
Formalization of the Fundamental Group
in Untyped Set Theory Using Auto2

Bohua Zhan(B)

Massachusetts Institute of Technology, Cambridge, USA
bzhan@mit.edu

Abstract. We present a new framework for formalizing mathematics
in untyped set theory using auto2. Using this framework, we formalize
in Isabelle/FOL the entire chain of development from the axioms of set
theory to the definition of the fundamental group for an arbitrary topo-
logical space. The auto2 prover is used as the sole automation tool, and
enables succinct proof scripts throughout the project.

1 Introduction

Auto2, introduced by the author in [17], is a proof automation tool for the proof
assistant Isabelle. It is designed to be a powerful, extensible prover that can
consistently solve “routine” tasks encountered during a proof, thereby enabling
a style of formalization using succinct proof scripts written in a custom, purely
declarative language.

In this paper, we present an application of auto2 to formalization of math-
ematics in untyped set theory1. In particular, we discuss the formalization in
Isabelle/FOL of the entire chain of development from the axioms of set theory
to the definition of the fundamental group for an arbitrary topological space.
Along the way, we discuss several improvements to auto2 as well as strategies of
usage that allow us to work effectively with untyped set theory.

The contribution of this paper is two-fold. First, we demonstrate that the
auto2 system is capable of independently supporting proof developments on a
relatively large scale. In the previous paper, several case studies for auto2 were
given in Isabelle/HOL. Each case study is at most several hundred lines long,
and the use of auto2 is mixed with the use of other Isabelle tactics, as well as
proof scripts provided by Sledgehammer. In contrast, the example we present in
this paper is a unified development consisting of over 13,000 lines of theory files
and 3,500 lines of ML code (not including the core auto2 program). The auto2
prover is used exclusively starting from basic set theory.

Second, we demonstrate one way to manage the additional complexity in
proofs that arise when working with untyped set theory. For a number of rea-
sons, untyped set theory is considered to be difficult to work with. For example,
everything is represented as sets, including objects such as natural numbers that

1 Code available at https://github.com/bzhan/auto2.
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 514–530, 2017.
DOI: 10.1007/978-3-319-66107-0_32

https://github.com/bzhan/auto2

Formalization of the Fundamental Group in Untyped Set Theory 515

we usually do not think of as sets. Moreover, statements of theorems tend to
be longer in untyped set theory than in typed theories, since assumptions that
would otherwise be included in type constraints must now be stated explicitly.
In this paper, we show that with appropriate definitions of basic concepts and
setup for automation, all these complexities can be managed, without sacrificing
the inherent flexibility of the logic.

We now give an outline for the rest of the paper. In Sect. 2, we sketch our
choice of definitions of basic concepts in axiomatic set theory. In particular,
we describe how to use tuples to realize extensible records, and build up the
hierarchy of algebraic structures. In Sect. 3, we review the main ideas of the
auto2 system, and describe several additional features, as well as strategies of
usage, that allow us to manage the additional complexities of untyped set theory.

In Sect. 4, we give two examples of proof scripts using auto2, taken from the
proofs of the Schroeder-Bernstein theorem and a challenge problem in analysis
from Lasse Rempe-Gillen. In Sect. 5, we describe our main example, the defi-
nition of the fundamental group, in detail. Given a topological space X and a
base point x on X, the fundamental group π1(X,x) is defined on the quotient
of the set of loops in X based at x, under the equivalence relation given by path
homotopy. Multiplication on π1(X,x) comes from joining two loops end-to-end.
Formalizing this definition requires reasoning about algebraic and topological
structures, equivalence relations, as well as continuous functions on real num-
bers. We believe this is a sufficiently challenging task with which to test the
maturity of our framework, although it has been achieved before in the Mizar
system. HOL Light and Isabelle/HOL also formalized the essential ideas on path
homotopy. We review these and other related works in Sect. 6, and conclude in
Sect. 7.

2 Basic Constructions in Set Theory

We now discuss our choice of definitions of basic concepts, starting with the
choice of logic. Our development is based on the FOL (first-order logic) instan-
tiation of Isabelle. The initial parts are similar to those in Isabelle/ZF, and we
refer to [13,14] for detailed explanations.

The only Isabelle types available are i for sets, o for propositions (booleans),
and function types formed from them. We call objects with types other than i and
o meta-functions, to distinguish them from functions defined within set theory
(which have type i). It is possible to define higher-order meta-functions in FOL,
and supply them with arguments in the form of lambda expressions. Theorems
can be quantified over variables with functional type at the outermost level.
These can be thought of as theorem-schemas in a first-order theory. However,
one can only quantify over variables of type i inside the statement of a theorem,
and the only equalities defined within FOL are those between types i (notation
· = ·) and o (notation · ←→ ·). In practice, these restrictions mean that any
functions that we wish to consider as first-class objects must be defined as set-
theoretic functions.

516 B. Zhan

2.1 Axioms of Set Theory

For uniformity of presentation, we start our development from FOL rather than
theories in Isabelle/ZF. However, the list of axioms we use is mostly the same.
The only main addition is the axiom of global choice, which we use as an easier-
to-apply version of the axiom of choice. Note that as in Isabelle/ZF, several of
the axioms introduce new sets or meta-functions, and declare properties satisfied
by them. The exact list of axioms is as follows:

extension: "∀ z. z ∈ x ←→ z ∈ y =⇒ x = y"
empty_set: "x /∈ ∅"
collect: "x ∈ Collect(A,P) ←→ (x ∈ A ∧ P(x))"
upair: "x ∈ Upair(y,z) ←→ (x = y ∨ x = z)"
union: "x ∈ ⋃ C ←→ (∃ A∈C. x∈A)"
power: "x ∈ Pow(S) ←→ x ⊆ S"
replacement: "∀ x∈A. ∀ y z. P(x,y) ∧ P(x,z) −→ y = z =⇒

b ∈ Replace(A,P) ←→ (∃ x∈A. P(x,b))"
foundation: "x �= ∅ =⇒ ∃ y∈x. y ∩ x = ∅"
infinity: "∅ ∈ Inf ∧ (∀ y∈Inf. succ(y) ∈ Inf)"
choice: "∃ x. x∈S =⇒ Choice(S) ∈ S"

Next, we define several basic constructions in set theory. They are summa-
rized in the following table. See [13] for more explanations.

Notation Definition
THE x. P(x)

⋃
(Replace({∅}, λx y. P(y)))

{b(x). x∈A} Replace(A, λx y. y = b(x))
SOME x∈A. P(x) Choice({x∈A. P(x)})

〈a,b〉 {{a}, {a,b}}
fst(p) THE a. ∃ b. p = 〈a,b〉
snd(p) THE b. ∃ a. p = 〈a,b〉

〈a1, . . . , an〉 〈a1,〈a2,〈· · · , an〉〉〉
if P then a else b THE z. P ∧ z=a ∨ ¬P ∧ z=b

⋃
a∈I. X

⋃
{X(a). a∈I}

A × B
⋃

x∈A. ⋃ y∈B. {〈x,y〉}

2.2 Extensible Records as Tuples

We now consider the problem of representing records. In our framework, records
are used to represent functions, algebraic and topological structures, as well as
morphisms between structures. It is often advantageous for records of different
types to share certain fields. For example, groups and rings should share the
multiplication operator, rings and ordered rings should share both addition and
multiplication operators, and so on.

It is well-known that when formalizing mathematics using set theory, records
can be represented as tuples. To achieve sharing of fields, the key idea is to assign
each shared field a fixed position in the tuple.

We begin with the example of functions. A function is a record consisting of
a source set (domain), a target set (codomain), and the graph of the function. In

Formalization of the Fundamental Group in Untyped Set Theory 517

particular, we consider two functions with the same graph but different target
sets to be different functions (another structure called family is used to represent
functions without specified target set). The three fields are assigned to the first
three positions in the tuple:

definition "source(F) = fst(F)"
definition "target(F) = fst(snd(F))"
definition "graph(F) = fst(snd(snd(F)))"

A function with source S, target T, and graph G is represented by the tuple
〈S,T,G,∅〉 (we append an ∅ at the end so the definition of graph works prop-
erly). For G to actually represent a function, it must satisfy the conditions for a
functional graph:

definition func_graphs :: "i ⇒ i ⇒ i" where
"func_graphs(X,Y) = {G∈Pow(X×Y). (∀a∈X. ∃!y. 〈a,y〉∈G)}"

The set of all functions from S to T (denoted S → T) is then given by:

definition function_space :: "i ⇒ i ⇒ i" (infixr "→" 60) where
"A → B = {〈A,B,G,∅〉. G∈func_graphs(A,B)}"

Functions can be created using the following constructor. Note this is a
higher-order meta-function. The argument b can be supplied by a lambda
expression.

definition Fun :: "[i, i, i ⇒ i] ⇒ i" where
"Fun(A,B,b) = 〈A, B, {p∈A×B. snd(p) = b(fst(p))}, ∅〉"
Evaluation of a function f at x (denoted f �x) is then defined as:

definition feval :: "i ⇒ i ⇒ i" (infixl " �" 90) where
"f � x = (THE y. 〈x,y〉∈graph(f))"

2.3 Algebraic Structures

The second major use of records is to represent algebraic structures. In our
framework, we will define structures such as groups, abelian groups, rings, and
ordered rings. The carrier set of a structure is assigned to the first position. The
order relation, additive data, and multiplicative data are assigned to the third,
fourth, and fifth position, respectively. This is expressed as follows:

definition "carrier(S) = fst(S)"
definition "order_graph(S) = fst(snd(snd(S)))"
definition "zero(S) = fst(fst(snd(snd(snd(S)))))"
definition "plus_fun(S) = snd(fst(snd(snd(snd(S)))))"
definition "one(S) = fst(fst(snd(snd(snd(snd(S))))))"
definition "times_fun(S) = snd(fst(snd(snd(snd(snd(S))))))"

Here order_graph is a subset of S×S , and plus_fun, times_fun are elements
of S×S→S . Hence, the operators ≤,+, and ∗ can be defined as follows:

518 B. Zhan

definition "le(R,x,y) ←→ 〈x,y〉∈order_graph(R)"
definition "plus(R,x,y) = plus_fun(R) �〈x,y〉"
definition "times(R,x,y) = times_fun(R) �〈x,y〉"

These are abbreviated to x ≤R y, x +R y , and x ∗R y , respectively (in both
theory files and throughout this paper, we use ∗ to denote multiplication in
groups and rings, and × to denote product on sets and other structures). We
also abbreviate x ∈ carrier(S) to x ∈. S .

The constructor for group-like structures is as follows:

definition Group :: "[i, i, i ⇒ i ⇒ i] ⇒ i" where
"Group(S,u,f) = 〈S,∅,∅,∅,〈u,λp∈S×S. f(fst(p),snd(p))∈S〉,∅〉"
The following predicate asserts that a structure contains at least the fields

of a group-like structure, with the right membership properties (1G abbreviates
one(G)):

definition is_group_raw :: "i ⇒ o" where
"is_group_raw(G) ←→

1G ∈. G ∧ times_fun(G) ∈ carrier(G) × carrier(G) → carrier(G)

To check whether such a structure is in fact a monoid/group, we use the
following predicates:

definition is_monoid :: "i ⇒ o" where
"is_monoid(G) ←→ is_group_raw(G) ∧

(∀ x∈.G. ∀ y∈.G. ∀ z∈.G. (x ∗G y) ∗G z = x ∗G (y ∗G z)) ∧
(∀ x∈.G. 1G ∗G x = x ∧ x ∗G 1G = x)"

definition units :: "i ⇒ i" where
"units(G) = {x ∈. G. (∃ y∈.G. y ∗G x = 1G ∧ x ∗G y = 1G)}"

definition is_group :: "i ⇒ o" where
"is_group(G) ←→ is_monoid(G) ∧ carrier(G) = units(G)"

Note these definitions are meaningful on any structure that has multiplicative
data. Likewise, we can define a predicate is_abgroup for abelian groups, that is
meaningful for any structure that has additive data. These can be combined
with distributive properties to define the predicate for a ring:

definition is_ring :: "i ⇒ o" where
"is_ring(R) ←→ (is_ring_raw(R) ∧ is_abgroup(R) ∧ is_monoid(R) ∧

is_left_distrib(R) ∧ is_right_distrib(R) ∧ 0R �= 1R)"

Likewise, we can define the predicate for ordered rings, and constructors for
such structures. Structures are used to represent the hierarchy of numbers: we let
nat int, ra, and real denote the set of natural numbers, integers, etc., while
N,Z,Q, and R denote the corresponding structures. Hence, addition on natural
numbers is denoted by x +N y , addition on real numbers by x +R y , etc. We
can also state and prove theorems such as is_ord_field(R) , which contains all
proof obligations for showing that the real numbers form an ordered field.

Formalization of the Fundamental Group in Untyped Set Theory 519

2.4 Morphism Between Structures

Finally, we discuss morphisms between structures. Morphisms can be considered
as an extension of functions, with additional fields specifying structures on the
source and target sets. The two additional fields are assigned to the fourth and
fifth positions in the tuple:

definition "source_str(F) = fst(snd(snd(snd(F))))"
definition "target_str(F) = fst(snd(snd(snd(snd(F)))))"

The constructor for a morphism is as follows (here S and T are the source and
target structures, while the source and target sets are automatically derived):

definition Mor :: "[i, i, i ⇒ i] ⇒ i" where
"Mor(S,T,b) = (let A = carrier(S) in let B = carrier(T) in

〈A, B, {p∈A×B. snd(p) = b(fst(p))}, S, T, ∅〉)"

The space of morphisms (denoted S ⇀ T) is given by:

definition mor_space :: "i ⇒ i ⇒ i" (infix "⇀" 60) where
"mor_space(S,T) = (let A = carrier(S) in let B = carrier(T) in

{〈A,B,G,S,T,∅〉. G∈func_graphs(A,B)})"

Note the notation f �x for evaluation still works for morphisms. Several other
concepts defined in terms of evaluation, such as image and inverse image, con-
tinue to be valid for morphisms as well, as are lemmas about these concepts.
However, operations that construct new morphisms, such as inverse and compo-
sition, must be redefined. We will use g ◦ f to denote the composition of two
functions, and g ◦m f to denote the composition of two morphisms.

Having morphisms store the source and target structures means we can define
properties such as homomorphism on groups as a predicate:

definition is_group_hom :: "i ⇒ o" where
"is_group_hom(f) ←→ (let S = source_str(f) in let T = target_str(f) in

is_morphism(f) ∧ is_group(S) ∧ is_group(T) ∧
(∀ x∈.S. ∀ y∈.S. f �(x ∗S y) = f �x ∗T f �y))"

The following lemma then states that the composition of two homomorphisms
is a homomorphism (this is proved automatically using auto2):

lemma group_hom_compose:
"is_group_hom(f) =⇒ is_group_hom(g) =⇒
target_str(f) = source_str(g) =⇒ is_group_hom(g ◦m f)"

3 Auto2 in Untyped Set Theory

In this section, we describe several additional features of auto2, as well as general
strategies of using it to manage the complexities of untyped set theory.

520 B. Zhan

We begin with an overview of the auto2 system (see [17] for details). Auto2
is a theorem prover packaged as a tactic in Isabelle. It works with a collection
of rules of reasoning called proof steps. New proof steps can be added at any
time within an Isabelle theory. They can also be deleted at any time, although
it is rarely necessary to add and delete the same proof step more than once. In
general, when building an Isabelle theory, the user is responsible for specifying,
by adding proof steps, how to use the results proved in that theory. In return,
the user no longer needs to worry about invoking these results by name in future
developments.

The overall algorithm of auto2 is as follows. First, the statement to be proved
is converted into contradiction form, so the task is always to derive a contra-
diction from a list of assumptions. During the proof, auto2 maintains a list of
items, the two most common types of which are propositions (that are derived
from the assumptions) and terms (that have appeared so far in the proof). Each
item resides in a box, which can be thought of as a subcase of the statement to
be proved (the box corresponding to the original statement is called the home
box). A proof step is a function that takes as input one or two items, and outputs
either new items, new cases, or the action of shadowing one of the input items,
or resolving a box by proving a contradiction in that box.

The main loop of the algorithm repeatly applies the current collection of
proof steps and adds any new items and cases in a best-first-search manner,
until some proof step derives a contradiction in the home box. In addition to the
list of items, auto2 also maintains several tables. The most important of which is
the rewrite table, which keeps track of the list of currently known equalities (not
containing arbitrary variables), and maintains the congruence closure of these
equalities. There are two other tables: the property table and the well-form table,
which we will discuss later in this section.

There are two broad categories of proof steps, which we call the standard and
special proof steps in this paper. A standard proof step applies an existing theo-
rem in a specific direction. It matches the input items to one or two patterns in
the statement of the theorem, and applies the theorem to derive a new proposi-
tion. Here the matching is up to rewriting (E-matching) using the rewrite table.
A special proof step can have more complex behavior, and is usually written as
an ML function. The vast majority of proof steps in our example are standard,
although special proof steps also play an important role.

The auto2 prover is not intended to be complete. For example, it may inten-
tionally apply a theorem in only one of several possible directions, in order to
narrow the search space. For more difficult theorems, auto2 provides a custom
language of proof scripts, allowing the user to specify intermediate steps of the
proof. Generally, when proving a result using auto2, the user will first try to
prove it without any scripts, and in case of failure, successively add intermediate
steps, perhaps by referring to an informal proof of the result. In case of failure,
auto2 will indicate the first intermediate step that it is unable to prove, as well
as what it is able to derive in the course of proving that step. We will show
examples of proof scripts in Sect. 4.

Formalization of the Fundamental Group in Untyped Set Theory 521

The current version of auto2 can be set up to work with different logics in
Isabelle. It contains a core program, for reasoning about predicate logic and
equality, that is parametrized over the list of constants and theorems for the
target logic. In particular, auto2 is now set up and tested to work with both
HOL and FOL in Isabelle.

3.1 Encapsulation of Definitions

One commonly cited problem with untyped set theory is that every object is a
set, including those that are not usually considered as sets. Common examples
of the latter include ordered pairs, natural numbers, functions, etc. In informal
treatments of mathematics, these definitions are only used to establish some
basic properties of the objects concerned. Once these properties are proved, the
definitions are never used again.

In formal developments, when automation is used to produce large parts of
the proof, one potential problem is that the automation may needlessly expand
the original definitions of objects, rather than focusing on their basic properties.
This increases the search space and obscures the essential ideas of the proof.
Using the ability to delete proof steps in auto2, this problem can be avoided
entirely. For any definition that we wish to drop in the end, we use the following
three-step procedure:

1. The definition is stated and added to auto2 as rewrite rules.
2. Basic properties of the object being defined are stated and proved. These

properties are added to auto2 as appropriate proof steps.
3. The rewrite rules for the original definition are deleted.

For example, after the definitions concerning the representation of functions
as tuples in Sect. 2.2, we prove the following lemmas, and add them as appro-
priate proof steps (as indicated by the attributes in brackets):

lemma lambda_is_function [backward]:
"∀ x∈A. f(x)∈B =⇒ Fun(A,B,f) ∈ A → B"

lemma beta [rewrite]:
"F = Fun(A,B,f) =⇒ x ∈ source(F) =⇒ is_function(F) =⇒ F �x = f(x)"

lemma feval_in_range [typing]:
"is_function(f) =⇒ x ∈ source(f) =⇒ f �x ∈ target(f)"

After proving these (and a few more) lemmas, the rewriting rules for the
definitions of Fun, function_space, feval , etc., are removed. Note that all lemmas
above are independent of the representation of functions as tuples. Hence, this
representation is effectively hidden from the point of view of the prover. Some
of the original definitions may be temporarily re-added in rare instances (for
example when defining the concept of morphisms).

522 B. Zhan

3.2 Property and Well-Form Tables

In this section, we discuss two additional tables maintained by auto2 during a
proof. The property table is already present in the version introduced in [17],
but not discussed in that paper. The well-form table is new.

The main motivation for both tables is that for many theorems, especially
those stated in an untyped logic, some of its assumptions can be considered as
“side conditions”. To give a basic example, consider the following lemma:

lemma unit_l_cancel:
"is_monoid(G) =⇒ y ∈. G =⇒ z ∈. G =⇒ x ∗G y = x ∗G z =⇒
x ∈ units(G) =⇒ y = z"

In this lemma, the last two assumptions are the “main” assumptions, while the
first three are side conditions asserting that the variables in the main assumptions
are well-behaved in some sense. In Isabelle/HOL, these side conditions may be
folded into type or type-class constraints.

We consider two kinds of side conditions. The first kind, like the first assump-
tion above, checks that one of the variables in the main assumptions satisfy a cer-
tain predicate. In Isabelle/HOL, these may correspond to type-class constraints.
In auto2, we call these property assumptions. More precisely, given any predicate
(in FOL this means constant of type i ⇒ o), we can register it as a property.
The property table records the list of properties satisfied by each term that has
appeared so far in the proof. Properties propagate through equalities: if P(a) is
in the property table, and a = b is known from the rewrite table, then P(b) is
automatically added to the property table. The user can also add theorems of
certain forms as further propagation rules for the property table (we omit the
details here).

The second kind of side conditions assert that certain terms occuring in the
main assumptions are well-formed. We use the terminology of well-formedness
to capture a familiar feature of mathematical language: that an expression may
make implicit assumptions about its subterms. These conditions can be in the
form of type constraints. For example, the expression a +R b implicitly assumes
that a and b are elements in the carrier set of R. However, this concept is much
more general. Some examples of well-formedness conditions are summarized in
the following table:

Term Conditions
⋂

A A �= ∅
f � x x ∈ source(f)
g ◦ f target(f) = source(g)
g ◦m f target_str(f) = source_str(g)
a +R b a ∈. R, b ∈. R
inv(R,a) a ∈ units(R)
a /R b a ∈. R, b ∈ units(R)

subgroup(G,H) is_subgroup_set(G,H)
quotient_group(G,H) is_normal_subgroup_set(G,H)

Formalization of the Fundamental Group in Untyped Set Theory 523

In general, given any meta-function f, any propositional expression in terms
of the arguments of f can be registered as a well-formedness condition of f. In
particular, well-formedness conditions are not necessarily properties. For exam-
ple, the condition a ∈. R for a +R b involves two variables and hence is not
a property. The well-form table records, for every term encountered so far in
the proof, the list of its well-formedness conditions that are satisfied. Whenever
a new fact is added, auto2 checks against every known term to see whether it
verifies a well-formedness condition of that term.

The property and well-form tables are used in similar ways in standard proof
steps. After the proof step matches one or two patterns in the “main” assumptions
or conclusion of the theorem that it applies, it checks for the side conditions in
the two tables, and proceed to apply the theorem only if all side conditions are
found. Of course, this requires proof steps to be re-applied if new properties or
well-formedness conditions of a term becomes known.

3.3 Well-Formed Conversions

Algebraic simplification is an important part of any automatic prover. For every
kind of algebraic structure, e.g. monoids, groups, abelian groups, and rings, there
is a concept of normal form of an expression, and two terms can be equated if
they have the same normal form. In untyped set theory, such computation of
normal forms is complicated by the fact that the relevant rewriting rules have
extra assumptions. For example, the rule for associativity of addition is:

is_abgroup(R) =⇒ x ∈. R =⇒ y ∈. R =⇒ z ∈. R =⇒
x +R (y +R z) = (x +R y) +R z

The first assumption can be verified at the beginning of the normalization
process. The remaining assumptions, however, are more cumbersome. In par-
ticular, they may require membership status of terms that arise only during
the normalization. For example, when normalizing the term a+R (b+R (c+R d)) ,
we may first rewrite it to a+R ((b+R c)+R d) . The next step, however, requires
b+R c ∈. R , where b+R c does not occur initially and may not have occured so
far in the proof. In typed theories, this poses no problem, since b+c will be
automatically given the same type as b and c when the term is created.

In untyped set theory, such membership information must be kept track of
and derived when necessary. The concept of well-formed terms provides a natural
framework for doing this. Before performing algebraic normalization on a term,
we first check for all relevant well-formedness conditions. If all conditions are
present, we produce a data structure (of type wfterm in Isabelle/ML) contain-
ing the certified term as well as theorems asserting well-formedness conditions.
A theorem is called a well-formed rewrite rule if its main conclusion is an equality,
each of its assumptions is a well-formedness condition for terms on the left side
of the equality, and it has additional conclusions that verify all well-formedness
conditions for terms on the right side of the equality that are not already present
in the assumptions. For example, the associativity rule stated above is not yet a

524 B. Zhan

well-formed rewrite rule: there is no justification for x+R y ∈. R , which is a well-
formedness condition for the term (x+R y)+R z on the right side of the equality.
The full well-formed rewrite rule is:

is_abgroup(R) =⇒ x ∈. R =⇒ y ∈. R =⇒ z ∈. R =⇒
x +R (y +R z) = (x +R y) +R z ∧ x +R y ∈. R

Given a well-formed rewrite rule, we can produce a well-formed conversion
that acts on wfterm objects, in a way similar to how equalities produce regular
conversions that act on cterm objects in Isabelle/ML. Like regular conversions,
well-formed conversions can be composed in various ways, and full normalization
procedures can be written using the language of well-formed conversions. These
normalization procedures in turn form the basis of several special proof steps.
We give two examples:

– Given two terms s and t that are non-atomic with respect to operations in
R , where R is a monoid (group/abelian group/ring), normalize s and t using
the rules for R . If the normalizations are equal, output s = t.

– Given two propositions a ≤R b and ¬(c ≤R d) , where R is an ordered ring.
Compare the normalizations of b −R a and d −R c . If they are equal, output
a contradiction.

These proof steps, when combined with proof scripts provided by the user,
allow algebraic manipulations to be performed rapidly. They replace the handling
of associative-commutative functions for HOL discussed in [17].

3.4 Discussion

We conclude this section with a discussion of our overall approach to untyped
set theory, and compare it with other approaches. One feature of our approach
is that we do not seek to re-institute a concept of types in our framework, but
simply replace type constraints with set membership conditions (or predicates,
for constraints that cannot be described by a set). The aim is to fully preserve
the flexibility of set-membership as compared to types. Empirically, most of the
extra assumptions that arise in the statement of theorems can be taken care of
by classifying them as properties or well-formedness conditions. Our approach
can be contrasted with that taken by Mizar, which defines a concept of soft types
[16] within the core of the system.

Every framework for formalizing modern mathematics need a way to deal
with structures. In Mizar, structures are defined in the core of the system as
partial functions on selectors [9,15]. In both Isabelle/HOL and IsarMathLib’s
treatement of abstract algebra, structures are realized with extensive use of
locales. For Coq, one notable approach is the use of Canonical Structures [10]
in the formalization of the Odd Order Theorem. We chose a relatively simple
scheme of realizing structures as tuples, which is sufficient for the present pur-
poses. Representing them as partial functions on selectors, as in Mizar, is more
complicated but may be beneficial in the long run.

Formalization of the Fundamental Group in Untyped Set Theory 525

Finally, we emphasize that we do not make any modification to Isabelle/FOL
in our development. The concept of well-formed terms, for example, is meaningful
only to the automation. The whole of auto2’s design, including the ability for
users to add new proof steps, follows the LCF architecture. To have confidence
in the proofs, one only need to trust the existing Isabelle system, the ten axioms
stated in Sect. 2.1, and the definitions involved in the statement of the results.

4 Examples of Proof Scripts

Using the techniques in the above two sections, we formalized enough mathemat-
ics in Isabelle/FOL to be able to define the fundamental group. In addition to
work directly used for that purpose, we also formalized several interesting results
on the side. These include the well-ordering theorem and Zorn’s lemma, the first
isomorphism theorem for groups, and the intermediate value theorem. Two more
examples will be presented in the remainder of this section, to demonstrate the
level of succinctness of proof scripts that can be achieved.

Throughout our work, we referred to various sources including both mathe-
matical texts and other formalizations. We list these sources here:

– Axioms of set theory and basic operations on sets, construction of natural
numbers using least fixed points: from Isabelle/ZF [13,14].

– Equivalence and order relations, arbitrary products on sets, well-ordering
theorem and Zorn’s lemma: from Bourbaki’s Theory of Sets [2].

– Group theory and the construction of real numbers using Cauchy sequences:
from my previous case studies [17], which in turn is based on corresponding
theories in the Isabelle/HOL library.

– Point-set topology and construction of the fundamental group: from Topology
by Munkres [12].

4.1 Schroeder-Bernstein Theorem

For our first example, we present the proof of the Schroeder-Bernstein theo-
rem. See [14] for a presentation of the same proof in Isabelle/ZF. The bijec-
tion is constructed by gluing together two functions. Auto2 is able to prove
automatically that under certain conditions, the gluing is a bijection (lemma
glue_function2_bij). For the Schroeder-Bernstein theorem, a proof script (pro-
vided by the user) is needed. This is given immediately after the statement of
the theorem.

definition glue_function2 :: "i ⇒ i ⇒ i" where
"glue_function2(f,g) = Fun(source(f)∪source(g), target(f)∪target(g),

λx. if x ∈ source(f) then f �x else g �x)”

lemma glue_function2_bij [backward]:
"f ∈ A ∼= B =⇒ g ∈ C ∼= D =⇒ A ∩ C = ∅ =⇒ B ∩ D = ∅ =⇒
glue_function2(f,g) ∈ (A ∪ C) ∼= (B ∪ D)"

526 B. Zhan

theorem schroeder_bernstein:
"injective(f) =⇒ injective(g) =⇒ f ∈ X → Y =⇒ g ∈ Y → X =⇒
equipotent(X,Y)"

LET "X_A = lfp(X, λW. X – g ��(Y – f ��W))" THEN
LET "X_B = X – X_A, Y_A = f ��X_A, Y_B = Y – Y_A" THEN
HAVE "X – g ��Y_B = X_A" THEN
HAVE "g ��Y_B = X_B" THEN
LET "f’ = func_restrict_image(func_restrict(f,X_A))" THEN
LET "g’ = func_restrict_image(func_restrict(g,Y_B))" THEN
HAVE "glue_function2(f’, inverse(g’)) ∈ (X_A ∪ X_B) ∼= (Y_A ∪ Y_B)"

4.2 Rempe-Gillen’s Challenge

For our second example, we present our solution to a challenge problem proposed
by Lasse Rempe-Gillen in a mailing list discussion2. See [1] for proofs of the same
result in several other systems. The statement to be proved is:

Lemma 1. Let f be a continuous real-valued function on the real line, such
that f(x) > x for all x. Let x0 be a real number, and define the sequence xn

recursively by xn+1 := f(xn). Then xn diverges to infinity.

Our solution is as follows. We make use of several previously proved results:
any bounded increasing sequence in R converges (line 2), a continuous function
f maps a sequence converging to x to a sequence converging to f �x (line 4), and
finally that the limit of a sequence in R is unique.

lemma rempe_gillen_challenge:
"real_fun(f) =⇒ continuous(f) =⇒ incr_arg_fun(f) =⇒ x0 ∈. R =⇒
S = Seq(R, λn. nfold(f,n,x0)) =⇒ ¬upper_bounded(S)"

HAVE "seq_incr(S)" WITH HAVE "∀ n∈.N. S �(n +R 1) ≥R S �n" THEN
CHOOSE "x, converges_to(S,x)" THEN
LET "T = Seq(R, λn. f �(S �n))" THEN
HAVE "converges_to(T,f �x)" THEN
HAVE "converges_to(T,x)" WITH (

HAVE "∀ r>R0R. ∃ k∈.N. ∀ n≥Nk. |T �n −Rx |R <R r" WITH (
CHOOSE "k ∈. N, ∀ n≥Nk. |S �n −R x |R <R r" THEN
HAVE "∀ n≥Nk. |T �n −R x |R <R r" WITH HAVE "T �n = S �(n +N 1)"))

5 Construction of the Fundamental Group

In this section, we describe our construction of the fundamental group. We will
focus on stating the definitions and main results without proof, to demonstrate
the expressiveness of untyped set theory under our framework. The entire for-
malization including proofs is 864 lines long.

Let I be the interval [0,1] , equipped with the subspace topology from the
topology on R. Given two continuous maps f and g from S to T, a homotopy
between f and g is a continuous map from the product topology on S × I to
T that restricts to f and g at S × {0} and S × {1} , respectively:
2 http://www.cs.nyu.edu/pipermail/fom/2014-October/018243.html.

http://www.cs.nyu.edu/pipermail/fom/2014-October/018243.html

Formalization of the Fundamental Group in Untyped Set Theory 527

definition is_homotopy :: "[i, i, i] ⇒ o" where
"is_homotopy(f,g,F) ←→

(let S = source_str(f) in let T = target_str(f) in
continuous(f) ∧ continuous(g) ∧
S = source_str(g) ∧ T = target_str(g) ∧ F ∈ S ×T I ⇀T T ∧
(∀ x∈.S. F �〈x,0R〉 = f �x ∧ F �〈x,1R〉 = g �x))"

A path is a continuous function from the interval. A homotopy between two
paths is a path homotopy if it remains constant on {0} × I and {1} × I :

definition is_path :: "i ⇒ o" where
"is_path(f) ←→ (f ∈ I ⇀T target_str(f))"

definition is_path_homotopy :: "[i, i, i] ⇒ o" where
"is_path_homotopy(f,g,F) ←→

(is_path(f) ∧ is_path(g) ∧ is_homotopy(f,g,F) ∧
(∀ t∈.I. F �〈0R,t〉 = f �(0R) ∧ F �〈1R,t〉 = f �(1R)))"

Two paths are path-homotopic if there exists a path homotopy between them.
This is an equivalence relation on paths.

definition path_homotopic :: "i ⇒ i ⇒ o" where
"path_homotopic(f,g) ←→ (∃ F. is_path_homotopy(f,g,F))"

The path product is defined by gluing two morphisms. It is continuous by
the pasting lemma:

definition I1 = subspace(R, closed_interval(R,0R,1R /R 2R))
definition I2 = subspace(R, closed_interval(R,1R /R 2R,1R))
definition interval_lower = Mor(I1,I,λt. 2R ∗R t)
definition interval_upper = Mor(I2,I,λt. 2R ∗R t −R 1R)

definition path_product :: "i ⇒ i ⇒ i" (infixl "�" 70) where
"f � g = glue_morphism(I, f ◦m interval_lower, g ◦m interval_upper)"

The loop space is a set of loops on X. Path homotopy gives an equivalence
relation on the loop space, and we define loop_classes to be the quotient set:

definition loop_space :: "i ⇒ i ⇒ i" where
"loop_space(X,x) = {f ∈ I ⇀T X. f �(0R) = x ∧ f �(1R) = x}"

definition loop_space_rel :: "i ⇒ i ⇒ i" where
"loop_space_rel(X,x) = Equiv(loop_space(X,x), λf g.

path_homotopic(f,g))"

definition loop_classes :: "i ⇒ i ⇒ i" where
"loop_classes(X,x) = loop_space(X,x) // loop_space_rel(X,x)"

Finally, the fundamental group is defined as:

528 B. Zhan

definition fundamental_group :: "i ⇒ i ⇒ i" ("π1") where
"π1(X,x) = (let R = loop_space_rel(X,x) in

Group(loop_classes(X,x), equiv_class(R,const_mor(I,X,x)),
λf g. equiv_class(R,rep(R,f) � rep(R,g))))"

To show that the fundamental group is actually a group, we need to show
that the path product respects the equivalence relation given by path homotopy,
and is associative up to equivalence (along with properties about inverse and
identity). The end result is:

lemma fundamental_group_is_group:
"is_top_space(X) =⇒ x ∈. X =⇒ is_group(π1(X,x))"

An important property of the fundamental group is that a continuous func-
tion between topological spaces induces a homomorphism between their funda-
mental groups. This is defined as follows:

definition induced_mor :: "i ⇒ i ⇒ i" where
"induced_mor(k,x) =

(let X = source_str(k) in let Y = target_str(k) in
let R = loop_space_rel(X,x) in let S = loop_space_rel(Y,k �x) in
Mor(π1(X,x), π1(Y,k �x), λf. equiv_class(S, k ◦m rep(R,f))))"

The induced map is a homomorphism satisfying functorial properties:

lemma induced_mor_is_homomorphism:
"continuous(k) =⇒ X = source_str(k) =⇒ Y = target_str(k) =⇒
x ∈ source(k) =⇒ induced_mor(k,x) ∈ π1(X,x) ⇀G π1(Y,k �x)"

lemma induced_mor_id:
"is_top_space(X) =⇒ x ∈. X =⇒
induced_mor(id_mor(X),x) = id_mor(π1(X,x))"

lemma induced_mor_comp:
"continuous(k) =⇒ continuous(h) =⇒
target_str(k) = source_str(h) =⇒ x ∈ source(k) =⇒
induced_mor(h ◦m k, x) = induced_mor(h, k �x) ◦m induced_mor(k, x)"

6 Related Work

In Isabelle, the main library for formalized mathematics using FOL is
Isabelle/ZF. The basics of Isabelle/ZF is described in [13,14]. We also point
to [13] for a review of older work on set theory from automated deduction and
artificial intelligence communities. Outside the official library, IsarMathLib [5]
is a more recent project based on Isabelle/ZF. It formalized more results in
abstract algebra and point-set topology, and also constructed the real numbers.
The initial parts of our development closedly parallels that in Isabelle/ZF, but
we go further in several directions including constructing the number system.
The primary difference between our work and IsarMathLib is that we use auto2

Formalization of the Fundamental Group in Untyped Set Theory 529

for proofs, and develop our own system for handling structures, so that we do
not make use of Isabelle tactics, Isar, or locales.

Outside Isabelle, the major formalization projects using set theory include
Metamath [11] and Mizar [4], both of which have extensive mathematical
libraries. There are some recent efforts to reproduce the Mizar environment in
HOL-type systems [6,8]. While there are some similarities between our frame-
work and Mizar’s, we do not aim for an exact reproduction. In particular, we
maintain the typical style of stating definitions and theorems in Isabelle. More
comparisons between our approach and Mizar are discussed in Sect. 3.4.

Mizar formalized not just the definition of the fundamental group [7], but
several of its properties, including the computation of the fundamental group of
the circle. There is also a formalization of path homotopy in HOL Light which
is then ported to Isabelle/HOL. This is used for the proof of the Brouwer fixed-
point theorem and the Cauchy integral theorem, although the fundamental group
itself does not appear to be constructed.

In homotopy type theory, one can work with fundamental groups (and higher-
homotopy groups) using synthetic definitions. This has led to formalizations of
results about homotopy groups that are well beyond what can be achieved today
using standard definitions (see [3] for a more recent example). We emphasize that
our definition of the fundamental group, as with Mizar’s, follows the standard
one in set theory.

7 Conclusion

We applied the auto2 prover to the formalization of mathematics using untyped
set theory. Starting from the axioms of set theory, we formalized the definition
of the fundamental group, as well as many other results in set theory, group
theory, point-set topology, and real analysis. The entire development contains
over 13,000 lines of theory files and 3,500 lines of ML code, taking the author
about 5 months to complete. On a laptop with two 2.0GHz cores, it can be
compiled in about 24min. Through this work, we demonstrated the ability of
auto2 to scale to relatively large projects. We also hope this result can bring
renewed interest to formalizing mathematics in untyped set theory in Isabelle.

Acknowledgements. The author would like to thank the anonymous referees for
their comments. This research is completed while the author is supported by NSF
Award No. 1400713.

References

1. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reason. 9(1), 101–148 (2016)

2. Bourbaki, N.: Theory of Sets. Springer, Heidelberg (2000)
3. Brunerie, G.: On the homotopy groups of spheres in homotopy type theory. Ph.D.

thesis. https://arxiv.org/abs/1606.05916

https://arxiv.org/abs/1606.05916

530 B. Zhan

4. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. Spec. Issue: User Tutor. I 3(2), 153–245 (2010)

5. IsarMathLib. http://www.nongnu.org/isarmathlib/
6. Kaliszyk, C., Pak, K., Urban, J.: Towards a Mizar environment for Isabelle: foun-

dations and language. In: Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (CPP 2016), New York, pp. 58–65 (2016)

7. Kornilowicz, A., Shidama, Y., Grabowski, A.: The fundamental group. Formalized
Math. 12(3), 261–268 (2004)

8. Kuncar, O.: Reconstruction of the Mizar type system in the HOL light system. In:
Pavlu, J., Safrankova, J. (eds.) WDS Proceedings of Contributed Papers: Part I -
Mathematics and Computer Sciences, pp. 7–12. Matfyzpress (2010)

9. Lee, G., Rudnici, P.: Alternative aggregates in Mizar. In: Kauers, M., Kerber, M.,
Miner, R., Windsteiger, W. (eds.) Calculemus/MKM 2007. LNCS (LNAI), vol.
4573, pp. 327–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73086-6_26

10. Mahboubi, A., Tassi, E.: Canonical structures for the working Coq user. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 19–34.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_5

11. Megill, N.D.: Metamath: a computer language for pure mathematics. http://us.
metamath.org/downloads/metamath.pdf

12. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)
13. Paulson, L.C.: Set theory for verification: I. From foundations to functions. J.

Automated Reason. 11(3), 353–389 (1993)
14. Paulson, L.C.: Set theory for verification: II. Induction and recursion. J. Automated

Reason. 15(2), 167–215 (1995)
15. Trybulec, A.: Some features of the Mizar language. In: ESPRIT Workshop (1993)
16. Wiedijk, F.: Mizar’s soft type system. In: Schneider, K., Brandt, J. (eds.) TPHOLs

2007. LNCS, vol. 4732, pp. 383–399. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74591-4_28

17. Zhan, B.: AUTO2, a saturation-based heuristic prover for higher-order logic. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 441–456. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4_27

http://www.nongnu.org/isarmathlib/
http://dx.doi.org/10.1007/978-3-540-73086-6_26
http://dx.doi.org/10.1007/978-3-642-39634-2_5
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf
http://dx.doi.org/10.1007/978-3-540-74591-4_28
http://dx.doi.org/10.1007/978-3-540-74591-4_28
http://dx.doi.org/10.1007/978-3-319-43144-4_27

	Formalization of the Fundamental Group in Untyped Set Theory Using Auto2
	1 Introduction
	2 Basic Constructions in Set Theory
	2.1 Axioms of Set Theory
	2.2 Extensible Records as Tuples
	2.3 Algebraic Structures
	2.4 Morphism Between Structures

	3 Auto2 in Untyped Set Theory
	3.1 Encapsulation of Definitions
	3.2 Property and Well-Form Tables
	3.3 Well-Formed Conversions
	3.4 Discussion

	4 Examples of Proof Scripts
	4.1 Schroeder-Bernstein Theorem
	4.2 Rempe-Gillen's Challenge

	5 Construction of the Fundamental Group
	6 Related Work
	7 Conclusion
	References

