully used for more than
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65 years. These techniques are generally referred
to as somatic cell genetics, which both increase
the supply of genetic diversity and make selec-
tion more efficient. Potato can be cultivated
in vitro and is amenable to biotechnological
improvement (Barrell et al. 2013). Somatic cell
genetics has developed since the demonstration
of potato cell totipotency in vitro, i.e. plant
regeneration from isolated protoplasts (Shepard
and Totten 1977). The definition of plant somatic
cell genetics includes all in vitro genetic tech-
niques that can be used to culture organs, tissues,
cells and isolated protoplasts and obtain insights
into the genetics of plant somatic cells (Terzi
et al. 1985). Some of them are routinely used for
many practical applications in potato breeding,
maintenance and production. Micropropagation
using two node explant culture and development
of micro-tubers is today commonly used in all
tissue culture laboratories for the propagation and
medium-term preservation of potato germplasm.
Cryopreservation techniques are used for the
long-term conservation of potatoes and wild
species of Solanum (Li et al. 2016). In vitro
selection of somaclones and protoclones of
potato has been successfully used as well as
genetic manipulation through gene transfer or
protoplast fusion to bypass sexual incompatibil-
ity and introgress many of the resistance genes of
wild species to improve potato (Rokka 2015).
New biotechnological techniques such as
CRISPR-Cas9 can be used to genetically
manipulate potato, which opens up new horizons
for potato improvement (Wang et al. 2015).
Relevant biotechnological methods and approa-
ches for the development of potato based on
somatic cell genetics are summarized in
Fig. 13.1.

In this chapter the use of potato somatic cell
genetics is discussed and brought up to date
regarding the latest achievements and introduc-
tion of new techniques such as iRNA and gen-
ome editing and the prospects of potato somatic
cell genetic studies for potato crop improvement.
With the broadening of the genetic knowledge
and approaches, like genomic selection, gene
editing, transformation and hybrid breeding,
gene identification and diagnostic molecular

marker techniques, it will be possible to manip-
ulate and successfully control and change the
patterns of development of tissues to suit our
interests and needs. In particular, DNA markers
for the precise characterization of germplasm, the
construction of saturated linkage maps, defined
molecular markers for marker-assisted gene
pyramiding and alien gene introgression should
improve the breeding of potatoes. Cell and tissue
culture techniques are invaluable in achieving
these goals.

13.2 Methods of Maintaining
Genetic Stability

13.2.1 Micropropagation: Shoot,
Meristem Tip Culture,
Somatic Embryogenesis,
Micro- and Mini-tubers
and Their Use in Potato
Breeding

13.2.1.1 In Vitro Multiplication
and Shoot Culture

Methods of plant tissue culture include the
growing of plant cells, tissues or organs isolated
from a plant on artificial media under axenic
conditions in a suitable environment. One prac-
tical objective is the rapid clonal propagation of
potato. Micropropagation is a much faster and
more efficient way of asexually propagating
in vitro plantlets of single shoot cuttings on
artificial media than the traditional propagation
by cuttings in soil in a glasshouse. The shoots are
cut into single node explants, each containing an
axillary bud and cultivated individually in glass
tubes or vessels of different sizes. After transfer
to a fresh medium, which supports shoot elon-
gation and rooting, the axillary buds of these
explants rapidly develop into rooted plantlets
consisting of several internodes within 3–
4 weeks. The culture of shoots is the basic
technique for establishing in vitro cultures using
shoot tips, or apexes, and material for use in
other techniques such as cell, tissue and organ
culture, protoplast culture, somatic embryogene-
sis and transformation. Other methods of
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propagation, like multiple shoot production by
activating axillary buds, were favoured in the
1970s (Westcott et al. 1977; Roca et al. 1978)
and used for transferring genetic resources into
potato (Roca et al. 1979).

A lot of research has been undertaken to
determine the main factors for ideal propagation,
including media for the production and mainte-
nance of potato shoot cultures (details in Vin-
terhalter et al. 2008). The MS medium, as
described by Murashige and Skoog (1962),
contains carbohydrates (sucrose), macro and
microelements, vitamins, but no plant growth
regulators, like phytohormones, and is still the
best and most widely used medium for potato
propagation. Mainly during the 1970s and up to
the beginning of 2000, the effect of medium
supplements and various cultural conditions that
affect the growth of in vitro plants were being
intensively investigated. The use of liquid, agar
or gelrite-solidified media, mineral nutrition and

specific substances and inoculation density
(overview in Vinterhalter et al. 2008) was
investigated. Different types of closures for tubes
and vessels were used for analysing growth and
morphology of potato shoots in vitro
(Chanemougasoundharam et al. 2004; Genound-
Gourichon et al. 1993). Based on these studies
and our experience we recommend cotton wool
plugs, which in terms of avoiding morphological
abnormalities, are the best type of closure.

Seabrook (2005) reviews the studies on the
effects of irradiance, photoperiod and spectral
composition of light on potato growing in vitro.
Recently, trials were carried out on the use of
LED light for growing potato plants and tissue
in vitro to minimize the energy costs of climate
rooms for propagation and storage (Jao and Fang
2004; Luz et al. 2016; Da Rocha et al. 2015).

An efficient method for mass propagation of
single-leaf cuttings is published by Haapala
(2005). Other details were published, like using
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Fig. 13.1 Approaches and manipulation steps for improvement of potato based on somatic cell genetics
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food containers as a cheaper alternative to the
traditional culture vessels, which can also be
effectively sterilized using NaOCl solution,
which significantly reduces the costs of micro-
propagation (Weber et al. 2015). Temperature
pre-treatment of transplants from in vitro plant-
lets influences their growth and yield in the field
(Tadesse et al. 2001). Attempts were made to
automate micropropagation using robots moni-
tored by cameras and computer programs
(Aitken-Christie et al. 1995). This interesting
approach was not generally accepted because of
problems involved in arriving at accurate deci-
sions about how to manipulate plant material.

Recently the main use for shoot cultures is
clonal propagation but it is also the basic tech-
nique of other biotechnological methods. This
method of shoot culture guarantees, when
development of callus tissue is avoided, high
multiplication rates and the production of genetic
identical, healthy and stable potato plants.
Therefore the term ‘rapid or mass propagation’ is
generally used.

13.2.1.2 Meristem Tip Culture
The essence of meristem-tip culture is the exci-
sion of an organized shoot apex, 0.3–1.0 mm in
length from a donor plant for subsequent culture
in vitro. An apical meristem includes the apical
dome and a limited number, mostly two to four of
the youngest leaf primordia and no differentiated
provascular or vascular tissues. Meristem tips are
removed by sterile dissection under a microscope
and cultured in a liquid medium with filter paper
bridge supports or on an agar-solidified medium
containing low concentrations of plant growth
regulators. There are a lot of studies on meristem
tip culture but only a few will be mentioned in this
chapter. An advantage is a genetic stability
inherent in this technique, since plantlet devel-
opment is from an already undifferentiated apical
meristem and the development of shoots directly
from the meristem avoids callus tissue formation
and adventitious organogenesis. A major advan-
tage of working with such small explants is the
potential this has for excluding pathogenic
organisms that may have been present in the
donor plants. Therefore, this technique is used to

eradicate harmful viruses, based on the observa-
tion that only a few virus particles are present in
meristem cells. Using very small explants, the
chance of producing a virus-free plant is high, but
the survival rate is directly proportional to the size
of the explant. The efficiency of virus eradication
depends on the type of virus, potato variety or
genotype. To increase the probability of suc-
cessfully producing virus-free material, ther-
motherapy can be used separately or in
combination with meristem tip culture as the
second step in the procedure (Stace Smith and
Mellor 1968; Šip 1972; Faccioli 2001). For
thermotherapy, ex vitro or in vivo plants or tubers
are kept at a high temperature of 32–36 °C.
Another method of virus eradication is
chemotherapy: media are supplemented with
viricidal substances, like ribavirin (Klein and
Livingstone 1982; Faccioli and Colalongo 2002)
or jasmonic acid (Ravnikar and Gogala 1989). All
these methods could be used for the mass pro-
duction of virus-free potato plants, which could
be used as seed for the routine establishment of
potato crops in the field.

Based on demand, meristem tip culture is used
by breeding companies in combination with
thermo- and chemotherapy to eliminate virus
diseases to produce virus-free (disease-free)
plants.

13.2.1.3 Somatic Embryogenesis
Somatic embryogenesis is the development of a
bipolar structure consisting of both a root and a
shoot, from any sporophyte cell via the same key
stages of embryo development as zygotic
embryogenesis via globular, hart and or torpedo
stages. The cells first de-differentiate and then
re-differentiate towards the embryogenic path-
way. Somatic embryos are produced using dif-
ferent media and explants like: cotyledons/
hypocotyls or shoot/leaf explants (Pret’ová and
Dedicova 1992; De García and Martínez 1995;
JayaSree et al. 2001) or suspension cultures
(Vargas et al. 2005). An efficient system for
inducing somatic embryogenesis in potato is
reported by Seabrook and Douglass (2001) and
Sharma and Millam (2004), with the potential for
mass clonal propagation. The internodal
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segments are subjected to a three-stage culturing
regime of shoot multiplication, the induction of
somatic embryogenesis and the regeneration of
somatic embryos using specific culture media.
After transferring explants from an initial incu-
bation on a medium containing auxin to an
auxin-free medium, embryos develop within
three weeks, which is confirmed by histological
studies. It is reported that this unicellular mode of
origin can successfully be used to produce such
embryos (Sharma and Millam 2004; Sharma
et al. 2007a). After transferring to a plant growth
regulator-free medium, the resulting plantlets
develop into potato plants, which produce tubers
of good quality when grown in a glasshouse. The
use of somatic embryogenesis by regenerating
from single cells is an interesting tool for pro-
ducing seed material and propagation of trans-
genic potato plants. Producing synthetic seeds by
encapsulating somatic embryos could have
advantages for handling, storage and transporta-
tion (Sharma et al. 2007b). Furthermore, it is a
novel biological system for studies on gene
expression and regulation. The use of somatic
embryogenesis for potato improvement is sum-
marized by Nassar et al. (2015).

13.2.1.4 Micro-tubers

Induction and Propagation
Micro-tubers are produced in vitro by culturing
shoots. Their size is between 4 and 15 mm
depending on cultural conditions and potato
genotype. The fresh weight varies from 100 to
400 mg. Several different in vitro culture systems
are used in tuberization studies (Ewing 1987).
The most common method uses shoot cultures
involving at least one subculturing to develop
tubers. For practical purposes it is necessary to
understand each of the different phases in the
production of micro-tubers: initial explants, tuber
induction, and dormancy response, development
of new plants and abiotic factors and conditions.
Hussay and Stacey (1984) studied tuberization in
single node cuttings of several potato cultivars.
Their results were confirmed by later studies and,
therefore, are described here in more detail. On a
medium containing 2.0 mg/l BA and 6%

sucrose, micro-tubers develop after 6–8 weeks.
The upright leafy shoots develop on horizontally
growing stolons. Photoperiod also affects tuber-
ization as under long-day conditions stolons form
tubers in the medium and under short-day con-
ditions most tubers develop above the solidified
agar medium. All tuberization-inducing factors
are inhibitors of gibberellin biosynthesis. The
presence of GAs inhibits tuberization and pro-
motes the elongation of stolons (Kumar and
Wareing 1972; Vreugdenhill and Struik 1989;
Xu et al. 1998).

Using this single-node tuberization system has
revealed that in vitro tuberization is stimulated by
increasing the sucrose concentration to 5–8%
compared to glucose, fructose, maltose (Khuri
and Moorby 1995; Fufa and Diro 2013) or
mannitol (Lo et al. 1972) and by the addition of
2–10 mg/l cytokinins (Wang and Hu 1982;
Abbott and Belcher 1986; Estrada et al. 1986;
Gopal et al. 2004) and supplementary nutrients
(Dhital and Lim 2011). Fluctuating temperature
also affects the in vitro production of
micro-tubers (Otroshi et al. 2009).

By adding various compounds, such as the
plant growth inhibitor CCC (Hussay and Stacey
1984; Estrada et al. 1986; Lentini and Earle
1991), auxins (Ewing 1987; Dragićević et al.
2008), coumarin (Stallknecht 1972), jasmonic
acid (JA, Pelacho and Mingo-Castel 1991),
activated charcoal (AC, Bizarii et al. 1995) or
hydrogen peroxide (López-Delgado et al. 2012)
to a medium, it is also possible to stimulate the
induction and development of micro-tubers.

Dormancy and Mass Propagation of
Micro-tubers
Dormancy of micro-tubers is strongly dependent
on genotype (Leclerc et al. 1995; Pruski et al.
2003) and tuber size. Small micro-tubers mani-
fest a greater tendency to become dormant than
large tubers (Ranalli et al. 1994; Leclerc et al.
1995). Lê (1999) presents data that indicates that
a period in cold storage decreases the tendency to
become dormant. Micro-tubers produced in cul-
tures exposed to light had a short dormancy and
sprouted prematurely (Gopal et al. 1997).
Short-day treatments reduce the duration of
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dormancy compared to tubers developed in
darkness (Coleman and Coleman 2000).
Micro-tubers produced under long-day condi-
tions tend to sprout more readily than those kept
under short-day conditions (Vecchio et al. 2000).
These results demonstrate that the dormancy of
micro-tubers ranges from strong to completely
absent (Leclerc et al. 1995; Coleman et al. 2001).
Therefore, they are clearly not similar to
field-grown plants (Coleman et al. 2001). Sum-
marizing, dormancy is determined by the method
of production. Before selecting a procedure for
producing micro-tubers, it is important to con-
sider the reason for producing them. Other traits
of micro-tubers are essential for the propagation
of healthy material for transfer into glasshouses
or grown on in the field. Liquid MS medium in
fermenters has been used for the large-scale
production of micro-tubers (Akita and Takayama
1988). This involves a two-step method starting
with the cultivation of single node cuttings in 2
litres of liquid medium containing 3% sucrose
contained in jars exposed to weak light until they
produced shoots. In the second step, when the
shoots were 20 mm long, the medium is replaced
by one containing 9% sucrose and cultivated in
darkness. Within two weeks this results in the
production of 223 tubers per fermenter. The
production of micro-tubers using different types
of bioreactors is reviewed by Piao et al. (2002).

13.2.1.5 Mini-tubers
Mini-tubers are mostly 5–30 mm in diameter and
weigh 0.5–5 g, and are larger than micro- tubers,
but smaller than seed tubers, which weigh about
50–70 g. Mini-tuber production is based on the
rapid in vitro propagation of a virus-free stock of
micro-plants and their subsequent culturing
hydroponically or other similar derived tech-
nologies (Ahloowalia 1999). It is used as the
starting point for a field multiplication system.
After acclimation, in vitro propagated plants or
micro-tubers develop their own system of stolons
and tubers after they are transferred to glass-
houses or net-houses. The production of
pathogen-free mini-tubers is possible within 70–
90 days of growing them in soil under protected
and controlled conditions. Some commercial

companies quote rates of up to 1000 mini-tubers
per square metre following non-destructive har-
vesting every 40–50 days from a crop derived
from a single micro-plant under optimal glass-
house conditions (http:www.quantumtubers.com/
techinfo.htm).

The larger the mini-tubers, the easier they are
to handle and select because the characters of
parental cultivars expressed in the tubers, like
shape, skin colour and texture, are more easily
visible. The effectiveness of using these tubers
for selecting for agronomic characters is
demonstrated by Gopal et al. (2002). The age of
transplants from in vitro derived potato plantlets
affects crop growth and seed tuber production in
the field (Milinkovic et al. 2012; Lommen 2015).
Healthy mini-tubers are the basis of seed multi-
plication programmes, as this reduces the number
of multiplications and hence the risk of contam-
ination of diseases and pests in the field. For the
large-scale production of mini-tubers, growing
them hydroponically in a nutrient solution is an
efficient technique (Lommen 2007). The roots of
the plants are enclosed in a water-filled container
and the liquid nutrient solution is directly taken
up by the roots. The shoots develop well under
controlled temperature conditions. The
mini-tubers repeatedly can be harvested as they
can be removed from the plants once they have
grown to a minimum size. This leads to the ini-
tiation of new extra tubers (Lommen 2007).
Muro et al. (1997) compared two contrasting
culture systems for propagating first generation
potatoes: a system using peat or sand mixed with
mineral fertilizers and a hydroponic culture
method using perlite as a matrix and a nutrient
solution. The total production and number of
tubers were significantly higher in the hydro-
ponic cultures. Compared to this, an aeroponic
system, in which nutrients are applied as mist to
the root system is more efficient for producing
mini-tubers, but they have a lower average
weight (Ritter et al. 2001). Hydroponic or aero-
ponic systems for producing disease-free
mini-tubers for pre-basic seed production are
used in countries where the climatic conditions
are very unfavourable, such as high temperatures
and humidity during the vegetation period, as in
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Latin America (Mateus-Rodriguez et al. 2013),
Africa (Vanderhofstadt 1999; Mbiyu et al. 2012;
Prossy et al. 2014) and South Korea (Chang et al.
2011). Because the roots of the plants are cooled
by the culture medium, the plants develop well
and quickly. Several cycles of potato production
per year is possible, resulting in a highly pro-
ductive system.

Potato breeding companies commonly use
in vitro cultures of plants, micro-tubers and
mini-tubers to rapidly multiply their varieties and
to maintain a collection of disease-free, and true
breeding material. The mini-tubers can be clas-
sified as Elite Seed and used for the production of
certified seed.

13.2.1.6 Long-Term Storage
for Conservation
of Potato Germplasm
and Plant Genetic
Resources, (Living
Collection, Gene Bank)

Maintenance of Cultures of in Vitro Plants
The standard duration of the subculture of potato
in a MS medium is 4–6 weeks at 20 °C and with
a photoperiod of 16 h. This has been the standard
procedure for the clonal propagation of potato
plants since it was used successfully in the 1970s
(Westcott et al. 1977). For a large collection of
valuable genotypes, this method is expensive in
terms of time and labour. The growth of the
plants is determined by the number in a cultural
vessel (Sarkar et al. 1994), but there are more
efficient methods of prolonging the period for
which cultures of shoots can be stored.

In vitro techniques for the medium- to
long-term storage of potato tissue must satisfy
the following requirements (Thieme 1992):

• extended storage life of the material must not
be associated with reduced viability;

• low material, energy and labour inputs;
• can be used for a wide range of genotypes;
• no greater risk to the genetic stability of the

stored material than growing in the field.

Investigations on how to fulfil these criteria
resulted in the development of protocols, which
require subculturing once per year or more and
guarantee the genetic identity and a high per-
centage survival of explants.

Micro-tuber Induction and Storage
Nodal parts of in vitro plants are cut and trans-
planted into an MS-medium enriched with 8–10%
sucrose but without phytohormones and culti-
vated under long-day conditions at 20 °C. After
two to three weeks, culturing continues under
tuber-inducing conditions at 9 °C under short-day
conditions of 8/16 h light/dark cycle. Two to four
months later during tuber formation the stems
slowly die. The micro tubers left in the tubes are
stored in the dark at 4 °C. Tubers are examined
after 16 months (of total culturing time) and their
germination and preservation status are assessed.
Propagation involves cutting and transferring
germinated stem parts from the old tuber to a
fresh medium (Thieme 1992). At each stage in the
storage cycle, first, the young stems and later the
sprouting tubers can be harvested and used as the
first step in their rapid propagation.

To produce a stock or living collection,
micro-tuberization of tuber-bearing cultivars and
genotypes is widely used (Donnelly et al.
2003; Pett and Thieme 1982; Kwiatkowski et al.
1988; Lizarraga et al. 1989).

Plant Growth Retardants
A simple, efficient and cheap method for reduc-
ing growth is to use plant growth retardants,
which are routinely employed for small collec-
tions of germplasm (Dodds et al. 1991). Sub-
stances such as abscisic acid (ABA, Westcott
1981b), chlorcholine chloride (CCC, Miller et al.
1985) and acetylsalicylic acid (ASA, López-
Delgado et al. 1998) can extend subculture
duration by up to 12 months.

Reduction of Nutrition and Manipulation of
Osmotic Stress
Reduced carbohydrate and mineral nutrition
induces a slower growth of shoots in vitro. Sugar
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alcohols, like sorbitol or mannitol are used
instead of sucrose, which increases the osmotic
value of the medium (Westcott et al. 1977). The
best result is 18 months storage without
sub-culturing and a 58% survival of potato
micro-plants, which was achieved by growing
them in an MS medium supplemented with
20 g/l of sucrose and 40 g/l sorbitol at a low
temperature (Gopal and Chauhan 2010). Shoot
tips encapsulated in calcium alginate beads
(Nyende et al. 2003) can be stored at 10 and 4 °C
for 180 and 270 days, respectively.

Cold Storage and Cryopreservation
A reduction in the temperature from 22 to 6–12 °C
can extend the subculture duration from 4 weeks
up to 12 months (Westcott 1981a). This method is
used for the medium-term storage of a living
collection.

The best option for the long-term maintenance
of vegetative propagated plants is cryopreserva-
tion, using storing explants in or above liquid
nitrogen, which has been intensively studied.
There are numerous reviews and articles on the
theoretical and methodological aspects of cold
storage and cryopreservation (Harding 2004;
Halmagyi et al. 2005; Benson et al. 2006; Ben-
son 2008a, b; Harding et al. 2009; Sakai and
Engelmann 2007; Benson and Keith 2012; Panta
et al. 2015) and the details of the techniques used
for potato are cited by Bajaj (1977, 1995), Grout
and Henshaw (1978), Towill (1984), Keller et al.
(2008), and Wang et al. (2008), which focus on
currently used potato cryopreservation protocols.
Kaczmarczyk et al. (2011) indicate the histori-
cally important, currently used and most recent
advances in potato tip cryopreservation of vari-
ous species and varieties of potato.

Basically this approach includes the main
steps and modifications in the techniques (men-
tioned below) for the propagation and prepara-
tion of donor plants, isolation of explants (tuber
sprouts, axillary buds and apical shoot tips),
pre-culture, dehydration, cooling, storage,
rewarming, regeneration (of explants) and
propagation.

Different techniques have been successfully
used for the cryopreservation of a wide range of
species (Kaczmarczyk et al. 2011):

• two-step cooling
• ultra-rapid cooling
• droplet freezing
• vitrification
• droplet vitrification
• encapsulation/dehydration
• encapsulation/vitrification.

The advantages and disadvantages of these
methods based on a lot of single observations are
discussed. The parameters that affect cryopreser-
vation, such as the physiological state of the donor
plants and shoot tips and their pre-culture, and
specific cryogenic factors, type of cryoprotectants,
the cooling and rewarming process or media and
light regime for further cultivation of plants after
recovery are summarized by Kaczmarczyk et al.
(2011).

Based on studies on genomic DNA stability,
no genetic changes occur in plants after cryop-
reservation (Benson et al. 1996; Harding and
Benson 2000). Harding and Benson (2001)
demonstrate that stable somatic inheritance of
genomic regions occurs by means of
microsatellite profiles, which are identical in the
regenerated material, the parental plants and their
progeny. The successful conservation of charac-
teristics of cultivars is confirmed, by estimating
the ploidy level or by AFLP, RAPD or
inter-simple sequence repeat (ISSR) markers
(Zarghami et al. 2008; Hirai and Sakai 1999; Li
et al. 2016).

There are cryopreserved collections of potato
cultivars and accessions of wild species of potato
in different countries: the Czech Republic
(Zámečnik et al. 2007), Germany (Keller and
Dreiling 2003; Kaczmarczyk et al. 2009), Peru
(Panta et al. 2006; Gonzalez-Arnao et al. 2008),
South Korea (Kim et al. 2006), Spain (Barandalla
et al. 2003), the UK (http://www.scri.ac.uk) and
USA (http://www.ars.usda.gov; http://www.ars-
grin.gov/nr6), preserved using different
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cryopreservation methods. The regeneration
capacities of cryopreserved genotypes, which is
the key factor in this approach, vary widely from
0 to 93%. The DMSO droplet method, improved
by the use of alternating temperatures during pre-
culture and a solid medium for regeneration is
currently successfully used for storing 1119
accessions at IPK Gatersleben, for which the
mean regeneration capacity is 46% (Kaczmar-
czyk et al. 2011).

A problem with this technique still remains
the genotype-dependent ability to regenerate
after cryopreservation. But one should bear in
mind that none of the conservation strategies,
like cryopreservation, cell and tissue culture and
field culture, are completely safe (Kaczmarczyk
et al. 2011). A selection of conservation tech-
niques should be recommended based on the
kind and number of potato genotypes, the length
of time for which they are to be stored, the
existing technical equipment and staff and other
specific aspects of the research.

Cryopreservation can also be used to eradicate
viruses, because many viruses are unable to
survive or multiply under freezing conditions
(Benson 2008b; Wang and Valkonen 2009).
Potato leaf roll virus (PLRV), Potato virus Y
(PVY), Potato virus M (PVM) and Potato virus S
(PVS) are eliminated by the cryotherapy of
virus-infected potato shoot tips (Wang et al.
2006) and in combination with ribavirin treat-
ment (Kushnarenko et al. 2015), respectively.
Ukhatova et al. (2016) used cryotherapy and
complex chemo- and thermotherapies to eradi-
cate PLRV in Chilean samples of Solanum
tuberosum.

Potential applications of cryogenic technolo-
gies for plant genetic improvement and pathogen
eradication are summarized byWang et al. (2014).

13.3 Methods of Inducing
and Utilizing Genetic
Variability (Diversity)

13.3.1 Organ Culture

13.3.1.1 Production of Haploids
To obtain haploid cells and plants, gametophytes
are cultured in vitro. In androgenesis it is the young
anthers, pollen or microspores from flower buds
that are cultured, in gynogenesis it is the ovules. In
nutritional media containing phytohormones
mitotic activity is induced in the haploid nucleus of
gamethophytic cells. The resulting cells, tissues,
embryos and plants can be haploid, but also
diploid or polyploid. Haploid plants are weaker
than diploid plants and are also sterile. The treat-
ment of their meristems with the alkaloid colchi-
cine induces endomitosis and the production of
diploid fertile shoots, which are homozygotes. The
results of the detailed studies carried out in the
1970s are summarized by Bajaj and Sopory
(1986). The androgenic regenerants are very
variable and ‘androgenic competence’ reduces the
success of this method. Androgenesis protocols in
terms of media and method were significantly
improved by Uhrig (1985). A positive androgenic
response was obtained by adding cytokinins and
auxins alone or in combination. More recent
results in potato androgenesis are reviewed by
Pret’ová and Dedicova (2006).

Gynogenesis can be obtained by cross-
pollination using S. phureja as a pollen donor.
Seed is produced parthenogenetically by the
mother plants.Using thismethod 500monohaploid
plants (2n = x = 12) from 2 million seeds were
identified based on the colour of the spots at the
base of the leaves (Uijtewaal et al. 1987) and stored
in vitro. Androgenic monoploids are superior in
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terms of most agronomic traits, including leaf size
and tuber yield (Lough et al. 2001).

Anther culture is an alternative to selfing for
the production of inbred lines of potato. Andro-
genesis does not require completely functional
gametes to generate monoploid plants. The
doubled monoploids could be used as female
plants in hybrid schemes but male fertility is
lacking (Paz and Veilleux 1999). Although this
approach is limited, anther culture remains a tool
for germplasm development in the conversion of
potato into diploid crops (Jansky et al. 2016).
Diploid inbred line breeding of potato was star-
ted and proved by Lindhout et al. (2011).

13.3.1.2 Embryo Rescue and Seed
Culture

Embryo rescue techniques are based on the iso-
lation of embryos from seeds and their cultiva-
tion on artificial media in vitro. It is used in
potato after specific crosses to save embryos
from ovules, which are fertilized but do not
develop into viable seed (Singsit and Hanneman
1991). The fruit is removed over a period of ca.
20 days and embryo rescue conducted after the
berries are surface-sterilized with ethanol. Using
a scalpel and dissecting needles, seeds and
embryos are isolated and placed in glass tubes
containing MS media. Depending on the size and
stage of development of the embryo (Thieme
1991), a plant develops after culturing for eight
weeks the root system of which is robust enough
for the plants to be grown on in a glasshouse
(Ramon and Hanneman 2002). To overcome
hybridization barriers, potato embryo rescue
alone or in combination with other methods, such
as mentor pollination, hormone treatment and
reciprocal crosses can be used (Jansky 2006).
Successful crossing between non-tuber-bearing
and tuber-bearing species of Solanum is also
possible (Watanabe et al. 1995) and is used to
produce novel inter-series hybrids of Solanum
(Dinu et al. 2005) and for the introgression of
late blight resistance of 1EBN wild species
Solanum pinnatisectum into S. tuberosum
(Ramon and Hanneman 2002).

To obtain important offspring from crosses
between partners that are ‘difficult’ to cross,

immature seeds from recently harvested berries
or dried stored seeds can be isolated, sterilized
and cultivated in vitro, and can result in two to
six weeks in the development of plants.

In addition to somatic hybridization, embryo
rescue and seed culture have been successfully
used to acquire interspecific and intergeneric
hybrids for use as pre-breeding material in potato
breeding programmes.

13.3.2 Somaclonal and Epigenetic
Variation

13.3.2.1 General Aspects: Definition,
Origin and Causes,
Mechanisms
and Molecular Basis

Somaclonal variation is defined as genetic and
phenotypic variation among clonally propagated
plants from a single donor clone resulting from
the use of tissue culture. This phenomenon is
recorded for many crop plants (Larkin and
Scowcroft 1981, 1983; Ahloowalia 1986; Kaep-
pler et al. 1998, 2000; Veilleux and Johnson
1998). It is manifested as cytological abnormal-
ities, frequent qualitative and quantitative phe-
notypic variations, DNA sequence changes, gene
activation and silencing (Kaeppler et al. 2000).
Somaclonal variation mimics induced mutations.
Only a few of these mutations are expressed as
phenotypic and cytogenetic changes in the
regenerated plants (Jain et al. 1998).

There are discussions in the literature about
the different mechanisms that result in somaclo-
nal variation including point mutations induced
by exogenous factors such as radiation and
chemical mutagens, changes in chromosome
number and structure, changes in organelle
DNA, somatic crossing-over and sister chromatid
exchange, chromosome breakage and rearrange-
ment, somatic gene rearrangements, DNA
amplification, DNA methylation, epigenetic
variation, that may result from micro-
environmental conditions in tissue culture, his-
tone modification and RNA interference (iRNA),
segregation of pre-existing chimeric tissues and
insertion or excision of transposable elements or
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non-specific interaction inducing changes in gene
expression (Jain et al. 1998; Kaeppler et al. 1998,
2000; Krishna et al. 2016). Transposable ele-
ments can be activated by tissue culture. Inser-
tions of these elements and retrotransposons can
function as insertional mutagens of plant gen-
omes, which may also cause chromosomal rear-
rangements (Tanurdzic et al. 2008). Li (2016)
points out that the role of de-differentiation and
re-differentiation during cell culture can con-
tribute to the detected ploidy variation, given that
different culture methods often induce different
frequencies of somaclonal variation. The
expression of genes that are responsible for
centromere and ploidy stability are expected to
change during de-differentiation and
re-differentiation and may therefore result in a
variation in the number of chromosomes in some
cultured cells. The epigenetic changes in gene
expression may last for many mitotic genera-
tions, may even be heritable over a certain
number of reproductive generations, and may
consequently still cause genome instability in the
original and the immediately following genera-
tions of regenerated plants (Li 2016).

Recently, epigenetic variation in in vitro cul-
tures of potato cells has attracted interest.
Demarly and Sibi (1989) coined the term ‘epi-
genetic variation’ for this somaclonal variation,
the inheritance of which is neither Mendelian nor
cytoplasmic. Epigenetic control of gene expres-
sion is defined as a somatically or meiotically
heritable alteration in gene expression that is
potentially reversible and is not due to a DNA
sequence modification. It involves gene silencing
or gene activation that is not due to chromosomal
aberrations or sequence changes, which might be
unstable or reversible somatically or through
meiosis (Kaeppler et al. 2000). Authors point out
that these epigenetic changes could be mani-
fested in the activation of quiescent loci or as an
epimutation of loci sensitive to chromatin-level
control of expression. They suggest that soma-
clonal variation is manifested as quantitative and
qualitative trait mutations, karyotype changes
and sequence modification. More aspects of the
epigenetics of somaclonal variation in plants are
discussed by Kaeppler et al. (2000). Epigenetic

events defined as structural adaptations of chro-
mosomal regions that register, signal, or perpet-
uate altered states of activity have also to be
considered (Bird 2007).

The analysis of DNA methylation is a
well-described epigenetic mechanism for detect-
ing and evaluating epigenetic variation in in vitro
cultures of plant cells (Miguel and Marum 2011).
For potato, amplified fragment-length polymor-
phism (AFLP) and methylation-sensitive ampli-
fied polymorphism (MSAP) are used to study
variation in micro-plant morphology (Siobhan
and Cassells 2002), somatic embryos (Sharma
et al. 2007b) and cryopreserved shoot tips
(Kaczmarczyk et al. 2010). Furthermore modifi-
cations of histones and small RNAs are reported
occurring in cell suspension cultures of potato
(Law and Suttle 2005). In general, advances that
have uncovered highly dynamic mechanisms of
chromatin remodelling occurring during cell
de-differentiation and differentiation processes on
which the in vitro adventitious plant regeneration
are based, are presented in Miguel and Marum
(2011).

Li (2016) introduces an interesting concept of
genome network to describe different types of
variations as natural attributes of somatic gen-
omes in crops and horticultural plants and
reviews the agricultural implications of these
variations. He proposes the term ‘somatic gen-
ome variation’ which covers the variation in an
organism and the generation of new genotypes
through somatic means from a sexually produced
individual. He assumes that it displays many
more attributes than genetic mutation and is
important for agriculture.

13.3.2.2 Callus, Cell Suspension
and Protoplast Culture

Somaclonal variation occurs in plants obtained
by using tissue culture (Larkin and Scowcroft
1981). Plants regenerated from various cells and
tissues, such as cultures of protoplasts (proto-
clones, Shepard 1980), apical meristems (meri-
clones), anthers or microspores (gametoclones),
callus (calluclones) and leaf and stem tissue
(somaclones) vary. Callus is defined as an
unorganized mass of tissue growing on a solid
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substrate. In liquid media, callus quickly dis-
solves into small aggregates of cells called a cell
suspension (Bajaj and Dionne 1967; Lam 1977).
Cell suspensions are used as starting material for
protoplast culture (Opatrny et al. 1980) and the
production of somatic embryos (Vargas et al.
2005).

During the 1960 to the 1980s research focused
on methodologies to produce somaclones and
factors that influence their variability or stability.
The external application of plant growth regula-
tors to a callus induces it to differentiate organs
in vitro like shoots, leaves, roots or other organs.
Induction of callus was first reported by Stewart
and Caplin (1951) and further studied by Bajaj
and Dionne (1967), Skirvin et al. (1975) and
Roest and Bokelmann (1976). The effect of
indolyle-3-acetic acid (IAA), indole-3-butyric
acid (IBA), naphthyl acetic acid (NAA),
2,4-dichlorophenoxy acetic acid (2,4-D) and
kinetin was investigated by Okazawa et al.
(1967). Calluses on potato tuber explants usually
form after about one to two weeks of culturing on
media with the auxins, 2,4-D and NAA. The
conditions and balance of plant growth regulators
in cultures were measured in terms of successful
direct shoot regeneration from tuber discs or leaf
explants of a number of cultivars (Okazawa et al.
1967; Lam 1975; Skirvin et al. 1975; Jarret et al.
1980a, b; Mix and Sixin 1983; Kikuta and
Okazawa 1984; Esna-Ashari and Villiers 1998;
Wheeler et al. 1985). Shoot regeneration is a
two-stage procedure (Webb et al. 1983) involv-
ing different plant growth regulators. In the first
stage the media are supplemented with NAA, BA
and GA3, and in the second stage, with GA3.
Thieme and Griess (2005) used leaf and stem
explants from 17 potato cultivars and breeding
clones for callus induction on MS medium with
0.2 mg/l NAA, 2 mg/l zeatin and 5 mg/l GA3.
After two weeks, the explants were transferred
into a shoot induction medium (Webb et al.
1983; Wheeler et al. 1985). Then the successful
shoot regeneration of leaf and petiole explants in
combination with a wide range of plant growth
regulators can be analysed (Park et al. 1995;
Hansen et al. 1999; Yee et al. 2001).

In the 1990s, somaclonal variation was stud-
ied in terms of estimating the changes in traits
after growing them in the field and its application
in potato breeding. This revealed that tissue
culture per se appears to be an unexpectedly rich
and novel source of genetic variability generated
during the tissue culture cycle (Larkin and
Scowcroft 1981). This tissue culture cycle starts
with the establishment of a de-differentiated cell
or tissue culture, the proliferation of cells for a
number of cell generations and the subsequent
regeneration of plants. The expectation was that
the somaclonal variation recorded for many
crops, such as potato, may result in genetically
stable and useful genotypes with novel or chan-
ged traits useful for breeding programmes.
Investigations indicate that the source of the
explant (Sree Ramulu et al. 1986), the culture
medium, the age of the donor plants, the duration
of the culture and the genotype itself are impor-
tant factors affecting the extent and frequency of
somaclonal variation.

The chromosome stability of somaclonal
variants has been investigated. Polyploidy, ane-
uploidy and structural changes including chro-
mosomal deletions, inversions and translocations
occur in plants regenerated from callus culture
(Ahloowalia 1986). Sree Ramulu et al. (1986)
indicate that the initial ploidy of the donor plants
influences the degree of polyploidization that
occurs during protoplast isolation and culture.
All protoclones derived from diplopid donor
clones become tetraploid or aneuploid. A high
frequency of protoclones of cv. Bintje retain
tetraploidy but are morphologically abnormal.
Munir et al. (2011) demonstrate somaclonal
variation in cv. Désirée by using random ampli-
fication of polymorphic DNA (RAPD) markers.

Callus induction, maintenance and shoot
regeneration were the basis of protocols for
Agrobacterium-mediated transformation of
potato at the end of the 1980s. The practical
application of callus culture, however, is uncer-
tain because high genomic instability of the
regenerated shoots resulted mostly in aberrant
plants unsuitable for breeding purposes and clo-
nal propagation. Somaclonal variation is
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undesirable for large-scale mass propagation of
clones, germplasm preservation and production
of transgenic plants. For this, genetic uniformity
of the plants at an early stage is essential. The
genetic fidelity of plants can be revealed using
morpho-physiological, biochemical, cytological
and DNA-based, molecular markers. Krishna
et al. (2016) review the strengths and weaknesses
of the different marker systems including mor-
phological traits, cytological, isoenzyme and
DNA markers. Next-generation sequencing
technology is used to realize the whole-genome
sequencing of individual plants (Miyao et al.
2012). New technologies will help in arriving at
a better understanding of somaclonal variation
and its potential use in crop improvement.

13.3.2.3 Success in Inducing
Somaclonal Variation
for Potato Breeding

In this review the terms protoclones are used for
clones derived from protoplasts and somaclones
for those derived from any other tissues.

There are relatively few experiments on the
use of somaclonal variation for the improvement
of potato cultivars and breeding lines for breed-
ing purposes (Table 13.1). The objective of these
studies is to analyse somaclones of cultivars or
breeding clones derived from protoplasts,
explants and callus culture, including mutagenic
treatment and in vitro selection, in the field in
terms of their suitability to improve agronomic
traits of potato. Shepard et al. (1980) found
clones with different types of morphology in a
population of 10,000 protoplast-derived clones of
the cv. Russet Burbank. Protoclones with
improved characteristics had deficiencies in other
agronomic traits, with some of them being more
resistant to diseases than their parents. Sebastiani
et al. (1994) report the potential of somaclonal
variation in producing potato clones resistant to
Verticillium dahlia and Cassells et al. (1991)
discuss the resistance in the field of somaclones
of potato to late blight in potato associated with
instability and pleiotropic effects. Secor and
Shepard (1981) document differences in 22 of 35
traits of protoclones, which are associated with
variation in the starch content of the protoclones.

Extensive morphological variation occurs in
protoclones of cv. Maris Bard (Thomas et al.
1982). Of 33 protoclones from cv. Crystal, none
have a higher tuber yield, but are better in terms
of tuber bruising, resistance to tuber soft rot and
chip colour. Rietveld et al. (1991, 1993) used
somaclones of three potato cultivars derived from
tuber discs explants. A multistage selection pro-
cedure used to characterize these somaclones in
field plots over five generations at three locations
revealed less variation in tuber shape than in
other traits, but they produce longer tubers, as
previously reported by Pavek and Corsini (1982)
and Cassels et al. (1986). A higher mean tuber
number for somaclones compared to controls is
recorded (Rietveld et al. 1991; Thieme and
Griess 1996, 2005). The latter authors studied
13,000 somaclones of 17 potato donor cultivars
or breeding clones, transferred the in vitro plants
to a glasshouse, followed by several generations
grown in a field and a multistage selection pro-
cedure commonly used in potato breeding. Over
a period of five years and three field generations,
yield, tuber characters, haulm growth, earliness,
starch content, starch yield and tuber appearance
of somaclones were assessed and compared with
that of the controls. This revealed that these traits
varied depending on donor genotype. The haulm
growth, yield and tuber quality of the majority of
the somaclones were poorer than in control.
Earliness varied in one maturity group. There
was no variation in the skin and flesh colour of
tubers. In the second field generation, the fre-
quencies of negative variants for individual
donor genotypes ranged between 0.7 and 22%, of
invariants between 71 and 98% and strong pos-
itive variants between 0 and 9%. Summarizing
all results depending on trait, the average per-
centage for all donor genotypes ranged between
0.1 and 1.4% for positive variants (Thieme and
Griess 2005). These results led to the conclusion
that somaclonal variation can be used to modify
one or few traits in a commercial cultivar while
preserving other important traits. Therefore, this
variation should be exploited in potato breeding
as an additional tool to improve specific agro-
nomic traits of specific cultivars. For example, a
cultivar that has desirable agronomic traits could
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Table 13.1 Utilization of somaclonal variation to improve commercial varieties/breeding clones of potato, including
somatic cell selection

Source of
explants/culture,
mutagenic treatment

Potato cultivar
or clone

Character of somaclones References

Leaf/culture filtrate,
callus, regeneration

6 dihaploid
clones

Improved resistance to Phytophthora infestans,
Fusarium species

Behnke (1979,
1980)

Mesophyll
protoplasts/callus,
regeneration

Russet Burbank Increased tuber number, starch content, lower
proportion of ‘crull’

Secor and
Shepard (1981)

Leaf, rachis,
stem/callus,
regeneration

Désirée High yield, increased resistance to Streptomyces
scabies, higher dry matter content

Evans et al.
(1986)

Protoplasts/callus,
regeneration

Feltwell, Maris
Piper, Foxton

Improved yield, tuber appearance, resistance to
common scab, PVY, PLRV

Thomson et al.
(1986)

Protoplasts/pathogen
filtrate/callus,
regeneration

Dihaploid
clones

Non-significant improvement in resistance to
Fusarium species (F. sulphureum, F. coeruleum),
Phytophthora infestans

Wenzel and
Foroughi-Wehr
(1990)

Internodes/adventitious
regeneration

Bintje Improved stable resistance to Phytophthora
infestans in the field (but mutants often appear at
maturation)

Cassells et al.
(1991)

Tuber discs/callus,
adventitious
regeneration

Superior Stable improved yield, tuber number and shape,
and enhanced vigour

Rietveld et al.
(1991)

Tuber discs/callus,
adventitious
regeneration

Kennebec,
Russet
Burbank,
Superior

High total tuber number and weight, earlier
maturing and a more elongated tuber shape

Rietveld et al.
(1993)

Mesophyll
protoplasts/callus,
regeneration

Crystal Improved resistance to tuber bruising, bacterial
soft rot, enhanced chip colour and processing
quality

Taylor et al.
(1993)

Mesophyll
protoplasts/callus,
regeneration

Irish Cobbler Non-browning cv. White Baron Arihara et al.
(1995)

Stem/callus,
regeneration

17 cvs. and
breeding clones

Improved tuber number and size, starch content
and yield, early maturing

Thieme and
Griess (1996,
2005)

Leaf/callus,
regeneration

Kennebec Salt tolerant plants Ochatt et al.
(1998)

Stem
segments/irradiation,
adventitious
regeneration

Golden Wonder Improved yield and resistance to Phytophthora
infestans (foliage blight)

Kowalski and
Cassells (1999)

Stem/mutagenesis by
irradiation

Kufri Jyoti,
Kufri
Chandramukhi

Improved heat tolerance Das et al. (2000)

Stem, tuber,
protoplasts/callus,
regeneration

Bintje Alterations in general appearance, leaf
morphology, tuber characteristics, unstable

Jelenić et al.
(2001)

Callus culture/in vitro
mutagenesis

Désirée Improved resistance to Alternaria solani and
Streptomyces scabies

Veitia-Rodriguez
et al. (2002)

(continued)
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be improved by increasing tuber number per
plant, starch content or earliness.

Mixoploidy and chimeric structures in nine
somaclones of cv. Bintje are associated with
alterations in its appearance, leaf morphology
and tuber characteristics. This phenotypic insta-
bility is correlated with aneuploidy or poly-
ploidy, which can be detected at high frequencies
in the chromosome counts of root tips of these
somaclones (Jelenić et al. 2001).

After eradicating viruses, using thermother-
apy, meristem culture regenerated plants of the
variety Reet differ in yield, number and weight of
tubers and resistance to late blight, and meristem
clones also deviate in otherwise invariable mor-
phological characteristics (Rosenberg et al.
2010). A high-yielding genotype obtained by
using chemical mutagens (Hoque and Morshad
2014) and the non-browning cv. White Baron
was developed by using somaclonal variants of
cv. Irish Cobbler (Arihara et al. 1995).

Of 800 somaclones of cv. Russet Burbank
produced using somatic embryogenesis, 25 lines
were selected on the basis of their yield and
processing quality, which indicates that soma-
clonal selection offers clear benefits for phy-
tonutrient improvement and in improving the
processing quality of potato (Nassar et al. 2011,
2014). Three somaclones derived from cv.
Désirée are more resistant to Alternaria solani
and Streptomyces scabies (Veitia-Rodriguez
et al. 2002). The best cultivar, with the smallest
somaclonal variation, for producing synthetic
seed was selected based on the results of a RAPD
analysis (Bordallo et al. 2004).

If naturally occurring mutations in potato are
stable and beneficial, they can be used in
breeding programmes. In field trials, over 30
lines derived from chimeric tubers of the cultivar
Red Norland were studied, and new lines
developed from plants exhibiting spontaneous
mutations that caused chimeras in terms of tuber

Table 13.1 (continued)

Source of
explants/culture,
mutagenic treatment

Potato cultivar
or clone

Character of somaclones References

Leaves, irradiated
callus, culture
filtrate/regeneration

Désirée Improved resistance to Alternaria solani Rodríguez et al.
(2007)

Cells/pathotoxins,
callus, regeneration,
selection

Iwa, Russet
Burbank

Improved resistance to Streptomyces spec., high
tuber weight

Wilson et al.
(2009, 2010a, b)

Meristem
tissue/regeneration after
thermotherapy

Reet Positive differences in yield, tuber number and
weight, and resistance to late blight

Rosenberg et al.
(2010)

Tuber tissue/somatic
embryogenesis

Russet Burbank Superior processing qualities Nassar et al.
(2011)

Tuber
sprouts/spontaneous
chimeras

Red Nordland Improved skin colour, resistance to Strepto-myces
scabies, Spongospora subterranea

Waterer et al.
(2011)

Cells/thaxtomin A,
callus culture,
regeneration

Russet Burbank Improved resistance to common scab and
powdery scab

Tegg et al. (2013)

Tuber
sprouts/mutagenesis by
chemicals

Cardinal,
Diamant,
Asterix

High yielding Hoque and
Morshad (2014)

Tuber tissue/somatic
embryogenesis

Russet Burbank High content of phytonutrients and antioxidants Nassar et al.
(2014)
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skin colour with the dark red coloration stable
over several generations of vegetative propaga-
tion and were higher yielding than the original
cultivar (Waterer et al. 2011). In vegetatively
propagated potato plants, some traits resulting
from somaclonal variation, such as chip colour
quality, are quite stable over at least several
generations of vegetative propagation (Nassar
et al. 2011). Gamma-irradiation can be used
during in vitro propagation of plants to induce
heat tolerance mutants in two commercial potato
cultivars (Das et al. 2000). There have been
attempts to select salt-tolerant potato cell lines
and plants (Ochatt et al. 1998; Queiros et al.
2007). Potter and Jones (1991) confirm that
plants of cv. Désirée produced by multiplication
of organized meristems or serial subculture of
stem nodes using morphological and RFLP
analysis are genetically stable. Plants derived
from regeneration after a short leaf callus phase
vary in banding patterns and morphology. Sig-
nificant differences between clones derived from
meristem tips of four potato cultivars after field
experiments at different locations persist for
several years (Nielsen et al. 2007). This variation
was in the number of plants per plot, maturity,
skin and flesh colour, tuber form, time of emer-
gence, flowering, number of stems and tubers per
plant.

The genetic and phenotypic stability of potato
plants of the cv. Désirée obtained using four
different propagation methods have been com-
pared (Sharma et al. 2011). Plants from synthetic
seed (somatic embryos), axillary buds,
micro-tubers and true potato seed have been
analysed phenotypically, cytologically and using
AFLP markers. Compared to clonally propagated
plants that do not vary phenotypically, plants
from true potato seed show phenotypic segrega-
tion. None of these plants varied in genome
constitution, assessed using flow cytometry. In
plants regenerated by means of axillary bud
proliferation, the AFLP-marker profile was
identical but there were some differences among
the somatic embryo and micro-tuber-derived
plants (Sharma et al. 2011). To discriminate
intra-clonal variants of cv. Russet Norkotah,
there are AFLP and microsatellite markers,

which are suitable for detecting epigenetic dif-
ferences (Hale et al. 2005).

Based on published results (summary in
Table 13.1), somaclones of potato can be used as
a source of new variation (Karp 1995). There are
suitable tools for detecting, evaluating, identify-
ing and improving traits in order to realize the
benefits of these variations. But the former very
optimistic appreciation of their practical utiliza-
tion (Bottino 1975; Larkin and Scowcroft 1981)
has not been confirmed. There is a need for
further attempts to improve potato in terms of
agronomic traits and resistance to biotic and
abiotic stresses.

It is recognized that the recovery of soma-
clones exhibiting beneficial traits without any
negative side effects is rare. For many applica-
tions somaclonal variation is something to be
avoided (Barrell et al. 2013; Dann and Wilson
2011). Methods aimed at producing uniform
plants from cell and tissue culture, such as for the
large-scale clonal propagation and multiplication
after virus/pathogen elimination (Rosenberg et al.
2010), long-term storage (Dann and Wilson
2011), cell screening and polyploidization
(Chauvin et al. 2003), cell fusion (Kumar 1994)
or gene transformation (Dale and McPartlan
1992; Heeres et al. 2002) are examples of when
somaclonal variation is undesirable. There are no
ways to avoid the production of somaclonal
variants in transgenic potato lines (Meiyalaghan
et al. 2011; Barrell and Conner 2011). Therefore,
the exploitation of somaclonal variation is cur-
rently not widely used in potato breeding
programmes.

Plant tissue culture has resulted in the devel-
opment of many novel tools, which have recently
been used by potato breeders. Nevertheless, a
combination of biotechnological methods such as
cell and tissue culture, genetic engineering,
marker- and genome-assisted technologies have a
high potential to improve potato crops.

Advances in the use of new techniques, like
DNA microarrays, RNA transcriptomic, meta-
bolomic and proteomic approaches and the
identification of genes will help in resolving the
challenge of providing enough food in the future
for the ever-growing world population.
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13.3.3 Somatic Hybridization
via Protoplast Fusion

13.3.3.1 Protoplast Isolation
and Culture

Plant protoplasts are cells from which the cell
wall has been removed by dissection or enzy-
matic digestion (Davey et al. 2005). Mechanical
procedures involving slicing of plasmolyzed tis-
sues are today rarely used for protoplast isola-
tion. Plant protoplasts isolated from somatic cells
are still totipotent and can produce, in suitable
culture conditions, a new cell wall, colonies of
cells, micocalluses, calluses and finally new
plants. Lacking a cell wall, protoplasts are very
good systems for gene transfer, induced fusion
(also called somatic hybridization), targeted
mutagenesis and somatic cell genetic research
(Davey et al. 2005). Potato was one of the first
plants to be used in protoplast culture and
somatic hybridization. After the discovery of the
utility of enzymes like cellulases and pectinases
for plant protoplast isolation (Cocking 1960) and
their use for tobacco protoplast isolation and
plant regeneration (Carlson et al. 1972), potato
was one of the next species that proved amenable
to protoplast isolation and culture (Shepard and
Totten 1977; Zuba and Binding 1989). This
opened the way for using isolated potato proto-
plasts in somatic hybridization and gene transfer.
Protoplasts are versatile cell systems that can be
used to manipulate the genome of the somatic
cells of potato (Solanum tuberosum L.
2n = 4x = 48) including its monoploids
(2n = 1x = 12), (di) haploids (2n = 2x = 24) and
related wild diploid species (2n = 2x = 24) of
Solanum (Wenzel 2006). Since the 1980s, many
laboratories have optimized the methods for
protoplast isolation and culture of crop potatoes
and many of its wild relatives (Zuba and Binding
1989). Nowadays these methods are well refined
and routinely used for culturing many wild spe-
cies and crop potatoes (Thieme et al. 1997;
Sharma et al. 2011; Rokka 2015).

After many years of research on different tis-
sues, like leaves of glasshouse-grown plants,
mesophyll tissue of in vitro shoots, single cell
suspensions (Jones et al. 1989a, b), in

vitro-induced micro-tubers (Jones et al. 1989a)
and true potato seedlings derived from hypocotyl
tissues (Dai and Sun 1994), the tissue of choice is
leaf mesophyll harvested from three-week-old
shoots of in vitro plants (Thieme et al. 1997).
Protoplast yield and viability are greater for
potato and wild Solanum shoots cultured in jars
than in test tubes. This may be due to the greater
volume of the jars and the resultant lower levels
of ethylene. When STS (silver thiosulphate), an
inhibitor of ethylene biosynthesis, is added to the
culture media, it stimulates leaf area growth in
Solanum chacoense (Rakosy-Tican et al. 2011).
Mesophyll tissue can yield approximately
106 pp ml−1 g−1 fresh weight. The key factors
for good protoplast yield are: the source and age
of the donor tissue, the growth conditions (vig-
orous plants with well-developed leaves), tissue
slicing and enzyme solution. For the digestion of
leaf tissue, proper enzyme solutions have to be
developed for each species or genotype. Digest-
ing solution contains mainly two enzymes: Cel-
lulase R-10 (1%) and Macerozyme R-10 (0.5%),
but adding slightly lower concentrations of dif-
ferent and very active digestive enzymes like
Pectolyase Y-23 or Driselase may improve cell
wall removal. In order to maintain protoplast
integrity, mannitol, sorbitol or sucrose at
iso-osmolar concentration need to be added to
the enzyme solution. Macroelements or some-
times microelements might also improve proto-
plast viability after isolation, at least the presence
of Ca ions is essential for membrane stability
(Davey et al. 2005). The incubation in the
enzyme solution is also a critical step, incubation
at room temperature overnight (16 h) being the
most convenient. After incubation, protoplast
release from mesophyll tissue can be improved
by shaking at a high temperature and low rotation
for at least 30 min and up to 1–2 h. Protoplast
isolation has to be checked using an inverted
microscope and can be further improved by
squeezing the tissue. After removing undigested
tissue by filtration and cellular debris by two to
three centrifugation steps in an iso-osmolar
solution, depending on the protocol (Rokka
2015), the protoplasts can be counted by using a
haemocytometer and cell viability can be
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evaluated by using FDA (fluorescence diacetate
assay) (Rakosy-Tican et al. 1988 and references
herein). The viable protoplasts are then mixed for
further use in somatic fusion experiments, gene
transfer, somatic cell genetics or other basic
studies.

If protoplasts are to be cultured to regenerate
plants or to induce protoclonal variation, differ-
ent cultural steps have to be followed. At each
step different media and plant growth regulators
(PGRs) are used. There are many reports on
potato protoplast culture in the literature, starting
with the first successful plant regeneration from
mesophyll protoplasts (Shepard and Totten
1977), followed by many improvements made by
many groups as presented in a previous review
(Vinterhalter et al. 2008). Today, there are pro-
tocols for plant regeneration from mesophyll
protoplasts, as described by Thieme et al. (1997),
which involve mainly four steps:

1. Cultivation up to visible cell colonies from
isolated protoplasts in the dark at 25 °C on
liquid VKM-media.

2. Transfer of cell colonies to solid CUL-media
kept under fluorescent light, at a photoperiod
of 16 h and 25 °C, until a macro-callus
develops.

3. Cultivation of the callus on JKM-media for
initiation of shoot regeneration.

4. Transfer of shoots to propagation media (MS
modified by reducing the NH4NO3 content to
1.2 g/l).

This method for protoplast regeneration is
widely used for many combinations of somatic
fusion and is a reliable and useful way of
regenerating a large number of somatic hybrids
(Thieme et al. 2008, 2010; Rakosy-Tican et al.
2015).

Two main issues are encountered in protoplast
culture: protoclonal variation caused by callus
genetic instability and genotype-dependent
response to protoplast culture (see Sect. 13.3.2).
When maximum genetic variation is required,
somaclonal variation provides a useful tool for
the more technologically demanding approaches
like somatic hybridization and transformation.

The attraction of protoclonal variation is that it
requires no knowledge of the genetic basis of a
specific trait, it needs no recombinant DNA, it
does not require mutagenesis, specialized
equipment or containment measures and can be
exploited by using standard in vitro culture pro-
cedures. In contrast, when the production of
true-to-type plants is the goal, clonal propagation
from protoplasts assures the cloning is of single
cells.

Although the genotype effect in protoplast
regeneration occurs in potato and its wild rela-
tives, the optimization of culture media made it
possible to use similar media to regenerate cell
colonies, calluses and shoots from protoplasts for
several species of Solanum. These standard cul-
ture conditions (media and physical factors) are
useful for isolated protoplasts and somatic
hybrids or fusion products and intra as well as
interspecific combinations (Thieme et al. 1997,
2008, 2010), but the efficiency of regeneration
varies for each particular fusion combination
(Rakosy-Tican et al. 2015).

13.3.3.2 Protoplast Fusion and Somatic
Hybridization

Plant protoplasts might fuse spontaneously dur-
ing protoplast isolation due to plasmodesmata
enlargement between adjacent cells, but this
spontaneous homo-specific fusion occurs at a
low frequency. There are chemical, physical and
a few biological tools used to induce protoplasts
to fuse (Davey et al. 2005). These techniques
were developed to induce protoplasts with neg-
ative charges, the so-called zeta potential, to
attract each other. The fusion can be achieved
only when protoplasts are first forced to agglu-
tinate and further factors will result in the dis-
organization of protoplast membranes leading to
fusion or merging of two or more agglutinated
cells. Fused cells can belong to the same
(homo-specific) or different (hetero-specific)
species. Protoplast fusion can be induced in any
combination of intra-, interspecific, inter-generic
or even cells of organisms belonging to different
kingdoms. But, the fusion products can only
express totipotency when phylogenetic relation-
ships are close. Closely related species generate
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fusion products that can de-differentiate and
finally regenerate new plants. Although many
different fusion methods are used in laboratories,
only two are widely used, i.e. electrofusion and
PEG (polyethylene glycol) induced fusion
(Davey et al. 2005). Electrofusion is by far the
preferred method since its discovery in 1979
(Senda et al. 1979). It consists of protoplast
agglutination induced by the use of an alternating
current (AC) field, the so-called dielectrophoresis
or pearl chain formation driven by the mutual
attraction of protoplasts based on electrical
charges and their movement towards each other
and to the electrodes (Zimmermann and
Scheurich 1981). In the second phase of elec-
trofusion, the agglutinated aligned protoplasts are
induced to fuse by using direct current
(DC) square wave pulses with a high intensity
(2000 V cm−1) and very short duration (10–
100 ls) (Rakosy-Tican et al. 1998). Electrofused
plant protoplasts are also influenced by these
electric fields in a stimulatory way, although the
so-called electrostimulation effect is not well
understood, with the responses expressed in the
first and a few subsequent generations of plants
(Goldsworthy 1996; Davey et al. 1996). Elec-
trostimulation attracted interest during the 1990s
but these methods for stimulating the growth of
protoplasts and other plant tissues have received
less attention in the past few decades. This is an
area, which deserves more investigation in the
future, mainly in relation to plant regeneration
from recalcitrant protoplasts, but also from a
basic point of view. Understanding the cellular
and molecular mechanisms involved in plant
cells or other responses of cells to electromag-
netic fields is, in our opinion, worth investigating
for future use in such fields for stimulating cell
development. The culture media used to stimu-
late protoplast response and regeneration of
protoplasts from other species contain different
additives (Davey et al. 2005). The division of
potato protoplasts, isolated from cell suspen-
sions, is enhanced by the addition of Erythro-
genTM, an oxygen carrier, when the protoplasts
are embedded in agarose semi-solid droplets
(Power et al. 2003).

Moreover, the electrofusion of preselected
pairs of protoplasts of tobacco (Rakosy-Tican
et al. 2001) is a more refined technique, in which
the two protoplasts to be fused are selected using
micromanipulation and the electrofusion is
induced in a controlled manner. The electrofu-
sion of preselected pairs of potato protoplasts is
not used as the mass fusion is preferred to scale
up somatic hybridization experiments in the case
of this important tuberous crop. PEG-induced
fusion generally has a similar efficiency as elec-
trofusion in inducing double fusion of proto-
plasts, especially when washed with calcium
solution (Davey et al. 2005). The value of the
fusion efficiency is around 45%, but higher val-
ues are reported for electrofusion, which depends
on species, fusion chamber, number of DC pulses
and protoplast lysis dependent on electrofusion
parameters, as shown for cereal mesophyll pro-
toplasts (Rakosy-Tican et al. 1988, 1998).

After fusion, fusion products have to be
selected or regenerated plants have to be anal-
ysed for hybridity using molecular and cytoge-
netic techniques. Over the last decade selection
of potato somatic hybrid cells was mainly based
on the presumption of vigorous growth, which is
revealed by using green fluorescent protein (gfp)
reporter genes when potato is electrofused with
transgenic Solanum chacoense expressing gfp
(Rakosy-Tican and Aurori 2015). For the char-
acterization of somatic hybrid plants, there are
many PCR-based molecular tools, such as Ran-
dom Amplification of Polymorphic DNA
(RAPD), Simple Sequence Repeats (SSR),
Interspaced Simple Sequence Repeats (I-SSR),
Amplified Fragment Length Polymorphism
(AFLP), Restriction Fragment Length Polymor-
phism (RFLP) or Microsatellite-anchored frag-
ment length polymorphism (MAFLP) (Baird
et al. 1992; Thieme et al. 2008; Iovene et al.
2012). Due to their stability and universality SSR
markers are widely used (see Tables 13.2 and
13.3) (Eeckhaut et al. 2013; Thieme et al. 2008,
2010). Recently the application of Diversity
Array Technology (DaRT) has made it possible
to characterize completely the composition of the
genome of somatic hybrids between potato and
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Table 13.2 Inter- and intra-specific somatic hybrids of potato, Solanum tuberosum (S. tbr), the techniques used for
their characterization and/or selection, traits of interest and references, in the interval 2003–2017

Combination Tools for characterization
and/or selection

Traits of interest—resistance
or other traits

References

Interspecific somatic hybrids

S. tbr (+)
S. acaule

Glycoalkaloid aglicones Clavibacter Rokka et al. (2005)

S. tbr (+)
S. berthaultii

ISSR, cytoplasmic DNA, FC Salt tolerance, tuber yield Bidani et al. (2007)

S. berthaultii (+)
S. etuberosum

NS Phytophthora erythroseptica,
Pythium ultimum

Thomson et al. (2007)

S. tbr (+)
S. brevidens
(S. palustrae)

RFLP, GISH, FISH Tuber soft rot, early blight Tek et al. (2004)

RAPD, GISH, FISH Addition and substitution
lines

Dong et al. (2005)

Laboratory and field
resistance tests

Streptomyces Ahn and Park (2013)

S. tbr (+)
S. bulbocastanum

RAPD chromosome specific Loss of one specific
chromosome

Bołtowicz et al. (2005)

Laboratory and field
resistance tests

Meloidogyne chitwoodi (Mc) Brown et al. (2006)

MAS for RB gene (Rpi-blb1)
GISH, cytoplasmic DNA

MAS applied to Pi resistance
Genetic characterization

Colton et al. (2006), Iovene
et al. (2007)

MAS RMc1(blb) Selection of breeding lines
resistant to Mc

Zhang et al. 2007

Anther culture of 4� somatic
hybrids

Haploidization for breeding Yermishin et al. (2008)

ISSR, microsporogenesis,
anther culture

Haploidization for breeding Iovene et al. (2012)

SSR, cytogenetics, Rpi-blb1;
Rpi-blb3 gene

Pi Rakosy-Tican et al. (2015)
(genes and resistance, under
publication)

S. tbr (+)
S. cardiophyllum

Morphology, chromosome
number, RAPD

Characterization Shi et al. (2006)

RAPD CPB, Pi Chen et al. (2007)

SSR, AFLP, MFLP, ploidy PVY, CPB, Pi Thieme et al. (2010)

RAPD, SSR, ISSR, AFLP,
cyto-plasmic type molecular
markers, FC

Pi Chandel et al. (2015)

S. tbr (+)
S. circaeifolium

Morphology, RAPD,
chromosomes

Pi Espejo et al. (2008)

S. tbr (+)
S. chacoense

RAPD, morphology Pi Chen et al. (2007)

SSR, cytoplasm type, MAS,
BC1 characterization

Bacterial wilt Chen et al. (2013, 2016)

MMR deficiency, SSR,
RAPD marker for leptines

CPB (antibiosis and
antixenosis)

Molnár et al. (2016)

S. tbr (+)
S. commersonii

Southern analysis of
organelles

Verticillium wilt Kim-Lee et al. (2005)

(continued)
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S. x michoacanum (Smyda-Dajmund et al. 2016),
which demonstrates that all the chromosomes of
both species are present in the hybrids but many
markers are still missing.

Cytogenetic characterization of potato somatic
hybrids depends on indirect and direct methods

of assessing the ploidy level. Molecular cytoge-
netic methods are used to determine the compo-
sition of genomes. An example of an indirect
method is the flow cytometry determination of
DNA, which in combination with the quantity of
parental DNA can be used to obtain a good

Table 13.2 (continued)

Combination Tools for characterization
and/or selection

Traits of interest—resistance
or other traits

References

S. tbr (+)
S. etuberosum

RAPD, SSR, GISH,
cytoplasm type

PVY Gavrilenko et al. (2003)

Characterization of BC
populations

PRLV Novy et al. (2007)

Cytoplasm type, FC, RAPD,
SSR

PVY Tiwari et al. (2010)

S. tbr x
S. berthaultii (+)
S. etuberosum

NS PVX, PVY, PRLV, green
peach and potato aphids,
CPB, wireworm

Novy et al. (2004, 2006)

S. tbr (+)
S. x
michoacanum

Ploidy, RAPD Pi Szczerbakowa et al. (2010)

DaRT Pi Smyda et al. (2013),
Smyda-Dajmund et al. (2016)

S. tbr (+)
S. nigrum

Morphology, ploidy, RAPD Pi Szczerbakowa et al. (2003)

S. tbr (+)
S. pinnatisectum

RAPD, cytological analysis,
Pi resistance analysis

No resistance Szczerbakowa et al. (2005)

RAPD, morphology Pi, CPB Chen et al. (2007)

Ploidy, cytoplasm type Pi Polzerova et al. (2011)

RAPD, SSR, cytoplasm type,
FC

Pi Sarkar et al. (2011), Tiwari
et al. (2013)

S. tbr (+)
S. stenotonum

Isoenzymes, SSR,
PEPC/RUBISCO ratio

Ralstonia solanacearum Fock et al. (2007)

S. tbr (+) S. tarnii SSR, AFLP PVY, Pi Thieme et al. (2008)

S. tbr (+)
S. vernei

Isozymes, RAPD, I-SSR, Recombinant plastome Trabelsi et al. (2005)

S. tbr (+)
S. verrucosum

RAPD Pi Greplova (2010)

S. tbr (+)
S. villosum

RAPD, GISH, ROS Pi Tarwacka et al. (2013)

Intraspecific somatic hybrids

S. tbr cvs.
Aminca (+)
Cardinal Cardinal
(+) Nicola

Isoenzymes, SSR, ISSR PVY, Pythium
aphanidermatum

Nouri-Ellouz et al. (2006)

NS not specified; Pi Phytophthora infestans (late blight); CPB Colorado potato beetle; PRLV potato leaf roll virus;
PVX potato virus X; PVY potato virus Y; PEPC phosphoenolpyruvate carboxylase, RUBISCO
ribulose-1,5-bisphosphate carboxylase oxygenase, FC flow cytometry, SSR Simple Sequence Repeats
(microsatellites), I-SSR Inter SSR, MAS marker assisted selection
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estimate of the ploidy level of potato somatic
hybrids (Thieme et al. 2008, 2010; Rakosy-Tican
et al. 2015). Flow cytometry has proved very
useful for selecting hexaploid or near hexaploid
shoots after the electrofusion of tetraploid potato
cultivars with diploid Solanum wild species in
many combinations (Thieme et al. 2004, 2008,
2010; Rakosy-Tican et al. 2015). An example of
an indirect method is the correlation between
chloroplast counts in guard cells or the number of
guard cells per area of abaxial epidermis, and

somatic hybrid ploidy (Sharma et al. 2011).
Direct estimation of ploidy relies on chromosome
counts in root meristems after staining with
DAPI (Rakosy-Tican et al. 2015), or other
non-fluorescent stains used in classical cytoge-
netic studies (aceto-carmine or orceine) (Prze-
takiewicz et al. 2007). The most widely used,
simple and reliable method for the rapid esti-
mation of ploidy is the number of chloroplasts
per guard cell. Recently it was shown that counts
of chloroplasts in guard cells obtained using a

Table 13.3 Molecular approaches for the selection and characterization of somatic hybrids during 2004–2017 (after
Chao and Park 2004, up-dated)

Approaches References

Isozyme analysis Trabelsi et al. (2005), Nouri-Ellouz et al. (2006)

Flow cytometry analysis Cai et al. (2004), Tek et al. (2004), Trabelsi et al. (2005), Bidani et al.
(2007), Greplová et al. (2008), Thieme et al. (2008, 2010), Tiwari et al.
(2010), Polzerova et al. (2011), Sarkar et al. (2011), Ahn and Park (2013),
Yu et al. (2013), Rakosy-Tican et al. (2015)

Indirect cytogenetics tools/number of
chloroplasts per guard cell

Sarkar et al. (2011), Denes (2015), Molnár (2017)

Chromosome counting Tek et al. (2004), Boltowicz et al. (2005), Nouri-Ellouz et al. (2006), Shi
et al. (2006), Przetakiewicz et al. (2007), Chen et al. (2008b), Espejo et al.
(2008), Szczerbakowa et al. (2010), Ahn and Park (2013), Tarwacka et al.
(2013), Yu et al. (2013), Rakosy-Tican et al. (2015)

SSR markers Cai et al. (2004), Tek et al. (2004), Trabelsi et al. (2005), Nouri-Ellouz
et al. (2006), Bidani et al. (2007), Lightbourn and Veilleux (2007),
Thieme et al. (2008, 2010), Tiwari et al. (2010), Polzerova et al. (2011),
Sarkar et al. (2011), Iovene et al. (2012), Ahn and Park (2013), Chen
et al. (2013), Smyda et al. (2013), Yu et al. (2013), Rakosy-Tican et al.
(2015), Molnár et al. (2016)

AFLP/MAFLP markers Tek et al. (2004), Thieme et al. (2010), Ahn and Park (2013)

RAPD markers Cai et al. (2004), Boltowicz et al. (2005), Rokka et al. (2005), Trabelsi
et al. (2005), Shi et al. (2006), Przetakiewicz et al. (2007), Chen et al.
(2008b), Espejo et al. (2008), Greplova et al. (2008), Szczerbakowa et al.
(2010), Tiwari et al. (2010), Polzerova et al. (2011), Sarkar et al. (2011),
Ahn and Park (2013), Smyda et al. (2013), Tarwacka et al. (2013),
Molnár et al. (2016)

RFLP markers Tek et al. (2004), Przetakiewicz et al. (2007)

CAPS/SCAR markers Nouri-Ellouz et al. (2006), Sarkar et al. (2011), Smyda et al. (2013), Yu
et al. (2013)

DNA sequence analysis Bidani et al. (2007)

Fluorescence in situ hybridization
(FISH)

Tek et al. (2004)

Genomic in situ hybridization (GISH) Tek et al. (2004), Iovene et al. (2012), Tarwacka et al. (2013), Yu et al.
(2013), Denes (2015), Molnár (2017)

Diversity array technology (DArT) Smyda-Dajmund et al. (2016)

Cytoplasmic DNA markers Smyda-Dajmund et al. (2016)
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fluorescence microscope (Molnár 2017) correlate
with chromosome counts in root meristems
(Molnár 2017, Sharma et al. 2011). Flow
cytometry can be used on the first shoots pro-
duced by protoplast-derived calluses (Thieme
et al. 2008; Rakosy-Tican et al. 2015). This
technique is useful for selecting the hexaploid
shoots after the fusion of tetraploid potato culti-
vars with different diploid wild species. Although
the selection reduces the number of shoots
transferred and maintained in vitro, the ploidy
level might change after a long time in in vitro
micro-propagation and micro-tuber storage, as is
the case of the somatic hybrids between potato
tetraploid cultivars and S. bulbocastanum
(Rakosy-Tican et al. 2015). This genome insta-
bility and chromosome loss after long-term cul-
ture and repeated back-crosses might make it
possible to eliminate the inheritance of
non-desired traits from the wild parent
(Rakosy-Tican et al. submitted). It is now pos-
sible to increase the homeologous recombination
by inducing mismatch DNA repair (MMR) defi-
ciency using AtMSH2 antisense or a dominant
negative gene. The Agrobacterium-mediated
transfer of these genes into S. chacoense
(Rakosy-Tican et al. 2004), followed by somatic
hybridization through electrofusion, reveals that
Colorado potato beetle resistance traits can be
introgressed into somatic hybrids (Molnár et al.
2016). There are few studies on the composition
of the genome of potato somatic hybrids using
in situ hybridization techniques: genome in situ
hybridization (GISH), or fluorescence in situ
hybridization (FISH). Potato and its related wild
species of Solanum have very small somatic
chromosomes of 1.0–3.5 lm in length (Dong
et al. 2000) and show slight differences in their
morphology, so classical cytogenetic methods,
are not very useful for the genome analysis of
potato somatic hybrids (Gavrilenko 2007). Con-
sequently, normal cytogenetic techniques like C
banding cannot be used to determine the com-
position of the genome of somatic hybrids of
potato. Genome in situ hybridization (GISH) has
been used to distinguish the genomes of the two
species in some somatic hybrid combinations,
such as potato (+): S. brevidens (Dong et al.

1999; Gavrilenko et al. 2002) S. bulbocastanum
(Iovene et al. 2007; Denes 2015), S. etuberosum
(Gavrilenko et al. 2003) and S. nigrum (Horsman
et al. 2001).

GISH was first used to distinguish chromo-
somes and fragments of chromosomes in potato
by Schwarzacher et al. (1989) and its use in
analysing the composition of genomes in somatic
hybrids depends mainly on genome sequence
complementarity and stringency conditions
(Gavrilenko 2007). The standard GISH protocol
differentiates chromosomes when genome com-
plementarity is 80–85% or less, but more similar
genomes are difficult to distinguish, as in the case
of the somatic hybrid Solanum tuberosum (+) S.
chacoense, which is partially identified by using
multicolour (mc) GISH and high stringency
conditions (Molnár 2017). GISH can be suc-
cessfully used to determine the genome compo-
sition of somatic hybrid clones and their
descendants (back-crosses), and also to discrim-
inate between intra- and/or inter-genomic pairing
in wide hybridizations, in order to study genome
interactions such as chromosome specific elimi-
nations and inter-genomic translocations (Gavri-
lenko 2007 and references).

Fluorescence in situ hybridization (FISH) has
also been used for identification and physical
gene positional mapping in potato and its somatic
hybrids (Gavrilenko 2007). FISH helped to
clarify, for instance, the genome composition of
the somatic hybrids with S. brevidens, by using
the clone pST3 that signals only the telomeric
regions of S. brevidens chromosomes (Rokka
et al. 1998). FISH with tandemly repeated
species-specific DNA sequences has also been
used for comparative karyotyping and studying
introgressions in the genome of potato. The use
of FISH with genome DNA inserted into large
vectors such as bacterial artificial chromosomes
(BACs), a technique also called BAC-FISH, has
been used successfully to map small sections
(only a few kilobases long) of physical chro-
mosomes (Jiang et al. 1995). Subsequently, Jiang
and colleagues were able to use RFLP-marker
specific BAC clones as FISH probes to identify
each potato chromosome in a haploid comple-
ment (Dong et al. 2000). This made it possible
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using other specific probes and multiple in situ
hybridization cycles to identify the chromosomes
of a species in hybrids using FISH (Dong et al.
2000). Although there are fewer cytogenetic
studies using modern molecular tools on meiotic
chromosomes, the development of FISH and
more recently the so-called Fiber-FISH has
enabled the comparative analysis of single
chromosomes (Lou et al. 2010).

There are other genomic techniques that have
been less used to investigate potato somatic
hybrids, although they have yielded very inter-
esting results in studies of other species of plants
(Eeckhaut et al. 2013). Transcriptomic studies
using micro- and macro-arrays or RT-qPCR are
likely to provide a better understanding of the
genetics of somatic cells and the complex inter-
action between the fused protoplasts of two
species. Moreover, next-generation sequencing
or high resolution melting analysis are currently
the most likely to provide advances in somatic
hybrid characterization and practical exploitation
in breeding.

Intraspecific and Interspecific Hybridization
The production of somatic hybrids from proto-
plasts, which circumvents pre- and post-zygotic
crossing barriers, can be used to insert resistance
to stress into vegetative propagated crops (Lössl
et al. 1999) and might be widely accepted by
breeders (Hofferbert 1996). It has a greater
potential for self-generating biodiversity in
numerous nuclear and cytoplasmic genome
combinations than sexual hybridization (Kumar
and Cocking 1987). It also provides an oppor-
tunity for initiating recombination events
between parental genomes. Moreover, homeolo-
gous recombinations can also be increased by
inducing a DNA repair deficiency, for instance,
mismatch repair deficiency (MMR,
Rakosy-Tican et al. 2004, 2016; Molnár et al.
2016). Potato is a good example of the avail-
ability of a great genetic diversity in related wild
species, more than 200 of which occur in the area
from which potato originated (Bradshaw et al.
2006). This diversity of resistance genes cannot
be exploited by crossing the species sexually
because of many barriers, including the

endosperm balance number (see Rokka 2015).
Somatic hybridization can contribute to over-
coming these barriers in potato-wide
hybridization.

The first intergeneric somatic hybrid was
produced between potato and tomato (Melchers
et al. 1978), called ‘pomato or topato’, but the
regenerated plants produced fibrous-like tubers
and were sterile or set only parthenocarpic fruit.
Although from a practical point of view these
hybrids are a great disappointment, they indicate
that although complex somatic incompatibility
prevents the somatic hybridization of distantly
related species, it might be more successful in
hybridizing more closely related species. More-
over, many subsequent studies on inter-generic
hybrids provide a better understanding of
somatic cell genetics and cytoplasmic inheritance
in somatic hybrids (Guri et al. 1991). The next
somatic hybrid of potato was S. chacoense Bitt.
(+) S. tuberosum (Butenko and Kuchko 1979)
and S. nigrum L. (+) S. tuberosum (Binding et al.
1982). Potato breeders were more interested in
both of these hybrids because of their resistance
to diseases and the possibility of using them to
produce breeding clones. Since the 1980s, dif-
ferent wild Solanum species have been hybri-
dized with potato using protoplast fusion, and
many of them express various traits, including
resistance to viruses (Thach et al. 1993; Pehu
et al. 1990), bacteria (Austin et al. 1988), fungi
(Mattheij et al. 1992) or insect pests
(Cooper-Bland et al. 1994; Molnár et al. 2016).
Recent data are presented in Table 13.2. A pre-
vious review presented an extensive list of potato
somatic hybrids (Orczyk et al. 2003), but after
14 years this information needs to be up-dated.
In Table 13.2 there are many examples of the
transfer of resistance traits and multiple resis-
tance genes conferring resistance to the most
important potato pathogens and pests, like late
blight caused by Phytophthora infestans (Pi),
viruses (PVY, PVX, PRLV, etc.) or the most
voracious pest of potato, Colorado potato beetle
(CPB). Furthermore, multiple resistance can be
transferred from wild relatives into the potato
gene pool (Thieme et al. 2010) and even more
somatic hybrids of species can be produced, as in
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the case of the tri-species somatic hybrids (Novy
et al. 2006). Pathogens and pests are considered
to be responsible for at least a 22% loss of yield
in potato worldwide (Aversano et al. 2007).
Indeed, some potato pathogens and pests can
completely destroy the plants, especially the
voracious and adaptable CPB, which is notorious
for its resistance to almost all of the pesticides
currently used (approximately 53 insecticides
based on different active components, Alyokhin
et al. 2008). One of the first very successful
examples of how somatic hybridization might be
used for potato improvement and in studies of
somatic cell genetics are the somatic hybrids
between the incompatible species S. bulbocas-
tanum and cultivated tetraploid potato (Helgeson
et al. 1998), which were first assayed for late
blight resistance caused by Phytophthora infes-
tans in the laboratory and then in a field under
intense disease pressure. These somatic hybrids
were back-crossed with potato cultivars and
shown to carry durable resistance to this disease.
Subsequently, a gene involved in durable resis-
tance, was characterized, isolated, sequenced and
located on chromosome VIII (Song et al. 2003).
Transgenic plants with this gene, first known as
RB, were regenerated after Agrobacterium–me-
diated transfer and durable resistance was
maintained in transgenic plants (Lozoya-Saldana
et al. 2005). Since these first results with this
wild species that demonstrate its value as a
resource of durable resistance genes against late
blight, there has been an increasing interest in
transferring these resistance traits to cultivated
potato (Naess et al. 2001; Iovene et al. 2007).
RB gene was the first durable resistance gene
described for late blight but soon many other
genes were discovered both in Solanum bulbo-
castanum and other wild species. In S. bulbo-
castanum to date there are four characterized
resistance genes: Rpi-blb1 (formerly RB), Rpi-
blb2, Rpi-blb3 and Rpi-bt1 (van der Vossen et al.
2003; Song et al. 2003; Oosumi et al. 2009;
Lokossou et al. 2009; Orbegozo et al. 2016). In
addition, late blight resistance from other sources
was also accessed by means of interspecific
somatic hybrids with the wild species S. pinna-
tisectum (Sarkar et al. 2011), S. tarnii (Thieme

et al. 2008), S. cardiophyllum (Thieme et al.
2010) and more recently S. x microachanum, a
wild diploid derived from a spontaneous cross
between S. bulbocastanum and S. pinnatisectum
(Smyda et al. 2013). All these new somatic
hybrids were tested in the field and shown to be
resistant after two or three years of assessement,
hence they are suitable for breeding. Somatic
hybrid lines originating from fusion between
potato and S. bertaultii are more tolerant of salt
stress (Bidani et al. 2007). As a source of
resistance to bacterial wilt caused by Ralstonia
solanacearum, another wild species, S. stenoto-
mum, was used (Fock et al. 2001). All the
somatic hybrids tested were as resistant as the
wild species (Fock et al. 2001). Similarly, S.
chacoense was explored for molecular markers
associated with bacterial wilt resistance, and for
introgressing resistance into the potato gene pool
(Chen et al. 2013) (see Table 13.2). A very
successful approach involving the transgenesic
induction of MMR deficiency in a high
leptine-producing accession of S. chacoense,
followed by somatic hybridization, generated
many plants exhibiting both antixenosis and
antibiosis against Colorado potato beetle
(Molnár et al. 2016).

In any scheme of introgressive hybridization,
restoration of agronomically acceptable cultivars
often requires one or more back-crosses of the
somatic hybrid with cultivars, along with selec-
tion for a trait of interest and against undesirable
traits and inappropriate ‘wild’ to ‘cultivar’ gen-
ome or gene interactions (Thieme et al. 2008,
2010). With increasing restrictions on the use of
pesticides to control potato diseases and pests,
deployment of resistance genes from wild species
will likely assume greater importance in the
future. While it is clear that resistance genes can
be introgressed from wild species into potato by
somatic hybridization, the processes of intro-
gression and related mechanisms and their
interactions are not completely understood
(Rieseberg and Wendel 1993). Studies on
hybridization followed by gene introgression
indicate that these processes may have played a
significant role in the evolution of many plant
taxa (Heiser 1973). Moreover, as suggested by
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other authors, there is currently an increase in the
interest for genomic and functional genomic
analysis of the somatic hybrids of different crop
plants (Eeckhaut et al. 2013), analyses that have
yet not been used in studies on potato.

Starting in the 1990s, somatic hybridization
was used to study different dihaploid lines of
potato generated by sexual crossing with S.
phureja (Rokka 2009) or pollen and anther
in vitro culture. The results of the protoplast
fusion of two dihaploid potato lines were at first
not very promising, but the restoration of tetra-
ploids from two dihaploid lines with valuable
yield and resistance traits soon proved to be a
valuable approach to potato breeding
(Table 13.2). Resistance to nematodes, viruses
(PVY) and Phytium bacterial diseases was com-
bined by intra-specific protoplast fusion
(Cooper-Bland et al. 1994; Nouri-Ellouz et al.
2006).

Symmetric and Asymmetric Somatic Hybrids:
Basic and Practical Achievements
Fusion of two different species results in sym-
metric hybrids with the combined genomes from
both species. Incorporation of the genomes of
both parents, especially their nuclear genomes, in
a hybrid has two obvious disadvantages:
(1) transfer of too much exotic, wild species,
genetic material along with the gene(s) of the
desirable trait; and (2) genetic imbalance leading
to somatic incompatibility. These limitations
result either in abnormal growth and develop-
ment of the somatic hybrids, or regeneration of
infertile plants. In the case of potato there are
many reports of symmetric somatic interspecific
somatic hybridization between diploid wild spe-
cies and potato dihaploid lines (Rokka 2015).
Although genetically more stable, many of these
hybrids are infertile and hence it is not possible
to introgress resistance genes from a wild parent.
For this reason symmetric somatic hybridization
between tetraploid potato cultivars and diploid
wild species became more popular (Helgeson
and Haberlach 1999). Many such 4x (+) 2x so-
matic hybrids, in addition to being hexaploid,
were also aneuploid or mixoploid (Rakosy-Tican
et al. 2015). Genetically, such hybrids may be

unstable and eliminate wild species chromo-
somes during the next stages of tissue culture, as
occurs in potato and S. bulbocastanum hybrids.
But, after two back-crosses with cultivated
potato, many of them re-stabilize at a tetraploid
level (Rakosy-Tican et al. 2015; under publica-
tion). Theoretically hexaploid or near hexaploid
somatic hybrids of potato will tend to eliminate,
after two back-crosses with potato tetraploid
cultivars, wild species chromosomes and main-
tain very few alien chromosomes or introgress
some genes from the wild parent (Fig. 13.2).
Chromosome elimination in some interspecific
somatic hybrids of potato largely depends on the
phylogenetic relationship, type of genome: A, B,
C, D and P (Gavrilenko 2007), cell cycle syn-
chronization after fusion and two species chro-
mosome interaction during mitosis, to name but a
few of the mechanisms responsible for the
instability of the fusion products (Orczyk et al.
2003). The elimination of chromosomes by
somatic hybrids of many crop plants has stimu-
lated interest in directing and possibly controlling
this process. Therefore, efforts were made to
reduce the proportion of the wild relative’s
nuclear genome in the hybrid.

Asymmetric fusion allows the transfer of part
of the nuclear genome of one species into another.
Somatic asymmetric hybrids can result after
symmetric fusion or can be induced by frag-
menting the donor species DNA by using the
donor-recipient method (Lakshmanan et al.
2013). In most protocols (Fig. 13.2), both donor
and recipient species are treated to reduce a
genome’s participation in the fusion product, but
it is also possible to treat the donor protoplasts in
order to direct their elimination of the genome
(Grosser and Gmitter 2011). Usually, the donor
protoplasts are treated with sub-lethal doses of
ionizing irradiation, such as gamma or X rays
(Dudits et al. 1987; Oberwalder et al. 1998) or
UV irradiation (Hall et al. 1992a), in order to
induce double-stranded breaks and hence partial
genome elimination (Gleba et al. 1988). It was
initially thought that there is a direct correlation
between irradiation dose and the amount of DNA
fragmentation and elimination, but this is only the
case for up to approximately 65% of nuclear
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DNA elimination (Hall et al. 1992a, b). Further
increase in irradiation dose did not increase the
sorting out of donor DNA. In addition to irradi-
ation, chemical agents can be used to induce
chromosome elimination, such as restriction
endonucleases, spindle toxin or chromosome
condensation agents (Ramulu et al. 1994). Using
these methods, asymmetric potato hybrids with
some wild Solanum species (Valkonen et al.
1994) and intergeneric somatic hybrids can be
produced (Wolters et al. 1993; Ali et al. 2000).
When the genome of the recipient species, potato,
is eliminated, this treatment targets the cytoplas-
mic genome and iodoacetic acid (IA), iodoac-
etamide (IOA) and actinomycin D can be used
(Liu et al. 2005). If both treatments are used,
cybrids will be regenerated. Potato cybrids pro-
duced by using the donor-recipient method have a
nuclear genetic constitution from one parent in

combination with cytoplasmic genomes of the
other parent (Perl et al. 1990). Cybrid plants are
used to produce new genetic diversity and
understanding the interrelations between nuclear
genes and cytoplasmic DNA and for the transfer
of cytoplasmic inherited traits such as male
sterility (Melchers et al. 1992; Liu et al. 2005).

Characterization of Cytoplasmic DNA
In comparison to other techniques of chromoso-
mal and gene engineering, somatic hybridization
is unique in its potential to simultaneously
transfer both nuclear and cytoplasmic genes.
Therefore, it is relevant to analyse the new
genetic configuration of hybrid DNA in order to
confirm not only the hybrid status, but also to
follow the segregation of organelles after merg-
ing the protoplasts of two species. In potato
interspecific somatic hybrids, the fate of

A B A 

Gamma 
X, UV

(IOA)*

FUSION

Symmetric 
hybrid = 
heterokaryon 

Asymmetric hybrid Cybrid
Spontaneous chromosome 
elimina on 

Asymmetric hybrid

SYMMETRIC FUSION (* without IOA 
tratment) A + B

ASYMMETRIC FUSION – donor (A) 
recipient (B) method

Fig. 13.2 Comparision between symmetric and asymmetric protoplast fusion and resultant hybrid cells from the
perspective of nuclear and cytoplasmic genome fate
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organelles after fusion is assessed by using dif-
ferent molecular markers of chloroplast and
mitochondrial DNA (Lössl et al. 1999). As a
general rule, the organelles in somatic hybrids
segregate independently, chloroplasts sorting out
but the mitochondria of both parents often
combining (Sheahan et al. 2005). Such common
features are frequently reported, and also occur in
potato somatic hybrids (Lössl et al. 1994; Iovene
et al. 2007). There are a few exceptions to the
general interaction and segregation of organelles,
for example, in somatic hybrids between culti-
vated potato and a wild species of potato, Sola-
num verneï, where recombination between the
chloroplast genomes of both parents occurs
(Trabelsi et al. 2005). Similarly, in somatic
hybrids between potato and S. berthaultii, both
co-existence and recombination of chloroplast
DNA occur (Bidani et al. 2007). Co-existence of
mitochondrial DNA is also recorded (Sarkar
et al. 2011). Scotti et al. (2007) identified a
molecular mitochondrial region, rpl5-rps14, as a
hotspot for mitochondrial DNA rearrangements
in potato somatic hybrids. Moreover, in the
somatic hybrids between five potato tetraploid
cultivars and one cloned accession of S. bulbo-
castanum, in addition to the elimination of the
wild species chromosomes depending on recipi-
ent cultivar, the type of chloroplast DNA in the
two parents plays an important role in the
regeneration capacity and genetic stability of the
resulting somatic hybrids (Rakosy-Tican et al.
2015). Haplotype w of chloroplasts in potato cvs.
Delikat and Rasant, as in S. bulbocastanum,
increases the incidence of plant regeneration in
these fusion combinations (Rakosy-Tican et al.
2015). Reduction in the survival of somatic
hybrids when nucleo-cytoplasmatic incompati-
bility is present is also reported for other fusion
combinations (Leon et al. 1998; Orczyk et al.
2003). In future, more detailed studies on several
fusion combinations and their contribution to
nuclear and cytoplasmic DNA should shed some
more light on the complex mechanisms involved
in the six different genome interactions after two
protoplast fusions. Different haplotypes of
chloroplast (ct), mitochondrial (mt) and nuclear
(n) DNA, analyzed using RFLP and/or SSR

markers are extensively used in phylogenetic and
co-evolutionary studies on cultivated potato
accessions and their wild relatives (Hosaka 2002;
Hosaka and Sanetomo 2009). A 241 bp deletion
in ctDNA as well as a shorter deletion of 41 bp
(Ames et al. 2007), indicate that some popula-
tions of the diploid S. tarijense are the maternal
parent of cultivated potato. In addition, phylo-
genetic studies reveal the co-evolution of
chloroplasts and mitochondrial genomes and that
the correlation between nDNA and ctDNA is
even closer. Recently Sanetomo and Gebhardt
(2015) analyzed different types of cytoplasmic
DNA in European potatoes and correlated them
with some agronomic traits such as tuber starch
content and late blight resistance. Such basic
studies are a good starting point for breeding
better potatoes both by classical and biotechno-
logical means.

Future Application in Potato Breeding
After the intensive efforts during the last century
to further increase the yield of potato cultivars
failed (Douches et al. 1996), the main objectives
of the potato breeding switched to improving
processing attributes and resistance to diseases
and pests, while maintaining or even improving
such traits as tuber colour, shape, quality and/or
yield. Over the past fifty years these objectives
have mainly been achieved by using wild species
of Solanum as resources of resistance and other
new traits via classical breeding. The number of
wild species that could be integrated into potato
breeding was and is quite limited because of
sexual incompatibility, although there are tech-
niques other than sexual crosses, such as manip-
ulations of ploidy levels (Jansky 2009), breeding
2n gametes or using bridging species to integrate
genes from 25 wild Solanum species into modern
cultivars (Ross 1986). The main source of resis-
tance genes is still S. demissum, with more than
half of the modern cultivars with introgressions
from this species (Ross 1986). The main limita-
tions to the classical breeding of potato are tetra-
ploidy and heterozygosity, which make breeding
very complex (Muthoni et al. 2015). Millions of
progeny have to be screened to detect one line
with the potential for a new cultivar and this may
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take more than 11 years (Plaisted et al. 1984;
Barrell et al. 2013). Moreover, when genes from
an incompatible wild species have to be exploited,
as is the case of S. bulbocastanum, which is a
source of genes for durable resistance to late
blight, the use of a bridging species to produce
new cultivars took 49 years and then only one
gene was integrated into the potato gene pool, i.e.
Rpi-blb2, producing two new cvs. Bionica and
Toluca (Haverkort et al. 2009).

Over the last six decades plant biotechnology
has contributed many new less time-consuming
opportunities for potato improvement and has
provided valuable solutions to conventional
breeding difficulties (Barrell et al. 2013; Luthra
et al. 2016).

Somatic hybridization has also resulted in the
production of many resistant somatic hybrids,
integrating multiple genes and traits or even
multiple species hybrids as detailed in this sec-
tion. The limitation of somatic hybridization is
that it can result in the production of somatic
hybrids that are resistant but sometimes have
misshapen tubers or the initial somatic hybrids
have poor fertility. Solutions to these disadvan-
tages have been proposed, such as haploidization
and the use of intra-specific hybridization of
dihaploid potato lines (Rokka 2009), or the use
of somatic fusion in which tetraploid potato

cultivars are fused with sexually incompatible
diploid wild species. The resulting hexaploids are
often fertile and crossable with other tetraploid
cultivars (Thieme et al. 2008, 2010;
Rakosy-Tican et al. 2015).

A new concept for exploiting all new and old
technologies to improve potato in a concerted
way is combinatorial biotechnology (Rakosy-
Tican 2012) and schemes for its application are
proposed (Rakosy-Tican et al. 2016). A general
scheme for the application of combinatorial
biotechnology to improve potato is presented in
Fig. 13.3. The main goal of such schemes is to
transfer several genes and traits from wild rela-
tives of potato into potato cultivars by first using
the somatic hybridization of the wild donor with
potato tetraploid cultivars and then integrating
other in vitro techniques like transgenesis,
embryo rescue, in vitro or marker-assisted
selection, etc. and different analytical, biochem-
ical, biophysical and genomic and phenome
analyses. There is scope in the future for
improving such schemes by using new omic
approaches and genomic technologies like next
generation sequencing, micro and macro-arrays
or directed mutagenesis (Eeckhaut et al. 2013).

A successful use of somatic hybridization in
potato breeding is the release of a new cultivar
‘Jeseo’ which was produced in Korea (Jeju
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Fig. 13.3 Schematic
representation of a general
combinatorial biotechnology
approach involving somatic
hybridization and additional
in vitro techniques as well as
analytic biochemistry
methods and phenotyping
aiming to transfer resistance
traits into potato crop
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Special Self-governing Province Agricultural
Research & Extension Services). This cultivar
was obtained after two back-crosses of a somatic
hybrid clone with cv. Dejima. The new cultivar is
highly resistant to potato common scab (Strep-
tomyces scabies, S. turgidiscabie and S. acidis-
cabie), soft rot and potato leaf roll virus (PLRV).
However, it is susceptible to potato virus Y
(PVY) and late blight (Phytophthora infestans).
The tubers of this cultivar are round, with shal-
low eyes, yellow skin and a short dormant period
and the yield, although lower than that of the
cultivated parent, reaches 38.8 t/ha (Kim et al.
2013).

13.3.4 Transfer of Genes into Crop
Potatoes

The potato was one of the first crops transformed
successfully using the Agrobacterium-mediated
transformation of many potato cultivars (An et al.
1986; Sheerman and Bevan 1988; Stiekema et al.
1988). There are many examples of attempts to
transfer and integrate economically important
genes into crop potatoes and some of the previ-
ous reviews have presented the state of the art for
this tuberous crop (Kumar 1995; Solomon-
Blackburn and Barker 2001; Christou et al.
2006; Mullins et al. 2006; Millam 2007;
Rakosy-Tican 2013). Agrobacterium tumefa-
ciens-mediated transformation works well with
many cultivars of potato and a few wild species
of the genus Solanum (Rakosy-Tican et al. 2004,
2007). The efficiency of this method of trans-
ferring genes varies depending on the genotype,
with cv. Désirée the model variety (Stiekema
et al. 1988; Sheerman and Bevan 1988;
Rakosy-Tican et al. 2007). Transformation effi-
ciency was improved by using particular marker
genes, the most frequently used being the nptII
gene (bacterial neomycin phosphotransferase
gene). Later on reporter genes were also trans-
ferred into the potato. The most commonly used
reporter gene is gus (glucuronidase gene), but in
the last few years green fluorescent protein (gfp)
was also frequently used to transform different
species of plants including potato and some of its

wild relatives (Rakosy-Tican et al. 2007;
Rakosy-Tican 2013). Both gfp and nptII com-
bined in a binary vector to improve the transge-
nesis of potato cultivars and dihaploid lines as it
makes it easier to identify chimeras and escapes,
which are quite common when the selection is
only based on the use of the resistance to
antibiotics, such as kanamycin (Rakosy-Tican
et al. 2007). This strategy enabled us to achieve a
high efficiency in Agrobacterium-mediated gene
transfer into potato cultivars and one dihaploid
line. These cultivars were then used to transform
a marker-free hairpin construct containing two
antisense coat protein (CP) genes separated by an
intron and then generate hairpin structures and
posttranscriptional gene silencing, which resulted
in cultivars resistant to PVY (Rakosy-Tican et al.
2010).

Worldwide, transgenic plants with a number of
different traits are being developed: (1) resistance
to herbicides; (2) pollination control mechanisms
—CMS (cytoplasmic male sterility); (3) insect
resistance (genes from bacteria and plants);
(4) virus resistance, including reverse genetics;
(5) resistance to fungi (antifungal proteins or R
genes); (6) nutritional improvement—Golden
potato; (7) senescence retardation; (8) tolerance
of abiotic stresses; and (9) production of valuable
pharmaceuticals and secondary metabolites (use
of plants as bioreactors). The application of gene
transfer and the results obtained using crop plants
were recently reviewed by Davey et al. (2010)
and Rashid and Lateef (2016) and for only potato
by Rakosy-Tican (2013), and in this section, the
results obtained in the last few years are high-
lighted and presented in Tables 13.4 and 13.5.
The disadvantages of transgenesis are the con-
straints on transferring genes between species, the
possibility that only a limited number of cloned
genes can be transferred, and the concern of
consumers over their introduction as human food
have all increased the interest in developing new
strategies like cisgenesis and transfer of genes
between the plants of the same species (see
Jacobsen and Schouten 2008; Haverkort et al.
2008). Unfortunately, scientists were not able to
convince the European Commission on the
non-GMO status of plants generated by
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transferring genes from the same species or a
related inter-crossable species of plants (http://
www.efsa.europa.eu/en/efsajournal/pub/2561.
htm). In the frame of the DuRPh Project in the
Netherlands, Zhu et al. (2012) stacked three late
blight-resistance genes: Rpi-sto1 (S. stoloni-
ferum) homologue of Rpi-blb1, Rpi-vnt1.1 (S.
venturii) and Rpi-blb3 (S. bulbocastanum), and
put them into a single binary vector pBINPLUS.
The susceptible cv. Désirée was transformed and
that the stacked genes functioned was revealed by
using a detached leaf assay (DLA) and field
assays over a period of two years (Zhu et al. 2012;
Haesaert et al. 2015). Thus cisgenesis might
prove very useful if exempted from GMO rules in
Europe. Such a strategy could be used to stack
dominant genes in a variety that improves its
resistance to late blight and other diseases. For all
quantitative traits, which depend on multiple
genes, somatic hybridization and combinatorial
biotechnology may be a better way of improving
potato.

13.4 New Breeding Technologies
Used for Improving Potato

In recent years new biotechnological techniques
have been adopted for plant breeding which
make use of RNAi (RNA interference) or
miRNA (micro RNA) and which allow for pre-
cise gene editing via directed mutagenesis. In
potato, hundreds of miRNAs have been identi-
fied (Zhang et al. 2013; Kim et al. 2011).
Methods like targeting induced local lesions in
genomes (TILLING), mega nucleases, zinc fin-
ger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs) and the bacterial
clustered regularly interspaced short palindromic
repeats associated with protein 9 nuclease
(CRISPR-Cas9) have lately been applied to dif-
ferent crops. These technologies achieve specific
and precise silencing or knockout of a given gene
or its activation and carry a huge potential for
understanding gene function and regulatory
processes in different organisms including plants.
Precise genome engineering like TALENs or
CRISPR-Cas9 makes use of isolated protoplasts

and bacterial systems to induce directed muta-
genesis. Compared to earlier technologies like
ZFNs or TALENs, CRISPR-Cas9 proves to be
easier and more efficient and hence has been
widely used in recent years (Gaj et al. 2013). The
Cas9 endonuclease is driven by a 20-base pair
(bp) sequence at the end of the single-guide RNA
(sgRNA), which acts as a guide to a specific site
of the genome. Once the genome is targeted, the
nuclease Cas9 is able to cleave double-stranded
DNA, leading to deletion, substitution or inser-
tion at the target site (Sander and Joung 2014).
Genome editing tools provide a potential alter-
native to traditional Agrobacterium-mediated
introduction of a gene of interest (Halterman
et al. 2016).

Since 2013, CRISPR/Cas9 has been applied
either in transient expression and/or stable
transgenesis in several plant species, such as
Arabidopsis thaliana and Nicotiana benthami-
ana, as well as in several crops like rice, wheat,
maize, and tomato (Brooks et al. 2014; Jiang
et al. 2013; Li et al. 2013; Miao et al. 2013;
Nekrasov et al. 2013; Shan et al. 2013). It has
been also shown that mutations generated in the
primary transgenic plants by the CRISPR/Cas9
system can be stably transmitted to the next
generation (Brooks et al. 2014; Feng et al. 2014).
Thus, the CRISPR/Cas9 system is becoming a
powerful tool for genome editing in plants,
whereas the reports of the usage and efficiency of
the CRISPR/Cas9 system-mediated plant gen-
ome engineering are still limited.

In potato, reverse genetics was applied to
induce virus resistance by transgenesis (Missiou
et al. 2004), also in combination with marker-free
gene transfer (Bukovinszki et al. 2007;
Rakosy-Tican et al. 2010). Elias et al. (2009)
showed the utility of enzymatic mismatch
cleavage for TILLING and ECOTILLING in
three varieties of potato. The three mutant culti-
vars exhibit salinity tolerance after treatments
with gamma irradiation. This method allowed a
rapid germplasm characterization. For identifi-
cation of novel starch variants in potato dihap-
loid, seeds were treated with
ethylmethanesulphonate (EMS) for 16 h. By
using a granule-bound starch synthase I gene
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Table 13.4 Transgenesis and cisgenesis used to improve potato tubers or their use as bioreactors: a synthesis of the
more recent results

Goal Specific trait Genes
transferred

Results References

Tuber
quality

Glycoalkaloid content
Reduction of
a-solanine/increase
a-chaconine

Sgt1 Reduced tuber toxicity McCue et al. (2005)

GmSTM1 Study of sterol
biosynthesis

Arnqvist et al. (2003)

Protein content Amaranth
albumin gene-
AmA1

Increase in protein and
essential amino acids

Chakraborty et al.
(2000)

Cysteine and glutathione
content

SAT-coding
cysE gene

Increase in essential
amino acids-healthier
tubers

Stiller et al. (2007)

Increase in 14-3-3 isoforms Proteins
14-3-3; CHS,
CHI, DFR

Increase in antioxidants Łukaszewicz et al.
(2002, 2004)

Increase in flavonols and
anthocyanins

DFR, UGT Better tuber content with
same yield and starch
content

Aksamit-Stachurska
et al. (2008)

Carotene and lutein—Golden
potato

crtB, crtl, crty Golden potato rich in A
vitamin

Diretto et al. (2007,
2010)

Biofortification in vitamin E At-HPPD, At-
HPT

Increase in vitamin E Crowell et al. (2008)

Waxy starch Not the case Low amylose McPherson and Jane
(1999)

High amylopectin starch GBSS Change in starch
composition

Visser et al. (1991)

Biofortification in inulin 1-FFT, 1-SST Inulin synthesis—
healthier tubers

Hellwege et al. (2000)

Tuber storage qualities LbPFK with
tuber-specific
promoter

Reduction in low
temperature sweetening

Navrátil et al. (2007)

RNAi Reduction in low
temperature sweetening

Chen et al. (2008a)

Processing low acrylamidea Two
asparagine
synthetase
genes

Reduced acryl-amide in
chips and French fries

Rommens et al. (2008)

Tuber
yield

Tuber number OsSUT5Z and
OsSUT2M

Increase in yield Sun et al. (2011)

Tuber development AtPAP2 Carbon metabolism and
yield

Zhang et al. (2014)

(continued)
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(waxy), a series of point mutations were identi-
fied that affect gene expression for enzyme
function. It was possible to establish elite
breeding lineages lacking granule-bound starch
synthase (GBSS) I protein activity and producing
high amylopectin-starch (Muth et al. 2008).

TALENs was used to improve cold storage
and processing traits in potato (Clasen et al.
2015). The CRISPR/Cas9 system was estab-
lished in potato recently (Wang et al. 2015).
Altered starch quality with full knockout of
GBSS gene function in potato was achieved
using CRISPR-Cas9 through transient transfec-
tion and regeneration from isolated protoplasts
(Andersson et al. 2017). The authors have
demonstrated that this system is an effective tool
in potato, and can promote functional studies of
hitherto uncharacterized genes.

Aside from these novel technologies, some
other aspects and approaches have to be taken
into consideration if the breeding system of
potato is to be improved (Jansky et al. 2016):

• management of the nearly 100 crop wild
relatives mostly sexually compatible with
cultivated potato at diploid level;

• production of inbred lines by selfing for sys-
tematically combining genes or alleles of
interest, as well as for exploiting heterosis;

• production of near-isogenic or other intro-
gression lines;

• hybrid production supported by a cytoplasmic
male sterility system;

• successful TPS (true potato seed)-based cul-
tivars with improved heterosis, uniformity,
cytoplasm male sterility, combining ability,
disease resistance, or seedling vigour;

• stacking of new genes into well-established
inbred lines;

• cybrid production by protoplast fusion
between male sterile cytoplasic sources and
male fertile cultivars to change male fertile
potato cultivars into male sterile ones without
altering the nuclear genome as a step in
developing TPS parents (Perl et al. 1990);

Table 13.4 (continued)

Goal Specific trait Genes
transferred

Results References

Potato
plants as
bio-reactor

Surface antigen for hepatitis
B

HBsAg Vaccines Guan et al. (2010),
Thanavala and Lugade
(2010a, b)

Producing salmon interferon Interferon gene Interferon biosynthesis Fukuzawa et al. (2010)

Vaccines Rotavirus CP
VP6

Trials on mice Yu and Langridge
(2003)

Papilloma
virus genes

Vaccines for papilloma
virus

Biemelt et al. (2003)

Human serum albumin HSA Human serum
production

Farran et al. (2002)

Human tumour necrosis
factor

TNF-a Cancer therapy Ohya et al. (2002)

Antibodies IgGs and Fab
fragments of
genes

Production of antibodies DeWilde et al. (2002)

Production of diagnostic
reagent

SimpliREDTM HIV diagnosis Schunmann et al.
(2002)

Staphylokinase
overexpression

SAK Plasminogen activator—
treatment of poor blood
circulation

Gerszberg et al. (2012)

aAll-native DNA transformation
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Table 13.5 Examples of transgenesis and cisgenesis results in improving biotic and abiotic stress in potato during
2003–2017

Goal Trait Genes used Results References

Biotic
stress
resistance

Insect
resistance

cry1Ac9 Resistance to tuber moth Davidson et al.
(2004)

Hybrid Bt endotoxin Resistance to both coleopteran and
lepidopteran pests

Naimov et al.
(2003)

Cysteine Pls Resistance to Western flower thrips Outchkourov
et al. (2004)

Resistance
to bacteria

5-UGT Tuber yield, starch and anthocyanin
increase, resistance to Erwinia
carotovora

Lorenc-Kukuła
et al. (2005)

ScSN1 Resistance to Erwinia carotovora and
Rhizoctonia solani

Almasia et al.
(2008)

Resistance
to late
blight

Rpi-vnt1.1 Increased yield and Pi resistance in field
trials

Jones et al.
(2014)

Rpi-vnt1.1 and Rpi-sto1 Cisgenic marker-free Pi resistant cvs. Jo et al. (2014)

RB (Rpi-blb1) Tolerance to Pi and gene stability Listanto et al.
(2015)

Rpi-vnt1.1, Rpi-sto1,
Rpi-blb3

Stacking three cisgenes—durable
resistance Pi

Zhu et al.
(2012)

Resistance
to diseases

MsrA2 Broad-spectrum fungal and bacterial
resistance

Osusky et al.
(2005)

MsrA3 with
tissue-specific promoter

Mitigates biotic and abiotic responses Goyal et al.
(2013)

Nematode
resistance

Peptide-disrupting
chemoreception of
nematodes

Globodera pallida resistance—no side
effects on non-targets

Green et al.
(2012)

Virus
resistances

dsRNA PVY coat
protein (CP)

RNAi-induced resistance to PVY Missiou et al.
(2004)

shRNA with ipt gene Resistance to PVYNTN in a marker-free
system

Bukovinszki
et al. (2007)

CP gene Resistance to PVY in the field Dusi et al.
(2009)

shRNA with I Resistance to PVYNTN in a marker-free
system

Rakosy-Tican
et al. (2010)

shRNA Resistance to PVY Tabassum et al.
(2016)

(continued)
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• mapping and sequencing male-fertility genes
in diploids, using CRISPR-Cas9 to create
male sterile plants for use as female parents in
hybrid production (Belhaj et al. 2015);

• the dominant self-incompatibility inhibitor
(Sli) gene, identified in the sexually compat-
ible wild species S. chacoense should be used
to produce inbred lines (Hosaka and Hanne-
man 1998);

• use of back-cross breeding to introgress small
chromosome regions from wild species into a
cultivated background.

When comparing the main classical techniques
for potato improvement with the modern ones
based on biotechnology and genome editing
(Fig. 13.4), one has to weigh up the advantages
and drawbacks in applying them in practice.

Table 13.5 (continued)

Goal Trait Genes used Results References

Abiotic
stress
tolerance

Heat
tolerance

CaPF1 Tolerance to high temperature Youm et al.
(2008)

AtCBF3 Heat tolerance Dou et al.
(2015)

Freezing
tolerance

Atrd29A::DREB1A Tolerance to freezing Behnam et al.
(2007)

Drought
tolerance

ScTPS Studies on water content and
photosynthesis

Stiller et al.
(2008)

ggpPS Increased glucosyl-glycerol in
tubers/drought, salt tolerance

Sievers et al.
(2013)

PaSOD Increased photosynthesis under drought Pal et al. (2013)

TPS1 Trehalose increase and tolerance to
drought

Kondrak et al.
(2012)

Two stress
factors

BADH Drought and salt tolerance Zhang et al.
(2011)

StEREBP1 Cold and salt tolerance Lee et al. 2007

SOD, APX Tolerance to oxidative stress and high
temperature

Tang et al.
(2006)

At DREB1B Drought and freezing tolerance Movahedi et al.
(2012)

StDREB1 or StDREB2 Salt or drought tolerance Bouaziz et al.
(2012, 2013)

GB Salt and cold tolerance Ahmad et al.
(2014)

Multiple
stresses

StnsLTP1 Multiple tolerance to heat, salt and
drought

Gangadhar
et al. (2016)

CodA/chloroplast Tolerance to oxidative, salt, and drought
stresses

Ahmad et al.
(2008)

SOD, APX, CodA/
chloroplast

Tolerance to oxidative, salt, and drought
stresses

Ahmad et al.
(2010)

At DREB1B dehydration response element B 1B; CodA choline oxidase; GB glycinebetaine; BADH betaine aldehyde
dehydrogenase; MsrA2 gene for frog antimicrobial peptide; SOD superoxide dismutase; APX ascorbate peroxidase; Pi
Phytophthora infestans; Pls protease inhibitors; ScTPS Saccharomyces cerevisiae trehalose-6-phosphate synthase gene;
ScSN1 Snakin-1, a cysteine-rich peptide from Solanum chacoense; StEREBP1 Solanum tuberosum ethylene responsive
element binding protein 1; TPS1 yeast trehalose-6-phosphate synthase 1; 5-UGT anthocyanin 5-O-Glucosyltransferase
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Classical breeding still is a time-consuming pro-
cess, which involves many years of selecting a
huge number of clones. Classical mutagenesis is
based on chemical or physical treatment acting
randomly and at multiple sites in the genome.
Biotechnological tools were developed to bypass
these drawbacks. In this chapter we tried to show
the advantages and state of the art in using in vitro
techniques in potato improvement and somatic
cell genetic studies. The main approaches to
increase genetic variability and select improved
varieties as for productivity and resistance to biotic
and abiotic stress are presented in Fig. 13.4.
Somatic hybridization through protoplast fusion
allows sexual incompatibilities to be bypassed and
the transfer of both multiple genes and traits from
wild relatives into the potato crop genome. It still
needs back-crossing for at least two or more gen-
erations and selection for the desired traits. Gene
transfer from distant or related species needs a
good knowledge of dominant genes and their
transfer into well-characterized potato varieties.

Stacking of transgenes or cisgenes has proven its
utility in potato crop but it is still not well accepted
by the consumer in Europe. One better way to
achieve the goals of improving the crop resistance
traits is combinatorial biotechnology already dis-
cussed in this chapter as a complex combination of
different biotechnological and analytic tools in
accordance with the classical and newest genome
studies. The latest technologies of reverse genetics
and targeted mutagenesis have already proved to
be very precise and have apparently no drawbacks
but are still in the beginning and will most prob-
ably contribute to new achievements at the basic
research level and applied potato improvement in
the future.

From a practical point of view and to achieve
the goals of our actual agriculture challenged by
climate change and the exponential increase of
world population, we have to bear in mind that
all possible modern and classical tools are nee-
ded to improve crops and assure food and
resources for the next generation.

Conventional breeding Genetic engineering Genome 
editing

Cross Mutagenesis Protoplast 
fusion

Gene transfer Cisgenesis CRISPR/Cas9

Mutagens 
chemical, 
irradiation etc.

Alien gene Solanum ssp. 
own gene

X 

Crossing,  
selection
11 years

New 
cultivar Modified cultivar

Basic Conventional and Biotechnological Approaches Used for Potato Improvement

Agro-
bacterium 

Transgenic 
plant with 
improved 

trait / traits

Cisgenic 
plant with 
improved 

trait / traits
Characterization, 

back-crosses, 
selection

New cultivar

Targeted 
mutagenesis

New 
mutant plant

Selection

Modified cultivar Modified cultivar

Agro-
bacterium 

_

Fig. 13.4 Valuable conventional and biotechnological techniques for potato improvement
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