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Abstract
Stroke is defined as the acute onset of focal neurological disturbance arising due 
to a cerebrovascular cause, confirmed histopathologically or on imaging, where 
other causes have been excluded. Strokes may either be ischaemic (approxi-
mately 80% of cases) or haemorrhagic (20%). Although often thought of as a 
single disease, stroke represents the end stage of many different pathologies, 
each of which can result in cerebral ischaemia and/or haemorrhage. Therefore 
when investigating a stroke patient, investigations are performed to identify the 
underlying cause. Most cases of ischaemic stroke are caused by one of three 
pathologies: large vessel atherosclerotic disease (LVD), cerebral small vessel 
disease (SVD) or cardioembolism, although there are multiple rarer causes 
including cervical artery dissection. However, even with detailed investigation 
an underlying cause cannot be found in approximately a quarter of all ischaemic 
strokes. Haemorrhagic strokes are categorized according to the brain region they 
arise from; lobar or cortical haemorrhages are commonly caused by cerebral 
amyloid angiopathy, or an underlying structural lesion for example an arteriove-
nous malformation. Subcortical haemorrhages are usually associated with hyper-
tension and believed to be often a manifestation of SVD.

This chapter will briefly outline the genetic basis of strokes in general, and 
highlight key examples of familial forms of stroke.
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24.1	 �Introduction

Stroke is defined as the acute onset of focal neurological disturbance arising due to a 
cerebrovascular cause, confirmed histopathologically or on imaging, where other 
causes have been excluded [1]. Strokes may either be ischaemic (approximately 80% 
of cases) or haemorrhagic (20%) [2]. Although often thought of as a single disease, 
stroke represents the end stage of many different pathologies, each of which can result 
in cerebral ischaemia and/or haemorrhage. Therefore when investigating a stroke 
patient, investigations are performed to identify the underlying cause. Most cases of 
ischaemic stroke are caused by one of three pathologies: large vessel atherosclerotic 
disease (LVD), cerebral small vessel disease (SVD) or cardioembolism, although 
there are multiple rarer causes including cervical artery dissection [3]. However, even 
with detailed investigation an underlying cause cannot be found in approximately a 
quarter of all ischaemic strokes. Haemorrhagic strokes are categorized according to 
the brain region they arise from; lobar or cortical haemorrhages are commonly caused 
by cerebral amyloid angiopathy, or an underlying structural lesion for example an 
arteriovenous malformation. Subcortical haemorrhages are usually associated with 
hypertension and believed to be often a manifestation of SVD.

This chapter will briefly outline the genetic basis of strokes in general, and high-
light key examples of familial forms of stroke.

24.2	 �Genetics and Genomics of ‘Sporadic’ Stroke

The majority of strokes are apparently ‘sporadic’, but considerable evidence dem-
onstrates that genetic risk factors, likely interacting with environmental risk factors, 
are important even in these cases. Evidence from animals models [4], and also from 
studies in man of twins and affected sibling-pairs [5, 6], and epidemiological data 
of familial history of stroke [7] suggest that stroke is heritable. More recently this 
has been supported by complex trait analysis studies from genome-wide association 
study (GWAS) data [8]. Heritability is higher for younger onset cases [9].

GWAS in ischaemic stroke have identified a number of risk variants [9–13]. A 
sticking finding has been the subtype specificity of most loci reported to date, dem-
onstrating that different subtypes of ischaemic stroke have different genetic archi-
tecture. GWAS studies have also identified loci for intracerebral haemorrhage [14].

24.3	 �Genetics of Familial Stroke

Stroke less commonly presents as a key feature of monogenic syndromes. Most 
monogenic forms of stroke also cause a specific stroke subtype (see Table 24.1 for 
ischaemic stroke and Table 24.2 for intracerebral haemorrhage, ICH).

The most common monogenic form of stroke is Cerebral Autosomal Dominant 
Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), 
which results from mutations in the NOTCH3 gene, and most frequently presents 
with migraine with aura and/or lacunar strokes, and can progress to dementia. 
Recently a number of other monogenic forms of small vessel disease have been 
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reported which result in one of more of lacunar stroke, migraine, cognitive impair-
ment, and cerebral microbleeds and ICH [15] (Table  24.3). These are not only 
important for the individual patient, but are also providing important insights into 
the pathophysiological mechanisms underlying not only monogenic SVD [16] but 
also sporadic SVD [17].

Table 24.1  Monogenic or single gene disorders causing ischaemic stroke, classified according to 
the stroke subtype they result in

Stroke subtype Monogenic disorders
Small vessel disease • CADASIL

• CARASIL/HTRA1-related autosomal dominant SVD
• Retinal Vasculopathy with Cerebral Leukodystrophy (RVCL)
• �COL4A1/A2 –related small vessel arteriopathy with 

haemorrhage and intracerebral aneurysms
Large artery 
atherosclerosis and other 
arteriopathies

• Familial hyperlipidaemias
• Moya-moya disease
• Pseudoxanthoma elasticum
• Neurofibromatosis type I

Large 
artery disease—dissection

• Ehlers Danlos Syndrome Type IV
• Marfan syndrome
• Fibromuscular dysplasia
• Arterial Tortuosity Syndrome

Disorders affecting both 
small and large arteries

• Fabry disease
• Homocystinuria
• Sickle cell disease

Cardioembolism • Familial cardiomyopathies
• Familial arrhythmias
• Hereditary Haemorrhagic Telangiectasia

Prothrombotic disorders • Factor V Leiden
• �Prothrombin (F2), Protein S (PROS1), Protein C (PROC), 

Antithrombin III (AT3) deficiencies
Mitochondrial disorders • �Mitochondrial myopathy, Encephalopathy, Lactic Acidosis and 

Stroke (MELAS)

The list is not inclusive but includes examples of the major stroke subtypes

Table 24.2  Familial forms of haemorrhagic strokes. Key clinical features are provided for more 
common syndromes

Stroke subtype Monogenic disorders
Small vessel disease • COL4A1/A2* (subcortical haemorrhages)

• �Hereditary cerebral amyloid angiopathy (lobar 
haemorrhages)

Large artery disease—rupture of 
cerebrovascular malformations

Cerebral aneurysms
• Familial intracranial aneurysm
• Autosomal dominant polycystic kidney disease
• COL4A1/A2
Arteriovenous malformation
• Hereditary haemorrhagic telangiectasia
• Capillary malformation—arteriovenous malformation
Venous malformations
• Familial cerebral cavernous malformation

*Syndromes marked with an asterix predominantly cause haemorrhagic strokes, but may also cause 
ischaemic strokes
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24.4	 �Diagnosing a Monogenic Cause of Stroke

Monogenic forms of stroke can either be part of a systemic disease, which presents 
with clinical features affecting multiple organs, or can present primarily with stroke. 
When stroke is part of a systemic disease, examples of which include Fabry disease 
and sickle cell disease, the diagnosis is often already known. In contrast, for dis-
eases which present with stroke as the main manifestation, diagnosis and identifica-
tion of an underlying single gene disorder can be challenging.

Most familial causes of stroke present in young or middle age and the diagnosis 
should be considered in a patient presenting with stroke at under 60 years, particu-
larly when they have a family history of stroke. However, the majority of young onset 
strokes will not have an underlying single gene disorder, while increasing numbers 
of cases of stroke presenting at an older age (for example in the seventh decade for 
CADASIL) are being reported. Results of specific investigations may also highlight 
a likely monogenic cause. For example, involvement of the anterior temporal pole on 
MRI in CADASIL has been shown to be a useful marker of the disease [38].

In all cases it is important that investigations are performed to accurately subtype 
the stroke. This includes brain imaging with CT or MRI to differentiate an ischemic 
stroke from a haemorrhagic stroke. Ischemic strokes then require further investiga-
tion with imaging of the extra- and intra- cerebral arteries (with CT or MR angiogra-
phy or ultrasound), investigation of the heart with ECG and echocardiography, and 
blood tests for lipids and other circulating disease markers. Small lacunar infarcts 
caused by SVD are frequently not visible on CT brain imaging, and in these cases 
MRI is important not only to confirm the infarct but also to look for other manifesta-
tions of SVD such as white matter hyperintensities and cerebral microbleeds.

If the initial images show an ICH, rather than an infarct, a different series of 
investigations are required. These can include repeat brain imaging when the blood 
has resolved to look for an underlying lesion (such as an arteriovenous malforma-
tion or a neoplasm), angiography to look for an underlying aneurysm or arterial 
malformation, and MRI with gradient echo sequences to look for cerebral micro-
bleeds. Cerebral microbleeds characteristically occur in the cortex and grey-white 
matter junction in amyloid angiopathy, and in the basal ganglia and subcortical 
structures in hypertensive haemorrhage due to SVD.

If a monogenic cause is suspected, and once the underlying stroke subtype has 
been determined, appropriate tests can be performed to diagnose monogenic con-
ditions causing that particular stroke subtype. In some cases, this may include a 
haematological or biochemical test as in sickle cell disease and Fabry disease 
respectively, while in other cases, and particularly for SVD, genotyping is required. 
Traditionally this has been performed on a gene-by-gene basis using Sanger 
sequencing or similar techniques. However, with the increasing availability of next 
generation sequencing techniques this is increasingly being performed using 
sequencing arrays which screen multiple genes at the same time. This is particu-
larly useful, for example, for SVD where multiple genes can cause a similar 
phenotype.
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In the remainder of the chapter we present a number of examples of monogenic 
forms of stroke. We particularly focus on SVD for a number of reasons. Firstly, this 
includes CADASIL, which is the most common monogenic form of stroke. Secondly 
because of the recent advances in this area and the identification of multiple non-
CADASIL forms of familial SVD. Thirdly because monogenic forms of SVD rep-
resent the majority of cases of suspected familial stroke without other systemic 
disease, and fourthly because they illustrate a number of important features of 
monogenic stroke including gene-environment interactions and challenges in diag-
nosis. However, we have also covered sickle cell disease as a non-SVD example of 
monogenic stroke both because it represents a major problem in some parts of the 
world, and because identification of the disease and appropriate treatment can 
reduce the risk of stroke.

24.5	 �Sickle Cell Disease

Sickle cell disease (SCD) is an autosomal recessive haemoglobinopathy caused by 
a homozygous glutamic acid-valine substitution in the 6th position of the β-globin 
chain of haemoglobin. In the resulting haemoglobin (HbS), there are two normal α 
chains and two mutant β chains. As glutamic acid is a polar amino acid, while valine 
is non-polar and insoluble, the potential bonds formed by the globin chains are 
altered, resulting in impaired solubility of the resulting haemoglobin. HbS polymer-
izes to form fibres known as tactoids, which lead to the distortion of the red cell, 
which is rigid and dehydrated, and carries a sickle-shaped appearance. The sickled 
cells are also more adherent to vascular endothelium, thus promoting vessel occlu-
sion [39].

SCD is prevalent in individuals of Sub-Saharan Africans and African Caribbean 
ancestry, and is also present in the Mediterranean, Middle East and India. Its distri-
bution matches that of the endemic plasmodium falciparum malaria, which exerts a 
selection pressure, with the sickle gene in heterozygous form conferring protection 
from malaria [40].

SCD is clinically complex with a high degree of phenotypic heterogeneity, with 
patients experiencing a range of systemic effects from infancy. One of the key fea-
tures is vaso-occlusion, which accounts for many systemic complications. Distorted 
red cells occlude blood vessels and lead to infarction, presenting as painful crises in 
the bones or joints of hands and feet, acute chest syndrome, pulmonary hyperten-
sion, renal papillae damage and stroke [41].

24.5.1	 �Stroke in SCD

Strokes are a common cause of morbidity and mortality in SCD, affecting up to 
3.75% of patients [42]. In affected regions SCD is one of the most common cause 
of paediatric strokes between the ages of 2–9 years, although they can occur at any 
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age [43]. Strokes in SCD may be ischaemic or haemorrhagic, with ischaemic strokes 
having a bimodal distribution, peaking around the first and third decade [44], and 
haemorrhagic strokes being less common, arising at a later age, after the second 
decade of life [42].

24.5.2	 �Ischaemic Strokes in SCD

Many strokes in SCD to arise due to narrowing of the major cerebral vessels, pri-
marily the internal carotid artery (ICA) and proximal section of the middle cerebral 
artery (MCA), resulting in impaired perfusion of territories distal to the stenosis. 
Sickling of erythrocytes and anaemia results in hyperplasia of the intima of large 
vessels, a feature seen in 80% of SCD patients with stroke [45].

Beyond an arteriopathy, other mechanisms contribute to strokes in SCD. SCD 
patients are often in a hypercoagulable state at baseline, with raised levels of mark-
ers of coagulation and fibrinolysis, and reduced Protein C and S concentrations [46, 
47]. During pain crises, there is also activation of platelets, and sickled erythrocytes 
may express phosphatidylserine which promotes the activation of prothrombin [48]. 
Chronic haemolysis of sickled cells depletes circulating nitric oxide, which is essen-
tial for maintaining vasomotor tone and preventing platelet aggregation, contribut-
ing to ischaemia via vasoconstriction [49]. Chronic hypoxia may also create a state 
of chronic inflammation, with high circulating proinflammatory cytokines promot-
ing the interaction of sickled cells with the endothelium [50].

Less common causes of stroke are in SCD are underlying cardioembolism and 
cardiopathies, systolic dysfunction and atrial fibrillation. These are estimated to 
account for 24% of strokes in adult SCD patients [46]. Adults with SCD also have a 
high prevalence of posterior circulation aneurysms, and cerebral venous sinus 
thrombosis is a common event in adults with SCD—both of which may predispose 
the patient to strokes [51].

24.5.3	 �Haemorrhagic Strokes in SCD

Large intracerebral artery occlusion may also result in the formation of compensa-
tory collateral subcortical vessels, giving a ‘puff of smoke’ appearance described as 
Moya-moya syndrome [52]. These can rupture, leading to ICH and this is often 
occurs young adulthood rather than childhood [53]. Aneurysms and arteriovenous 
malformations are common in SCD, and may also predispose individuals to haem-
orrhagic strokes [54, 55].

24.5.4	 �Clinically Silent Strokes in SCD

Clinically silent infarcts, and white matter hyperintensities on MRI, are more com-
mon than clinically overt strokes in SCD, occurring in more than 22% of patients 
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[56]. These lesions are associated with cognitive impairment, and are also a recog-
nised risk factor for overt strokes [57].

24.5.5	 �Risk Factors for Stroke in SCD

A number of clinical biomarkers can serve to predict an individual’s risk of develop-
ing silent, ischaemic or haemorrhagic strokes in SCD. (Table 24.3 and 24.4) One 
important tool is the use of transcranial Doppler ultrasonography (TCD) in predict-
ing the risk of stroke in paediatric SCD patients—currently the most accurate prog-
nostic tool available. Raised ICA or MCA flow velocities on TCD serve as a marker 
of focal stenosis, and can identify those at highest risk of first stroke [58] .

24.5.6	 �Genetic Risk Factors for Stroke in SCD

As with other clinical phenomena in SCD, the occurrence and severity of stroke 
between patients can vary widely, and this is likely due to a combination of genetic 
and environmental risk factors interacting with the sickle cell genotype. Early stud-
ies have demonstrated a familial predisposition to cerebral vasculopathy in families 
with more than one child with SCD, showing that siblings of children with stroke or 
increased TCD blood flow velocities have an increased risk of stroke [59, 60].

The α-thalassaemia polymorphism, and concentration of foetal haemoglobin 
(HbF) are well-established modulators of stroke in SCD [61]. HbF decreases the 
stroke risk by inhibiting HbS polymerization, and genes such as BCL11A, HBS1L-
MYB, β-globin genes and quantitative trait loci which affect HbF levels may con-
tribute to this effect [62].

A number of studies have suggested other genes may influence the phenotype. A 
study of 80 candidate genes involved in vasoregulation, coagulation and other 
disease-associated processes utilised a Bayesian network approach to identify asso-
ciations between genes and stroke in 1398 patients with SCD (92 with stroke) [63]. 
This study identified 31 SNPs in 12 genes as being associated with ischaemic stroke, 
with interaction between these genes and HbF as a possible mediating mechanism. 
Several of these genes were involved in the transforming growth factor-beta (TGFβ) 
pathway, a finding which was partially replicated in a subsequent candidate SNP 
study [61].

The use of MRI to phenotype stroke subtypes in SCD has also contributed to the 
discovery of genetic risk factors. In a study of 230 MRI-phenotyped SCA children, 
104 SNPs were studied in 65 candidate vascular genes, and demonstrated that SNPs 
in IL4R, TNFα, and ADRB2 genes were associated with increased risk of large ves-
sel strokes, while VCAM1 and LDLR genes were associated with increased 
(VCAM1) or decreased (LDLR) small vessel stroke risk [64]. Another variant in 
VCAM1 was previously also identified as protective against high TCD flow veloc-
ity and thus stroke risk in SCD [65].

24  Genetics and Genomics of Stroke



704

Ta
bl

e 
24

.4
 

Fa
m

ili
al

 f
or

m
s 

of
 h

ae
m

or
rh

ag
ic

 s
tr

ok
es

St
ro

ke
 s

ub
ty

pe
D

is
ea

se
G

en
e

Pa
tte

rn
 o

f 
in

he
ri

ta
nc

e
O

th
er

 k
ey

 c
lin

ic
al

 f
ea

tu
re

s
R

ef
er

en
ce

s
Sm

al
l v

es
se

l 
di

se
as

e
C

O
L

4A
1/

A
2*  

(s
ub

co
rt

ic
al

 
ha

em
or

rh
ag

es
)

C
O

L
4A

1/
A

2
A

ut
os

om
al

 
do

m
in

an
t

• 
Po

re
nc

ep
ha

ly
, h

yd
ro

en
ce

ph
al

y
• 

In
fa

nt
ile

 h
em

ip
ar

es
is

• V
is

ua
l l

os
s

• 
D

ev
el

op
m

en
ta

l d
el

ay
, c

og
ni

tiv
e 

im
pa

ir
m

en
t a

nd
 d

em
en

tia
• 

Se
iz

ur
es

• 
N

ep
hr

op
at

hy
, m

yo
pa

th
y,

 c
ar

di
ac

 in
vo

lv
em

en
t

• 
In

tr
ac

ra
ni

al
 a

ne
ur

ys
m

s
• 

Pe
ri

ve
nt

ri
cu

la
r 

cy
st

s 
in

vo
lv

in
g 

su
bc

or
tic

al
 s

tr
uc

tu
re

s
• 

R
et

in
al

 v
es

se
l a

bn
or

m
al

iti
es

• 
�H

A
N

A
C

 s
yn

dr
om

e 
in

 s
om

e 
pa

tie
nt

s:
 H

er
ed

ita
ry

 A
ng

io
pa

th
y,

 
N

ep
hr

op
at

hy
, A

ne
ur

ys
m

s 
an

d 
C

ra
m

ps

[3
1]

H
er

ed
ita

ry
 C

A
A

 
(l

ob
ar

 
ha

em
or

rh
ag

es
)

A
PP

A
ut

os
om

al
 

do
m

in
an

t
• 

D
em

en
tia

• 
Se

iz
ur

es
• 

Pa
re

nc
hy

m
al

 p
la

qu
es

• 
Pe

rs
on

al
ity

 c
ha

ng
es

[3
2,

 3
3]

C
ST

3
IT

M
2B

T
T

R
G

el
so

lin
PP

R
N

R.Y.Y. Tan and H.S. Markus



705

L
ar

ge
 v

es
se

l 
D

is
ea

se
—

ru
pt

ur
e 

of
 

va
sc

ul
ar

 
m

al
fo

rm
at

io
ns

H
er

ed
ita

ry
 

H
ae

m
or

rh
ag

ic
 

Te
la

ng
ie

ct
as

ia
 

(A
rt

er
io

ve
no

us
 

m
al

fo
rm

at
io

ns
)

E
N

G
 

(H
H

T
1)

A
ut

os
om

al
 

do
m

in
an

t
• 

Su
dd

en
 o

ns
et

, r
ec

ur
re

nt
 e

pi
st

ax
is

• 
M

uc
oc

ut
an

eo
us

 te
la

ng
ie

ct
as

ia
• �V

is
ce

ra
l o

rg
an

 a
rt

er
io

ve
no

us
 m

al
fo

rm
at

io
ns

 (
lu

ng
s,

 li
ve

r, 
ga

st
ro

in
te

st
in

al
 tr

ac
t, 

br
ai

n,
 s

pi
na

l c
or

d)

[3
4]

A
C

R
V

L
1 

(H
H

T
2)

SM
A

D
4 

(J
uv

en
ile

Po
ly

po
si

s—
H

H
T

)
G

D
F2

A
ut

os
om

al
 

do
m

in
an

t 
po

ly
cy

st
ic

 k
id

ne
y 

di
se

as
e 

(I
nt

ra
cr

an
ia

l 
an

eu
ry

sm
s)

PK
D

1
A

ut
os

om
al

 
do

m
in

an
t

• 
Po

ly
cy

st
ic

 k
id

ne
ys

 le
ad

in
g 

to
 c

hr
on

ic
 r

en
al

 f
ai

lu
re

 a
nd

 h
yp

er
te

ns
io

n
[3

5]
PK

D
2

Fa
m

ili
al

 C
er

eb
ra

l 
C

av
er

no
us

 
M

al
fo

rm
at

io
ns

 
(C

av
er

no
m

as
)

K
R

IT
 

(C
C

M
1)

A
ut

os
om

al
 

do
m

in
an

t
• 

�C
C

M
1:

 H
yp

er
ke

ra
to

tic
 c

ut
an

eo
us

 c
ap

ill
ar

y 
ve

no
us

 m
al

fo
rm

at
io

n,
 

ca
fé

-a
u-

la
it 

sp
ot

s,
 h

ep
at

ic
 a

ng
io

m
as

• 
C

C
M

3:
 s

co
lio

si
s,

 c
og

ni
tiv

e 
im

pa
ir

m
en

t, 
m

en
in

gi
om

as

[3
6]

M
G

C
46

07
 

(C
C

M
2)

PD
C

D
10

 
(C

C
M

3)
C

ap
ill

ar
y 

M
al

fo
rm

at
io

n—
A

rt
er

io
ve

no
us

 
M

al
fo

rm
at

io
n

R
A

SA
1

A
ut

os
om

al
 

do
m

in
an

t
• 

M
ul

tip
le

 s
ki

n 
ca

pi
lla

ry
 m

al
fo

rm
at

io
ns

 (
va

sc
ul

ar
 s

ta
in

s)
• A

rt
er

io
ve

no
us

 fi
st

ul
as

 a
nd

 m
al

fo
rm

at
io

ns
• 

�Pa
rk

es
 W

eb
er

 s
yn

dr
om

e 
(c

ut
an

eo
us

 c
ap

ill
ar

y 
m

al
fo

rm
at

io
ns

 
as

so
ci

at
ed

 w
ith

 u
nd

er
ly

in
g 

m
ic

ro
-A

V
Fs

, s
of

t t
is

su
e 

an
d 

sk
el

et
al

 
hy

pe
rt

ro
ph

y)
• 

In
fa

nt
ile

 h
ae

m
an

gi
om

as

[3
7]

* K
ey

 c
lin

ic
al

 f
ea

tu
re

s 
ar

e 
pr

ov
id

ed
 f

or
 m

or
e 

co
m

m
on

 s
yn

dr
om

es
. S

yn
dr

om
es

 m
ar

ke
d 

w
ith

 a
n 

as
te

ri
x 

pr
ed

om
in

an
tly

 c
au

se
 h

ae
m

or
rh

ag
ic

 s
tr

ok
es

, b
ut

 m
ay

 a
ls

o 
ca

us
e 

is
ch

ae
m

ic
 s

tr
ok

es

24  Genetics and Genomics of Stroke



706

Other studies have suggested a potential role for the immune system in the devel-
opment of stroke in patients with SCD with HLA DPB1 being associated with stroke 
risk [66].

Genome-wide approaches have been limited in the study of stroke in SCD, and 
to date have not validated findings in candidate gene or SNP studies [67]. The reader 
is also directed to a recent comprehensive review of the genetics of SCA-associated 
cardiovascular disease [68].

24.5.7	 �Management of Strokes in SCD

Although studies in the acute management of stroke in SCD are limited, there is no 
clear evidence against the use of thrombolysis in adults with SCD [46]. Supplemental 
oxygen in the acute setting can also help to maintain blood oxygen saturation at 
≥95%, preventing further sickling and blood hyperviscosity [69]. Beyond standard 
stroke care, exchange blood transfusions are recognised as the standard of care for 
the primary and secondary prevention of strokes (excluding silent infarcts) [70].

Children with SCD who are at risk of stroke, as identified by high cerebral blood 
flow velocity on TCD, may have their absolute risk of first stroke being reduced by 
9%, and relative risk lowered by 92%, by lowering the proportion of HbS to <30% 
with exchange transfusion [71]. Cessation of transfusion therapy may result in 
patients reverting to previous risk status [72]. In SCD children with a previous 
stroke, the risk of recurrent stroke is as high as 90%, and can be lowered to below 
10% by regular exchange blood transfusion [70].

Reducing the proportion of HbS to can improve oxygen saturation through 
normal red blood cells, reducing further vaso-occlusion, improving tissue perfu-
sion and preventing further ischaemic damage caused by the stroke [46]. A long-
term exchange transfusion programme to reduce the proportion of HbS to <20% 
is thus recommended for children with either prior silent cerebral infarcts or 
raised TCD velocities [70]. Top-up blood transfusions are not recommended for 
the acute treatment of stroke as an increased blood viscosity may worsen stroke or 
painful crises [70].

24.6	 �Monogenic Forms of Small Vessel Disease

24.6.1	 �CADASIL

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy (CADASIL) is the most common monogenic cause of 
SVD. CADASIL is caused by cysteine-changing mutations in exons 2–24 of the 
NOTCH3 gene, which encode the extracellular portion of the Notch 3 protein, a 
transmembrane receptor [18]. CADASIL is estimated to affect 2–4 per 100,000 
population in the UK [73, 74]. Disease-causing NOTCH3 mutations were found in 
0.5% of 1000 apparently sporadic young-onset (≤70  years) MRI-defined SVD 
stroke patients, with this figure rising to 1.5% when considering only patients with 
confluent white matter hyperintensities on MRI [75].
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The clinical features of CADASIL are exclusively neurological. Migraine, usu-
ally with aura, is most commonly the earliest feature of disease, with onset usually 
in the 1920s or 1930s. Subcortical ischaemic lacunar strokes may occur, with an 
average age of onset of 47 years, and progressive subcortical cognitive impairment 
can occur in middle age leading to vascular dementia [76]. Depression is common 
and may precede other symptoms. Less common presentations of CADASIL 
include an acute reversible encephalopathy or ‘coma’ episode, which is often mis-
diagnosed as an acute encephalitis [77].

24.6.1.1	 �Phenotypic Variation and the Importance of Gene-Gene 
and Gene-Environment Interactions

Disease severity can vary widely between individuals, both between and within fam-
ilies. Almost all of CADASIL mutations result in the loss or gain of a cysteine amino 
acid in one of the epidermal growth factor (EGF) repeats in the extra-cellular portion 
of the Notch 3 protein [78]. Studies have shown no relationship between phenotype 
and mutation sites [79]. Why the phenotype varies so much between individuals is 
not well understood but it is thought that both gene-gene and gene-environment 
interactions are important. Family studies have shown a significant heritability for 
MRI determined white matter legion volume suggesting additional genes are impor-
tant in determining phenotypic severity [80]. Conventional cardiovascular risk fac-
tors also seem to influence phenotypes. For example, CADASIL carriers who smoke 
on average develop stroke 10  years earlier [79]. Hypertension also seems to be 
important with the rate of progression of brain atrophy on MRI related to the level of 
blood pressure [81], and hypertension related to risk of stroke [77].

24.6.1.2	 �Diagnosis of CADASIL
CADASIL should be considered in all younger onset cases of lacunar stroke where 
there are white matter changes such as white matter hyperintensities on the MRI scan. 
There may be additional clues in the history including migraine with an aura which can 
be prolonged and confusional. There is usually a family history of clinical features of 
CADASIL but this is not always immediately clear. Vascular dementia in a relative can 
frequently be diagnosed as Alzheimer’s disease, while particularly in the past CADASIL 
has been misdiagnosed as multiple sclerosis, so one should always be aware of this 
diagnosis in the family history. Furthermore, because CADASIL can present in middle 
age there may be no family history if the parents died relatively young.

As with diagnosis of many forms of SVD, careful assessment of the MRI is cru-
cial. In the case of CADASIL this can reveal features which are almost diagnostic. 
For example, involvement of the anterior temporal pole has shown to be 90% sensi-
tive and 90% specific [38]. Other features on MRI include confluent involvement of 
the external capsule, and involvement of the corpus callosum (a structure which is 
not usually involved in the sporadic small vessel disease although it is frequently 
involved in multiple sclerosis) [82].

The next step is genetic testing to confirm the diagnosis. Mutations tend to clus-
ter in certain exons particularly exon 4 [78] and this initially led to limited screening 
to reduce cost and exclude the majority of cases. However, this approach will miss 
a significant number of cases and many labs now screen all of exons 2–24 in which 
mutations can occur. Although CADASIL only produces clinical features in the 
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brain, arteries throughout the body are affected by the pathological process. This 
has led to the use of skin biopsy to detect the characteristic granular osmiophilic 
material (GOM) which can be seen on Electron Microscopy. However, with the 
wider availability of genetic testing this is less frequently performed.

Appropriate genetic counselling should be given before genetic testing and we 
use the Huntingdon’s disease protocol. It’s important to remember that in an indi-
vidual with a family history with CADASIL an MRI is essentially a genetic test. If it 
shows characteristic changes it indicates the individual is a carrier of the mutation.

24.6.1.3	 �Management of CADASIL
While there is no specific treatment available for CADASIL, aggressive control of 
conventional cardiovascular risk factors is essential. A study of 200 patients with 
CADASIL showed that those with poorly controlled hypertension, or those who had 
a history of smoking, had an increased risk of stroke [77]. We advise our patients not 
to smoke, to maintain optimal weight and to exercise regularly. We would recom-
mend avoiding the combined oral contraceptive pill, certainly from age 30 upwards. 
If cholesterol is elevated we often treat with statin therapy although there is no evi-
dence supporting this approach in CADASIL itself, as opposed to more generally in 
sporadic stroke prevention. We give aspirin or clopidogrel to patients who have 
suffered ischaemic stroke, and to carriers over the age of 40, but avoid dual anti-
platelet therapy and anticoagulants due to a generally increased risk of ICH with 
these treatments in SVD [83].

Migraines in CADASIL tend to be more complicated than those seen in the gen-
eral population. Patients with CADASIL are more likely to have atypical migraine 
auras such as dysphasia and confusion, and can have more prolonged auras [76, 77]. 
There have been few studies on the management of migraine specifically in 
CADASIL although drugs used for management of migraine in the general popula-
tion appear to be similarly effective in CADASIL [84–87]. Although triptans carry 
a theoretical risk of exacerbating ischaemia in patients with vasculopathy [88], ret-
rospective data from a group of 300 patients with CADASIL suggests that triptans 
are safe to use and helpful in treating migraines in CADASIL [76].

Depression is frequent in CADASIL, as it is in other forms of SVD. Contributing 
factors include the stress of a monogenic disease diagnosis, as well as of complications 
such as stroke. However, there is also a biological reason with white matter lesions 
thought to disrupt cortical-subcortical pathways involved in mood regulation. It is 
important to be aware of the diagnosis and treat it with cognitive therapy/counselling 
and anti-depressants as this can be associated with a markedly improved quality of life.

24.6.1.4	 �Clinical Case 1
A 54-year-old right-handed female presented with sudden onset of double vision 
and vomiting, and abnormal eye movements.

She had a history of migraine with aura from the age of 15, experiencing visual 
changes and numbness in her arm. She did not have any past medical history of 
depression, seizures, or encephalopathy. She was not hypertensive, and had only 
smoked briefly as a teenager.

She had an MRI scan which showed an acute infarct in the midbrain with 
high signal on diffusion-weighted imaging (Fig. 24.1, 1-4), as well as extensive 
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NOTCH3 p.R90C mutation

Fig. 24.1  (inset 1-1). Pedigree of clinical case 1. Although II.1, II.2 and III.1 had neurological 
symptoms, there was no clear history of stroke or dementia in the family. (1-2) MR T2-weighted 
imaging showing white matter intensities involving the anterior temporal poles (arrowed) and (1-3) 
external capsules. (1-4) Midbrain lesion shown on MR diffusion-weighted imaging, and (1-5) 
apparent diffusion coefficient imaging (arrowheads). (Copyright Hugh Markus)
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white matter changes with prominent involvement of the anterior temporal 
poles. (Fig. 24.1, 1-2, 1-3).

Her mother was alive at age 83, with a history of migraines and bipolar disease. 
Her father died at age 72, having had possible complex partial seizures. Her identi-
cal twin sister had a history of migraine with aura. Despite the absence of a clear 
family history of stroke or dementia, the classical involvement of the anterior tem-
poral poles and possible family history led to suspicion of CADASIL (Fig. 24.1). 
Genetic testing confirmed a p.Arg90Cys mutation on exon 3 of the NOTCH3 gene.

24.6.1.5	 �Clinical Case 2
A 58-year-old female teacher presented with a confusional episode typical of 
CADASIL encephalopathy. While teaching she experienced the beginning of what 
she thought was a migraine with visual disturbance. She was aware of a colleague 
saying something but could not remember what happened next. She was found to be 
conscious but poorly responsive to commands.

She was taken to hospital where she suffered four generalised seizures and was 
treated for encephalitis with acyclovir and antibiotics, as well as anti-epileptics. She 
continued to experience fluctuating confusion associated with visual hallucinations 
for the next eight days before regaining full consciousness. She had a past medical 
history of migraine with visual and sensory aura from the age of 28.

Although there were no known strokes in the family, she had a family history of 
dementia, with her father being diagnosed of ‘Alzheimer’s disease’ at age 55 and 
dying at age 63. Her father’s identical twin had no strokes or dementia but had not 
had an MRI scan prior to death also at age 55, and his sister had a diagnosis of 
‘probable dementia’ (Fig. 24.2).

MR imaging of her brain showed confluent T2 hyperintensities in the white mat-
ter involving the anterior temporal poles and external capsules. (Fig. 24.2, 2-2, 2-3) 
A lumbar puncture performed at the time of her first admission was normal and 
negative for oligoclonal bands. Genetic screening for NOTCH3 mutations revealed 
a p.Arg151Cys mutation in Exon 4.

This patient’s prolonged confusion episode is classical of a CADASIL ‘coma’ or 
encephalopathic episode. This is a feature of CADASIL that often follows a typical 
migraine aura, and can last up to 14 days before resolving completely [89].

24.7	 �Recently Described Monogenic Forms of SVD Stroke

24.7.1	 �CARASIL and HTRA1-Related Autosomal Dominant SVD

Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy (CARASIL) is caused by homozygous mutations in the 
HTRA1 gene [19]. CARASIL was initially described in a few families in consan-
guineous Japanese and Chinese populations [19, 90], and subsequently in a consan-
guineous European family, and a patient with compound heterozygous HTRA1 
mutations [91].
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Patients with CARASIL have been described as having a more rapid progression of 
the neurological features seen in CADASIL. A distinguishing feature of CARASIL is 
the presence of non-neurological features such as young-onset alopecia and degenera-
tive spinal disc disease. On imaging, these patients may have characteristic arc-shaped 
hyperintensities extending from the pons to the middle cerebellar peduncles [92]. 
CARASIL patients have not been found to have the classical imaging feature of ante-
rior temporal pole involvement seen in CADASIL [93].

LEGEND

Dementia
NOTCH3 p.R141C mutation

I

1 2

2 3

3 4

41

1

II

III

Fig. 24.2  (inset 2-1). Pedigree of clinical case 2 showing a family history of dementia (II.3) or 
suspected dementia (II.1) (2-2) MR T2-weighted imaging showing white matter intensities involv-
ing the anterior temporal poles and (2-3) external capsules (arrowed). (Copyright Hugh Markus)
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More recently, whole exome sequencing in 201 Caucasian patients with suspected 
familial SVD and no NOTCH3 mutations identified heterozygous missense HTRA1 
mutations in 10 cases, and segregation of the mutation with disease was also demon-
strated in one pedigree. These patients had a later age at onset of disease, and did not 
report any extra-neurological features seen in CARASIL [20]. A similar study in 113 
suspected familial SVD patients with no known genetic cause in Japan also identified 
four heterozygous missense HTRA1 mutations in six cases [21]. An example of a 
patient of HTRA1-associated autosomal dominant SVD is described in clinical case 3.

The HTRA1 gene encodes for high temperature requirement serine protease A1 
(HtrA1), a homotrimeric serine protease which switches off the TGFβ pathway. 
This role of this pathway in blood vessel formation and vasoreactivity, as well as 
vessel and organ fibrosis in disease has been well described [94]. The impact of 
disease-causing HTRA1 mutations are, however, poorly understood. While most 
mutations impair protease activity [20], others do not cause a loss-of-function but 
have been predicted to impact trimer formation and activation [21].

24.7.2	 �Clinical Case 3

A 45-year-old female presented with a one-year history of migrainous aura without 
headache. These were stereotyped episodes of left-sided sensory symptoms, charac-
terised by a sensation of flowing water down the left side of her body. She felt that 
her left hand was clumsy, although she was still able to mobilise with some clumsi-
ness. She denied any speech disturbance or associated headache. These symptoms 
would last a week, after which she recovered completely.

She had a past history of depression.
She underwent neuropsychological assessment and was found to have impaired 

attention, information processing skills and some executive function difficulties—
features commonly seen in small vessel disease-related cognitive impairment. An 
MRI of her brain showed widespread hyperintensities in the periventricular white 
matter and central pons. (Fig. 24.3, 3-2, 3-3).

She had a strong family history of strokes. Her father suffered recurrent strokes 
from 58, and was also found to have cognitive impairment. Her paternal aunt and 
uncle both died of strokes in their early 1960s. (Fig. 24.3, 3-1) A screen of exons 2, 
3, 4, 5, 6, 8, 11, 18, 19 and 22 of the NOTCH3 gene was performed and no cysteine-
changing mutations were found. Whole genome sequencing was performed, and a 
screen of the HTRA1 gene showed a heterozygous c.854C>T (p.P285L) mutation. 
This mutation had previously been identified in patients with both autosomal domi-
nant [21] and autosomal recessive (CARASIL) [95] forms of familial SVD. Decreased 
protease activity was also demonstrated in cellular assays of this mutation [21].
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Fig. 24.3  (inset 3-1) Pedigree of clinical case 3, showing a clear family history of early-onset 
strokes in II.1, II.2 and II.3. Insets 3-2 and 3-3 MR T2-weighted imaging showing confluent white 
matter hyperintensities not dissimilar to those seen in sporadic cerebral small vessel disease, or 
CADASIL. (Copyright Hugh Markus)
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24.8	 �Haemorrhagic Strokes

24.8.1	 �COL4A1/A2-Related SVD: Subcortical Haemorrhages, 
Infarcts and Aneurysms

Mutations in the COL4A1/2 genes have been recently recognised a cause of lacunar 
stroke as well as subcortical ICH; i.e. they can cause both ischaemic and haemor-
rhagic stroke even within the same family. The COL4A1/A2 genes encode Type IV 
collagen α1 or α2 chains, which are the most abundant type of collagen in humans. 
COL4A1/A2-related SVD encompasses a broad spectrum of symptoms ranging 
from porencephaly in infants to adult-onset subcortical ischaemic and haemorrhagic 
strokes. These were previously described as specific paediatric syndromes, but have 
now been recognised as being attributable to mutations in the same genes [96, 97].

Patients with COL4A1/A2-related SVD can develop subcortical ICH, ischaemic 
lacunar infarcts, seizures, cognitive impairment and dementia. They may also have 
systemic involvement in the form of renal agenesis, nephropathy, visual loss and 
muscle cramps [98].

Type IV collagen is an integral component of basement membranes. As the most 
abundant form of collagen in the extracellular matrix, it lends tensile strength, helps 
to maintain vascular tone and also contributes to endothelial cell function.

The majority of pathogenic mutations in COL4A1 or COL4A2 are missense 
mutations which substitute a highly conserved glycine residue in the Gly-X-Y 
repeat region which aid the formation of tropocollagen. The resulting altered three 
dimensional confirmation of collagen impairs its ability to form heterotrimers in the 
vascular basement membrane, contributing to vessel wall fragility [99]. There may 
be some element of genotype-phenotype correlation, as mutations in the CB3[IV] 
fragment of COL4A1 have been found to be associated with Hereditary Angiopathy 
with Nephropathy, Aneurysms and muscle Cramps (HANAC) syndrome [100].

Recently common variants in the COL4A2 have been found to be risk factors for 
sporadic SVD [101].

24.8.2	 �Clinical Case 4

A 14-year-old boy presented with a subcortical ICH He was tested for and diag-
nosed with a p.Gly755Arg mutation in exon 30 of the COL4A1 gene. Following this 
diagnosis, other family members were tested and his 46-year-old mother was found 
to have same mutation.

Despite the proband’s early onset of disease, his mother was relatively asymp-
tomatic and had not had any strokes. She had a history of migraines with aura (visual 
and/or sensory) from the age of 39. She had no history of depression.

On MR imaging of the brain, she was found to have marked white matter hyper-
intensities and lacunar infarcts, (Fig. 24.4, 4-2, 4-3) and an aneurysm of the left 
internal carotid artery in the region of the carotid ophthalmic artery. There was also 
evidence of microbleeds on gradient echo MRI. (Fig. 24.4, 4-4, 4-5).
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Fig. 24.4  (inset 4-1). Pedigree of Clinical Case 4 illustrating a wide variability of phenotypes 
among mutation carriers. While the proband had a paediatric onset of strokes, II.2 had MRI fea-
tures of SVD in the fourth decade of life, but no strokes, and II.3 was born without a kidney—a 
feature previously reported in COL4A1-associated SVD cases. (4-2, 4-3) T2-weighted FLAIR MR 
images of II.2 showing confluent white matter hyperintensities and silent lacunar infarcts. Insets 
4-4 and 4-5: Gradient-echo MR images of II.2 showing haemosiderin deposits and microbleeds. 
(Copyright Hugh Markus)
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Her mother died at the age of 73, having had ‘facial palsy’ at the age of 47, and 
an episode of self-resolving hemiparesis in her teenage years. Brain imaging showed 
that she had had a number of strokes and a diagnosis of multiple sclerosis was con-
sidered at one point. Her father was 74 and had only a history of cataracts. She had 
a brother who was born with only one kidney. (Fig. 24.4, 4-1).

24.9	 �Hereditary Cerebral Amyloid Angiopathy: Lobar or 
Cortical Haemorrhages

Cerebral amyloid angiopathy (CAA) refers to a small artery vasculopathy which 
involves the deposition of amyloid fibrils in the small and medium blood vessel 
walls, and also in the capillaries of the brain parenchyma and leptomeninges [32]. 
These depositions are altered proteins which have adopted a β-pleated sheet confor-
mation. CAA is most classically characterised by large lobar haemorrhages, but can 
also cause transient behavioural changes, seizures and cognitive impairment. CAA 
is definitively diagnosed by brain biopsy or post-mortem histopathological analysis, 
but the likelihood of CAA can also be determined based on the clinical syndrome 
and imaging, as described by the modified Boston criteria [102].

CAA most often occurs sporadically in the elderly population, with the deposi-
tion of amyloid beta (Aβ) protein in the walls of blood vessels, in association with 
parenchymal Aβ plaques in Alzheimer’s disease [103]. In addition to lobar haemor-
rhages, CAA patients often have a distinctive distribution of classical SVD features, 
such as white matter hyperintensities with a predominant posterior distribution, and 
cerebral microbleeds in the lobar regions as visualised on gradient-echo MR imag-
ing [104]. They may also have cortical superficial siderosis, which is a marker used 
for radiologically diagnosing CAA according to the modified Boston criteria [102].

CAA may also occur as a familial disease. Several large families worldwide have 
been identified as having a hereditary form of CAA, and affected individuals tend to 
have an earlier onset of symptoms than in sporadic CAA. The gene most commonly 
affected is the amyloid precursor protein (APP), which encodes the amyloid beta 
protein, and thus CAA arising due to APP mutations may also co-occur with famil-
ial Alzheimer’s disease.

24.10	 �Summary and Conclusions

Stroke represents a collection of different aetiologies which lead to a similar clinical 
syndrome. Most strokes are multifactorial, most commonly occurring in the elderly, 
although considerable evidence has shown these have a genetic predisposition and 
GWAS studies are unravelling the specific genetic risk factors.

Stroke less commonly presents as a monogenic disease, where a single gene muta-
tion results in a syndrome which includes early-onset stroke as a key clinical feature. 
The most common of these is CADASIL, a familial form of SVD which shares many 
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features with sporadic SVD.  In recent years, other causative genes have also been 
identified, such as COL4A1/A2 and HTRA1 which may have a higher prevalence 
than previously thought.
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