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Abstract
Chickpea (Cicer arietinum) is among the most widely grown grain
legumes, with the major growing area concentrated in the Indian
subcontinent. The species is diploid (2n = 2x = 16) and is the only
domesticated species in a genus, which includes over 40 annual and
perennial species. The progenitor of the cultivated form is the annual
species C. reticulatum, but both annual and perennial relatives have been
considered as donors of useful genetic variation. Recent advances in
genomic analysis have expanded the results of earlier cytogenetic research
in the species, which established base information with respect to the
karyotype (chromosome number, length, and morphology; and some
limited descriptions based on banding) and an estimate of nuclear genome
size. Chromosome behavior at meiosis has been characterized in a few
Cicer species and some wide hybrids. To date, only a small number of
DNA sequences have been chromosomally localized using in situ
hybridization. No detailed cytogenetic map has been elaborated, and the
level of knowledge regarding the long-range molecular chromosomal
organization of the genome is rudimentary. A recently developed method
for sorting chickpea chromosome using flow cytometry now offers a more
effective means of exploring the genome.

4.1 Introduction

The genus Cicer, which belongs to the Fabaceae
family, is the sole genus in the tribe Cicereae.
Considerations of life cycle, morphology, and
geographical distribution have allowed the 43
Cicer species to be classified into the four groups
Monocicer, Chamaecicer, Polycicer, and Acan-
thocicer. Eight of the nine annual species (the
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exception is C. chorassanicum), which include
the cultivated form C. arietinum, belong to the
section Monocicer (van der Maesen 1987).
Chickpea is the only cultivated Cicer species
and, in terms of production and consumption, is
among the most important grain legumes. It is
important as a source of protein in the vegetarian
diet, particularly in the Indian subcontinent,
where the bulk of production (72% in quan-
tity terms in 2014, according to FAOSTAT
(http://faostat.fao.org/)); a further 6% of the
cropping area is in western Asia. The crop is
adapted to low rainfall conditions, but drought
has been identified as one of the most important
constraints to productivity.

The origin of chickpea has been traced to
Turkey, in an area harboring most of the wild
Cicer species, including the annual C. reticula-
tum, identified as the likely progenitor of the
cultivated type (Ladizinski and Adler 1976b).
Two distinct market classes are produced: The
seed of kabuli types is large, non-pigmented, and
smooth, while desi-type seed is rough,
angular-shaped, and dark-colored. Kabuli plants
lack anthocyanin pigmentation on their stem,
while desi plants form pigmented stems and its
flowers are pink (Pundir et al. 1985). Despite the
importance of cultivated chickpea, little effort has
been made to date to explore its genome at the
chromosomal level, and even less with respect to
that of its close relatives. Karyotypic descriptions
and an estimate of the nuclear DNA amount date
back at least 20 years (Ohri and Pal 1991;
Ocampo et al. 1992; Galasso and Pignone 1992).

While most Cicer species are perennial, the
cultivated form is an annual plant. The species
has been described as preadapted to domestica-
tion (Ladizinsky 1979). The domestication pro-
cess itself required the loss of pod shatter, a
change in growth habit from a prostrate stem to a
semierect to erect stem, the loss of vernalization
requirement, a reduction in seed dormancy, and
changes to seed size, shape, and color (Abbo
et al. 2014; Gupta and Bahl 1983). The negligi-
ble economic importance of the perennial Cicer
spp. has left these at best only superficially

described, with the consequence that almost
nothing is known regarding their evolution and
phylogenetic relationships. At the same time, a
number of both annual and perennial relatives
have been exploited as donors of useful genetic
variation with a view to chickpea improvement
(Haware and McDonald 1992; Collard et al.
2001; Sharma et al. 2006; Singh et al. 2005).

4.2 Ploidy and Chromosome
Number

The Cicer species are uniformly diploid, all
showing a somatic chromosome number of 16
(Ladizinski and Adler 1976a; Ocampo et al.
1992).While there is no available evidence for any
recent polyploidization event(s), gene copy num-
ber variation in the Fabaceae has suggested that
such events have influenced the form of the
chickpea genome, in particular, the legume-wide
whole genome duplication predicted to have
occurred about 58 million years ago (Jain et al.
2013). The rate of synonymous substitution per
site per year has been estimated to be 6.05 � 10−9

(Jain et al. 2013), a frequency some 12% more
rapid than is the case in Medicago (Young et al.
2011). The absence of any recent whole genome
duplication affecting the generaMedicago, Cicer,
and Lotus (Young et al. 2011; Sato et al. 2008; Jain
et al. 2013) implies that speciation within the
Fabaceae has not been driven by abrupt changes in
chromosome number, but rather by chromosomal
rearrangements and/or lineage-specific gene
gains/losses. The diploid status of the Cicer spe-
cies is mirrored in the genera Lens, Pisum, and
Vicia, which belong to the related tribe Fabeae:
each have a similar somatic chromosome number
to that of the Cicer spp: in both Lens and Pisum,
this is 14 (Mishra et al. 2007), while in Vicia,
diploid species have basic chromosome numbers
x = 5, 6 and 7 (Kaur and Singhal 2010). Species
belonging to a fourth-related genus (Lathyrus)
harbor many more chromosomes: Two Lathyrus
species are tetraploid (2n = 28) and one is hex-
aploid (2n = 48) (Campbell and Clayton 1997).
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4.3 Chromosome Morphology

The chickpea chromosomes are small (Fig. 4.1):
The mean length of the mitotic metaphase chro-
mosomes is around 2.2 µm (Ahmad 2000),
which translates to a nucleotide content of
slightly over 100 Mbp, equivalent to an eighth of
the size of the average wheat chromosome (Šafář
et al. 2010), but twice that of those of banana
(Doležel et al. 1994). Although the somatic
chromosome number of the annual Cicer species
is invariant, there is plenty of karyological vari-
ation, and the same probably holds for the
perennial species. Ahmad (2000), in a study of
all nine annual Cicer species, recorded differ-
ences with respect to both chromosome length
and the position of primary and secondary con-
strictions; these differences were significant
enough to rule out proposing a unified karyotype
across the annual Cicer species. Such variation
supports the notion that structural alterations to
the chromosomes likely have driven evolution

and speciation within Cicer. There is even some
evidence for intraspecific karyotypic variation
(Ohri and Pal 1991; Ocampo et al. 1992; Tayyar
et al. 1994; Ahmad 2000; Ahmad and Hymowitz
1993; Kordi et al. 2006), since these various
authors are in disagreement regarding chromo-
some length, arm ratio, and the position of the
secondary constriction. According to Ahmad
(2000), however, these discrepancies may well
be artifacts arising from inconsistencies in the
cytological protocols.

Chromosomes associated with the nucleolus
organizing region (NOR) are readily recognized
as they form a secondary constriction. Typically,
only one chromosome pair in Cicer species
shows this structure (Ohri and Pal 1991; Tayyar
et al. 1994; Kordi et al. 2006). The sole exception
is C. reticulatum, which harbors two pairs of
satellited chromosomes (Ohri and Pal 1991;
Ocampo et al. 1992). The silver stain assay was
used by Galasso et al. (1996) to demonstrate that
both NOR loci are active, albeit not equally. The
conclusion was that during the evolution of C.
echinospermum and C. arietinum from C. retic-
ulatum, one of the two NOR loci was lost.
However, Ahmad (2000) was unable to confirm
the presence of two satellited chromosome pairs
in C. reticulatum and suggested the possibility
that two cytotypes of C. reticulatum exist, one
with a single NOR locus and the other with two.
Cultivated types bearing two NOR chromosome
pairs have been reported in the early literature
(Iyengar 1939; Kutarekar and Wanjari 1983) but
have not been confirmed in more recent work.
Some C. arietinum accessions reportedly display
a tandemly arranged pair of satellites on the
largest chromosome of the complement, but
these only appear during late prophase/early
metaphase (Meenakshi and Subramaniam 1960;
Ahmad 1989, 2000; Tayyar et al. 1994; Kordi
et al. 2006). The various explanations for this
phenomenon have included staining artifacts
(Ohri and Pal 1991; Ocampo et al. 1992; Galasso
and Pignone 1992), NOR movement (Schubert
1984; Schubert and Wobus 1985), and evolu-
tionary rearrangements (Ladizinski and Adler
1976b; Galasso et al. 1996; Kordi et al. 2006),
but none of these are totally satisfactory.

Fig. 4.1 A metaphase plate of cultivated chickpea.
Copied from Venora et al. (1995) with the permission
of the publisher (Karyotype of kabuli-type chickpea
(Cicer arietinum L.) by image analysis system.
Venora G, Ocampo B, Singh KB, Saccardo F. Caryologia,
copyright ©University of Florence, reprinted by permis-
sion of Taylor & Francis Ltd., www.tandfonline.com on
behalf of University of Florence
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The location of the secondary constriction varies
among the Cicer species: In the annuals C. ari-
etinum, C. reticulatum, and C. echinospermum, it
is present on the longest chromosome pair, while
in the others, it is associated with a medium- or a
small-sized chromosome (Ahmad 2000).

With the exception of secondary constriction,
chickpea chromosomes do not show marked
features, which could ease their classification.
Chromosome length at mitotic metaphase lies in
the range from 1.32 to 3.69 µm (Ahmad 2000);
three of the chromosomes are submetacentric and
the others metacentric (Fig. 4.2). There is a
suggestion of differences in relative chromosome
length between the chromosomes of the kabuli
and desi types; in the former, three of the chro-
mosomes appear longer than their equivalents in
the latter type, while the other five appear to be
longer in desi types, but these differences are
small, ranging from 0.2 to 0.8% of the overall
relative chromosome length (Ruperao et al.
2014) (Table 4.1). Although this variability in
chromosome length is consistent with the
observations of Kordi et al. (2006), it is less
substantial than was claimed by Ohri and Pal
(1991). Only two of the eight C. arietinum
chromosomes can be unambiguously identified
based on their morphology: These are the longest
submetacentric chromosome which bears the
NOR, and the shortest metacentric one (Kordi
et al. 2006). Except for the longest and shortest
chromosomes, which are always classified as
being, respectively, submetacentric and meta-
centric, according to Kordi et al. (2006), at least
one of the six remaining chromosomes departs
from the mean length and/or arm ratio assigned
to the reference accession by Ahmad (2000).

Moreover, it is evident that the karyotype of
cultivated chickpea is more distinctive and the
differences in the length of individual chromo-
somes are bigger as compared to other annual
species (Ahmad 2000).

Karyotype symmetry, as defined by Stebbins
(1971), has some value as a descriptive param-
eter. The concept defines four levels of asym-
metry in the placement of the centromere and
three in the length of individual chromosomes.
According to this system, there exist two types of
asymmetry among the annual Cicer species
(Ahmad 2000): One group clusters C. arietinum,
C. reticulatum, and C. echinospermum and sup-
ports conclusions based on crossability, phylo-
genetic and genotypic (molecular marker-based)
diversity analyses (Buhariwalla et al. 2005;
Iruela et al. 2002; Sudupak et al. 2004).

Two chromosome naming systems have been
used in Cicer, one based on numbers from 1
(longest chromosome) to 8 (shortest) (Ocampo
et al. 1992), and the other on letters (A–H), where
A = 1, B = 2, etc. (Galasso et al. 1996; Staginnus
et al. 1999; Vláčilová et al. 2002; Zatloukalová
et al. 2011). Both systems were in use until the
first linkage maps were assembled, after which
they were replaced by linkage group (LG) num-
bers. A system based on pseudomolecules has
recently been proposed by Ruperao et al. (2014)
(Table 4.1).

Little attempt has been made to cytogeneti-
cally characterize the perennial Cicer species. In
1972, van der Maesen estimated their chromo-
some number to be either 2n = 14 or 2n = 16
(van der Maesen 1972). The first description of
the karyotype of a perennial Cicer species
involved C. anatolicum (Ahmad 1989),

Fig. 4.2 C-banding karyotype of chickpea. Copied from
Galasso and Pignone (1992) with the permission of the
publisher (Characterization of chickpea chromosomes by

banding techniques. Galasso I and Pignone D. Genetic
Resources and Crop Evolution, copyright ©Kluwer
Academic Publishers. With permission of Springer)
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establishing 2n = 16 as the chromosome number,
as is the case for the annuals. Subsequent anal-
ysis showed that the karyotype of C. songaricum
was even more similar to that of C. arietinum, C.
reticulatum, and C. echinospermum, at least in
central and distal parts of the chromosomes.

4.4 Nuclear Genome Size

Similarly to the shortage of systematic studies on
karyotype within Cicer, there are only a few
reports on estimation of nuclear DNA content.
Despite the stable chromosome number in genus
Cicer, there seem to be remarkable differences in
nuclear DNA content among its species. The first
estimation of nuclear DNA amount in chickpea
was reported by Bennett and Smith (1976), who
gave nuclear DNA amount of 1.9 pg/2C for C.
arietinium. In a more recent study, Ruperao et al.
(2014) verified DNA amounts in chickpea using
flow cytometry and estimated 2C DNA amounts
of kabuli and desi types to be 1.80 and 1.77 pg,
respectively. The differences in 2C amounts
between four accessions of desi type were neg-
ligible. Using these values, mean nuclear 1C
genome sizes of kabuli and desi types were
determined as 882 and 866 Mbp, respectively. In
the largest study performed so far, Ohri and Pal
(1991) determined DNA content in six annual

Cicer species and five accessions of cultivated
chickpea. Surprisingly, C-values of C. arietinum
were much higher than those estimated by Ben-
nett and Smith (1976) and Ruperao et al. (2014)
(Table 4.2). Cultivated chickpea had the highest
DNA amounts (2C = 3.3–3.57 pg) of all ana-
lyzed accessions. Estimates of 2C DNA content
in all analyzed species ranged from 1.83 pg in C.
judaicum to 3.57 pg in one of the cultivated
chickpea accessions. DNA amount of perennial
C. songaricum (2C = 2.72 pg) was comparable
to that of C. reticulatum (2C = 2.66 pg) and C.
echinospermum (2C = 2.6 pg). Some of the C
value estimates were confirmed later by Galasso
et al. (1996). It should be noted that both groups
estimated DNA amounts using Feulgen micro-
densitometry and used Vicia faba and Alium
cepa, respectively, as reference standards.

Clearly, there seem to be large inconsistencies
in the estimates of nuclear DNA amount in Cicer.
The reason for this is not clear, and a caution is
warranted when using published data. For
example, the karyotype of cultivated chickpea is
similar to its wild progenitor, C. reticulatum
(Ahmad et al. 1992; Iruela et al. 2002). Yet, the
published data on 2C amounts in both species
differ significantly (Table 4.2). It appears unli-
kely that a large change in DNA amount would
occur during the process of domestication and
cultivation of C. arietinum without marked

Table 4.1 Chickpea desi and kabuli chromosome nomenclature, their assignment to linkage groups, and individual
chromosome sizes as determined from cytological data. Pseudomolecule number (Ca) corresponds to the linkage group
number (LG). (Adapted from Ruperao et al. 2014)

Cicer arietinum L.

Chromosome Pseudomolecule Relative chromosome length (%) Molecular chromosome size (Mbp)

Desi “4958” Kabuli “Frontier” Desi “4958” Kabuli “Frontier”

A Ca5 19 19.8 164.92 174.64

B Ca3 15.8 16.7 137.14 147.29

C Ca6 13.3 12.9 114.58 112.9

D Ca7 12.6 11.8 109.37 104.01

E Ca4 11.5 11.1 99.82 97.9

F Ca2 10.7 10.5 92.88 92.61

G Ca1 9.9 9.4 85.93 83.91

H Ca8 7.2 7.8 62.5 68.8

Total 100 100 867.14 882.06
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changes in chromosome length and morphology.
With this limitation in mind, when the available
DNA content estimates are compared to recent
phylogenetic data, there seems to be a positive
correlation between the difference in genome size
and genetic distance (Ohri and Pal 1991;
Buhariwalla et al. 2005).

4.5 Longitudinal Differentiation
of Chromosomes

Similarities in chromosome size and morphology
do not permit identification of individual chro-
mosomes in chickpea. However, this can be
achieved after a procedure called Giemsa
C-banding, which stains preferentially hete-
rochromatin regions. When applying this method
to chickpea, Galasso and Pignone (1992) and
Galasso et al. (1996) observed differences in the
distribution of heterochromatin along individual
chromosomes. C-banding pattern included strong
bands around centromeres and occasional weak
banding patterns in middle and distal parts
of chromosome arms (Fig. 4.2). Except for
C. judaicum and C. pinnatifidum, C-banding
polymorphisms have provided the means to
identify each individual chromosome pair

(Tayyar et al. 1994). The use of fluorochromes
differing in DNA base affinity (DAPI, Hoechst
33258, and Chromomycin A3) has revealed
significant variability in heterochromatin content
among the annual Cicer species. Tayyar et al.
(1994) used these stains to arrive at an estimated
heterochromatin content of 40% in most of the
annual species, although the ratio rose to 60% in
C. cuneatum and C. bijungum. The difference
was thought to reflect a correlation between
evolutionary advancement and heterochromatin
reduction (Tayyar et al. 1994). However,
attempts to group the species based on their
heterochromatin content proved to be inconsis-
tent with their grouping based on either
crossability (Ladizinski and Adler 1976b) or
alleles at isozyme (Kazan and Muehlbauer 1991)
or seed storage protein (Ahmad and Slinkard
1992) loci.

The recent acquisition of the genome
sequence of both the desi and kabuli types (Jain
et al. 2013; Varshney et al. 2013; Parween et al.
2015) has facilitated the use of sequence-based
markers to characterize the genetic diversity
present both between and within wild and culti-
vated Cicer species. For example, Bajaj et al.
(2015) exploited variation at >27,000 SNP loci
distinguishes the cultivated type (both desi and

Table 4.2 Estimates of nuclear DNA amounts in species belonging to the genus Cicer

Reference

Annual species Bennett and Smiths
(1976)

Ohri and Pal
(1991)

Galasso et al.
(1996)

Ruperao et al.
(2014)

C. arietinum “kabuli” 0.95 1.67 1.64 0.9

C. arietinum “desi” 1.65 0.89

C. bujungum K.H.Rech. 1.27

C. cuneatum Hochst. Ex
Rich.

1.25

C. echinospermum P.H.
Davis

1.35 1.3

C. judaicum Boiss. 0.92

C. pinnatifidum Jaub.&
Sp.

1.28

C. reticulatum Ladiz. 1.32 1.33

Reference

Perennial species Ohri (1999)

C. songaricum 1.36
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kabuli) from accessions of C. reticulatum and C.
echinospermun, and also from the more distant
taxa C. judaicus, C. bijugum, C. pinnatifidun,
and C. microphyllum (Fig. 4.3). Meanwhile,
Kujur et al. (2015) showed that single nucleotide
polymorphism (SNP)-based genotyping was able
to divide a collection of cultivated germplasm
into the two recognized major groups, kabuli and
desi, and a detailed analysis of the SNP-based
genetic diversity within these two groups has
been presented by Upadhyaya et al. (2008),
Roorkiwal et al. (2014), and Kujur et al. (2015).

4.6 Meiosis

Since the chromatin in a meiotic chromosome is
less condensed than in a mitotic one, the former
is more informative with respect to chromosome

morphology and structure. As yet, however,
meiotic chromosomes in the genus Cicer have
not been systematically studied. Although Kabir
and Singh (1991) observed some abnormalities,
in general meiosis in cultivated chickpea was
regular with eight bivalents formed in metaphase
I. The character of the bivalents was more open
(rod) than closed (ring), and chiasma frequency
per pollen mother cell (PMC) was variable
among the nine analyzed Cicer species (Ahmad
and Chen 2000, Fig. 4.4). An analysis of
pachytene chromosomes provided by Ahmad and
Hymowitz (1993) exposed the distribution of
heterochromatin along the chromosomes and
confirmed that only one chromosome pair in C.
arietinum was associated with the nucleolus; the
chromosome arm carrying the NOR was highly
heterochromatic, just as is the case in soybean

Fig. 4.3 Unrooted cladogram illustrating genetic rela-
tionships (Nei’s genetic distance) among 93 wild and
cultivated accessions belonging to seven Cicer species
obtained using 27,862 genome-wide SNPs. The phyloge-
netic tree clearly differentiated 93 accessions into six
diverse groups, which correspond to Cicer species and
gene pools of origination. POP I consists of desi and
kabuli accessions, POP II consists of the accessions of C.

reticulatum and C. echinospermun, and other four distinct
clades (POP III–VI) represent C. judaicus, C. bijugum, C.
pinnatifidun, and C. microphyllum species. Genome-wide
SNP-based molecular diversity, phylogeny, and popula-
tion genetic structure among 93 wild and cultivated Cicer
accessions by Bajaj et al. (2015), used under CC BY
4.0/excised from the original
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(Singh and Hymowitz 1988), pigeon pea (Reddy
1981), and maize (McClintock 1929). The study
also indicated that in the pachytene chromosome,
the distinction between heterochromatin and
euchromatin was clearer than in either barley
(Singh and Tsuchiya 1975) or rice (Kush et al.
1984).

4.7 Molecular Cytogenetics

The elaboration of the fluorescence in situ
hybridization (FISH) technique to localize
specific DNA sequences on a mitotic or meiotic
chromosome has generated important insights
into chromosome organization in many organ-
isms, including Cicer spp. The bulk of these
experiments in Cicer has focused on the culti-
vated form, leaving the level of understanding of
the chromosome organization in other Cicer

species at best only limited. The ribosomal RNA
genes were the first sequences to be localized in
this way (Abbo et al. 1994; Staginnus et al.
1999). While only one chromosome pair carries a
visible satellite, two sites hybridize with a 45S
rDNA sequence, which was interesting in light of
the presence of two satellited chromosome pairs
in C. reticulatum (Ohri and Pal 1991; Abbo et al.
1994). Two sites harboring 5S rRNA sequences
have been identified, one of which lies on the
same chromosome as one of the 45S rDNA sites
(chromosome B) (Vláčilová et al. 2002).

About 50% of the chickpea genome comprises
repetitive DNA (Jain et al. 2013; Varshney et al.
2013). Some of the sequences within this fraction
can be highly informative as cytogenetic markers,
especially where their chromosomal distribution
is non-random (Schwarzacher 2003; Jiang and
Bikram 2006). FISH based on probe sequences
detecting five distinct microsatellite motifs ((A)16,

Fig. 4.4 Chromosome pairing at meiotic metaphase I in
annual Cicer species. a C. arietinum, b C. reticulatum,
c C. echinospermum, d C. pinnatifidum, e C. judaicum,
f C. bijungum, g C. chorassanicum, h C. yamashitae, i C.

cuneatum. Bar: 10 µm. The image has been taken from
Ahmad and Chen (2000), with the permission of the
publisher
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(CA)8, (TA)9, (AAC)5, and (GATA)4), which
were selected based on results of previous study
(Sharma et al. 1995), unfortunately failed to
produce a chromosome-specific karyotype: The
distribution and intensity of the signal varied from
repeat motif to repeat motif, but all five were
dispersed within each chromosome (Gortner et al.
1998). As anticipated, a telomeric sequence
hybridized to each of the chromosome ends, but a
weaker site in the pericentromeric region of
chromosome A and a major cluster on the short
arm of chromosome B were also evident (Zat-
loukalová et al. 2011; Staginnus et al. 1999).
Nevertheless, the potential of repetitive DNA
sequences has demonstrated in several studies.
For example, the two tandemly organized
chickpea-specific repeats (CaSat 1 and CaSat 2)
isolated from a genomic library by Staginnus
et al. (1999) were both informative: The former
defined a large cluster of sites in the subtelomeric
region of both chromosomes A and B, while the
latter proved to be present at each of the eight
centromeres. The retrotransposon-like sequences,
CaRep 1, CaRep 2, and CaRep 3, derived from
different parts of a Ty3/Gypsy-like element, are
dispersed throughout the genome and produce a
strong FISH signal concentrated in the intercalary
heterochromatin on each chromosome, but not in
the pericentromeric region (Staginnus et al. 1999,
2010). A similar distribution has been reported for
the CaTy sequence, which shares homology with
members of the Ty1/Copia-like element family

(Staginnus et al. 2010). Only weak signal was
obtained using a probe based on a chickpea
LINE-like element (Staginnus et al. 2010).

FISH probes based on low or single copy
sequences have been deployed in a number of
plant species (Jiang et al. 1995; Lapitan et al. 1997;
Zhang et al. 2004; Idziak et al. 2014). Zatloukalová
et al. (2011) prepared a partial bacterial artificial
chromosome library from desi chickpea genomic
DNA and recovered five clones which hybridized
to a single locus. One of the loci mapped to a
subtelomeric region on the short arm of chromo-
some A, two to a subtelomeric region on each arm
of chromosome B, one to one of the telomeres of
chromosome E, and the last to a telomeric region
on chromosome H (Fig. 4.5).

Although the number of informative FISH
probes is not extensive, they are sufficient to
identify five chromosomes in the karyotype.
While this can provide opportunities to follow
chromosome behavior during meiosis and to
compare the karyotypes of cultivated and wild
chickpea accessions, there is a need to elaborate
additional cytogenetic markers. A possible
option is to use cDNAs, since these have been
successfully deployed in both barley (Kar-
afitátová et al. 2013) and wheat (Danilova et al.
2014). The acquisition of the genome sequence
means that, as has been pioneered in barley
(Aliyeva-Schorr et al. 2015), it is now possible to
identify in silico sequences suitable as FISH
probes.

Fig. 4.5 Idiogram of C. arietinum desi type created using
data on chromosome length by Ruperao et al. (2014) and
location of a set of DNA sequences which were mapped to

chromosomes using FISH (Zatloukalová et al. 2011 and
unpublished data)
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4.8 Chromosomal Organization
at the Molecular Level

Thanks to the development of high-throughput
sequencing, partial genome sequences of both
desi (38.48%) and kabuli (39.37%) chickpea
have been acquired (Jain et al. 2013; Varshney
et al. 2013; Parween et al. 2015). The assembly
of a whole genome sequence is highly revealing
of chromosomal organization at the molecular
level and allows for comparisons to be made of
chromosome structure both within and between
species (Paterson et al. 2009; Schatz et al. 2014;
Schnable et al. 2009; Thiel et al. 2009). As in
other plant species, the chickpea genome harbors
a significant proportion of repetitive DNA, some
of which is present in the form of an extended
region of tandemly arranged repeats. As also
suggested by the cytogenetic detection of hete-
rochromatin (Staginnus et al. 1999, 2010; Zat-
loukalová et al. 2011), the centromeric and
pericentromeric regions are particularly
repeat-rich (especially with respect to the CaSat 2
element) and gene-poor. Parween et al. (2015)
showed that the mean frequency of recombina-
tion in the pericentromeric region of desi is some
ninefold lower than in more euchromatin-rich
regions. Gene density across the desi pseudo-
molecules averaged 7.07 per 100 Kbp, about
double the density (3.73 per 100 Kbp) present in
unanchored scaffolds, implying that the latter
sequences harbor a high proportion of repetitive
DNA. The current desi and kabuli assemblies
represent only 24–55% of each of the eight
chromosomes, and the most distal and sub-
telomeric regions are mostly absent (Parween
et al. 2015). Thus, it is not possible as yet to draw
conclusions regarding gene density and repetitive
DNA content along the full length of any of the
chickpea chromosomes in the way that has been
achieved in rice (Goff et al. 2002) and Ara-
bidopsis thalianan (Schneeberger et al. 2011),
for example, and even for one of the large
chromosomes of wheat (Choulet et al. 2014).
Nevertheless, the indications are that the desi and
kabuli genomes are highly similar to one another.
Ruperao et al. (2014) have suggested that
apparent differences between the two assemblies

are an artifact arising from the gappiness of the
sequences. Clearly, a higher quality reference
genome assembly will be needed to elaborate a
more precise picture of chromosome organiza-
tion at the molecular level.

4.9 Flow Cytogenetics

Flow cytometry can be highly informative with
respect to chromosome size and structure
(Kubaláková et al. 2003; Molnár et al. 2011; Ma
et al. 2013). It supports physical mapping and
whole genome sequencing, especially in the
context of large genome species (Cviková et al.
2015; Raats et al. 2013; Ruperao et al. 2014;
Mayer et al. 2014). Vláčilová et al. (2002) have
described a protocol to synchronize cell cycle and
thereby to accumulate chromosomes at mitotic
metaphase in chickpea root tips and have
exploited it to prepare liquid suspensions of intact
chromosomes suitable for flow cytometry. The
resulting flow karyotype of kabuli type comprised
eight peaks, five of which were assignable using
FISH to chromosomes A–C, G, and H. The other
three peaks represented chromosomes D, E, and
F. The purity of the single chromosome
flow-sorted fractions ranged from 68% (chromo-
some C) to 100% (chromosomes B and H).
Applying PCR assays targeting microsatellite loci
confirmed that chromosome H was equivalent to
linkage group LG8, marking the first step toward
integrating the chickpea cytogenetic and genetic
maps. When Zatloukalová et al. (2011) flow
karyotyped the desi type, both the number and
positions of the peaks differed from those forming
the kabuli-type flow karyotype (Vláčilová et al.
2002): Here, only six peaks were observed. This
difference implied that the two genomes were
distinct from one another, at least with respect to
their AT/GC content, in contradiction to the
conclusion reached from an analysis of the partial
genome assemblies that the two genomes are
highly similar (see previous section). However,
the difference is in line with the suggestions of
Ohri and Pal (1991) and Kordi et al. (2006),
which was based on DNA amount. The lack of
agreement between the kabuli- and desi-type flow
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karyotypes has recently been confirmed by
Ruperao et al. (2014) and is illustrated in Fig. 4.6.
Of the six peaks forming the desi-type flow
karyotype, four were assigned using FISH to
chromosomes A, B, E, and H, and each of the
other two peaks was a mixture (one of chromo-
somes C and D, and the other of chromosomes F
and G). The purity of the flow-sorted fractions
involving a single chromosome varied from 88%
(chromosome A) to 98% (chromosome H).
PCR-based microsatellite assays confirmed that
chromosome A is equivalent to LG5, B to LG3, E
to LG4, and H to LG8. Similarly, it was con-
cluded that chromosome F is equivalent to one of
LG1 and LG2, and chromosome G to the other;
while chromosomes is equivalent to one of LG6
or LG7, and chromosome D to the other
(Table 4.1).

Flow-sorted chromosomes are also useful as
a means of validating genome sequence
assemblies. Purified preparations of desi-type
chromosomes A, B, and H, as well as A–C and
F–H of the kabuli-type chromosomes were used
by Ruperao et al. (2014) as a template for
Illumina-based sequencing. When compared to
the desi assembled pseudomolecules (Jain et al.

2013), some large-scale misassignations became
apparent, while in the kabuli assembly (Varsh-
ney et al. 2013), a number of short defined
regions were shown to have been misplaced.
Thanks to the recent development of a proce-
dure for sequencing an individual flow-sorted
chromosome (Cápal et al. 2015), it has now
become possible to obtain sequence from a
unique chromosome, although the identity of the
sequenced chromosome cannot be known a
priori. A further application of flow-sorted
chickpea chromosomes has been as a target
for FISH. When mounted on a microscope slide,
a flow-sorted preparation typically comprises
thousands of chromosomes at a high level of
purity and free of cell and tissue debris, which
improves the robustness of the FISH assay
(Vláčilová et al. 2002; Zatloukalová et al.
2011).

4.10 Induced Polyploidy

Many crop species are polyploid (Zeven 1979; Li
et al. 2015); although most are allopolyploid
(e.g., wheat and cotton), a few are autopolyploid

Fig. 4.6 Flow karyotype of (a) desi- and (b) kabuli-type
chickpea. Liquid suspensions of mitotic metaphase chro-
mosomes were stained by DAPI, and their relative
fluorescence was analyzed using flow cytometry. Note
differences in the number and position of chromosome
peaks between the two chickpea types. In desi type, the
flow karyotype comprises six peaks. Four peaks I, III, V,

and VI represent chromosomes H, E, B, and A, respec-
tively. Two composite peaks II and IV represent chromo-
somes F–G and C–D, respectively. In kabuli type, seven
peaks could be resolved. Six peaks I, II, III, V, VI, and VII
were assigned to chromosomes H, G, F, C, B, and A.
Remaining composite peak IV represents chromosomes
D–E
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(potato and alfalfa). As increasing the ploidy
level can be accompanied by improved plant
performance (Ramsey and Ramsey 2014;
Renny-Byfield and Wendel 2014), numerous
attempts have been made to artificially induce
autopolyploidy in a diploid crop species
(Kinoshita and Takahashi 1969; Armstrong
1981). Sohoo et al. (1970) generated autote-
traploid C. arietinum by treating the seedling
apical meristem of both kabuli and desi types
with colchicine. Although chromosome pairing
at meiotic metaphase was dominated by biva-
lents, seed set in the autotetraploids was only
about 30% that achieved in the diploids. Never-
theless, compared to their diploid progenitor, the
autotetraploids did develop stronger and deeper
roots, tougher stems, thicker pods, and bigger
seeds. On the other hand, their germination was
slow, and because of their reduced fertility, their
grain yield was compromised (Sohoo et al. 1970;
Pundir et al. 1983). In some induced autote-
traploids, selection in subsequent generations has
been able to restore fertility (Stebbins 1950), but
the literature does not report any attempt to
pursue this strategy in chickpea. The ability to
reduce the ploidy level from diploid to haploid
has been exploited as a means to rapidly fix a
genotype via subsequent chromosome doubling,
an approach which has been commercially
exploited in a number of crop breeding pro-
grams, notably in barley (Forster et al. 2007), rice
(Jiang et al. 2014) and eggplant (Rotino 2016).
Haploids can be induced from either the micro-
spore (androgenesis) or the megaspore (gyno-
genesis). The former approach typically relies on
the in vitro culture of immature anthers. A first
attempt to develop in vitro anther culture in
chickpea was reported by Khan and Gosh (1983),
which was followed by improvements in proce-
dures to promote somatic embryogenesis and
regeneration (Altaf and Ahmad 1986; Bajal and
Gosal 1987; Huda et al. 2001; Vessal et al.
2002). Full protocols for the production of dou-
bled haploid lines via androgenesis have been
documented by Grewal et al. (2009) and Pan-
changam et al. (2014).

4.11 Wide Hybridization

There has been continued interest in the potential
of wide hybridization as a means to improve
chickpea. Targets for introgression have included
disease resistance, stress tolerance, yield poten-
tial, and end-use quality. Post-fertilization
incompatibility barriers are responsible for the
relatively poor rate of success in producing wide
hybrids. These include the presence of translo-
cation differences between the parental genomes,
leading to meiotic irregularities and a subsequent
loss of fertility; cytoplasmic incompatibility;
chromosome elimination and loss; excessive seed
dormancy; and hybrid breakdown (Bassiri et al.
1987; Stamigna et al. 2000; Ahmad and Slinkard
2004). Although the fertilization process itself is
relatively unhindered, the hybrid embryo often
aborts within a few days. Attempts to deploy
embryo rescue to circumvent this problem have
not met with a great deal of success, and levels of
efficiency are low (Verma et al. 1995; van Dor-
restain et al. 1998; Mallikarjuna 1999).

While no published examples of a successful
hybrid between chickpea and one of the peren-
nial Cicer species exist, hybrids with several of
the annual ones have been attempted (Croser
et al. 2003). Hybrids are formable between C.
arietinum and either C. reticulatum or C. echi-
nospernum (the two species most closely related
to the cultivated type), but their fertility is vari-
able (Ladizinski and Adler 1976b; Singh and
Ocampo 1993). If C. arietinum � C. echi-
nospernum are highly sterile, C. arietinum � C.
reticulatum F1s are fertile and their meiosis is
relatively regular, what tends to support the
notion that C. reticulatum is the progenitor of the
cultivated form (Ladizinski and Adler 1976b).
The occasional meiotic irregularities observed in
F1 pollen mother cells comprise univalents and
quadrivalents. According to Jaiswal et al. (1987),
these hybrids flower early, have a high yield
potential, and are better able to tolerate low
temperatures than C. arietinum. The level of
crossability between C. arietinum and C. echi-
nospernum is low; the plants develop normally,
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form six bivalents and two quadrivalents at
meiosis, and are only partially fertile (Ladizinski
and Adler 1976b). The presence of a quadriva-
lent suggests that the chromosomes involved
have suffered a reciprocal translocation. A few
interesting introgression events have been iden-
tified among the offspring of these two wide
hybrids (Jaiswal et al. 1987; Singh and Ocampo
1993). A number of attempts to use either C.
bijungum or C. pinnatifidum as a parent have
failed (Singh et al. 1994, 1999; Verma 1990).
However, the C. arietinum � C. judaicum
hybrid was feasible (Verna et al. 1995); the
resulting plants formed a high number of bran-
ches and pods and yielded well (Singh et al.
1994; Verma et al. 1995). In contrast, Ladizinski
and Adler (1976b) did succeed in crossing C.
arietinum with each of C. judaicum, C. pinnati-
fidum, and C. bijungum; meiotic pairing in each
of these hybrids comprised mostly bivalents,
with rare univalents, but the plants were all
sterile. Recently, Abbo et al. (2011) described
successful cross between annual C. cuneatum
and perennial C. canariense with 50% pollen
fertility and intermediate look of hybrid plants.

The outcomes of wide hybridization experi-
ments led Ladizinski and Adler (1976b) to assign
each of the annual Cicer species as a member of
either the crop’s primary genepool (C. reticula-
tum), its secondary genepool (C. echinosper-
num), or its tertiary genepool (C. judaicum, C.
pinnatifidum, C. bijungum). The updated scheme
suggested by Croser et al. (2003) matches the set
of phylogenetic relationships derived by
Buhariwalla et al. (2005) from a SNP-based
analysis of genotypic diversity. Based on
hybridization, Ladizinski and Adler (1976a, b)
assigned all annual Cicer species to three cross-
ability groups according to the classical defini-
tion as proposed by Harlan and de Wet (1971).
More recently, this system was revised by Croser
et al. (2003) Newly, primary genepool comprises
C. arietinum and C. reticulatum, secondary
genepool C. echinospernum only, and its tertiary
genepool all remaining annual (and probably all
perennial) Cicer species. This grouping correlates
with genetic diversity of wild annual Cicer spe-
cies (Buhariwalla et al. 2005).

4.12 Conclusion

Progress in chickpea cytogenetics has been
slower than in many of the agriculturally
important crops. There remain major knowledge
gaps regarding chromosome structure both in the
cultivated form and in its near relatives within the
genus Cicer, and whether chromosome organi-
zation differs between the various Cicer species
is quite unknown. Meiotic chromosome behavior
in wide hybrids and their offspring are at best
sketchily described. A major advance in filling
these gaps should follow from the acquisition of
the chickpea genomic sequence, the development
of molecular cytogenetics technology, and the
use of flow cytometry to apportion the nuclear
genome into its component chromosomes. The
probability is that in the near future, the chickpea
community will be in a position to better utilize
the full range of genetic diversity present in the
genepool and thereby to support the breeding of
improved cultivars of chickpea.
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