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Abstract. Satisfiability (SAT) solvers—and software in general—
sometimes have serious bugs. We mitigate these effects by validating
the results. Today’s SAT solvers emit proofs that can be checked with
reasonable efficiency. However, these checkers are not trivial and can
have bugs as well. We propose to check proofs using a formally verified
program that adds little overhead to the overall process of proof valida-
tion. We have implemented a sequence of increasingly efficient, verified
checkers using the ACL2 theorem proving system, and we discuss lessons
from this effort. This work is already being used in industry and is slated
for use in the next SAT competition.

1 Introduction

This paper presents a formally verified application, a SAT proof-checker, that
has sufficient efficiency to support its practical use. Our checker, developed using
the ACL2 theorem-proving system [12,15], validates the results of SAT solvers
by checking the emitted proofs. Our intention here is to provide some useful
lessons from the development of an efficient, formally verified application using
ACL2. We therefore avoid lower-level details of algorithms, mathematics, and
proof development.

The Problem. Boolean satisfiability (SAT) solving has become a key technol-
ogy for formal verification. Users of SAT solvers increasingly seek confidence in
claims that given formulas are unsatisfiable1. Contemporary SAT solvers there-
fore emit proofs [10] that can be validated by SAT proof-checkers [9,27]. Such a
proof is a sequence of steps, each of which is interpreted as transforming a for-
mula to a new formula. Checking the proof is just the result of iterating through
the steps; for each step, the checker performs a validation intended to guarantee
that if the current formula (initially the input formula) is satisfiable, then so
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is the transformed formula. Typically the final formula is clearly unsatisfiable;
then the validation process guarantees that the input formula is unsatisfiable.

How can we trust SAT proof-checkers? Although they are usually much sim-
pler than SAT solvers, they are not trivial, and any software is susceptible to
bugs. We implemented a verified SAT proof-checker in ACL2 [26], but this
checker was not intended be efficient. For example, a specific proof that was
validated in about 1.5 s by the unverified checker DRAT-trim [27] took about a
week to validate using this verified checker. Several reasons explain the slow-
down. The verified checker used list-based data structures, providing linear-time
accesses, while the unverified checker used arrays and various low-level optimiza-
tions. Additionally, proofs of unsatisfiability usually contain many deletion steps,
while deletion is not supported by that verified checker. The size of the formula
is important because a key procedure, the RAT check [11], may need to consider
every clause in the formula. Finally, RAT checking is based on a procedure,
unit propagation, that can require expensive search. (These two aspects of RAT
checks—some checks that are linear in the size of the formula, and search—are
all we need to know about RAT checks for this paper.)

Alternatively one could verify the correctness of the solver in a theorem
prover. That approach does not require proof logging and validation. However,
SAT solvers are complicated and frequently improved, thereby making the verifi-
cation task hard. Moreover, verified SAT solvers tend to be orders of magnitude
slower compared to unverified solvers [1]. That said, verification of SAT solvers
has been studied by various authors in the last decade. The DPLL [4,5] algo-
rithm, which was the core algorithm of solvers until the late 90’s, has been
formalized and verified by Lescuyer and Conchon [17] in Coq and by Shankar
and Vaucher [23] in PVS. The conflict driven clause-learning paradigm of mod-
ern SAT solvers [20] was verified by Marić [18,19] in Isabelle/HOL (2010), by Oe
et al. [22] in Guru (2012), and by Blanchette et al. [1] in Isabelle/HOL (2016).

Towards a Solution. At least three parallel efforts have attempted to produce
efficient, formally verified SAT checkers [3,16]. A key idea was to avoid all search
(all of which results from unit propagation) by adding certain “hints” to each
proof step, resulting in a new proof format, LRAT (Linear RAT) [3]. In this paper
we discuss one of those three efforts: an LRAT proof-checker developed in ACL2
(the others being checkers in Coq [3] and Isabelle/HOL [16]). The SAT proof
mentioned above that took a week to check now takes under 3 s to check with
the new ACL2-based checker. As suggested by some data reported below, our
checker may run sufficiently fast so that it adds relatively little overhead beyond
using a fast C-based checker. This work is already used in industry at Centaur
Technology [25], and we expect it to be used in the 2017 SAT competition. In
this system, one does not need to reason about the original proof produced by
a solver or the proof conversion process of DRAT-trim: if our verified checker
validates the final optimized proof, then the input formula is unsatisfiable.

This paper is not intended to provide proof details, but rather, to extract
some lessons in the effective use of one proof assistant (ACL2). This paper
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assumes no knowledge of ACL2, SAT solving, or SAT proof-checking (such as
RAT and LRAT); all necessary background is provided above or as needed below.

We begin with a few ACL2 preliminaries. Then in Sect. 3 we describe a
sequence of increasingly efficient checkers. That description provides background
for discussion in Sect. 4 of the ACL2 soundness proofs done for each of these
checkers. Section 5 concludes with remarks that summarize our findings.

2 ACL2 Preliminaries

The ACL22 theorem-proving system [12,15] includes a programming language
based on an applicative subset of Common Lisp [24]. Lisp is one of the oldest
programming languages [21] and is supported by several efficient compilers, both
commercial and free. Moreover, ACL2 was designed with efficient execution in
mind [7,28]; indeed, efficiency is important since the ACL2 theorem prover is
mostly written in its own language. Thus, ACL2 provides a platform where one
can write programs that execute efficiently and also prove programs correct.

We focus below on three ACL2 features that support efficient execution of
our SAT proof-checker: guards, stobjs, and fast-alists. Then we close this section
by explaining ACL2 notions used in the rest of this paper.

Guards. The ACL2 logic is an untyped first-order logic of total functions. The
expression (first 3) denotes the application of a function, first to a single
parameter, 3. Thus, even a “bad” expression like (first 3)—first is intended
to be applied to a list (to return its first element), not a number—are logically
well-formed. Indeed, ACL2 can prove that (first 3) is equal to (first 4),
and ACL2 provides a way to evaluate (first 3) without error. On the other
hand, Common Lisp signals an error when evaluating this expression. It would
be wrong for ACL2 to use Common Lisp to do all of its evaluation, while taking
advantage of modern Common Lisp compilers is exactly what we want to do.

A solution is provided by guards. The ACL2 guard for a function is an expres-
sion whose variables are all formal parameters of that function. Guards can be
viewed as analogous of types, in that they are preconditions on the arguments
of a function. In contrast with most type systems, however, a guard can be
any expression involving any subset of the formal parameters of a function. For
example, the guard for first, with formal parameter x, is that x is a list.3

ACL2 relies on Common Lisp to evaluate using the definitions provided, but
only after guard verification is performed on those definitions: proving formulas
guaranteeing that for every function call during evaluation, the arguments of
that call satisfy its function’s guard. Guard verification was an important part
of our proof effort (see Sect. 4.3), resulting in a verified checker that executes
efficiently in Common Lisp.

2 “A Computational Logic for Applicative Common Lisp”.
3 More accurately, first is a macro expanding to a corresponding call of the function
car, whose guard specifies that the argument is a pair or the empty list.
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Stobjs. Single-threaded objects, or stobjs [2], are mutable objects that support
fast execution in ACL2.4 A stobj s is introduced as a record with fields, some
of which may be arrays. Henceforth, s may be an argument to a function, but
ACL2 enforces syntactic requirements, in particular: if s is modified by a function
then it must be returned, and its use must be single-threaded. Such restrictions
guarantee that there is only one instance of s present at any time during eval-
uation, and therefore it is sound to modify s in place, which can boost speed
significantly since it avoids allocating new structures.

Fast-Alists. In Lisp parlance, an alist (or association list) is a representation
of a finite function as a list of ordered pairs 〈i, j〉 for which the key, i, is mapped
to the value, j. ACL2 supports so-called fast-alists, sometimes called applicative
hash tables. For any fast-alist, the implementation provides a corresponding hash
table so that the function hons-get obtains the value for a given key in essen-
tially constant time—provided a certain single-threaded discipline is maintained.
Unlike stobjs, the discipline is not enforced at definition time; instead, a runtime
warning is printed when it is violated, in which case the alist is searched linearly
until a pair 〈i, j〉 is found for a given key, i. In practice, it is straightforward for
ACL2 programmers to use fast-alists so that the discipline is maintained.

Other Preliminaries. We mention a few other aspects of ACL2, towards mak-
ing this paper self-contained. The ACL2 prover is extensively discussed in its
documentation5 and in other places [12,15]. While automated induction is cer-
tainly helpful, the “workhorse” of the prover is rewriting. Definitions and (by
default) theorems are stored as rewrite rules. It is often helpful to disable (turn
off) some rules either to speed up the prover or to implement some rewriting
strategy. A book is an ACL2 input file, typically containing definitions and theo-
rems. Finally, symbols are case-insensitive and in particular, Boolean values are
represented by the symbols T (true) and NIL (false).

3 SAT Proof-Checker Code

Our most efficient SAT proof-checker is the last in a sequence of verified SAT
proof-checkers developed in ACL2. Section 3.1 enumerates these checkers, pro-
viding a name and some explanation for each. The statistics provided in Sect. 3.2
demonstrate improved performance offered by each successive checker. All sup-
porting materials for the checkers listed below, including proofs, may be found
in the projects/sat/lrat/ directory within the ACL2 community books6; see
its README file.

4 Thus, stobjs play a role somewhat like monads in higher-order functional languages.
5 http://www.cs.utexas.edu/users/moore/acl2/current/manual/.
6 https://github.com/acl2/acl2/tree/master/books/.

http://www.cs.utexas.edu/users/moore/acl2/current/manual/
https://github.com/acl2/acl2/tree/master/books/
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3.1 A Sequence of Checkers

[rat] A Verified RAT Checker [26]. A formula is a list of clauses, implicitly
conjoined (hence, in what is typically called conjunctive normal form). A proof
designates an ordered sequence of clauses, each of which is to be added to the
formula, in order. The RAT check is intended to ensure that when a clause
C in the proof is added to the current formula F : if F is satisfiable, then F
remains satisfiable after adding C. The RAT check is proved sound: if the proof
passes that check and contains the empty clause, then the original formula is
unsatisfiable.

[drat] A Verified DRAT Checker. Our first proof effort was to extend the
verified RAT checker to handle deletion—the “D” in “DRAT”—of clauses from
a formula. Thus a proof step became a pair consisting of a Boolean flag and
a clause, where: a flag of T indicates that the clause is to be added, as before;
but a flag of NIL indicates that the clause is to be removed. Since deletion
obviously preserves satisfiability, we quite easily modified the [rat] soundness
proof to accommodate this enhanced notion of SAT proof.

Only modest benefit might accrue from extending the initial checker in a
straightforward way with deletion: on the easiest problem in our test suite, [rat]
requires 20 s, while [drat] took 9 s. All [lrat-*] checkers can verify the proof of
the same problem in a fraction of a second. However, it is well established that
without deletion, high-performance checkers will suffer greatly [9]. Thus, incor-
porating deletion was an important first step.

[lrat-1] A Verified LRAT Checker Using Fast-Alists. In order to speed
up SAT proof-checking, we wanted to exploit proof hints recently provided by
the LRAT format [3], which facilitate fast lookup of clauses in formulas. So
we developed an ACL2 checker that represents formulas using fast-alists, which
provide a Lisp hash-table for nearly constant-time lookup. Our fast-alists contain
pairs of the form 〈i, c〉, where the key, i, is a positive integer that denotes the
index of the associated clause, c. But a formula can also contain pairs 〈i, D〉 where
D is a special deletion indicator, meaning that the clause with index i has been
deleted from the formula. A deletion proof step provides an index i to delete,
and is processed by updating the formula’s fast-alist with a new pair 〈i, D〉.

For this checker, a formula is actually an ordered pair 〈m,a〉, where a is a
fast-alist as described above and m is the maximum index in that alist. That
value is passed to the function that may be called to perform a full RAT check,
which recurs through the entire formula starting with index i = m. Each step in
that recursion looks up i in the fast-alist to find either a clause that is checked,
or the deletion indicator, D. The repeated use of the lookup function, hons-get,
on clause indices turned out to be somewhat expensive, in spite of its use of a
Lisp hash-table. That expense is addressed with improvements discussed below.

[lrat-2] A Faster Verified LRAT Checker that Shrinks Fast-Alists. ACL2
supports profiling, which we used on the [lrat-1] proof-checker. We found that
69% of the time was spent performing lookup with hons-get. On reflection,
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this was not a surprise: the full RAT check walks through the entire (fast-)alist,
which grows with every proof step that adds a clause. This quadratic behavior
would not be present if fast-alists were nothing more than mutable hash tables;
but in ACL2 they are also alists, which grow with each update. Note the [lrat-1]
checker applies hons-get at every step of the full RAT check: the ordered pair
〈i, c〉 seems to suggest that a suitable check needs to be done on the clause c,
but this pair may be overridden by a pair 〈i, D〉 in the formula indicating that
the clause c has actually been deleted, and thus should not be checked.

This checker (also those that follow) heuristically chooses when to shrink the
formula’s fast-alist, by removing from it all traces of deleted clauses. This hap-
pens immediately before checking any proof step’s addition of a clause, whenever
the number of deleted clauses in the formula exceeds the number of active (not
deleted) clauses by at least a certain factor. Based on some experimentation, that
factor is set to 1/3 when about to do the full RAT check, which as mentioned
above must consider every clause in the formula; otherwise, the factor is set to
10. The function shrink-formula-fal creates a smaller formula, equivalent to
its input, by removing pairs that represent deletion. It does this by first using
an ACL2 primitive that exploits the underlying hash table to remove, very effi-
ciently, all pairs 〈i, c〉 that are overridden by deletion pairs 〈i, D〉; a linear walk
removing all deletion pairs, followed by creation of a new fast-alist, then finishes
the job.

[lrat-3] A Verified LRAT Checker with a Simpler Representation of
Formulas. The previous version still represents a formula as a pair 〈m,a〉, where
a is a fast-alist and m is its maximum index. The [lrat-3] checker represents a
formula simply as a fast-alist, since starting with [lrat-2], the full RAT check
recurs through the fast-alist without needing the maximum index in advance.
Other improvements (all small) include better error messages.

[lrat-4] A Verified LRAT Checker with Assignments Based on Single-
Threaded Objects. The previous versions all represent an assignment as a list
of (true) literals. Our next change was to represent assignments using single-
threaded objects in order to improve performance. Profiling showed that most
of the time in [lrat-3] was being spent evaluating clauses and literals. Evidently,
the linear lookup into a long assignment (list of literals) can be expensive. Using
a stobj avoids memory allocation for assignments, but probably much more
important, it supports constant-time evaluation of literals.

Our stobj, a$, contains the three fields below. It uses standard represen-
tations: of propositional variables as natural numbers, of literals as non-zero
integers, and of logical negation as arithmetic negation (−5 represents “not 5”).

– a$arr: an array whose ith value is T, NIL, or 0, according to whether variable
i is true, false, or of unknown value

– a$stk: a stack of variables, implemented as an array
– a$ptr: a natural number indicating the top of the stack

Returning to the a$ stobj, we observe that the a$arr field alone does not
provide direct support for reverting an assignment after having extended it.
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We use a standard “trail” [6] approach to address this, by creating a stack of
variables that have been assigned, such that whenever a Boolean value is written
at position V of a$arr, V is also pushed onto the stack, by writing V at position
a$ptr of a$stk and then incrementing a$ptr. That extension is undone by way
of an inverse operation: the variable at the top of the stack serves as an index
into a$arr at which to write 0 (“unassigned”), and then the stack pointer a$ptr
is decremented.

[lrat-5] Compression and Incremental Reading. SAT proofs have grown to
the point where the proof files that need to be certified are gigabytes in size. To
help manage the sheer size of these proofs, we developed a lightweight procedure
to compress LRAT files into CLRAT (Compressed LRAT) files, using techniques
similar to those used for compression of DRAT files [8]. Our compression results
in files about 40% the size of the original. Our CLRAT proof-file reader is guard-
verified, both to support efficient execution and to increase confidence that we
are parsing the input in a manner consistent with its specified syntax.

Compressed files reduce the size of proof files, but they do not reduce the
number of proof steps that must be processed. Our earlier SAT proof-checkers
read an entire proof file (into memory) before checking the veracity of every
proof step, but given the ever increasing size of proof files, this approach is no
longer tenable. We can now read SAT proofs in sections, for example of a few
megabytes each; thus, we read (some of a proof file), then check (part of a proof),
then read some more, then check some more, and so on, thus supporting proof
files of arbitrary length. This checker has the highest performance of all of our
verified SAT proof-checkers.

To provide for incrementally reading a large file, we extended the ACL2
function read-file-into-string so that it could read successive segments of
the file, as specified by the user. Our correctness proof confirms that performing
the interleaved file-reading and proof-checking is sound. The main advantage of
interleaving proof reading and proof validation is that we can avoid having the
entire proof in memory, which significantly reduces the memory footprint of the
checker.

3.2 Performance

Table 1 compares performance for the checkers discussed above7. All runtimes
are in seconds and include both parsing and checking time, and each is labeled
by the proof file for the run. Each column header indicates one of the checkers
discussed above, with a reminder of how it differs from the preceding checker.
The [lrat-5] times do not include the use of diff described in Sect. 4.4, although
that was done and was measured at under 1/50 s in each case. We omit columns
for [lrat-2] (which is similar to [lrat-3] and for the early checkers that were much
less efficient (for example, roughly one week for [rat] on R 4 4 18).
7 We used ACL2 GitHub commit 639ef8760d30a63e2f21e160cdf02b75e1154fcc and

SBCL Version 1.3.15, on a 3.5 GHz Intel(R) Xeon(R) with 32 GB of memory running
on Ubuntu Linux.
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Notice that an improvement can make much more of a difference for some
tests than for others. In particular, as we move down through the last two
columns we see that the list-based [lrat-3] checker compares well with the stobj-
based [lrat-4] checker, until we get to a hard benchmark from the SAT 2016
competition, “Schur 161 5 d43.cnf”, with a 5.6 GB proof (a rather typical size).
Profiling showed that most of the time for [lrat-2] and [lrat-3] is in evaluating
clauses and literals with respect to assignments. Since an [lrat-3] assignment is a
linear list (of all true literals), it makes sense that the constant-time array access
provided by an [lrat-4] stobj can reduce the time considerably. The [lrat-5] time
of just over 4 min adds less than 25% to the 20 min it takes for the DRAT-trim
checker to process a DRAT proof into an LRAT proof, which bodes well for
using [lrat-5] in SAT competitions.

Table 1. Times in seconds when running checkers on various inputs

benchmark [lrat-1] [lrat-3] [lrat-4] [lrat-5]
(fast-alist) (shrink) (stobjs) (incremental)

uuf-100-3 0.09 0.03 0.05 0.01

tph6[-dd] 3.08 0.57 0.33 0.33

R 4 4 18 164.74 5.13 2.23 2.24

transform 25.63 6.16 5.81 5.82

Schur 161 5 d43 5341.69 2355.26 840.04 259.82

We also produced RAT proofs of all application benchmarks of the SAT
2016 Competition that CryptoMinisat 5.08 could solve in 5000 s. We choose
CryptoMinisat as it produces proofs with the most RAT clauses among those
solvers that participated in the SAT 2016 Competition. CryptoMinisat solved
95 unsatisfiable benchmarks within the time limit. On 5 problems we ran into
memory issues when converting the DRAT proof produced by CryptoMinisat
into CLRAT proofs. One benchmark used duplicate literals, which is not allowed
in our formalization. Figure 1 shows the results on the 89 validated proofs. For
benchmarks that can be solved within 20 s, solving, DRAT to CLRAT conversion,
and verified CLRAT checking are similar. For hard problems, solving takes about
one third the time compared to DRAT to CLRAT conversion, while verified
CLRAT checking takes about one third the time compared to solving. Hence,
verified CLRAT checking adds relatively small overhead to the tool chain.

4 Correctness Proofs

We next consider, in order, each checker of the preceding section except the first,
[rat], explaining some key high-level approaches to its correctness proof. Our
focus is not on proving the basic algorithm correct, as this was done previously
for the [rat] checker [26], including an analogue of the key inductive step (called
8 https://github.com/msoos/cryptominisat.

https://github.com/msoos/cryptominisat
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Fig. 1. Cactus plot of the solving times (including DRAT proof logging) of benchmarks
for the SAT 2016 competition application benchmarks using CryptoMinisat, the vali-
dation times (including CLRAT proof logging) of DRAT-trim, and checking CLRAT
proofs using ACL2-check.

satisfiable-add-proof-clause in Sect. 4.2): it preserves satisfiability to add
a validated clause from an alleged proof. Rather, we discuss the steps taken in
order to yield proofs for increasingly efficient code.

All of the soundness theorems for [rat] up through [lrat-3] have essentially
the form displayed below: given a formula (list of clauses) and a valid refutation
of it, then that formula is unsatisfiable. We will see a small variant for [lrat-4]
and a major improvement for [lrat-5].

Soundness.

(implies (and (formula-p formula)
(refutation-p proof formula))

(not (satisfiable formula))))

4.1 Deletion ([drat])

Our first checker is a replacement for the initial checker [26]. A comparison of
the two books shows that the original structure was preserved, the key difference
being in the notion of a proof step: instead of a clause, it is a pair consisting of
a flag and a clause, where the flag indicates whether the clause is to be added
to the formula or deleted from it. Conceptually, deletion is trivially correct: if a
formula is satisfiable, then it is still satisfiable after deleting one of its clauses.
Our soundness proof effort took advantage of the automation provided by ACL2,
in particular conditional rewriting: most lemmas were still proved automatically
when we modified the checker, and the rest were straightforward to fix.
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4.2 Linear RAT ([lrat-1], [lrat-2], [lrat-3])

In this section we discuss some lessons that can be learned from the proofs
of soundness for the first three LRAT checkers [lrat-1], [lrat-2], and [lrat-3]
described in Sect. 3. Recall that these checkers departed from [drat] by using
fast-alists in the representation of formulas.

In order to deal with the new formula data structure and the new proof hints
provided by the LRAT format, we chose to develop the soundness proof from
scratch, since the main developer for these new checkers was not very familiar
with the [rat] development. An early step was to write out a hand proof, so as
to avoid getting lost in a proof of this complexity. We started with a top-down
approach, supported by ACL2 utility skip-proofs [14]: first prove the main
result from the key lemmas (whose proofs are skipped), then similarly prove
each key lemma from its (proofs skipped) key sublemmas, and so on.9

To see this top-down style in action, consider the [lrat-1] book satisfiable-
add-proof-clause.lisp. As displayed below (with comments added, each fol-
lowing a semicolon (;)), that book locally includes two books that each prove a key
lemma in order to export those lemmas (not the other contents of the books) from
its scope, which are then used to prove the desired theorem.

(local ; Do not export the following outside this book.

(encapsulate () ; Introduce a scope

; Load the two indicated books.

(local (include-book"satisfiable-add-proof-clause-rup"))
(local (include-book "satisfiable-add-proof-clause-drat"))
; Export two key lemmas outside the encapsulate scope.

(defthm satisfiable-add-proof-clause-rup ...)
(defthm satisfiable-add-proof-clause-drat ...)))

; Prove the main theorem of this book.

(defthm satisfiable-add-proof-clause
; Theorem statement is omitted in this display.

:hints (("Goal"
; Prove that the two key lemmas imply this theorem.

:use (satisfiable-add-proof-clause-rup
satisfiable-add-proof-clause-drat)

; Disabling most rules improves reliability and speed.

:in-theory (union-theories ’(verify-clause)
(theory ’minimal-theory)))))

The [lrat-1] book sat-drat-claim-2-3.lisp also follows our hand proof.
The correctness proof for [lrat-1] was tedious, but presented no surprises. One

key proof technique, found in the [lrat-1] book soundness.lisp, is to define a

9 The hand proof may be found in a comment near the top of the book
satisfiable-add-proof-clause.lisp (see for example community books directory
projects/sat/list-based/). That informal proof is annotated with names of lem-
mas from the actual proof script.
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function extend-with-proof that recurs much like the checker, except instead of
returning a Boolean, it returns the formula produced by applying the proof steps
in sequence, starting with the original formula, with each step deleting or adding a
clause. The following lemma is then key; with enough lemmas in place, it is proved
automatically by induction using the recursion scheme for that function.

(defthm proof-contradiction-p-implies-false

(implies (and (formula-p formula)

(proofp proof)

(proof-contradiction-p proof))

(equal (evaluate-formula (extend-with-proof formula proof)

assignment)

nil)))

Of course, the phrase “enough lemmas in place” above hides all the real work
in the proof, for example in proving that the RAT check suffices for concluding
that the addition of a clause preserves satisfiability.

With the proof of [lrat-1] complete, the next step was to improve efficiency by
shrinking the formula from time to time, as explained in the description of [lrat-
2] in Sect. 3. The [lrat-2] code was thus structurally similar but incorporated this
shrinking. By keeping the top-level shrinking function disabled, it was reasonably
straightforward to update the proof. Our process was to see where the former
proof failed: when an ACL2 proof fails, it prints key checkpoints, which are
formulas that can no longer be simplified. They often provide good clues for
lemmas to formulate and prove.

The migration from [lrat-2] to [lrat-3] was very easy, including modifying the
soundness proof. The key change was to avoid storing a maximum index field
in the formula, so that the formula became exactly its fast-alist. This change
had little effect on efficiency, though it did avoid some memory allocation (from
building cons pairs). Rather, the point was to simplify the proof development,
in preparation for our final step.

4.3 Using Stobjs ([lrat-4])

The introduction of stobjs for assignments presented the possibility of modi-
fying the existing soundness proof. However, that seemed potentially difficult,
given the disparity in the two representations of assignments: in the list version,
assignments are extended using cons and retracted by going out of the scope of
a LET binding; by contrast, the stobj version modifies assignments by updating
array entries and stack pointers.

So instead of modifying the proof of the [lrat-3] soundness theorem, we
decided to apply that theorem by relating the [lrat-3] list-based checker and
the [lrat-4] stobj-based checker. A summary of that approach is presented
below, followed by some deeper exploration. See the [lrat-4] (stobj-based) book
equiv.lisp for the ACL2 theorems that relate the two checkers.

Applying [lrat-3] Correctness Using a Correspondence Theorem.
The [lrat-3] and [lrat-4] checkers are connected using the correspondence
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theorem below, refutation-p-equiv10. It is formulated using a function
refutation-p$, defined for the stobj-based checker in analogy to the list-based
recognizer function refutation-p for valid refutations, but using a so-called
local stobj.

(defthm refutation-p-equiv
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(refutation-p proof formula)))

That correspondence theorem trivially combines with the list-based checker’s
soundness theorem (stated near the beginning of Sect. 4) to yield soundness for
the stobj-based checker.

(defthm main-theorem-stobj-based
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(not (satisfiable formula))))

Guard Verification and a Stobj Invariant. Our first step was to
verify guards for the stobj-based checker definitions, to support high-
performance execution. This step was undertaken before starting the proof of
refutation-p-equiv or its supporting lemmas, so that useful insights and lem-
mas developed during guard verification could be reused when developing the
correspondence proofs. In particular, it was clear that guard verification would
require developing an invariant on the stobj—e.g., to guarantee that extending
an assignment never writes to the stack at an out-of-bounds index—and that
proving invariance could be useful when proving the correspondence theorems.

The stobj invariant, a$p, is defined in terms of several recursively-defined prop-
erties. Informally, it says that the stack and array of a$ correspond nicely: the
stack has no duplicates, and the variables below the top of the stack are exactly the
variables with an assigned value of true (T) or false (NIL) in the array, as opposed
to being undefined (value 0). It was rather challenging to complete all of the guard
verification, but then perhaps more straightforward to prove the correspondence
theorems, culminating in the theorem refutation-p-equiv shown above.

A Challenge in Proving Correspondence. A glitch arose while attempting
the correspondence proofs. Consider the following correspondence theorem.

(defthm negate-clause-equiv-1

(implies (and (a$p a$)

(= (a$ptr a$) 0)

10 The subsidiary correspondence theorems all state equivalences, so the suffix “-equiv”
was used in the names of correspondence theorems, even though the top-level theo-
rem, refutation-p-equiv, is actually an implication.
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(clausep$ clause a$))

(equal (list-assignment (mv-nth 1 (negate-clause clause a$)))

(negate-clause-or-assignment clause)))

The call of negate-clause on the left-hand side of the equality pushes each
literal of the clause onto the stack, and then the function list-assignment
extracts a list-based assignment from the resulting stack. However, the function
negate-clause-or-assignment (defined for [lrat-3]) simply mapped negation
over the clause, for example transforming the clause (3 -4 5) to (-3 4 -5)—
whereas the left-hand side produces (-5 4 -3)—reversed! Fortunately, this was
the only case in which the list-based and corresponding stobj-based function
didn’t match up.

By the time this issue surfaced, soundness had been established for the [lrat-
3] (list-based) checker, guards had been verified for the [lrat-4] (stobj-based)
checker, and some of the equivalence proofs had been completed. So we followed
the steps below to modify the [lrat-3] checker to support the remaining equiv-
alence proofs and avoid excessive re-work; after these steps, we completed the
remaining correspondence proofs without undue difficulty.

1. We modified [lrat-3] by disabling negate-clause-or-assignment and
attempting the proofs, expecting them to fail since that definition was no
longer available.

2. We fixed the failed proofs—there were only a few—by providing them with
hints to re-enable negate-clause-or-assignment.

3. We redefined negate-clause-or-assignment as a call to a tail-recursive
function that reversed the order. Because of the steps above, the only proofs
that failed were those explicitly enabling negate-clause-or-assignment.

4. With relatively modest effort we fixed all failed proofs.

4.4 The [lrat-5] Proof

Our [lrat-4] and [lrat-5] code were essentially the same except for the highest-level
functions. It was thus straightforward to work through the proof in a top-down
style, reusing previous lemmas once we worked our way down to reasoning about
functions that had not changed.

We improved the soundness theorem. Previous versions simply stated that
every formula with a refutation is unsatisfiable. To see why that statement is insuf-
ficient, imagine an “evil” parser that always returns the trivial formula, containing
only the empty clause. Then when the checker validates a proof, such a soundness
theorem will only tell us that the empty clause is unsatisfiable! In principle a solu-
tion is to verify the parser, but that seems to us a difficult undertaking.

Instead we define a function, proved-formula, which takes two input files
and various other parameters (such as how much of the proof file to read at
each iteration). When a proof is successfully checked, this function returns the
formula proved—essentially, what was read from the formula input file. This is
the function that we actually run to check proofs. The following theorem states
that if proved-formula is applied to a given formula file, cnf-file, and proof
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file, clrat-file, and it returns a formula F (rather than nil, which represents
failure), then F is unsatisfiable.11

(defthm soundness

(let ((formula (mv-nth 1 (proved-formula cnf-file clrat-file ...))))

(implies formula

(not (satisfiable formula))))

For extra confidence, a very simple program12, whose correctness can easily
be ascertained by inspection, can print to a new file the formula returned by
proved-formula. We have used this utility to compare the new file to the input
formula using the diff utility, thereby providing confidence that the unsatisfiable
formula returned by proved-formula truly represents the contents of the input
formula file.

5 Conclusion

We now have an efficient, verified SAT checker that can rapidly check SAT
proof files of many gigabytes. We expect that it will be used in applications of
SAT solvers that demand validation, both in SAT competitions and in industry.
Performance data on hard problems of the recent SAT competition suggest that
the ACL2-based [lrat-5] checker generally adds less than 25% to the time spent by
unverified proof-checking alone. The soundness proof for the stobj-based checker
was split quite nicely into a sequence of proof efforts. Here are some reflections
on those efforts, based on checker names introduced in Sect. 3.1.

1. We easily proved the soundness of [drat] by modifying the proof for [rat].
2. We developed the soundness proof for [lrat-1] essentially from scratch, starting

with development of a hand proof. We believe that this helped us to deal with
proof fallout from changes to the code from [drat] to [lrat-1].

3. We modified the proof for [lrat-1] in a modular way to produce a proof for
[lrat-2], which shrinks the formula’s fast-alist heuristically to boost perfor-
mance significantly. This step (and others) benefited from ACL2’s automa-
tion, in particular its display of key checkpoints upon proof failure. We believe
that the structuring of the [lrat-1] soundness proof to follow a hand proof
helped us to be efficient, by adding clarity to what we were trying to do.

4. The change from [lrat-2] to [lrat-3] was quite easy. The simplified notion of
formula was expected to be useful for the next step, and we believe it was.

5. The change from [lrat-3] to [lrat-4] introduced stobj-based code. It seemed
simplest to avoid trying to modify the soundness proof, instead deriving
soundness as a corollary of a correspondence theorem that relates those two
checkers. That worked out nicely, though it involved modifying a function
in [lrat-3]. That modification was done in a modular way, in a succession of

11 The mv-nth expression extracts the returned formula from a multiply-valued result.
12 projects/sat/lrat/incremental/print-formula.lisp in the community books.
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steps for which that function was disabled. Guard verification was challeng-
ing, but its supporting theorems and techniques helped with the soundness
proof. Specifically, patterned-based congruences [13] developed for guard ver-
ification were also used in proving correspondence theorems.

6. The change from [lrat-4] to [lrat-5] caused us to extend the ACL2 system
(and logical theory) with a utility for reading a portion of a file into a string.
This utility supports efficient input from very large proof files.

Our software development approach used a form of refinement. We first spec-
ified and verified a very simple, but inefficient SAT proof checker. We then
introduced another more efficient, but more complex, SAT proof-checker, that
we then verified. We continued this process until we had a solution that was
fast enough and verified to be correct. We believe that this stepwise approach
was an effective, efficient way to develop a high-performance formally verified
SAT proof-checker. This effort adds evidence one can build formally-verified
production-class software.
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18. Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom.
Reason. 43(1), 81–119 (2009)
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