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Abstract. We present a (relatively) short mechanized proof that Coq
types any recursive function which is provably total in Coq. The well-
founded (and terminating) induction scheme, which is the foundation of
Coq recursion, is maximal. We implement an unbounded minimization
scheme for decidable predicates. It can also be used to reify a whole cat-
egory of undecidable predicates. This development is purely constructive
and requires no axiom. Hence it can be integrated into any project that
might assume additional axioms.

1 Introduction

This paper contains a mechanization in Coq of the result that any total recursive
function can be represented by a Coq term. A short slogan could be Coq types
any total recursive function, but that would be a bit misleading because the
term total might also refer to the meta-theoretical level (see Sect. 7).

The theory of partial recursive (or μ-recursive) functions describes the class
of recursive functions by an inductive scheme: it is the least set of partial func-
tions N

k−⇁N containing constant functions, zero, successor and closed under
composition, recursion and unbounded minimization [9]. Forbidding minimiza-
tion (implemented by the μ operator) leads to the sub-class of primitive recursive
functions which are total functions N

k−→N. Coq has all the recursive schemes
except unbounded minimization so it is relatively straightforward to show that
any primitive recursive function f : Nk−→N can be represented by a Coq term
tf : N k → N where N is a short notation for the Coq type nat of Peano natural
numbers. To represent all partial recursive functions Nk−⇁N by Coq terms, we
would first need to deal with partiality and change the type into N k→option N
(for instance) because (axiom-free) Coq only contains total functions; so here the
term None : option N represents the undefined value. Unfortunately, this does
not work because Coq (axiom-free) meta-level normalization would transform
such an encoding into a solution of the Halting problem.

Then, from a theoretical standpoint one question remains: which are the
functions that Coq can represent in the type N k → N . In this paper, we give a
mechanized proof that formally answers of half of the question:

The type N k → N contains every recursive function of arity k which can
be proved total in Coq.
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Such a result was hinted in [2] but we believe that mechanizing the suggested
approach implies a lot of work (see Sect. 2). This property of totality of Coq
can compared to the characterization of System F definable functions as those
which are provably total in AF2 [5]. Besides the fact that AF2 and Coq are
different logical frameworks, the main difference here is that we mechanize the
result inside of Coq itself whereas the AF2 characterization is proved at the
meta-theoretical level.

Before the detailed description of our contributions, we want to insist on
different meanings of the notion of function that should not be confused:

– The μ-recursive schemes are the constructors of an inductive type of algo-
rithms which are the “source code” and can be interpreted as partial function
N

k−⇁N in Set theory or as predicates N k → N → Prop in Coq;
– The Set-theoretic notion of partial function is a graph/relation between ele-

ments and their images. μ-recursive functions should not be understood inde-
pendently of the algorithm that implements theses relations: it is impossible
to recover an algorithm from the data of the graph alone;

– Then Coq has function types A→B which is a related but nevertheless entirely
different notion of function and we rather call them predicates here.

Now let us give a more detailed description of the result we have obtained.
We define a dependent family of types Ak representing recursive algorithms of
arity k : N . An algorithm f : Ak defines a (partial) recursive function denoted
�f� and which is represented in Coq as a predicate �f� : N k → N → Prop:

The proposition �f� v x reads as: the computation of the algorithm f from
the input k-tuple v terminates and results in x.

The implementation of the relation �f� is a simple exercise. It is more difficult
to show that whenever the relation (v, x) �→ �f� v x between the input v and the
result x is total, then there is a term tf : N k → N (effectively computable from
f) such that the result of the computation of f on the input v is (tf v) for any
v : N k. This is precisely what we show in the following formal statement:

∀(k : N )(f : Ak),
(∀v,∃x, �f� v x

) → {
tf : N k → N ∣

∣ ∀v, �f� v (tf v)
}

(CiT)

The statement means that if �f� represents a total function (∀v,∃x, �f� v x),
then it can be effectively transformed into a Coq term tf : N k → N such that
(tf v) is the value computed by the recursive function �f� on the input v.

As we already pointed out, “Coq is Total” (CiT) is only one half of the
characterization of the predicates that are definable in the type N k → N . The
other half of the characterization, i.e. any predicate of type N k→N corresponds
to a μ-recursive function, while meta-theoretically provable for axiom-free Coq,
cannot not be proved within Coq itself; see Sect. 7.

We will call reification the process of transforming a non-informative predi-
cate like P : ∀v,∃x, �f� v x into an informative predicate Q : ∀v, {x | �f� v x}.1

1 From which the term tf := v �→ proj1 sig(Q v) of (CiT) is trivially derived.
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In its general form, reification is a map from inhabitedX : Prop to X : Type; it
transforms a non-informative proof of existence of a witness into an effective wit-
ness. In a proof system like HOL for instance, reification is built-in by Hilbert’s
epsilon operator. On the contrary, because of its constructive design, Coq does
not allow unrestricted reification. If needed in its full generality, it requires the
addition of specific axioms as discussed in Sects. 3.1 and 8.

One of the originalities of this work is that the proof we develop is purely
constructive (axiom free) and avoids the detour through small-step operational
semantics, that is the use of a model of computation on an encoded representa-
tion of recursive functions. For instance, programs are represented by numbers
(Gödel coding) in the proof of the S-m-n theorem [13]. It is also possible to use
other models of computations such as register machines (or Turing machines) or
even λ-calculus as in [8] or in our own dependently typed implementation [7] of
Krivine’s reference textbook [6]; see Sect. 7.

In Sect. 2, we present an overview of the consequences of the use of small-
step operational semantics and how we avoid it. In Sect. 3 we describe how to
implement unbounded minimization of inhabited decidable predicates in Coq.
Section 4 presents the inductive types we need for our development, most notably
the dependent type Ak of recursive algorithms of arity k and Sect. 5 defines
three different but equivalent semantics for Ak, in particular a decidable cost
aware big-step semantics which is the critical ingredient to avoid small-step
semantics. Section 6 concludes with the formal statement of (CiT) and its proof.
In Sect. 7, we discuss related work and/or alternative approaches. In Sect. 8,
we describe how to reify undecidable predicates (under some assumptions of
course), in particular, provability predicates, normalizability predicates and even
arbitrary recursively enumerable predicates. Section 9 lists some details of the
implementation and how it is split into different libraries.

To shorten notations, we recall that we denote by N the inductively defined
Coq type nat of natural numbers. The μ-recursive scheme of composition
requires the use of k-tuples which we implement as vectors. Vectors are typeset
in a bold font such as in v : N k and they correspond to a polymorphic depen-
dent type described in Sect. 4. Π-types are denoted with a ∀ symbol. We denote
Σ-types with their usual Coq notations, which are (∃x, P x) : Prop for non-
informative existential quantification, {x | P x} : Set for informative existential
quantification, or even {x : X &P x} : Type when P : X → Type carries informa-
tion as well. These Σ-types are inductively defined in modules Logic and Specif
of the standard library. The interpretation of the different existential quantifiers
of Coq is discussed in Sect. 3.1.

2 Avoiding Small-Step Operational Semantics

In this section we give a high level view of our strategy to obtain a mechanized
proof of the typability of total recursive functions in Coq. Let us first discuss
the approach which is outlined in [2] (Sect. 4.4, p. 685).
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1. By Kleene’s normal form theorem [9], every recursive function can be obtained
by the minimization of a primitive (hence total) recursive function;

2. Every primitive recursive function can directly be typed in Coq. The primi-
tive recursion scheme is precisely the recursor nat rec corresponding to the
inductive type nat (denoted N in this paper);

3. The outermost minimization could be implemented by a “specific minimiza-
tion function” defined by mutual structural recursion.

Items 1 and 2 are results which should not come as a surprise to anyone knowl-
edgeable of μ-recursion theory and basic Coq programming. These observations
were already made in [2]. Their approach to minimization (i.e. Item 3) seems2

however distinct from what we propose as Item 3′ here:

3′. Minimizations of inhabited and decidable predicates of type N → Prop can
be implemented in (axiom free) Coq.

Item 3′ could be considered as a bit surprising. Indeed, inductive type theory
and hence Coq prohibits unbounded minimization. Hence we did not suspect
that Coq could have such a property. When it first came to our attention, we
realized that it provided a direct path towards a proof that Coq “had” any total
recursive function. Critical for our approach, Item 3′ is described in Sect. 3.

Despite its apparent straightforwardness, this three steps approach (with
either Item 3 or Item 3′) is difficult to implement because of Item 1. Indeed, let us
describe more precisely what it implies. Kleene’s normal form theorem involves
the T primitive recursive predicate which decides whether a given (encoding of
a) computation corresponds to a given (encoding of a) program code or not.
For this, you need a small-step operational semantics (a model of computation),
say for instance Minsky (or counter) machines, and a compiler from recursive
functions code to Minsky machines. You need of course a correctness proof for
that compiler. Since the T predicate operates on natural numbers N , all these
data-structures should be encoded in N which complicates proofs further. Then
the T predicate should answer the following question: does this given encoding
of a sequence of states correspond to the execution of that given encoding of
a Minsky machine. Most importantly, the T predicate should be proved primi-
tive recursive and correct w.r.t. this specification. Programming using primitive
recursive schemes is really cumbersome and virtually nobody does this.

Compared to the above three steps approach, the trick which is used in this
paper is to merge Items 1 and 2. Instead of showing that recursive functions
are minimizations of primitive recursive functions, it is sufficient to show that
recursive functions are minimizations of Coq definable predicates. From this point
of view, it is possible to completely avoid the encoding/decoding phases from/to
N but more importantly, we do not need a small-step semantics any more; we
can replace it with a decidable big-step semantics: this avoids the implementation
of a model of computation and thus, the proof of correctness of a compiler.
2 It is difficult to use a word more accurate than “seems” because the relevant discus-

sion in [2] is just a short outline of an approach, not a proof or an actual implemen-
tation.
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Our mechanization proceeds in the following steps. We define an inductive
predicate denoted [f ;v]−[α〉〉x and called cost aware big-step semantics. It reads
as: the recursive algorithm f terminates on input v and outputs x at cost α. This
relation is functional/deterministic in both α and x. We show the equivalence
�f�v x ⇐⇒ ∃α, [f ;v]−[α〉〉x. We establish the central result of decidability of
cost aware big-step semantics when α is fixed: for any f , v and α, either x
together with a proof of [f ;v]−[α〉〉x can be computed (i.e. {x | [f ;v]−[α〉〉x}),
or (an informative “or”) a proof that no such x exists can be computed (i.e.
¬∃x, [f ;v]−[α〉〉x). These results are combined in the following way: from a
proof of definedness (∃x, �f�v x), we deduce ∃x∃α, [f ;v]−[α〉〉x. Equivalently we
get ∃α, inhabited {x | [f ;v]−[α〉〉x}. By unbounded minimization of inhabited
decidable predicates (see Sect. 3), we reify the proposition ∃α, inhabited {x |
[f ;v]−[α〉〉x} into the predicate {α & {x | [f ;v]−[α〉〉x}}. Then we extract α, x
and a proof that [f ;v]−[α〉〉x, hence �f� v x, showing that the computed value
x is the output value of f on input v.

3 Reifying ∃P into ΣP for P :N → {Prop, Type}
In this section, we describe a way to reify non-informative inhabited decidable
predicates of type P : N →Prop. So we show how to constructively build a value
n : N and a proof term t : P n. We use an unbounded (but still well-founded) min-
imization algorithm whose termination is guaranteed by a proof of inhabitation
∃n, P n. The mechanization occurs in the file nat minimizer.v which is nearly
self-contained. In a way, this shows that Coq has unbounded minimization of
inhabited and decidable predicates, whereas the theory of recursive functions
has unbounded minimization of partial recursive functions. In Sect. 3.3, we also
reify informative decidable predicates P : N → Type that are inhabited, i.e. ver-
ifying ∃n, inhabited (P n).

3.1 Existential Quantification in Coq

Let us recall the usual interpretation of the existential quantifiers that are avail-
able in Coq. In Type Theory, they are called Σ-types over a index type X:

– for P : X → Prop, the expression ∃x : X,P x (or exP ) is of type Prop and a
term of that type is only a proof that there exists x : X which satisfies P x.
The witness x need not be effective. It can be obtained by non-constructive
means. For instance, the proof may use axioms in Prop such as the excluded
middle (typically). We say that the predicate ∃x : X,P x is non-informative;

– for P : X → Prop, the expression {x : X | P x} (or sigP ) is of type Set/Type
and a proof term for it is an (effective) term x together with a proof of P x (x
must be described by purely constructive methods). We say that the predicate
{x : X | P x} is informative;

– for P : X →Type, the expression {x : X &P x} (or sigTP ) is of type Type. It
carries both an effective witness x such that P x is inhabited and an effective
inhabitant of P x. The predicate {x : X &P x} is fully informative.
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When the computational content of terms is extracted, the sub-terms of type
Prop are pruned and their code does not impact the extracted terms: this prop-
erty is called proof irrelevance. It implies that adding axioms in Prop will only
allow to show more (termination) properties but it will not change the behaviour
of terms. However, proof irrelevance is not preserved by adding axioms in Type.

The Constructive Indefinite Description axiom as stated in Coq standard
library module ChoiceFacts can reify any non-informative predicate ∃P :

∀(X : Type)(P : X → Prop), (∃x : X,P x) → {x : X | P x} (CID)

It provides an (axiomatic) transformation of ∃P (i.e. ∃x, P x in Coq) into ΣP
(i.e. {x | P x} in Coq). The type ∀X : Type, inhabited X → X provides an
equivalent definition of (CID) where inhabited : Type → Prop is the “hidding
predicate” of the Logic module; see file cid.v and Sect. 3.3.

Assuming the axiom (CID) creates an “artificial” bridge between two sep-
arate worlds.3 Some would even claim that such an axiom is at odds with
the design philosophy of Coq: the default bridges that exist between the non-
informative sort Prop and the informative sorts Set/Type were carefully intro-
duced by Coq designers to be “constructively” safe; in particular, to ensure
that extraction is proof irrelevant. Assuming (CID) would not be inconsis-
tent with extraction but it would leave a hole in the extracted terms that
make use of it. Moreover, assuming (CID), one can easily derive a proof of
∀AB : Prop, A∨ B → {A} + {B} and thus, a statement like ∀x, {P x} + {¬P x}
cannot be interpreted as “P is decidable” anymore. This is well explained in [3]
together with the relations between (CID) and Hilbert’s epsilon operator. You
will also find a summary of the incompatibilities between (CID) and other fea-
tures or axioms in Coq.

3.2 The Case of Predicates of Type N → Prop

We describe a way to implement an instance of (CID) constructively but of
course, that proof requires additional assumptions: we require that P is a decid-
able predicate that ranges over N instead of an arbitrary type X. We do not
extract the missing information x but instead, we generate it using a well-
founded algorithm that first transforms the non-informative inhabitation pred-
icate ∃x : N , P x into a termination certificate for a well-founded minimization
algorithm that sequentially enumerates natural numbers in ascending order.

Recall the definition of the non-informative accessibility predicate from the
Wf module of the Coq standard library:

Inductive Acc {X : Type} (R : X → X → Prop) (x : X) :=
| Acc intro : (∀y : X,R y x → Acc R y) → Acc R x

We write Acc R instead of Acc X R because the parameter X is declared implicit.
3 Of course this statement is of philosophical nature. We do not claim that assuming

additional axiom is evil, but carelessly adding axioms is a recipe for inconsistencies.
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We assume a predicate P : N → Prop and we suppose that P is decidable (in
Coq) with a decision term HP . We define a binary relation R : N → N → Prop
and we show the following results:

Variables (P : N → Prop)
(
HP : ∀n : N , {P n} + {¬P n})

Let R (n m : N ) := (n = 1 + m)∧ ¬P m

Let P Acc R : ∀n : N , P n → Acc R n
Let Acc R dec : ∀n : N , Acc R (1 + n) → Acc R n
Let Acc R zero : ∀n : N , Acc R n → Acc R 0
Let Acc P : ∀n : N , Acc R n → {x : N | P x}

which all have straightforward proofs except for Acc P. That last one is done by
induction on the accessibility predicate Acc R n. The proof term Acc P uses the
decision term HP to choose between stopping and moving on to the successor:
it stops when HP n returns “true,” i.e. left T with T : P n; it loops on 1 + n
when HP n returns “false,” i.e. right F with F : ¬P n. We analyse the term:

Let Acc inv (n : N ) (Hn : Acc R n) : ∀m,R m n → Acc R m :=
match Hn with Acc intro H ′

n �→H ′
n end

Fixpoint Acc P (n : N ) (Hn : Acc R n) : {x : N | P x} :=
match HP n with

| left T �→ exist n T
| right F �→ Acc P (1 + n)

(
Acc inv Hn (conj eq refl F )

)

end.

The recursion cannot be based on the argument n because it would not be
structurally well-founded in that case and the Coq type-checker would reject it.
The recursion is based on the Acc R n predicate. The definition is split in two
parts to make it more readable; Acc inv is from the module Wf of the standard
library. The term Acc P is a typical example of fixpoint by induction over an
ad hoc predicate (see [2] or the Coq’Art [1] p. 428). The Fix F fixpoint operator
of the Wf module of the Coq standard library is defined this way as well. The
cover-induction principle as defined in [4] uses a similar idea.

As a consequence, we can reify decidable and inhabited predicates over N :

Theorem nat reify (P : N → Prop) :(∀n : N , {P n} + {¬P n}) → (∃n : N , P n
) → {

n : N ∣
∣ P n

}

The proof is now simple: using P Acc R and Acc R zero, from ∃n, P n we deduce
Acc R 0, and thus {x : N | P x} using Acc P.

Considering this somewhat unexpected result, maybe some further clarifica-
tions about the proof of nat reify are mandatory at this stage. The witness n
which is contained in the hypothesis ∃n, P n of sort Prop is not informative and
thus cannot be extracted to build a term of sort Type. As this remarks seems
contradictory with what we show, we insist on the fact that we do not extract
the witness n contained in the hypothesis by inspection of its term. Instead,
we compute the minimum value m which satisfies P m by testing all cases in
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sequence: P 0 ?, P 1 ?, ... until we reach the first value m which satisfies P m
(the decidability of P is required for that). To ensure that such a computation
is well-founded, we use the non-informative witness n contained in ∃n, P n as
a bound on the search space; but a bound in sort Prop: we encode n into the
accessibility predicate An : Acc R 0 which is then used as a certificate for the
well-foundedness of the computation of Acc P 0 An.

3.3 Reification of Predicates of Type N → Type

We now generalize the previous result nat reify to predicates in N → Type
instead of just N → Prop. But we first need to introduce two predicates:

Inductive inhabited (P : Type) : Prop := inhabits : P → inhabited P

Definition decidable t (P : Type) : Type := P + P → False

where inhabited is from the standard library (module Logic) and decidable t
is an informative version of the decidable predicate of the Decidable module
of the standard library. Their intuitive meaning is the following:

– inhabited P hides the information of the witness of P . Whereas a term of
type P is a witness that P is inhabited, a term of type inhabited P hides
the witness by the use of the non-informative constructor inhabits;

– decidable t P means that either a term of type P is given or a proof that P
is void is given. The predicate is informative and contains a Boolean choice
(represented by the +) which tells whether P is inhabited or not. But it may
also contain an effective witness that P is inhabited.

We can now lift the theorem nat reify that operates on N → Prop to infor-
mative predicates of type N → Type in the following way:

Theorem nat reify t (P : N → Type) :(∀n, decidable t (P n)
) → (∃n, inhabited (P n)

) → {
n : N &P n

}

The proof is only a slight variation from the N →Prop case. Notice that the result
type {n : N &P n

}
contains the reified value n for which P n is inhabited, but it

also contains the effective witness that P n is not void. On the contrary, in the
hypothesis ∃n, inhabited (P n) neither n nor the witness that P n is inhabited
have to be provided by effective means.

4 Dependent Types for Recursive Algorithms

So far, we have only encountered datatypes which originate in the Coq stan-
dard library, and that are imported by default when loading Coq, most notably
N which is a least solution of the fixpoint equation N ≡ {0} + {S n | n : N}.
We will need the type of vectors VectorDef.t and the type of positions Fin.t
that also belong to the standard library module Vector. However, the stan-
dard library only contains a small fraction of the results that we use for these
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datatypes. Moreover, the implementation of some functions of the Vector mod-
ule is incompatible with how we intend to use them. Typically, the definition of
VectorDef.nth which selects a component of a vector by its position does not
type-check in our succinct definition of the upcoming recalg rect recursor: the
definition of VectorDef.nth makes Coq unable to certify the structural decrease
of recursive sub-calls which is mandatory for Fixpoint definitions. As a con-
sequence, we use our own vectors and positions libraries. This represents little
overhead compared to extending the standard libraries in the Vector module.

We define three types that depend on a parameter k : N representing an arity.
First the type of positions

pos 0 ≡ ∅ pos(1 + k) ≡ {fst} + {nxt p | p : pos k}
which is isomorphic to pos k ≡ {i : N | i < k} but avoids carrying the proof
term i < k. The library pos.v contains the inductive definitions of the type pos k
and the tools to manipulate positions smoothly: an inversion tactic pos inv,
maps pos2nat : pos k → N and nat2pos : ∀i, i < k → pos k, etc. To shorten the
notations in this paper, p denotes pos2nat p, the natural number below k which
corresponds to p.

Positions of pos k mainly serve as coordinates for accessing the components
of vectors of arity k

X0 ≡ {vec nil} X1+k ≡ X × Xk

where Xk is a compact notation for vec X k. The type is polymorphic in X
and dependent on k : N . We will write terms of type Xk in a bold font like with
v or w to remind the reader that these are vectors. Given a position p : pos k
and a vector v : Xk, we write vp : X for the p-th component of v, a short-cut for
vec pos v p. vec pos is obtained from the “correspondence” Xk ≡ pos k → X.
Notice however that the type Xk enjoys an extensional equality (i.e. v = w
whenever vp = wp holds for any p : pos k) whereas the function type pos k → X
does not. The file vec.v contains the inductive definition of the type of vectors
together with the tools to smoothly manipulate vectors and their components
where coordinates can either be positions of type pos k or natural number i : N
satisfying i < k. The constructors are vec nil : X0 and vec cons : X → Xk →
X1+k and vec cons x v is denoted x#v here. The converse operations are
vec head : X1+k → X and vec tail :X1+k → Xk.

With positions and (polymorphic) vectors, we can now introduce the induc-
tive type of recursive algorithms of arity k denoted by Ak which is defined by the
rules of Fig. 1 and implemented in the file recalg.v. The notation Ak is a short-
cut for recalg k. Notice that Ak is a dependent type (of sort Set). It is the
least type which contains constants of arity 0, zero and succ of arity 1, projec-
tions at every arity k for each possible coordinate, and which is closed under the
composition, primitive recursion and unbounded minimization schemes. Ak itself
does not carry the semantics of those recursive algorithms: it corresponds to the
source code. We will give a meaning/semantics to those recursive algorithms in
Sect. 5 so that they correspond to the usual notion of recursive functions.
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n : N
cstn : A0 zero : A1 succ : A1

p : pos k

projp : Ak

f : Ak g : Ak
i

comp f g : Ai

f : Ak g : A2+k

rec f g : A1+k

f : A1+k

min f : Ak

Fig. 1. The type Ak of recursive algorithms of arity k.

To be able to compute with or prove properties of terms of type Ak, we
implement a general fully dependent recursion scheme recalg rect described
in the file recalg.v. This principle is not automatically generated by Coq because
of the nested induction between the types Ak and vec k which occurs in
the constructor comp f g. The definition of recalg rect looks simple but it only
works well because vec pos was carefully designed to allow the Coq type-checker
to detect nested recursive calls as structurally simpler: using the “equivalent”
VectorDef.nth instead of vec pos prohibits successful type-checking. We also
show the injectivity of the constructors of the type Ak. Some require the use of
the Eqdep dec module of the standard library because of the dependently typed
context. For example, the statement of the injectivity of the constructor comp f g
involves type castings eq rect (or heterogenous equality):

Fact ra comp inj k k′ i (f : Ak) (f ′ : Ak′) (g : Ak
i ) (g′ : Ak′

i ) :

comp f g = comp f ′ g′ → ∃e : k = k′, ∧
{
eq rect f e = f ′

eq rect g e = g′

5 A Decidable Semantics for Recursive Algorithms

In this section, we define three equivalent semantics for recursive algorithms.
First the standard relational semantics defined by recursion on f : Ak, then an
equivalent big-step semantics defined by a set of inductive rules. Those two
semantics cannot be decided. Then we define a refinement of big-step semantics
by annotating it with a cost. By constraining the cost, we obtain a decidable
semantics for recursive algorithms Ak.

5.1 Relational and Big-Step Semantics

We define relational semantics �f : Ak� : N k →N →Prop of recursive algorithms
by structural recursion on f : Ak so as to satisfy the fixpoint equations of Fig. 2
where �f� is a notation for ra rel f ; the fixpoint equations ra rel fix ∗ are
proved in the file ra rel.v. Without preparation, such a definition could be quite
technical because of the nested recursion between the type Ak and the type
vec Ai k of the parameter g in the constructor comp f g. Using our general
recursion principle recalg rect, the code is straightforward; but see the remark



Typing Total Recursive Functions in Coq 381

Fig. 2. Relational semantics ra rel for recursive algorithms of Ak.

about recalg rect in Sect. 4. We explicitly mention the type p : posx in the
definition of �min f� because it is the only type which does not depend on the
type of f : the dependent parameter x is the result of the computation.

The big-step semantics for recursive algorithms in Ak is an inductive rela-
tion of type ra bs : ∀k,Ak → N k → N → Prop and we denote [f ;v]� x for
(ra bs k f v x); the parameter k is implicit in the notation. [f ;v]� x intu-
itively means that the computation of f starting from input v yields the result
x. We define big-step semantics in file ra bs.v by the inductive rules of Fig. 3.
We point out that the rule corresponding to [min f ;v]� x is of unbounded arity
but still finitary because posx is a finite type. These rules are similar to those
used to define the semantics of Partial Recursive Functions in [13] except that
thanks to our dependent typing, we do not need to specify well-formedness condi-
tions. In ra sem eq.v, we show that big-step semantics is equivalent to relational
semantics:

Theorem ra bs correct k (f : Ak) (v : N k) x : �f� v x ⇐⇒ [f ;v]� x

However big-step semantics has the advantage of being defined by a set of induc-
tive rules instead of being defined by recursion on f : Ak.

Relational and big-step semantics are not recursive/computable relations:
this is an instance of the Halting problem. As such, these relations cannot be
implemented by a Coq evaluation function ra rel eval : Ak → N k → option N
satisfying ra rel eval f v = Some x ⇐⇒ �f� v x for any f , v and x. Indeed,
when it is axiom free, Coq has normalisation which implies that the functions
that can be defined in it are total recursive at the meta-theoretical level. Never-
theless big-step semantics as presented in Fig. 3 is an intermediate step towards
a decidable semantics for Ak.

5.2 Cost Aware Big-Step Semantics

The cost aware big-step semantics for recursive algorithms in Ak is defined as
an inductive predicate of type ra ca : ∀k,Ak →N k →N →N →Prop. We denote
(ra ca k f v α x) by [f ;v]−[α〉〉x where the argument k is implicit in the
notation. [f ;v]−[α〉〉x intuitively means that the computation of f on input v
yields the result x and costs α. We define the predicate ra ca in file ra ca.v by the
rules of Fig. 4. It is interesting to compare these rules with those of conventional
big-step semantics ra bs of Fig. 3. The very simple but nonetheless powerful idea
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[cstn; v] � n [zero; v] � 0 [succ; v] � 1 + vfst [projp; v] � vp

[f ; v] � x

[rec f g; 0#v] � x

[rec f g; n#v] � y [g; n#y#v] � x

[rec f g; 1 + n#v] � x

[f ; w] � x ∀p, [gp; v] � wp

[comp f g; v] � x

[f ; x#v] � 0 ∀p : posx, [f ; p#v] � 1 + wp

[min f ; v] � x

Fig. 3. Big-step semantics ra bs for recursive algorithms of Ak.

[cstn; v] −[1〉〉 n [zero; v] −[1〉〉 0 [succ; v] −[1〉〉 1 + vfst [projp; v] −[1〉〉 vp

[f ; v] −[α〉〉 x

[rec f g; 0#v] −[1 + α〉〉 x

[rec f g; n#v] −[α〉〉 y [g; n#y#v] −[β〉〉 x

[rec f g; 1 + n#v] −[1 + α + β〉〉 x

[f ; w] −[α〉〉 x ∀p, [gp; v] −[βp〉〉 wp

[comp f g; v] −[1 + α + Σβ〉〉 x

[f ; x#v] −[α〉〉 0 ∀p : posx, [f ; p#v] −[βp〉〉 1 + wp

[min f ; v] −[1 + α + Σβ〉〉 x

Fig. 4. Cost aware big-step semantic ra ca for recursive algorithms of Ak.

to get decidability is to decorate big-step semantics with a cost and to constrain
computations by a cost that must be exactly matched. This is how we realize
the principle of our proof that Coq contains total recursive functions: we avoid
a small-step semantics (Kleene’s T predicate) and replace it with a big-step
semantics for recursive algorithm that is nevertheless decidable.

We show the equivalence of relational and cost aware big-step semantics

Theorem ra ca correct (k : N ) (f : Ak) (v : N k) (x : N ) :
�f� v x ⇐⇒ ∃α : N , [f ;v]−[α〉〉x

in file ra sem eq.v. The proof is circular in style: ra ca implies ra bs implies
ra rel implies ∃ra ca and all these three implications are proved by induc-
tion on the obvious inductive parameter. Do not feel puzzled by a statement of
equivalence between a decidable and an undecidable semantics, because it is the
quantifier ∃α in ra ca correct which brings undecidability.

Inversion lemmas named ra ca ∗ inv are essential tools to prove the high-
level properties of Sect. 5.3. They allow case analysis on the last step of an
inductive term depending on the shape of the conclusion. Here is the inversion
lemma of one rule:

Lemma ra ca rec S inv (k : N ) (f : Ak) (g : A2+k) (v : N k) (n γ x : N ) :

[rec f g; 1 + n#v]−[γ〉〉x → ∃y α β, ∧
⎧
⎨

⎩

γ = 1 + α + β
[rec f g;n#v]−[α〉〉 y
[g;n#y#v]−[β〉〉x
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Such results could be difficult to establish if improperly prepared. In our opin-
ion, the easiest way to prove it is to implement a global inversion lemma that
encompasses the whole set of rules of Fig. 4. Then a lemma like ra ca rec S inv
can be proved by applying the global inversion lemma and discriminate between
incompatible constructors of type Ak (in most cases) or use injectivity of thoses
constructors (in one case). The global inversion lemma is quite complicated to
write because of dependent types. It would fill nearly half of this page (see lemma
ra ca inv in file ra ca.v). However it is actually trivial to prove, a “reversed”
situation which is rare enough to be noticed.

5.3 Properties of Cost Aware Big-Step Semantics

The annotation of cost in the rules of Fig. 4 satisfies the following paradigm:
the cost of a compound computation is greater than the sum of the costs of its
sub-computations. Hence, we can derive that no computation is free of charge:

Theorem ra ca cost k (f : Ak) (v : N k) (α x : N ) : [f ;v]−[α〉〉x → 0 < α

The proof is by immediate case analysis on [f ;v]−[α〉〉x. The cost and results
given by cost aware big-step semantics are unique (provided they exist)

Theorem ra ca fun (k : N ) (f : Ak) (v :N k) (α β x y : N ) :
[f ;v]−[α〉〉x → [f ;v]−[β〉〉 y → α = β ∧ x = y

The proof is by induction on [f ;v]−[α〉〉x together with inversion lemmas
ra ca ∗ inv to decompose [f ;v]−[β〉〉 y. Inversion lemmas are the central ingre-
dient of this proof.

Now the key result: cost aware big-step semantics is decidable (in sort Type,
see Sect. 3.3) when the cost is fixed

Theorem ra ca decidable t (k : N ) (f : Ak) (v : N k) (α : N ) :
decidable t

{
x

∣
∣ [f ;v]−[α〉〉x

}

Its proof is the most complicated of our whole development. It proceeds by induc-
tion on f : Ak and uses inversion lemmas ra ca ∗ inv, functionality ra ca fun
as well as a small decidability library to lift decidability arguments over (finitely)
quantified statements. The central constituents of that library are:

Lemma decidable t bounded (P : N → Type) :(∀n : N , decidable t (P n)
)

→ ∀n : N , decidable t {i : N & i < n× P i}
Lemma vec sum decide t (n : N ) (P : (N → Type)n) :(∀(p : posn) (i : N ), decidable t (P p i)

)

→ ∀m : N , decidable t {v : Nn &Σv = m× ∀p,P p vp}
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Lemma vec sum unbounded decide t (P : N → N → Type) :(∀n i : N , decidable t (P n i)
)

→ (∀n : N , P n 0 → False
)

→ ∀m : N , decidable t
{
n : N & {q : Nn &Σq = m× ∀p, P p qp}

}

Some comments about the intuitive meaning of such results could be useful.
Recall that decidability has to be understood over Type (as opposed to Prop):

– decidable t bounded states that whenever P n is decidable for any n, then
given a bound m, it is decidable whether there exists i < m such that P i
holds. Hence bounded existential quantification inherits decidability;

– vec sum decide t states that if P is a posn×N indexed family of decidable
predicates, then it is decidable whether there exists vector v : Nn (of length
n) which satisfies P p vp for each of its components (indexed by p : posn), and
such that the sum of the components of v is a fixed value m. This express the
decidability of some kind of universal quantification bounded by the length
of a vector;

– vec sum unbounded decide t states that if P is a N × N indexed family
of decidable predicates such that P 0 is never satisfied, then it is decidable
whether there exists a vector q of arbitrary length which satisfies P at every
component and such that the sum of those components is a fixed value m.
This is a variant of vec sum decide t but for unbounded vector length, only
the sum of the components acts as a bound.

Once ra ca decidable t is established, we combine it with ra ca fun to
easily define a bounded computation function for recursive algorithms, as is
done for instance at the end of file ra ca props.v:

Definition ra ca eval (k : N ) (f : Ak) (v : N k) (α : N ) : option N
Proposition ra ca eval prop (k : N ) (f : Ak) (v : N k) (α x : N ) :

[f ;v]−[α〉〉x ⇐⇒ ra ca eval f v α = Some x

Notice that the function ra ca eval could be proved primitive recursive with
proper encoding of Ak into N but the whole point of this work is to avoid having
to program with primitive recursive schemes.

6 The Totality of Coq

In this section, we conclude our proof that Coq contains all the recursive func-
tions for which totality can be established in Coq. We assume an arity k : N and
a recursive algorithm f : Ak which is supposed to be total:

Variables (k : N ) (f : Ak)
(
Hf : ∀v : N k, ∃x : N , �f� v x

)

Mimicking Coq sectioning mechanism, these assumptions hold for the rest of
the current section. We first show that given an input vector v : N k, both a cost
α : N and a result x : N can be computed constructively:

Let coq f (v : N k) :
{
α : N & {x : N | [f ;v]−[α〉〉x}}
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The proof uses unbounded minimization as implemented in nat reify t to find a
cost α such that {x : N | [f ;v]−[α〉〉x} is an inhabited type. This can be decided
for each possible cost thanks to ra ca decidable t. Recall that nat reify t
tries 0, then 1, then 2, etc. until it finds the one which is guaranteed to exist.
The warranty is provided by a combination of Hf and ra ca correct.

To obtain the predicate t : N k → N that realizes �f�, we simply permute
x and α in coq f v. We define t := v �→ proj1 sig(projT2(coq f v)). Using
projT1(coq f v), proj2 sig(projT2(coq f v)) and ra ca correct, it is trivial
to show that t v satisfies �f� v (t v). Hence, closing the section and discharging
the local assumptions, we deduce the totality theorem.

Theorem Coq is total (k : N ) (f : Ak) :
(∀v : N k, ∃x : N , �f� v x

) → {
t : N k → N ∣

∣ ∀v : N k, �f� v (t v)
}

7 Discussion: Other Approaches, Church Thesis

Comparing our method with the approach based on Kleene’s normal form the-
orem (Sect. 2), we remark that the introduction of small-step semantics would
only be used to measure the length (or cost) of computations. Since there is at
most one computation from a given input in deterministic models of computa-
tion, any computation can be recovered from its number of steps by primitive
recursive means. Hence the idea of short-cutting small-step semantics by a cost.

It is not surprising that the Kleene’s normal form approach was only sug-
gested in [2]. Mechanizing a Turing complete model of computation is bound to
be a lengthy development. Mainly because translating between elementary mod-
els of computation resembles writing programs in assembly language that you
moreover have to specify and prove correct. And unsurprisingly, such develop-
ments are relatively rare and recent, with the notable exception of [13] which for-
malizes computability notions in Coq. μ-recursive functions are not dependently
typed in [13] (so there is a well-formedness predicate) and they are not compiled
into a model of execution. In [12] however, the same author presents a compiler
from μ-recursive functions to Unlimited Register Machines, proved correct in
HOL. Turing machines, Abacus machines and μ-recursive functions are imple-
mented in [11] with the aim of been able to characterize decidability in HOL.
The development in [8] approaches computability in HOL4 through λ-calculus
also with the aim at the mechanization of computability arguments. We recently
published online a constructive implementation in (axiom-free) Coq [7] of an sig-
nificant portion of Krivine’s textbook [6] on λ-calculus, including a translation
from μ-recursive functions to λ-terms with dependent types in Coq. Actually,
this gave us a first mechanized proof that Coq contained any total recursive
function by using leftmost β-reduction strategy to compute normal forms. But
it requires the introduction of intersection type systems, a development of more
than 25 000 lines of code.
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Now, what about a characterization of the functions of type N →N definable
in Coq? Or else, is such a converse statement of (CiT)

∀(k : N ) (g : N k → N ),∃f : Ak,∀v : N k, �f� v (g v) (ChT)

provable in Coq? It is not too difficult to see that (ChT) does not hold in a
model of Coq where function types contain the full set of set theoretic functions
like in [10], because it contains non-computable functions. However, it is for us
an open question whether a statement like (ChT) could be satisfied in a model
of Coq, for instance in an effective model.

In such a case, the statement (ChT) would be independent of (axiom free)
Coq: (ChT) would be both unprovable and unrefutable in Coq. We think (ChT)
very much expresses an internal form of Church thesis in Coq: the functions
which are typable in Coq are exactly the total recursive functions. The problem
which such a statement is that the notion of totality is not independent from
the logical framework in which such a totality is expressed and some frameworks
are more expressive that others, e.g., Set theory defines more total recursive
functions that Peano arithmetic. It is not clear how (ChT) could be used to
simplify undecidability proofs in Coq.

8 Reifying Undecidable Predicates

In Sect. 3, we did explain how to reify the non-informative predicate (∃n, P n)
into the informative predicate {n | P n}, for P of type N →Prop. This occurred
under an important restriction: P is assumed Coq-decidable there. The Coq
term nat reify that implements this transformation is nevertheless used in
Sect. 6 to reify the undecidable “computes into” predicate ra bs. This predicate
is first represented as an existential quantification of the decidable precidate
ra ca, which is basically a bounded version of ra bs. Then nat reify is used
to compute the bound by minimization. Without entering in the full details, we
introduce some of the developments that can be found in the file applications.v.

We describe how to reify other kinds of undecidable predicates. For instance,
we can reify undecidable predicates that can be bounded in some broad sense.
Consider a predicate P : X → Prop for which we assume the following: P is
equivalent to

⋃
n(Q n) for some Q : N→X→Prop such that Q n is (informatively)

finite for any n : N . Then, the predicate ∃P can be reified into ΣP :

Variables (X : Type) (P : X → Prop) (Q : N → X → Prop)
(HP : ∀x, P x ⇐⇒ ∃n, Q n x)(
HQ : ∀n, {l : list X | ∀x, In x l ⇐⇒ Q n x})

Theorem weighted reif : (∃x : X,P x) → {x : X | P x}

The idea of the proof is simply that the first parameter of Q is a weight of
type N and that for a given weight n, there are only finitely many elements x
that satisfy Qnx (hence P x). The weight n such that ∃x, Qnx is reified using
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nat reify, then the value x is computed as the first element of the list given by
HQ n. The hypothesis ∃x, P x ensures that the list given by HQ n is not empty.

Among its direct applications, such a weighted reification scheme can be used
to reify provability predicates for arbitrary logics, at least those where formulæ
and proofs can be encoded as natural numbers. This very low restriction allows
to cover a very wide range of logics, with the notable exception of infinitary
logics (where either formulæ are infinite or some rules have an infinite number
of premisses). Hence, one can compute a proof of a statement provided such a
proof exists. Another application is the reification of the normalizable predicate
for any reduction (i.e. binary) relation which is finitary (i.e. with finite direct
images). This applies in particular to β-reduction in λ-calculus.

To conclude, we implement a judicious remark of one of the reviewers. He
points out that we can derive a proof of Markov’s principle for recursively enu-
merable predicates over N k (instead of just decidable ones). These are predicates
of the form v �→ �f� v 0 for some μ-recursive f function of arity k.

Theorem re reify k (f : Ak) :
(∃v :N k, �f� v 0

) → {
v : N k

∣
∣ �f� v 0

}

Hence if a recursively enumerable predicate can be proved inhabited, possibly
using 1-consistent axioms in sort Prop such as e.g. excluded middle, then a
witness of that inhabitation can be computed.

9 The Structure of the Coq Source Code

The implementation involves around 4 500 lines of Coq code. It has been tested
and should compile under Coq 8.5pl3 and Coq 8.6. It is available under a Free
Software license at https://github.com/DmxLarchey/Coq-is-total.

More than half of the code belongs to the utils.v utilities library, mostly in
files pos.v, vec.v and tree.v. These could be shrunk further because they contain
some code which is not necessary to fulfil the central goal of the paper. The files
directly relevant to this development are:

utils.v The library of utilities that regroups notations.v, tac utils.v, list utils.v,
pos.v, nat utils.v, vec.v, finite.v and tree.v;

nat minimizer.v The reification of ∃P to ΣP by unbounded minimization of
decidable predicates of types N → Prop and N → Type, see Sect. 3;

recalg.v The dependently typed definition of recursive algorithms with a general
recursion principle and the injectivity of type constructors, see Sect. 4;

a {rel,bs,ca}.v The definitions of relational, big-step and cost aware big-step
semantics, with inversion lemmas, see Sects. 5.1 and 5.2;

ra sem eq.v The proof of equivalence between the three previous semantics, see
Sects. 5.1 and 5.2;

ra ca props.v High-level results about cost aware big-step semantics, mainly its
functionality and its decidability, see Sect. 5.3;

decidable t.v The decidability library to lift decision arguments to finitely quan-
tified statements, see Sect. 5.3;

https://github.com/DmxLarchey/Coq-is-total
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coq is total.v The file that implements Sect. 6, which shows that any provably
total recursive function can be represented by a Coq term;

applications.v The file that implements Sect. 8, reification of (undecidable)
weighted predicates, provability predicates, normalizability predicates and
recursively enumerable predicates.
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