
Mauricio Ayala-Rincón
César A. Muñoz (Eds.)

 123

LN
CS

 1
04

99

8th International Conference, ITP 2017
Brasília, Brazil, September 26–29, 2017
Proceedings

Interactive
Theorem Proving

Lecture Notes in Computer Science 10499

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mauricio Ayala-Rincón • César A. Muñoz (Eds.)

Interactive
Theorem Proving
8th International Conference, ITP 2017
Brasília, Brazil, September 26–29, 2017
Proceedings

123

Editors
Mauricio Ayala-Rincón
University of Brasília
Brasília D.F.
Brazil

César A. Muñoz
NASA
Hampton, VA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66106-3 ISBN 978-3-319-66107-0 (eBook)
DOI 10.1007/978-3-319-66107-0

Library of Congress Control Number: 2017949523

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-0089-3905

Preface

This volume contains the proceedings of the 8th Conference on Interactive Theo-
rem Proving (ITP 2017) held in Brasília, Brazil, on September 26–29, 2017. The
conference was organized by the departments of Computer Science and Mathematics
of the Universidade de Brasília.

The ITP conference series is concerned with all topics related to interactive theorem
proving, ranging from theoretical foundations to applications in program verification,
security, and formalization of mathematics. ITP succeeded TPHOLs, which took place
every year from 1988 until 2009. Since 2010, ITP has been held in Edinburgh (2010),
Nijmegen (2011), Princeton (2012), Rennes (2013), Vienna (2014), Nanjing (2015),
and Nancy (2016).

ITP 2017 was part of the Brasília Spring on Automated Reasoning and was
co-located with the 26th International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (Tableaux 2017) and the 11th International
Symposium on Frontiers of Combining Systems (FroCoS 2017). In addition to the three
main conferences, four workshops took place: 12th Logical and Semantic Frameworks
with Applications (LSFA 2017), 5th Workshop for Proof eXchange for Theo-
rem Proving (PxTP 2017), EPS - Encyclopedia of Proof Systems, and DaLí - Dynamic
Logic: New Trends and Applications. The Brasília Spring on Automated Reasoning also
included four tutorials: Proof Compressions and the Conjecture NP = PSPACE, General
Methods in Proof Theory for Modal and Substructural Logics, From Proof Systems to
Complexity Bounds, and PVS for Computer Scientists.

There were 65 submissions. Each submission was reviewed by at least 3 members
of the Program Committee. The reviews were written by the 36 committee members
and 69 external reviewers. An electronic PC meeting was held using the EasyChair
system. The PC decided to accept 28 regular submissions and 2 rough diamond con-
tributions. The program also included 3 invited talks by Moa Johansson on Automated
Theory Exploration for Interactive Theorem Proving: An Introduction to the Hipster
System, Cezary Kaliszyk on Automating Formalization by Statistical and Semantic
Parsing of Mathematics, and Leonardo de Moura on Whitebox Automation. Cezary
Kaliszyk, Katalin Bimbó, and Jasmin Blanchette presented joint TABLEAUX/
FroCoS/ITP invited talks.

We would like to thank the PC members for their work, especially during the paper
selection process, all the reviewers for writing high-quality reviews, the invited speakers
for accepting our invitation and delivering insightful talks, and the authors who sub-
mitted their contributions to ITP 2017. Many people helped to make ITP 2017 a success.
In particular, we are very grateful to Cláudia Nalon and Daniele Nantes-Sobrinho,
who served as Local Organizers at the Universidade de Brasília. Claudia and Daniele
worked hard and were highly instrumental in guaranteeing the success of the Brasília
Spring on Automated Reasoning.

Last but not least, we are thankful to the sponsors of ITP 2017: Microsoft, the
European Association for Artificial Intelligence (EurAI), the District Federal Research
Support Foundation (FAPDF), the Coordination of Personnel Training in Higher
Education of the Brazilian Education Ministry (CAPES), the Brazilian National
Council for Scientific and Technological Development (CNPq), and the Departments
of Computer Science and Mathematics of the Universidade de Brasília (UnB).

September 2017 Mauricio Ayala-Rincón
César Muñoz

VI Preface

Organization

Program Committee

Mauricio Ayala-Rincón Universidade de Brasília (Co-chair), Brazil
César Muñoz NASA (Co-chair), USA
María Alpuente Universitat Politècnica de València, Spain
Vander Alves Universidade de Brasília, Brazil
June Andronick CSIRO—Data61 and UNSW, Australia
Jeremy Avigad Carnegie Mellon University, USA
Sylvie Boldo Inria, France
Ana Bove Chalmers University of Technology, Sweden
Adam Chlipala MIT, USA
Gilles Dowek Inria and ENS Paris-Saclay, France
Aaron Dutle NASA, USA
Amy Felty University of Ottawa, Canada
Marcelo Frias IT Buenos Aires, Argentina
Ruben Gamboa University of Wyoming, USA
Herman Geuvers Radboud University Nijmegen, The Netherlands
Elsa Gunter University of Illinois at Urbana-Champaign, USA
John Harrison Intel Corporation, USA
Nao Hirokawa JAIST, Japan
Matt Kaufmann University of Texas at Austin, USA
Mark Lawford McMaster University, Canada
Andreas Lochbihler Institute of Information Security, ETH Zurich, Switzerland
Assia Mahboubi Inria, France
Panagiotis Manolios Northeastern University, USA
Gopalan Nadathur University of Minnesota, USA
Keiko Nakata SAP Potsdam, Germany
Adam Naumowicz Institute of Informatics, University of Bialystok, Poland
Tobias Nipkow TU München, Germany
Scott Owens University of Kent, UK
Sam Owre SRI International, USA
Lawrence Paulson University of Cambridge, UK
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Claudio Sacerdoti Coen University of Bologna, Italy
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Monika Seisenberger Swansea University, UK
Christian Sternagel Universtity of Innsbruck, Austria
Sofiene Tahar Concordia University, Canada
Christian Urban King’s College London, UK
Josef Urban Czech Technical University in Prague, Czech Republic

ITP Steering Committee

Lawrence Paulson
(Chair)

University of Cambridge, UK

David Basin ETH Zurich, Switzerland
Yves Bertot Inria, France
Amy Felty University of Ottawa, Canada
Panagiotis Manolios Northeastern University, USA
César Muñoz NASA, USA
Michael Norrish CSIRO—Data61 and ANU, Australia
Sofiène Tahar Concordia University, Canada
Christian Urban King’s College London, UK
Jasmin Blanchette

(Ex-officio)
Vrije Universiteit Amsterdam, The Netherlands

Organizing Committee

Cláudia Nalon Universidade de Brasília, Brazil
Daniele

Nantes-Sobrinho
Universidade de Brasília, Brazil

Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
João Marcos Universidade Federal do Rio Grande do Norte, Brazil

Additional Reviewers

Akbarpour, Behzad
Altenkirch, Thorsten
Asperti, Andrea
Azzi, Guilherme
Ballis, Demis
Bannister, Callum
Beckert, Bernhard
Berger, Ulrich
Besson, Frédéric
Brown, Chad
Castro, Thiago
Chau, Cuong
Claessen, Koen
Cohen, Cyril
Collins, Pieter
Daghar, Alaeddine
Danielsson, Nils Anders
Demeo, William

Escobar, Santiago
Faissole, Florian
Foster, Simon
Färber, Michael
Gacek, Andrew
Goel, Shilpi
Grabowski, Adam
Gutiérrez, Raúl
Helali, Ghassen
Herbelin, Hugo
Hunt, Warren A.
Iyoda, Juliano
Kaliszyk, Cezary
Keller, Chantal
Korniłowicz, Artur
Kozen, Dexter
Krebbers, Robbert
Kullmann, Oliver

Lammich, Peter
Larchey-Wendling,

Dominique
Lawrence, Andrew
Lee, Holden
Magaud, Nicolas
Maggesi, Marco
Mahmoud, Mohamed

Yousri
Maietti, Maria Emilia
Maric, Filip
Matichuk, Daniel
Melquiond, Guillaume
Miné, Antoine
Miquey, Étienne
Moscato, Mariano
Nakano, Keisuke
Narkawicz, Anthony

VIII Organization

Nordvall Forsberg,
Fredrik

Norrish, Michael
Popescu, Andrei
Rashid, Adnan
Setzer, Anton

Sewell, Thomas
Siddique, Umair
Sozeau, Matthieu
Sternagel, Thomas
Tan, Yong Kiam
Teixeira, Leopoldo

Théry, Laurent
Titolo, Laura
Van Oostrom, Vincent
Villanueva, Alicia
Wiedijk, Freek
Young, William D.

Local Sponsors

Coordination of Personnel Training
in Higher Education of the
Brazilian Education Ministry (CAPES)

District Federal Research Support
Foundation (FAPDF)

Brazilian National Council for Scientific
and Technological Development (CNPq)

Department of Computer Science
Universidade de Brasília - UnB

Department of Mathematics
Universidade de Brasília - UnB

Organization IX

Invited Talks

Whitebox Automation

Leonardo de Moura1, Jeremy Avigad2, Gabriel Ebner3,
Jared Roesch4, and Sebastian Ullrich5

1 Microsoft Research
leonardo@microsoft.com
2 Carnegie Mellon University
avigad@andrew.cmu.edu

3 Vienna University of Technology
gebner@gebner.org

4 University of Washington
jroesch@cs.washington.edu
5 Karlsruhe Institute of Technology

ullrich@kit.edu

Abstract. We describe the metaprogramming language currently in use in Lean,
a new open source theorem prover that is designed to bridge the gap between
interactive use and automation. Lean implements a version of the Calculus of
Inductive Constructions. Its elaborator and unification algorithms are designed
around the use of type classes, which support algebraic reasoning, programming
abstractions, and other generally useful means of expression. Lean also has
parallel compilation and checking of proofs, and provides a server mode that
supports a continuous compilation and rich user interaction in editing envi-
ronments such as Emacs, Vim, and Visual Studio Code. Lean currently has a
conditional term rewriter, and several components commonly found in
state-of-the-art Satisfiability Modulo Theories (SMT) solvers such as forward
chaining, congruence closure, handling of associative and commutative opera-
tors, and E-matching. All these components are available in the metaprogram-
ming framework, and can be combined and customized by users.

In this talk, we provide a short introduction to the Lean theorem prover and
its metaprogramming framework. We also describe how this framework extends
Lean’s object language with an API to many of Lean’s internal structures and
procedures, and provides ways of reflecting object-level expressions into the
metalanguage. We provide evidence to show that our implementation is per-
formant, and that it provides a convenient and flexible way of writing not only
small-scale interactive tactics, but also more substantial kinds of automation.

We view this as important progress towards our overarching goal of bridging
the gap between interactive and automated reasoning. Users who develop
libraries for interactive use can now more easily develop special-purpose
automation to go with them thereby encoding procedural heuristics and exper-
tise alongside factual knowledge. At the same time, users who want to use Lean
as a back end to assist in complex verification tasks now have flexible means of
adapting Lean’s libraries and automation to their specific needs. As a result, our
metaprogramming language opens up new opportunities, allowing for more

natural and intuitive forms of interactive reasoning, as well as for more flexible
and reliable forms of automation.

More information about Lean can be found at http://leanprover.github.io.
The interactive book “Theorem Proving in Lean”1 is the standard reference for
Lean. The book is available in PDF and HTML formats. In the HTML version,
all examples and exercises can be executed in the reader’s web browser.

1 https://leanprover.github.io/theorem_proving_in_lean.

XIV Whitebox Automation

http://leanprover.github.io
https://leanprover.github.io/theorem_proving_in_lean

Automated Theory Exploration for Interactive
Theorem Proving

An Introduction to the Hipster System

Moa Johansson

Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

moa.johansson@chalmers.se

Abstract. Theory exploration is a technique for automatically discovering new
interesting lemmas in a mathematical theory development using testing. In this
paper I will present the theory exploration system Hipster, which automatically
discovers and proves lemmas about a given set of datatypes and functions in
Isabelle/HOL. The development of Hipster was originally motivated by attempts
to provide a higher level of automation for proofs by induction. Automating
inductive proofs is tricky, not least because they often need auxiliary lemmas
which themselves need to be proved by induction. We found that many such
basic lemmas can be discovered automatically by theory exploration, and
importantly, quickly enough for use in conjunction with an interactive theorem
prover without boring the user.

Automating Formalization by Statistical
and Semantic Parsing of Mathematics

Cezary Kaliszyk1, Josef Urban2, and Jiří Vyskočil2

1 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac.at

2 Czech Technical University in Prague, Prague, Czech Republic

Abstract. We discuss the progress in our project which aims to automate for-
malization by combining natural language processing with deep semantic
understanding of mathematical expressions. We introduce the overall motivation
and ideas behind this project, and then propose a context-based parsing
approach that combines efficient statistical learning of deep parse trees with their
semantic pruning by type checking and large-theory automated theorem prov-
ing. We show that our learning method allows efficient use of large amount of
contextual information, which in turn significantly boosts the precision of the
statistical parsing and also makes it more efficient. This leads to a large
improvement of our first results in parsing theorems from the Flyspeck corpus.

Contents

Automated Theory Exploration for Interactive Theorem Proving:
An Introduction to the Hipster System . 1

Moa Johansson

Automating Formalization by Statistical and Semantic Parsing
of Mathematics . 12

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil

A Formalization of Convex Polyhedra Based on the Simplex Method 28
Xavier Allamigeon and Ricardo D. Katz

A Formal Proof of the Expressiveness of Deep Learning 46
Alexander Bentkamp, Jasmin Christian Blanchette, and Dietrich Klakow

Formalization of the Lindemann-Weierstrass Theorem 65
Sophie Bernard

CompCertS: A Memory-Aware Verified C Compiler Using Pointer
as Integer Semantics . 81

Frédéric Besson, Sandrine Blazy, and Pierre Wilke

Formal Verification of a Floating-Point Expansion
Renormalization Algorithm. 98

Sylvie Boldo, Mioara Joldes, Jean-Michel Muller,
and Valentina Popescu

How to Simulate It in Isabelle: Towards Formal Proof for Secure
Multi-Party Computation . 114

David Butler, David Aspinall, and Adrià Gascón

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 131
Raphaël Cauderlier and Catherine Dubois

A Formal Proof in COQ of LaSalle’s Invariance Principle 148
Cyril Cohen and Damien Rouhling

How to Get More Out of Your Oracles . 164
Luís Cruz-Filipe, Kim S. Larsen, and Peter Schneider-Kamp

Certifying Standard and Stratified Datalog Inference Engines in SSReflect . . . 171
Véronique Benzaken, Évelyne Contejean, and Stefania Dumbrava

http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_1
http://dx.doi.org/10.1007/978-3-319-66107-0_2
http://dx.doi.org/10.1007/978-3-319-66107-0_2
http://dx.doi.org/10.1007/978-3-319-66107-0_3
http://dx.doi.org/10.1007/978-3-319-66107-0_4
http://dx.doi.org/10.1007/978-3-319-66107-0_5
http://dx.doi.org/10.1007/978-3-319-66107-0_6
http://dx.doi.org/10.1007/978-3-319-66107-0_6
http://dx.doi.org/10.1007/978-3-319-66107-0_7
http://dx.doi.org/10.1007/978-3-319-66107-0_7
http://dx.doi.org/10.1007/978-3-319-66107-0_8
http://dx.doi.org/10.1007/978-3-319-66107-0_8
http://dx.doi.org/10.1007/978-3-319-66107-0_9
http://dx.doi.org/10.1007/978-3-319-66107-0_10
http://dx.doi.org/10.1007/978-3-319-66107-0_11
http://dx.doi.org/10.1007/978-3-319-66107-0_12

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq. . . . 189
Yannick Forster and Gert Smolka

Bellerophon: Tactical Theorem Proving for Hybrid Systems 207
Nathan Fulton, Stefan Mitsch, Rose Bohrer, and André Platzer

Formalizing Basic Quaternionic Analysis . 225
Andrea Gabrielli and Marco Maggesi

A Formalized General Theory of Syntax with Bindings 241
Lorenzo Gheri and Andrei Popescu

Proof Certificates in PVS . 262
Frédéric Gilbert

Efficient, Verified Checking of Propositional Proofs 269
Marijn Heule, Warren Hunt Jr., Matt Kaufmann, and Nathan Wetzler

Proof Tactics for Assertions in Separation Logic . 285
Zhé Hóu, David Sanán, Alwen Tiu, and Yang Liu

Categoricity Results for Second-Order ZF in Dependent Type Theory 304
Dominik Kirst and Gert Smolka

Making PVS Accessible to Generic Services by Interpretation
in a Universal Format . 319

Michael Kohlhase, Dennis Müller, Sam Owre, and Florian Rabe

Formally Verified Safe Vertical Maneuvers for Non-deterministic,
Accelerating Aircraft Dynamics . 336

Yanni Kouskoulas, Daniel Genin, Aurora Schmidt,
and Jean-Baptiste Jeannin

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 354
Laureano Lambán, Francisco J. Martín-Mateos, Julio Rubio,
and José-Luis Ruiz-Reina

Typing Total Recursive Functions in Coq . 371
Dominique Larchey-Wendling

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 389
Andreas Lochbihler

Schulze Voting as Evidence Carrying Computation 410
Dirk Pattinson and Mukesh Tiwari

Verified Spilling and Translation Validation with Repair 427
Julian Rosemann, Sigurd Schneider, and Sebastian Hack

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-66107-0_13
http://dx.doi.org/10.1007/978-3-319-66107-0_15
http://dx.doi.org/10.1007/978-3-319-66107-0_16
http://dx.doi.org/10.1007/978-3-319-66107-0_17
http://dx.doi.org/10.1007/978-3-319-66107-0_18
http://dx.doi.org/10.1007/978-3-319-66107-0_19
http://dx.doi.org/10.1007/978-3-319-66107-0_20
http://dx.doi.org/10.1007/978-3-319-66107-0_21
http://dx.doi.org/10.1007/978-3-319-66107-0_21
http://dx.doi.org/10.1007/978-3-319-66107-0_22
http://dx.doi.org/10.1007/978-3-319-66107-0_22
http://dx.doi.org/10.1007/978-3-319-66107-0_23
http://dx.doi.org/10.1007/978-3-319-66107-0_24
http://dx.doi.org/10.1007/978-3-319-66107-0_25
http://dx.doi.org/10.1007/978-3-319-66107-0_26
http://dx.doi.org/10.1007/978-3-319-66107-0_27

A Verified Generational Garbage Collector for CakeML 444
Adam Sandberg Ericsson, Magnus O. Myreen,
and Johannes Åman Pohjola

A Formalisation of Consistent Consequence for Boolean Equation Systems . . . 462
Myrthe van Delft, Herman Geuvers, and Tim A.C. Willemse

Homotopy Type Theory in Lean . 479
Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz

Verifying a Concurrent Garbage Collector Using
a Rely-Guarantee Methodology. 496

Yannick Zakowski, David Cachera, Delphine Demange,
Gustavo Petri, David Pichardie, Suresh Jagannathan, and Jan Vitek

Formalization of the Fundamental Group in Untyped Set Theory
Using Auto2. 514

Bohua Zhan

Author Index . 531

Contents XIX

http://dx.doi.org/10.1007/978-3-319-66107-0_28
http://dx.doi.org/10.1007/978-3-319-66107-0_29
http://dx.doi.org/10.1007/978-3-319-66107-0_30
http://dx.doi.org/10.1007/978-3-319-66107-0_31
http://dx.doi.org/10.1007/978-3-319-66107-0_31
http://dx.doi.org/10.1007/978-3-319-66107-0_32
http://dx.doi.org/10.1007/978-3-319-66107-0_32

Automated Theory Exploration for Interactive
Theorem Proving:

An Introduction to the Hipster System

Moa Johansson(B)

Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

moa.johansson@chalmers.se

Abstract. Theory exploration is a technique for automatically discover-
ing new interesting lemmas in a mathematical theory development using
testing. In this paper I will present the theory exploration system Hip-
ster, which automatically discovers and proves lemmas about a given set
of datatypes and functions in Isabelle/HOL. The development of Hipster
was originally motivated by attempts to provide a higher level of automa-
tion for proofs by induction. Automating inductive proofs is tricky, not
least because they often need auxiliary lemmas which themselves need to
be proved by induction. We found that many such basic lemmas can be
discovered automatically by theory exploration, and importantly, quickly
enough for use in conjunction with an interactive theorem prover without
boring the user.

1 Introduction

Theory exploration is a technique for discovering and proving new and interest-
ing basic lemmas about given functions and datatypes. The concept of theory
exploration was first introduced by Buchberger [3], to describe the workflow
of a human mathematician: instead of proving theorems in isolation, like auto-
mated theorem provers do, mathematical software should support an exploratory
workflow where basic lemmas relating new concepts to old ones are proved first,
before proceeding to complex propositions. This is arguably the mode of usage
supported in many modern proof assistants, including Buchberger’s Theorema
system [4] as well as Isabelle [13]. However, the discovery of new conjectures has
mainly been the task for the human user. Automated theory exploration systems,
[6,9,11,12], aims at addressing this by automatically both discover and prove
basic lemmas. In the HipSpec system [6], automated theory exploration has been
shown a successful technique for lemma discovery in inductive theorem proving
solving several challenge problems where auxiliary lemmas were required. In
this paper, we describe HipSpec’s sister system Hipster, which is integrated with
Isabelle/HOL and in addition produce certified proofs of lemmas and offer the
user more flexibility and control over proof strategies.

Hipster consists of two main components: the exploration component, called
QuickSpec [16], is implemented in Haskell and efficiently generates candidate
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 1–11, 2017.
DOI: 10.1007/978-3-319-66107-0 1

2 M. Johansson

conjectures using random testing and heuristics. The conjectures are then passed
on to the prover component which is implemented in Isabelle. Hipster discards
any conjectures with trivial proofs, and outputs snippets of proof scripts for each
interesting lemma it discovers. The user can then easily paste the discovered
lemmas and their proofs into the Isabelle theory file by a mouse-click, thus
assisting and speeding up the development of new theories.

Example 1. As a first simple example consider the following small theory about
binary trees with two functions, mirror, which recursively swaps the left and
right subtrees and tmap, which applies a function to each element in the tree1.

datatype ’a Tree =

Leaf ’a

| Node "’a Tree" ’a "’a Tree"

fun mirror :: "’a Tree =>’a Tree"

where

"mirror (Leaf x) = Leaf x"

| "mirror (Node l x r) = Node (mirror r) x (mirror l)"

fun tmap :: "(’a =>’b) =>’a Tree =>’b Tree"

where

"tmap f (Leaf x) = Leaf (f x)"

| "tmap f (Node l x r) = Node (tmap f l) (f x) (tmap f r)"

We can ask Hipster to discover some properties about these two functions by
issuing a command in the Isabelle theory file telling Hipster which functions it
should explore:

hipster tmap mirror

Almost immediately, Hipster outputs the following two lemmas (and nothing
else), which it has proved by structural induction followed by simplification,
using the function definitions above:

lemma lemma_a [thy_expl]: "mirror (mirror y) = y"

apply (induct y)

apply simp

apply simp

done

lemma lemma_aa [thy_expl]: "mirror (tmap y z) = tmap y (mirror z)"

apply (induct z)

apply simp

apply simp

done

1 This example can be found online: https://github.com/moajohansson/IsaHipster/
blob/master/Examples/ITP2017/Tree.thy.

https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Tree.thy
https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Tree.thy

Automated Theory Exploration for Interactive Theorem Proving 3

Here, Hipster was configured in such a way to consider lemmas requiring induc-
tive proofs interesting, and other conjectures requiring only simplification trivial.

We believe our work on automated theory exploration can complement sys-
tems like Sledgehammer [14]. Sledgehammer is a popular tool allowing Isabelle
users to call various external automated first order provers and SMT solvers. A
key feature of Sledgehammer is its relevance filter which selects facts likely to
be useful in proving a given conjecture from Isabelle’s huge library, which oth-
erwise would swap the external prover. However, if a crucial lemma is missing,
Sledgehammer will fail, as might well be the case in a new theory development.

Current State of the Project

The first version of Hipster has been described in [10]. The Hipster project
is ongoing and the system is under active development. The version described
in this paper is a snapshot of forthcoming second version. It includes several
improvements:

– Hipster now uses the recent QuickSpec 2 [16] as backend for conjecture gen-
eration, which is much more efficient than the previously used first version.
QuickSpec 2 also has a generic interface via the TIP-language and tools [7,15]
avoiding ad-hoc translation from Haskell to Isabelle. Figure 1 shows the new
architecture of HipSpec.

– Hipster can use any Isabelle tactic as specified by the user, now also including
Sledgehammer, which allows it to exploit knowledge from Isabelle’s existing
libraries more efficiently. The aim is to make it easy for the user to customise
Hipster’s proof strategies according to his/her needs.

– The proof output from Hipster has been improved, referring only to standard
Isabelle tactics. Unlike the first version, which produced single-line proofs

QuickSpec

Hipster
(Isabelle/HOL)

HipSpec

TIP + tools

Theory Exploration & Test

datatypes,
functions,
constants

datatypes,
functions,
constants

conjectures

QuickCheck
(testing)

conjectures

Haskell program

Candidate

Provers

Fig. 1. Theory exploration architecture. Hipster and its sister-system HipSpec.

4 M. Johansson

using a Hipster-specific tactic, the proofs now displays the variable on which
Hipster did induction, as well as the tactics and lemmas it used to prove the
base- and step cases. This also saves Isabelle re-doing a lot of search when
the proof is replayed.

Hipster is open source with code available from GitHub: https://github.com/
moajohansson/IsaHipster. We happily invite those interested in Hipster to try
it out and welcome contributions to further development.

2 Architecture of a Theory Exploration System

A theory exploration system has two main tasks: First of all, it needs to generate
candidate conjectures (of which at least the majority should be theorems) and
secondly, it needs access to a sufficiently powerful automated theorem prover
to (at least) prove most of the interesting conjectures, and dismiss uninterest-
ing ones. Hipster’s conjecture generation is outsourced to QuickSpec 2 [16] and
proofs are performed by the tactics of Isabelle/HOL. In this section we describe
both these parts.

2.1 Conjecture Generation

A trivial approach to conjecture generation would be to exhaustively generate all
possible terms that could be constructed from the input functions and datatypes,
but this would quickly become intractable, so some heuristics are necessary.
Furthermore, we do not want to waste time trying to prove conjectures that are
obviously false, so the conjecture generation should filter those out using testing,
or if possible, avoid generating them in the first place.

Earlier theory exploration systems for Isabelle/HOL, IsaCoSy [9], and
IsaScheme [12], took different approaches. IsaCoSy was restricted to generate
only irreducible terms, starting from small term size, and interleaved inductive
proofs with exploration before increasing the term size, so discovered equations
could be used to further restrict the search space. IsaScheme generated conjec-
tures by instantiating user provided term schemas (templates) and combined this
rewriting and completion. To avoid false conjecture, both IsaCoSy and IsaScheme
filtered the resulting conjectures through Isabelle’s counter-example checker.

Hipster is considerably faster than both IsaCoSy and IsaScheme, much thanks
to QuickSpec’s clever conjecture generation. The key idea is that term generation
is interleaved with testing and evaluation of terms, using Haskell’s QuickCheck
tool [5], which enables many terms to be tested at once, instead of one at the
time (see Example 2 below). Put simply, the conjecture generation algorithm
proceeds by iterating the following steps:

1. Generate new terms of the current term size and add them the the current
universe of terms. The algorithm start from term size 1 and iterates up to
user-specified max size.

https://github.com/moajohansson/IsaHipster
https://github.com/moajohansson/IsaHipster

Automated Theory Exploration for Interactive Theorem Proving 5

2. Test and evaluate the terms generated so far using QuickCheck. Divide them
into equivalence classes.

3. Extract equations from the equivalence classes. Using these equations, prune
the search space for the next iteration of term generation when term size is
increased.

Example 2 (Conjecture generation in QuickSpec). As a small example, suppose
the universe of terms generated so far include the terms in the first column
of Table 1 below. QuickSpec will generate many (by default 1000) random test
cases and evaluate all terms on these. Initially, all terms are in one equivalence
class, but as testing proceeds, terms are split according to which ones evaluate
to the same value. Table 1 shows how our small set of terms are split into three
equivalence classes using two random tests. Testing would then proceed on many
more random values, but no more splits would occur. When the equivalence
classes are stable, QuickSpec extracts two equations:

rev(rev xs) = xs and sort(rev xs) = sort xs.

Table 1. How QuickSpec divides terms into equivalence classes based on their evalua-
tion two random test cases. The first test case (top) splits the terms into two equivalence
classes. The second test case (bottom) splits off a third equivalence class.

Test-case: xs → [b, a], ys → []

Term Instance Evaluation

xs [b,a] [b,a]
rev(rev xs) rev(rev [b,a]) [b,a]

sort xs sort [b,a] [a,b]
sort (rev xs) sort (rev [b,a]) [a,b]

sort (xs @ ys) sort([b,a] @ []) [a,b]

Test-case: xs → [b, a, c], ys → [c]

Term Instance Evaluation

xs [b,a,c] [b,a,c]
rev(rev xs) rev(rev [b,a,c]) [b,a,c]

sort xs sort [b,a,c] [a,b,c]
sort (rev xs) sort (rev [b,a,c]) [a,b,c]

sort (xs @ ys) sort([b,a,c] @ [c]) [a,b,c,c]

Note that these conjectures have been tested many times, so they are likely
to be true, but they have not yet been proved. QuickSpec’s pruner will now
use these two equations to restrict its search space. It will prune all terms of
the shapes rev(rev) and sort(rev) on account of such terms being reducible
by the two equations QuickSpec found. This stops generation of arguably less
interesting equations, for example rev(rev(xs @ ys)) = xs @ ys, rev(rev(xs @ ys
@ zs)) = xs @ ys @ zs and so on.

6 M. Johansson

The new version of Hipster described here use QuickSpec 2 where the con-
jecture generation algorithm has been further refined compared to the simplified
version described above, incorporating ideas from both IsaCoSy (avoiding gen-
eration of reducible terms) and IsaScheme (generation of schematic terms first).
We refer to [16] for details of all heuristics in QuickSpec 2.

QuickSpec was originally designed to generate candidate specifications for
Haskell programmes and can also be used as a stand alone light-weight verifi-
cation tool for this purpose, producing a candidate specification consisting of
equations that has been thoroughly tested, but not proved. With QuickSpec
2, an interface using the TIP-language [7], was added to facilitate communica-
tion with external systems such as Hipster and its sister system HipSpec [6].
Hipster translates its given input functions and datatypes into TIP before send-
ing them to QuickSpec. Similarly, QuickSpec outputs the resulting conjectures
in TIP format, and Hipster translates them back into Isabelle/HOL (see Fig. 1).
The TIP-language is based on SMT-LIB [2], with extensions to accommodate
recursive datatypes and functions. It was originally designed for creation of a
shared benchmark repository for inductive theorem provers. TIP comes with a
number of tools for translating between it and various other formats, such as
standard SMT-LIB, TPTP [17] and Isabelle/HOL, as well as libraries for facili-
tating writing additional pretty printers and parsers for other prover languages
[15]. QuickSpec should therefore be relatively easy to integrate with additional
provers.

2.2 Proving Discovered Conjectures

When Hipster gets the set of candidate conjectures from QuickSpec, it enters
its proof loop, where it tries to prove each conjecture in turn. The proof loop is
shown in Fig. 2. Hipster is parametrised by two tactics, one for easy reasoning
and one for hard reasoning, with the idea being that conjectures proved by the
easy reasoning tactic are trivial, and not interesting enough to be presented to
the user. The hard reasoning tactic is more powerful, and the conjectures requir-
ing this tactic are considered interesting and are output to the user. Should
the proof fail the first time around, Hipster retries the conjecture at the next
iteration if any additional lemmas have been proved in between. Otherwise, the
unproved conjectures are also presented to the user. As QuickSpec has tested
each conjecture thoroughly it is likely to either be interesting as it is a theo-
rem with a difficult proof, or, have a very subtle counter-example. So far, the
combinations of hard and easy reasoning we have experimented with has been
various combinations of simplification and/or first order reasoning for the easy
reasoning tactic, and some form of induction for hard reasoning. We plan to do
a more thorough experimentation with different tactic combinations to extract
suitable heuristics.

As mentioned in the previous section, QuickSpec has its own heuristics for
reducing the search space and removing seemingly trivial conjectures. However,
QuickSpec does not know anything about Isabelle’s libraries, nor does it assume

Automated Theory Exploration for Interactive Theorem Proving 7

Easy ReasoningHard Reasoning

Isabelle Theory:
Datatypes, Functions,

Theorems

Conjectures

QuickSpec

Trivial - discard
Fail - retry

Proved -
keep

Fig. 2. Hipster’s proof loop. Conjectures from QuickSpec are discarded if they can be
proved by the easy reasoning tactic and presented to the user if they are proved by
the hard reasoning tactic. Conjectures not proved at the first attempt might be retried
once additional lemmas have been proved.

that it necessarily has access to the function definitions (when used as a stand-
alone tool, it is designed to be able to explore properties also about Haskell
programs which it can test, but not have the source code for). Hence, there will
usually always be at least a few trivial conjectures from the Isabelle point of
view. Priming QuickSpec with existing facts from Isabelle is future work.

Example 3 (Using Hipster for the maths homework). As an undergraduate at
Chalmers, you might be faced with something like the following exercise in your
discrete maths class: Prove that the rev function and the tail-recursive qrev func-
tion produce the same result: rev xs = qrev xs []. An Isabelle-savvy student
formalises this as follows and tries to prove the exercise using induction and
Isabelle’s Sledgehammer tool2:

fun qrev :: "’a list =>’a list =>’a list"

where

"qrev [] acc = acc"

| "qrev (x#xs) acc = qrev xs (x#acc)"

theorem hardExercise: "rev xs = qrev xs []"

apply (induct xs)

apply auto

sledgehammer

Unfortunately, not even Sledgehammer succeeds in proving the step-case, here
using the external provers CVC4 [1] and Z3 [8]:

2 The source code is at: https://github.com/moajohansson/IsaHipster/blob/master/
Examples/ITP2017/Qrev.thy.

https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Qrev.thy
https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Qrev.thy

8 M. Johansson

Sledgehammering...

"cvc4": Timed out

"z3": Timed out

Something must be missing, so let us use Hipster to see what it can discover
about these functions:

hipster rev qrev

lemma lemma_a [thy_expl]: "qrev (qrev z y) [] = qrev y z"

apply (induct z arbitrary: y)

apply simp

apply simp

done

lemma lemma_aa [thy_expl]: "rev y @ z = qrev y z"

apply (induct y arbitrary: z)

apply simp

apply simp

apply (metis append_eq_append_conv2 rev.simps(2) rev_append

rev_singleton_conv rev_swap)

done

Hipster returns two interesting lemmas which it needed its hard reasoning tactic
to prove. In this example, hard reasoning was set to structural induction followed
by simplification and/or Sledgehammer3, while the easy reasoning tactic was set
to just simplification and/or Sledgehammer. Note that the second discovered
lemma, lemma aa, is a generalisation of our theorem. This is exactly what we
need, as is confirmed by Sledgehammer:

theorem hardExercise: "rev xs = qrev xs []"

apply (induct xs)

apply auto

sledgehammer

by (metis lemma_aa) (*** This line is now found by Sledgehammer ***)

As a matter of fact, we could even prove the exercise without induction now, as
it is a special case of lemma aa.

Example 4 (Configuring Hipster’s proof methods). If we were to study the inter-
mediate output from Hipster while it is running on Example 3, we would notice
that there are in fact 17 lemmas discovered by QuickSpec, most of which got dis-
carded by Hipster. These include re-discovery of the function definitions (remem-
ber, QuickSpec does not assume it has direct access to the source code, only that
it can test functions), a couple of lemmas about rev already present in Isabelle’s
library, and also theorem hardExercise from Example 3. Why did it get dis-
carded?
3 The proof command metis (followed by a list of required library facts) in the proof

of lemma aa is produced by Sledgehammer. Metis is Isabelle’s built in first order
prover used to reconstruct proofs from external provers.

Automated Theory Exploration for Interactive Theorem Proving 9

The anser is simple: The conjectures returned from QuickSpec happens to come
in an order so that Hipster tries to prove hardExercise before it has tried the
essential lemma aa. The first proof attempt therefore fails, and it is returned to
the queue of open conjectures (see Fig. 2). In the next iteration of the proof-loop,
Hipster has already proved lemma aa and can prove hardExercise using just its
easy reasoning tactic (here Sledgehammer). Suppose we consider Hipster a bit
overzealous in its pruning, and want to see also proofs found by Sledgehammer.
We can easily reconfigure it to use a different combination of tactics, for example
an easy reasoning tactic which only use simplification with existing Isabelle facts,
and a hard reasoning tactic which use Sledgehammer or induction4:

setup Tactic_Data.set_sledge_induct_sledge

hipster rev qrev

...

lemma lemma_ab [thy_expl]: "qrev (qrev (qrev x2 z) y) x3 =

qrev y (qrev (qrev z x2) x3)"

apply (metis Qrev.lemma_aa append.assoc append.right_neutral lemma_a)

done

lemma lemma_ac [thy_expl]: "qrev y [] = rev y"

apply (metis Qrev.lemma_aa append.right_neutral)

done

Now, Hipster keeps two additional lemmas, which both follows from the
previously discovered lemmas by first-order reasoning. lemma ac is theorem
hardExercise with the left- and right-hand sides flipped, while lemma ab is a
slightly exotic formulation of associativity for qrev and arguably not something
a human would come up with.

3 Ongoing and Future Work

We plan to do a more comprehensive evaluation of various tactics in Hipster. As
we saw in Example 4, the results of theory exploration are different depending
on how we configure the hard- and easy reasoning tactics. Furthermore, there
is a trade-off in run-time depending on how powerful we make the respective
tactics. Experimental evaluation is needed to decide on some suitable heuristics
and default combinations. In the examples shown here, we only used structural
induction, but we would also like to compare it in detail to, for instance, recur-
sion induction based on function definitions as default [18]. An extension to
co-recursion and co-datatypes is also being developed as part of the MSc project
of Sólrún Halla Einarsdottir at Chalmers.

4 The interested reader may consult the file Tactic Data.ML in the Hipster source
code repository for details of several pre-defined combinations of easy/hard reasoning
tactics, as well as how to define additional ones.

10 M. Johansson

The version of Hipster described here is under active development, and not
all features has yet been ported to the new version which uses QuickSpec 2. The
first version of Hipster had some very basic support for discovery of conditional
equations [18], where the user specified a predicate for the condition, which
was passed to QuickSpec 1. Testing conditional equations is tricky, one need
to generate test-cases where the condition holds which is a non-trivial task. In
QuickSpec 1, the test-cases not satisfying the condition were just discarded,
meaning that many extra test-cases had to be evaluated and testing become
much slower and false conjectures are more likely to slip through. This has been
improved in QuickSpec 2 [16], but at the time of writing not fully integrated in
the new version of Hipster.

4 Summary

Hipster is a theory exploration system for Isabelle/HOL. It automatically conjec-
tures and proves basic lemmas about given functions and datatypes, which can
be particularly useful as part of an automated inductive theorem prover. Hip-
ster is parametrised by two proof strategies which can be set by the user, one
for easy reasoning and one for hard reasoning. Conjectures solved by easy rea-
soning (e.g. simplification) are considered trivial and uninteresting, while those
requiring hard reasoning (e.g. induction) are considered worth presenting to the
user.

Hipster use an external conjecture generation engine called QuickSpec. The
systems are connected via an interface language called TIP, which is an extension
of SMT-LIB, and related tools for parsing and pretty printing. We believe this
interface has potential to be very useful for connecting additional provers wishing
to benefit from theory exploration.

Hipster, QuickSpec and TIP are all under active development by our group
at Chalmers. We invite anyone interested to test the tools and contribute to
their development.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard. http://smtlib.cs.
uiowa.edu/standard.shtm

3. Buchberger, B.: Theory exploration with theorema. Analele Univ. Din Timis. ser.
Mat.-Inform. 38(2), 9–32 (2000)

4. Buchberger, B., Creciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema:
towards computer-aided mathematical theory exploration. J. Appl. Log. 4(4), 470–
504 (2006). Towards Computer Aided Mathematics

http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://smtlib.cs.uiowa.edu/standard.shtm
http://smtlib.cs.uiowa.edu/standard.shtm

Automated Theory Exploration for Interactive Theorem Proving 11

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating induc-
tive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38574-2 27

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). doi:10.
1007/978-3-319-20615-8 23

8. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

9. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.
J. Autom. Reason. 47(3), 251–289 (2011)

10. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122.
Springer, Cham (2014). doi:10.1007/978-3-319-08434-3 9

11. McCasland, R.L., Bundy, A., Smith, P.F.: Smith.: Ascertaining mathematical the-
orems. Electron. Notes Theor. Comput. Sci. 151(1), 21–38 (2006)

12. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem
discovery and concept invention. Expert Syst. Appl. 39(2), 1637–1646 (2012)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL–A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

14. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a
practical link between automatic and interactive theorem provers. In: IWIL-2010,
(2010)

15. Rosén, D., Smallbone, N.: TIP: tools for inductive provers. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 219–232.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 16

16. Smallbone, N., Johansson, M., Koen, C., Algehed, M.: Quick specifications for the
busy programmer. J. Funct. Program. 27, e18 (2017)

17. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

18. Lobo Valbuena, I., Johansson, M.: Conditional lemma discovery and recursion
induction in Hipster. In: ECEASST, vol. 72 (2015)

http://dx.doi.org/10.1007/978-3-642-38574-2_27
http://dx.doi.org/10.1007/978-3-642-38574-2_27
http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-08434-3_9
http://dx.doi.org/10.1007/978-3-662-48899-7_16

Automating Formalization by Statistical
and Semantic Parsing of Mathematics

Cezary Kaliszyk1(B), Josef Urban2, and Jǐŕı Vyskočil2

1 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac.at

2 Czech Technical University in Prague, Prague, Czech Republic

Abstract. We discuss the progress in our project which aims to auto-
mate formalization by combining natural language processing with deep
semantic understanding of mathematical expressions. We introduce the
overall motivation and ideas behind this project, and then propose a
context-based parsing approach that combines efficient statistical learn-
ing of deep parse trees with their semantic pruning by type checking
and large-theory automated theorem proving. We show that our learn-
ing method allows efficient use of large amount of contextual information,
which in turn significantly boosts the precision of the statistical parsing
and also makes it more efficient. This leads to a large improvement of
our first results in parsing theorems from the Flyspeck corpus.

1 Introduction: Learning Formal Understanding

Computer-understandable (formal) mathematics [17] is still far from taking over
the mathematical mainstream. Despite recent impressive formalizations such as
the Formal Proof of the Kepler conjecture (Flyspeck) [15], Feit-Thompson [9],
seL4 [23], CompCert [26], and CCL [1], formalizing proofs is still largely unap-
pealing to mathematicians. While research on AI and strong automation over
large theories has taken off in the last decade [2], so far there has been lit-
tle progress in automating the understanding of informal LaTEX-written and
ambiguous mathematical writings.

Automatic parsing of informal mathematical texts into formal ones has
been for long time considered a hard or impossible task. Among the state-of-
the-art Interactive Theorem Proving (ITP) systems such as HOL (Light) [16],
Isabelle [31], Mizar [11] and Coq [4], none includes automated parsing, instead
relying on sophisticated formal languages and mechanisms [7,10,13,28]. The
past work in this direction – most notably by Zinn [33] – has often been cited
as discouraging from such efforts.

C. Kaliszyk—Supported by the ERC Starting grant no. 714034 SMART.
J. Urban and J. Vyskočil—Supported by the ERC Consolidator grant
no. 649043 AI4REASON. This work was supported by the European
Regional Development Fund under the project AI&Reasoning (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000466).

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 12–27, 2017.
DOI: 10.1007/978-3-319-66107-0 2

Automating Formalization by Statistical and Semantic Parsing 13

We have recently initiated [21,22] a project to automatically learn formal
understanding of mathematics and exact sciences using a large corpus of align-
ments [8] between informal and formal statements. Such learning can addition-
ally integrate strong semantic filtering methods such as typechecking combined
with large-theory Automated Theorem Proving (ATP). In more detail, we believe
that the current state of human-based formalization can be significantly helped
by automatically learning how to formalize (“semanticize”) informal texts, based
on the knowledge available in existing large formal corpora. There are several
justifications for this belief:

1. Statistical machine learning (data-driven algorithm design) has been respon-
sible for a number of recent AI breakthroughs, such as web search, query
answering (IBM Watson), machine translation (Google Translate), image
recognition, autonomous car driving, etc. Given enough data to train on,
data-driven algorithms can automatically learn complicated sets of rules that
would be often hard to program and maintain manually.

2. The recent progress of formalization, provides reasonably large corpora such
as the Flyspeck project [15]. These, together with additional annotation [14],
can be used for experiments with machine learning of formalization. The
growth of such corpora is only a matter of time, and automated formalization
might gradually “bootstrap” this process, making it faster and faster.

3. Statistical machine learning methods have already turned out to be very
useful in proof assistant automation in large theories [2], showing that data-
driven techniques do apply also to mathematics.

4. Analogously, strong semantic automated reasoning in large theories [30]
(ARLT) methods are likely to be useful in the formalization field also for
complementing the statistical methods that learn formalization. This could
lead to hybrid understanding/thinking AI methods that self-improve on large
annotated corpora by cycling between (i) statistical prediction of the text dis-
ambiguation based on learning from existing annotations and knowledge, and
(ii) improving such knowledge by confirming or rejecting the predictions by
the semantic ARLT methods.

The last point (4) is quite unique to the domain of (informal/formal) mathemat-
ics, and a good independent reason to work on this AI research. There is hardly
any other domain where natural language processing (NLP) could be related
to such a firm and expressive semantics as mathematics has, which is addition-
ally to a reasonable degree already checkable with existing ITP and ARLT sys-
tems. Gradually improving the computer understanding of how mathematicians
(ab)use the normal imprecise vocabulary to convey ideas in the semantically
well-grounded mathematical world, may even improve the semantic treatment
of arbitrary natural language texts.

1.1 Contributions

This paper extends our previous short papers [21,22] on the informal-to-formal
translation. We first introduce the informal-to-formal setting (Sect. 2), sum-
marize our initial probabilistic context-free grammar (PCFG) approach of [21]

14 C. Kaliszyk et al.

(Sect. 3), and extend this approach by fast context-aware parsing mechanisms
that very significantly improve the performance.

– Limits of the context-free approach. We demonstrate on a minimal
example, that the context-free setting is not strong enough to eventually learn
correct parsing (Sect. 4) of relatively simple informal mathematical formulas.

– Efficient context inclusion via discrimination trees. We propose and
efficiently implement modifications of the CYK algorithm that take into
account larger parsing subtrees (context) and their probabilities (Sect. 5).
This modification is motivated by an analogy with large-theory reasoning sys-
tems and its efficient implementation is based on a novel use of fast theorem-
proving data structures that extend the probabilistic parser.

– Significant improvement of the informal-to-formal translation per-
formance. The methods are evaluated, both by standard (non-semantic)
machine-learning cross-validation, and by strong semantic methods available
in formal mathematics such as typechecking combined with large-theory auto-
mated reasoning (Sect. 6).

2 Informalized Flyspeck and PCFG

The ultimate goal of the informal-to-formal traslation is to automatically learn
parsing on informal LaTEX formulas that have been aligned with their formal
counterparts, as for example done by Hales for his informal and formal Flyspeck
texts [14,29]. Instead of starting with LaTEX, where only hundreds of aligned
examples are so far available for Flyspeck, we reuse the first large informal/for-
mal corpus introduced previously in [21], based on informalized (or ambiguated)
formal statements created from the HOL Light theorems in Flyspeck. This pro-
vides about 22000 informal/formal pairs of Flyspeck theorems.

2.1 Informalized Flyspeck

We apply the following ambiguating transformations [21] to the HOL parse trees
to obtain the aligned corpus:

– Merge the 72 overloaded instances defined in HOL Light/Flyspeck, such as
("+", "vector add"). The constant vector add is replaced by + in the
resulting sentence.

– Use the HOL Light infix operators to print them as infix in the informalized
sentences. Since + is declared as infix, vector add u v, would thus result in
u + v.

– Obtain the “prefixed” symbols from the list of 1000 most frequent symbols
by searching for: real , int , vector , nadd , treal , hreal ,
matrix , complex and make them ambiguous by forgetting the prefix.

– Overload various other symbols used to disambiguate expressions, for example
the “c”-versions of functions such as ccos cexp clog csin, similarly for
vsum, rpow, nsum, list sum, etc.

– Remove parentheses, type annotations, and the 10 most frequent casting func-
tors such as Cx and real of num.

Automating Formalization by Statistical and Semantic Parsing 15

2.2 The Informal-to-Formal Translation Task

The informal-to-formal translation task is to construct an AI system that will
automatically produce the most probable formal (in this case HOL) parse trees
for previously unseen informal sentences. For example, the informalized state-
ment of the HOL theorem REAL NEGNEG:

! A0 -- -- A0 = A0

has the formal HOL Light representation shown as a tree in Fig. 1.

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

Fig. 1. The HOL Light parse tree of REAL NEGNEG

Note that all overloaded symbols are disambiguated there, they are applied
with the correct arity, and all terms are decorated with their result types. To
solve the task, we allow (and assume) training on a sufficiently large corpus of
such informal/formal pairs.

2.3 Probabilistic Context Free Grammars

Given a large corpus of corresponding informal/formal formulas, how can we
train an AI system for parsing the next informal formula into a formal one?
The informal-to-formal domain differs from natural-language domains, where
millions of examples of paired (e.g., English/German) sentences are available for
training machine translation. The natural languages also have many more words

16 C. Kaliszyk et al.

(concepts) than in mathematics, and the sentences to a large extent also lack
the recursive structure that is frequently encountered in mathematics. Given
that there are currently only thousands of informal/formal examples, purely
statistical alignment methods based on n-grams seem inadequate. Instead, the
methods have to learn how to compose larger parse trees from smaller ones based
on those encountered in the limited number of examples.

A well-known approach ensuring such compositionality is the use of CFG
(Context Free Grammar) parsers. This approach has been widely used, e.g.,
in word-sense disambiguation. A frequently used CFG algorithm is the CYK
(Cocke–Younger–Kasami) chart-parser [32], based on bottom-up parsing. By
default CYK requires the CFG to be in the Chomsky Normal Form (CNF).
The transformation to CNF can cause an exponential blow-up of the grammar,
however, an improved version of CYK gets around this issue [25].

In linguistic applications the input grammar for the CFG-based parsers is
typically extracted from the grammar trees which correspond to the correct
parses of natural-language sentences. Large annotated treebanks of such cor-
rect parses exist for natural languages. The grammar rules extracted from the
treebanks are typically ambiguous: there are multiple possible parse trees for a
particular sentence. This is why CFG is extended by adding a probability to
each grammar rule, resulting in Probabilistic CFG (PCFG).

3 PCFG for the Informal-to-Formal Task

The most straightforward PCFG-based approach would be to directly use the
native HOL Light parse trees (Fig. 1) for extracting the PCFG. However, terms
and types are there annotated with only a few nonterminals such as: Comb (appli-
cation), Abs (abstraction), Const (higher-order constant), Var (variable), Tyapp
(type application), and Tyvar (type variable). This would lead to many possible
parses in the context-free setting, because the learned rules are very universal,
e.g.:

Comb -> Const Var. Comb -> Const Const. Comb -> Comb Comb.

The type information does not help to constrain the applications, and the last
rule allows a series of several constants to be given arbitrary application order,
leading to uncontrolled explosion.

3.1 HOL Types as Nonterminals

The approach taken in [21] is to first re-order and simplify the HOL Light parse
trees to propagate the type information at appropriate places. This gives the
context-free rules a chance of providing meaningful pruning information. For
example, consider again the raw HOL Light parse tree for REAL NEGNEG (Fig. 1).

Instead of directly extracting very general rules such as Comb -> Const Abs,
each type is first compressed into an opaque nonterminal. This turns the parse
tree of REAL NEGNEG into (see also Fig. 2):

Automating Formalization by Statistical and Semantic Parsing 17

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

Fig. 2. Transformed tree of REAL NEGNEG

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" real neg ("(Type real)" real neg ("(Type real)" (Var A0)))) = ("(Type real)"

(Var A0))))))

The CFG rules extracted from this transformed tree thus become more tar-
geted. For example, the two rules:

"(Type bool)" -> "(Type real)" = "(Type real)".

"(Type real)" -> real neg "(Type real)".

say that equality of two reals has type bool, and negation applied to reals
yields reals. Such learned probabilistic typing rules restrict the number of possible
parses much more than the general “application” rules extracted from the orig-
inal HOL Light tree. The rules still have a non-trivial generalization (learning)
effect that is needed for the compositional behavior of the information extracted
from the trees. For example, once we learn from the training data that the vari-
able ‘‘u’’ is mostly parsed as a real number, i.e.:

"(Type real)" -> Var u.

we will be able to apply real neg to u even if the subterm real neg u has never
yet been seen in the training examples, and the probability of this parse will be
relatively high.

18 C. Kaliszyk et al.

In other words, having the HOL types as semantic categories (correspond-
ing e.g. to word senses when using PCFG for word-sense disambiguation) is a
reasonable choice for the first experiments. It is however likely that even better
semantic categories can be developed, based on more involved statistical and
semantic analysis of the data such as latent semantics [5].

3.2 Semantic Concepts as Nonterminals

The last part of the original setting wraps ambiguous symbols, such as --, in their
disambiguated semantic/formal concept nonterminals. In this case $#real neg
would be wrapped around -- in the training tree when -- is used as negation
on reals. While the type annotation is often sufficient for disambiguation, such
explicit disambiguation nonterminal is more precise and allows easier extrac-
tion of the HOL semantics from the constructed parse trees. The actual tree of
REAL NEGNEG used for training the grammar is thus as follows (see also Fig. 3):

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" $#= "(Type real)"

$#real_neg "(Type real)"

-- $#real_neg "(Type real)"

-- Var

A0

= Var

A0

Fig. 3. The parse tree of REAL NEGNEG used for the actual grammar training

Automating Formalization by Statistical and Semantic Parsing 19

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" ($#real neg --) ("(Type real)" ($#real neg --) ("(Type real)" (Var A0))))

($#= =) ("(Type real)" (Var A0))))))

3.3 Modified CYK Parsing and Its Initial Performance

Once the PCFG is learned from such data, the CYK algorithm augmented with
fast internal semantic checks is used to parse the informal sentences. The seman-
tic checks are performed to require compatibility of the types of free variables in
parsed subtrees. The most probable parse trees are then typechecked by HOL
Light. This is followed by proof and disproof attempts by the HOL(y)Hammer
system [18], using all the semantic knowledge available in the Flyspeck library
(about 22000 theorems). The first large-scale disambiguation experiment con-
ducted over “ambiguated” Flyspeck in [21] showed that about 40% of the
ambiguous sentences have their correct parses among the best 20 parse trees
produced by the trained parser. This is encouraging, but certainly invites fur-
ther research in improving the statistical/semantic parsing methods.

4 Limits of the Context-Free Grammars

A major limiting issue when using PCFG-based parsing algorithms is the
context-freeness of the grammar. This is most obvious when using just the low-
level term constructors as nonterminals, however it shows often also in the more
advanced setting described above. In some cases, no matter how good are the
training data, there is no way how to set up the probabilities of the parsing rules
so that the required parse tree will have the highest probability. We show this
on the following simple example.

Example: Consider the following term t:

1 * x + 2 * x.

with the following simplified parse tree T0(t) (see also Fig. 4).
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

When used as the training data (treebank), the grammar tree T0(t) results in
the following set of CFG rules G(T0(t)):

S -> Num . Num -> 1
Num -> Num + Num Num -> 2
Num -> Num * Num Num -> x

This grammar allows exactly the following five parse trees T4(t), ..., T0(t)
when used on the original (non-bracketed) term t:

(S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .)
(S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .)
(S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .)
(S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .)
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

20 C. Kaliszyk et al.

S

Num .

Num + Num

Num * Num

1 x

Num * Num

2 x

Fig. 4. The grammar tree T0(t).

Here only the last tree corresponds to the original training tree T0(t). No
matter what probabilities p(Rulei) are assigned to the grammar rules G(T0(t)),
it is not possible to make the priority of + smaller than the priority of *. A
context-free grammar forgets the context and cannot remember and apply com-
plex mechanisms such as priorities. The probability of all parse trees is thus in
this case always the same, and equal to:

p(T4(t)) = ... = p(T0(t)) = p(S -> Num .) × p(Num -> Num + Num)
×p(Num -> Num * Num) × p(Num -> Num * Num)

×p(Num -> 1) × p(Num -> 2) × p(Num -> x) × p(Num -> x)

While the example’s correct parse does not strictly imply the priorities of +
and * as we know them, it is clear that we would like the grammar to prefer
parse trees that are in some sense more similar to the training data. One method
that is frequently used for dealing with similar problems in the NLP domain
is grammar lexicalization [3]. There an additional terminal can be appended
to nonterminals and propagated from the subtrees, thus creating many more
possible (more precise) nonterminals. This approach however does not solve the
particular problem with operator priorities. We also believe that considering
probabilities of larger subtrees in the data as we propose below is conceptually
cleaner than lexicalization.

5 Using Probabilities of Deeper Subtrees

Our solution is motivated by an analogy with the n-gram statistical machine-
translation models, and also with the large-theory premise selection systems.
In such systems, characterizing formulas by all deeper subterms and subfor-
mulas is feasible and typically considerably improves the performance of the

Automating Formalization by Statistical and Semantic Parsing 21

algorithms [20]. Considering subtrees of greater depth for updating the parsing
probabilities may initially seem computationally involved. Below we however
show that by using efficient ATP-style indexing datastructures such as discrim-
ination trees, this approach becomes feasible, solving in a reasonably clean way
some of the inherent problems of the context-free grammars mentioned above.

In more detail, our approach is as follows. We extract not just subtrees of
depth 2 from the treebank (as is done by the standard PCFG), but all subtrees
up to a certain depth. Other approaches – such as frequency-based rather than
depth-based – are possible. During the (modified) CYK chart parsing, the prob-
abilities of the parsed subtrees are adjusted by taking into account the statistics
of such deeper subtrees extracted from the treebank. The extracted subtrees are
technically treated as new “grammar rules” of the form:

root of the subtree − > list of the children of the subtree

Formally, for a treebank (set of trees) T, we thus define Gn(T) to be the
grammar rules of depth n extracted from T. The standard context-free gram-
mar G(T) then becomes G2(T), and we denote by Gn,m(T) where n ≤ m the
union1 Gn(T) ∪ ... ∪ Gm(T). The probabilities of these deeper grammar rules
are again learned from the treebank. Our current solution treats the nonter-
minals on the left-hand sides as disjoint from the old (standard CFG) nonter-
minals when counting the probabilities (this can be made more complicated
in the future). The right-hand sides of such new grammar rules thus contain
larger subtrees, allowing to compute the parsing probabilities using more con-
text/structural information than in the standard context-free case.

For the example term t from Sect. 4 this works as follows. After the extraction
of all subtrees of depth 2 and 3 and the appropriate adjustment of their proba-
bilities, we get a new extended set of probabilistic grammar rules G2,3(T0(t)) ⊃
G(T0(t)). This grammar could again parse all the five different parse trees
T4(t), ..., T0(t) as in Sect. 4, but now the probabilities p(T4(t)), ..., p(T0(t)) would
in general differ, and an implementation would be able to choose the training
tree T0(t) as the most probable one. In the particular implementation that we
use (see Sect. 5.1) its probability is:

p(T0(t)) = p(Num -> (Num 1)) × p(Num -> (Num x))
× p(Num -> (Num 2)) × p(Num -> (Num x))
× p(Num -> (Num Num * Num) + (Num Num * Num))
× p(S -> Num .)

Here the second line from the bottom stands for the probability of a subtree of
depth 3. For the case of the one-element treebank T0(t), p(T0(t)) would indeed
be the highest probability. On the other hand, the probability of some of the
other parses (e.g., T4(t) and T3(t) above) would remain unmodified, because in
such parses there are no subtrees of depth 3 from the training tree T0(t).
1 In general, a grammar could pick only some subtree depths instead of their contigu-

ous intervals, but we do not use such grammars now.

22 C. Kaliszyk et al.

5.1 Efficient Implementation of Deeper Subtrees

Discrimination trees [27], as first implemented by Greenbaum [12], index terms
in a trie, which keeps single path-strings at each of the indexed terms. A dis-
crimination tree can be constructed efficiently, by inserting terms in the traver-
sal preorder. Since discrimination trees are based on path indexing, retrieval of
matching subtrees during the parsing is straightforward.

We use a discrimination tree D to store all the subtrees Gn,m(T) from the
treebank T and to efficiently retrieve them together with their probabilities dur-
ing the chart parsing. The efficiency of the implementation is important, as
we need to index about half a million subtrees in D for the experiments over
Flyspeck. On the other hand, such numbers have become quite common in large-
theory reasoning recently and do not pose a significant problem. For memory
efficiency we use OCaml maps (implemented as AVL trees) in the internal nodes
of D. The lookup time thus grows logarithmically with the number of trees in
D, which is the main reason why we so far only consider trees of depth 3.

When a particular cell in the CYK parsing chart is finished (i.e., all its
possible parses are known), the subtree-based probability update is initiated.
The algorithm thus consists of two phases: (i) the standard collecting of all
possible parses of a particular cell, using the context-free rules G2(T) only, and
(ii) the computation of probabilities, which involves also the deeper (contextual)
subtrees G3,m(T).

In the second phase, every parse P of the particular cell is inspected, trying
to find its top-level subtrees of depths 3, ...,m in the discrimination tree D. If
a matching tree T is found in D, the probability of P is recomputed, using the
probability of T . There are various ways how to combine the old context-free
and the new contextual probabilities. The current method we use is to take the
maximum of the probabilities, keeping them as competing methods. As men-
tioned above, the nonterminals in the new subtree-based rules are kept disjoint
from the old context-free rules when computing the grammar rule probabilities.
The usual effect is that a frequent deeper subtree that matches the parse P gives
it more probability, because such a “deeper context parse” replaces the corre-
sponding two shallow (old context-free) rules, whose probabilities would have to
be multiplied.

Our speed measurement with depth 3 has shown that the new implementation
is (surprisingly) faster. In particular, when training on all 21695 Flypeck trees
and testing on 11911 of them with the limit of 10 best parses, the new version
is 23% faster than the old one (10342.75 s vs. 13406.97 s total time). In this
measurement the new version also failed to produce at least a single parse less
often than the old version (631 vs 818). This likely means that the deeper subtrees
help to promote the correct parse, which in the context-free version is considered
at some point too improbable to make it into the top 10 parses and consequently
discarded.

Automating Formalization by Statistical and Semantic Parsing 23

6 Experimental Evaluation

6.1 Machine Learning Evaluation

The main evaluation is done in the same cross-validation scenario as in [21]. We
create the ambiguous sentences (Sect. 2) and the disambiguated grammar trees
from all 21695 Flyspeck theorems,2 permute them randomly and split into 100
equally sized chunks of about 217 trees and their corresponding sentences. The
grammar trees serve for training and the ambiguous sentences for evaluation.
For each testing chunk Ci (i ∈ 1..100) of 217 sentences we train the probabilistic
grammar Pi on the union of the remaining 99 chunks of grammar trees (alto-
gether about 21478 trees). Then we try to get the best 20 parse trees for all the
217 sentences in Ci using the grammar Pi. This is done for the simple context-
free version (depth 2) of the algorithm (Sect. 3), as well as for the versions using
deeper subtrees (Sect. 5). The numbers of correctly parsed formulas and their
average ranks across the several 100-fold cross-validations are shown in Table 1.

Table 1. Numbers of correctly parsed Flyspeck theorems within first 20 parses and
their average ranks for subtree depths 2 to 7 of the parsing algorithm (100-fold cross-
validation).

Depth Correct parse found (%) Avg. rank of correct parse

2 8998 (41.5) 3.81

3 11003 (50.7) 2.66

4 13875 (64.0) 2.50

5 14614 (67.4) 2.34

6 14745 (68.0) 2.13

7 14379 (66.2) 2.17

It is clear that the introduction of deeper subtrees into the CYK algorithm
has produced a significant improvement of the parsing precision. The number of
correctly parsed formulas appearing among the top 20 parses has increased by 22%
between the context-free (depth 2) version and the subtree-based version when
using subtrees of depth 3, and it grows by 64% when using subtrees of depth 6.

The comparison of the average ranks is in general only a heuristic indicator,
because the number of correct parses found differ so significantly between the
methods.3 However, since the number of parses is higher in the better-ranking
methods, this improvement is also relevant. The average rank of the best subtree-
based method (depth 6) is only about 56% of the context-free method. The

2 About 1% of the longest Flyspeck formulas were removed from the evaluation to
keep the parsing times manageable.

3 If the context-free version parsed only a few terms, but with the best rank, its average
rank would be 1, but the method would still be much worse in terms of the overall
number of correctly parsed terms.

24 C. Kaliszyk et al.

results of the best method say that for 68% of the theorems the correct parse
of an ambiguous statement is among the best 20 parses, and its average rank
among them is 2.13.

6.2 ATP Evaluation

In the ATP evaluation we measure how many of the correctly parsed formulas the
HOL(y)Hammer system can prove, and thus help to confirm their validity. While
the machine-learning evaluation is for simplicity done by randomization, regard-
less of the chronological order of the Flyspeck theorems, in the ATP evaluation
we only allow facts that were already proved in Flyspeck before the currently
parsed formula. Otherwise the theorem-proving task becomes too easy, because
the premise-selection algorithm will likely select the theorem itself as the most
relevant premise. Since this involves large amount of computation, we only com-
pare the best new subtree-based method (depth 6) from Table 1 (subtree-6) with
the old context-free method (subtree-2).

In the ATP evaluation, the number of the Flyspeck theorems is reduced
from 21695 to 17018. This is due to omitting definitions and duplicities during
the chronological processing and ATP problem generation. For actual theorem
proving, we only use a single (strongest) HOL(y)Hammer method: the distance-
weighted k-nearest neighbor (k-NN) [6] using the strongest combination of fea-
tures [20] with 128 premises and running Vampire 4.0 [24]. Running the full
portfolio of 14 AI/ATP HOL(y)Hammer strategies for hundreds of thousands
problems would be too computationally expensive.

Table 2 shows the results. In this evaluation we also detect situations when an
ambiguated Flyspeck theorem T1 is parsed as a different known Flyspeck theorem
T2. We call the latter situation other library theorem (OLT). The removal of
definitions and duplicitites made the difference in the top-20 correctly parsed
sentences even higher, going from 33.8% for subtree-2 to 63.1% in subtree-6. This
is an improvement of 86.9%. A correspondingly high increase between subtree-2

Table 2. Statistics of the ATP evaluation for subtree-2 and subtree-6. The total number
of theorems tried is 17018 and we require 20 best parses. OLT stands for other library
theorem.

Subtree-2 (%) Subtree-6 (%)

At least one parse (limit 20) 14101 (82.9) 16049 (94.3)

At least one correct parse 5744 (33.8) 10735 (63.1)

At least one OLT parse 808 (4.7) 1584 (9.3)

At least one parse proved 5682 (33.3) 7538 (44.3)

Correct parse proved 1762 (10.4) 2616 (15.4)

At least one OLT parse proved 525 (3.1) 814 (4.8)

The first parse proved is correct 1168 (6.7) 2064 (12.1)

The first parse proved is OLT 332 (2.0) 713 (4.2)

Automating Formalization by Statistical and Semantic Parsing 25

and subtree-6 is also in the number of situations when the first parse is correct
(or OLT) and HOL(y)Hammer can prove it using previous Flyspeck facts. The
much greater easiness of proving existing library theorems than proving new
theorems explains the high number of provable OLTs when compared to their
total number of occurences. Such OLT proofs are however easy to filter out when
using HOL(y)Hammer as a semantic filter for the informal-to-formal translation.

7 Conclusion and Future Work

In this paper, we have introduced our project aiming at automated learning of
formal understanding of mathematics. In comparison to our first results [21], we
have introduced efficient context-based learning and parsing, which significantly
increases the success rate of the informal-to-formal translation task on the Fly-
speck corpus. The overall improvement in the number of correct parses among
the top 20 is 64%, and even higher (86.9%) when omitting duplicities and defin-
itions. The average rank of the correct parse has decreased to about 56% of the
previous approach. We believe that the contextual approach to enhancing CYK
we took is rather natural (in particular more natural than lexicalization), the
discrimination tree indexing scales to this task, and the performance increase is
very impressive.

Future work includes adding further semantic checks and better probabilistic
ranking subroutines directly into the parsing process. The chart-parsing algo-
rithm is easy to extend with such checks and subroutines, and already the cur-
rent semantic pruning of parse trees that have incompatible variable types is
extremely important. While some semantic relations might eventually be learn-
able by less efficient learning methods such as recurrent neural networks (RNNs),
we believe that the current approach allows more flexible experimenting and non-
trivial integration and feedback loops between advanced deductive and learning
components. A possible use of RNNs in such a setup is for better ranking of
subtrees and for global focusing of the parsing process.

An example of a more sophisticated deductive algorithm that should be easy
to integrate is congruence closure over provably equal (or equivalent) parsing
subtrees. For example, ‘‘a * b * c’’ can be understood with different brack-
eting, different types of the variables and different interpretations of *. However,
* is almost always associative across all types and interpretations. Human read-
ers know this, and rather than considering differently bracketed parses, they
focus on the real problem, i.e., which types to assign to the variables and how to
interpret the operator in the current context. To be able to emulate this ability,
we would cache directly in the chart parsing algorithm the results of large-theory
ATP runs on many previously encountered equalities, and use them for fast con-
gruence closure over the subtrees.

Similar ATP/logic-based components also seem necessary for dealing with
more involved type systems and human-like parsing layers, such as the one used
by the Mizar system. Our first experiments in combining the contextual parsing
with ATPs to deal with phenomena like hidden variables and intersection types
are described in [19].

26 C. Kaliszyk et al.

References

1. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J.
Autom. Reason. 29(3–4), 189–224 (2002)

2. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formaliz. Reason. 9(1), 101–148 (2016)

3. Collins, M.: Three generative, lexicalised models for statistical parsing. In: Cohen,
P.R., Wahlster, W. (eds.) Proceedings of the 35th Annual Meeting of the Associ-
ation for Computational Linguistics and 8th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 16–23. Morgan Kaufmann
Publishers/ACL (1997)

4. The Coq Proof Assistant. http://coq.inria.fr
5. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:

Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)
6. Dudani, S.A.: The distance-weighted K-nearest-neighbor rule. IEEE Trans. Syst.

Man Cybern. 6(4), 325–327 (1976)
7. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical

structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03359-9 23

8. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol.
8543, pp. 267–281. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3 20

9. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 14

10. Gonthier, G., Tassi, E.: A language of patterns for subterm selection. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 361–376. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32347-8 25

11. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. 3(2), 153–245 (2010)

12. Greenbaum, S.: Input transformations and resolution implementation techniques
for theorem-proving in first-order logic. Ph.D. thesis, University of Illinois at
Urbana-Champaign (1986)

13. Haftmann, F., Wenzel, M.: Constructive type classes in isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74464-1 11

14. Hales, T.: Dense Sphere Packings a Blueprint for Formal Proofs, London Mathemat-
ical Society Lecture Note Series, vol. 400. Cambridge University Press, Cambridge
(2012)

15. Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L.,
Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow,
T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T.,
Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015

16. Harrison, J.: HOL Light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). doi:10.
1007/BFb0031814

17. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In:
Siekmann, J.H. (ed.) Computational Logic. Handbook of the History of Logic, vol.
9. Elsevier, Amsterdam (2014)

http://coq.inria.fr
http://dx.doi.org/10.1007/978-3-642-03359-9_23
http://dx.doi.org/10.1007/978-3-642-03359-9_23
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-32347-8_25
http://dx.doi.org/10.1007/978-3-540-74464-1_11
http://dx.doi.org/10.1007/BFb0031814
http://dx.doi.org/10.1007/BFb0031814

Automating Formalization by Statistical and Semantic Parsing 27

18. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reason. 53(2), 173–213 (2014)

19. Kaliszyk, C., Urban, J., Vyskocil, J.: System description: statistical parsing of
informalized Mizar formulas. http://grid01.ciirc.cvut.cz/mptp/synasc17sd.pdf

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp.
3084–3090. AAAI Press, Menlo Park (2015)

21. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (rough
diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227–233.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 15

22. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based
translation methods between informal and formal mathematics: project descrip-
tion. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 435–439. Springer, Cham (2014). doi:10.1007/
978-3-319-08434-3 34

23. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an operating-system kernel. Commun. ACM
53(6), 107–115 (2010)

24. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39799-8 1

25. Lange, M., Leiß, H.: To CNF or not to CNF? an efficient yet presentable ver-
sion of the CYK algorithm. Inform. Didact. 8, 1–21 (2009). https://www.infor
maticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf

26. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

27. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
Volumes). Elsevier and MIT Press, Cambridge (2001)

28. Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar
system. J. Symb. Comput. 32(1/2), 143–169 (2001)

29. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display:
a wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 152–167. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39320-4 10

30. Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerg-
ing AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and
Mathematics. LNCS, vol. 7788, pp. 240–257. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36675-8 13

31. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-71067-7 7

32. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Inf.
Control 10(2), 189–208 (1967)

33. Zinn, C.: Understanding informal mathematical discourse. Ph.D. thesis, University
of Erlangen-Nuremberg (2004)

http://grid01.ciirc.cvut.cz/mptp/synasc17sd.pdf
http://dx.doi.org/10.1007/978-3-319-22102-1_15
http://dx.doi.org/10.1007/978-3-319-08434-3_34
http://dx.doi.org/10.1007/978-3-319-08434-3_34
http://dx.doi.org/10.1007/978-3-642-39799-8_1
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
http://dx.doi.org/10.1007/978-3-642-39320-4_10
http://dx.doi.org/10.1007/978-3-642-36675-8_13
http://dx.doi.org/10.1007/978-3-642-36675-8_13
http://dx.doi.org/10.1007/978-3-540-71067-7_7

A Formalization of Convex Polyhedra
Based on the Simplex Method

Xavier Allamigeon1(B) and Ricardo D. Katz2

1 Inria and CMAP, Ecole Polytechnique, CNRS, Université Paris–Saclay,
Paris, France

xavier.allamigeon@inria.fr
2 CIFASIS-CONICET, Rosario, Argentina

katz@cifasis-conicet.gov.ar

Abstract. We present a formalization of convex polyhedra in the proof
assistant Coq. The cornerstone of our work is a complete implementa-
tion of the simplex method, together with the proof of its correctness and
termination. This allows us to define the basic predicates over polyhedra
in an effective way (i.e. as programs), and relate them with the corre-
sponding usual logical counterparts. To this end, we make an extensive
use of the Boolean reflection methodology. The benefit of this approach
is that we can easily derive the proof of several essential results on poly-
hedra, such as Farkas Lemma, duality theorem of linear programming,
and Minkowski Theorem.

1 Introduction

Convex polyhedra play a major role in many different application areas of math-
ematics and computer science, including optimization and operations research,
control theory, combinatorics, software verification, compilation and program
optimization, constraint solving, etc. Their success mainly comes from the fact
that they provide a convenient tradeoff between expressivity (conjunction of lin-
ear inequalities) and tractability. As an illustration of the latter aspect, linear
programming, i.e., the class of convex optimization problems over linear inequal-
ity constraints, can be solved in polynomial time [14].

Among the aforementioned applications of polyhedra, there are some which
are critical. For instance, in software verification or control theory, polyhedra
are used to provide guarantees on the safety of programs [6] or the stability of
dynamical systems [12]. On the mathematical side, polyhedra are still a very
active research subject. Let us mention Steve Smale’s 9th problem for the 21th

century (whether linear programming can be solved in strongly polynomial com-
plexity) [17], or the open questions on the diameter of polytopes following the

The authors were partially supported by the programme “Ingénierie Numérique &
Sécurité” of ANR, project “MALTHY”, number ANR-13-INSE-0003, by a public
grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-
LMH, LabEx LMH and by the PGMO program of EDF and FMJH.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 28–45, 2017.
DOI: 10.1007/978-3-319-66107-0 3

A Formalization of Convex Polyhedra Based on the Simplex Method 29

disproof of the Hirsch conjecture [16]. In particular, (informal) mathematical
software play an increasing role in testing or disproving conjectures (see e.g. [4]).
All this strongly motivates the need to formalize convex polyhedra in a proof
assistant, in order to increase the level of trust in their applications.

In this paper, we present the first steps of a formalization of the theory
of convex polyhedra in the proof assistant Coq. A motivation for using Coq
comes from the longer term objective of formally proving some mathematical
results relying on large-scale computation (e.g., Santos’ counterexample to the
Hirsch conjecture [16]). The originality of our approach lies in the fact that our
formalization is carried out in an effective way, in the sense that the basic pred-
icates over polyhedra (emptiness, boundedness, membership, etc.) are defined
by means of Coq programs. All these predicates are then proven to correspond
to the usual logical statements. The latter take the form of the existence of
certificates: for instance, the emptiness of a polyhedron is shown to be equiva-
lent to the existence of a certificate a la Farkas (see Corollary 1 for the precise
statement). This equivalence between Boolean predicates and formulas living
in the kind Prop is implemented by using the boolean reflection methodology,
and the supporting tools provided by the Mathematical Components library and
its tactic language [11]. The benefit of the effective nature of our approach is
demonstrated by the fact that we easily arrive at the proof of important results
on polyhedra, such as several versions of Farkas Lemma, duality theorem of
linear programming, separation from convex hulls, Minkowski Theorem, etc.

Our effective approach is made possible by implementing the simplex method
inside Coq, and proving its correctness and termination. Recall that the simplex
method is the first algorithm introduced to solve linear programming [7]. Two
difficulties need to be overcome to formalize it. On the one hand, we need to
deal with its termination. More precisely, the simplex method iterates over the
so-called bases. Its termination depends on the specification of a pivoting rule,
whose aim is to determine, at each iteration, the next basis. In this work, we
have focused on proving that the lexicographic rule [8] ensures termination. On
the other hand, the simplex method is actually composed of two parts. The part
that we previously described, called Phase II, requires an initial basis to start
with. Finding such a basis is the purpose of Phase I. It consists in building an
extended problem (having a trivial initial basis), and applying to it Phase II.
Both phases need to be formalized to obtain a fully functional algorithm.

We point out that our goal here is not to obtain a practically efficient imple-
mentation of the simplex method (e.g., via the code extraction facility of Coq).
Rather, we use the simplex method as a tool in our proofs and, in fact, it turns
out to be the cornerstone of our approach, given the intuitionistic nature of the
logic in Coq. Thus, we adopt the opposite approach of most textbooks on linear
programming where, firstly, theoretical results (like the ones mentioned above)
are proven, and then the correctness of the simplex method is derived from them.

The formalization presented in this paper can be found in a library developed
by the authors called Coq-Polyhedra.1 As mentioned above, our formalization

1 Available in a git repository at https://github.com/nhojem/Coq-Polyhedra.

https://github.com/nhojem/Coq-Polyhedra

30 X. Allamigeon and R.D. Katz

is based on the Mathematical Components library (MathComp for short). On
top of providing a convenient way to use Boolean reflection, this library contains
most of the mathematical tools needed to formalize the simplex method (linear
algebra, advanced manipulations of matrices, etc).

Related Work. Our approach has been strongly influenced by the formalization
of abstract linear algebra in the Mathematical Components library, which is done
in an effective way by exploiting a variant of Gaussian elimination [10].

As far as we know, this is the first formalization of the simplex method in the
Calculus of Constructions. In this paradigm, the only work concerning convex
polyhedra we are aware of is the implementation of Fourier–Motzkin elimination
on linear inequalities in Coq, leading to a proof of Farkas Lemma [15]. Our work
follows a different approach, relying on the theory of linear programming, which
has the advantage of providing certificates for the basic predicates over polyhe-
dra. Concerning other families of logics, HOL Light provides a very complete
formalization of convex polyhedra, including several important results (Farkas
Lemma, Minkowski Theorem, Euler–Poincaré formula, etc) [13]. The classical
nature of the logic implemented in HOL Light makes it difficult to compare this
work with ours. In Isabelle, an implementation of a simplex-based satisfiability
procedure for linear arithmetics has been carried out [18]. This is motivated
by obtaining a practical and executable code for SMT solving purposes. Here,
we are driven by using the simplex method for mathematical proving, which
explains why we obtain a completely different kind of formalization.

Finally, the theory of convex polyhedra is widely used in the area of for-
mal proving as an “informal backend” which helps to establish the validity of
some linear inequalities. In more detail, such inequalities are proven by formally
checking certificates which are built by untrusted oracles based on linear pro-
gramming. As illustrations, this allows to automate the deduction of some linear
inequalities in proof assistants (see e.g. [3]), or to certify the computations made
by static analysis tools [9].

Organization of the Paper. In Sect. 2, we introduce basic concepts and results
on polyhedra and linear programming. In Sect. 3, we describe the main compo-
nents of the simplex method, and start its formalization. The lexicographic rule
is dealt with in Sect. 4. The two phases of the simplex method are formalized in
Sects. 5 and 6, along with some of the main mathematical results that can be
derived from them. Finally, we discuss the outcome of our work in Sect. 7.

By convention, all Coq definitions, functions, theorems, etc introduced in
our work are highlighted in blue. This is to distinguish them from the existing
material, in particular, the ones brought from the MathComp library. We inform
the reader that the vast majority of the results described in this paper (especially
the ones of Sects. 3 to 6) are gathered in the file simplex.v of Coq-Polyhedra.

2 Polyhedra, Linear Programming and Duality

A (convex) polyhedron is a set of the form P(A, b) := {x ∈ R
n | Ax ≥ b},

where A ∈ R
m×n and b ∈ R

m. The notation ≥ stands for the partial ordering

A Formalization of Convex Polyhedra Based on the Simplex Method 31

over vectors, meaning that y ≥ z when yi ≥ zi for all i. In geometric terms, a
polyhedron corresponds to the intersection of finitely many halfspaces. A (affine)
halfspace refers to a set of the form {x ∈ R

n | 〈a, x〉 ≥ β}, where a ∈ R
n, β ∈ R,

and 〈·, ·〉 stands for the Euclidean scalar product, i.e., 〈x, y〉 :=
∑

i xiyi.
More generally, convex polyhedra can be defined over any ordered field. This

is why our formalization relies on a variable R of the type realFieldType of
MathComp, whose purpose is to represent an ordered field in which the inequal-
ity is decidable. Assume that m and n are variables of type nat. The types
’M[R]_(m,n) and ’cV[R]_m provided by MathComp respectively represent matri-
ces of size m × n and column vectors of size m with entries of type R. In this
paper, we usually omit R in the notation of these types, for the sake of read-
ability. The polyhedron associated with the matrix A:’M_(m,n) and the vector
b:’cV_m is then defined by means of a Boolean predicate, using the construction
pred of MathComp:
Definition polyhedron A b := [pred x:’cV_n | (A *m x) >=m b].

Here, *m stands for the matrix product, and >=m for the entrywise ordering of
vectors: y <=m z if and only if y i 0 <= z i 0 for all i, where y i 0 and z i 0

are respectively the ith entry of the vectors y and z (see vector order.v).
Linear programming consists in optimizing a linear map x ∈ R

n �→ 〈c, x〉
over a polyhedron, such as:

minimize 〈c, x〉
subject to Ax ≥ b , x ∈ R

n (LP(A, b, c))

Let us introduce a bit of terminology. A problem of the form LP(A, b, c) is referred
to as a linear program (see Fig. 1 for an example). A vector x ∈ R

n satisfying
the constraint Ax ≥ b is a feasible point of this linear program. The polyhedron
P(A, b), which consists of the feasible points, is called the feasible set. The map
x �→ 〈c, x〉 is the objective function. The optimal value is defined as the infimum
of 〈c, x〉 for x ∈ P(A, b). A point x ∈ P(A, b) reaching this infimum is called
optimal solution. When P(A, b) is not empty, the linear program LP(A, b, c)
is said to be feasible, and its optimal value is either finite, or −∞ (when the
quantity 〈c, x〉 is not bounded from below over P(A, b)). In the latter case, we
say that the linear program is unbounded (from below). Finally, when P(A, b) is
empty, the linear program is infeasible, and its value is defined to be +∞.

A fundamental result in linear programming relates the optimal value of
LP(A, b, c) with the one of another linear program which is dual to it. In more
detail, the dual linear program of LP(A, b, c) is the following linear program:

maximize 〈b, u〉
subject to ATu = c , u ≥ 0 , u ∈ R

m (DualLP(A, b, c))

where AT stands for the transpose of A. Notice that DualLP(A, b, c) is a linear
program as well. Indeed, its constraints can be rewritten into a block system(

AT

−AT

Im

)

u ≥
(

c−c
0

)
, where Im is the m × m identity matrix. Besides, the max-

imization problem can be turned into a minimization problem with objective

32 X. Allamigeon and R.D. Katz

function x �→ 〈−b, x〉. We denote by Q(A, c) the feasible set of DualLP(A, b, c),
and we refer to it as the dual polyhedron. Assuming c is a variable of type ’cV_n

(i.e., representing a vector in R
n), we adopt a specific formalization for this

polyhedron, as follows:
Definition dual_polyhedron A c := [pred u:’cV_m | AˆT ∗m u == c & (u >=m 0)].

As opposed to the dual linear program, LP(A, b, c) is referred to as the primal
linear program. The interplay between the primal and dual linear programs is
described by the following result:

Theorem 1 (Strong duality). If one of the two linear programs LP(A, b, c)
or DualLP(A, b, c) is feasible, then they have the same optimal value.

In addition, when both are feasible, then the optimal value is attained by a
primal feasible point x∗ ∈ P(A, b) and by a dual feasible point u∗ ∈ Q(A, c).

x1

x2

{1, 5} {4, 5}

{2, 4}

{2, 3}

{1, 3}

minimize 3x1 + x2

subject to x1 + x2 ≥ 4

−x1 − 3x2 ≥ −23

4x1 − x2 ≥ 1

−2x1 + x2 ≥ −11

x2 ≥ 1

1

2

3

4

5

Fig. 1. A linear program. The feasible set is depicted in gray. The direction in which
the objective function decreases is represented by a dashdotted oriented line, and some
level sets (i.e., sets of the form {x ∈ R

2 | 3x1 + x2 = α}, where α ∈ R) are drawn in
blue dotted lines. The basic points are represented by dots, and are annotated with
the corresponding bases. The optimal basic point is highlighted in green. (Color figure
online)

In particular, when DualLP(A, b, c) is feasible and its optimal value is +∞,
the primal linear program LP(A, b, c) is necessarily infeasible. This holds for any
choice of the vector c, including c = 0. Observe that DualLP(A, b, 0) obviously
admits u = 0 as a feasible point. Hence, we readily obtain a characterization of
the emptiness of the polyhedron P(A, b):

Corollary 1 (Farkas Lemma). The polyhedron P(A, b) is empty if, and only
if, the optimal value of DualLP(A, b, 0) is +∞, or, equivalently, there exists
u ∈ R

m such that u ≥ 0, ATu = 0 and 〈b, u〉 > 0.

The first part of Corollary 1 shows a way to formalize the emptiness property
of polyhedra in an effective fashion, e.g., as a program computing the value

A Formalization of Convex Polyhedra Based on the Simplex Method 33

of DualLP(A, b, 0) inside the proof assistant and comparing it to +∞. This is
precisely the approach that we have adopted in this work. As we shall see in
Sect. 7, it also applies to other properties over polyhedra.

3 The Three Ingredients of the Simplex Method

Bases and Basic Points. In order to solve the linear program LP(A, b, c), the
simplex method iterates over the feasible bases, up to reaching one corresponding
to an optimal solution or concluding that the optimal value is −∞. A basis is
a subset I of {1, . . . , m} with cardinality n such that the square matrix AI ,
formed by the rows Ai of A indexed by i ∈ I, is invertible. With each basis I,
it is associated a basic point defined as xI := (AI)−1bI . The basis I is said to
be feasible when the point xI is feasible. It is said to be optimal when xI is an
optimal solution of the linear program. We refer to Fig. 1 for an illustration.

In geometric terms, a basis corresponds to a set of n hyperplanes Aix = bi
which intersect in a single point. The basis is feasible when this point belongs to
the feasible set P(A, b). It can be shown that feasible basic points precisely cor-
respond to the vertices, i.e., the 0-dimensional faces, of the polyhedron P(A, b).

Formalization of bases and feasible bases is performed by introducing three
layers of types. We start with a type corresponding to prebases, i.e., subsets of
{1, . . . , m} with cardinality n.
Inductive prebasis := Prebasis (I: {set ’I_m}) of (#|I| == n).

Here, ’I_m stands for the finite subtype of i:nat such that i < m (cf. Interface
finType of MathComp). A term I of type represents a finite set of
elements of type ’I_m, and #|I| corresponds to its cardinality.

Defining bases then requires us to deal with submatrices of the form AI . This
is the purpose of the library row submx.v of Coq-Polyhedra, where we define:
Definition row_submx (A:’M_(m,n)) (I:{set ’I_m}) :=

(\matrix_(i < #|I|, j < n) A (enum_val i) j) : ’M_(#I, n).

In this definition, \matrix (i < p,j < q) Expr(i,j) is the matrix (of type
’M_(p,q)) whose (i, j) entry is Expr(i,j). The function enum val retrieves the
ith element of the set I. Even when I has cardinality n, the submatrix row submx
A I does not have type ’M_n, i.e., that of square matrices of size n × n. Indeed, in
MathComp, matrices are defined using dependent types (depending on the size).
Thus the two types ’M_n and M_(#|I|,n) are distinct, and we use the function
castmx to explicitly do the glueing job. The square matrix AI is thus formalized
as follows:
Definition matrix_of_prebasis (A:’M_(m,n)) (I:prebasis) :=

castmx (prebasis_card I, erefl n) (row_submx A I) : ’M_n.

where prebasis_card I is a proof of the fact that #|I| = n and erefl n of the fact
that n = n. Assuming the variables A:’M_(m,n) and b:’cV_m have been previously
declared, the type representing bases is then defined by:

34 X. Allamigeon and R.D. Katz

Inductive basis := Basis (I:prebasis) of (matrix_of_prebasis A I) \in unitmx.

where the type unitmx represents the set of invertible matrices. The basic point
associated with a basis I is determined by a function called point_of_basis:
Definition point_of_basis (I:basis) :=

(invmx (matrix_of_prebasis A I)) *m (matrix_of_prebasis b I).

where invmx Q returns the inverse of the matrix Q. From this, we can define the
type of feasible bases:
Inductive feasible_basis :=

FeasibleBasis (I:basis) of point_of_basis I \in polyhedron A b.

Reduced Costs. The simplex method stops when the current feasible basic
point is an optimal solution of LP(A, b, c). This is determined thanks to the so-
called reduced cost vector. The reduced cost vector associated with the basis I
is defined as u := A−T

I c, where A−T
I denotes the inverse of the transpose matrix

of AI . On the Coq side, assuming c is a variable of type ’cV_n, this leads to:
Definition reduced_cost_of_basis (I:basis) :=

(invmx (matrix_of_prebasis A I)^T) *m c : ’cV_n.

where Q^T stands for the transpose of the matrix Q. When u ≥ 0 and I is feasible,
the associated basic point is optimal:
Lemma optimal_cert_on_basis (I:feasible_basis) :

(reduced_cost_of_basis I) >=m 0 ->

forall y, y \in polyhedron A b -> ’[c, point_of_basis I] <= ’[c,y].

Here, the notation ’[.,.] corresponds to the scalar product 〈·, ·〉 (see the file
inner product.v in Coq-Polyhedra).

Strong duality lies in the core of the simplex method. To see this, consider the
extended reduced cost vector ū ∈ R

m, which is defined by ūi := ui if i ∈ I, and
ūi := 0 otherwise. On the Coq side, this extended vector is built by the function
ext_reduced_cost_of_basis: basis -> ’cV_m. When u ≥ 0, ū is a feasible point
of the dual linear program DualLP(A, b, c), and it has the same objective value
as the basic point xI :
Lemma ext_reduced_cost_dual_feasible (I:basis) :

let: u := reduced_cost_of_basis I in

u >=m 0 = (ext_reduced_cost_of_basis I \in dual_polyhedron A c).

Lemma eq_primal_dual_value (I:basis) :

’[c, point_of_basis I] = ’[b, ext_reduced_cost_of_basis I].

As a consequence, proving the termination of the simplex method is one of the
possible ways to establish the duality theorem of linear programming.

Pivoting. Pivoting refers to the operation of moving from a feasible basis to
a “better” one, chosen according to what is known as the pivoting rule. More
precisely, when the reduced cost vector u associated with the current feasible
basis I does not satisfy u ≥ 0, the pivoting rule selects an index i ∈ I such
that ui < 0, which is called the leaving variable, and builds the direction vector
d := (AI)−1ei (where ei is the ith vector of the canonical base of Rn):

A Formalization of Convex Polyhedra Based on the Simplex Method 35

Definition direction (I:basis) (i:’I_n) :=

let: ei := (delta_mx i 0):’cV_n in

(invmx (matrix_of_prebasis A I)) *m ei.

along which the objective function x �→ 〈c, x〉 decreases:
Lemma direction_improvement c (I:basis) (i:’I_n) :

let: u := reduced_cost_of_basis c I in

u i 0 < 0 -> ’[c, direction I i] < 0.

As a consequence, the simplex method moves along the halfline {xI +λd | λ ≥ 0}
in order to decrease the value of the objective function. When d is a feasible direc-
tion, i.e., Ad ≥ 0, this halfline is entirely contained in the polyhedron P(A, b). In
this case, we can easily show that the linear program LP(A, b, c) is unbounded:
Definition feasible_dir A := [pred d | (A *m d) >=m 0].

Lemma unbounded_cert_on_basis (I:feasible_basis) (i:’I_n) :

let: u := reduced_cost_of_basis c I in

let: d := direction I i in

feasible_dir A d -> u i 0 < 0 ->

forall M, exists x, (x \in polyhedron A b) /\ (’[c,x] < M).

In contrast, if d is not a feasible direction, moving along the halfline {xI + λd |
λ ≥ 0} makes the simplex method eventually hit the boundary of one of the
halfspaces {x ∈ R

n | Ajx ≥ bj} delimiting P(A, b). This happens precisely when
λ reaches the threshold value λ̄ defined by:

λ̄ = min
j

{
bj − Ajx

I

Ajd
| Ajd < 0

}

. (1)

The indexes attaining the minimum in Eq. (1) correspond to the halfspaces
which are hit. Then, the pivoting rule selects one of them, say j, which is called
the entering variable, and the next basis is defined as J := (I \ {i}) ∪ {j}. In
this way, it can be shown that J is a feasible basis, and that 〈c, xJ 〉 ≤ 〈c, xI〉.

The major difficulty arising in this scheme is the possibility that λ̄ = 0, or,
equivalently, that several bases correspond to the same basic point. Such bases
are said to be degenerate, and constitute the only obstacle to the termination
of the simplex method. In the presence of degenerate bases, the pivoting rule
needs to choose carefully the entering and leaving variables in order to avoid
cycling over them. Our formalization of the simplex method is based on a rule
having this property, called the lexicographic rule [8], which is described in the
next section.

4 Lexicographic Pivoting Rule

In informal terms, the lexicographic rule acts as if the vector b was replaced by a
perturbed vector b̃ defined by b̃i := bi − εi, where ε is a small positive parameter
(here εi is the usual exponentiation). The advantage of perturbing b in such a
way is that there is no degenerate basis anymore. However, as we shall see, the
feasible bases of the polyhedron P(A, b̃) only form a subset of the feasible bases

36 X. Allamigeon and R.D. Katz

of P(A, b). The former are called lex-feasible bases, and they constitute the set
of bases over which the simplex method with the lexicographic rule iterates.

In the formalization, which is carried out in Section Lexicographic_rule of
simplex.v, we have chosen to use a symbolic perturbation scheme in order to
avoid dealing with numerical values for ε.2 In this symbolic perturbation scheme,
a row vector v = (v0, . . . , vm) ∈ R

1×(1+m) encodes the perturbed quantity
v0 +

∑m
i=1 viε

i. The vector b̃ is then implemented as a row block matrix built
from the column vector b and the opposite of the identity matrix -(1%:M) of
order m:
Definition b_pert := (row_mx b -(1%:M)):’M_(m,1+m).

In this way, the matrix b pert can be thought of as a column vector whose
ith entry is the row vector (bi, 0, . . . , 0,−1, 0, . . . , 0), representing the quantity
bi − εi, as desired. Given a basis, the associated “perturbed” basic point is then:
Definition point_of_basis_pert (I:basis) :=

(invmx (matrix_of_prebasis A I)) *m (matrix_of_prebasis b_pert I).

Now we can define the type of lex-feasible bases:
Definition is_lex_feasible (I:basis) :=

[forall i, ((row i A) ∗m (point_of_basis_pert I)) >=lex (row i b_pert)].
Inductive lex_feasible_basis :=
LexFeasibleBasis (I:basis) of is_lex_feasible I.

where >=lex is the lexicographic ordering over row vectors (see vector order.v
in Coq-Polyhedra). We first observe that any lex-feasible basis is feasible:
Lemma lex_feasible_basis_is_feasible (I:lex_feasible_basis): is_feasible I.

Following the description of the pivoting step in Sect. 3, we now assume that
the variables I:lex feasible basis and i:’I_n have been declared, and we
make the following assumptions:
Hypothesis leaving: (reduced_cost_vector_of_basis I) i 0 < 0.

Hypothesis infeas_dir: ~~(feasible_dir A (direction I i)).

where ~~b stands for the negation of the Boolean b. Our aim is to determine an
entering variable j. In the symbolic perturbation scheme, every ratio appearing
in Eq. (1) turns out to be a row vector encoding a perturbed quantity:
Definition lex_gap (d:’cV_n) (j:’I_m) :=
let: x_pert := point_of_basis_pert I in

((A ∗m d) j 0)ˆ−1 ∗: ((row j b_pert) − ((row j A) ∗m x_pert)) : ’rV_(1+m).

In order to obtain in the perturbed setting the analog of the threshold value
λ̄ defined in Eq. (1), we determine the minimum of these ratios in the lexico-
graphic sense, using the function lex_min_seq S introduced in vector order.v.
The entering variable is then computed as follows:
Definition lex_ent_var_nat :=

let: d := direction I i in

let: J := [seq j <- (enum ’I_m) | (A *m d) j 0 < 0] in

2 Finding how small ε must be chosen is tedious, and this would make proofs unnec-
essarily complicated.

A Formalization of Convex Polyhedra Based on the Simplex Method 37

let: min_gap := lex_min_seq [seq lex_gap d j | j <- J] in

find (fun j => (j \in J) && (min_gap == lex_gap d j)) (enum ’I_m).

where the MathComp function find p S returns the index of the first item in
the sequence S for which the predicate p holds, if any. Next, we prove that the
result (of type nat) returned by lex ent var nat is strictly less than m, which
allows us to convert it into an element of type ’I m called lex_ent_var. We are
finally ready to build the next basis:
Definition lex_rule_set := lex_ent_var |: (I :\ (enum_val [...] i))).

where k |: S and S :\ k respectively adds and removes the element k from
the set S. With this definition, we show that the lexicographic rule provides a
lex-feasible basis called lex_rule_lex_bas, by proving the following successive
results:
Lemma lex_rule_card : #|lex_rule_set| == n.
Lemma lex_rule_is_basis : is_basis (Prebasis lex_rule_card).
Lemma lex_rule_lex_feasibility : is_lex_feasible (Basis lex_rule_is_basis).
Definition lex_rule_lex_bas := LexFeasibleBasis lex_rule_lex_feasibility.

We finally prove that the analog of the objective function in the perturbed setting
is strictly decreasing in the lexicographic sense:
Lemma lex_rule_dec : let: J := lex_rule_lex_bas in

(c^T *m point_of_basis_pert I) >lex (c^T *m point_of_basis_pert J).

As mentioned above, this comes from the fact that the analog of the threshold
λ̄ in this setting is nonzero, thanks to the absence of degenerate bases:
Lemma eq_pert_point_imp_eq_bas (I I’:basis) :

point_of_basis_pert I = point_of_basis_pert I’ -> I == I’.

Let us sketch the proof of this key result. Recall that point_of_basis_pert I

is a n × (1 + m)-matrix. Given j:’I_m, we can show that the (1+j)th col-
umn of this matrix is nonzero if, and only if, j belongs to I (we refer to
Lemma col_point_of_basis_pert in simplex.v). Indeed, since the matrix AI is
invertible, the (1+j)th column of point_of_basis_pert I is nonzero if, and only
if, the (1+j)th column of matrix of prebasis b pert I is. By construction of
b pert, the latter column vector has only zero entries, except in the case where

(in this case, the entry corresponding to the index of j in I is −1).

5 Phase II of the Simplex Method, and Farkas Lemma

Phase II. In this section, we present our formalization of Phase II of the
simplex method. We do it before the one of Phase I because as we will explain in
Sect. 6, Phase II is used in Phase I. Phase II of the simplex method determines
the optimal value of the linear program LP(A, b, c), supposing that an initial
feasible basis bas0:feasible_basis is known. De facto, this makes the underlying
assumption that the linear program is feasible.

Our implementation of Phase II, which is developed in Section Phase2 of
simplex.v, consists in iterating the function lex rule lex bas until finding an

38 X. Allamigeon and R.D. Katz

optimal basis (i.e. identifying that the associated reduced cost vector is non-
negative), or determining that the linear program is unbounded (i.e. identifying
that the direction vector is feasible). Termination is expected to be guaranteed
by Lemma lex_rule_dec and the fact that the number of bases is finite. In addi-
tion, it looks reasonable to start the iteration of lex_rule_lex_bas from the basis
bas0. However, albeit feasible, the basis bas0 has no reason to be lex-feasible.
Fortunately, it can be shown that, up to reordering the inequalities defining
P(A, b), we can make bas0 be lex-feasible. Instead of applying permutations on
the rows of A and b, we choose to apply the inverse permutation on the symbolic
perturbation components of b pert, and leave the initial problem LP(A, b, c)
unchanged. As a consequence, we modify the previous definition of b pert as
follows:
Definition b_pert := (row_mx b (-(perm_mx s))).

where s:’S_m represents a permutation of the set {1, . . . , m}, and perm mx builds
the corresponding permutation matrix (see the libraries perm and matrix of
MathComp). All the previous results remain valid under this change. The only
difference is that they are now additionally parametrized by the permutation
s, appearing as a global variable in Section Lexicographic_rule. For reason of
space, we omit the description of the construction of the permutation s0 associ-
ated with bas0. We only mention that it satisfies the expected result:
Lemma feasible_to_lex_feasible : is_lex_feasible s0 bas0.

The function performing one iteration of the Phase II algorithm with the
lexicographic rule is built as follows:
Definition basic_step (bas: lex_feasible_basis) :=

let u := reduced_cost_of_basis c bas in

if [pick i | u i 0<0] is Some i (* picks i such that u i 0<0, if any *)

then let d := direction bas i in

if (@idPn (feasible_dir A d)) is ReflectT infeas_dir

then Lex_next_basis (lex_rule_lex_bas infeas_dir)

else Lex_final (Lex_res_unbounded (bas, i))

else Lex_final (Lex_res_optimal_basis bas).

where @idPn (feasible_dir A d) returns a proof infeas dir of the fact that the
direction vector d is not feasible, when this is the case. As a consequence, the
function basic step returns either a next basis (constructor Lex_next_basis),
or indicates that the method should stop (constructor Lex_final).

The recursive function which iterates the function basic step is the
following:
Function lex_phase2 bas {measure basis_height bas} :=

match basic_step bas with

| Lex_final final_res => final_res

| Lex_next_basis bas’ => lex_phase2 bas’

end.

It is defined in the framework provided by the library RecDef of Coq, see [2].
More precisely, its termination (and subsequently, the fact that Coq accepts

A Formalization of Convex Polyhedra Based on the Simplex Method 39

the definition) is established by identifying an integer quantity which is strictly
decreased every time the function basic step returns a next basis:
Definition basis_height bas := #| [set bas’:(lex_feasible_basis s0) |

(c^T *m (point_of_basis_pert s0 bas’)) <lex

(c^T *m (point_of_basis_pert s0 bas))] |.

This quantity represents the number of lex-feasible bases for which the
value of the “perturbed” objective function is (lexicographically) strictly
less than the value of this function at the current lex-feasible basis. The
fact that basis height decreases at every iteration is a consequence of
Lemma lex_rule_dec.

Gathering all these components, we finally arrive at the definition of the
function implementing Phase II:
Definition phase2 :=

let: lex_bas0 := LexFeasibleBasis feasible_to_lex_feasible in

lex_to_phase2_final_result ((@lex_phase2 s0) c lex_bas0).

We present the correctness specification of this function by means of an adhoc
inductive predicate. Such a presentation is idiomatic in the Mathematical Com-
ponents library. The advantage is that it provides a convenient way to perform
case analysis on the result of phase2.
Inductive phase2_spec : phase2_final_result -> Type :=

| Phase2_unbounded (p: feasible_basis * ’I_n) of

(reduced_cost_of_basis c p.1) p.2 0 < 0 /\ feasible_dir A

(direction p.1 p.2) : phase2_spec (Phase2_res_unbounded p)

| Phase2_optimal_basis (bas: feasible_basis) of

(reduced_cost_of_basis c bas) >=m 0 :

phase2_spec (Phase2_res_optimal_basis bas).skip

Lemma phase2P : phase2_spec phase2.

More precisely, Lemma phase2P states that when the function phase2 returns a
result of the form Phase2_res_unbounded (bas, i), the pair (bas, i) satisfies
(reduced_cost_of_basis c bas) i 0 < 0andfeasible_dir A (direction bas i). Itpre-
cisely corresponds to the hypotheses of Lemma unbounded_cert_on_basis, and indi-
cates that LP(A, b, c) is unbounded. Similarly, if the result of phase2 is of the form
Phase2_res_optimal_basis bas, we have (reduced_cost_of_basis c bas) >=m 0, i.e.,
the basis bas is an optimal basis (see Lemma optimal_cert_on_basis).

Effective Definition of Feasibility, and Farkas Lemma. We can now for-
malize the notion of feasibility, i.e., the property that the polyhedron P(A, b)
is empty or not, as a Boolean predicate.3 We still assume that the variables
A and b are declared. Following the discussion at the end of Sect. 2, the predi-
cate is defined by means of the function phase2 executed on the dual problem
DualLP(A, b, 0). To this end, we first build a feasible basis dual_feasible_bas0

for this problem, whose associated basic point is the vector 0 ∈ R
m. Feasibility

of the polyhedron P(A, b) is then defined as follows:
3 We make a slight abuse of language, since feasibility usually applies to linear pro-

grams. By extension, we apply it to polyhedra: P(A, b) is feasible if it is nonempty.

40 X. Allamigeon and R.D. Katz

Definition feasible :=

if phase2 dual_feasible_bas0 (-b) is Phase2_res_optimal_basis _ then

true else false.

Note that -b corresponds to the objective function of the dual linear program
(when written as a minimization problem). The correctness of our definition is
established by showing that the predicate feasible is equivalent to the existence
of a point x ∈ P(A, b). This is presented by means of Boolean reflection, using
the reflect relation of MathComp:
Lemma feasibleP : reflect (exists x, x \in polyhedron A b) feasible.

We point out that the feasibility certificate x is constructed from the extended
reduced cost vector of the optimal basis of DualLP(A, b, 0) returned by phase2.

In a similar way, we prove the following characterization of the emptiness
of P(A, b), which precisely corresponds to Farkas Lemma:
Definition dual_feasible_dir := [pred d | (A^T *m d == 0) && (d >=m 0)].

Lemma infeasibleP :

reflect (exists d, dual_feasible_dir A d /\ ’[b,d] > 0) (~~feasible).

Indeed, ~~feasible amounts to the fact that phase2 returns an unboundedness
certificate Phase2_res_unbounded (bas,i) for DualLP(A, b, 0). The emptiness cer-
tificate d of P(A, b) is then obtained from the dual feasible direction direction
bas i.

6 Complete Implementation of the Simplex Method

The Pointed Case. In order to obtain a full formalization of the simplex
method, it remains to implement a Phase I algorithm. Its purpose is twofold: (i)
determine whether the linear program LP(A, b, c) is feasible or not, (ii) in the
former case, return an initial feasible basis for Phase II. There is one obstacle to
the definition of such a Phase I algorithm: even if a linear program is feasible, it
may not have any feasible basis. For instance, consider the linear program over
the variables x1, x2 which aims at minimizing x2 subject to −1 ≤ x2 ≤ 1. The
feasible set is a cylinder around the x1-axis, and it does not have any vertex, or,
equivalently, basic point. A necessary and sufficient condition for the existence of
a feasible basis is that the rank of A is n. When this condition is fulfilled, the fea-
sible set P(A, b) is said to pointed. We now describe the Phase I algorithm under
this assumption. This is developed in Section Pointed_simplex of simplex.v.

From the hypothesis on the rank of A, we can extract an invertible square
submatrix of A, which provides an initial basis bas0 of LP(A, b, c). Beware that
this basis is not necessarily a feasible one. As a consequence, we split the inequal-
ities in the system Ax ≥ b into two complementary groups, AKx ≥ bK and
ALx ≥ bL, where the K is the set of indexes i ∈ {1, . . . , m} for which the
basic point point of basis bas0 does not satisfy the inequality Aix ≥ bi, and
L := {1, . . . , m} \ K. We denote by p the cardinality of the set K. Phase I is
based on applying Phase II algorithm to the following “extended” problem over
the vector z = (x, y) ∈ R

n+p:

A Formalization of Convex Polyhedra Based on the Simplex Method 41

minimize 〈e, y − AKx〉
subject to AKx ≤ bK + y , ALx ≥ bL , y ≥ 0 , (x, y) ∈ R

n+p (LPPhase I)

where e ∈ R
p stands for the all-1-vector. The constraints defining LPPhase I are

gathered into a single system Aextz ≥ bext. Similarly, the objective function
of LPPhase I can be rewritten as a sole linear function z = (x, y) �→ 〈cext, z〉.

The linear program LPPhase I has two important properties. On the one hand,
its optimal value can be bounded (from below) by the quantity Mext := 〈e,−bK〉:
Definition Mext := ’[const_mx 1, - (row_submx b K)].

Lemma cext_min_value z : (z \in polyhedron Aext bext) -> ’[cext, z] >=

Mext.

On the other hand, the optimal value of LPPhase I is equal to Mext if, and only
if, the original problem LP(A, b, c) is feasible. The “only if” implication follows
from the following lemma, which also provides a feasibility witness of LP(A, b, c):
Lemma feasible_cext_eq_min_active z :

z \in polyhedron Aext bext -> ’[cext,z] = Mext ->

(usubmx z \in polyhedron A b).

where the MathComp function usubmx returns the upper subvector x of a block
vector of the form z = (x

y). Regarding the “if” implication, an infeasibility
certificate of LP(A, b, c) can be constructed by means of a feasible point ū ∈
R

m+p of the dual of LPPhase I whose objective value 〈bext, ū〉 is strictly greater
than Mext. This certificate is built by the following function:
Definition dual_from_ext (u:’cV[R]_(m+p)) :=

\col_i (if i \in K then 1 - (usubmx u) i 0 else (usubmx u) i 0).

where \col i Expr(i) is the column vector whose ith entry is Expr(i). As
expected, this certificate satisfies:
Lemma dual_polyhedron_from_ext u :

(u \in dual_polyhedron Aext cext) -> dual_feasible_dir A (dual_from_ext

u).

Lemma dual_from_ext_obj u :’[bext, u] > Mext ->’[b, dual_from_ext u] > 0.

In this way, we readily obtain a proof that LP(A, b, c) is infeasible, by using
Lemma infeasibleP.

Finally, we can build an initial feasible basis for LPPhase I

by considering the union of the basis bas0 with the set {m + 1, . . . , m + p} of
the indexes of the last p constraints y ≥ 0 of LPPhase I.4 As a consequence, we
can apply phase2 to solve LPPhase I, starting from the basis feasible_bas0_ext.
In this way, we obtain an optimal basis bas of LPPhase I. If the associated
basic point z satisfies ’[cext,z] > Mext, we build an infeasibility certificate
of LP(A, b, c) using the function dual from ext, as described above. Otherwise,
we construct a feasible basis bas’ of LP(A, b, c). This is performed by the function
extract_feasible_basis which we do not describe here for the sake of concision.
Then, we use bas’ to execute phase2 on LP(A, b, c) and finally obtain its optimal
value.
4 We let the reader check that the associated basic point is (x

0) ∈ R
n+p, where x is

the basic point associated with the basis bas0, and that this point is feasible.

42 X. Allamigeon and R.D. Katz

The previous discussion precisely describes the way we have implemented the
function pointed_simplex, which completely solves the linear program LP(A, b, c)
under the pointedness assumption.

The General Case. In general, we can always reduce to the pointed case by
showing that LP(A, b, c) is equivalent to the following linear program in which
the original variable x ∈ R

n is substituted by v − w with v, w ≥ 0:

minimize 〈c, (v − w)〉
subject to A(v − w) ≥ b , v ≥ 0 , w ≥ 0 , (v, w) ∈ R

n+n (LPPointed)

The feasible set of LPPointed is pointed because of the constraints v, w ≥ 0.
Thus, we can apply to it the function pointed simplex of the previous section.
In this way, we define the function simplex, which is able to solve any linear pro-
gram LP(A, b, c). It is implemented in Section General_simplex of simplex.v.
Its correctness proof is formalized by means of the following inductive type:
Inductive simplex_spec : simplex_final_result -> Type :=

| Infeasible d of (dual_feasible_dir A d /\ ’[b, d] > 0):

simplex_spec (Simplex_infeasible d)

| Unbounded p of [/\ (p.1 \in polyhedron A b), (feasible_dir A p.2) &

(’[c,p.2] < 0)] : simplex_spec (Simplex_unbounded p)

| Optimal_point p of [/\ (p.1 \in polyhedron A b),

(p.2 \in dual_polyhedron A c) & ’[c,p.1] = ’[b, p.2]] :

simplex_spec (Simplex_optimal_point p).

Lemma simplexP: simplex_spec simplex.

In other words, when simplex returns a result of the form Simplex_infeasible d,
then d is a certificate of infeasibility of LP(A, b, c), see Lemma infeasibleP.

Similarly, the unboundedness of the linear program LP(A, b, c) is
characterized by the fact that simplex returns a result of the form
Simplex_unbounded (x,d). Equivalently, we can define a predicate correspond-
ing to this situation, and prove that it is correct, as follows:
Definition unbounded :=

if simplex is (Simplex_unbounded _) then true else false.

Lemma unboundedP :

reflect (forall M, exists y, y \in polyhedron A b /\ ’[c,y] < M)

unbounded.

Given any M, the certificate y is built by taking a point of the form x + λ d,
where λ ≥ 0 is sufficiently large.

Finally, when simplex returns Simplex_optimal_point (x,u), this means that
x is an optimal solution of LP(A, b, c), and u is a dual feasible element which
certifies its optimality (i.e., 〈c, x〉 = 〈b, u〉). Thanks to this, we can define in an
effective way the fact that LP(A, b, c) admits an optimal solution (we say that
the linear program is bounded), and, in this case, deal with the optimal value:
Definition bounded :=

A Formalization of Convex Polyhedra Based on the Simplex Method 43

if simplex is (Simplex_optimal_point _) then true else false.

Definition opt_value :=

if simplex is (Simplex_optimal_point (x,_)) then ’[c,x] else 0.

Lemma boundedP :

reflect ((exists x, x \in polyhedron A b /\ ’[c,x] = opt_value) /\ (

forall y, y \in polyhedron A b -> opt_value <= ’[c,y])) bounded.

7 Outcome of the Effective Approach

Duality results immediately follow from the correctness statements of the simplex
method and the resulting predicates feasible, unbounded and bounded. For
instance, when LP(A, b, c) and DualLP(A, b, c) are both feasible, we have:
Theorem strong_duality : feasible A b -> dual_feasible A c ->

exists p, [/\ p.1 \in polyhedron A b, p.2 \in dual_polyhedron A c

& ’[c,p.1] = ’[b,p.2]].

which corresponds to the second part of Theorem 1. The remaining cases of
Theorem 1 (when one of the two linear programs is infeasible) are dealt with in
the file duality.v. All these statements are obtained in a few lines of proof. We
also obtain another well-known form of Farkas Lemma, characterizing the logical
implication between linear inequalities (Lemma farkas_lemma_on_inequalities).

The membership to the convex hull of a finite set of points is another property
which can be defined in an effective way in our framework. Recall that a point
x ∈ R

n belongs to the convex hull of a (finite) set V = {vi}1≤i≤p ⊂ R
n if

there exists λ ∈ R
p such that x =

∑p
i=1 λiv

i, λ ≥ 0 and
∑

i λi = 1. The latter
constraints define a polyhedron over λ ∈ R

p, and the membership of x amounts
to fact that this polyhedron is feasible. This is how we arrive at the definition of a
Boolean predicate is_in_convex_hull, see the file minkowski.v. The separation
result states that if x does not belong to the convex hull of V , then there is a
hyperplane separating x from V . This means that x is located on one side of the
hyperplane, while the points of V are on the other side. Formalizing V as the
matrix of size n × p with columns vi, we establish this result as follows:
Theorem separation (x: ’cV_n) :

~~(is_in_convex_hull x) -> exists c, [forall i, ’[c, col i V] > ’[c, x]].

The certificate c can be built directly from the infeasibility certificate of the
underlying polyhedron over λ ∈ R

p. Our proof of the separation result reduces
to the technical manipulations of block matrices performing this conversion.

Finally, Minkowski Theorem states that every bounded polyhedron equals
the convex hull of its vertices. We recover this result as the extensional equality
of the predicates polyhedron A b and is in convex hull matrix of vertices,
where matrix_of_vertices is the matrix whose columns are the basic points of
P(A, b):
Theorem minkowski : bounded_polyhedron A b ->

polyhedron A b =i is_in_convex_hull matrix_of_vertices.

44 X. Allamigeon and R.D. Katz

The most difficult part of the statement is proven in a few lines: if x ∈ P(A, b)
does not belong to the convex hull of the basic points, Lemma separation exhibits
a separating hyperplane c such that 〈c, x〉 < 〈c, xI〉 for all feasible bases I of
P(A, b). However, the program pointed simplex is able to provide an optimal
feasible basis I∗, i.e., which satisfies 〈c, xI∗〉 ≤ 〈c, x〉. This yields a contradiction.

8 Conclusion

We have presented a formalization of convex polyhedra in Coq. Its main feature
is that it is based on an implementation of the simplex method, leading to an
effective formalization of the basic predicates over polyhedra. We have illustrated
the outcome of this approach with several results of the theory of convex poly-
hedra. As a future work, we plan to deal with faces, which are a central notion in
the combinatorial theory of polyhedra (the early steps of an effective definition
of faces are already available in the file face.v of Coq-Polyhedra). The simplex
method should also greatly help us to prove adjacency properties on faces, in
particular, properties related with the connectivity of the (vertex-edge) graph of
polyhedra. Another direction of work is to exploit our library to certify computa-
tional results on polyhedra, possibly on large-scale instances. A basic problem is
to formally check that a certain polyhedron (defined by inequalities) is precisely
the convex hull of a certain set of points. This is again a problem in which the
simplex method plays an important role [1]. To cope with the computational
aspects, we plan to investigate how to translate our formally proven statements
to lower-level data structures, like in [5].

Acknowledgments. The authors are very grateful to A. Mahboubi for her help to
improve the presentation of this paper, and to G. Gonthier, F. Hivert and P.-Y. Strub
for fruitful discussions. The second author is also grateful to M. Cristiá for introduc-
ing him to the topic of automated theorem proving. The authors finally thank the
anonymous reviewers for their suggestions and remarks.

References

1. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

2. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-
sive functions: a practical tool for the Coq proof assistant. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 114–129. Springer, Heidelberg (2006).
doi:10.1007/11737414 9

3. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74464-1 4

4. Bremner, D., Deza, A., Hua, W., Schewe, L.: More bounds on the diameters of
convex polytopes. Optim. Methods Softw. 28(3), 442–450 (2013)

5. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham
(2013). doi:10.1007/978-3-319-03545-1 10

http://dx.doi.org/10.1007/11737414_9
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-319-03545-1_10

A Formalization of Convex Polyhedra Based on the Simplex Method 45

6. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL 1978, Tucson, Arizona. ACM Press (1978)

7. Dantzig, G.B.: Maximization of a linear function of variables subject to linear
inequalities. In: Activity Analysis of Production and Allocation. Wiley (1951)

8. Dantzig, G.B., Orden, A., Wolfe, P.: The generalized simplex method for minimiz-
ing a linear form under linear inequality restraints. Pac. J. Math. 5(2), 183–195
(1955)

9. Fouilhe, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract
domains. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol.
8471, pp. 200–215. Springer, Cham (2014). doi:10.1007/978-3-319-12154-3 13

10. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–
118. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 10

11. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2016)

12. Guglielmi, N., Laglia, L., Protasov, V.: Polytope Lyapunov functions for stable
and for stabilizable LSS. Found. Comput. Math. 17(2), 567–623 (2017)

13. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50,
173–190 (2013)

14. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Comput.
Math. Math. Phys. 20(1), 53–72 (1980)

15. Sakaguchi, K.: VASS (2016). https://github.com/pi8027/vass
16. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1),

383–412 (2012)
17. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15

(1998)
18. Spasić, M., Marić, F.: Formalization of incremental simplex algorithm by stepwise

refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 434–449. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 35

http://dx.doi.org/10.1007/978-3-319-12154-3_13
http://dx.doi.org/10.1007/978-3-642-22863-6_10
https://github.com/pi8027/vass
http://dx.doi.org/10.1007/978-3-642-32759-9_35

A Formal Proof of the Expressiveness
of Deep Learning

Alexander Bentkamp1,2(B), Jasmin Christian Blanchette1,3,
and Dietrich Klakow2

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{a.bentkamp,j.c.blanchette}@vu.nl

2 Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany
s8albent@stud.uni-saarland.de, dietrich.klakow@lsv.uni-saarland.de

3 Max-Planck-Institut für Informatik,
Saarland Informatics Campus, Saarbrücken, Germany

jasmin.blanchette@mpi-inf.mpg.de

Abstract. Deep learning has had a profound impact on computer sci-
ence in recent years, with applications to image recognition, language
processing, bioinformatics, and more. Recently, Cohen et al. provided
theoretical evidence for the superiority of deep learning over shallow
learning. We formalized their mathematical proof using Isabelle/HOL.
The Isabelle development simplifies and generalizes the original proof,
while working around the limitations of the HOL type system. To support
the formalization, we developed reusable libraries of formalized mathe-
matics, including results about the matrix rank, the Borel measure, and
multivariate polynomials as well as a library for tensor analysis.

1 Introduction

Deep learning algorithms enable computers to perform tasks that seem beyond
what we can program them to do using traditional techniques. In recent years,
we have seen the emergence of unbeatable computer go players, practical speech
recognition systems, and self-driving cars. These algorithms also have applica-
tions to image recognition, bioinformatics, and many other domains. Yet, on the
theoretical side, we are only starting to understand why deep learning works so
well. Recently, Cohen et al. [14] used tensor theory to explain the superiority of
deep learning over shallow learning for one specific learning architecture called
convolutional arithmetic circuits (CACs).

Machine learning algorithms attempt to model abstractions of their input
data. A typical application is image recognition—i.e., classifying a given image in
one of several categories, depending on what the image depicts. The algorithms
usually learn from a set of data points, each specifying an input (the image)
and a desired output (the category). This learning process is called training.
The algorithms generalize the sample data, allowing them to imitate the learned
output on previously unseen input data.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 46–64, 2017.
DOI: 10.1007/978-3-319-66107-0 4

A Formal Proof of the Expressiveness of Deep Learning 47

CACs are based on sum–product networks (SPNs), also called arithmetic
circuits [30]. An SPN is a rooted directed acyclic graph with input variables as
leaf nodes and two types of inner nodes: sums and products. The incoming edges
of sum nodes are labeled with real-valued weights, which are learned by training.

CACs impose the structure of the popular convolutional neural networks
(CNNs) onto SPNs, using alternating convolutional and pooling layers, which
are realized as collections of sum nodes and product nodes, respectively. These
networks can be shallower or deeper—i.e., consist of few or many layers—and
each layer can be arbitrarily small or large, with low- or high-arity sum nodes.
CACs are equivalent to similarity networks, which have been demonstrated to
perform as well as CNNs, if not better [13].

Cohen et al. prove two main theorems about CACs: the fundamental and
the generalized theorem of network capacity (Sect. 3). The generalized theorem
states that CAC networks enjoy complete depth efficiency: In general, to express
a function captured by a deeper network using a shallower network, the shallower
network must be exponentially larger than the deeper network. By “in general,”
we mean that the statement holds for all CACs except for a Lebesgue null set S
in the weight space of the deeper network. The fundamental theorem is a special
case of the generalized theorem, where the expressiveness of the deepest possible
network is compared with the shallowest network. Cohen et al. present both
theorems in a variant where weights are shared across the networks and a more
flexible variant where they are not.

As an exercise in mechanizing modern research in machine learning, we devel-
oped a formal proof of the fundamental theorem for networks with nonshared
weights using the Isabelle/HOL proof assistant [27]. To simplify our work, we
recast the original proof into a more modular version (Sect. 4), which generalizes
the result as follows: S is not only a Lebesgue null set, but also a subset of the
zero set of a nonzero multivariate polynomial. This stronger theorem gives a
clearer picture of the expressiveness of deep CACs.

The formal proof builds on general libraries that we either developed or
enriched (Sect. 5). We created a library for tensors and their operations, including
product, CP-rank, and matricization. We added the matrix rank and its prop-
erties to Thiemann and Yamada’s matrix library [33], generalized the definition
of the Borel measure by Hölzl and Himmelmann [19], and extended Lochbih-
ler and Haftmann’s polynomial library [17] with various lemmas, including the
theorem stating that zero sets of nonzero multivariate polynomials are Lebesgue
null sets. For matrices and the Lebesgue measure, an issue we faced was that the
definitions in the standard Isabelle libraries have types that are too restrictive:
The dimensionality of the matrices and of the measure space is parameterized
by types that encode numbers, whereas we needed them to be terms.

Building on these libraries, we formalized the fundamental theorem for net-
works with nonshared weights (Sect. 6). CACs are represented using a datatype
that is flexible enough to capture networks with and without concrete weights.
We defined tensors and polynomials to describe these networks, and used the
datatype’s induction principle to show their properties and deduce the funda-
mental theorem.

48 A. Bentkamp et al.

Our formalization is part of the Archive of Formal Proofs [2] and is described
in more detail in Bentkamp’s M.Sc. thesis [3]. It comprises about 7000 lines of
Isabelle proofs, mostly in the declarative Isar style [34], and relies only on the
standard axioms of higher-order logic, including the axiom of choice.

2 Mathematical Preliminaries

Tensors. Tensors can be understood as multidimensional arrays, with vectors
and matrices as the one- and two-dimensional cases. Each index corresponds to
a mode of the tensor. For matrices, the modes are called “row” and “column.”
The number of modes is the order of the tensor. The number of values an
index can take in a particular mode is the dimension in that mode. Thus, a
real-valued tensor A ∈ R

M1×···×MN of order N and dimension Mi in mode i
contains values Ad1,...,dN

∈ R for di ∈ {1, . . . , Mi}.
Like for vectors and matrices, addition + is defined as componentwise addi-

tion for tensors of identical dimensions. The product ⊗ is a binary operation on
two arbitrary tensors that generalizes the outer vector product. The canonical
polyadic rank, or CP-rank, associates a natural number with a tensor, generaliz-
ing the matrix rank. The matricization [A] of a tensor A is a matrix obtained by
rearranging A ’s entries using a bijection between the tensor and matrix entries.
It has the following property:

Lemma 1. Given a tensor A , we have rank [A] ≤ CP-rank A.

Lebesgue Measure. The Lebesgue measure is a mathematical description of
the intuitive concept of length, surface, or volume. It extends this concept from
simple geometrical shapes to a large amount of subsets of R

n, including all
closed and open sets, although it is impossible to design a measure that caters
for all subsets of R

n while maintaining intuitive properties. The sets to which
the Lebesgue measure can assign a volume are called measurable. The volume
that is assigned to a measurable set can be a nonnegative real number or ∞. A
set of Lebesgue measure 0 is called a null set. If a property holds for all points
in R

n except for a null set, the property is said to hold almost everywhere.
The following lemma [12] about polynomials will be useful for the proof of

the fundamental theorem of network capacity.

Lemma 2. If p �≡ 0 is a polynomial in d variables, the set of points x ∈ R
d with

p(x) = 0 is a Lebesgue null set.

3 The Theorems of Network Capacity

Figure 1 gives the formulas for evaluating a CAC and relates them to the net-
work’s hierarchical structure. The ∗ operator denotes componentwise multipli-
cation. The inputs x1, . . . ,xN of a CAC are N real vectors of length M , where
N must be a power of 2. The output y is a vector of length Y. The network’s
depth d can be any number between 1 and log2 N . The first d − 1 pooling layers

A Formal Proof of the Expressiveness of Deep Learning 49

u0, j = x j

v0, j = W0, j ·u0, j
u1, j = v0,2 j−1 ∗v0,2 j
v1, j = W1, j ·u1, j

...
ud−1, j = vd−2,2 j−1 ∗vd−2,2 j

vd−1, j = Wd−1, j ·ud−1, j

ud,1 = vd−1,1 ∗ · · · ∗vd−1,N/2d−1

y = vd,1 = Wd,1 ·ud,1
y = vd,1

ud,1

vd−1,N/2d−1

ud−1,N/2d−1

vd−1,1

ud−1,1

v1,2

u1,2

v0,4

u0,4

v0,3

u0,3

v1,1

u1,1

v0,2

u0,2

v0,1

u0,1

v1,N/2

u1,N/2

v0,N

u0,N

v0,N−1

u0,N−1

v1,N/2−1

u1,N/2−1

v0,N−2

u0,N−2

v0,N−3

u0,N−3

...
...

...
...

...

...
...

.

Fig. 1. Definition and hierarchical structure of a CAC with d layers

consist of binary nodes. The last pooling layer consists of a single node with an
arity of N/2d−1 ≥ 2.

The calculations depend on the learned weights, which are organized as
entries of a collection of real matrices Wl,j , where l is the index of the layer
and j is the position in that layer where the matrix is used. Matrix Wl,j has
dimensions rl × rl−1 for natural numbers r−1, . . . , rd with r−1 = M and rd = Y.
The weight space of a CAC is the space of all possible weight configurations. For a
given weight configuration, the network expresses the function (x1, . . . ,xN)
→ y.

The above definitions are all we need to state the main result proved by
Cohen et al.:

Theorem 3 (Generalized Theorem of Network Capacity). Consider two
CACs with identical N, M, and Y parameters: a deeper network of depth d1 with
weight matrix dimensions r1,l and a shallower network of depth d2 < d1 with
weight matrix dimensions r2,l. Let r = min {M, r1,0, . . . , r1,d2−1} and assume

r2,d2−1 < r
N/2d2

Let S be the set of configurations in the weight space of the deeper network that
express functions also expressible by the shallower network. Then S is a Lebesgue
null set.

Intuitively, to express the same functions as the deeper network, almost every-
where in the weight space of the deeper network, r2,d2−1 must be at least rN/2d2 ,
which means the shallower network needs exponentially larger weight matrices
than the deeper network.

The special case of this theorem where d1 = log2 N and d2 = 1 is called the
fundamental theorem of network capacity. This is the theorem we formalized.
Cohen et al. extended the result to CACs with an initial representational layer

50 A. Bentkamp et al.

that applies a collection of nonlinearities to the inputs before the rest of the
network is evaluated. Independently, they also showed that the fundamental
and generalized theorems hold when the same weight matrix is applied within
each layer l—i.e., Wl,1 = · · · = Wl,N/2l .

4 Restructured Proof of the Theorems

The proof of either theorem of network capacity depends on a connection between
CACs and measure theory, using tensors, matrices, and polynomials along the
way. Briefly, the CACs and the functions they express can be described using
tensors. Via matricization, these tensors can be analyzed as matrices. Polyno-
mials bridge the gap between matrices and measure theory, since the matrix
determinant is a polynomial, and zero sets of polynomials are Lebesgue null sets
(Lemma 2).

The proof by Cohen et al. is structured as a monolithic induction over
the deep network structure. It combines tensors, matrices, and polynomials in
each induction step. Before launching Isabelle, we restructured the proof into a
more modular version that cleanly separates the mathematical theories involved,
resulting in the following sketch:

I. We describe the function expressed by a CAC for a fixed weight configuration
using tensors. We focus on an arbitrary entry yi of the output vector y. If
the shallower network cannot express the output component yi, it cannot
represent the entire output either. Let Ai(w) be the tensor that represents
the function (x1, . . . ,xN)
→ yi expressed by the deeper network with a
weight configuration w.

II. We define a function ϕ that reduces the order of a tensor. The CP-rank of
ϕ(A) indicates how large the shallower network must be to express a func-
tion represented by a tensor A : If the function expressed by the shallower
network is represented by A, then r2,d2−1 ≥ CP-rank (ϕ(A)).

III. We construct a multivariate polynomial p, mapping the weights configura-
tions w of the deeper network to a real number p(w). It has the following
properties:

(a) If p(w) �= 0, then rank [ϕ(Ai(w))] ≥ rN/2d2. Hence CP-rank (ϕ(Ai(w))) ≥
rN/2d2 by Lemma 1.

(b) The polynomial p is not the zero polynomial. Hence its zero set is a
Lebesgue null set by Lemma 2.

By properties IIIa and IIIb, the inequation CP-rank (ϕ(Ai(w))) ≥ rN/2d2

holds almost everywhere. By step II, we need r2,d2−1 ≥ rN/2d2 almost everywhere
for the shallower network to express functions the deeper network expresses.

The restructuring helps us keep the induction simple, and we can avoid for-
malizing some lemmas of the original proof. Furthermore, the restructured proof
allows us to state a stronger property than in the original proof, which Cohen
et al. independently discovered later [16]: The set S from Theorem 3 is not only a

A Formal Proof of the Expressiveness of Deep Learning 51

Lebesgue null set, but also a subset of the zero set of the polynomial p. This fact
can be used to derive further properties of S . Zero sets of polynomials are well
studied in algebraic geometry, where they are known as algebraic varieties. This
generalization partially addresses an issue that arises when applying the theo-
rem to actual implementations of CACs: Cohen et al. assume that the weight
space of the deeper network is a Euclidean space, but in practice it will always
be discrete. They also show that S is a closed null set, but since these can be
arbitrarily dense, this gives no information about the discrete counterpart of S .

We can estimate the size of this discrete counterpart of S using our general-
ization in conjunction with a result from algebraic geometry [11,24] that allows
us to estimate the size of the ε-neighborhood of the zero set of a polynomial.
The ε-neighborhood of S is a good approximation of the discrete counterpart of
S if ε corresponds to the precision of computer arithmetic. Unfortunately, the
estimate is trivial, unless we assume ε < 2−170 000, which largely exceeds the pre-
cision of modern computers. Thus, shallow CACs are perhaps more expressive
than Theorem 3 suggests. On the other hand, our analysis is built upon inequal-
ities, which only provide an upper bound. A mathematical result estimating the
size of S with a lower bound would call for an entirely different approach.

5 Formal Libraries

Matrices. We had several options for the choice of a matrix library, of which
the most relevant were Isabelle’s analysis library and Thiemann and Yamada’s
matrix library [33]. The analysis library fixes the matrix dimensions using type
parameters, a technique introduced by Harrison [18]. The advantage of this app-
roach is that the dimensions are part of the type and need not be stated as
conditions. Moreover, it makes it possible to instantiate type classes depend-
ing on the type arguments. However, this approach is not practical when the
dimensions are specified by terms. Therefore, we chose Thiemann and Yamada’s
library, which uses a single type for matrices of all dimensions and includes a
rich collection of lemmas.

We extended the library in a few ways. We contributed a definition of the
matrix rank, as the dimension of the space spanned by the matrix columns:

definition (in vec space) rank ::α mat ⇒ nat where
rank A = vectorspace.dim F (span vs (set (cols A)))

Moreover, we defined submatrices and proved that the rank of a matrix is larger
than any submatrix with nonzero determinant, and that the rank is the maxi-
mum amount of linearly independent columns of the matrix.

Tensors. The Tensor entry [31] of the Archive of Formal Proofs might seem
to be a good starting point for a formalization of tensors. However, despite
its name, this library does not contain a type for tensors. It introduces the
Kronecker product, which is equivalent to the tensor product but operates on
the matricizations of tensors.

52 A. Bentkamp et al.

The Groups, Rings and Modules entry [22] of the Archive of Formal Proofs
could have been another potential basis for our work. Unfortunately, it introduces
the tensor product in a very abstract fashion and does not integrate well with
other Isabelle libraries.

Instead, we introduced our own type for tensors, based on a list that specifies
the dimension in each mode and a list containing all of its entries:

typedef α tensor = {(ds ::nat list , as ::α list). length as =
∏

ds}
We formalized addition, multiplication by scalars, product, matricization,

and the CP-rank. We instantiated addition as a semigroup (semigroup add) and
product as a monoid (monoid mult). Stronger type classes cannot be instanti-
ated: Their axioms do not hold collectively for tensors of all sizes, even though
they hold for fixed tensor sizes. For example, it is impossible to define addi-
tion for tensors of different sizes while satisfying the cancellation property
a + c = b + c =�⇒ a = b.

For proving properties of addition, scalar multiplication, and product, we
devised a powerful induction principle on tensors that uses tensor slices. The
induction step amounts to showing a property for a tensor A ∈ R

M1×···×MN

assuming it holds for all slices Ai ∈ R
M2×···×MN, which are obtained by fixing

the first index i ∈ {1, . . . , M1}.
Matricization rearranges the entries of a tensor A ∈ R

M1×···×MN into a
matrix [A] ∈ R

I×J . This rearrangement can be described as a bijection between
{0, . . . , M1 − 1} × · · · × {0, . . . , MN − 1} and {0, . . . , I − 1} × {0, . . . , J − 1},
assuming that indices start at 0. The operation is parameterized by a partition
of the set of tensor indices into two sets {r1 < · · · < rK} {c1 < · · · < cL} =
{1, . . . , N}. The proof of Theorem 3 uses only standard matricization, which
partitions the indices into odd and even numbers, but we formalized the more
general formulation [1]. The matrix [A] has I =

∏K
i=1 ri rows and J =

∏L
j=1 cj

columns. The rearrangement function is

(i1, . . . , iN)
→
(∑K

k=1

(

irk ·
∏k−1

k′=1
Mrk′

)

,
∑L

l=1

(

icl ·
∏l−1

l′=1
Mcl′

))

The indices ir1 , . . . , irK and ic1 , . . . , icL serve as digits in a mixed-base numeral
system to specify the row and the column in the matricization, respectively. This
is perhaps more obvious if we expand the sum and product operators and factor
out the bases Mi:

(i1, . . . , iN)
→ (
ir1 + Mr1 · (ir2 + Mr2 · . . . · (irK−1 + MrK−1 · irK) . . .)),
ic1 + Mc1 · (ic2 + Mc2 · . . . · (icL−1 + McL−1 · icL) . . .))

)

To formalize the matricization operation, we defined a function calculating the
digits of a number n in a given mixed-based numeral system:

fun encode ::nat list ⇒ nat ⇒ nat list where
encode [] n = []

| encode (b # bs) n = (n mod b) # encode bs (n div b)

A Formal Proof of the Expressiveness of Deep Learning 53

We then defined matricization as

definition matricize ::nat set ⇒ α tensor ⇒ α mat where
matricize R A = mat (

∏
sublist (dims A) R) (

∏
sublist (dims A) (−R))

(λ(r, c). lookup A (weave R
(encode (sublist (dims A) R) r)
(encode (sublist (dims A) (−R)) c)))

The matrix constructor mat takes as arguments the matrix dimensions and a
function that returns each matrix entry given the indices r and c. Defining
this function amounts to finding the corresponding indices of the tensor, which
are essentially the mixed-base encoding of r and c, but the digits of these two
encoded numbers must be interleaved in an order specified by the set R =
{r1, . . . , rK}.

To merge two lists of digits in the right way, we defined a function weave. This
function is the counterpart of sublist from the standard library, which reduces a
list to those entries whose indices belong to a set I :

lemma weave sublists: weave I (sublist as I) (sublist as (−I)) = as

The main concern when defining such a function is to determine how it
should behave in corner cases—in our scenario, when I = {} and the first
list argument is nonempty. We settled on a definition such that the property
length (weave I xs ys) = length xs + length ys holds unconditionally:

definition weave ::nat set ⇒ α list ⇒ α list ⇒ α list where
weave I xs ys = map

(λi . if i ∈ I then xs ! |{a ∈ I . a < i}| else ys ! |{a ∈ −I . a < i}|)
[0 . .< length xs + length ys]

(The ! operator returns the list element at a given index.) This definition allows
us to prove lemmas about weaveI xs ys ! a and length (weave I xs ys) very easily.
Other properties, such as the weave sublists lemma above, are justified using an
induction over the length of a list, with a case distinction in the induction step
on whether the new list element is taken from xs or ys.

Another difficulty arises with the rule rank [A ⊗ B] = rank [A] · rank [B]
for standard matricization and tensors of even order, which seemed tedious to
formalize. Restructuring the proof eliminates one of its two occurrences (Sect. 4).
The remaining occurrence is used to show that rank [a1 ⊗ · · · ⊗ aN] = 1, where
a1, . . . ,aN are vectors and N is even. A simpler proof relies on the observation
that the entries of [a1 ⊗ · · · ⊗ aN] can be written as f(i) · g(j), where f depends
only on the row index i, and g depends only on the column index j. Using this
argument, rank [a1 ⊗ · · · ⊗ aN] = 1 can be shown for generalized matricization
and an arbitrary N , which we used to prove Lemma 1:

lemma matrix rank le cp rank:
fixes A :: (α ::field) tensor
shows mrank (matricize R A) ≤ cprank A

54 A. Bentkamp et al.

Lebesgue Measure. Isabelle’s analysis library defines the Borel measure on
R

n but not the closely related Lebesgue measure. The Lebesgue measure is the
completion of the Borel measure. The two measures are identical on all sets that
are Borel measurable, but the Lebesgue measure has more measurable sets. The
proof by Cohen et al. allows us to show that the set S defined in Theorem3 is
a subset of a Borel null set. It follows that S is a Lebesgue null set, but not
necessarily a Borel null set.

To resolve this mismatch, we considered three options: (1) Prove that S
is a Borel null set, which we believe is the case, although it does not follow
trivially from S ’s being a subset of a Borel null set; (2) define the Lebesgue
measure, using the already formalized Borel measure and measure completion;
(3) formulate the theorem using the almost-everywhere quantifier (∀ae) instead
of the null set predicate.

We chose the third approach, because it seemed simpler. Theorem 3, as
expressed in Sect. 3, defines the set S as set of configurations in the weight
space of the deeper network that express functions also expressible by the shal-
lower network, and then states that S is a null set. In the formalization, we state
it as follows: Almost everywhere in the weight space of the deeper network, the
deeper network expresses functions not expressible by the shallower network.
This formulation is equivalent to asserting that S is a subset of a null set, which
we can easily prove for the Borel measure as well.

There is, however, another issue with the definition of the Borel measure
from Isabelle’s analysis library:

definition lborel :: (α :: euclidean space) measure where
lborel = distr (

∏
M b ∈ Basis. interval measure (λx . x)) borel

(λf .
∑

b ∈ Basis. f b ∗R b)

The type α specifies the number of dimensions of the measure space. In our proof,
the measure space is the weight space of the deeper network, and its dimension
depends on the number N of inputs and the size rl of the weight matrices. The
number of dimensions is a term in our proof. We described a similar issue with
Isabelle’s matrix library already.

The solution is to provide a new definition of the Borel measure whose
type does not fix the number of dimensions. The multidimensional Borel
measure is the product measure (

∏
M) of the one-dimensional Borel measure

(lborel :: real measure) with itself:

definition lborelf ::nat ⇒ (nat ⇒ real) measure where
lborelf n = (

∏
M b ∈ {. .< n}. lborel)

The argument n specifies the dimension of the measure space. Unlike with lborel,
the measure space of lborelf n is not the entire universe of the type: Only func-
tions that map to a default value for numbers ≥ n are contained in the measure
space, which is available as space (lborelf n). With the above definition, we could
prove the main lemmas about lborelf from the corresponding lemmas about lborel
with little effort.

A Formal Proof of the Expressiveness of Deep Learning 55

Multivariate Polynomials. Multivariate polynomial libraries have been devel-
oped to support other formalization projects in Isabelle. Sternagel and Thiemann
[32] formalized multivariate polynomials designed for execution, but the equality
of polynomials is a custom predicate, which means that we cannot use Isabelle’s
simplifier to rewrite polynomial expressions. Immler and Maletzky [20] formal-
ized an axiomatic approach to multivariate polynomials using type classes, but
their focus is not on the evaluation homomorphism, which we need. Instead,
we chose to extend a previously unpublished multivariate polynomial library by
Lochbihler and Haftmann [17]. We derived induction principles and properties
of the evaluation homomorphism and of nested multivariate polynomials. These
were useful to formalize Lemma 2:

lemma lebesgue mpoly zero set:
fixes p :: real mpoly
assumes p �= 0 and vars p ⊆ {. .< n}
shows {x ∈ space (lborelf n). insertion x p = 0} ∈ null sets (lborelf n)

6 Formalization of the Fundamental Theorem

With the necessary libraries in place, we undertook the formal proof of the
fundamental theorem of network capacity, starting with the CACs. A recursive
datatype is appropriate to capture the hierarchical structure of these networks:

datatype α cac = Input nat | Conv α (α cac) | Pool (α cac) (α cac)

To simplify the proofs, Pool nodes are always binary. Pooling layers that merge
more than two branches are represented by nesting Pool nodes to the right.

The type variable α can be used to store weights. For networks without
weights, it is set to nat × nat , which associates only the matrix dimension with
each Conv node. For networks with weights, α is real mat , an actual matrix.
These two network types are connected by insert weights :: (nat × nat)cac ⇒
(nat ⇒ real) ⇒ real mat cac, which inserts weights into a weightless network.
The weights are specified by the second argument f , of which only the first val-
ues f 0, f 1, . . . , f (k − 1) are used, until the necessary number of weights, k, is
reached. Sets over nat ⇒ real can be measured using lborelf .

The following function describes how the networks are evaluated, where ⊗mv

multiplies a matrix with a vector and component mult multiplies vectors compo-
nentwise:

fun evaluate net :: real mat cac ⇒ real vec list ⇒ real vec where
evaluate net (Input M) is = hd is

| evaluate net (Conv A m) is = A ⊗mv evaluate net m is
| evaluate net (Pool m1 m2) is = component mult

(evaluate net m1 (take (length (input sizes m1)) is))
(evaluate net m2 (drop (length (input sizes m1)) is))

56 A. Bentkamp et al.

The cac type can represent networks with arbitrary nesting of Conv and Pool
nodes, going beyond the definition of CACs. Moreover, since we focus on the
fundamental theorem of network capacities, it suffices to consider a deep model
with d1 = log2 N and a shallow model with d2 = 1. These are specified by
generating functions:

fun
deep model0 ::nat ⇒ nat list ⇒ (nat × nat) cac and
deep model :: nat ⇒ nat ⇒ nat list ⇒ (nat × nat) cac

where
deep model0 Y [] = Input Y

| deep model0 Y (r # rs) = Pool (deep model Y r rs) (deep model Y r rs)
| deep model Y r rs = Conv (Y , r) (deep model0 r rs)

fun shallow model0 :: nat ⇒ nat ⇒ nat ⇒ (nat × nat) cac where
shallow model0 Z M 0 = Conv (Z ,M) (Input M)

| shallow model0 Z M (Suc N) =
Pool (shallow model0 Z M 0) (shallow model0 Z M N)

definition shallow model ::nat ⇒ nat ⇒ nat ⇒ nat ⇒ (nat × nat) cac where
shallow model Y Z M N = Conv (Y ,Z) (shallow model0 Z M N)

Two examples are given in Fig. 2. For the deep model, the arguments
Y # r # rs correspond to the weight matrix sizes [r1,d (= Y), r1,d−1, . . . ,
r1,0, r1,−1 (=M)]. For the shallow model, the arguments Y , Z , M correspond to
the parameters r2,1 (= Y), r2,0, r2,−1 (= M), and N gives the number of inputs
minus 1.

Fig. 2. A deep and a shallow network represented using the cac datatype

The rest of the formalization follows the proof sketch presented in Sect. 4.

Step I. The following operation computes a list, or vector, of tensors representing
a network’s function, each tensor standing for one component of the output
vector:

fun tensors from net :: real mat cac ⇒ real tensor vec where
tensors from net (Input M) = Matrix.vec M (λi . unit vec M i)

A Formal Proof of the Expressiveness of Deep Learning 57

| tensors from net (Conv A m) =
mat tensorlist mult A (tensors from net m) (input sizes m)

| tensors from net (Pool m1 m2) =
component mult (tensors from net m1) (tensors from net m2)

For an Input node, we return the list of unit vectors of length M . For a Conv
node, we multiply the weight matrix A with the tensor list computed for the
subnetwork m, using matrix–vector multiplication. For a Pool node, we com-
pute, elementwise, the tensor products of the two tensor lists associated with
the subnetworks m1 and m2. If two networks express the same function, the
representing tensors are the same:

lemma tensors from net eqI:
assumes valid net′ m1 and valid net′ m2 and input sizes m1 = input sizes m2

and ∀is. input correct is −�→ evaluate net m1 is = evaluate net m2 is
shows tensors from net m1 = tensors from net m2

The fundamental theorem fixes an arbitrary deep network. It is useful to
fix the deep network parameters in a locale—a sectioning mechanism that fixes
variables and assumptions on them across definitions and lemmas:

locale deep model correct params =
fixes rs ::nat list
assumes deep: length rs ≥ 3
and no zeros:

∧
r . r ∈ set rs =�⇒ r > 0

The list rs completely specifies one specific deep network model:

abbreviation deep net = deep model (rs ! 0) (rs ! 1) (tl (tl rs))

The other parameters of the deep network can be defined based on rs:

definition r = min (last rs) (last (butlast rs))
definition N half = 2 length rs − 3

definition weight space dim = count weights deep net

The shallow network must have the same input and output sizes as the deep
network, if it is to express the same function as the deep network. This leaves
only the parameter Z = r2,0, which specifies the weight matrix sizes in the Conv
nodes and the size of the vectors multiplied in the Pool nodes of the shallow
network:

abbreviation shallow net Z = shallow model (rs ! 0) Z (last rs) (2∗N half−1)

Following the proof sketch, we consider a single output component yi. We do
so using a second locale that introduces a constant i for i.

locale deep model correct params output index =
deep model correct params +
fixes i ::nat
assumes output index valid: i < rs ! 0

58 A. Bentkamp et al.

Then we can define the tensor Ai, which describes the behavior of the func-
tion expressed by the deep network at the output component yi, depending on
the weight configuration w of the deep network:

definition A i w = tensors from net (insert weights deep net w) ! i

We want to analyze for which w the shallow network can express the same
function, and is hence represented by the same tensor.

Step II. We must show that if a tensor A represents the function expressed
by the shallow network, then r2,d2−1 ≥ CP-rank (ϕ(A)). For the fundamental
theorem of network capacity, ϕ is the identity and d2 = 1. Hence, it suffices to
prove that Z = r2,0 ≥ CP-rank (A):

lemma cprank shallow model:
cprank (tensors from net (insert weights w (shallow net Z)) ! i) ≤ Z

This lemma can be proved easily from the definition of the CP-rank.

Step III. We define the polynomial p and prove that it has properties IIIa
and IIIb. Defining p as a function is simple:

definition pfunc w = det (submatrix [A i w] rows with 1 rows with 1)

where [A i w] abbreviates the standard matricization matricize {n. even n}
(A i w), and rows with 1 is the set of row indices with 1 s in the main diago-
nal for a specific weight configuration w that will be defined in Step IIIb. We
try to make the submatrix as large as possible while maintaining the property
that p is not the zero polynomial. The bound on Z in the statement of the final
theorem is derived from the size of this submatrix.

The function pfunc must be shown to be a polynomial function. We introduce
a predicate polyfun, which is true if a function is a polynomial function:

definition polyfun N f = (∃p. vars p ⊆ N ∧ (∀x . insertion x p = f x))

This predicate is preserved from constant and linear functions through the tensor
representation of the CAC, matricization, choice of submatrix, and determinant:

lemma polyfun p:
polyfun {. .< weight space dim} pfunc

Step IIIa. We must show that if p(w) = 0, then CP-rank (Ai(w)) ≥ rN/2. The
Isar proof is sketched below:

lemma if polynomial 0 rank:
assumes pfunc w �= 0
shows rN half ≤ cprank (A i w)

proof −
have rN half = dimr (submatrix [A i w] rows with 1 rows with 1)

by calculating the size of the submatrix
also have · · · ≤ mrank [A i w]

A Formal Proof of the Expressiveness of Deep Learning 59

using the assumption and the fact that the rank is larger than submatrices
with nonzero determinant

also have · · · ≤ cprank (A i w)
using Lemma 1

finally show ?thesis .
qed

Step IIIb. To prove that p is not the zero polynomial, we must exhibit a witness
weight configuration where p is nonzero. Since weights are arranged in matrices,
we define concrete matrix types: matrices with 1 s on their main diagonal and 0 s
elsewhere (eye matrix), matrices with 1 s everywhere (all1 matrix), and matrices
with 1 s in the first column and 0 s elsewhere (copy first matrix). For example,
the last matrix type is defined as follows:

definition copy first matrix ::nat ⇒ nat ⇒ real mat where
copy first matrix nr nc = mat nr nc (λ(r , c). if c = 0 then 1 else 0)

For each matrix type, we show how it behaves under multiplication with a
vector:

lemma mult copy first matrix:
assumes i < nr and dimv v > 0
shows (copy first matrix nr (dimv v) ⊗mv v) ! i = v ! 0

Using these matrices, we can define the deep network containing the witness
weights:

fun
witness0 ::nat ⇒ nat list ⇒ real mat cac and
witness ::nat ⇒ nat ⇒ nat list ⇒ real mat cac

where
witness0 Y [] = Input Y

| witness0 Y (r # rs) = Pool (witness Y r rs) (witness Y r rs)
| witness Y r rs = Conv ((if length rs = 0 then eye matrix else

if length rs = 1 then all1 matrix else copy first matrix) Y r) (witness0 r rs)

The network’s structure is identical to deep model. For each Conv node, we
carefully choose one of the three matrix types we defined, such that the repre-
senting tensor of this network has as many 1 s as possible on the main diagonal
and 0 s elsewhere. This in turn ensures that its matricization has as many 1 s
as possible on its main diagonal and 0 s elsewhere. The rows with 1 constant
specifies the row indices that contain the 1s.

The witness weights can be extracted from the witness network as follows:

definition witness weights ::nat ⇒ real where
witness weights =
(εw . witness (rs ! 0) (rs ! 1) (tl (tl rs)) = insert weights deep net w)

This could also be achieved without using Hilbert’s choice operator, by defining
a recursive function that extracts the weights from weighted networks.

60 A. Bentkamp et al.

We prove that the representing tensor of the witness network, which is equal
to A i witness weights, has the desired form. This step is rather involved: We show
how the defined matrices act in the network and perform a tedious induction
over the witness network. Then we can show that the submatrix characterized by
rows with 1 of the matricization of this tensor is the identity matrix of size rN half :

lemma witness submatrix:
submatrix [A i witness weights] rows with 1 rows with 1 =
eye matrix rN half rN half

As a consequence of this lemma, the determinant of this submatrix, which is
the definition of pfunc, is nonzero. Therefore, p is not the zero polynomial:

lemma polynomial not zero:
pfunc witness weights �= 0

Fundamental Theorem. The results of Steps II and III can be used to establish
the fundamental theorem of network capacity:

theorem fundamental theorem of network capacity:
∀ae wd w.r.t. lborelf weight space dim. �ws Z .

Z < rN half ∧
∀is. input correct is −�→
evaluate net (insert weights deep net wd) is =
evaluate net (insert weights (shallow net Z) ws) is

The rN half bound corresponds to the size of the identity matrix in witness
submatrix.

The theorem statement is independent of the tensor library, and is there-
fore correct regardless of whether the library faithfully captures tensor-related
notions.

7 Discussion and Related Work

Extension with Shared Weights and the Generalized Theorem. We
formalized the fundamental theorem for nonshared weights. The case of shared
weights is so similar that Cohen et al. discharge it with a one-sentence proof
by analogy. Using copy and paste, we could easily extend the formalization to
cover this case, but to reduce code duplication we would need more abstract
definitions of the involved networks.

The generalized theorem of network capacity is mostly a straightforward gen-
eralization. To formalize it, we would need to define CACs for arbitrary depths,
which our datatype allows. Moreover, we would need to define the function ϕ and
prove some of its properties. Then, we would generalize the existing lemmas. We
focused on the fundamental theorem because it contains all the essential ideas.

A Formal Proof of the Expressiveness of Deep Learning 61

Sledgehammer and SMT. To discharge proof obligations, we used Sledge-
hammer [28] extensively. This Isabelle tool heuristically selects a few hundred
lemmas from the thousands available (using machine learning [8]); translates
the proof obligation and the selected lemmas to first-order logic; invokes exter-
nal automatic theorem provers on the translated problem; and, in case of suc-
cess, translates the derivations found by the external provers to Isar proof texts
that can be inserted in the formalization. In the best-case scenario, Sledgeham-
mer quickly produces a one-line proof text consisting of an invocation of the
metis proof method [29], Isabelle’s internal superposition prover. Unfortunately,
Sledgehammer sometimes returns only cryptic structured Isar proofs [7] or, if all
else fails, proofs that depend on the smt method [10].

The smt method relies on the SMT solver Z3 [25] to find a proof, which
it then replays using Isabelle’s inference kernel. Relying on a highly heuristic
third-party prover is fragile; some proofs that are fast with a given version of
the prover might time out with a different version, or be unreplayable due to some
incompleteness in smt. As a result, entries in the Archive of Formal Proofs cannot
use it. Sledgehammer often generates smt proofs, especially in proof obligations
about sums and products of reals, existential quantifiers, and λ-expressions. We
ended up with over 60 invocations of smt, which we later replaced one by one
with structured Isar proofs, a tedious process. The following equation on reals
is an example that can only be proved by smt, with suitable lemmas:

∑

i∈I

∑

j∈J
a · b · f(i) · g(j) =

(∑

i∈I
a · f(i)

)
·
(∑

j∈J
b · g(j)

)

We could not solve it with other proof methods without engaging in a detailed
proof involving multiple steps. This particular example relies on smt ’s partial
support for λ-expressions through λ-lifting, an instance of what we would call
“easy higher-order.”

Similar Theoretical Results about Other Deep Learning Architec-
tures. CACs are relatively easy to analyze but little used in practice. In a
follow-up paper [15], Cohen et al. connected their tensor analysis of CACs to
the frequently used CNNs with rectified linear unit (ReLU) activation. Unlike
CACs, ReLU CNNs with average pooling are not universal—that is, even shal-
low networks of arbitrary size cannot express all functions a deeper network can
express. Moreover, ReLU CNNs do not enjoy complete depth efficiency; the ana-
logue of the set S for those networks has a Lebesgue measure greater than zero.
This leads Cohen et al. to conjecture that CACs could become a leading app-
roach for deep learning, once suitable training algorithms have been developed.

Related Formal Proofs. We are aware of a few other formalizations of machine
learning algorithms, including hidden Markov models [23], perceptrons [26],
expectation maximization, and support vector machines [6]. To our knowledge,
our work is the first formalization about deep learning.

Some of the mathematical libraries underlying our formalizations have coun-
terparts in other systems, notably Coq. For example, the Mathematical Compo-
nents include comprehensive matrix theories [5], which are naturally expressed

62 A. Bentkamp et al.

using dependent types. The tensor formalization by Boender [9] restricts itself
to the Kronecker product on matrices. Bernard et al. [4] formalized multivariate
polynomials and used them to show the transcendence of e and π. Kam formal-
ized the Lebesgue measure as part of a formalization of the Lebesgue integral,
which in turn was used to state and prove Markov’s inequality [21].

8 Conclusion

We applied a proof assistant to formalize a recent result in a field where they have
been little used before, namely machine learning. We found that the functionality
and libraries of a modern proof assistant such as Isabelle/HOL were mostly
up to the task. Beyond the formal proof of the fundamental theorem of network
capacity, our main contribution is a general library of tensors.

Admittedly, even the formalization of fairly short pen-and-paper proofs can
require a lot of work, partly because of the need to develop and extend libraries.
On the other hand, not only does the process lead to a computer verification
of the result, but it can also reveal new ideas and results. The generalization
and simplifications we discovered illustrate how formal proof development can
be beneficial to research outside the small world of interactive theorem proving.

Acknowledgment. We thank Lukas Bentkamp, Robert Lewis, Anders Schlichtkrull,
Mark Summerfield, and the anonymous reviewers for suggesting many textual improve-
ments. The work has received funding from the European Research Council under the
European Union’s Horizon 2020 research and innovation program (grant agreement
No. 713999, Matryoshka).

References

1. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algo-
rithm prototyping. ACM Trans. Math. Softw. 32(4), 635–653 (2006)

2. Bentkamp, A.: Expressiveness of deep learning. Archive of Formal Proofs (2016).
http://isa-afp.org/entries/Deep Learning.shtml. Formal proof development

3. Bentkamp, A.: An Isabelle formalization of the expressiveness of deep learning.
M.Sc. thesis, Universität des Saarlandes (2016). http://matryoshka.gforge.inria.
fr/pubs/bentkamp msc thesis.pdf

4. Bernard, S., Bertot, Y., Rideau, L., Strub, P.: Formal proofs of transcendence for
e and π as an application of multivariate and symmetric polynomials. In: Avigad,
J., Chlipala, A. (eds.) CPP 2016, pp. 76–87. ACM (2016)

5. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
86–101. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71067-7 11

6. Bhat, S.: Syntactic foundations for machine learning. Ph.D. thesis, Georgia Insti-
tute of Technology (2013). https://smartech.gatech.edu/bitstream/handle/1853/
47700/bhat sooraj b 201305 phd.pdf

7. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible Isar proofs from machine-generated proofs. J. Autom. Reason. 56(2),
155–200 (2016)

http://isa-afp.org/entries/Deep_Learning.shtml
http://matryoshka.gforge.inria.fr/pubs/bentkamp_msc_thesis.pdf
http://matryoshka.gforge.inria.fr/pubs/bentkamp_msc_thesis.pdf
http://dx.doi.org/10.1007/978-3-540-71067-7_11
https://smartech.gatech.edu/bitstream/handle/1853/47700/bhat_sooraj_b_201305_phd.pdf
https://smartech.gatech.edu/bitstream/handle/1853/47700/bhat_sooraj_b_201305_phd.pdf

A Formal Proof of the Expressiveness of Deep Learning 63

8. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

9. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols
using Coq. In: Heunen, C., Selinger, P., Vicary, J. (eds.) QPL 2015. EPTCS, vol.
195, pp. 71–83 (2015)

10. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-14052-5 14

11. Bürgisser, P., Cucker, F., Lotz, M.: The probability that a slightly perturbed
numerical analysis problem is difficult. Math. Comput. 77(263), 1559–1583 (2008)

12. Caron, R., Traynor, T.: The zero set of a polynomial. Technical report, University
of Windsor (2005). http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/
05-03.pdf

13. Cohen, N., Sharir, O., Shashua, A.: Deep SimNets. In: CVPR 2016, pp. 4782–4791.
IEEE Computer Society (2016)

14. Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a
tensor analysis. In: Feldman, V., Rakhlin, A., Shamir, O. (eds.) COLT 2016. JMLR
Workshop and Conference Proceedings, vol. 49, pp. 698–728. JMLR.org (2016)

15. Cohen, N., Shashua, A.: Convolutional rectifier networks as generalized tensor
decompositions. In: Balcan, M., Weinberger, K.Q. (eds.) ICML 2016. JMLR Work-
shop and Conference Proceedings, vol. 48, pp. 955–963. JMLR.org (2016)

16. Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks through
pooling geometry. CoRR abs/1605.06743 (2016)

17. Haftmann, F., Lochbihler, A., Schreiner, W.: Towards abstract and executable
multivariate polynomials in Isabelle. In: Nipkow, T., Paulson, L., Wenzel, M. (eds.)
Isabelle Workshop 2014 (2014)

18. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). doi:10.
1007/11541868 8

19. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Eekelen,
M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp.
135–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 12

20. Immler, F., Maletzky, A.: Gröbner bases theory. Archive of Formal Proofs (2016).
http://isa-afp.org/entries/Groebner Bases.shtml. Formal proof development

21. Kam, R.: Case studies in proof checking. Master’s thesis, San Jose State
University (2007). http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?context=etd
projects&article=1149

22. Kobayashi, H., Chen, L., Murao, H.: Groups, rings and modules. Archive of Formal
Proofs (2004). http://isa-afp.org/entries/Group-Ring-Module.shtml. Formal proof
development

23. Liu, L., Aravantinos, V., Hasan, O., Tahar, S.: On the formal analysis of HMM
using theorem proving. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 316–331. Springer, Cham (2014). doi:10.1007/978-3-319-11737-9 21

24. Lotz, M.: On the volume of tubular neighborhoods of real algebraic varieties. Proc.
Amer. Math. Soc. 143(5), 1875–1889 (2015)

25. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

26. Murphy, T., Gray, P., Stewart, G.: Certified convergent perceptron learn-
ing (unpublished draft). http://oucsace.cs.ohiou.edu/∼gstewart/papers/
coqperceptron.pdf

http://dx.doi.org/10.1007/978-3-642-14052-5_14
http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/05-03.pdf
http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/05-03.pdf
http://dx.doi.org/10.1007/11541868_8
http://dx.doi.org/10.1007/11541868_8
http://dx.doi.org/10.1007/978-3-642-22863-6_12
http://isa-afp.org/entries/Groebner_Bases.shtml
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?context=etd_projects&article=1149
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?context=etd_projects&article=1149
http://isa-afp.org/entries/Group-Ring-Module.shtml
http://dx.doi.org/10.1007/978-3-319-11737-9_21
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://oucsace.cs.ohiou.edu/~gstewart/papers/coqperceptron.pdf
http://oucsace.cs.ohiou.edu/~gstewart/papers/coqperceptron.pdf

64 A. Bentkamp et al.

27. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

28. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair
(2012)

29. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive the-
orem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732,
pp. 232–245. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4 18

30. Poon, H., Domingos, P.M.: Sum-product networks: a new deep architecture. In:
Cozman, F.G., Pfeffer, A. (eds.) UAI 2011, pp. 337–346. AUAI Press (2011)

31. Prathamesh, T.V.H.: Tensor product of matrices. Archive of Formal Proofs (2016).
http://isa-afp.org/entries/Matrix Tensor.shtml. Formal proof development

32. Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of
Formal Proofs (2010). http://isa-afp.org/entries/Polynomials.shtml. Formal proof
development

33. Thiemann, R., Yamada, A.: Matrices, Jordan normal forms, and spectral
radius theory. Archive of Formal Proofs (2015). http://isa-afp.org/entries/Jordan
Normal Form.shtml. Formal proof development

34. Wenzel, M.: Isar—a generic interpretative approach to readable formal proof doc-
uments. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). doi:10.
1007/3-540-48256-3 12

http://dx.doi.org/10.1007/978-3-540-74591-4_18
http://isa-afp.org/entries/Matrix_Tensor.shtml
http://isa-afp.org/entries/Polynomials.shtml
http://isa-afp.org/entries/Jordan_Normal_Form.shtml
http://isa-afp.org/entries/Jordan_Normal_Form.shtml
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-48256-3_12

Formalization of the Lindemann-Weierstrass
Theorem

Sophie Bernard(B)

Université Côte d’Azur, Inria, Valbonne, France
Sophie.Bernard@inria.fr

Abstract. This article details a formalization in Coq of the Lindemann-
Weierstrass theorem which gives a transcendence criterion for complex
numbers: this theorem establishes a link between the linear independence
of a set of algebraic numbers and the algebraic independence of the
exponentials of these numbers. As we follow Baker’s proof, we discuss
the difficulties of its formalization and explain how we resolved them in
Coq. Most of these difficulties revolve around multivariate polynomials
and their relationship with the conjugates of a univariate polynomial.
Their study ultimately leads to alternative forms of the fundamental
theorem of symmetric polynomials. This formalization uses mainly the
Mathcomp library for the part relying on algebra, and the Coquelicot
library and the Coq standard library of real numbers for the calculus
part.

Keywords: Coq · Formal proofs · Multivariate polynomials · Polyno-
mial conjugates · Transcendance

1 Introduction

Natural, integer, rational, real, complex . . . We are so used to this classification of
numbers that we tend to forget it is not the only one. After all, integers are only
the solutions of simple additive equations in IN, and rationals are the solutions
of the simple multiplicative ones in ZZ. The next move would normally be to
mix them both in Q. We then obtain the algebraic numbers: the set of all the
roots of polynomials whose coefficients lie in Q.

The Lindemann-Weierstrass theorem gives a criterion to recognize transcen-
dental numbers, that is non-algebraic numbers. More precisely, it explains that
a set of exponentials of algebraic numbers which respect certain conditions can
never verify some polynomial equation. The usual statement gives a result which
links linear independence of these algebraic numbers and the algebraic indepen-
dences of their exponentials, both over Q.

This kind of criterion was pretty new at the time: only in 1844 has Liouville
[14] shown that there exist transcendental numbers, by explicitly exhibiting one.
In the next few years, Hermite [11] used a special function to show that e is also
transcendental. This same function led to the transcendance of π by Lindemann,
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 65–80, 2017.
DOI: 10.1007/978-3-319-66107-0 5

66 S. Bernard

and its generalization, an earlier version of the theorem we formalized [13]. The
work of Weierstrass eventually resulted in the Lindemann-Weierstrass theorem
in its usual form [16].

Later on, Gelfond and Schneider worked independently of some generaliza-
tions, which gave results on linear forms of complex logarithms, opening the door
for many applications: diophantine equations, elliptic curves, cryptography, . . .

In this paper, we formalized, in Coq, one of the many proofs that exist. To
our knowledge, it is the first formalization of this theorem in any formal proof
assistant. We were given different choices for the proof, the main ones were the
following:

– Hermite, Lindemann and Weierstrass: it has the advantage of explaining
exactly why a certain function is introduced.

– Baker: it uses the same steps as the previous one, except that it goes straight
for the result.

– Lang: a less elementary proof relying on field extensions and Galois theory
[12].

Lang’s proof could be interesting to formally prove but the goal here was to
continue the previous work on multivariate polynomials [3] and give a small
interface for the study of polynomial roots. That’s why Baker’s proof was chosen.
It can be found in Baker’s book [2].

In this paper, we will dedicate Sect. 2 to the first part of the proof: it will serve
as an overview of the useful libraries and the proof, as well as introducing the
theorem statement. Then, in Sect. 3, we will follow the different parts of Baker’s
proof. For each part, we will explain the ideas of the mathematical proof, its
difficulties and how we resolved them by formalizing several notions such as the
conjugates roots of a polynomial or a special kind of symmetric polynomials.
Finally, we compare our solution to related work, and present what could be the
next step (Sect. 4).

All the files of this formalization can be found on [1], they are relying on Coq
8.5 [8], coquelicot 2.1.2, and development versions of mathcomp 1.6.1, multino-
mials, and finmap [6].

2 Context

In this section, we will formally define the already introduced terms, motivate
our choice of libraries in order to be able to give the Coq statement of the
Lindemann-Weierstrass theorem.

2.1 Mathematical Context

Firstly, we say a finite set of numbers A = {a1, . . . , an} is linearly independent
over Q when a rational linear combination of A is null only if the coefficients are
all zero.

∀(q1, . . . , qn) ∈ Qn, q1a1 + · · · + qnan = 0 =⇒ ∀i ∈ {1, . . . , n}, qi = 0. (1)

Formalization of the Lindemann-Weierstrass Theorem 67

The same way a polynomial over a commutative ring IK is the linear com-
bination of coefficients in IK and exponents of the indeterminate, a multivariate
polynomial over a commutative ring IK is a linear combination of coefficients in
IK and monomials which are products of indeterminates. Usually, there are no
more than 3 indeterminates, they are written X, Y and Z, otherwise we call
them Xk where k ranges from 1 to n if n indeterminates are needed.

A number is said to be algebraic if it is one of the roots of a polynomial over
Q. It is transcendental if it never is a root of a polynomial over Q. A finite set
of numbers are algebraically independent over Q if no multivariate polynomial
over Q has exactly this set as his roots.

With these definitions, we can finally explicitly state the theorem.

Theorem 1 (Lindemann-Weierstrass). For any non-zero natural number n
and any algebraic numbers a1, . . . , an, if the set {a1, . . . , an} is linearly indepen-
dent over Q, then {ea1 , . . . , ean} is algebraically independent over Q.

2.2 Stating the Lindemann-Weierstrass Theorem in Coq

In order to formally prove Theorem1, the previous definitions need to be trans-
fered in Coq, like the complex numbers. The library MathComp, originally devel-
oped to prove the four-color [9] and Feit-Thompson theorems [10], provides a
nice frame to define algebraic structures. In fact, to define complex numbers
in module Cstruct, we use the Coq standard library of real numbers, and a
MathComp file to define complexes as pairs over a real-closed field.

CoInductive complex (R : Type) : Type := Complex { Re : R; Im : R }.

Definition complexR := (complex R).

Thanks to the real-closed field structure of the real numbers and the Math-
Comp tools, the type complexR automatically inherits a closed field structure,
equipped with a norm and a complete order on this norm. There exists a
morphism QtoC from rat to complexR. This allows the use of the predicate
algebraicOver QtoC x which states that there exists a polynomial over rat
such that when its coefficients are embedded into complexR by QtoC, x is one of
its roots.

Notation QtoC := (ratr : rat → complexR).

Notation "x’is_algebraic’" := (algebraicOver QtoC x).

We can then define the complex exponential from the embedding RtoC, and
the Coq standard library functions, cos, sin and exp.

Definition Cexp (z : complexR) : complexR :=

RtoC (exp(Re_R z)) * (RtoC (cos (Im_R z)) + ’i * RtoC (sin (Im_R z))).

In MathComp, as soon as a type has a monoid structure, an interface (bigop)
is provided for the repeated use of the monoid operation. This usually translates
in the possibility to easily write sums or products. For example, we call exp-linear
combination of the tuples β and α the linear combination of the exponentials of
α’s with the β’s as coefficients. For instance, the exp-linear combination of (2, 3)
and (4, 5) is 2e4 + 3e5.

68 S. Bernard

Definition Cexp_span (n : nat) (a : complexR^n) (alpha : complexR^n) :=

\sum_(i : ’I_n) a i * Cexp (alpha i).

Mathematical tuples are used a lot in the proof of the Lindemann-Weierstrass
theorem. In MathComp, they can either be viewed as a sequence of fixed size
(tuple) or as a function with finite domain (finfun), which are actually con-
structed above tuple. For instance, with functions, the type of a mathematical
n-tuple of complexes is complexR^ n. In the context of multivariate polynomials,
a monomial is also a tuple of natural numbers: to each ordinal i it associates the
exponents of Xi.

Finally, concerning polynomials, whether univariate or multivariate, the pre-
dicate \is a polyOver P (resp. mpolyOver) states that all the coefficients of
the polynomial respect a certain predicate P. In each case, we also have a way
to evaluate them: p.[x] for univariate polynomials and p.@[t] for multivariate
polynomials.

To prove the Lindemann-Weierstrass theorem, we have to recognize the ratio-
nal numbers amongst the complex. In the case of algebraic numbers, there exists
a boolean function that returns true if a number is rational, and false in the
other case [7]. In our context, we already added an axiom (from the Coq stan-
dard library: Epsilon, only on equality) which makes it possible to transform the
equality between two reals into a boolean function. This boolean equality with
the fact that complexR verifies a modified version of the archimedean property
implies that testing whether a complex is an integer or not is now a boolean
function.

Definition archimedean_axiom (R : numDomainType) : Prop :=

forall x : R, exists ub : nat, ‘|x| < ub%:R.

This means we have two boolean predicates Cnat and Cint that recognize if
a complex number is a natural number or an integer. This also means that any
numDomainType (approximately, an integral domain with a norm, a partial order
and a boolean equality) which verifies this archimedean property can be auto-
matically equipped with these two predicates, like int, rat, or algC (algebraic
complex numbers).

Instead of adding yet another axiom to obtain a boolean predicate for the
rationals, we preferred changing small parts of the proof to equivalent ones that
don’t rely on rational numbers. Moreover, as the MathComp library is designed
around reflections between properties and booleans, this really improves both
the feasibility and the ease of use for the proof.

The last missing piece concerns the linear and algebraic independence of a
set of numbers. Their formalization follows almost exactly the mathematical
definitions except that the set over which the independence is considered (Q
until now, P in the following definition) is represented as a predicate.

Definition lin_indep_over (P : pred_class) {n : nat} (x : complexR^n) :=

forall (lambda : complexR^n),

lambda \in ffun_on P →
lambda != 0 →
\sum_(i < n) (lambda i * x i) != 0.

Formalization of the Lindemann-Weierstrass Theorem 69

Definition alg_indep_over (P : pred_class) {n : nat} (x : complexR^n) :=

forall (p : {mpoly complexR[n]}),

p \is a mpolyOver _ P →
p != 0 →
p.@[x] != 0.

We can now state Theorem 1 in Coq, using the predicate Cint, as the linear
(or algebraic) independence over Q is the same as over ZZ.

Theorem Lindemann (n : nat) (a : complexR^n) :

(n > 0)%N →
(forall i : ’I_n, alpha i is_algebraic) →
lin_indep_over Cint alpha →
alg_indep_over Cint (finfun (Cexp \o alpha)).

2.3 Proof Context

The proof has a small part involving real analysis on functions with complex
values, and more precisely, derivatives and integrals of such functions. For this
part, we use the Coquelicot library [5] which gives us a way to get an upper
bound for an integral (RInt).

RInt (fun x => norm ((T i)^+ p).[x *: alpha j]) 0 1 <= M ^+ p.

This means that our development is based on multiple libraries which were
not meant to be used together. In Fig. 1, we show how the different libraries
interact with each other. As the context for this proof is almost exactly the
same as for the direct proof of e and π, you can refer to [3] for more details.

Multivariate PolynomialsMathematical Components

Coq

Coquelicot Structures

L-W Theorem

Fig. 1. Link between the different libraries

3 Following the Proof

Baker’s proof doesn’t actually prove Theorem1 but rather a reformulation which
we call Theorem 2. This reformulation provides the advantage of eliminating the
study of linear and algebraic independence.

70 S. Bernard

Theorem 2 (Baker’s reformulation). For any non-zero natural number l,
any distinct algebraic numbers α1, . . . , αl and any non-zero algebraic numbers
β1, . . . , βl, we have:

β1e
α1 + . . . + βle

αl �= 0. (2)

Its proof has 3 main steps. The first one focuses on the β’s and strengthens
their hypothesis, using the first lemma (Lemma 3). The second one deals with
the α’s and adds some conditions on them, showed in Lemma 4. The final part
actually deals with the last lemma and proves it. We will present the ideas of
these different steps in the following subsections.

In Fig. 2, the dashed arrows are the trivial implications that are not proved
in this paper, as we focus on the proof of the Lindemann-Weierstrass theorem.

Theorem 2 (Baker)Lemma 3 (β)Lemma 4 (α)

Theorem 1 (Lindemann)

Sect. 3.1

Sect. 3.2Sect. 3.3

Sect.3.4

Fig. 2. Implications between the different theorems and lemmas

3.1 Baker’s Reformulation

In this subsection, we prove that the Lindemann-Weierstrass theorem is at least
as strong as Baker’s reformulation (previously called Theorem 2).

As the notations in Sect. 2 cover our needs, we can immediately give the Coq
translation of Theorem 2, and notice the change on l: to avoid any problem later
on, we explicitly state that the tuple is not empty, as its size is l.+1. It should be
noted that the conditions that the α’s must be distinct is seen as the injectivity
of the function alpha from ’I l.+1 to complexR.

Theorem LindemannBaker :

forall (l : nat) (alpha : complexR^l.+1) (a : complexR^l.+1),

injective alpha →
(forall i : ’I_l.+1, alpha i is_algebraic) →
(forall i : ’I_l.+1, a i != 0) →
(forall i : ’I_l.+1, a i is_algebraic) →
(Cexp_span a alpha != 0).

In order to prove this reformulation is at least as strong as Theorem1, we
need to recall some definitions around multivariate polynomials. The support of

Formalization of the Lindemann-Weierstrass Theorem 71

a multivariate polynomial p is the set of all the monomials which have a non-
zero coefficients, and is written msupp p in Coq. Finally, it is worth noticing that
when one evaluates a monomial on a set of exponential of numbers, one obtains
the exponential of a linear combination of these numbers.

As shown below, the proof of the implication of the Lindemann-Weierstrass
theorem by Baker’s reformulation is pretty straightforward.

Proof. Let us call t the tuple of the support of p, alpha (resp. beta) the tuple
of the evaluation of the monomials of t on the exponentials of a (resp. the
coefficients of the monomials of t in p). We can then recognize an exp-linear
combination: we prove the following equality and rewrite it.

P.@[finfun (Cexp \o a)] = Cexp_span beta alpha.

By applying Theorem2, we are left with all its hypothesis to prove. All of
them are almost instantaneous except the injectivity of alpha. To prove this last
bit, it suffices to unfold alpha so that we obtain an equality between two linear
combinations of the a, which can we reduced to a single linear combination.

\sum_(k < n) (((t i) k)%:R - ((t j) k)%:R) * a k != 0

By linear independence, and unicity of the support of a polynomial, the proof
is finished. ��

3.2 Simplifying the β’s

The goal of the first part of Baker’s proof is to show that we can assume, without
loss of generality, that the β’s are integers. Thus, this subsection gives some
insights about the set of roots of a polynomial, the minimal polynomial, a total
order on the complex and the formalization of the maximum of a tuple. With
all these facts, we prove that Lemma 3 below implies Theorem 2.

Lemma 3. For any non-zero natural number l, any distinct algebraic numbers
α1, . . . , αl and any non-zero integers β1, . . . , βl, we have:

β1e
α1 + . . . + βle

αl �= 0. (3)

The main difference between the mathematical statement and the Coq one
is that we replace the condition on l to be non-zero by the explicit value l.+1.

Lemma wlog1 :

(forall (l : nat) (alpha : complexR^l.+1) (a : complexR^l.+1),

injective alpha →
(forall i : ’I_l.+1, alpha i is_algebraic) →
(forall i : ’I_l.+1, a i != 0) →
(forall i : ’I_l.+1, a i \is a Cint) →
(Cexp_span a alpha != 0)).

72 S. Bernard

To explain the proof, we need some definitions about symmetric polynomials
and minimal polynomials. A multivariate polynomial is said to be symmetric if it
is left unchanged by any permutation of its variables. For instance, the following
polynomial is symmetric, but its first half isn’t.

X3Y 2Z + X2Y Z3 + XY 3Z2 + X3Y Z2 + X2Y 3Z + XY 2Z3. (4)

The fundamental theorem of symmetric polynomials states that any symmet-
ric polynomial in a ring IK can be obtained from a particular set of symmetric
polynomials using only addition, multiplication, and multiplication by coeffi-
cients in the ring IK. As we shall develop more on this topic later, let us just
remark that as a consequence of this theorem, we have that for any symmetric
polynomial whose coefficients are in IK, its evaluation on the set of roots of a
polynomial is in IK.

To more easily track the set of roots of a polynomial, we gave ourselves a
small definition, which expresses that a set f is the set of roots of a polynomial.
To be more general, we consider an archimedean closed field T with a norm and
partial order, a predicate S and say that the polynomial whose roots are exactly
f has all its coefficients in S when multiplied by a number c.

(f \is a set_roots S c) =

((c *: \prod_(x <- enum_fset f) (’X - x%:P)) \is a polyOver S).

In our case, the predicate will be Cint and the field complexR. Once more,
as we can’t recognize the rational numbers among the complex, we workaround
this problem by specifying a multiple (c) of the expected least common multiple
of the denominator of all the coefficients. The negative point of having one more
parameter is once again largely compensated by the gain in ease of proof from
a boolean predicate.

The minimal polynomial of an algebraic complex number x is the polynomial
of smallest degree which has x as a root, whose coefficients are in Q and whose
leading coefficient is 1 (we also say monic). We defined two related notions for
the minimal polynomial: the one whose coefficients are in ZZ, and the one already
embedded in the complex.

The first one, polyMinZ, is the irreducible, separable polynomial whose coef-
ficients are in int, whose zcontents (the greatest common divisor of all its
coefficients with the same sign as the leading coefficient) is 1, and which divides
exactly all the polynomials which have x as a root. It corresponds to the minimal
polynomial multiplied by the least common multiple of the denominators of all
its coefficients, and if needed, by −1 so that the leading coefficient is positive.

{p : {poly int} | [∧ (zcontents p = 1),

irreducible_poly p, separable_poly (map_poly ZtoC p)

& forall q : {poly int}, root (map_poly ZtoC q) x = (p %| q)]}.

To prove the existence of such a polynomial, we used the fact that any number
of type algC has a minimal polynomial over rat. As shown in Fig. 3, from an
algebraic complex number x, we obtain a polynomial p which has x as a root.
We can then proceed by recurrence on the degree of p to prove the existence

Formalization of the Lindemann-Weierstrass Theorem 73

of the minimal polynomial of x: if it is below or equal to 2, we already have a
candidate for the minimal polynomial. From this point, we extract a root xC in
algC of the polynomial p embedded in algC, and call its minimal polynomial
q. If x is a root of q, we found a candidate for its minimal polynomial. If not,
then q divides p, and we obtain a new polynomial with coefficients in rat with
a smaller size and which has x as a root. By recurrence, we obtain a candidate.
Once we have a candidate, we have to transform it to be in int instead of rat,
by multiplying it by the least common multiple of the denominators of all its
coefficients.

x

p

xC

q q or p/q

minPolyZ

algebraic

closed field min. poly.

x root ?

Candidates

to int

complexR

rat poly

algC int poly

Fig. 3. Existence of a minimal polynomial

Proof (Lemma 3 =⇒ Theorem 2). We proceed by contrapositive, so we assume
we have some l, α’s and β’s that respect Theorem 2’s assumptions but contradict
its conclusion: the linear combination of the β’s and the exponentials of α’s is
considered equal to 0. Every β is algebraic: for each k which ranges from 1 to l,
we call Bk the set of roots of the minimal polynomial of βk. Then, we multiply
all the expressions obtained by letting the βk’s to run independently through
the Bk’s in the left-hand side of (2).

∏

β′
1∈B1

· · ·
∏

β′
l∈Bl

(β′
1e

α1 + . . . + β′
le

αl) = 0. (5)

Finally, (5) is symmetric with respect to each Bk so that the new coefficients
of the linear combination are rationals. It then suffices to multiply by the least
common multiple of the denominators to ensure the new β’s are integers. ��

In this proof, we can notice three main problems. In usual mathematical
practice, we don’t even bother checking if there is at least one new β and α
to contradict Lemma 3. Secondly, we recognize an expression as symmetric and
then directly state that the result is what we expected. Actually, we are supposed
to begin by showing it is a symmetric polynomial evaluated on some numbers,

74 S. Bernard

then continue by applying the fundamental theorem of symmetric polynomials
and end by verifying we obtain a Q-exp-linear combination. Finally, even the
application of the theorem is misleading: we have to apply it for each Bk.

The first point can be resolved by following the highest α according to the
lexical ordering on complex numbers following the real part and then the imagi-
nary part:

Definition letc x y :=

(’Re x < ’Re y) || ((’Re x == ’Re y) && (’Im x <= ’Im y)).

In order to follow the highest of the α’s, we define the maximum of a tuple. This
is the repeated use of the maxc operation on the tuple, which evokes the bigop
module. The structure (complexR, maxc) is not equipped with a monoid structure
and we cannot use directly the big operations provided by the MathComp library.
In the case of a non-empty tuple f, we invoke the sequence case whose default
value is the first value of the tuple (f ord0), and whose sequence is the sequence
value of the tuple (codom f).

Definition bmaxf n (f : complexR^n.+1) :=

bigmaxc (f ord0) (codom f).

The third point can be resolved by changing a little bit the proof. Instead
of letting each βk to run only within Bk, they can now run through the whole
B =

⊎l
k=1 Bk, seen as a multiset. Expression (5) is then changed into:

∏

β′
1∈B

· · ·
∏

β′
l∈B

(β′
1e

α1 + . . . + β′
le

αl) = 0. (6)

It presents two immediate benefits. First, (6) is now completely symmetric in
the β’s, which means we now only have to use the fundamental theorem of
symmetric polynomials once. Secondly, it makes the expression clearer, and thus,
more convincing. Finally, we can notice that the products in (6) can be replaced
by a single product sign over the l-tuples of elements of B.

For the second point, we can identify explicitly the left-hand side of (2) with
a multivariate polynomial whose coefficients are also multivariate polynomials
evaluated on the right points: the first set of indeterminates represents the β’s,
the second set is used to hide the exponentials and verify that, in the end, we
still obtain a linear combination of rationals and exponentials. For instance, (6)
is changed into the following, where L.+1 is the cardinal of B.

((\prod_(f : ’I_L.+1 ^ l.+1) \sum_(i : ’I_l.+1) ’X_i *: ’X_(f i))

.@[finfun ((@mpolyC l.+1 complexR_ringType) \o beta)])

.@[finfun (Cexp \o alpha)] = 0.

We can also notice that Lemma 3 is a direct consequence of the Lindemann-
Weierstrass theorem.

Formalization of the Lindemann-Weierstrass Theorem 75

3.3 Simplifying the α’s

The second and third steps in Baker’s proof both revolve around the same new
lemma which strengthens the conditions on the α’s. But, we need some last
definitions to be able to write it.

First of all, a partition of a set S is a set of sets such that none of its elements
is the null set, all of its elements are disjoint, and the union of all its elements is
exactly S. For instance, {{1, 3, 6}, {2}, {4, 5}} is a partition of {1, 2, 3, 4, 5, 6}. In
MathComp, the notion already existed and is based on the null set (set0), the
union of all its parts (cover P) and trivIset which is a predicate that treats
the disjoint condition by studying the cardinal of the parts of P.

Definition partition (T : finType) (P : {set {set T}}) (D : {set T}) :=

[&& cover P == D, trivIset P & set0 \notin P].

Secondly, two complex numbers are called conjugates if they are roots of a
same minimal polynomial. In particular, in order to find a minimal polynomial,
we need at least one of those numbers to be algebraic. In this case, an algebraic
number x and a complex number y are conjugates if y is a root of the minimal
polynomial of x.

Lemma conjOfP (x y : complexR) (x_alg : x is_algebraic) :

reflect (y \is a conjOf x_alg) (root (polyMin x_alg) y).

We also say a set of conjugates is complete if it is exactly the set of all
the roots of a minimal polynomial. For instance, { 3

√
2, e

2iπ
3

3
√

2,−e
2iπ
3

3
√

2} is a
complete set of conjugates. Formalizing this property with a boolean predicate
leads to a strange definition which once again uses an additional parameter c with
the same role. In particular, given a complex c and a set f of complex numbers,
our definition checks if P := c *: \prod (x <- enum fset f) (’X - x%:P) is
non-zero, non-constant and only has integer coefficients, and from the proofs of
these three statements, it constructs the minimal polynomial of a root of P.
Then, it suffices to check if these two polynomials are equal up to an integer
multiplication. In particular, any complex in a complete set of conjugates is
algebraic.

Lemma setZconj_algebraic (c x : complexR) (f : {fset complexR}) :

x \in f → f \is a setZconj c → x is_algebraic.

Lemma 4. For any non-zero natural number l, any distinct algebraic numbers
α1, . . . , αl and any non-zero integers β1, . . . , βl, such that the α’s can be grouped
into a partition P , if for each part in P , the α’s form a complete set of conju-
gates, and on each part in P , the β’s are constant, then:

β1e
α1 + . . . + βle

αl �= 0. (7)

With the previously introduced notation, we obtain the following lemma in
Coq.

76 S. Bernard

Lemma wlog2 :

forall (l : nat) (c : complexR) (alpha : complexR^l.+1)

(part : {set {set ’I_l.+1}}) (a : complexR^l.+1),

c != 0 →
c \is a Cint →
injective alpha →
partition part [set: ’I_l.+1] →
{in part, forall P : {set ’I_l.+1},

[fset (alpha i) | i in P]%fset \is a setZroots c} →
(forall i : ’I_l.+1, a i != 0) →
(forall i : ’I_l.+1, a i \is a Cint) →
{in part, forall P : {set ’I_l.+1}, constant [seq a i | i in P]} →
Cexp_span a alpha != 0.

To continue the proof of the Lindemann-Weierstrass theorem, we need to
prove that Lemma 4 implies Lemma 3. Its proof follows the same steps as the
proof in Sect. 3.2 so we won’t give too much details. The main differences and
sources of difficulties between the two proofs can be found in Fig. 4. They come
from the fact that we need to be far more specific in each argument.

α β

A B

poly poly of poly

polys poly

new α/β new α/β

partition

separable poly with at
least the α’s as roots

product of all the minimal
polynomial of the β’s

on injective functions An
on functions Bn

decomposition on monomial
symmetric polynomials

evaluation

conjugates

roots

symmetry

product of exp-linear combinations

evaluation,
eliminate the duplicates,

coefficients not null

Lemma 4 =⇒ Lemma 3 Lemma 3 =⇒ Theorem 2

Fig. 4. Comparison of the proofs of Sect. 3.3 (left) and Sect. 3.2 (right)

For instance, in Sect. 3.2, we introduced the fundamental theorem of sym-
metric polynomials. Here, we need a more precise version that states that any

Formalization of the Lindemann-Weierstrass Theorem 77

symmetric polynomial in a ring IK can be obtained as a IK-linear combination
of a particular set of symmetric polynomials: the monomial symmetric polyno-
mials. Each one is exactly the smallest symmetric polynomial of a monomial
Xk1

1 Xk2
2 . . . Xkn

n , that is the sum of all the monomials Xk1
σ(1)X

k2
σ(2) . . . Xkn

σ(n) that
can be obtained from all the permutations σ of the indeterminates. In Coq, we
called them mmsym x or ’m x if x is a monomial.

3.4 Proving the Final Lemma

The final part of the proof uses even more precise arguments around multivariate
polynomials and symmetry.

Proof. To actually prove Lemma 4, which corresponds to the third part of
Baker’s proof, we proceed by contradiction. We then need to introduce many
notations and a big enough prime number p. This p only depends on the values
of the α’s and β’s, and must be an upper bound (UB) of a certain polynomial
T on [0; 1]. Once it is defined, we construct other polynomials and values I, J
and K, as shown in Fig. 5 and study them in two ways. First, with algebra, we
can show they have some properties of divisibility which lead to a lower bound
for K. Then, as I can be recognized as an integral of a function of T , we can
find an upper bound, and consequently, an upper bound for K, too. Finally, we
combine both inequations involving K:

(p − 1)!n ≤ K < (p − 1)!n. (8)

This is a logical contradiction which completes the proof. ��

α

T

β

UB for T

p Ii,j Ji K False

UB for Ii,j Ji < (p − 1)! K < (p − 1)!l

= ... × p! + ... × (p − 1)! (p − 1)!l ≤ K

sum of the
derivatives of
polynomials

sum product

Fig. 5. Proof structure of Lemma 4

This proof follows the same steps as the common lemma of the transcendence
of e and π up until the results on J . In the last few different steps which are
only in the algebra part, Baker proposes to impose being algebraic integers on

78 S. Bernard

the α’s and then speaks of divisibility of algebraic integers by natural numbers.
Because of the path chosen in the common lemma proof, we can finish the proof
without ever explicitly using algebraic integers.

The proofs of divisibility on K relies heavily on repeated uses of the fun-
damental theorem of symmetric polynomials. In fact, K is the evaluation of a
multivariate polynomial Km on the α’s. For each part of the partition P , Km

is symmetric on the subset of indeterminates of the part but not fully symmet-
ric. This means that the theorem can not be applied directly on the full set of
indeterminates, but repeatedly on each subset of indeterminates corresponding
to a part of the partition, that is on a subset of indeterminates which make Km

symmetric and corresponds to a complete set of conjugates. All the indetermi-
nates must be considered once and only once, hence the need for a partition on
complete set of conjugates.

We formalized a predicate symmetric for indicating if a multivariate poly-
nomial is symmetric on a given subset of its indeterminates in the same way as
a fully symmetric polynomial: it must be equal to itself on any permutation of
this subset of indeterminates. This was done with an already existing predicate
perm on on permutations that states that outside the subset, the permutation
maps a value to itself.

Thanks to this predicate and extensions of other notations such as the small-
est symmetric polynomial containing a monomial, we were able to obtain a new
formalized corollary of the fundamental theorem of symmetric polynomials.

Lemma 5. Given a natural number m, a m-tuple l of unique complex numbers,
a m-variate polynomial p whose coefficients are rationals, and P a partition of
{1, . . . , m}, if p is symmetric on each part of P for each part of P , the corre-
sponding l’s form a complete set of conjugates, then P (l1, . . . , lm) is rational.

This can be generalized in Coq to a closed field T (instead of C) and a boolean
predicate kS (instead of rational) compatible with ring operations.

partition P [set: ’I_m.+1] →
injective l →
{in P, forall Q : {set ’I_m.+1},

[fset l i | i in Q]%fset \is a set_roots kS c} →
p \is a mpolyOver m.+1 kS →
{in P, forall Q, p \is (@symmetric_for _ _ Q)} →
c ^+ (msize p).-1 * p.@[l] \in kS.

4 Conclusion

4.1 Related Work

Concerning transcendance formalizations, this work is a follow-up of the proof
of transcendence of e by Bingham [4] in HOL Light, and of the proofs of tran-
scendance of e and π in Coq.

Formalization of the Lindemann-Weierstrass Theorem 79

The work on multivariate polynomials is primarily based on a development
made by Strub, and continued by Hivert who also formalized monomial sym-
metric polynomials but relied upon the definitions of partitions of an integer.
We prefered to have a self-sufficient definition which introduces the notion of the
smallest symmetric polynomial containing a monomial. Nevertheless, we added
a lemma to ensure the compatibility of both definitions.

To our knowlegdge, this is the first formalization of multivariate polynomials
that are symmetric on a subset of their indeterminates. This is not really sur-
prising as the main current use of multivariate polynomials consists in studying
the Bernstein polynomials [15] in order to approximate polynomial inequalities.
Moreover, it would be easier to separate the indeterminates in two sets (sym-
metric or not) of indeterminates, rather than staying with a fixed number of
indeterminates.

4.2 Future Work

In the future, the multivariate polynomial library will evolve to pick the inde-
terminates differently, allowing the change of the number of indeterminates to
be far easier. This will probably change the statement of the corollary of the
fundamental theorem of symmetric polynomials, and make its proof way easier.

It could be interesting to try to formalize the same theorem using Galois
theory as it is already formalized in Mathcomp, to compare the proofs. In the
same spirit, proving the existence of an embedding from the algebraic complex
numbers (type algC) to the complex numbers (type complexR) could offer a
different view on the proof, with different definitions or different proofs. Never-
theless, the construction of the complex numbers would still be necessary for the
analysis part.

The next step could probably be to prove Baker’s theorem on the linear form
of complex logarithms, as it is the basis for several developments derived from
transcendence.

References

1. Formalization of the Lindemann-Weierstrass theorem in Coq. http://www-sop.
inria.fr/marelle/lindemann/

2. Baker, A.: Transcendental Number Theory. Cambridge University Press, Cam-
bridge (1990)

3. Bernard, S., Bertot, Y., Rideau, L., Strub, P.Y.: Formal proofs of transcendence
for e and pi as an application of multivariate and symmetric polynomials. In:
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, pp. 76–87. ACM (2016)

4. Bingham, J.: Formalizing a proof that e is transcendental. J. Formaliz. Reason.
4(1), 71–84 (2011)

5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

6. Cohen, C.: Finmap library. http://github.com/math-comp/finmap

http://www-sop.inria.fr/marelle/lindemann/
http://www-sop.inria.fr/marelle/lindemann/
http://github.com/math-comp/finmap

80 S. Bernard

7. Cohen, C.: Formalized algebraic numbers: construction and first-order theory.
Ph.D. thesis, Citeseer (2013)

8. Coq development team: the Coq proof assistant (2008). http://coq.inria.fr
9. Gonthier, G.: Formal proof – the four-color theorem. Not. AMS 55(11), 1382–1393

(2008)
10. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,

S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 14

11. Hermite, C.: Sur la fonction exponentielle. In: Comptes-Rendus de l’Académie des
Sciences, vol. 77, pp. 18–24, 74–79, 226–233, 285–293. Paris (1873)

12. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer,
New York (2002)

13. Lindemann, F.: Über die zahl π. Math. Ann. 20(2), 213–225 (1882)
14. Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est

ni algébrique, ni même réductible à des irrationnelles algébriques. J. de
mathématiques pures et appliquées 16, 133–142 (1851)

15. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. J. Autom. Reason. 51(2), 151–196
(2013)

16. Weierstrass, K.: Zu Lindemann’s Abhandlung: “Über die Ludolph’sche Zahl.”.
Akademie der Wissenschaften (1885)

http://coq.inria.fr
http://dx.doi.org/10.1007/978-3-642-39634-2_14

CompCertS: A Memory-Aware Verified C
Compiler Using Pointer as Integer Semantics

Frédéric Besson1(B) , Sandrine Blazy2(B) , and Pierre Wilke3(B)

1 Inria, Rennes, France
frederic.besson@inria.fr

2 Université Rennes 1 - CNRS - IRISA, Rennes, France
sandrine.blazy@irisa.fr

3 Yale University, New Haven, USA
pierre.wilke@yale.edu

Abstract. The CompCert C compiler provides the formal guarantee
that the observable behaviour of the compiled code improves on the
observable behaviour of the source code. In this paper, we present a for-
mally verified C compiler, CompCertS, which is essentially the Com-
pCert compiler, albeit with a stronger formal guarantee: it gives a
semantics to more programs and ensures that the memory consump-
tion is preserved by the compiler. CompCertS is based on an enhanced
memory model where, unlike CompCert but like Gcc, the binary repre-
sentation of pointers can be manipulated much like integers and where,
unlike CompCert, allocation may fail if no memory is available.

The whole proof of CompCertS is a significant proof-effort and we
highlight the crux of the novel proofs of 12 passes of the back-end and a
challenging proof of an essential optimising pass of the front-end.

Keywords: Verified compilation · Low-level code · Optimisations ·
Pointer as integer

1 Introduction

Over the past decade, the CompCert compiler has established a milestone
in compiler verification. CompCert is a formally verified C compiler written
with the Coq proof assistant, which initially targeted safety-critical embedded
software. The compiler comes with a machine-checked proof that it does not
introduce bugs during compilation [2]. This semantic preservation proof relies
on the formal semantics of the source and target languages of the compiler, and
requires that the source program has a defined semantics. Therefore, CompCert
only provides formal guarantees for programs that do not exhibit undefined
behaviours – a property that is in general undecidable.

CompCert’s memory model is a central component of the compiler. In this
paper, we show how to adapt CompCert for a more expressive memory model
which lifts two main limitations. First, memory allocation in CompCert always

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 81–97, 2017.
DOI: 10.1007/978-3-319-66107-0 6

http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0189-0223
http://orcid.org/0000-0001-9681-644X

82 F. Besson et al.

succeeds, therefore modelling infinite memory. As a consequence, the compiler
does not guarantee anything on the memory consumption of the compiled pro-
gram. In particular, the compiled program may exhibit a stack overflow. Second,
CompCert’s memory model limits pointer arithmetic: every implementation-
defined operations on pointers results in an undefined behaviour of the memory
model. This may seem restrictive but this is compliant with the C standard.

In previous work [3], we proposed a more concrete memory model inspired
by CompCert where memory is finite and pointers can be used as integers. On
that basis, we have adapted the proof of 3 passes of CompCert’s front-end [4].

In this work, we present a fully verified CompCert compiler where 12
remaining passes have been ported to our new memory model. This compiler is
called CompCertS (for CompCert with Symbolic values). CompCertS gives
much stronger guarantees about the behaviour of arbitrary pointer arithmetic,
thus avoiding the miscompilation of programs performing bit-level manipulation
of pointers.

CompCertS also provides strong guarantees about the relative memory
usage of the source and target programs. This is challenging because it is unclear
how to even define the memory usage at the C level. We show how to tackle this
challenge using oracles, aiming at ensuring that compiled programs use no more
memory than source programs. In particular, this ensures that the absence of
memory overflow is preserved by compilation.

All the results presented in this paper have been mechanically verified using
the Coq proof assistant. The development is available online [1]. Additionally, we
include links to the online documentation for several definitions and theorems
in this paper under the form of Coq logos Our contribution is CompCertS,
which is safer than CompCert in the following sense: (1) CompCertS offers
guarantees for a wider class of programs; (2) CompCertS also offers guarantees
about the memory usage of the compiled program. More precisely, we make the
following technical contributions:

– We present the proof of the compiler back-end (i.e. 12 compiler passes) includ-
ing constant propagation, common sub-expression elimination and dead-
code elimination. In particular, we detail how the existing alias analyses of
CompCert [15] benefit from our more defined semantics.

– We show how to instrument the C semantics with oracles specifying the mem-
ory usage of functions, so that the compiler only reduces the memory usage
of the program. We thus ensure that the absence of memory overflow is pre-
served by compilation.

The rest of the paper is organised as follows. First, Sect. 2 gives background
information on CompCert and the symbolic memory model of our previous
work [4]. Section 3 highlights the proof challenges related to treating pointers as
integers. In particular, we explain the impact on optimisations and on the proof
of one important pass of the front-end of CompCert. Section 4 shows how we
ensure that the compiler reduces the memory usage of programs and proves that
the absence of memory overflows is preserved. Section 5 mentions related work
and finally, Sect. 6 concludes.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/../index.html

CompCertS: A Memory-Aware Verified C Compiler 83

2 Background on CompCert

This section describes the architecture of the CompCert compiler [12]. It also
summarises the main features and properties of our memory model [3,4].

2.1 Architecture of the CompCert Compiler

CompCert compiles C programs into assembly code, through 8 intermediate
languages. The same memory model is shared by all the languages of the com-
piler. Each language is given a formal semantics in the form of a state transition
system. Every transformation from one language to another is proved to be
semantics preserving using simulation relations, stating that every step in the
source language can be simulated by a number of steps in the target language,
such that some matching relation between program states is preserved by those
steps. The composition of all the simulation lemmas for the individual compiler
passes forms the semantic preservation theorem given below. For the sake of
simplicity, we consider that the semantics observe behaviours that are either
defined behaviours, with a trace of I/O events, or undefined behaviours.

Theorem 1. Suppose that tp is the result of the successful compilation of the
program p. If bh ′ is a behaviour of tp then there exists a behaviour bh such that
bh is a behaviour of p and bh ′ improves on the behaviour bh.

bh ′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p) ∧ bh ⊆ bh ′

In the theorem, CSem gives the semantics of C programs and ASem gives the
semantics of assembly programs. Moreover, a behaviour bh ′ improves on a behav-
iour bh (written bh ⊆ bh ′) if either bh and bh ′ are the same, or undefined behav-
iours in bh are replaced by defined behaviours in bh ′.

2.2 The Memory Model of CompCert

The memory model of CompCert is the cornerstone of the semantics of all
the intermediate languages. It consists of a collection of separated blocks, where
blocks are arrays of a given size. A value v ∈ val (see Fig. 1) can be either a
32-bit integer int(i), a pointer or the token undef. A pointer is a pair ptr(b, o)
consisting of a block identifier b and an offset o. CompCert also features 64-bit
integers, single and double precision floating-point numbers, which we ignore in
this paper for the sake of simplicity. To allow fine-grained access to the memory,
CompCert does not store values directly in the memory. Rather, values are
encoded as sequences of byte-sized memory values called memval that describe
the content of a memory block. They are either concrete 8-bit integers Byte (b), a
special Undef byte that represents uninitialised memory, or a byte-sized fragment
of a pointer value Pointer (b, o, n) (read: n-th byte of pointer ptr(b, o)). There-
fore, a pointer ptr(b, o) is encoded in memory as a sequence of 4 memvals, from
Pointer(b, o, 0) to Pointer(b, o, 3). The memory model exports four opera-
tions: load reads values from the memory at a given address (a block and an
offset), store writes values into the memory at a given address, alloc allocates
a new block and free frees a given block.

84 F. Besson et al.

val � v := int(i) | ptr(b, o) | undef
memval � mv := Byte(b) | Pointer(b, o, n) | Undef

Fig. 1. Run-time and memory values

2.3 A Symbolic Memory Model for CompCert

In previous work [3,4], we extended CompCert’s memory model and gave
semantics to pointer operations by replacing the value domain val by a more
expressive domain sval of symbolic values. This low-level memory model enables
reasoning about the bit-level encoding of pointers within CompCert. In this
section, we first give a motivating example; then we recall the principles of sym-
bolic values and their normalisation.

Motivation for Pointers as Integers. Figure 2 shows an example of C code
that benefits from our low-level memory model. This is an implementation of
red-black trees which belongs to the Linux kernel. A node in a red-black tree
(type rb node) contains an integer rb parent color and two pointers to its chil-
dren nodes. The integer rb parent color encodes both the color of the node and
a pointer to the parent node. The rationale for this encoding is as follows: (1)
pointers to rb nodes are at least 4-byte aligned, therefore the two trailing bits
are zeros; and (2) the color of a node can be encoded with a single bit. Retriev-
ing each piece of information from this encoding is implemented by the two
macros rb color and rb parent shown in Fig. 2. To get the parent pointer, the
macro clears the two trailing bits using a bitwise & with ∼3 (i.e. 0b1 . . . 100). In
CompCert, these operations are undefined because of the bitwise operations on
pointers. In CompCertS, these operations are defined and therefore this kernel
code can be safely compiled without fear of any miscompilation.

struct rb node {
uintptr t rb parent color ;
struct rb node ∗rb right ;
struct rb node ∗ rb le f t ; } ;

#define rb color (rb) (((rb)−> rb parent color) & 1)
#define rb parent(r) \

((struct rb node ∗) ((r)−> rb parent color & ˜3))

Fig. 2. Red-black tree implementation in Linux

Symbolic Values. A symbolic value sv ∈ sval (see Fig. 3) is either a value v
or an expression built from unary and binary C operators over symbolic val-
ues. Memory values memval are also generalised into symbolic memory values
smemval, which have a single constructor Symbolic(sv , n), denoting the n-th

CompCertS: A Memory-Aware Verified C Compiler 85

sval � sv := val | unop(u, sv) | binop(b, sv1, sv2)
smemval � smv := Symbolic(sv , n)

Fig. 3. Symbolic run-time and memory values

byte of a symbolic value sv . This constructor is inspired from the Pointer (·, ·, ·)
constructor of CompCert (see Fig. 1) and subsumes the three existing cases.

Building symbolic values instead of the token undef for undefined operations
delays the challenge of giving more semantics to C expressions. However, sym-
bolic values cannot be kept symbolic indefinitely. To perform memory accesses
at an address represented by the symbolic value addr, the address addr must be
normalised into a genuine pointer ptr(b, o). Similarly, the condition cond of a
conditional statement must be normalised into an integer int(i) to decide which
branch to follow. The normalisation is specified as a function normalise which
takes as input a memory state m and a symbolic value sv , and outputs a value
v. Its specification relies on the notions of concrete memories valid for a memory
state m, and of evaluation of expressions that we recall below.

Concrete Memories and Evaluation. A concrete memory is a mapping from
blocks to concrete addresses, represented as 32-bit integers. Each memory block
b has a size size and an alignment constraint al ; a pointer ptr(b, o) is valid if
the offset o is within the bounds [0, size[, written valid(m, b, o). We can retrieve
the alignment of a block b with the accessor align(m, b).

Definition 1. A concrete memory cm is valid for a memory state m
(cm � m) if the following conditions hold:

1. Valid addresses lie within the address space, i.e.
∀ b o, valid(m, b, o) ⇒ cm(b) + o ∈]0; 232 − 1[.

2. Valid pointers from distinct blocks do not overlap, i.e.
∀ b b′ o o′, b
= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′) ⇒ cm(b) + o
=
cm(b′) + o′.

3. Addresses are properly aligned, i.e. ∀ b, 2align(m,b) | cm(b).

The evaluation of a symbolic value sv in a concrete memory cm (written [[sv]]cm)
consists in replacing pointers with their integer value (according to cm) and then
evaluating the resulting expression with standard integer operations.

Example 1. Consider for example a concrete memory cm1 that maps a block b
to the address 32. The evaluation of the symbolic value sv = ptr(b, 5)& int(1)
results in int(1) because [[sv]]cm = (cm(b) + 5)& 1 = (32 + 5)& 1 = 37& 1 = 1.

Specification of the Normalisation. The normalisation of sv in m returns
a value v if for every cm � m, sv and v evaluate identically in cm.

(∀cm � m ⇒ [[sv]]cm = [[v]]cm) ⇒ normalise(m, sv) = v

If no such value v can be found, the normalisation returns undef.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/NormaliseSpec.html#compat

86 F. Besson et al.

Example 2. Consider a program which stores information in the 2 least signifi-
cant bits of a 4-byte aligned pointer (cf. Fig. 2). The symbolic value after setting
the last 2 bits of a pointer ptr(b, 0) is sv = ptr(b, 0) | 3. To recover the original
pointer, the last two bits can be cleared by the following bitwise manipulation:
sv ′ = sv & ∼ 3. We have that sv ′ normalises into pointer ptr(b, 0) because for
any valid concrete memory cm:

[[sv ′]]cm = [[(ptr(b, 0) | 3)& ∼ 3]]cm = (cm(b) | 3)& ∼ 3 = cm(b)

The last rewriting step is justified by the alignment constraints of block b.
Since [[ptr(b, 0)]]cm = cm(b) for any cm, then sv ′ normalises into ptr(b, 0).

2.4 Memory Injections

Memory injections are CompCert’s central notion to formalise the effect of
merging blocks together; they are used to specify the passes that transform the
memory layout. The stereotypical example is the construction of stack frames,
which happens during the transformation from C�minor to Cminor. At the
C�minor level, each local variable is allocated in its own block. In Cminor, a
single block contains all the local variables, stored at different offsets. This map-
ping from local variable blocks in C�minor to offsets in the stack block in Cminor
is captured by a memory injection. A memory injection is characterised by an
injection function f : block → �block × Z that optionally associates with each
block a new block and an offset within that block. For example, in Fig. 4, the
blocks b1, b2 and b3 are injected by f into the single block b′, at different offsets.

b1

b2

b3

b′

δ1

δ2

f(b1) = �(b′, 0)�
f(b2) = �(b′, δ1)�
f(b3) = �(b′, δ2)�

Fig. 4. Injecting several blocks into one

In addition to reflecting the structural relation between memory states, injec-
tions also relate the contents of the memory states. Values that are stored at
corresponding locations are required to be in injection. Two values v1 and v2 are
in injection if (1) v1 is undef, or (2) v1 and v2 are the same non-pointer value,
or (3) v1 is ptr(b, o), v2 is ptr(b′, o + δ) and f(b) = �(b′, δ)1. For example, in
Fig. 4, the pointer ptr(b2, o) is in injection with the pointer ptr(b′, o + δ1).

Two symbolic values are in injection (see [4]) if they have the same structure
(the same operators are applied) and the values at the leaves of each symbolic
value are in injection. We proved a central result that relates injections and
normalisations, recalled in Theorem2.
1 �·� denotes the option type. We write �v� for Some(v) and ∅ for None.

CompCertS: A Memory-Aware Verified C Compiler 87

Theorem 2. For any total injection f , for any memory states m1 and m2

in injection by f , for any symbolic values sv1 and sv2 in injection by f , the
normalisations of sv1 in m1 and of sv2 in m2 are in injection by f .

This theorem has the precondition that f must be a total injection, i.e. all
non-empty blocks must be injected (i.e. f(b)
= ∅). In this paper, one of our con-
tributions is a generalisation of Theorem2, which covers the case of more general
injections. As we shall see in Sect. 3.1, it is required to prove the SimplLocals
pass of CompCert.

3 Proof Challenges for Pointers as Integers

This section presents the proof challenges that we tackle for porting CompCert
to a semantics with symbolic values, where pointer operations behave as integer
operations, e.g. bitwise operators are defined on pointers. The first challenge
concerns the SimplLocals pass of CompCert, which modifies the structure of
the memory. The second challenge is related to optimisations, and in particular
the notion of pointer provenance. The existing pointer analysis in CompCert
needs to be refined, so that it is correct in our symbolic setting.

3.1 Proving the Correctness of SimplLocals

The SimplLocals compiler pass is one of the earliest in CompCert. Its source
language is Clight, a stripped-down dialect of C where expressions are side-effect-
free. The purpose of this pass is to pull out of memory the local variables that
do not need to reside in memory: those whose address is never taken. Those vari-
ables are transformed into temporaries, i.e. pseudo-registers, upon which most
subsequent optimisations operate.

Arguments for the Correctness of SimplLocals. In CompCert, the cor-
rectness of this compiler pass relies on memory injections. The blocks corre-
sponding to variables that are not transformed into temporaries are injected
into themselves (i.e. f(b) = �b, 0), while the blocks corresponding to variables
that are transformed into temporaries are not injected (i.e. f(b) = ∅).

The core difficulty of porting the proof of SimplLocals to the symbolic setting
resides in proving that normalisations are preserved by injections. In previous
work, we have established Theorem 2 which proves this preservation for total
injections. Here, the injection is partial (i.e. some blocks are not injected) and
therefore Theorem 2 does not apply. The following example illustrates the chal-
lenge of dealing with partial injections.

Example 3. For the sake of simplicity, consider a memory size of 32 bytes and
a memory state m1 with two blocks b and b′ which are both 4-byte aligned: b
of size 8 and b′ of size 16. We show in Fig. 5a the only two possible concrete
memories, where b is the darker block and b′ is the lighter one. Note that no
block can be assigned the address 0 nor the address 28, as per Definition 1.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/Memory.html#Mem.norm_inject

88 F. Besson et al.

0 4 8 12 16 20 24 28 32

bb′
b′b

(a) Before injection

0 4 8 12 16 20 24 28 32

b

b

b

(b) After injection

Fig. 5. Concrete memories and partial injections

Consider the symbolic value sv = ptr(b, 0)! =16. It normalises into 0 in m1,
because b is never allocated at address 16 in any concrete memory valid for m1.
Indeed, this address is always occupied by block b′. Now consider a memory
state m2 where the block b′ has been pulled out of memory. Figure 5b shows
that in m2 it is, of course, still possible to allocate block b at addresses 4 and 20.
However, there is a new possible configuration where block b can be allocated
at address 16. The normalisation of sv is now undefined because sv evaluates to
different values (1 or 0) depending on the concrete memory used.

The essence of the problem illustrated by the above example is that blocks
may have more allowed positions after the injection than before, meaning that
the set of valid concrete memories is larger after the injection. Therefore, the
normalisation may be less defined after a partial injection and Theorem2 cannot
be generalised for arbitrary partial injections.

Well-Behaved Injections. We identify a restricted class of well-behaved injec-
tions functions f , for which we show that blocks that are injected by f (those for
which f(b)
= ∅) do not gain new valid concrete addresses after the injection. The
criterion for well-behavedness of injection functions f is defined in Definition 2.

Definition 2 (Well-behaved injection). An injection function f is said
to be well-behaved if only the blocks that are at most 8-byte wide and at most
8-byte aligned may be forgotten by f . Formally,

well behaved (f,m) � ∀ b, f(b) = ∅ ⇒ size(m, b) ≤ 8 ∧ align(m, b) ≤ 8.

The injection used for the correctness proof of SimplLocals satisfies this con-
straint because only scalar variables may be removed from the memory, i.e. the
largest are long-typed variables that are 8-byte wide and 8-byte aligned. Using
such well-behaved injections, we can prove Lemma 1, from which a generalised
version of Theorem 2 can be derived, as we explain at the end of this section.

Lemma 1. Let f be a well-behaved injection function. Let m1 and m2 be
memory states in injection by f . For every concrete memory cm2 valid for m2,
there is a corresponding concrete memory cm1 valid for m1, such that every
non-forgotten block has the same address in cm1 and cm2. Formally,

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#inject_well_behaved
http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#forget_compat

CompCertS: A Memory-Aware Verified C Compiler 89

∀f, well behaved f ⇒
∀ m1 m2, mem inject f m1 m2 ⇒ ∀ cm2 � m2,∃ cm1 � m1 ∧ cm1 ≡f cm2

where cm1 ≡f cm2 � ∀ b b′, f(b) = �(b′, 0) ⇒ cm1(b) = cm2(b′)

The problem that Lemma 1 solves can be thought of as follows: for every
concrete memory cm2 valid for m2 (cm2 � m2), it is possible to insert back
all the blocks that have been forgotten by f , without moving the others. In
other words, all block positions that are allowed in m2 were already allowed
in m1, therefore we avoid the problems illustrated by Example 3. The proof of
Lemma 1 goes by counting 8-byte wide and 8-byte aligned regions of memory
that we call boxes. We call nbox(cm) the number of used boxes for a given
concrete memory cm. Our allocation algorithm [4] entails that for every memory
state m, there exists a concrete memory cm that we call the canonical concrete
memory of m and write canon cm(m), that is built by allocating all the blocks
of m at maximally-aligned, i.e. 8-byte aligned, addresses. Thanks to alignment
constraints, we have that for any concrete memory cm valid for m, cm uses no
more boxes than canon cm(m), i.e. nbox(cm) ≤ nbox(canon cm(m)).

Consider now two memory states m1 and m2 in injection by some well-
behaved injection function f , such that m2 is the result of forgetting F blocks
from m1. We have that nbox(canon cm(m2)) = nbox(canon cm(m1))−F . Start-
ing from a concrete memory cm2 � m2, we derive that nbox(cm2) + F ≤
nbox(canon cm(m1)). In other words, it is possible to find F free boxes in cm2.
Because the blocks we forgot each fit in a box, all we have to do at this point is
use each of these F boxes to contain the F forgotten variables.

Theorem 3 is the generalised version of Theorem 2 for well-behaved injections.

Theorem 3. For any well-behaved injection f , for any memory states m1

and m2 in injection by f , for any symbolic values sv1 and sv2 in injection by f ,
the normalisations of sv1 in m1 and of sv2 in m2 are in injection by f .

Proof. The proof is performed in two steps.

– First, we exhibit some value v such that the normalisation of sv1 injects into
v. This shows that if the normalisation of sv1 is a pointer, then this pointer
is injected by f . This is a consequence of the fact that sv1 is injected into
another symbolic value.

– Then, we show that this v is necessarily the normalisation of sv2 in m2. This
boils down to showing that: ∀ cm2 � m2, [[v]]cm2 = [[sv2]]cm2 . Using Lemma 1
and the specification of the normalisation, we conclude this proof.

This theorem is a central piece of the proof of the SimplLocals pass, which is
now fully proved in CompCertS.

3.2 Optimisations

CompCert features several standard optimisations. Among them, constant
propagation, strength reduction and common sub-expression elimination exploit

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#forget_norm

90 F. Besson et al.

the result of a dataflow analysis computing the combination of an interval analy-
sis and an alias analysis. In this section, we explain why the existing dataflow
transfer functions are not sound for CompCertS and how to fix them. This
demonstrates that the semantics of CompCertS is a provably strong safeguard
preventing the miscompilations of low-level pointer arithmetic.

The Abstract Value Domain of CompCert is made of the sum of a pointer
domain and a numeric domain. One purpose of the pointer domain is to distin-
guish pointers to the current stack frame from other pointers. A representative
but simplified abstract pointer-domain (aptr) is given below. Its semantics is
given by its concretisation function γsb where sb stands for the memory block
of the current stack frame. The empty set of pointers is denoted by ⊥. Stk ofs
represents the stack pointer ptr(sb, ofs). The set of all pointers to the current
stack frame (block sb at any offset) is captured by Stack . All pointers to blocks
different from the stack block sb are abstracted by ¬Stack . Finally, � is the set
of all pointers.

aptr ::= ⊥ | Stk ofs | Stack | ¬Stack | �
The numeric domain anum is standard: it tracks intervals of integers and

floating-point constants. The domain of abstract values aval = aptr × anum is
the sum domain such that γsb(ap, an) = γsb(ap) ∪ γ(an). The sum domain is
relevant because a value can be either a pointer or an integer but not both.

In CompCert, the transfer functions are written with prudence in order to
avoid miscompilations and “[Track] leakage of pointers through arithmetic oper-
ations”.2 This is done by computing carefully crafted transfer functions which
are purposely non-optimal in order to prevent aggressive optimisations (which
are sound by rely on undefined behaviours of the CompCert semantics). For
instance, the most precise transfer function for a bitwise & is such that

(¬Stack ,�) & (⊥,�) = (⊥,�).

For the pointer part, it returns ⊥ because a bitwise & between pointers returns
undef (it cannot be a pointer). For the integer part, it returns � because a
bitwise & between arbitrary integers is still an arbitrary integer. This formulation
is semantically sound but is not prudent because several bits of the pointer may
leak through the bitwise &.

Example 4. To illustrate the severe consequence of not tracking the leakage of
pointers, consider the red-black tree code of Fig. 6. The code is annotated by
an aggressive dataflow analysis and a prudent dataflow analysis, both being
semantically sound. When both analyses differ (e.g. Lines 5 and 7), we write the
aggressive result first. At function entry, the current stack frame has just been
created and is therefore free of aliases. As a result, the parameter r and the local
variable rpc can be abstracted by (¬Stack,�). Line 5, the aggressive analysis is
using the previous transfer function for the bitwise & and obtain (⊥,�) for the

2 See https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90
e22ed7c47/backend/ValueDomain.v#L707.

https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707
https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707

CompCertS: A Memory-Aware Verified C Compiler 91

abstraction of p. This makes the reasoning that p can only be an integer. As the
dereference of an integer has no semantics, the aggressive analysis infers that
the rest of the code is not reachable. Line 7, this is encoded by the abstraction
(⊥,⊥) for the variable rchild. Based on this information, a live-variable analysis
and an aggressive dead-code removal could replace the whole function body by
a no-op which is obviously a miscompilation.

1 rb node∗ get parents right child (rb node∗ r){ // r : (¬Stack , �)
2 uintptr t rpc = r−>rb parent color ; //get the parent/color f i e ld
3 // rpc : (¬Stack , �)
4 rb node∗ p = (rb node∗) (rpc & ˜3);//get the parent of r
5 // p: (⊥, �), (¬Stack, �)
6 rb node∗ rchild = p−>rb right ; // access i t s right child
7 // rchild : (⊥, ⊥), (¬Stack, �)
8 return rchild ; }

Fig. 6. Dataflow analysis for red-black trees

A Formally Prudent Dataflow Analysis. With our semantics, the aggressive
dataflow analysis of Example 4 is not sound and therefore such miscompilations
cannot occur. The reason is that our semantics computes symbolic values for
arithmetic operations (e.g. the bitwise &) that need to be captured by the con-
cretisation function. Interestingly, we eventually noticed that, to get a concreti-
sation that is both sound and robust to syntactic variations, what was needed
was a formal account of pointer tracking. It is formalised by a notion of pointer
dependence of a symbolic value sv with respect to a set S of memory blocks. We
say that sv depends at most on the set of blocks S if sv evaluates identically in
concrete memories that are identical for all the blocks in S; they may differ arbi-
trarily for other blocks. Formally, dep(sv , S) = ∀ cm ≡S cm ′, [[sv]]cm = [[sv]]cm′ ,
where cm ≡S cm ′ = ∀ b ∈ S, cm(b) = cm ′(b). The concretisation function γsb,
where sb is the current stack block, is defined in Fig. 7 Intuitively, Cst rep-
resents any symbolic value which always evaluates to the same value whatever
the concrete memory (i.e., it does not depends on pointers); Stack represents
any symbolic value which depends at most on the current stack block sb and
¬Stack represents any symbolic value which may depend on any block except
the current stack block sb.

Our abstract domain is still a pair of values (ap, an) ∈ aptr × anum but it
represents a (reduced) product of domains. For symbolic values, there is no syn-
tactic distinction between pointer and integer values. Hence, the concretisation
is given by an intersection of concretisations (instead of a union)

γsb(ap, an) = γsb(ap) ∩ γ(an),

where the concretisation of the numeric abstract domain is defined in terms of
the evaluation of symbolic expressions: γ(an) = {sv | ∀cm, [[sv]]cm ∈ γ(an)}.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ValueDomain.html#epmatch

92 F. Besson et al.

γsb(⊥) = {} γsb(�) = sval
γsb(Cst) = {sv | dep(sv , ∅)}
γsb(Stk o) = {sv | ∀cm, sv cm = cm(sb) + o}
γsb(Stack) = {sv | dep(sv , {sb})}
γsb(¬Stack) = {sv | dep(sv , block \ {sb})

Fig. 7. CompCertS concretisation for alias analysis

With this formulation, the most precise transfer function for a bitwise & is given
by (¬Stack ,�) & (⊥,�) = (¬Stack ,�).

For the pointer part, it returns ¬Stack because the resulting expression may
still depends on a ¬Stack pointer. For the integer part, it returns � because
(like before) a bitwise & between arbitrary integers is still an arbitrary integer.
As a result, the aggressive transfer function of CompCertS implements the
informally prudent transfer functions of CompCert. It follows that, for our
semantics, miscompilation due to pointer leaking (e.g. Example 4) is impossible.

While adapting the proof, we found and fixed several minor but subtle bugs
in CompCert related to pointer tracking, where the existing transfer functions
were unsound for our low-level memory model. Though unlikely, each of them
could potentially be responsible for a miscompilation. Note that CompCertS
generates the right code not by chance but really because our semantics forbids
program transformations that are otherwise valid for CompCert. In general,
we believe that our semantics provides the right safeguard for avoiding any mis-
compilation of programs performing arbitrary arithmetic operations on pointers.

4 Preservation of Memory Consumption

The C standard does not impose a model of memory consumption. In partic-
ular, there is no requirement that a conforming implementation should make
a disciplined use of memory. A striking consequence is that the possibility of
stack overflow is not mentioned. From a formal point of view, CompCert mod-
els an unbounded memory and therefore, as the C standard, does not impose
any limit on stack consumption of the binary code. As a result, the existing
CompCert theorem is oblivious of memory consumption of the assembly code.
Though CompCert makes a wise usage of memory this is not explicit in the
correctness statement and can only be assessed by a close inspection of the code.
CompCertS provides a stronger formal guarantee. It ensures that if the source
code does not exhaust the memory, then neither does the assembly code. Said
otherwise, the compilation ensures that the assembly code consumes no more
memory than the source code does.

4.1 Evolution of Stack Memory Usage Throughout Compilation

Figure 8 shows the evolution of the size of stack frames across compiler passes.
The figure distinguishes the three passes which modify the memory usage. First,

CompCertS: A Memory-Aware Verified C Compiler 93

stack frame size

SimplLocals Cminorgen Stacking

Fig. 8. Evolution of the size of stack frames

the SimplLocals pass introduces pseudo-registers for certain variables, which are
pulled out of memory. This pass reduces the memory usage of functions and
therefore satisfies our requirement that compilation reduces memory usage. The
Cminorgen pass allocates a unique stack frame containing all the remaining
variables of a function. This pass makes the memory usage grow because some
padding is inserted to ensure proper alignment. However, because our allocation
strategy considers maximally aligned blocks, this pass still preserves the memory
usage. The remaining problematic pass is the Stacking pass which builds acti-
vation records from stack frames. This pass makes explicit some low-level data
(e.g. return address or spilled locals) and is responsible for an increase of the
memory usage. In the following, we explain how to solve this discordance and
ensure nonetheless a decreasing usage of memory across the compiler passes.

4.2 The Stacking Compiler Pass

Stacking transforms Linear programs into Mach code. The Linear stack frame
consists of a single block which contains local variables. The Mach stack frame
embeds the Linear stack frame together with additional data, namely the return
address of the function, spilled pseudo-registers that could not be allocated in
machine registers, callee-save registers, and outgoing arguments to function calls.

Provisioning Memory. In order to fit the Stacking pass into the decreasing
memory usage framework, our solution is to provision memory from the begin-
ning of the compilation chain. Hence, we instrument the semantics of all inter-
mediate languages, from C to Linear, with an oracle ns which specifies, for each
function f , the additional space that is needed. The semantics therefore include
special operations that reserve some space at function entry and release it at
function exit. To justify that the Mach stack frame fits into our finite memory
space, we can now leverage the fact that at the Linear level, there was enough
space for the Linear stack frame plus ns(f) additional bytes. Provided that the
oracle ns is correct, this entails that the Mach stack frame fits in memory.

It may be possible to derive an over-approximation of the needed stack space
for each function from a static analysis. However, the estimate would probably
be very rough as, for instance, it seems unlikely that the impact of register allo-
cation could be modelled accurately. Instead, as the exact amount of additional
memory space is known during the Stacking pass, we construct the oracle ns as

94 F. Besson et al.

a byproduct of the compilation. In other words, the compiler returns not only
an assembly program but also a function that associates with each function the
quantity of additional stack space required. Note that the construction is not
circular since the oracle is only needed for the correctness proof of the compiler
and not by the compiler itself.

CompCertS’ final theorem takes the form of Theorem 4.

Theorem 4. Suppose that (tp,ns) is the result of the successful compilation of
the program p. If tp has the behaviour bh ′, then there exists a behaviour bh such
that bh is a behaviour of p with oracle ns and bh ′ improves on the behaviour bh.

bh ′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p,ns) ∧ bh ⊆ bh ′.

The only difference with CompCert is that the C semantics is instrumented
by the oracle ns computed by the compiler. Though not completely explicit,
Theorem 4 ensures that the absence of memory overflows is preserved by com-
pilation. The fundamental reason is that the failure to allocate memory results
in an observable going wrong behaviour. On the contrary, if the source code
does not have a going wrong behaviour, neither does the assembly. It follows
that if the C source succeeds at allocating memory, so does the assembly. Hence,
CompCertS ensures that the absence of memory overflows is preserved by com-
pilation.

Recycling Memory. Because our semantics are now parameterised by a bound
on the memory usage of functions, this bound should be as low as possible so
that as many programs as possible can be given a defined semantics.

In order to give a smaller bound, we notice that the SimplLocals pass forgets
some blocks and therefore throws away some memory space. We can reuse this
freed space and therefore have a weaker requirement on the source semantics.

Example 5. Consider a function with long-integer local variables x and y. During
SimplLocals, x is transformed into a temporary while y is kept and allocated on
the stack. During Stacking, say 20 additional bytes are needed to build the Mach
activation record from the Linear stack frame. Then, we must reserve those 20
bytes from the beginning, i.e. from the C semantics. However, we can recycle
the space from the local variable x, therefore saving 8 bytes and we only require
12 bytes at the C level, therefore making it easier to have a C semantics.

5 Related Work

Formal Semantics for C. The first formal realistic semantics of C is due to
Norrish [14]. More recent works [7,9,10] aim at providing a formal account of
the subtleties of the C standard. Hathhorn et al. [7] present an executable C
semantics within the K framework which precisely characterise the undefined
behaviours of C. Krebbers [9,10] gives a formal account of sequence points and

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/Compiler.html#transf_c_program_correct

CompCertS: A Memory-Aware Verified C Compiler 95

non-aliasing. These notions are probably the most intricate of the ISO C stan-
dard. Memarian et al. [13] realise a survey among C experts, in which they
aim at capturing the de facto semantics of C. They consider problems such as
uninitialised values and pointer arithmetic.

Our work builds upon the CompCert C compiler [12]. The semantics and the
memory model used in the compiler are close to ISO C. Our previous works [3,4]
show how to extend the support for pointer arithmetic and adapt most of the
front-end of CompCert to this extended semantics.

CompCertand Memory Consumption. Carbonneaux et al. [6] propose a logic
for reasoning, at source level, on the resource consumption of target programs
compiled by CompCert. They instrument the event traces to include resource
consumption events that are preserved by compilation, and use the compiler
itself to determine the actual size of stack frames. We borrow from them the
idea of using a compiler-generated oracle. Their approach to finite memory is
more lightweight than ours. However, our ambition to reason about symbolic
values in CompCert requires more intrusive changes.

CompCertTSO [16] is a version of CompCert implementing a TSO relaxed
memory model. It also models a finite memory where pointers are pairs of inte-
gers. Their soundness theorem is oblivious of out-of-memory errors. They remark
that they could exploit memory bounds computed by the compiler, but do not
implement it. In terms of expressiveness, their semantics and ours seem to be
incomparable. For instance, CompCertTSO gives a defined semantics to the
comparison of arbitrary pointers, we do not. Yet, the example of Sect. 2.3 is not
handled by the formal semantics of CompCertTSO.

Pointers as Integers. Kang et al. [8] propose a hybrid memory model where an
abstract pointer is mapped to a concrete address at pointer-integer cast time.
Their semantics may get stuck at cast-time if there is not enough memory avail-
able. For our semantics, a cast is a no-op and our semantics may get stuck at
allocation time. They study aggressive program optimisations but do not pre-
serve memory consumption. In CompCertS, we consider simpler optimisations
but implemented in a working compiler for a real language. Moreover, we ensure
that the memory consumption is preserved by compilation.

6 Conclusion

We present CompCertS, an extension of the CompCert compiler that is based
on a more defined semantics and provides additional guarantees about the com-
piled code. Programs performing low-level bitwise operations on pointers are now
covered by the semantics preservation theorem, and can thus be compiled safely.
CompCertS also guarantees that the compiled program does not require more
memory than the source program. This is done by instrumenting the semantics
with an oracle providing, for each function, the size of the stack frame.

CompCertS compiles down to assembly; compared to CompCert, we
adapted all the 4 passes of the front-end and 12 out of 14 passes of the back-end.

96 F. Besson et al.

This whole work amounts to more than 210 k lines of Coq code, which is 60 k
more than the original CompCert 2.4 we started with. CompCertS does not
feature the two following optimization passes. First, the inlining optimisation
makes functions use potentially more stack space after the transformation than
before. This disagrees with our decreasing memory size policy, but we should
be able to provision memory in a similar way as we did for the Stacking pass,
as described in Sect. 4.2. Second, the tail call recognition transforms regular
function calls into tail calls when appropriate. Its proof cannot be adapted in
a straightforward way because of the additional stack space we introduced for
the Stacking pass: the release of those blocks does not happen at the same place
before and after the transformation. We need to investigate further the proof of
this optimisation and come up with a more complex invariant on memory states.

As future work, we shall investigate how security-related program transfor-
mations would benefit from the increased expressiveness of CompCertS. Kroll
et al. [11] implement software isolation within CompCert. However, the trans-
formation they define depends on a pointer masking operation which has no
CompCert semantics and is therefore axiomatised. In CompCertS, pointer
masking is defined and the isolated program could benefit from all the exist-
ing optimisations. Recently, Blazy and Trieu [5] pioneered the integration of an
obfuscation pass within CompCert. Our semantics paves the way for aggressive
obfuscations, which cannot be proved sound for pointers with CompCert.

Lastly, currently every function stores its stack frame in a distinct block, even
in assembly. An ultimate compiler pass that merges blocks into a concrete stack
would be possible with our finite memory and would bring even more confidence
in CompCertS.

Acknowledgments. This work has been partially funded by the French ANR project
AnaStaSec ANR-14-CE28-0014, NSF grant 1521523 and DARPA grant FA8750-12-2-
0293.

References

1. Companion website. http://www.cs.yale.edu/homes/wilke-pierre/itp17/
2. Bedin Franca, R., Blazy, S., Favre-Felix, D., Leroy, X., Pantel, M., Souyris, J.:

Formally verified optimizing compilation in ACG-based flight control software. In:
ERTS 2012: Embedded Real Time Software and Systems (2012)

3. Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for C using
symbolic values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468.
Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 24

4. Besson, F., Blazy, S., Wilke, P.: A concrete memory model for CompCert. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 67–83. Springer, Cham
(2015). doi:10.1007/978-3-319-22102-1 5

5. Blazy, S., Trieu, A.: Formal verification of control-flow graph flattening. In: CPP.
ACM (2016)

6. Carbonneaux, Q., Hoffmann, J., Ramananandro, T., Shao, Z.: End-to-end verifi-
cation of stack-space bounds for C programs. In: PLDI. ACM (2014)

http://www.cs.yale.edu/homes/wilke-pierre/itp17/
http://dx.doi.org/10.1007/978-3-319-12736-1_24
http://dx.doi.org/10.1007/978-3-319-22102-1_5

CompCertS: A Memory-Aware Verified C Compiler 97

7. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: PLDI.
ACM (2015)

8. Kang, J., Hur, C., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: PLDI (2015)

9. Krebbers, R.: Aliasing restrictions of C11 formalized in Coq. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Cham (2013).
doi:10.1007/978-3-319-03545-1 4

10. Krebbers, R.: An operational and axiomatic semantics for non-determinism and
sequence points in C. In: POPL. ACM (2014)

11. Kroll, J.A., Stewart, G., Appel, A.W.: Portable software fault isolation. In: CSF.
IEEE (2014)

12. Leroy, X.: Formal verification of a realistic compiler. C. ACM 52(7), 107–115 (2009)
13. Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chisnall, D., Watson,

R.N., Sewell, P.: Into the depths of C: elaborating the de facto standards. In:
PLDI. ACM (2016)

14. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
15. Robert, V., Leroy, X.: A formally-verified alias analysis. In: Hawblitzel, C., Miller,

D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35308-6 5

16. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Com-
pCertTSO: a verified compiler for relaxed-memory concurrency. J. ACM 60(3),
22:1–22:50 (2013)

http://dx.doi.org/10.1007/978-3-319-03545-1_4
http://dx.doi.org/10.1007/978-3-642-35308-6_5

Formal Verification of a Floating-Point
Expansion Renormalization Algorithm

Sylvie Boldo1(B), Mioara Joldes2, Jean-Michel Muller3, and Valentina Popescu4

1 Inria, LRI, CNRS, Université Paris-Sud, Université Paris-Saclay, Bâtiment 650,
Université Paris-Sud, 91405 Orsay Cedex, France

sylvie.boldo@inria.fr
2 LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France

joldes@laas.fr
3 LIP Laboratory, CNRS, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

jean-michel.muller@ens-lyon.fr
4 LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

valentina.popescu@ens-lyon.fr

Abstract. Many numerical problems require a higher computing preci-
sion than the one offered by standard floating-point formats. A common
way of extending the precision is to use floating-point expansions. As the
problems may be critical and as the algorithms used have very complex
proofs (many sub-cases), a formal guarantee of correctness is a wish that
can now be fulfilled, using interactive theorem proving. In this article
we give a formal proof in Coq for one of the algorithms used as a basic
brick when computing with floating-point expansions, the renormaliza-
tion, which is usually applied after each operation. It is a critical step
needed to ensure that the resulted expansion has the same property as
the input one, and is more “compressed”. The formal proof uncovered
several gaps in the pen-and-paper proof and gives the algorithm a very
high level of guarantee.

Keywords: Floating-point arithmetic · Floating-point expansions ·
Multiple-precision arithmetic · Formal proof · Coq

1 Introduction

Many numerical problems require higher precisions than the standard single-
(binary32) or double-precision (binary64 [8]). Examples can be found in dynam-
ical systems [1,12], planetary orbit dynamics [14], computational geometry, etc.
Several examples are given by Bailey and Borwein [2]. These calculations rely on
arbitrary-precision libraries. A crucial design point of these libraries is the way
numbers are represented. A first solution is the multiple-digit representation:
each number is represented by one exponent and a sequence of possibly high-
radix digits. The digits follow a regular pattern, which greatly facilitates the

The authors would like to thank Région Rhône-Alpes and ANR FastRelax Project
for the grants that support this activity.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 98–113, 2017.
DOI: 10.1007/978-3-319-66107-0 7

Formal Verification of a FPE Renormalization Algorithm 99

analysis of the associated arithmetic algorithms. GNU MPFR [6] is a C library
that uses such a representation.

A second solution is the multiple-term representation in which a number is
expressed as the unevaluated sum of several floating-point (FP) numbers. This
sum is usually called a FP expansion (FPE). Since each term of this expan-
sion has its own exponent, the term’s positions can be quite irregular. The QD
library [7] uses this approach and supports double-double and quad-double for-
mats, i.e. numbers are represented as the sum of 2 or 4 double-precision FP
numbers. Campary [10,11] supports FPEs with an arbitrary number of terms,
and also targets GPU implementation. Other libraries that manipulate FPEs
are presented in [17,20].

The intrinsic irregularity of FP expansions makes the design and proof of
algorithms very difficult. Many algorithms are published without a proof, or
with a proof so complex that is difficult to fully trust it. Obtaining formal proof
of the critical parts of the algorithms that manipulate FPEs would bring much
more confidence in them.

To make sure that a FPE carries enough information we need to ensure that it
is non-overlapping (see Sect. 2). Even if the input FPEs satisfy this requirement,
this property is often “broken” during the calculations, so after each operation
we need to perform a renormalization. It is a basic brick for manipulating FPEs.
While several renormalization algorithms have been proposed, until recently,
Priest’s [17] was the only one provided with a complete correctness proof. How-
ever it uses many conditional branches, which makes it slow in practice. To
overcome this problem, some of us developed in [10] a new algorithm (Algo-
rithm3 below), that takes advantage of the machine pipeline and is provided
with a correctness proof. However, the proof is complex, hence errors may have
been left unnoticed. We decided to build a formal proof of that algorithm, using
the Coq proof assistant and the Flocq library [5]. We also rely on a new iterator
on lists that behaves better for functions that do not have an identity element [3].
There have already been some formal proofs on expansions [4]. Basic operations
were formally proved in the PFF library (a library which preceded Flocq). The
induction proofs were tedious, partly due to the formalization of FP numbers
that was less convenient than that of Flocq.

The paper is organized as follows. Section 2 gives the pen-and-paper and the
formal definitions of FPEs. Section 3 presents the renormalization algorithm and
the wanted properties. Section 4 explains the formal verification of the various
levels of the algorithm. Finally, Sect. 5 concludes this work.

2 Floating-Point Expansions

2.1 Pen-and-Paper Definitions

We begin with several literature definitions for FP expansions and their proper-
ties.

100 S. Boldo et al.

Definition 2.1. A normal binary precision-p floating-point (FP) number has
the form x = Mx · 2ex−p+1, with 2p−1 ≤ |Mx| ≤ 2p − 1. The inte-
ger ex is the exponent of x, and Mx · 2−p+1 is the significant of x. We
denote ulp(x) = 2ex−p+1 (unit in the last place) [15, Chap. 2], and uls(x) =
ulp(x) · 2zx , where zx is the number of trailing zeros at the end of Mx

(unit in the last significant place).

Definition 2.2. A FP expansion (FPE) u with n terms is the unevaluated sum
of n FP numbers u0, u1, . . . , un−1, in which all nonzero terms are ordered by
magnitude (i.e., if v is the sequence obtained by removing all zeros in the sequence
u, and if sequence v contains m terms, |vi| ≥ |vi+1|, for all 0 ≤ i < m − 1).

Arithmetics on FP expansions have been introduced by Priest [17], and later on
by Shewchuk [20].

To make sure that an FPE carries enough information, it is required that the
ui’s do not “overlap”. The notion of non-overlapping varies depending on the
authors. We give different definitions: P-nonoverlapping and S-nonoverlapping
are common in the literature. The third definition allows for a relatively relaxed
handling of the FPEs and keeps the redundancy to a minimum. An FPE may
contain interleaving zeros: the definitions that follow apply only to the non-zero
terms of the expansion (i.e., the array v in Definition 2.2).

Definition 2.3. Assuming x and y are normal numbers with representations
Mx · 2ex−p+1 and My · 2ey−p+1 (with 2p−1 ≤ |Mx|, |My| ≤ 2p − 1), they are
P-nonoverlapping (non-overlapping according to Priest’s definition [18]) if we
have |ey − ex| ≥ p.

Definition 2.4. An expansion is P-nonoverlapping if all its components are
mutually P-nonoverlapping.

Shewchuk [20] weakens this into:

Definition 2.5. An FPE u0, u1, . . . , un−1 is S-nonoverlapping (non-
overlapping according to Shewchuk’s definition [20]) if for all 0 < i < n, we
have the inequality eui−1 − eui

≥ p − zui−1 , i.e., |ui| < uls(ui−1).

In general, a P-nonoverlapping expansion carries more information than an
S-nonoverlapping one with the same number of components. Intuitively, the
stronger the sense of the non-overlapping definition, the more difficult it is to
guarantee it in the output. In practice, the P-nonoverlapping property proved to
be quite difficult to obtain and the S-nonoverlapping is not strong enough, this
is why we chose to compromise by using a different sense of non-overlapping,
referred to as ulp-nonoverlapping, that we define below.

Definition 2.6. A FPE u0, . . . , un−1 is ulp-nonoverlapping if for all 0 < i < n,
|ui| ≤ ulp(ui−1).

In other words, the components are either P-nonoverlapping or they overlap by
one bit, in which case the second component is a power of two.

Remark 2.7. Note that for P-nonoverlapping expansions, we have |ui| ≤
2p−1
2p ulp(ui−1).

Formal Verification of a FPE Renormalization Algorithm 101

When using standard FP formats, the exponent range forces a constraint on
the number of terms in a non-overlapping expansion. The largest expansion can
be obtained when the largest term is close to overflow and the smallest is close
to underflow. When using Definition 2.4 or 2.6, the maximum expansion size is
39 for double-precision, and 12 for single-precision.

The algorithms performing arithmetic operations on FP expansions use
the so-called error-free transforms (such as the algorithms 2Sum, Fast2Sum,
Dekker’s product and 2MultFMA presented for instance in [15]), that make it
possible to compute both the result and the error of a FP addition or multi-
plication. This implies that in general, each such algorithm, applied to two FP
numbers, still returns two FP numbers.

In this article we make use of two algorithms that compute the exact sum of
two FP numbers a and b and return the result under the form s + e, where s is
the result rounded to nearest and e is the rounding error.

Algorithm 1. 2Sum (a, b).
s ← RN(a + b) // RN stands for performing the operation in rounding to nearest mode.

t ← RN(s − b)
e ← RN(RN(a − t) + RN(b − RN(s − t)))
return (s, e) such that s = RN(a + b) and s + e = a + b

Algorithm 2. Fast2Sum (a, b).
Input: exponent of a larger than or equal to exponent of b

s ← RN(a + b)
z ← RN(s − a)
e ← RN(b − z)
return (s, e) such that s = RN(a + b) and s + e = a + b

The 2Sum (Algorithm 1) algorithm requires 6 flops, which it was proven to be
optimal in [13], if we have no information on the ordering of a and b. However,
if the ordering of the two inputs is known, a better alternative is Fast2Sum
(Algorithm 2), that uses only 3 native FP operations. The latter one requires
the exponent of a to be larger than or equal to that of b in order to return
the correct result. This condition might be difficult to check, but of course, if
|a| ≥ |b|, it will be satisfied.

2.2 Coq Definitions

We formalize FPEs as lists of real numbers with a property. We could have
used arrays, but lists have an easy-to-use induction that was extensively used.
This is not the data structure used for computing, but only for proving. As seen
previously, FPEs are a bunch of FP numbers with some property (such as for
instance |ui| ≤ |ui−1| or |ui| ≤ ulp(ui−1)). In a formal setting, we are trying to
generalize this definition in order to cover many definitions, and have theorems
powerful enough to handle both S-nonoverlapping and P-nonoverlapping FPEs

102 S. Boldo et al.

for instance. The property between ui and ui−1 will therefore be generic by
default: it is a P : R → R → Prop, meaning a property linking two real numbers.
This P will be ≤ for ordered lists. For ulp-nonoverlapping, it is:

funx y ⇒ |x| ≤ ulp(y).

For S-nonoverlapping, it is slightly more complex (see also Sect. 4.2):

funx y ⇒ ∃e ∈ Z,∃n ∈ Z, x = n × 2e ∧ |y| < 2e.

We could have assumed that a FPE is a list where each value has this property
with its successor (when it exists). Unfortunately, this fails when zeros appear in
the FPE, therefore we have to account for the fact that we may have intermediate
zeros inside our FPEs. This case was not considered in [10], so nothing was proved
when a zero is involved. We get rid of this flaw and handle possible intermediate
zeros in the proofs; in particular, we want to prove the FPE has the wanted
property P , even if we remove the zeros. The Coq listing for defining a FPE
with the P property is as follows:

Inductive Exp_P (P:R->R->Prop) : list R -> Prop :=

| Exp_Nil: Exp_P P List.nil

| Exp_One: forall x : R, Exp_P P (x :: nil)

| Exp_Z1: forall l: list R, Exp_P P l -> Exp_P P (0 :: l)

| Exp_Z2: forall x: R, forall l: list R, Exp_P P (x::l)

-> Exp_P P (x :: (0 :: l))

| Exp_NZ: forall x y: R, forall l: list R,

x <> 0 -> y <> 0

-> Exp_P P (y:: l)

-> P x y -> Exp_P P (x :: (y :: l)).

Any empty or 1-element list is a FPE, and zeros in first or second position are
useless. To prove that the list x :: y :: � is a FPE, it suffices to prove that x and
y are non-zero reals having the P property, and that y :: � is a FPE. As common
with formal developments, many lemmas need to be proved in order to use this
definition (e.g., proving that a part of a FPE is also a FPE, or reversing a FPE).
The most useful lemma is the one that proves that a given list is a FPE:

Lemma nth_Exp_P: forall (P:R->R->Prop) l,
(forall i j, (0 <= i < length l)%nat

-> (0 <= j < length l)%nat -> (i < j)%nat
-> nth i l 0 <> 0 -> nth j l 0 <> 0
-> P (nth i l 0) (nth j l 0))
-> Exp_P P l.

where nth i l 0 is the i-th element of the list � or 0 if � is too short. This
lemma means that if, whatever i and j such that i < j, and the i-th and j-th
elements of the list are non-zero, and they have the P property, then the list is a
FP expansion with the property P . The proof is straightforward, and it provides
an easy way to handle intermediate zeros inside the formal verification of the
algorithm. Let us now describe the renormalization algorithm published in [10],
before describing its formal proof in Sect. 4.

Formal Verification of a FPE Renormalization Algorithm 103

3 Renormalization Algorithm for FPEs

In [10] an algorithm with m+1 levels that would render the result as an m-term
P-nonoverlapping FP expansion was presented. After testing it, we concluded
that using only ulp-nonoverlapping expansions greatly diminishes the cost of the
algorithm while keeping the overlapping bits to a minimum, i.e., only one bit.
This is why we only focus on the first two levels of the initial algorithm, that
allow us to achieve the desired property.

Algorithm 3. Renormalization algorithm
Input: FP expansion x = x0 + . . . + xn−1 consisting of FP numbers that overlap by

at most d digits, with d ≤ p − 2; m length of output FP expansion.
Output: FP expansion f =f0 + . . . + fm−1 with fi+1 ≤ ulp(fi), for all 0≤ i<m − 1.
1: e[0 : n − 1] ← V ecSum(x[0 : n − 1])
2: f [0 : m − 1] ← V ecSumErrBranch(e[0 : n − 1], m)
3: return FP expansion f = f0 + . . . + fm−2 + fm−1.

Fig. 1. Renormalization of n term-FPEs. The VecSum box performs Algorithm 4 of
Fig. 2, and the VecSumErrBranch box, Algorithm 5 of Fig. 3.

The reduced renormalization algorithm (Algorithm3, illustrated in Fig. 1) is
made up with two different layers of chained 2Sum. It receives as input an array
with terms that overlap by at most d digits, with d ≤ p − 2. Let us first define
this concept.

Definition 3.1. Consider an array of FP numbers: x0, x1, . . . , xn−1. According
to Priest’s [17] definition, they overlap by at most d digits (0 ≤ d < p) if and
only if ∀i, 0 ≤ i ≤ n − 2,∃ki, δi such that:

2ki ≤ |xi| < 2ki+1, (1)
2ki−δi ≤ |xi+1| ≤ 2ki−δi+1, (2)

δi ≥ p − d, (3)
δi + δi+1 ≥ p − zi−1, (4)

where zi−1 is the number of trailing zeros at the end of xi−1 and for i = 0,
z−1 := 0.

104 S. Boldo et al.

It was proven in [10] that the algorithm returns an ulp-nonoverlapping expansion:

Proposition 3.2. Consider an array x0, x1, . . . , xn−1 of FP numbers that over-
lap by at most d ≤ p − 2 digits and let m be an input parameter, with
1 ≤ m ≤ n − 1. Provided that no underflow/overflow occurs during the calcula-
tions, Algorithm3 returns a “truncation” to m terms of an ulp-nonoverlapping
FP expansion f = f0 + . . . + fn−1 such that x0 + . . . + xn−1 = f .

For the sake of simplicity, the 2 levels are represented as variations of the
Algorithm VecSum of Ogita et al. [16,20], and treated separately. The proof
was done using intermediate properties for each layer. Also, at each step it was
proved that all the 2Sum blocks can be replaced by Fast2Sum ones.

First Level (Line 1, Algorithm 3). The error-free transforms can be extended
to work on several inputs by chaining, resulting in “distillation” algorithms [19].
The most frequently used one is VecSum (Fig. 2 and Algorithm 4). It is a chain
of 2Sum that performs an error-free transformation on n FP numbers.

Algorithm 4. VecSum (x0, . . . , xn−1) [20, 16].
Input: x0, . . . , xn−1 FP numbers.
Output: e0 + . . . + en−1 = x0 + . . . + xn−1.

sn−1 ← xn−1

for i ← n − 2 to 0 do
(si, ei+1) ← 2Sum(xi, si+1)

end for
e0 ← s0
return e0, . . . , en−1

Fig. 2. VecSum with n terms. Each 2Sum [15] box outputs the sum to the left and the
error downwards.

The first level consists in applying Algorithm4 on the input array, from where
we obtain the array e = (e0, e1, . . . , en−1).

In [10] the following theorem was proved:

Proposition 3.3. After applying the VecSum algorithm on an input array
x = (x0, x1, . . . , xn−1) of FP numbers that overlap by at most d ≤ p − 2 dig-
its, the output array e = (e0, e1, . . . , en−1) is S-nonoverlapping and may contain
interleaving zeros.

Formal Verification of a FPE Renormalization Algorithm 105

Also, it was shown that for all arrays that satisfy the input requirements
2Sum (6 FP operations) can be replaced by Fast2Sum (3 FP operations).

Second Level (Line 2, Algorithm 3). This level is applied on the array e
obtained previously. This is also a chain of 2Sum, but now we start from the
most significant component. Also, instead of propagating the sums we propagate
the errors. If however, the error after a 2Sum block is zero, then we propagate
the sum (this is shown in Fig. 3). In what follows we will refer to this algorithm
by VecSumErrBranch (see Algorithm 5).

Algorithm 5. VecSumErrBranch (e0, . . . , en−1)
.

Input: S-nonoverlapping FP expansion e = e0 + . . . + en−1; m length of the output
expansion.

Output: FP expansion f = f0 + . . . + fm−1 with fj+1 ≤ ulp(fj), 0 ≤ j < m − 1.
1: j ← 0
2: ε0 = e0
3: for i ← 0 to n − 2 do
4: (fj , εi+1) ← 2Sum(εi, ei+1)
5: if εi+1 �= 0 then
6: if j ≥ m − 1 then
7: return FP expansion f = f0 + . . . + fm−1.
8: end if
9: j ← j + 1

10: else
11: εi+1 ← fj
12: end if
13: end for
14: if εn−1 �= 0 and j < m then
15: fj ← εn−1

16: end if
17: return FP expansion f = f0 + . . . + fm−1.

Fig. 3. VecSumErrBranch with n terms. Each 2Sum box outputs the sum downwards
and the error to the right. If the error is zero, the sum is propagated to the right.

For this algorithm we can also use Fast2Sum instead of 2Sum. The following
property holds:

106 S. Boldo et al.

Proposition 3.4. Let e be an input array (e0, . . . , en−1) of S-nonoverlapping
terms and 1 ≤ m ≤ n the required number of output terms. After applying
VecSumErrBranch, the output array f = (f0, . . . , fm−1), with 0 ≤ m ≤ n − 1
satisfies |fi+1| ≤ ulp(fi) for all 0 ≤ i < m − 1.

Figure 4 gives an intuitive drawing showing the different constraints between
the FP numbers before and after the two levels of Algorithm3. The notation is
the same as in Fig. 1.

Fig. 4. The effect of Algorithm 3: x is the input FPE, e is the sequence obtained after
the 1st level and f is the sequence obtained after the 2nd level.

Remark 3.5. In the worst case, Algorithm3 performs n − 1 Fast2Sum calls in
the first level and n − 2 Fast2Sum calls plus n − 1 comparisons in the second
one. This accounts for a total of 7n − 10 FP operations.

4 Formal Proof

Let us now dive into what exactly is formally proved and how. We assume a FP
format with radix 2 and precision p, that includes subnormals.

4.1 Prerequisites

A big difference between pen-and-paper proofs and formal proofs is the use of
previous theorems. The proof in [10] relies on a result by Jeannerod and Rump [9]
about an error bound on the sum of n FP numbers. In a formal proof, we need
the previous result to be also formally proved (in the same proof assistant). As
the Coq formal library of facts does not grow as fast as the pen-and-paper library
of facts, we usually end up proving more results than expected, in particular,
the result of Jeannerod and Rump does not belong to the Flocq library.

Theorem 4.1 (error sum n, from [9]). Let � be a list of n FP numbers.
Define e =

∑n
i=0 �i and a =

∑n
i=0 |�i|. Let f = ⊕n

i=0�i be the computed sum.
Then |f − e| ≤ (n − 1)2−pa.

Formal Verification of a FPE Renormalization Algorithm 107

The formal proof follows exactly the pen-and-paper proof from [9] without
any problem. Note that the pen-and-paper result is more generic than the Coq
one: it does not enforce the parenthesis, while we precisely choose where the
parentheses are. As underflowing additions are correct, this holds even when
subnormals are involved.

4.2 Formal Proof of the First Level

As explained in Sect. 3, Algorithm 3 has two steps. Let us deal with its first step,
the VecSum algorithm (Algorithm 4).

Formalization of the VecSum Algorithm. A generic VecSum g algorithm
is defined. Indeed, VecSum is an iteration of a 2Sum operator, where the sum
is given to the next step, but we may imagine a VecSum with another operator,
or with a 2Sum operator, where the error is given to the next step (this is the
case of the third step of the renormalization algorithm described in [10]). Many
basic lemmas apply on all these examples and it is better to factorize them.

The Coq definition is a fixed-point operator applying on a list. The variant
(for the termination) is n, that will be the length of the list l.

Fixpoint VecSum_g_aux (n:nat) (l:list R)
{struct n} : list R := match n,l with

| 0, nil => nil
| 1, x :: nil => x :: nil
| S n, x :: y :: l =>

(f x y) :: (VecSum_g_aux n (x+y-(f x y) :: l))
| _, _ => nil
end.

Fixpoint VecSum_g (l:list R) : list R
:= VecSum_g_aux (length l) l.

We prove various lemmas, including the fact that the output list has the same
size as the input list and that the sum of the values of the input list is the same
as the sum of the values of the output list.

Another point is that each value of the output list is exactly known from
the input list (in the second level, we have tests that make this statement more
complex). Taking the notations from Fig. 2, the value e0 (the last one computed)
is the FP sum of all the xis. Using our formal definition, this means that the last
element of the list is the iterated of the function fun x y => x+y-(f x y). As
for the i-th element, it is proved to be f(si+1, xi+1), where xk is the k-th element
of the list and sk is the iterated of the function fun x y => x+y-(f x y) on
the first k elements of the list. Note that lists are “numbered” from 0 to their
size minus 1.

VecSum Algorithm Property. Now let us deal with what is to be proved for
this algorithm. In this case f will be the addition error function. We first look

108 S. Boldo et al.

into the requirements on the input and output expansions. Let d be a positive
integer such that d ≤ p − 2, and the input an expansion with numbers that
overlap by at most d digits. Formally, it is an expansion with a certain predicate
IVS P (for Input of VecSum Property). This property linking two reals x and y
can be stated as follows: |y| < 2d ulp(x). As d ≤ p − 2, it would intuitively mean
that the expansion is clearly decreasing (as seen in Fig. 4), but this is not the
case when dealing with subnormal numbers. For instance, consider the smaller
positive (subnormal) FP number η, then this property holds for η and himself,
for η and 2η, and for 2η and η.

This is the reason why we choose:

IVS P(x, y) = 2p−d ulp(x) ≤ ulp(y)

It is equivalent with the previous definition for normal numbers, but implies
|x| ≤ |y|, even when subnormals appear. Another interesting property is the fact
that IVS P(x, y) implies that y is normal.

The output of the expansion is supposed to be S-nonoverlapping (see Defi-
nition 2.5). We choose the simple definition for OVS P (for Output of VecSum
Property):

OVS P(x, y) := ∃e, n : Z, y = n · 2e ∧ |x| < 2e.

Said otherwise, there exists an exponent e such that y can be expressed with
exponent e and |x| < 2e. This e is an overestimation of the uls(x) of Defini-
tion 2.4.

Proof of the VecSum Algorithm Property. Here is some excerpt of the
proof in [10]:

|xj+1| + |xj+2| + · · · ≤
≤ [2d + 22d−p + 23d−2p + 24d−3p + . . .] ulp(xj)

≤ 2d · 2p/(2p − 1) · ulp(xj).

This is partly wrong! In fact the geometric series should be bounded by:

2d + 22d−p + 23d−2p + 24d−3p + · · · ≤ 2d/(1 − 2d−p).

The proof can be fixed as the two inequalities were coarse enough, so there is no
problem at this point.

A small gap in [10] is that it does not handle underflow. We did that in the
formal proof without many problems. Given that the input list is an expansion
with the IVS P property, there can be at most one subnormal FP number (at the
end). This implies a special treatment for one-element lists (which is not difficult)
or lists with only one non-zero element (also not difficult) and taking care of
the last element in all other cases. Furthermore, [10] proves that the output is
non-overlapping assuming two successive outputs are non-zeros. Unfortunately,
this does not cover the most complex case: a non-zero output followed by one
(or more) zero output, due to (partial) cancellation, and then another non-
zero output. When considering the outputs, if ei and ei+1 are non-zero, the

Formal Verification of a FPE Renormalization Algorithm 109

corresponding si is bigger than si+1 so that the exponent of si is bigger than
that of si+1 (property used in the proof in [10]). Yet, if ei and ei+2 are non-zero,
but ei+1 = 0, then the exponents of si and si+2 may be in any order, and the
proof does not hold anymore. We therefore needed several additional lemmas.

Lemma 4.2. We assume we have an expansion � = (xi) with the IVS P prop-
erty with the length smaller than 2 + 2p−1. Then

– Except if the (xk)k=i to (n−1) are all zeros, then si �= 0.
– If xi × si+1 ≥ 0, then ulp(si+1) ≤ ulp(si).
– If xi × si+1 < 0 and |xi| ≤ 2|si+1|, then ei+1 = 0.
– If xi × si+1 < 0 and 2|si+1| < |xi|, then ulp(si+1) ≤ ulp(si).
– If xi × si+1 < 0 and |xi| ≤ 2|si+1|, then ulp(si) ≤ ulp(si+1).
– If xi × si+1 < 0 and |xi| ≤ 2|si+1| and xi−1 �= 0, then ulp(si+2) ≤ ulp(si).

The lemma corresponds to various possibilities, including partial cancellation.
The main result is then the following one:

Theorem 4.3 (incr exp sj). Assuming an expansion � = (xi) with the IVS P
property, such that all xk �= 0, and such that its length is smaller than 2 + 2p−1.
For all 0 ≤ i ≤ j ≤ length(�), we have ulp(si) ≤ max (ulp(sj),ulp(sj+1)) .

In other words, if the exponent of sj does not have the wanted property, then
the exponent of sj+1 does. From this result, we deduce the main theorem of the
VecSum algorithm:

Theorem 4.4 (VecSum correct). Assuming an expansion � with the IVS P
property and such that its length is smaller than 2 + 2p−1, then VecSum(�) has
the OVS P property.

To prove the OVS P property, we just have to exhibit an exponent and prove
its properties. Using the previous theorem, we exhibit the maximum between the
exponents of sj and sj+1, and the rest of the proof is straightforward. There are
special cases, e.g., small lists, or handling e0, which is not the same as the others
ei, or input lists with zeros. Yet, in the formal proof this is handled (with care)
more easily than the exponent problem explained above. Note that we need
a maximum size of the list: here 2 + 2p−1, meaning more than 4.5 × 1015 in
binary64 and more than 8 million in binary32. As done in [10], we also prove
that a Fast2Sum can be used instead of a 2Sum at every level of the algorithm.

4.3 Formal Proof of the Second Level

Contrary to the formal proof of the first level, where we uncovered several diffi-
culties, the formal proof of the second level was much simpler. Two additional
features are the handling of subnormal numbers, which was trivial, and some
discussions about the last two terms of the output list.

110 S. Boldo et al.

Formalization of the VecSumErrBranch Algorithm. As was done for Vec-
Sum, we define in Coq the formal version of VecSumErrBranch. It is more com-
plicated and was therefore not put here. Refer to Fig. 3 for a more understandable
version. We proved several lemmas, including the fact that the sum of the values
of the input list is the same as the sum of the values of the output list. We also
proved that the output list has a smaller or equal size than the input list.

VecSumErrBranch Algorithm Property. A difficulty is the need to reverse
the list. VecSum was taking care of the values from the smallest to the largest,
while VecSumErrBranch manipulates the values from the largest to the smallest.
The input property of the expansion is the OVS P property on the reverse list,
meaning an expansion with the property

funx y ⇒ OVS P(y, x).

As for the output property called OVSB P (for Output of VecSumErrBranch
Property), we only have the ulp-nonoverlapping property, with the definition

OVSB P(x, y) := |y| ≤ ulp(x).

Proof of the VecSumErrBranch Algorithm Property. The input expan-
sion has the S-nonoverlapping property, hence we can apply this lemma that
will be helpful for our induction:

Lemma 4.5. Let us assume that (a :: b :: �) is an expansion with the
OVS P(y, x) property. Then

– (a + b :: �) is an expansion with the OVS P(y, x) property.
– (◦(a + b) :: �) is an expansion with the OVS P(y, x) property.
– (a + b − ◦(a + b) :: �) is an expansion with the OVS P(y, x) property.

Now we need to exhibit the first value output by VecSumErrBranch. It is the
sum of several of the eis, in unknown number:

Lemma 4.6. Let � = (ei) be an expansion with the OVS P(y, x) property. We
assume that it is non-empty and has no zeros. Define x = e0 ⊕ ∑n

i=1 ei. There
exists an integer n and a list �′ such that:

either x �= 0 or (x = 0 ∧ �′ is empty)
and V ecSumErrBranch(�) = x :: �′.

Note that the sum of (ei)1≤i≤n is exact. This is because ei is kept to be propa-
gated in the test when the error is zero, meaning the addition was exact.

All there is left to prove is that the OVSB P (ulp-nonoverlapping) property
is obtained with such terms:

Formal Verification of a FPE Renormalization Algorithm 111

Lemma 4.7. Let us assume that (b :: a :: �) is an expansion with the OVS P
(y, x) property and that b + a − b ⊕ a �= 0. Let � = (ei). Then

OVSB P

(

b ⊕ a, ◦
(

(b + a − b ⊕ a) +
n∑

i=0

ei

))

.

Then, we can prove the main theorem of the VecSumErrBranch algorithm:

Theorem 4.8. Assume an expansion � with the OVS P(y, x) property. Then,
V ecSumErrBranch(�) has the OVSB P property.

As before, we take care of inputs with zeros using a special treatment. We
also formally prove that the Fast2Sum operator can be used at every level.

A last point is that the output list is (nearly) non-zero. Due to the test, most
output values cannot be zeros. All the (fi)i=0 to j−2 are non-zeros, but the last
two terms fj−1 and fj may be zeros. Note that fj is zero if and only if the list
is composed only of zeros.

5 Conclusion

The renormalization algorithm is a call to the previously-defined functions,
and the proofs are successive calls to the previous proofs. Here is a final Coq
excerpt for the renormalization algorithm formal verification, available at http://
fastrelax.gforge.inria.fr/files/Renormalization.tgz.

1 Context { prec_gt_0_ : Prec_gt_0 p }.
2 Variable d:Z.
3 Hypothesis d_betw: (0 < d <= p-2)%Z.
4
5 Variable l: list R.
6 Hypothesis Fl: Forall format l.
7 Hypothesis Hl: InputVecSum d l.
8
9 Let res := VecSumErrBranch (rev (VecSum l)).

10
11 Lemma Renorm_1: Forall format res.
12 Lemma Renorm_2:
13 fold_right Rplus 0 l = fold_right Rplus 0 res.
14 Lemma Renorm_3: INR (length l) <= 2 + bpow (p-1) ->
15 OutputVecSumErrBranch res.

The hypotheses are as follows: p > 0 (Line 1), 0 < d ≤ p − 2 (Lines 2–3). The
input is a list of reals called � (Line 5). This list is a list of FP numbers (Line 6)
and has the IVS P property (Line 7).

The result of the renormalization is then res which is the application of
VecSumErrBranch on the reverse of the application of VecSum to � (Line 9).

http://fastrelax.gforge.inria.fr/files/Renormalization.tgz
http://fastrelax.gforge.inria.fr/files/Renormalization.tgz

112 S. Boldo et al.

We then have the three proved lemmas. The first one says that the result
is a list of FP numbers (Line 11), the second one says that the sum of the
values resulted is equal to the sum of the values of the input � (Line 12–13),
and the third one is the expected property: it is an expansion with the OVSB P
property (ulp-nonoverlapping) (Line 14–16). This was fully proved in the Coq
proof assistant within a few thousand lines:

Spec Proof File

74 497 AboutFP.v

200 1049 AboutLists.v

19 24 Renormalization.v

168 1162 VecSum1.v

93 975 VecSumErrBranch.v

554 3707 Total

AboutFP includes the result of the error of FP addition from [9]. AboutLists
includes results about parts of lists (such as n first elements, n last elements).

A missing part in the formal verification is the handling of overflow, as Flocq
does not have an upper bound on the exponent range. It is not a real flaw, as
an overflow would produce an infinity or a NaN at the end of the algorithm as
only additions are involved.

This work was unexpectedly complicated: the formal verification was tedious
due to many gaps, both expected (e.g., underflow) or unexpected (error in [10],
handling of intermediate zeros that greatly modifies the proofs). More precisely
about the intermediate zeros, let us assume that the result of the renormalization
is (y0, y1, y2, 0, y3, y4, 0, y5, 0, 0, 0) with the yi �= 0. Then the pen-and-paper theo-
rem of [10] ensures that OVS P(y0, y1), OVS P(y1, y2), and OVS P(y3, y4). Our
theorem formally proved in Coq ensures that OVS P(y0, y1), OVS P(y1, y2),
OVS P(y2, y3), OVS P(y3, y4), and OVS P(y4, y5). Interleaving zeros may seem
a triviality as zeros could easily be removed, except that this is costly as it
involved testing each value. For this basic block, it is much more efficient to
handle zeros inside the proof than to remove them in the algorithm.

We had some hope to be able to automate that kind of proofs, as many such
algorithms exist in the literature, but this experiment has shown that, even from
a detailed and reasonable pen-and-paper proof, much remains to be done to get
a formal one. This paper shows that complex algorithms in FP arithmetic really
need formal proofs: it is otherwise impossible to be certain that special cases have
not been forgotten or overlooked in the pen-and-paper proof, as was the case here.

References

1. Abad, A., Barrio, R., Dena, A.: Computing periodic orbits with arbitrary precision.
Phys. Rev. E 84, 016701 (2011)

2. Bailey, D.H., Borwein, J.M.: High-precision arithmetic in mathematical physics.
Mathematics 3(2), 337 (2015)

Formal Verification of a FPE Renormalization Algorithm 113

3. Boldo, S.: Iterators: where folds fail. In: Workshop on High-Consequence Control
Verification, Toronto, Canada, July 2016

4. Boldo, S., Daumas, M.: A mechanically validated technique for extending the avail-
able precision. In: 35th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, California, pp. 1299–1303 (2001)

5. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algo-
rithms in Coq. In: Proceedings of the 20th IEEE Symposium on Computer Arith-
metic, Tübingen, Germany, pp. 243–252, July 2011

6. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (2007). http://www.mpfr.org/

7. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating-
point arithmetic. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (ARITH 2016), Vail, CO, pp. 155–
162, June 2001

8. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. IEEE
Standard 754-2008, August 2008

9. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-
point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

10. Joldes, M., Marty, O., Muller, J.M., Popescu, V.: Arithmetic algorithms for
extended precision using floating-point expansions. IEEE Trans. Comput. PP(99),
1 (2015)

11. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: cuda multiple
precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule,
P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham
(2016). doi:10.1007/978-3-319-42432-3 29

12. Joldes, M., Popescu, V., Tucker, W.: Searching for sinks for the Hénon map using a
multipleprecision GPU arithmetic library. SIGARCH Comput. Archit. News 42(4),
63–68 (2014)

13. Kornerup, P., Lefèvre, V., Louvet, N., Muller, J.M.: On the computation of
correctly-rounded sums. In: Proceedings of the 19th IEEE Symposium on Com-
puter Arithmetic (ARITH 2019), Portland, OR, June 2009

14. Laskar, J., Gastineau, M.: Existence of collisional trajectories of mercury, mars
and venus with the earth. Nature 459(7248), 817–819 (2009)

15. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

16. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26(6), 1955–1988 (2005)

17. Priest, D.M.: Algorithms for arbitrary precision floating point arithmetic. In:
Kornerup, P., Matula, D.W. (eds.) Proceedings of the 10th IEEE Symposium on
Computer Arithmetic, pp. 132–144. IEEE Computer Society Press, Los Alamitos
(1991)

18. Priest, D.M.: On properties of floating-point arithmetics: numerical stability and
the cost of accurate computations. Ph.D. thesis, University of California at
Berkeley (1992)

19. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful
rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

20. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discret. Comput. Geom. 18, 305–363 (1997)

http://www.mpfr.org/
http://dx.doi.org/10.1007/978-3-319-42432-3_29

How to Simulate It in Isabelle: Towards Formal
Proof for Secure Multi-Party Computation

David Butler1(B), David Aspinall1, and Adrià Gascón2

1 The Alan Turing Institute, University of Edinburgh, Edinburgh, UK
dbutler@turing.ac.uk

2 The Alan Turing Institute, University of Warwick, Coventry, UK

Abstract. In cryptography, secure Multi-Party Computation (MPC)
protocols allow participants to compute a function jointly while keep-
ing their inputs private. Recent breakthroughs are bringing MPC into
practice, solving fundamental challenges for secure distributed compu-
tation. Just as with classic protocols for encryption and key exchange,
precise guarantees are needed for MPC designs and implementations;
any flaw will give attackers a chance to break privacy or correctness. In
this paper we present the first (as far as we know) formalisation of some
MPC security proofs. These proofs provide probabilistic guarantees in
the computational model of security, but have a different character to
machine proofs and proof tools implemented so far—MPC proofs use a
simulation approach, in which security is established by showing indis-
tinguishability between execution traces in the actual protocol execution
and an ideal world where security is guaranteed by definition. We show
that existing machinery for reasoning about probabilistic programs can
be adapted to this setting, paving the way to precisely check a new
class of cryptography arguments. We implement our proofs using the
CryptHOL framework inside Isabelle/HOL.

Keywords: Oblivious transfer · Cryptography · Simulation-based
proof · Formal verification

1 Introduction

Correctness guarantees are essential for cryptographic protocols and it is an area
where formalisation continues to have impact. Older work was restricted to the
symbolic (Dolev-Yao) model [11], where cryptographic primitives are modelled
as abstract operations and assumed to be unbreakable. The symbolic model
provides a baseline for correctness but modern cryptography is based on the
more realistic computational model [1]. Adversaries are now allowed to break
primitives, but are assumed to have limited computational power—typically,
polynomial time in a security parameter n, such as a key size. Proofs in the

This work was supported by The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 114–130, 2017.
DOI: 10.1007/978-3-319-66107-0 8

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 115

computational model provide probabilistic guarantees: an adversary can break
a security property only with negligible probability, i.e. probability bounded
by a negligible function μ(n). There are two main proof styles, the game-based
approach [21] and the simulation-based approach sometimes called the real/ideal
world paradigm [14].

The simulation-based approach is a general proof technique especially useful
for arguing about security of Multi-Party Computation (MPC) protocols. MPC
is an area of cryptography concerned with enabling multiple parties to jointly
evaluate a public function on their private inputs, without disclosing unneces-
sary information (that is, without leaking any information about their respective
inputs that cannot be deduced from their sizes or the result of the computation).
Several generic techniques can be used for that goal including Yao’s garbled
circuits [15,22], the GMW protocol [12], and other protocols based on secret-
sharing [8,16]. These differ in whether they are designed for an arbitrary or fixed
number of parties, how the computed function is represented (e.g., Boolean vs.
arithmetic circuits), which functions can be represented (e.g., bounded-degree
polynomials vs. arbitrary polynomials), as well trade-offs regarding communica-
tion, computation requirements, and security guarantees.

In the last decade, groundbreaking developments have brought MPC closer
to practice. Efficient implementations of the protocols listed above are avail-
able [9,13,17,23], and we are now seeing the beginning of general solutions to
fundamental security challenges of distributed computation. Security in these
settings is proved by establishing a simulation between the real world, where the
protocol plays out, and an ideal world, which is taken as the definition of secu-
rity. This formalises the intuition that a protocol is secure if it can be simulated
in an ideal environment in which there is no data leakage by definition.

A central protocol in MPC is Oblivious Transfer (OT), which allows a sender
to provide several values and a receiver to choose some of them to receive,
without learning the others, and without the sender learning which has been
chosen. In this paper we build up to a security proof of the Naor-Pinkas OT [19], a
practically important 1-out-of-2 oblivious transfer protocol (the receiver chooses
one out of two messages). This can be used as a foundation for more general
MPC, as secure evaluation of arbitrary circuits can be based on OT [12].

Contribution. As far as we know, this is the first formalisation of MPC proofs
in a theorem prover. Our contributions are as follows.

– Starting from the notion of computational indistinguishablity, we formalise
the simulation technique following the general form given by Lindell [14].

– Lindell’s method spells out a process but leaves details of reasoning to infor-
mal arguments in the cryptographer’s mind; to make this fully rigorous, we
use probabilistic programs to encode views of the real and ideal worlds which
can be successively refined to establish equivalence. This is a general method
which can be followed for other protocols and in other systems; it corresponds
to hybrid arguments often used in cryptography.

– As examples of the method, we show information-theoretic security for a
two-party secure multiplication protocol that uses a trusted initialiser, and a

116 D. Butler et al.

proof of security in the semi-honest model of the Naor-Pinkas OT protocol.
The latter involves a reduction to the DDH assumption (a computational
hardness assumption).

– Finally, we demonstrate how a formalisation of security of a 1-out-of-2 OT
can be extended to formalising the security of an AND gate.

We build on Andreas Lochbihler’s recent CryptHOL framework [18], which pro-
vides tools for encoding probabilistic programs using a shallow embedding inside
Isabelle/HOL. Lochbihler has used his framework for game-based cryptographic
proofs, along similar lines to proofs constructed in other theorem provers [2,20]
and dedicated tools such as EasyCrypt [3].

Outline. In Sect. 2 we give an overview of the key parts of CryptHOL that we use
and extend. Section 3 shows how we define computational indistinguishability in
Isabelle and Sect. 4 shows how it is used to define simulation-based security. In
Sect. 4.1 we demonstrate how we use a probabilistic programming framework to
do proofs in the simulation-based setting. Section 5 gives the proof of security
of a secure multiplication protocol as a warm up and Sect. 6 shows the proof
of security of the Naor-Pinkas OT protocol. In Sect. 7 we show how an OT
protocol can be used to securely compute an AND gate, paving the way towards
generalised protocols. Our formalisation is available online at https://github.
com/alan-turing-institute/isabelle-mpc.

2 CryptHOL and Extensions

CryptHOL is a probabilistic programming framework based around subprob-
ability mass functions (spmfs). An spmf encodes a discrete (sub) probability
distribution. More precisely, an spmf is a real valued function on a finite domain
that is non negative and sums to at most one. Such functions have type α spmf
for a domain which is a set of elements of type α. We use the notation from [18]
and let p!x denote the subprobability mass assigned by the spmf p to the event
x. The weight of an spmf is given by ||p|| =

∑
y p!y where the sum is taken over

all elementary events of the corresponding type; this is the total mass of proba-
bility assigned by the spmf p. If ||p|| = 1 we say p is lossless. Another important
function used in our proofs is scale. The expression scale r p scales, by r, the
subprobability mass of p. That is, we have scale r p!x = r.(p!x) for 0 ≤ r ≤ 1

||p|| .
Probabilistic programs can be encoded as sequences of functions that com-

pute over values drawn from spmfs. The type α spmf is used to instan-
tiate the polymorphic monad operations returnspmf ::α ⇒ α spmf and
bindspmf ::α spmf ⇒ (α ⇒ β spmf) ⇒ β spmf .

This gives a shallow embedding for probabilistic programs which we use to
define simulations and views, exploiting the monadic do notation. As usual,
do {x ← p; f} stands for bindspmf p (λx. do f).

We note that bindspmf is commutative and constant elements cancel. In par-
ticular if p is a lossless spmf, then

bindspmf p (λ . q) = q. (1)

https://github.com/alan-turing-institute/isabelle-mpc
https://github.com/alan-turing-institute/isabelle-mpc

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 117

Equation 1 can be shown using the lemma bind spmf const,

bindspmf p (λx. q) = scalespmf (weightspmf p) q (2)

and the fact sample uniform is lossless and thus has weight equal to one. In
Eq. 2, weightspmf p is ||p|| described above.

The monad operations give rise to the functorial structure, mapspmf :: (α ⇒
β) ⇒ α spmf ⇒ β spmf .

mapspmf f p = bindspmf p (λx. returnspmf (f x)) (3)

CryptHOL provides an operation, sample uniform :: nat ⇒ nat spmf where
sample uniform n = spmf of set {.. < n}, the lossless spmf which distributes
probability uniformly to a set of n elements. Of particular importance in cryp-
tography is the uniform distribution coin spmf = spmf of set {True,False}.
Sampling from this corresponds to a coin flip.

We also utilise the function assert spmf :: bool ⇒ unit spmf which takes a
predicate and only allows the computation to continue if the predicate holds.
If it does not hold the current computation is aborted. It also allows the proof
engine to pick up on the assertion made.

One way we extend the work of CryptHOL is by adding one time pad lemmas
needed in our proofs of security. We prove a general statement given in Lemma1
and instantiate it prove the one time pads we require.

Lemma 1. Let f be injective and surjective on {.. < q}. Then we have

mapspmf f (sample uniform q) = sample uniform q.

Proof. By definition, sample uniform q = spmf of set {.. < q}. Then
mapspmf f (spmf of set {.. < q}) = spmf of set(f � {.. < q}) follows by simpli-
fication and the injective assumption (the infix � is the image operator). Simpli-
fication uses the lemma map spmf of set inj on:

inj on f A =⇒ mapspmf (spmf of set A) = spmf of set (f � A).

We then have mapspmf f (spmf of set {.. < q}) = spmf of set({.. < q}) by
using the surjectivity assumption. The lemma then follows from the definition
of sample uniform. ��

We note a weaker assumption, namely f � {.. < q} ⊆ {.. < q} can be used
instead of the surjectivity assumption. To complete the proof with this assump-
tion we use the endo inj surj rule which states

finite A =⇒ f � A ⊆ A =⇒ inj on f A =⇒ f � A = A.

For the maps we use we prove injectivity and show surjectivity using this.

Lemma 2 (Transformations on uniform distributions).

1. mapspmf (λb. (y − b) mod q) (sample uniform q) = sample uniform q.

118 D. Butler et al.

2. mapspmf (λb. (y + b) mod q) (sample uniform q) = sample uniform q.
3. mapspmf (λb. (y + x.b) mod q) (sample uniform q) = sample uniform q.

Proof. These follow with the help of Lemma 1. Case 3 holds only under the
additional assumption that x and q are coprime. This will always be the case in
the applications we consider as x ∈ Zq and q is a prime. ��

3 Computational Indistinguishability in Isabelle

We introduce the notion of computational indistinguishability as the definitions
of security we give in Sect. 4 rely on it. We use the definition from [14].

Definition 1. A probability ensemble X = {X(a, n)} is a sequence of random
variables indexed by a ∈ {0, 1}∗ and n ∈ N. Two ensembles X and Y are said to
be computationally indistinguishable, written X

c≡ Y , if for every non-uniform
polynomial-time algorithm D there exists a negligible function1 ε such that for
every a and every n ∈ N,

|Pr[D(X(a, n)) = 1] − Pr[D(Y (a, n)) = 1]| ≤ ε(n)

The original definition restricts a ∈ {0, 1}∗, but we generalise this to an
arbitrary first-order type, α. We model a probability ensemble as having some
input of this type, and a natural number security size parameter. The space of
events considered depends on the view ; also of arbitrary first-order type, ν.

type synonym (α, ν) ensemble = α ⇒ nat ⇒ ν spmf

We do not formalise a notion of polynomial-time programs in Isabelle as we
do not need it to capture the following proofs. In principle this could be done with
a deep embedding of a programming language, its semantic denotation function
and a complexity measure. Instead, we will assume a family of constants giving
us the set of all polynomial-time distinguishers for every type ν, indexed by a
size parameter.

A polynomial-time distinguisher “characterises” an arbitrary spmf.

consts polydist :: nat ⇒ (ν spmf ⇒ bool spmf) set

Now we can formalise Definition 1 directly as:
comp indist :: (α, ν) ensemble ⇒ (α, ν) ensemble ⇒ bool
where comp indist X Y ≡

∀(D :: ν spmf ⇒ bool spmf).
∃ (ε :: nat ⇒ real). negligible ε ∧

(∀ (a :: α) (n :: nat).
(D ∈ polydist n) −→

|spmf (D (X a n)) True − spmf (D (Y a n)) True| ≤ ε n))
1 A negligible function is a function ε :: N → R such that for all c ∈ N there exists

Nc ∈ N such that for all x > Nc we have |ε(x)| < 1
xc .

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 119

4 Semi-honest Security and Simulation-Based Proofs

In this section we first define security in the semi-honest adversary model using
the simulation-based approach. We then show how we use a probabilistic pro-
gramming framework to formally prove security.

A protocol is an algorithm that describes the interaction between parties
and can be modelled as a set of probabilistic programs. A two party protocol
π computes a map from pairs of inputs to pairs of outputs. This map is called
the protocol’s functionality as it represents the specification of what the proto-
col should achieve. It can be formalised as a pair of (potentially probabilistic)
functions

f1 : input1 × input2 −→ output1

f2 : input1 × input2 −→ output2

which represent each party’s output independently. The composed pairing is the
functionality, f , of type

f : input1 × input2 −→ output1 × output2

where f = (f1, f2). That is, given inputs (x, y) the functionality outputs
(f1(x, y), f2(x, y)). This indicates that party one gets f1(x, y) and party two
gets f2(x, y) as output. In general the types of inputs and outputs can be arbi-
trary. For our instantiation we use concrete types depending on the functionality
concerned.

For the initial example secure multiplication protocol we consider in Sect. 5
we have the probabilistic functionality f(x, y) = (s1, s2) where s1 + s2 = x.y.
Each party obtains an additive share of the multiplication. The protocol is run
using a publicly known field Zq where q is a prime number dependent on the
security parameter. To ensure neither of the outputs alone reveal the value of
x.y, we uniformly sample one of the outputs in the functionality

f(x, y) = (s1, x.y − s1), s1
$←− Zq (4)

The notation s1
$←− Zq means we sample s1 uniformly from Zq. The Isabelle

definition of the functionality is given below. It makes use of the do notation:

f x y = do {
s1 ← sample uniform q;
returnspmf (s1, x.y − s1)}

This functionality is easy to compute if one does not consider security; the
parties can share their inputs and compute it. But with the security requirement
that neither party learns anything about the others’ input the problem becomes
harder. We will give a protocol that securely computes this functionality later.
We first introduce the notions used to define security. Security is based on views
which capture the information known by each party. We follow the definitions
given by Lindell in [14] to define security in the semi-honest model.

120 D. Butler et al.

Definition 2. Let π be a two party protocol with inputs (x, y) and with security
parameter n.

– The real view of the ith party (here i ∈ {1, 2}) is denoted by

viewπ
i (x, y, n) = (w, ri,mi

1, ...,m
i
t)

where w ∈ {x, y} and is dependent on which view we are considering, ri

accumulates random values generated by the party during the execution of the
protocol, and the mi

j are the messages received by the party.
– Denote the output of the ith party, outputπi (x, y, n), and the joint output as

outputπ(x, y, n) = (outputπ1 (x, y, n), outputπ2 (x, y, n)).

Definition 3. A protocol π is said to securely compute f in the presence of
a semi-honest adversary if there exist probabilistic polynomial time algorithms
(simulators) S1, S2 such that

{S1(1n, x, f1(x, y)), f(x, y)} c≡ {viewπ
1 (x, y, n), outputπ(x, y, n)}

{S2(1n, y, f2(x, y)), f(x, y)} c≡ {viewπ
2 (x, y, n), outputπ(x, y, n)}.

A semi-honest adversary is one that follows the protocol description. The
simulator is given a unary encoding of the security parameter.

This definition formalises the idea that a protocol is secure if whatever can
be computed by a party can also be computed from only the input and output
of the party meaning that nothing extra is learned from the protocol.

For the secure multiplication protocol and the receiver’s security in the Naor-
Pinkas OT we prove security in an information theoretic sense. This means even
computationally unbounded adversaries cannot gain extra information from the
protocol. This is shown by proving the two sets of distributions above are equal.
Information theoretic security is a stronger notion of security than computational
indistinguishability and Isabelle proves the former implies the latter with ease.

A functionality is deterministic if given inputs always produce the same out-
put. For a deterministic protocol it is shown in [14] that the above definition can
be relaxed. We require correctness and

{S1(1n, x, f1(x, y))} c≡ {viewπ
1 (x, y, n)} (5)

{S2(1n, y, f2(x, y))} c≡ {viewπ
2 (x, y, n)} (6)

For a protocol to be correct we require that for all x, y and n there exists a
negligible function μ such that

Pr[outputπ(x, y, n) �= f(x, y)] ≤ μ(n).

The Naor-Pinkas OT protocol, and the OT we use in the AND gate protocol
given later, are both deterministic. The secure multiplication protocol however
is not. For the deterministic cases we will focus on the more interesting property,
showing the views are equal. As such when we refer to a deterministic protocol
as being secure we explicitly show Eqs. 5 and 6 and assume correctness. For
the non-deterministic secure multiplication protocol we must show exactly the
property given in Definition 3.

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 121

4.1 Probabilistic Programming Used for Simulation-Based Proofs

CryptHOL provides a strong foundation from which to manipulate and show
equivalence between probabilistic programs. So far it has only been used to
prove security in the game-based setting. The game-based definitions of security
use a game played between an adversary and a benign challenger. The players
are modelled as probabilistic programs and communicate with each other. The
definition of security is tied to some event which is defined as the output of
the security game. In general, proofs describe a reduction of a sequence of games
(probabilistic programs) that end in a game where it can be shown the adversary
has the same advantage of winning over the challenger as it would have against
a problem assumed to be hard. The games in the sequence are then shown to be
equivalent. This is shown on the left hand side of Fig. 1. We use a probabilistic
programming framework to construct simulation-based proofs. Our method of
proof models the simulator and the real view of the protocol as probabilistic
programs. In the right hand side of Fig. 1 we start with the real view of the pro-
tocol, R1, and the simulator, S1. We define a series of intermediate probabilistic
programs (Ri, Si) which we show to be computationally indistinguishable (or
equal in the case of information theoretic security)—this is referred to as the
hybrid argument in cryptography. This sequence ends in Rn and Sn which we
show to be computationally indistinguishable (or equal). We have shown the
diagram for the simulation-based approach in Fig. 1 is transitive.

Game-based Simulation-based

G1 R1 S1

� c≡ c≡
...

...
...� c≡ c≡

Gn Rn c≡ Sn

Fig. 1. A comparison between the game-based and simulation-based approaches. The
game-based approach uses reductions (denoted �) whereas in the simulation approach
we show computational indistinguishability between probabilistic programs.

Lemma 3. Let X, Y and Z be probability ensembles then we have

[X
c≡ Y ; Y

c≡ Z] =⇒ X
c≡ Z.

For the non-deterministic secure multiplication protocol we will construct
the protocol and functionality outputs in the real and simulated views, instead
of constructing them separately and combining them to form the ensembles.

122 D. Butler et al.

5 Secure Multiplication Protocol

We now present a protocol that computes the functionality in Eq. 4. The protocol
requires some pre-generation of elements to be distributed to the parties. This is
known in MPC as the preprocessing model [5], where the parties run an offline
phase to generate correlated random triples—sometimes called Beaver triples—
that are used to perform fast secure multiplications in an online phase. For this
task we assume a trusted initialiser that aids in the computation. We denote the
assignment of variables by a ← b and all operations are taken modulo q. The
claim of security is:

a, b, r
$←− Zq

(c1, d1) ← (a, r), (c2, d2) ← (b, a.b − r)

P1 P2
(c1, d1), x ∈ Zq (c2, d2), y ∈ Zq

e2 ← x + c1
e2−−−−−−−−−−−−−−−−−−−−−−−−−−� e2

e1
e1�−−−−−−−−−−−−−−−−−−−−−−−−−− e1 ← y − c2

s1 ← x.e1 − d1 s2 ← e2.c2 − d2

Fig. 2. A protocol for secure multiplication

Theorem 1. The protocol in Fig. 2 securely computes the functionality given in
Eq. 4 in the semi-honest adversary model.

Intuitively, security results from the messages being sent in the protocol
always being masked by some randomness. In the message party one sends, e2,
the input (x) is masked by the uniform sample, c1. Likewise in the message party
two sends, e1, the input (y) is masked by the uniform sample, c2.

5.1 Formal Proof of Security

The simulator and the real view of party one are defined in Isabelle as in Fig. 3.
Recall that the protocol output is output by the real view and the functionality
is output by the simulated view for this non-deterministic case. Thus we sample
b and r twice (second time as b′, r′) in the real view. The outputs o1 and o2 refer
to the output (outputπ(x, y, n) in Definition 3) of the protocol. Note that the
simulator S1 takes x and y as inputs. The simulated view however is constructed
using only party one’s input, x, according to the definition in Sect. 4. The second
input, y, is used to construct the functionality output at the same time.

To show information theoretic security we prove that the two probabilistic
programs given in Fig. 3 are equal. This involves a series of small equality steps
between intermediate probabilistic programs as shown in Fig. 1. In particular, in
the series of intermediate programs we manipulate the real and simulated views

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 123

S1 x y = do { R1 x y = do {
a, b, c ← sample uniform q; a, b, r ← sample uniform q;
s1 ← sample uniform q; b′, r′ ← sample uniform q;
let z = (x.b − c) mod q; let z = (y − b) mod q;
let s2 = (x.y − s1) mod q; let o1 = (x(y − b′) − r′) mod q;
returnspmf (x, a, z, b, s1, s2)} let o2 = (x.y − (x(y − b′) − r′)) mod q;

returnspmf (x, a, r, z, o1, o2)}

Fig. 3. Probabilistic programs to output the real and simulated views for party one.

into a form where we can apply Lemma 2(1). To do this we mainly use existing
lemmas from CryptHOL, two of which are given in Eqs. 2 and 3.

This gives us the first half of formal security which can be seen in Lemma 4

Lemma 4. For all inputs x and y we have, S1 x y = R1 x y. This implies the
definition of security we gave in Sect. 4, S1 x y

c≡ R1 x y.

The proof of security for party two is analogous and together, Lemmas 4 and
5 establish Theorem 1.

Lemma 5. For all inputs x and y we have, S2 x y = R2 x y. This implies the
definition of security we gave in Sect. 4, S2 x y

c≡ R2 x y.

6 Naor-Pinkas Protocol

In the Naor-Pinkas OT protocol [19] we work with a cyclic group G of order q
where q is a prime, for which the DDH assumption holds. The Decisional Diffie
Hellman (DDH) assumption [10] is a computational hardness assumption on
cyclic groups. Informally, the assumption states that given ga and gb, where a
and b are uniform samples from Zq, the group element ga.b looks like a random
element from G. A triple of the form (ga, gb, ga.b) is called a DDH triple. In
the protocol, given in Fig. 4, the Sender (party one) begins with input messages
(m0,m1) ∈ G

2 and the Receiver (party two) begins with v ∈ {0, 1}, the choice
bit. At the end of the protocol the receiver will know mv but will learn nothing
about m1−v and the sender will not learn v.

We prove information theoretic security in the semi-honest model for the
receiver. Security for the sender is proven with a reduction to the DDH assump-
tion. In particular, the receiver is only able to decrypt mv as the corresponding
ciphertext is a valid ElGamal ciphertext, while m1−v is garbage.

In the protocol description, given in Fig. 4, DDH-SR refers to a DDH ran-
dom self reduction operation which takes DDH triples to DDH triples and non
DDH triples to non DDH triples. The reduction is defined as follows. Given
an input tuple (g, gx, gy, gz), one picks a, b uniformly from Zq and outputs
(g, g(x+b)a, gy, g(z+b.y)a). The role of the DDH random self reduction is to destroy
any partial information in the message the Receiver sends to the Sender.

124 D. Butler et al.

P1 (Sender) P2 (Receiver)
(m0,m1) ∈ G

2 v ∈ {0, 1}
a, b

$←− Zq

cv = a.b, c1−v
$←− Zq

x ← ga, y ← gb

z0 ← gc0 , z1 ← gc1

A = (g, x, y, z0)
(x , y , z0 , z1)

�−−−−−−−−−−−−−−−−−−−−−−−−−−
B = (g, x, y, z1)
verifies z0 �= z1

(g, x1, y1, z
′
0)

DDH-SR←−−−−− A

(g, x2, y2, z
′
1)

DDH-SR←−−−−− B
CT0 = (y0,m0.z

′
0)

CT1 = (y1,m1.z
′
1) −−−−−−−−−−−−−−−−−−−−−−−−−−� CT0, CT1

decrypts CTv

Fig. 4. The Naor-Pinkas OT protocol

Theorem 2. The protocol defined in Fig. 4 securely computes a 1-out-of-2 OT
in the semi-honest adversary model.

6.1 The Formal Proof

We have a deterministic protocol and so do not include the overall functionality
as part of the views. We must first consider the DDH-SR. In particular the two
cases, when the input tuple is a DDH triple and when it is not. In both cases we
simplify the operation that is performed. The simplified definitions are given in
Fig. 5 and the formal statements in Lemmas 6 and 7:

DDH SR triple x y z = do { DDH SR non triple x y z = do {
x1 ← sample uniform q; x1, x2 ← sample uniform q;

returnspmf (g, g
x1 , gy, gy.x1 mod q)} returnspmf (g, g

x1 , gy, gx2)}

Fig. 5. The two simplified probabilistic programs for the DDH triples and non-triples.

Lemma 6. For all x, y, z such that z = y.x mod q we have

DDH SR x y z = DDH SR triple x y z.

Lemma 7. For all x, y, z such that z �= y.x mod q we have

DDH SR x y z = DDH SR non triple x y z.

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 125

The Simulators and Views. First we consider party two. In constructing the
real and simulated views we use the assert function to ensure the condition given
in the protocol in Fig. 4, z0 �= z1, holds. This ensures that only one of A and B
is a DDH triple; the other is not and hence the corresponding ciphertext CT0 or
CT1 cannot be decrypted. The simulator may take as inputs v ∈ {0, 1} and CTv

(although does not require it). We use ⊗ to denote multiplication in the group
(as in Isabelle). The real view and simulator are shown below.

S2 v = do { R2 m0 m1 v = do {
a, b ← sample uniform q; a, b ← sample uniform q;
let cv = a.b; let cv = a.b;
c′
v ← sample uniform q; c′

v ← sample uniform q;
← assert spmf (c′

v �= b.a mod q); ← assert spmf (c′
v �= b.a mod q);

x0 ← sample uniform q; (g, x0, y0, z
′
0) ← DDH SR a b cv;

x1 ← sample uniform q; (g, x1, y1, z
′
1) ← DDH SR a b c′

v;
returnspmf (v, a, b, c′

v, gb, gx1 , gb, gx2)} let e0 = z′
0 ⊗ m0;

let e1 = z′
1 ⊗ m1;

returnspmf (v, a, b, c′
v, y0, e0, y1, e1)}

For party one, the simulator, S1, takes in the two messages (m0,m1) (again,
it does not use them) and the Sender’s output - which amounts to nothing. We
break this proof down into cases on v, the receivers input, however it is important
to stress that the simulator must stay the same in both cases. Below we give the
simulator and the real view for the non trivial case, namely when v = 1.

S1 m0 m1 = do { R1 v eq 1 m0 m1 = do {
a, b, c1 ← sample uniform q; a, b, c0 ← sample uniform q;
returnspmf (ga, gb, ga.b, gc1)} returnspmf (ga, gb, gc0 , ga.b)}

Proof of Security for the Receiver. From the construction of the real view
one can see the triple (a, b, cv) is a DDH triple and (a, b, c′

v) is not. Thus we are
able to rewrite the real view using Lemmas 6 and 7.

The only components of the outputs of R2 and S2 which differ, up to unfold-
ing of definitions are the encryptions. In the real view they are of the form gz⊗mi

where z is uniformly sampled and in the simulator they are of the form gz. We
utilise a lemma from CryptHOL which states that if c ∈ carrier G then:

mapspmf (λx. gx ⊗ c) (sample uniform q)
= mapspmf (λx. gx) (sample uniform q)

This allows us to show our security result stated in Lemma 8.

Lemma 8. For all inputs m0, m1 and v we have, S2 v = R2;m0 m1 v. This
implies the definition of security we gave in Sect. 4, S2 v

c≡ R2;m0 m1 v.

126 D. Butler et al.

Proof of Security for the Sender. For v = 0, the proof is trivial as the
simulator and real views are constructed in exactly the same way.

Lemma 9. The case of v = 0 for party one implies for all inputs m0 and m1,

R1 v eq 0 m0 m1 = S1 m0 m1.

The proof for v = 1 is equivalent to showing the distributions (ga, gb, ga.b, gc) and
(ga, gb, gc, ga.b) are computationally indistinguishable, when a, b, c are uniformly
sampled. Here we provide a high level view of the pencil and paper. Our formal-
isation can be found at https://github.com/alan-turing-institute/isabelle-mpc.

To show security we provide a reduction to the DDH assumption, which
implies the two distributions are computationally indistinguishable. In particular
we show that if there exists a D that can distinguish the above two 4-tuples then
one can construct an adversary that breaks the DDH assumption. In order to
prove this formally we provide a way of formalising the DDH advantage.

Definition 4. The DDH advantage for a distinguisher D is defined as

adv ddh(D) = Pr[D((ga, gb, ga.b), (ga, gb, gc)) = 1]

− Pr[D((ga, gb, gc), (ga, gb, ga.b)) = 1]

where a, b, c
$←− Zq.

We assume that no efficient distinguisher has an advantage greater than a
negligible function of the security parameter. We define the advantage of a 4-
tuple distinguisher, D, as follows.

Definition 5. The 4-tuple distinguisher’s advantage is given by

adv dist(D) = Pr[D((ga, gb, ga.b, gc), (ga, gb, gc, ga.b)) = 1]

− Pr[D((ga, gb, gc, ga.b), (ga, gb, ga.b, gc)) = 1]

where a, b, c, d
$←− Zq.

The adversary we use to break the DDH assumption, which uses D is con-
structed below.
DDH Adversary, inputs: (ga, gb, ga.b) and (ga, gb, gc).

– The adversary constructs a1 = (ga, gb, gc, ga.b) and a2 = (ga, gb, ga.b, gc) and
gives them to D.

– The adversary outputs whatever D outputs.

We show the DDH advantage of the adversary (using D) is the same as the
4-tuple advantage of D. Thus we have reduced the security of party one to a
known hard problem. In particular we show

Lemma 10. For any 4-tuple distinguisher D we have,

adv ddh(A(D)) = adv dist(D).

This along with showing information theoretic security (Lemma8) for the
receiver means we have shown the protocol to be secure in the semi-honest
model.

https://github.com/alan-turing-institute/isabelle-mpc

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 127

7 Towards Evaluating Arbitrary Functionalities

Several MPC techniques allow for the secure joint evaluation of any functionality
represented as a Boolean circuit or an arithmetic circuit. At a high level, these
protocols proceed by evaluating the circuit gate by gate while always keeping a
secret share of the partial evaluation. In particular the GMW protocol relies on
OT to securely evaluate AND gates.

In this section we use a basic OT protocol (Fig. 6) to construct a protocol
to compute the output of an AND gate. The OT protocol we use employs a
trusted initialiser, like the secure multiplication protocol of Sect. 5. The trusted
initialiser pre-distributes correlated randomness to the parties so they can carry
out the protocol. In particular r0 and r1 are uniformly sampled and given to
party one, and d is uniformly sampled and given to party two along with rd.
The AND gate protocol then uses OT, this is done in a similar way as in the
GMW protocol. The AND gate protocol we use here is taken from [6] and is
described in Fig. 7. This demonstrates that OT can be used in powerful ways to
construct protocols to compute fundamental functions securely.

r0, r1
$←− {0, 1}, d $←− {0, 1}

P1 P2
m0,m1 ∈ {0, 1}, r0, r1 b ∈ {0, 1}, d, rd

e e�−−−−−−−−−−−−−−−−−−−−−−−−−− e = b ⊕ d
f0 = m0 ⊕ re

f1 = m1 ⊕ r1−e
f0 , f1−−−−−−−−−−−−−−−−−−−−−−−−−−� f0, f1

mb = fb ⊕ rd

Fig. 6. Single bit OT

Initially we show information theoretic security for the OT construction given
in Fig. 6. That is we construct simulators SOT

1 and SOT
2 such that for the appro-

priately defined views ROT
1 and ROT

2 the result in Lemma 11 holds. To do this
we define an appropriate XOR function (⊕) on Booleans and prove a one time
pad lemma on the XOR function.

Lemma 11. ROT
1 m0 m1 b = SOT

1 m0 m1 and ROT
2 m0 m1 b = SOT

2 b.

We now define a protocol (Fig. 7) to compute an AND gate. The protocol uses
OT as a black box to transfer mb. Each party outputs an additive share of the
desired AND gate output. This protocol is proved secure using the simulation-
based approach. We use Lemma 11 to prove security of this protocol in the semi-
honest model. The real view and the simulator for party A are given in Fig. 8.
The simulator for party B, SB, is constructed in an analogous way. Using these
simulators we are able to show the AND gate protocol in Fig. 7 is information
theoretically secure.

128 D. Butler et al.

BA
a ∈ {0, 1} b ∈ {0, 1}
u

$←− {0, 1}
(m0,m1) = (¬u, a ⊕ ¬u)

OT ((m0 ,m1), b)
−−−−−−−−−−−−−−−−−−−−−−−−−−� mb

output u output mb

Fig. 7. A protocol to compute an AND gate

RA a b = do { SA a = do {
u ← coin spmf ; u ← coin spmf ;
let m0 = ¬u; let m0 = ¬u;
let m1 = a ⊕ (¬u); let m1 = a ⊕ (¬u);
r ← ROT

1 m0 m1 b; r ← SOT
1 m0 m1;

returnspmf (u, r)} returnspmf (u, r)}

Fig. 8. Simulator and real view of party A

Lemma 12. Information theoretic security for the AND gate protocol is shown
by the equalities

RA a b = SA a and RB a b = SB b.

We have shown how a simple OT that uses a trusted initialiser can help to
securely compute an AND gate. In general a trusted initialiser would not be
necessary as one can use the N-P OT in the AND gate protocol. There is one
technical issue with doing this. In the N-P OT we work with a group with
multiplication but the AND gate protocol requires addition. In practice this is
overcome by implementing the N-P OT using a ring (which has both operations),
for which the DDH assumption holds. The proof would follow as in the proof
given above, but an extension of the theory of rings in Isabelle is required for
this - something we plan to develop in future work.

8 Conclusion

We have shown a general approach for capturing simulation-based cryptographic
proofs in the computational model, building on Lochbihler’s CryptHOL frame-
work, and giving a proof of the Naor-Pinkas OT protocol. We also have shown
how out technique can be used to formally prove security of a simple two party
protocol for an AND gate based on OT.

Future Work. The work presented here is only a starting point for the develop-
ment of theory and examples of simulation-based proofs. Oblivious Transfer is
a fundamental cryptographic primitive which can be used to construct generic
protocols for MPC. For example, Yao’s garbled circuits use OT as a sub-protocol
to exchange garbled inputs, while the GMW protocol relies on OT for computing

How to Simulate It in Isabelle: Towards Formal Proof for Secure MPC 129

AND gates. Section 7 took a first step towards a formal proof of the GMW pro-
tocol. Section 7 took a first step towards a formal proof of the GMW protocol.
We plan to extend this work towards formalising general MPC protocols.

Related Work. Many formal techniques and tools have been devised which use
the symbolic model. Work on formalising proofs in the computational model has
begun more recently and is more challenging, requiring mathematical reasoning
about probabilities and polynomial functions, besides logic. The CertiCrypt [2]
tool built in Coq helped to capture the reasoning principles that were imple-
mented directly in the dedicated interactive EasyCrypt tool [3]. Again in Coq,
the Fundamental Cryptographic Framework [20] provides a definitional language
for probabilistic programs, a theory that is used to reason about programs, and
a library of tactics for game-based proofs. Interactive tools seem invaluable for
complex protocols or exploring new techniques, but automatic tools are more
practical when things become routine. CryptoVerif [7] is a tool with a high level
of automation but its scope only stretches to secrecy and authentication in pro-
tocols. AutoG&P [4] is another automated tool dedicated to security proofs for
pairing-based cryptographic primitives. So far, all of these tools have been used
to perform game-based cryptographic proofs and not simulation-based proofs.

Acknowledgements. We are deeply grateful to Andreas Lochbihler for providing and
continuing to develop CryptHOL and for his kind help given with using it. Also we are
thankful to the reviewers for their comments regarding the presentation of our work.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptol. 20(3), 395 (2007)

2. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: POPL, pp. 90–101. ACM (2009)

3. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 5

4. Barthe, G., Grégoire, B., Schmidt, B.: Automated proofs of pairing-based cryp-
tography. In: ACM Conference on Computer and Communications Security, pp.
1156–1168. ACM (2015)

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). doi:10.1007/3-540-46766-1 34

6. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 29

7. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Trans. Dependable Secur. Comput. 5(4), 193–207 (2008)

8. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 13

http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-46766-1_29
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13

130 D. Butler et al.

9. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS. The Internet Society (2015)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–207 (1983)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

13. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM Conference on Computer and Com-
munications Security, pp. 830–842. ACM (2016)

14. Lindell, Y.: How to simulate it - a tutorial on the simulation proof technique. IACR
Cryptology ePrint Archive 2016:46 (2016)

15. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

16. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48000-7 16

17. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: IEEE Symposium on Security and Privacy,
pp. 359–376. IEEE Computer Society (2015)

18. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

19. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457.
ACM/SIAM (2001)

20. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46666-7 4

21. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004:332 (2004)

22. Yao, A.: How to generate and exchange secrets (extended abstract). In: FOCS, pp.
162–167. IEEE Computer Society (1986)

23. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-
tion. IACR Cryptology ePrint Archive 2015:1153 (2015)

http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://dx.doi.org/10.1007/978-3-662-46666-7_4

FoCaLiZe and Dedukti to the Rescue
for Proof Interoperability

Raphaël Cauderlier1(B) and Catherine Dubois2

1 University Paris Diderot, Irif, Paris, France
raphael.cauderlier@irif.fr

2 ENSIIE, Samovar, Évry, France
catherine.dubois@ensiie.fr

Abstract. Numerous contributions have been made for some years to
allow users to exchange formal proofs between different provers. The
main propositions consist in ad hoc pointwise translations, e.g. between
HOL Light and Isabelle in the Flyspeck project or uses of more or less
complete certificates. We propose in this paper a methodology to combine
proofs coming from different theorem provers. This methodology relies
on the Dedukti logical framework as a common formalism in which proofs
can be translated and combined. To relate the independently developed
mathematical libraries used in proof assistants, we rely on the structuring
features offered by FoCaLiZe, in particular parameterized modules and
inheritance to build a formal library of transfer theorems called Math-
Transfer. We finally illustrate this methodology on the Sieve of Eratos-
thenes, which we prove correct using HOL and Coq in combination.

1 Introduction

According to the IEEE Standards Glossary, interoperability can be considered
as the ability of computer systems or software to exchange and make use of infor-
mation. Prover interoperability as a way for exchanging formal proofs between
different theorem provers is a research topic that received many contributions
along years. The most successful approach is probably the integration of auto-
matic theorems provers (ATP) in interactive proof assistants (ITP) like Coq [1]
or Isabelle [6]. In that case more or less detailed witnesses are provided and proofs
can be imported or re-built. Furthermore many ad hoc pairwise translations have
been proposed e.g. between HOL Light and Isabelle in the Flyspeck project [18],
between HOL Light and Coq [12,19,25] or between HOL and Nuprl [15]. To avoid
the quadratic blowup in the number of translators to develop, proof formats are
emerging either for proofs in a specific logic such as the OpenTheory format [17]
for ITPs in the HOL family or relying on logical frameworks [14,20,24] such as
λ-prolog and Twelf to represent proofs in several logics. We propose to combine
proofs coming from different theorem provers relying on the Dedukti logical

This work has been supported in part by the VECOLIB project of the French
national research organization ANR (grant ANR-14-CE28-0018).

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 131–147, 2017.
DOI: 10.1007/978-3-319-66107-0 9

132 R. Cauderlier and C. Dubois

framework [23], a typed λ-calculus with dependent types and rewriting, as a
common formalism in which proofs can be translated and combined.

In [5], Assaf and Cauderlier describe a manual attempt of interoperability
between HOL and Coq where they prove in Coq the correctness of the insertion
sort algorithm on polymorphic lists and instantiate it with HOL natural num-
bers. This experiment relies on a translation to Dedukti for both the sorting
function and the definition of HOL natural numbers (using respectively Coqine
and Holide) and the result is checked by Dedukti. The interaction between both
parts only happens at the level of booleans. However, for such a simple fact the
proof is very long and verbose (around 700 Dedukti lines).

The goal of this paper is to make prover interoperability reach a new scale.
We can notice that the art specific to the case study of Assaf and Cauderlier
required a lot of work that could be automated and has to be automated to
scale up. For this task, we use Zenon Modulo [8], an automated theorem prover
outputting Dedukti proofs.

In this work, we go beyond simple boolean interaction. When a type and
operations over this type, such as natural numbers and arithmetic operations,
are independently defined in two ITPs, we can translate them but we end up
with distinct isomorphic structures A and B in Dedukti. A theorem ϕA proved
for A does not give us for free the corresponding theorem ϕB about B in which
we are interested. Two solutions to this problem have been proposed:

– modify one of the translators to make it use the type and operations of the
other structure thus identifying structures A and B,

– keep structures A and B distinct and use tactics to automatically prove trans-
fer theorems of the form ϕA → ϕB .

The first solution is favored in several ad hoc interoperability proposals [17,19].
The main limitation of this solution is the complexification of the translators
which lacks scalability: for interoperability between n proof systems indepen-
dently defining a mathematical structure, n − 1 translators need to be modified
to become customizable and point to the definition of the nth proof system.
The second solution has first been proposed in the context of formalization in
Isabelle/HOL of quotient structures [16] and recently ported to Coq [26]. Its
main limitation is that the definitions of the morphisms and the proofs that
operations are preserved by morphisms are left to the human user. We propose
a compromise between these two solutions: we prove transfer theorems in FoCaL-
iZe [21], an ITP featuring a customizable Dedukti translator and use them to
relate independent developments coming from uncustomizable translators.

The first contribution of this paper is a FoCaLiZe library of mathematical
structures, morphisms, and transfer theorems called MathTransfer. The second
contribution is a proposed methodology for scalable interoperability relying on
Dedukti, Zenon Modulo, FoCaLiZe, and MathTransfer. The third contribution
is the correctness proof of the Sieve of Erathostenes considered as the combina-
tion of a lemma coming from HOL and another coming from Coq. This proof
illustrates our methodology.

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 133

The paper is structured as follows. In Sects. 2, 3, and 4 we present very briefly
resp. the Dedukti logical framework, the FoCaLiZe system, and the MathTrans-
fer library. These tools form the basis of our approach to interoperability pre-
sented in Sect. 5. Sections 6 and 7 are devoted to a case study illustrating it on a
correctness proof of the Sieve of Eratosthenes. Finally, we conclude and discuss
in Sect. 8 the generality and reusability of our development.

The MathTransfer library and our interoperability case study are distrib-
uted together at the following URL: https://gitlab.math.univ-paris-diderot.fr/
cauderlier/math transfer.

2 Dedukti, a Universal Proof Language

Dedukti [23] is a variant of the dependently-typed λ-calculus Twelf, a logical
framework based on the Curry-Howard correspondence. Logics are encoded in
Dedukti by providing a signature and then proof checking in the encoded logic is
reduced to type checking in the encoding signature. For example, the conjunction
in natural deduction can be encoded by the following signature:

Prop: Type.

proof: Prop -> Type.

and: Prop -> Prop -> Prop.

and_intro: A: Prop -> B: Prop -> proof A -> proof B ->

proof (and A B).

and_elim1: A: Prop -> B: Prop -> proof (and A B) -> proof A.

and_elim2: A: Prop -> B: Prop -> proof (and A B) -> proof B.

The type Prop of logical propositions is first declared, then to each proposi-
tion A we associate the dependent type of its proofs proof A. The conjunction
and is then declared and so are finally the usual elimination and introduction
rules.

The dependent product Πx : A. B is written x: A -> B in Dedukti. It is
used to encode universal quantification. Dependent products and arrow types are
introduced by λ-abstractions and eliminated by applications. The λ-abstraction
λx : A. b is written x: A => b in Dedukti. For example, a proof of commutativity
of conjunction in Dedukti is the term

A: Prop => B: Prop => H: proof (and A B) =>

and_intro B A (and_elim2 A B H) (and_elim1 A B H)

of type A: Prop -> B: Prop -> proof (and A B) -> proof (and B A)
Dedukti also features rewriting which is used to express computational

higher-order logics such as the Calculus of Inductive Constructions implemented
in the Coq proof assistant [2].

Translators from various ITPs to Dedukti have been developed [4]. In partic-
ular, Holide [3], Coqine [2], and Focalide [10] are translators from respectively
the OpenTheory format for ITPs in the HOL family, the Coq proof assistant and
the FoCaLiZe framework. Some ATPs also produce Dedukti files, e.g. iProver
Modulo [7] and Zenon Modulo [8,11] which is used in this work.

https://gitlab.math.univ-paris-diderot.fr/cauderlier/math_transfer
https://gitlab.math.univ-paris-diderot.fr/cauderlier/math_transfer

134 R. Cauderlier and C. Dubois

Dedukti is a mere proof checker for a wide variety of logics, it is not intended
for direct human use and it intentionally lacks features commonly found in sim-
ilar systems such as modularity, type inference and implicit arguments. While
these features are not needed in a proof checker, they are crucial for scalability
of interoperability developments. We propose to compensate this lack by using
FoCaLiZe as an interoperability framework for linking mathematical libraries.

3 FoCaLiZe, Zenon Modulo, and Focalide to the Rescue

FoCaLiZe (http://focalize.inria.fr) has been designed as a formal environment for
developing certified programs and libraries. It provides a set of tools to formally
specify and implement functions and prove logical statements. FoCaLiZe comes
with three backends, a backend to OCaml for execution and two backends for
formal verification. The historic one produces Coq code and requires the use of
the ATP Zenon which can output proofs as Coq terms. A more recent backend,
called Focalide, produces Dedukti code [10] and requires to use Zenon Modulo [8],
an extension of Zenon which produces Dedukti proofs [11]. In this work, we only
use the Focalide backend.

We present here very briefly the main ingredients of FoCaLiZe. For more
details please consult [21].

In FoCaLiZe, specifications are written in a typed version of first-order logics;
implementations are written with the help of a pure functional programming
language very close to ML with algebraic datatypes, first class citizens functions,
polymorphic types, recursion and pattern-matching. FoCaLiZe proposes a high-
level proof language and discharges the logical details to Zenon or Zenon Modulo
(according to the used backend). A proof in this language consists of intermediate
lemmas and hints to the prover. When a proof is out of scope of the prover, a
manual proof expressed in the backend language, Coq or Dedukti, is required.

A FoCaLiZe unit, named a species, is made of signatures, properties, defini-
tions of functions and types and also proofs of user-defined properties. A species
mearly defines a set of values and functions manipulating them where the mean-
ing of the functions are given by properties. Inside a species, the type Self
denotes the type of these values, it is usually abstract early in the development
and made concrete later. When a species is complete, that is every function is
definied and every property is proven, it can be turned into a collection which
is close to an abstract data type. FoCaLiZe features modularity, more precisely
multiple inheritance. Thus a species can be defined by inheriting from some oth-
ers, allowing the reuse of all the signatures, definitions and proofs coming from
them. When the definition of a function is inherited, it is possible to give it
a new definition overriding the inherited one. This feature is not used here. A
FoCaLiZe development appears as a hierarchy of species linked by inheritance,
such as the one described in Fig. 1. Moreover species can be parameterized by
collections. In that case, inside a species, the user is allowed to use functions and
properties as black boxes as in a functor. In the following, we say a species is
instanciated when it is applied to a particular collection.

http://focalize.inria.fr

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 135

Similarly to the possibility to prove directly a theorem in one of the target
logical languages, FoCaLiZe allows the definition of global symbols by custom
external expressions of the target languages (OCaml, Coq, and Dedukti). It is,
with modularity, a key feature for our interoperability application. For example,
addition of integers is defined in FoCaLiZe standard library as follows. It is
declared with its type in the FoCaLiZe side, each branch in the definition maps
+ to a function written in the corresponding target language:

let (+) = internal int -> int -> int

external

| caml -> {* Ml_builtins.bi__int_plus *}

| coq -> {* coq_builtins.bi__int_plus *}

| dedukti -> {* dk_int.plus *};;

In this article, we use FoCaLiZe as an interoperability framework to provide
the features missing in Dedukti for this task: modularity offered by FoCaLiZe
inheritance, and proof automation provided by Zenon Modulo.

4 MathTransfer, a Library of Transfer Theorems

If A and B are two isomorphic mathematical structures, then for any formula
ϕA expressed in the language of A, the formula ϕA → ϕB is a theorem where ϕB

is the formula corresponding to ϕA in the language of B. Theorems of the form
ϕA → ϕB are called transfer theorems. The use of transfer theorems is a way to
formalize rigorously the mathematical habit of reasoning modulo isomorphism.

MathTransfer is a FoCaLiZe library of transfer theorems about natural num-
bers. More precisely, the MathTransfer library contains:

– definitions of the mathematical structures obtained by adding common arith-
metic operations on natural numbers,

– definitions of (iso)morphisms between abstract representations of natural
numbers,

– proofs that all operations are preserved by the morphisms, and
– 84 transfer theorems.

Each structure is defined as a FoCaLiZe species. Because the definitions of
some operations depend on other operations, these species are organized in a
hierarchy presented in Fig. 1 (where frames represent species and an arrow goes
from a species S1 to a species S2 if S1 directly inherits from S2).

The species in this hierarchy contain only the axiomatisations of the opera-
tions, not their other properties. For example, the species corresponding to the
multiplication (× frame in Fig. 1) contains:

– a new binary operation × representing multiplication,
– two first-order axioms: ∀n. 0 × n = 0 and ∀m n. succ(m) × n = n + (m × n).

136 R. Cauderlier and C. Dubois

Fig. 1. The FoCaLiZe species hierarchy of MathTransfer structures

This species is written as follows in FoCaLiZe:

species NatTimes =

inherit NatPlus;

signature times : Self -> Self -> Self;

property zero_times : all n : Self , times(zero , n) = zero;

property succ_times : all m n : Self ,

times(succ(m), n) = plus(n, times(m, n));

end;;

On top of this small hierarchy, we build two orthogonal extensions: (a) a
list of 84 statements about the arithmetic operations and (b) a hierarchy of
morphisms between the structures.

The 84 chosen statements are a FoCaLiZe copy of the theorems about the
operations of Fig. 1 that are proved in OpenTheory base library. Among them,
7 statements are properties of multiplication:

species NatTimesThm =

inherit NatTimes;

property times_zero : all m : Self ,

times(m, zero) = zero;

property times_succ : all m n : Self ,

times(m, succ(n)) = plus(times(m, n), m);

property times_assoc : all m n p : Self ,

times(times(m, n), p) = times(m, times(n, p));

property times_commutes : all m n : Self ,

times(m, n) = times(n, m);

property times_regular_left : all m n p : Self ,

times(m, n) = times (m, p) <-> (n = p \/ m = zero);

property times_regular_right : all m n p : Self ,

times(m, p) = times (n, p) <-> (m = n \/ p = zero);

property times_is_zero : all m n : Self ,

times(m, n) = zero <-> (m = zero \/ n = zero);

end;;

Morphisms on the other hand form a parameterized hierarchy of species. A
morphism from a representation A of natural numbers is defined by a function

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 137

morph of type A -> Self preserving zero and successors. From Peano axioms,
assumed both in A and in the current species, we prove that morph is a bijection
preserving all the operations. For example, here is the parameterized species
proving that multiplication is preserved by the morphism (proof is omitted):

species NatTimesMorph (A is NatTimes) =

inherit NatTimes , NatPlusMorph(A);

theorem morph_times : all a1 a2 : A,

morph(A!times(a1, a2)) = times(morph(a1), morph(a2))

proof = ...;

end;;

These proofs of preservation of operations are not fully automatized because
they require reasoning by induction which is not handled by Zenon Modulo but
Zenon Modulo is extensively used for the subproofs.

By inheriting from both the morphism hierarchy and the list of statements,
we can state and automatically prove the transfer theorems. Below is a frag-
ment of the species containing the 7 transfer theorems relative to the previous
7 theorems about multiplication:

species NatTimesTransfer (A is NatTimesThm) =

inherit NatTimesMorph(A), NatTimesThm;

proof of times_zero =

by property A!times_zero , morph_zero , morph_times ,

morph_injective , morph_surjective ;

proof of times_succ =

by property A!times_succ , morph_succ , morph_times ,

morph_injective , morph_surjective ;

proof of times_assoc =

by property A!times_assoc , morph_times ,

morph_injective , morph_surjective ;

...

end;;

Each transfer proof relies on three ingredients:

– the corresponding theorem in the parameter A,
– bijectivity of morph (hypotheses morph injective and morph surjective),
– preservation of some operations by the morphism (hypotheses morph zero,

morph succ, morph times).

These transfer proofs are not automatically found by Zenon Modulo but are
generated by a specialized transfer tactic written in Dedukti and similar to the
transfer tactics for Isabelle and Coq [16,26].

5 Methodology for Dedukti-Based Interoperability

In this section, we propose an interoperability methodology based on Dedukti
and MathTransfer. More precisely we detail below the different steps which must
be followed when we want to use a lemma from a tool/formalism A in a formal

138 R. Cauderlier and C. Dubois

proof of a theorem in another formalism B. The statements of the lemma in A
and B do not need to be syntactically identical but thanks to the ATP Zenon
Modulo some degree of rephrasing of the lemma is tolerated.

Some prerequisites about A and B are required before applying the process.
First translators from A and B to Dedukti must exist. Then we rely on the fact
that formalisms A and B have already been merged in Dedukti, it means that
the logical linking of both logics has been done (sources of inconsistencies have
been identified and fixed).

The steps are the following ones (between parentheses appears the formalism
or the tool to be used to realize the step):

1. identify the lemma L to exchange between A and B and prove it (A);
2. prove in B the target theorem with the exported A lemma L considered as

an hypothesis (B);
3. translate both the A lemma L and the B development T in Dedukti (use the

corresponding translators);
4. if needed, extend the FoCaLiZe hierarchies of the MathTransfer library with

the operations appearing in the statement of the lemma L (FoCaLiZe);
5. instantiate the FoCaLiZe hierarchies with external definitions and proofs from

A and B; if the statements do not exactly match, use Zenon Modulo (FoCaL-
iZe with the help of Zenon Modulo);

6. automatically transfer the lemma L (FoCaLiZe);
7. translate the whole FoCaLiZe development in Dedukti (use Focalide);
8. write the proof of the final target theorem (a trivial Dedukti proof).

In Sects. 6 and 7, we apply this methodology to the correctness proof of the
Sieve of Eratosthenes which is a small but typical case study where A is HOL
and B is Coq.

6 Presentation of the Example: An Incomplete Coq
Proof of the Sieve of Eratosthenes

In [5], Assaf and Cauderlier managed to link a Coq development with an HOL
development directly in Dedukti because the example was chosen to minimize the
interaction between Coq and HOL types. We now consider a more complicated
example: a proved version of the Sieve of Eratosthenes. In this new proof of
concept of interoperability in Dedukti, HOL and Coq have to agree on the type
of natural numbers despite having slightly different definitions for it:

– in Coq, the type of natural numbers is defined as an inductive type;
– in HOL, inductive types are not primitive and natural numbers are encoded.

The Sieve of Eratosthenes is a well-known algorithm for listing all the prime
numbers smaller than a given bound. In this section, we propose a certified
implementation of this algorithm in the Coq proof assistant. We decompose this
task in three: we have to program the sieve in Coq, to specify its correctness,

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 139

and to prove it. In Sect. 6.1, we program the sieve in Coq and in Sect. 6.2 we
specify it and sketch a proof of the correctness of the algorithm. We highlight
the mathematical theorems on which this proof relies. In order to experiment
with interoperability, we will not prove these mathematical results in Coq but
import them from the OpenTheory libraries1.

6.1 Programming the Sieve of Eratosthenes in Coq

Divisibility plays two purposes in our development: we need a divisibility test
inside the definition of the algorithm and we also need divisibility to define pri-
mality and specify the algorithm. In order to get a simple definition of primality,
we introduce strict divisibility: we say that a is a strict divisor of b if a divides b
and 1 < a < b. Using Euclidean division, we define strict divisibility as a boolean
function (sd in Coq, definition omitted here). A natural number p > 1 is then
called a prime number if and only if it has no strict divisor.

We now have all the prerequisites for defining the sieve’s core function. We use
the usual fuel trick for avoiding a termination proof. In the following definition,
filter p l computes the list of elements of l that satisfy the boolean function p
and negb is boolean negation.

Fixpoint Sieve (l : list)(fuel : nat) {struct fuel} : list :=

match fuel with

| O => Nil

| S fuel => match l with

| Nil => Nil

| Cons a l =>

Cons a (Sieve (filter (fun b => negb (sd a b)) l) fuel)

end

end.

When fuel is bigger than the length of l, Sieve l fuel gives the expected
result so the length of l is a convenient default value for fuel. Finally, the prime
numbers smaller than 2 + n can be computed by the following function where
interval 2 n computes the interval [2, 2 + n].

Definition eratosthenes n := Sieve (interval 2 n) n.

6.2 Specification and Correctness Proof

The specification of the Sieve of Eratosthenes is quite simple: a number p is
a member of the list returned by eratosthenes n if and only if p is a prime
number smaller than 2 + n.

We first define the prime predicate to be satisfied when its argument is a
prime natural number:

1 The purpose is to illustrate the methodology previously presented. Of course, this
example is simple enough to be completely realized within Coq or done by reusing
e.g. the translation from Hol Light to Coq proposed by Keller and Werner [19].

140 R. Cauderlier and C. Dubois

Inductive Istrue : bool -> Prop := ITT : Istrue true.

Definition prime p :=

2 <= p /\ forall d, Istrue (negb (sd d p)).

We state the specification of the Sieve of Eratosthenes as the following three
lemmata (where In is the list membership predicate).

A natural number returned by the function erathostenes is a prime number
and is lower than the bound:

Lemma sound_1 p n : In p (eratosthenes n) -> p <= 2 + n.

Lemma sound_2 p n : In p (eratosthenes n) -> prime p.

Any prime number lower than the bound will be returned by the function
erathostheses:

Lemma complete p n :

prime p -> p <= 2 + n -> In p (eratosthenes n).

For completeness, it is enough to prove that the Sieve function preserves
prime numbers (assuming it received enough fuel).

The first soundness lemma also relies on an invariant of the Sieve function,
namely that the members of Sieve l fuel are all members of l. The proof is
then concluded by a simple soundness property of intervals.

The second soundness lemma is where arithmetic is required. Let p be a
member of eratosthenes n, we can easily prove that 2 ≤ p by an argument
similar to the proof of the first soundness lemma. To prove that p has no strict
divisor, we use the following standard arithmetic result:

Lemma 1. Let n be a natural number greater than 2, n has a prime divisor.

For the sake of our proof of concept, we shall not prove this result in Coq.
Fortunately, the prime divisor lemma is proved in OpenTheory natural-prime
library so item number 1 on our interoperability checklist presented in Sect. 5 is
skipped.

We prove the correctness of the Sieve of Eratosthenes in Coq when Lemma 1
is considered as a parameter thus completing item number 2 on our checklist.
This development can be split into three parts of approximately the same size:

– straightforward arithmetic results such as commutativity of addition and
multiplication, these results are proved in both Coq standard library and
OpenTheory but they are so straightforward that they are easier to reprove
than to import and Coqine is not yet able to translate the part of the standard
library in which they are proved,

– correctness of auxiliary functions which could be reused in other developments
(modaux, strict divisibility and functions manipulating lists), and

– correctness of the functions Sieve and eratosthenes which are specific to
this problem.

As in [5], the results that we want to import from HOL are hypotheses of
the final theorem that has to be provided in Dedukti.

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 141

7 Mixing the Proofs

In this section, we follow the steps outlined in Sect. 5 to import in our Coq devel-
opment the prime divisor lemma from HOL. The prerequisites for the method-
ology to apply are met thanks to the work of Assaf and Cauderlier [5] that we
summarize in Sect. 7.1. The various steps of the methodology are then followed
in Sects. 7.2 to 7.5. These steps are also pictured in Fig. 2.

HOL (OpenTheory)

1. L

natural-prime

natural-divides

base

Coq

2. L → T

Init

Dedukti

Holide Focalide

Zenon Modulo

Coqine

3. LHOL 3. LCoq → TCoq7. LHOL → LCoq

8. TCoq

FoCaLiZe

6. LHOL → LCoq

5. HolNat, CoqNat

4. NatPrime

MathTransfer

Fig. 2. The methodology in action for HOL/Coq interoperability

7.1 Linking HOL and Coq in Dedukti

In [5], Assaf and Cauderlier propose a first proof of concept of interoperability
in Dedukti between HOL and Coq. The goal of this experiment was to study the
logical linking of HOL and Coq logics.

Two sources of inconsistencies were identified. First, Coq and HOL do not
agree on the question of type inhabitation: Coq allows empty types whereas we
can prove in HOL that all types are inhabited. Second, the notions of booleans
and logical propositions are identified in HOL and distinguished in Coq.

Type inhabitation is solved in [19] and [5] by identifying HOL types not with
Coq types but with Coq inhabited types (in the Coq type ΣA : Type0 . A).

The difference between HOL booleans and Coq propositions is solved
by identifying the type of HOL booleans with the type of Coq booleans,

142 R. Cauderlier and C. Dubois

which are reflected as proposition by the symbol hol to coq.Is true of type
hol.bool -> coq.prop. This symbol is used to express provability in HOL as
a special case of provability in Coq.

7.2 Extension of the MathTransfer Hierarchies up to the Prime
Divisor Lemma

MathTransfer, as we have seen, contains transfer theorems corresponding to the
most common arithmetic operations and relations such as found in OpenTheory
base library. OpenTheory does also contain arithmetic definitions and theorems
outside its base library. In particular, it defines divisibility and primality and it
contains the following statement of the prime divisor lemma:

∀n, n �= 1 → ∃p, (prime(p) ∧ p | n)

Following item number 4 on our checklist, we extend the FoCaLiZe hierarchies
that we presented in Sect. 4 by four blocks:

– a definition of divisibility,
– a definition of strict (non-trivial) divisibility, this notion is used in the defin-

ition of primality,
– a definition of primality, this notion appears in the statement of the prime

divisor lemma,
– the statement of the prime divisor lemma.

The extended hierarchy of operation definitions is shown in Fig. 3.

Fig. 3. The FoCaLiZe hierarchy of MathTransfer structures extended up to primality

Divisibility is required because this notion appears in the statement of the
prime divisor theorem. It is defined as a binary relation | defined by m | n ↔

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 143

∃p,m×p = n. Strict divisibility is used to define primality. There is also a binary
relation sd defined by m sd n ↔ (1 < m < n ∧ m | n). Primality is defined
as the absence of strict divisor for numbers greater than 1. The corresponding
predicate prime is defined by prime(p) ↔ (1 < p ∧ ∀d,¬(d sd p)).

It is not required to state and transfer all the HOL lemmas dealing with divis-
ibility and primality, it is enough to do so for the few ones that we are interested
in such as the prime divisor lemma. The notion of isomorphism between rep-
resentations of natural numbers is extended to take the new operations into
account and the prime divisor lemma is automatically transferred.

7.3 Instantiation of Coq Natural Numbers

We can instantiate the hierarchy of species on the Coq side using FoCaLiZe exter-
nal Dedukti definitions mapping directly the symbols to their Coqine translation
in Dedukti. All the proofs required to instantiate the axioms characterizing the
operations are trivial Dedukti proofs of reflexivity. For example, the species
NatTimes is instantiated as follows:

species CoqTimes =

inherit NatTimes , CoqPlus;

let times(m : coq_nat , n : coq_nat) = internal coq_nat

external

| dedukti -> {* Coq__Init__Peano .mult m n *};

proof of zero_times =

dedukti proof definition of zero , times

{* (n : cc.eT abst_T => logic.eq_refl abst_T abst_zero). *};

proof of succ_times =

dedukti proof definition of succ , plus , times

{* (m : cc.eT abst_T => n : cc.eT abst_T =>

logic.eq_refl abst_T (abst_times (abst_succ m) n)). *};

end;;

7.4 Instantiation of HOL Natural Numbers

Thanks to FoCaLiZe external definitions again, we can import in FoCaLiZe the
HOL definitions of natural numbers and arithmetic operations. All the required
proofs are found in the OpenTheory libraries. For example, the species NatTimes
is instantiated as follows:

species HolTimes =

inherit NatTimes , HolPlus;

let times (p : hol_nat , q : hol_nat) = internal hol_nat

external

| dedukti -> {* HolNaturals.Number_2ENatural_2E_2A p q *};

proof of zero_times =

dedukti proof definition of zero , times

{* HolNaturals.thm_117. *};

144 R. Cauderlier and C. Dubois

theorem hol_succ_times : all m n : Self ,

times(succ(m), n) = plus(times(m, n), n)

proof = dedukti proof definition of succ , plus , times

{* HolNaturals.thm_157. *};

proof of succ_times =

<1>1 assume m n : Self ,

prove times(succ(m), n) = plus(n, times(m, n))

<2>1 prove times(succ(m), n) = plus(times(m, n), n)

by property hol_succ_times

<2>2 prove plus(times(m, n), n) = plus(n, times(m, n))

by property plus_commutes

<2>f conclude

<1>f conclude;

end;;

The theorems number 117 and 157 in the Holide output of OpenTheory base
library respectively state ∀n. 0×n = 0 and ∀m n. succ(m)×n = (m×n)+n. The
first one is exactly the statement of zero times but the statement of succ times
is ∀m n. succ(m)×n = n+(m×n). The gap is filled by Zenon Modulo thanks to
a previous import of the commutativity of addition (property plus commutes).

The hierarchy is fully implemented and can be turned in a collection, that
is a species where every signature received a definition and every property has
been proved.

species HolPrimeDiv = collection HolPrimeDivColl =

inherit NatPrimeDiv , HolPrime; implement HolPrimeDiv;

... end;;

end;;

7.5 Instantiation of the Morphism

If f is a function of type α → α and n is a natural number, we note fn the nth
iteration of the function f (f0 = Id, fn = f ◦ f ◦ . . . f , n times).

Both the Coq Init library2 and the OpenTheory base library define this
polymorphic iteration of a function f . We use them to define the isomorphism
between HOL natural numbers and Coq ones. The morphism from HOL natural
numbers to Coq ones is defined by an HOL iteration of the Coq successor function
morph(n) := coq succn(coq zero) (coq zero and coq succ are mapped to the
Dedukti translation of the Coq definitions) and its inverse is defined by a Coq
iteration of the HOL successor function inv morph(n) := hol succn(hol zero).

By instantiating all the morphisms and transfer hierarchies (items 5 and 6
of our methodology), we finally obtain in FoCaLiZe the prime divisor theorem
on the Coq formulation of arithmetic structures. Once translated in Dedukti by
Focalide, this theorem matches the assumption of the correctness proof of the

2 The Coq Init library is the part of Coq standard library defining logical connectives
and basic datatypes such as natural numbers and lists.

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 145

Sieve of Eratosthenes translated from Coq so we obtain a Dedukti proof of the
correctness of the Sieve of Eratosthenes (item number 8 of our methodology).

Quantitatively, the size of the various parts of this development are given in
Fig. 4. The HOL part of the development consists in a fragment of the OpenThe-
ory library that was developed independently and contains thousands of theo-
rems irrelevant to our case study. The Coq development however is of reasonable
size and was specifically developed for this case study. In the case of FoCaLiZe,
more than half of the generated code is produced by Zenon Modulo; this shows
how useful proof automation has been in this development. Finally, the small
Dedukti development is taken from the merging of Coq and HOL logics in [5].

HOL Coq FoCaLiZe Zenon Modulo Dedukti

Source Code 3.2M 31K 129K 9K
Generated Dedukti Code 90M 828K 1.3M 1.7M

Fig. 4. Size of the various parts of the development

8 Conclusion

We achieved our goal of certifying a Coq implementation of the Sieve of Eratos-
thenes using arithmetic results from OpenTheory. FoCaLiZe inheritance and
parametrization allowed us to devise MathTransfer, a library of mathematical
structures and transfer theorems. Zenon Modulo was of great help during this
formalization since a lot of small steps of equational reasoning were needed and
proving them in Dedukti would have been painful. We tried to do as much work
as possible in a system independent way. The MathTransfer library is indepen-
dent of HOL and Coq. Thanks to the symmetry in the roles of Coq and HOL, we
can not only import lemmas from HOL to Coq but also in the other direction.
Moreover, the definitions of the operations do not need to be identical in both
systems. It is usual in FoCaLiZe to limit the dependencies to the definitions of
methods thanks to late binding [22]. For small differences Zenon Modulo can
fill the gap, for bigger ones such as divisibility (which is derived from Euclidean
division on the Coq side) the equivalence of the definitions can be proved in
either system.

This working example of interoperability needs to be reproduced with bigger
proofs but also with proofs coming from some other systems if their underly-
ing logics can be encoded within Dedukti. We believe that the methodology
illustrated in this paper is scalable. However more automation is required in
particular for the extension of MathTransfer. We expect the work of Gauthier
and Kaliszyk [13] on automatic discovering of isomorphic structures from dif-
ferent formal libraries to adapt for this task. A limitation of our approach to
interoperability in Dedukti is the trust we can have in the final proof because it
is expressed in an uncommon logic whose consistency is not yet proved. Users
of ITPs might expect from an interoperability development to obtain a proof

146 R. Cauderlier and C. Dubois

in their trusted system. In order to translate back the proof in the combined
logic to one of the original systems, we need to remove from the proof the use
of unnecessary axioms of the other system. Preliminary work in this topic has
been proposed in [9] where Cauderlier uses Dedukti rewriting to automatically
remove classical axioms in Zenon proofs.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25379-9 12

2. Assaf, A.: A framework for defining computational higher-order logics. Ph.D. the-
sis, École Polytechnique (2015)

3. Assaf, A., Burel, G.: Translating HOL to Dedukti. In: Kaliszyk, C., Paskevich,
A. (eds.) Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,
EPTCS, Berlin, Germany, 2–3 August 2015, vol. 186, pp. 74–88 (2015)

4. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C.,
Gilbert, F., Halmagrand, P., Hermant, O., Saillard, R.: Expressing theories in the
λΠ-calculus modulo theory and in the Dedukti system (2016). http://www.lsv.
ens-cachan.fr/dowek/Publi/expressing.pdf

5. Assaf, A., Cauderlier, R.: Mixing HOL and Coq in Dedukti. In: Kaliszyk, C., Paske-
vich, A. (eds.) 4th Workshop on Proof eXchange for Theorem Proving, EPTCS,
Berlin, Germany, 2–3 August 2015, vol. 186, pp. 89–96 (2015)

6. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24364-6 2

7. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 14

8. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo.
In: LPAR 20 : 20th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Suva, Fiji, November 2015

9. Cauderlier, R.: A rewrite system for proof constructivization. In: Proceedings of the
2016 International Workshop on Logical Frameworks and Meta-languages: Theory
and Practice, pp. 2:1–2:7. ACM (2016)

10. Cauderlier, R., Dubois, C.: ML pattern-matching, recursion, and rewriting: from
FoCaLiZe to Dedukti. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 459–468. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 26

11. Cauderlier, R., Halmagrand, P.: Checking Zenon modulo proofs in Dedukti. In:
Kaliszyk, C., Paskevich, A. (eds.) Proceedings 4th Workshop on Proof eXchange
for Theorem Proving, EPTCS, Berlin, Germany, 2–3 August 2015, vol. 186, pp.
57–73 (2015)

12. Denney, E.: A prototype proof translator from HOL to Coq. In: Aagaard, M., Har-
rison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 108–125. Springer, Heidelberg
(2000). doi:10.1007/3-540-44659-1 8

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://www.lsv.ens-cachan.fr/dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/dowek/Publi/expressing.pdf
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-22438-6_14
http://dx.doi.org/10.1007/978-3-319-46750-4_26
http://dx.doi.org/10.1007/3-540-44659-1_8

FoCaLiZe and Dedukti to the Rescue for Proof Interoperability 147

13. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014.
LNCS (LNAI), vol. 8543, pp. 267–281. Springer, Cham (2014). doi:10.1007/
978-3-319-08434-3 20

14. Horozal, F., Rabe, F.: Representing model theory in a type-theoretical logical
framework. Theor. Comput. Sci. 412, 4919–4945 (2011)

15. Howe, D.J.: Importing mathematics from HOL into Nuprl. In: Goos, G., Hart-
manis, J., Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 267–281. Springer, Heidelberg (1996). doi:10.1007/
BFb0105410

16. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Cham (2013). doi:10.1007/978-3-319-03545-1 9

17. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 14

18. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving. number 7998 in
LNCS, pp. 51–66. Springer, Heidelberg (2013)

19. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14052-5 22

20. Miller, D., Certificates, F.P.: Making proof universal and permanent. In:
Momigliano, A., Pientka, B., Pollack, R. (eds.) Proceedings of the Eighth ACM
SIGPLAN International Workshop on Logical Frameworks & Meta-languages: The-
ory & Practice, LFMTP 2013, Boston, Massachusetts, USA, 23 September 2013,
pp. 1–2. ACM (2013)

21. Pessaux, F.: FoCaLiZe: inside an F-IDE. In: Dubois, C., Giannakopoulou, D., Méry,
D. (eds.) Proceedings 1st Workshop on Formal Integrated Development Environ-
ment, F-IDE 2014, EPTCS, Grenoble, France, 6 April 6 2014, vol. 149, pp. 64–78
(2014)

22. Prevosto, V., Jaume, M.: Making proofs in a hierarchy of mathematical structures.
In: Proceedings of Calculemus, September 2003

23. Saillard, R.: Type checking in the Lambda-Pi-Calculus modulo: theory and prac-
tice. Ph.D. thesis, MINES Paritech (2015)

24. Schürmann, C., Stehr, M.-O.: An executable formalization of the HOL/Nuprl con-
nection in the metalogical framework twelf. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS, vol. 4246, pp. 150–166. Springer, Heidelberg (2006). doi:10.
1007/11916277 11

25. Wiedijk, F.: Encoding the HOL light logic in Coq (2007, unpublished notes)
26. Zimmermann, T., Herbelin, H.: Automatic and transparent transfer of theorems

along isomorphisms in the coq proof assistant. CoRR, abs/1505.05028 (2015)

http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/BFb0105410
http://dx.doi.org/10.1007/BFb0105410
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/978-3-642-20398-5_14
http://dx.doi.org/10.1007/978-3-642-14052-5_22
http://dx.doi.org/10.1007/11916277_11
http://dx.doi.org/10.1007/11916277_11

A Formal Proof in COP of LaSalle’s
Invariance Principle

Cyril Cohen(B) and Damien Rouhling(B)

Université Côte d’Azur, Inria, Sophia Antipolis, France
{cyril.cohen,damien.rouhling}@inria.fr

Abstract. Stability analysis of dynamical systems plays an important
role in the study of control techniques. LaSalle’s invariance principle is
a result about the asymptotic stability of the solutions to a nonlinear
system of differential equations and several extensions of this principle
have been designed to fit different particular kinds of system. In this
paper we present a formalization, in the Coq proof assistant, of a slightly
improved version of the original principle. This is a step towards a formal
verification of dynamical systems.

Keywords: Formal proofs · Coq · Dynamical systems · Stability

1 Introduction

Computer softwares are increasingly used to control moving objects: robots,
planes, self-driving cars... This raises security issues, especially for human beings
that are in the surroundings of such objects, or even inside them. Control theory
brings answers by providing techniques to control the behaviour of dynamical
systems. Control theoreticians focus on the mathematical foundation of their
techniques. But another important aspect is to check that the implementations
of such techniques respect their theoretical semantics.

The Coq proof assistant [23] provides a framework for both implement-
ing functional programs and checking their correctness. It has also proven
to be a convenient tool for the formalization of mathematics, for instance
through the formalizations of the Four-Color Theorem [9] and of the Odd Order
Theorem [10] based on the Mathematical Components library1 and the
SSReflect extension of Coq’s tactic language [11].

In this paper we present a formalization in Coq2 of a mathematical result
about the asymptotic stability of dynamical systems defined by a nonlinear sys-
tem of differential equations: LaSalle’s invariance principle [15]. Stability is an
important notion for the control of nonlinear systems [14] and LaSalle’s invari-
ance principle or extensions of it have been successfully used to prove stability
of different kinds of system [1,8,18,19].

1 https://math-comp.github.io/math-comp/.
2 https://github.com/drouhling/LaSalle.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 148–163, 2017.
DOI: 10.1007/978-3-319-66107-0 10

https://math-comp.github.io/math-comp/
https://github.com/drouhling/LaSalle

A Formal Proof in Coq of LaSalle’s Invariance Principle 149

For this formalization, we used the SSReflect tactic language and the
Coquelicot library [3], which extends Coq’s standard library for real analy-
sis [20]. We first present our improvements on the statement of LaSalle’s invari-
ance principle (Sect. 2), obtained by relaxing constraints on the original state-
ment by LaSalle. Then we discuss details of the formalization (Sect. 3). Finally,
we give the formal statement of the result we proved (Sect. 4) before pointing
out the parts of the proof where classical reasoning was necessary (Sect. 5).

2 A Stronger Result

The original statement of LaSalle’s invariance principle [15] contains hypotheses
that can be relaxed and draws a conclusion which is weaker than what has been
really proved. In this section, we first state LaSalle’s invariance principle in its
original form and then we explain how to strengthen it.

2.1 LaSalle’s Invariance Principle

LaSalle’s invariance principle [15] is a result about the asymptotic stability of the
solutions to a system of differential equations in IRn. The notion of asymptotic
stability is expressed as “remain[ing] near the equilibrium state and in addition
tend[ing] to return to the equilibrium”. In fact, LaSalle proves that under some
conditions the solutions approach a given (bounded) region of space when time
goes to infinity (see Definition 1) and he uses this result on examples where the
properties of this region imply that it is the equilibrium.

Definition 1. A function of time y(t) approaches a set A as t approaches infin-
ity, denoted by y(t) → A as t → +∞, if

∀ε > 0,∃T > 0,∀t > T,∃p ∈ A, ‖y(t) − p‖ < ε.

This definition is an easy generalization of the notion of convergence to a
point to convergence to a set.

In its original form, LaSalle’s invariance principle concerns only autonomous
systems, i.e. where the behaviour of the system only depends on its position.
Thus, we consider the following vector differential equation:

ẏ = F ◦ y (1)

where y is a function of time and F is a vector field in IRn.
It is often not possible to remain near the equilibrium nor to converge to

it regardless of the perturbation from it. It is thus important to determine the
equilibrium’s basin of attraction, or at least a region around it which is invariant
with respect to (1).

Definition 2. A set A is said to be invariant with respect to a differential equa-
tion ẏ = F ◦ y if every solution to this equation starting in A remains in A.

150 C. Cohen and D. Rouhling

In the remainder of this paper, since (1) is the only differential equation we
consider, “invariant” will stand for “invariant w.r.t. (1)”.

LaSalle’s argument is that Lyapunov’s second method [17] is a good means
of studying asymptotic stability. This method requires the existence of a scalar
function V , what we call today a Lyapunov function, which satisfies some prop-
erties. These properties are sign conditions on Ṽ , which is defined as follows:

Definition 3. Let V be a scalar function with continuous first partial deriva-
tives. Define:

Ṽ (p) = 〈(grad V)(p), F (p)〉
where 〈., .〉 is the scalar product of IRn.

We are now ready to state LaSalle’s invariance principle, illustrated by Fig. 1.

Theorem 1 (LaSalle’s invariance principle). Assume F has continuous
first partial derivatives and F (0) = 0. Let K be an invariant compact set. Suppose
there is a scalar function V which has continuous first partial derivatives in K
and is such that Ṽ (p) � 0 in K. Let E be the set of all points p ∈ K such that
Ṽ (p) = 0. Let M be the largest invariant set in E. Then for every solution y
starting in K, y(t) → M as t → +∞.

Fig. 1. Illustration of LaSalle’s invariance principle

2.2 Relaxing Hypotheses

Some of LaSalle’s hypotheses are unnecessary, although they are justified by
the context. In his paper [15], he allows himself any assumption which makes it
easier to focus on the method.

First, LaSalle assumes there is an equilibrium at the origin because his
method is designed to show convergence to this equilibrium. The fact that it
is the origin is just a convenience allowed by an easy translation. What is more,

A Formal Proof in Coq of LaSalle’s Invariance Principle 151

the existence of an equilibrium plays no role in the validity of Theorem1. Thus,
we removed the hypothesis F (0) = 0.

Still regarding the vector field F , the assumption “F has continuous first
partial derivatives” is also a convenience. What is truly needed, as LaSalle puts it,
is “any other conditions that guarantee the existence and uniqueness of solutions
and the continuity of the solutions relative to the initial conditions”. We can even
go further and assume these properties only on the subset K of the ambient
space. Indeed, for some systems the vector field is valid only in a restricted area,
for instance when using a control function which has singularities (see e.g. [18]).

Then, the ambient space does not need to be IRn, nor does it need to be a
finite-dimensional vector space. A normed module over IR was sufficient to prove
this result. Since we work in an abstract normed module, we cannot express Ṽ
using the gradient of V . However, in IRn we know that for any points p and q,
the scalar product between q and the gradient of V at point p is the value of
the differential of V at point p applied to q. Thus, Ṽ (p) can be expressed as the
differential of V at point p applied to F (p), which generalizes the definition of Ṽ
to normed modules.

Ṽ (p) = 〈(grad V)(p), F (p)〉 = (dVp ◦ F)(p)

Finally, concerning the Lyapunov function V , the assumption of continuous
first partial derivatives is again a convenience. It is sufficient for V to be differen-
tiable in K. Indeed, when y is a solution to (1), a step in the proof of Theorem1
is to show that V ◦ y is non increasing using the assumption Ṽ (p) � 0 in K.
Remarking that

(Ṽ ◦ y)(t) = (dVy(t) ◦ F ◦ y)(t) = (dVy(t) ◦ ẏ)(t)

so that Ṽ ◦ y is the derivative of V ◦ y, only the existence of this derivative is
required to conclude this step.

2.3 Strengthening the Conclusion

While studying LaSalle’s proof [15], we noticed it proves more than the
result stated by Theorem 1. Indeed, the largest invariant subset M of the set{

p ∈ K | Ṽ (p) = 0
}

we called E is not interesting in itself: it is the fact that M

is an invariant subset of E which gives M the nice property of being reduced to
the equilibrium in LaSalle’s applications.

The maximality of M plays a minor role in LaSalle’s proof: given a solution
y starting in K, this function happens to approach an invariant subset of E,
which depends on y, as time goes to infinity, thus y approaches any of its
supersets and M in particular. This set depending on y is in fact the positive
limiting set of y, defined as follows:

Definition 4. Let y be a function of time. The positive limiting set of y, denoted
by Γ+(y), is the set of all points p such that

∀ε > 0,∀T > 0,∃t > T, ‖y(t) − p‖ < ε.

152 C. Cohen and D. Rouhling

In other terms, Γ+(y) is the set of limit points of y at infinity. The fact that
a function with values in a compact set approaches its limit points as time goes
to infinity is intuitive and easy to prove. The fact that this set is invariant is a
consequence of the continuity of solutions relative to initial conditions. The core
of LaSalle’s proof is thus to show that for all solution y starting in K, we have

Γ+(y) ⊆
{

p ∈ K | Ṽ (p) = 0
}

.

Let us give an intuition of proof of this point. The first step is to remark
that it is in fact sufficient to prove that V is constant on Γ+(y) thanks to the
interpretation of Ṽ in terms of derivative. Then, the second step is to reduce this
statement to the fact that V ◦y converges at infinity. Finally, this last statement
is just a consequence of the fact that V ◦y is a bounded non increasing function.

Now, to remove the dependency in y, it is sufficient to take the union of
all Γ+(y) for y solution starting in K, which is still an invariant subset of E and
is thus smaller than the largest of them.

Ultimately, we proved the following result, illustrated by Fig. 2:

Theorem 2. Assume F is such that we have the existence and uniqueness of
solutions to (1) and the continuity of solutions relative to initial conditions on
an invariant compact set K. Suppose there is a scalar function V , differentiable
in K, such that Ṽ (p) � 0 in K. Let E be the set of all points p ∈ K such that
Ṽ (p) = 0 and L be the union of all Γ+(y) for y solution starting in K. Then, L
is an invariant subset of E and for all solution y starting in K, y(t) → L as
t → +∞.

Fig. 2. Illustration of the refined version of LaSalle’s invariance principle

3 Formalization

We present in this section the notations we used to make our formalization more
readable and intuitive. Then we discuss details on how we worked with differ-
ential equations and how we expressed topological notions such as convergence
and compactness.

A Formal Proof in Coq of LaSalle’s Invariance Principle 153

3.1 Real Analysis and Notations

Our formalization is based on the Coquelicot library [3], which is itself com-
patible with Coq’s standard library on classically axiomatized real numbers [20].
The Coquelicot library exploits the notion of filter to develop a theory of con-
vergence. It was inspired by the work of Hölzl et al. on the analysis library of
Isabelle/HOL [13].

Let us first recall some mathematical background and give some intuition.
In topology, a filter is a set of sets, which is nonempty, upward closed, and
closed under intersection. In this work, we use extensively two filters on real
numbers: the set {N | ∃ε > 0, Bε(p) ⊆ N} of neighbourhoods of a point p and
the set of neighbourhoods of +∞ i.e. the set of sets that contain [M,+∞) for
some M . The former is denoted by (locally p) in Coquelicot and the latter
by (Rbar locally p infty). With these definitions, f converges to q at point p
iff the image by f of the filter of neighbourhoods of p is a subset of the filter
of neighbourhoods of q. Even though this definition unfolds to the elementary
characterization of convergence ∀ε > 0,∃δ > 0,∀r, |r − p| < δ ⇒ |f(r) − q| < ε,
keeping the abstraction in terms of filters as much as possible yields more concise
proofs and is also well supported by the library.

In this work, we experimented with notations to overload the ones in
Coquelicot, so that they read a bit closer to textbook mathematics. First, since
sets are represented as predicates over a type, we pose set T := T -> Prop
and we define Mathematical Components-like notations to denote set the-
oretic operations. Indeed set0, setT and [set p] are respectively the empty
set, the total set and the singleton {p}. Also, (A ‘&‘ B), (A ‘|‘ B), (~‘ A)
and (A ‘\‘ B) are respectively the intersection, union, complement and dif-
ference. We write (A ‘<=‘ B) for A ⊆ B and (A !=set0) for ∃p ∈ A, note
that !=set0 is a token here. We also introduce set comprehension notations
[set p | A p] (which is a typed alias for (fun p => A)) and the big opera-
tors \bigcup (i in A) F i and \bigcap (i in A) F i respectively denot-
ing union and intersection of families indexed by A.

Secondly, Coquelicot introduces layers over filters to abbreviate conver-
gence. For example the predicate (is lim f t p) is specialized to t and p
in Rbar (i.e. IR∪{±∞}) and is defined in terms of filterlim which expands to
the definition of this section. Since we introduce other notions of convergence in
Sect. 3.3, adding more alternative definitions for approximately the same notion
would only clutter the formalization, so we decided to remove this extra-layer.
Instead, we provide a unique mechanism to infer which notion of convergence is
required, by inspecting the form of the arguments and their types.

We now write f @ p --> q whatever the types of p and q: our mecha-
nism selects the appropriate filters for p and q. This is in fact the composition
of two independent notations: f @ p selects a filter for p and applies f to it,
while q’ --> q selects filters for q’ and q and compares them.

We provide the notation +oo for the element p infty of Rbar, so that a limit p
of f at +∞ now reads f @ +oo --> p. Moreover, although we do not use it in
this part of the development, we also cast functions from nat, i.e. sequences, to

154 C. Cohen and D. Rouhling

the only sensible filter on nat (named eventually in Coquelicot), so that one
can write u --> p where u : nat -> U is a sequence.

Coq’s coercion mechanism is not powerful enough to handle casts from an
arbitrary term to an appropriate filter. Hence, the mechanism to automatically
infer a filter from an arbitrary term and its type is implemented using canonical
structures. More precisely, we provide three structures: the first one to recognize
terms that could be cast to filters, the second one to recognize types whose
elements could be cast to filters, and the third one to recognize arrow types
which could be cast to filters. If the first canonical structure fails to cast a given
term to a filter, it gives its type to the second canonical structure and if it is
an arrow it tries to match the source of the arrow using the third canonical
structure.

3.2 On Differential Equations

To deal with systems of differential equations, we also use the Coquelicot
library [3], which already contains convenient definitions for functional analysis.
This library also contains a hierarchy of topological structures, among which is
the structure of normed module we used for the ambient space.

The property of being a solution to the differential system (1) is then easily
expressed as follows: y is a solution if at each time t, the derivative of y at point t
is (F ◦ y)(t). In Coq:

Definition is_sol (y : R -> U) :=
forall t, is_derive y t (F (y t)).

Here, U is the ambient space and R the set of real numbers. We could have
considered only non negative times, since our goal is to describe physical systems.
However, for reasons we will give later, we stick to this more constrained version
in this paper.

Now, what we need is a way to express the existence and uniqueness of
solutions to (1) and the continuity of solutions relative to initial conditions. In
our work, we assumed the existence of a function sol : U -> R -> U which
represents all the solutions to (1). Its first argument corresponds to the initial
condition and the second one to time. Thus, when time is equal to 0, the result
of this function must be equal to the initial condition.

Hypothesis sol0 : forall p, sol p 0 = p.

We combined the conditions of existence (for all p in K, sol p is a solution)
and uniqueness of solutions into the following hypothesis: a function y starting
in K is a solution to (1) if and only if it is equal to the function sol (y 0), that
is the solution which has same initial condition.

Hypothesis solP : forall y, K (y 0) -> is_sol y <-> y = sol (y 0).

Note that here we wrote an equality between functions. This assumption
together with the axiom of functional extensionality made our proofs more nat-
ural and shorter. Indeed, by using solP we can replace any solution by an appli-
cation of the function sol, which removes all the hypotheses of the form is sol y

A Formal Proof in Coq of LaSalle’s Invariance Principle 155

from our theorems. Moreover, proof scripts in the SSReflect tactic lan-
guage [11] heavily rely on the rewriting of equalities.

This hypothesis would not be satisfiable if, as mentioned before, we con-
strained the derivative of solutions only for non negative times. Indeed, we could
not control the values of these solutions for negative times, hence there would
be (infinitely) many solutions y different from sol (y 0). Adapting naively this
hypothesis by considering equality only on non negative times would cancel all
the benefits of this formulation.

One solution could be to change the type of the functions in order to work
with functions whose domain is the set of non negative real numbers. This would
require to construct the type for this set and to develop its theory. A compromise
which would be easier to implement and more ligthweight in our context is to
keep functions on IR, but only require the solution to satisfy the differential
equation for non negative times, and fix its value for negative times. For example
we could ask the function to be constant equal to y(0) for negative values,
or make the solution symmetric with regard to its initial value (i.e. y(−t) =
2y(0) − y(t)), which would keep the solution derivable everywhere.

Finally, the continuity of solutions relative to initial conditions on K is
expressed as the continuity on K of the function fun p : U => sol p t for
all t.

3.3 Convergence to a Set

To generalize the notion of convergence to a point to convergence to a set, what
we called “approaching a set when time goes to infinity” in Sect. 2, we need to
generalize the notion of neighbourhood filter to a set. Recall the definition of
neighbourhood filter for a point (Sect. 3.1): a neighbourhood of a point is a
set that contains a ball with positive radius centered on this point. In
Coquelicot [3], this definition is not restricted to real numbers but applies
to any uniform space.

Definition locally (p : U) :=
[set A | exists eps : posreal, ball p eps ‘<=‘ A].

For a set, there is no ball anymore. However, we can extend the set with a
band of fixed width ε, which is in fact the union of all balls of radius ε centered
on points of the set.

Definition ball_set (A : set U) (eps : posreal) :=
\bigcup_(p in A) ball p eps.

The neighbourhood filter for a set then has a very analogous definition to
the one of neighbourhood filter for a point.

Definition locally_set (A : set U) :=
[set B | exists eps : posreal, ball_set A eps ‘<=‘ B].

Instance locally_set_filter (A : set U) :
Filter (locally_set A).

156 C. Cohen and D. Rouhling

We can prove that it is a generalization of the notion of neighbourhood filter
for a point by proving that we define the same filter on the singleton [set p]
as with Coquelicot’s definition on p.

Lemma locally_set1P p A : locally p A <-> locally_set [set p] A.

In our notation mechanism from Sect. 3.1, we declare locally set to be
the canonical filter to use for sets over a uniform space, so that we can write
y @ +oo --> A where A is a set. Thus, the notion of convergence to a set is
expressed thanks to Coquelicot’s notion of limit using this particular filter.
And again, we can prove that it generalizes Coquelicot’s notion of limit when
applied on singletons.

Lemma cvg_to_set1P y p : y @ +oo --> [set p] <-> y @ +oo --> p.

3.4 Compactness

To express compactness, we decided to experiment with a definition of compact
sets using filters. In fact, this definition involves the notion of clustering, which
is closely related to convergence and limit points. Indeed, a filter clusters to a
point if each of its elements intersects each neighbourhood of the point. We say
that a filter clusters if there is a point to which it clusters.

Definition cluster (F : set (set U)) p :=
forall A B, F A -> locally p B -> A :&: B !=set0

To see the link with limit points of a function y, consider the filter (y @ +oo),
which is the set of sets which ultimately contain all images of y (formerly
filtermap y (Rbar_locally p_infty) in Coquelicot). The set of points to
which (y @ +oo) clusters is exactly the positive limiting set of y i.e. the set of
limit points of y (recall Definition 4).

Definition pos_limit_set (y : R -> U) :=
\bigcap_(eps : posreal) \bigcap_(T : posreal)
[set p | Rlt T ‘&‘ (y @^-1‘ ball p eps) !=set0].

Lemma plim_set_cluster (y : R -> U) :
pos_limit_set y = cluster (y @ +oo).

Note that we wrote an equality between sets i.e. between functions with
propositions as value. We used the axiom of propositional extensionality (on top
of functional extensionality) to be able to prove this. Again, this makes our code
closer to textbook mathematics.

We were already using this equality to prove some properties of the positive
limiting set of a function y. Consequently, we decided to state each property
of this set as a property of cluster (y @ +oo). Thanks to this strategy, we
managed to shorten some of our proofs.

A set A is compact if every proper filter on A clusters in A.

A Formal Proof in Coq of LaSalle’s Invariance Principle 157

Definition compact A :=
forall (F : set (set U)), F A -> ProperFilter F ->
(A :&: cluster F) !=set0.

Note how the hypothesis “on A” has been translated into “A is an element
of F”. This is possible thanks to the properties of filters: every filter on A is a filter
base in U whose completion is a filter containing A, and every filter on U containing
A defines a filter on A when restricted to sets contained in A. Thanks to this, we
do not have to consider the subspace topology, which would add complications.
Indeed, the type classes Filter and ProperFilter of Coquelicot are defined
on sets of sets in a uniform space i.e. on functions of type (U -> Prop) -> Prop
for U a uniform space. The UniformSpace structure of Coquelicot requires an
element of type Type, while in our context A is of type U -> Prop. Canonically
transfering structures to subsets would then require wrapping functions into
types, while our solution is simpler.

This notion of compact set is quite convenient to use to work with conver-
gence and limit points: the only hard part is finding the right filter on your
compact set and then the cluster point this hypothesis gives you is usually the
point your are looking for. However for other proofs this notion is quite com-
plicated to use. Proving that a set is compact requires finding a cluster point
for any abstract proper filter on this set, or going through a proof by contradic-
tion. Moreover, to prove that any compact set is bounded, we had to go through
the definition of compactness based on open covers. We proved the equivalence
between both definitions following the proof in Wilansky’s textbook on topol-
ogy [24] (see Sect. 5 for more details on the proof).

4 The Formal Statement of LaSalle’s Invariance Principle

As explained in Sect. 2, we formalized a slightly stronger version of LaSalle’s
invariance principle [15]. In particular, we proved the convergence of solutions
to (1) to a more constrained set: the union of the positive limiting sets of the
solutions starting in K.

Definition limS (A : set U) :=
\bigcup_(q in A) cluster (sol q @ +oo).

Recall that we require K to be compact and invariant (see Definition 2). Both
these hypotheses are used to prove the convergence of solutions to limS K.

Definition is_invariant A :=
forall p, A p -> forall t, 0 <= t -> A (sol p t).

Lemma cvg_to_limS (A : set U) : compact A -> is_invariant A ->
forall p, A p -> sol p @ +oo --> limS A.

This is in fact an “easy” part of LaSalle’s invariance principle. It is indeed
sufficient for a function to ultimately have values in a compact set in order for
it to converge to the set of its limit points, hence to any superset of its positive
limiting set.

158 C. Cohen and D. Rouhling

Lemma cvg_to_pos_limit_set y (A : set U) :
(y @ +oo) A -> compact A -> y @ +oo --> cluster (y @ +oo).

Lemma cvg_to_superset A B y : A ‘<=‘ B ->
y @ +oo --> A -> y @ +oo --> B.

The invariance of K is a strong way to force the solutions to ultimately have
values in K. However, since in our proof of LaSalle’s invariance principle we
need to use the uniqueness of solutions for initial conditions which are values of
solutions starting in K, the invariance of K is required anyway.

There are two other aspects to our version of LaSalle’s invariance principle:
limS K is invariant and it is a subset of the set of points p for which Ṽ(p) = 0.

The first point does not need any hypothesis: the positive limiting set of any
solution starting in K is invariant, hence any union of such sets is invariant too.

Lemma invariant_pos_limit_set p :
K p -> is_invariant (cluster (sol p @ +oo)).

Lemma invariant_limS A : A ‘<=‘ K -> is_invariant (limS A).

As explained in Sect. 2.3, the core of LaSalle’s proof is thus the sec-
ond point. To state this part, we need to use the differential of the Lya-
punov function V. Indeed, as mentioned in Sect. 2.2, since we work in an
abstract normed module, we cannot express Ṽ using the gradient of V.
We express differentials using Coquelicot [3]: filterdiff f (locally p)
g expresses the fact that g is the differential of f at point p. Thus,
we assume a function V’ : U -> U -> R which is total, together with
the hypothesis that for any p in K, V’ p is the differential of V at
point p (i.e. forall p : U, K p -> filterdiff V (locally p) (V’ p)). All
hypotheses on Ṽ can then be expressed by replacing it with the function
fun p => (V’ p \o F) p.

Assuming a total function V’ is a way to mimic Coquelicot’s proof style
on derivatives. Indeed, to represent the derivative of a real function f : R -> R
in Coquelicot, one has access to a total function Derive f. All theorems
then concern Derive f, with the hypothesis that f admits a derivative at some
point x, written ex derive f x, when it is needed. This is a very convenient
way to deal with derivatives. However, because Coquelicot lacks such a total
function for differentials, we had to introduce the differential as a parameter.

Finally, the last part of our version of LaSalle’s invariance principle, i.e. the
set limS K is a subset of the set of points p for which Ṽ(p) = 0, is stated as
follows:

Lemma stable_limS (V : U -> R) (V’ : U -> U -> R) :
(forall p : U, K p -> filterdiff V (locally p) (V’ p)) ->
(forall p : U, K p -> (V’ p \o F) p <= 0) ->
limS K ‘<=‘ [set p | (V’ p \o F) p = 0].

Note that the proof in Coq follows exactly the same steps as in the paper
proof we sketched in Sect. 2.3.

A Formal Proof in Coq of LaSalle’s Invariance Principle 159

5 On Classical Reasoning

Several proofs in our work required classical reasoning, although we tried to
remain as constructive as possible. Indeed, while proofs and statements in con-
structive analysis are very different from the ones in classical analysis, we believe
some of our constructive proofs could still be used in a purely constructive con-
text. In particular, in our development we use a classical axiomatization of real
numbers, but we hope some results are actually independent from the representa-
tion of real numbers. For example, most results in topology, like our constructive
theorems on sets, filters, closures, and compactness are phrased in a way which
does not make real numbers appear.

Hence, we redefined some notions, namely closed sets, closures, compactness
and Hausdorff separation, to fit our purposes, and the proofs that these are
equivalent to preexisting definitions were often classical. We also list here two
other main theorems for which we could only give a classical proof.

First, the notion of closure was very practical to use whenever closed sets
appeared. In Coquelicot [3], a set A is closed if it contains all points for which
the complement of A is not a neighbourhood. A point is in the closure of a set if
all its neighbourhoods intersect the set. A set is closed if and only if its closure
is included in it (the other inclusion always holds).

Definition closed (A : set U) :=
forall p, ~ (locally p (~‘ A)) -> A p.

Definition closure (A : set U) p :=
forall B, locally p B -> A ‘&‘ B !=set0.

Lemma closedP (A : set U) : closed A <-> closure A ‘<=‘ A.

The right implication of closedP was proved constructively while the other
direction required classical reasoning. The notion of closure proved to be very
practical, especially in our settings since it is related to clustering: a filter clusters
to a point if and only if this point is in the closure of each element of the filter.

Lemma clusterE F : cluster F = \bigcap_(A in F) (closure A).

Then, the proof of equivalence between the filter-based and open covers-based
definitions of compactness is classical. In fact, we prove this equivalence by going
through a third definition of compactness: a set A is compact if every family of
closed sets of A with the finite intersection property has a nonempty intersection.
This definition is very close to the filter-based one, and we proved constructively
that they are equivalent. Indeed, the set of all finite intersections in such a
family is a filter base defining a proper filter which clusters. Conversely, the
family of closures of the elements of a proper filter which clusters has the finite
intersection property. It is the equivalence between this third definition and the
open covers-based definition which is classical. More precisely, both directions
in this equivalence are proved by contraposition and classical steps are required
to push negations under existential quantifiers and to remove double negations.

Similarly, we worked with a different definition of a Hausdorff space. We
proved that normed modules are necessarily Hausdorff spaces. This allowed us

160 C. Cohen and D. Rouhling

to prove that the compact set K is also closed, which was needed to show that
the positive limiting set of any solution starting in K is included in K. We could
have used the usual notion of Hausdorff space (whenever you have two different
points, you can find two respective neighbourhoods of these points which do
not intersect), but in fact, its contrapositive was more practical in our settings
because it admits a nice statement using clustering: if two points p and q are
such that all their neighbourhoods intersects, i.e. the neighbourhood filter of p
clusters to q (and vice-versa), then they are equal.

Definition hausdorff (U : UniformSpace) :=
forall p q : U, cluster (locally p) q -> p = q.

Lemma hausdorffP (U : UniformSpace) :
hausdorff U <-> forall p q : U, p <> q -> exists A B,
locally p A /\ locally q B /\ forall r, ~ (A ‘&‘ B) r.

Again, the proof of equivalence between both definitions required classical
reasoning to push and remove negations.

Another classical proof we did is the proof of convergence of a function with
values ultimately in a compact set to its positive limiting set.

Lemma cvg_to_pos_limit_set y (A : set U) :
(y @ +oo) A -> compact A -> y @ +oo --> cluster (y @ +oo).

We proved this theorem in two ways. The first proof is by contradiction, as
in LaSalle’s paper [15]. The second one goes through a generalization of this
result: any proper filter on a compact set contains any neighbourhood of its set
of cluster points.

Lemma filter_cluster (F : set (set U)) (A : set U) :
ProperFilter F -> F A -> compact A ->
forall eps : posreal, F (ball_set (cluster F) eps).

We proved this lemma using yet another definition of compactness: the con-
trapositive of the definition based on families of closed sets. Going back and forth
between emptiness and nonemptiness properties once again introduced classical
reasoning steps. Similarly, as mentioned in Sect. 3.4, we had to use a classical
equivalence between two definitions of compactness to prove that compact sets
are bounded.

Finally, we had to prove classically that a monotonic bounded real func-
tion admits a finite limit at infinity. For instance in the case of a non decreas-
ing function, one has to prove that the lowest upper bound of its values is
the aforementioned limit. What is classical is the proof that, if l is the least
upper bound of the set A, then for all ε > 0 there exists p ∈ A such that
l − ε � p � l. This last example illustrates the problem, already noticed
by A. Mahboubi and G. Melquiond, that Coq’s axiomatization of real numbers
is not expressive enough to give an arbitrary approximation of a least upper
bound.

A Formal Proof in Coq of LaSalle’s Invariance Principle 161

6 Related Work

Several formalizations in topology already exist: in Coq [4], in PVS [16], in
Isabelle/HOL [13] or in Mizar [7,22] for instance. All of them express com-
pactness using open covers. We adapted Cano’s formalization [4] for our proof
of equivalence with the filter-based definition. We could not use it directly since
it relies on the eqType structure of the Mathematical Components library
and Coquelicot’s structures [3] are not based on this structure.

Note that in the work of Hölzl et al. [13] there is a definition of compactness
in terms of filters which is slightly different from ours: a set A is compact if for
each proper filter on A there is a point p ∈ A such that a neighbourhood of p is
contained in the filter. This is a bit less convenient to use than clustering since
you cannot choose the neighbourhood. To our knowledge, our work is the first
attempt to exploit the filter-based definition of compactness to get simple proofs
on convergence.

We must also mention Coquelicot’s definition of compactness, which is
based on gauge functions, and Coq’s topology library by Schepler3. Both are
unfortunately unusable in our context: Coquelicot’s definition is specialized
to IRn while we are working on an abstract normed module, and Schepler’s library
does not interface with Coquelicot, since it redefines filters for instance. Schep-
ler’s library contains a proof of equivalence between the filter-based and open
covers-based definitions of compactness, which is very close to ours. However,
these definitions concern topological spaces whereas, as mentionned in Sect. 3.4,
we focus on subsets of such spaces without referring to the subspace topology.

Concerning formalizations on stability and Lyapunov functions, Chan et
al. [5] used a Lyapunov function to prove in Coq the stability of a particular
system. They have however no proof of a general stability theorem. Mitra and
Chandy [21] formalized in PVS stability theorems using Lyapunov-like functions
in the particular case of automata. Herencia-Zapana et al. [12] took another app-
roach to stability proofs: stability proofs using Lyapunov functions, under the
form of Hoare triples annotations on C code, are used to generate proof obliga-
tions for PVS.

We are definitely not the first to generalize LaSalle’s invariance principle. We
decided to prove a version of the principle which is close to the original statement
but several generalizations were designed to make it available in more complex
settings. Chellaboina et al. [6] weakened further the regularity hypothesis on the
Lyapunov function at the cost of sign conditions and a boundedness hypothe-
sis on the Lyapunov function along the trajectories. Barkana [1] restricted the
hypotheses on the Lyapunov function to hypotheses along the trajectories in
order to generalize LaSalle’s invariance principle to nonautonomous systems.
Mancilla-Aguilar and Garćıa [19] generalized LaSalle’s invariance principle to
switched autonomous systems by adding further conditions related to the switch-
ing, but removed the conditions of existence and uniqueness of solutions and of
continuity of the solutions relative to initial conditions by working on a set of

3 http://www.lix.polytechnique.fr/coq/pylons/contribs/view/Topology/v8.4.

http://www.lix.polytechnique.fr/coq/pylons/contribs/view/Topology/v8.4

162 C. Cohen and D. Rouhling

admissible trajectories. Fischer et al. [8] also weakened the hypotheses on the
solutions of a nonautonomous system by using a generalized notion of solution.

7 Conclusion and Future Work

In this paper we presented our formalization of LaSalle’s invariance principle,
a theorem about the asymptotic stability of solutions to a nonlinear system of
differential equations. We proved a version of this theorem which is very close to
its original statement but we removed unnecessary hypotheses and chose a more
precise conclusion.

Our use of set theoretic notations in this formalization made our proofs more
readable, closer to the intuition of filters as sets of sets. Functional extensionality
also gave us a convenient way to write proofs on the solutions to a differential
equation, allowing us to use a single function to represent all of them. We used
propositional extensionality to be able to prove equalities between sets, but it is
not as critical as functional extensionality: all the proofs were written without
this axiom before we decided to add it.

Our experiment with filter-based compactness is partially conclusive: filters
are really adapted to proofs on convergence but we had to use other definitions
of compactness for other purposes.

All in all, our formalization of LaSalle’s invariance principle takes around 1250
lines. Around 250 lines were devoted to the proofs of the properties on the pos-
itive limiting set and of LaSalle’s invariance principle. The remaining 1000 lines
contain the definitions of notations, the generalization of convergence notions to
sets and proofs about closed sets, compact sets and monotonic functions.

This formalization is a step towards a formal verification of dynamical sys-
tems. LaSalle’s invariance principle and its extensions play an important role in
the study of control techniques. We plan to use this work to formally verify a
control law for the swing-up of an inverted pendulum [18].

Acknowledgements. We thank the anonymous reviewers for their useful feedback.

References

1. Barkana, I.: Defending the beauty of the Invariance Principle. Int. J. Control 87(1),
186–206 (2014). http://dx.doi.org/10.1080/00207179.2013.826385

2. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2

3. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A User-Friendly Library
of Real Analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015).
http://dx.doi.org/10.1007/s11786-014-0181-1

4. Cano, G.: Interaction entre algèbre linéaire et analyse en formalisation des
mathématiques. (Interaction between linear algebra and analysis in formal mathe-
matics). Ph.D. thesis, University of Nice Sophia Antipolis, France (2014). https://
tel.archives-ouvertes.fr/tel-00986283

5. Chan, M., Ricketts, D., Lerner, S., Malecha, G.: Formal Verification of Stability
Properties of Cyber-Physical Systems, January 2016

http://dx.doi.org/10.1080/00207179.2013.826385
http://dx.doi.org/10.1007/978-3-642-39634-2
http://dx.doi.org/10.1007/s11786-014-0181-1
https://tel.archives-ouvertes.fr/tel-00986283
https://tel.archives-ouvertes.fr/tel-00986283

A Formal Proof in Coq of LaSalle’s Invariance Principle 163

6. Chellaboina, V., Leonessa, A., Haddad, W.M.: Generalized Lyapunov and invariant
set theorems for nonlinear dynamical systems. Syst. Control Lett. 38(4–5), 289–295
(1999). http://www.sciencedirect.com/science/article/pii/S0167691199000766

7. Darmochwa�l, A.: Compact Spaces. Formaliz. Math. 1(2), 383–386 (1990).
http://fm.mizar.org/1990-1/pdf1-2/compts 1.pdf

8. Fischer, N.R., Kamalapurkar, R., Dixon, W.E.: LaSalle-Yoshizawa Corollaries for
Nonsmooth Systems. IEEE Trans. Automat. Control 58(9), 2333–2338 (2013).
http://dx.doi.org/10.1109/TAC.2013.2246900

9. Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices AMS 55(11), 1382–
1393 (2008)

10. Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In:
Blazy et al. [2], pp. 163–179 (2013). doi:10.1007/978-3-642-39634-2 14

11. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2015). https://
hal.inria.fr/inria-00258384

12. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez,
G., Ascariz, P.: PVS linear algebra libraries for verification of control software
algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol.
7226, pp. 147–161. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28891-3 15

13. Hölzl, J., Immler, F., Huffman, B.: Type Classes and Filters for Mathematical
Analysis in Isabelle/HOL. In: Blazy et al. [2], pp. 279–294 (2013). doi:10.1007/
978-3-642-39634-2 21

14. Khalil, H.: Nonlinear Systems. Pearson Education, Prentice Hall (2002). https://
books.google.fr/books?id=t d1QgAACAAJ

15. LaSalle, J.: Some Extensions of Liapunov’s Second Method. IRE Trans. Circ. The-
ory 7(4), 520–527 (1960)

16. Lester, D.R.: Topology in PVS: Continuous Mathematics with Applications. In:
Proceedings of the Second Workshop on Automated Formal Methods, AFM 2007,
pp. 11–20. ACM, New York (2007). http://doi.acm.org/10.1145/1345169.1345171

17. Liapounoff, A.: Problème général de la stabilité du mouvement. In: Annales de
la Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 203–474 (1907).
http://eudml.org/doc/72801

18. Lozano, R., Fantoni, I., Block, D.: Stabilization of the inverted pendulum around
its homoclinic orbit. Syst. Control Lett. 40(3), 197–204 (2000)

19. Mancilla-Aguilar, J.L., Garćıa, R.A.: An extension of LaSalle’s invariance
principle for switched systems. Syst. Control Lett. 55(5), 376–384 (2006).
http://dx.doi.org/10.1016/j.sysconle.2005.07.009

20. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et
numérique. Ph.D. thesis, Université Paris VI (décembre 2001)

21. Mitra, S., Chandy, K.M.: A Formalized Theory for Verifying Stability and Con-
vergence of Automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71067-7 20

22. Padlewska, B., Darmochwa�l, A.: Topological Spaces and Con-
tinuous Functions. Formaliz. Math. 1(1), 223–230 (1990).
http://fm.mizar.org/1990-1/pdf1-1/pre topc.pdf

23. The Coq Development Team: The Coq proof assistant reference manual, version
8.6. (2016). http://coq.inria.fr

24. Wilansky, A.: Topology for Analysis. Dover Books on Mathematics. Dover Publi-
cations, New York (2008). http://cds.cern.ch/record/2222525

http://www.sciencedirect.com/science/article/pii/S0167691199000766
http://fm.mizar.org/1990-1/pdf1-2/compts_1.pdf
http://dx.doi.org/10.1109/TAC.2013.2246900
http://dx.doi.org/10.1007/978-3-642-39634-2_14
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1007/978-3-642-28891-3_15
http://dx.doi.org/10.1007/978-3-642-39634-2_21
http://dx.doi.org/10.1007/978-3-642-39634-2_21
https://books.google.fr/books?id=t_d1QgAACAAJ
https://books.google.fr/books?id=t_d1QgAACAAJ
http://doi.acm.org/10.1145/1345169.1345171
http://eudml.org/doc/72801
http://dx.doi.org/10.1016/j.sysconle.2005.07.009
http://dx.doi.org/10.1007/978-3-540-71067-7_20
http://dx.doi.org/10.1007/978-3-540-71067-7_20
http://fm.mizar.org/1990-1/pdf1-1/pre_topc.pdf
http://coq.inria.fr
http://cds.cern.ch/record/2222525

How to Get More Out of Your Oracles

Lúıs Cruz-Filipe(B), Kim S. Larsen, and Peter Schneider-Kamp

Department Mathematics and Computer Science, University Southern Denmark,
Campusvej 55, 5230, Odense M, Denmark
{lcf,kslarsen,petersk}@imada.sdu.dk

Abstract. Formal verification of large computer-generated proofs often
relies on certified checkers based on oracles. We propose a methodology
for such proofs, advocating a separation of concerns between formalizing
the underlying theory and optimizing the algorithm implemented in the
checker, based on the observation that such optimizations can benefit
significantly from adequately adapting the oracle.

1 Introduction

During the last decade, we have seen the advent of larger and larger computer-
generated proofs, often based on exhaustive case analysis. To allow for inde-
pendent verification, the programs performing such proofs also generate a trace,
detailing their reasoning steps. These proof witnesses have been growing signif-
icantly in size, from a few MB [15] to a few GB [5,13], culminating with the
impressive 200 TB proof of the Boolean Pythagorean Triples conjecture [12].

Formal verification of such proofs amounts to checking whether the proof
witnesses can be used to reconstruct a proof. Directly importing the witnesses
into a theorem prover [4] does not scale to the size of recent proofs due to memory
and computational requirements. Instead, the witnesses can be obtained from an
external untrusted source, the oracle, and checked for correctness before use [14].
The formal proof is thus split between two components: the untrusted oracle and
the proven correct proof checker. The latter needs to be correct regardless of its
input data, typically by ignoring or rejecting incorrect data.

The benefit of using the oracle is efficiency: since its results are not trusted,
it can be optimized for performing difficult computations efficiently. (The point
is, of course, that these results should be correct, but there is no burden of
proof of this fact.) The certified checker, on the other hand, typically constitutes
the computational bottleneck of the overall system. Thus, in order to minimize
execution time, it is natural to try to shift as much computation as possible from
the checker to the oracle.

Traditionally, this path has not been explored to its full potential. Often
oracles are queried when needed [9,11,14], computing witnesses at runtime. In
other cases [2,15,16], the oracle is pre-computed and responsible for controlling
the flow of the algorithm; in this case, the checker’s queries amount to asking
“What should I do next?”. Our simple observation is: the overall system of
untrusted oracle and trusted checker can be optimized by utilizing the oracle
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 164–170, 2017.
DOI: 10.1007/978-3-319-66107-0 11

How to Get More Out of Your Oracles 165

maximally. We have identified a successful strategy for approaching this, which
we feel deserves to be communicated.

Based on this observation, we propose a systematic methodology for using
oracles in large-scale proofs (Sect. 2), modulizing the cooperation between the
untrusted oracle and the certified checker. We identify the characteristics of
problems whose proofs could and should profit from this methodology, and illus-
trate it (Sect. 3) using two cases: an optimality proof on sorting networks [6],
which inspired this methodology, and a formalized checker for unsatisfiability
proofs [7], obtained by directly applying this methodology. The latter ultimately
was able to verify the 200 TB proof from [12], as described in [8].

2 Methodology

We first identify the characteristics a problem should have in order to benefit
from our methodology. We motivate and illustrate these requirements by small
toy examples. Then we present the methodology as a simple step-by-step proce-
dure, with a focus on its separation of concerns.

Problem requirements. A common element to most oracles is that they relate to
problems where finding proof witnesses is computationally much more expensive
than checking their correctness. Because of this commonality, there is a signifi-
cant pay-off in being able to write highly optimized untrusted code for finding
witnesses.

Example 1. As an example, consider a proof that involves properties of the image
of a function. Assume that in the process, one needs to find a pre-image of this
object. If the function is easier to compute than its inverse, then an ad hoc way
of finding pre-images can greatly improve performance.

A concrete extreme example is the inversion of a hash function, for which
there is no realistic way of computing pre-images of given concrete hashes. An
oracle might use large distributed Internet databases to try to find them, though.
Such an oracle would by its nature be both incomplete (it fails when a pre-image
exists, but is not in the database) and untrustworthy (the database could be
erroneous), and therefore impossible to implement and prove correct inside a
theorem prover such as Coq. However, its result is very simple to check. ��
Requirement 1 (Existential Subproblems). The problem contains multiple
occurrences of existential statements as subproblems, for which witness checking
is computationally easier than witness generation.

By “computationally easier”, we simply mean that more efficient algorith-
mic solutions are known for one of the problems; we are not claiming that the
problems provably belong to different complexity classes. If the condition in
the requirement is met, this is an indication that the use of an oracle may be
beneficial.

166 L. Cruz-Filipe et al.

In general, a pre-computed oracle cannot be omniscient, since it can only
provide finitely many different answers. Even if the problem domain is finite, it
is still typically prohibitive to precompute all possible answers. Therefore, our
methodology requires the set of problems that the oracle may be called upon to
be sufficiently restricted (for the answers to fit into memory, for example).

Requirement 2 (Known Subproblems). There is a manageable set of sub-
problems that contains all subproblems encountered during the proof.

Our last requirement is that changes to the answers provided by the oracle
should have an impact on the control flow and (consequently) on the efficiency
of the remainder of the proof. We illustrate this point by an example.

Example 2. Imagine a proof that requires factorizing certain composite numbers
into sorted lists of their prime factors as a recurring step. Suppose also that we
have an efficient oracle that, given a composite number, delivers one of its prime
factors. The oracle will have to be called multiple times in order to obtain the
list of all factors, and this list has to be sorted (either at construction time or
after obtaining all factors).

If we compute all prime factors, sort them, and have the oracle provide
them in sorted order, we can replace the sorting step in the proof by a simple
verification that the list provided is sorted, making the proof both simpler and
more efficient. Note that this potentially changes the set of subproblems the
oracle will be called upon, since it may change the control flow of the checker; a
fact that needs to be taken into consideration in the implementation. ��
Requirement 3 (Data-Dependent Proof). The structure of the proof is
dependent on the answers provided by the oracle.

In Example 2, this requirement would not be satisfied if the subproblems
consisted of just showing that certain numbers were composite. The case studies
in Sect. 3 illustrate all three requirements in realistic settings.

Step-by-step guide to verifying large proofs. We now describe our methodology
for verifying large proofs that fit the requirements discussed above. This consists
of four phases.

– Formalize the theory underlying the results
– Implement a naive checker (using an oracle) and prove it correct
– Optimize the checker in lock-step with adapting the oracle
– Reprove the correctness of the checker

In the Formalize phase, the focus is on the mathematical theory needed to prove
the soundness of the algorithm used in the checker. The key aspect here is to
separate concerns by not worrying about how these results will be used in the
actual implementation. In other words, we advocate formalizing the theory as
close as possible to the mathematical definitions and other formal elements of
the algorithm.

How to Get More Out of Your Oracles 167

In the Implement phase, the goal is to implement a checker as simple as
possible. The algorithm of the checker should do as little work as possible, using
the information in the proof witnesses as much as possible. This straightforward
implementation must then be proven correct.

The Optimize phase is the most complex and most interesting one. In this
phase, we analyze the complexity of the checker to determine possible local
improvements. These can be of two kinds. The first kind is to use standard
computer science techniques to optimize performance – for example, by using
binary search trees instead of lists, or by enriching the proof witnesses to lower
the complexity of checking their correctness. The second is to use the fact that all
answers needed from the oracle are available beforehand to implement a more
efficient algorithm, as illustrated by Example 2. In both cases, this may also
require changes to the implementation of the oracle.

The Reprove phase consists of reproving the correctness of the optimized
checker. This phase may be interleaved with the previous one, as optimizations
tend to be localized and, thus, only require localized changes to the soundness
proof. This is the case for optimizations of the implementation, in particular,
where soundness is a property of the algorithm, and thus not significantly effected
by the low-level choice of data structures. By applying one optimization at a time
and immediately proving its soundness, it is easier to connect the necessary
changes in the formalization to the original change in the algorithm.

The key observation in this methodology is the realization that the formal-
izations involved in different stages are of very different natures, and benefit
from being treated separately. In the Formalize phase, the emphasis is on the
underlying theory, and it will present the challenges present in any formalization
– choosing the correct definitions, adapting proofs that are not directly formal-
izable, etc. In the Implement phase, the results that need to be formalized deal
directly with the correctness of the algorithm being implemented, and will use
the results proved in the earlier stage. Typically, the complexity of these proofs
will arise from having to consider different cases or finding the right invariants
throughout program execution, but not from mathematical issues pertaining to
the underlying theory.

This is particularly relevant for the Reprove phase, where the modularity of
the approach will have an impact in two ways. First, the formalization of the
underlying theory for its own sake (rather than as a library tailored towards
proving the correctness of the original algorithm) will make it more likely that
all the needed results are readily available, and that they have been stated in
forms making them more generically applicable. Second, changes to the algo-
rithm will typically require different inductive proofs, but their correctness will
likely use the same underlying arguments, which will already be available from
previous phases. For example: if an algorithm iterating over lists is replaced by
one iterating over trees, the structure of the soundness proof changes, but the
key inductive argument (regarding how an additional element is processed) is
unchanged. Therefore, the iterative steps in alternating Optimize and Reprove
phases will likely be much simpler and faster than the original Implement phase.

168 L. Cruz-Filipe et al.

As a consequence, the final library will also be more likely to be reusable in
future proofs.

The requirements identified earlier are essential for this methodology to be
meaningful. In general, existential subproblems indicate that using an untrusted
oracle can be a good strategy, since verifying the proof witnesses it provides is
easier than implementing a certified algorithm for computing them in the theo-
rem prover. The known subproblems requirement guarantees that the oracle can
pre-compute all proof witnesses that will be needed in the proof, so that they can
be suitably processed before the checker is executed. Finally, data dependency
ensures that changing the implementation of the oracle is meaningful, as it can
improve the overall performance of the checker.

3 Case Studies

We illustrate our methodology by referring to two previously published formal-
izations. While we used Coq [1] as the theorem prover in both, our methodology
should be portable to other formal generic proof environments.

Optimal sorting networks. In [5], we describe a computer-generated proof of the
optimality of 25 comparisons for data-independently sorting 9 inputs. This proof
is based on an exhaustive case analysis, made feasible by a powerful, but com-
putationally expensive (NP-complete) subsumption relation [6]. A proof witness
consists of two comparator networks and a permutation under which the relation
holds. While known algorithms for solving the existential subproblem (by finding
a permutation) have worst-case exponential runtime, checking the relation given
a permutation is much easier.

The subsumption relation is used to eliminate comparator networks that are
subsumed by others. The structure of the proof is thus highly data-dependent,
with the order in which proof witnesses are provided by the oracle influencing
the set of subproblems encountered during the remainder of the proof. This is
a challenge for the known subproblems requirement, which is solved by oracle
pre-processing based on transitivity of subsumption.

In the Formalize and Implement phases, we made a direct implementation of
the algorithm in the original proof from [5], obtaining a checker with an expected
runtime of 20 years to process the 27 GB of proof witnesses. In the Optimize and
Reprove phases, we optimized this algorithm by changing the order in which the
oracle provides proof witnesses, which allowed us to use asymptotically better
algorithms and data structures. These optimizations reduced the execution time
to just under 1 week [6]. Separating the formalization of the theory and the
correctness proof of the checker meant that the cost of Reprove was marginal –
at most 1 day per major change – compared to Formalize, which took approx.
3 months.

Unsatisfiability proofs. More and more applications are relying on SAT solvers
for exhaustive case analysis, including computer-generated proofs [12,13]. While

How to Get More Out of Your Oracles 169

formally verifying satisfiability results is trivial given a witness, verifying unsatis-
fiability results returned by untrusted solvers requires showing that the original
formula entails the empty clause. To this end, many SAT solvers provide the
entailed clauses they learn during execution as proof witnesses. Finding mean-
ingful such clauses is clearly a non-trivial existential subproblem.

To check an unsatisfiability proof, the clauses provided by the oracle are
added to the original set of clauses after their entailment has been checked
by reverse unit propagation. This addition of clauses determines which further
clauses can be added, i.e., the structure of the proof is data-dependent. Since the
proof checker simply follows the information provided by the oracle, the known
subproblems requirement is trivially satisfied.

By applying our methodology directly, we were able to improve the state-of-
the-art of formally verifying unsatisfiability [10,16] by several orders of magni-
tude. Here, the Formalize phase consisted simply of building a deep encoding
of propositional logic in the theorem prover Coq and defining notions of entail-
ment and satisfiability, and the Implement phase yielded a simple checker based
on reverse unit propagation. In the Optimize phase, we achieved a performance
improvement of several orders of magnitude by observing that the core algorithm
for checking reverse unit propagation can be simplified significantly by enriching
the proof witnesses with information about the clauses used [7]. This improve-
ment in the performance of the checker was obtained at the cost of a noticeable
(yet manageable) increase in computation time on the oracle side, due to the
need to enrich the proof witnesses, but this shift ultimately allowed us to verify
the 200 TB proof from [12], as described in [7,8].

4 Concluding Remarks

We have introduced a methodology based on distilling the key idea behind our
two case studies: the overall system of proof checker and oracle can profit from
shifting the computational burden from the trusted, inefficient proof checker
to the untrusted, efficient oracle implementation. In other words, we let the
proof checker be implemented as efficiently as possible, doing as little work as
possible, while pre-processing the oracle information such that the right amount
information was provided in the right order. Since all the data provided by the
oracle is verified by the proof checker, this does not affect the reliability of the
results. By revisiting the case studies in this unifying presentation, we hope to
inspire others to obtain similar performance gains when formally verifying other
large-scale proofs.

Acknowledgments. We would like to thank Pierre Letouzey for his suggestions and
help with making our extracted code more efficient.

The authors were supported by the Danish Council for Independent Research, Nat-
ural Sciences, grant DFF-1323-00247, and by the Open Data Experimentarium at the
University of Southern Denmark. Computational resources were generously provided
by the Danish Center for Scientific Computing.

170 L. Cruz-Filipe et al.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

2. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comp. Sci. 21, 827–859 (2011)

3. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998.
Springer, Heidelberg (2013)

4. Claret, G., González-Huesca, L., Régis-Gianas, Y., Ziliani, B.: Lightweight proof
by reflection using a posteriori simulation of effectful computation. In: Blazy et al.
[3], pp. 67–83

5. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Sorting nine inputs
requires twenty-five comparisons. J. Comput. Syst. Sci. 82(3), 551–563 (2016)

6. Cruz-Filipe, L., Larsen, K.S., Schneider-Kamp, P.: Formally proving size optimality
of sorting networks. J. Autom. Reason. Accepted for publication. doi:10.1007/
s10817-017-9405-9

7. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution
proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 118–135. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5 7

8. Cruz-Filipe, L., Schneider-Kamp, P.: Formally proving the boolean triples conjec-
ture. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, vol. 46,
pp. 509–522. EasyChair Publications (2017)

9. Cruz-Filipe, L., Wiedijk, F.: Hierarchical reflection. In: Slind, K., Bunker, A.,
Gopalakrishnan, G. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 66–81. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30142-4 5

10. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solv-
ing through verified SAT proof checking. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14808-8 18

11. Fouilhé, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38856-9 19

12. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 15

13. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Cham
(2014). doi:10.1007/978-3-319-09284-3 17

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

15. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller, C.,
Paleo, B. (eds.) UITP, EPTCS, vol. 167, pp. 61–72 (2014)

16. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT
refutations with extended resolution. In: Blazy et al. [3], pp. 229–244

http://dx.doi.org/10.1007/s10817-017-9405-9
http://dx.doi.org/10.1007/s10817-017-9405-9
http://dx.doi.org/10.1007/978-3-662-54577-5_7
http://dx.doi.org/10.1007/978-3-540-30142-4_5
http://dx.doi.org/10.1007/978-3-642-14808-8_18
http://dx.doi.org/10.1007/978-3-642-38856-9_19
http://dx.doi.org/10.1007/978-3-642-38856-9_19
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-09284-3_17

Certifying Standard and Stratified Datalog
Inference Engines in SSReflect

Véronique Benzaken1, Évelyne Contejean2, and Stefania Dumbrava3(B)

1 Université Paris Sud, LRI, 91 405 Orsay, France
veronique.benzaken@u-psud.fr

2 CNRS, LRI, Université Paris Sud, 91 405 Orsay, France
evelyne.contejean@lri.fr

3 LIRIS, Université Lyon 1, Lyon, France
stefania-gabriela.dumbrava@univ-lyon1.fr

Abstract. We propose a SSReflect library for logic programming in
the Datalog setting. As part of this work, we give a first mechaniza-
tion of standard Datalog and of its extension with stratified negation.
The library contains a formalization of the model theoretical and fix-
point semantics of the languages, implemented through bottom-up and,
respectively, through stratified evaluation procedures. We provide cor-
responding soundness, termination, completeness and model minimality
proofs. To this end, we rely on the Coq proof assistant and SSReflect. In
this context, we also construct a preliminary framework for dealing with
stratified programs. We consider this to be a necessary first step towards
the certification of security-aware data-centric applications.

1 Introduction

Datalog [7] is a deductive language capturing the function-free fragment of Horn
predicate logic. Syntactically a subset of Prolog [22], Datalog has the advan-
tage of guaranteed termination (in PTIME [33]). Expressivity-wise, it extends
relational algebra/calculus with recursion; also, it allows for computing tran-
sitive closures and, generally, for compactly formulating graph traversals and
analytics. Comparatively, more popular query languages, such as SQL, XPath,
or SPARQL, are either not capable of expressing these directly/inherently or do
so with limitations. Given the present ubiquity of interconnected data, seam-
lessly supporting such recursive queries has regained relevance. For example,
these are key to Web infrastructure, being used by web-crawlers and PageRank
algorithms. Efficiently querying and reasoning about graph topologies is, in fact,
fundamental in various areas, including, but not limited to: the Semantic Web;
social, communication and biological networks; and geographical databases.

Due to its purely declarative nature and simplicity (few primitives), Datalog
lends itself particularly well to domain-specific extensions. As surveyed in the lit-
erature [2,28], multiple additions to its core language have been introduced, e.g.,

This work was supported by the Datacert project (ANR-15-CE39-0009) of the French
ANR.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 171–188, 2017.
DOI: 10.1007/978-3-319-66107-0 12

172 V. Benzaken et al.

with negation, existentials, aggregates, functions, updates, etc. Indeed, Datalog
can be seen as the lingua franca for a plethora of custom query languages, e.g.,
Starlog [25], Overlog [24], Netlog [17], datalog± [6], SociaLite [30], LogiQL [4],
etc. In a recent resurge of interest [1], marked by the Datalog 2.0 Workshop,
such tailored versions of Datalog found new applications in data integration,
security [10], program analysis [34], cloud computing, parallel and distributed
programming [18], etc. An overview is given in [19].

These applications have not only sparked interest in the academic setting,
but also in industry. Indeed, commercial Datalog engines have started to gain
popularity, with LogicBlox [23], Google’s Yedalog [8], Datomic [9], Exeura [12],
Seemle [29], and Lixto [16], as prominent examples. Moreover, their scope has
extended to include safety-critical, large-scale use cases. A case in point is the
LogicBlox platform, which underpins high-value web retail and insurance appli-
cations. Its Datalog-based engine unifies the modern enterprise software stack
(encompassing bookkeeping, analytics, planning, and forecasting) and runs with
impressive efficiency [5]. Also, more recently, Datalog has been proposed as tool
for automating the verification of railway infrastructure high-security regulations
against its CAD design [26].

We argue that, given the role Datalog is starting to play in data-centric
and security-sensitive applications, obtaining the strong guarantees Coq certi-
fication provide is an important endeavor. We envisage a methodology aimed
at ultimately certifying a realistic Datalog engine by refinement. This would
encompass: (1) a high-level formalization suitable for proof-development and,
thus, employing more inefficient algorithms, (2) a mechanization of the real-
world engine implementation, and (3) (refinement) proofs of their extensional
equivalence.

This paper describes the first necessary step towards realizing this vision. As
such, we propose a deep specification of a stratified Datalog inference engine in
the SSReflect extension [15] of the Coq proof-assistant [27]. With respect to the
scope of our formalization, the chosen fragment is the one used by LogicBlox and
it is the most expressive one that retains termination1. Our chosen evaluation
heuristic is bottom-up, as ensuring that top-down/more optimized heuristics
do not get stuck in infinite loops is harder to establish. Also, this allows us
to modularly extend and reuse our standard Datalog inference engine in the
stratified setting. We do envisage supporting, for example, magic-sets rewriting.

The choice of using SSReflect is due to the fact that the model-theoretic
semantics of Datalog is deeply rooted in finite model theory. To quote [21]: “For
many years, finite model theory was viewed as the backbone of database theory,
and database theory in turn supplied finite model theory with key motivations and
problems. By now, finite model theory has built a large arsenal of tools that can
easily be used by database theoreticians without going to the basics”. The Mathe-
matical Components library2, built on top of SSReflect, is especially well-suited
for our purposes, as it was the basis of extensive formalizations of finite model

1 Arithmetic predicates and skolem functions destroy this guarantee.
2 http://math-comp.github.io/math-comp/.

http://math-comp.github.io/math-comp/

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 173

theory, in the context of proving the Feit-Thompson theorem [14], central to finite
group classification. Moreover, as detailed next, our proof-engineering efforts
were greatly eased by our reuse of the fintype, finset and bigop libraries.

Contributions. Our key modeling choice is properly setting up the base types
to make the most of the finite machinery of SSReflect. Heavily relying on type
finiteness ensures desirable properties, such as decidability. As every Datalog
program has a finite model [2], i.e., its Herbrand Base (Sect. 2.1), this does
not restrict generality. The paper’s contributions are, as documented online in
http://datacert.lri.fr/datalogcert/datalogcert.html:

1. a certified “positive” inference engine for standard Datalog: We give a scalable
formalization of the syntax, semantics and bottom-up inference of Datalog.
The latter consists of mechanizing a matching algorithm for terms, atoms and
clause bodies and proving corresponding soundness and completeness results.
We formally characterize the engine, by establishing soundness, termination,
completeness and model minimality, based on monotonicity, boundedness and
stability proofs.

2. a certified “negative” inference engine for stratified Datalog: We extend the
syntax and semantics of Datalog with negation and mechanize its stratified
evaluation. We model program stratification and “slicing”, embed negated
literals as flagged positive atoms and extend the notion of an interpretation
to that of a “complemented interpretation”. The crux of stratified evaluation
is the reuse of the “positive” engine, for each program “slice”. When formally
characterizing the “negative engine”, this required us to precisely identify
additional properties, i.e., incrementality and modularity, and to correspond-
ingly extend the previous library. We establish soundness, termination, com-
pleteness and model minimality.

Lastly, we extract our certified standard Datalog engine in OCaml as a proof-
of-concept. This is a first step towards building a realistic (high-performance),
correct-by-construction Datalog engine. To realize this, we plan to replace the
generic SSReflect algorithms used in our implementation by more efficient ones
and to prove that the results we established are preserved.

Organization. The paper is organized as follows. In Sect. 2, we give a concise
theoretical summary of standard and stratified Datalog. In Sects. 3 and 4, we
present the corresponding SSReflect inference engine mechanizations. Section 5
describes related work. We conclude in Sect. 6.

2 Preliminaries

We review the theory of standard and stratified Datalog in Sects. 2.1 and 2.2.

http://datacert.lri.fr/datalogcert/datalogcert.html

174 V. Benzaken et al.

2.1 Standard Datalog

Syntax. Given the sets V, C and P of variables, constants and predicate sym-
bols, a program is a finite collection of clauses, as captured by the grammar:3

Programs P :: = C1, . . . , Ck

Clauses C :: = A0 ← A1, . . . , Am

Atoms A :: = p(�t), where p ∈ P is denoted sym(A) and has arity ar(p) = |�t|
Terms t :: = x ∈ V | c ∈ C

A clause is a sentence separating hypotheses body atoms from the conclusion
head atom. Clauses allow inferring new facts (true ground atoms) from existing
ones. The restriction below ensures finitely many facts are inferred.

Definition 1 (Safety). A standard Datalog program is safe iff all of its clauses
are safe, i.e., all of their head variables appear in their body. Consequently, safe
program facts are ground4.

Semantics. Let B(P) be the Herbrand Base of P , i.e., the ground atom set built
from its predicates and constants. By the Herbrand semantics, an interpretation
I is a subset of B(P). For a valuation ν, mapping clause variables to program
constants5, and a clause C equal to p0(�t0) ← p1(�t1), . . . , pm(�tm), the clause
grounding6 νC is p0(ν�t0) ← p1(ν�t1), . . . , pm(ν �tm). Note that variables in clauses
are implicitly universally quantified. C is satisfied by I iff, for all valuations ν, if
{p1(ν�t1), . . . , pm(ν �tm)} ⊆ I then p0(ν�t0) ∈ I. I is a model of P iff all clauses in P
are satisfied by I. The intended semantics of P is MP, its minimal model w.r.t
set inclusion. This model-theoretic semantics indicates when an interpretation is
a model, but not how to construct such a model. Its computational counterpart
centers on the least fixpoint of the following operator.

Definition 2 (The TP Consequence Operator). Let P be a program and I
an interpretation. The TP operator is the set of program consequences F: TP (I) =
I ∪ {F ∈ B(P) | F = hd(νC), for C ∈ P, ν : V → C, bd(νC) ⊆ I}.

Definition 3 (Fixpoint Evaluation). The iterations of the TP operator are:
TP ↑ 0 = ∅, TP ↑ (n + 1) = TP (TP ↑ n). Since TP is monotonous and bound by
B(P), the Knaster-Tarski theorem [31] ensures ∃ω, TP ↑ ω =

⋃

n≥0

TP ↑ n, where

TP ↑ ω = lfp(TP). The least fixpoint evaluation of P is thus defined as lfp(TP).

Note that, by Van Emden and Kowalski [32], lfp(TP) = MP.

3 Term sequences t1, . . . , tn are abbreviated as �t and |�t| = n denotes their length.
4 We call language constructs that are variable-free, ground and, otherwise, open.
5 The set of program constants is also called its active domain, denoted adom(P).
6 Also called clause instantiation.

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 175

Example 1. Let

P =

⎧
⎨

⎩

e(1, 3). e(2, 1). e(4, 2). e(2, 4).
t(X,Y) ← e(X,Y).
t(X,Y) ← e(X,Z), t(Z, Y).

TP ↑ 0 = ∅; TP ↑ 1 = {e(1, 3), e(2, 1), e(4, 2), e(2, 4)}; TP ↑ 2 = TP ↑ 1 ∪
{t(1, 3), t(2, 1), t(4, 2), t(2, 4)}; TP ↑ 3 = TP ↑ 2 ∪ {t(2, 3), t(4, 1), t(4, 4), t(2, 2)}.
The minimal model of P is MP = lfp(TP) = TP ↑ 4 = TP ↑ 3 ∪ {t(4, 3)}.

2.2 Stratified Datalog

Syntax. Adding stratified negation amounts to extending the syntax of stan-
dard Datalog, by introducing literals and adjusting the definition for clauses.

Clauses C :: = A ← L1, . . . , Lm

Literals L :: = A | ¬A

Definition 4 (Predicate Definitions). Let P be a program. The definition
define(p) of program predicate p ∈ P is {C ∈ P | sym(hd(C)) = p}.
Definition 5 (Program Stratification and Slicing). Let P be a program
with clauses C of the form H ← A1, . . . , Ak,¬Ak+1, . . . ,¬Al, where bd+(C) =
{A1, . . . , Ak} and bd−(C) = {Ak+1, . . . , Al}. Consider a mapping σ : P → N,
such that: (1) σ(sym(Aj)) ≤ σ(sym(H)), for j ∈ [1, k], and (2) σ(sym(Aj)) <
σ(sym(H)), for j ∈ [k + 1, l]. σ induces a partitioning7 P =

⊔

j ∈ [1,n]

Pσj
with

σj = {p ∈ P | σ(p) = j} and Pσj
=

⋃

p ∈ σj

define(p). We have that, for C ∈ Pσj
:

(1) if p ∈ {sym(A) | A ∈ bd−(C)}, then define(p) ⊆ ⋃

1≤ k < j

Pσk
, and (2) if

p ∈ {sym(A) | A ∈ bd+(C)}, then define(p) ⊆ ⋃

1≤ k ≤ j

Pσk
.

We call P stratified; σ, a stratification; σj, a stratum; the set {Pσ1 , . . . ,
Pσn

}, a program slicing8 and Pσj
, a program slice, henceforth denoted Pj.

Stratification ensures program slices Pj are semipositive programs [2] that can
be evaluated independently. Indeed, checking if their negated atoms belong to
some interpretation I is equivalent to checking that their positive counterparts
belong to the complement of I w.r.t the Herbrand Base B(Pj).

Semantics. The model of a stratified Datalog program is given by the step-wise,
bottom-up computation of the least fixpoint model for each of its slices.

Definition 6 (Stratified Evaluation). For P = P1 � . . . � Pn, the model9,
Mn = TPn

↑ ω(Mn−1)10, with Mj = TPj
↑ ω(Mj−1), j ∈ [2, n], M1 = TP1 ↑ ω(∅).

7 � denotes the pairwise disjoint set union.
8 A program can have multiple stratifications.
9 As proven by Apt et al. [3], Mn is independent from the choice of stratification.

10 By abuse of notation, we use the same ω for the different numbers of TP iterations
needed to reach a fixpoint, when evaluating each program slice.

176 V. Benzaken et al.

Example 2. Let

P =

⎧
⎪⎪⎨

⎪⎪⎩

q(a). s(b). t(a). r(X) ← t(X).
p(X) ← ¬q(X), r(X).
p(X) ← ¬t(X), q(X).
q(X) ← s(X),¬t(X).

for which a stratification σ(s) = 1, σ(t) = 1, σ(r) = 1, σ(q) = 2, σ(p) = 3,
with the strata σ1 = {s, t, r}, σ2 = {q}, σ3 = {p}, induces the partitioning
P = P1 � P2 � P3, with the slices

P1 =
{ s(b). t(a).

r(X) ← t(X).
P2 =

{ q(a).
q(X) ← s(X), ¬t(X).

P3 =
{ p(X) ← ¬q(X), r(X).

p(X) ← ¬t(X), q(X).

M1 = TP1 ↑ ω(∅) = {r(a), s(b), t(a)}; M2 = TP2 ↑ ω(M1) = M1 ∪ {q(a), q(b)}; MP =

M3 = TP3 ↑ ω(M2) = M2 ∪ {p(b)} = {r(a), s(b), t(a), q(a), q(b), p(b)}.

3 A Mechanized Standard Datalog Engine

In Sect. 3.1, we present our formalization of the syntax and semantics of standard
Datalog. Next, in Sect. 3.2, we detail the bottom-up evaluation heuristic of its
inference engine. We formally characterize the engine in Sect. 3.3.

3.1 Formalizing Standard Datalog

Syntax. We assume the symtype and constype finite types for predicate sym-
bols and constants, as well as an arity finitely-supported function (ffun) that
associates a corresponding positive value to each symbol.

Variables (symtype constype : finType) (arity : {ffun symtype → nat}).

Terms are encoded by an inductive joining (1) variables, of ordinal type ’I n,
bound by a computable maximal value n, and (2) constants.

Inductive constant := C of constype.

Inductive term : Type := Var of ’I_n | Val of constant.

To avoid redundant case analyses, we henceforth distinguish between ground and
open (non-ground) atoms and clauses. Intuitively, this dichotomy is desirable as
the former are primitives of the semantics, while the latter, of the syntax. As
such, ground atoms are modeled with gatom records, joining the rgatom base
type and the boolean well-formedness condition wf rgatom. The first packs a
symbol and its arguments, i.e., a list (seq in SSReflect notation) of constants;
the second ensures symbol arity and argument size match. Note that, as we
set up the gatom subtyping predicate to be inherently proof-irrelevant, checking
ground atom equality can be conveniently reduced to checking the equality of
their underlying base types. Atoms are encoded similarly, except that their base
type packs, as an argument, a term list instead.

Inductive rgatom := RawGAtom of symtype & seq constant.

Definition wf_rgatom rga := size (arg rga) == arity (sym rga).

Structure gatom := GAtom {rga :> rgatom; _ : wf_rgatom rga}.

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 177

(Ground) clauses pack a distinguished (ground) atom, (head gcl), respectively,
head cl, and a (ground) atom list, (body gcl), respectively, body cl. Programs
are clause lists. The safety condition formalization mirrors Definition 1.

Semantics. An interpretation i is a finite set of ground atoms. Note that,
since its type, interp, is finite, the latter has a lattice structure, whose top
element, setT, is the set of all possible ground atoms. The satisfiability of a
ground clause gcl w.r.t i is encoded by gcl true. As in Sect. 2.1, we define i
to be a model of a program p, if, for all grounding substitutions ν, it satisfies
all corresponding clause instantiations, gr c ν cl. We discuss the encoding of
grounding substitutions next.

Notation interp := {set gatom}.

Definition gcl_true gcl i := (* i satisfies gcl *)

all (mem i) (body_gcl gcl) =⇒ (head_gcl gcl ∈ i).

Definition prog_true p i := (* i is a model of p *)

∀ ν : gr, all (fun cl ⇒ gcl_true (gr_cl ν cl) i) p.

3.2 Mechanizing the Bottom-Up Evaluation Engine

The inference engine iterates the logical consequence operator from Definition 2.
To build a model of an input program, it maintains a current “candidate model”
interpretation, which it iteratively tries to “repair”. The repair process first
identifies clauses that violate satisfiability, i.e., whose ground instance bodies are
in the current interpretation, but whose heads are not. The current interpretation
is then “fixed”, adding to it the missing facts, i.e., the head groundings. This
is done by a matching algorithm, incrementally constructing substitutions that
homogeneously instantiate all clause body atoms to “candidate model” facts.
As safety ensures all head variables appear in the body, these substitutions are
indeed grounding. Hence, applying them to the head produces new facts. Once
the current interpretation is “updated” with all facts inferable in one forward
chain step, the procedure is repeated, until a fixpoint is reached. We prove this to
be a minimal model of the input program. As outlined, the mechanization of the
engine centers around the encoding of substitutions and of matching functions.

Groundings and Substitutions. Following a similar reasoning to that in
Sect. 3.1, we define a separate type for grounding substitutions (groundings).
Both groundings and substitutions are modeled as finitely-supported functions
from variables to constants11, except for the latter being partial12.

Definition gr := {ffun ’I_n → constant}.

Definition sub := {ffun ’I_n → option constant}.

11 Since Datalog does not have function symbols and interpretations are ground, we
can restrict substitution codomains to the set of program constants, w.l.o.g.

12 Groundings can be coerced to substitutions and substitutions can be lifted to ground-
ings, by padding with a default element def.

178 V. Benzaken et al.

We account for the engine’s gradual extension of substitutions, by introducing a
partial ordering13 over these. To this end, using finitely-supported functions was
particularly convenient, as they can be used both as functions and as lists of bind-
ings. We say a substitution σ2 extends a substitution σ1, if all variables bound by
σ1 appear in σ2, bound to the same values. We model this predicate as sub st14

and the extension of a substitution σ, as the add finitely-supported function.

Definition sub_st σ1 σ2 := (* henceforth denoted as σ1 ⊆ σ2 *)

[∀ v : ’I_n, if σ1 v is Some c then (v, c) ∈ σ2 else true].

Definition add σ v c :=
[ffun u ⇒ if u == v then Some c else σ u].

Term Matching. Matching a term t to a constant d under a substitution σ,
will either: (1) return the input substitution, if t or σ t equal d, (2) return the
extension of σ with the corresponding binding, if t is a variable not previously
bound in σ, or (3) fail, if t or σ t differ from d.

Definition match_term d t σ : option sub :=
match t with

| Val e ⇒ if d == e then Some σ else None

| Var v ⇒ if σ v is Some e

then (if d == e then Some σ else None)

else Some (add σ v d)

end.

Atom Matching. We define the match atom and match atom all functions
that return substitutions and, respectively, substitution sets, instantiating an
atom to a ground atom and, respectively, to an interpretation. To compute
the substitution matching a raw-atom ra to a ground one rga, we first check
their symbols and argument sizes agree. If such, we extend the initial substitu-
tion σ, by iterating term matching over the item-wise pairing of their terms
zip arg2 arg1. As term matching can fail, we wrap the function with an
option binder extracting the corresponding variable assignments, if any. Hence,
match raw atom is a monadic option fold that either fails or returns substitu-
tions extending σ. Atom matching equals raw atom matching, by coercion to
raw atom.

Definition match_raw_atom rga ra σ : option sub :=
match ra, rga with RawAtom s1 arg1, RawGAtom s2 arg2 ⇒

if (s1 == s2) && (size arg1 == size arg2)

then foldl (fun acc p ⇒ obind (match_term p.1 p.2) acc)

(Some σ) (zip arg2 arg1)

else None

end.

Definition match_atom σ a ga := match_raw_atom σ a ga.

13 We establish corresponding reflexivity, antisymmetry and transitivity properties.
14 We use the boolean quantifier, as the ordinal type of variables is finite.

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 179

Next, we compute the substitutions that can match an atom a to a fact in an
interpretation i. This is formalized as the set of substitutions σ that belong to
the set gathering all substitutions matching a to ground atoms ga in i.

Definition match_atom_all i a σ :=
[set σ’ | Some σ’ ∈ [set match_atom ga a σ | ga ∈ i]].

While the match term and match atom functions are written as Gallina algo-
rithms, we were able to cast the match atom all algorithm mathematically as:
{σ′ | σ′ ∈ {match atom ga a σ | ga ∈ i}}. The function is key for expressing
forward chain and fixpoint evaluation. Hence, its declarative, high-level imple-
mentation propagates to all the underlying functions of the bottom-up engine.
We could thus “reduce” soundness and completeness proofs to set theory ones.
In this setting, it was particularly convenient we could rely on finset properties.

Body Matching. The match body function extends an initial substitution set
ssb with bindings matching all atoms in the atom list tl, to an interpretation
i. These are built using match atom all and uniformly extending substitutions
matching each atom to i. We model this based on our definition of foldS, a
monadic fold for the set monad. This iteratively composes the applications of a
seeded function to all the elements of a list, flattening intermediate outputs.

Definition match_body i tl ssb := foldS (match_atom_all i) ssb tl.

The TP Consequence Operator. We model the logical consequences of a
clause cl w.r.t an interpretation i as the set of new facts inferable from cl by
matching its body to i. Such a fact, gr atom def def σ (head cl cl), is the
head instantiation with the grounding matching substitution σ15.

Definition emptysub : sub := [ffun _ ⇒ None].

Definition cons_clause def cl i :=
[set gr_atom_def def σ (head_cl cl) |

σ ∈ match_body i (body_cl cl) [set emptysub]].

One-Step Forward Chain. One inference engine iteration computes the
set of all consequences inferable from a program p and an interpreta-
tion i. This amounts to taking the union of i with all the program
clause consequences. The encoding mirrors the mathematical expression i ∪⋃

cl ∈ p

cons clause def i cl16.

Definition fwd_chain def p i :=
i ∪ \bigcup_(cl ← p) cons_clause def cl i.

15 gr atom def lifts substitutions to groundings, by padding with the def constant.
16 Thanks to using the bigcup operator from the SSReflect bigop library.

180 V. Benzaken et al.

3.3 Formal Characterization of the Bottom-Up Evaluation Engine

We first state the main intermediate theorems, leading up to the key Theorem7.
The first two results are established based on analogous ones for terms and
atoms. We assume an interpretation i and a seed substitution set ssb.

Theorem 1 (Matching Soundness). Let tl be an atom list. If a substitution
σ is in the output of match body, extending ssb with bindings matching tl to i,
then there exists a ground atom list gtl such that: (1) gtl is the instantiation
of tl with σ and (2) all gtl atoms belong to i.
Proof by induction on tl.

Theorem 2 (Matching Completeness). Let cl be a clause and ν a ground-
ing compatible with any substitution σ in ssb. If ν makes the body of gcl true
in i, then match body outputs a compatible substitution smaller or equal to ν.
Proof by induction on tl.

Theorem 3 (TP Stability). Let cl be a clause and i an interpretation satis-
fying it. The facts inferred by cons clause are in i.
Proof by Theorem 1.

Theorem 4 (TP Soundness). Let cl be a safe clause and i an interpretation.
If the facts inferred by cons clause are in i, then i is a model of cl.
Proof by Theorems 2 and 3.

Theorem 5 (Forward Chain Stability and Soundness). Let p be a safe
program. Then, an interpretation i is a model of p iff it is a fwd chain fixpoint.17

Proof by Theorems 3 and 4.

Theorem 6 (Forward Chain Fixpoint Properties). The fwd chain func-
tion is monotonous, increasing and bound by B(P).
Proof by compositionality of set-theoretical properties.

Theorem 7 (Bottom-up Evaluation Soundness and Completeness). Let
p be a safe program. By iterating forward chain as many times as there are
elements in B(P), the engine terminates and outputs a minimal model for p.
Proof by Theorems 5 and 6, using a corollary of the Knaster-Tarski result, as
established in Coq by [11].

4 A Mechanized Stratified Datalog Engine

We summarize the formalization of the syntax and semantics of stratified Datalog
in Sect. 4.1. In Sect. 4.2 we present the mechanization of the stratified Datalog
engine. We outline its formal characterization in Sect. 4.3.

17 We state this as the fwd chainP reflection lemma.

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 181

4.1 Formalizing Stratified Datalog

Syntax. We extend the syntax of positive Datalog with literals, reusing the
definitions of ground/non-ground atoms. As before, we distinguish ground/non-
ground literals and clauses. The former are encoded enriching ground/non-
ground atoms with a boolean flag, marking whether they are negated.

Inductive glit := GLit of bool * gatom.

Inductive lit := Lit of bool * atom.

(Ground) clauses pack (ground) atoms and (ground) literal lists. The encodings
of programs and their safety condition are the same as in Sect. 3.1.

Semantics. The only additions to Sect. 3.1 concern ground literals and clauses.
The glit true definition captures the fact that an interpretation i satisfies
a ground literal gl, by casing on the latter’s flag. If it is true, i.e. the literal is
positive, we check if the underlying ground atom is in i; otherwise, validity holds
if the underlying ground atom is not in i. The definition for the satisfiability of
a ground clause w.r.t i is analogous to that given in Sect. 3.1.

Definition gatom_glit gl := let: GLit (_, ga) := gl in ga.

Definition flag_glit gl := let: GLit (b, _) := gl in b.

Definition glit_true i gl := if flag_glit gl then gatom_glit gl ∈ i

else gatom_glit gl /∈ i.

4.2 Mechanizing the Stratified Evaluation Engine

Stratification. We model a stratification as a list of symbol sets, implic-
itly assuming the first element to be its lowest stratum. As captured by
is strata rec, the characteristic properties mirror those in Definition 5.
Namely, these are (1) disjointness: no two strata share symbols, (2) negative-
dependency : stratum symbols can only refer to negated symbols in strictly lower
strata, and (3) positive-dependency : stratum symbols only depend on symbols
from lower or equal strata. We can give an effective, albeit inefficient algorithm
for computing a stratification satisfying the above, by exploring the finite set of
all possible program stratifications. Hence, we use the finite search infrastructure
of SSReflect, i.e., the [pick e : T | P e] construct that, among all inhabitants
of a finite type T, when possible, picks an element e, satisfying a predicate P.

Positive Embedding. To enable the reuse of the forward chain operator in
Sect. 3.2, we will embed the Coq representation of Datalog programs with strat-
ified negation into that of standard Datalog programs, used by the positive
engine. This is realized via functions that encode/decode constructs to/from
their “positive” counterparts; we denote these as �·�/�·�. To the end, we aug-
ment symbol types with a boolean flag, marking if the original atom is negated.
For example, �s(a)� = (s,�)(a), �¬s(a)� = (s,⊥)(a), �(�, s)(a)� = s(a) and
�(⊥, s)(a)� = ¬s(a). We show literal encoding/decoding are inverse w.r.t each

182 V. Benzaken et al.

other and, hence, injective, by proving the corresponding cancellation lemmas.
For clauses, encoding is inverse to decoding and, hence, injective, only when the
flag of its encoded head atom is positive. This is expressed by a partial cancel-
lation lemma; for the converse direction the cancellation lemma holds. Based on
these injectivity properties, we prove Theorem 9.

Stratified Evaluation. Let p be a program and str, a strata. The evalp
stratified evaluation of p traverses str, accumulating the processed strata, str<.
It then computes the minimal model, cf. Theorem 7, for each program slice,
pstr< . The main modeling choice - for convenience and modular reuse - is to
construct the complemented interpretation for pstr< . This accounts for the all
“negative” facts that hold, by absence from the current model. These will be
collected, decoded, in a second interpretation. The corresponding cinterp type
is thus defined as an interp pairing. To bookkeep the accumulated strata str<,
we wrap cinterp and the symbol set type of str< in a cumulative interpretation
type, sinterp.

Notation cinterp := (interp * interp)%type.

Definition sinterp := (cinterp * {set symtype})%type.

At an intermediate step, having already processed str<, we encode the p curr
program slice up to the current stratum ss. We feed it, together with the previous
complemented interpretation ci, to the positive engine pengine step. Since this
operates on positive interpretations18, we have to relate the two. As such, we
define the c2p bij bijection between them, i.e., mutually inverse functions c2p
and p2c, and apply it to obtain the needed types. The positive engine iterates
the forward chain operator, as many times as there are elements in the program
bound bp19. It adds the facts inferable from the current stratum and outputs a
positive interpretation. It does not add the implicitly true negated ground atoms.

Definition bp : pinterp := setT.

Definition pengine_step def (pp : pprogram) (ci : cinterp) : cinterp :=
p2c (iter #|bp| (P.fwd_chain pdef pp) (c2p ci)).

Hence, the ciC complementation function augments m next.2 with the comple-
ment of m next.1 w.r.t setT20; the complement is filtered to ensure only atoms
with symbols in ss are retained (see the encoding of ic ssym).

Variables (def : constant) (p : program) (psf : prog_safe p).

Fixpoint evalp (str : strata) ((ci, str<) : sinterp) :=
match str with [::] ⇒ (ci, str<) | ss :: str> ⇒

let p_curr := slice_prog p (str< ∪ ss) in

let m_next := pengine_step def (encodep p_curr) ci in

let m_cmpl := ciC ss m_next in evalp str> (m_cmpl, str< ∪ ss)

end.

18 “Positive” interpretations are sets of ground atoms with a true flag.
19 This corresponds to the set of all “positive” ground atoms.
20 This is the top element of interp cf. Sect. 3.1.

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 183

The resulting m cmpl is thus well-complemented. As encoded by ci wc, the prop-
erty states that, for any ci of cinterp type and any symbol set ss, the ci com-
ponents partition the slicing of setT with ss, i.e., the set of all ground atoms with
symbols in ss. The next strata, i.e., str>, are processed by the recursive call.

Example 3. Revisiting Example 2, the slice encodings, marked by �·�, are:

�P1� =
{ (�, s)(b). (�, t)(a).

(�, r)(X) ← (�, t)(X). �P2� =
{ (�, q)(a).

(�, q)(X) ← (�, s)(X), (⊥, t)(X).

�P3� =
{ (�, p)(X) ← (⊥, q)(X), (�, r)(X).

(�, p)(X) ← (⊥, t)(X), (�, q)(X).

The positive engine computes the minimal model of �P1�: M1 = T�P1� ↑
ω(∅) = {(�, r)(a), (�, s)(b), (�, t)(a)}; complementing it w.r.t the Herbrand
Base B(�P1�) yields: M1 = {(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}). Next, when pass-
ing the resulting positive interpretation M1 ∪ M1 to the positive engine:
M2 = TP2 ↑ ω(M1 ∪ M1) = M1 ∪ {(�, q)(a), (�, q)(b)}. Its complement w.r.t
B(�P2�) is M2 = ∅. Finally, M3 = TP3 ↑ ω(M2 ∪ M2) = M2 ∪ {(�, p)(b)},
whose complement w.r.t B(�P3�) is M3 = {(⊥, p)(a)}. The stratified model
M(P) of P is the decoding of M3, i.e., {r(a), s(b), t(a), q(a), q(b), p(b)}.

4.3 Formal Characterization of the Stratified Evaluation Engine

We first state the main intermediate results, leading up to the key Theorem 16.
We assume p to be a program; pp, pp1 and pp2, “positive” programs; ci, an
initial complemented interpretation and pdef, the default “positive” constant.

Theorem 8 (Complementation Preserves Satisfiability). If symbols of a
stratum ss do not appear negated in the body of p clauses, then the satisfiability
of pp w.r.t (c2p ci) is preserved when complementing ci w.r.t ss.

Theorem 9 (Encoding/Decoding Preserves Satisfiability). In the follow-
ing, assume ci is well-complemented. If ci.1 is a model of p and all p symbols
are in ss, then (c2p ci) is a model of �p�. If (c2p ci) is a model of pp and
all pp body symbols are in ss, then ci.1 is a model of �pp�.

Intuitively, this is captured by the relations in the informal diagram below:21

pp : pprogram p : program

pi : pinterp (ci.1, ci.2) : cinterp

|= |=
encodep

decodep

c2p

p2c

21 The dashed encodep arrow marks the partiality of the cancellation lemma.

184 V. Benzaken et al.

Theorem 10 (Preservation Properties). If pp is safe, its pengine step
evaluation w.r.t ci is sound, bound by its Herbrand Base, increasing and stable.

Theorem 11 (Symbol Stratifiability). The atoms outputted by pengine
step are either in ci or have symbols appearing in the head of pp clauses.

Theorem 12 (Positivity). The “negative” component of ci, i.e., ci.2, is not
modified by pengine step, i.e., (pengine step pdef pp ci).2 = ci.2.

Theorem 13 (Injectivity). If pp1 and pp2 are extensionally equal, their cor-
responding pengine step evaluations w.r.t ci are equal.

Theorem 14 (Modularity). If pp1 does not contain head symbols in pp2 and
(c2p ci) is a model of pp1, then evaluating the concatenation of pp1 and pp2
w.r.t ci equals the union of their respective evaluations w.r.t ci.

Theorem 15 (Incrementality). Let p be a stratifiable program; (ci, str≤), a
cumulative interpretation of pstr≤ , and ss, a stratum. Assume that: (1) �pstr≤�
symbols are not head symbols in �pss�, (2) pstr≤ symbols are in str≤, (3)
ci is well-complemented w.r.t str≤, and (4) ci.1 is a model of pstr≤ . The
pengine step evaluation of �pstr≤ ∪ ss� increments ci.1 with facts having sym-
bols in ss.

Stratified Evaluation Invariant. Let p be a stratifiable program and (ci,
str≤), a cumulative interpretation of pstr≤ . The invariant of stratified evaluation
si invariant states: (1) ci.1 is a model of pstr≤ , (2) pstr≤ symbols are in str≤,
(3) ci is well-complemented with respect to str≤, and (4) ci symbols are in str≤.

Theorem 16 (Stratified Evaluation Soundness and Completeness). Let
p be a program, str, a strata - consisting of lower and upper strata, str≤ and
str>

22 - and ci, a complemented interpretation. If the input cumulative inter-
pretation (ci, str≤) satisfies the above invariant conditions, then the output
interpretation of the one-step evaluation of pstr> also satisfies them.
Proof by induction on str>.

As a corollary of Theorem 16, the encoded evaluation engine computes a model
for a stratifiable program p. A more subtle discussion concerns its minimality :

Example 4 Let P =

⎧
⎪⎪⎨

⎪⎪⎩

p ← q.
r ← ¬q.
s ← ¬q.
t ← ¬q.

⎫
⎪⎪⎬

⎪⎪⎭
= P1 � P2, P1 =

{
p ← q.

}
, P2 =

⎧
⎨

⎩

r ← ¬q.
s ← ¬q.
t ← ¬q.

⎫
⎬

⎭
. As M1 = TP1 ↑ ω(∅) = ∅, M2 = TP2 ↑ ω(M1) = {r, s, t},

the computed model MP = {r, s, t} differs from the cardinality-minimal model
Mmin

P = {p, q}.

22 i.e, str≤ stratifies pstr≤ and str> stratifies pstr> .

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 185

This is because the minimality of a computed stratified model depends on fixing
its input. Specifically, a model is minimal w.r.t others, if they agree on the sub-
model relative to the accumulated stratification. Since we need to consider both
the previous and current candidate model, we cannot state the corresponding
is min str rec minimality condition within the strata invariant. We thus define
it independently and prove it by induction on str>.

5 Related Work

The work of [20] provides a Coq formalization of the correctness and equiva-
lence of forward and backward, top-down and bottom-up semantics, based on
a higher-order abstract syntax for Prolog. Related to our work, as it provides
formal soundness proofs regarding the fixpoint semantics, it nonetheless differs
in perspective and methodology. Also, while we do not support function symbols
and other evaluation heuristics, we do support negation and manage to establish
correctness and completeness for the underlying algorithms of bottom-up infer-
ence. The work in [10] gives a Coq mechanization of standard Datalog in the
context of expressing distributed security policies23. The development contains
the encoding of the language, of bottom-up evaluation and decidability proofs. In
our corresponding formalizations, we did not need to explicitly prove the latter,
as we set up our types as finite. While we did not take into account modelling
security policies, the scope of our established results is wider.

6 Conclusion, Lessons and Perspectives

The exercise of formalizing database aspects has been an edifying experi-
ence. It helped clarify both the fundamentals underlying theoretical results and
the proof-engineering implications of making these machine readable and user
reusable.

On the database side, it quickly became apparent that, while foundational
theorems appeared intuitively clear, if not obvious, understanding their rigor-
ous justification required deeper reasoning. Resorting to standard references
(even comprehensive ones, such as [2]), led at times to the realization that low-
level details were either glanced over or left to the reader. For instance, to the
best of our knowledge, no scrupulous proofs exist for the results we established.
Indeed, as these are theoretically uncontroversial, their proofs are largely taken
for granted and, understandably so, as they ultimately target database prac-
titioners. Hence, these are mostly assumed in textbook presentations or when
discussing further language extensions. It was only by mechanizing these proofs
“from the ground up”, in a proof assistant, that the relevance of various proper-
ties (e.g., safety and finiteness), the motivation behind certain definitions (e.g.,
predicate intensionality/extensionality, strata restrictions, logical consequence,

23 http://www.cs.nott.ac.uk/types06/slides/NathanWhitehead.pdf.

http://www.cs.nott.ac.uk/types06/slides/NathanWhitehead.pdf

186 V. Benzaken et al.

stratified evaluation), or the precise meaning of ad-hoc notions/notations (e.g.,
“substitution compatibility”, B(P), model restrictions) became apparent.

As it is well known, database theory is based on solid mathematical foun-
dations, from model theory to algebra. This suggests that, when compared to
off-the-shelf program verification, verification in the database context requires
that proof systems have good support for mathematics. It was an interesting
to discover, in practice, the extent to which database theory proofs could be
recast into mathematical ones. To exemplify, by expressing forward chain as an
elegant set construct, we transferred proofs about Datalog inference engines into
set-theory ones, which are more natural to manipulate. Conversely, when for-
malizing the stratified semantics of Datalog with negation, we were compelled
to resort to some ad-hoc solutions to handle the lack of native library sup-
port for lattice theory. For example, proving that the type inhabited by models
is a lattice would automatically imply that stratification and complementation
retain partial ordering. Thus, we could do away with current lemmas concerning
symbol membership and well-complementation. Indeed, textbooks largely omit
explanations as to why and how it is necessary to reason about such structures
when proving properties of stratified evaluation. To this end, we were led to
introduce specialized notions, such as interpretation complementation. Also, we
had to explicitly establish that, at each evaluation step, the Herbrand Base of
the program’s restriction w.r.t the set of already processed strata symbols was
a well-complemented lattice.

On the theorem proving side, a crucial lesson is the importance of relying
on infrastructure that is well-tailored to the nature of the development. This
emerged as essential while working on the formalization of standard Datalog.
The triggering realization was that, as we could, w.l.o.g, restrict ourselves to
the active domain, models could be reduced to the finite setting and atoms
could be framed as finite types. Hence, the Mathematical Components library,
prominently used in carrying out finite model theory proofs, stood out as best
suited for our purposes. As we could heavily rely on the convenient properties
of finite types and on already established set theory properties, proofs were ren-
dered much easier and more compact. Another key aspect is the impact that
type encoding choices can have on the size and complexity of proofs. For exam-
ple, while having too many primitives is undesirable in programming language
design, it turned out to be beneficial to opt for greater base granularity. Sepa-
rating the type of ground/non-ground constructs helped both conceptually, in
understanding the relevance of standard range restrictions, and practically, in
facilitating proof advancement. Another example concerns the mechanization
of substitutions. Having the option to representing them as finitely supported
functions, together with all the useful properties this type has, was instrumental
to finding a suitable phrasing for the soundness and completeness of the match-
ing algorithm. Indeed, as the algorithm incrementally constructs groundings, it
seemed natural to define an ordering on substitutions leading up to these. Being
able to have a type encoding allowing to regard substitutions both as functions
and as lists was essential for this purpose. A final example regards the formal-
ization of models. As previously mentioned, setting up the type of ground atoms

Certifying Standard and Stratified Datalog Inference Engines in SSReflect 187

as finite payed off in that we could use many results and properties from the
fintype library, when reasoning about models - which was often the case. In
particular, we took advantage of the inherent lattice structure of such types
and did not need to explicitly construct B(P). Finally, relying on characteristic
properties (the SSReflect P-lemmas), many of which are conveniently stated as
reflection lemmas, led to leaner proofs by compositionality. In cases in which
induction would have been the default approach, these provided a shorter alter-
native (also, see [13], which gives a comprehensive formalization of linear algebra
without induction).

We are working on modularly enriching the development with further lan-
guage features, e.g., existentials, function symbols and update constructs. Envis-
aged applications of such extensions target security policy inference, data inte-
gration algorithms, and the certified property-based testing of realistic engines.

References

1. Barceló, P., Pichler, R. (eds.): Datalog in Academia and Industry. LNCS, vol. 7494.
Springer, Heidelberg (2012)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

3. Apt, K.R., Blair, H.A., Walker, A.: Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann Publishers Inc., San Francisco (1988)

4. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veld-
huizen, T.L., Washburn, G.: Design and implementation of the LogicBlox system.
In: SIGMOD ACM Proceedings of ICMD, pp. 1371–1382 (2015)

5. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gMark: schema-driven generation of graphs and queries. IEEE TKDE 29, 856–869
(2017)

6. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: Fagin, R. (ed.) ACM Proceedings of ICDT, vol. 361,
pp. 14–30 (2009)

7. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

8. Chin, B., von Dincklage, D., Ercegovac, V., Hawkins, P., Miller, M.S., Och, F.J.,
Olston, C., Pereira, F.: Yedalog: exploring knowledge at scale. In: Ball, T., Bodk,
R., Krishnamurthi, S., Lerner, B.S., Morrisett, G. (eds.) LIPIcs Proceedings of
SNAPL, vol. 32, pp. 63–78 (2015)

9. Datomic. http://www.datomic.com/
10. DeTreville, J.: Binder, a logic-based security language. In: IEEE Proceedings of the

Symposium on Security and Privacy, Washington, DC, USA, pp. 105–115. IEEE
Computer Society (2002)

11. Doczkal, C., Smolka, G.: Completeness and decidability results for CTL in Coq. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 226–241. Springer,
Cham (2014). doi:10.1007/978-3-319-08970-6 15

12. Exeura. http://www.exeura.com/
13. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M., Geu-

vers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 10

http://www.datomic.com/
http://dx.doi.org/10.1007/978-3-319-08970-6_15
http://www.exeura.com/
http://dx.doi.org/10.1007/978-3-642-22863-6_10

188 V. Benzaken et al.

14. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 14

15. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system (2016). https://hal.inria.fr/inria-00258384

16. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The lixto data
extraction project: back and forth between theory and practice. In: ACM SIGMOD-
SIGACT-SIGART Proceedings of PODS, pp. 1–12. ACM, New York (2004)

17. Grumbach, S., Wang, F.: Netlog, a rule-based language for distributed program-
ming. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 88–103.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11503-5 9

18. Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. ACM SIGMOD Rec. J. 39(1), 5–19 (2010)

19. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an inter-
active tutorial. In: ACM SIGMOD Proceedings of ICMD, pp. 1213–1216 (2011)

20. Kriener, J., King, A., Blazy, S.: Proofs you can believe in: proving equivalences
between prolog semantics in Coq. In: ACM Proceedings of PPDP, pp. 37–48 (2013)

21. Libkin, L.: The finite model theory toolbox of a database theoretician. In: ACM
SIGMOD-SIGACT-SIGART Proceedings of PODS, pp. 65–76 (2009)

22. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
23. LogicBlox. http://www.logicblox.com/
24. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Imple-

menting declarative overlays. In: ACM Proceedings of SOSP, pp. 75–90 (2005)
25. Lu, L., Cleary, J.G.: An operational semantics of starlog. In: Nadathur, G. (ed.)

PPDP 1999. LNCS, vol. 1702, pp. 294–310. Springer, Heidelberg (1999). doi:10.
1007/10704567 18

26. Luteberget, B., Johansen, C., Feyling, C., Steffen, M.: Rule-based incremental ver-
ification tools applied to railway designs and regulations. In: Fitzgerald, J., Heit-
meyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 772–778.
Springer, Cham (2016). doi:10.1007/978-3-319-48989-6 49

27. The Coq Development Team: The Coq Proof Assistant. Reference Manual (2016).
https://coq.inria.fr/refman/. Version 8.6

28. Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive database sys-
tems. J. Log. Program. 23(2), 125–149 (1993)

29. Semmle. https://semmle.com/
30. Seo, J., Park, J., Shin, J., Lam, M.S.: Distributed socialite: a datalog-based lan-

guage for large-scale graph analysis. Proc. VLDB Endow. 6, 1906–1917 (2013)
31. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.

5(2), 285–309 (1955)
32. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-

ming language. J. ACM 23(4), 733–742 (1976)
33. Vardi, M.Y.: The complexity of relational query languages. In: ACM Proceedings

of STOC, pp. 137–146 (1982)
34. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision

diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005). doi:10.1007/11575467 8

http://dx.doi.org/10.1007/978-3-642-39634-2_14
https://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1007/978-3-642-11503-5_9
http://www.logicblox.com/
http://dx.doi.org/10.1007/10704567_18
http://dx.doi.org/10.1007/10704567_18
http://dx.doi.org/10.1007/978-3-319-48989-6_49
https://coq.inria.fr/refman/
https://semmle.com/
http://dx.doi.org/10.1007/11575467_8

Weak Call-by-Value Lambda Calculus
as a Model of Computation in Coq

Yannick Forster(B) and Gert Smolka(B)

Saarland University, Saarbrücken, Germany
{forster,smolka}@ps.uni-saarland.de

Abstract. We formalise a weak call-by-value λ-calculus we call L in the
constructive type theory of Coq and study it as a minimal functional
programming language and as a model of computation. We show key
results including (1) semantic properties of procedures are undecidable,
(2) the class of total procedures is not recognisable, (3) a class is decidable
if it is recognisable, corecognisable, and logically decidable, and (4) a
class is recognisable if and only if it is enumerable. Most of the results
require a step-indexed self-interpreter. All results are verified formally
and constructively, which is the challenge of the project. The verification
techniques we use for procedures will apply to call-by-value functional
programming languages formalised in Coq in general.

1 Introduction

We study a minimal functional programming language L realising a subsystem of
the λ-calculus [3] known as weak call-by-value λ-calculus [8]. As in most program-
ming languages, β-reduction in weak call-by-value λ-calculus is only applicable if
the redex is not below an abstraction and if the argument is an abstraction. Our
goal is to formally and constructively prove the basic results from computability
theory [9,11] for L. The project involves the formal verification of self-interpreters
and other procedures computing with encodings of procedures. The verification
techniques we use will apply to call-by-value functional programming languages
formalised in Coq in general. We base our work on the constructive type theory
of Coq [15] and provide a development verifying all results.

The results from computability theory we prove for L include (1) seman-
tic properties of procedures are undecidable (Rice’s theorem), (2) the class of
total procedures is not recognisable, (3) a class is decidable if it is recognis-
able, corecognisable, and logically decidable (Post’s theorem), and (4) a class is
recognisable if and only if it is enumerable.

We prove that procedural decidability in L implies functional decidability in
Coq. The converse direction cannot be shown in Coq since Coq is consistent
with the assumption that every class is functionally decidable and procedurally
undecidable classes always exist. The same will be true for any Turing-complete
model of computation formalised in Coq.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 189–206, 2017.
DOI: 10.1007/978-3-319-66107-0 13

190 Y. Forster and G. Smolka

The result that procedural decidability implies functional decidability seems
contradictory at first since procedures come with unguarded recursion while func-
tions are confined to guarded recursion. The apparent paradox disappears once
one realises that procedural decidability means that termination of a decision
procedure can be shown in Coq’s constructive type theory.

Comparing L with the full λ-calculus, we find that L is more realistic as a pro-
gramming language and simpler when it comes to semantics and program verifi-
cation. The restrictions L imposes on β-reduction eliminate the need for capture-
free substitution and provide for a uniform confluence property [8,13] ensuring
that all evaluating reduction sequences of a term have the same length. Uniform
confluence simplifies the construction and verification of a self-interpreter by
eliminating the need for a reduction strategy like leftmost-outermost. Moreover,
uniform confluence for L is easier to prove than confluence for the full λ-calculus.

While L simplifies the full λ-calculus, it inherits powerful techniques devel-
oped for the λ-calculus: Procedural recursion can be expressed with self-
application, inductive data types can be expressed with Scott encodings [10,12],
and program verification can be based on one-step reduction, the accompanying
equivalence, and the connecting Church-Rosser property.

One place where the commitment to a constructive theory prominently shows
is Post’s theorem. The classical formulation of Post’s theorem states that a class
is decidable if it is recognisable and corecognisable. The classical formulation of
Post’s theorem is equivalent to Markov’s principle and does not hold in a purely
constructive setting [7]. We show Post’s theorem with the extra assumption that
the class is logically decidable. The extra assumption is needed so that we can
prove termination of the procedure deciding the class. We refer to the classical
formulation of Post’s theorem for L as Markov’s principle for L and establish
two complementary characterisations.

Related Work. There is not much work on computability theory in construc-
tive type theory. We are aware of Asperti and Ricciotti [1,2] who formalise
Turing machines in Matita including a verified universal machine and a verified
reduction of multi-tape machines to single-tape machines. They do not consider
decidable and recognisable classes. Ciaffaglione [6] formalises Turing machines
coinductively in Coq and shows the agreement between a big-step and a small-
step semantics.

Bauer [4] develops a constructive and anti-classical computability theory
abstracting away from concrete models of computation.

There is substantial work on computability theory in classical higher-order
logic. Norrish [14] presents a formal development of computability theory in
HOL4 where he considers full λ-calculus and partial recursive functions and
proves their computational equivalence. Norrish studies decidable and recog-
nisable classes, verifies self-interpreters, and proves basic results including the
theorems of Rice and Post.

There are substantial differences between our work and Norrish [14] apart
from the fact that Norrish works in a classical setting. Following Barendregt [3],

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 191

Norrish works with full λ-calculus and Gödel-Church encodings. We work with L
and Scott encodings instead. Church encodings are not possible using weak
β-reduction. We remark that Scott encodings are simpler than Gödel-Church
encodings (since they don’t involve recursion). Norrish proves Rice’s theorem
for partial recursive functions while we prove the theorem directly for proce-
dures in L.

Xu et al. [16] formalise Turing machines, abacus machines, and partial recur-
sive functions in Isabelle (classical higher-order logic) and show their compu-
tational equivalence following Boolos et al. [5]. They prove the existence of a
universal function. They do not consider the theorems of Rice and Post.

Dal Lago and Martini [8] consider a weak call-by-value λ-calculus and show
that Turing machines and procedures in the calculus can simulate each other
with polynomial-time overhead, thus providing evidence that a weak call-by-
value λ-calculus may serve as a reasonable complexity model. Their λ-calculus
is different from ours in that it employs full substitution and β-reduction is
possible if the argument is a variable. Like us, they use Scott encodings of data
types. Their work is not formalised.

Main Contributions. Our work is the first formal study of weak call-by-
value λ-calculus covering both language semantics and program verification. We
are also first in proving results from computability theory for a programming
language in constructive type theory.

The development of this paper is carried out in constructive type theory
and outlines a machine-checked Coq development. The Coq development is
surprisingly compact and consists of less than 2000 lines of code. The theo-
rems in the pdf of the paper are hyperlinked with their formalisations in the
Coq development, which can be found at http://www.ps.uni-saarland.de/extras/
L-computability.

2 Specification

We start by specifying essential properties of the functional language L we will
work with and by describing main results from computability theory we will
prove for L.

We assume a discrete type of terms and a class of terms called procedures.
We will use the letters s, t, u, v, w for terms and the letters p, q for classes of
terms.

We assume a functional relation s� t on terms called evaluation. We say that
a term s evaluates and write Es if there is a term t such that s � t.

We assume a function st from terms to terms called application.
We assume two procedures T and F such that T �= F and Tst�s and Fst� t

for all procedures s, t. As usual, we omit parentheses in nested applications; for
instance, Tst stands for (Ts)t.

http://www.ps.uni-saarland.de/extras/L-computability
http://www.ps.uni-saarland.de/extras/L-computability

192 Y. Forster and G. Smolka

We assume an injective function s from terms to procedures called term
encoding. The purpose of the encoding function is to encode a term into a pro-
cedure providing the term as data to other procedures. This is a subtle point
that will become clear later. For now it suffices to know that s is a function from
terms to procedures.

We now define decidable, recognisable, and corecognisable classes of terms:

– A procedure u decides a class p if ∀s. ps ∧ us � T ∨ ¬ps ∧ us � F.
– A procedure u recognises a class p if ∀s. ps ↔ E(us).
– A procedure u corecognises a class p if ∀s. ¬ps ↔ E(us).

Our assumptions suffice to establish the existence of undecidable and
unrecognisable classes.

Fact 1. Let u decide p. Then ps ↔ us � T and ¬ps ↔ us � F.

Fact 2. λs.¬(ss � T) is not decidable, and λs.¬E(ss) is not recognisable.

Proof. Suppose u decides λs.¬(ss � T). Then us � T ↔ ¬(ss � T) for all s. The
equivalence is contradictory for s := u. The proof for the unrecognisable class is
similar. ��

We need different notions of decidability in this paper. We call a class p

– logically decidable if there is a proof of ∀s. ps ∨ ¬ps.
– functionally decidable if there is a function f such that ∀s. ps ↔ fs = true.
– procedurally decidable if there is a procedure deciding p.

If we say decidable without further qualification, we always mean procedurally
decidable. Note that functionally decidable classes are logically decidable.

We define two semantic properties of terms. A term s is total if the applica-
tion st evaluates for every term t. Semantic equivalence of terms is defined as
s ≈ t := ∀uv. su � v ↔ tu � v. Note that if s ≈ t, then s is total iff t is total.

We can now specify major results we will prove in this paper.

– Rice’s theorem. Every nontrivial class of procedures that doesn’t distinguish
between semantically equivalent procedures is undecidable.

– Modesty. Procedurally decidable classes are functionally decidable.
– Totality. The class of total procedures is unrecognisable.
– Post’s Theorem. A class is decidable if it is recognisable, corecognisable, and

logically decidable.

We will also consider enumerable classes and show that they agree with recog-
nisable classes. All results but Rice’s theorem require a step-indexed interpreter
or step-indexed self-interpreter.

Note the distinction between functions and procedures. While functions are
entities of the typed specification language (i.e., Coq’s type theory), procedures
are entities of the untyped programming language L formalised in the specifi-
cation language by means of a deep embedding. As we will see, L comes with
unbounded recursion and thus admits nonterminating procedures. In contrast,
Coq’s type theory is designed such that functions always terminate.

https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_spec
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#undecidable_russell

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 193

3 Definition of L

We will work with the terms of the λ-calculus. We restrict β-reduction such
that β-redexes can only be reduced if (1) they are not within an abstraction
and (2) their argument term is an abstraction. With this restriction the terms
λx.(λy.y)(λy.y) and (λx.x)x are irreducible. We speak of weak call-by-value
β-reduction and write s
 t if t can be obtained from s with a single weak
call-by-value β-reduction step. We will define the evaluation relation such that
s� t holds iff s
∗ t and t is an abstraction. Procedures will be defined as closed
abstractions.

Since we want formal proofs we are forced to formally define the concrete
weak call-by-value λ-calculus L we are working with. In fact, there are some
design choices. We will work with de Bruijn terms and capturing substitution,
two design decisions providing for a straightforward formal development.

We start the formal definition of L with an inductive type of terms:

s, t ::= n | st | λs (n : N)

We fix some terms for further use:

I = λx.x T = λxy.x F = λxy.y ω = λx.xx D = λx.ωω

:= λ0 := λ(λ1) := λ(λ0) := λ(00) := λ(ωω)

For readability, we will usually write concrete terms with named abstractions,
as shown above. The Coq development provides a function translating named
abstraction to the implementation using de Bruijn indices. Note that D is
reducible in the full λ-calculus but will not be reducible in L.

We define a substitution function sk
u that replaces every free occurrence of a

variable k in a term s with a term u. The definition is by recursion on s:

nk
u = if n = k then u else n

(st)k
u = (sk

u)(tku)

(λs)k
u = λ(sSk

u)

A substitution sk
u may capture free variables in u. Capturing will not affect our

development since it doesn’t affect confluence and our results mostly concern
closed terms.

We now give a formal definition of closed terms. Closed terms are important
for our development since procedures are defined as closed abstractions and
substitutions do not affect closed terms. Moreover, we need a decider for the
class of closed terms.

We define a recursive boolean function bound k s satisfying the equations

bound k n = if n < k then true else false

bound k (st) = if bound k s then bound k t else false

bound k (λs) = bound (Sk) s

194 Y. Forster and G. Smolka

Speaking informally, bound k s tests whether every free variable in s is smaller
than k. We say that s is bound by n if bound n s = true. We now define closed
terms as terms bound by 0, and procedures as closed abstractions. Note that the
terms I, T, F, ω, and D are all procedures. The following fact will be used tacitly
in many proofs.

Fact 3. If s is bound by n and k ≥ n, then sk
u = s. Moreover, sk

u = s for closed s.

We define evaluation s � t as an inductive predicate:

λs � λs

s � λu t � v u0
v � w

st � w

Recall that we write Es and say that s evaluates if s � t for some term t.

Fact 4.

1. If s � t, then t is an abstraction.
2. If s � t and s is closed, then t is closed.
3. If st evaluates, then both s and t evaluate.
4. Fst evaluates if and only if both s and t evaluate.
5. ωω does not evaluate.
6. Ds does not evaluate.

4 Uniformly Confluent Reduction Semantics

To provide for the verification of procedures in L, we complement the big-step
semantics obtained with the evaluation predicate with a uniformly confluent
reduction semantics.

We define one-step reduction s
 t as an inductive predicate:

(λs)(λt)
 s0λt

s
 s′

st
 s′t
t
 t′

st
 st′

We also define two reduction relations s
∗ t and s
n t as inductive predi-
cates:

s
∗ s

s
 u u
∗ t

s
∗ t s
0 s

s
 u u
n t

s
Sn t

Fact 5.

1. s
∗ t is transitive.
2. If s
∗ s′ and t
∗ t′, then st
∗ s′t′.
3. s
∗ t iff s
n t for some n.
4. If s
m s′ and s′
n t, then s
m+n t.
5. If s � t, then s
∗ t and t is an abstraction.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#bound_closed_k
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_abst
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_closed
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#app_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#F_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#eva_Omega
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#eva_D
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_trans
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_app
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_stepn
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#stepn_plus
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_star

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 195

6. If s
 s′ and s′ � t, then s � t.
7. If s
∗ s′ and s′ � t, then s � t.
8. If s
∗ t and t is an abstraction, then s � t.

With the reduction semantics we can specify procedural recursion, which is
essential for our goals.

Fact 6 (Recursion Operator). There is a function ρ from terms to terms
such that (1) ρs is a procedure if s is closed and (2) (ρu)v
3 u(ρu)v for all
procedures u and v.

Proof. ρs := λx.CCsx with C := λxy.y(λz.xxyz) does the job. ��
We call the function ρ recursion operator since it provides for recursive pro-

gramming in L using well-known techniques from functional programming.
The weak call-by-value λ-calculus in general and L in particular enjoy a

strong confluence property [8,13] we call uniform confluence.

Fact 7 (Uniform Confluence).

1. If s
 t1 and s
 t2, then either t1 = t2 or t1
 u and t2
 u for some u.
2. If s
m t1 and s
n t2, then there exist numbers k ≤ n and l ≤ m and a

term u such that t1
k u and t2
l u and m + k = n + l.

Corollary 8. s
 t is confluent.

We define s�n t := s
n t∧abstraction t and s
+ t := ∃s′. s
 s′ ∧s′
∗ t.

Corollary 9 (Unique Step Index). If s �m t and s �n t, then m = n.

Corollary 10 (Triangle). If s �n t and s
+ s′, then s′ �k t for some k < n.

We define reduction equivalence s ≡ t as the equivalence closure of reduction:

s
 t

s ≡ t s ≡ s

s ≡ t

t ≡ s

s ≡ t t ≡ u

s ≡ u

Reduction equivalence enjoys the usual Church-Rosser properties and will play
a major role in the verification of procedures.

Fact 11 (Church-Rosser Properties).

1. If s
∗ t, then s ≡ t.
2. If s ≡ t, then s
∗ u and t
∗ u for some term u.
3. If s ≡ s′ and t ≡ t′, then st ≡ s′t′.
4. s ≡ t ↔ s
∗ t if t is a variable or an abstraction.
5. s � t iff s ≡ t and t is an abstraction.
6. If s ≡ t, then s � u iff t � u.

Proof. Claim 1 follows by induction on s
∗ t. Claim 2 follows by induction on
s ≡ t and Corollary 8. Claim 3 follows with Claim 2, Fact 5(2), and Claim 1. The
remaining claims follow with Claim 1 and Claim 2. ��

Because L employs call-by-value reduction, a conditional if u then s else t
needs to be expressed as u(λs)(λt)I in general. We have T(λs)(λt)I
∗ s and
F(λs)(λt)I
∗ t.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#step_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#steps_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#rho_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#uniform_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#uniform_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#parametric_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#unique_step_index
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#triangle
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#church_rosser
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#app_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#equiv_star_lam
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_proper

196 Y. Forster and G. Smolka

5 Scott Encoding of Numbers

Seen as a programming language, L is a language where all values are procedures.
We now show how procedures can encode data using a scheme known as Scott
encoding [10,12]. We start with numbers, whose Scott encoding looks as follows:

̂0 := λab.a ̂Sn := λab.b n̂

Note that n̂ is an injective function from numbers to procedures. We have the
equivalences

̂0 s t ≡ s ̂Sn s t ≡ t n̂

for all evaluable closed terms s, t and all numbers n. The equivalences tell us that
the procedure n̂ can be used as a match construct for the encoded number n.

We define a procedure Succ := λxab.bx such that Succ n̂ ≡ ̂Sn. Note that the
procedures ̂0 and Succ act as the constructors of the Scott encoding of numbers.

Programming with Scott encodings is convenient in that we can follow famil-
iar patterns from functional programming. We demonstrate the case with a func-
tional specification

∀mn. Add m̂ n̂ ≡ m̂ + n

of a procedure Add for addition. We say that we are looking for a procedure
Add realising the addition function m + n. A well-known recursive specification
for the addition function consists of the quantified equations 0 + n = n and
Sm + n = S(m + n). This gives us a recursive specification for the procedure
Add (quantification of m and n is omitted):

Add ̂0 n̂ ≡ n̂ Add ̂Sm n̂ ≡ Succ (Add m̂ n̂)

With induction on m one can now show that a procedure Add satisfies the
functional specification if it satisfies the recursive specification. The recursive
specification of Add suggest a recursive definition of Add using L’s recursion
operator ρ:

Add := ρ(λxyz.yz(λy0.Succ(xy0z)))

Using the equivalences for the recursion operator ρ and those for the procedures
̂0, ̂Sn, and Succ, one easily verifies that Add satisfies the equivalences of the
recursive specification. Hence Add satisfies the functional specification we started
with.

The functional specification of Add has the virtue that properties of Add
like commutativity (i.e., Add m̂ n̂ ≡ Add n̂ m̂) follow from properties of the
addition function m + n.

The method we have seen makes it straightforward to obtain a procedure
realising a function given a recursive specification of the function. Once we have

https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Add
https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Add_correct

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 197

Scott encodings for terms and a few other inductive data types, the vast major-
ity of procedures needed for our development can be derived routinely from
their functional specifications. We are working on tactics that, given a recur-
sive function, automatically derive a realising procedure and the corresponding
correctness lemma.

6 Scott Encoding of Terms

We define the term encoding function s specified in Sect. 2 as follows:

n := λabc.a n̂ st := λabc.b s t λs := λabc.c s

This definition agrees with the Scott encoding of the inductive data type for
terms. We define the constructors for variables, applications, and abstractions
such that they satisfy the equivalences

V n̂ ≡ n A s t ≡ st L s ≡ λs

for all numbers n and all terms s and t.
We will define two procedures N and Q satisfying the equivalences

N n̂ ≡ n̂ Q s ≡ s

for all numbers n and all terms s. The procedure Q is known as quote and will be
used in the proof of Rice’s theorem. The procedure N is an auxiliary procedure
needed for the definition of Q. We define the procedures N and Q with the
recursion operator realising the following recursive specifications:

N̂0 ≡ ̂0 Q n ≡ L(L(L(A 2 (N n̂))))

N ̂Sn ≡ L(L(A0 (N n̂))) Q st ≡ L(L(L(A(A1 (Q s))(Q t))))

Q λs ≡ L(L(L(A 0 (Q s))))

Given the definitions of procedures N and Q, one first verifies that they satisfy
the equivalences of the recursive specifications. Then one shows by induction on
numbers and terms that N and Q satisfy the functional specifications we started
with. We summarise the results obtained so far.

Fact 12. There are procedures V, A, L, and Q such that V n̂ ≡ n, A s t ≡ st,
L s ≡ λs, and Q s ≡ s.

7 Decidable and Recognisable Classes

Now that we have established the term encoding function, we can start prov-
ing properties of decidable and recognisable classes. Recall the definitions from
Sect. 2. We will prove the following facts: decidable classes are recognisable; the
family of decidable classes is closed under intersection, union, and complement;
and the family of recognisable classes is closed under intersection. We establish
these facts constructively with translation functions.

https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Var_correct

198 Y. Forster and G. Smolka

Fact 13. Let u decide p and v decide q. Then:

1. λx.ux I D I recognises p.
2. λx.ux(vx)F decides λs.ps ∧ qs.
3. λx.uxT(vx) decides λs.ps ∨ qs.
4. λx.uxF T decides λs.¬ps.

Fact 14. λx.F(ux)(vx) recognises λs.ps ∧ qs if u recognise p and v recognise q.

We now prove Scott’s theorem for L following Barendregt’s proof [3] of Scott’s
theorem for the full λ-calculus. Scott’s theorem is useful for proving undecid-
ability of classes that do not distinguish between reduction equivalent closed
terms.

Fact 15. Let s be closed. Then there exists a closed term t such that t ≡ st.

Proof. t := CC with C :=λx.s(Ax(Qx)) does the job. ��
Theorem 16 (Scott).
Every class p satisfying the following conditions is undecidable.

1. There are closed terms s1 and s2 such that ps1 and ¬ps2.
2. If s and t are closed terms such that s ≡ t and ps, then pt.

Proof. Let p be a class as required and u be a decider for p. Let s1 and s2 be
closed terms such that ps1 and ¬ps2. We define v := λx.ux(λs2)(λs1) I. Fact 15
gives us a closed term t such that t ≡ vt ≡ ut(λs2)(λs1)I. Since u is a decider
for p, we have two cases: (1) If ut ≡ T and pt, then t ≡ s2 contradicting ¬ps2;
(2) If ut ≡ F and ¬pt, then t ≡ s1 contradicting ps1. ��
Corollary 17. The class of evaluating terms is undecidable.

Corollary 18. For every closed term t the class λs.s ≡ t is undecidable.

8 Reduction Lemma and Rice’s Theorem

The reduction lemma formalises a basic result of computability theory and will
be used in our proofs of Rice’s theorem and the totality theorem. Speaking
informally, the reduction lemma says that a class is unrecognisable if it can
represent the class λs. closed s ∧ ¬E(ss) via a procedurally realisable function.

Fact 19. The class λs. closed s ∧ ¬E(ss) is not recognisable.

Proof. Suppose u is a recogniser for the class. Then E(uu) ↔ closed u∧¬E(uu),
which is contradictory. ��
Fact 20. There is a decider for the class of closed terms.

https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#dec_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_intersection
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_union
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_complement
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#recognisable_intersection
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#SecondFixedPoint
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#Scott
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#eva_dec
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#equiv_spec_decidable
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#unrecognisable_russell
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#decidable_closed

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 199

Proof. The decider can be obtained with a procedure realising the boolean func-
tion bound k s defined in Sect. 3. For this we need a procedure realising a boolean
test m < n. The construction and verification of both procedures is routine using
the techniques from Sect. 5. ��
Lemma 21 (Reduction). A class p is unrecognisable if there exists a func-
tion f such that:

1. p(fs) ↔ ¬E(ss) for every closed terms s.
2. There is a procedure v such that vs ≡ fs for all s.

Proof. Let f be a function satisfying (1) and (2) for a procedure v. Suppose u
recognises p. Let C be a recogniser for the class of closed terms (available by
Fact 20). We define the procedure

w := λx.F(Cx)(u(vx))

We have ws ≡ F(Cs)(u(fs)). Thus E(ws) ↔ closed s ∧ E(u(fs)). Since u is a
recogniser for p, we have E(u(fs)) ↔ p(fs) for all s. Since p(fs) ↔ ¬E(ss) for
closed s by assumption, we have closed s ∧ E(u(fs)) ↔ closed s ∧ ¬E(ss) for
all s. Thus w is recogniser for the unrecognisable class of Fact 19. Contradiction.

��
We now come to Rice’s theorem. Using the reduction lemma, we will first

prove a lemma that is stronger than Rice’s theorem in that it establishes unrecog-
nisability rather than undecidability. We did not find this lemma in the literature,
but for ease of language we will refer to it as Rice’s lemma.

Recall the definition of semantic equivalence

s ≈ t := ∀uv. su � v ↔ tu � v

from Sect. 2. We have s ≡ t → s ≈ t using Fact 11. We say that a class p is seman-
tic for procedures if the implication s ≈ t → ps → pt holds for all procedures s
and t.

Lemma 22 (Rice). Let p be a class that is semantic for procedures such that D
is in p and some procedure N is not in p. Then p is unrecognisable.

Proof. By the reduction lemma. We define fs as a procedure such that for
closed s we have fs ≈ D if ¬E(ss) and fs ≈ N if E(ss). Here are the definitions
of f and the realising procedure v:

f := λs.λy.F(ss)Ny

v := λx.L(A(A(AF(Ax(Qx)))N)0)

Verifying the proof obligations of the reduction lemma is straightforward. ��

https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#Reduction
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#Rice

200 Y. Forster and G. Smolka

Corollary 23.

1. The class of non-total terms is unrecognisable.
2. The class of non-total closed terms is unrecognisable.
3. The class of non-total procedures is unrecognisable.

Theorem 24 (Rice). Every nontrivial class of procedures that is semantic for
procedures is undecidable.

Proof. Let p be a nontrivial class that is semantic for procedures. Suppose p is
decidable. We proceed by case analysis for pD.

Let pD. Then p is unrecognisable by Rice’s Lemma, contradicting the
assumption that p is decidable.

Let ¬pD. We observe that λs.¬ps is semantic for procedures and contains D.
Thus λs.¬ps is unrecognisable by Rice’s Lemma, contradicting the assumption
that p is decidable. ��
Corollary 25. The class of total procedures is undecidable.

Rice’s theorem looks similar to Scott’s theorem but neither can be obtained
from the other. Recall that procedures are reduction equivalent only if they are
identical.

The key idea in the proof of Rice’s lemma is the construction of the proce-
dure v that constructs a procedure that has the right properties. In textbooks
this intriguing piece of meta-programming is usually carried out in English using
Turing machines in place of procedures. We doubt that there is a satisfying for-
mal proof of Rice’s lemma using Turing machines.

9 Step-Indexed Interpreter and Modesty

We will now prove that procedural decidability implies functional decidabil-
ity. The proof employs a step-indexed interpretation function for the evaluation
relation s � t. The interpretation function will also serve as the basis for a step-
indexed self-interpreter for L, which is needed for the remaining results of this
paper.

We use T to denote the type of terms, T∅ to denote the option type for T, and
�s� and ∅ to denote the values of T∅. We define a function eval : N → T → T∅
satisfying the following recursive specification.

eval n k = ∅
eval n (λs) = �λs�
eval 0 (st) = ∅

eval (Sn) (st) = match eval n s, eval n t with

| �λs�, �t� ⇒ eval n s0t
| ⇒ ∅

https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#rec_total
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#rec_total_cls
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#rec_total_proc
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#Rice_Theorem
https://www.ps.uni-saarland.de/extras/L-computability/doc/Rice.html#dec_total

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 201

Fact 26.

1. If eval n s = �t�, then eval (Sn) s = �t�.
2. If s
 s′ and eval n s′ = �t�, then eval (Sn) s = �t�.
3. s � t if and only if eval n s = �t� for some n.

Proof. Claim 1 follows by induction on n. Claim 2 follows by induction on n
using Claim 1. Claim 3, direction →, follows by induction on s
∗ t and Claim 2.
Claim 3, direction ←, follows by induction on n. ��
Lemma 27. There is a function of type ∀s. E s → Σt. s � t.

Proof. Let s be a term such that Es. Then we have ∃nt. eval n s = �t� by Fact 26.
Since the predicate λn. ∃t. eval n s = �t� is functionally decidable, constructive
choice for N gives us an n such that ∃t. eval n s = �t�. Hence we have t such
that eval n s = �t�. Thus s � t with Fact 26. ��
Theorem 28 (Modesty). Procedurally decidable classes are functionally
decidable.

Proof. Let u be a decider for p. Let s be a term. Lemma 27 gives us a term v
such that us � v. Now we return true if v = T and false otherwise. ��

We can also show modesty results for procedures other than deciders. For
this we need a decoding for the Scott encoding of terms.

Fact 29 (Decoding). There is a function δ : T → T∅ such that (1) δ s = �s�
and (2) δ s = �t� → t = s for all terms s and t.

Fact 30 (Modesty). Let u be a procedure such that ∀s∃t. u s � t. Then there
is a function f : T → T such that ∀s. u s � fs.

Proof. Follows with Lemma 27 and Fact 29. ��

10 Choose

Choose is a procedure that given a decidable test searches for a number satis-
fying the test. Choose is reminiscent of minimisation for recursive functions [5].
Choose will be the only procedure in our development using truly unguarded
recursion. We will use choose to obtain unbounded self-interpreters and to obtain
recognisers from enumerators.

A test is a procedure u such that for every number n either un̂�T or un̂�F.
A number n satisfies a test u if un̂ � T. A test u is satisfiable if it is satisfied by
some number.

Theorem 31 (Choose). There is a procedure C such that for every test u:

1. If u is satisfiable, then Cu � n̂ for some n satisfying u.
2. If Cu evaluates, then u is satisfiable.

https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#eval_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#eval_step
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#evaluates_eval
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#computable_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#decidable_dec
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#decode_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/Interpreter.html#L_computable_computable
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_sound

202 Y. Forster and G. Smolka

Proof. We start with an auxiliary procedure H satisfying the recursive specifi-
cation

H n̂ u ≡ u n̂ (λn̂) (λ(H(Succ n̂)u)) I

and define C := λx.H ̂0x. Speaking informally, H realises a loop incrementing n
until u n̂ succeeds. We say that H n̂ u is ok if H n̂ u � ̂k for some number k
satisfying u and proceed as follows:

1. If n satisfies u, then H n̂ u is ok.
2. If H ̂Snu is ok, then H n̂ u is ok.
3. If H n̂u is ok, then H ̂0 u is ok. Follows by induction on n with (2).
4. Claim 1 follows with (1) and (3).
5. If H n̂ u evaluates in k steps, then u is satisfiable. Follows by complete induc-

tion on k using the triangle property.
6. Claim 2 follows from (5) with n = 0. ��

Note that the verification of choose employs in (6) complete induction on
the step-index of an evaluation together with the triangle property (Fact 10) to
handle the unguarded recursion of the auxiliary procedure H. This is the only
time these devices are used in our development.

11 Results Obtained with Self-Interpreters

For the specification of a step-indexed self-interpreter, we define an injective
encoding function for term options:

̂�s� := λab.as

̂∅ := λab.b

Fact 32. There is a procedure E such that E n̂ s ≡ ̂eval n s for all n and s.

Proof. We first construct and verify procedures realising the functions m=n
and sk

u. We then construct and verify the procedure E following the recursive
specification of the function eval in Sect. 9. ��
Theorem 33 (Step-Indexed Self-Interpreter).

1. If E n̂ s � ̂�t�, then E ̂Sn s � ̂�t�.
2. ∀sn. (E n̂ s � ̂∅) ∨ (∃t. E n̂ s � ̂�t� ∧ s � t).
3. If s � t, then E n̂ s � ̂�t� for some n.

Proof. Follows with Facts 32 and 26. ��
Theorem 34 (Totality). The class of total procedures is not recognisable.

https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_ok
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_n_Sn
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_0_n
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#totality

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 203

Proof By the reduction lemma. We define fs as a procedure that for closed s
is total iff ¬E(ss). We define fs such that (fs)t evaluates if t is an application
or an abstraction. If t is a number n, we evaluate ss with the step-indexed
self-interpreter for n steps. If this succeeds, we diverge using D, otherwise we
return I. Here are the definitions of f and the realising procedure v:

f := λs.λy.y (λz.E z (ss) D I) F I

v := λx.L(A(A(A0 (L(A(A(A(AE 0)(Q (Ax(Qx))))D) I))) F) I) ��

Corollary 35. The class of total terms is neither recognisable nor corecognis-
able.

Proof. Suppose the class of total terms is recognisable. Then the class of total
procedures is recognisable since the class of procedures is recognisable (follows
with Fact 20). Contradiction with Theorem34. The other direction is provided
by Corollary 23. ��

We now construct an unbounded self-interpreter using the procedure choose
and the step-indexed self-interpreter E.

Theorem 36 (Self-Interpreter). There is a procedure U such that:

1. If s � t, then U s � t.
2. If U s evaluates, then s evaluates.

Proof. U := λx. E (C(λy.Eyx(λT)F))x I I does the job. The verification uses
Theorems 33 and 31. ��
Corollary 37. The self-interpreter U recognises the class of evaluable terms.

For Post’s theorem we need a special self-interpreter considering two terms.
We speak of a parallel or operator.

Theorem 38 (Parallel Or). There is a procedure O such that:

1. If s or t evaluates, then O s t evaluates.
2. If O s t evaluates, then either E s and O s t � T, or E t and O s t � F.

Proof. O := λxy. (λz.Ezx(λT)(Ezy(λF) I)) (C(λz.Ezx(λT)(Ezy(λT)F))) does
the job. The verification uses Theorems 33 and 31. ��
Corollary 39 (Post). If u recognises p and v recognises λs.¬ps, then the pro-
cedure λx.O (Au (Qx)) (A v (Qx)) decides p provided p is logically decidable.

With parallel or we can also show that the family of recognisable classes is
closed under union.

Corollary 40 (Union). If u recognises p and v recognises q, then the procedure
λx.O (Au (Qx)) (A v (Qx)) recognises λs. ps∨ qs.

https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#totality_hard
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#U
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#U_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#U_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#recognisable_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/Por.html#O
https://www.ps.uni-saarland.de/extras/L-computability/doc/Por.html#O_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/Por.html#O_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/Por.html#Post
https://www.ps.uni-saarland.de/extras/L-computability/doc/Por.html#recognisable_union

204 Y. Forster and G. Smolka

12 Enumerable Classes

A class is enumerable if there is a procedurally realisable function from numbers
to term options that yields exactly the terms of the class. More precisely, a
procedure u enumerates a class p if:

1. ∀n. (un̂ � ̂∅) ∨ (∃s. un̂ � ̂�s� ∧ ps).
2. ∀s. ps → ∃n. un̂ � ̂�s�.
Following well-known ideas, we show that a class is recognisable if and only if
it is enumerable. We will be content with informal outlines of the proof in the
Coq development since we have already seen all necessary formal techniques.

Fact 41. Given an enumerator for p, one can construct a recogniser for p.

Proof. Given a term s, the recogniser for p searches for a number n such that
the enumerator for p yields s (using the procedure choose). ��
Fact 42. The class of a all terms is enumerable.

Proof. One first writes an enumerator function and then translates it into a
procedure. The translation to a procedure is routine. Coming up with a compact
enumeration function is a nice programming exercise. Our solution is in the
Coq development. ��
Fact 43. Given a recogniser for p, one can construct an enumerator for p.

Proof. Given n, the enumerator for p obtains the term option for n using the
term enumerator. If the option is not of the form �ns�, the enumerator for p fails.
If the option is of the form �ns�, the recogniser for p is run on s for n steps using
the step-indexed self-interpreter. If this succeeds, the enumerator for p succeeds
with s, otherwise it fails. ��

13 Markov’s Principle

Markov’s principle is a proposition not provable constructively and weaker than
excluded middle [7]. Formulated for L, Markov’s principle says that a class is
decidable if it is recognisable and corecognisable. We establish two further char-
acterisations of Markov’s principle for L using parallel or (Theorem38) and the
enumerability of terms (Fact 42).

Lemma 44. If p is decidable, then λ .∃s.ps is recognisable.

Proof. Follows with Fact 42 and 31. ��
Theorem 45 (Markov’s Principle). The following statements are equivalent:

https://www.ps.uni-saarland.de/extras/L-computability/doc/Enumerable.html#enumerable_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/Enumerable.html#enumerable_all
https://www.ps.uni-saarland.de/extras/L-computability/doc/Enumerable.html#T_enum
https://www.ps.uni-saarland.de/extras/L-computability/doc/Enumerable.html#recognisable_enumerable
https://www.ps.uni-saarland.de/extras/L-computability/doc/Markov.html#DA
https://www.ps.uni-saarland.de/extras/L-computability/doc/Markov.html#Markov_Post

Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 205

1. If a class is recognisable and corecognisable, then it is decidable.
2. Satisfiability of decidable classes is stable under double negation:

∀p. decidable p → ¬¬(∃s.ps) → ∃s.ps.
3. Evaluation of closed terms is stable under double negation:

∀s. closed s → ¬¬Es → Es.

Proof. 1 → 2. Let p be decidable and ¬¬∃s.ps. We show ∃s.ps. By (1),
Lemma 44, and ¬(∃s.ps) ↔ ⊥ we know that the class λ .∃s.ps is decidable.
Thus we have either ∃s.ps or ¬∃s.ps. The first case is the claim and the second
case is contradictory with the assumption.

2 → 3. Let s be a closed term such that ¬¬Es. We show Es. Consider the
decidable class p := {n | eval n s �= ∅ }. We have Es ↔ ∃t.pt. By (2) it suffices
to show ¬¬∃t.pt, which follows with the assumption ¬¬Es.

3 → 1. Let u be a recogniser for p and v be a recogniser for λs.¬ps. We show
that λx.O (Au (Qx)) (A v (Qx)) is a decider for p. By Theorem 38 it suffices to
show that O (us) (vs) evaluates for all terms s. Using (3) we prove this claim by
contradiction. Suppose O (us) (vs) does not evaluate. Then, using Theorem38,
neither us nor vs evaluates. Thus ¬ps and ¬¬ps. Contradiction. ��

We remark that Markov’s principle for L follows from a global Markov’s
principle saying that satisfiability of functionally decidable classes of numbers is
stable under double negation. This can be shown with Theorem45(3) and the
equivalence Es ↔ ∃n. eval n s �= ∅.

References

1. Asperti, A., Ricciotti, W.: Formalizing turing machines. In: Ong, L., Queiroz,
R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 1–25. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32621-9 1

2. Asperti, A., Ricciotti, W.: A formalization of multi-tape turing machines. Theoret.
Comput. Sci. 603, 23–42 (2015)

3. Barendregt, H.P., Calculus, T.L.: Its Syntax and Semantics, 2 revised edn. North-
Holland, Amsterdam (1984)

4. Bauer, A.: First steps in synthetic computability theory. ENTCS 155, 5–31 (2006)
5. Boolos, G., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 5th edn. Cam-

bridge University Press, Cambridge (2007)
6. Ciaffaglione, A.: Towards turing computability via coinduction. Sci. Comput. Pro-

gram. 126, 31–51 (2016)
7. Coquand, T., Mannaa, B.: The independence of Markov’s principle in type theory.

In: FSCD 2016. LIPIcs, vol. 52, pp. 17:1–17:18. Schloss Dagstuhl (2016)
8. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.

Theor. Comput. Sci. 398(1–3), 32–50 (2008)
9. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. Pearson, New York (2013)
10. Jansen, J.M.: Programming in the λ-calculus: from church to scott and back. In:

Achten, P., Koopman, P. (eds.) The Beauty of Functional Code. LNCS, vol. 8106,
pp. 168–180. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40355-2 12

11. Kozen, D.: Automata and Computability. Springer, New York (1997)

https://www.ps.uni-saarland.de/extras/L-computability/doc/Markov.html#Markov_Post_to_Sat
https://www.ps.uni-saarland.de/extras/L-computability/doc/Markov.html#Markov_Sat_to_Eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/Markov.html#Markov_Eva_to_Post
http://dx.doi.org/10.1007/978-3-642-32621-9_1
http://dx.doi.org/10.1007/978-3-642-40355-2_12

206 Y. Forster and G. Smolka

12. Mogensen, T.Æ.: Efficient self-interpretations in lambda calculus. J. Funct. Pro-
gram. 2(3), 345–363 (1992)

13. Niehren, J.: Functional computation as concurrent computation. In: POPL 1996,
pp. 333–343. ACM (1996)

14. Norrish, M.: Mechanised computability theory. In: Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22863-6 22

15. The Coq Proof Assistant. http://coq.inria.fr
16. Xu, J., Zhang, X., Urban, C.: Mechanising turing machines and computability

theory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 147–162. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 13

http://dx.doi.org/10.1007/978-3-642-22863-6_22
http://coq.inria.fr
http://dx.doi.org/10.1007/978-3-642-39634-2_13
http://dx.doi.org/10.1007/978-3-642-39634-2_13

Bellerophon: Tactical Theorem Proving
for Hybrid Systems

Nathan Fulton(B), Stefan Mitsch, Rose Bohrer, and André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
{nathanfu,smitsch,aplatzer}@cs.cmu.edu

Abstract. Hybrid systems combine discrete and continuous dynamics,
which makes them attractive as models for systems that combine com-
puter control with physical motion. Verification is undecidable for hybrid
systems and challenging for many models and properties of practical
interest. Thus, human interaction and insight are essential for verifica-
tion. Interactive theorem provers seek to increase user productivity by
allowing them to focus on those insights. We present a tactics language
and library for hybrid systems verification, named Bellerophon, that pro-
vides a way to convey insights by programming hybrid systems proofs.

We demonstrate that in focusing on the important domain of hybrid
systems verification, Bellerophon emerges with unique automation that
provides a productive proving experience for hybrid systems from a small
foundational prover core in the KeYmaera X prover. Among the automa-
tion that emerges are tactics for decomposing hybrid systems, discovering
and establishing invariants of nonlinear continuous systems, arithmetic
simplifications to maximize the benefit of automated solvers and general-
purpose heuristic proof search. Our presentation begins with syntax and
semantics for the Bellerophon tactic combinator language, culminating in
an example verification effort exploiting Bellerophon’s support for invari-
ant and arithmetic reasoning for a non-solvable system.

1 Introduction

Cyber-Physical Systems combine computer control with physical dynamics in
ways that are often safety-critical. Reasoning about safety properties of Cyber-
Physical Systems requires analyzing the system’s discrete and continuous dynam-
ics together in a hybrid system [2,13]. For example, establishing safety of an
adaptive cruise controller in a car requires reasoning about the computations of
the controller together with the resulting physical motion of the car.

Theorem proving is an attractive technique for verifying correctness proper-
ties of hybrid systems because it is applicable to a large class of hybrid systems

This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246 and NSF CNS-1446712. This research
was sponsored by the AFOSR under grant number FA9550-16-1-0288. This research
was supported as part of the Future of Life Institute (futureoflife.org) FLI-RFP-AI1
program, grant #2015-143867.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 207–224, 2017.
DOI: 10.1007/978-3-319-66107-0 14

http://futureoflife.org/

208 N. Fulton et al.

[25]. Verification for hybrid systems is not semidecidable, thus requiring human
assistance along two major dimensions. First, general-case hybrid systems prov-
ing requires identifying invariants of loops and differential equations, which is
undecidable in both theory and practice. Second, the remaining verification tasks
consist of first-order logic over the reals with polynomial terms. Decision proce-
dures exist which are complete in theory [7], but are only complete in practice
if a human provides additional guidance. Because both these dimensions are
essential to hybrid systems proving, innovating along these dimensions benefits
a wide array of hybrid systems verification tasks.

We argue that trustworthy and productive hybrid systems theorem prov-
ing requires: (1) a small foundational core; (2) a library of high-level primitives
automating common deductions (e.g., computing Lie Derivatives, computing and
proving solutions of ODEs, propagating quantities across dynamics in which
they do not change, automated application of invariant candidates, and conser-
vation/symmetry arguments); and (3) scriptable heuristic search automation.

Even though these ingredients can be found scattered across a multitude of
theorem provers, their combination to a tactical theorem proving technique for
hybrid systems is non-obvious. Table 1 compares several tools along the dimen-
sions that we identify as crucial to productive hybrid systems verification (SC
indicates a soundness-critical dependency on user-defined tactics or on an exter-
nal implementation of a more scalable arithmetic decision procedure).

Table 1. Comparison to related verification tools and provers

Tool Small Core HS Library HS Auto Scriptable External Tools

KeYmaera X Yes Yes Yes Yes SC

SpaceEx No No Yes No SC

Isabelle,Coq,HOL Yes No No Yes No

KeYmaera 3 No Yes Yes SC SC

General purpose theorem provers, such as Coq [20] and Isabelle [23], have
small foundational cores and tactic languages, but their tactic languages and
automation are not tailored to the needs of hybrid systems. This paper addresses
the problem of getting from a strong mathematical foundation of hybrid systems
[27] to a productive hybrid systems theorem proving tool. Reachability analysis
tools, e.g. SpaceEx [11], provide automated hybrid systems verification for linear
hybrid systems, but at the expense of a large trusted codebase and limited ways
of helping when automation fails, which is inevitable due to the undecidability
of the problem. KeYmaera’s [29] user-defined rules are no adequate solution
because they enlarge the trusted codebase and are difficult to get right.

KeYmaera X [12] is structured from the very beginning to maintain a small
and trustworthy core, upon which this paper builds the Bellerophon tactic lan-
guage. Using these logical foundations [27], we develop a set of automated deduc-
tion procedures. These procedures manifest themselves as a library of hybrid sys-
tems primitives in which complex hybrid systems can be interactively verified.

Bellerophon: Tactical Theorem Proving for Hybrid Systems 209

Finally, heuristic automation tactics written in Bellerophon automatically apply
these primitives to provide automation of hybrid systems reachability analysis.

Contributions. This paper demonstrates how to combine a small foundational
core [27], reusable automated deductions, and problem-specific proof-search tac-
tics into a tactical theorem prover for hybrid systems. It presents Bellerophon, a
hybrid systems tactics language and library implemented in the theorem prover
KeYmaera X [12]. Bellerophon includes a tactics library which provides the
decision procedures and heuristics necessary for a productive interactive hybrid
systems proving environment. We first demonstrate the interactive verification
benefits of Bellerophon through interactive verification of a simple hybrid system,
which is optimized to showcase a maximum of features in a minimal example.
In the process, we also discuss significant components of the Bellerophon stan-
dard library that enable such tactical theorem proving. We then present two
examples of proof search procedures implemented in Bellerophon, demonstrat-
ing Bellerophon’s suitability for implementing reusable proof search heuristics
for hybrid systems. Along the way, we demonstrate how the language features
of Bellerophon support manual proofs and proof search automation.

2 Background

This section reviews hybrid programs, a programming language for hybrid sys-
tems; differential dynamic logic (dL) [24–27] for specifying reachability properties
about hybrid programs; and the theorem prover KeYmaera X for dL [12].

Hybrid (dynamical) systems [2,26] are mathematical models for the inter-
action between discrete and continuous dynamics, and hybrid programs [24–27]
their programming language. The syntax and informal semantics is in Table 2.

Table 2. Hybrid programs

Program statement Meaning

α; β Sequentially composes α and β

α ∪ β Executes either α or β

α∗ Repeats α zero or more times

x := θ Evaluates term θ and assigns result to x

x := ∗ Assigns an arbitrary real value to x

{x′
1 = θ1, ..., x

′
n = θn&F} Continuous evolution within F along this ODE

?F Aborts if formula F is not true

The following1 hybrid program outlines a simple model of a skydiver who
deploys a parachute to land at a safe speed. Here, we illustrate the rough program
1 A continuous evolution along the differential equation system x′

i = θi for an arbitrary
duration within the region described by formula F . The & F is optional so that e.g.,
{x′ = θ} is equivalent to {x′ = θ&true}.

210 N. Fulton et al.

structure to become acquainted with the syntax. We will fill in the necessary
details (e.g., when to deploy the parachute exactly) for a proof later in Sect. 4.

Example 1 (Skydiver model).
(
(?Dive ∪ r := p)
︸ ︷︷ ︸

ctrl

; {x′ = v, v′ = f(v, g, r)}
︸ ︷︷ ︸
plant (continuous dynamics)

)∗

Example 1 describes a skydiver whose ctrl chooses nondeterministically to
continue diving if the formula Dive indicates it is still safe to do so, or to deploy
the parachute (r := p). The skydiver’s altitude x then follows a differential
equation, where the velocity v non-linearly depends on v itself, gravity g and
drag coefficient r. This process may repeat arbitrarily many times (indicated by
the repetition operator ∗). Because there is no evolution domain constraint on
plant, each continuous evolution has any arbitrary non-negative duration e ∈ R.

Differential dynamic logic (dL) [24–27] is a first-order multimodal logic for
specifying and proving properties of hybrid programs. Each hybrid program
α has modal operators [α] and 〈α〉, which express reachability properties of
program α. The formula [α]φ expresses that the formula φ is true in all states
reachable by the hybrid program α. Similarly, 〈α〉φ expresses that the formula φ
is true after some execution of α. The dL formulas are generated by the grammar

φ:: = θ1 � θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ
where φ and ψ are formulas, α ranges over the hybrid programs of Table 2, and
� is a comparison operator =, �=,≥, >,≤, <, and θ is a term of real arithmetic.

Model 1 (Safety specification for the skydiver)

x ≥ 0 ∧ . . .︸ ︷︷ ︸
initial condition

→ [
(
(?Dive ∪ r := p)
︸ ︷︷ ︸

ctrl

; {x′ = v, v′ = f(v, g, r)}
︸ ︷︷ ︸

plant

)∗] (x=0 → |v|≤|m|)
︸ ︷︷ ︸

post cond.

The formula above expresses that if the skydiver, among other things, starts
diving at some non-negative altitude x, then it is always the case that if they
touch ground (x = 0) they do so softly with a safe descending speed (|v|≤|m|,
because both v and m are always negative).

KeYmaera X. Bellerophon is part of KeYmaera X, an axiomatic theorem prover
for dL [12]. Its uniform substitution mechanism [27] enables a trusted core of only
about 1,700 lines of Scala. This is far smaller than other hybrid systems verifi-
cation tools and compares favorably even with many other LCF-style provers.
While verified real arithmetic solving is possible via witnesses [30], KeYmaera X
uses external real arithmetic solvers in practice for their superior performance.

3 The Bellerophon Tactic Language

Bellerophon is a programming language and standard library for automating
proof constructions and proof search operations of the KeYmaera X core. As
in other LCF-style provers, Bellerophon is not soundness-critical. This frees us

Bellerophon: Tactical Theorem Proving for Hybrid Systems 211

to provide courageous reasoning strategies that enable users to perform high-
level proofs about hybrid systems while still benefiting from the high degree of
trustworthiness that comes from a small soundness-critical core and the cross-
verification of dL in Isabelle and Coq [4]. A basic use of Bellerophon is to recover
a convenient sequent calculus for dL [24] from the simpler Hilbert calculus-based
core [27] of KeYmaera X. This demonstrates that Bellerophon is expressive
enough to implement the automation capabilities of the predecessor prover KeY-
maera [29] from a smaller set of primitives. Beyond that, Bellerophon is used, e.g.
for programming both individual proofs and custom proof search procedures.

This section presents the basic constructs of the Bellerophon language. Read-
ers familiar with tactic languages for interactive theorem provers (e.g., [20]) will
find many constructs familiar, but should pay particular attention to the dis-
cussion of Bellerophon’s standard library. For usability, traceability and educa-
tional purposes, Bellerophon tactics can be written in a hierarchical structure
that maps to the graphical tree structure of the resulting dL sequent proof [21].

This dL proof motivates the constructs of our language and standard library.

Proof 1 (Skydiver sequent proof sketch). The proof starts from the initial
conjecture (Model 1) at the bottom, phrased as a sequent. Each sequent has the
shape assumptions � obligations, which means from the assumptions left of the
turnstile �, we have to prove any formula on the right. Horizontal lines indicate
that the sequent below the horizontal line is proved when the sequent above
the horizontal line is proved, justified by the tactic that is annotated left of
the horizontal bar (the corresponding operator is highlighted in boldface and
red). For example, the first step prop makes all conjuncts left of an implication
available as assumptions, so the goal x ≥ 0 ∧ B → C below the line becomes
x ≥ 0, B � C above the line. When proof rules (e.g., andR) result in multiple
subgoals, each subgoal continues in a separate branch and all need to be proved.

andR

. . .

testb
Γ � Dive → [ode](x=0 → |v|≤|m|)
Γ � [?Dive?Dive?Dive][· · ·](x=0 → |v|≤|m|)

. . .

assignb
Γ � [ode(p)](x=0 → |v|≤|m|)

Γ � [r := pr := pr := p][· · ·](x=0 → |v|≤|m|)
choiceb

Γ � [?Dive][· · ·](x=0 → |v|≤|m|)∧∧∧ [r := p][· · ·](x=0 → |v|≤|m|)

composeb
Γ � [{?Dive∪∪∪ r := p}][{p′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)

prop
x ≥ 0, . . . � [{?Dive ∪ r := p};;;{x′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)

� x ≥ 0∧∧∧ . . .→→→[{?Dive ∪ r := p}; {x′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)

Each of the steps in the sequent proof above is a built-in tactic:

prop Exhaustively applies propositional proof rules in the sequent calculus.
composeb Splits sequential composition [α;β]P into nested modalities [α][β]P .
choiceb Splits choice [α ∪ β]P into a conjunction of subsystems [α]P ∧ [β]P .
andR, implyR, existsL, . . . are the right conjunction rule (∧R), the right

implication rule (→R) and left existential rule (∃L) as usual in sequent cal-
culus. Throughout the paper, we will make use of standard propositional
sequent calculus tactics that follow this naming convention.

212 N. Fulton et al.

testb Makes test condition [?Q]P available as assumption Q → P .
assignb Makes effect of assignment [x := t]P (x) available as update to P (t) or

as assumption x = t with proper renaming of other occurrences of x.

Bellerophon programs, called tactics, are functions mapping lists of sequents
to (lists of2) sequents. Built-in tactics (ranged over by τ) are implemented
in Scala. Proof developers can combine existing tactics using the constructs
described in Table 3. Built-in programs are implemented as a sequence of opera-
tions on a data structure that can only be created or modified by the soundness-
critical core of KeYmaera X, thereby ensuring soundness of built-in tactics.

Table 3. Meaning of tactic combinators

Built-in Tactics. Bellerophon is both a stand-alone language and a domain-
specific language embedded in the Scala programming language. Built-in tactics
directly manipulate the KeYmaera X core to transform formulas in a validity-
preserving manner. Bellerophon programmers can construct new tactics either
by writing new built-in tactics in Scala, or else by combining pre-existing tac-
tics using the combinators described in Table 3. KeYmaera X ships with a large
library of tactics for proof construction and proof search. Some built-in tactics –
the propositional rules and choiceb for example – are straight-forward appli-
cations of the axioms in [27]. Others provide a significant amount of automation
on top of the axiomatic foundations. For example, prop combines propositional
sequent calculus rules to an automated proof search procedure that often per-
forms numerous simpler proof steps automatically.

2 Tactics may map a single sequent to a list of sequents; the simplest example of
such a tactic andR corresponds to the proof rule ∧R, which maps a single sequent
Γ � A ∧ B, Δ to the list of subgoals Γ � A, Δ and Γ � B, Δ.

Bellerophon: Tactical Theorem Proving for Hybrid Systems 213

Parameters. Most tactics are parameterized by formulas, locators, or both.
Formula parameters are provided whenever the behavior of a tactic is depen-
dent upon a particular formula; for example, the loop and differential induc-
tion tactics take an invariant formula as parameter. Locators specify where
in a sequent a tactic should be applied. The simplest form of locator is an
explicit position. Negative positions refer to formulas to the left of the turn-
stile (�) and positive positions refer to formulas to the right of the turnstile,3

e.g., −1 : A, −2 : B, −3 : C � 1 : D, 2 : E with annotated formula positions.
In addition to explicit positions, Bellerophon provides indirect locators: (i) e(R)
applies e to the first applicable position4 in the succedent; (ii) e(Rlast) applies
e to the last position in the succedent. e(L) and e(Llast) behave accordingly
in the antecedent.

Basic Combinators. Tactics are executed sequentially using the ; combinator.
In e; f , the left tactic e is executed on the current subgoal and then the right
tactic f is executed on the result of the left tactic’s execution. The | combinator
attempts multiple tactics – moving from left to right through a list of alterna-
tives. The ∗ combinator in e∗ repeats the tactic e as long as it is applicable.
Many proof search procedures are expressible as a repetition of choices.

Branching. Proof search often results in branching. For example, a canonical
proof of the induction step of Model 1 decomposes into two cases: a diving case
corresponding to the control decision ?Dive and a deployed parachute case cor-
responding to the control decision r := p. Proof 1 from above in the dL sequent
calculus visually emphasizes the branching structure, which can be helpful for
structuring tactics too. The < combinator expresses how a proof decomposes
into cases. An explicit tactic directly performing Proof 1 without any search is:

Listing 1.1. A Structured Bellerophon Tactic for a Branching Proof

1 prop ; composeb(1) ; choiceb(1) ; andR(1) ; <(
2 testb(1) ; ..., /* tactic for left branch of andR */
3 assignb(1) ; ... /* tactic for right branch of andR */
4)

Equivalently, the proof search tactic unfold automates proofs such as List-
ing 1.1 by applying all propositional and dynamical axioms until encountering a
loop program or a differential equation, where cleverness might be needed.

4 Demonstration of Tactical Hybrid Systems Proving

In this section, we demonstrate that the Bellerophon standard library’s tech-
niques for invariance properties, conservation properties, and real arithmetic

3 The addressing scheme extends to subformulas and subterms in a straight-forward
way. Interested readers may refer to the Bellerophon documentation for details.

4 Tactic e is applicable at a position pos if e(pos) does not result in an error.

214 N. Fulton et al.

simplifications, as implemented in KeYmaera X, make it a convenient mech-
anism for interactively verifying hybrid systems. The proof developed in this
section is at http://web.keymaeraX.org/show/itp17/skydiver.kya.

Model 2 fills in the details of the skydiver model, which guarantees landing
at a safe speed if the parachute opens early enough.

Model 2 (Safety specification for the skydiver model).

x ≥ 0 ∧ g > 0 ∧ 0 < a = r < p ∧ −
√

g

p
< v < 0 ∧ m < −

√
g

p
∧ T ≥ 0 (init)

→ [
{

(?
(

r = a ∧ v − g · T > −
√

g

p

)

︸ ︷︷ ︸
Dive

∪ r := p); (ctrl)

t := 0; {x′ = v, v′ = r · v2 − g & x ≥ 0 ∧ v < 0 ∧ t ≤ T} (plant)
}∗](x = 0 → |v|≤|m|) (post cond.)

Opening the parachute is a discrete control decision. The diver’s physics
are modeled as an ODE, accounting for both gravity and drag, which changes
when the parachute opens. This example is carefully crafted to demonstrate
many of the challenges in hybrid systems reasoning while retaining relatively
simple dynamics. Qualitative changes happen to the continuous dynamics after
a discrete state transition, the dynamics are non-linear, and the property of
interest is not directly inductive.

We model a gravitational force (g > 0), a drag coefficient (r) which depends
on whether the parachute is closed (air a) vs. open (parachute p), the skydiver’s
altitude x ≥ 0 and velocity v < 0. The time between control decisions is bounded
by the skydiver’s reaction time T . We also assume that the diver does not pass
through the earth x ≥ 0 and (to streamline this presentation) that v < 0.

The controller contains two options for our skydiver. The left choice lets
a closed parachute (r = a) stay closed if the speed after one control cycle is
definitely safe, computed by over-approximating as if gravity were the only force
(v − g · T > −

√
g
p). The right control choice opens the parachute, after which it

stays open (as r �= a). For simplicity, we say the parachute opens instantantly.
The safety theorem says when the skydiver hits the ground, the velocity is at

most a specified safe landing speed |v|≤|m|, v < 0. We assume the parachute is
initially closed (r = a), the speed initially safe (v > −

√
g
p), and the safe landing

speed faster than the limit speed of the parachute (m < −
√

g
p).

Loop Invariants. Verifying a system loop begins with identifying a loop invari-
ant J that is true initially, implies the post-condition and is preserved by the

http://web.keymaeraX.org/show/itp17/skydiver.kya

Bellerophon: Tactical Theorem Proving for Hybrid Systems 215

controller. Each formula of the initial condition in Model 2 is invariant except
r = a; therefore, we will proceed with the following invariant J :

(x ≥ 0 ∧ v < 0)

︸ ︷︷ ︸

ev.dom.

∧
(

g > 0 ∧ 0 < a < p ∧ T ≥ 0 ∧ m < −
√

g

p

)

︸ ︷︷ ︸

diff. inductive

∧ v > −
√

g

p
︸ ︷︷ ︸

hard

(1)

Note that J holds initially and implies formula |v|≤|m| because v > −
√

g
p >

m. These facts prove automatically. Therefore, the core proof needs to prove
J → [ctrl; plant]J . We express the proof thus far with the following tactic:

Listing 1.2. Loop Induction Tactic

1 implyR(1); loop(J, 1); <(QE,QE,nil)

The implyR tactic corresponds to the right implication rule (→R) in
sequent calculus; the first argument states that we should apply this proof
rule at the first position in the succedent. The loop tactic uses the dL axioms
about loops to derive three new subgoals: (1) the loop invariant holds initially
(init → J); (2) the loop invariant implies the post condition (J → post cond.);
and (3) the loop invariant is preserved throughout a single iteration of the loop
(J → [ctrl; plant]J). The loop rule in KeYmaera X is derived in Bellerophon
from axioms and automatically retains assumptions about constants that do not
change in the system. The nil tactic has no effect and is used in <() to keep
subgoal (3) unchanged.

The branching combinator <() allows us to isolate each of these three sub-
tasks from one another. Subgoals (1) and (2) are proven using a Real Arithmetic
solver (QE, for Quantifier Elimination), since the arithmetic is easy enough here.

Decomposing Control Programs. This model’s control program is simple. It
checks if it is safe to keep the parachute closed, or sets r to open the parachute
(at any time, but at the latest when it is no longer safe to keep it closed).
Therefore, we will immediately symbolically execute the control program and
consider the two resulting subgoals, both of which are reachability conditions on
purely continuous dynamical systems. This splitting could be done manually, as
in Listing 1.1. But we decide to split it automatically using the unfold tactic.

Listing 1.3. Decomposing Control Programs

1 implyR(1); loop(J, 1); <(QE,QE,unfold)

ODE Tactics in the Standard Library. The rest of the proof will make use
of several tactics in the Bellerophon standard library:

boxAnd Splits [α](P ∧ Q) into separate postconditions [α]P and [α]Q.
dC(R) Proves a new property R of an ODE and then restricts the differential

equation to remain within the evolution domain R (differential cut).

216 N. Fulton et al.

dW Proves [x′ = f(x)&Q]P by proving that domain Q implies postcondition P .
dI Proves [{x′ = f(x)}]P by proving P and its differential P ′ along x′ = f(x).
dG(y’=ay+b,R) Adds new differential equation y′ = ay+b to [x′ = f(x)&Q]P ,

and replaces the post condition by equivalent formula R (possibly mentioning
the fresh differential ghost variable y).

These tactics perform significant automation on top of the dL axioms. For exam-
ple, dI performs automatic differentiation via exhaustive left-to-right rewriting
of our axiomatization of differentials (e.g., (s · t)′ = s′t+ st′) and propagates the
local effect of the differential equation. The dI tactic preserves initial value con-
straints for variables that are not changed by the differential equation. It often
performs hundreds of axiom applications automatically. The difference between
the sound Differential Induction axiom [27] and the automation provided by the
dI tactic is an exemplary demonstration of the difference between a theoretically
complete mathematical/logical foundation, and a pragmatically useful tactical
library.

We are now ready to consider two purely continuous subgoals of the form
J → [plant(r)]J : one where r = a (the parachute is closed) and one where r = p
(the parachute is open), which are both true for different reasons.

Closed Parachute: Chaining Inequalities. We first consider the r = a case,
in which the parachute is closed. Symbolically executing the control program
results in a remaining subgoal that requires us to prove:

J ∧ v − g · T > −
√

g/p → [{x′ = v, v′ = a · v2 − g&x ≥ 0 ∧ v < 0 ∧ t ≤ T}]J

We use boxAnd to work on the conjuncts of the loop invariant J (1) separately,
since each are preserved for different reasons. The proofs for the first two sets
of loop invariants in J (labeled ev. domain and diff. induction) are identical
to the r = p case and will be discussed later. Here, we focus on the formula
J ∧v−g ·T > −

√
g
p → [{x′ = v, v′ = a ·v2−g&x ≥ 0∧v < 0∧t ≤ T}]v > −

√
g
p ,

which handles the third conjunct of J (see (1), labeled hard).
Compute that v ≥ v0 − g · t ≥ v0 − g · T > −

√
g
p , where v0 is the value of v

before the ODE. In Bellerophon proofs for differential equations, we use old(v)
to introduce initial values; you can read old(v) and v0 inter-changeably here.

Each of the subformulas in the postcondition above is a differentially induc-
tive invariant, or else is valid after the domain constraint is automatically aug-
mented with constants g > 0 ∧ p > 0. Therefore, we use a chain of dC justified
either by dI or by dW for each inequality in this tactic:

Listing 1.4. A Chain of Inductive Inequalities

1 /* Key lemmas proofs of lemmas */
2 dC(v>=old(v)-g()*t,1); <(nil , dI(1));
3 dC(old(v)-g()*t>=old(v)-g()*T,1); <(nil , dW(1);QE);
4 dC(old(v)-g()*T>-c,1); <(nil , dI(1));
5 dW(1) ; QE

Bellerophon: Tactical Theorem Proving for Hybrid Systems 217

The argument is a sequence of differential cuts, each of which has a simple
proof, and whose conjunction implies the post-condition. Each of the nil tactics
in the <() passes along a single subgoal to the next tactic, so that at the end
we have a long conjunction in our domain constraint containing each of the
cuts. This style of proof is pervasive in hybrid systems verification, and easily
expressed in Bellerophon. One key feature that makes this proof so concise is
the use of old(v), which introduces a variable v0 that remembers the initial
value of v. Tactic dW;QE on line 3 proves the cut from the evolution domain
constraint.5

The inequalities in the evolution domain of the differential equation system
are now sufficiently strong to guarantee the postcondition, so we use dW to obtain
a final arithmetic subgoal: Γ � v ≥ v0 − g · t ≥ v0 − g · T > −

√
g
p → v > −

√
g
p ,

where Γ contains constants propagated by the rule dW (unlike the DW axiom).
Although this arithmetic fact is obvious to us, QE will take a substantial

amount of time to prove this property (at least 15 min on a 32 core machine
running version 10 Mathematica and version 4.3.7 of KeYmaera X). This is
a fundamental limitation of Real Arithmetic decision procedures, which have
extremely high theoretical and practical complexity [9].

The simplest way to help QE is to introduce a simpler formula that captures
the essential arithmetic argument: e.g., cut in ∀a, b, c, d (a ≥ b ≥ c > d → a > d)
and then instantiate this formula with our chain of inequalities. We take this
approach for demonstration (see the implementation). As an alternative, trans-
forming and abbreviating formulas in Bellerophon achieves a similar effect.

Open Parachute: Differential Ghosts. We now consider case 2, where the
parachute is already open (r = p). After executing the discrete program the
remaining subgoal is: J → [{x′ = v, v′ = p·v2−g & x ≥ 0 ∧ v < 0 ∧ t ≤ T︸ ︷︷ ︸

evolution domain constraint

}]J .

The proof proceeds by decomposing the post-condition J into three separate
subgoals, one for each conjunct in (1). In Listing 1.5, the boxAnd tactic uses
axiom [α](P ∧ Q) ↔ [α]P ∧ [α]Q from left to right, to rewrite the instance of
[α](P ∧ Q) to separate corresponding conjuncts [α]P ∧ [α]Q. The first set of for-
mulas in J (labeled ev. domain) are not differentially inductive, but are trivially
invariant because the evolution domain constraint of the system already contains
these properties. Differential weakening by dW is the appropriate proof technique
for these formulas, see line 1 in Listing 1.5. The second set of formulas (labeled
diff. inductive) are not implied by the domain constraint, but are inductive along
the ODE because the left and right sides of each inequality have the same time-
derivative (0). Differential induction by dI is the appropriate proof technique
for establishing the invariance of these formulas, see line 2 in Listing 1.5.

5 The attentive reader will notice we use g() instead of g. This is to indicate that the
model has an arity 0 function symbol g(), rather than an assignable variable. This
syntactic convention follows KeYmaera X and its predecessors.

http://web.keymaeraX.org/show/itp17/skydiver.kya

218 N. Fulton et al.

Listing 1.5. Differential Weakening and Differential Induction

1 boxAnd(1); andR(1); <(dW(1);QE , nil);
2 boxAnd(1); andR(1); <(dI(1) , nil)

The third conjunct (labeled hard) requires serious effort: we have to show
that v > −

√
g
p is an invariant of the differential equation. This formula is not

a differentially inductive invariant because it is getting less true over time. To
become inductive, we require additional dynamics to describe energy conserva-
tion. The Bellerophon library provides a tactic to introduce additional dynamics
as differential ghosts into a differential equation system. Often, differential ghosts
can be constructed systematically. Here, we want to show v > −c where c =

√
g
p ,

so we need a property with a fresh differential ghost y that entails v+c > 0, e.g.,
y2(v + c) = 1. The formula y2(v + c) = 1 becomes inductively invariant when
y′ = − 1

2p(v−c). In summary, tactic dG in Listing 1.6 introduces y′ = − 1
2p(v−c)

into the system and rewrites the post-condition to y2(v + c) = 1 with the addi-
tional assumptions that y does not contain any singularities (p > 0 ∧ g > 0).

Listing 1.6. Finishing the parachute open case with a ghost

1 dG(y’=-1/2*p*(v-(g()/p)ˆ(1/2)), p>0&g()>0&yˆ2*(v+c)=1, 1);
2 dI(1.0); QE

Tactic dG results in a goal of the form ∃y[· · ·](p > 0∧g > 0∧y2(v+c) = 1), so
in line 2 of Listing 1.6 we apply dI at the first child position 1.0 of succedent 1 in
context of the existential quantifier to show that the new property y2(v + c) = 1
is differentially invariant with the differential ghost y.

If a system avoids possible singularities, the ODE tactic in the Bellerophon
standard library automatically computes the differential ghost dynamics (here
y′ = − 1

2p(v−c)) and postcondition (here y2(v+c) = 1) with the resulting proof.
Additionally, notice that dG conveniently constructs the axiom instance of DG
[27], saving the proof developer from manually constructing such instances.

The proof in Listing 1.6 completes the invariant preservation proof for r = p.
The full proof artifact for the skydiver demonstrates how Bellerophon addresses
each of the major reasoning challenges in a typical hybrid systems verification
effort.

5 Automatic Tactics in the Bellerophon Standard Library

This section presents two significant automated tactics in the Bellerophon stan-
dard library: a heuristic tactic for invariants of ODEs, and a general-purpose
hybrid systems heuristic building upon ODE automation. These tactics use our
embedding of Bellerophon as a DSL in Scala, the KeYmaera X host language.6

6 Advanced automation generally uses the EDSL. Programs written in the EDSL are
executed using the same interpreter as programs written in pure Bellerophon.

http://web.keymaeraX.org/show/itp17/skydiver.kya

Bellerophon: Tactical Theorem Proving for Hybrid Systems 219

The combination of a tactical language and a general-purpose functional
language allow us to more cleanly leverage complicated computations, such as
integrators and invariant generators, without losing the high-level proof struc-
turing and search strategy facilities provided by Bellerophon. Significant further
Bellerophon programs that ship with KeYmaera X include an automated deduc-
tion approach to solving differential equations [27], the proof-guided runtime
monitor synthesis algorithm ModelPlex [22] and real arithmetic simplification
procedures. KeYmaera X provides an IDE [21] for programming Bellerophon
tactics and inspecting their effect in a sequent calculus proof.

The purpose of this section is to explain, at a high level, how Bellerophon
provides ways of automating hybrid systems proof search. We only present sim-
plified versions of tactics and briefly discuss relevant implementation details.

5.1 Tactical Automation for Differential Equations

Automated reasoning for ODEs is critical to scalable analysis of hybrid systems.
Even when human interaction is required, automation for simple reachability
problems – such as reachability for solvable or univariate subsystems – stream-
lines analysis and reduces requisite human effort.

The skydiver example above illustrated the interplay between finding differ-
ential invariants and proving with differential induction and differential ghosts.
The tactic ODE in the Bellerophon standard library automates this interplay for
solvable systems and some unsolvable, nonlinear systems of differential equa-
tions, see Listing 1.7. The ODEStep tactic directly proves properties by dif-
ferential induction, with differential ghosts, and from the evolution domain
constraints. The ODEInvSearch tactic cuts additional differential invariants,
thereby strengthening the evolution domain constraints for ODEStep to ulti-
mately succeed. Tactic ODE succeeds when ODEStep finds a proof; if ODEStep
does not yet succeed, ODEInvSearch provides additional invariant candidates
with differential cuts dC or by solving the ODE. This interaction between
ODEStep and ODEInvSearch is implemented in Listing 1.7 by mixing recur-
sion and repetition. Repetition is used in ODE so that ODEStep is prioritized
over ODEInvSearch each time that a new invariant is added to the system.
Recursion is used in ODEInvSearch so that a full proof search is started every
time an invariant is successfully added to the domain constraint by dC. The
ODEInvSearch tactic calls ODEStep on its second subgoal (the “show” branch
of the dC) because differential cuts can be established in the right order without
additional cuts.

Listing 1.7. Automated ODE Tactic for Non-Solvable Differential Equations

1 ODEStep(pos) = dI(pos) | dgAuto(pos) | dW(pos) | ...
2 ODEInvSearch(pos) = dC(nextCandidate); <(ODE(pos), ODEStep(pos

))
3 | solve(pos)
4 ODE(pos) = (ODEStep(pos) | ODEInvSearch(pos))*

220 N. Fulton et al.

The ODEStep tactic finds a proof with dI when the post-condition is dif-
ferentially inductive, meaning that the vector field of the differential equation
points into the set described by the differential equation. The dgAuto tactic will
also attempt to make properties differentially inductive by constructing differen-
tial ghosts for the postcondition, such as the ghosts introduced in the skydiver
example. In case the evolution domain of a differential equation system is suf-
ficiently strong, tactic dW succeeds from just the evolution domain constraints.
The ODEStep tactic implemented in KeYmaera X contains other proof search
techniques (marked . . . above) that are guaranteed to terminate but refrain from
performing differential cuts.

The invariant search ODEInvSearch constructs candidates for differential
invariants heuristically [28], see dC(nextCandidate) in Listing 1.7, or system-
atically for solvable differential equations with solve. Tactic solve follows an
axiomatic ODE solver approach [27] that implements a solver in terms of the
differential invariants, cuts, and ghosts reasoning principles to avoid a trusted
built-in rule for solving differential equations (such trusted built-in rules are
necessary in other hybrid systems tools, e.g., in KeYmaera [29]).

The ODE tactic described above is an idealized version of the ODE tactic
implemented in KeYmaera X, which contains additional automated search pro-
cedures and specializes proof search based upon the shape of the post-condition.

5.2 Tactical Automation for Hybrid Systems

The solve and ODE tactics provide some automation for continuous systems
proofs. The master tactic builds on these to provide a full heuristic for hybrid
systems in the canonical form init → [{ctrl; plant}∗]safe. Tactic master com-
bines the three basic reasoning principles that together cover the reasoning tasks
arising in hybrid systems models of the above shape: propositional reasoning,
symbolic execution of hybrid programs, and reasoning about loops and differen-
tial equations.

Listing 1.8. Proof Search Automation for Hybrid Systems

1 master = OnAll(prop | step | close | QE | loop | ODE)*

In such proofs, branching is prevalent, e.g., due to non-deterministic choices
in programs, as well as loop and differential induction. In the proofs so far we
specified explicitly how the proof proceeds on each branch using <(). This app-
roach is useful to specifically tailor tactics and provide user insight to certain
subgoals. In a general-purpose search tactic, however, we neither know a priori
how many branches there will be, nor how the specific subgoals on each branch
are tackled best. The Bellerophon library lets us specify such general-purpose
proof search with tactic alternatives |, repetition ∗, and continuing proof search
on all branches with OnAll. The prop tactic is executed first on each sub-
goal. Running prop moves init into the antecedent in the initial theorem, but
also performs propositional reasoning on each new subgoal generated by the
proof. This enables propositional simplifications both after symbolic execution

Bellerophon: Tactical Theorem Proving for Hybrid Systems 221

and loop/ differential induction, as well as to uncover propositional truths han-
dled by close and thereby avoid potentially expensive arithmetic reasoning
in QE. The step tactic picks the canonical dynamical axioms for a formula (by
indexing techniques) and applies it in the canonical direction. For example, when
applied to [α ∪ β]P , the step tactic will produce a new subgoal [α]P ∧ [β]P . The
step tactic focuses on the portions of a program that do not need any decisions
such as invariants for loops or differential equations. The loop tactic generates
loop invariants [28] and performs loop induction for the outer control loops,
whereas ODE handles differential equations. The KeYmaera X implementation
of master contains several optimizations to the ordering of tactics based upon
empirical experience.

The ODE and master tactics demonstrate how Bellerophons’s combinators
are used to construct proof search procedures out of components available in the
Bellerophon standard library.

6 Related Work

The novel contributions of this paper are the design and implementation of a
tactics language and library for hybrid systems which have shown themselves to
make tactical proving fruitful for realistic hybrid systems verification tasks.

Tactics Programming Languages. Tactics combinators appear in many
general-purpose proof assistants, such as NuPRL [8], MetaPRL [15], Isabelle [3],
Coq [20], and Lean [1]. However, our goals differ: all of the above aim to work
for as many proving domains as possible, while we optimize for hybrid systems
proving. In pursuing this aim, we have developed a unique, extensive suite of
tactical automation for hybrid systems resting on a small trusted core. We inte-
grate key techniques for continuous systems (ODE solving, invariant generation,
and conservation reasoning via differential ghosts) with heuristic simplifications
for arithmetic that speed up the use of external real-closed field solvers.

Arithmetic Proving. Proving theorems of first-order real arithmetic should
not be confused with formalizing real analysis, though both are valuable.
General-purpose proof assistants have been used to formalize much of real
analysis [5,14,19,31], and in fact some such formalizations [16,17] have been
used to prove the soundness of dL’s proof calculus on which KeYmaera X and
Bellerophon rest [4]. However, the style of proof used is different: like other
domains in which general-purpose provers excel, formalized analysis benefits
from the forms of automation that these provers do well, such as automati-
cally expanding definitions and applying syntactic simplification rules. Because
hybrid systems verification is less definition-heavy and because simplification
rules alone (e.g. ring axioms) do not make real arithmetic tractable, real arith-
metic proofs face problems for which existing automation is insufficient. Since
arithmetic proofs do arise in these provers as well, we believe our techniques to
be of broader interest. While we provide new automation for important tasks,
this does not preclude us from using existing tactical techniques for the subtasks

222 N. Fulton et al.

where they are most appropriate, such as propositional reasoning and decom-
posing composite hybrid systems.

Tactical Proving Styles. A set of patterns and anti-patterns have been pro-
posed for Coq tactic programming in Ltac [6]. The suggestion is to use general-
purpose automation as much as possible, conveying any problem-specific details
through hints or lemmas. In keeping with this philosophy, the canonical usage
of Bellerophon is to provide loop and sequences of differential invariants as hints
to the automated master tactic. This reduces the proof to arithmetic. At this
point the user can steer the proof further, e.g. by using Bellerophon’s equational
rewriting mechanisms to reduce complex arithmetic to simpler lemmas. This
tactical proof-by-hint style can be mixed freely with other styles provided by
the KeYmaera X user interface. For example, a user might use the UI to identify
and apply an arithmetic simplification, at which point the corresponding tactic
is generated automatically. They might then integrate this tactic into a larger
proof-search algorithm which then solves similar proof cases automatically.

Analysis Tools for Hybrid Systems. Compared with other hybrid system
analysis tools such as PHAver [10], SpaceEx [11], and dReach [18], Bellerophon
enjoys the ability to handle a broad class of systems from a small trusted core
provided by the host prover KeYmaera X. The addition of Bellerophon to KeY-
maera X increases the class of systems for which verification is practical by using
proof scripting to solve problems that would be too tedious and time-consuming
otherwise.

7 Conclusion and Future Work

Bellerophon and its standard library support both interactive and automated
theorem proving for hybrid systems. The library provides users with a clean
interface for expressing common insights that are essential in hybrid systems ver-
ification tasks. Bellerophon combinators allow users to combine these base tactics
in order to implement proofs and proof search procedures. Through Bellerophon,
KeYmaera X provides sound tactical theorem proving for hybrid systems.

Bellerophon provides a useful basis upon which further sound hybrid sys-
tems verification algorithms can be implemented succinctly. The small core of
KeYmaera X is solely responsible for soundness, but provides enough flexibility
to reason in many radically different ways about hybrid systems. Bellerophon
makes this flexibility easily accessible for programming both high-level hybrid
systems verification strategies and concrete case study proofs. Fruitful directions
for future work include developing more expressive proof structuring languages
and extending the tactic library with more proof techniques that leverage ODE
analysis software to produce dL proofs.

Bellerophon: Tactical Theorem Proving for Hybrid Systems 223

References

1. de Moura, L.M., Kong, S., Avigad, J., Doorn, F., Raumer, J.: The lean theo-
rem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS, vol. 9195, pp. 378–388. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 26

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., et al. (eds.) [13], pp. 209–229

3. Barras, B., Carmen González Huesca, L., Herbelin, H., Régis-Gianas, Y., Tassi, E.,
Wenzel, M., Wolff, B.: Pervasive parallelism in highly-trustable interactive theorem
proving systems. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 359–363. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39320-4 29

4. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Certified Programs and Proofs - 6th ACM SIGPLAN
Conference, CPP 2017, pp. 208–221. ACM (2017)

5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

6. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

7. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

8. Constable, R.L., Allen, S.F., Bromley, M., et al.: Implementing Mathematics with
the Nuprl Proof Development System. Prentice Hall, Upper Saddle River (1986)

9. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2), 29–35 (1988)

10. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT
10(3), 263–279 (2008)

11. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

12. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015).
doi:10.1007/978-3-319-21401-6 36

13. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. LNCS,
vol. 736. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6

14. Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). doi:10.
1007/11541868 8

15. Hickey, J., et al.: MetaPRL – a modular logical environment. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 287–303. Springer, Heidelberg (2003).
doi:10.1007/10930755 19

16. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analy-
sis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 21

17. Immler, F., Traut, C.: The flow of ODEs. In: Blanchette, J.C., Merz, S. (eds.)
ITP 2016. LNCS, vol. 9807, pp. 184–199. Springer, Cham (2016). doi:10.1007/
978-3-319-43144-4 12

http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-642-39320-4_29
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/3-540-57318-6
http://dx.doi.org/10.1007/11541868_8
http://dx.doi.org/10.1007/11541868_8
http://dx.doi.org/10.1007/10930755_19
http://dx.doi.org/10.1007/978-3-642-39634-2_21
http://dx.doi.org/10.1007/978-3-642-39634-2_21
http://dx.doi.org/10.1007/978-3-319-43144-4_12
http://dx.doi.org/10.1007/978-3-319-43144-4_12

224 N. Fulton et al.

18. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 15

19. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq.
Log. Methods Comput. Sci. 9(1) (2011)

20. The Coq Development Team: The Coq proof assistant reference manual. LogiCal
Project (2004). http://coq.inria.fr, version 8.0

21. Mitsch, S., Platzer, A.: The KeYmaera X proof IDE: concepts on usability in
hybrid systems theorem proving. In: FIDE-3. EPTCS, vol. 240, pp. 67–81 (2016)

22. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1), 33–74 (2016). Special
issue of selected papers from RV’14

23. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). doi:10.1007/3-540-45949-9

24. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

25. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14509-4

26. Platzer, A.: Logics of dynamical systems. In: LICS. pp. 13–24. IEEE (2012)
27. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reason. 59(2), 219–266 (2017)
28. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems

as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009). Special issue for
selected papers from CAV’08

29. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 15

30. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02959-2 35

31. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with tay-
lor interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38088-4 26

http://dx.doi.org/10.1007/978-3-662-46681-0_15
http://coq.inria.fr
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-642-02959-2_35
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1007/978-3-642-38088-4_26

Formalizing Basic Quaternionic Analysis

Andrea Gabrielli and Marco Maggesi(B)

University of Florence, Florence, Italy
{andrea.gabrielli,marco.maggesi}@unifi.it

http://www.math.unifi.it/~maggesi/

Abstract. We present a computer formalization of quaternions in the
HOL Light theorem prover. We give an introduction to our library for
potential users and we discuss some implementation choices.

As an application, we formalize some basic parts of two recently
developed mathematical theories, namely, slice regular functions and
Pythagorean-Hodograph curves.

1 Introduction

Quaternions are a well-known and elegant mathematical structure which lies at
the intersection of algebra, analysis and geometry. They have a wide range of
theoretical and practical applications from mathematics and physics to CAD,
computer animations, robotics, signal processing and avionics.

Arguably, a computer formalization of quaternions can be useful, or even
essential, for further developments in pure mathematics or for a wide class of
applications in formal methods.

In this paper, we present a formalization of quaternions in the HOL Light
theorem prover. Our aim is to give a quick introduction of our library to potential
users and to discuss some implementation choices.

Our code is available from a public Git repository1 and a significant part of
it has been included in the HOL Light library.

The paper is divided into two main parts. The first one (Sect. 3), we describe
the core of our library, which is already available in the HOL Light distribution.

Next, in the second part, we outline two applications to recently developed
mathematical theories which should serve as further examples and as a testbed
for our work. More precisely, we give the definition and some basic theorems
about slice regular quaternionic functions (Sect. 4) and Pythagorean-Hodograph
curves (Sect. 5).

We thank Graziano Gentili, Carlotta Giannelli and Caterina Stoppato for
many enlightening discussions.

This work has been supported by GNSAGA-INdAM and MIUR.
1 Reachable from the url https://bitbucket.org/maggesi/quaternions/.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 225–240, 2017.
DOI: 10.1007/978-3-319-66107-0 15

https://bitbucket.org/maggesi/quaternions/

226 A. Gabrielli and M. Maggesi

2 Related Work

The HOL Light theorem prover furnishes an extensive library about multivariate
analysis [7] and complex analysis [8], which has been constantly and steadily
extended over the years by Harrison, the main author of the system.

Our objective is to try to further improve this work by adding contributions
in (hyper)complex analysis. One previous work along this line was the proof of
the Cartan fixed point theorems [1] by Ciolli, Gentili and the second author of
this paper.

In a broader context, quaternions are one of the simplest examples of geo-
metric algebra (technically, real Clifford algebra). In this respect, we mention
two recent related efforts. Fuchs and Théry [4] devised an elegant inductive
data structure for formalizing geometric algebra. More recently, Ma et al. [9],
provided a formalization in HOL Light of Conformal Geometric Algebra. In prin-
ciple, these contributions can be integrated with our work, but at the present
stage, we have focused entirely on the specific case of quaternions.

3 The Core Library

Quaternions were “invented” by Hamilton in 1843. From their very inception,
they was meant to represent, in an unified form, both scalar and vector quanti-
ties. Informally, a quaternion q is expressed as a formal combination

q = a + b i + c j + dk ∈ H a, b, c, d ∈ R,

where i, j,k are imaginary units. The following identities

ij = k = −ji

jk = i = −kj

ki = j = −ik

i2 = j2 = k2 = ijk = −1

together with the distributive law, induce a product that turns the set H of
quaternions into a skew field.

It is useful to consider a number of different possible decompositions for
a quaternion q, as briefly sketched in the following schema (here I = R

3 can
be interpreted, depending on the context, as the imaginary part of H or the
3-dimensional space):

q = a
︸︷︷︸

Re q

+ b i + c j + dk
︸ ︷︷ ︸

Im q

∈ H = R ⊕ I

= a
︸︷︷︸

scalar

+ b i + c j + dk
︸ ︷︷ ︸

3d-vector

∈ R
4 = R ⊕ R

3

= a + b i
︸ ︷︷ ︸

z∈C

+ (c + d i)
︸ ︷︷ ︸

w∈C

j ∈ H � C ⊕ C

Formalizing Basic Quaternionic Analysis 227

3.1 The Definition of Quaternion

For the sake of consistency, whenever possible, our development mimics the
formalization of complex numbers, due to Harrison, that is present in the HOL
Light standard library [8]. Following this path, we define the data type ‘:quat‘
of quaternions as an alias for the type of 4-dimensional vectors ‘:real^ 4‘. This
approach has the fundamental advantage that we inherit immediately from the
general theory of Euclidean spaces the appropriate metric, topology and real-
vector space structure.

A set of auxiliary constants for constructing and destructing quaternions is
defined to setup a suitable abstraction barrier. They are listed in the following
table (Table 1).

Table 1. Basic notations for the ‘:quat‘ datatype

Constant name Type Description

Hx :real->quat Embedding R → H

ii, jj, kk :quat Imaginary units i, j,k

quat :real#real#real#real->quat Generic constructor

Hv :real^ 3->quat Embedding R
3 → H

Re :quat->real Real component

Im1, Im2, Im3 :quat->real Imaginary components

HIm :quat->real^ 3 Imaginary part

cnj :quat->quat Conjugation

This is summarized in the following theorem

QUAT_EXPAND
|- !q. q = Hx(Re q) + ii*Hx(Im1 q) + jj*Hx(Im2 q) + kk*Hx(Im3 q)

With these notations in place, the multiplicative structure can be expressed
with an explicit formula

let quat_mul = new_definition

‘p * q =

quat

(Re p * Re q - Im1 p * Im1 q - Im2 p * Im2 q - Im3 p * Im3 q,

Re p * Im1 q + Im1 p * Re q + Im2 p * Im3 q - Im3 p * Im2 q,

Re p * Im2 q - Im1 p * Im3 q + Im2 p * Re q + Im3 p * Im1 q,

Re p * Im3 q + Im1 p * Im2 q - Im2 p * Im1 q + Im3 p * Re q)‘;;

and the inverse of a quaternion is defined analogously. Moreover, we also provide
auxiliary theorems that express in the same notation the already defined additive
and metric structures, e.g.,

228 A. Gabrielli and M. Maggesi

quat_add
|- p + q =

quat(Re p + Re q,Im1 p + Im1 q,Im2 p + Im2 q,Im3 p + Im3 q)

quat_norm
|- norm q =

sqrt(Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2)

Notice that several notations (Re, ii, cnj, . . .) overlap in the complex and
quaternionic case and, more generally, with the ones of other number systems (+,
*, . . .). HOL Light features an overloading mechanism that uses type inference
to select the right constant associated to a given notation.

3.2 Computing with Quaternions

After settling the basic definitions, we supply a simple automated procedure for
proving quaternionic algebraic identities. It consists of just two steps: (1) rewrit-
ing the given identity in real components, (2) using an automated procedure for
the real field (essentially one involving polynomial normalization, elimination of
fractions and Gröbner Basis):

let SIMPLE_QUAT_ARITH_TAC =
REWRITE_TAC[QUAT_EQ; QUAT_COMPONENTS; HX_DEF;

quat_add; quat_neg; quat_sub; quat_mul;
quat_inv] THEN

CONV_TAC REAL_FIELD;;

This approach, although very crude, allows us to prove directly nearly 60 basic
identities, e.g.,

let QUAT_MUL_ASSOC = prove
(‘!x y z:quat. x * (y * z) = (x * y) * z‘,
SIMPLE_QUAT_ARITH_TAC);;

and it is also occasionally useful to prove ad hoc identities in the middle of
more complex proofs. In this way, we quickly bootstrap a small library with the
essential algebraic results that are needed for building more complex procedures
and theorems.

Next, we provide a conversion RATIONAL QUAT CONV for evaluating literal
algebraic expressions. This is easily assembled from elementary conversions for
each basic algebraic operation (RATIONAL ADD CONV, RATIONAL MUL CONV, . . .)
using the HOL mechanism of higher-order conversionals. For instance, the com-
putation

(

1 + 2i − 1
2
k
)3

= −47
4

− 5
2
i +

5
8
k

is performed with the command

Formalizing Basic Quaternionic Analysis 229

RATIONAL_QUAT_CONV
‘(Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3‘;;

val it : thm =
|- (Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3 =

-- Hx(&47 / &4) - Hx(&5 / &2) * ii + Hx(&5 / &8) * kk

Finally, we implement a procedure for simplifying quaternionic polynomial
expressions. HOL Light provides a general procedure for polynomial normal-
ization, which unfortunately works only for commutative rings. Hence we are
forced to code our own solution. In principle, our procedure can be general-
ized to work with arbitrary (non-commutative) rings. However, at the present
stage, it is hardwired to the specific case of quaternions. To give an example,
the computation

(p + q)3 = p3 + q3 + pq2 + p2q + pqp + qp2 + qpq + q2p

can be done with the command

QUAT_POLY_CONV ‘(x + y) pow 3‘;;
val it : thm =

|- (p + q) pow 3 =
p pow 3 + q pow 3 + p * q pow 2 + p pow 2 * q +
p * q * p + q * p pow 2 + q * p * q + q pow 2 * p

3.3 The Geometry of Quaternions

One simple fact, which makes quaternions useful in several physical and geomet-
rical applications, is that the quaternionic product encodes both the scalar and
the vector product. More precisely, if p and q are purely imaginary quaternions
then we have

pq = − 〈p, q〉
︸ ︷︷ ︸

scalar
product

+ p ∧ q
︸ ︷︷ ︸

vector
product

∈ R ⊕ I,

which can be easily verified by direct computation.
Moreover, it is possible to use quaternions to encode orthogonal transforma-

tions. We briefly recall the essential mathematical construction. For q �= 0, the
conjugation map is defined as

cq : H −→ H

cq(x) := q−1 x q

and we have
cq1 ◦ cq2 = cq1q2 , c−1

q = cq−1 .

One important special case is when q is unitary, i.e., ‖q‖ = 1 for which we
have q−1 = q̄ (the conjugate) and thus cq(x) = q̄ x q.

Now, we are ready to state some basic results, which we have formalized in
our framework (see file Quaternions/qisom.hl in the HOL Light distribution).

230 A. Gabrielli and M. Maggesi

Proposition 1. If v is a non-zero purely imaginary quaternion, then −cv : R3 →
R

3 is the reflection with respect to the subspace of R3 orthogonal to v.

Here is the corresponding statement proved in HOL Light

REFLECT_ALONG_EQ_QUAT_CONJUGATION
|- !v. ~(v = vec 0)

==> reflect_along v = \x. --HIm (inv (Hv v) * Hv x * Hv v)

The theorem of Cartan-Dieudonné asserts that any orthogonal transforma-
tion f : Rn −→ R

n is the composition of at most n reflections. Using this and
the previous proposition we get the following result.

Proposition 2. Any orthogonal transformation f : R3 −→ R
3 is of the form

f = cq or f = −cq, ‖q‖ = 1.

The corresponding formalization is the following

ORTHOGONAL_TRANSFORMATION_AS_QUAT_CONJUGATION
|- !f. orthogonal_transformation f

==> (?q. norm q = &1 /\
((!x. f x = HIm (inv q * Hv x * q)) \/
(!x. f x = --HIm (inv q * Hv x * q))))

3.4 Elementary Quaternionic Analysis

Passing from algebra to analysis, we need to prove a series of technical results
about the analytical behaviour of the algebraic operations. Following the HOL
Light practice, we use the formalism of net topology to express limits and con-
tinuity. To give an idea, here we report the theorem that states the uniform
continuity of the quaternionic inverse q �→ q−1

UNIFORM_LIM_QUAT_INV
|- !net P f l b.

(!e. &0 < e
==> eventually (\x. !n. P n ==> norm (f n x - l n) < e)

net) /\
&0 < b /\ eventually (\x. !n. P n ==> b <= norm (l n)) net
==> (!e. &0 < e

==> eventually
(\x. !n. P n

==> norm (inv (f n x) - inv (l n)) < e)
net)

We conducted a systematic formalization of the behaviour of algebraic oper-
ations from the point of view of limits and continuity, which brought us to
prove more than fifty such theorems overall. Some of them are indeed trivial.
For instance, the uniform continuity of the product is a direct consequence of a

Formalizing Basic Quaternionic Analysis 231

more general result already available on bilinear maps. Some are less immediate
and forced us to dive into a technical εδ-reasoning.

Next, we considered the differential structure. Given a function f : Rn → R
m

we denote by Dfx0(v) or d
dxf(x)|x0(v) the (Frechét) derivative of f at x0 applied

to the vector v. When the derivative exists, it is the linear function from R
n to

R
m that “best” approximates the variation of f in a neighborhood of x0, i.e.,

f(x) − f(x0) ≈ Dfx0(x − x0).

In HOL Light, the ternary predicate (f has derivative f’) (at x0) is used
to assert that f is (Frechét) differentiable at x0 and f ′ = Dfx0

We compute the derivative of the basic quaternionic operations. Notice that,
if f is a quaternionic valued function, the derivative Dfq0(x) is a quaternion (in
the modern language of Differential Geometry this is the natural identification of
the tangent space Tf(q0)H � H). For instance, given two differentiable functions
f(q) and g(q), the derivative of their product at q0 is

d
(

f(q)g(q)
)

dq
|q0(x) = f(q0)Dgq0(x) + Dfq0(x)g(q0).

In our formalism, the previous formula becomes the following theorem:

QUAT_HAS_DERIVATIVE_MUL_AT
|- !f f’ g g’ q.

(f has_derivative f’) (at q) /\ (g has_derivative g’) (at q)
==> ((\x. f x * g x) has_derivative

(\x. f q * g’ x + f’ x * g q)) (at q)

Another consequence that will be useful later, is the following formula for
the power:

dqn

dq
|q0(x) =

n
∑

i=1

qn−i
0 xqi−1

0 ,

that is, the HOL theorem

QUAT_HAS_DERIVATIVE_POW
|- !q0 n.

((\q. q pow n) has_derivative
(\h. vsum (1..n) (\i. q0 pow (n - i) * h * q0 pow (i - 1))))

(at q0)

which is easily proven by induction using the derivative of the product.

4 Slice Regular Functions

Complex holomorphic functions play a central role in mathematics. Given the
deep link and the evident analogy between complex numbers and quaternions,
it is natural to seek for a theory of quaternionic holomorphic functions. A more

232 A. Gabrielli and M. Maggesi

careful investigation shows that the situation is less simple than expected. Naive
attempts to generalize the complex theory to the quaternionic case fail because
they lead to conditions which are either too strong or too weak and do not
produce interesting classes of functions.

Fueter in the 1920s, proposed a definition of regular quaternionic function
which is now well-known to the experts and has been extensively studied and
developed. Fueter’s regular functions have significant applications to physics
and engineering, but present also some undesirable aspects. For instance, the
identity function and the polynomials P (q) = a0 + a1q + ... + anqn, ai ∈ H

are not Fueter-regular. A more detailed discussion on this subject is far beyond
the goal of the present work. To the interested reader we recommend Sudbery’s
excellent survey [11].

In this setting, a novel promising approach has been recently proposed by
Gentili and Struppa in their seminal paper in 2006 [6], where they introduce the
definition of slice regular functions and prove that they expand into power series
near the origin. Slice regular functions are now a stimulating and active subject
of research for several mathematicians worldwide. A comprehensive introduction
on the foundation of this new theory can be found in the book of Gentili et al. [5].

In this section, we use our quaternionic framework presented in the previous
section to formalize the basics of the theory of slice regular functions.

4.1 The Definition of Slice Regular Function

A real 2-dimensional subspace L ⊂ H containing the real line is called a slice
(or Cullen slice) of H. The key fact is that the quaternionic product becomes
commutative when it is restricted on a slice, that is if p, q are in the same slice
L, then pq = qp. In other terms, each slice L can be seen as a copy of the
complex field C. More precisely, if I is a quaternionic imaginary unit (i.e., an
unitary imaginary quaternion), then LI = Span{1, I} = R ⊕ RI is a slice and
the injection jI : C → LI ⊂ H, defined by

jI : x + yi �→ x + yI,

is a field homomorphism. Its formal counterpart is

let cullen_inc = new_definition
‘cullen_inc i z = Hx(Re z) + Hx(Im z) * i‘;;

We can now introduce the definition of Gentili and Struppa:

Definition 1 (Slice regular function). Given a domain (i.e., an open, con-
nected set) Ω ⊂ H a function f : Ω → H is slice regular if it is holomorphic (in
the complex sense) on each slice, that is, the restricted function fLI

: Ω∩LI → H

satisfies the condition

1
2

(

∂

∂x
+ I

∂

∂y

)

fLI
(x + yI) = 0

Formalizing Basic Quaternionic Analysis 233

for each q = x+yI in Ω∩LI , for every imaginary unit I. In that case, we define
the slice derivative of f in q to be the quaternion

f ′(q) =
1
2

(

∂

∂x
− I

∂

∂y

)

fLI
(x + yI).

Our first task is to code the previous definition within our formalism. One
problem is the notation for partial derivatives, which is notorious for being occa-
sionally opaque and potentially misleading. When it has to be rendered in a
formal language, its translation might be tricky or at least cumbersome. This is
essentially due to the fact that it is a convention that induces us to use the same
name for different functions, depending on the name of the arguments.2

We decided that the best way to avoid potential problems in our development
was to systematically replace partial derivatives with (Frechét) derivatives. This
leads to an alternative, and equivalent, definition of slice regular function which
could be interesting in its own.

The basic idea is the following. A complex function f is holomorphic in z0
precisely when its derivative Dfz0 is C-linear. Hence, by analogy, a quaternionic
function should be slice regular if its derivative is H-linear on slices in a suitable
sense. This is indeed the case: consider f : Ω → H as before and a quaternion
q0 ∈ Ω. Let L be a slice containing q0 and denote by fL the restriction of f to
Ω ∩ L. Then we have

Proposition 3. The function f is slice regular in q0 if and only if the derivative
of fL is right-H-linear, that is, there exists a quaternion c such that

D(fL)q0(p) = pc.

In that case, c is the slice derivative f ′(q0).

We then take the alternative formulation given by the above Proposition
as the definition of slice regular function in our developement. The resulting
formalization in HOL is the following

let has_slice_derivative = new_definition
‘!f (f’:quat) net.

(f has_slice_derivative f’) net <=>
(!l. subspace l /\ dim l = 2 /\ Hx(&1) IN l /\

netlimit net IN l
==> (f has_derivative (\q. q * f’)) (net within l))‘;;

2 Spivak, in his book Calculus on manifolds [10, p. 65], notices that if f(u, v) is a
function and u = g(x, y) and v = h(x, y), then the chain rule is often written

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
,

where f denotes two different functions on the left- and right-hand of the equation.

234 A. Gabrielli and M. Maggesi

Notice that the predicate has slice derivative formalizes at the same time
the notion of slice regular function and the notion of slice derivative. The domain
Ω does not appear in the definition because functions in HOL are total and, in
any case, the notion of slice derivative is local.

Our formalization of slice derivative is slightly more general than the one of
Proposition 3 for the fact that we use HOL nets. The reader who is not accus-
tomed to the use of nets can simply think the variable net as a denoting the
limit q → q0 and netlimit net as the limit point q0. Other than that, these
details about nets are largely irrelevant in the rest of the paper.

We formally proved Proposition 3 in HOL Light. Here is the statement for
the case when q0 = x + yI is not real.

HAS_SLICE_DERIVATIVE

|- !f f’ i x y.

i pow 2 = -- Hx(&1) /\ ~(y = &0) /\

f differentiable at (Hx x + Hx y * i)

==> ((f has_slice_derivative f’) (at (Hx x + Hx y * i)) <=>

(?fx fy.

((\a. f(Hx(drop a) + Hx y*i)) has_vector_derivative fx)

(at(lift x)) /\

((\b. f(Hx x + Hx(drop b)*i)) has_vector_derivative fy)

(at(lift y)) /\

fx + i * fy = Hx(&0) /\ f’ = fx /\ f’ = --(i * fy)))

Since any slice L can be obtained as the image of jI for any imaginary unit
I ∈ L, then we also have the following useful reformulation

HAS_SLICE_DERIVATIVE_CULLEN_INC
|- !i f f’ z0.

i pow 2 = --Hx(&1)
==> ((f has_slice_derivative f’)

(at (cullen_inc i z) within cullen_slice i) <=>
(f o cullen_inc i has_derivative
(\z. cullen_inc i z * f’)) (at z0))

After the definition, we provided a series of lemmas that allow us to compute
the slice derivative of algebraic expressions. In particular, the powers qn are slice
regular and, if f(q) and g(q) are slice regular functions and c is a quaternion,
then f(q) + g(q) and f(q)c are slice regular. It follows that right polynomials
(i.e., polynomials with coefficients on the right)

c0 + qc1 + q2c2 + · · · + qncn

are all slice regular functions. Most of these results are easy consequences of
those discussed in Sect. 3.4.

We should stress that the product f(q)g(q), including left multiplication cf(q)
and arbitrary polynomials of the form

c0 + c1,1q + c2,0qc2,1qc2,2 + c3,0qc3,1qc3,2qc3,3 + · · · ,

is not slice regular in general.

Formalizing Basic Quaternionic Analysis 235

A more explicit link between slice regular functions and complex holomorphic
functions is given by the splitting lemma, which is a fundamental tool for several
subsequent results. Given two imaginary units I, J orthogonal to one other, every
quaternion can be split, in an unique way, into a sum q = z +wJ with z, w ∈ LI .
Now, given a function f : Ω → H we can split its restriction fLI

as

fLI
(z) = F (z) + G(z)J

with F,G : Ω ∩ LI → LI . Then we have

Lemma 1 (Splitting Lemma). The function f is slice regular at q0 ∈ LI if
and only if the functions F and G are holomorphic at q0.

Notice that, in the above statement, the two functions F,G are ‘complex
holomorphic’ with respect to the implicit identification C � LI given by jI : x +
yi �→ x+yI. This has been made explicit in the following formal statement using
our injection cullen inc:

QUAT_SPLITTING_LEMMA

|- !f s i j.

open s /\ i pow 2 = --Hx (&1) /\ j pow 2 = --Hx (&1) /\

orthogonal i j

==> (?g h.

(!z. f (cullen_inc i z) =

cullen_inc i (g z) + cullen_inc i (h z) * j) /\

(!g’ h’ z.

z IN s

==> ((g has_complex_derivative g’) (at z) /\

(h has_complex_derivative h’) (at z) <=>

(f o cullen_inc i has_derivative

(\z. cullen_inc i z *

(cullen_inc i g’ + cullen_inc i h’ * j)))

(at z))) /\

(g holomorphic_on s /\ h holomorphic_on s <=>

(f slice_regular_on s) i))

4.2 Power Expansions of Slice Regular Functions

We now approach power series expansions of slice regular functions at the origin,
which is one of the corner stone for the development of the whole theory. While
the HOL Light library has a rather complete support for sequences and series
in general, at the beginning of our work it was still lacking the proof of various
theorems that were important prerequisites for our task.

We undertake a systematic formalization of the missing theory, including

1. the definition of limit superior and inferior and their basic properties;
2. the root test for series;
3. the Cauchy-Hadamard formula for the radius of convergence.

236 A. Gabrielli and M. Maggesi

We avoid discussing this part of the work in detail in this paper. All these
preliminaries have been recently included in the HOL Light standard library.3

Theorem 1 (Abel’s Theorem for slice regular functions). The quater-
nionic power series

∑

n∈N

qnan (1)

is absolutely convergent in the ball B = B
(

0, 1/ lim sup
n→+∞

n
√|an|) and uniformly

convergent on any compact subset of B. Moreover, its sum defines a slice regular
function on B.

The corresponding formalization is split into several theorems. As for the con-
vergence, we have three statements, one for each kind of convergence (pointwise,
absolute, uniform). As an example, we include the statement for the uniform
convergence:

QUAT_UNIFORM_CONV_POWER_SERIES
|- !a b s k.

((\n. root n (norm (a n))) has_limsup b)
(sequentially within k) /\

compact s /\
(!q. q IN s ==> b * norm q < &1)
==> ((\i q. q pow i * a i) uniformly_summable_on s) k

The predicate ‘uniformly summable on‘ is a compact notation for uniform con-
vergence for series. Note that the hypothesis ‘b * norm q < &1‘ allows a cor-
rect representation of the domain of convergence also in the case of infinite radius
(case b = 0).

With a little extra effort we proved the same results for the formal derivative
of the series (1).

Finally, from the previous results, and the fact that derivative distributes
over uniformly convergent series, we proved that right quaternionic power series
are slice regular functions on any compact subsets of their domain of convergence

QUAT_HAS_SLICE_DERIVATIVE_POWER_SERIES_COMPACT
|- !a b k q0 s.

((\n. root n (norm (a n))) has_limsup b)
(sequentially within k) /\

compact s /\ s SUBSET {q | b * norm q < &1} /\
~(s = {}) /\ q0 IN s
==> ((\q. infsum k (\n. q pow n * a n)) has_slice_derivative

infsum k (\n. q0 pow (n - 1) * Hx (&n) * a n)) (at q0)

which completes the formalization of Theorem 1.
Next, from the Splitting Lemma1, we can derive the existence of the power

series expansion of a slice regular function f from the analyticity of its holomor-
phic components F and G.
3 Commit on Apr 10, 2017, HOL Light GitHub repository.

Formalizing Basic Quaternionic Analysis 237

Theorem 2. Let f : B(0, R) → H be a slice regular function. Then

f(q) =
∑

n∈N

qn 1
n!

f (n)(0),

where f (n) is the n-th slice derivative of f .

The resulting formalization is the following

SLICE_REGULAR_SERIES_EXPANSION
|- !r q f.

&0 < r /\ q IN ball (Hx(&0),r) /\
(!i. (f slice_regular_on ball (Cx(&0),r)) i)
==> (?z i.

i pow 2 = --Hx(&1) /\ q = cullen_inc i z /\
f q =
infsum (:num)
(\n. cullen_inc i z pow n *

cullen_inc i (inv (Cx(&(FACT n)))) *
higher_slice_derivative i n f (Hx(&0))))

5 Pythagorean-Hodograph Curves

The hodograph of a parametric curve r(t) in R
n is just its derivative r′(t),

regarded as a parametric curve in its own right. A parametric polynomial curve
r(t) is said to be a Pythagorean-Hodograph curve if it satisfies the Pythagorean
condition, i.e., there exists a polynomial σ(t) such that

‖r′(t)‖2 = x2
1(t) + · · · + x2

n(t) = σ2(t), (2)

that is, the parametric speed ‖r′(t)‖ is polynomial.
Pythagorean-Hodograph curves (PH curves) were introduced by Farouki

and Sakkalis in 1990. They have significant computational advantages when
used for computer-aided design (CAD) and robotics applications since, among
other things, their arc length can be computed precisely, i.e., without numerical
quadrature, and their offsets are rational curves. Farouki’s book [3] offers a fairly
complete and self-contained exposition of this theory.

5.1 Formalization of PH Curves and Hermite Interpolation
Problem

The formal definition of PH curve in HOL Light is straightforward:

let pythagorean_hodograph = new_definition
‘pythagorean_hodograph r <=>
vector_polynomial_function r /\
real_polynomial_function

(\t. norm (vector_derivative r (at t)))‘;;

238 A. Gabrielli and M. Maggesi

In our work, we deal with spacial PH curves which can be succinctly and
profitably expressed in terms of the algebra of quaternions, and thus, are a
natural application of our formalization of quaternionic algebra.

It turns out that, regarding r(t) = x(t)i + y(t)j + z(t)k as a pure vector in
R

3 ⊂ H, condition (2) holds if and only if exists a quaternionic polynomial A(t)
such that

r′(t) = A(t)uĀ(t) (3)

where u is any fixed unit vector and Ā(t) is the usual quaternionic conjugate
of A(t). We proved formally that the definition (2) follows from the previous
condition.

QUAT_PH_CURVE
|- !r A u.

u pow 2 = --Hx (&1) /\
vector_polynomial_function A /\
(!t. (r has_vector_derivative A t * u * cnj (A t)) (at t))
==> pythagorean_hodograph r

One basic question, with many practical applications, is whether there exists
a PH curve with prescribed conditions on its endpoints.

Property 1 (Hermite Interpolation Problem). Given the initial and final point
{pi,pf} and derivatives {di,df}, find a PH interpolation for this data set.

Following the work of Farouki et al. [2], here we treat only the case of cubic
and quintic solutions of the above problem.

From condition (3) the problem can be reduced to finding a quaternionic
polynomial A(t), of degree 1 (for cubics) or 2 (for quintics), such that the curve
r(t) obtained by integrating (3) satisfies r(0) = pi, r(1) = pf and r′(0) = di,
r′(1) = df .

5.2 PH Cubic and Quintic Interpolant

As is well-known, for a given initial data set {pi,pf ,di,df}, there is a unique
“ordinary” cubic interpolant [3]. It turns out that such a curve is PH if and only
if the data set satisfies specific conditions [2, Sect. 5], namely:

w · (δi − δf) = 0
(

w · δi + δf

|δi + δf |
)2

+
(w · z)2

|z|4 = |di||df |

where w = 3(pf − pi) − (di + df), δi = di

|di| , δf = df

|df | and z = δi∧δf
|δi∧δf | .

We formalized only one implication of this result, i.e., the sufficient condition
for the “ordinary” cubic interpolant to be PH. The HOL theorem is

Formalizing Basic Quaternionic Analysis 239

PH_CUBIC_INTERPOLANT_EXISTS

|- !Pf Pi di df:quat.

let w = Hx(&3) * (Pf - Pi) - (di + df) in

let n = \v. Hx(inv(norm v)) * v in

let z = Hx(inv (norm (n di + n df))) *

Hv(HIm(n di) cross HIm(n df)) in

let r = \t. bernstein 3 0 (drop t) % Pi +

bernstein 3 1 (drop t) % (Pi + Hx(&1 / &3) * di) +

bernstein 3 2 (drop t) % (Pf - Hx(&1 / &3) * df) +

bernstein 3 3 (drop t) % Pf in

Re Pf = &0 /\ Re Pi = &0 /\ Re di = &0 /\ Re df = &0 /\

~(Hx(&0) = di) /\ ~(Hx(&0) = df) /\ (!a. ~(n di = Hx a * df))

==>

pathstart r = Pi /\ pathfinish r = Pf /\

pathstart (\t. vector_derivative r (at t)) = di /\

pathfinish (\t. vector_derivative r (at t)) = df /\

(w dot (n di - n df) = &0 /\

(w dot (n (n di + n df))) pow 2 +

inv(norm z) pow 4 * (w dot z) pow 2 =

norm di * norm df

==> pythagorean_hodograph r)‘

where the curve r(t) is expressed in the Bernstein form.
We also formalized the analogous result for quintics. In this case the theory

shows several differences, since, for instance, an Hermite PH quintic interpolant
can be found for every initial data set. Actually, there is a two-parameter family
of such interpolants [2, Sect. 6] and the algebraic expression of r(t) is substan-
tially more complex with respect to the case of cubics. The formal statement
of the theorem is about 40 lines of code and thus cannot be included here for
lack of space (see theorem PH QUINTIC INTERPOLANT in file ph curve.hl in our
online repository).

Both of the aforementioned proofs consist essentially in algebraic manipula-
tion on quaternions, so our formal framework has been very useful to automate
many calculations that were implicit in the original paper [2, Sect. 6].

6 Conclusions

We laid the foundations for quaternionic calculus in the HOL Light theorem
prover, which might be of general interest for developing further formalization
in pure mathematics, physics, and for several possible applications in formal
methods.

We also presented two applications. First, a formalization of quaternionic
analysis with a focus on the theory of slice regular functions, as proposed by
Gentili and Struppa. Secondly, the computer verified solutions to the Hermite
interpolation problem for cubic and quintic PH curves.

Along the way, we provided a few extensions of the HOL Light library about
multivariate and complex analysis, comprising limit superior and inferior, root

240 A. Gabrielli and M. Maggesi

test for series, Cauchy-Hadamard formula for the radius of convergence and some
basic theorems about derivatives.

Overall, our contribution takes about 10,000 lines of code and consists in
about 600 theorems, of which more than 350 have been included in the HOL
Light library.

This work is open to a wide range of possible improvements and extensions.
The most obvious line of developement would be to formalize further mathe-
matical results about quaternions; there is an endless list of potential interesting
candidates within reach from the present state of art.

For the core formalization of quaternions, we only provided basic procedures
for algebraic simplification. They were somehow sufficient for automating several
computations occurring in our development, but it surely would be interesting
to implement more powerful decision procedures. Some of them would probably
involve advanced techniques from non-commutative algebra.

References

1. Ciolli, G., Gentili, G., Maggesi, M.: A certified proof of the Car-
tan fixed point theorems. J. Automated Reason. 47(3), 319–336 (2011).
https://doi.org/10.1007/s10817-010-9198-6

2. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH
quintic hermite interpolants with near-optimal shape measures. Comput. Aided
Geom. Des. 25(4), 274–297 (2008)

3. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.
Geometry and Computing. Springer, Heidelberg (2009)

4. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees.
Adv. Appl. Clifford Algebras 24(2), 589–611 (2014)

5. Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Vari-
able. Springer Monographs in Mathematics. Springer, Heidelberg (2013)

6. Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quater-
nionic variable. Comptes Rendus Math. 342(10), 741–744 (2006)

7. Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). doi:10.
1007/11541868 8

8. Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A.
(eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in
Logic, Grammar and Rhetoric, vol. 10, no. 23, pp. 151–165. University of Bia�lystok
(2007). http://mizar.org/trybulec65/

9. Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of
conformal geometric algebra and its application in verifying a robotic manipulation
algorithm. Adv. Appl. Clifford Algebras 26(4), 1305–1330 (2016)

10. Spivak, M.: Calculus on Manifolds: A Modern Approach to Classical Theorems
of Advanced Calculus. Advanced Book Program. Avalon Publishing, New York
(1965)

11. Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(02),
199–225 (1979)

https://doi.org/10.1007/s10817-010-9198-6
http://dx.doi.org/10.1007/11541868_8
http://dx.doi.org/10.1007/11541868_8
http://mizar.org/trybulec65/

A Formalized General Theory of Syntax
with Bindings

Lorenzo Gheri1 and Andrei Popescu1,2(B)

1 Department of Computer Science, Middlesex University, London, UK
uuomul@yahoo.com

2 Institute of Mathematics Simion Stoilow of the Romanian Academy,

Bucharest, Romania

Abstract. We present the formalization of a theory of syntax with
bindings that has been developed and refined over the last decade to
support several large formalization efforts. Terms are defined for an arbi-
trary number of constructors of varying numbers of inputs, quotiented to
alpha-equivalence and sorted according to a binding signature. The the-
ory includes a rich collection of properties of the standard operators on
terms, such as substitution and freshness. It also includes induction and
recursion principles and support for semantic interpretation, all tailored
for smooth interaction with the bindings and the standard operators.

1 Introduction

Syntax with bindings is an essential ingredient in the formal specification and
implementation of logics and programming languages. However, correctly and
formally specifying, assigning semantics to, and reasoning about bindings is
notoriously difficult and error-prone. This fact is widely recognized in the formal
verification community and is reflected in manifestos and benchmarks such as
the influential POPLmark challenge [1].

In the past decade, in a framework developed intermittently starting with
the second author’s PhD [42] and moving into the first author’s ongoing PhD,
a series of results in logic and λ-calculus have been formalized in Isabelle/HOL
[35,37]. These include classic results (e.g., FOL completeness and soundness
of Skolemization [7,13,15], λ-calculus standardization and Church-Rosser theo-
rems [42,44], System F strong normalization [45]), as well as the meta-theory of
Isabelle’s Sledgehammer tool [7,8].

In this paper, we present the Isabelle/HOL formalization of the framework
itself (made available from the paper’s website [21]). While concrete system
syntaxes differ in their details, there are some fundamental phenomena concern-
ing bindings that follow the same generic principles. It is these fundamental
phenomena that our framework aims to capture, by mechanizing a form of uni-
versal algebra for bindings. The framework has evolved over the years through
feedback from concrete application challenges: Each time a tedious, seemingly
routine construction was encountered, a question arose as to whether this could
be performed once and for all in a syntax-agnostic fashion.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 241–261, 2017.
DOI: 10.1007/978-3-319-66107-0 16

242 L. Gheri and A. Popescu

The paper is structured as follows. We start with an example-driven overview
of our design decisions (Sect. 2). Then we present the general theory: terms
as alpha-equivalence classes of “quasiterms,” standard operators on terms and
their basic properties (Sect. 3), custom induction and recursion schemes (Sect. 4),
including support for the semantic interpretation of syntax, and the sorting of
terms according to a signature (Sect. 5). Within the large body of formalizations
in the area (Sect. 6), distinguishing features of our work are the general setting
(many-sorted signature, possibly infinitary syntax), a rich theory of the standard
operators, and operator-aware recursion. More details on this paper’s results can
be found in an extended technical report [22].

2 Design Decisions

In this section, we use some examples to motivate our design choices for the the-
ory. We also introduce conventions and notations that will be relevant through-
out the paper.

The paradigmatic example of syntax with bindings is that of the λ-calculus
[4]. We assume an infinite supply of variables, x ∈ var. The λ-terms, X,Y ∈
termλ, are defined by the following BNF grammar:

X ::= Var x | App X Y | Lm x X

Thus, a λ-term is either a variable, or an application, or a λ-abstraction. This
grammar specification, while sufficient for first-order abstract syntax, is incom-
plete when it comes to syntax with bindings—we also need to indicate which
operators introduce bindings and in which of their arguments. Here, Lm is the
only binding operator: When applied to the variable x and the term X, it
binds x in X. After knowing the binders, the usual convention is to identify
terms modulo alpha-equivalence, i.e., to treat as equal terms that only differ
in the names of bound variables, such as, e.g., Lm x (App (Var x) (Var y)) and
Lm z (App (Var z) (Var y)). The end results of our theory will involve terms mod-
ulo alpha. We will call the raw terms “quasiterms,” reserving the word “term”
for alpha-equivalence classes.

2.1 Standalone Abstractions

To make the binding structure manifest, we will “quarantine” the bindings and
their associated intricacies into the notion of abstraction, which is a pairing of
a variable and a term, again modulo alpha. For example, for the λ-calculus we
will have

X ::= Var x | App X Y | Lam A A ::= Abs x X

where X are terms and A abstractions. Within Abs x X, we assume that x is
bound in X. The λ-abstractions Lm x X of the the original syntax are now
written Lam (Abs x X).

A Formalized General Theory of Syntax with Bindings 243

2.2 Freshness and Substitution

The two most fundamental and most standard operators on λ-terms are:

– the freshness predicate, fresh : var → termλ → bool, where fresh x X states
that x is fresh for (i.e., does not occur free in) X; for example, it holds that
fresh x (Lam (Abs x (Var x))) and fresh x (Var y) (when x �= y), but not that
fresh x (Var x).

– the substitution operator, [/] : termλ → termλ → var → termλ, where
Y [X/x] denotes the (capture-free) substitution of term X for (all free occur-
rences of) variable x in term Y; e.g., if Y is Lam (Abs x (App (Var x) (Var y)))
and x �∈ {y, z}, then:

• Y [(Var z)/y] = Lam (Abs x (App (Var x) (Var z)))
• Y [(Var z)/x] = Y (since bound occurrences like those of x in Y are not

affected)

And there are corresponding operators for abstractions—e.g., freshAbs x
(Abs x (Var x)) holds. Freshness and substitution are pervasive in the meta-
theory of λ-calculus, as well as in most logical systems and formal semantics of
programming languages. The basic properties of these operators lay at the core
of important meta-theoretic results in these fields—our formalized theory aims
at the exhaustive coverage of these basic properties.

2.3 Advantages and Obligations from Working with Terms Modulo
Alpha

In our theory, we start with defining quasiterms and quasiabstractions and their
alpha-equivalence. Then, after proving all the syntactic constructors and stan-
dard operators to be compatible with alpha, we quotient to alpha, obtaining
what we call terms and abstractions, and define the versions of these operators
on quotiented items. For example, let qtermλ and qabsλ be the types of qua-
siterms and quasiabstractions in λ-calculus. Here, the quasiabstraction construc-
tor, qAbs : var → qtermλ → qabsλ, is a free constructor, of the kind produced by
standard datatype specifications [6,10]. The types termλ and absλ are qtermλ
and qabsλ quotiented to alpha. We prove compatibility of qAbs with alpha and
then define Abs : var → termλ → absλ by lifting qAbs to quotients.

The decisive advantages of working with quasiterms and quasiabstractions
modulo alpha, i.e., with terms and abstractions, are that (1) substitution behaves
well (e.g., is compositional) and (2) Barendregt’s variable convention [4] (of
assuming, w.l.o.g., the bound variables fresh for the parameters) can be invoked
in proofs.

However, this choice brings the obligation to prove that all concepts on terms
are compatible with alpha. Without employing suitable abstractions, this can
become quite difficult even in the most “banal” contexts. Due to nonfreeness,
primitive recursion on terms requires a proof that the definition is well formed,
i.e., that the overlapping cases lead to the same result. As for Barendregt’s

244 L. Gheri and A. Popescu

convention, its rigorous usage in proofs needs a principle that goes beyond the
usual structural induction for free datatypes.

A framework that deals gracefully with these obligations can make an impor-
tant difference in applications—enabling the formalizer to quickly leave behind
low-level “bootstrapping” issues and move to the interesting core of the results.
To address these obligations, we formalize state-of-the-art techniques from the
literature [41,44,57].

2.4 Many-Sortedness

While λ-calculus has only one syntactic category of terms (to which we added
that of abstractions for convenience), this is often not the case. FOL has two:
terms and formulas. The Edinburgh Logical Framework (LF) [25] has three:
object families, type families and kinds. More complex calculi can have many
syntactic categories.

Our framework will capture these phenomena. We will call the syntactic
categories sorts. We will distinguish syntactic categories for terms (the sorts)
from those for variables (the varsorts). Indeed, e.g., in FOL we do not have
variables ranging over formulas, in the π-calculus [34] we have channel names
but no process variables, etc.

Sortedness is important, but formally quite heavy. In our formalization, we
postpone dealing with it for as long as possible. We introduce an intermediate
notion of good term, for which we are able to build the bulk of the theory—
only as the very last step we introduce many-sorted signatures and transit from
“good” to “sorted”.

2.5 Possibly Infinite Branching

Nominal Logic’s [40,57] notion of finite support has become central in state-of-
the-art techniques for reasoning about bindings. Occasionally, however, impor-
tant developments step outside finite support. For example, (a simplified) CCS
[33] has the following syntactic categories of data expressions E ∈ exp and
processes P ∈ proc:

E ::= Var x | 0 | E + E P ::= Inp c x P | Out c e P | ∑
i∈I Pi

Above, Inp c x P, usually written c(x). P, is an input prefix c(x) followed by a
continuation process P, with c being a channel and x a variable which is bound
in P. Dually, Out c E P, usually written c E. P, is an output-prefixed process
with E an expression. The exotic constructor here is the sum

∑
, which models

nondeterministic choice from a collection (Pi)i∈I of alternatives indexed by a
set I. It is important that I is allowed to be infinite, for modeling different
decisions based on different received inputs. But then process terms may use
infinitely many variables, i.e., may not be finitely supported. Similar issues arise
in infinitary FOL [29] and Hennessey-Milner logic [26]. In our theory, we cover
such infinitely branching syntaxes.

A Formalized General Theory of Syntax with Bindings 245

3 General Terms with Bindings

We start the presentation of our formalized theory, in its journey from quasiterms
(Sect. 3.1) to terms via alpha-equivalence (Sect. 3.2). The journey is fueled by the
availability of fresh variables, ensured by cardinality assumptions on constructor
branching and variables (Sect. 3.3). It culminates with a systematic study of the
standard term operators (Sect. 3.4).

3.1 Quasiterms

The types qterm and qabs, of quasiterms and quasiabstractions, are defined as
mutually recursive datatypes polymorphic in the following type variables: index
and bindex, of indexes for free and bound arguments, varsort, of varsorts, i.e.,
sorts of variables, and opsym, of (constructor) operation symbols. For read-
ability, below we omit the occurrences of these type variables as parameters to
qterm and qabs:
datatype qterm = qVar varsort var |

qOp opsym ((index,qterm) input) ((bindex,qabs) input)
and qabs = qAbs varsort var qterm

Thus, any quasiabstraction has the form qAbs xs x X, putting together the
variable x of varsort xs with the quasiterm X, indicating the binding of x in X.
On the other hand, a quasiterm is either an injection qVar xs x, of a variable x
of varsort xs, or has the form qOp δ inp binp, i.e., consists of an operation symbol
applied to some inputs that can be either free, inp, or bound, binp.

We use (α, β) input as a type synonym for α → β option, the type of par-
tial functions from α to β; such a function returns either None (representing
“undefined”) or Some b for b : β. This type models inputs to the quasiterm
constructors of varying number of arguments. An operation symbol δ : opsym
can be applied, via qOp, to: (1) a varying number of free inputs, i.e., families
of quasiterms modeled as members of (index,qterm) input and (2) a varying
number of bound inputs, i.e., families of quasiabstractions modeled as members
of (index,qabs) input. For example, taking index to be nat we capture n-ary
operations for any n (passing to qOp δ inputs defined only on {0, . . . , n − 1}), as
well as as countably-infinitary operations (passing to qOp δ inputs defined on
the whole nat).

Note that, so far, we consider sorts of variables but not sorts of terms. The
latter will come much later, in Sect. 5, when we introduce signatures. Then, we
will gain control (1) on which varsorts should be embedded in which term sorts
and (2) on which operation symbols are allowed to be applied to which sorts
of terms. But, until then, we will develop the interesting part of the theory of
bindings without sorting the terms.

On quasiterms, we define freshness, qFresh : varsort → var → qterm → bool,
substitution, [/] : qterm → qterm → var → varsort → qterm, parallel
substitution, [] : qterm → (varsort → var → qterm option) → qterm,

246 L. Gheri and A. Popescu

swapping, [∧] : qterm → var → var → varsort → qterm, and alpha-
equivalence, alpha : qterm → qterm → bool—and corresponding operators on
quasiabstractions: qFreshAbs, alphaAbs, etc.

The definitions proceed as expected, with picking suitable fresh variables in
the case of substitutions and alpha. For parallel substitution, given a (partial)
variable-to-quasiterm assignment ρ : varsort → var → qterm option, the
quasiterm X[ρ] is obtained by substituting, for each free variable x of sort xs in
X for which ρ is defined, the quasiterm Y where ρ xs x = Some Y. We only show
the formal definition of alpha.

3.2 Alpha-Equivalence

We define the predicates alpha (on quasiterms) and alphaAbs (on quasiab-
stractions) mutually recursively, as shown in Fig. 1. For variable quasiterms,
we require equality on both the variables and their sorts. For qOp qua-
siterms, we recurse through the components, inp and binp. Given any pred-
icate P : β2 → bool, we write ↑ P for its lifting to (α, β) input2 → bool,
defined as ↑ P inp inp′ ⇐⇒ ∀i. case (inp i, inp′ i) of (None,None) ⇒ True |
(Some b, Some b′) ⇒ P b b′ | ⇒ False. Thus, ↑ P relates two inputs just in case
they have the same domain and their results are componentwise related.

Fig. 1. Alpha-equivalence

Convention 1. Throughout this paper, we write ↑ for the natural lifting of the
various operators from terms and abstractions to free or bound inputs.

In Fig. 1’s clause for quasiabstractions, we require that the bound variables
are of the same sort and there exists some fresh y such that alpha holds for the
terms where y is swapped with the bound variable. Following Nominal Logic, we
prefer to use swapping instead of substitution in alpha-equivalence, since this
leads to simpler proofs [41].

3.3 Good Quasiterms and Regularity of Variables

In general, alpha will not be an equivalence, namely, will not be transitive: Due
to the arbitrarily wide branching of the constructors, we may not always have
fresh variables y available in an attempt to prove transitivity by induction. To

A Formalized General Theory of Syntax with Bindings 247

remedy this, we restrict ourselves to “good” quasiterms, whose constructors do
not branch beyond the cardinality of var. Goodness is defined as the mutually
recursive predicates qGood and qGoodAbs:

qGood (qVar xs x) ⇐⇒ True

qGood (qOp δ inp binp) ⇐⇒ ↑ qGood inp ∧ ↑ qGoodAbs binp ∧
|dom inp| < |var| ∧ |dom binp| < |var|

qGoodAbs (qAbs xs x X) ⇐⇒ qGood X
where, given a partial function f , we write dom f for its domain.

Thus, for good items, we hope to always have a supply of fresh variables.
Namely, we hope to prove qGood X =⇒ ∀xs. ∃x. qFresh xs x X. But goodness is
not enough. We also need a special property for the type var of variables. In
the case of finitary syntax, it suffices to take var to be countably infinite, since
a finitely branching term will contain fewer than |var| variables (here, meaning
a finite number of them)—this can be proved by induction on terms, using the
fact that a finite union of finite sets is finite.

So let us attempt to prove the same in our general case. In the inductive
qOp case, we know from goodness that the branching is smaller than |var|, so
to conclude we would need the following: A union of sets smaller than |var|
indexed by a set smaller than |var| stays smaller than |var|. It turns out that
this is a well-studied property of cardinals, called regularity—with |nat| being
the smallest regular cardinal. Thus, the desirable generalization of countability
is regularity (which is available from Isabelle’s cardinal library [12]). Henceforth,
we will assume:

Assumption 2. |var| is a regular cardinal.

We will thus have not only one, but a |var| number of fresh variables:

Prop 3. qGood X =⇒ ∀xs. |{x. qFresh xs x X}| = |var|
Now we can prove, for good items, the properties of alpha familiar from the

λ-calculus, including it being an equivalence and an alternative formulation of
the abstraction case, where “there exists a fresh y” is replaced with “for all
fresh y.” While the “exists” variant is useful when proving that two terms are
alpha-equivalent, the “forall” variant gives stronger inversion and induction rules
for proving implications from alpha. (Such fruitful “exsist-fresh/forall-fresh,” or
“some-any” dychotomies have been previously discussed in the context of bind-
ings, e.g., in [3,32,39].)

Prop 4. The following hold:

(1) alpha and alphaAbs are equivalences on good quasiterms and quasiabstractions
(2) The predicates defined by replacing, in Fig. 1’s definition, the abstraction

case with

alphaAbs (qAbs xs x X) (qAbs xs′ x′ X′) ⇐⇒
xs = xs′ ∧ (∀y /∈ {x, x′}. qFresh xs y X ∧ qFresh xs y X′=⇒alpha(X[y ∧ x]xs)(X′[y ∧ x′]xs))

coincide with alpha and alphaAbs.

248 L. Gheri and A. Popescu

3.4 Terms and Their Properties

We define term and abs as collections of alpha- and alphaAbs- equivalence classes
of qterm and qabs. Since qGood and qGoodAbs are compatible with alpha and
alphaAbs, we lift them to corresponding predicates on terms and abstractions,
good and goodAbs.

We also prove that all constructors and operators are alpha-compatible,
which allows lifting them to terms: Var : varsort → var → term, Op : opsym →
(index, term)input → (bindex, abs) input → term, Abs : varsort → var →
term → abs, fresh : varsort → term → bool, [/] : term → term → var →
varsort → term, etc.

To establish an abstraction barrier that sets terms free from their quasiterm
origin, we prove that the syntactic constructors mostly behave like free con-
structors, in that Var, Op and Abs are exhaustive and Var and Op are injective
and nonoverlapping. True to the quarantine principle expressed in Sect. 2.1, the
only nonfreeness incident occurs for Abs. Its equality behavior is regulated by
the “exists fresh” and “forall fresh” properties inferred from the definition of
alphaAbs and Prop. 4(2), respectively:

Prop 5. Assume good X and good X′. Then the following are equivalent:

(1) Abs xs x X = Abs xs′ x′ X′

(2) xs = xs′ ∧ (∃y /∈ {x, x′}. fresh xs y X ∧ fresh xs y X′ ∧ X[y∧ x]xs = X′[y∧ x′]xs)
(3) xs = xs′ ∧ (∀y /∈ {x, x′}. fresh xs y X ∧ fresh xs y X′ =⇒ X[y∧ x]xs = X′[y∧ x′]xs)

Useful rules for abstraction equality also hold with substitution:

Prop 6. Assume good X and good X′. Then the following hold:

(1) y /∈ {x, x′} ∧ fresh xs y X ∧ fresh xs y X′ ∧ X [(Var xs y) / x]xs =
X′ [(Var xs y) / x′]xs =⇒ Abs xs x X = Abs xs x′ X′

(2) fresh xs y X =⇒ Abs xs x X = Abs xs y (X [(Var xs y) / x]xs)

To completely seal the abstraction barrier, for all the standard operators
we prove simplification rules regarding their interaction with the constructors,
which makes the former behave as if they had been defined in terms of the latter.
For example, the following facts resemble an inductive definition of freshness (as
a predicate):

Prop 7. Assume good X, ↑ good inp, ↑ good binp, |dom inp| < |var| and
|dom binp| < |var|. The following hold:

(1) (ys, y) �= (xs, x) =⇒ fresh ys y (Var xs x)
(2) ↑ (fresh ys y) inp ∧ ↑ (freshAbs ys y) binp =⇒ fresh ys y (Op δ inp binp)
(3) (ys, y) = (xs, x) ∨ fresh ys y X =⇒ freshAbs ys y (Abs xs x X)

Here and elsewhere, when dealing with Op, we make cardinality assumptions
on the domains of the inputs to make sure the terms Op δ inp binp are good.

We can further improve on Prop. 7, obtaining “iff” facts that resemble a
primitively recursive definition of freshness (as a function):

A Formalized General Theory of Syntax with Bindings 249

Prop 8. Prop. 7 stays true if the implications are replaced by equivalences
(⇐⇒).

For substitution, we prove facts with a similarly primitive recursion flavor:

Prop 9. Assume good X, good Y, ↑ good inp, ↑ good binp, |dom inp| < |var| and
|dom binp| < |var|. The following hold:

(1) (Var xs x) [Y/y]ys = (if (xs, x) = (ys, y)then Y else Var xs x)
(2) (Op δ inp binp) [Y/y]ys = Op δ (↑ (−[Y/y]ys) inp) (↑ (−[Y/y]ys) binp)
(3) (xs, x) �= (ys, y) ∧ fresh xs x Y =⇒ (Abs xs x X) [Y/y]ys = Abs xs x (X [Y/y]ys)

We also prove generalizations of Prop. 9’s facts for parallel substitution, for
example, ↑ (fresh xs x) ρ =⇒ (Abs xs x X) [ρ] = Abs xs x (X [ρ]).

Note that, for properties involving Abs, the simplification rules require fresh-
ness of the bound variable: freshAbs ys y (Abs xs x X) is reducible to fresh ys y X
only if (xs, x) is distinct from (ys, y), (Abs xs x X) [Y/y]ys is expressible in terms
of X [Y/y]ys only if (xs, x) is distinct from (ys, y) and fresh for Y, etc.

Finally, we prove lemmas that regulate the interaction between the standard
operators, in all possible combinations: freshness versus swapping, freshness ver-
sus substitution, substitution versus substitution, etc. Here are a few samples:

Prop 10. If the terms X,Y,Y1,Y2,Z are good and the assignments ρ, ρ′ are ↑ good,
then:

(1) Swapping distributes over all operators, including, e.g., substitution:
Y [X/x]xs [z1 ∧ z2]zs = (Y [z1 ∧ z2]zs) [(X[z1 ∧ z2]zs) / (x[z1 ∧ z2]xs,zs)]xs

where x[z1 ∧ z2]xs,zs = (if xs = zs then x[z1 ∧ z2]elsex)
(2) Substitution of the same variable (and of the same varsort) distributes over

itself:
X [Y1/y]ys [Y2/y]ys = X [(Y1 [Y2/y]ys)/y]ys

(3) Substitution of different variables distributes over itself, assuming freshness:

(ys �= zs ∨ y �= z) ∧ fresh ys y Z =⇒ X [Y/y]ys [Z/z]zs = (X [Z/z]zs) [(Y [Z/z]zs)/y]ys

(4) Freshness for a substitution decomposes into freshness for its participants:

fresh zs z (X[Y/y]ys) ⇐⇒ ((zs, z) = (ys, y) ∨ fresh zs z X) ∧ (fresh ys y X ∨ fresh zs z Y)

(5) Parallel substitution is compositional:
X [ρ] [ρ′] = X [ρ • ρ′]

where ρ • ρ′ is the monadic composition of ρ and ρ′, defined as

(ρ • ρ′) xs x = case ρ xs x of None ⇒ ρ′ xs x | Some X ⇒ X[ρ′]

In summary, we have formalized quite exhaustively the general-purpose prop-
erties of all syntactic constructors and standard operators. Some of these proper-
ties are subtle. In formalization of concrete results for particular syntaxes, they
are likely to require a lot of time to even formulate them correctly, let alone prove
them—which would be wasteful, since they are independent on the particular
syntax.

250 L. Gheri and A. Popescu

4 Reasoning and Definition Principles

We formalize schemes for induction (Sect. 4.1), recursion and semantic interpre-
tation (Sect. 4.2) that realize the Barendregt convention and are compatible with
the standard operators.

4.1 Fresh Induction

We introduce fresh induction by an example. To prove Prop. 10(4), we
use (mutual) structural induction over terms and abstractions, proving
the statement together with the corresponding statement for abstractions,
freshAbs zs z (A[Y/y]ys) ⇐⇒ ((zs, z) = (ys, y) ∨ freshAbs zs z A) ∧ (freshAbs ys y A ∨
fresh zs z Y). The proof’s only interesting case is the Abs case, say, for abstrac-
tions of the form Abs xs x X. However, if we were able to assume freshness of
(xs, x) for all the statement’s parameters, namely Y, (ys, y) and (zs, z), this case
would also become “uninteresting,” following automatically from the induction
hypothesis by mere simplification, as shown below (with the freshness assump-
tions highlighted):
freshAbs zs z ((Abs xs x X) [Y/y]ys)

� (by Prop. 9(3), since (xs, x) �= (ys, y) and fresh xs x Y)

freshAbs zs z (Abs xs x (X [Y/y]ys))

� (by Prop. 8(3), since (xs, x) �= (zs, z))

fresh zs z (X [Y/y]ys)
� (by Induction Hypothesis)
((zs, z) = (ys, y) ∨ fresh zs z X) ∧ (fresh ys y X ∨ fresh zs z Y)

� (by Prop. 8(3) applied twice, since (xs, x) �= (zs, z) and (xs, x) �= (ys, y))

((zs, z) = (ys, y) ∨ freshAbs zs z (Abs xs x X)) ∧ (freshAbs ys y (Abs xs x X) ∨ fresh zs z Y)

The practice of assuming freshness, known in the literature as the Baren-
dregt convention, is a hallmark in informal reasoning about bindings. Thanks
to insight from Nominal Logic [41,55,57], we also know how to apply this
morally correct convention fully rigorously. To capture it in our formaliza-
tion, we model parameters p : param as anything that allows for a notion
of freshness, or, alternatively, provides a set of (free) variables for each varsort,
varsOf : param → varsort → var set. With this, a “fresh induction” principle
can be formulated, if all parameters have fewer variables than |var| (in particu-
lar, if they have only finitely many).

Theorem 11. Let ϕ : term → param → bool and ϕAbs : abs → param →
bool. Assume:

(1) ∀xs, p. |varsOf xs p| < |var|
(2) ∀xs, x, p. ϕ (Var xs x) p
(3) ∀δ, inp, binp, p. |dom inp| < |var| ∧ |dom binp| < |var| ∧ ↑ (λX. good X ∧

(∀q. ϕ X q)) inp ∧ ↑ (λA. goodAbs A ∧ (∀q. ϕAbs A q)) binp =⇒
ϕ (Op δ inp binp) p

(4) ∀xs, x, X, p. good X ∧ ϕ X p ∧ x �∈ varsOf xs p =⇒ ϕAbs (Abs xs x X) p

A Formalized General Theory of Syntax with Bindings 251

Then ∀X, p. good X =⇒ ϕ X p and ∀A, p. goodAbs A =⇒ ϕAbs A p.

Highlighted is the essential difference from the usual structural induction:
The bound variable x can be assumed fresh for the parameter p (on its varsort,
xs). Note also that, in the Op case, we lift to inputs the predicate as quantified
universally over all parameters.

Back to Prop. 10(4), this follows automatically by fresh induction (plus the
shown simplifications), after recognizing as parameters the variables (ys, y) and
(zs, z) and the term Y—formally, taking param = (varsort×var)2 × term and
varsOf xs ((ys, y), (zs, z),Y) = {y | xs = ys} ∪ {z | xs = zs} ∪ {x | ¬ fresh xs x Y}.

4.2 Freshness- and Substitution- Sensitive Recursion

A freshness-substitution (FS) model consists of two collections of elements
endowed with term- and abstraction- like operators satisfying some characteristic
properties of terms. More precisely, it consists of:

– two types, T and A
– operations corresponding to the constructors: VAR : varsort → var → T,

OP : opsym → (index,T) input → (bindex,A) input → T, ABS : varsort →
var → T → A

– operations corresponding to freshness and substitution: FRESH : varsort →
var → T → bool, FRESHABS : varsort → var → A → bool, [/] : T →
T → var → varsort → T and [/] : A → T → var → varsort → A

and it is required to satisfy the analogues of:

– the implicational simplification rules for fresh from Prop. 7
(for example, (ys, y) �= (xs, x) =⇒ FRESH ys y (VAR xs x))

– the simplification rules for substitution from Prop. 9
– the substitution-based abstraction equality rules from Prop. 6.

Theorem 12. The good terms and abstractions form the initial FS model.
Namely, for any FS model as above, there exist the functions f : term → T
and fAbs : abs → A that commute, on good terms, with the constructors and
with substitution and preserve freshness:
f (Var xs x) = VAR xs x f (Op δ inp binp) = OP δ (↑ f inp) (↑ fAbs binp)
fAbs (Abs xs x X) = ABS xs x (f X)
f (X [Y/y]ys) = (f X) [(f Y)/y]ys fAbs (A [Y/y]ys) = (fAbs A) [(f Y)/y]ys
fresh xs x X =⇒ FRESH xs x (f X) freshAbs xs x A =⇒ FRESHABS xs x (fAbs A)

In addition, the two functions are uniquely determined on good terms and
abstractions, in that, for all other functions g : term → T and gAbs : abs → A
satisfying the same commutation and preservation properties, it holds that f and
g are equal on good terms and fAbs and gAbs are equal on good abstractions.

Like any initiality property, this theorem represents a primitive recursion
principle. Consider first the simpler case of lists over a type G, with constructors

252 L. Gheri and A. Popescu

Nil : G list and Cons : G → G list → G list. To define, by primitive recursion,
a function from lists, say, length : G list → nat, we need to indicate what is Nil

mapped to, here length Nil = 0, and, recursively, what is Cons mapped to, here
length (Cons a as) = 1 + length as. We can rephrase this by saying: If we define
“list-like” operators on the target domain— here, taking NIL : nat to be 0 and
CONS : G → nat → nat to be λg, n. 1 + n—then the recursion principle offers
us a function length that commutes with the constructors: length Nil = NIL = 0
and length (Cons a as) = CONS a (length as) = 1 + length as. For terms, we have
a similar situation, except that (1) substitution and freshness are considered in
addition to the constructors and (2) paying the price for lack of freeness, some
conditions need to be verified to deem the operations “term-like”.

This recursion principle was discussed in [44] for the syntax of λ-calculus
and shown to have many useful applications. Perhaps the most useful one is
the seamless interpretation of syntax in semantic domains, in a manner that is
guranteed to be compatible with alpha, substitution and freshness. We formalize
this in our general setting:

A semantic domain consists of two collections of elements endowed with inter-
pretations of the Op and Abs constructors, the latter in a higher-order fashion—
interpreting variable binding as (meta-level) functional binding. Namely, it con-
sists of:

– two types, Dt and Da
– a function op : opsym → (index,Dt) input → (bindex,Da) input → Dt

– a function abs : varsort → (Dt → Dt) → Da

Theorem 13. The terms and abstractions are interpretable in any semantic
domain. Namely, if val is the type of valuations of variables in the domain,
varsort → var → Dt, there exist the functions sem : term → val → Dt and
semAbs : abs → val → Da such that:

– sem (Var xs x) ρ = ρ xs x
– sem (Op δ inp binp) ρ = op δ (↑ (λX. sem X ρ) inp) (↑ (λA. semAbs A ρ) binp)
– semAbs (Abs xs x X) ρ = abs xs (λd. sem X (ρ[(xs, x) ← d]))

In addition, the interpretation functions map syntactic substitution and
freshness to semantic versions of the concepts:

– sem (X[Y/y]ys) ρ = sem X (ρ[(ys, y) ← sem Y ρ])
– fresh xs x X =⇒ (∀ρ, ρ′. ρ =(xs,x) ρ

′ =⇒ sem X ρ = sem X ρ′),
where “=(xs,x)” means equal everywhere but on (xs, x)

Theorem 13 is the foundation for many particular semantic interpretations,
including that of λ-terms in Henkin models and that of FOL terms and formulas
in FOL models. It guarantees compatibility with alpha and proves, as bonuses, a
freshness and a substitution property. The freshness property is nothing but the
notion that the interpretation only depends on the free variables, whereas the
substitution property generalizes what is usually called the substitution lemma,

A Formalized General Theory of Syntax with Bindings 253

stating that interpreting a substituted term is the same as interpreting the orig-
inal term in a “substituted” environment.

This theorem follows by an instantiation of the recursion Theorem 12: taking
T and A to be val → Dt and val → Da and taking the term/abstraction-like
operations as prescribed by the desired clauses for sem and semAbs—e.g., VAR xs x
is λρ. ρ xs x.

5 Sorting the Terms

So far, we have a framework where the operations take as free and bound inputs
partial families of terms and abstractions. All theorems refer to good (i.e., suffi-
ciently low-branching) terms and abstractions. However, we promised a theory
that is applicable to terms over many-sorted binding signatures. Thanks to the
choice of a flexible notion of input, it is not hard to cast our results into such
a many-sorted setting. Given a suitable notion of signature Sect. 5.1, we clas-
sify terms according to sorts Sect. 5.2 and prove that well-sorted terms are good
Sect. 5.3—this gives us sorted versions of all theorems Sect. 5.4.

5.1 Binding Signatures

A (binding) signature is a tuple (index,bindex,varsort, sort,opsym,
asSort, stOf, arOf, barOf), where index, bindex, varsort and opsym are types
(with the previously discussed intuitions) and sort is a new type, of sorts for
terms. Moreover:

– asSort : varsort → sort is an injective map, embedding varsorts into sorts
– stOf : opsym → sort, read “the (result) sort of”
– arOf : opsym → (index, sort) input, read “the (free) arity of”
– barOf : opsym → (bindex,varsort × sort) input, read “the bound arity of”

Thus, a signature prescribes which varsorts correspond to which sorts (as
discussed in Sect. 2.4) and, for each operation symbol, which are the sorts of its
free inputs (the arity), of its bound (abstraction) inputs (the bound arity), and
of its result.

When we give examples for our concrete syntaxes in Sect. 2, we will write
(i1 �→ a1, . . . , in �→ an) for the partial function that sends each ik to Some ak and
everything else to None. In particular, () denotes the totally undefined function.

For the λ-calculus syntax, we take index = bindex = nat, varsort =
sort = {lam} (a singleton datatype), opsym = {App, Lam}, asSort to be the
identity and stOf to be the unique function to {lam}. Since App has two free
inputs and no bound input, we use the first two elements of nat as free arity
and nothing for the bound arity: arOf App = (0 �→ lam, 1 �→ lam), barOf App = ().
By contrast, since Lam has no free input and one bound input, we use nothing
for the free arity, and the first element of nat for the bound arity: arOf Lam = (),
barOf Lam = (0 �→ (lam, lam)).

254 L. Gheri and A. Popescu

For the CCS example in Sect. 2.5, we fix a type chan of channels. We choose
a cardinal upper bound κ for the branching of sum (

∑
), and choose a type

index of cardinality κ. For bindex, we do not need anything special, so we
take it to be nat. We have two sorts, of expressions and processes, so we take
sort = {exp, proc}. Since we have expression variables but no process variables,
we take varsort = {varexp} and asSort to send varexp to exp. We define opsym
as the following datatype: opsym = Zero | Plus | Inp chan | Out chan |∑

(index set). The free and bound arities and sorts of the operation symbols
are as expected. For example, Inp c acts similarly to λ-abstraction, but binds, in
proc terms, variables of a different sort, varexp: arOf (Inp c) = (), barOf (Inp c) =
(0 �→ (varexp, proc)). For

∑
I with I : index set, the arity is only defined for

elements of I, namely arOf (
∑

I) = ((i ∈ I) �→ proc).

5.2 Well-Sorted Terms over a Signature

Based on the information from a signature, we can distinguish our terms of
interest, namely those that are well-sorted in the sense that:

– all variables are embedded into terms of sorts compatible with their varsorts
– all operation symbols are applied according their free and bound arities

This is modeled by well-sortedness predicates wls : sort → term → bool and
wlsAbs : varsort → sort → abs → bool, where wls s X states that X is a well-
sorted term of sort s and wlsAbs (xs, s) A states that A is a well-sorted abstraction
binding an xs-variable in an s-term. They are defined mutually inductively by
the following clauses:

wls (asSort xs) (Var xs x)
↑wls (arOf δ) inp ∧ ↑wlsAbs (barOf δ) binp =⇒ wls (stOf δ) (Op δ inp binp)

isInBar (xs, s) ∧ wls s X =⇒ wlsAbs (xs, s) (Abs xs x X)
where isInBar (xs, s) states that the pair (xs, s) is in the bound arity of at least one
operation symbol δ, i.e., barOf δ i = (xs, s) for some i— this rules out unneeded
abstractions.

Let us illustrate sorting for our running examples. In the λ-calculus syntax,
let X = Var lam x, A = Abs lam x X, and Y = Op Lam () (0 �→ A). These
correspond to what, in the unsorted BNF notation from Sect. 2.1, we would
write Var x, Abs x X and Lam (Abs x X). In our sorting system, X and Y are
both well-sorted terms at sort lam (written wls lam X and wls lam Y) and A is a
well-sorted abstraction at sort (lam, lam) (written wlsAbs (lam, lam) A).

For CCS, we have that E = Op Zero () () and F = Op Plus (0 �→ E, 1 �→
E) () are well-sorted terms of sort exp. Moreover, P = Op (

∑ ∅) () () and Q =
Op (Out c) (0 �→ F, 1 �→ P) () are well-sorted terms of sort proc. (Note that P is a
sum over the empty set of choices, i.e., the null process, whereas Q represents a
process that outputs the value of 0 + 0 on channel c and then stops.) If, e.g., we
swap the arguments of Out c in Q, we obtain Op (Out c) (0 �→ P, 1 �→ F) (), which
is not well-sorted: In the inductive clause for wls, the input (0 �→ P, 1 �→ F) fails
to match the arity of Out c, (0 �→ exp, 1 �→ proc).

A Formalized General Theory of Syntax with Bindings 255

5.3 From Good to Well-Sorted

Recall that goodness means “does not branch beyond |var|.” On the other hand,
well-sortedness imposes that, for each applied operation symbol δ, its inputs have
same domains, i.e., only branch as much, as the arities of δ. Thus, it suffices to
assume the arity domains smaller than |var|. We will more strongly assume that
the types of sorts and indexes (the latter subsuming the arity domains) are all
smaller than |var|:
Assumption 14. |sort| < |var| ∧ |index| < |var| ∧ |bindex| < |var|

Now we can prove:

Prop 15. (wls s X =⇒ good X) ∧ (wls (xs, s) A =⇒ goodAbs A)

In addition, we prove that all the standard operators preserve well-sortedness.
For example, we prove that if we substitute, in the well-sorted term X of sort s,
for the variable y of varsort ys, the well-sorted term Y of sort corresponding to
ys, then we obtain a well-sorted term of sort s: wls s X ∧ wls (asSort ys) Y =⇒
wls s (X [Y/y]ys).

Using the preservation properties and Prop. 15, we transfer the entire the-
ory of Sects. 3.4 and 4 from good terms to well-sorted terms—e.g., Prop. 10(2)
becomes:

wls s X ∧ wls (asSort ys) Y1 ∧ wls (asSort ys) Y2 =⇒ X [Y1/y]ys [Y2/y]ys = . . .

The transfer is mostly straightforward for all facts, including the induction
theorem. (For stating the well-sorted version of the recursion and semantic inter-
pretation theorems, there is some additional bureaucracy since we also need sort-
ing predicates on the target domain —the extended technical report [?] gives
details.)

There is an important remaining question: Are our two Assumptions (2 and
14) satisfiable? That is, can we find, for any types sort, index and bindex, a
type var larger than these such that |var| is regular? Fortunately, the theory
of cardinals again provides us with a positive answer: Let G = nat + sort +
index + bindex. Since any successor of an infinite cardinal is regular, we can
take var to have the same cardinality as the successor of |G|, by defining var as
a suitable subtype of G set. In the case of all operation symbols being finitary,
i.e., with their arities having finite domains, we do not need the above fancy
construction, but can simply take var to be a copy of nat.

5.4 End Product

All in all, our formalization provides a theory of syntax with bindings over an
arbitrary many-sorted signature. The signature is formalized as an Isabelle locale
[28] that fixes the types var, sort, varsort, index, bindex and opsym and
the constants asSort, arOf and barOf and assumes the injectivity of asSort and the
var properties (Assumptions 2 and 14). All end-product theorems are placed in
this locale.

256 L. Gheri and A. Popescu

The whole formalization consists of 22700 lines of code (LOC). Of these,
3300 LOC are dedicated to quasiterms, their standard operators and alpha-
equivalence. 3700 LOC are dedicated to the definition of terms and the lifting
of results from quasiterms. Of the latter, the properties of substitution were the
most extensive—2500 LOC out of the whole 3700—since substitution, unlike
freshness and swapping, requires heavy variable renaming, which complicates
the proofs.

The induction and recursion schemes presented in Sect. 4 are not the only
schemes we formalized (but are the most useful ones). We also proved a variety
of lower-level induction schemes based on the skeleton of the terms (a general-
ization of depth for possibly infinitely branching terms) and schemes that are
easier to instantiate—e.g., by pre-instantiating Theorem 11 with commonly used
parameters such as variables, terms and environments. As for the recursion The-
orem 12, we additionally proved a more flexible scheme that allows the recursive
argument, and not only the recursive result, to be referred—this is full-fledged
primitive recursion, whereas Theorem 12 only implements iteration. Also, we
proved schemes for recursion that factor swapping [38] instead of and in addi-
tion to substitution. All together, these constitute 8000 LOC.

The remaining 7700 LOC of the formalization are dedicated to transiting
from good terms to sorted terms. Of these, 3500 LOC are taken by the sheer
statement of our many end-product theorems. Another fairly large part, 2000
LOC, is dedicated to transferring all the variants of the recursion Theorem 12
and the interpretation Theorem 13, which require conceptually straightforward
but technically tedious moves back and forth between sorted terms and sorted
elements of the target domain.

6 Discussion, Related Work and Future Work

There is a large amount of literature on formal approaches to syntax with bind-
ings. (See [1, Sect. 2], [18, Sect. 6] and [42, Sect. 2.10, Sect. 3.7] for overviews.)
Our work, nevertheless, fills a gap in the literature: It is the first theory of
binding syntax mechanized in a universal algebra fashion, i.e., with sorts and
many-sorted term constructors specified by a binding signature, as employed
in several theoretical developments, e.g., [19,41,48,52]. The universal algebra
aspects of our approach are the consideration of an arbitrary signature and the
singling out of the collection of terms and the operations on them as an initial
object in a category of models/algebras (which yields a recursion principle). We
do not consider arbitrary equational varieties (like in [52]), but only focus on
selected equations and Horn clauses that characterize the term models (like in
[41]).

Alternatives to Universal Algebra. A popular alternative to our univer-
sal algebra approach is higher-order abstract syntax (HOAS) [16–18,24,25]: the
reduction of all bindings to a single binding—that of a fixed λ-calculus. Com-
pared to universal algebra, HOAS’s advantage is lighter formalizations, whereas
the disadvantage is the need to prove the representation’s adequacy (which

A Formalized General Theory of Syntax with Bindings 257

involves reasoning about substitution) and, in some frameworks, the need to
rule out the exotic terms.

Another alternative, very successfully used in HOL-based provers such as
HOL4 [51] and Isabelle/HOL, is the “package” approach: Instead of deeply
embedding sorts and operation symbols like we do, packages take a user speci-
fication of the desired types and operations and prove all the theorems for that
instance (on a dynamic basis). Nominal Isabelle [54,56] is a popular such package,
which implements terms with bindings for Isabelle/HOL. From a theoretical per-
spective, a universal algebra theory has a wider appeal, as it models “statically”
the meta-theory in its whole generality. However, a package is more practical,
since most proof assistant users only care about the particular instance syntax
used in their development. In this respect, simply instantiating our signature
with the particular syntax is not entirely satisfactory, since it is not sufficiently
“shallow”—e.g., one would like to have actual operations such as Lam instead
of applications of Op to a Lam operation symbol, and would like to have actual
types, such as exp and proc, instead of the well-sortedness predicate applied to
sorts, wls exp and wls proc. For our applications, so far we have manually tran-
sited from our “deep” signature instances to the more usable shallow version
sketched above. In the future, we plan to have this transit process automated,
obtaining the best of both worlds, namely a universal algebra theory that also
acts as a statically certified package. (This approach has been prototyped for a
smaller theory: that of nonfree equational datatypes [49]).

Theory of Substitution and Semantic Interpretation. The main goal of
our work was the development of as much as possible from the theory of syn-
tax for an arbitrary syntax. To our knowledge, none of the existing frameworks
provides support for substitution and the interpretation of terms in semantic
domains at this level of generality. Consequently, formalizations for concrete
syntaxes, even those based on sophisticated packages such as Nominal Isabelle
or the similar tools and formalizations in Coq [2,3,27], have to redefine these
standard concepts and prove their properties over and over again—an unneces-
sary consumption of time and brain power.

Induction and Recursion Principles. There is a rich literature on these top-
ics, which are connected to the quest, pioneered by Gordon and Melham [23], of
understanding terms with bindings modulo alpha as an abstract datatype. We
formalized the Nominal structural induction principle from [41], which is also
implemented in Nominal Isabelle. By contrast, we did not go after the Nomi-
nal recursion principle. Instead, we chose to stay more faithful to the abstract
datatype desideratum, generalizing to an arbitrary syntax our own schema for
substitution-aware recursion [44] and Michael Norrish’s schema for swapping-
aware recursion [38]—both of which can be read as stating that terms with
bindings are Horn-abstract datatypes, i.e., are initial models of certain Horn
theories [44, Sect. 3, Sect. 8].

Generality of the Framework. Our constructors are restricted to binding at
most one variable in each input—a limitation that makes our framework far from

258 L. Gheri and A. Popescu

ideal for representing complex binders such as the let patterns of POPLmark’s
Challenge 2B. In contrast, the specification language Ott [50] and Isabelle’s Nom-
inal2 package [56] were specifically designed to address such complex, possibly
recursive binders. Incidentally, the Nominal2 package also separates abstractions
from terms, like we do, but their abstractions are significantly more expressive;
their terms are also quotiented to alpha-equivalence, which is defined via flat-
tening the binders into finite sets or lists of variables (atoms).

On the other hand, to the best of our knowledge, our formalization is the
first to capture infinitely branching terms and our foundation of alpha equiv-
alence on the regularity of |var| is also a theoretical novelty—constituting a
less exotic alternative to Gabbay’s work on infinitely supported objects in non-
standard set theory [20]. This flexibility would be needed to formalize calculi
such as infinite-choice process algebra, for which infinitary structures have been
previously employed to give semantics [31].

Future Generalizations and Integrations. Our theory currently addresses
mostly structural aspects of terms. A next step would be to cover behavioral
aspects, such as formats for SOS rules and their interplay with binders, perhaps
building on existing Isabelle formalizations of process algebras and programming
languages (e.g., [5,30,36,43,46,47]).

Another exciting prospect is the integration of our framework with Isabelle’s
recent package for inductive and coinductive datatypes [10] based on bounded
natural functors (BNFs), which follows a compositional design [53] and provides
flexible ways to nest types [11] and mix recursion with corecursion [9,14], but
does not yet cover terms with bindings. Achieving compositionality in the pres-
ence of bindings will require a substantial refinement of the notion of BNF (since
terms with bindings form only partial functors w.r.t. their sets of free variables).

Acknowledgment. We thank the anonymous reviewers for suggesting textual
improvements. Popescu has received funding from UK’s Engineering and Physical Sci-
ences Research Council (EPSRC) via the grant EP/N019547/1, Verification of Web-
based Systems (VOWS).

References

1. The POPLmark Challenge (2009). http://fling-l.seas.upenn.edu/plclub/cgi-bin/
poplmark/

2. Aydemir, B.E., Bohannon, A., Weirich, S.: Nominal reasoning techniques in Coq:
(extended abstract). Electron. Notes Theor. Comput. Sci. 174(5), 69–77 (2007)

3. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL 2008, pp. 3–15 (2008)

4. Barendregt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1984)
5. Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reason.

56(1), 1–47 (2016)
6. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in formal-

logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999).
doi:10.1007/3-540-48256-3 3

http://fling-l.seas.upenn.edu/plclub/cgi-bin/poplmark/
http://fling-l.seas.upenn.edu/plclub/cgi-bin/poplmark/
http://dx.doi.org/10.1007/3-540-48256-3_3

A Formalized General Theory of Syntax with Bindings 259

7. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of sledgehammer. In:
Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol.
8152, pp. 245–260. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40885-4 17

8. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomor-
phic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 34

9. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with
benefits - implementing corecursion in foundational proof assistants. In: Yang, H.
(ed.) ESOP 2017. LNCS, vol. 10201, pp. 111–140. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54434-1 5

10. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). doi:10.1007/
978-3-319-08970-6 7

11. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for higher-order logic. In: LICS. IEEE (2017)

12. Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: Klein,
G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 111–127. Springer, Cham
(2014). doi:10.1007/978-3-319-08970-6 8

13. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness—
a coinductive pearl. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 46–60. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 4

14. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a
proof assistant perspective. In: ICFP, pp. 192–204 (2015)

15. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)

16. Chlipala, A.J.: Parametric higher-order abstract syntax for mechanized semantics.
In: ICFP, pp. 143–156 (2008)

17. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.
In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp.
124–138. Springer, Heidelberg (1995). doi:10.1007/BFb0014049

18. Felty, A.P., Momigliano, A.: Hybrid - a definitional two-level approach to reasoning
with higher-order abstract syntax. J. Autom. Reason. 48(1), 43–105 (2012)

19. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding (extended
abstract). In: LICS 1999, pp. 193–202 (1999)

20. Gabbay, M.J.: A general mathematics of names. Inf. Comput. 205(7), 982–1011
(2007)

21. Gheri, L., Popescu, A.: This Paper’s Homepage. http://andreipopescu.uk/papers/
BindingTheory.html

22. Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings. CoRR
(2017)

23. Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In: Goos, G., Hart-
manis, J., Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996). doi:10.1007/
BFb0105404

24. Gunter, E.L., Osborn, C.J., Popescu, A.: Theory support for weak higher order
abstract syntax in Isabelle/HOL. In: LFMTP, pp. 12–20 (2009)

25. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: LICS
1987, pp. 194–204. IEEE Computer Society Press (1987)

http://dx.doi.org/10.1007/978-3-642-40885-4_17
http://dx.doi.org/10.1007/978-3-642-36742-7_34
http://dx.doi.org/10.1007/978-3-642-36742-7_34
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_8
http://dx.doi.org/10.1007/978-3-319-08587-6_4
http://dx.doi.org/10.1007/978-3-319-08587-6_4
http://dx.doi.org/10.1007/BFb0014049
http://andreipopescu.uk/papers/BindingTheory.html
http://andreipopescu.uk/papers/BindingTheory.html
http://dx.doi.org/10.1007/BFb0105404
http://dx.doi.org/10.1007/BFb0105404

260 L. Gheri and A. Popescu

26. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In:
Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer,
Heidelberg (1980). doi:10.1007/3-540-10003-2 79

27. Hirschowitz, A., Maggesi, M.: Nested abstract syntax in Coq. J. Autom. Reason.
49(3), 409–426 (2012)

28. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales a sectioning concept for
Isabelle. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 149–165. Springer, Heidelberg (1999). doi:10.
1007/3-540-48256-3 11

29. Keisler, H.J.: Model Theory for Infinitary Logic. North-Holland, Amsterdam (1971)
30. Lochbihler, A.: Java and the Java memory model — a unified, machine-checked for-

malisation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 497–517. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 25

31. Luttik, B.: Choice quantification in process algebra. Ph.D. thesis, University of
Amsterdam, April 2002

32. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput.
Logic 6(4), 749–783 (2005)

33. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

34. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (2001)

35. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer, Heidel-
berg (2014). doi:10.1007/978-3-319-10542-0

36. Nipkow, T., von Oheimb, D.: Javalight is type-safe - definitely. In: POPL, pp. 161–
170 (1998)

37. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). doi:10.1007/3-540-45949-9

38. Norrish, M.: Mechanising lambda-calculus using a classical first order theory of
terms with permutations. High.-Order Symb. Comput. 19(2–3), 169–195 (2006)

39. Norrish, M., Vestergaard, R.: Proof pearl: de bruijn terms really do work. In:
Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 207–222.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4 16

40. Pitts, A.M.: Nominal logic: a first order theory of names and binding. In:
Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242.
Springer, Heidelberg (2001). doi:10.1007/3-540-45500-0 11

41. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53(3), 459–506
(2006)

42. Popescu, A.: Contributions to the theory of syntax with bindings and to process
algebra. Ph.D. thesis, University of Illinois (2010). andreipopescu.uk/thesis.pdf

43. Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process alge-
bra and its isabelle formalization. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014,
pp. 109–127. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12032-9 9

44. Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and sub-
stitution. In: ICFP, pp. 346–358 (2011)

45. Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization of system F by
HOAS on top of FOAS. In: LICS, pp. 31–40 (2010)

46. Popescu, A., Hölzl, J., Nipkow, T.: Proving concurrent noninterference. In: Haw-
blitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 109–125. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-35308-6 11

http://dx.doi.org/10.1007/3-540-10003-2_79
http://dx.doi.org/10.1007/3-540-48256-3_11
http://dx.doi.org/10.1007/3-540-48256-3_11
http://dx.doi.org/10.1007/978-3-642-28869-2_25
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-540-74591-4_16
http://dx.doi.org/10.1007/3-540-45500-0_11
http://andreipopescu.uk/thesis.pdf
http://dx.doi.org/10.1007/978-3-642-12032-9_9
http://dx.doi.org/10.1007/978-3-642-35308-6_11

A Formalized General Theory of Syntax with Bindings 261

47. Popescu, A., Hölzl, J., Nipkow, T.: Formalizing probabilistic noninterference. In:
Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 259–275. Springer,
Cham (2013). doi:10.1007/978-3-319-03545-1 17

48. Popescu, A., Rosu, G.: Term-generic logic. Theor. Comput. Sci. 577, 1–24 (2015)
49. Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL. In: Gonthier, G.,

Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 114–130. Springer, Cham
(2013). doi:10.1007/978-3-319-03545-1 8

50. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: effective tool support for the working semanticist. J. Funct. Program. 20(1),
71–122 (2010)

51. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71067-7 6

52. Sun, Y.: An algebraic generalization of frege structures–binding algebras. Theor.
Comput. Sci. 211(1–2), 189–232 (1999)

53. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: Category theory applied to theorem proving.
In: LICS 2012, pp. 596–605. IEEE (2012)

54. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008)

55. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule
inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 35–50.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73595-3 4

56. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
Isabelle. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 480–500. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19718-5 25

57. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005).
doi:10.1007/11532231 4

http://dx.doi.org/10.1007/978-3-319-03545-1_17
http://dx.doi.org/10.1007/978-3-319-03545-1_8
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-73595-3_4
http://dx.doi.org/10.1007/978-3-642-19718-5_25
http://dx.doi.org/10.1007/11532231_4

Proof Certificates in PVS

Frédéric Gilbert(B)

École des Ponts ParisTech, Inria, CEA LIST, Paris, France
frederic.a.gilbert@inria.fr

Abstract. The purpose of this work is to allow the proof system PVS
to export proof certificates that can be checked externally. This is done
through the instrumentation of PVS to record detailed proofs step by
step during the proof search process. At the current stage of this work,
proofs can be built for any PVS theory. However, some reasoning steps
rely on unverified assumptions. For a restricted fragment of PVS, the
proofs are exported to the universal proof checker Dedukti, and the
unverified assumptions are proved externally using the automated theo-
rem prover MetiTarski.

1 Introduction

Given the complexity of proof assistants such as PVS, external verifications
become necessary to reach the highest levels of trust in its results. A possible
way to this end is to require the system to export certificates that can be checked
using third-party tools. The purpose of this work is to instrument PVS to export
certificates that can be verified externally.

This approach is comparable to the OpenTheory project [3], in which the
higher order logic theorem provers HOL Light, HOL4, and ProofPower are
instrumented to export verifiable certificates in a shared format. In HOL Light,
HOL4, and ProofPower, the detail of each reasoning step is expressed using
a small number of simple logical rules, which are used as a starting point to
the generation of OpenTheory certificates. As this is not the case in PVS, the
whole proof system needs to be instrumented to generate complete certificates.
At the current stage of this work, this instrumentation is not complete, leading
to the presence of unverified assumptions in the generated certificates. For a
restricted fragment of PVS, the proof certificates are exported to the universal
proof checker Dedukti [5], and the unverified assumptions are proved externally
using the automated theorem prover MetiTarski [1].

In PVS [4], the proof process is decomposed into a succession of proof steps.
These proof steps are recorded into a proof trace format, the .prf files. These
proof traces can be used to rerun and verify a proof, but only internally. In order
to check these proof traces externally, one would have to reimplement PVS proof
mechanisms almost entirely.

F. Gilbert—This work has been completed as part of two visits to the National Insti-
tute of Aerospace (NIA) and the NASA Langley Research Center under NASA/NIA
Research Cooperative Agreement No. NNL09AA00A.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 262–268, 2017.
DOI: 10.1007/978-3-319-66107-0 17

Proof Certificates in PVS 263

The purpose of the proof certificates presented in this work is to check PVS
proofs externally using small systems. To this end, we present a decomposition of
PVS proof steps into a small number of atomic rules, which are easier to encode
into a third-party system than the original proof steps. The proof certificates are
built on these atomic rules, and can be checked without having to reimplement
PVS proof steps.

These atomic rules are defined as a refinement of an intermediate decompo-
sition of proof steps which is already present in PVS. This intermediate decom-
position is based on a specific subset of proof steps, the primitive rules. In PVS,
every proof step, including defined rules and strategies, can be decomposed as
a sequence of primitive rules. As any primitive step is a proof step, this inter-
mediate level of decomposition can be formalized in the original format of .prf
proof traces. In fact, such a decomposition can be performed using the PVS
package Manip [2], in which the instruction expand-strategy-steps allows one
to decompose every proof step into a succession of primitive rules.

However, this intermediate decomposition is not sufficient to make proof
traces verifiable externally using small systems. Indeed, the complexity of PVS
proof mechanisms lies for the largest part in the primitive rules themselves. In
particular, the implementation of primitive rules is one order of magnitude larger
than the implementation of strategies. For instance, the primitive rule simplify
hides advanced reasoning techniques, including simplifications, rewritings, and
Shostak’s decision procedures.

In order to provide a refinement of the primitive rule decomposition, we mod-
ify PVS directly to record reasoning at a higher level of precision. The main part
of this modification is done in the code of the primitive rules themselves. This
instrumentation doesn’t affect the reasoning in any way besides some slowdown
due to the recording of proofs. In particular, it doesn’t affect the emission of
.prf proof traces, which continue to be used internally to rerun proofs as in the
original system.

The coherence of a PVS theory is based on both reasoning and typing. At
the current stage of this work, the proof certificates are limited to reasoning.
Moreover, primitive rules are not entirely instrumented, and the corresponding
gaps in reasoning are completed with unverified assumptions.

In the next section, we present the formalization of proof certificates in PVS.
Then, we present a first attempt to export these proofs to the universal proof
checker Dedukti [5], and to export their unverified assumptions to the theorem
prover MetiTarski [1].

2 Proofs Certificates in PVS

2.1 Expressions and Conversion

Proof are added as a new layer of abstract syntax, on top of the existing lay-
ers of PVS expressions and PVS sequents. For readability, we will denote PVS
expressions as they are printed in PVS. We stress the fact that this denotation

264 F. Gilbert

is not faithful, as several components of PVS expressions, such as types and
resolutions, are erased through PVS printing.

As several other proof systems, Dedukti is equipped with a notion of con-
version, which includes, among others, β-conversion and constant definitions,
which will be referred to as δ-conversion. As a consequence, it is not necessary
to record the expansion of a definition or the reduction of a β-redex in Dedukti,
which allows us to keep proofs compact.

Following this idea, we equip PVS expressions with a conversion, denoted ≡.
This conversion includes β-conversion, and non-recursive definitions, expressed
as δ-rules. However, δ rules are not used for recursive definitions as this would
lead to infinite reductions: instead, the expansions or contractions of recursive
definitions are kept as explicit reasoning steps.

2.2 Reasoning

In PVS, internally, the formulas appearing on both sides of a sequents are
recorded in a single list, where all formulas belonging to the left hand side
appear under a negation. For instance, a sequent appearing as NOT A, B � C
is recorded internally as the list NOT NOT A, NOT B, C. Denoting Γ the union
of this list together with the list of hidden formulas, the corresponding sequent
will be denoted � Γ .

We equip sequents with the identification modulo permutation. In this set-
ting, sequents correspond to multisets, and we don’t need to record any exchange
rule, which makes proofs more compact. On top of this layer of sequents, we use
the following rules, which are presented modulo conversion ≡.

Structural Rules

� Γ, A, NOT A
� Γ, A � Γ, NOT A

� Γ

� Γ
� Γ, A

� Γ, A, A

� Γ, A

Propositional Rules

� Γ, TRUE
� Γ, NOT TRUE

� Γ

� Γ, FALSE

� Γ � Γ, NOT FALSE

� Γ, A � Γ, B

� Γ, A AND B

� Γ, NOT A, NOT B

� Γ, NOT (A AND B)

� Γ, A, B

� Γ, A OR B

� Γ, NOT A � Γ, NOT B

� Γ, NOT (A OR B)

� Γ, NOT A, B

� Γ, A IMPLIES B

� Γ, NOT B � Γ, A

� Γ, NOT (A IMPLIES B)

� Γ, A

� Γ, NOT NOT A

� Γ, A IMPLIES B � Γ, B IMPLIES A

� Γ, A IFF B

� Γ, NOT (A IMPLIES B), NOT (B IMPLIES A)

� Γ, NOT (A IFF B)

� Γ, A IMPLIES B � Γ, NOT A IMPLIES C

� Γ, IF(A, B, C)

Proof Certificates in PVS 265

� Γ, NOT (A AND B) � Γ, NOT (NOT A AND C)

� Γ, NOT IF(A, B, C)

Quantification Rules

� Γ, A

� Γ, FORALL (x : T) : A

� Γ, NOT A[t/x]

� Γ, NOT FORALL (x : T) : A

� Γ, A[t/x]

� Γ, EXISTS (x : T) : A

� Γ, NOT A

� Γ, NOT EXISTS (x : T) : A

Equality Rules

� Γ, t = t
� Γ, t = u � Γ, u = v

� Γ, t = v

� Γ, A(t) � Γ, t = u

� Γ, A(u)

� Γ, u = v

� Γ, f(u) = f(v)

� Γ, NOT A, u = v

� Γ, IF(A, u, t) = IF(A, v, t)

� Γ, A, u = v

� Γ, IF(A, t, u) = IF(A, t, v)

Extensionality Rules

� Γ, A IFF B

� Γ, A = B

� Γ, t = u

� Γ, LAMBDA (x : T) : t = LAMBDA (x : T) : u

� Γ, t = u

� Γ, FORALL (x : T) : t = FORALL (x : T) : u

� Γ, t = u

� Γ, EXISTS (x : T) : t = EXISTS (x : T) : u

Extra Rules

� Γ, Δ � Γ, Δ1 · · · � Γ, Δn
TCC� Γ, Δ

� Γ, Δ1 · · · � Γ, Δn
Assumption� Γ, Δ

Only the two last rules, TCC and Assumption, are specific to this system.
The first one is due to the appearance of type-checking conditions during the
proof run, for instance after giving an instantiation for an existential proposition.
As typing is not checked in such proofs, this condition is not necessary, but this
rule allows us to ensure that all steps of reasoning are recorded in proofs, included
the reasoning steps ensuring typing constraints.

The second one, Assumption, is generated from all reasoning steps in PVS
which haven’t been instrumented yet. In practice, the use of Assumption doesn’t
imply that the corresponding reasoning gap cannot be described using the other
rules. For instance, the primitive rule bddsimp, which calls a function outside
the PVS kernel, was not instrumented. Yet, the corresponding reasoning steps
could be justified using structural and propositional rules. On the other hand,
the strategy prop, which has the same role, doesn’t generate any Assumption
rule, as the underlying primitive rules flatten and split are both instrumented.

266 F. Gilbert

2.3 Proof Objects

In order to record lightweight proofs, we record only the rules used in the proofs,
provided with a sufficient amount of rule parameters.

For instance, the proof

� NOT A, NOT B, A
� NOT A, NOT B, NOT NOT A
� NOT (A AND B), NOT NOT A

� (A AND B) IMPLIES NOT NOT A

will be recorded as

RImplies(A AND B, NOT NOT A,
RNotAnd(A, B,
RNotNot(A,
RAxiom(A))))

where RImplies, RNotAnd, RNotNot, and RAxiom denote the rules used in the
proof, and accept as argument a list of parameters followed by a (possibly empty)
list of subproofs.

3 Checking PVS Proofs Using Dedukti and Metitarski

This part of the work is only at the stage of a first prototype. The universal proof
checker Dedukti is used to verify the proof certificates. As these certificates
contain unverified assumptions, the automated theorem prover MetiTarski is
used to prove them externally.

3.1 Translating Proofs to Dedukti

Dedukti is a dependently typed language. However, as we only record reasoning
in this work, we use a translation which doesn’t make PVS types appear. We
declare one universal type type for all PVS expressions. In order to translate
applications, we use a constant apply : type -> type -> type. Conversely,
we use a constants lambda : (type -> type) -> type to translate lambda
expressions.

A similar technique is used to translate the other constructions appearing in
the rules, such as FORALL.

The translation from PVS proofs to Dedukti is a translation from sequent
calculus to natural deduction. The use of Dedukti being based on the Curry-
Howard isomorphism, a proof of a proposition A is expected as a term of type A.
The main translation function takes a proof of a sequent � A1, ..., An and a list of
proof variables h1, ..., hn to a produce a term p which has the type FALSE in the
context h1 : NOT A1, ..., hn : NOT An. This translation is based on the declaration
of the rules as constants in Dedukti.

Proof Certificates in PVS 267

Using this main translation function, for any proposition A proved in PVS,
and for any proof variable h, we build a proof p of type FALSE in the context
h : NOT A. Then, using a rule of negation introduction together with a rule of
double negation elimination, we get a proof term of type A in the empty context,
as expected.

3.2 Checking Assumptions with MetiTarski

Every rule except Assumption is valid in classical higher-order logic. In order to
check the assumption rules as well, we use an automated theorem prover. We
chose the first-order theorem prover MetiTarski for this purpose.

Using conjunctions, disjunctions and implications, every assumption rule is
translated into a single proposition, which in turn is translated to the TPTP
[6] format. The main issue in this translation is the presence of higher-order
expressions, such as lambda terms of if-then-else expressions for instance. In this
work, these terms are translated as constant symbols: the obtained expressions
are correct TPTP expressions, and their validity in first-order logic ensures the
validity of the original expression in higher-order logic.

4 Results

The instrumentation of PVS to build proof certificates is not restricted to any
fragment of PVS. It has been tested using the arithmetic theories (ints) of the
NASA Library nasalib. The generation of all certificates for the whole (ints)
library (32 files, 268 proofs) was performed in one hour.

The exportation to Dedukti and MetiTarski has been tested on the following
example:

induction : THEORY
BEGIN
f : [nat -> nat]
nat sum : LEMMA

(f(0) = 0 AND (FORALL (n:nat): f(n+1) = f(n) + n + 1))
IMPLIES FORALL (n:nat): 2 * f(n) = n * (n + 1)

END induction

This theorem was proved in two steps: flatten, and induct-and-simplify.
The Dedukti file generated has been successfully checked by Dedukti. It con-
tained 19 unverified assumptions. All of them have been successfully proved
using MetiTarski.

268 F. Gilbert

References

1. Akbarpour, B., Paulson, L.C.: Metitarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)

2. Di Vito, B.L.: Manip user’s guide, version 1.3 (2011)
3. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund, K.,

Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20398-5 14

4. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). doi:10.1007/3-540-55602-8 217

5. Saillard, R.: Dedukti: a universal proof checker. In: Foundation of Mathematics for
Computer-Aided Formalization Workshop (2013)

6. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337 (2009)

http://dx.doi.org/10.1007/978-3-642-20398-5_14
http://dx.doi.org/10.1007/3-540-55602-8_217

Efficient, Verified Checking
of Propositional Proofs

Marijn Heule1(B), Warren Hunt Jr.1, Matt Kaufmann1, and Nathan Wetzler2

1 The University of Texas at Austin, Austin, TX, USA
2 Intel Corporation, Hillsboro, OR, USA

{marijn,hunt,kaufmann}@cs.utexas.edu, nathan.wetzler@gmail.com

Abstract. Satisfiability (SAT) solvers—and software in general—
sometimes have serious bugs. We mitigate these effects by validating
the results. Today’s SAT solvers emit proofs that can be checked with
reasonable efficiency. However, these checkers are not trivial and can
have bugs as well. We propose to check proofs using a formally verified
program that adds little overhead to the overall process of proof valida-
tion. We have implemented a sequence of increasingly efficient, verified
checkers using the ACL2 theorem proving system, and we discuss lessons
from this effort. This work is already being used in industry and is slated
for use in the next SAT competition.

1 Introduction

This paper presents a formally verified application, a SAT proof-checker, that
has sufficient efficiency to support its practical use. Our checker, developed using
the ACL2 theorem-proving system [12,15], validates the results of SAT solvers
by checking the emitted proofs. Our intention here is to provide some useful
lessons from the development of an efficient, formally verified application using
ACL2. We therefore avoid lower-level details of algorithms, mathematics, and
proof development.

The Problem. Boolean satisfiability (SAT) solving has become a key technol-
ogy for formal verification. Users of SAT solvers increasingly seek confidence in
claims that given formulas are unsatisfiable1. Contemporary SAT solvers there-
fore emit proofs [10] that can be validated by SAT proof-checkers [9,27]. Such a
proof is a sequence of steps, each of which is interpreted as transforming a for-
mula to a new formula. Checking the proof is just the result of iterating through
the steps; for each step, the checker performs a validation intended to guarantee
that if the current formula (initially the input formula) is satisfiable, then so

This work was supported by NSF under Grant No. CCF-1526760. We thank the
reviewers for useful feedback.

1 Checking a claim of satisfiability is easy.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 269–284, 2017.
DOI: 10.1007/978-3-319-66107-0 18

270 M.J.H. Heule et al.

is the transformed formula. Typically the final formula is clearly unsatisfiable;
then the validation process guarantees that the input formula is unsatisfiable.

How can we trust SAT proof-checkers? Although they are usually much sim-
pler than SAT solvers, they are not trivial, and any software is susceptible to
bugs. We implemented a verified SAT proof-checker in ACL2 [26], but this
checker was not intended be efficient. For example, a specific proof that was
validated in about 1.5 s by the unverified checker DRAT-trim [27] took about a
week to validate using this verified checker. Several reasons explain the slow-
down. The verified checker used list-based data structures, providing linear-time
accesses, while the unverified checker used arrays and various low-level optimiza-
tions. Additionally, proofs of unsatisfiability usually contain many deletion steps,
while deletion is not supported by that verified checker. The size of the formula
is important because a key procedure, the RAT check [11], may need to consider
every clause in the formula. Finally, RAT checking is based on a procedure,
unit propagation, that can require expensive search. (These two aspects of RAT
checks—some checks that are linear in the size of the formula, and search—are
all we need to know about RAT checks for this paper.)

Alternatively one could verify the correctness of the solver in a theorem
prover. That approach does not require proof logging and validation. However,
SAT solvers are complicated and frequently improved, thereby making the verifi-
cation task hard. Moreover, verified SAT solvers tend to be orders of magnitude
slower compared to unverified solvers [1]. That said, verification of SAT solvers
has been studied by various authors in the last decade. The DPLL [4,5] algo-
rithm, which was the core algorithm of solvers until the late 90’s, has been
formalized and verified by Lescuyer and Conchon [17] in Coq and by Shankar
and Vaucher [23] in PVS. The conflict driven clause-learning paradigm of mod-
ern SAT solvers [20] was verified by Marić [18,19] in Isabelle/HOL (2010), by Oe
et al. [22] in Guru (2012), and by Blanchette et al. [1] in Isabelle/HOL (2016).

Towards a Solution. At least three parallel efforts have attempted to produce
efficient, formally verified SAT checkers [3,16]. A key idea was to avoid all search
(all of which results from unit propagation) by adding certain “hints” to each
proof step, resulting in a new proof format, LRAT (Linear RAT) [3]. In this paper
we discuss one of those three efforts: an LRAT proof-checker developed in ACL2
(the others being checkers in Coq [3] and Isabelle/HOL [16]). The SAT proof
mentioned above that took a week to check now takes under 3 s to check with
the new ACL2-based checker. As suggested by some data reported below, our
checker may run sufficiently fast so that it adds relatively little overhead beyond
using a fast C-based checker. This work is already used in industry at Centaur
Technology [25], and we expect it to be used in the 2017 SAT competition. In
this system, one does not need to reason about the original proof produced by
a solver or the proof conversion process of DRAT-trim: if our verified checker
validates the final optimized proof, then the input formula is unsatisfiable.

This paper is not intended to provide proof details, but rather, to extract
some lessons in the effective use of one proof assistant (ACL2). This paper

Efficient, Verified Checking of Propositional Proofs 271

assumes no knowledge of ACL2, SAT solving, or SAT proof-checking (such as
RAT and LRAT); all necessary background is provided above or as needed below.

We begin with a few ACL2 preliminaries. Then in Sect. 3 we describe a
sequence of increasingly efficient checkers. That description provides background
for discussion in Sect. 4 of the ACL2 soundness proofs done for each of these
checkers. Section 5 concludes with remarks that summarize our findings.

2 ACL2 Preliminaries

The ACL22 theorem-proving system [12,15] includes a programming language
based on an applicative subset of Common Lisp [24]. Lisp is one of the oldest
programming languages [21] and is supported by several efficient compilers, both
commercial and free. Moreover, ACL2 was designed with efficient execution in
mind [7,28]; indeed, efficiency is important since the ACL2 theorem prover is
mostly written in its own language. Thus, ACL2 provides a platform where one
can write programs that execute efficiently and also prove programs correct.

We focus below on three ACL2 features that support efficient execution of
our SAT proof-checker: guards, stobjs, and fast-alists. Then we close this section
by explaining ACL2 notions used in the rest of this paper.

Guards. The ACL2 logic is an untyped first-order logic of total functions. The
expression (first 3) denotes the application of a function, first to a single
parameter, 3. Thus, even a “bad” expression like (first 3)—first is intended
to be applied to a list (to return its first element), not a number—are logically
well-formed. Indeed, ACL2 can prove that (first 3) is equal to (first 4),
and ACL2 provides a way to evaluate (first 3) without error. On the other
hand, Common Lisp signals an error when evaluating this expression. It would
be wrong for ACL2 to use Common Lisp to do all of its evaluation, while taking
advantage of modern Common Lisp compilers is exactly what we want to do.

A solution is provided by guards. The ACL2 guard for a function is an expres-
sion whose variables are all formal parameters of that function. Guards can be
viewed as analogous of types, in that they are preconditions on the arguments
of a function. In contrast with most type systems, however, a guard can be
any expression involving any subset of the formal parameters of a function. For
example, the guard for first, with formal parameter x, is that x is a list.3

ACL2 relies on Common Lisp to evaluate using the definitions provided, but
only after guard verification is performed on those definitions: proving formulas
guaranteeing that for every function call during evaluation, the arguments of
that call satisfy its function’s guard. Guard verification was an important part
of our proof effort (see Sect. 4.3), resulting in a verified checker that executes
efficiently in Common Lisp.

2 “A Computational Logic for Applicative Common Lisp”.
3 More accurately, first is a macro expanding to a corresponding call of the function
car, whose guard specifies that the argument is a pair or the empty list.

272 M.J.H. Heule et al.

Stobjs. Single-threaded objects, or stobjs [2], are mutable objects that support
fast execution in ACL2.4 A stobj s is introduced as a record with fields, some
of which may be arrays. Henceforth, s may be an argument to a function, but
ACL2 enforces syntactic requirements, in particular: if s is modified by a function
then it must be returned, and its use must be single-threaded. Such restrictions
guarantee that there is only one instance of s present at any time during eval-
uation, and therefore it is sound to modify s in place, which can boost speed
significantly since it avoids allocating new structures.

Fast-Alists. In Lisp parlance, an alist (or association list) is a representation
of a finite function as a list of ordered pairs 〈i, j〉 for which the key, i, is mapped
to the value, j. ACL2 supports so-called fast-alists, sometimes called applicative
hash tables. For any fast-alist, the implementation provides a corresponding hash
table so that the function hons-get obtains the value for a given key in essen-
tially constant time—provided a certain single-threaded discipline is maintained.
Unlike stobjs, the discipline is not enforced at definition time; instead, a runtime
warning is printed when it is violated, in which case the alist is searched linearly
until a pair 〈i, j〉 is found for a given key, i. In practice, it is straightforward for
ACL2 programmers to use fast-alists so that the discipline is maintained.

Other Preliminaries. We mention a few other aspects of ACL2, towards mak-
ing this paper self-contained. The ACL2 prover is extensively discussed in its
documentation5 and in other places [12,15]. While automated induction is cer-
tainly helpful, the “workhorse” of the prover is rewriting. Definitions and (by
default) theorems are stored as rewrite rules. It is often helpful to disable (turn
off) some rules either to speed up the prover or to implement some rewriting
strategy. A book is an ACL2 input file, typically containing definitions and theo-
rems. Finally, symbols are case-insensitive and in particular, Boolean values are
represented by the symbols T (true) and NIL (false).

3 SAT Proof-Checker Code

Our most efficient SAT proof-checker is the last in a sequence of verified SAT
proof-checkers developed in ACL2. Section 3.1 enumerates these checkers, pro-
viding a name and some explanation for each. The statistics provided in Sect. 3.2
demonstrate improved performance offered by each successive checker. All sup-
porting materials for the checkers listed below, including proofs, may be found
in the projects/sat/lrat/ directory within the ACL2 community books6; see
its README file.

4 Thus, stobjs play a role somewhat like monads in higher-order functional languages.
5 http://www.cs.utexas.edu/users/moore/acl2/current/manual/.
6 https://github.com/acl2/acl2/tree/master/books/.

http://www.cs.utexas.edu/users/moore/acl2/current/manual/
https://github.com/acl2/acl2/tree/master/books/

Efficient, Verified Checking of Propositional Proofs 273

3.1 A Sequence of Checkers

[rat] A Verified RAT Checker [26]. A formula is a list of clauses, implicitly
conjoined (hence, in what is typically called conjunctive normal form). A proof
designates an ordered sequence of clauses, each of which is to be added to the
formula, in order. The RAT check is intended to ensure that when a clause
C in the proof is added to the current formula F : if F is satisfiable, then F
remains satisfiable after adding C. The RAT check is proved sound: if the proof
passes that check and contains the empty clause, then the original formula is
unsatisfiable.

[drat] A Verified DRAT Checker. Our first proof effort was to extend the
verified RAT checker to handle deletion—the “D” in “DRAT”—of clauses from
a formula. Thus a proof step became a pair consisting of a Boolean flag and
a clause, where: a flag of T indicates that the clause is to be added, as before;
but a flag of NIL indicates that the clause is to be removed. Since deletion
obviously preserves satisfiability, we quite easily modified the [rat] soundness
proof to accommodate this enhanced notion of SAT proof.

Only modest benefit might accrue from extending the initial checker in a
straightforward way with deletion: on the easiest problem in our test suite, [rat]
requires 20 s, while [drat] took 9 s. All [lrat-*] checkers can verify the proof of
the same problem in a fraction of a second. However, it is well established that
without deletion, high-performance checkers will suffer greatly [9]. Thus, incor-
porating deletion was an important first step.

[lrat-1] A Verified LRAT Checker Using Fast-Alists. In order to speed
up SAT proof-checking, we wanted to exploit proof hints recently provided by
the LRAT format [3], which facilitate fast lookup of clauses in formulas. So
we developed an ACL2 checker that represents formulas using fast-alists, which
provide a Lisp hash-table for nearly constant-time lookup. Our fast-alists contain
pairs of the form 〈i, c〉, where the key, i, is a positive integer that denotes the
index of the associated clause, c. But a formula can also contain pairs 〈i, D〉 where
D is a special deletion indicator, meaning that the clause with index i has been
deleted from the formula. A deletion proof step provides an index i to delete,
and is processed by updating the formula’s fast-alist with a new pair 〈i, D〉.

For this checker, a formula is actually an ordered pair 〈m,a〉, where a is a
fast-alist as described above and m is the maximum index in that alist. That
value is passed to the function that may be called to perform a full RAT check,
which recurs through the entire formula starting with index i = m. Each step in
that recursion looks up i in the fast-alist to find either a clause that is checked,
or the deletion indicator, D. The repeated use of the lookup function, hons-get,
on clause indices turned out to be somewhat expensive, in spite of its use of a
Lisp hash-table. That expense is addressed with improvements discussed below.

[lrat-2] A Faster Verified LRAT Checker that Shrinks Fast-Alists. ACL2
supports profiling, which we used on the [lrat-1] proof-checker. We found that
69% of the time was spent performing lookup with hons-get. On reflection,

274 M.J.H. Heule et al.

this was not a surprise: the full RAT check walks through the entire (fast-)alist,
which grows with every proof step that adds a clause. This quadratic behavior
would not be present if fast-alists were nothing more than mutable hash tables;
but in ACL2 they are also alists, which grow with each update. Note the [lrat-1]
checker applies hons-get at every step of the full RAT check: the ordered pair
〈i, c〉 seems to suggest that a suitable check needs to be done on the clause c,
but this pair may be overridden by a pair 〈i, D〉 in the formula indicating that
the clause c has actually been deleted, and thus should not be checked.

This checker (also those that follow) heuristically chooses when to shrink the
formula’s fast-alist, by removing from it all traces of deleted clauses. This hap-
pens immediately before checking any proof step’s addition of a clause, whenever
the number of deleted clauses in the formula exceeds the number of active (not
deleted) clauses by at least a certain factor. Based on some experimentation, that
factor is set to 1/3 when about to do the full RAT check, which as mentioned
above must consider every clause in the formula; otherwise, the factor is set to
10. The function shrink-formula-fal creates a smaller formula, equivalent to
its input, by removing pairs that represent deletion. It does this by first using
an ACL2 primitive that exploits the underlying hash table to remove, very effi-
ciently, all pairs 〈i, c〉 that are overridden by deletion pairs 〈i, D〉; a linear walk
removing all deletion pairs, followed by creation of a new fast-alist, then finishes
the job.

[lrat-3] A Verified LRAT Checker with a Simpler Representation of
Formulas. The previous version still represents a formula as a pair 〈m,a〉, where
a is a fast-alist and m is its maximum index. The [lrat-3] checker represents a
formula simply as a fast-alist, since starting with [lrat-2], the full RAT check
recurs through the fast-alist without needing the maximum index in advance.
Other improvements (all small) include better error messages.

[lrat-4] A Verified LRAT Checker with Assignments Based on Single-
Threaded Objects. The previous versions all represent an assignment as a list
of (true) literals. Our next change was to represent assignments using single-
threaded objects in order to improve performance. Profiling showed that most
of the time in [lrat-3] was being spent evaluating clauses and literals. Evidently,
the linear lookup into a long assignment (list of literals) can be expensive. Using
a stobj avoids memory allocation for assignments, but probably much more
important, it supports constant-time evaluation of literals.

Our stobj, a$, contains the three fields below. It uses standard represen-
tations: of propositional variables as natural numbers, of literals as non-zero
integers, and of logical negation as arithmetic negation (−5 represents “not 5”).

– a$arr: an array whose ith value is T, NIL, or 0, according to whether variable
i is true, false, or of unknown value

– a$stk: a stack of variables, implemented as an array
– a$ptr: a natural number indicating the top of the stack

Returning to the a$ stobj, we observe that the a$arr field alone does not
provide direct support for reverting an assignment after having extended it.

Efficient, Verified Checking of Propositional Proofs 275

We use a standard “trail” [6] approach to address this, by creating a stack of
variables that have been assigned, such that whenever a Boolean value is written
at position V of a$arr, V is also pushed onto the stack, by writing V at position
a$ptr of a$stk and then incrementing a$ptr. That extension is undone by way
of an inverse operation: the variable at the top of the stack serves as an index
into a$arr at which to write 0 (“unassigned”), and then the stack pointer a$ptr
is decremented.

[lrat-5] Compression and Incremental Reading. SAT proofs have grown to
the point where the proof files that need to be certified are gigabytes in size. To
help manage the sheer size of these proofs, we developed a lightweight procedure
to compress LRAT files into CLRAT (Compressed LRAT) files, using techniques
similar to those used for compression of DRAT files [8]. Our compression results
in files about 40% the size of the original. Our CLRAT proof-file reader is guard-
verified, both to support efficient execution and to increase confidence that we
are parsing the input in a manner consistent with its specified syntax.

Compressed files reduce the size of proof files, but they do not reduce the
number of proof steps that must be processed. Our earlier SAT proof-checkers
read an entire proof file (into memory) before checking the veracity of every
proof step, but given the ever increasing size of proof files, this approach is no
longer tenable. We can now read SAT proofs in sections, for example of a few
megabytes each; thus, we read (some of a proof file), then check (part of a proof),
then read some more, then check some more, and so on, thus supporting proof
files of arbitrary length. This checker has the highest performance of all of our
verified SAT proof-checkers.

To provide for incrementally reading a large file, we extended the ACL2
function read-file-into-string so that it could read successive segments of
the file, as specified by the user. Our correctness proof confirms that performing
the interleaved file-reading and proof-checking is sound. The main advantage of
interleaving proof reading and proof validation is that we can avoid having the
entire proof in memory, which significantly reduces the memory footprint of the
checker.

3.2 Performance

Table 1 compares performance for the checkers discussed above7. All runtimes
are in seconds and include both parsing and checking time, and each is labeled
by the proof file for the run. Each column header indicates one of the checkers
discussed above, with a reminder of how it differs from the preceding checker.
The [lrat-5] times do not include the use of diff described in Sect. 4.4, although
that was done and was measured at under 1/50 s in each case. We omit columns
for [lrat-2] (which is similar to [lrat-3] and for the early checkers that were much
less efficient (for example, roughly one week for [rat] on R 4 4 18).
7 We used ACL2 GitHub commit 639ef8760d30a63e2f21e160cdf02b75e1154fcc and

SBCL Version 1.3.15, on a 3.5 GHz Intel(R) Xeon(R) with 32GB of memory running
on Ubuntu Linux.

276 M.J.H. Heule et al.

Notice that an improvement can make much more of a difference for some
tests than for others. In particular, as we move down through the last two
columns we see that the list-based [lrat-3] checker compares well with the stobj-
based [lrat-4] checker, until we get to a hard benchmark from the SAT 2016
competition, “Schur 161 5 d43.cnf”, with a 5.6 GB proof (a rather typical size).
Profiling showed that most of the time for [lrat-2] and [lrat-3] is in evaluating
clauses and literals with respect to assignments. Since an [lrat-3] assignment is a
linear list (of all true literals), it makes sense that the constant-time array access
provided by an [lrat-4] stobj can reduce the time considerably. The [lrat-5] time
of just over 4 min adds less than 25% to the 20 min it takes for the DRAT-trim
checker to process a DRAT proof into an LRAT proof, which bodes well for
using [lrat-5] in SAT competitions.

Table 1. Times in seconds when running checkers on various inputs

benchmark [lrat-1] [lrat-3] [lrat-4] [lrat-5]
(fast-alist) (shrink) (stobjs) (incremental)

uuf-100-3 0.09 0.03 0.05 0.01

tph6[-dd] 3.08 0.57 0.33 0.33

R 4 4 18 164.74 5.13 2.23 2.24

transform 25.63 6.16 5.81 5.82

Schur 161 5 d43 5341.69 2355.26 840.04 259.82

We also produced RAT proofs of all application benchmarks of the SAT
2016 Competition that CryptoMinisat 5.08 could solve in 5000 s. We choose
CryptoMinisat as it produces proofs with the most RAT clauses among those
solvers that participated in the SAT 2016 Competition. CryptoMinisat solved
95 unsatisfiable benchmarks within the time limit. On 5 problems we ran into
memory issues when converting the DRAT proof produced by CryptoMinisat
into CLRAT proofs. One benchmark used duplicate literals, which is not allowed
in our formalization. Figure 1 shows the results on the 89 validated proofs. For
benchmarks that can be solved within 20 s, solving, DRAT to CLRAT conversion,
and verified CLRAT checking are similar. For hard problems, solving takes about
one third the time compared to DRAT to CLRAT conversion, while verified
CLRAT checking takes about one third the time compared to solving. Hence,
verified CLRAT checking adds relatively small overhead to the tool chain.

4 Correctness Proofs

We next consider, in order, each checker of the preceding section except the first,
[rat], explaining some key high-level approaches to its correctness proof. Our
focus is not on proving the basic algorithm correct, as this was done previously
for the [rat] checker [26], including an analogue of the key inductive step (called
8 https://github.com/msoos/cryptominisat.

https://github.com/msoos/cryptominisat

Efficient, Verified Checking of Propositional Proofs 277

0.01

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90

Solving
DRAT-trim
ACL2-check

Fig. 1. Cactus plot of the solving times (including DRAT proof logging) of benchmarks
for the SAT 2016 competition application benchmarks using CryptoMinisat, the vali-
dation times (including CLRAT proof logging) of DRAT-trim, and checking CLRAT
proofs using ACL2-check.

satisfiable-add-proof-clause in Sect. 4.2): it preserves satisfiability to add
a validated clause from an alleged proof. Rather, we discuss the steps taken in
order to yield proofs for increasingly efficient code.

All of the soundness theorems for [rat] up through [lrat-3] have essentially
the form displayed below: given a formula (list of clauses) and a valid refutation
of it, then that formula is unsatisfiable. We will see a small variant for [lrat-4]
and a major improvement for [lrat-5].

Soundness.

(implies (and (formula-p formula)
(refutation-p proof formula))

(not (satisfiable formula))))

4.1 Deletion ([drat])

Our first checker is a replacement for the initial checker [26]. A comparison of
the two books shows that the original structure was preserved, the key difference
being in the notion of a proof step: instead of a clause, it is a pair consisting of
a flag and a clause, where the flag indicates whether the clause is to be added
to the formula or deleted from it. Conceptually, deletion is trivially correct: if a
formula is satisfiable, then it is still satisfiable after deleting one of its clauses.
Our soundness proof effort took advantage of the automation provided by ACL2,
in particular conditional rewriting: most lemmas were still proved automatically
when we modified the checker, and the rest were straightforward to fix.

278 M.J.H. Heule et al.

4.2 Linear RAT ([lrat-1], [lrat-2], [lrat-3])

In this section we discuss some lessons that can be learned from the proofs
of soundness for the first three LRAT checkers [lrat-1], [lrat-2], and [lrat-3]
described in Sect. 3. Recall that these checkers departed from [drat] by using
fast-alists in the representation of formulas.

In order to deal with the new formula data structure and the new proof hints
provided by the LRAT format, we chose to develop the soundness proof from
scratch, since the main developer for these new checkers was not very familiar
with the [rat] development. An early step was to write out a hand proof, so as
to avoid getting lost in a proof of this complexity. We started with a top-down
approach, supported by ACL2 utility skip-proofs [14]: first prove the main
result from the key lemmas (whose proofs are skipped), then similarly prove
each key lemma from its (proofs skipped) key sublemmas, and so on.9

To see this top-down style in action, consider the [lrat-1] book satisfiable-
add-proof-clause.lisp. As displayed below (with comments added, each fol-
lowing a semicolon (;)), that book locally includes two books that each prove a key
lemma in order to export those lemmas (not the other contents of the books) from
its scope, which are then used to prove the desired theorem.

(local ; Do not export the following outside this book.

(encapsulate () ; Introduce a scope

; Load the two indicated books.

(local (include-book"satisfiable-add-proof-clause-rup"))
(local (include-book "satisfiable-add-proof-clause-drat"))
; Export two key lemmas outside the encapsulate scope.

(defthm satisfiable-add-proof-clause-rup ...)
(defthm satisfiable-add-proof-clause-drat ...)))

; Prove the main theorem of this book.

(defthm satisfiable-add-proof-clause
; Theorem statement is omitted in this display.

:hints (("Goal"
; Prove that the two key lemmas imply this theorem.

:use (satisfiable-add-proof-clause-rup
satisfiable-add-proof-clause-drat)

; Disabling most rules improves reliability and speed.

:in-theory (union-theories ’(verify-clause)
(theory ’minimal-theory)))))

The [lrat-1] book sat-drat-claim-2-3.lisp also follows our hand proof.
The correctness proof for [lrat-1] was tedious, but presented no surprises. One

key proof technique, found in the [lrat-1] book soundness.lisp, is to define a

9 The hand proof may be found in a comment near the top of the book
satisfiable-add-proof-clause.lisp (see for example community books directory
projects/sat/list-based/). That informal proof is annotated with names of lem-
mas from the actual proof script.

Efficient, Verified Checking of Propositional Proofs 279

function extend-with-proof that recurs much like the checker, except instead of
returning a Boolean, it returns the formula produced by applying the proof steps
in sequence, starting with the original formula, with each step deleting or adding a
clause. The following lemma is then key; with enough lemmas in place, it is proved
automatically by induction using the recursion scheme for that function.

(defthm proof-contradiction-p-implies-false

(implies (and (formula-p formula)

(proofp proof)

(proof-contradiction-p proof))

(equal (evaluate-formula (extend-with-proof formula proof)

assignment)

nil)))

Of course, the phrase “enough lemmas in place” above hides all the real work
in the proof, for example in proving that the RAT check suffices for concluding
that the addition of a clause preserves satisfiability.

With the proof of [lrat-1] complete, the next step was to improve efficiency by
shrinking the formula from time to time, as explained in the description of [lrat-
2] in Sect. 3. The [lrat-2] code was thus structurally similar but incorporated this
shrinking. By keeping the top-level shrinking function disabled, it was reasonably
straightforward to update the proof. Our process was to see where the former
proof failed: when an ACL2 proof fails, it prints key checkpoints, which are
formulas that can no longer be simplified. They often provide good clues for
lemmas to formulate and prove.

The migration from [lrat-2] to [lrat-3] was very easy, including modifying the
soundness proof. The key change was to avoid storing a maximum index field
in the formula, so that the formula became exactly its fast-alist. This change
had little effect on efficiency, though it did avoid some memory allocation (from
building cons pairs). Rather, the point was to simplify the proof development,
in preparation for our final step.

4.3 Using Stobjs ([lrat-4])

The introduction of stobjs for assignments presented the possibility of modi-
fying the existing soundness proof. However, that seemed potentially difficult,
given the disparity in the two representations of assignments: in the list version,
assignments are extended using cons and retracted by going out of the scope of
a LET binding; by contrast, the stobj version modifies assignments by updating
array entries and stack pointers.

So instead of modifying the proof of the [lrat-3] soundness theorem, we
decided to apply that theorem by relating the [lrat-3] list-based checker and
the [lrat-4] stobj-based checker. A summary of that approach is presented
below, followed by some deeper exploration. See the [lrat-4] (stobj-based) book
equiv.lisp for the ACL2 theorems that relate the two checkers.

Applying [lrat-3] Correctness Using a Correspondence Theorem.
The [lrat-3] and [lrat-4] checkers are connected using the correspondence

280 M.J.H. Heule et al.

theorem below, refutation-p-equiv10. It is formulated using a function
refutation-p$, defined for the stobj-based checker in analogy to the list-based
recognizer function refutation-p for valid refutations, but using a so-called
local stobj.

(defthm refutation-p-equiv
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(refutation-p proof formula)))

That correspondence theorem trivially combines with the list-based checker’s
soundness theorem (stated near the beginning of Sect. 4) to yield soundness for
the stobj-based checker.

(defthm main-theorem-stobj-based
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(not (satisfiable formula))))

Guard Verification and a Stobj Invariant. Our first step was to
verify guards for the stobj-based checker definitions, to support high-
performance execution. This step was undertaken before starting the proof of
refutation-p-equiv or its supporting lemmas, so that useful insights and lem-
mas developed during guard verification could be reused when developing the
correspondence proofs. In particular, it was clear that guard verification would
require developing an invariant on the stobj—e.g., to guarantee that extending
an assignment never writes to the stack at an out-of-bounds index—and that
proving invariance could be useful when proving the correspondence theorems.

The stobj invariant, a$p, is defined in terms of several recursively-defined prop-
erties. Informally, it says that the stack and array of a$ correspond nicely: the
stack has no duplicates, and the variables below the top of the stack are exactly the
variables with an assigned value of true (T) or false (NIL) in the array, as opposed
to being undefined (value 0). It was rather challenging to complete all of the guard
verification, but then perhaps more straightforward to prove the correspondence
theorems, culminating in the theorem refutation-p-equiv shown above.

A Challenge in Proving Correspondence. A glitch arose while attempting
the correspondence proofs. Consider the following correspondence theorem.

(defthm negate-clause-equiv-1

(implies (and (a$p a$)

(= (a$ptr a$) 0)

10 The subsidiary correspondence theorems all state equivalences, so the suffix “-equiv”
was used in the names of correspondence theorems, even though the top-level theo-
rem, refutation-p-equiv, is actually an implication.

Efficient, Verified Checking of Propositional Proofs 281

(clausep$ clause a$))

(equal (list-assignment (mv-nth 1 (negate-clause clause a$)))

(negate-clause-or-assignment clause)))

The call of negate-clause on the left-hand side of the equality pushes each
literal of the clause onto the stack, and then the function list-assignment
extracts a list-based assignment from the resulting stack. However, the function
negate-clause-or-assignment (defined for [lrat-3]) simply mapped negation
over the clause, for example transforming the clause (3 -4 5) to (-3 4 -5)—
whereas the left-hand side produces (-5 4 -3)—reversed! Fortunately, this was
the only case in which the list-based and corresponding stobj-based function
didn’t match up.

By the time this issue surfaced, soundness had been established for the [lrat-
3] (list-based) checker, guards had been verified for the [lrat-4] (stobj-based)
checker, and some of the equivalence proofs had been completed. So we followed
the steps below to modify the [lrat-3] checker to support the remaining equiv-
alence proofs and avoid excessive re-work; after these steps, we completed the
remaining correspondence proofs without undue difficulty.

1. We modified [lrat-3] by disabling negate-clause-or-assignment and
attempting the proofs, expecting them to fail since that definition was no
longer available.

2. We fixed the failed proofs—there were only a few—by providing them with
hints to re-enable negate-clause-or-assignment.

3. We redefined negate-clause-or-assignment as a call to a tail-recursive
function that reversed the order. Because of the steps above, the only proofs
that failed were those explicitly enabling negate-clause-or-assignment.

4. With relatively modest effort we fixed all failed proofs.

4.4 The [lrat-5] Proof

Our [lrat-4] and [lrat-5] code were essentially the same except for the highest-level
functions. It was thus straightforward to work through the proof in a top-down
style, reusing previous lemmas once we worked our way down to reasoning about
functions that had not changed.

We improved the soundness theorem. Previous versions simply stated that
every formula with a refutation is unsatisfiable. To see why that statement is insuf-
ficient, imagine an “evil” parser that always returns the trivial formula, containing
only the empty clause. Then when the checker validates a proof, such a soundness
theorem will only tell us that the empty clause is unsatisfiable! In principle a solu-
tion is to verify the parser, but that seems to us a difficult undertaking.

Instead we define a function, proved-formula, which takes two input files
and various other parameters (such as how much of the proof file to read at
each iteration). When a proof is successfully checked, this function returns the
formula proved—essentially, what was read from the formula input file. This is
the function that we actually run to check proofs. The following theorem states
that if proved-formula is applied to a given formula file, cnf-file, and proof

282 M.J.H. Heule et al.

file, clrat-file, and it returns a formula F (rather than nil, which represents
failure), then F is unsatisfiable.11

(defthm soundness

(let ((formula (mv-nth 1 (proved-formula cnf-file clrat-file ...))))

(implies formula

(not (satisfiable formula))))

For extra confidence, a very simple program12, whose correctness can easily
be ascertained by inspection, can print to a new file the formula returned by
proved-formula. We have used this utility to compare the new file to the input
formula using the diff utility, thereby providing confidence that the unsatisfiable
formula returned by proved-formula truly represents the contents of the input
formula file.

5 Conclusion

We now have an efficient, verified SAT checker that can rapidly check SAT
proof files of many gigabytes. We expect that it will be used in applications of
SAT solvers that demand validation, both in SAT competitions and in industry.
Performance data on hard problems of the recent SAT competition suggest that
the ACL2-based [lrat-5] checker generally adds less than 25% to the time spent by
unverified proof-checking alone. The soundness proof for the stobj-based checker
was split quite nicely into a sequence of proof efforts. Here are some reflections
on those efforts, based on checker names introduced in Sect. 3.1.

1. We easily proved the soundness of [drat] by modifying the proof for [rat].
2. We developed the soundness proof for [lrat-1] essentially from scratch, starting

with development of a hand proof. We believe that this helped us to deal with
proof fallout from changes to the code from [drat] to [lrat-1].

3. We modified the proof for [lrat-1] in a modular way to produce a proof for
[lrat-2], which shrinks the formula’s fast-alist heuristically to boost perfor-
mance significantly. This step (and others) benefited from ACL2’s automa-
tion, in particular its display of key checkpoints upon proof failure. We believe
that the structuring of the [lrat-1] soundness proof to follow a hand proof
helped us to be efficient, by adding clarity to what we were trying to do.

4. The change from [lrat-2] to [lrat-3] was quite easy. The simplified notion of
formula was expected to be useful for the next step, and we believe it was.

5. The change from [lrat-3] to [lrat-4] introduced stobj-based code. It seemed
simplest to avoid trying to modify the soundness proof, instead deriving
soundness as a corollary of a correspondence theorem that relates those two
checkers. That worked out nicely, though it involved modifying a function
in [lrat-3]. That modification was done in a modular way, in a succession of

11 The mv-nth expression extracts the returned formula from a multiply-valued result.
12 projects/sat/lrat/incremental/print-formula.lisp in the community books.

Efficient, Verified Checking of Propositional Proofs 283

steps for which that function was disabled. Guard verification was challeng-
ing, but its supporting theorems and techniques helped with the soundness
proof. Specifically, patterned-based congruences [13] developed for guard ver-
ification were also used in proving correspondence theorems.

6. The change from [lrat-4] to [lrat-5] caused us to extend the ACL2 system
(and logical theory) with a utility for reading a portion of a file into a string.
This utility supports efficient input from very large proof files.

Our software development approach used a form of refinement. We first spec-
ified and verified a very simple, but inefficient SAT proof checker. We then
introduced another more efficient, but more complex, SAT proof-checker, that
we then verified. We continued this process until we had a solution that was
fast enough and verified to be correct. We believe that this stepwise approach
was an effective, efficient way to develop a high-performance formally verified
SAT proof-checker. This effort adds evidence one can build formally-verified
production-class software.

References

1. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS, vol. 9706, pp. 25–44. Springer, Cham (2016). doi:10.1007/
978-3-319-40229-1 4

2. Boyer, R.S., Moore J S.: Single-threaded objects in ACL2. In: Krishnamurthi,
S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 9–27. Springer,
Heidelberg (2002). doi:10.1007/3-540-45587-6 3

3. Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNAI,
vol. 10395, pp. 220–236. Springer, Cham (2017). doi:10.1007/978-3-319-63046-5 14

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
(JACM) 7(3), 201–215 (1960)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

7. Greve, D.A., Kaufmann, M., Manolios, P., Moore J S., Ray, S., Ruiz-Reina, J.L.,
Sumners, R., Vroon, D., Wilding, M.: Efficient execution in an automated reasoning
environment. J. Funct. Program. 18(1), 15–46 (2008)

8. Heule, M.J.H., Biere, A.: Clausal proof compression. In: 11th International Work-
shop on the Implementation of Logics. EPiC Series in Computing, vol. 40, pp.
21–26 (2016)

9. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Trimming while checking clausal
proofs. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, 20–23 October 2013, pp. 181–188 (2013)

10. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
345–359. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 24

http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://dx.doi.org/10.1007/3-540-45587-6_3
http://dx.doi.org/10.1007/978-3-319-63046-5_14
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-38574-2_24

284 M.J.H. Heule et al.

11. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 28

12. Kaufmann, M., Manolios, P., Moore J S.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Press, Boston (2000)

13. Kaufmann, M., Moore J S.: Rough diamond: an extension of equivalence-based
rewriting. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNAI, vol. 8558, pp. 537–
542. Springer, Cham (2014). doi:10.1007/978-3-319-08970-6 35

14. Kaufmann, M.: Modular proof: the fundamental theorem of calculus. In:
Kaufmann, M., Manolios, P., Moore J S. (eds.) Computer-Aided Reasoning: ACL2
Case Studies. Advances in Formal Methods, vol. 4, pp. 75–91. Springer, Boston
(2000). doi:10.1007/978-1-4757-3188-0 6

15. Kaufmann, M., Moore J S.: ACL2 home page. http://www.cs.utexas.edu/users/
moore/acl2. Accessed 2016

16. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L. (ed.)
CADE 2017. LNAI, vol. 10395, pp. 237–254. Springer, Cham (2017). doi:10.1007/
978-3-319-63046-5 15

17. Lescuyer, S., Conchon, S.: A reflexive formalization of a SAT solver in Coq. In:
International Conference on Theorem Proving in Higher Order Logics (TPHOLs)
(2008)

18. Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom.
Reason. 43(1), 81–119 (2009)

19. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010)

20. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, chap. 4, pp. 131–153. IOS Press, Amsterdam (2009)

21. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine (part I). CACM 3(4), 184–195 (1960)

22. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: a verified modern SAT solver. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 363–378.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27940-9 24

23. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfia-
bility solver. Electron. Notes Theor. Comput. Sci. 269, 3–17 (2011)

24. Steele Jr., G.L.: Common Lisp the Language, 2nd edn. Digital Press, Burlington
(1990)

25. Swords, S.: Private communication, March/April 2017
26. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT

refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39634-2 18

27. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking
and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/
978-3-319-09284-3 31

28. Wilding, M.: Design goals for ACL2. Tech. Rep. CLI Technical Report 101, Com-
putational Logic, Inc., August 1994. https://www.cs.utexas.edu/users/moore/
publications/km94.pdf

http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-319-08970-6_35
http://dx.doi.org/10.1007/978-1-4757-3188-0_6
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
http://dx.doi.org/10.1007/978-3-319-63046-5_15
http://dx.doi.org/10.1007/978-3-319-63046-5_15
http://dx.doi.org/10.1007/978-3-642-27940-9_24
http://dx.doi.org/10.1007/978-3-642-39634-2_18
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-319-09284-3_31
https://www.cs.utexas.edu/users/moore/publications/km94.pdf
https://www.cs.utexas.edu/users/moore/publications/km94.pdf

Proof Tactics for Assertions in Separation Logic

Zhé Hóu(B), David Sanán, Alwen Tiu, and Yang Liu

Nanyang Technological University, Singapore, Singapore

Abstract. This paper presents tactics for reasoning about the assertions
of separation logic. We formalise our proof methods in Isabelle/HOL
based on Klein et al.’s separation algebra library. Our methods can also
be used in other separation logic frameworks that are instances of the
separation algebra of Calcagno et al. The first method, separata, is based
on an embedding of a labelled sequent calculus for abstract separation
logic (ASL) by Hóu et al. The second method, starforce, is a refinement
of separata with specialised proof search strategies to deal with separat-
ing conjunction and magic wand. We also extend our tactics to handle
pointers in the heap model, giving a third method sepointer . Our tactics
can automatically prove many complex formulae. Finally, we give two
case studies on the application of our tactics.

1 Introduction

Separation Logic (SL) is widely used to reason about programs with pointers
and mutable data structures [34]. Many tools for separation logic have emerged
since its inception and some of them have proven successful in real-life appli-
cations, such as the bi-abduction based techniques used in Infer [1]. Most tools
for separation logic are built for small subsets of the assertion logic, notably the
symbolic heap fragment [5], and applied to verify correctness and memory safety
properties of computer programs. However, when verifying concurrent programs,
often there is the need to use a larger fragment of the assertion language. For
instance, the Separation Logic framework in Isabelle/HOL [28] and the Iris 3.0
framework [26] both use the full set of logical connectives, along with other
features. Currently the frameworks that use larger fragments of the assertion
language tend to focus more on the reasoning of Hoare triples than the asser-
tions. An exception is the Iris 3.0 framework, in which the authors developed
tactics for interactive proofs. Automated tools, however, are still beyond reach
for larger fragments of SL and are the future work of the Iris project [26].

We are also motivated by our own project, which aims at verifying that an
execution stack, including the processor architecture, micro-kernel, and applica-
tions, is correct and secure. Similar projects are NICTA’s seL4 [30] and Yale’s
CertiKOS [19]. In particular, we are verifying the XtratuM hypervisor which runs
on a multi-core LEON3 processor. Since concurrency is important in our project,
it is useful to build formal models using techniques such as rely/guarantee and

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 285–303, 2017.
DOI: 10.1007/978-3-319-66107-0 19

286 Z. Hóu et al.

separation logic, and we will use the full assertion language because logical con-
nectives such as the “magic wand” (−∗) and “septraction” (−�) are useful in
rely/guarantee reasoning [38]. We aim to build a framework in Isabelle/HOL
that can provide high confidence for the verification tasks. Automatic tactics in
a proof assistant are therefore highly desirable because they can minimise the
overhead of translating back and forth between the proof assistant and external
provers, and it is easier to integrate them with other tactics.

This paper presents automatic proof tactics for reasoning about assertions in
separation logic. Although frame inference is not in our scope, our tactics can be
used to reason about assertions in frame inference. The tactics are independent
of the separation logic framework and the choice of proof assistant, as long as the
assertion logic is an instance of Calcagno et al.’s original definition of separation
algebra [11]. For demonstration purposes and for the sake of our own project,
we base our implementation on the work of Klein et al. [25], which formalises
Calcagno et al.’s separation algebra and uses a shallow embedding of separation
logic assertions into Isabelle/HOL formulae. At the core of our tactics lies the
labelled sequent calculus LSPASL of Hóu et al. [22], which is one of the few proof
systems that have been shown successful in reasoning about the full language of
assertions of separation logics with various flavours of semantics.

We first formalise each inference rule in LSPASL as a lemma in a proof assis-
tant, we then give a basic proof search procedure separata which can easily
solve the formulae in previous BBI and PASL benchmarks [21,33]. To improve
the performance and automation, we develop several more advanced tactics. The
widely-used separating conjunction (denoted by ∗) behaves like linear conjunc-
tion in linear logic. It often creates difficulty in proof search because one has to
find the correct splitting of resources to complete the proof. Effective ‘resource
management’ in linear logic proof search is a well-known problem and it has
been studied in the literature [12,20]. Unlike the case with linear logic, where
resource is a multiset, we need to deal with a more complex structure captur-
ing relations between heaps, and it is not clear how search techniques for linear
logic [20] can be employed. We propose a new formula-driven algorithm to solve
the heap partitioning problem. We also present a tactic to simplify the formula
when it involves a combination of ∗ and −∗ connectives. Finally, we extend the
above tactics with inference rules [22] to handle pointers in the heap semantics.

We demonstrate that our tactics are able to prove many separation logic
formulae automatically. These formulae are taken from benchmarks for BBI and
abstract separation logic provers and the sep solve method developed in seL4.
We give a case study where we formalise Feng’s semantics of actions in local
rely/guarantee [17] using our extension of separation algebra, and prove some
properties of the semantics using our tactics. Lastly, we show that our tactics
can be easily implemented in other frameworks in case the user cannot directly
use our implementation.

Proof Tactics for Assertions in Separation Logic 287

2 Preliminaries

This section gives an overview of Klein et al.’s formalization of Calcagno et al.’s
separation algebra [25]. We extend their work with additional properties which
are useful in applications. Then we briefly revisit the labelled sequent calculus
LSPASL.

2.1 Separation Algebra

A separation algebra [11] is a partial commutative monoid (Σ,+, 0) where Σ is
a non-empty set of elements (referred to as “worlds”), + is a binary operator
over worlds, and 0 is the unit for +. In Calcagno et al.’s definition, + is a partial
function, whereas Klein et al. defined it as a total function. For generality we
shall assume that + at least satisfies (in the sequel, if not stated otherwise,
variables are implicitly universally quantified)

partial-functionality: if x + y = z and x + y = w then z = w.

Some formalizations of separation algebra also include a binary relation #, called
“separateness” [11], over worlds. Two properties are given to the separateness
relation: (1) x # 0; and (2) x # y implies y # x. The first one says every element
is separated from the unit 0, the second one ensures the commutativity of #. As
usual, the + operator enjoys the following properties:

identity: x + 0 = x.
commutativity: x # y implies x + y = y + x.
associativity: if x # y and y # z and x # z then (x + y) + z = x + (y + z).

Klein et al. then extend the above definitions with two more properties to obtain
separation algebra: (1) if x # (y + z) and y # z then x # y; (2) if x # (y + z)
and y # z then (x + y) # z. Finally, cancellative separation algebra extends the
above with

cancellativity: if x + z = y + z and x # z and y # z then x = y.

Assertions in separation algebra include the formulae of predicate calculus
which are made from �,⊥, ¬,→,∧,∨, and quantifiers ∃,∀. In addition, there
are multiplicative constant and connectives emp, ∗, and −∗ . In Isabelle/HOL,
assertions can be encoded as predicates of type ′h ⇒ bool where ′h is the type of
worlds in separation algebra. We write �A�w for the boolean formula resulting
from applying the world w on the assertion A. The semantics of multiplicative
assertions can be defined as:
�emp�w iff w = 0.
�P ∗ Q�w iff there exists x, y such that x # y and w = x + y and �P �x and �Q�y.
�P−∗ Q�w iff for all x, if w # x and �P �x then �Q�(w+x).

288 Z. Hóu et al.

2.2 Further Extension of Separation Algebra

We extend Klein et al.’s library with the following properties that hold in many
applications such as heap model and named permissions, as discussed in [8,9,16]:

indivisible unit: if x + y = 0 and x # y then x = 0.
disjointness: x # x implies x = 0.
cross-split: if a + b = w, c + d = w, a # b and c # d, then there exist e, f, g, h

such that e + f = a, g + h = b, e + g = c, f + h = d, e # f , g # h, e # g,
and f # h.

We call our extension heap-sep-algebra because our main application is the heap
model. The following tactics also work for the algebra of Calcagno et al. if we
remove from the tactics these extended properties.

2.3 The Labelled Sequent Calculus LSPASL

The sequent calculus LSPASL [21] for abstract separation logic is given in Fig. 1,
where we omit the rules for classical connectives. A distinguishing feature of
LSPASL is that it has “structural rules” which manipulate ternary relational
atoms. We define the ternary relation as: (a, b � c) ≡ a # b and a + b = c.

A sequent G ;Γ � Δ contains a set G of ternary relational atoms, and sets
Γ , Δ of labelled formulae of the form h : A, which corresponds to �A�h in the
semantics.

Semicolon on the left hand side of � means classical conjunction and on the
right means classical disjunction. The sequents on the top of a rule are premises,
the one below is the conclusion. These inference rules are often used backwards
in proof search. That is, to derive the conclusion, we need to derive the premises.
The structural rules eq, u capture identity; e, a are for commutativity and asso-
ciativity respectively; d for disjointness, which suffices to derive indivisible unit
iu; p, c are for partial-functionality and cancellativity, and cs for cross-split.

3 Basic Proof Search

LSPASL Rules as Lemmas. The first step towards developing automatic tactics in
proof assistants based on the proof system LSPASL is to translate each inference
rule in LSPASL to a lemma and prove that it is sound. Suppose a sequent takes
the form

R1; . . . ;Rl; s1 : A1; . . . ; sm : Am � s′
1 : B1; . . . ; s′

n : Bn

where Ri are ternary relational atoms over labels/worlds, Ai and Bj are sepa-
ration logic assertions, si and s′

j are labels denoting worlds. We translate the
sequent to a formula

(R1 ∧ · · · ∧ Rl ∧ �A1�s1 ∧ · · · ∧ �Am�sm) → (�B1�s′
1
∨ · · · ∨ �Bn�s′

n
).

If a rule has premises P1, P2 and a conclusion C, we translate it to a lemma
(P1 ∧ P2) → C. If a rule has no premises, then we simply need to prove the
conclusion. For instance, the rule starr in Fig. 1 is translated to the following
lemma:

Proof Tactics for Assertions in Separation Logic 289

Fig. 1. The inference rules for multiplicative connectives and structural rules in
LSPASL.

Lemma (lspasl-starr). (((h1, h2 � h0) ∧ Γ → �A�h1 ∨ �A∗B�h0 ∨ Δ) ∧
((h1, h2 �h0)∧Γ → �B�h2 ∨�A∗B�h0 ∨Δ)) → ((h1, h2 �h0)∧Γ → �A∗B�h0 ∨Δ)

Note that we combine G and Γ in the rule into Γ in the lemma because in
proof assistants Γ is an arbitrary formula which can be used to represent both.
The above lemma is thus stronger than the soundness of a direct translation of
sequents.

For each inference rule r in Fig. 1, we prove a corresponding lemma lspasl-r
to show the soundness of the rule in Calcagno et al.’s separation algebra. In the
sequel we may loosely refer to an inference rule as its corresponding lemma. We
have also proved the inverted versions of the those lemmas which show that all
the rules in LSPASL are invertible. That is, if the conclusion is derivable, so are
the premises. Completeness for Klein et al.’s formalisation is beyond this work
because the semantics that LSPASL is complete for, which is also widely used in
the literature [9,16], does not consider the “separateness” relation, thus LSPASL

itself lacks the treatment of this relation.

290 Z. Hóu et al.

Theorem (Soundness). LSPASL is sound with respect to heap-sep-algebra.

Lemma (Invertibility). The inference rules in LSPASL are invertible.

Proof Search Using LSPASL. Proof assistants such as Isabelle/HOL can auto-
matically deal with first-order connectives such as �, ⊥, ∧, ∨, ¬, →, ∃ and ∀, so
we do not have to integrate the rule applications for these connectives in proof
search. We divide the other inference rules in two groups: those that are truly
invertible, and those that are only invertible because we “copy” the conclusion
to the premises. The intuition is as follows: “invertible” rules are those that can
be applied whenever possible without increasing the search space unnecessarily.
The types of inference rules are summarised in Table 1.

Table 1. The types of inferences rules in LSPASL.

Type Rules

Invertible lspasl-empl, lspasl-empr, lspasl-starl, lspasl-magicr

lspasl-eq, lspasl-p, lspasl-c, lspasl-iu, lspasl-d

Quasi-invertible Logical lspasl-starr, lspasl-magicl

Structural lspasl-u, lspasl-e, lspasl-a, lspasl-cs

We analyse each rule lspasl-r in Table 1 and prove a lemma lspasl-r-der for
a form of backward derivation. Such lemmas will be directly used in the tactics.
Quasi-invertible rules such as lspasl-starr and lspasl-magicl need to be used with
care because they may generate useless information and add unnecessary sub-
goals. Continuing with the example of the rule lspasl-starr, reading it backwards
yields the following lemma:

Lemma (lspasl-starr-der). If (h1, h2 � h0) and ¬�A∗B�h0 , then
((h1, h2 � h0) ∧ ¬(�A�h1 ∨ �A∗B�h0) ∧ (starr applied h1 h2 h0 (A∗B))) or
((h1, h2 � h0) ∧ ¬(�B�h2 ∨ �A∗B�h0) ∧ (starr applied h1 h2 h0 (A∗B)))

We include the assumptions in each disjunct so that contraction is admissible.
We also include a dummy predicate “starr applied” on each disjunct to record
this rule application. This predicate is defined as starr applied h1 h2 h0 F ≡
(h1, h2 � h0) ∧ ¬�F �h0 .

We use three tactics to reduce search space when lspasl-starr or lspasl-magicl
is applied. The first tactic is commonly used in provers for BBI and abstract
separation logics [21,33]. For example, we forbid applications of lspasl-starr on
the same pair of labelled formula and ternary relational atom more than once,
because repeating applications on the same pair will not advance the proof
search. To realise this, we generate the predicate “starr applied” in proof search
only when the corresponding pair is used in a rule application. We can then
check if this predicate is generated during proof search, and avoid applying the
rule on the same pair again.

Proof Tactics for Assertions in Separation Logic 291

The second tactic applies Lemma lspasl-starr-der2, which is an alternative of
the above lemma that applies lspasl-starr on ¬�A∗B�h0 and (h2, h1 � h0):

Lemma (lspasl-starr-der2). If (h1, h2 � h0) and ¬�A∗B�h0 , then
((h1, h2 � h0) ∧ ¬(�A�h2 ∨ �A∗B�h0) ∧ (starr applied h2 h1 h0 (A∗B))) or
((h1, h2 � h0) ∧ ¬(�B�h1 ∨ �A∗B�h0) ∧ (starr applied h2 h1 h0 (A∗B)))

This is a crucial step because without it we will have to wait for the lspasl-e rule
application to generate the commutative variant (h2, h1 � h), and this particular
rule application may be very late in proof search.

The third tactic is a look-ahead in the search: analyse each pair of ¬�A∗B�h0

and (h1, h2 �h0) in the subgoal, and look for �A�h1 and �B�h2 in assumptions. If
we can find at least one of them, then we can safely apply Lemma lspasl-starr-der
and solve one subgoal immediately; thus the proof search space is not increased
too much. We refer to the look-ahead tactics as lspasl-starr-der-guided (resp.
lspasl-magicl-der-guided). Similar tactics are also developed for the rule lspasl-
magicl. We apply lspasl-starr-der-guided and lspasl-magicl-der-guided whenever
possible.

The structural rule lspasl-u requires more care, because it generates a new
ternary relational atom out of nothing. A natural restriction is to forbid gen-
erating an atom if it already exists in the subgoal. Moreover, we only generate
(h,0�h) when (1) h occurs in some ternary relational atom (in the subgoal), or
(2) h occurs in some labelled formula. We call these two applications lspasl-u-
der-tern and lspasl-u-der-form respectively.

We develop two proof methods for the associativity rule lspasl-a. In the first
method, lspasl-a-der, when we find the two assumptions (h1, h2�h0) and (h3, h4�
h1), we only apply the rule lspsal-a when none of the following appear in the
subgoal:

(0, h2 � h0), (h1, 0 � h0), (h1, h2 � 0), (0, h4 � h1), (h3, 0 � h1),
(, h3 � h0), (h3, � h0), (h2, h4 �), (h4, h2 �).

In the first 5 cases, we can simplify the subgoal by unifying labels. For instance,
the first case implies that h2 = h0, which can be derived by the rule lspasl-eq.
The last 4 cases (means any label/world) indicate that one of the atoms to be
generated may already exist in the subgoal, so we delay this rule application to
the second method, lspasl-a-der-full, in which we generate all possible associative
variants of the assumptions.

Real-world applications often involve reasoning of the form “if this assertion
holds for all heaps, then . . . ” [30]. Hóu and Tiu’s recent work included treat-
ments for separation logic modalities with similar semantics [24]. For example,
if the quantifier occurs on the left hand side of the sequent, they instantiate
the quantified world to either an existing world or a fresh variable. This kind of
reasoning often can be handled by existing lemmas in proof assistants, such as
meta-spec in Isabelle/HOL. Therefore we do not detail the treatment for such
quantifiers. We call the tactic for universal quantifiers on worlds lsfasl-boxl-der
since it mimics the �L rule in [24].

292 Z. Hóu et al.

We are now ready to present the basic proof search. The first
step is to “normalise” the subgoal from P1=⇒P2=⇒· · · =⇒Pn=⇒C to
P1=⇒P2=⇒· · · =⇒Pn=⇒¬C=⇒⊥; otherwise, if C is some A ∗ B, Lemma lspasl-
starr-der will fail to apply on the subgoal. This preparation stage is called “prep”.

Then we apply the “invertible” rules as much as possible, this is realised by
a loop of applying the following lemmas until none are applicable: lspasl-empl-
der, lspasl-starl-der, lspasl-magicr-der, lspasl-iu-der, lspasl-d-der, lspasl-eq-der,
lspasl-p-der, lspasl-c-der, lspasl-starr-der-guided, lspasl-magicl-der-guided. This
stage is called “invert”.

The application of Lemma lsfasl-boxl-der follows, then come “quasi-
invertible” rules. When applying the lemmas for structural rules lspasl-u-der-
tern (identity), lspasl-e-der (commutativity), and lspasl-a-der (associativity), we
apply them as much as possible based on existing ternary relational atoms in
the (first) subgoal. We call this loop “non-inv-struct”. We do not apply quasi-
invertible logical rules as much as possible because that will produce too many
subgoals. Thus in the “non-inv-logical” stage we apply one of lspasl-starr-der,
lspasl-starr-der2, lspasl-magicl-der, lspasl-magicl-der2 only once.

Finally, we apply one of three rarely used lemmas in the end: lspasl-u-der-
form, lspasl-cs-der, lspasl-a-der-full. We call this stage “rare”.

The basic proof search procedure, named separata, is an infinite loop of the
above stages until the subgoal is proven or none of the lemmas are applicable.
We can express separata by the following regular expression, where “|” means
“or” and “+” means one or more applications of the preceding element:

separata ≡ (prep | (invert | lsfasl-boxl-der | non-inv-struct | non-inv-logical)+ | rare)+

4 Advanced Tactics for Proof Search

Although separata can handle all logical connectives, it is inefficient when the
formula contains a complex structure with ∗ and −∗ . This section extends sep-
arata with specialised tactics for ∗ and −∗ , which pose the main difficulties in
reasoning with separation logic. The former connective is pervasive in program
verification, and the latter connective is important when reasoning about con-
current programs with rely/guarantee techniques [38]. We also integrate proof
methods for pointers in the heap model.

4.1 Formula-Driven Tactics for the ∗ Connective

One of the hardest problems in reasoning about resources is to find the cor-
rect partition of resources when applying the (linear) conjunction right rule.
In certain fragments of separation logic such as symbolic heap, this problem is
simplified to AC-rewriting and can be solved relatively easily with existing tech-
niques. However, in a logic with richer syntax, theorem provers often struggle to
find the right partition of resources; this can be observed from the experiments
of theorem provers for BBI and abstract separation logics [21,23,33]. To capture

Proof Tactics for Assertions in Separation Logic 293

arbitrary interaction between additive connectives (∧, →) and multiplicative
connectives (∗, −∗), LSPASL uses ternary relational atoms as the underlying
data structure, which complicates the reasoning. This subsection proposes two-
stage tactics for such situations, and gives two solutions for the second stage.
Our techniques can also be adopted in other logic systems with ternary relations.
Consider the following example:

Example 1. (h1, h2 � h3) =⇒ (h4, h5 � h1) =⇒ (h6, h7 � h2) =⇒ (h8, h9 � h6) =⇒
(h10, h11 � h8) =⇒ �A�h4 =⇒ �B�h5 =⇒ �C�h10 =⇒ �D�h11 =⇒ �E�h9 =⇒
�F �h7 =⇒ · · · =⇒ ¬�(((B∗E)∗(A∗D))∗C)∗F �h3 =⇒ ⊥
Recall Lemma lspasl-starr-der in Sect. 3. To apply it, we need to find an atom
(h1, h2 �h0) which matches the labelled formula ¬�A∗B�h0 . The ternary relation
represents a partition of the resource h0, and only the correct partition will lead
to a derivation. In separata, “non-inv-struct” applies identity, commutativity,
and associativity without any direction. It may generate many atoms that are
not needed and increase the search space. Thus the first problem is how to
generate the exact set of ternary relational atoms for lspasl-starr applications.
Let us take a closer look at the subgoal by viewing each ternary relational atom
(h, h′ � h′′) as a binary tree where h′′ is the root and h, h′ are leaf nodes. We
then obtain the binary tree in Fig. 2 (left).

Fig. 2. Graphical representation of Example 1.

The first stage of the tactics
is to analyse the structure of the
∗ formula and try to locate each
piece of resource in the subgoal.
In Example 1, it is easy to observe
that A is true at world h4 etc.
Combined with the structure of
the formula, we obtain the binary
tree in Fig. 2 (right), which con-
tains a few question marks that
represent the worlds which are cur-
rently unknown. For instance, we
do not know what is the combina-
tion of h5 and h9 in the subgoal;
thus we should create a new ternary relational atom ∃h.(h5, h9 � h) with a fresh
symbol h, and try to find an instance of h later.

In a more general case, we first give an algorithm findworld (Algorithm 1) to
find the world where a formula is true at and store all the new ternary relational
atoms we create. We use “@” for concatenation of lists and “[]” for an empty
list. The next step is to collect all the ternary relational atoms we have created
to obtain Fig. 2 (right), as done in the algorithm starstruct (Algorithm 2).

Now that we know exactly the set of required ternary relational atoms, the
second stage of the tactics is to derive Fig. 2 (right) from (left). We propose two
solutions to the second stage. The first solution works for the separation algebra
defined in Dockins et al.’s work [16], which is more general than the one used in

294 Z. Hóu et al.

Data: subgoal, and a formula F
Result: a pair of a world and a list of ternary relational atoms
if �F �h is in subgoal for some h then

return (h, []);
else if F ≡ A ∧ B or F ≡ A ∨ B or F ≡ A → B then

(h, l) ← findworld(subgoal, A);
if h ≡ NULL then

return findworld(subgoal, B);
else

return (h, l);

else if F ≡ ¬ A or F ≡ ∃x.A or F = ∀x.A then
return findworld(subgoal, A);

else if F ≡ emp then
return (0, []);

else if F ≡ A ∗ B then
(ha, la) ← findworld(subgoal, A); (hb, lb) ← findworld(subgoal, B);
if (ha, hb � h) occurs in subgoal for some h then

return (h, la@lb);
else

Create a fresh variable h′; return (h′, la@lb@[(ha, hb � h′)]);
else

return (NULL, []);

Algorithm 1. The algorithm findworld.

Data: subgoal, and negated star formula ¬�A∗B�h

Result: a conjunction of ternary relational atoms
(ha, la) ← findworld(subgoal, A); (hb, lb) ← findworld(subgoal, B);
Make a conjunction of each ternary relational atom in la@lb@[(ha, hb � h)] and
existentially quantify over all the variables created in findworld;

Algorithm 2. The algorithm starstruct.

this paper. A common property shared by Fig. 2 (left) and (right) is that the two
binary trees have the same root and the same multiset of leaf nodes. It is easy
to observe that a binary tree naturally corresponds to a list of ternary relational
atoms. We can use the following lemma to derive Fig. 2 (right) where we say a
node is internal if it is not the root nor a leaf node:

Lemma. Given two binary trees t1 and t2 with the same root and the same mul-
tiset of leaf nodes. Suppose every internal node in t2 is existentially quantified.
There exists a sequence of lspasl-e-der and lspasl-a-der applications to derive t2
from t1.

The intuition is that Fig. 2 (left) and (right) can be seen as parse trees of
∗ connected terms with different ways of bracketing. The two lemmas lspasl-
e-der and lspasl-a-der correspond respectively to applications of commutativity

Proof Tactics for Assertions in Separation Logic 295

and associativity of ∗. Those applications grant us a transformation from one
bracketing to the other bracketing.

In the case that certain internal nodes in t2 are not existentially quantified,
by the construction in Algorithms 1 and 2, they must be existing worlds in the
subgoal. Suppose the subgoal contains a binary tree in below (left) and also
contains (h2, h4 � h5), and Algorithms 1 and 2 suggest to derive below (right).
We can still use the above lemma to derive below (middle) from (left), where
the question mark is an existentially quantified variable. We then instantiate
the quantified variable to a fresh variable, e.g., h6, and use lspasl-p-der (partial-
functionality of + and �) to unify h6 and h5, then derive below (right). This
solution may be easy to implement in an external theorem prover, but we faced
difficulties when implementing it in Isabelle/HOL. Specifically, whenever we use
Algorithms 1 and 2 to obtain the atoms we need to derive, we have to prove that
those atoms correspond to a binary tree. Since ternary relation is a definition
in Isabelle/HOL, the proof of the tree representation is non-trivial and slow for
large instances.

The second solution is inspired by “forward reasoning” and “inverse
method” [13]. This solution does not depend on the tree representation, but we
shall describe it in terms of trees for simplicity. Instead of deriving Fig. 2 (right)
from (left), we build (right) up from scratch using the information in (left). This
can be seen as forward reasoning on ternary relational atoms. We start by choos-
ing the bottom-most “sub-tree” (h, h′ � h′′) in the tree to be derived. If we can
prove that h # h′, then there must be a world that represents the combination
of h and h′. If h′′ is not existentially quantified, we can use partial-functionality
to derive that the combination of h and h′ must be h′′. Proving h # h′ is the
hard part. The intuition is that if h and h′ are two leaf nodes in a (fragment of
the) tree formed from the subgoal, then they must be “separated”. For instance,
from Fig. 2 (left), we should be able to derive h4 # h10 since they are both leaf
nodes. We should also be able to derive h4 # h6 because they are leaf nodes of
a fragment of the tree. We need to prove the following lemmas to reason about
“separateness” of worlds:

disj-distri-tern: if w # z and (x, y � z) then w # x.
disj-distri-tern-rev: if x # y and x # z and (y, z � w) then x # w.
disj-comb: if (x, y � z) and x # w and y # w then z # w.
exist-comb: x # y implies ∃z.(x, y � z).

Now we construct Fig. 2 (right) bottom-up using the algorithm provetree
(Algorithm 3). The first step is to derive h5 # h9 using lemmas disj-comb, disj-
distri-tern, disj-distri-tern-rev, and lspasl-e-der, and unfolding the definition of

296 Z. Hóu et al.

Data: subgoal, and a tree t representing conjunctions of ternary relational atoms
Result: A proof that subgoal =⇒ t
repeat

Choose a lowest level ternary relational atom (h, h′ � h′′) in t;
Prove h # h′ using lemmas disj-comb, disj-distri-tern and disj-distri-tern-rev;
if h′′ is existentially quantified then

Derive ∃h′′.(h, h′ � h′′) using Lemma exist-comb;
else

Derive ∃h′′′.(h, h′ � h′′′) using Lemma exist-comb; Prove that h′′′ = h′′;
until All ternary relational atoms in t are covered;

Algorithm 3. The algorithm provetree.

the ternary relation. Next we obtain ∃h.(h5, h9 � h) using Lemma exist-comb.
The part in Algorithm 3 where we show h′′′ = h′′ can be done by applying
lemmas lspasl-a-der and lspasl-e-der and unfolding the definition of the ternary
relation. We repeat this process until we have derived the entire tree in Fig. 2
(right). Now we can use it in lspasl-starr-der applications to solve Example 1.
The whole picture is that we guess the shape of the binary tree, and guide the
application of structural rules by the structure of the ∗ formula. Thus we achieve
a “formula-driven” proof search. We call the above tactics “starr-smart” and we
extend separata by applying starr-smart between “invert” and “lsfasl-boxl-der”.

4.2 Tactics for Magic Wand

Although −∗ in general is very difficult to handle and it is often deemed as
a source of non-recursive-enumerability in the heap model [6], we observe that
many applications of −∗ in [30] are of the form (A ∗ (B−∗ C)) → (A′ ∗ C)
where A is a ∗ connected formula which can be transformed to A′∗B. Consider
the following example:

(D ∗ A ∗ ((D ∗ C)−∗ B) ∗ C) → (A ∗ B)

Instead of deriving the correct way to split the resource according to the formula
on the right hand side, we can use associativity and commutativity of ∗ and
transform the left hand side into A ∗ (D ∗ C) ∗ ((D ∗ C)−∗ B), which suffices
to deduce the right hand side by the following lemma:

Lemma (magic-mp). �C ∗ (C−∗ B)�h implies �B�h.
Hence the key in this tactic is to transform a formula into the form

A∗C∗(C−∗ B) then simplify the formula. There are many ways to implement
this, for simplicity we can analyse each ∗ connected formula F ≡ F1∗ · · · ∗Fn,
and for each Fi ≡ (C−∗ B) where C ≡ C1∗ · · · ∗Cm, we try to match Fj , j �= i
with Ck. If each Ck can be successfully matched with a (different) Fj , we can
then obtain a remainder R such that F ≡ R ∗ C ∗ (C−∗ B). We then apply
Lemma magic-mp to remove this occurrence of −∗ . We integrate this tactic

Proof Tactics for Assertions in Separation Logic 297

into the sub-procedure “invert”. The extension of separata with the tactics in
Sects. 4.1 and 4.2 is called starforce.

Compared to separata, starforce applies structural rules and the rules for
∗ and −∗ using specialised strategies, which often lead to better performance.
However, in rare cases, starforce may be too aggressive and its intermediate
tactics may get stuck. Therefore we leave both options to the user.

4.3 Tactics for the Heap Model

The separation algebra in this paper can be easily extended to capture pointers
and potentially other data structures in the heap model. We shall focus on
pointers here. For generality, we can define a points-to predicate as ′a ⇒′ v ⇒′

h ⇒ bool where ′a and ′v can be instantiated to address and value respectively
in a concrete model, and ′h is the type of worlds in the separation algebra. We
shall write this predicate as �(a �→ v)�h, the intended meaning is that address a
in heap h has value v. We can then give this relation some properties à la Hóu
et al.’s work [24] to mimic pointers in the heap model:

Injection: if �(a �→ v)�h1 and �(a �→ v)�h2 then h1 = h2.
Non-emptiness: ¬�(a �→ v)�0.
Not-larger-than-one: if �(a �→ v)�h and (h1, h2 � h) then h1 = 0 or h2 = 0.
Address-disjointness: ¬�(a1 �→ v1)�h1 or ¬�(a1 �→ v2)�h2 or ¬(h1, h2 � h).
Uniqueness: if �(a1 �→ v1)�h and �(a2 �→ v2)�h then a1 = a2 and v1 = v2.
Extensibility: for any h, v, there exist a, h1, h2 such that (h1, h � h2) and

�(a �→ v)�h1 .

It is straightforward to prove corresponding lemmas for these properties and
integrate the application of the lemmas into starforce, resulting in a new method
sepointer.

5 Examples

This section demonstrates our implementation of the above tactics in
Isabelle/HOL. Our proof methods separata, starforce, and sepointer can prove
formulae automatically without human interaction. For space reasons we only
show some examples. The source code and an extensive list of tested formulae
can be accessed at [2].

Benchmark Examples. We show three BBI formulae from the previous bench-
marks [21,33], these formulae are also valid in separation logic. The first one
is very hard for existing BBI theorem provers, but it can be solved easily by
separata, which combines the strength of the Isabelle engine and LSPASL proof
system.

(emp → (p0−∗ (((p0∗(p0−∗ p1))∗(¬p1))−∗ (p0∗(p0∗((p0−∗ p1)∗(¬p1))))))) →
((((emp∗p0)∗(p0∗((p0−∗ p1)∗(¬p1)))) → (((p0∗p0)∗(p0−∗ p1))∗(¬p1)))∗emp)

298 Z. Hóu et al.

Without separata, one could rely on Isabelle’s sledgehammer, which will spend
a few seconds to find a proof. There are also examples that sledgehammer fails
to find proofs in 300s, but separata can solve them instantly:

¬(((A∗(C−∗ (¬((¬(A−∗ B))∗C)))) ∧ (¬B))∗C)

In general, our Isabelle tactics can prove many complicated formulae which oth-
erwise may be time consuming to find proofs in Isabelle.

We have tested our tactics on other benchmark formulae for BBI and PASL
provers [21,33], both separata and starforce can prove those formulae automat-
ically.

Example 1 in Sect. 4 is an instance that separata struggles but starforce can
solve it easily. Similarly, starforce can easily prove the following formula, which
is inspired by an example in seL4, using the tactic in Sect. 4.2:

(E∗F∗G∗((C∗Q∗R)−∗ B)∗C∗((G∗H)−∗ I)∗H∗((F∗E)−∗ Q)∗A∗R) → (A∗B∗I)

The tactics for the heap model allow us to demonstrate more concrete exam-
ples. For instance, the following formula from the benchmark in [24] says that if
the current heap can be split into two parts, one is (e1 �→ e2) and the other part
does not contain (e3 �→ e4), and the current heap contains (e3 �→ e4), then we
deduce that (e3 �→ e4) and (e1 �→ e2) must be the same heap, therefore e1 = e3.
This kind of reasoning about overlaid data structures requires applications of
cross-split, and it is usually non-trivial to find proofs manually (Sledgehammer
fails to find a proof in 300s).

(((e1 �→ e2) ∗ ¬((e3 �→ e4) ∗ �)) ∧ ((e3 �→ e4) ∗ �)) → (e1 = e3)

We can also prove some properties about “septraction” in separation logic with
rely/guarantee where A−�B ≡ ¬(A−∗ ¬B), such as the formula below [38]:

((x �→ y) −� (z �→ w)) → ((x = z) ∧ (y = w) ∧ emp)

Examples in seL4 Poofs. Klein et al. implemented separation algebra in
Isabelle/HOL as a part of the renowned seL4 project. Many lemmas in their
proofs related to separation algebra can now be proved with a single application
of separata or starforce. The method sep-solve developed in the seL4 project
fails to prove most of the examples we have tested for our tactics. Compared
to the tactics developed in this paper, sep-solve is more ad-hoc. That is, our
tactics are based on a more systematic proof theory (the labelled sequent calcu-
lus), whereas sep-solve focuses on special cases that are useful in practice. As a
result, although sep-solve also have similar tactics to handle −∗ , its treatment is
different because it does not consider ternary relational atoms as its underlying
data structure. Below is a lemma in the development of sep-solve:

This proof can now be simplified to just “by separata”. In cases like above,
separata/starforce can be used as substitutes in the correctness proof of seL4.

Proof Tactics for Assertions in Separation Logic 299

6 Case Study

There are two ways to use our tactics: the user can prove that a logic is an
instantiation of separation algebra, and directly apply our proof methods, as
demonstrated in the semantics of actions; or the user can implement our tactics
in another framework, as shown in our extension of the SL framework of Lammich
and Meis [28].

Semantics of Ations. Our ongoing project involves integrating the semantics of
actions in Feng’s local rely/guarantee [17] in the CSimpl framework [35]. The
assertion language of local rely/guarantee extends separation logic assertions
with an additional semantic level to specify predicates over pairs (σ, σ′) of states,
called actions, which are represented by the states before and after the action.
The semantics of actions redefines the separation logic operations in terms of
Cartesian product of states. Additionally, the assertion language at the state
level defines the separation logic operators for a state composed of three elements
(l, s, i) to represent local, shared, and logical variables respectively. We represent
both actions and states as products, and the core of the local rely guarantee’s
assertion language can be defined in CSimpl by showing that the Cartesian
product of two heap-sep-algebras is a heap-sep-algebra. The instantiation of the
product as a heap-sep-algebra involves proving the following properties:

zero-prod-def: 0 ≡ (0, 0).
plus-prod-def: p1 + p2 ≡ ((fst p1) + (fst p2), (snd p1) + (snd p2)).
sep-disj-prod-def: p1 # p2 ≡ ((fst p1) # (fst p2)) ∧ ((snd p1) # (snd p2)).

We then prove that the properties in Sects. 2.1 and 2.2 hold for pairs of
actions. For an application, we use our tactics to prove the following lemma
where

� a � ≡ (λ(σ,σ′). (σ=σ′) ∧ (a σ)) and tran-Id ≡ � λs. True �:
lemma assumes a1: �A ∗ tran-Id�(σ1,σ2) and a2: (σ1, σ′ � σ1′) ∧ (σ2, σ′ � σ2′)
shows �A ∗ tran-Id�(σ1′,σ2′)
proof - from a2 have ((σ1, σ2), (σ′, σ′) � (σ1′, σ2′)) by (metis(full-types)
tern-dist1)
then show ?thesis using a1 id-pair-comb apply (simp add : tran-Id

-def satis-def)
by separata qed

Here �a� represents the action with equal initial and end states that satisfies a,
so tran id represents the identity relation. Before we use separata in semantics
of actions we have to provide some domain knowledge that separata does not
know, such as the first step which composes two ternary relational atoms into a
ternary relational atom of pairs. We then need to unfold the definitions in the
semantics of actions, and separata can solve the resultant subgoal quickly.

Lammich and Meis’s SL Famework. In case the proof of instantiation of separa-
tion algebra is complex or Isabelle/HOL is not accessible, the user can implement
our tactics in another framework (or even proof assistant). To demonstrate this

300 Z. Hóu et al.

we port separata to Lammich and Meis’s SL framework [28] (source code at [2]).
This process involves proving that the inference rules in LSPASL are sound
and adopting the applications of the rules in the new framework. Developing
advanced tactics is feasible but time-consuming.

7 Related Work

Separation algebra was first defined as a cancellative, partial commutative
monoid [11], and later formalized by Klein et al. in Isabelle/HOL [25]. Their
definition includes a “separateness” relation # which is not used in other works
such as [8,9,16]. We did, however, find this relation essential in developing tac-
tics for automated reasoning (cf. Sect. 4). Later developments by Brotherston et
al. [8] and Dockins et al. [16] added a few more properties in separation alge-
bra, such as single unit, indivisible unit, disjointness, splittability, cross-split.
We extend Klein et al.’s formalisation with all these properties except splitta-
bility because it does not hold in our applications. The proof theory for logics
of separation algebra dates back to the Hilbert system and sequent calculus
for Boolean bunched implications (BBI) [32]. The semantics of BBI is a gen-
eralised separation algebra: a non-deterministic commutative monoid [18]. The
undecidability of BBI and other separation algebra induced logics [8,29] did not
stop the development of semi-decision procedures, including display calculus [7],
nested sequent calculus [33], and labelled sequent calculus [23]. Among these
proof systems, nested sequent calculus and labelled sequent calculus are more
suitable for automated reasoning. Hóu et al. developed labelled sequent cal-
culi for propositional abstract separation logics [21] and corresponding theorem
provers. Brotherson and Villard gave an axiomatisation for separation algebras
using hybrid logic [9]. As far as we know, except Klein et al.’s work [25], none of
these proof systems nor their proof search procedures have been formalised in a
proof assistant.

Historically, the term “separation logic” refers to both the framework for
reasoning about programs and the assertion logic in the framework. There have
been numerous mechanisations of separation logic frameworks, but most of them
focus on the reasoning of programs (e.g., [36]), whereas this paper focuses on
the reasoning of assertions, so they are not directly comparable to this work.
Moreover, most mechanisations of separation logic framework, e.g., Smallfoot [4],
Holfoot [37], Myreen’s rewriting tactics for SL [31], Ynot [15], Bedrock [14], and
Charge! [3], only use a small subset of the assertion language, typically variants
of symbolic heaps. Although some of those assertion logics are also induced from
separation algebra, having a simpler syntax means that the reasoning task may
be easier, and more efficient tactics, such as bi-abduction [10], can be developed
for those logics. Consequently, the reasoning in those assertion logics is also not
comparable to our work, which considers the full first-order assertion language.
The few examples that use the full (or even higher-order) assertion language
include Lammich and Meis’s Isabelle/HOL formalisation of SL [28], Varming and
Birkedal’s formalisation of Higher-order SL (HOSL) [39], and the Iris project [26].

Proof Tactics for Assertions in Separation Logic 301

Lammich and Meis’s SL framework includes a proof method solve entails for
assertions. A close inspection on the source code shows that it is mostly used to
prove rather simple formulae such as (A ∗ emp) → (A ∗ �) and A ∗ B → B ∗ A
(although it can reason about some properties of lists). These formulae can be
easily proved by our tactics. On the other hand, none of the examples shown
in Sect. 5 can be proved by solve entails. The interactive proof mode in Iris
3.0 [27] can solve many formulae in a restricted format, which is sufficient in their
application. However, their tactics are not fully automatic. The formalisation of
HOSL [39] also lacks automated proof methods.

This paper fills the gap of automated tactics for assertions in formalisations
of SL. It is straightforward to adopt our tactics in other Isabelle/HOL formal-
isations; implementation in Coq should also be feasible since one can translate
our tactics to Gallina and OCaml embedded code in Coq. Thus our work can be
used to greatly improve the automation in SL mechanisations that involve the
full language of assertions.

References

1. Facebook Infer. http://fbinfer.com/
2. Isabelle/HOL tactics for separation algebra. http://securify.scse.ntu.edu.sg/

SoftVer/Separata
3. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! a framework for higher-order

separation logic in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 315–331. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 21

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic assertion
checking with separation logic. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever,
W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg
(2006). doi:10.1007/11804192 6

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). doi:10.1007/11575467 5

6. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. In: Kaminski, M.,
Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 323–338. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87531-4 24

7. Brotherston, J.: A unified display proof theory for bunched logic. ENTCS 265,
197–211 (2010)

8. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and
its neighbours. J. ACM 61, 14:1–14:43 (2014)

9. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
POPL 2014, pp. 453–464 (2014)

10. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. J. ACM 58(6), 1–66 (2011)

11. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS 2007, pp. 366–378. IEEE (2007)

12. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for lin-
ear logic proof search. In: Dyckhoff, R., Herre, H., Schroeder-Heister, P. (eds.)
ELP 1996. LNCS, vol. 1050, pp. 67–81. Springer, Heidelberg (1996). doi:10.1007/
3-540-60983-0 5

http://fbinfer.com/
http://securify.scse.ntu.edu.sg/SoftVer/Separata
http://securify.scse.ntu.edu.sg/SoftVer/Separata
http://dx.doi.org/10.1007/978-3-642-32347-8_21
http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/978-3-540-87531-4_24
http://dx.doi.org/10.1007/3-540-60983-0_5
http://dx.doi.org/10.1007/3-540-60983-0_5

302 Z. Hóu et al.

13. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005).
doi:10.1007/11538363 15

14. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI 2011, pp. 234–245 (2011)

15. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective inter-
active proofs for higher-order imperative programs. In: ICFP 2009 (2009)

16. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10672-9 13

17. Feng, X.: Local rely-guarantee reasoning. In POPL 2009, pp. 315–327. ACM (2009)
18. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of Boolean BI through

relational models. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol.
4337, pp. 357–368. Springer, Heidelberg (2006). doi:10.1007/11944836 33

19. Ronghui, G., Shao, Z., Chen, H., Xiongnan, W., Kim, J., Sjöberg, V., Costanzo, D.:
Certikos: an extensible architecture for building certified concurrent OS kernels. In
OSDI 2016, pp. 653–669 (2016)

20. Hodas, J.S., López, P., Polakow, J., Stoilova, L., Pimentel, E.: A tag-frame system
of resource management for proof search in linear-logic programming. In: Bradfield,
J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 167–182. Springer, Heidelberg (2002).
doi:10.1007/3-540-45793-3 12

21. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: POPL 2014 (2014)

22. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in sep-
aration logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 501–516. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 34

23. Hóu, Z., Tiu, A., Goré, R.: A labelled sequent calculus for BBI: proof theory
and proof search. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 172–187. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40537-2 16

24. Hóu, Z., Tiu, A.: Completeness for a first-order abstract separation logic. In:
Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 444–463. Springer, Cham
(2016). doi:10.1007/978-3-319-47958-3 23

25. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32347-8 22

26. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54434-1 26

27. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL 2017, pp. 205–217 (2017)

28. Lammich, P., Meis, R.: A separation logic framework for imperative HOL. In: AFP
2012 (2012)

29. Larchey-Wendling, D., Galmiche, D.: Non-deterministic phase semantics and the
undecidability of Boolean BI. ACM TOCL 14(1), 6:1–6:41 (2013)

30. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: SP 2013, pp. 415–429, May 2013

http://dx.doi.org/10.1007/11538363_15
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/11944836_33
http://dx.doi.org/10.1007/3-540-45793-3_12
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-642-40537-2_16
http://dx.doi.org/10.1007/978-3-642-40537-2_16
http://dx.doi.org/10.1007/978-3-319-47958-3_23
http://dx.doi.org/10.1007/978-3-642-32347-8_22
http://dx.doi.org/10.1007/978-3-662-54434-1_26
http://dx.doi.org/10.1007/978-3-662-54434-1_26

Proof Tactics for Assertions in Separation Logic 303

31. Myreen, M.O.: Separation logic adapted for proofs by rewriting. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 485–489. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14052-5 34

32. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. BSL 5, 215–244
(1999)

33. Park, J., Seo, J., Park, S.: A theorem prover for Boolean BI. In: POPL 2013, pp.
219–232 (2013)

34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In
LICS 2002, pp. 55–74 (2002)

35. Sanán, D., Zhao, Y., Hou, Z., Zhang, F., Tiu, A., Liu, Y.: CSimpl: a rely-guarantee-
based framework for verifying concurrent programs. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 481–498. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54577-5 28

36. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In PLDI 2015, pp. 77–87 (2015)

37. Tuerk, T.: A formalisation of smallfoot in HOL. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 32

38. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic.
In: Cambridge Technical report, vol. 687 (2007)

39. Varming, C., Birkedal, L.: Higher-order separation logic in Isabelle/HOLCF.
ENTCS 218, 371–389 (2008)

http://dx.doi.org/10.1007/978-3-642-14052-5_34
http://dx.doi.org/10.1007/978-3-662-54577-5_28
http://dx.doi.org/10.1007/978-3-642-03359-9_32

Categoricity Results for Second-Order ZF
in Dependent Type Theory

Dominik Kirst(B) and Gert Smolka(B)

Saarland University, Saarbrücken, Germany
{kirst,smolka}@ps.uni-saarland.de

Abstract. We formalise the axiomatic set theory second-order ZF in the
constructive type theory of Coq assuming excluded middle. In this set-
ting we prove Zermelo’s embedding theorem for models, categoricity in all
cardinalities, and the correspondence of inner models and Grothendieck
universes. Our results are based on an inductive definition of the cumula-
tive hierarchy eliminating the need for ordinals and transfinite recursion.

1 Introduction

Second-order ZF is different from first-order ZF in that the replacement axiom
quantifies over all relations at the class level. This is faithful to Zermelo’s [22]
informal view of axiomatic set theory and in sharp contrast to the standard first-
order axiomatisation of ZF (cf. [6,8]). The difference between the two theories
shows in the possibility of artificial and counterintuitive models of first-order ZF
that are excluded by the more determined second-order ZF [17].

Zermelo [22] shows in an informal higher-order setting a little noticed embed-
ding theorem saying that given two models of second-order ZF one embeds iso-
morphically into the other. From Zermelo’s paper it is clear that different models
of second-order ZF differ only in the height of their cumulative hierarchy and
that higher models admit more Grothendieck universes [20] (i.e., sets closed
under all set constructions).

The present paper studies second-order ZF in the constructive type theory of
Coq [16] assuming excluded middle. We sharpen Zermelo’s result by showing that
second-order ZF is categorical in every cardinality, which means that equipotent
models are always isomorphic. Using the fact that the height of a model is
determined by its universes, we show that second-order ZF extended with an
axiom fixing the number of universes to a finite n is categorical (i.e., all models
are isomorphic).

For our results we employ the cumulative hierarchy, which is a well-ordered
hierarchy of sets called stages such that every set appears in a stage and every
universe appears as a stage. The usual way the cumulative hierarchy is estab-
lished is through the ordinal hierarchy and transfinite recursion. We replace
this long-winded first-order approach with a direct definition of the cumulative
hierarchy as an inductive predicate, which leads to an elegant and compact devel-
opment. While an inductive definition of the cumulative hierarchy has not been
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 304–318, 2017.
DOI: 10.1007/978-3-319-66107-0 20

Categoricity Results for Second-Order ZF in Dependent Type Theory 305

proposed before, inductive definitions of this form are known as tower construc-
tions [12,14]. Tower constructions go back to Zermelo [21] and Bourbaki [4], and
are used by Smullyan and Fitting [14] to obtain the ordinal hierarchy.

The development of this paper is formalised and verified with the Coq proof
assistant. Coq proves as an ideal tool for our research since types and thus mod-
els are first-class, inductive predicates and inductive proofs are well supported,
and unnecessary assumptions (e.g. choice functions) are not built in. We assume
excluded middle throughout the development and do not miss further built-in
support for classical reasoning. The Coq development accompanying this paper
has less than 1500 lines of code (about 500 for specifications and 1000 for proofs)
and can be found at https://www.ps.uni-saarland.de/extras/itp17-sets. The the-
orems and definitions of the PDF version of this paper are hyperlinked with the
Coq development.

The paper is organised as follows. We first discuss our formalisation of ZF
and pay attention to the notion of inner models. Then, we study the cumulative
hierarchy and prove that Grothendieck universes appear as stages. Next we prove
the embedding theorem and show that ZF is categorical in every cardinality.
Then we discuss categorical extensions of ZF. We end with remarks comparing
our type-theoretic approach to ZF with the standard first-order approach.

2 Axiom System and Inner Models

We work in the type theory of Coq augmented by excluded middle for classi-
cal reasoning. Our model-theoretical approach is to study types that provide
interpretations for the relations and constructors of set theory as follows:

Definition 1. A set structure is a type M together with constants

∈ : M → M → Prop
⋃

: M → M

∅ : M P : M → M

@ : (M → M → Prop) → M → M

for membership, empty set, union, power, and replacement.

Most of the following definitions rely on some fixed set structure M . We call
the members x, y, z, a, b, c : M sets and the members p, q : M → Prop classes.
Further, we use set-theoretical notation where convenient, for instance we write
x ∈ p if px and x ⊆ p if y ∈ p for all y ∈ x. We say that p and x agree if p ⊆ x
and x ⊆ p and we call p small if there is some agreeing x. We take the freedom
to identify a set x with the agreeing class (λy. y ∈ x).

ZF-like set theories assert every set to be free of infinitely descending
∈-chains, in particular to be free of any ∈-loops. This can be guaranteed by
demanding all sets to contain a ∈-least element, the so-called regularity axiom.
From this assertion one can deduce the absence of infinitely descending ∈-chains
and hence an induction principle that implies x ∈ p for all x if one can show that

https://www.ps.uni-saarland.de/extras/itp17-sets
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#SetStruct

306 D. Kirst and G. Smolka

y ∈ p whenever y ⊆ p. Given a type theory that provides inductive predicates,
∈-induction can be obtained with an inductive predicate defining well-ordered
sets.

Definition 2. We define the class of well-founded sets inductively by:

x ⊆ WF

x ∈ WF

Then the induction principle of WF is exactly ∈-induction and the wished
axiom can be formulated as x ∈ WF for all x. This and the other usual axioms
of ZF yield the notion of a model:

Definition 3. A set structure M is a model (of ZF) if

Ext : ∀x, y. x ⊆ y → y ⊆ x → x = y

Eset : ∀x. x �∈ ∅
Union : ∀x, z. z ∈

⋃
x ↔ ∃y. z ∈ y ∧ y ∈ x

Power : ∀x, y. y ∈ Px ↔ y ⊆ x

Rep : ∀R ∈ F(M).∀x, z. z ∈ R@x ↔ ∃y ∈ x.Ryz

WF : ∀x. x ∈ WF

where R ∈ F(M) denotes that R : M → M → Prop is a functional relation. We
denote the predicate on structures expressing this collection of axioms by ZF and
write M |= ZF for ZFM .

Apart from the inductive formulation of the foundation axiom, there are
further ways in which our axiomatisation ZF differs from standard textbook
presentations. Most importantly, we employ the second-order version of rela-
tional replacement which is strictly more expressive than any first-order scheme
and results in a more determined model theory. Moreover, we do not assume the
axiom of infinity because guaranteeing infinite sets is an unnecessary restriction
for our investigation of models. Finally, we reconstruct the redundant notions
of pairing, separation, and description instead of assuming them axiomaticly in
order to study some introductory example constructions. The following definition
of unordered pairs can be found in [15]:

Definition 4. We define the unordered pair of x and y by:

{x, y} := (λab. (a = ∅ ∧ b = x) ∨ (a = P∅ ∧ b = y))@P(P∅)

As usual we abbreviate {x, x} by {x} and call such sets singletons.

Lemma 5. z ∈ {x, y} if and only if z = x or z = y.

Proof. The given defining relation is obviously functional. So by applying Rep
we know that z ∈ {x, y} if and only if there is z′ ∈ P(P∅) such that z′ = ∅ and
z = x or z′ = P∅ and z = y. This is equivalent to the statement z = x or z = y
since we can simply pick z′ to be the respective element of P(P∅). �

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#WF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#ZF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#upair
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#upair_el

Categoricity Results for Second-Order ZF in Dependent Type Theory 307

The next notion we recover is separation, allowing for defining subsets of the
form x∩p = { y ∈ x | y ∈ p } for a set x and a class p. By the strong replacement
axiom we can show the separation axiom again in higher-order formulation.

Definition 6. We define separation by x ∩ p := (λab. a ∈ p ∧ a = b)@x.

Lemma 7. y ∈ x ∩ p if and only if y ∈ x and y ∈ p.

Proof. The defining relation is again functional by construction. So Rep states
that y ∈ x ∩ p if and only if there is z ∈ x such that z ∈ p and z = y. This is
equivalent to y ∈ x and y ∈ p. �

Finally, relational replacement implies the description principle in the form
that we can construct a function that yields the witness of uniquely inhabited
classes. The construction we employ can be found in [9]:

Definition 8. We define a description operator δp :=
⋃

((λab. b ∈ p)@ {∅}).

Lemma 9. If p is uniquely inhabited, then δp ∈ p.

Proof. Let x be the unique inhabitant of p. By uniqueness we know that the
relation (λab. b ∈ p) is functional, so Rep implies that (λab. b ∈ p)@ {∅} = {x}
and Union implies that δp =

⋃ {x} = x ∈ p. �
We note that functional replacement, i.e. the existence of a set f@x for a

function f : M → M and a set x is logically weaker than the relational replace-
ment we work with. First, it is clear that such functions can be turned into
functional relations by (λxy. fx = y). So relational replacement implies func-
tional replacement and we will in fact use the latter where possible. Conversely,
functional relations can only be turned into actual functions in the presence of
a description operator. Hence description, which can be seen as a weak form of
choice, must be assumed separately when opting for functional replacement.

At this point we can start discussing the model-theory of ZF. A first result is
in direct contrast to the existence of countable models of first-order ZF guaran-
teed by the Löwenheim-Skolem Theorem. To this end, we employ the inductive
data type N of natural numbers n for a compact formulation of the infinity
axiom: we assume an injection n that maps numbers to sets together with a set
ω that exactly contains the sets n.

Lemma 10. If M is a model of ZF with infinity, then M is uncountable.

Proof. Suppose f : N → M were a surjection from the inductive data type of
natural numbers onto M . Then consider the set X := { n ∈ ω | n �∈ fn }. Since
f is assumed surjective, there is m : N with fm = X. But this implies the
contradiction m ∈ X ↔ m �∈ fm = X. �

When studying the cumulative hierarchy in the next section we will frequently
encounter classes or, more specifically, sets that are closed under the set con-
structors. Such classes resemble actual models of ZF and we use the remainder
of this section to make this correspondence formal.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#sep
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#sep_el
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#delta
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#delta_spec
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Uncountable.html#false

308 D. Kirst and G. Smolka

Definition 11. A class p : M → Prop is called inner model if the substructure
of M consisting of the subtype induced by p and the correspondingly restricted
set constructors is a model in the sense of Definition 3. We then write p |= ZF.

Definition 12. A class p is transitive whenever x ∈ y ∈ p implies x ∈ p and
swelled (following the wording in [14]) whenever x ⊆ y ∈ p implies x ∈ p.
Transitive and swelled sets are defined analogously.

Definition 13. A transitive class p with ∅ ∈ p is ZF-closed if for all x ∈ p:

(1)
⋃

x ∈ p (closure under union),
(2) Px ∈ p (closure under power),
(3) R@x ∈ p if R ∈ F(M) and R@x ⊆ p (closure under replacement).

If p is small, then we call the agreeing set a (Grothendieck) universe.

Lemma 14. If p is ZF-closed, then p |= ZF.

Proof. Most axioms follow mechanically from the closure properties and transi-
tivity. To establish WF we show that the well-foundedness of sets x ∈ p passes
on to the corresponding sets in the subtype by ∈-induction. �

3 Cumulative Hierarchy

It is a main concern of ZF-like set theories that the domain of sets can be
stratified by a class of ⊆-well-ordered stages. The resulting hierarchy yields a
complexity measure for every set via the first stage including it, the so-called
rank. One objective of our work is to illustrate that studying the cumulative
hierarchy becomes very accessible in a dependent type theory with inductive
predicates.

Definition 15. We define the inductive class S of stages by the rules:

x ∈ S
Px ∈ S

x ⊆ S⋃
x ∈ S

Fact 16. The following hold:

(1) ∅ is a stage.
(2) All stages are transitive.
(3) All stages are swelled.

Proof. We prove the respective statements in order.

(1) is by the second definitional rule as ∅ ⊆ S.
(2) is by stage induction using that power and union preserve transitivity.
(3) is again by stage induction. �

The next fact expresses that union and separation maintain the complexity
of a set while power and pairing constitute an actual rise.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#IM
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#trans
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#ZF_closed
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#IM_ZF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_trans
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_swelled

Categoricity Results for Second-Order ZF in Dependent Type Theory 309

Fact 17. Let x be a stage, p a class and a, b ∈ x then:

(1)
⋃

a ∈ x
(2) Pa ∈ Px
(3) {a, b} ∈ Px
(4) a ∩ p ∈ x

Proof. Again we show all statements independently.

(1) is by stage induction with transitivity used in the first case.
(2) is also by stage induction.
(3) is direct from Lemma 5.
(4) follows since x is swelled and a ∩ p ⊆ a. �

We now show that the class S is well-ordered by ⊆. Since ⊆ is a partial
order we just have to prove linearity and the existence of least elements, which
bot An economical proof of linearity employs the following double-induction
principle [14]:

Fact 18. For a binary relation R on stages it holds that Rxy for all x, y ∈ S if

(1) R(Px)y whenever Rxy and Ryx and
(2) R(

⋃
x)y whenever Rzy for all z ∈ x.

Proof. By nested stage induction. �
Lemma 19. If x, y ∈ S, then either x ⊆ y or Py ⊆ x.

Proof. By double-induction we just have to establish (1) and (2) for R instanti-
ated by the statement that either x ⊆ y or Py ⊆ x. Then 1 is directly by case
analysis on the assumptions Rxy and Ryx and using that x ⊆ Px for stages x.
The second follows from a case distinction whether or not y is an upper bound
for x in the sense that z ⊆ y for all z ∈ x. If so, we know (

⋃
x) ⊆ y. If not, there

is some z ∈ x with z �⊆ y. So by the assumption Rzy only Py ⊆ z can be the
case which implies Py ⊆ ⋃

x. �
Fact 20. The following alternative formulations of the linearity of stages hold:

(1) ⊆-linearity: x ⊆ y or y ⊆ x
(2) ∈-linearity: x ⊆ y or y ∈ x
(3) trichotomy: x ∈ y or x = y or y ∈ x

Proof. (1) and (2) are by case distinction on Lemma 19. Then (3) is by (2). �
Lemma 21. If p is an inhabited class of stages, then there exists a least stage
in p. This means that there is x ∈ p such that x ⊆ y for all y ∈ p.

Proof. Let x ∈ p. By ∈-induction we can assume that every y ∈ x with y ∈ p
admits a least stage in p. So if there is such a y there is nothing left to show.
Conversely, suppose there is no y ∈ x with y ∈ p. In this case we can show that
x is already the least stage in p by ∈-linearity. �

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_power
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_upair
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_sep
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_double_ind
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin_succ
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin_el
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_tricho
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_least

310 D. Kirst and G. Smolka

The second standard result about the cumulative hierarchy is that it exhausts
the whole domain of sets and hence admits a total rank function.

Definition 22. We call a ∈ S the rank of a set x if x ⊆ a but x �∈ a. Since the
rank is unique by trichotomy we can refer to it via a function ρ.

Lemma 23. ρx =
⋃ P@(ρ@x) for every x. Thus every set has a rank.

Proof. For a set x we can assume that every y ∈ x has rank ρy by ∈-induction.
Then consider the stage z :=

⋃ P@(ρ@x). Since for every y ∈ x we know y ∈
P(ρy), we deduce x ⊆ z. Moreover, suppose it were x ∈ z, so x ∈ P(ρy) for some
y ∈ x. Then this would imply the contradiction y ∈ ρ(y), so we know x �∈ z. Thus
z is the rank of x. As a consequence, for every set x we know that x ∈ P(ρx).
Hence every set occurs in a stage. �
Fact 24. The hierarchy of stages exhausts all sets.

Proof. Holds since every set x is an element of the stage P(ρx). �
We now turn to study classes of stages that are closed under some or all

set constructors. The two introductory rules for stages already hint at the usual
distinction of successor and limit stages. However, since we do not require x to
contain an infinitely increasing chain in the second rule this distinction will not
exactly mirror the non-exclusive rule pattern.

Definition 25. We call x ∈ S a limit if x =
⋃

x and a successor if x = Py
for some y ∈ S. Note that this means ∅ is a limit.

Fact 26. If x ⊆ S, then either
⋃

x ∈ x or x ⊆ ⋃
x.

Proof. Suppose it were x �⊆ ⋃
x so there were y ∈ x with y �∈ ⋃

x. Then to
establish

⋃
x ∈ x it suffices to show that y =

⋃
x. Since

⋃
x is the unique

⊆-greatest element of x, it is enough to show that y is a ⊆-greatest element, i.e.
that z ⊆ y for all z ∈ x. So let z ∈ x, then by linearity of stages it must be either
z ⊆ y or y ∈ z. The latter case implies y ∈ ⋃

x contradicting the assumption. �
Lemma 27. Every stage is either a limit or a successor.

Proof. Let x be a stage and apply stage induction. In the first case we know
that x is a successor. In the second case we know that x is a set of stages that
are either successors or limits and want to derive a decision for

⋃
x. Now we

distinguish the two cases of Fact 26. If
⋃

x ∈ x, the inductive hypothesis yields
the decision. If x ⊆ ⋃

x, it follows that
⋃

x is a limit. �
Lemma 28. If x is an inhabited limit, then x is transitive, contains ∅, and is
closed under union, power, pairing, and separation.

Proof. Transitivity and closure under union and separation hold for arbitrary
stages by Facts 16 and 17. Further, x must contain ∅ since it can be constructed
from the set witnessing inhabitance by separation. The closure under power
follows from the fact that every set y ∈ x occurs in a stage a ∈ x. Then finally,
the closure under pairing follows from Fact 17. �

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#rank
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#rho%27_rank
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#WF_reachable
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#succ
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_dicho
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_succ_limit
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#limit_union

Categoricity Results for Second-Order ZF in Dependent Type Theory 311

Hence, inhabited limits almost satisfy all conditions that constitute universes,
only the closure under replacement is not necessarily given. So in order to study
actual inner models one can examine the subclass of inhabited limits closed
under replacement. In fact, this subclass turns out to be exactly the universes.

Lemma 29. If a ∈ u for a universe u, then ρa ∈ u.

Proof. By ε-induction we may assume that ρb ∈ u for all b ∈ a, so we know
ρ@a ∈ u by the closure of u under replacement. Also, we know ρa =

⋃ P@(ρ@a)
by Lemma 23. Thus ρa ∈ u follows from the closure properties of u. �
Lemma 30. Universes are exactly inhabited limits closed under replacement.

Proof. The direction from right to left is simple given that limits are already
closed under all set constructors but replacement. Conversely, a universe is closed
under replacement by definition and it is also easy to verify u =

⋃
u given that for

x ∈ u we know x ∈ P(ρx) ∈ u by the last lemma. So we just need to justify that
u is a stage. We do this by showing that u =

⋃
(u∩S). The inclusion u ⊇ ⋃

(u∩S)
is by transitivity. For the converse suppose x ∈ u. Then x ⊆ ⋃

(u ∩ S) again by
knowing x ∈ P(ρx) ∈ u. �

We remark that inhabited limits are models of the set theory Z which is
usually defined to be ZF with pairing and separation instead of replacement.
Also note that in our concrete axiomatisation ZF without infinity it is undecided
whether there exists a universe, whereas assuming the existence of an infinite
set allows for constructing the universe of all hereditarily finite sets.

4 Embedding Theorem

In this section we prove Zermelo’s embedding theorem for models of second-
order ZF given in [22]. Given two models M and N of ZF, we define a structure-
preserving embedding ≈, called ∈-bisimilarity, and prove it either total, surjec-
tive or both. We call this property of ≈ maximality. By convention, we let x, y, z
range over the sets in M and a, b, c range over the sets in N in the remainder of
this document.

Definition 31. We define an inductive predicate ≈: M → N → Prop by

∀y ∈ x.∃b ∈ a. y ≈ b ∀b ∈ a.∃y ∈ x. y ≈ b
x ≈ a

We call the first condition (bounded) totality on x and a and write x � a. The
second condition is called (bounded) surjectivity on x and a, written x � a.
We call ≈ ∈-bisimilarity and if x ≈ a we call x and a bisimilar.

The following lemma captures the symmetry present in the definition.

Lemma 32. x ≈ a iff a ≈ x and x � a iff a � x.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#universe_rank
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#universe_limit
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_sym

312 D. Kirst and G. Smolka

Proof. We first show that a ≈ x whenever x ≈ a, the converse is symmetric. By
∈-induction on x we may assume that b ≈ y whenever y ≈ b for some y ∈ x. Now
assuming x ≈ a we show a � x. So for b ∈ a we have to find y ∈ x with b ≈ y. By
x � a we already know there is y ∈ x with y ≈ b. Then the inductive hypothesis
implies b ≈ y as wished. That x�a follows analogously and the second statement
is a consequence of the first. �

It turns out that ≈ is a partial ∈-isomorphism between the models:

Lemma 33. The relation ≈ is functional, injective, and respects membership.

Proof. We show that ≈ is functional. By induction on x ∈ WF we establish
a = a′ whenever x ≈ a and x ≈ a′. We show the inclusion a ⊆ a′, so first
suppose b ∈ a. Since x � a there must be y ∈ x with y ≈ b. Moreover, since x � a′

there must be b′ ∈ a′ with y ≈ b′. By induction we know that b = b′ and hence
b ∈ a′. The other inclusion is analogous and injectivity is by symmetry.

It remains to show that ≈ respects membership. Hence let x ≈ a and x′ ≈ a′

and suppose x ∈ x′. Then by x′ � a′ there is b ∈ a′ with x ≈ b. Hence a = b by
functionality of ≈ and thus a ∈ a′. �

Since the other set constructors are uniquely determined by their members,
it follows that they are also respected by the ∈-bisimilarity:

Fact 34. ∅ ≈ ∅
Proof. Both ∅ � ∅ and ∅ � ∅ hold vacuously. �
Lemma 35. If x ≈ a, then

⋃
x ≈ ⋃

a

Proof. By symmetry (Lemma 32) we just have to prove
⋃

x �
⋃

a. So suppose
y ∈ ⋃

x, so y ∈ z ∈ x. By x � a we have c ∈ a with z ≈ c and applying z � c we
have b ∈ c with y ≈ b. So c ∈ b ∈ a and thus b ∈ ⋃

a. �
Lemma 36. If x ≈ a, then Px ≈ Pa

Proof. Again, we just show Px � Pa. Hence let y ∈ Px, so y ⊆ x. Then we can
construct the image of y under ≈ by b := { c ∈ a | ∃z ∈ y.z ≈ c }. Clearly b ⊆ a
so b ∈ Pa and by x ≈ a it is easy to establish y ≈ b. �

Before we can state the corresponding lemma for replacement we first have
to make precise how binary relations in one model are expressed in the other.

Definition 37. For R : M → M → Prop we define R : N → N → Prop by

Rab := ∃xy. x ≈ a ∧ y ≈ b ∧ Rxy

In particular, if R ∈ F(M) is functional then it follows that R ∈ F(N).

Lemma 38. If x ≈ a, R ∈ F(M), and R@x ⊆ dom(≈), then R@x ≈ R@a.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_fun
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_power
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#MtoN
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_rep

Categoricity Results for Second-Order ZF in Dependent Type Theory 313

Proof. We first show that R@x�R@a, so let y ∈ R@x. Then by R@x ⊆ dom(≈)
there is b with y ≈ b. It suffices to show b ∈ R@a which amounts to finding c ∈ a
with Rcb. Now by y ∈ R@x there is z ∈ x with Rzy. Hence there is c ∈ a with
z ≈ c since x � a. This implies Rcb.

We now show R@x � R@a, so let b ∈ R@a. Then there is c ∈ a with Rcb.
By definition this already yields z and y with z ≈ c, y ≈ b, and Rzy. Since ≈
respects membership we know z ∈ x and hence y ∈ R@x. �

Note that these properties immediately imply the following:

Lemma 39. If dom(≈) is small, then it agrees with a universe.

Proof. First, ∅ ∈ dom(≈) since ∅ ≈ ∅. Further, dom(≈) is transitive by the
totality part of x ≈ a for every x ∈ dom(≈). The necessary closure properties of
universes were established in the last lemmas. �

The dual statement for ran(≈) holds as well by symmetry. Now given that ≈
preserves all structure of the models, every internally specified property holds
simultaneously for similar sets. In particular, ≈ preserves the notion of stages
and universes:

Lemma 40. If x ≈ a and x is a stage, then a is a stage.

Proof. We show that all a with x ≈ a must be stages by stage induction on x.
So suppose x is a stage and we have Px ≈ b. Since x ∈ Px, by Px � b there is
a ∈ b with x ≈ a. Then by induction a is a stage. Moreover, Lemma 36 implies
that Px ≈ Pa. Then by functionality we know that b equals the stage Pa.

Now suppose x is a set of stages and we have
⋃

x ≈ b. Since P(P(
⋃

x)) ≈
P(Pb) by Lemma 36 and x ∈ P(P(

⋃
x)) there is some a ∈ P(Pb) with x ≈ a.

But then we know that
⋃

x ≈ ⋃
a by Lemma 35 and b =

⋃
a by functionality,

so it remains to show that a is a set of stages. Indeed, if we let c ∈ a then x � a
yields y ∈ x with y ≈ c and since x is a set of stages we can apply the inductive
hypothesis for y to establish that c is a stage. �
Lemma 41. If x ≈ a and x is a universe, then a is a universe.

Proof. We first show that a is transitive, so let c ∈ b ∈ a. By bounded surjectivity
there are z ∈ y ∈ x with z ≈ c and y ≈ b. Then z ∈ x since x is transitive, which
implies c ∈ a since ≈ preserves membership.

The proofs that a is closed under the set constructors are all similar. Consider
some b ∈ a, then for instance we show

⋃
b in a. The assumption x ≈ a yields

y ∈ x with y ≈ b. Since x is closed under union it follows
⋃

y ∈ x and since⋃
y ≈ ⋃

b by Lemma 35 it follows that
⋃

b ∈ a. The proof for power is completely
analogous and for replacement one first mechanically verifies that R@y ⊆ x for
every functional relation R ∈ F(N) with R@b ⊆ a. �

In order to establish the maximality of ≈ we first prove it maximal on stages:

Lemma 42. Either SM ⊆ dom(≈) or SN ⊆ ran(≈).

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#domain_universe
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_Stage
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_universe
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_Stage_max

314 D. Kirst and G. Smolka

Proof. Suppose there were x �∈ dom(≈) and a �∈ ran(≈), then we can in particular
assume x and a to be the least such stages by Lemma 21. We will derive the
contradiction x ≈ a. By symmetry, we just have to show x � a which we do by
stage induction for x. The case P(x) for some stage x is impossible given that, by
leastness of Px �∈ dom(≈), necessarily x ∈ dom(≈) holds which would, however,
imply Px ∈ dom(≈) by Lemma 36.

In the case
⋃

x for a set of stages x we may assume that x ⊆ ⋃
x by Fact 26.

Now suppose y ∈ z ∈ x, then we want to find b ∈ W with y ≈ b. We do case
analysis whether or not z ∈ dom(≈). If so, then there is c with z ≈ c. Since z ∈ x
we know that z is a stage and so must be c by Lemma 40. Then by linearity it
must be c ∈ W and z � c yields the wished b ∈ W with y ≈ b. If z were not in
dom(≈), we have

⋃
x ⊆ z since

⋃
x is the least stage not in the domain. But

since z ∈ x and x ⊆ ⋃
x this yields z ∈ z contradicting well-foundedness. �

Theorem 43. The relation ≈ is maximal, that is M ⊆ dom(≈) or N ⊆ ran(≈).

Proof. Suppose ≈ were neither total nor surjective, so there were x �∈ dom(≈)
and a �∈ ran(≈). By Fact 24 we know that x ∈ P(ρx) and a ∈ P(ρa). Then by
Lemma 42 it is either P(ρx) ∈ dom(≈) or P(ρa) ∈ ran(≈). But then it follows
either x ∈ dom(≈) or a ∈ ran(≈) contradicting the assumption. �

From this theorem we can conclude that embeddebility is a linear pre-order
on models of ZF. We can further strengthen the result by proving one side of ≈
small if ≈ is not already full, meaning both total and surjective.

Lemma 44. If x is a stage with x �∈ dom(≈), then dom(≈) ⊆ x.

Proof. Since x �∈ dom(≈) we know that ≈ is surjective by Theorem 43. So let
y ≈ a, then we want to show that y ∈ a. By exhaustiveness a occurs in some
stage b and since ≈ is surjective there is z with z ≈ b. Lemma 40 justifies that z
is a stage. By linearity we have either z ⊆ x or x ∈ z. In the former case we are
done since y ∈ z given that ≈ respects the membership a ∈ b. The other case is
a contradiction since it implies x ∈ dom(≈). �

The dual holds for the stages of N and ran(≈), hence we summarise:

Theorem 45. Exactly one of the following statements holds:

(1) ≈ is full, so M ⊆ dom(≈) and N ⊆ ran(≈).
(2) ≈ is surjective and dom(≈) is small and a universe of M .
(3) ≈ is total and ran(≈) is small and a universe of N .

Proof. Suppose ≈ were not full, then it is still maximal by Theorem43. So for
instance let ≈ be surjective but not total, then we show (2). Being not total, ≈
admits a stage x with x �∈ dom(≈). Then by Lemma 44 we know dom(≈) ⊆ x,
so the domain is realised by x ∩ dom(≈). This set is a universe by Lemma 39. �

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_max
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#domain_Stage_sub
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_tricho

Categoricity Results for Second-Order ZF in Dependent Type Theory 315

5 Categoricity Results

In the remainder of this work, we examine to what extent the model theory of
ZF is determined and study categorical extensions. If ≈ is full for models M and
N , we call M and N isomorphic. An axiomatisation is called categorical if
all of its models are isomorphic. Without assuming any further axioms, we can
prove ZF categorical in every cardinality:

Theorem 46. Equipotent models of ZF are isomorphic.

Proof. If models M and N are equipotent, we have a function F : M → N
with inverse G : N → M . Then from either of the cases (2) and (3) of The-
orem 45 we can derive a contradiction. So for instance suppose ≈ is surjective
and X = dom(≈) is a universe of M . We use a variant of Cantor’s argument
where G simulates the surjection of X onto the power set of X. Hence define
Y := { x ∈ X | x �∈ G(ix) } where i is the function obtained from ≈ by descrip-
tion. Then Y has preimage y := i−1(FY) and we know that y ∈ X by surjectiv-
ity. Hence, by definition of Y we have y ∈ Y iff y �∈ G(iy) = G(i(i−1(FY))) =
G(F (Y)) = Y , contradiction. Thus case (1) holds and so ≈ is indeed full. �

An internal way to determine the cardinality of models and hence to obtain
full categoricity is to control the number of universes guaranteed by the axioms.
For instance, one can add an axiom excluding the existence of any universe.

Definition 47. ZF0 is ZF plus the assertion that there exists no universe.

Note that ZF0 axiomatises exactly the structure of hereditarily finite sets
[1,13] and this is of course incompatible with an infinity axiom. That ZF0 is
consistent relative to ZF is guaranteed:

Lemma 48. Every model of ZF has an inner model without universes.

Proof. Let M be a model of ZF. If M contains no universe, then the full class
(λx.�) is an inner model of ZF0. Otherwise, if M contains a universe u, then we
can assume u to be the least such universe since universes are stages by Lemma 30
and stages are well-ordered by Lemma 21. Then it follows that u constitutes an
inner model of ZF0. First, u is an inner model of ZF by Lemma 14. Secondly, if
there were a universe u′ in the sub-structure induced by u, then u′ would be a
universe that is smaller than u, contradiction. �
Lemma 49. ZF0 is categorical.

Proof. Again from either of the cases (2) and (3) of Theorem45 we can derive
a contradiction. So for instance suppose ≈ is surjective and X = dom(≈) is a
universe of M . This directly contradicts the minimality assumption of M . �

The categoricity result for ZF0 can be generalised to axiomatisations that
guarantee exactly n universes. Note that stating axioms of such a form presup-
poses an external notion of natural numbers, for instance given by the inductive
type N. We avoid employing further external structure such as lists to express
finite cardinalities and instead make use of the linearity of universes as follows:

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Categoricity.html#Iso_bijective_equipotent
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#minimal
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#minimality_cons
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#Iso_bijective_minimal

316 D. Kirst and G. Smolka

Definition 50. We define ZFn+1 to be ZF plus the following assertions:

(1) there exists a universe that contains at least n universes and
(2) there exists no universe that contains at least n + 1 universes.

The notion that a universe u contains at least n universes is defined recursively
with trivial base case and where u is said to contain n + 1 universes if there is a
universe u′ ∈ u that contains at least n universes.

Since it is undecided whether or not a given model contains a universe, we
cannot construct inner models that satisfy ZFn+1 for any n. Due to the connec-
tion of universes and inaccessible cardinals (cf. [20]), ZFn+1 constitutes a rise in
proof-theoretic strength over ZFn. Independent of the consistency question, we
can still prove all models of ZFn isomorphic for every n:

Lemma 51. ZFn is categorical for all n.

Proof. We have already proven ZF0 categorical in Lemma 49 so we just have to
consider ZFn+1. As in the two proofs above we suppose that ≈ is surjective as
well as that X = dom(≈) is a universe of M and derive a contradiction. In fact,
we show that X contains at least n + 1 universes and hence violates (2) of the
above definition for M . By (1) for N we know there is a universe u ∈ N that
contains at least n universes. Hence by surjectivity we know that i−1u ∈ X,
where i is again the function obtained from ≈. Then Lemma 41 implies that
i−1u is a universe of M . Moreover, since ≈ preserves all structure, it follows that
i−1u contains at least n universes as u did. But then X contains a universe that
contains at least n universes, so it must contain at least n + 1 universes. �

We remark that this process can be extended to transfinite ordinalities. For
instance, one could consider axiomatisations ZFW relative to a well-ordered type
W with the axiom that W and the class of universes are order-isomorphic. Then
it follows that ZFW is categorical, subsuming our discussed examples.

6 Discussion

The formalisation of ZF in a type theory with inductive predicates as examined
in this work differs from common textbook presentations (cf. [6,8,14]) in several
ways, most importantly in the use of second-order replacement and the induc-
tive definition of the cumulative hierarchy. Now we briefly outline some of the
consequences.

Concerning the second-order version of the replacement axiom, it has been
known since Zermelo [22] that second-order ZF admits the embedding theorem
for models. It implies that models only vary in their external cardinality, i.e.
the notion of cardinality defined by bijections on type level or, equivalently, in
height of their cumulative hierarchy. Thus controlling these parameters induces
categorical axiomatisations.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/ZFn.html#unis
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ZFn.html#Iso_bijective_ZFn

Categoricity Results for Second-Order ZF in Dependent Type Theory 317

As a consequence of categoricity, all internal properties (including first-order
undecided statements such as the axiom of choice or the continuum hypothesis)
become semantically determined in that there exist no two models such that a
property holds in the first but fails in the second (cf. [7,18]). This is strikingly
different from the extremely undetermined situation in first-order ZF, where
models can be arbitrarily incomparable and linearity of embeddability is only
achieved in extremely controlled situations (cf. [5]). This is related to the fact
that the inner models admitted by second-order ZF are necessarily universes
whereas those of first-order ZF can be subsets of strictly less structure.

The main insight is that the second-order replacement axiom asserts the exis-
tence of all subsets of a given set contrarily to only the definable ones guaranteed
by a first-order scheme. This fully determines the extent of the power set oper-
ation whereas it remains underspecified in first-order ZF. Concretely, first-order
ZF admits counterexamples to Lemma 36. Furthermore, the notions of external
cardinality induced by type bijections and internal cardinality induced by type
bijections that can be encoded as sets coincide in second-order ZF since every
bijection witnessing external equipotence of sets can be represented by a replace-
ment set. That the two notions of cardinality differ for first-order set theory has
been pointed out by Skolem [11]. The Löwenheim-Skolem Theorem implies the
existence of a countable model of first-order ZF (that still contains internally
uncountable sets) whereas models of second-order ZF with infinity are provably
uncountable.

Inductive predicates make a set-theoretic notion of ordinals in their role as
a carrier for transfinitely recursive definitions superfluous. Consider that com-
monly the cumulative stages are defined by Vα := Pα∅ using transfinite recursion
on ordinals α. However, this presupposes at least a basic ordinal theory includ-
ing the recursion theorem, making the cumulative hierarchy not immediately
accessible. That this constitutes an unsatisfying situation has been addressed by
Scott [10] where an axiomatisation of ZF is developed from the notion of rank
as starting point.

In the textbook approach, the well-ordering of the stages Vα is inherited
directly from the ordinals by showing Vα ⊆ Vβ iff α ⊆ β. Without presupposing
ordinals, we have to prove linearity of ⊆ and the existence of least ⊆-elements
directly. As it was illustrated in this work these direct proofs are not substantially
harder than establishing the corresponding properties for ordinals.

We end with a remark on our future directions. We plan to first make the
axiomatisations ZFW precise and formalise the categoricity proof. Subsequently,
we will turn to the consistency question and construct actual models following
Aczel et al. [2], Werner [19], and Barras [3]. Note that all these implement a
flavour of (constructive) second-order ZF whereas Paulson [9] develops classical
first-order ZF using the proof assistant Isabelle. We conjecture that the type the-
ory of Coq with excluded middle and a weak form of choice allows for construct-
ing models of ZFn for every n. Moreover, it would be interesting to formalise
first-order ZF in type theory by making the additional syntax for predicates

318 D. Kirst and G. Smolka

and relations explicit. Then the classical relative consistency results concerning
choice and the continuum hypothesis can be examined.

References

1. Ackermann, W.: Die widerspruchsfreiheit der allgemeinen mengenlehre. Math.
Ann. 114, 305–315 (1937)

2. Aczel, P., Macintyre, A., Pacholski, L., Paris, J.: The type theoretic interpretation
of constructive set theory. J. Symb. Log. 49(1), 313–314 (1984)

3. Barras, B.: Sets in Coq, Coq in sets. J. Formaliz. Reason. 3(1), 29–48 (2010)
4. Bourbaki, N.: Sur le théorème de Zorn. Arch. Math. 2(6), 434–437 (1949)
5. Hamkins, J.D.: Every countable model of set theory embeds into its own con-

structible universe. J. Math. Log. 13(02) (2013). http://www.worldscientific.com/
doi/abs/10.1142/S0219061313500062

6. Hrbacek, K., Jech, T.: Introduction to Set Theory, Third Edition, Revised and
Expanded. CRC Press, Boca Raton (1999)

7. Kreisel, G.: Two notes on the foundations of set-theory. Dialectica 23(2), 93–114
(1969)

8. Kunen, K.: Set Theory an Introduction to Independence Proofs. Elsevier, Amster-
dam (2014)

9. Paulson, L.C.: Set theory for verification: I. from foundations to functions. J.
Autom. Reason. 11(3), 353–389 (1993)

10. Scott, D.: Axiomatizing set theory. Proc. Symp. Pure Math. 13, 207–214 (1974)
11. Skolem, T.: Some remarks on axiomatized set theory. In: van Heijenoort, J. (ed.)

From Frege to Gödel: A Sourcebook in Mathematical Logic, pp. 290–301. toExcel,
Lincoln, NE, USA (1922)

12. Smolka, G., Schäfer, S., Doczkal, C.: Transfinite constructions in classical type
theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 391–404.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 26

13. Smolka, G., Stark, K.: Hereditarily finite sets in constructive type theory. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 374–390. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 23

14. Smullyan, R., Fitting, M.: Set Theory and the Continuum Problem. Dover Books
on Mathematics. Dover Publications, Mineola (2010)

15. Suppes, P.: Axiomatic Set Theory. Dover Books on Mathematics Series. Dover
Publications, Mineola (1960)

16. The Coq Proof Assistant. http://coq.inria.fr
17. Uzquiano, G.: Models of second-order Zermelo set theory. Bull. Symb. Log. 5(3),

289–302 (1999)
18. Väänänen, J.: Second-order logic or set theory? Bull. Symb. Log. 18(1), 91–121

(2012)
19. Werner, B.: Sets in types, types in sets. In: Abadi, M., Ito, T. (eds.) TACS

1997. LNCS, vol. 1281, pp. 530–546. Springer, Heidelberg (1997). doi:10.1007/
BFb0014566

20. Williams, N.H.: On Grothendieck universes. Compos. Math. 21(1), 1–3 (1969)
21. Zermelo, E.: Neuer beweis für die möglichkeit einer wohlordnung. Math. Ann. 65,

107–128 (1908)
22. Zermelo, E.: Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen Über

die Grundlagen der Mengenlehre. Fund. Math. 16, 29–47 (1930)

http://www.worldscientific.com/doi/abs/10.1142/S0219061313500062
http://www.worldscientific.com/doi/abs/10.1142/S0219061313500062
http://dx.doi.org/10.1007/978-3-319-22102-1_26
http://dx.doi.org/10.1007/978-3-319-43144-4_23
http://coq.inria.fr
http://dx.doi.org/10.1007/BFb0014566
http://dx.doi.org/10.1007/BFb0014566

Making PVS Accessible to Generic Services
by Interpretation in a Universal Format

Michael Kohlhase1, Dennis Müller1(B), Sam Owre2, and Florian Rabe3

1 Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
2 SRI Palo Alto, Menlo Park, USA

d.mueller@kwarc.info
3 Computer Science, Jacobs University Bremen, Bremen, Germany

Abstract. PVS is one of the most powerful proof assistant systems and
its libraries of formalized mathematics are among the most comprehen-
sive albeit under-appreciated ones. A characteristic feature of PVS is the
use of a very rich mathematical and logical foundation, including e.g.,
record types, undecidable subtyping, and a deep integration of decision
procedures. That makes it particularly difficult to develop integrations
of PVS with other systems such as other reasoning tools or library man-
agement periphery.

This paper presents a translation of PVS and its libraries to the
OMDoc/MMT framework that preserves the logical semantics and
notations but makes further processing easy for third-party tools.
OMDoc/MMT is a framework for formal knowledge that abstracts from
logical foundations and concrete syntax to provide a universal represen-
tation format for formal libraries and interface layer for machine support.
Our translation allows instantiating generic OMDoc/MMT-level tool
support for the PVS library and enables future translations to libraries
of other systems.

1 Introduction

Motivation. One of the most critical bottlenecks in the field of interactive theo-
rem proving is the lack of interoperability between proof assistants and related
tools. This leads to a duplication of efforts: both formalizations and auxiliary
tool support (e.g., for automated proving, library management user interfaces)
cannot be easily shared between systems.

In both areas, previous work has shown significant potential for knowledge
sharing. Regarding formalizations, library translations such as [KW10,OS06,
KS10] have been used to transport theorems across systems, and alignments
have been used to match corresponding declarations in different libraries [GK14].
Regarding tool support, Isabelle’s sledgehammer component [MP08] provides a
generic way to integrate different automation tools, and Dedukti [BCH12] has
been used as an independent proof checker for various proof assistant libraries.
A great example is premise selection, e.g., based on machine-learning [KU15]:
a single tool can be used for every proof assistant—provided the language and
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 319–335, 2017.
DOI: 10.1007/978-3-319-66107-0 21

320 M. Kohlhase et al.

library are available in a universal format that can be plugged into the generic
selection algorithm.

Unfortunately, the latter point—the universal format—is often prohibitively
expensive for many interesting applications. Firstly, it is extremely difficult to
design a universal format that strikes a good trade-off between simplicity and
universality. And secondly, even in the presence of such a format, it is difficult to
implement the export of a library into the universal format. Here it is important
to realize that any export attempt is doomed that uses a custom parser or type
checker for the library—only the internal data structures maintained by the proof
assistant are informative enough for most use cases. Consequently, only expert
developers can perform this step. Of these, each proof assistant community only
has very few.

In previous work, the authors have developed such a universal format
[Koh06,RK13,KR16] for formal knowledge: OMDoc is an XML language geared
towards making formula structure and context dependencies explicit while
remaining independent of the underlying logical formalism. We also built a strong
implementation—the Mmt system—and a number of generic services, for exam-
ple [Rab14a,KS06]. We have already successfully applied our approach to Mizar
in [Ian+13] and HOL Light in [KR14]. In both cases, we systematically (i) man-
ually defined the logic of the proof assistant in a logical framework, and (ii)
instrumented the proof assistant to export its libraries. The OMDoc/Mmt lan-
guage provides the semantics that ties together the three involved levels (logical
framework, logic, and library) and the implementation provides a uniform high-
level API for further processing. Critically, the exports systematically avoid any
(deep) encoding of logical features. That is important so that further processing
can work with the exact same structure apparent to a user of the proof assistant.

Contribution. We apply our approach to PVS [ORS92]: we present a definition
of the PVS logic in OMDoc/Mmt and an export feature for PVS libraries. We
exemplify the latter by exporting the Nasa Library [Lan16b], the largest and
most important library of PVS. The translated libraries are available at [PVS].

Finally, we present several applications that instantiate Mmt-level services
for PVS libraries. Notably, even though the export itself is our main contribu-
tion, these applications immediately yield added-value for PVS users. Firstly, we
instantiate generic library management facilities for browsing both the content
and theory graphs of PVS libraries. Secondly, our most advanced application
instantiates MathWebSearch [KS06], a substitution tree–based search engine,
for PVS libraries. Here users enter search queries and see search results inside
PVS, and MathWebSearch performs the actual search; neither tool is aware
of the respective other, and Mmt provides the high-level interface that allows
semantics-aware mediation between these tools.

Related Work. The Logosphere project [Pfe+03] already aimed at a similar
export from PVS. Both the definition of the PVS logic in LF and the export of
the library turned out to be too difficult at the time: the definition had to omit,
e.g., record types and the module system, thus making any export impossible.

Making PVS Accessible to Generic Services 321

Independent of our work, Frederic Gilbert is pursuing a very similar export of
PVS into Dedukti [BCH12] that appears to be unpublished as of this writing. Its
primary interest is the independent verification of PVS libraries. An interesting
difference to our approach is that Dedukti is a fixed, simple logical framework
that requires a non-trivial (deep) encoding of some advanced PVS features (e.g.,
predicate subtyping); as we discuss in Sect. 3, our approach uses a more com-
plex, adaptive logical framework that allows for translations of the PVS library
without such encodings.

Hypatheon [Lan16a] uses SQL for indexing PVS theories and making them
searchable via a GUI client. It renders proof-side assistance by finding suitable
lemmas within PVS libraries, retrieving other declarations, and viewing the full
theories that contain them. However, it has no access to the fully type-checked
and disambiguated libraries.

Overview. We briefly recap PVS in Sect. 2. Then we describe the definition of
the PVS logic in our framework in Sect. 3 and of the PVS library in Sect. 4.
Building on this, we present our applications in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

PVS [ORS92] is a verification system, combining language expressiveness with
automated tools. The language is based on higher-order logic, and is strongly
typed. The language includes types and terms such as: numbers, records, tuples,
functions, quantifiers, and recursive definitions. Full predicate subtypes are sup-
ported, which makes type checking undecidable; PVS generates type obligations
(TCCs) as artefacts of type checking. For example, division is defined such that
the second argument is nonzero, where nonzero is defined:

nonzero real: TYPE = {r: real | r /= 0}
Note that functions in PVS are total; partiality is only supported via subtyping.

Beyond this, the PVS language has structural subtypes (i.e., a record that
adds new fields to a given record), dependent types for record, tuple, and func-
tions, recursive and co-recursive datatypes, inductive and co-inductive defini-
tions, theory interpretations, and theories as parameters, conversions, and judge-
ments that provide control over the generation of proof obligations. Specifications
are given as collections of parameterized theories, which consist of declarations
and formulas, and are organized by means of imports.

The PVS prover is interactive, but with a large amount of automation built
in. It is closely integrated with the type checker, and features a combination of
decision procedures, BDDs, automatic simplification, rewriting, and induction.
There are also rules for ground evaluation, random test case generation, model
checking, and predicate abstraction. The prover may be extended with user-
defined proof strategies.

PVS has been used as a platform for integration. It has a rich API, making it
relatively easy to add new proof rules and integrate with other systems. Exam-
ples of this include the model checker, Duration Calculus, MONA, Maple, Ag,

322 M. Kohlhase et al.

and Yices. The system is normally used through a customized Emacs interface,
though it is possible to run it standalone (PVSio does this), and PVS features
an XML-RPC server (developed independently of the work presented here) that
will allow for more flexible interactions. PVS is open source, and is available at
http://pvs.csl.sri.com.

As a running example, Fig. 1 gives a part of the PVS theory defining equiv-
alence closures on a type T in its original syntax. PVS uses upper case for
keywords and logical primitives; square brackets are used for type and round
brackets for term arguments. The most important declarations in theories are
(i) includes of other theories, e.g., the binary subset predicate subset? and the
type equivalence of equivalence relations on T are included from the theories sets
and relations (These includes are redundant in the PVS prelude and added here
for clarity.), (ii) typed identifiers, possibly with definitions such as EquivClos,
and (iii) named theorems (here with omitted proof) such as EquivClosSuperset.

VAR declarations are one of several non-logical declarations: they only declare
variable types, which can then be omitted later on; here PRED[[T,T]] abbreviates
the type of binary relations on T.

EquivalenceClosure[T : TYPE] : THEORY
BEGIN
IMPORTING sets, relations
R: VAR PRED[[T, T]]
x, y : VAR T
EquivClos(R) : equivalence[T] =

{ (x, y) | FORALL(S : equivalence[T]) : subset?(R, S) IMPLIES S(x, y) }
EquivClosSuperset : LEMMA
subset?(R, EquivClos(R))

...
END EquivalenceClosure

Fig. 1. The PVS prelude in the MathHub browser

3 Defining the PVS Logic in a Logical Framework

Defining the PVS logic in a logical framework is a significant challenge. There-
fore, we start by giving an overview of the difficulties before describing our
approach.

Difficulties. A logical framework like LF [HHO93], Dedukti [BCH12], or λ-Prolog
[MN86] tends to admit very elegant definitions for a certain class of logics, but
definitions can get awkward quickly if logics fall outside that fragment.

This often boils down to the question of shallow vs. deep encodings. The
former represents a logic feature (e.g., subtyping) in terms of a corresponding

http://pvs.csl.sri.com

Making PVS Accessible to Generic Services 323

framework feature, whereas the latter applies a logic encoding to remove the
feature (e.g., encode subtyping in a logical framework without subtyping by
using a subtyping predicate and coercion functions). Deep encodings have two
disadvantages: (i) They destroy structure of the original formalization, often
in a way that is not easily invertible and blows up the complexity of library
translations. (ii) They require the library translation to apply non-trivial and
error-prone steps that become part of the trusted code base. In fact, multiple
logical frameworks (including Dedukti) were specifically designed to have a richer
logical framework that allows for more logics to be defined elegantly.

Even if we ignore the proof theory (and thus the use of decision procedures)
entirely, PVS is particularly challenging in this regard. The sequel describes the
most important challenges.

The PVS typing relation is undecidable due to predicate subtyping: selecting
a sub-type of α by giving a predicate p as in {x ∈ α | p(x)}. Thus, a shallow
encoding is impossible in any framework with a decidable typing relation. The
most elegant solution is to design a new framework that allows for undecidable
typing and then use a shallow encoding.

PVS uses anonymous record types (like in SML) as a primitive feature. This
includes record subtyping and a complex variant of record/product/function
updates. A deep encoding of anonymous record types is extremely awkward: the
simplest encoding would be to introduce a new named product type for every
occurrence of a record type in the library. Even then it is virtually impossible to
formalize an axiom like “two records are equal if they agree up to reordering of
fields” elegantly in a declarative logical framework. Therefore, the most feasible
option again is to design a new framework that has anonymous record types as
a primitive.

PVS uses several types of built-in literals, namely arbitrary-precision integers,
rational numbers, and strings. Not every logical framework provides exactly the
same set of built-in types and operations on them.

PVS allows for (co)inductive types. While these are relatively well-
understood by now, most logical frameworks do not support them. And even if
they do, they are unlikely to match the idiosyncrasies of PVS such as declaring
a predicate subtype for every constructor. Again it is ultimately more promising
to mimic PVS’s idiosyncrasies in the logical framework so that we can use a
shallow encoding.

PVS uses a module system that, while not terribly complex, does not
align perfectly with the modularity primitives of existing logical frameworks.
Concretely, theories are parametric, and a theory may import the same the-
ory multiple times with different parameters, in which case any occurrence of
an imported symbol is ambiguous. Simple deep encodings can duplicate the
multiply-imported symbols or treat them as functions that are applied to the
parameters. Both options seem feasible at first but ultimately do not scale well
– already the PVS Prelude (the small library of PVS built-ins) causes difficul-
ties. This led us (contrary to our original plans) to mimic PVS-style parametric
imports in the logical framework as well to allow for a shallow encoding.

324 M. Kohlhase et al.

A Flexible Logical Framework. We have extensively investigated definitions of
PVS in logical frameworks, going back more than 10 years when a first (unpub-
lished) attempt to define PVS in LF was made by Schürmann as part of an
ongoing collaboration. In the end, all of the above-mentioned difficulties pointed
us in the same direction: the logical framework must adapt to the complexity of
PVS – any attempt to adapt PVS to an existing logical framework (by designing
an appropriate deep encoding) is likely to be doomed. This negative result is in
itself a notable contribution of this paper. It is likely to apply also to similarly
complex object logics such as Coq.

If done naively, developing a new framework that permits a shallow encod-
ing would scale badly: it would lack mature implementation support and would
not make future integrations of PVS with other provers any easier. Therefore,
we have spent several years developing the Mmt framework. It is born out of
the tradition of logical frameworks but systematically allows future extensions
of the framework. Its main strength is that such extensions, e.g., the features
needed for PVS, can be added at comparatively low cost: whereas most logical
frameworks would require reimplementing most parts starting from the kernel,
Mmt allows plugging in language features as a routine part of daily development.
Importantly, all Mmt level automation (including parsing, type reconstruction,
and IDE, which are crucial for writing logic definitions in practice) is generic and
thus remains applicable even when new language features are added. Moreover,
Mmt supports modular composition of language features so that all develop-
ments we made for PVS can be reused when working with other provers.

It is beyond the scope of this paper to present the architecture of Mmt, and
we only sketch the extension pathways most critical for PVS.

Firstly, Mmt expressions are generic syntax trees including variable binding
and labeling [Rab14b]. Besides constants (global identifiers) and bound variables
(local identifiers), the leaves of the syntax tree may also be arbitrary literals
[Rab15]. An Mmt theory defining the language T declares one constant for each
expression constructor of T . For example, the Mmt theory for LF declares 4
symbols for type, λ, Π, and application.

Secondly, the key algorithms of the Mmt kernel – including parsing, type
reconstruction, and computation – are rule-based [Rab17]. Each rule is an object
in the underlying programming language that can be generated from a declar-
ative formulation or (in the general case) implemented directly. In either case,
the current context determines which rules are used. For example, the Mmt
theory for LF declares three parsing rules, ten typing/equality rules, and one
computation rule. Together, these are sufficient to recover type reconstruction
for LF.

Thirdly, Mmt allows for derived declarations [Ian17]. Each derived declara-
tion indicates the language feature that defines its semantics. And the individ-
ual features can be easily implemented by Mmt plugins, usually by elaborating
derived declarations to more primitive ones. For example, we can declare the
feature of inductive types, as a derived declaration containing the constructors
in its body. Notably, while elaboration defines the meaning of the derived decla-

Making PVS Accessible to Generic Services 325

ration, many Mmt algorithms can work with the unelaborated version, e.g., by
supplying appropriate induction rules to the type reconstruction algorithm.

Defining PVS. To define the language of PVS in Mmt, we carried out two steps.
Firstly, we designed a logical framework that extends LF with three features:

anonymous record types, predicate subtypes, and imports of multiple instances
of the same parametric theory. We use Mmt to build this framework modularly.
LF (which already existed in Mmt) and each of the three new features are defined
in a separate Mmt theory, each including a few constants and rules for them.
Finally, we import all of them to obtain the new logical framework LFX. Then
we use LFX to define the Mmt theory for PVS. The sequel lists the constants
and rules in this theory.

tp : type
expr : tp type # 1 prec −1
tpjudg : {A} expr A tp type # 2 : 3

pvspi : {A} (expr A tp) tp # 2
fun type : tp tp tp = [A,B] [x: expr A] B # 1 2
pvsapply : {A,f : expr A tp} expr (f) {a:expr A} expr (f a) # 3 (4) prec −1000015
lambda : {A,f : expr A tp} ({a:expr A}expr (f a)) expr (f) # 3

Fig. 2. Some basic typing related symbols for PVS

We begin with a definition of PVS’s higher-order logic using only LF features.
This includes dependent product and function types1, classical booleans, and the
usual formula constructors (see Fig. 2). This is novel in how exactly it mirrors
the syntax of PVS (e.g., PVS allows multiple aliases for primitive constants) but
requires no special Mmt features.

We declare three constants for the three types of built-in literals together
with Mmt rules for parsing and typing them. Using the new framework features,
we give a shallow encoding of predicate subtyping (see Fig. 3 for the new typing
rule), a shallow definition of anonymous record types, as well as new declarations
for PVS-style inductive and co-inductive types.

4 Translating the PVS Library

The PVS library export requires three separate developments:
Firstly, PVS has been extended with an XML export. This is similar to the

LATEX extension in PVS, which is built on the Common Lisp Pretty Printing
1 Contrary to typical dependently-typed languages, PVS does not allow declaring

dependent base types, but predicate subtyping can be used to introduce types that
depend on terms. Interestingly, this is neither weaker nor stronger than the depen-
dent types in typical λΠ calculi.

326 M. Kohlhase et al.

setsub : {A} (expr (A bool)) tp # 1 | 2
rule rules?SetsubRule

object SetsubRule extends ComputationRule(PVSTheory.expr.path) {
def apply(check: CheckingCallback)(tm: Term, covered: Boolean)
(implicit stack: Stack, history: History): Option[Term]
= tm match {
case expr(PVSTheory.setsub(tp,prop)) =>
Some(LFX.Subtyping.predsubtp(expr(tp),proof(”internal judgment”,
Lambda(doName,expr(tp),pvsapply(prop,OMV(doName),expr(tp),

bool.term). 1))))
case => None

}
}

Fig. 3. PVS-style predicate subtyping in MMT and the corresponding rule

facility. The XML export was developed in parallel with a Relax NG specifica-
tion for the PVS XML files. Because PVS allows overloading of names, infers
theory parameters, and automatically adds conversions, the XML generation is
driven from the internal type-checked abstract syntax, rather than the parse
tree. Thus the generated XML contains the fully type-checked form of a PVS
specification with all overloading disambiguated. Future work on this will include
the generation of XML forms for the proof trees.

Secondly, we documented the XML schema used by PVS as a set of inductive
types in Scala (the programming language underlying Mmt). We wrote a generic
XML parser in Scala that generates a schema-specific parser from such a set of
inductive types (see Fig. 5 for part of the specification). That way any change to
the inductive types automatically changes the parser. While seemingly a minor
implementation detail, this was critical for feasibility because the XML schema
changed frequently along the way.

Thirdly, we wrote an Mmt plugin that parses the XML files generated by
PVS and turns them into Mmt content. This includes creating various generic
indexes that can be used later for searching the content.

All processing steps preserve source references, i.e., URLs that point to a
location (file and line/column) in a source file (the quatruples of numbers at
place= in Fig. 4 and <link rel=”...?sourceRef” in Fig. 6).

The table in Fig. 7 gives an overview of the sizes of the involved libraries
and the run times2 of the conversion steps. We note that the XML encoding
considerably increases the size of representations. This is due to two effects: the
internal, disambiguated form contains significantly more information than the
user syntax (e.g. theory parameter instances and reconstructed types), and XML
as a machine-oriented format is naturally more verbose. Furthermore, OMDoc
uses OpenMath for term structures, which again increases file size. In practice

2 All numbers measured on standard laptops.

Making PVS Accessible to Generic Services 327

<theory place=”6049 0 6075 22”>
<id>EquivalenceClosure</id>
<const−decl place=”6057 2 6058 75”>
<id>EquivClos</id>
<arg−formals>
<binding place=”6057 12 6057 13”>
<id>R</id>
<type−name>
<id>PRED</id>
<actuals>
<tuple−type>
<type−name><id>T</id></type−name>
<type−name><id>T</id></type−name>

</tuple−type>
</actuals>

</type−name>
</binding>

</arg−formals>
<type−name place=”6057 17 6057 31”>
<id>equivalence</id>
<actuals>
...

Fig. 4. A part of the function EquivalenceClosure/EquivClos in XML

case class const decl(
named: ChainedDecl,
arg formals: List[bindings],
tp: DeclaredType,
def: Option[Expr]

) extends Decl

Fig. 5. The scala-specification of PVS constant declarations for XML parsing

<omdoc>
<theory name=”EquivalenceClosure”
base=”http://pvs.csl.sri.com/prelude”
meta=”http://pvs.csl.sri.com/?PVS”>
<constant name=”EquivClos”>
<type>
<om:OMOBJ>
<om:OMA>
<om:OMS base=”http://cds.omdoc.org/urtheories” module=”LambdaPi” name=”apply”/>
<om:OMS base=”http://pvs.csl.sri.com/” module=”PVS” name=”expr”/>
<om:OMA>
<om:OMS base=”http://cds.omdoc.org/urtheories” module=”LambdaPi” name=”apply”/>
<om:OMS base=”http://pvs.csl.sri.com/” module=”PVS” name=”pvspi”/>
...
<metadata>
<link rel=”http://cds.omdoc.org/mmt?metadata?sourceRef”
resource=”prelude/pvsxml/EquivalenceClosure.xml#−1.6057.17:−1.6057.31”/>

</metadata>
</om:OMA>

Fig. 6. A part of the function EquivalenceClosure/EquivClos in OMDoc

328 M. Kohlhase et al.

the file sizes are no problem for the MMT tools presented here, so we consider
file sizes as a (small) price to be paid for interoperability and universal tool
support.

PVS source PVS → XML XML → OMDoc
size/gz check time result size/gz run time result size/gz run time

Prelude 189.7/46.6kB 33s 23.5/.67MB 11s 83.3/1.6MB 3m41s

NASA Lib 1.9/.426MB 23m25s 387.2/8.9MB 3m11s 2.5/.04GB 58m56s

Fig. 7. File sizes of the PVS import at various stages

5 Applications

With the OMDoc/Mmt translation of the PVS libraries, PVS gains access to
library management facilities implemented at the OMDoc/Mmt level. There are
two ways to exploit this: publishing the converted PVS libraries on a dedicated
server, like our MathHub system, or running the OMDoc/Mmt toolstack locally
alongside PVS. Both options offer similar functionality, the main difference is
the intended audience: the first option is for outside users who want to access
the PVS libraries, and the latter is for PVS users who develop new content or
refactor the library.

MathHub [Ian+14,MH] bundles a GitLab-based repository manager with
Mmt and various periphery systems into a common, web-based user interface.
We commit the exported PVS libraries as OMDoc/Mmt files into the reposi-
tory [GMP] as separate libraries — currently Prelude and NASA. MathHub has
been configured to make these available via the (i) MathHub user interface, (ii)
Mmt presentation web server, (iii) Mmt web services, and (iv) the MathWeb-
Search daemon. All of these components give the user different ways of interact-
ing with the system and PVS content. Below we explore three that are directly
useful for PVS users.

The local workflow installs OMDoc/Mmt tools on the same machine as PVS.
In that case, users are able to browse the current version of the available PVS
libraries including all experimental or private theories that are part of the current
development. This also enables PVS to use OMDoc/Mmt services as background
tools that remain transparent to the PVS user.

In both workflows, OMDoc/Mmt-based periphery systems become available
to the PVS user that are either not provided by the PVS tools or in a much
restricted way. We will go over the three most important ones in detail.

5.1 Browsing and Interaction

The transformed PVS content can be browsed interactively in the document-
oriented MathHub presentation pages (theories as active documents) and in the

Making PVS Accessible to Generic Services 329

Fig. 8. The PVS prelude in the Mmt browser

Mmt web browser (see Fig. 8). Both allow interaction with the PVS content via
a generic Javascript-based interface. This provides buttons to toggle the visi-
bility of parts computed by PVS – e.g. omitted types and definitions – at the
declaration level. The right-click menu shown in Fig. 8 is specific to the selected
sub-formula (highlighted in gray); here we have eight applicable interactions
which range from inferring the subformula type via definition lookup to man-
agement actions such as registering an alignment to concepts in other libraries.
New interactions can be added as they become available in the MMT system.

The Mmt instance in the local workflow provides the additional feature of
inter-process communication between PVS and Mmt as a new menu item: the
action navigate to this declaration in connected systems. We implemented a lis-
tener for this action that forwards the command to PVS via an XML-RPC call
at the default PVS port. Correspondingly, we implemented a case in the PVS
server that opens the corresponding file in the PVS emacs system and navigates
to the relevant line.

5.2 Graph Viewer

MathHub includes a theory graph viewer that allows interactive, web-based
exploration of the OMDoc/Mmt theory graphs. It builds on the visjs JavaScript
visualization library [VJS], which uses the HTML5 canvas to layout and interact
with graphs client-side in the browser.

PVS libraries make heavy use of theories as a structuring mechanism, which
makes a graph viewer for PVS particularly attractive. Figure 9 shows the full
graph in a central-gravity layout induced by the PVS prelude, where we have
(manually) clustered the subgraphs for bit vectors and finite sets (the orange
barrel-shaped nodes). The lower right corner shows a zoomed-in fragment.

330 M. Kohlhase et al.

Fig. 9. The basic PVS libraries in the MathHub theory graph viewer (Color figure
online)

The theory graph allows dragging nodes around to fine-tune the layout. Hov-
ering over a node or edge triggers a preview of the theory. All nodes support the
same context menu actions in the graph viewer as the corresponding theories do
in the browser above. Thus, it is possible to select a theory in the graph viewer
and then navigate to it in the browser or (if run locally) in the PVS system.

5.3 Search

MathWebSearch [KS06] is an OMDoc/Mmt-level formula search engine that uses
query variables for subterms and first-order unification as the query language.
It is developed independently, but Mmt includes a plugin for generating Math-
WebSearch index files using its content MathML interface. Thus, any library
available to Mmt can be indexed and searched via MathWebSearch. Moreover,
Mmt includes a frontend for MathWebSearch so that search queries can be sup-
plied in any format that Mmt can understand, e.g., the XML format produced
by PVS.

Mmt exposes the search frontend both in its GUI for humans and as an
HTTP service for other systems. Here we use the latter: We have added a feature
to the PVS emacs interface that allows users to enter a search query in PVS
syntax. PVS parses the query, type-checks it, and converts it to XML. The XML

Making PVS Accessible to Generic Services 331

<mws:query limitmin=”0” answsize=”1000” totalreq=”yes”
output=”xml” xmlns:m=”http://www.w3.org/1998/Math/MathML”
xmlns:mws=”http://www.mathweb.org/mws/ns”>
<mws:expr>
<apply>
<csymbol>http://cds.omdoc.org/urtheories?LambdaPi?apply</csymbol>
<csymbol>http://pvs.csl.sri.com/?PVS?pvsapply</csymbol>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>I1</mws:qvar>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>I2</mws:qvar>
<csymbol>http://pvs.csl.sri.com/prelude?EquivalenceClosure?EquivClos</csymbol>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>A</mws:qvar>
</apply>
</mws:expr>
</mws:query>

Fig. 10. A query for applications of EquivClos

is sent to Mmt, which acts as the mediator between the proof assistant—here
PVS—and library management periphery—here MathWebSearch—and returns
the search results to PVS.

[{”lib name” : ””,
”theory name” : ”EquivalenceClosure”,
”name” : ”EquivClosMonotone”,
”Position” : ”3 2 5 5 5 5”},

{”lib name” : ””,
”theory name” : ”EquivalenceClosure”,
”name” : ”EquivalenceCharacterization”,
”Position” : ”2 2 5 5 5 5”},
. . .

]

Fig. 11. A query result for Fig. 10

The PVS user enters the PVS query EquivClos(?A), where we have extended
the PVS syntax with query variables like ?A. After OMDoc/Mmt translation, this
becomes the MathWebSearch query in Fig. 10—note the additional symbols from
LF introduced by the representation in the logical framework. The representation
also introduces unknown meta-variables for the domain and range of the EquivClos

function, which become the additional query variables I1 and I1. MathWebSearch
returns a JSON record with all results, and we show the first two in Fig. 11:
two occurrences of (instances of) EquivClos(?A) in two declarations in the theory
EquivalenceClosure Fig. 1. The attribute lib name is the name of the library; by
PVS convention, it is empty for the Prelude. The attributes theory name and
name give the declaration that contains the match, and Position gives the path
to its subterm that matched the query.

332 M. Kohlhase et al.

Fig. 12. Example for displaying the query result in PVS

Figure 12 shows what the query will look like while doing a PVS proof. The
current implementation is just a proof-of-concept—for the mature version the
part of PVS that sends the query to the Mmt server and displays the results still
has to be implemented thoroughly. But the remaining steps are straightforward.

Future work will exploit this functionality to search specifically for existing
theorems that may be helpful in a specific part of an ongoing PVS proof.

6 Conclusion

The work reported in this paper contributes to avoiding duplication of efforts
in the development of theorem proving systems, their libraries, and supporting
periphery systems. Specifically, we have developed a representation of the PVS
logic in the OMDoc/Mmt representation format, as well as an automated trans-
lation of the PVS libraries into OMDoc/Mmt; the result is available at [PVS].

In contrast to earlier representation and translation projects undertaken by
us—e.g. Mizar and HOL Light—the PVS logic is much more challenging due
to its highly expressive language features, which defy formalization in current
logical frameworks like LF. Therefore we make use of the extensibility of the
OMDoc/Mmt system and implement several extensions of LF (LFX). In essence,
we use the Mmt system as a prototyping system for logical frameworks. Our
experience with encoding the PVS logic is that critical features such as undecid-
able subtyping, record types, (co)inductive types and literals can naturally be
expressed at this level. While LFX is less well-understood than established logical
frameworks, it already proved very useful as a development tool. Most impor-
tantly, we use it to give shallow and therefore structure-preserving encodings of
PVS features without having to forgo the advantages of logical frameworks.

Making PVS Accessible to Generic Services 333

This information architecture is essential for system interoperability. In our
case we have shown that we can use the generic—i.e. language-independent—
Mmt tool chain for PVS. Concretely we have instantiated three generic periphery
systems for PVS: a library browser, a theory graph viewer, and a search engine.
Given the OMDoc/Mmt representation of the PVS libraries, these directly work
for PVS libraries and can be easily plugged together with the PVS system.
This supplements and improves on the existing functionality that was designed
specifically for PVS such as the Hypatheon system [Lan16a].

Our work immediately enables three kinds of future work. Firstly, it makes
the PVS libraries available for existing generic services developed by other
researchers. For example, it becomes much easier to apply machine learning–
based premise selection as in [KU15] to PVS. Secondly, it applies also to all
the other theorem proving libraries that have been translated to OMDoc/Mmt:
Besides HOL Light and Mizar, we also have experimental translations of TPS,
TPTP, TPS, Focalize, Specware, IMPS, and Metamath, as well as several infor-
mal mathematical libraries including the OEIS and the SMGloM terminology
base. Using flexible alignments [Kal+16] between the libraries, we can guide
library developers to corresponding parts of other formalizations, approximately
translate the content across libraries, or reuse notations (e.g. to show HOL Light
content in a form that looks familiar to PVS users). Finally, while PVS does not
store full proof terms, it stores enough information to export good proof sketches.
Besides being an important sanity-check for the correctness of the translation,
this would help transporting PVS proofs to other provers. We plan to revisit
this issue after designing a good representation language for proof sketches.

Acknowledgements. This work has been partially funded by DFG under Grants
KO 2428/13-1 and RA-18723-1. The authors gratefully acknowledge the contribution
of Marcel Rupprecht, who has extended the graph viewer for this paper.

References

[BCH12] Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as
a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings
of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

[GK14] Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 267–281. Springer, Cham (2014). doi:10.1007/
978-3-319-08434-3 20

[GMP] MathHub PVS Git Repository. http://gl.mathhub.info/PVS. Accessed 11
Apr 2017

[HHO93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143–184 (1993)

[Ian+13] Iancu, M., et al.: The Mizar mathematical library in OMDoc: translation
and applications. J. Automated Reason. 50(2), 191–202 (2013). doi:10.1007/
s10817-012-9271-4

http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://gl.mathhub.info/PVS
http://dx.doi.org/10.1007/s10817-012-9271-4
http://dx.doi.org/10.1007/s10817-012-9271-4

334 M. Kohlhase et al.

[Ian+14] Iancu, M., Jucovschi, C., Kohlhase, M., Wiesing, T.: System description:
MathHub.info. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P.,
Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 431–434. Springer,
Cham (2014). doi:10.1007/978-3-319-08434-3 33. http://kwarc.info/
kohlhase/papers/cicm14-mathhub.pdf. ISBN 978-3-319-08433-6

[Ian17] Iancu, M.: Towards flexiformal mathematics. Ph.D. thesis. Jacobs Univer-
sity, Bremen (2017)

[Kal+16] Kaliszyk, C., et al.: A standard for aligning mathematical concepts. In:
Kohlhase, M. et al. (eds.) Intelligent Computer Mathematics – Work
in Progress Papers (2016). http://kwarc.info/kohlhase/papers/cicmwip16-
alignments.pdf

[Koh06] Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Doc-
uments (Version 1.2). Lecture Notes in Artificial Intelligence, vol. 4180.
Springer, Heidelberg (2006)

[KR14] Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J.
(eds.) CICM 2014. LNCS, vol. 8543, pp. 357–372. Springer, Cham (2014).
doi:10.1007/978-3-319-08434-3 26. http://kwarc.info/frabe/Research/KR
hollight 14.pdf. ISBN 978-3-319-08433-6

[KR16] Kohlhase, M., Rabe, F.: QED reloaded: towards a pluralistic formal library
of mathematical knowledge. J. Formalized Reason. 9(1), 201–234 (2016)

[KS10] Krauss, A., Schropp, A.: A mechanized translation from higher-order
logic to set theory. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 323–338. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 23

[KU15] Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light.
Math. Comput. Sci. 9(1), 5–22 (2015)

[KW10] Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14052-5 22

[KS06] Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In:
Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS, vol. 4120, pp. 241–
253. Springer, Heidelberg (2006). doi:10.1007/11856290 21

[Lan16a] NASA Langley. Hypatheon: A Database Capability for PVS Theories
(2016). https://shemesh.larc.nasa.gov/people/bld/hypatheon.html

[Lan16b] NASA Langley. NASA PVS Library (2016). http://shemesh.larc.nasa.gov/
fm/ftp/larc/PVS-library/pvslib.html

[MH] MathHub.info: Active Mathematics. http://mathhub.info. Accessed 28 Jan
2014

[MN86] Miller, D.A., Nadathur, G.: Higher-order logic programming. In: Shapiro, E.
(ed.) ICLP 1986. LNCS, vol. 225, pp. 448–462. Springer, Heidelberg (1986).
doi:10.1007/3-540-16492-8 94

[MP08] Meng, J., Paulson, L.: Translating higher-order clauses to first-order clauses.
J. Automated Reason. 40(1), 35–60 (2008)

[ORS92] Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer,
Heidelberg (1992). doi:10.1007/3-540-55602-8 217

[OS06] Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 298–302. Springer,
Heidelberg (2006). doi:10.1007/11814771 27

http://dx.doi.org/10.1007/978-3-319-08434-3_33
http://kwarc.info/kohlhase/papers/cicm14-mathhub.pdf
http://kwarc.info/kohlhase/papers/cicm14-mathhub.pdf
http://kwarc.info/kohlhase/papers/cicmwip16-alignments.pdf
http://kwarc.info/kohlhase/papers/cicmwip16-alignments.pdf
http://dx.doi.org/10.1007/978-3-319-08434-3_26
http://kwarc.info/frabe/Research/KR_hollight_14.pdf
http://kwarc.info/frabe/Research/KR_hollight_14.pdf
http://dx.doi.org/10.1007/978-3-642-14052-5_23
http://dx.doi.org/10.1007/978-3-642-14052-5_23
http://dx.doi.org/10.1007/978-3-642-14052-5_22
http://dx.doi.org/10.1007/11856290_21
https://shemesh.larc.nasa.gov/people/bld/hypatheon.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://mathhub.info
http://dx.doi.org/10.1007/3-540-16492-8_94
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/11814771_27

Making PVS Accessible to Generic Services 335

[Pfe+03] Pfenning, F., et al.: The Logosphere Project (2003). http://www.logosphere.
org/

[PVS] The PVS libraries in OMDoc/MMT format. https://gl.mathhub.info/PVS.
Accessed 29 May 2017

[Rab14a] Rabe, F.: A logic-independent IDE. In: Benzmüller, C., Woltzenlogel Paleo,
B. (eds.) Workshop on User Interfaces for Theorem Provers, pp. 48–60
(2014). Elsevier

[Rab14b] Rabe, F.: How to identify, translate, and combine logics? J. Logic Comput.
(2014). doi:10.1093/logcom/exu079

[Rab15] Rabe, F.: Generic literals. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe,
F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 102–117. Springer,
Cham (2015). doi:10.1007/978-3-319-20615-8 7

[Rab17] Rabe, F.: A Modular Type Reconstruction Algorithm (2017). http://kwarc.
info/frabe/Research/rabe recon 17.pdf

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1),
1–54 (2013)

[VJS] vis.js - A dynamic, browser based visualization library. http://visjs.org.
Accessed 04 May 2017

[Wat+14] Watt, S.M., et al. (eds.) Intelligent Computer Mathematics. LNCS, vol.
8543. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08434-3. ISBN
978-3-319-08433-6

http://www.logosphere.org/
http://www.logosphere.org/
https://gl.mathhub.info/PVS
http://dx.doi.org/10.1093/logcom/exu079
http://dx.doi.org/10.1007/978-3-319-20615-8_7
http://kwarc.info/frabe/Research/rabe_recon_17.pdf
http://kwarc.info/frabe/Research/rabe_recon_17.pdf
http://visjs.org
http://dx.doi.org/10.1007/978-3-319-08434-3

Formally Verified Safe Vertical Maneuvers
for Non-deterministic, Accelerating

Aircraft Dynamics

Yanni Kouskoulas1(B), Daniel Genin1, Aurora Schmidt1,
and Jean-Baptiste Jeannin2

1 The Johns Hopkins University Applied Physics Laboratory, Laurel, USA
yanni.Kouskoulas@jhuapl.edu

2 Samsung Research America, Cambridge, USA

Abstract. We present the formally verified predicate and strategy used
to independently evaluate the safety of the final version (Run 15) of the
FAAs next-generation air-traffic collision avoidance system, ACAS X.
This approach is a general one that can analyze simultaneous vertical
and horizontal maneuvers issued by aircraft collision avoidance systems.
The predicate is specialized to analyze sequences of vertical maneuvers,
and in the horizontal dimension is modular, allowing it to be safely
composed with separately analyzed horizontal dynamics. Unlike previ-
ous efforts, this approach enables analysis of aircraft that are turning,
and accelerating non-deterministically. It can also analyze the safety of
coordinated advisories, and encounters with more than two aircraft. We
provide results on the safety evaluation of ACAS X coordinated collision
avoidance on a subset of the system state space. This approach can also
be used to establish the safety of vertical collision avoidance maneuvers
for other systems with complex dynamics.

1 Introduction

As air travel increases and the airspace grows more crowded, existing air traf-
fic management mechanisms such as altitude separation and manned air-traffic
control are expected to experience significant stress. For decades, the Traffic Col-
lision Avoidance System (TCAS) [3], first put into operation in the 1970s, has
been the system of last resort, making mid-air collisions rare events. To address
limitations that have been identified in TCAS, and to safely handle additional
congestion and new participants expected in the future, the US Federal Aviation
Administration (FAA), along with international partners, is developing a drop-
in replacement, the next-generation Collision Avoidance System called ACAS X
[9]. Like TCAS, ACAS X is intended to provide a final measure of safety, giving

This work was supported by the Federal Aviation Administration (FAA) Traffic-
Alert & Collision Avoidance System (TCAS) Program Office (PO) AJM-233: Volpe
National Transportation Systems Center Contract No. DTRT5715D30011.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 336–353, 2017.
DOI: 10.1007/978-3-319-66107-0 22

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 337

advice that helps prevent mid-air collisions when all other preventive measures
have failed.

In 2013, our group was designated as the independent verification and valida-
tion (V&V) team for ACAS X. We began developing an independent approach
to formally verify the safety of the overall ACAS X system, either to establish
guaranteed safety under certain operating conditions, or to identify different cat-
egories of problems and bring them to the attention of ACAS X developers and
the FAA. This proved to be challenging for a number of reasons, including that
ACAS X has very complicated behavior, and does not have a precisely stated set
of requirements – informally, its goal is to provide an improvement over TCAS,
both in terms of safety and alerting behavior. In addition, the system has an
enormous state space – over 28×1012 state points – and complex logic based on
the massive lookup table and complementary run-time components. This analy-
sis, detailed in [6,7] has been so successful that we were able to find hundreds
of millions of straight-line flight (i.e., the simplest possible) unsafe conditions in
early versions of the system that were not identified by the standard simulation
and testing approaches.

Our previous efforts were fundamentally limited to analyzing intruders that
flew in a straight line, without any acceleration or maneuvering. The analysis also
could not address the safety of an own-ship aircraft (our term for the aircraft in
which the observer travels) that turns or makes any sort of horizontal maneuvers;
previous analysis limited own-ship non-determinism to vertical motion.

The present work describes a new approach to vertical safety analysis that
allows us to analyze the safety of encounters where both the intruder and own-
ship are independently accelerating non-deterministically in the vertical and hor-
izontal directions. To do this, we create a vertical safety predicate that relaxes
the assumption of constant, relative horizontal velocity that in our previous work
restricted us from analyzing horizontal acceleration in maneuvers such as turns.
Our predicate has parameters that describe horizontal safety, but is not limited
to any particular horizontal dynamics; it can be composed with any horizontal
motion that has been correctly analyzed. With the development of appropriate
analysis for different horizontal dynamics, this approach could also assess the
safety of non-deterministic, accelerating horizontal and vertical dog-fight-like
maneuvers.

The main contribution of this paper is in providing a predicate to ana-
lyze the safety of vertical advisories during turns and in the presence of non-
deterministically accelerating intruders. All the theorems in this paper and safety
predicates for vertical motion are formally verified, meaning that their correct-
ness is ensured via a machine-checked mathematical proof.1

The rest of the paper is organized as follows: Sects. 2 and 3 provide an
overview of how to use the predicate by analyzing safety for an example
encounter, describing the parameterization of pilot behavior and horizontal
dynamics; Sect. 4 provides a detailed description of the development of vertical

1 Proofs can be viewed and downloaded at https://bitbucket.org/ykouskoulas/vert
safety proofs/src/.

https://bitbucket.org/ykouskoulas/vert_safety_proofs/src/
https://bitbucket.org/ykouskoulas/vert_safety_proofs/src/

338 Y. Kouskoulas et al.

safety predicates; Sect. 5 discusses issues related to formalizing our guarantees;
Sects. 6 and 7 describes how we extend our safety proofs to a real system, and
our results; and Sects. 8 and 9 describe related work, and conclude.

2 Overview

This section presents an overview of the logic of our approach, starting with its
basic properties and walking through an illustrative example of how it would be
used in practice.

Safety Property. The logic of this approach comes from the definition of safety
used in this analysis; it allows us to decompose the safety analysis into two steps
that we can treat seperately: a horizontal problem, and a vertical problem.

For this work, safety between two aircraft means that one aircraft doesn’t
come within a certain vertically oriented cylinder with radius rp and half-height
hp centered on the other aircraft. This definition includes exact collision as well
as any dangerously close approach between two aircraft, and is referred to by the
aviation community as a Near Mid-Air Collision (NMAC). We call this volume
the NMAC puck due to the resemblance with a hockey puck. Aircraft trajectories
have uncertainty associated with them, and the puck represents the volume in
which the other aircraft location might be found. Entering it represents, in the
worst case, an actual collision.

We define horizontal conflict as the condition where the horizontal projec-
tions of the two aircraft come within the horizontal bounds of a puck centered on
one of them; vertical conflict is when their vertical projections come within the
vertical bounds of a puck, also centered on one of them. The two aircraft have
an NMAC only if they are in horizontal and vertical conflict simultaneously.

To formalize our safety property, we define J(t) = Jx(t)x̂ + Jy(t)ŷ + Jz(t)ẑ
to be the trajectory of the ownship, and K(t) = Kx(t)x̂ + Ky(t)ŷ + Kz(t)ẑ to
be the trajectory of the intruder, both in a Cartesian coordinate system with
x, y and z axes aligned to east, north and up, respectively. We have horizontal
conflict whenever

Ch(t) ≡ |((Jx(t) − Kx(t)) x̂ + (Jy(t) − Ky(t)) ŷ| ≤ rp (1)

is true. We have vertical conflict when

Cv(t) ≡ |Jz(t) − Kz(t)| ≤ hp (2)

is true. An NMAC occurs at time t only when:

Ch(t) ∧ Cv(t) (3)

We will first analyze the horizontal dynamics to determine the timing of the
encounter, i.e. when the aircraft come together. We call this timing a parameter-
ization of horizontal safety, because it establishes safety within a series of time

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 339

intervals. Subsequently, the safe-by-design logic can be used to establish safety
for a sequence of independent, non-deterministic, vertical maneuvers made by
the pilot of each aircraft outside of these intervals. For each safety evaluation,
we must choose a sequence and timing of vertical maneuvers for each aircraft,
and it is under these assumptions that we can establish safety or the possibility
of collision. The following paragraphs go through these steps to apply safety
analysis for a specific example.

Parameterizing Horizontal Safety. To parameterize horizontal safety, we must
analyze the horizontal motion of the two aircraft and identify time intervals in
which the probability of the aircrafts’ horizontal projections coming into proxim-
ity (i.e., horizontal conflict as defined in Eq. 1) is non-zero. Through this horizon-
tal parameterization, we establish safety outside these intervals, because when
the aircraft are far away from each other Ch(t) is false, and Eq. 3 cannot be
satisfied – there is no possibility of immediate collision.

We index each time interval of possible horizontal conflict using index i, and
define tei and txi as times of earliest entry into and latest exit from conditions
where horizontal conflict is possible, for interval i. This defines a set of time
intervals, Vi = [tei, txi], and their union V =

⋃
i∈{1...n} Vi, during which safety

must be established through the absence of vertical conflict.
Consider the example of two aircraft whose horizontal trajectories follow

deterministic circular paths, as shown in Fig. 1, where the speed of the own-ship
is chosen by the pilot. To simplify our example, we assume that the speed of the

0 5 10 15 20 25 30
x0

10

20

30

40
y

Fig. 1. Example horizontal turning trajectories, projected onto horizontal cartesian
coordinate system, viewed from above. The own-ship trajectory is represented by a
solid line, and the intruder is represented by a dashed line. Circles and green color
indicates the extent of trajectory segments where collision is possible. (Color figure
online)

340 Y. Kouskoulas et al.

0 10 20 30 40 50 60
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

Own radians

Fig. 2. Analysis of encounter timing for one possible combination of ground speeds.
Positions are given as a radian measure on the own-ship’s trajectory circle, and
ground speeds are assumed constant for this particular scenario. The dashed line is
the intruder’s center projected on the own-ship’s trajectory, and when it intersects
the trajectory, the extent of that intersection is plotted above and below the center.
Vertical lines correspond to the beginning and end of time intervals when a collision is
possible, and to the disks in Fig. 1.

intruder is known, although this is not required for the analysis in general. The
solid line represents the own-ship while the dashed line represents the intruder
aircraft. One way to visualize when a collision is possible is to imagine a disk
representing the top of the NMAC puck traveling along one of the trajectories.
When that disk intersects the other trajectory, a collision is possible, depending
on the relative speeds of the aircraft. Here we show the disk on the intruder’s
trajectory at the four points where it touches the own-ship’s trajectory, and
highlight the parts of its trajectory where a collision is possible. Figure 2 illus-
trates the timing analysis that is necessary to compute the horizontal conflict
interval. Assuming the intruder’s ground speed is known and consistent with
Fig. 2, the horizontal conflict intervals for this geometry can be read off the plot
to determine that V = [11.2 s, 20.7 s]∪ [43.5 s, 53.0 s].

Our analysis is not limited to these horizontal dynamics; we can also establish
safety for more complex horizontal motion and other types of non-determinism,
as long as we can compute V .

Sequence and Timing of Vertical Maneuvers. To match common flight patterns
and the ACAS X advisory system, the vertical dynamics of each aircraft is mod-
eled by a sequence of non-deterministic maneuvers, specified by allowed accel-
eration and velocity ranges. By combining maneuvers it is possible to represent
a variety of behaviors, including straight line flight, choice of one of a series of
actions (where the decision is unknown at the time of safety analysis), unre-
stricted vertical flight, compliance with an ACAS X vertical advisory, delayed

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 341

Fig. 3. Bounding envelopes for vertical motion of ownship and intruder (dashed). Hori-
zontal conflict intervals are indicated by vertical lines. Safety is guaranteed despite any
maneuvers the pilots may make that cause variations in vertical acceleration and veloc-
ity, or variations in horizontal ground speed of the ownship, within assumed dynamics.

compliance with an ACAS X advisory, a reversal of vertical motion direction to
ensure safety, or straight line flight followed by a level-off maneuver. Thus, the
proposed dynamics captures many, if not most, operationally relevant aircraft
encounter scenarios.

For our example from Fig. 1, assume the intruder starts above the own-ship,
the aircraft are descending, with the intruder diving towards the ground. The
own-ship engages in a vertical chase for the first 15 s of the encounter, diving
at a less extreme rate, and then follows advice to sharply accelerate upwards,
eventually crossing altitudes with the intruder.

Vertical Safety Predicate. Once we have analyzed horizontal dynamics, and cho-
sen a pilot model (i.e. a sequence of vertical pilot timing and actions) we can
apply the vertical safety predicate to establish whether we can definitively avoid
collision under our assumptions. Figure 3 illustrates the extent of vertical motion
in our example scenario from Fig. 1 by plotting the most extreme vertical trajec-
tories of the own-ship and intruder. These boundaries describe a reachable enve-
lope of altitudes for each moment in time. Our predicate Ψ , described in Sect. 4,
guarantees safety for this geometry under our assumptions, and the figure illus-
trates the intuition behind the predicate’s logic, confirming that the aircraft are
safely separated vertically during both horizontal conflict intervals.

This envelope introduces non-determinism in our model, the representation
of uncertain vertical motion in the future. Even though the limiting trajec-
tories of our envelope are piecewise polynomial and our dynamics are simple,
our dynamics are not limited to piecewise polynomial trajectories. This model
allows us to represent a continuous family of irregular trajectories within our

342 Y. Kouskoulas et al.

acceleration limits, all of which travel within the envelope but which include
many different types of motion.

While the ownship’s upper and lower limiting trajectories issue from a single
point at time zero, the intruder’s upper and lower limiting trajectories bound a
range of altitudes, indicating the uncertainty in the intruder’s vertical position,
e.g., due to surveillance error.

Time intervals for this plot are subdivided so that each time interval con-
tains a single maneuver for each aircraft. Although, for a generic sequence of
maneuvers, time intervals corresponding to individual maneuvers for the ownship
and intruder will not agree, we can always subdivide maneuvers as necessary to
ensure that exactly one maneuver covers the full duration of the interval for both
ownship and intruder. This is possible because a single maneuver of duration d
and a sequence of identical (with regard to velocity and acceleration bounds)
maneuvers with durations d0, d1, d2, . . . , dn, such that

∑n
i=1 di = d encompass

exactly the same set of aircraft trajectories.

3 Modeling and Assumptions

Modeling Non-deterministic Vertical Maneuvers. Each vertical maneuver is
defined by a duration of time d the maneuver is in effect, and a range of vertical
velocities, [vmin, vmax]. During the maneuver, the pilot accelerates the aircraft
with the intention of bringing vertical velocity into the specified range. Acceler-
ation is non-deterministic, and each maneuver has a set of four limiting vertical
accelerations amin ≤ aa < 0 < ab ≤ amax. The subscripts a and b indicate
the maximum and minimum acceleration allowed when the aircraft is above and
below the target range of vertical velocities, respectively. During a maneuver, the
pilot can choose to follow any acceleration a(t), that is continuous, integrable,
and satisfies

∀t, (v(t) > vmax → amin ≤ a(t) ≤ aa)∧
(v(t) = vmax → amin ≤ a(t) ≤ 0)∧

(vmin < v(t) < vmax → amin ≤ a(t) ≤ amax)∧
(v(t) = vmin → 0 ≤ a(t) ≤ amax)∧
(v(t) < vmin → ab ≤ a(t) ≤ amax)

(4)

where v(t) =
∫ t

0
a(t)dt + v(0) is the velocity of the aircraft.

In the Coq formalization, we prove the following properties about pilot
behavior:

Theorem 1 (Pilot-model vertical compliance). The constraints on a(t)
given in Eq. 4 ensure that when the aircraft is below (above) the target range
of vertical velocities, it will accelerate towards it with acceleration ab (aa) until
it is within its bounds.

Theorem 2 (Pilot-model maintains vertical compliance). The constrai-
nts on a(t) given in Eq. 4 ensure that once the aircraft has entered the allowed
range of vertical velocities, the aircraft will stay within that range.

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 343

There are sequences of maneuvers and certain geometries where it is impos-
sible for a pilot to follow Eq. 4 while maintaining continuous acceleration. For
example, compliance with one maneuver may require the pilot to increase vertical
velocity by maintaining a positive acceleration, which may abruptly change to a
requirement to decrease vertical velocity by maintaining negative acceleration,
at the beginning of the next maneuver. In this case there will be trajectories
with a(t) satisfying the requirements of the first maneuver that will have no
continuous extension to the second maneuver.

In order to ensure that any sequence of maneuvers individually satisfying
Eq. 4 can be followed while maintaining acceleration a(t) that is continuous (i.e.
has a derivative) everywhere, we introduce the concept of an auxiliary maneuver
for every pair of consecutive maneuvers. The auxiliary maneuver provides a finite
time window to allow acceleration to transition continuously from one maneuver
to the next, thus avoiding potential discontinuous changes in acceleration at
the boundary between maneuvers. This simple device dramatically simplifies
analysis by removing the need for additional restrictions that would otherwise
be necessary to enforce the global continuity of a(t).

Given a pair of maneuvers with target vertical velocity intervals [vmin, vmax]
and [wmin, wmax], and acceleration bounds amin ≤ aa < 0 < ab ≤ amax and
bmin ≤ ba < 0 < bb ≤ bmax, respectively, the matching auxiliary maneuver is
given by a target velocity interval [min(vmin, wmin),max(vmax, wmax)] and the
acceleration bounds are min(amin, bmin) ≤ max(aa, ba) < 0 < min(ab, bb) ≤
max(amax, bmax). The minimal duration of an auxiliary maneuver is bounded
below only by the limits on the derivative of the aircraft’s acceleration, sometimes
also referred to as jerk.

To simplify the formal safety proofs, we have chosen to assume that a(t)
is continuous – a natural assumption from the point of view of physics – and
treat auxiliary maneuvers as undistinguished from other maneuvers. The alter-
native would be to have done the safety proofs for a(t) that would be allowed to
become discontinuous at the beginning of each maneuver. However, we did not
pursue this approach since it is simultaneously less realistic and more difficult
to implement in Coq.

4 Vertical Safety Predicates

In this section, we develop formally-verified, quantifier-free predicates establish-
ing pairwise safety between two aircraft. We do this for arbitrary sequences
of vertical maneuvers, where both pilots are accelerating non-deterministically.
The predicates are also constructed in a modular fashion so they can be com-
posed with a separate analysis of horizontal motion to ensure overall safety of
an encounter.

Vertical Safety Predicates. To guarantee vertical separation between two air-
craft, we establish a bounding envelope that contains all altitudes reachable by
each aircraft for each sequential maneuver as a function of time. We then con-
struct a predicate that computes a bounding envelope for each aircraft separately

344 Y. Kouskoulas et al.

according to the initial position of each, and ensures that the envelopes don’t
overlap during V , the vertical conflict intervals. We establish the safety of this
predicate via formal proofs in Coq.

The bounding envelope for a single aircraft executing a single maneuver
(Eq. 4) depends on the initial range of vertical positions and velocities of the
aircraft at the start of the maneuver as well as the maneuver velocity and accel-
eration bounds. In the time-altitude domain, edges of the bounding envelope
are given by the upper and lower limiting trajectories. These trajectories origi-
nate from the extremes of the initial velocity and position ranges, and follow the
extreme values of acceleration and velocity allowed by the maneuver. Specifically,
limiting trajectories have the following form

Jz(t) =

{(
a
2 t2 + v0t + z0

)
ẑ if 0 ≤ t < tr(

vtt − tr
(vt−v0)

2 + z0

)
ẑ if tr ≤ t

(5)

where v0 and z0 are the initial vertical velocity and position of the aircraft, vt is
the matching extreme of the velocity range of the maneuver, and tr = vt−v0

a is
the time when the limiting trajectory reaches the maneuver velocity range. So
we have

(vt, a) =
{

(vmax, aa) if v0 > vmax

(vmax, amax) if v0 ≤ vmax
(6)

for the upper limiting trajectory and

(vt, a) =
{

(vmin, amin) if v0 > vmin

(vmin, ab) if v0 ≤ vmin
(7)

for the lower limiting trajectory. In the Coq formalization, we prove

Theorem 3. An aircraft following an arbitrary trajectory satisfying the con-
straints of Eq. 4 remains within the altitude envelope bounded above and below
by limiting trajectories determined by Eqs. 5, 6 and 7.

Once upper and lower limiting trajectories are constructed we have an enve-
lope of altitudes over time reachable by a non-deterministically maneuvering
aircraft, with boundaries that are described piecewise by polynomials of at most
degree two.

So far, we have been describing the dynamics for one aircraft, but we can use
this model for each aircraft in the encounter, plotting reachable envelopes vs.
time, and allowing us to visualize the uncertainty in position and relationship
between aircrafts at each moment. Figure 3 provides a visual example of upper
and lower limiting trajectories for ownship (solid lines) and intruder (dashed
lines) aircraft.

To develop quantifier-free predicates that indicate the absence of vertical con-
flict for a pair of aircraft, we take the difference of their opposite limiting trajec-
tories (lower-upper and upper-lower), and then compute whether the resulting
polynomial is positive. Physically, this means the aircraft are safely separated.
We first define the predicate

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 345

Γ ((A,B,C), tb, te) ≡ tb ≤ te →
(A > 0 ∧ ((0 ≤ D ∧ (R1 > te ∨ R2 < tb)) ∨ D < 0)∨

A < 0 ∧ (0 < D ∧ R2 < tb ∧ R1 > te)∨
A = 0 ∧ (B > 0 ∧ −C/B < tb ∨ B < 0 ∧ −C/B > te∨

B = 0 ∧ C > 0))

(8)

to compute whether an arbitrary polynomial At2 + Bt + C represented by the
vector of its coefficients (A,B,C) is positive over the interval [tb, te], where the
subscripts b and e represent the beginning and ending times of the interval. In
this predicate, we define D ≡ B2 − 4AC, R1 ≡ (−B−√

D)
2A , and R2 ≡ (−B+

√
D)

2A
– the expressions for the discriminant and roots of a quadratic. The predicate
is made of a disjunction of three clauses, which analyze the polynomial when
second order coefficient A is positive, zero, or negative. If A is non-zero there are
two cases corresponding to an upward, A > 0, or downward, A < 0, extending
parabola with at most two roots. If A = 0 the polynomial is linear with at most
one root. The rest of the logic compares the location of the roots with the end
points of the time interval [tb, te] and determines whether the curve is positive
in that interval. We formalize and prove the following theorem in Coq:

Theorem 4 (Safely separated second-order polynomial interval). The
predicate Γ ((A,B,C), tb, te) computes whether a polynomial At2 + Bt + C is
positive over the interval [tb, te].

Each limiting trajectory within each maneuver is a piecewise function com-
posed of at most two pieces: a quadratic piece, corresponding to the aircraft
accelerating toward the maneuver’s target velocity range, and a linear piece,
corresponding to the aircraft maintaining one of the extremal velocities in the
maneuver’s target velocity range. Either of these pieces could be missing depend-
ing on the state of the aircraft at the beginning of the maneuver and the maneu-
ver’s duration. We next define a predicate

Φ(Q1, L1, tt1, Q2, L2, tt2, tb, te) ≡
Γ (Q1 − Q2 − P, max(tb, 0),min(te, tt1, tt2))∧

Γ (L1 − L2 − P,max(tb, tt1, tt2), te)∧
(tt1 > tt2 →

Γ (Q1 − L2 − P,max(tb,min(tt1,tt2)),min(te,max(tt1, tt2))))∧
(tt1 < tt2 →

Γ (L1 − Q2 − P,max(tb, min(tt1, tt2)),min(te,max(tt1, tt2))))

(9)

to compute whether two limiting trajectories described by Q1, L1, and Q2, L2

are safely separated in interval [tb, te]. In this predicate, P = (0, 0, hp) and hp is
the half-height of the NMAC puck. Each Qi and Li is a 3-vector containing the
coefficients of the polynomials corresponding to the quadratic and linear pieces of
trajectory i, respectively. The times tt1 and tt2 are the times when each respective
trajectory transitions from one piece to the next. The predicate Φ computes the

346 Y. Kouskoulas et al.

separation and determines whether it is adequate, (i.e. > hp) for all points in
the interval of interest, ensuring that the correct polynomial is used for each
trajectory at each point. Given that each limiting trajectory is composed of at
most two pieces, there are four possible combinations of polynomials that appear
in the analysis: (Q1, Q2), (Q1, L2), (L1, Q2), (L1, L2). Each of these possibilities
corresponds to one term of the conjunction in the definition of Φ. The predicate
Φ has four instances of Γ , since it establishes safety for the different pieces (linear
and quadratic) of a trajectory for an entire maneuver.

We formalize, and prove the following theorem in Coq:

Theorem 5 (Safely separated trajectory interval, above). The predicate

Φ((α1, β1, γ1), (δ1, ε1, ζ1), tt1, (α2, β2, γ2), (δ2, ε2, ζ2), tt2, te, tx) (10)

computes whether a trajectory

T1(t) =

{(
α1t

2 + β1t + γ1
)

0 ≤ t < tt1(
δ1t

2 + ε1t + ζ1
)

tt1 ≤ t
(11)

is safely separated and above trajectory

T2(t) =

{(
α2t

2 + β2t + γ2
)

0 ≤ t < tt2(
δ2t

2 + ε2t + ζ2
)

tt2 ≤ t
(12)

by a distance of hp over the interval [tb, te].

Consider an aircraft executing a sequence of m maneuvers, defined
by minimum and maximum velocity bounds ([vmin1, vmax1], [vmin2, vmax2], . . . ,
[vminm, vmaxm]), for durations (d1, d2, . . . , dm), each maneuver having an enve-
lope of possible trajectories bounded by Eq. 5. We define {tmi} as the
set of times that identify the start of each maneuver. We also assume
the aircraft have horizontal dynamics for which there are n time intervals
([te1, tx1], [te2, tx2], . . . , [ten, txn]) when the probability of horizontal conflict is
non-zero. For convenience, we compute a set of times (τmn, υmn) that are the
entry and exit times for conflict interval n, intersecting maneuver m, relative to
the starting time of the maneuver:

(τmn, υmn) =

⎧
⎪⎨

⎪⎩

(max(0, ten), min(d1, txn)) for m = 1
(
max(0, ten) −∑m−1

i=1 di, min(dm, txn −∑m−1
i=1 di)

)

for m > 1

(13)

For each aircraft there is an upper and lower bounding trajectory; each of these
bounding trajectories has a quadratic and a linear piece for each maneuver. We
define Q and L to be 3-dimensional vectors representing the quadratic and linear
parts of the bounding trajectory for a single maneuver and a single aircraft, and
the time tr to indicate when each limiting trajectory transitions between the
quadratic and linear pieces. Each of these quantities uses a superscript with a
tag to represent which aircraft (own or intruder), an up or down arrow indicat-
ing whether the bound is a trajectory that bounds the aircraft from above or

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 347

below, respectively. Each variable also has a subscript index i that identifies the
maneuver it describes.

So collectively, QOwn↑
i , LOwn↑

i , and tOwn↑
ri represent the upper limiting trajec-

tory for the ownship for maneuver i, and QOwn↓
i , LOwn↓

i , and tOwn↓
ri to describe

the lower limiting trajectory for the ownship in the same way. These vectors
contain the second, first, and zeroth order coefficients from Eq. 5. So

QOwn↑
i ≡ (

a
2 , v0, z0

)
QOwn↓

i ≡ (
a
2 , v0, z0

)

LOwn↑
i ≡

(
0, vmaxi, z0 − (vmaxi−v0)

2

2a

)
LOwn↓
i ≡

(
0, vmini, z0 − (vmini−v0)

2

2a

)

tOwn↑
ri ≡ vmaxi−v0

a tOwn↓
ri ≡ vmini−v0

a

(14)

represents upper and lower bounding trajectories for the own-ship. The initial
conditions v0 and z0 are set so that velocity and position are continuous at the
boundary between the different maneuvers, and a is set according to Eqs. 6 and
7.

Similarly, we define QInt↑
i , LInt↑

i , tInt↑i , QInt↓
i , LInt↓

i , and tInt↓ri to describe the
upper and lower limiting trajectories of the intruder aircraft, replacing parame-
ters with the ones appropriate for that aircraft.

Finally, we define the predicate

Ψ =
∧

j∈{1,...,n}

⎛

⎝

⎛

⎝
∧

i∈{1,...,m}
Φ(QOwn↓

i , LOwn↓
i , tOwn↓

ri , QInt↑
i , LInt↑

i , tInt↑ri , τij , υij)

⎞

⎠∨
⎛

⎝
∧

i∈{1,...,m}
Φ(QInt↓

i , LInt↓
i , tInt↓ri , QOwn↑

i , LOwn↑
i , tOwn↑

ri , τij , υij)

⎞

⎠

⎞

⎠

(15)

that helps establish safety between aircraft during a series of horizontal con-
flict intervals, as they follow a series of maneuvers. Its construction mirrors the
following logic. An encounter is safe if each of its horizontal conflict intervals
is safe; the outer conjunction over j ensures safety for each interval. Each con-
flict interval is safe if either the own-ship is always safely above the intruder, or
vice versa; the left side and right side of the disjunction account for these two
possibilities. One aircraft is safely above the other if they are safely separated
during each of the maneuvers in the conflict interval; the inner conjunction over
i accounts for each maneuver. We formalize and prove the following theorem in
Coq:

Theorem 6 (Safely separated vertical trajectories). The predicate Ψ com-
putes whether a particular encounter is safe (i.e. collision-free) according to
Eq. 15, for n time intervals ([te1, tx1], [te2, tx2], . . . , [ten, txn]) during a sequence of
m maneuvers ([vmin1, vmax1], [vmin2, vmax2], . . . , [vminm, vmaxm]), with respective
durations given by (d1, d2, . . . , dm).

348 Y. Kouskoulas et al.

5 Formalizing Guarantees

We used Coq to formalize our proofs for this work, and this had both advantages
and disadvantages compared with KeYmaera, which we had used previously. (A
version of KeYmaera with scripting capabilities was unavailable for use since the
system was between versions at the time of this work.) The immediate disadvan-
tages of this change were that we could not concisely express our system using
the specialized terms used for hybrid programs, and we did not have access to
the reasoning strategies made available in differential-dynamic logic (dL), since
presently there is no mechanization of dL in the Coq environment. Consequently,
we expressed our model in terms of the more general framework of inductive
constructions using higher order logic and Coq’s expressive system of depen-
dent types, and had to develop a set of lemmas about non-deterministic vertical
motion from scratch, using Coq’s Real library. The immediate advantage of this
change was access to the well-developed scripting and automation capabilities
of the relatively mature Coq environment, and the potential for integrating our
present work with proofs that reason about trajectories involving trigonometric
functions, as might be required for some types of non-deterministic horizontal
turning behavior.

6 Extending Safety Guarantees to ACAS X

Our initial objective was to use this predicate formally verify that whenever
possible, the system provided sequences of advice to the pilot that guaranteed
safety and absence of collision under our acceleration assumptions.

ACAS X’s complicated behavior is contained in a data structure that when
uncompressed more than five hundred megabytes in size. The table is an optimal
policy that minimizes costs associated with a Markov decision process represent-
ing the aircraft encounter. Reasoning about the table is challenging. There is
discretization in the MDP, undersampling in the state space, and the logic of
the table is related to optimizing a set of weights, whose relationship with actual
safety in the real world is not straightforward.

The approach we took to formal verification treats the logic as opaque.
Instead of creating a model of ACAS X that faithfully reproduces its details
and quirks and trying to load it into a prover, we instead focused on evaluat-
ing its behavior throughout the state space. We developed the model described
in Sect. 4, an independent logic for a collision-avoidance system that is safe-by-
design. We prove it to be safe everywhere, and extend proofs about its safety to
proofs about the safety of the real system. This extension is done via exploration
of the system’s state space, and comparison of the behavior at state points in
the table to the allowable range of geometrically safe behaviors identified by
our logic. The states in the table definitively determine the system’s behavior
in the continuous state space – the score function at off-table states are inter-
polated from the table’s values in a local neighborhood. To evaluate each state,

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 349

our predicate evaluates the future possibilities, taking into account pilot non-
determinism, sensor noise, and delay in the system, using the envelopes we pre-
viously described, acceleration limets, and the parameters of the NMAC puck.
This approach makes it possible to do formal verification and draw conclusions
about ACAS X over the entirety of its state space, but also makes the logic
reusable for other collision avoidance systems.

To formally verify the system in its entirety with this approach, we would
need to do two things: first, we would run the logic over all of the table’s states,
and then we would have to develop guarantees about off-table points in the state
space. Proofs and reasoning would have to be developed to fill in the rest of the
state space after the table’s states were evaluated.

We ran an comprehensive evaluation of all the table’s states in an earlier
version of the system for straight-line trajectories. Our first comprehensive run
took nearly a month to set up and run on our local cluster, returned so many
examples of unsafe behavior that we had difficulty characterizing them. The
initial results were that we quickly proved the system was not safe, and identified
where. We almost immediately found areas where it gave unsafe advice, but
where advice was possible that would guarantee safety.

Since we had counterexamples that will not be resolved, we could not prove
safety comprehensively. At this point, we switched our focus from making com-
prehensive guarantees about the system’s behavior to making local guarantees
of safety or dangerous conditions, and characterizing the safety tradeoff made
during its design.

7 Application to ACAS X Coordination Logic

This section describes how the vertical safety predicate was used to evaluate
safety of ACAS X, for encounters where both aircraft are equipped with ACAS X
and are executing coordinated vertical safety maneuvers simultaneously. This
analysis was not possible earlier, because the previous framework we used [6,7]
was fundamentally limited to analyzing a non-accelerating intruder; even vertical
maneuvers for the intruder were not analyzable.

Using our new framework, we analyzed the advice generated by a prototype of
ACAS X on a subset of the system’s behavior table cut-points. We first collected
the advisories that ACAS X issues on the chosen state space samples by querying
ACAS X for both the ownship and intruder aircraft advisories.

The pilots of each aircraft are assumed to begin responding to an advisory
5 s after the first advisory is issued, and 3 s after each subsequent advisory.
The safety predicate Ψ is evaluated at each selected state point with the har-
vested advisories assigned to the ownship and intruder accordingly. The hori-
zontal motion model chosen here is the deterministic straight line model.

We called the state points where Ψ fails with the ACAS X advisories but
succeeds with another set of ownship and intruder advisories counterexamples.
A counterexample is a point in the state space where ACAS X issues advisories
that are not guaranteed to be safe according to Ψ but there are other advisories
that would guarantee safety. In the terminology of [6,7], Ψ is a safeable predicate.

350 Y. Kouskoulas et al.

Time[s]
 0 5 10 15 20

A
lt[

ft]

×104

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

LO
LO

D
N

D

C
O

C

LO
LO

D
N

D
M

AI
N

TA
IN

C
O

C

CEMEncounter0046284
Horizontal Miss Distance: 76 ft, Minimum Vertical Offset While in Conflict: 15.5 ft

Alt[ft] vs Time[s]

Time[s]
 0 5 10 15 20

V
er

tic
al

R
at

e[
fp

m
]

-10000

-8000

-6000

-4000

-2000

0

LO
LO

D
N

D C
O

C

LO
LO

D
N

D
M

AIN
TAIN

C
O

C

VerticalRate[fpm] vs Time[s]

Fig. 4. An example NMAC found where the set of ACAS X advisories does not prevent
a close approach in altitude during the period where the aircraft are within 500 ft
horizontally, denoted by vertical dashed lines. Ownship and intruder trajectories are
shown in blue and red, respectively. (Color figure online)

Recall, that a state point advisory combination is safeable if it is safe or can
be made safe in the future by issuing additional advisories after a limited delay.

Of the 589,560 state points examined, 29,295 were identified as safeable coun-
terexamples. To identify the most dangerous state space configurations the safe-
able counterexample set was further run through full ACAS X simulations with
nominal trajectory accelerations set to zero. The result was a set of 3,301 state
points where the system issued advice that created NMACs.

Examining the above set of dangerous aircraft configurations in terms of their
state space coordinates, we observed a striking pattern—all of them had a low
or moderate horizontal closing speed of between 10 and 200 ft/s. In practice,
this means that the aircraft will remain in horizontal proximity for an extended
period of time. For example, at the horizontal closing rate of 100 ft/s it can take
the aircraft up to 10 s to clear the horizontal projection of the NMAC region.

Figure 4 shows conditions found by our analysis where ACAS X advice that
does not guarantee safety. The two aircraft follow nearly parallel horizontal paths
that cross at a very small angle (not shown). The intruder aircraft (red track)
descends rapidly at −8500 ft/min, while the ownship (blue track) descends at
a more moderate rate of −2500 ft/min. The dotted vertical lines indicate the
time interval during which the aircraft are within 500 ft of each other and,
hence, must maintain vertical separation of at least 100 ft to avoid NMAC.

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 351

The resolution advisories issued by ACAS X—DO NOT DESCEND (DND) and
MAINTAIN VERTICAL SPEED (MAINTAIN), for the ownship and intruder
aircraft respectively – result in an NMAC at time 12 s. The dotted blue line
indicates the straight line continuation of the ownship trajectory that would
have occurred with no advisory. To guarantee safety, ACAS X could continue
to advise DO NOT DESCEND to the intruder, while advising the ownship to
MAINTAIN vertical velocity.

These results pointed to an important flaw in the system assumptions about
the possible range of durations of horizontal proximity. The problems stemming
from slow horizontal closing configurations are actively being addressed in the
final ACAS X system.

8 Related Work

Many efforts have explored developing correct and comprehensive guarantees
about collision avoidance decisions over a system’s state space. This paper
improves on these because it develops guaranteed geometric safety under more
realistic dynamics. The ACAS X system logic [8] is based on a policy that results
from optimizing a Markov Decision Process (MDP) using value iteration to min-
imize a set of costs; [2,10] analyze the state space of a similar MDP using proba-
bilistic model checking and an adaptive Monte Carlo tree search respectively, to
identify undesirable behavior. Collision avoidance algorithms are developed for
both horizontal and vertical motion in 3D in [13,14] for polynomial trajectories
with a finite time horizon, and formally verified with PVS. TCAS, the prede-
cessor for ACAS X. Its resolution advisories have been formalized in PVS. In
[12], the logic for TCAS is formalized in PVS and used to identify straight-line
encounter geometries that generate advisories in a noiseless environment.

There are a number of simulation approaches [1,5] that allow for more precise
description of dynamics than the present work. However are limited to evaluating
safety for a finite number of trajectories.

Prior efforts that match our dynamics as well as providing a formal proof
of safety can be found in [4,11,15,16]. All these use a hybrid system model
to develop safe horizontal maneuvers, unlike the present work which develops
vertical maneuvers, and is applied to a practical system.

The most closely related work is [6,7]. We retain the overall approach to
verification, very similar non-deterministic dynamics, and the idea of computing
reachable envelopes to make guarantees about a range of future possibilities. The
present work differs because it can analyze the safety of encounters with each air-
craft making independent sequences of non-deterministic maneuvers, including
acceleration, turns, and pilot delay. The proofs here are formalized in Coq.

9 Conclusion

This framework and the detailed vertical predicates offer a flexible approach
to a formally verified analysis of the safety of a collision avoidance system. It

352 Y. Kouskoulas et al.

relaxes restrictive assumptions about acceleration and horizontal motion and
allows us to ensure the safety of a wider variety of pilot behavior and ACAS X
system conditions than before. This analysis can ensure the safety of intrud-
ers that accelerate vertically, aircraft that make horizontal turns, coordinated
ACAS X advisories, and multi-threat encounters. Its flexibility extends, further,
to ensuring safe vertical motion in the presence of mixed horizontal and vertical
advisories.

Acknowledgments. We gratefully acknowledge Neal Suchy and Josh Silbermann for
their leadership and support. We thank André Platzer, Ryan Gardner and Christopher
Rouff for their comments and technical discussion.

References

1. Chludzinski, B.J.: Evaluation of TCAS II version 7.1 using the FAA fast-time
encounter generator model. Technical report ATC-346, MIT Lincoln Laboratory
(2009)

2. Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision
avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 620–635. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 54

3. Federal Aviation Administration: Introduction to TCAS II, Version 7.1 (2011)
4. Ghorbal, K., Jeannin, J.B., Zawadzki, E., Platzer, A., Gordon, G.J., Capell, P.:

Hybrid theorem proving of aerospace systems: applications and challenges. J.
Aerosp. Inf. Syst. 11, 202–713 (2014)

5. Holland, J.E., Kochenderfer, M.J., Olson, W.A.: Optimizing the next generation
collision avoidance system for safe, suitable, and acceptable operational perfor-
mance. Air Traffic Control Q. 21, 275–297 (2014)

6. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: Girault, A., Guan, N. (eds.) 2015 International Conference on
Embedded Software, EMSOFT 2015, Amsterdam, The Netherlands, 4–9 October
2015. ACM (2015)

7. Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: A formally verified hybrid system for the next-generation airborne
collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 21–36. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 2

8. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne collision avoid-
ance through dynamic programming. Technical report ATC-371, MIT Lincoln Lab-
oratory (2010)

9. Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next generation air-
borne collision avoidance system. Lincoln Lab. J. 19(1), 17–33 (2012)

10. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), p. 6C2-1. IEEE (2015)

11. Loos, S.M., Renshaw, D.W., Platzer, A.: Formal verification of distributed aircraft
controllers. In: HSCC, pp. 125–130. ACM (2013). doi:10.1145/2461328.2461350

12. Muñoz, C., Narkawicz, A., Chamberlain, J.: A TCAS-II resolution advisory detec-
tion algorithm. In: Proceedings of the AIAA Guidance Navigation, and Control
Conference and Exhibit 2013, AIAA-2013-4622, Boston, Massachusetts (2013)

http://dx.doi.org/10.1007/978-3-642-54862-8_54
http://dx.doi.org/10.1007/978-3-662-46681-0_2
http://dx.doi.org/10.1145/2461328.2461350

Safe Vertical Maneuvers for Non-deterministic, Accelerating Dynamics 353

13. Narkawicz, A., Muñoz, C.: Formal verification of conflict detection algorithms for
arbitrary trajectories. Reliab. Comput. 17, 209–237 (2012)

14. Narkawicz, A., Muñoz, C.: A formally verified conflict detection algorithm for
polynomial trajectories. In: Proceedings of the 2015 AIAA Infotech@ Aerospace
Conference, Kissimmee, Florida (2015)

15. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 547–562. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 35

16. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:
a study in multiagent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521
(1998)

http://dx.doi.org/10.1007/978-3-642-05089-3_35

Using Abstract Stobjs in ACL2 to Compute
Matrix Normal Forms

Laureano Lambán1, Francisco J. Mart́ın-Mateos2(B), Julio Rubio1,
and José-Luis Ruiz-Reina2

1 Department of Mathematics and Computation,
University of La Rioja, Logroño, Spain
{lalamban,julio.rubio}@unirioja.es

2 Department of Computer Science and Artificial Intelligence,
University of Sevilla, Seville, Spain

{fjesus,jruiz}@us.es

Abstract. We present here an application of abstract single threaded
objects (abstract stobjs) in the ACL2 theorem prover, to define a for-
mally verified algorithm that given a matrix with elements in the ring
of integers, computes an equivalent matrix in column echelon form.
Abstract stobjs allow us to define a sound logical interface between matri-
ces defined as lists of lists, convenient for reasoning but inefficient, and
matrices represented as unidimensional stobjs arrays, which implement
accesses and (destructive) updates in constant time. Also, by means of
the abstract stobjs mechanism, we use a more convenient logical repre-
sentation of the transformation matrix, as a sequence of elemental trans-
formations. Although we describe here a particular normalization algo-
rithm, we think this approach could be useful to obtain formally verified
and efficient executable implementations of a number of matrix normal
form algorithms.

Keywords: Matrices · ACL2 · Abstract stobjs · Matrix normal forms

1 Introduction

Computing normal forms of matrices is a wide subject which presents many
applications in different areas of Mathematics. For instance, one of the funda-
mental processes in Linear Algebra is the resolution of systems of linear equa-
tions, and the constructive methods to carry that task out are based on the
computation of triangular forms of a given matrix. In the same way, Smith nor-
mal form, a particular kind of equivalent diagonal matrix, plays an essential role
in the theory of finitely generated modules over a ring and, in particular, it is
a key result to determine the structure of a finitely generated abelian group.
Smith form also provides a well-known method for finding integer solutions of

Supported by Ministerio de Ciencia e Innovación, projects TIN2013-41086-P and
MTM2014-54151-P.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 354–370, 2017.
DOI: 10.1007/978-3-319-66107-0 23

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 355

systems of linear Diophantine equations [11]. The key point of all these proce-
dures is to ensure that the output matrix (a reduced form) preserves some of
the fundamental invariants of the input matrix such as the row (column) space,
the rank, the determinant, the elementary divisors and so on.

There exists a huge range of algorithmic methods for computing normal
forms of matrices [12], which are based on well established mathematical results.
Nevertheless, it is advisable to have verified programs available in order to avoid
the possible inaccuracies which can occur during the path from algorithms to
programs. The aim is the paper is to propose a data structure and a logical
infrastructure to implement formally verified matrix normal forms algorithms,
in the ACL2 theorem prover, with special emphasis on how to efficiently execute
the verified algorithms.

The ACL2 system [1] is at the same time a programming language, a logic
for reasoning about models implemented in the language, and a theorem prover
for that logic. The programming language is an extension of an applicative sub-
set of Common Lisp, and thus the verified algorithms can be executed, under
certain conditions, in the underlying Common Lisp. ACL2 has several features
mainly devoted to get an efficient execution of the algorithms, in a sound way
with respect to the logic. Abstract single-threaded objects [1,7] is one of those
features, providing a sound logical connection between efficient concrete data
structures and more abstract data structures, convenient for reasoning. We pro-
pose here to use this feature to implement and formally verify matrix algorithms
for computing normal forms.

In particular, we describe in this paper a formally verified implementation
of an algorithm to compute a column echelon form of a matrix with elements
in the ring of integers. This formalization is done as an initial step for develop-
ing computational homological algebra in the ACL2 system and in particular to
calculating (persistent) homology [10]. But although we describe here the for-
malization of a specific normalization algorithm, we think this approach could
be generalized to other normalization algorithms as well.

The organization of the paper is as follows. The next section is devoted to
describe a formalization of matrices in ACL2, represented as lists of lists, and
also a representation for matrix normalization problems. This representation is
natural for reasoning, but has inefficiencies due to the applicative nature of Lisp
lists. Section 3 describes how we can compute using more efficient data struc-
tures, and still have the more natural representation for reasoning, by means of
ACL2 abstract single-threaded objects. In Sect. 4, we illustrate this infrastruc-
ture describing how we formally verified an algorithm for computing a column
echelon form for integer matrices. The paper ends with some discussion about
related work and conclusions. Due to the lack of space, we will omit some ACL2
definitions and skip some technical details (for example, all the functions decla-
rations). The complete source files containing the ACL2 formalization are acces-
sible at: http://www.glc.us.es/fmartin/acl2/mast-cef.

http://www.glc.us.es/fmartin/acl2/mast-cef

356 L. Lambán et al.

2 A Data Structure for Reasoning in the Logic

In this section, we describe a data structure that can be used to define a matrix
normal form algorithm. This data representation is suitable for reasoning, but
inefficient for execution, as we will see. We will refer to this as the abstract
representation.

2.1 Matrices as Lists of Lists

A very natural way to represent a 2-dimensional matrix in ACL2 is as a list
whose elements are lists of the same length, each one representing a row of the
matrix. For example, the list ’((1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1))
represents the identity matrix of dimension 4. The following function matp is the
recognizer for well-formed matrices represented as lists of lists:

(defun matp-aux (A ncols)
(cond ((atom A) (equal A nil))

(t (and (true-listp (first A))
(equal (len (first A)) ncols)
(matp-aux (rest A) ncols)))))

(defun matp (A)
(if (atom A)

(equal A nil)
(and (consp (first A))

(matp-aux A (len (first A))))))

Note that if (matp A), then the number of rows of A is given by its length,
and the number of columns by the length of (for instance) its first element.
In our formalization, these are defined by the functions nrows-m and ncols-m,
respectively. We have also defined the function (matp-dim A m n) checking that
A is a matrix of a given size m × n. As we have said in the introduction, the
algorithm we have formalized is restricted to matrices with elements in the ring
of integers; the function integer-matp (and integer-matp-dim) recognizes the
ACL2 object that are matp and with all its elements being integers.

Accessing and updating matrix elements is done via nth and update-nth,
respectively, as defined by the following functions aref-m and update-aref-m:

(defun aref-m (A i j)
(nth j (nth i A)))

(defun update-aref-m (i j val A)
(update-nth i (update-nth j val (nth i A)) A))

Using this representation, these operations are not done in constant time,
and updating is not destructive, since it follows the usual “update by copy”

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 357

semantics of applicative lists. This is a drawback if we want efficient algorithms
on matrices. In the next section we will show how to address this issue.

A typical definition scheme for matrix operations or matrix properties is by
means of two nested loops, the outer iterating on its rows indices, and the inner
on its column indices for a fixed row. In our formalization, this is done using
two recursive functions. The following definition of the product of two matrices
illustrates this recursion scheme:

(defun matrix-product-row-col (A B P i j cA cP)
(cond ((or (not (natp j)) (not (natp cP))) P)

((>= j cP) P)
(t (let ((P1 (update-aref-m i j

(mp-res-i-j A B i j 0 cA) P)))
(matrix-product-row-col A B P1 i (1+ j) cA cP)))))

(defun matrix-product-row (A B P i rP cA cP)
(cond ((or (not (natp i)) (not (natp rP))) P)

((>= i rP) P)
(t (let ((P1 (matrix-product-row-col A B P i 0 cA cP)))

(matrix-product-row A B P1 (1+ i) rP cA cP)))))

Here mp-res-i-j implements the sum
∑

k aikbkj , and P is a matrix with the
same number of rows as A and the same number columns as B, where we store
the resulting matrix product. Thus, matrix product is defined by the following
function:

(defun matrix-product (A B)
(let* ((rA (nrows-m A))

(cA (ncols-m A))
(cB (ncols-m B))
(P (initialize-mat rA cB nil)))

(matrix-product-row A B P 0 rA cA cB)))

Using this representation for matrices, we proved a number of well-known
algebraic properties of matrix operations. For example, the following are the
statements for product associativity and right identity (where matrix-id defines
the identity matrix of a given dimension):

(defthm matrix-product-associative
(implies (and (matp A) (matp B)

(equal (nrows-m B) (ncols-m A))
(equal (nrows-m C) (ncols-m B)))

(equal (matrix-product (matrix-product A B) C)
(matrix-product A (matrix-product B C)))))

(defthm matrix-product-right-identity
(implies (integer-matp-dim A (len A) n)

(equal (matrix-product A (matrix-id n)) A)))

358 L. Lambán et al.

A general technique we used to prove most of these algebraic properties is
based on the property that (equal P Q) if P and Q are matrices of the same
dimension m×n such that pij = qij for 0 <= i < m, 0 <= j < n. We proved this
property in a general way using the ACL2 encapsulation mechanism, and then
we use it by functional instantiation, after proving the corresponding algebraic
property for the individual entries of both sides of the equality. See the book
matrices-lists-of-lists.lisp in the supporting materials, for details.

2.2 An Abstract Representation for Matrix Normal Form
Computation

Algorithms that compute matrix normal forms, often compute also transforma-
tion matrices that relate the original matrix with its normal form. For example,
in the algorithm we describe in Sect. 4, the goal is to obtain, for a given matrix
A, a matrix H in a desired normal form and an invertible transformation matrix1

T such that A ·T = H. A general description of a matrix normal form algorithm
could be the following: we operate on two matrices, initially the original matrix
and the identity matrix; at every step, an elementary transformation (or opera-
tor) is applied to the first matrix and the same transformation is applied to the
second matrix; when the algorithm stops, we have H and T with the desired
properties.

We now explain a possible data structure for such algorithms, which turns
out to be natural for reasoning. First, we will represent the matrix A being trans-
formed, using the list of lists representation described in the previous subsection.
For the transformation matrix T we adopt a different approach: although the
executable algorithm will deal with the whole matrix, in the logic it will be more
convenient to see that transformation matrix as a list of operators, describing the
sequence of elementary transformations carried out; and each operator will be a
short description of the transformation. The reason is that it is easier to prove
the properties of the transformation matrix, if we explicitly have the sequence
of elementary transformations that this matrix represents.

For our concrete normal form algorithm described in Sect. 4, it turns out
that only one type of elementary transformation is needed2: given two distinct
column indices c1 and c2 and four integers x1, x2, y1 and y2, this transformation
replaces column c1 by the linear combination of column c1 times x1 plus column
c2 times x2, and also replaces column c2 by the linear combination of column c1
times y1 plus column c2 times y2. We will call this operator a linear combination
of columns (lcc), and in the logic it will be represented as the list (c1 c2 x1
x2 y1 y2). In our formalization, the function (lcc-op l n) checks if l is such

1 Some algorithms for computing matrix normal forms, like the Smith normal form,
need to compute two transformation matrices, but similar ideas would apply in that
case.

2 Of course, other normal forms algorithms needs different elementary transformations,
and possible more than one. But again, the same ideas described here could be
applied in such cases.

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 359

operator, where c1 and c2 are less than n. And (lcc-op-seq seq n) checks if
seq is a list of lcc operators.

The above considerations lead us to the following predicate mast$ap, recog-
nizing the data representation we have just described (the prefix $a is for
“abstract”):

(defun mast$ap (x)
(and (true-listp x)

(equal (len x) 2)
(let ((A (first x))

(seq (second x)))
(cond ((atom A) (and (equal A nil) (equal seq nil)))

(t (and (integer-matp-dim A (nrows-m A) (ncols-m A))
(lcc-op-seq seq (ncols-m A))))))))

We have defined a number of functions that operate on this data structure.
The main operation is linear combination of columns. For that, we first need to
define the function lin-comb-cols-lst, which effectively carries out the linear
combination of columns on a given matrix. Note that here we have an extra
parameter max-r, which indicates a row index. This allows us to perform the
linear combination of columns only until that row, but not below (the reason is
that during the transformation process, we will be sure that there will only be
zeros below a given row):

(defun lin-comb-cols-lst-rows (A c1 c2 r max-r x1 x2 y1 y2)
(cond ((or (not (natp max-r)) (not (natp r))) A)

((> r max-r) A)
(t (let* ((Arc1 (aref-m A r c1))

(Arc2 (aref-m A r c2))
(nArc1 (+ (* x1 Arc1) (* x2 Arc2)))
(nArc2 (+ (* y1 Arc1) (* y2 Arc2)))
(nA (update-aref-m r c2 nArc2

(update-aref-m r c1 nArc1 A))))
(lin-comb-cols-lst-rows nA c1 c2 (1+ r) max-r

x1 x2 y1 y2)))))

(defun lin-comb-cols-lst (A c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-lst-rows A c1 c2 0 max-r x1 x2 y1 y2))

Now, the following function implements the lcc transformation on our
abstract representation. Note that the transformation is only effectively carried
out on the first matrix:

(defun lin-comb-cols$a (mast$a c1 c2 max-r x1 x2 y1 y2)
(list (lin-comb-cols-lst (first mast$a) c1 c2 max-r x1 x2 y1 y2)

(cons (list c1 c2 x1 x2 y1 y2) (second mast$a))))

360 L. Lambán et al.

We would like to define our matrix normal form algorithm using this and
other functions defined on the abstract representation, but as we have said we
can improve execution if we do not use applicative lists. And also, probably, if
we were not interested in formal verification, we wouldn’t have dealt with lcc
operators, but with the whole transformation matrix instead.

3 Using Abstract Stobjs to Represent Matrices

So let us now define an executable and efficient data structure representation, and
see how we can relate it to the abstract representation described above. Efficient
execution is achieved in the ACL2 system mainly by means of two features:
guards and single threaded objects. The guard of a function is a specification
of its intended domain. Although functions in the ACL2 logic are total, guards
provide a way to specify and verify the inputs for which the function can be
safely executed directly in the underlying raw Common Lisp. A guard-verified
function respects the guards of all the functions that it calls (including itself
in case of a recursive function). All the functions involved in the algorithm of
Sect. 4 have been guard-verified.

The second feature related to efficient execution is provided by single
threaded objects (stobjs). These are data structures that allow accessing and
updating in constant time, and destructive updates on them. When an object is
declared to be single-threaded, ACL2 enforces certain syntactic restrictions on
its use, ensuring that in every moment, only one copy of the object is needed
(for example, one of these restrictions requires that if a function updates a stobj,
then it has to return the stobj). With these restrictions, the destructive updates
are consistent with the applicative functional semantics of ACL2.

Therefore, it would be good if we can execute our matrix algorithms using
stobjs. Nevertheless, although we can use arrays as fields of a stobj, those arrays
have to be 1-dimensional and accessing and updating the array is only allowed
via elementary operations, so reasoning directly using this representation could
be difficult. Fortunately, another ACL2 feature, abstract stobjs, will allow us to
define an alternative logical interface for the stobj.

3.1 A Stobj for Computing Matrix Normal Forms

Before describing the abstract stobj we have used, let us show the corresponding
stobj, where the execution will take place (we will call this the concrete repre-
sentation). In ACL2, a stobj is defined, using defstobj, as a structure with a
number of fields, where each field can be either of array type or of non-array
type. In our case, we will define a stobj with two 1-dimensional array fields, each
one storing the elements of a 2-dimensional matrix, in linearized form. The idea
is that one of the 1-dimensional arrays stores the matrix being transformed, and
the other stores the transformation matrix. We also need two non-array fields,
to store the number of rows and the number of columns of the first matrix. The
following defines this stobj (the $c suffix is for concrete):

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 361

(defstobj mast$c
(nrows$c :type (integer 0 *) :initially 0)
(ncols$c :type (integer 0 *) :initially 0)
(matrix$c :type (array integer (0)) :initially 0 :resizable t)
(trans$c :type (array integer (0)) :initially 0 :resizable t))

Array fields in stobjs are defined in the logic as ordinary lists, but for execu-
tion in the underlying Lisp, raw Lisp arrays are used. The effect of this ACL2
form is to introduce the stobj mast$c and its associated recognizers, creator,
accessors, updaters, and length and resize functions for its fields. For exam-
ple, given an index i, (matrix$ci i mast$c) and (update-matrix$ci i v
mast$c) respectively access and update (with value v) the i-th cell of the
matrix$c array. Similar functions are defined for the trans$c array. These oper-
ations are executed in constant time and the update is destructive (at the price
of syntactic restrictions on the use of the stobj). Logically speaking, they are
defined in terms of nth and update-nth.

We have defined a number of functions operating on this concrete represen-
tation. Let us show, for example, how we implement the linear combination of
columns. First, the following function performs that operation on the first matrix
(we omit some technical details):

(defexec lin-comb-cols-matrix$c-rows
(mast$c i j s r max-r x1 x2 y1 y2)

...
(cond ((> r max-r) mast$c)

(t (let* ((mat-i (mat$ci i mast$c))
(mat-j (mat$ci j mast$c))
(new-mat-i (+ (* x1 mat-i) (* x2 mat-j)))
(new-mat-j (+ (* y1 mat-i) (* y2 mat-j))))

(seq mast$c
(update-mat$ci i new-mat-i mast$c)
(update-mat$ci j new-mat-j mast$c)
(lin-comb-cols-matrix$c-rows mast$c (+ i s) (+ j s)

s (1+ r) max-r x1 x2 y1 y2))))))

(defun lin-comb-cols-matrix$c (mast$c c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-matrix$c-rows

mast$c c1 c2 (ncols$c mast$c) 0 max-r x1 x2 y1 y2))

Here i and j are indices of positions in the 1-dimensional array (initially, c1
and c2, respectively), and r is the current row of the corresponding 2-dimensional
array (initially 0). Note that to move to the next row in both columns, we add
s (the number of columns) to both indices.

In a very similar way, we define a function lin-comb-cols-trans$c that per-
forms the same operation on the trans$c 1-dimensional array. And finally, we
sequentially apply both transformations (note that the operation on the trans-
formation matrix is performed until the last row):

362 L. Lambán et al.

(defun lin-comb-cols$c (mast$c c1 c2 max-r x1 x2 y1 y2)
(seq mast$c

(lin-comb-cols-matrix$c mast$c c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-trans$c mast$c c1 c2

(1- (ncols$c mast$c)) x1 x2 y1 y2)))

3.2 The Abstract Stobj

Until now, we have defined an abstract representation (convenient for reasoning),
and also a concrete representation (suitable for execution). In both representa-
tions, we have defined functions that perform the main operations needed for
our matrix normal form algorithm. Now we can combine the best of both repre-
sentations, thanks to abstract stobjs.

But before we have to introduce a (non-executable) correspondence predi-
cate, describing in what sense the concrete and the abstract representations are
related. Basically: the concrete representation stores the size of the matrix in the
abstract representation; the first 1-dimensional array of the concrete represen-
tation is a linearized version of the matrix of the abstract one; and the second
1-dimensional matrix of the concrete representation is a linearized version of the
result of applying the sequence of lcc operators of the abstract representation,
to the identity matrix:

(defun-nx mast$corr (mast$c mast$a)
(let ((nrows (len (first mast$a)))

(ncols (len (first (first mast$a)))))
(and (equal nrows (nth 0 mast$c))

(equal ncols (nth 1 mast$c))
(equal (append-lst (first mast$a)) (nth 2 mast$c))
(equal (append-lst (apply-lcc-op-seq (second mast$a)

(matrix-id ncols)))
(nth 3 mast$c)))))

Here (append-lst ls) is a function that given a list of lists ls, concatenates
all of them into one single list. And apply-lcc-op-seq is a function that applies
a sequence of lcc operators to a given matrix. Here it is its definition:

(defun apply-lcc-op (op A)
(let ((c1 (nth 0 op)) (c2 (nth 1 op)) (x1 (nth 2 op))

(x2 (nth 3 op)) (y1 (nth 4 op)) (y2 (nth 5 op)))
(lin-comb-cols-lst A c1 c2 (1- (nrows-m A)) x1 x2 y1 y2)))

(defun apply-lcc-op-seq (seq A)
(cond ((endp seq) A)

(t (apply-lcc-op (first seq)
(apply-lcc-op-seq (rest seq) A)))))

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 363

Note that this function is only for specification. In particular, we apply
lin-comb-cols-lst to all the rows of the matrix and not only until a given
row, since that optimization will only make sense in the particular implementa-
tion of a normalization algorithm.

Now we can define the abstract stobj that provides a sound logical connec-
tion between both representations. In ACL2, a defabsstobj event defines an
abstract single-threaded object that is proven to satisfy a given invariant prop-
erty, and that can only be accessed or updated by some given functions called
exports. These functions have an abstract definition that ACL2 uses for reason-
ing and a different concrete implementation that ACL2 uses for execution on
a corresponding concrete stobj. In our case, this is the abstract stobj we have
defined:

(defabsstobj mast
:exports (initialize-mast

nrows ncols
aref-mat
lin-comb-cols
get-mat
get-trans))

Here initialize-mast is a function that given an initial matrix A (as a list
of lists), stores it in the abstract stobj. The abstract definition for this export
is straightforward (simply returns (list A nil)), but the concrete executable
definition is far more difficult, since it has to store each element of A and each
element of the identity matrix in the corresponding 1-dimensional arrays of the
stobj. As for lin-comb-cols, we have already presented its abstract and con-
crete definitions. These two exports update the abstract stobj, and the rest of
the exports are only accessors: nrows and ncols give the number of rows and
columns of the first matrix, aref-mat access to an element of the first matrix
by its row and column indices; and get-mat and get-trans return, respectively,
the first and the second matrices, as list of lists. Note that again this is easy
for the abstract representation (especially get-mat) but it is not trivial for the
concrete definitions.

Unless specified, the names for the corresponding concrete stobj, the cor-
respondence predicate, and for the abstract and concrete functions associated
with each export, are obtained appending the suffixes $a (abstract) or $c (con-
crete) to the names given in the defabsstobj. To accept a defabsstobj event,
all these corresponding abstract and concrete functions have to be previously
defined, their guards verified, and also a number of proof obligations automat-
ically generated by the event must be already proved. These proof obligations
guarantee that the correspondence between the abstract and the concrete repre-
sentation, the recognizer property, and the guards of the exports are preserved
after updating the stobj, and also that the abstract and the concrete correspond-
ing accessors return the same values. That is, the proof obligations essentially
guarantee that reasoning with the abstract representation and executing with

364 L. Lambán et al.

the concrete representation is logically sound. See matrices-abstobj.lisp for
the statements of all these proof obligations and a proof of them.

Once this abstract stobj is defined, we can use it as the data structure for a
matrix normal form algorithm, provided that the single-threadedness syntactic
restrictions are met. The only primitive functions we can use to access or update
the abstract stobj are the exports. We emphasize that when proving theorems
about the algorithm, ACL2 uses the abstract definitions of the exports (that is,
the ones with the $a suffix); but for execution, it uses the concrete data structure
and definitions (that is, the ones with the $c suffix).

4 An Algorithm to Compute a Column Echelon Form

We illustrate how we can use the described absstobj framework, by means of a
verified implementation of an algorithm that given a matrix of integers A, com-
putes an equivalent integer matrix C that it is in column echelon form, together
with a unimodular transformation integer matrix T such that A ·T = C. We say
that a matrix C is in column echelon form if zero columns of C precede nonzero
columns and, for each nonzero column of C, its leading entry (the last nonzero
element of the column) is above the leading entries of the following columns.
This notion of column echelon form is not exactly the same as other classical
echelon forms usually defined in the literature, such as Hermite or Howell forms.
Nevertheless, as we have said in the introduction, this has to be considered in
the context of developing ACL2 programs to compute homology groups of chain
complexes, and it turns out that this simple echelon transformation is suitable for
this task. And anyway, our main purpose here is to illustrate with this example
how we can apply the absstobj infrastructure just described.

Although the algorithm is implemented for integer matrices, it could be gen-
eralized to matrices in a more general class of rings, namely, the class of Bézout
domains. Roughly speaking, a Bézout domain is an integral domain where every
finite ideal is principal. This property is equivalent to the existence of an explicit
Greatest Common Divisor (gcd) operation providing the Bézout identity of every
pair of elements: if d is the gcd of two elements a and b, there exist two elements
x and y such that d = ax+ by. Note that in a ring we do not have in general the
inverse of an element, so we cannot apply here usual techniques employed when
the entries are in a field (like Gaussian elimination).

4.1 Definition of the Algorithm

Let us now present the ACL2 implementation of the column echelon form algo-
rithm. First, a key ingredient is the extended Euclides algorithm which, besides
the greatest common divisor of two integers, computes the coefficients of the
Bézout identity. In particular, we have defined a function (bezout a b) such
that given two integers a and b, returns a tuple of integers (g s1 t1 s2 t2) such
that g = gcd(a, b), s1a + t1b = d and s2a + t2b = 0. Note that these properties
can be expressed in matrix form:

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 365

(a b) ·
(
s2 s1
t2 t1

)

= (0 gcd(a, b))

This 2×2 matrix has the property that it is unimodular (determinant 1 or −1)
and thus invertible in the ring of integers. It is an elementary transformation
matrix that can be also easily generalized to size n×n, in such a way that right
multiplication by this elementary matrix is just like applying a lcc operator.
Essentially, the algorithm iteratively applies this transformation with the aim of
obtaining the zero entries needed in the echelon form. This is done from the last
row to the first one, and in every row, from a given column to the first one.

The following functions implement the algorithm operating on the abstract
stobj mast. This means that the only elementary operations we can apply
to mast are the exports specified in its defabsstobj. The first function is
cef-bezout-row-col below, which given a row index (- i 1) and column
indices (- c 1) and (- j 1), apply the lcc transformation on those columns,
and thus obtaining a zero in the position of row (- i 1) and column (- c 1),
using as pivot the entry of the same row and column (- j 1). This is done when
we already know that the entries of the given columns that are below the given
row are already zero, so it is justified to do the linear combination only until
that row:

(defun cef-bezout-row-col (mast c i j)
(mv-let (g s1 t1 s2 t2)

(bezout (aref-mat mast (- i 1) (- c 1))
(aref-mat mast (- i 1) (- j 1)))

(lin-comb-cols mast (- c 1) (- j 1) (- i 1) s2 t2 s1 t1)))

Given the position of a pivot, this lcc transformation is applied for all the
columns to the left, obtaining zeros in the row of the pivot, until the column of the
pivot. This recursive process is carried out by the function cef-reduct-row-col
and initiated by the function cef-reduct-row, from a given pair of row and
column indices:

(defun cef-reduct-row-col (mast c i j)
(cond ((zp c) mast)

(t (seq mast
(cef-bezout-row-col mast c i j)
(cef-reduct-row-col mast (- c 1) i j)))))

(defun cef-reduct-row (mast i j)
(cond ((zp j) mast)

(t (cef-reduct-row-col mast (- j 1) i j))))

To get the echelon form, we iteratively apply this process from the last row
to the first one. We also have to take into account that the column of the pivot
is changing from one row to the next, depending on the result obtained after
reducing that row. If we have a zero in the position of the pivot, the column of
the pivot is unchanged. Otherwise is decremented by one:

366 L. Lambán et al.

(defun cef-row-col (mast i j)
(cond ((or (zp i) (zp j)) mast)

(t (let ((mast (cef-reduct-row mast i j)))
(if (= (aref-mat mast (- i 1) (- j 1)) 0)

(cef-row-col mast (- i 1) j)
(cef-row-col mast (- i 1) (- j 1)))))))

Given an input matrix A (represented as lists of lists). The algorithm is initi-
ated calling the export initialize-mast, and then the function cef-row-col,
starting in the last row and columns:

(defun cef (A mast)
(seq mast

(initialize-mast mast A)
(cef-row-col mast (nrows mast) (ncols mast))))

Note that the above function cef receives as input the mast abstract stobj
and thus, due to the single-threadedness requirements, it has to return also the
abstract stobj. Nevertheless, we can define a function cef-matrix in which the
input and output are not explicitly connected to the stobj. This can be done
using mast locally (by means of with-local-stobj), and finally returning the
computed matrices represented as lists of lists (using the exports get-mat and
get-trans):

(defun cef-matrix (A)
(with-local-stobj mast

(mv-let (mast mat trans)
(seq mast

(cef A mast)
(mv mast (get-mat mast) (get-trans mast)))

(mv mat trans))))

4.2 Main Theorems Proved

We proved in ACL2 the following theorems, stating that given an integer matrix
A, the algorithm cef-matrix computes an equivalent integer matrix that is in
column echelon normal form:

(defthm cef-cef-matrix
(implies (integer-matp A)

(let ((H (first (cef-matrix A))))
(and (integer-matp-dim H (nrows-m A) (ncols-m A))

(cef-p H)))))

(defthm matrix-product-cef-matrix
(implies (integer-matp A)

(let ((H (first (cef-matrix A)))

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 367

(TR (second (cef-matrix A))))
(and (integer-matp-dim TR (ncols-m A) (ncols-m A))

(equal (matrix-product A TR) H)))))

(defthm inverse-matrix-cef-matrix
(implies (integer-matp A)

(let ((TR (second (cef-matrix A)))
(TR-INV (cef-matrix-transinv A)))

(and (equal (matrix-product TR TR-INV)
(matrix-id (ncols-m A)))

(equal (matrix-product TR-INV TR)
(matrix-id (ncols-m A)))))))

In the first of three above theorems, the function cef-p is a predicate checking
that a matrix is in column echelon form. The result is proved by defining a more
general invariant about the form of the matrix during the transformation process;
the stopping condition of the algorithm and this invariant implies the theorem.

The second theorem establishes that the second matrix computed by the
algorithm is indeed the transformation matrix. This is also an invariant of the
process, and note that we have to deal also with the fact that we do the lin-
ear combination only until a given row, since from that row on, we have zeros.
Additionally, we need to prove the relation between the linear combination of
columns carried out by lin-comb-cols and the matrix product by the elemen-
tary transformation matrix that can be obtained from a lcc operator.

Finally the third theorem establishes that the transformation matrix is invert-
ible, where (cef-matrix-transinv A) is a function that obtains the inverse of
the transformation matrix computed by the algorithm. We emphasize that the
abstract representation is specially convenient, among other reasons, for defining
this function and proving the theorem. This is its definition:

(defun-nx cef-matrix-transinv (A)
(let ((res (cef A ’(nil nil))))

(apply-lcc-op-seq
(inv-lcc-op-seq (second res)) (matrix-id (ncols-m A)))))

Given a lcc operator whose coefficients have been obtained as the result of
an application of the extended Euclides algorithm, then we can prove that there
exists a corresponding lcc operator describing the inverse linear combination
(that is, the operator is invertible). Given a sequence of lcc invertible operators,
the function inv-lcc-op-seq, obtains the reversed sequence of the inverses of
each operator. We apply this function to the sequence of operators stored in
the second element of the final abstract stobj computed by the algorithm, and
then we apply this inverse sequence to the identity matrix. Note that we are
taking advantage from the fact that our abstract representation contains the lcc
operators explicitly (although our executable concrete representation deals only
with the transformation matrix, not with the abstract operators).

368 L. Lambán et al.

For details about the ACL2 proof of these theorems, we urge the inter-
ested reader to consult the supporting materials, books matrices-abstobj-
properties.lisp and cef-mast.lisp.

4.3 Experimental Results

To check how this formally verified abstract stobj implementation influences the
execution performance of the algorithm, we tested it on several random matrices
of different sizes. We compared it to two other implementations of the same
algorithm: an analogous unverified ACL23 implementation, that uses matrices
represented as applicative lists of lists, instead of the abstract stobj; and also
an iterative version of the same algorithm in Python 3, using (mutable) lists,
which have accesses and updates in constant time. For each size, we generated
a number of matrices, and averaged the execution time obtained.

Table 1. Execution times for ran-
dom matrices

Size 10 20 30 40

List 0.00 0.01 0.54 153.83

Mast 0.00 0.01 0.53 151.96

Python 0.00 0.01 0.59 55.90

Table 2. Execution times for random first
column based matrices

Size 160 170 180 190 200

List 32.82 42.07 53.36 65.79 82.62

Mast 0.19 0.23 0.27 0.33 0.38

Python 2.62 3.10 3.60 4.71 5.81

In the Table 1, we show the execution time for random matrices until size
40×40. We see that for sizes below 30×30, the execution times are good for the
three implementations. Nevertheless, for sizes 40× 40 and bigger, the execution
times become unacceptable for both ACL2 implementations, and even for the
Python implementation. Nevertheless, we conjecture that the data structures
used are not responsible of this slow down: this algorithm and other dealing
with integers matrices, usually generate very big numbers. A naive treatment of
the arithmetic operations is not enough for dealing with this complexity (and
the techniques usually applied [6,12] are out of the scope of this paper).

To concentrate on how the data structures used really influence the execution
times, we generate matrices of sizes until 200 × 200, in which only the first
column is random, and the rest of the columns are multiples of the first one. In
this way, the arithmetic operations are very straightforward, and the execution
times essentially come from accessing and updating the arrays. These execution
times are shown in the Table 2. We can see that the applicative ACL2 version
is also very slow for that sizes, but the ACL2 abstract stobjs implementation is
fast, and even better than the Python implementation.

3 We used ACL2 Version 7.2 compiled with SBCL 1.2.16.

Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms 369

5 Related Work and Conclusions

We have presented in this paper an approach to formally verify matrix normal
form algorithms, while still having efficient data structures for execution. For
that, we use the ACL2 system and in particular abstract single-threaded objects,
which allow both a convenient logical representation of data and a more efficient
concrete representation for execution. We have illustrated this approach showing
an ACL2 formal verification of an algorithm to compute echelon forms of integer
matrices.

Several formalizations in which matrix algebra plays an important role have
been presented in most of theorem provers. For example, using the Coq system
[4,8,9] or in Isabelle [2,3]. In all these works, the emphasis is mainly put in the
formalization, and in particular they formalize more general results with respect
to the algebraic structures involved. In [2] it is also described how to speed-up
execution times of the formalized algorithm, first by data type refinements and
then by generating code to be executed in a functional programming language.
In our case, the approach is different: since ACL2 is built on top of Common
Lisp and the logic formalizes an applicative subset of it, we reason directly on
the final implementation and execution and reasoning is carried out on the same
system.

In addition to stobjs, ACL2 provides 2-dimensional arrays, which under rea-
sonable assumptions provide access in constant time to the entries of the array.
This data structures is used in [5] to formalize some common operations and
properties of matrices in ACL2. However, the stobj approach is generally more
efficient when there are updates [1].

We think abstract stobjs provide a suitable framework for dealing with matri-
ces in ACL2. They provide a clean separation between the data structures used
for execution, and the properties of the algorithms that operate on them. In par-
ticular, we think the approach shown here for a concrete matrix normalization
algorithm can be applied in general to other algorithms that compute normal
forms of matrices.

It is worth noting that previous to the introduction of abstract stobjs in
ACL2, it was also possible to have a similar formalization strategy: we could
have defined two different versions of the algorithm (abstract and concrete, stobj
based), prove the main properties of the abstract algorithm and then prove that
both versions compute the same results. Now, abstract stobjs provide sound and
enhanced support from the system, to carry out this proof strategy: first, we can
specify in advance the elementary operations (exports) that will be allowed to
operate on the data structures; and second, once introduced, we can concentrate
on the abstract definitions, to reason about the properties of the algorithms that
use it. A significant downside of the older approach was that one had to prove the
correspondence between every newly introduced concrete and abstract function,
whereas all such work is done once and for all when using abstract stobjs, thereby
easing the maintenance of a formally verified ACL2 implementation.

370 L. Lambán et al.

References

1. ACL2 version 7.4. http://www.cs.utexas.edu/users/moore/acl2/
2. Aransay, J., Divasón, J.: Formalisation in higher-order logic and code generation

to functional languages of the Gauss-Jordan algorithm. J. Funct. Program. 25(9),
1–21 (2015)

3. Aransay, J., Divasón, J.: Formalization of the computation of the echelon form of
a matrix in Isabelle/HOL. Form. Asp. Comput. 28, 1005–1026 (2016)

4. Cano, G., Cohen, C., Dénès, M., Mörtberg, A., Siles, V.: Formalized linear algebra
over elementary divisor rings in Coq logical methods in computer. Science 12(2),
1–29 (2016)

5. Cowles, J., Gamboa, R., Van Baalen, J.: Using ACL2 arrays to formalize matrix
algebra. In: Proceedings of ACL2 2003 (2003)

6. Domich, P.D., Kannan, R., Trotter Jr., L.E.: Hermite normal form computation
using modulo determinant arithmetic. Math. Oper. Res. 12, 50–69 (1987)

7. Goel, S., Hunt Jr., W.A., Kaufmann, M.: Abstract stobjs and their application to
ISA modeling. In: Proceedings of ACL2 2013, pp. 54–69 (2013)

8. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–
118. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 10

9. Heras, J., Coquand, T., Mörtberg, A., Siles, V.: Computing persistent homology
within Coq/SSReflect. ACM Trans. Comput. Log. 14(4), 1–26 (2013)

10. Lambán, L., Mart́ın-Mateos, F.-J., Rubio, J., Ruiz-Reina, J.-L.: Towards a verifi-
able topology of data. In: Proceedings of EACA-2016, pp. 113–116 (2016)

11. Newman, M.: The Smith normal form. Linear Algebra Appl. 254, 367–381 (1997)
12. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal

Institute of Technology, Zurich (2013)

http://www.cs.utexas.edu/users/moore/acl2/
http://dx.doi.org/10.1007/978-3-642-22863-6_10

Typing Total Recursive Functions in Coq

Dominique Larchey-Wendling(B)

LORIA – CNRS, Nancy, France
dominique.larchey-wendling@loria.fr

Abstract. We present a (relatively) short mechanized proof that Coq
types any recursive function which is provably total in Coq. The well-
founded (and terminating) induction scheme, which is the foundation of
Coq recursion, is maximal. We implement an unbounded minimization
scheme for decidable predicates. It can also be used to reify a whole cat-
egory of undecidable predicates. This development is purely constructive
and requires no axiom. Hence it can be integrated into any project that
might assume additional axioms.

1 Introduction

This paper contains a mechanization in Coq of the result that any total recursive
function can be represented by a Coq term. A short slogan could be Coq types
any total recursive function, but that would be a bit misleading because the
term total might also refer to the meta-theoretical level (see Sect. 7).

The theory of partial recursive (or μ-recursive) functions describes the class
of recursive functions by an inductive scheme: it is the least set of partial func-
tions N

k−⇁N containing constant functions, zero, successor and closed under
composition, recursion and unbounded minimization [9]. Forbidding minimiza-
tion (implemented by the μ operator) leads to the sub-class of primitive recursive
functions which are total functions N

k−→N. Coq has all the recursive schemes
except unbounded minimization so it is relatively straightforward to show that
any primitive recursive function f : Nk−→N can be represented by a Coq term
tf : N k → N where N is a short notation for the Coq type nat of Peano natural
numbers. To represent all partial recursive functions Nk−⇁N by Coq terms, we
would first need to deal with partiality and change the type into N k→option N
(for instance) because (axiom-free) Coq only contains total functions; so here the
term None : option N represents the undefined value. Unfortunately, this does
not work because Coq (axiom-free) meta-level normalization would transform
such an encoding into a solution of the Halting problem.

Then, from a theoretical standpoint one question remains: which are the
functions that Coq can represent in the type N k → N . In this paper, we give a
mechanized proof that formally answers of half of the question:

The type N k → N contains every recursive function of arity k which can
be proved total in Coq.

Work partially supported by the TICAMORE project (ANR grant 16-CE91-0002).

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 371–388, 2017.
DOI: 10.1007/978-3-319-66107-0 24

https://ticamore.logic.at
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002

372 D. Larchey-Wendling

Such a result was hinted in [2] but we believe that mechanizing the suggested
approach implies a lot of work (see Sect. 2). This property of totality of Coq
can compared to the characterization of System F definable functions as those
which are provably total in AF2 [5]. Besides the fact that AF2 and Coq are
different logical frameworks, the main difference here is that we mechanize the
result inside of Coq itself whereas the AF2 characterization is proved at the
meta-theoretical level.

Before the detailed description of our contributions, we want to insist on
different meanings of the notion of function that should not be confused:

– The μ-recursive schemes are the constructors of an inductive type of algo-
rithms which are the “source code” and can be interpreted as partial function
N

k−⇁N in Set theory or as predicates N k → N → Prop in Coq;
– The Set-theoretic notion of partial function is a graph/relation between ele-

ments and their images. μ-recursive functions should not be understood inde-
pendently of the algorithm that implements theses relations: it is impossible
to recover an algorithm from the data of the graph alone;

– Then Coq has function types A→B which is a related but nevertheless entirely
different notion of function and we rather call them predicates here.

Now let us give a more detailed description of the result we have obtained.
We define a dependent family of types Ak representing recursive algorithms of
arity k : N . An algorithm f : Ak defines a (partial) recursive function denoted
�f� and which is represented in Coq as a predicate �f� : N k → N → Prop:

The proposition �f� v x reads as: the computation of the algorithm f from
the input k-tuple v terminates and results in x.

The implementation of the relation �f� is a simple exercise. It is more difficult
to show that whenever the relation (v, x) �→ �f� v x between the input v and the
result x is total, then there is a term tf : N k → N (effectively computable from
f) such that the result of the computation of f on the input v is (tf v) for any
v : N k. This is precisely what we show in the following formal statement:

∀(k : N)(f : Ak),
(∀v,∃x, �f� v x

) → {
tf : N k → N ∣

∣ ∀v, �f� v (tf v)
}

(CiT)

The statement means that if �f� represents a total function (∀v,∃x, �f� v x),
then it can be effectively transformed into a Coq term tf : N k → N such that
(tf v) is the value computed by the recursive function �f� on the input v.

As we already pointed out, “Coq is Total” (CiT) is only one half of the
characterization of the predicates that are definable in the type N k → N . The
other half of the characterization, i.e. any predicate of type N k→N corresponds
to a μ-recursive function, while meta-theoretically provable for axiom-free Coq,
cannot not be proved within Coq itself; see Sect. 7.

We will call reification the process of transforming a non-informative predi-
cate like P : ∀v,∃x, �f� v x into an informative predicate Q : ∀v, {x | �f� v x}.1

1 From which the term tf := v �→ proj1 sig(Q v) of (CiT) is trivially derived.

Typing Total Recursive Functions in Coq 373

In its general form, reification is a map from inhabitedX : Prop to X : Type; it
transforms a non-informative proof of existence of a witness into an effective wit-
ness. In a proof system like HOL for instance, reification is built-in by Hilbert’s
epsilon operator. On the contrary, because of its constructive design, Coq does
not allow unrestricted reification. If needed in its full generality, it requires the
addition of specific axioms as discussed in Sects. 3.1 and 8.

One of the originalities of this work is that the proof we develop is purely
constructive (axiom free) and avoids the detour through small-step operational
semantics, that is the use of a model of computation on an encoded representa-
tion of recursive functions. For instance, programs are represented by numbers
(Gödel coding) in the proof of the S-m-n theorem [13]. It is also possible to use
other models of computations such as register machines (or Turing machines) or
even λ-calculus as in [8] or in our own dependently typed implementation [7] of
Krivine’s reference textbook [6]; see Sect. 7.

In Sect. 2, we present an overview of the consequences of the use of small-
step operational semantics and how we avoid it. In Sect. 3 we describe how to
implement unbounded minimization of inhabited decidable predicates in Coq.
Section 4 presents the inductive types we need for our development, most notably
the dependent type Ak of recursive algorithms of arity k and Sect. 5 defines
three different but equivalent semantics for Ak, in particular a decidable cost
aware big-step semantics which is the critical ingredient to avoid small-step
semantics. Section 6 concludes with the formal statement of (CiT) and its proof.
In Sect. 7, we discuss related work and/or alternative approaches. In Sect. 8,
we describe how to reify undecidable predicates (under some assumptions of
course), in particular, provability predicates, normalizability predicates and even
arbitrary recursively enumerable predicates. Section 9 lists some details of the
implementation and how it is split into different libraries.

To shorten notations, we recall that we denote by N the inductively defined
Coq type nat of natural numbers. The μ-recursive scheme of composition
requires the use of k-tuples which we implement as vectors. Vectors are typeset
in a bold font such as in v : N k and they correspond to a polymorphic depen-
dent type described in Sect. 4. Π-types are denoted with a ∀ symbol. We denote
Σ-types with their usual Coq notations, which are (∃x, P x) : Prop for non-
informative existential quantification, {x | P x} : Set for informative existential
quantification, or even {x : X &P x} : Type when P : X → Type carries informa-
tion as well. These Σ-types are inductively defined in modules Logic and Specif
of the standard library. The interpretation of the different existential quantifiers
of Coq is discussed in Sect. 3.1.

2 Avoiding Small-Step Operational Semantics

In this section we give a high level view of our strategy to obtain a mechanized
proof of the typability of total recursive functions in Coq. Let us first discuss
the approach which is outlined in [2] (Sect. 4.4, p. 685).

374 D. Larchey-Wendling

1. By Kleene’s normal form theorem [9], every recursive function can be obtained
by the minimization of a primitive (hence total) recursive function;

2. Every primitive recursive function can directly be typed in Coq. The primi-
tive recursion scheme is precisely the recursor nat rec corresponding to the
inductive type nat (denoted N in this paper);

3. The outermost minimization could be implemented by a “specific minimiza-
tion function” defined by mutual structural recursion.

Items 1 and 2 are results which should not come as a surprise to anyone knowl-
edgeable of μ-recursion theory and basic Coq programming. These observations
were already made in [2]. Their approach to minimization (i.e. Item 3) seems2

however distinct from what we propose as Item 3′ here:

3′. Minimizations of inhabited and decidable predicates of type N → Prop can
be implemented in (axiom free) Coq.

Item 3′ could be considered as a bit surprising. Indeed, inductive type theory
and hence Coq prohibits unbounded minimization. Hence we did not suspect
that Coq could have such a property. When it first came to our attention, we
realized that it provided a direct path towards a proof that Coq “had” any total
recursive function. Critical for our approach, Item 3′ is described in Sect. 3.

Despite its apparent straightforwardness, this three steps approach (with
either Item 3 or Item 3′) is difficult to implement because of Item 1. Indeed, let us
describe more precisely what it implies. Kleene’s normal form theorem involves
the T primitive recursive predicate which decides whether a given (encoding of
a) computation corresponds to a given (encoding of a) program code or not.
For this, you need a small-step operational semantics (a model of computation),
say for instance Minsky (or counter) machines, and a compiler from recursive
functions code to Minsky machines. You need of course a correctness proof for
that compiler. Since the T predicate operates on natural numbers N , all these
data-structures should be encoded in N which complicates proofs further. Then
the T predicate should answer the following question: does this given encoding
of a sequence of states correspond to the execution of that given encoding of
a Minsky machine. Most importantly, the T predicate should be proved primi-
tive recursive and correct w.r.t. this specification. Programming using primitive
recursive schemes is really cumbersome and virtually nobody does this.

Compared to the above three steps approach, the trick which is used in this
paper is to merge Items 1 and 2. Instead of showing that recursive functions
are minimizations of primitive recursive functions, it is sufficient to show that
recursive functions are minimizations of Coq definable predicates. From this point
of view, it is possible to completely avoid the encoding/decoding phases from/to
N but more importantly, we do not need a small-step semantics any more; we
can replace it with a decidable big-step semantics: this avoids the implementation
of a model of computation and thus, the proof of correctness of a compiler.
2 It is difficult to use a word more accurate than “seems” because the relevant discus-

sion in [2] is just a short outline of an approach, not a proof or an actual implemen-
tation.

Typing Total Recursive Functions in Coq 375

Our mechanization proceeds in the following steps. We define an inductive
predicate denoted [f ;v]−[α〉〉x and called cost aware big-step semantics. It reads
as: the recursive algorithm f terminates on input v and outputs x at cost α. This
relation is functional/deterministic in both α and x. We show the equivalence
�f�v x ⇐⇒ ∃α, [f ;v]−[α〉〉x. We establish the central result of decidability of
cost aware big-step semantics when α is fixed: for any f , v and α, either x
together with a proof of [f ;v]−[α〉〉x can be computed (i.e. {x | [f ;v]−[α〉〉x}),
or (an informative “or”) a proof that no such x exists can be computed (i.e.
¬∃x, [f ;v]−[α〉〉x). These results are combined in the following way: from a
proof of definedness (∃x, �f�v x), we deduce ∃x∃α, [f ;v]−[α〉〉x. Equivalently we
get ∃α, inhabited {x | [f ;v]−[α〉〉x}. By unbounded minimization of inhabited
decidable predicates (see Sect. 3), we reify the proposition ∃α, inhabited {x |
[f ;v]−[α〉〉x} into the predicate {α & {x | [f ;v]−[α〉〉x}}. Then we extract α, x
and a proof that [f ;v]−[α〉〉x, hence �f� v x, showing that the computed value
x is the output value of f on input v.

3 Reifying ∃P into ΣP for P :N → {Prop, Type}
In this section, we describe a way to reify non-informative inhabited decidable
predicates of type P : N →Prop. So we show how to constructively build a value
n : N and a proof term t : P n. We use an unbounded (but still well-founded) min-
imization algorithm whose termination is guaranteed by a proof of inhabitation
∃n, P n. The mechanization occurs in the file nat minimizer.v which is nearly
self-contained. In a way, this shows that Coq has unbounded minimization of
inhabited and decidable predicates, whereas the theory of recursive functions
has unbounded minimization of partial recursive functions. In Sect. 3.3, we also
reify informative decidable predicates P : N → Type that are inhabited, i.e. ver-
ifying ∃n, inhabited (P n).

3.1 Existential Quantification in Coq

Let us recall the usual interpretation of the existential quantifiers that are avail-
able in Coq. In Type Theory, they are called Σ-types over a index type X:

– for P : X → Prop, the expression ∃x : X,P x (or exP) is of type Prop and a
term of that type is only a proof that there exists x : X which satisfies P x.
The witness x need not be effective. It can be obtained by non-constructive
means. For instance, the proof may use axioms in Prop such as the excluded
middle (typically). We say that the predicate ∃x : X,P x is non-informative;

– for P : X → Prop, the expression {x : X | P x} (or sigP) is of type Set/Type
and a proof term for it is an (effective) term x together with a proof of P x (x
must be described by purely constructive methods). We say that the predicate
{x : X | P x} is informative;

– for P : X →Type, the expression {x : X &P x} (or sigTP) is of type Type. It
carries both an effective witness x such that P x is inhabited and an effective
inhabitant of P x. The predicate {x : X &P x} is fully informative.

376 D. Larchey-Wendling

When the computational content of terms is extracted, the sub-terms of type
Prop are pruned and their code does not impact the extracted terms: this prop-
erty is called proof irrelevance. It implies that adding axioms in Prop will only
allow to show more (termination) properties but it will not change the behaviour
of terms. However, proof irrelevance is not preserved by adding axioms in Type.

The Constructive Indefinite Description axiom as stated in Coq standard
library module ChoiceFacts can reify any non-informative predicate ∃P :

∀(X : Type)(P : X → Prop), (∃x : X,P x) → {x : X | P x} (CID)

It provides an (axiomatic) transformation of ∃P (i.e. ∃x, P x in Coq) into ΣP
(i.e. {x | P x} in Coq). The type ∀X : Type, inhabited X → X provides an
equivalent definition of (CID) where inhabited : Type → Prop is the “hidding
predicate” of the Logic module; see file cid.v and Sect. 3.3.

Assuming the axiom (CID) creates an “artificial” bridge between two sep-
arate worlds.3 Some would even claim that such an axiom is at odds with
the design philosophy of Coq: the default bridges that exist between the non-
informative sort Prop and the informative sorts Set/Type were carefully intro-
duced by Coq designers to be “constructively” safe; in particular, to ensure
that extraction is proof irrelevant. Assuming (CID) would not be inconsis-
tent with extraction but it would leave a hole in the extracted terms that
make use of it. Moreover, assuming (CID), one can easily derive a proof of
∀AB : Prop, A∨ B → {A} + {B} and thus, a statement like ∀x, {P x} + {¬P x}
cannot be interpreted as “P is decidable” anymore. This is well explained in [3]
together with the relations between (CID) and Hilbert’s epsilon operator. You
will also find a summary of the incompatibilities between (CID) and other fea-
tures or axioms in Coq.

3.2 The Case of Predicates of Type N → Prop

We describe a way to implement an instance of (CID) constructively but of
course, that proof requires additional assumptions: we require that P is a decid-
able predicate that ranges over N instead of an arbitrary type X. We do not
extract the missing information x but instead, we generate it using a well-
founded algorithm that first transforms the non-informative inhabitation pred-
icate ∃x : N , P x into a termination certificate for a well-founded minimization
algorithm that sequentially enumerates natural numbers in ascending order.

Recall the definition of the non-informative accessibility predicate from the
Wf module of the Coq standard library:

Inductive Acc {X : Type} (R : X → X → Prop) (x : X) :=
| Acc intro : (∀y : X,R y x → Acc R y) → Acc R x

We write Acc R instead of Acc X R because the parameter X is declared implicit.
3 Of course this statement is of philosophical nature. We do not claim that assuming

additional axiom is evil, but carelessly adding axioms is a recipe for inconsistencies.

Typing Total Recursive Functions in Coq 377

We assume a predicate P : N → Prop and we suppose that P is decidable (in
Coq) with a decision term HP . We define a binary relation R : N → N → Prop
and we show the following results:

Variables (P : N → Prop)
(
HP : ∀n : N , {P n} + {¬P n})

Let R (n m : N) := (n = 1 + m)∧ ¬P m

Let P Acc R : ∀n : N , P n → Acc R n
Let Acc R dec : ∀n : N , Acc R (1 + n) → Acc R n
Let Acc R zero : ∀n : N , Acc R n → Acc R 0
Let Acc P : ∀n : N , Acc R n → {x : N | P x}

which all have straightforward proofs except for Acc P. That last one is done by
induction on the accessibility predicate Acc R n. The proof term Acc P uses the
decision term HP to choose between stopping and moving on to the successor:
it stops when HP n returns “true,” i.e. left T with T : P n; it loops on 1 + n
when HP n returns “false,” i.e. right F with F : ¬P n. We analyse the term:

Let Acc inv (n : N) (Hn : Acc R n) : ∀m,R m n → Acc R m :=
match Hn with Acc intro H ′

n �→H ′
n end

Fixpoint Acc P (n : N) (Hn : Acc R n) : {x : N | P x} :=
match HP n with

| left T �→ exist n T
| right F �→ Acc P (1 + n)

(
Acc inv Hn (conj eq refl F)

)

end.

The recursion cannot be based on the argument n because it would not be
structurally well-founded in that case and the Coq type-checker would reject it.
The recursion is based on the Acc R n predicate. The definition is split in two
parts to make it more readable; Acc inv is from the module Wf of the standard
library. The term Acc P is a typical example of fixpoint by induction over an
ad hoc predicate (see [2] or the Coq’Art [1] p. 428). The Fix F fixpoint operator
of the Wf module of the Coq standard library is defined this way as well. The
cover-induction principle as defined in [4] uses a similar idea.

As a consequence, we can reify decidable and inhabited predicates over N :

Theorem nat reify (P : N → Prop) :(∀n : N , {P n} + {¬P n}) → (∃n : N , P n
) → {

n : N ∣
∣ P n

}

The proof is now simple: using P Acc R and Acc R zero, from ∃n, P n we deduce
Acc R 0, and thus {x : N | P x} using Acc P.

Considering this somewhat unexpected result, maybe some further clarifica-
tions about the proof of nat reify are mandatory at this stage. The witness n
which is contained in the hypothesis ∃n, P n of sort Prop is not informative and
thus cannot be extracted to build a term of sort Type. As this remarks seems
contradictory with what we show, we insist on the fact that we do not extract
the witness n contained in the hypothesis by inspection of its term. Instead,
we compute the minimum value m which satisfies P m by testing all cases in

378 D. Larchey-Wendling

sequence: P 0 ?, P 1 ?, ... until we reach the first value m which satisfies P m
(the decidability of P is required for that). To ensure that such a computation
is well-founded, we use the non-informative witness n contained in ∃n, P n as
a bound on the search space; but a bound in sort Prop: we encode n into the
accessibility predicate An : Acc R 0 which is then used as a certificate for the
well-foundedness of the computation of Acc P 0 An.

3.3 Reification of Predicates of Type N → Type

We now generalize the previous result nat reify to predicates in N → Type
instead of just N → Prop. But we first need to introduce two predicates:

Inductive inhabited (P : Type) : Prop := inhabits : P → inhabited P

Definition decidable t (P : Type) : Type := P + P → False

where inhabited is from the standard library (module Logic) and decidable t
is an informative version of the decidable predicate of the Decidable module
of the standard library. Their intuitive meaning is the following:

– inhabited P hides the information of the witness of P . Whereas a term of
type P is a witness that P is inhabited, a term of type inhabited P hides
the witness by the use of the non-informative constructor inhabits;

– decidable t P means that either a term of type P is given or a proof that P
is void is given. The predicate is informative and contains a Boolean choice
(represented by the +) which tells whether P is inhabited or not. But it may
also contain an effective witness that P is inhabited.

We can now lift the theorem nat reify that operates on N → Prop to infor-
mative predicates of type N → Type in the following way:

Theorem nat reify t (P : N → Type) :(∀n, decidable t (P n)
) → (∃n, inhabited (P n)

) → {
n : N &P n

}

The proof is only a slight variation from the N →Prop case. Notice that the result
type {n : N &P n

}
contains the reified value n for which P n is inhabited, but it

also contains the effective witness that P n is not void. On the contrary, in the
hypothesis ∃n, inhabited (P n) neither n nor the witness that P n is inhabited
have to be provided by effective means.

4 Dependent Types for Recursive Algorithms

So far, we have only encountered datatypes which originate in the Coq stan-
dard library, and that are imported by default when loading Coq, most notably
N which is a least solution of the fixpoint equation N ≡ {0} + {S n | n : N}.
We will need the type of vectors VectorDef.t and the type of positions Fin.t
that also belong to the standard library module Vector. However, the stan-
dard library only contains a small fraction of the results that we use for these

Typing Total Recursive Functions in Coq 379

datatypes. Moreover, the implementation of some functions of the Vector mod-
ule is incompatible with how we intend to use them. Typically, the definition of
VectorDef.nth which selects a component of a vector by its position does not
type-check in our succinct definition of the upcoming recalg rect recursor: the
definition of VectorDef.nth makes Coq unable to certify the structural decrease
of recursive sub-calls which is mandatory for Fixpoint definitions. As a con-
sequence, we use our own vectors and positions libraries. This represents little
overhead compared to extending the standard libraries in the Vector module.

We define three types that depend on a parameter k : N representing an arity.
First the type of positions

pos 0 ≡ ∅ pos(1 + k) ≡ {fst} + {nxt p | p : pos k}
which is isomorphic to pos k ≡ {i : N | i < k} but avoids carrying the proof
term i < k. The library pos.v contains the inductive definitions of the type pos k
and the tools to manipulate positions smoothly: an inversion tactic pos inv,
maps pos2nat : pos k → N and nat2pos : ∀i, i < k → pos k, etc. To shorten the
notations in this paper, p denotes pos2nat p, the natural number below k which
corresponds to p.

Positions of pos k mainly serve as coordinates for accessing the components
of vectors of arity k

X0 ≡ {vec nil} X1+k ≡ X × Xk

where Xk is a compact notation for vec X k. The type is polymorphic in X
and dependent on k : N . We will write terms of type Xk in a bold font like with
v or w to remind the reader that these are vectors. Given a position p : pos k
and a vector v : Xk, we write vp : X for the p-th component of v, a short-cut for
vec pos v p. vec pos is obtained from the “correspondence” Xk ≡ pos k → X.
Notice however that the type Xk enjoys an extensional equality (i.e. v = w
whenever vp = wp holds for any p : pos k) whereas the function type pos k → X
does not. The file vec.v contains the inductive definition of the type of vectors
together with the tools to smoothly manipulate vectors and their components
where coordinates can either be positions of type pos k or natural number i : N
satisfying i < k. The constructors are vec nil : X0 and vec cons : X → Xk →
X1+k and vec cons x v is denoted x#v here. The converse operations are
vec head : X1+k → X and vec tail :X1+k → Xk.

With positions and (polymorphic) vectors, we can now introduce the induc-
tive type of recursive algorithms of arity k denoted by Ak which is defined by the
rules of Fig. 1 and implemented in the file recalg.v. The notation Ak is a short-
cut for recalg k. Notice that Ak is a dependent type (of sort Set). It is the
least type which contains constants of arity 0, zero and succ of arity 1, projec-
tions at every arity k for each possible coordinate, and which is closed under the
composition, primitive recursion and unbounded minimization schemes. Ak itself
does not carry the semantics of those recursive algorithms: it corresponds to the
source code. We will give a meaning/semantics to those recursive algorithms in
Sect. 5 so that they correspond to the usual notion of recursive functions.

380 D. Larchey-Wendling

n : N
cstn : A0 zero : A1 succ : A1

p : pos k

projp : Ak

f : Ak g : Ak
i

comp f g : Ai

f : Ak g : A2+k

rec f g : A1+k

f : A1+k

min f : Ak

Fig. 1. The type Ak of recursive algorithms of arity k.

To be able to compute with or prove properties of terms of type Ak, we
implement a general fully dependent recursion scheme recalg rect described
in the file recalg.v. This principle is not automatically generated by Coq because
of the nested induction between the types Ak and vec k which occurs in
the constructor comp f g. The definition of recalg rect looks simple but it only
works well because vec pos was carefully designed to allow the Coq type-checker
to detect nested recursive calls as structurally simpler: using the “equivalent”
VectorDef.nth instead of vec pos prohibits successful type-checking. We also
show the injectivity of the constructors of the type Ak. Some require the use of
the Eqdep dec module of the standard library because of the dependently typed
context. For example, the statement of the injectivity of the constructor comp f g
involves type castings eq rect (or heterogenous equality):

Fact ra comp inj k k′ i (f : Ak) (f ′ : Ak′) (g : Ak
i) (g′ : Ak′

i) :

comp f g = comp f ′ g′ → ∃e : k = k′, ∧
{
eq rect f e = f ′

eq rect g e = g′

5 A Decidable Semantics for Recursive Algorithms

In this section, we define three equivalent semantics for recursive algorithms.
First the standard relational semantics defined by recursion on f : Ak, then an
equivalent big-step semantics defined by a set of inductive rules. Those two
semantics cannot be decided. Then we define a refinement of big-step semantics
by annotating it with a cost. By constraining the cost, we obtain a decidable
semantics for recursive algorithms Ak.

5.1 Relational and Big-Step Semantics

We define relational semantics �f : Ak� : N k →N →Prop of recursive algorithms
by structural recursion on f : Ak so as to satisfy the fixpoint equations of Fig. 2
where �f� is a notation for ra rel f ; the fixpoint equations ra rel fix ∗ are
proved in the file ra rel.v. Without preparation, such a definition could be quite
technical because of the nested recursion between the type Ak and the type
vec Ai k of the parameter g in the constructor comp f g. Using our general
recursion principle recalg rect, the code is straightforward; but see the remark

Typing Total Recursive Functions in Coq 381

Fig. 2. Relational semantics ra rel for recursive algorithms of Ak.

about recalg rect in Sect. 4. We explicitly mention the type p : posx in the
definition of �min f� because it is the only type which does not depend on the
type of f : the dependent parameter x is the result of the computation.

The big-step semantics for recursive algorithms in Ak is an inductive rela-
tion of type ra bs : ∀k,Ak → N k → N → Prop and we denote [f ;v]� x for
(ra bs k f v x); the parameter k is implicit in the notation. [f ;v]� x intu-
itively means that the computation of f starting from input v yields the result
x. We define big-step semantics in file ra bs.v by the inductive rules of Fig. 3.
We point out that the rule corresponding to [min f ;v]� x is of unbounded arity
but still finitary because posx is a finite type. These rules are similar to those
used to define the semantics of Partial Recursive Functions in [13] except that
thanks to our dependent typing, we do not need to specify well-formedness condi-
tions. In ra sem eq.v, we show that big-step semantics is equivalent to relational
semantics:

Theorem ra bs correct k (f : Ak) (v : N k) x : �f� v x ⇐⇒ [f ;v]� x

However big-step semantics has the advantage of being defined by a set of induc-
tive rules instead of being defined by recursion on f : Ak.

Relational and big-step semantics are not recursive/computable relations:
this is an instance of the Halting problem. As such, these relations cannot be
implemented by a Coq evaluation function ra rel eval : Ak → N k → option N
satisfying ra rel eval f v = Some x ⇐⇒ �f� v x for any f , v and x. Indeed,
when it is axiom free, Coq has normalisation which implies that the functions
that can be defined in it are total recursive at the meta-theoretical level. Never-
theless big-step semantics as presented in Fig. 3 is an intermediate step towards
a decidable semantics for Ak.

5.2 Cost Aware Big-Step Semantics

The cost aware big-step semantics for recursive algorithms in Ak is defined as
an inductive predicate of type ra ca : ∀k,Ak →N k →N →N →Prop. We denote
(ra ca k f v α x) by [f ;v]−[α〉〉x where the argument k is implicit in the
notation. [f ;v]−[α〉〉x intuitively means that the computation of f on input v
yields the result x and costs α. We define the predicate ra ca in file ra ca.v by the
rules of Fig. 4. It is interesting to compare these rules with those of conventional
big-step semantics ra bs of Fig. 3. The very simple but nonetheless powerful idea

382 D. Larchey-Wendling

[cstn; v] � n [zero; v] � 0 [succ; v] � 1 + vfst [projp; v] � vp

[f ; v] � x

[rec f g; 0#v] � x

[rec f g; n#v] � y [g; n#y#v] � x

[rec f g; 1 + n#v] � x

[f ; w] � x ∀p, [gp; v] � wp

[comp f g; v] � x

[f ; x#v] � 0 ∀p : posx, [f ; p#v] � 1 + wp

[min f ; v] � x

Fig. 3. Big-step semantics ra bs for recursive algorithms of Ak.

[cstn; v] −[1〉〉 n [zero; v] −[1〉〉 0 [succ; v] −[1〉〉 1 + vfst [projp; v] −[1〉〉 vp

[f ; v] −[α〉〉 x

[rec f g; 0#v] −[1 + α〉〉 x

[rec f g; n#v] −[α〉〉 y [g; n#y#v] −[β〉〉 x

[rec f g; 1 + n#v] −[1 + α + β〉〉 x

[f ; w] −[α〉〉 x ∀p, [gp; v] −[βp〉〉 wp

[comp f g; v] −[1 + α + Σβ〉〉 x

[f ; x#v] −[α〉〉 0 ∀p : posx, [f ; p#v] −[βp〉〉 1 + wp

[min f ; v] −[1 + α + Σβ〉〉 x

Fig. 4. Cost aware big-step semantic ra ca for recursive algorithms of Ak.

to get decidability is to decorate big-step semantics with a cost and to constrain
computations by a cost that must be exactly matched. This is how we realize
the principle of our proof that Coq contains total recursive functions: we avoid
a small-step semantics (Kleene’s T predicate) and replace it with a big-step
semantics for recursive algorithm that is nevertheless decidable.

We show the equivalence of relational and cost aware big-step semantics

Theorem ra ca correct (k : N) (f : Ak) (v : N k) (x : N) :
�f� v x ⇐⇒ ∃α : N , [f ;v]−[α〉〉x

in file ra sem eq.v. The proof is circular in style: ra ca implies ra bs implies
ra rel implies ∃ra ca and all these three implications are proved by induc-
tion on the obvious inductive parameter. Do not feel puzzled by a statement of
equivalence between a decidable and an undecidable semantics, because it is the
quantifier ∃α in ra ca correct which brings undecidability.

Inversion lemmas named ra ca ∗ inv are essential tools to prove the high-
level properties of Sect. 5.3. They allow case analysis on the last step of an
inductive term depending on the shape of the conclusion. Here is the inversion
lemma of one rule:

Lemma ra ca rec S inv (k : N) (f : Ak) (g : A2+k) (v : N k) (n γ x : N) :

[rec f g; 1 + n#v]−[γ〉〉x → ∃y α β, ∧
⎧
⎨

⎩

γ = 1 + α + β
[rec f g;n#v]−[α〉〉 y
[g;n#y#v]−[β〉〉x

Typing Total Recursive Functions in Coq 383

Such results could be difficult to establish if improperly prepared. In our opin-
ion, the easiest way to prove it is to implement a global inversion lemma that
encompasses the whole set of rules of Fig. 4. Then a lemma like ra ca rec S inv
can be proved by applying the global inversion lemma and discriminate between
incompatible constructors of type Ak (in most cases) or use injectivity of thoses
constructors (in one case). The global inversion lemma is quite complicated to
write because of dependent types. It would fill nearly half of this page (see lemma
ra ca inv in file ra ca.v). However it is actually trivial to prove, a “reversed”
situation which is rare enough to be noticed.

5.3 Properties of Cost Aware Big-Step Semantics

The annotation of cost in the rules of Fig. 4 satisfies the following paradigm:
the cost of a compound computation is greater than the sum of the costs of its
sub-computations. Hence, we can derive that no computation is free of charge:

Theorem ra ca cost k (f : Ak) (v : N k) (α x : N) : [f ;v]−[α〉〉x → 0 < α

The proof is by immediate case analysis on [f ;v]−[α〉〉x. The cost and results
given by cost aware big-step semantics are unique (provided they exist)

Theorem ra ca fun (k : N) (f : Ak) (v :N k) (α β x y : N) :
[f ;v]−[α〉〉x → [f ;v]−[β〉〉 y → α = β ∧ x = y

The proof is by induction on [f ;v]−[α〉〉x together with inversion lemmas
ra ca ∗ inv to decompose [f ;v]−[β〉〉 y. Inversion lemmas are the central ingre-
dient of this proof.

Now the key result: cost aware big-step semantics is decidable (in sort Type,
see Sect. 3.3) when the cost is fixed

Theorem ra ca decidable t (k : N) (f : Ak) (v : N k) (α : N) :
decidable t

{
x

∣
∣ [f ;v]−[α〉〉x

}

Its proof is the most complicated of our whole development. It proceeds by induc-
tion on f : Ak and uses inversion lemmas ra ca ∗ inv, functionality ra ca fun
as well as a small decidability library to lift decidability arguments over (finitely)
quantified statements. The central constituents of that library are:

Lemma decidable t bounded (P : N → Type) :(∀n : N , decidable t (P n)
)

→ ∀n : N , decidable t {i : N & i < n× P i}
Lemma vec sum decide t (n : N) (P : (N → Type)n) :(∀(p : posn) (i : N), decidable t (P p i)

)

→ ∀m : N , decidable t {v : Nn &Σv = m× ∀p,P p vp}

384 D. Larchey-Wendling

Lemma vec sum unbounded decide t (P : N → N → Type) :(∀n i : N , decidable t (P n i)
)

→ (∀n : N , P n 0 → False
)

→ ∀m : N , decidable t
{
n : N & {q : Nn &Σq = m× ∀p, P p qp}

}

Some comments about the intuitive meaning of such results could be useful.
Recall that decidability has to be understood over Type (as opposed to Prop):

– decidable t bounded states that whenever P n is decidable for any n, then
given a bound m, it is decidable whether there exists i < m such that P i
holds. Hence bounded existential quantification inherits decidability;

– vec sum decide t states that if P is a posn×N indexed family of decidable
predicates, then it is decidable whether there exists vector v : Nn (of length
n) which satisfies P p vp for each of its components (indexed by p : posn), and
such that the sum of the components of v is a fixed value m. This express the
decidability of some kind of universal quantification bounded by the length
of a vector;

– vec sum unbounded decide t states that if P is a N × N indexed family
of decidable predicates such that P 0 is never satisfied, then it is decidable
whether there exists a vector q of arbitrary length which satisfies P at every
component and such that the sum of those components is a fixed value m.
This is a variant of vec sum decide t but for unbounded vector length, only
the sum of the components acts as a bound.

Once ra ca decidable t is established, we combine it with ra ca fun to
easily define a bounded computation function for recursive algorithms, as is
done for instance at the end of file ra ca props.v:

Definition ra ca eval (k : N) (f : Ak) (v : N k) (α : N) : option N
Proposition ra ca eval prop (k : N) (f : Ak) (v : N k) (α x : N) :

[f ;v]−[α〉〉x ⇐⇒ ra ca eval f v α = Some x

Notice that the function ra ca eval could be proved primitive recursive with
proper encoding of Ak into N but the whole point of this work is to avoid having
to program with primitive recursive schemes.

6 The Totality of Coq

In this section, we conclude our proof that Coq contains all the recursive func-
tions for which totality can be established in Coq. We assume an arity k : N and
a recursive algorithm f : Ak which is supposed to be total:

Variables (k : N) (f : Ak)
(
Hf : ∀v : N k, ∃x : N , �f� v x

)

Mimicking Coq sectioning mechanism, these assumptions hold for the rest of
the current section. We first show that given an input vector v : N k, both a cost
α : N and a result x : N can be computed constructively:

Let coq f (v : N k) :
{
α : N & {x : N | [f ;v]−[α〉〉x}}

Typing Total Recursive Functions in Coq 385

The proof uses unbounded minimization as implemented in nat reify t to find a
cost α such that {x : N | [f ;v]−[α〉〉x} is an inhabited type. This can be decided
for each possible cost thanks to ra ca decidable t. Recall that nat reify t
tries 0, then 1, then 2, etc. until it finds the one which is guaranteed to exist.
The warranty is provided by a combination of Hf and ra ca correct.

To obtain the predicate t : N k → N that realizes �f�, we simply permute
x and α in coq f v. We define t := v �→ proj1 sig(projT2(coq f v)). Using
projT1(coq f v), proj2 sig(projT2(coq f v)) and ra ca correct, it is trivial
to show that t v satisfies �f� v (t v). Hence, closing the section and discharging
the local assumptions, we deduce the totality theorem.

Theorem Coq is total (k : N) (f : Ak) :
(∀v : N k, ∃x : N , �f� v x

) → {
t : N k → N ∣

∣ ∀v : N k, �f� v (t v)
}

7 Discussion: Other Approaches, Church Thesis

Comparing our method with the approach based on Kleene’s normal form the-
orem (Sect. 2), we remark that the introduction of small-step semantics would
only be used to measure the length (or cost) of computations. Since there is at
most one computation from a given input in deterministic models of computa-
tion, any computation can be recovered from its number of steps by primitive
recursive means. Hence the idea of short-cutting small-step semantics by a cost.

It is not surprising that the Kleene’s normal form approach was only sug-
gested in [2]. Mechanizing a Turing complete model of computation is bound to
be a lengthy development. Mainly because translating between elementary mod-
els of computation resembles writing programs in assembly language that you
moreover have to specify and prove correct. And unsurprisingly, such develop-
ments are relatively rare and recent, with the notable exception of [13] which for-
malizes computability notions in Coq. μ-recursive functions are not dependently
typed in [13] (so there is a well-formedness predicate) and they are not compiled
into a model of execution. In [12] however, the same author presents a compiler
from μ-recursive functions to Unlimited Register Machines, proved correct in
HOL. Turing machines, Abacus machines and μ-recursive functions are imple-
mented in [11] with the aim of been able to characterize decidability in HOL.
The development in [8] approaches computability in HOL4 through λ-calculus
also with the aim at the mechanization of computability arguments. We recently
published online a constructive implementation in (axiom-free) Coq [7] of an sig-
nificant portion of Krivine’s textbook [6] on λ-calculus, including a translation
from μ-recursive functions to λ-terms with dependent types in Coq. Actually,
this gave us a first mechanized proof that Coq contained any total recursive
function by using leftmost β-reduction strategy to compute normal forms. But
it requires the introduction of intersection type systems, a development of more
than 25 000 lines of code.

386 D. Larchey-Wendling

Now, what about a characterization of the functions of type N →N definable
in Coq? Or else, is such a converse statement of (CiT)

∀(k : N) (g : N k → N),∃f : Ak,∀v : N k, �f� v (g v) (ChT)

provable in Coq? It is not too difficult to see that (ChT) does not hold in a
model of Coq where function types contain the full set of set theoretic functions
like in [10], because it contains non-computable functions. However, it is for us
an open question whether a statement like (ChT) could be satisfied in a model
of Coq, for instance in an effective model.

In such a case, the statement (ChT) would be independent of (axiom free)
Coq: (ChT) would be both unprovable and unrefutable in Coq. We think (ChT)
very much expresses an internal form of Church thesis in Coq: the functions
which are typable in Coq are exactly the total recursive functions. The problem
which such a statement is that the notion of totality is not independent from
the logical framework in which such a totality is expressed and some frameworks
are more expressive that others, e.g., Set theory defines more total recursive
functions that Peano arithmetic. It is not clear how (ChT) could be used to
simplify undecidability proofs in Coq.

8 Reifying Undecidable Predicates

In Sect. 3, we did explain how to reify the non-informative predicate (∃n, P n)
into the informative predicate {n | P n}, for P of type N →Prop. This occurred
under an important restriction: P is assumed Coq-decidable there. The Coq
term nat reify that implements this transformation is nevertheless used in
Sect. 6 to reify the undecidable “computes into” predicate ra bs. This predicate
is first represented as an existential quantification of the decidable precidate
ra ca, which is basically a bounded version of ra bs. Then nat reify is used
to compute the bound by minimization. Without entering in the full details, we
introduce some of the developments that can be found in the file applications.v.

We describe how to reify other kinds of undecidable predicates. For instance,
we can reify undecidable predicates that can be bounded in some broad sense.
Consider a predicate P : X → Prop for which we assume the following: P is
equivalent to

⋃
n(Q n) for some Q : N→X→Prop such that Q n is (informatively)

finite for any n : N . Then, the predicate ∃P can be reified into ΣP :

Variables (X : Type) (P : X → Prop) (Q : N → X → Prop)
(HP : ∀x, P x ⇐⇒ ∃n, Q n x)(
HQ : ∀n, {l : list X | ∀x, In x l ⇐⇒ Q n x})

Theorem weighted reif : (∃x : X,P x) → {x : X | P x}

The idea of the proof is simply that the first parameter of Q is a weight of
type N and that for a given weight n, there are only finitely many elements x
that satisfy Qnx (hence P x). The weight n such that ∃x, Qnx is reified using

Typing Total Recursive Functions in Coq 387

nat reify, then the value x is computed as the first element of the list given by
HQ n. The hypothesis ∃x, P x ensures that the list given by HQ n is not empty.

Among its direct applications, such a weighted reification scheme can be used
to reify provability predicates for arbitrary logics, at least those where formulæ
and proofs can be encoded as natural numbers. This very low restriction allows
to cover a very wide range of logics, with the notable exception of infinitary
logics (where either formulæ are infinite or some rules have an infinite number
of premisses). Hence, one can compute a proof of a statement provided such a
proof exists. Another application is the reification of the normalizable predicate
for any reduction (i.e. binary) relation which is finitary (i.e. with finite direct
images). This applies in particular to β-reduction in λ-calculus.

To conclude, we implement a judicious remark of one of the reviewers. He
points out that we can derive a proof of Markov’s principle for recursively enu-
merable predicates over N k (instead of just decidable ones). These are predicates
of the form v �→ �f� v 0 for some μ-recursive f function of arity k.

Theorem re reify k (f : Ak) :
(∃v :N k, �f� v 0

) → {
v : N k

∣
∣ �f� v 0

}

Hence if a recursively enumerable predicate can be proved inhabited, possibly
using 1-consistent axioms in sort Prop such as e.g. excluded middle, then a
witness of that inhabitation can be computed.

9 The Structure of the Coq Source Code

The implementation involves around 4 500 lines of Coq code. It has been tested
and should compile under Coq 8.5pl3 and Coq 8.6. It is available under a Free
Software license at https://github.com/DmxLarchey/Coq-is-total.

More than half of the code belongs to the utils.v utilities library, mostly in
files pos.v, vec.v and tree.v. These could be shrunk further because they contain
some code which is not necessary to fulfil the central goal of the paper. The files
directly relevant to this development are:

utils.v The library of utilities that regroups notations.v, tac utils.v, list utils.v,
pos.v, nat utils.v, vec.v, finite.v and tree.v;

nat minimizer.v The reification of ∃P to ΣP by unbounded minimization of
decidable predicates of types N → Prop and N → Type, see Sect. 3;

recalg.v The dependently typed definition of recursive algorithms with a general
recursion principle and the injectivity of type constructors, see Sect. 4;

a {rel,bs,ca}.v The definitions of relational, big-step and cost aware big-step
semantics, with inversion lemmas, see Sects. 5.1 and 5.2;

ra sem eq.v The proof of equivalence between the three previous semantics, see
Sects. 5.1 and 5.2;

ra ca props.v High-level results about cost aware big-step semantics, mainly its
functionality and its decidability, see Sect. 5.3;

decidable t.v The decidability library to lift decision arguments to finitely quan-
tified statements, see Sect. 5.3;

https://github.com/DmxLarchey/Coq-is-total

388 D. Larchey-Wendling

coq is total.v The file that implements Sect. 6, which shows that any provably
total recursive function can be represented by a Coq term;

applications.v The file that implements Sect. 8, reification of (undecidable)
weighted predicates, provability predicates, normalizability predicates and
recursively enumerable predicates.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004)

2. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct.
Comput. Sci. 15(4), 671–708 (2005)

3. Castéran, P.: Utilisation en Coq de l’opérateur de description (2007). http://jfla.
inria.fr/2007/actes/PDF/03 casteran.pdf

4. Coen, C.S., Valentini, S.: General recursion and formal topology. In: Partiality and
Recursion in Interactive Theorem Provers, PAR@ITP 2010, EPiC Series, Edin-
burgh, UK, 15 July 2010, vol. 5, pp. 71–82. EasyChair (2010)

5. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
New York (1989)

6. Krivine, J.: Lambda-Calculus, Types and Models. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, Masson (1993)

7. Larchey-Wendling, D.: A constructive mechanization of Lambda Calculus in Coq
(2017). http://www.loria.fr/∼larchey/Lambda Calculus

8. Norrish, M.: Mechanised computability theory. In: Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22863-6 22

9. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer-Verlag New York
Inc., New York (1987)

10. Werner, B.: Sets in types, types in sets. In: Abadi, M., Ito, T. (eds.) TACS
1997. LNCS, vol. 1281, pp. 530–546. Springer, Heidelberg (1997). doi:10.1007/
BFb0014566

11. Xu, J., Zhang, X., Urban, C.: Mechanising turing machines and computability
theory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 147–162. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 13

12. Zammit, V.: A mechanisation of computability theory in HOL. In: Goos, G.,
Hartmanis, J., Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 431–446. Springer, Heidelberg (1996). doi:10.1007/
BFb0105420

13. Zammit, V.: A proof of the S-m-n theorem in Coq. Technical report, The Com-
puting Laboratory, The University of Kent, Canterbury, Kent, UK, March 1997.
http://kar.kent.ac.uk/21524/

http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://www.loria.fr/~larchey/Lambda_Calculus
http://dx.doi.org/10.1007/978-3-642-22863-6_22
http://dx.doi.org/10.1007/BFb0014566
http://dx.doi.org/10.1007/BFb0014566
http://dx.doi.org/10.1007/978-3-642-39634-2_13
http://dx.doi.org/10.1007/978-3-642-39634-2_13
http://dx.doi.org/10.1007/BFb0105420
http://dx.doi.org/10.1007/BFb0105420
http://kar.kent.ac.uk/21524/

Effect Polymorphism in Higher-Order Logic
(Proof Pearl)

Andreas Lochbihler(B)

Institute of Information Security, Department of
Computer Science, ETH Zurich, Zurich, Switzerland

andreas.lochbihler@inf.ethz.ch

Abstract. The notion of a monad cannot be expressed within higher-
order logic (HOL) due to type system restrictions. We show that if a
monad is used with values of only one type, this notion can be formalised
in HOL. Based on this idea, we develop a library of effect specifications
and implementations of monads and monad transformers. Hence, we can
abstract over the concrete monad in HOL definitions and thus use the
same definition for different (combinations of) effects. We illustrate the
usefulness of effect polymorphism with a monadic interpreter.

1 Introduction

Monads have become a standard way to write effectful programs in pure func-
tional languages [25]. In proof assistants, they provide a widely-used abstraction
for modelling and reasoning about effects [3,4,14,17]. Abstractly, a monad con-
sists of a type constructor τ and two polymorphic operations, return :: α ⇒ α τ
for embedding values and bind :: α τ ⇒ (α ⇒ β τ) ⇒ β τ for sequencing (written
>>= infix), satisfying three monad laws:

1. (m >>= f) >>= g = m >>= (λx. f x >>= g)
2. return x >>= f = f x 3. m >>= return =m

Yet, the notion of a monad cannot be expressed as a formula in higher-order
logic (HOL) [8] as there are no type constructor variables like τ in HOL and the
sequencing operation bind occurs with three different type instances in the first
law. Thus, only concrete monad instances have been used to model side effects
of HOL functions. In fact, monad definitions for different effects abound in HOL,
e.g., a state-error monad [3], non-determinism with errors and divergence [14],
probabilistic choice [4], and probabilistic resumptions with errors [17]. Each of
these formalisations fixes τ to a particular type (constructor) and develops its
own reasoning infrastructure. This approach achieves value polymorphism, i.e.,
one monad can be used with varying types of values, but not effect polymorphism
where one function can be used with different monads.

In this paper, we give up value polymorphism in favour of effect polymor-
phism. The idea is to fix the type of values to some type α0. Then, the monad
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 389–409, 2017.
DOI: 10.1007/978-3-319-66107-0 25

390 A. Lochbihler

type constructor τ is applied only to α0, which an ordinary HOL type variable μ
can represent. So, the monad operations have the HOL types return :: α0 ⇒ μ and
bind :: μ ⇒ (α0 ⇒ μ) ⇒ μ. This notion of a monad can be formalised within HOL.
In detail, we present an Isabelle/HOL library (available online [18]) for different
monadic effects and their algebraic specification. All effects are also implemented
as value-monomorphic monads and monad transformers. Using Isabelle’s mod-
ule system [1], function definitions can be made abstractly and later specialised
to several concrete monads. As our running example, we formalise and reason
about a monadic interpreter for a small language. The library has been used in
a larger project to define and reason about parsers and serialisers for security
protocols.

Contributions. We show the advantages of trading in value polymorphism for
effect polymorphism. First, HOL functions with effects can be defined in an
abstract monadic setting (Sect. 2) and reasoned about in the style of Gibbons
and Hinze [6]. This preserves the level of abstraction that the monad notion pro-
vides. As the definitions need not commit to a concrete monad, we can use them
in richer effect contexts, too—simply by combining our modular effect specifica-
tions. When a concrete monad instance is needed, it can be easily obtained by
interpretation using Isabelle’s module system.

Second, as HOL can express the notion of a value-monomorphic monad, we
have also formalised several monad transformers [15,21] in HOL (Sect. 3). Thus,
there is no need to define the monad and derive the reasoning principles for each
combination of effects, as is current practice with value polymorphism. Instead,
it suffices to formalise every effect only once as a transformer and combine them
modularly.

Third, relations between different instances can be proven using the theory
of representation independence (Sect. 4) as supported by the Transfer package
[10]. This makes it possible to switch in the middle of a bigger proof from a
complicated monad to a simpler one.

2 Abstract Value-Monomorphic Monads in HOL

In this section, we formalise value-monomorphic monads and monad transform-
ers for several types of effects. A monadic interpreter for an arithmetic language
will be used throughout as a running example. The language, adapted from
Nipkow and Klein [22], consists of integer constants, variables, addition, and
division.
datatype ν exp = Const int | Var ν | (ν exp) ⊕ (ν exp) | (ν exp) � (ν exp)

We formalise the concept of a monad using Isabelle’s module system of
locales [1]. The locale monad below fixes the two monad operations return and
bind (written infix as >>=) and assumes that the monad laws hold. It will col-
lect definitions of functions, which use the monad operations, and theorems
about them, whose proofs can use the monad laws. Every locale also defines a

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 391

predicate of the same name that collects all the assumptions. When a user inter-
prets the locale with more concrete operations and has discharged the assump-
tions for these operations, every definition and theorem inside the locale context
is specialised to these operations. Although the type of values is a type vari-
able α, α is fixed inside the locale. Instantiations may still replace α with any
other HOL type. In other words, the locale monad formalises a monomorphic
monad, but leaves the type of values unspecified. As usual, m >> m′ abbreviates
m >>= (λ . m′).

locale monad = fixes return :: α ⇒ μ and bind :: μ⇒(α⇒μ) ⇒ μ (infixr >>=)
assumes bind-assoc : (m >>= f) >>= g = m >>= (λx. f x >>= g)

and return-bind : return x >>= f = f x
and bind-return : x >>= return = x

Monads become useful only when effect-specific operations are available. In
the remainder of this section, we formalise monadic operations for different types
of effects and their properties. For each effect, we introduce a new locale in
Isabelle that extends the locale monad, fixes the new operations, and specifies
their properties. A locale extension inherits parameters and assumptions. This
leads to a modular design: if several effects are needed, one merely combines the
relevant locales in a multi-extension.

2.1 Failure and Exception

Failures are one of the simplest effects and widely used. A failure aborts the com-
putation immediately. The locale monad-fail given below formalises the failure
effect fail :: μ. It assumes that a failure propagates from the left hand side of bind.
In contrast, there is no assumption about how fail behaves on the right hand
side. Otherwise, if monad-fail also assumed m >>= (λ . fail) = fail, then fail would
undo any effect of m. Although the standard implementation of failures using
the option type satisfies this additional law, many other monad implementations
do not, e.g., resumptions. Note that there is no need to delay the evaluation of
fail in HOL because HOL has no execution semantics.

locale monad-fail = monad + fixes fail :: μ
assumes fail-bind : fail >>= f = fail

As a first example, we define the monadic interpreter eval :: (ν ⇒ μ)⇒
ν exp ⇒ μ for arithmetic expressions by primitive recursion using these abstract
monad operations inside the locale monad-fail.1 The first argument is an interpre-
tation function E :: ν ⇒ μ for the variables. The evaluation fails when a division
by zero occurs.
1 Type variables that appear in the signature of locale parameters are fixed for the

whole locale. In particular, the value type α cannot be instantiated inside the locale
monad or its extension monad-fail. The interpreter eval, however, returns ints. For this
reason, eval is defined in an extension of monad-fail that merely specialises α to int.
For readability, we usually omit this detail in this paper.

392 A. Lochbihler

primrec (in monad-fail) eval :: (ν ⇒ μ) ⇒ ν exp ⇒ μ where

eval E (Const i) = return i
| eval E (Var x) = E x
| eval E (e1 ⊕ e2) = eval E e1 >>= (λi1. eval E e2 >>= (λi2. return (i1 + i2)))
| eval E (e1 � e2) =

eval E e1 >>= (λi1. eval E e2 >>= (λi2. if i2 = 0 then fail else return (i1 div i2)))

Note that evaluating a variable can have an effect μ, which is necessary to
obtain a compositional interpreter. Let subst :: (ν ⇒ ν′ exp) ⇒ ν exp ⇒ ν′ exp be
the substitution function for exp. That is, subst σ e replaces every Var x in e with
σ x. Then, the following compositionality statement holds (proven by induction
on e and term rewriting with the definitions), where function composition ◦ is
defined as (f ◦ g)(x) = f (g x).

lemma compositionality : eval E (subst σ e) = eval (eval E ◦ σ) e
by induction simp-all

We refer to failures as exceptions whenever there is an operator
catch :: μ ⇒ μ ⇒ μ to handle them. Following Gibbons and Hinze [6], the locale
monad-catch assumes that catch and fail form a monoid and that returns are
not handled. It inherits fail-bind and the monad laws by extending the locale
monad-fail. No properties about catch and bind are assumed because in general
exception handling does not distribute over sequencing.

locale monad-catch = monad-fail + fixes catch :: μ ⇒ μ ⇒ μ
assumes fail-catch : catch fail m = m
and catch-fail : catch m fail = m
and catch-catch : catch (catch m1 m2) m3 = catch m1 (catch m2 m3)
and return-catch : catch (return x) m = return x

2.2 State

Stateful computations use operations to read (get) and replace (put) the state
of type σ. In a value-polymorphic setting, get :: σ τ and put :: σ ⇒ unit τ are
usually computations that return the state or () inhabiting the singleton type
unit. Without value-polymorphism, these types cannot be formalised in the HOL
setting because we cannot apply τ to different value types. Instead, our opera-
tions additionally take a continuation: get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ.
In a value-polymorphic setting, both signatures are equivalent. Passing the con-
tinuation return as in get return and λs. put s (return ()) yields the conventional
operations. Conversely, our operations get f and put s m can be implemented as
get >>= f and put s >> m using conventional get and put. The locale monad-state
collects the properties get and put must satisfy:

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 393

locale monad-state = monad + fixes get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ
assumes put-get : put s (get f) = put s (f s)
and get-get : get (λs. get (f s)) = get (λs. f s s)
and put-put : put s (put s′ m) = put s′ m
and get-put : get (λs. put s m) = m
and get-const : get (λ . m) = m
and bind-get : get f >>= g = get (λs. f s >>= g)
and bind-put : put s m >>= f = put s (m >>= f)

The first four assumptions adapt Gibbons’ and Hinze’s axioms for the state
operations [6] to the new signature. The fifth, get-const, additionally specifies
that get can be discarded if the state is not used. The last two assumptions,
bind-get and bind-put, demand that get and put distribute over bind. In
the conventional value-polymorphic setting, where the continuations are applied
using bind, these two are subsumed by the monad laws. In the remainder of this
paper, get and put always take continuations.

A state update function update can be implemented abstractly for all state
monads. Like put, update takes a continuation m.

definition (in monad-state) update :: (σ ⇒ σ) ⇒ μ ⇒ μ where
update f m = get (λs. put (f s) m)

The expected properties of update can be derived from monad-state’s assump-
tions by term rewriting. For example,

lemma update-id : update id m = m
by (simp add : update-def get-put)

lemma update-update : update f (update g m) = update (g ◦ f) m
by (simp add : update-def put-get put-put)

lemma update-bind : update f m >>= g = update f (m >>= g)
by (simp add : update-def bind-get bind-put)

As an example, we implement a memoisation operator memo using the
state operations. To that end, the state must be refined to a lookup
table, which we model as a map of type β ⇀ α = β ⇒ α option. The def-
inition uses the function λt. t(x �→ y) that takes a map t and updates it
to associate x with y, leaving the other associations as they are; formally,
t(x �→ y) = (λx′. if x = x′ then Some y else t x′).

definition (in monad-state) memo :: (β ⇒ μ) ⇒ β ⇒ μ where
memo f x = get (λtable.

case table x of Some y ⇒ return y
| None ⇒ f x >>= (λy. update (λt. t(x �→ y)) (return y)))

A memoisation operator should satisfy three important properties. First, it
should evaluate the memoised function at most on the given argument, not on
others. This can be expressed as a congruence rule, which holds independently
of the monad laws by definition:

394 A. Lochbihler

lemma memo-cong : f x = g x −→ memo f x = memo g x

Second, memoisation should be idempotent, i.e., if a function is already being
memoised, then there is no point in memoising it once more.

lemma memo-idem : memo (memo f) x = memo f x

The mechanised proof of memo-idem in Isabelle needs only two steps, which are
justified by term rewriting with the properties of the monad operations and the
case operator. Every assumption about get and put except get-put is needed.

Third, the memoisation operator should indeed evaluate f on x at most once.
As memo f x memoises only the result of f x, but not the effect of evaluating
f x, the next lemma captures this correctness property. Its proof is similar to
memo-idem’s.

lemma correct : memo f x >>= (λa. memo f x >>= g a) = memo f x >>= (λa. g a a)

2.3 Probabilistic Choice

Randomised computations are built from an operation ¢ for probabilistic choice.
The probabilities are specified using probability mass functions (type π pmf) [7],
i.e., discrete probability distributions. Binary probabilistic choice, which is often
used in the literature [5,6,24], is less general as it leads to finite distributions.
Continuous distributions would work, too, but they would clutter the theorems
and proofs with measurability conditions.

Like the state operations, ¢ :: π pmf ⇒ (π ⇒ μ) ⇒ μ takes a continuation to
separate the type of probabilistic choices π from the type of values. The locale
monad-prob assumes the following properties, where supp p denotes the support
of p:

– sampling from the one-point distribution dirac x has no effect
(sample-dirac),

– sequencing bindpmf in the probability monad yields sequencing
(sample-bind),

– sampling can be discarded if the result is unused (sample-const),
– sampling from independent distributions commutes (sample-comm, inde-

pendence is formalised by p and q not taking y and x as an argument, respec-
tively),

– sampling calls the continuation only on values in p’s support (sample-cong),
and

– sampling distributes over both sides of bind (bind-sample1, bind-sample2).

locale monad-prob = monad + fixes ¢ :: π pmf ⇒ (π ⇒ μ) ⇒ μ
assumes sample-dirac : ¢ (dirac x) f = f x

and sample-bind : ¢ (bindpmf p f) g = ¢ p (λx. ¢ (f x) g)
and sample-const : ¢ p (λ . m) = m
and sample-comm : ¢ p (λx. ¢ q (f x)) = ¢ q (λy. ¢ p (λx. f x y))
and sample-cong : (∀x ∈ supp p. f x = g x) −→ ¢ p f = ¢ p g
and bind-sample1 : ¢ p f >>= g = ¢ p (λx. f x >>= g)
and bind-sample2 : m >>= (λx. ¢ p (f x)) = ¢ p (λy. m >>= (λx. f x y))

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 395

2.4 Combining Abstract Monads

Formalising monads in this abstract way has the advantage that the different
effects can be easily combined. In the running example, suppose that the vari-
ables represent independent random variables. Then, expressions are probabilis-
tic computations and evaluation computes the joint probability distribution. For
example, if x1 and x2 represent coin flips with 1 representing heads and 0 tails,
then Var x1 ⊕ Var x2 represents the probability distribution of the number of
heads.

Here is a first attempt. Let X :: ν ⇒ int pmf specify the distribution X x
for each random variable x. Combining the locales for failures and prob-
abilistic choices, we let the variable environment do the sampling, where
sample-var X x = ¢ (X x) return:

locale monad-fail-prob = monad-fail + monad-prob

definition (in monad-fail-prob) wrong :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
wrong X e = eval (sample-var X) e

As the name suggests, wrong does not achieve what we intended. If a
variable occurs multiple times in e, say e = Var x ⊕ Var x, then wrong X e
samples x afresh for each occurrence. So, if X x = uniform {0, 1}, i.e., x
is a coin flip, wrong X e computes the probability distribution given by
0 �→ 1/4, 1 �→ 1/2, 2 �→ 1/4 instead of 0 �→ 1/2, 2 �→ 1/2. Clearly, we should sample
every variable at most once. Memoising the variable evaluation achieves that.
So, we additionally need state operations.

locale monad-fail-prob-state = monad-fail-prob + monad-state +
assumes sample-get : ¢ p (λx. get (f x)) = get (λs. ¢ p (λx. f x s))

definition (in monad-fail-prob-state) lazy :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
lazy X e = eval (memo (sample-var X)) e

The interpreter lazy samples a variable only when needed. For example, in
e0 = (Const 1 � Const 0) ⊕ Var x0, the division by zero makes the evaluation fail
before x0 is sampled.

The locale monad-fail-prob-state adds an assumption that ¢ distributes over
get. Such distributivity assumptions are typically needed because of the contin-
uation parameters, which break the separation between effects and sequencing.
Their format is as follows: If two operations f1 and f2 with continuations do not
interact, then we assume f1 (λx. f2 (g x)) = f2 (λy. f1 (λx. g x y)). Sometimes,
such assumptions follow from existing assumptions. For example, sample-put
follows from bind-sample2 and put s m = put s (return x) >> m for all x. A
similar law holds for update.

lemma sample-put : ¢ p (λx. put s (f x)) = put s (¢ p f)

In contrast, sample-get does not follow from the other assumptions due to
the restriction to monomorphic values. The state of type σ, which get passes to
its continuation, may carry more information than a value can hold. Indeed, in

396 A. Lochbihler

the case of lazy, the type int of values is countable, but the state type ν ⇀ int
is not if the type of variables is infinite. As put passes no information to its
continuation, put’s continuation can be pushed into bind as shown above. Still,
put needs its continuation; otherwise, it would have to create a return value out
of nothing, which would cause problems later (§4). Moreover, there is no need
to explicitly specify how fail interacts with get and ¢ as get (λ . fail) = fail and
¢ p (λ . fail) = fail are special cases of get-const and sample-const.

Instead of lazy sampling, we can also sample all variables eagerly. Let
vars e return the (finite) set of variables in e. Then, the interpreter eager with
eager sampling is defined as follows (all three definitions live in the locale
monad-fail-prob-state):

definition sample-vars :: (ν ⇒ int pmf) ⇒ ν set ⇒ μ ⇒ μ where
sample-vars X A m = fold (λx m. memo (sample-var X) x >> m) m A

definition lookup :: ν ⇒ μ where
lookup x = get (λs. case s x of None ⇒ fail | Some i ⇒ return i)

definition eager :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
eager X e = sample-vars X (vars e) (eval lookup e)

where fold is the fold operator for finite sets [23]. The operator fold f requires
that the folding function f is left-commutative, i.e., f x (f y z) = f y (f x z)
for all x, y, and z. In our case, f = λx m. memo (sample-var X) x >> m is
left-commutative by the following lemma about memo whose assumptions
sample-var X satisfies by return-bind, bind-sample1, bind-sample2, and
sample-get. Moreover, by correct, it is also idempotent, i.e., f x ◦ f x = f x.

lemma memo-commute :
(∀m x g. m >>= (λa. f x >>= g a) = f x >>= (λb. m >>= (λa. g a b)))

−→ (∀x g. get (λs. f x >>= g s) = f x >>= (λa. get (λs. g s a)))
−→ memo f x >>= (λa. memo f y >>= (λb. g a b)) =

memo f y >>= (λb. memo f x >>= (λa. g a b))

This lemma and correct illustrate the typical form of monadic statements.
The assumptions and conclusions take a continuation g for the remainder of
the program. This way, the statements are easier to apply because they are
in normal form with respect to bind-assoc. This observation also holds in a
value-polymorphic setting.

Now, the question is whether eager and lazy sampling are equivalent. In
general, the answer is no. For example, for e0 from above, eager X e0 samples and
memoises the variable x0, but lazy X e0 does not. Thus, there are contexts that
distinguish the two. If we extend monad-fail-prob-state with exception handling
from monad-catch such that

catch-get : catch (get f) m2 = get (λs. catch (f s) m2)
catch-put : catch (put s m) m2 = put s (catch m m2)

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 397

then the two can be distinguished:

catch (lazy X e0) (lookup x0) = fail
catch (eager X e0) (lookup x0) = memo (sample-var X) x0

In contrast, if we assume that failures erase state updates, then the two are
equivalent:

theorem lazy-eager : (∀s. put s fail = fail) −→ lazy X e = eager X e

Proof. The proof consists of three steps proven by induction on e. First, by
idempotence and left-commutativity, sample-vars X V commutes with lazy X e
for any finite V :

∀g. sample-vars X V (lazy X e >>= g) = lazy X e >>= (λi. sample-vars X V (g i)) (1)

Here, put s fail = fail ensures that all state updates are lost if a division by zero
occurs. The next two steps will use (1) in the inductive cases for ⊕ and � to bring
together the sampling of the variables and the evaluation of the subexpressions.
Second,

lazy X e >>= g = sample-vars X (vars e) (lazy X e >>= g) (2)

shows that the sampling can be done first, which holds by correct. Finally,

sample-vars X V (lazy X e >>= g) = sample-vars X V (eval lookup e >>= g) (3)

holds for any finite set V with vars e ⊆ V . Here, Var x is the interesting case,
which follows from ∀g. memo f x >>= (λi. lookup x >>= g i) = memo f x>>=
(λi. g i i) and correct. Taking V = vars e and g = return, (2) and (3) prove the
lemma. �

In Sect. 3.5, we show that some monads satisfy lazy-eager’s assumption,
but not all.

2.5 Further Abstract Monads

Apart from exceptions, state, and probabilistic choice, we have formalised effect
specifications for non-deterministic choice alt :: μ ⇒ μ ⇒ μ, the reader and writer
monads with ask :: (ρ ⇒ μ) ⇒ μ and tell :: ω ⇒ μ ⇒ μ, and resumptions with
pause :: o ⇒ (ι ⇒ μ) ⇒ μ. We do not present them in detail as the examples in
this paper do not require them.

Moreover, we formalise as locales the notions of a commutative monad, where
bind satisfies m1 >>= (λx. m2 >>= f x) = m2 >>= (λy. m1 >>= (λx. f x y)), and of
a discardable monad, where the law m >> m′ = m′ makes it possible to drop a
computation whose result is not used.

398 A. Lochbihler

3 Implementations of Monads and Monad Transformers

In the previous section, we specified the properties of monadic operations
abstractly. Now, we provide monad implementations that satisfy these specifica-
tions. Some effects are implemented as monad transformers [15,21], which allow
us to compose implementations of different effects almost as modularly as the
locales specifying them abstractly. In particular, we analyse whether the trans-
formers preserve the specifications of the other effects. All our implementations
are polymorphic in the values such that they can be used with any value type,
although by the value-monomorphism restriction, each usage must individually
commit to one value type.

3.1 The Identity Monad

The simplest monad implementation in our library is the identity monad ident,
which models the absence of all effects. It is not really useful in itself, but will be
an important building block when combining monads using transformers. The
datatype α ident is a copy of α with constructor Ident and selector run-ident. To
distinguish the abstract monad operations from their implementations, we sub-
script the latter with the implementation type. The lemma states that returnident
and bindident satisfy the assumption of the locale monad. Additionally, the iden-
tity monad is commutative and discardable.

datatype α ident = Ident (run-ident : α)
definition returnident :: α ⇒ α ident where returnident = Ident
definition bindident :: α ident ⇒ (α ⇒ α ident) ⇒ α ident where

m >>=ident f = f (run-ident m)

lemma monad returnident bindident

3.2 The Probability Monad

The probability monad α prob is another basic building block. We use discrete
probability distributions [7] and Giry’s probability monad operations dirac and
bindpmf, which we already used in the abstract specification in Sect. 2.3. Then,
probabilistic choice ¢prob is just monadic sequencing on α pmf. The probability
monad is commutative and discardable.

type-synonym α prob = α pmf
definition returnprob :: α ⇒ α prob where returnprob = dirac
definition bindprob :: α prob ⇒(α ⇒ α prob)⇒α prob where bindprob = bindpmf

definition ¢prob :: π pmf ⇒ (π ⇒ α prob) ⇒ α prob where ¢prob = bindpmf

lemma monad-prob returnprob bindprob ¢prob

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 399

3.3 The Failure and Exception Monad Transformer

Failures and exception handling are implemented as a monad transformer. Thus,
these effects can be added to any monad τ . In the value-polymorphic setting,
the failure monad transformer takes a monad τ and defines a type construc-
tor failT such that β failT is isomorphic to (β option) τ . That is, the trans-
former specialises the value type α of the inner monad to β option. In our value-
monomorphic setting, the type variable μ represents the application of τ to the
value type, i.e., β option. So, μ failT is just a copy of μ:

datatype μ failT = FailT (run-fail : μ)

As failT’s operations depend on the inner monad, we fix abstract operations
return and bind in an unnamed context and define failT’s operations in terms of
them. The line on the left indicates the scope of the context. At the end, which
is marked by , the fixed operations become additional arguments of the defined
functions. Values in the inner monad now have type α option. The definitions
themselves are standard [21].

context fixes return :: α option ⇒ μ and bind :: μ ⇒ (α option ⇒ μ) ⇒ μ

definition returnfailT :: α ⇒ μ failT where
returnfailT x = FailT (return (Some x))

definition bindfailT :: μ failT ⇒ (α ⇒ μ failT) ⇒ μ failT where
m >>=failT f = FailT (run-fail m >>=

(λx. case x of None ⇒ return None | Some y ⇒ run-fail (f y)))
definition failfailT :: μ failT where failfailT = FailT (return None)
definition catchfailT :: μ failT ⇒ μ failT ⇒ μ failT where
catchfailT m1 m2 = FailT (run-fail m1 >>=

(λx. case x of None ⇒ run-fail m2 | Some ⇒ return x))

If return and bind form a monad, so do returnfailT and bindfailT, and failfailT
and catchfailT satisfy the effect specification from Sect. 2.1, too. The next lemma
expresses this.

lemma monad-catch returnfailT bindfailT failfailT catchfailT
if monad return bind

Clearly, we want to keep using the existing effects of the inner monad.
So, we must lift their operations to failT and prove that their specifications
are preserved. The lifting is not hard; the continuations of the operations are
transformed in the same way as bindfailT does. Here, we only show how to lift
the state operations, where the locale monad-catch-state extends monad-catch
and monad-state with catch-get and catch-put. Moreover, failT also lifts
¢, alt, ask, tell, and pause, preserving their specifications. It is commutative if
the inner monad is commutative and discardable.

context fixes get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ

400 A. Lochbihler

definition getfailT :: (σ ⇒ μ failT) ⇒ μ failT where
getfailT f = FailT (get (λs. run-fail (f s)))

definition putfailT :: σ ⇒ μ failT ⇒ μ failT where
putfailT s m = FailT (put s (run-fail m))

lemma monad-catch-state returnfailT bindfailT failfailT catchfailT getfailT putfailT
if monad-state return bind get put

From now on, as the context scope has ended, returnfailT and bindfailT
take the inner monad’s operations return and bind as additional argu-
ments. For example, we obtain a plain failure monad by applying failT to
ident. Interpreting the locale monad-fail for returnF = returnfailT returnident and
bindF = bindfailT returnident bindident and failF = failfailT returnident yields an exe-
cutable version of the interpreter eval from Sect. 2.1, which we refer to as evalF.
Then, Isabelle’s code generator and term rewriter both evaluate

evalF (λx. returnF (((λ . 0)(x0 := 5)) x)) (Var x0 ⊕ Const 7)

to FailT (Ident (Some 12)). Given some variable environment Y :: ν ⇒ int,2 we
obtain a textbook-style interpreter [22, Sect. 3.1.2] as run-ident (run-fail(evalF
(return¸ [fail.¸] ◦ Y) e)).

3.4 The State Monad Transformer

The state monad transformer adds the effects of a state monad to some inner
monad. The formalisation follows the same ideas as for failT, so we only mention
the important points. The state monad transformer transforms a monad α τ
into the type σ ⇒ (α × σ) τ where σ is the type of states. So, in HOL, the type
of values of the inner monad becomes α × σ and μ represents (α × σ) τ .

datatype (σ, μ) stateT = StateT (run-state : σ ⇒ μ)

Like for failT, the state monad operations returnstateT and bindstate depend on
inner monad operations return and bind. With getstateT and putstateT defined in
the obvious way, the transformer satisfies the specification monad-state for state
monads.

context fixes return :: α × σ ⇒ μ and bind :: μ ⇒ (α × σ ⇒ μ) ⇒ μ

definition returnstateT :: α ⇒ (σ, μ) stateT where
returnstateT x = StateT (λs. return (x, s))

definition bindstateT :: (σ, μ) stateT ⇒ (α ⇒ (σ, μ) stateT) ⇒ (σ, μ) stateT where
m >>=stateT f = StateT (λs. run-state f s >>= (λ(x, s′). run-state (f x) s′))

definition getstateT :: (σ ⇒ (σ, μ) stateT) ⇒ (σ, μ) stateT where
getstateT f = StateT (λs. run-state (f s) s)

2 Such environments can be nicely handled by applying a reader monad transformer
on top (Sect. 4).

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 401

definition putstateT :: σ ⇒ (σ, μ) stateT ⇒ (σ, μ) stateT where
putstateT s m = StateT (λ . run-state m s)

lemma monad-state returnstateT bindstateT getstateT putstateT
if monad return bind

The state monad transformer lifts the other effect operations fail, ¢, ask,
tell, alt, and pause according to their specifications. But catch cannot be lifted
through stateT such that catch-get and catch-put from Sect. 2.4 hold. As our
exceptions carry no information, the inner monad cannot pass the state updates
before the failure to the handler.

3.5 Composing Monads with Transformers

Composing the two monad transformers failT and stateT with the monad
prob, we can now instantiate the probabilistic interpreter from Sect. 2.4.
As is well known, the order of composition matters. If we first apply
failT to prob and then stateT (SFP for short), the resulting interpreter
evalSFP E e :: (ν ⇀ int, (int × (ν ⇀ int)) option prob failT) stateT nests the result
state of type ν ⇀ int inside the option type for failures, i.e., fail-
ures do not return a new state. Thus, failures erase state updates,
i.e., putSFP s failSFP = failSFP, and lazy and eager sampling are equivalent
(lazy-eager). Conversely, if we apply failT after stateT to prob (FSP for short),
then evalFSP E e :: (ν ⇀ int, (int option × (ν ⇀ int)) prob) stateT failT and fail-
ures do return a new state as only the result type int sits inside option. In
particular, putSFP s failFSP
= failFSP in general, and lazy and eager sampling
are not equivalent. We will consider the SFP case further in Sect. 4.

3.6 Further Monads and Monad Transformers

Apart from the monad implementations presented so far, our library provides
implementations also for the other types of effects mentioned in Sect. 2.5. In par-
ticular, non-deterministic choice is implemented as a monad transformer based
on finite multisets, which works only for commutative inner monads. Moreover,
we define a reader (readT) and a writer (writerT) monad transformer. The reader
monad transformer differs from stateT only in that no updates are possible. Thus,
(ρ, μ) readT leaves the type of values of the inner monad unchanged, as no new
state must be returned.

datatype (ρ, μ) readT = ReadT (run-read : ρ ⇒ μ)
context fixes return :: α ⇒ μ and bind :: μ ⇒ (α ⇒ μ) ⇒ μ

definition returnreadT :: α ⇒ (ρ, μ) readT where
returnreadT x = ReadT (λ . return x)

definition bindreadT :: (ρ, μ) readT ⇒ (α ⇒ (ρ, μ) readT) ⇒ (ρ, μ) readT where
m >>=readT f = ReadT (λr. run-read m r >>= (λx. run-read (f x) r))

402 A. Lochbihler

definition askreadT :: (ρ ⇒ (ρ, μ) readT) ⇒ (ρ, μ) readT where
askreadT f = ReadT (λr. run-read (f r) r)

definition failreadT :: (μ ⇒ (ρ, μ) readT) where failreadT fail = ReadT (λ . fail)

Resumptions are formalised as a plain monad using the codatatype

codatatype (o, ι, α) resumption = Done α | Pause o (ι ⇒ (o, ι, α) resumption)

Unfortunately, we cannot define resumptions as a monad transformer in HOL
despite the restriction to monomorphic values. The reason is that for a trans-
former with inner monad τ , the second argument of the constructor Pause would
have to be of type ι ⇒ (o, ι, α) resumption τ , i.e., the codatatype would recurse
through the unspecified type constructor τ . This is not supported by Isabelle’s
codatatype package [2] and, in fact, for some choices of τ , e.g., unbounded non-
determinism, the resumption transformer type does not exist in HOL at all.
For the same reason, we cannot have other monad transformers that have simi-
lar recursive implementation types. Therefore, we fail to modulary construct all
combinations of effects. For example, probabilistic resumptions with failures [17]
are out of reach and must still be constructed from scratch.

3.7 Overloading the Monad Operations

When several monad transformers are composed, the monad operations quickly
become large HOL terms as the transformer’s operations take the inner monad’s
as explicit arguments. These large terms must be handled by the inference kernel,
the type checker, the parser, and the pretty-printer, even if locale interpretations
hide them from the user using abbreviations. To improve readability and the pro-
cessing time of Isabelle, our library also defines the operations as single constants
which are overloaded for the different monad implementations using recursion
on types [26]. As overloading does not need these explicit arguments, it thus
avoids the processing times for unification, type checking, and (un)folding of
abbreviations. Yet, Isabelle’s check against cyclic definitions [13] fails to see that
the resulting dependencies must be acyclic (as the inner monad is always a type
argument of the outer monad). So, we moved these overloaded definitions to a
separate file and marked them as unchecked.3 Overloading is just a syntactic
convenience, on which the library and the examples in this paper do not rely.
If users want to use it, they are responsible for not exploiting these unchecked
dependencies.

3 Isabelle’s adhoc-overloading feature, which resolves overloading during type check-
ing, cannot be used either as it does not support recursive resolutions. For example,
resolving return :: α ⇒ α option ident failT takes two steps: first to returnfailT return
and then to returnfailT returnident. The second step fails due to the intricate interleav-
ing of type checking and resolution. Even if this is just an implementation issue,
resolving overloading during type checking prevents definitions that are generic in
the monad, which general overloading supports.

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 403

4 Moving Between Monad Instances

Once all variables have been sampled eagerly, the evaluation of the expression
itself is deterministic. Thus, the actual evaluation need not be done in a monad
as complex as FSP or SFP. It suffices to work in a reader-failure monad with
operations fail and ask, which we obtain by applying the monad transformers
readT and failT to ident (RFI for short). Such simpler monads have the advantage
that reasoning becomes easier as more laws hold. We now explain how the theory
of representation independence [20] can be used to move between different monad
instances by going from SFP to RFI. This ultimately yields a theorem that
characterises evalSFP in terms of evalRFI. So, in general, this approach makes it
possible to switch in the middle of a bigger proof from a complicated monad to
a much simpler one.

Let us first deal with sampling. To go from α prob to β ident, we use a relation
IP(A) between α ident and β prob since relations work better with higher-order
functions than equations. Following Huffman and Kunčar [10], we call such rela-
tions correspondence relations. It is parametrised by a relation A between the
values, which we will use later to express the differences in the values due to the
monad transformers changing the value type of the inner monad. In detail, IP(A)
relates a value Ident x to the one-point distribution dirac y iff A relates x to y.
Then, the monad operations of ident and prob respect this relation. Respectful-
ness is formalised using the function relator A �⇒ B defined by (f, g) ∈ A �⇒ B iff
(x, y) ∈ A implies (f(x), g(y)) ∈ B for all x and y. Then, the monad operations
respecting IP(A) is expressed by the following two conditions:

– (returnident, returnprob) ∈ A �⇒ IP(A) and
– (bindident, bindprob) ∈ IP(A) �⇒ (A �⇒ IP(A)) �⇒ IP(A).

Note the similarity between the relations and the types of the monad opera-
tions, where A and IP take the roles of the type variables for values and of
the monad type constructor, respectively. As the monad transformers failT and
stateT are relationally parametric in the inner monad and eval is parametric in
the monad, we prove the following relation between the evaluators automatically
using Isabelle/HOL’s Transfer prover [10]

(evalSFP lookupSFP e, evalSFI lookupSFI e) ∈ relstateT (relfailT (IP(=))) (4)

where SFI refers to the state-failure-identity composition of monads, (=) is
the identity relation, and relstateT and relfailT are the relators for the datatypes
stateT and failT [2]. Formally, the relators lift relations on the inner monad
to relations on the transformed monad. For example, (m1,m2) ∈ relstateT M
iff (run-state m1 s, run-state m2 s) ∈ M for all s, and (m1,m2) ∈ relfailT M iff
(run-fail m1, run-fail m2) ∈ M . Intuitively, (4) states that in the monads SFP
and SFI, eval behaves the same with respect to states updates and failure and
the results are the same; in particular, the evaluation is deterministic.

In the following, we use the property of a relator rel that if M is
the graph Gr f of a function f , then rel M is the graph of the function

404 A. Lochbihler

map f , where map is the canonical map function for the relator. For example,
mapfailT f = FailT ◦ f ◦ run-fail, so

relfailT (Gr f) = Gr (mapfailT f) (5)

where (x, y) ∈ Gr f iff f x = y. Isabelle’s datatype package automatically proves
these relator-graph identities. The correspondence relation IP satisfies a similar
law: IP(Gr f) = Gr (mapIP f) where mapIP f = dirac ◦ f ◦ run-ident.

Having eliminated probabilities, we next switch from the state monad trans-
former to the reader monad transformer. We again define a correspondence rela-
tion RS(s,M) between readT and stateT. It takes as parameters the environ-
ment s and the correspondence relation M between the inner monads. It relates
the two monadic values m1 and m2 iff M relates the results of running m1

and m2 on s, i.e., (run-read m1 s, run-state m2 s) ∈ M . Again, we show that the
monad operations respect RS(s,M) as formalised below. As readT and stateT
are monad transformers, we assume that the operations of the inner monads
respect M . These assumptions can be expressed using �⇒ since the inner oper-
ations are arguments to readT’s and stateT’s operations. Here, A�×s adapts
the relation A on values to stateT’s change of the value type from α to α × σ;
(x, (y, s′)) ∈ A�×s iff (x, y) ∈ A and s′ = s, i.e., A relates the results and the
state is not updated.

– (returnreadT, returnstateT) ∈ (A�×s �⇒ M) �⇒ A �⇒ RS(s,M),
– (bindreadT, bindstateT) ∈

(M �⇒ (A�×s �⇒ M) �⇒ M) �⇒ RS(s,M) �⇒ (A �⇒ RS(s,M)) �⇒ RS(s,M),
– (askreadT, getstateT) ∈ ({(s, s)} �⇒ RS(s,M)) �⇒ RS(s,M), and
– (failreadT, failstateT) ∈ M �⇒ RS(s,M),

Then, by representation independence, the Transfer package automatically
proves the following relation between evalRFI and evalSFI, where lookupRFI uses
askreadT instead of getstateT, and relident and reloption are the relators for the
datatypes ident and option.

(evalRFI lookupRFI e, evalSFI lookupSFI e) ∈ RS(s, relfailT (relident (reloption (=�×s))))

This says that running eval in RFI and SFI computes the same result, has the
same behaviour with respect to state queries and failures, and does not update
the state.

Actually, we can go from SFP directly to RFI, without the monad SFI as a
stepping stone, thanks to IP taking a relation on the value types:

(evalRFI lookupRFI e, evalSFP lookupSFP e) ∈ RS(s, relfailT (IP(reloption (=�×s))))
(6)

As =�×s is the graph of λa. (a, s), using only the graph properties like (5) of
IP and the relators, and using RS’s definition, we derive the characterisation of
evalSFP from (6):

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 405

run-state (evalSFP lookupSFP e) s =
mapfailT (mapIP (mapoption (λa. (a, s)))) (run-read (evalRFI lookupRFI e) s)

where mapfailT and mapoption are the canonical map functions for failT and option.
Thus, instead of reasoning about evalSFP in SFP, we can conduct our proofs in
the simpler monad RFI. For example, as RFI is commutative, subexpressions
can be evaluated in any order. Thus, we get the following identity expressing the
reversed evaluation order (and a similar one for �).4

evalRFI E (e1 ⊕ e2) = evalRFI E e2 >>=RFI (λj. evalRFI E e1 >>=RFI (λi. returnRFI (i + j)))

In summary, we have demonstrated a generic approach to switch from a
complicated monad to a much simpler one. Conceptually, the correspondence
relations IP and RS just embed one monad or monad transformer (ident and
readT) in a richer one (prob and stateT). It is precisely this embedding that ulti-
mately yields the map functions in the characterisation. In this functional view,
the respectfulness conditions express that the embedding is a monad homomor-
phism. Yet, we use relations for the embedding instead of functions because only
relations work for higher-order operations in a compositional way.

The reader may wonder why we go through all the trouble of defining cor-
respondence relations and showing respectfulness and parametricity. Indeed, in
this example, it would probably have been easier to simply perform an induction
over expressions and prove the equation directly. The advantage of our approach
is that it does not rely on the concrete definition of eval. It suffices to know that
eval is parametric in the monad, which Isabelle derives automatically from the
definition. This automated approach therefore scales to arbitrarily complicated
monadic functions whereas induction proofs do not. Moreover, note that the cor-
respondence relations and respectfulness lemmas only depend on the monads.
They can therefore be reused for other monadic functions.

5 Related Work

Huffman et al. [9,11] formalise the concept of value-polymorphic monads and
several monad transformers in Isabelle/HOLCF, the domain theory library of
Isabelle/HOL. They circumvent HOL’s type system restrictions by projecting
everything into HOLCF’s universal domain of computable values. That is, they
trade in HOL’s set-theoretic model with its simple reasoning rules for a domain-
theoretic model with ubiquituous ⊥ values and strictness side conditions. This
way, they can define a resumption monad transformer (for computable continua-
tions). Being tied to domain theory, their library cannot be used to model effects
of plain HOL functions, which is our goal, the strictness assumptions make their
laws and proofs more complicated than ours, and functions defined with HOLCF

4 Following the “as abstract as possible” spirit of this paper, we actually proved the
identities in the locale of commutative monads and showed that readT is commuta-
tive if its inner monad is.

406 A. Lochbihler

do not work with Isabelle’s code generator. Still, their idea of projecting every-
thing into a universal type could also be adapted to plain HOL, albeit only for a
restricted class of monads; achieving a similar level of automation and modular-
ity would require a lot more effort than our approach, which uses only existing
features of Isabelle.

Gibbons and Hinze [6] axiomatize monads and effects using Haskell-style type
constructor classes and use the algebraic specification to prove identities between
Haskell programs, similar to our abstract locales in Sect. 2. Their specification of
state effects omits get-const, but they later assume that it holds [6, Sect. 10.2].
Being value-polymorphic, their operations do not need our continuations and
the laws are therefore simpler. In particular, no new assumptions are typically
needed when monad specifications are combined. In contrast, our continuations
sometimes require interaction assumptions like sample-get. Gibbons and Hinze
only consider reasoning in the abstract setting and do not discuss the transition
to concrete implementations and the relations between implementations. Also,
they do not prove that monad implementations satisfy their specifications. Later,
Jeuring et al. [12] showed that the implementations in Haskell do not satisfy them
because of strictness issues similar to the ones in Huffman’s work.

Lobo Vesga [16] formalised some of Gibbons’ and Hinze’s examples in Agda.
She does not need assumptions for the continuations like we do as value-
polymorphic monads can be directly expressed in Agda. Like Gibbons and Hinze,
she does not study the connection between specifications and implementations.
Thanks to the good proof automation in Isabelle, our mechanised proofs are
much shorter than hers, which are as detailed as Gibbons’ and Hinze’s pen-and-
paper proofs.

Lochbihler and Schneider [19] implemented support for equational reasoning
about applicative functors, which are more general than monads. They focus
on lifting identities on values to a concrete applicative functor. Reasoning with
abstract applicative functors is not supported. Like monads, the concept of an
applicative functor cannot be expressed as a predicate in HOL. Moreover, the
applicative operations do not admit value monomorphisation like monads do, as
the type of contains applications of the functor type constructor τ to α ⇒ β, α,
and β. So, monads seem to be the right choice, even though we could have defined
the interpreter eval applicatively (but not, e.g., memoisation).

6 Conclusion

We have presented a library of abstract monadic effect specifications and their
implementations as monads and monad transformers in Isabelle/HOL. We illus-
trated its usage and the elegance of reasoning using a monadic interpreter. The
type system of HOL forced us to restrict the monads to monomorphic values.
Monomorphic values work well when the reasoning involves only a few monadic
functions like in our running example. In larger projects, this restriction can
become a limiting factor. Nevertheless, in our project on formalising computa-

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 407

tional soundness results,5 we successfully formalised and reasoned about several
complicated serialisers and parsers for symbolic messages of security protocols.
In that work, reasoning abstractly about effects and being able to move from
one monad instance to another were crucial. More concretely, the serialiser con-
verts symbolic protocol messages into bitstrings. The challenges were similar to
those of our interpreter eval. Serialisation may fail when the symbolic message
is not well-formed, similar to division by zero in the interpreter. When serial-
isation encounters a new nonce, it randomly samples a fresh bitstring, which
must also be used for serialising further occurrences of the same nonce. We for-
malised this similar to the memoisation of variable evaluation in the interpreter.
A further challenge not present in the interpreter was that the serialiser must
also record the serialisation of all subexpressions such that the parser can map
bitstrings generated by the serialiser back to symbolic messages without calling
a decryption oracle or inverting a cryptographic hash function. The construction
relied on the invariant that the recorded values were indeed generated by the
serialiser, but such an invariant cannot be expressed easily for a probabilistic,
stateful function. We therefore formalised also the switch from lazy to eager
sampling for the serialiser (lazy sampling was needed to push the randomisation
of encryptions into an encryption oracle) and the switch to a read-only version
without recording of results using techniques similar to our example in Sect. 4.

Instead of specifying effects abstractly and composing them using monad
transformers, we obviously could have formalised everything in a sufficiently
rich monad that covers all the effects of interest, e.g., continuations. Then, there
would be no need for abstract specifications as we could work directly with a
concrete monad as usual, where our reasoning on the abstract level could be mim-
icked. But we would deprive ourselves of the option of going to a specific monad
that covers precisely the effects needed. Such specialisation has two advantages:
First, as shown in Sect. 4, simpler monads satisfy more laws, e.g., commutativ-
ity, which make the proofs easier. Second, concrete monads can have dedicated
setups for reasoning and proof automation that are not available in the abstract
setting. Our library achieves the best of both worlds. We can reason abstractly
and thus achieve generality. When this gets too cumbersome or impossible, we
can switch to a concrete monad, continuing to use the abstract properties already
proven.

In the long run, we can imagine a definitional package for monads and monad
transformers that composes concrete value-polymorphic monad transformers.
Similar to how Isabelle’s datatype package composes bounded natural functors
[2], such a package must perform the construction and the derivation of all laws
afresh for every concrete combination of monads, as value-polymorphic monads
lie beyond HOL’s expressiveness. When combined with a reinterpretation frame-
work for theories, we could model effects and reason about them abstractly and
concretely without the restriction to monomorphic values.

5 http://www.infsec.ethz.ch/research/projects/FCSPI.html.

http://www.infsec.ethz.ch/research/projects/FCSPI.html

408 A. Lochbihler

Acknowledgements. We thank Dmitriy Traytel and the anonymous reviewers for
suggesting many improvements to the presentation. This work is supported by the Swiss
National Science Foundation grant 153217 “Formalising Computational Soundness for
Protocol Implementations”.

References

1. Ballarin, C.: Locales: a module system for mathematical theories. J. Automat.
Reason. 52(2), 123–153 (2014)

2. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel,
D.: Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa,
R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014).
doi:10.1007/978-3-319-08970-6 7

3. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Ait Mohamed, O., Muñoz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-71067-7 14

4. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). doi:10.1007/978-3-662-46669-8 4

5. Erwig, M., Kollmansberger, S.: Functional pearls: probabilistic functional program-
ming in Haskell. J. Funct. Program. 16, 21–34 (2006)

6. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: ICFP
2011, pp. 2–14. ACM (2011)

7. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 13

8. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-03359-9 18

9. Huffman, B.: Formal verification of monad transformers. In: ICFP 2012, pp. 15–16.
ACM (2012)

10. Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Cham (2013). doi:10.1007/978-3-319-03545-1 9

11. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in
Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 147–162. Springer, Heidelberg (2005). doi:10.1007/11541868 10

12. Jeuring, J., Jansson, P., Amaral, C.: Testing type class laws. In: Haskell 2012, pp.
49–60. ACM (2012)

13. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: CPP 2015, pp. 85–94. ACM (2015)

14. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 12

15. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
POPL 1995, pp. 333–343. ACM (1995)

16. Lobo Vesga, E.: Hacia la formalización del razonamiento ecuacional sobre mónadas.
Technical report, Universidad EAFIT (2013). http://hdl.handle.net/10784/4554

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-662-46669-8_4
http://dx.doi.org/10.1007/978-3-319-22102-1_13
http://dx.doi.org/10.1007/978-3-642-03359-9_18
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/11541868_10
http://dx.doi.org/10.1007/978-3-642-32347-8_12
http://hdl.handle.net/10784/4554

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 409

17. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

18. Lochbihler, A.: Effect polymorphism in higher-order logic. Archive of Formal Proofs
(2017). Formal proof development. http://isa-afp.org/entries/Monomorphic
Monad.shtml

19. Lochbihler, A., Schneider, J.: Equational reasoning with applicative functors. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 252–273. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 16

20. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986,
pp. 263–276. ACM (1986)

21. Moggi, E.: An abstract view of programming languages. Technical report ECS-
LFCS-90-113, LFCS, School of Informatics, University of Edinburgh (1990)

22. Nipkow, T., Klein, G.: Concrete Semantics. Springer, Cham (2014).
doi:10.1007/978-3-319-10542-0

23. Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 385–396. Springer,
Heidelberg (2005). doi:10.1007/11541868 25

24. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL 2002, pp. 154–165. ACM (2002)

25. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E.
(eds.) AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995).
doi:10.1007/3-540-59451-5 2

26. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg
(1997). doi:10.1007/BFb0028402

http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://isa-afp.org/entries/Monomorphic_Monad.shtml
http://isa-afp.org/entries/Monomorphic_Monad.shtml
http://dx.doi.org/10.1007/978-3-319-43144-4_16
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1007/11541868_25
http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1007/BFb0028402

Schulze Voting as Evidence Carrying
Computation

Dirk Pattinson(B) and Mukesh Tiwari(B)

The Australian National University, Canberra, Australia
{dirk.pattinson,u5935541}@anu.edu.au

Abstract. The correctness of vote counting in electronic election is one
of the main pillars that engenders trust in electronic elections. However,
the present state of the art in vote counting leaves much to be desired:
while some jurisdictions publish the source code of vote counting code,
others treat the code as commercial in confidence. None of the systems
in use today applies any formal verification. In this paper, we formally
specify the so-called Schulze method, a vote counting scheme that is
gaining popularity on the open source community. The cornerstone of
our formalisation is a (dependent, inductive) type that represents all
correct executions of the vote counting scheme. Every inhabitant of this
type not only gives a final result, but also all intermediate steps that lead
to this result, and can so be externally verified. As a consequence, we
do not even need to trust the execution of the (verified) algorithm: the
correctness of a particular run of the vote counting code can be verified
on the basis of the evidence for correctness that is produced along with
determination of election winners.

1 Introduction

The Schulze Method [16] is a vote counting scheme that elects a single winner,
based on preferential votes. While no preferential voting scheme can guarantee all
desirable properties that one would like to impose due to Arrow’s theorem [2], the
Schulze method offers a good compromise, with a number of important properties
already established in Schulze’s original paper. A quantitative comparison of
voting methods [15] also shows that Schulze voting is better (in a game theoretic
sense) than others, more established, systems, and the Schulze Method is rapidly
gaining popularity in the open software community. It is being used, for example
in the Wikimedia Foundation’s board elections with approximately 3,000 votes
and 15 candidates [20], the Gentoo council and the OpenStack community (with
both fewer votes and candidates).

The method itself rests on the relative margins between two candidates,
i.e. the number of voters that prefer one candidate over another. The margin
induces an ordering between candidates, where a candidate c is more preferred
than d, if more voters prefer c over d than vice versa. One can construct simple
examples (see e.g. [15]) where this order does not have a maximal element (a

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 410–426, 2017.
DOI: 10.1007/978-3-319-66107-0 26

Schulze Voting as Evidence Carrying Computation 411

so-called Condorcet Winner). Schulze’s observation is that this ordering can be
made transitive by considering sequences of candidates (called paths). Given
candidates c and d, a path between c and d is a sequence of candidates p =
(c, c1, . . . , cn, d) that joins c and d, and the strength of a path is the minimal
margin between adjacent nodes. This induces the generalised margin between
candidates c and d as the strength of the strongest path that joins c and d. A
candidate c then wins a Schulze count if the generalised margin between c and
any other candidate d is at least as large as the generalised margin between d
and c.

This paper presents a formal specification of the Schulze method, together
with the proof that winners can always be determined which we extract to obtain
a provably correct implementation of the Schulze method. The crucial aspect of
our formalisation is that the vote counting protocol itself is represented as a
dependent inductive type that represents all (correct) partial executions of the
protocol. A complete execution can then be understood as a state of vote count-
ing where election winners have been determined. Our main theorem then asserts
that an inhabitant of this type exists, for all possible sets of incoming ballots.
Crucially, every such inhabitant contains enough information to (independently)
verify the correctness of the election result, and can be thought of as a certificate
for the count.

From a computational perspective, we view tallying not merely as a function
that delivers a result, but instead as a function that delivers a result, together
with evidence that allows us to verify correctness. In other words, we augment
verified correctness of an algorithm with the means to verify each particular
execution.

From the perspective of electronic voting, this means that we no longer need
to trust the hardware and software that was employed to obtain the election
result, as the generated certificate can be verified independently. In the literature
on electronic voting, this is known as verifiability and has been recognised as one
of the cornerstones for building trust in election outcomes [7], and is the only
answer to key questions such as the possibility of hardware malfunctions, or
indeed running the very software that has been claimed to count votes correctly.

The certificate that is produced by each run of our extracted Schulze vote
tallying algorithm consists of two parts. The first part details the individual
steps of constructing the margin function, based on the set of all ballots cast.
The second part presents evidence for the determination of winners, based on
generalised margins. For the construction of the margin function, every bal-
lot is processed in turn, with the margin between each pair of votes updated
accordingly. The heart of our work lies in this second part of the certificate. To
demonstrate that candidate c is an election winner, we have to demonstrate that
the generalised margin between c and every other candidate d is at least as large
as the generalised margin between d and c. Given that the generalised margin
between two candidates c and d is determined in terms of paths c, c1, . . . , cn, d
that join c and d, we need to exhibit

– evidence for the existence of a path p from c to d

412 D. Pattinson and M. Tiwari

– evidence for the fact that no path q from d to c is stronger than p

where the strength of a path p = (c0, . . . , cn+1) is the minimum min{m(ci, ci+1) |
0 ≤ i ≤ n} of the margins between adjacent nodes. While evidently a path itself
is evidence for its existence, the non-existence of paths with certain properties
is more difficult to establish. Here, we use a coinductive approach. As existence
of a path with a given strength between two candidates can be easily phrased
as an inductive definition, the complement of this predicate arises as a greatest
fixpoint, or equivalently as a coinductively defined predicate (see e.g. [10]). This
allows us to witness the non-existence of paths by exhibiting co-closed sets.

Our formalisation takes place inside the Coq proof assistant [5] that we chose
mainly because of its well-developed extraction mechanism and because it allows
us to represent the Schulze voting scheme very concisely as a dependent inductive
type. Interestingly, we make no use of Coq’s mechanism of defining coinductive
types [4]: as we are dealing with decidable predicates (formulated as boolean val-
ued functions) only, it is simpler to directly introduce co-closed sets and establish
their respective properties.

We take a propositions-as-types approach to synthesising a programme that
computes election winners, together with accompanying evidence. That is, our
main theorem states that winners (and certificates) exist for any set of initial
ballots. As our proof is purely constructive, this amounts to an algorithm that
computes witnesses for the existential quantifier. This allows us to use Coq’s
program extraction facility [12] to generate Haskell and OCaml code that we
then compile into an executable, and use it to count votes according to the
Schulze method. We report on experimental result and conclude with further
work and a general reflection on our method.

Related Work. The idea of requiring that computations provide not only results,
but also proofs attesting to the correctness of the computation is not new, and
has been put forward in [1] for computations in general, and in [17] in the
context of electronic voting. The general difficulty here is the precise nature of
certificates, as different computations require a different type of evidence, and
our conceptual contribution is to harness coinduction, more precisely co-closed
sets as evidence for membership in the complement of inductively defined sets.
Our approach is orthogonal to Necula’s proof carrying code [13], where every
executable (not every execution) is equipped with formal guarantees. Formal
specification and verification of vote counting schemes has been done e.g. in
[3,8] but none of the methods produce independently verifiable results. The idea
of formalising a voting protocol as a type has been put forward in [14] where a
variant of single transferable vote has been analysed. While the Schulze method
has been analysed e.g. from the point of manipulation [9], this paper appears to
be the first to present a formal specification (and a certificate-producing, verified
implementation) of the Schulze method in a theorem prover.

Coq Sources. All Coq sources and the benchmarks used in the preparation of
this paper are at http://users.cecs.anu.edu.au/∼dpattinson/Sofware/.

http://users.cecs.anu.edu.au/~dpattinson/Sofware/

Schulze Voting as Evidence Carrying Computation 413

2 Formal Specification of Schulze Voting

We begin with an informal description of Schulze voting. Schulze voting is pref-
erential in the sense that every voter gets to express their preference about can-
didates in the form of a rank ordered list. Here, we allow voters to be indifferent
about candidates but require voters to express preferences over all candidates.
This requirement can be relaxed and we can consider e.g. unranked candidates
as tied for the last position.

Given a set of ballots s and candidate set C, one constructs the margin
function m : C × C → Z. Given two candidates c, d ∈ C, the margin of c over
d is the number of voters that prefer c over d, minus the number of voters that
prefer d over c. In symbols

m(c, d) = �{b ∈ s | c >b d} − �{b ∈ s | d >b c}
where � denotes cardinality and >b is the strict (preference) ordering given by
the ballot b ∈ s. A (directed) path from candidate c to candidate d is a sequence
p ≡ c0, . . . , cn+1 of candidates with c0 = c and cn+1 = d (n ≥ 0), and the
strength st(p) of this path is the minimum margin of adjacent nodes, i.e.

st(c0, . . . , cn+1) = min{m(ci, ci+1) | 0 ≤ i ≤ n}.

Note that the strength of a path may be negative. The Schulze method stipulates
that a candidate c ∈ C is a winner of the election with margin function m if,
for all other candidates d ∈ C, there exists a number k ∈ Z such that

– there is a path p from c to d with strength st(p) ≥ k
– all paths q from d to c have strength st(q) ≤ k.

Informally speaking, we can say that candidate c beats candidate d if there’s
a path p from c to d which is stronger than any path from d to c. Using this
terminology, a candidate c is a winner if c cannot be beaten by any (other)
candidate.

Remark 1. There are multiple formulations of the Schulze method in the litera-
ture. Schulze’s original paper [16] only considers paths where adjacent nodes have
to be distinct, and [9] only considers simple paths, i.e. paths without repeated
nodes. Here, we consider all paths. It is easy to see that all three definitions are
equivalent, i.e. they produce the same set of winners.

Our (Coq) formalisation takes a finite and non-empty type of candidates as
given which we assume has decidable equality. For our purposes, the easiest way
of stipulating that a type is finite is to require existence of a list containing all
inhabitants of this type.

Parameter cand : Type.
Parameter cand_all : list cand.
Hypothesis cand_fin : forall c: cand, In c cand_all.
Hypothesis dec_cand : forall n m : cand, {n = m} + {n <> m}.
Hypothesis cand_inh : cand_all <> nil.

414 D. Pattinson and M. Tiwari

For the specification of winners of Schulze elections, we take the margin function
as given for the moment (and later construct it from the incoming ballots). In
Coq, this is conveniently expressed as a variable:

Variable marg : cand -> cand -> Z.

We formalise the notion of path and strength of a path by means of a single (but
ternary) inductive proposition that asserts the existence of a path of strength
≥ k between two candidates, for k ∈ Z.

Inductive Path (k: Z) : cand -> cand -> Prop :=
| unit c d : marg c d >= k -> Path k c d
| cons c d e : marg c d >= k -> Path k d e -> Path k c e.

Using these definitions, we obtain the following notion of winning (and dually,
losing) a Schulze election:

Definition wins_prop (c: cand) := forall d : cand, exists k : Z,

Path k c d /\ (forall l, Path l d c -> l <= k).

Definition loses_prop (c : cand) := exists k: Z, exists d: cand,

Path k d c /\ (forall l, Path l c d -> l < k).

We reflect the fact that the above are propositions in the name of the defi-
nitions, in anticipation of type-level definitions of these notions later. The main
reason for having equivalent type-level versions of the above is that purely propo-
sitional information is discarded during program extraction, unlike the type-level
notions of winning and losing that represent evidence of the correctness of the
determination of winners.

That is, our goal is to not only compute winners and losers according to
the definition above, but also to provide independently verifiable evidence of the
correctness of our computation. The propositional definitions of winning and
losing above serve as a reference to calibrate their type level counterparts, and
we demonstrate the equivalence between propositional and type-level conditions
in the next section.

3 A Scrutiny Sheet for the Schulze Method

How can we know that, say, a candidate c in fact wins a Schulze election, and
that, say, d is not a winner? One way would be to simply re-run an independent
implementation of the method (usually hoping that results would be confirmed).
But what happens if results diverge?

One major aspect of this paper is that we can answer this question by not
only computing the set of winners, but in fact presenting evidence for the fact
that a particular candidate does or does not win. In the context of electronic vote
counting, this is known as a scrutiny sheet : a tabulation of all relevant data that
allows us to verify the election outcome. Again drawing on an already computed
margin function, to demonstrate that a candidate c wins, we need to exhibit an
integer k for all competitors d, together with

Schulze Voting as Evidence Carrying Computation 415

– evidence for the existence of a path from c to d with strength ≥ k
– evidence for the non-existence of a path from d to c that is stronger than k.

The first item is straight forward, as a path itself is evidence for the existence
of a path, and the notion of path is inductively defined. For the second item, we
need to produce evidence of membership in the complement of an inductively
defined set.

Mathematically, given k ∈ Z and a margin function m : C × C → Z, the
pairs (c, d) ∈ C × C for which there exists a path of strength ≥ k that joins
both are precisely the elements of the least fixpoint LFP(Vk) of the monotone
operator Vk : Pow(C × C) → Pow(C × C), defined by

Vk(R) = {(c, e) ∈ C2 | m(c, e) ≥ k or (m(c, d) ≥ k and (d, e) ∈ R for some d ∈ C)}.
It is easy to see that this operator is indeed monotone, and that the least fixpoint
exists, e.g. using Kleene’s theorem [18]. To show that there is no path between
d and c of strength > k, we therefore need to establish that (d, c) /∈ LFP(Vk+1).

By duality between least and greatest fixpoints, we have that

(c, d) ∈ C × C \ LFP(Vk+1) ⇐⇒ (c, d) ∈ GFP(Wk+1)

where for arbitrary k, Wk : Pow(C × C) → Pow(C × C) is the operator dual to
Vk, i.e.

Wk(R) = C × C \ (Vk(C × C \ R))

and GFP(Wk) is the greatest fixpoint of Wk. As a consequence, to demonstrate
that there is no path of strength ≥ k between candidates d and c, we need to
demonstrate that (d, c) ∈ GFP(Wk+1). By the Knaster-Tarski fixpoint theorem
[19], this greatest fixpoint is the supremum of all Wk+1-coclosed sets, that is,
sets R ⊆ C × C for which R ⊆ Wk+1(R). That is, to demonstrate that (d, c) ∈
GFP(Wk+1), we need to exhibit a Wk+1-coclosed set R with (d, c) ∈ R. If we
unfold the definitions, we have

Wk(R) = {(c, e) ∈ C2 | m(c, e) < k and (m(c, d) < k or (d, c) ∈ R for all d ∈ C)}
so that given any fixpoint R of Wk and (c, e) ∈ C2, we know that (i) the margin
between c and e is < k so that there’s no edge (or unit path) between c and e,
and (ii) for any choice of midpoint d, either the margin between c and d is < k
(so that c, d, . . . cannot be the start of a path of strength ≥ k) or we don’t have
a path between d and e of strength ≥ k. We use the following terminology:

Definition 1. Let R ⊆ C × C be a subset and k ∈ Z. Then R is Wk-coclosed,
or simply k-coclosed, if R ⊆ Wk(R).

Mathematically, the operator Wk acts on subsets of C × C that we think of as
predicates. In Coq, we formalise these predicates as boolean valued functions
and obtain the following definitions where we isolate the function marg lt (that
determines whether the margin between two candidates is less than a given
integer) for clarity:

416 D. Pattinson and M. Tiwari

Definition marg_lt (k : Z) (p : (cand * cand)) :=

Zlt_bool (marg (fst p) (snd p)) k.

Definition W (k : Z) (p: cand * cand -> bool) (x: cand * cand) :=

andb

(marg_lt k x)

(forallb (fun m => orb (marg_lt k (fst x, m)) (p (m, snd x))) cand_all).

In order to formulate type-level definitions, we need to promote the notion of
path from a Coq proposition to a proper type, and formulate the notion of
k-coclosed predicate.

Definition coclosed (k : Z) (f : (cand * cand) -> bool) :=

forall x, f x = true -> W k f x = true.

Inductive PathT (k: Z) : cand -> cand -> Type :=

| unitT : forall c d, marg c d >= k -> PathT k c d

| consT : forall c d e, marg c d >= k -> PathT k d e -> PathT k c e.

The only difference between type level paths (of type PathT) and (propositional)
paths defined earlier is the fact that the former are proper types, not propo-
sitions, and are therefore not erased during extraction. Given the above, we
have the following type-level definitions of winning (and dually, non-winning)
for Schulze counting:

Definition wins_type c := forall d : cand, existsT (k : Z),
((PathT k c d) * (existsT (f : (cand * cand) -> bool),

f (d, c) = true /\ coclosed (k + 1) f))%type.

Definition loses_type (c : cand) := existsT (k : Z) (d : cand),
((PathT k d c) * (existsT (f : (cand * cand) -> bool),

f (c, d) = true /\ coclosed k f))%type.

The main result of this section is that type level and propositional evidence for
winning (and dually, not winning) a Schulze election can be reconstructed from
one another.

Lemma wins_type_prop : forall c, wins_type c -> wins_prop c.

Lemma wins_prop_type : forall c, wins_prop c -> wins_type c.

The different nature of the two propositions doesn’t allow us to claim an equiv-
alence between both notions, as biimplication is a propositional connective.

The proof of the first statement is completely straightforward, as the type
carries all the information needed to establish the propositional winning con-
dition. For the second statement above, we introduce an intermediate lemma
based on the iterated margin function Mk : C × C → Z. Intuitively, Mk(c, d) is

Schulze Voting as Evidence Carrying Computation 417

the strength of the strongest path between c and d of length ≤ k + 1. Formally,
M0(c, d) = m(c, d) and

Mi+1(c, d) = max{Mi(c, d),max{min{m(c, e),Mi(e, d) | e ∈ C}}}

for i ≥ 0. The iterated margin function, as defined above, allows for paths of
arbitrary length. It is intuitively clear (and we establish this fact formally) that
paths with repeated nodes do not contribute to the maximal strength of a path.
Therefore, the iterated margin function stabilises at the n-th iteration (where n
is the number of candidates). The formal proof loosely follows the evident pen-
and-paper proof given for example in [6] that is based on cutting out segments
of paths between repeated nodes and so establishes that a fixpoint is reached.

Lemma iterated_marg_fp: forall (c d : cand) (n : nat),
M n c d <= M (length cand_all) c d.

That is, the generalised margin, i.e. the strength of the strongest (possibly infi-
nite) path between two candidates is effectively computable.

This allows us to relate the propositional winning conditions to the iterated
margin function and showing that a candidate c is winning implies that the
generalised margin between this candidate and any other candidate d is at least
as large as the generalised margin between d and c.

Lemma wins_prop_iterated_marg (c : cand) : wins_prop c ->

forall d, M (length cand_all) d c <= M (length cand_all) c d.

This condition on iterated margins can in turn be used to establish the type-
level winning condition, thus closing the loop to the type level winning condition.

Lemma iterated_marg_wins_type (c : cand) : (forall d,
M (length cand_all) d c <= M (length cand_all) c d) ->
wins_type c.

The crucial part of establishing the type-level winning conditions in the proof
of the lemma above is the construction of a co-closed set. First note that M
(length cand all) is precisely the generalised margin function. Writing g for
this function, we assume that g(c, d) ≥ g(d, c) for all candidates d, and given d,
we need to construct a k + 1-coclosed set S where k = g(c, d). One option is
to put S = {(x, y) | g(x, y) < k + 1}. As every i-coclosed set is also j-coclosed
for i ≤ j, the set S′ = {(x, y) | g(x, y) < g(d, c) + 1} is also k + 1-coclosed
and (in general) of smaller cardinality. We therefore witness the existence of a
k+1-coclosed set with S′ as this leads to certificates that are smaller in size and
therefore easier to check.

We note that the difference between the type-level and the propositional defi-
nition of winning is in fact more than a mere reformulation. As remarked before,
one difference is that purely propositional evidence is erased during program
extraction so that using just the propositional definitions, we would obtain a

418 D. Pattinson and M. Tiwari

determination of election winners, but no additional information that substan-
tiates this (and that can be verified independently). The second difference is
conceptual: it is easy to verify that a set is indeed coclosed as this just involves
a finite (and small) amount of data, whereas the fact that all paths between two
candidates don’t exceed a certain strength is impossible to ascertain, given that
there are infinitely many paths.

In summary, determining that a particular candidate wins an election based
on the wins type notion of winning, the extracted program will additionally
deliver, for all other candidates,

– an integer k and a path from the winning candidate to the other candidate
– a co-closed set that witnesses that no path reverse path of strength > k exists.

It is precisely this additional data (on top of merely declaring a set of election
winners) that allows for scrutiny of the process, as it provides an orthogonal
approach to verifying the correctness of the computation: both checking that
the given path has a certain strength, and that a set is indeed coclosed, is easy
to verify. We reflect more on this in Sect. 7, and present an example of a full
scrutiny sheet in the next section, when we join the type-level winning condition
with the construction of the margin function from the given ballots.

4 Schulze Voting as Inductive Type

Up to now, we have described the specification of Schulze voting relative to a
given margin function. We now describe the specification (and computation) of
the margin function given a profile (set) of ballots. Our formalisation describes
an individual count as a type with the interpretation that all inhabitants of this
type are correct executions of the vote counting algorithm. In the original paper
describing the Schulze method [16], a ballot is a linear preorder over the set of
candidates.

In practice, ballots are implemented by ask-
ing voters to put numerical preferences against the
names of candidates as illustrated by the image on
the right. The most natural representation of a bal-
lot is therefore a function b : C → N that assigns
a natural number (the preference) for each candi-
date, and we recover a strict linear preorder <b on
candidates by setting c <b d if b(c) > b(d).

As preferences are usually numbered beginning
with 1, we interpret a preference of 0 as the voter
failing to designate a preference for a candidate as
this allows us to also accommodate invalid ballots.
This is clearly a design decision, and we could have
formalised ballots as functions b : C → 1 +N (with 1 being the unit type) but it
would add little to our analysis.

Definition ballot := cand -> nat.

Schulze Voting as Evidence Carrying Computation 419

The count of an individual election is then parameterised by the list of ballots
cast, and is represented as a dependent inductive type. More precisely, we have
a type State that represents either an intermediate stage of constructing the
margin function or the determination of the final election result:

Inductive State: Type :=
| partial: (list ballot * list ballot) -> (cand -> cand -> Z)

-> State
| winners: (cand -> bool) -> State.

The interpretation of this type is that a state either consists of two lists of ballots
and a margin function, representing

– the set of ballots counted so far, and the set of invalid ballots seen so far
– the margin function constructed so far

or, to signify that winners have been determined, a boolean function that deter-
mines the set of winners.

The type that formalises correct counting of votes according to the Schulze
method is parameterised by the profile of ballots cast (that we formalise as a list),
and depends on the type State. That is to say, an inhabitant of the type Count
n, for n of type State, represents a correct execution of the voting protocol up to
state n. This state generally represents intermediate stages of the construction
of the margin function, with the exception of the final step where the election
winners are being determined. The inductive type takes the following shape:

Inductive Count (bs : list ballot) : State -> Type :=

| ax us m : us = bs -> (forall c d, m c d = 0) ->

Count bs (partial (us, []) m) (* zero margin *)

| cvalid u us m nm inbs : Count bs (partial (u :: us, inbs) m) ->

(forall c, (u c > 0)%nat) -> (* u is valid *)

(forall c d : cand,

((u c < u d) -> nm c d = m c d + 1) (* c preferred to d *) /\

((u c = u d) -> nm c d = m c d) (* c, d rank equal *) /\

((u c > u d) -> nm c d = m c d - 1))(* d preferred to c *) ->

Count bs (partial (us, inbs) nm)

| cinvalid u us m inbs : Count bs (partial (u :: us, inbs) m) ->

(exists c, (u c = 0)%nat) (* u is invalid *) ->

Count bs (partial (us, u :: inbs) m)

| fin m inbs w (d : (forall c, (wins_type m c) + (loses_type m c))):

Count bs (partial ([], inbs) m) (* no ballots left *) ->

(forall c, w c = true <-> (exists x, d c = inl x)) ->

(forall c, w c = false <-> (exists x, d c = inr x)) ->

Count bs (winners w).

The intuition here is simple: the first constructor, ax, initiates the construction of
the margin function, and we ensure that all ballots are uncounted, no ballots are
invalid (yet), and the margin function is constantly zero. The second constructor,
cvalid, updates the margin function according to a valid ballot (all candidates

420 D. Pattinson and M. Tiwari

have preferences marked against their name), and removes the ballot from the list
of uncounted ballots. The constructor cinvalid moves an invalid ballot (where
one or more candidates aren’t ranked) to the list of invalid ballots, and the last
constructor fin applies only if the margin function is completely constructed (no
more uncounted ballots). In its arguments, w: cand -> bool is the function that
determines election winners, and d is a function that delivers, for every candidate,
type-level evidence of winning or losing, consistent with w. Given this, we can
conclude the count and declare w to be the set of winners (or more precisely,
those candidates for which w evaluates to true).

Together with the equivalence of the propositional notions of winning or
losing a Schulze count with their type-level counterparts, every inhabitant of the
type Count b (winners w) then represents a correct count of ballots b leading
to the boolean predicate w: Cand -> bool that determines the winners of the
election with initial set b of ballots.

The crucial aspect of our formalisation of executions of Schulze counting is
that the transcript of the count is represented by a type that is not a propo-
sition. As a consequence, extraction delivers a program that produces the (set
of) election winner(s), together with the evidence recorded in the type to enable
independent verification.

Remark 2. In the previous section, we have given the definition of election win-
ners relative to a given margin function. The inductive data type Count ties this
in with the computation of the margin function. It is therefore reasonable to ask
for a formal proof that – given a list bs of ballots – the existence of an inhabitant
Count bs (winners w) is equivalent to the winning condition wins prop, where
the margin function is obtained from the ballots bs. This requires us to form-
late a correctness predicate is marg: list ballot -> (cand -> cand -> Z)
-> Prop that links ballots and margin. The most natural way of achieving this is
to formulate this predicate inductively, closely mirroring the clauses cvalid and
cinvalid in the defintion of Count. This makes the formal proof that relates
Count with the winning condition almost trivial.

5 All Schulze Election Have Winners

The main theorem, the proof which we describe in this section, is that all elec-
tions according to the Schulze method engender a boolean-valued function w:
Cand -> bool that determines precisely which candidates are winners of the
election, together with type-level evidence of this. Note that a Schulze election
can have more than one winner, the simplest (but not the only) example being
when no ballots at all have been cast. The theorem that we establish (and later
extract as a program) simply states that for every incoming set of ballots, there
is a boolean function that determines the election winners, together with an
inhabitant of the type Count that witnesses the correctness of the execution
of the count. In Coq, we use a type-level existential quantifier existsT where
existsT (x:A), P stands for Σx:AP.

Schulze Voting as Evidence Carrying Computation 421

Theorem schulze_winners: forall (bs : list ballot),
existsT (f : cand -> bool), Count bs (winners f).

The first step in the proof is elementary: We show that for any given list of
ballots we can reach a state of the count where there are no more uncounted
ballots, i.e. the margin function has been fully constructed.

The second step relies on the iterated margin function already discussed in
Sect. 3. As Mn(c, d) (for n being the number of candidates) is the strength of
the strongest path between c and d, we construct a boolean function w such
that w(c) = true if and only if Mn(c, d) ≥ Mn(d, c) for all d ∈ C. We then con-
struct the type-level evidence required in the constructor fin using the lemmma
iterated marg wins type described earlier.

Coq’s extraction mechanism then allows us to turn this into a provably cor-
rect program. When extracting, all purely propositional information is erased
and given a set of incoming ballots, the ensuing program produces an inhabitant
of the (extracted) type Count that records the construction of the margin func-
tion, together with (type level) evidence of correctness of the determination of
winners. That is, we see the individual steps of the construction of the margin
function (one step per ballot) and once all ballots are exhausted, the determi-
nation of winners, together with paths and co-closed sets. The following is the
transcript of a Schulze election where we have added wrappers to pretty-print
the information content. This is the (full) scrutiny sheet promised in Sect. 3.

V: [A3 B1 C2 D4,..], I: [], M: [AB:0 AC:0 AD:0 BC:0 BD:0 CD:0]

--

V: [A1 B0 C4 D3,..], I: [], M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]

--

V: [A3 B1 C2 D4,..], I: [A1 B0 C4 D3], M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]

. . .

--

V: [A1 B3 C2 D4], I: [A1 B0 C4 D3], M: [AB:2 AC:2 AD:8 BC:5 BD:8 CD:8]

--

V: [], I: [A1 B0 C4 D3], M: [AB:3 AC:3 AD:9 BC:4 BD:9 CD:9]

winning: A

for B: path A --> B of strength 3, 4-coclosed set:

[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for C: path A --> C of strength 3, 4-coclosed set:

[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for D: path A --> D of strength 9, 10-coclosed set:

[(D,A),(D,B),(D,C)]

losing: B

exists A: path A --> B of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),(D,A),(D,B),(D,C),(D,D)]

losing: C

exists A: path A --> C of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),(D,A),(D,B),(D,C),(D,D)]

losing: D

exists A: path A --> D of strength 9, 9-coclosed set:

[(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),(D,A),(D,B),

(D,C),(D,D)]

422 D. Pattinson and M. Tiwari

Here, we assume four candidates, A, B, C and D and a ballot of the form A3
B2 C4 D1 signifies that D is the most preferred candidate (the first preference),
followed by B (second preference), A and C. In every line, we only display the first
uncounted ballot (condensing the remainder of the ballots to an ellipsis), followed
by votes that we have deemed to be invalid. We display the partially constructed
margin function on the right. Note that the margin function satisfies m(x, y) =
−m(y, x) and m(x, x) = 0 so that the margins displayed allow us to reconstruct
the entire margin function. In the construction of the margin function, we begin
with the constant zero function, and going from one line to the next, the new
margin function arises by updating according to the first ballot. This corresponds
to the constructor cvalid and cinvalid being applied recursively: we see an
invalid ballot being set aside in the step from the second to the third line, all
other ballots are valid. Once the margin function is fully constructed (there are
no more uncounted ballots), we display the evidence provided in the constructor
fin: we present evidence of winning (losing) for all winning (losing) candidates.
In order to actually verify the computed result, a third party observer would
have to

1. Check the correctness of the individual steps of computing the margin
2. For winners, verify that the claimed paths exist with the claimed strength,

and check that the claimed sets are indeed coclosed.

Contrary to re-running a different implementation on the same ballots, our
scrutiny sheet provides an orthogonal perspective on the data and how it was
used to determine the election result.

6 Experimental Results

Coq’s built in extraction mechanism extracts into both Haskell and Ocaml, and
allows to extract Coq types into built in (or user defined) types in the target
programming language.

We have evaluated our approach by extracting the entire Coq development
into both Haskell and OCaml, with all types defined by Coq extracted as is, i.e.
in particular using Coq’s unary representation of natural numbers. The results
for the Haskell extraction are displayed in Fig. 1(a) using a logarithmic scale.
Profiling the executable reveals that a large portion of time is being spent com-
paring natural numbers (that Coq represents in unary) for size. In Fig. 1(b), we
have extracted Coq’s natural number type to the (native) Haskell type Int of
integers, and the comparison function to the Haskell native comparison operator
(<=). The use of native integers has resulted in a nearly tenfold speedup as seen
in the figure on the right. While extraction of Coq data types into their Haskell
counterparts potentially jeopardises correctness of the code, the fact that we
produce a transcript of the code (a scrutiny sheet) that can (and should!) be
checked for correctness externally alleviates the risk of erroneous results that
can be produced that way.

Schulze Voting as Evidence Carrying Computation 423

(a) Direct Extraction (b) Extraction using Haskell Integers

Fig. 1. Experimental results: Haskell

To obtain better quantitative data on scalability, we have subsequently
extracted into OCaml and fine-tuned some of the proofs so that the extracted
code avoids re-computation. In particular, we have not extracted any Coq type
to its Ocaml counterpart.

Other than a remarkable speedup compared to the Haskell extraction, we
note that for a constant number of candidates, the computation time is almost
independent of the number of ballots as witnessed by the graph on the left
(Fig. 2(a)) where we are counting votes for 10 candidates. This is due to the
fact that the Schulze method is linear in the number of ballots but cubic in the
number of candidates. We currently suspect that the disproportionately long
runtime displayed in the two rightmost bars is due to swapping when ballots are
being read. In the right hand graph (Fig. 2(b)), we are counting 100,000 ballots
and increase the number of candidates, witnessing this cubic behaviour.

All graphs have been produced assuming four candidates and (the same)
randomly generated ballots on an Intel i7 2.6 GHz Linux desktop computer with

(a) Increasing Number of Ballots (b) Increasing Number of Candidates

Fig. 2. Experimental results: OCaml

424 D. Pattinson and M. Tiwari

8 GB of ram. We have not analysed the memory consumption for either bench-
mark as it appeared to be minimal.

7 Discussion

Our paper takes the approach that computation of winners in electronic voting
(and in situations where correctness is key in general) should not only produce
an end result, but an end result, together with a verifiable justification of the
correctness of the computed result. In this paper, we have exemplified this app-
roach by providing a provably correct, and evidence-producing implementation
of vote counting according to the Schulze method.

While the Schulze method is not difficult to implement, and indeed there are
many freely available implementations, comparing the results between different
implementations can give some level of assurance for correctness only in case
the results agree. If there is a discrepancy, a certificate for the correctness of the
count allows to adjudicate between different implementations, as the certificate
can be checked with relatively little computational effort.

From the perspective of computational complexity, checking a transcript for
correctness is of the same complexity as computing the set of winners, as our
certificates are cubic in size, so that certificate checking is not less complex than
the actual computation.

However, publishing an independently verifiable certificate that attests the
individual steps of the computation helps to increase trust in the computed elec-
tion outcome. Typically, the use of technology in elections increases the amount
of trust that we need to place both in technological artefacts, and in people.
It raises questions that range from fundamental aspects, such as proper testing
and/or verification of the software, to very practical questions, e.g. whether the
correct version of the software has been run. On the contrast, publishing a cer-
tificate of the count dramatically reduces the amount of trust that we need to
place into both people and technology: the ability to publish a verifiable justi-
fication of the correctness of the count allows a large number of individuals to
scrutinise the count. While only moderate programming skills are required to
check the validity of a certificate (the transcript of the count), even individuals
without any programming background can at least spot-check the transcript:
for the construction of the margin function, everything that is needed is to show
that the respective margins change according to the counted ballot. For the cor-
rectness of determination of winners, it is easy to verify existence of paths of a
given strength, and also whether certain sets are co-closed – even by hand! This
dramatically increases the class of people that can scrutinise the correctness of
the count, and so helps to establish a trust basis that is much wider as no trust
in election officials and software artefacts is required.

Technically, we do not implement an algorithm that counts votes according to
the Schulze method. Instead, we give a specification of the Schulze winning con-
ditions (wins prop in Sect. 2) in terms of an already computed margin function
that (we hope) can immediately be seen to be correct, and then show that those

Schulze Voting as Evidence Carrying Computation 425

winning conditions are equivalent to the existence of inhabitants of types that
carry verifiable evidence (wins type). We then join the (type level) winning
conditions with an inductive type that details the construction of the margin
function in an inductive type. Via propositions-as-types, a provably correct vote
counting function is then equivalent the proposition that there exists an inhab-
itant of Count for every set of ballots. Coq’s extraction mechanism then allows
us to extract a functional programs that produce election winners, together with
verifiable certificates.

The approach taken in this paper, i.e. the formalisation of a voting protocol
as a (dependent) inductive type, can be applied, and has been applied to other
voting protocols, notably variants of single transferable vote [14]. As voting pro-
tocols differ substantially in detail, there is limited potential for code re-use.

8 Conclusion and Further Work

This paper has presented a formalisation of the Schulze method for counting
preferential ballots. Our formalisation focuses on the correct execution of the
method. One appealing aspect of the Schulze method is that it meets lots of
desirable criteria of vote counting systems such as monotonicity, the Condorcet
property or reversal symmetry. We leave the verification of these for future work.

In our formalisation of vote counting, there is a one-to-one correspondence
between correct executions of the protocol, and inhabitants of a (dependent)
inductive type. In our Coq development, we have used the propositions-as-types
approach, and have constructed an existence proof, from which we have gen-
erated code. An alternative approach would be to implement a function that
directly constructs inhabitants, and obtain a detailed performance comparison
between both approaches. While we anticipate that a direct implementation
brings performance benefits, our experimental evaluation shows that even with
very little optimisation (Sect. 6), extracting vote counting program from an exis-
tence proof allows us to count a relatively large number of ballots already.

Finally, we remark that extracting Coq developments into a programming
language itself is a non-verified process which could still introduce errors in our
code. The most promising way to alleviate this is to independently implement
(and verify) a certificate verifier, possibly in a language such as CakeML [11]
that is guaranteed to be correct to the machine level.

References

1. Arkoudas, K., Rinard, M.C.: Deductive runtime certification. Electr. Notes Theo-
ret. Comput. Sci. 113, 45–63 (2005)

2. Arrow, K.J.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4),
328–346 (1950)

3. Beckert, B., Goré, R., Schürmann, C., Bormer, T., Wang, J.: Verifying voting
schemes. J. Inf. Secur. Appl. 19(2), 115–129 (2014)

4. Bertot, Y.: Coinduction in Coq. CoRR, abs/cs/0603119 (2006)

426 D. Pattinson and M. Tiwari

5. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive Theorem Prov-
ing and Program Development: Coq’Art the Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer, Berlin (2004). doi:10.1007/
978-3-662-07964-5

6. Carré, B.A.: An algebra for network routing problems. IMA J. Appl. Math. 7(3),
273 (1971)

7. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Pri-
vacy 2(1), 38–47 (2004)

8. Cochran, D., Kiniry, J.: Votail: a formally specified and verified ballot counting
system for Irish PR-STV elections. In: Pre-proceedings of 1st International Con-
ference on Formal Verification of Object-Oriented Software (FoVeOOS) (2010)

9. Hemaspaandra, L.A., Lavaee, R., Menton, C.: Schulze and ranked-pairs voting are
fixed-parameter tractable to bribe, manipulate, and control. Ann. Math. Artif.
Intell. 77(3–4), 191–223 (2016)

10. Kozen, D., Silva, A.: Practical coinduction. Math. Struct. Comput. Sci. 1–21 (2016)
11. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-

tation of ML. In: Jagannathan, S., Sewell, P. (eds.) Proceedings of POPL 2014,
pp. 179–192. ACM (2014)

12. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69407-6 39

13. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.)
Proceedings of POPL 1997, pp. 106–119. ACM Press (1997)

14. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In:
Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS, vol. 9457, pp. 464–475. Springer,
Cham (2015). doi:10.1007/978-3-319-26350-2 41

15. Rivest, R.L., Shen, E.: An optimal single-winner preferential voting system based
on game theory. In: Conitzer, V., Rothe, J. (eds.) Proceedins of COMSOC 2010.
Duesseldorf University Press (2010)

16. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Soc. Choice Welf. 36(2), 267–
303 (2011)

17. Schürmann, C.: Electronic elections: trust through engineering. In: Proceedings of
RE-VOTE 2009, pp. 38–46. IEEE Computer Society (2009)

18. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.: Mathematical Theory of
Domains. Cambridge Tracts in Theoretical Computer Science, vol. 22. Cambridge
University Press, Cambridge (1994)

19. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

20. The Wikimedia Foundation. Wikimedia Foundation Board Election Results
(2011). https://meta.wikimedia.org/wiki/Wikimedia Foundation elections/
Board elections/2011/Results/en. Accessed 30 May 2017

http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-540-69407-6_39
http://dx.doi.org/10.1007/978-3-319-26350-2_41
https://meta.wikimedia.org/wiki/Wikimedia_Foundation_elections/Board_elections/2011/Results/en
https://meta.wikimedia.org/wiki/Wikimedia_Foundation_elections/Board_elections/2011/Results/en

Verified Spilling and Translation Validation
with Repair

Julian Rosemann(B), Sigurd Schneider , and Sebastian Hack

Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
rosemann@stud.uni-saarland.de

Abstract. Spilling is a mandatory translation phase in every compiler
back-end. It decides whether and where a value is stored in a register
or in memory and has therefore a significant impact on performance. In
this paper, we study spilling in the setting of a verified compiler with a
term-based intermediate representation that provides an alternative way
to realize SSA. We devise a permissive correctness criterion to accommo-
date many SSA-based spilling algorithms and prove the criterion sound.
As case study, we verify two basic spilling algorithms. Finally, we show
that our criterion is decidable by deriving a translation validator that
repairs spilling information if necessary. We show that the validator
always produces a valid spilling, and that the validator does not alter
valid spilling information. Our results are formalized in Coq as part of
the LVC compiler project.

1 Introduction

Spilling is an important translation phase mandatory in every compiler back-
end. It deals with the problem that there is an unbounded number of variables
in the source program, but only finitely many registers in any processor. After
successful spilling, the set of live variables at every program point is covered by
the union of an unbounded set (the memory) and a set bounded by an integer k
(the registers). We call k the register bound. Spilling must ensure the value of a
variable resides in a register whenever an instruction uses it. For this purpose,
spilling inserts store instructions (spills), which copy the values of variables from
the registers to the memory, and load instructions (loads), which copy the values
of variables from the memory to the registers. For performance, it is crucial that
few load and spill instructions are executed, because register access is at least
an order of magnitude faster than memory access. Introducing spills and loads
also increases the code size, which is not desirable for performance.

As an example, consider the source program given in Listing 1. The program
on the left needs at least three registers. The middle and right programs are
different spilled forms of the left program, and each requires only two registers.
Note that the decision whether x or y is spilled in the first line determines how
many spills and loads are necessary in the continuation of the program.

Spilling determines whether a variable resides in a register at a program
point, but does not determine the register. Register assignment assigns variables
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 427–443, 2017.
DOI: 10.1007/978-3-319-66107-0 27

http://orcid.org/0000-0003-1948-0596

428 J. Rosemann et al.

let z := x + y in

if z ≥ y

then

x + z

else

z

let X := x in

let z := x + y in

if z ≥ y

then

let x := X in

x + z

else

z

let Y := y in

let z := x + y in

let X := x in

let y := Y in

if z ≥ y

then

let x := X in

x + z

else

z

Listing 1: A program (left) and two spilled forms of the same program. Lower-
case variables denote registers, uppercase variables denote spill slots.

to specific registers. Spilling and register assignment together form the register
allocation phase. In the literature, register allocation is often treated as a single
problem, without phase separation between spilling and register assignment. In
this work, we leverage that the number of simultaneously live variables equals the
register pressure to decouple spilling from register assignment. This is possible for
static single assignment (SSA) programs [7], and programs in the intermediate
language IL [11] used in the verified compiler LVC1. IL realizes SSA in a term-
based setting by interpreting variable definition as binding with scope.

We develop a small framework for verification of spilling based on an induc-
tively defined correctness criterion. The criterion is formulated relative to spilling
information (i.e. which variable is spilled/loaded where) and liveness informa-
tion. If spilling information satisfies the criterion, it can be used to obtain a
program that meets the register bound, and in which variables are in the reg-
isters whenever they are used, and which is equivalent to the original program.
To verify a spilling algorithm, it suffices to prove that every produced spilling
information satisfies the criterion.

It is difficult to formally state what optimal spilling is. Minimizing loads and
spills is not necessarily the most effective approach, because reducing the loads
and spills at frequently passed program points is more important than anywhere
else. Properties of different processor architectures further complicate the prob-
lem. Our correctness criterion is independent of assumptions about optimality.
We restrict the spilling choices as little as possible. Our criterion in particular
supports arbitrary live range splitting, i.e., the choice whether a variable should
reside in memory or registers is made per program point. This is mandatory to
produce spillings with acceptable performance [4]. A value may also reside in a
register and in memory simultaneously.

As a case study, we use the predicate to verify three spilling algorithms. The
first is a trivial one which loads before instructions and spills afterwards. The
second tries to minimize the number of loads and spills by loading as late and

1 https://www.ps.uni-saarland.de/∼sdschn/LVC.

https://www.ps.uni-saarland.de/~sdschn/LVC

Verified Spilling and Translation Validation with Repair 429

as little as possible, and only spilling variables that are overwritten and live in
the program continuation.

The third spilling algorithm is similar to a translation validator that takes
spilling information from an untrusted source as input. Instead of only validat-
ing the spilling information, our algorithm corrects mistakes in the untrusted
spilling. We formally show that our algorithm transforms any spilling informa-
tion (correct or not) to an ultimately correct spilling, and that spilling infor-
mation that already satisfies our criterion remains unchanged. Interestingly, the
algorithm is not much more complicated than a translation validator. To our
knowledge, this is the first algorithm of its kind. This approach unites the flexi-
bility of translation validation with the guarantees of full verification.

Our results are formalized in Coq and part of the Linear Verified Compiler
(LVC). The development is available online2. In summary, this paper makes the
following contributions:

– A modular framework for correctness of spilling for term-based SSA
– Verification of two simple spilling algorithms for term-based SSA
– A translation validator for spilling that not only accepts valid spillings, but

also repairs incorrect spilling from an external untrusted source.

Outline. The paper is organized as follows. Section 3 contains the semantics of
the language IL, and Sect. 4 discusses liveness information. Section 5 discusses
the representation of spilling information and the generation of the spilled pro-
gram. In Sect. 6, we define the correctness criterion for spilling and in Sect. 7 we
prove its soundness. Section 8 contains two case studies. Section 9 describes our
translation validator with repair. Section 10 concludes.

2 Related Work

Global register allocation was pioneered by Chaitin [5]. Since Chaitin’s ini-
tial work, there have been several improvements to graph coloring that mostly
concentrated on coalescing, i.e. the removal of copy instructions. Most graph
coloring approaches decide for every variable globally whether it resides in a
register (and if so, in which) or a spill slot. Especially, graph coloring alloca-
tors do not attempt to split live ranges sophistically but rather transfer spilled
variables from/to memory upon each access. This gives a simple spilling scheme
that is also amenable to formal verification (see below). However, in practice
the spilling quality of these algorithms is not sufficient to achieve acceptable
performance [4].

Linear Scan by Poletto and Sarkar [9] is the basis for many practically popular
approaches to register allocation. Linear scan splits live ranges, i.e. it allows a
variable to be in a register at one program point and in memory at another. For
performance reasons, linear scan over-approximates the live ranges of variables

2 https://www.ps.uni-saarland.de/∼rosemann/lvc-spill.

https://www.ps.uni-saarland.de/~rosemann/lvc-spill

430 J. Rosemann et al.

by linearizing control flow, hence the name. Linear scan intertwines spilling and
register assignment.

Static Single Assignment (SSA) allows to decouple spilling and register
assignment. In SSA, the number of simultaneously live variables equals the reg-
ister pressure [7]. SSA-based spilling algorithms can hence effectively determine
how many variables must be spilled at each program point without knowing the
register assignment. Braun and Hack [4] provide an SSA-based spilling algorithm
that is very sensitive to the underlying program structure.

Computational Complexity. Chaitin proves NP-completeness of global reg-
ister allocation [5]. Bouchez et al. show that minimizing spills and loads is NP-
complete in SSA [3]. Bouchez also shows NP-completeness of different coalesc-
ing problems, i.e. minimizing the number of copies/swaps required to implement
SSA’s φ-functions after the register allocation phase.

CompCert. Register allocation in the first version of CompCert used a trans-
lation validated graph coloring algorithm implemented in OCaml [8]. Spilling is
verified and very simple: Variables not in a register are loaded before use and
spilled after redefinition. Later Blazy et al. [2] fully verified Appel’s [6] iter-
ated register coalescing (IRC) approach, which includes spilling. Being a graph
coloring technique, this algorithm suffers from the same drawbacks concerning
spilling that we discussed above. Hence, especially for machines with few regis-
ters (such as IA32), the code quality is hardly acceptable. Instead of changing
the fully verified spiller, which would have been a tremendous effort, Rideau and
Leroy [10] developed a new translation validated algorithm for register alloca-
tion and spilling. The new spilling algorithm tracks recently spilled and loaded
variables and thus avoids loading if the variable is still in a temporary register.

In contrast to the verified register allocation by Blazy et al., the second
spilling algorithm we verify as case study splits live ranges. The algorithm fol-
lows a strategy similar to the translation validated algorithm of Rideau et al.,
is verified, but does not support overlapping registers yet. There is a project
that aims to bring SSA to CompCert [1], but SSA-based register allocation for
CompCert has not been explored yet.

CakeML. The compiler for CakeML [13] is verified in HOL4. The compiler
represents loops as recursive functions and forces all variables a function uses
to be parameters through closure conversion. This breaks all live ranges at loop
headers. The CakeML compiler assumes all function parameters are live, hence
register pressure may increase if closure conversion introduces dead parameters.
CakeML does not use SSA with φ-functions and delegates register allocation to
a non-SSA-based, verified IRC algorithm [6] that performs spilling and register
assignment together. In contrast to the CakeML approach, our approach is SSA-
based, separates spilling from register assignment, and allows fine-grained control
over live range splitting. Our approach does not require closure conversion, but
allows functions to refer to variables that are not parameters.

Verified Spilling and Translation Validation with Repair 431

3 Syntax and Semantics of IL

The formal development in LVC uses the intermediate language IL with mutu-
ally recursive function definitions and external events (system calls) [12]. For
the presentation of spilling in this paper, we omit mutually recursive function
definitions and system calls for the sake of simplicity. IL as used in LVC has
a functional and an imperative semantic interpretation [11]. We verify spilling
with respect to the imperative semantics, as it simplifies the treatment of the
new definitions introduced by spills and loads.

3.1 Expressions

Let V be the type of values and exp be the type of expressions. By convention, v
ranges over values and e over expressions. The type of variables V is isomorphic
to the natural numbers N. An environment has the type V → V⊥ where V⊥
includes V and ⊥ in case there is no assignment available. Expression evaluation
is a function [[·]] : exp → (V → V⊥) → V⊥ that takes an expression and an
environment and returns a value or ⊥ if the evaluation fails. For lists, we use
the notation x and we lift [[·]] accordingly: [[e]] yields ⊥ if at least one of the
expressions in e failed to evaluate and the list of the evaluated values otherwise.
We use the usual function fv : exp → set V that yields the free variables of an
expression. If V and V ′ agree on fv e, then [[e]]V = [[e]]V ′. There is a function
β : V → {t, f} that simplifies the definition of the semantics of the conditional.

3.2 Syntax

IL is a first-order language with a tail-call restriction, which ensures that every
IL program can be implemented without a call stack. The syntax of IL is given in
Table 1. We use a separate alphabet F for function names to enforce a first-order
discipline. By convention, f ranges over F .

Table 1. Syntax of IL

3.3 Semantics

A context is a list of named definitions. By convention, L ranges over contexts.
A definition in a context may refer to previous definitions and itself. Notationally,
we use contexts like functions and write Lf to access the first element with

432 J. Rosemann et al.

name f . We have Lf = ⊥ if no such element exists. We write L−f for the
context obtained from L by dropping all definitions before the first definition
of f . We write ; for context concatenation and ∅ for the empty context.

Figure 1 shows the small-step transition relation −→ of IL. The relation is
defined on configurations (L, V, s) where L is a context containing tuples of
type V ∗ stmt, V is an environment and s is an IL term. Often we write the
configuration tuple L | V | S to have the comma available as another separator.
Since only tail recursion is syntactically allowed in IL, no call stack is required.
Function application in IL is hence similar to a “goto” with a parallel copy on the
variables resulting from parameter passing, and very different from a function
call in a language with a call stack.

Fig. 1. Semantics of IL

3.4 Renaming Apart

Many results in this paper require the input programs to be renamed apart,
that is, every variable must be assigned at most once and defined before used. In
general, renaming apart an imperative program requires SSA with φ-functions.
As presented in our previous work [11], IL realizes SSA by interpreting variables
as binders and emulates φ-functions through function applications. We previ-
ously established that renamed-apart IL programs are coherent, i.e. they behave
equivalently under a semantic interpretation with binders and a semantics with
imperative assignables. For this reason, our theorems require programs to be
renamed apart, and at the same time rely on the imperative interpretation.

4 Liveness

Liveness over-approximates the semantic (and hence undecidable) notion that a
variable is still used later on. The notion of liveness used in a register allocation
approach greatly impacts the algorithm and its effectiveness. Consider, for exam-
ple, the different notions of liveness used by graph-coloring register allocation [5]
and linear scan [9].

Verified Spilling and Translation Validation with Repair 433

We inductively define a soundness predicate Z | Λ � live s : X that associates
a set of variables X called live set with a program s. The parameter context Z
maps every defined function to its parameters. The live-in context Λ maps
every function to a set of variables that contains the variables live in the function
body and the parameters, which we call the live-in set of the function. We
embed the live-in sets in the IL syntax of function definitions, which from now
on take the syntactic form fun f x := s1 {X1} in s2, in which the function
body s1 is syntactically annotated with its live-in set X1. We call these sets
embedded in the syntax at function bodies live-in annotations. In contrast to
these annotations, the live set X that appears in the judgment Z | Λ � live s : X
is not part of the syntax of IL. The inductive definition of liveness is given in
Fig. 2 and similar to our previous definition [11]. The liveness predicate allows
X to over-approximate the live set, that is, X may contain variables that are
not used later on.

Fig. 2. Inductive definition of liveness

4.1 Description of the Rules of the Inductive Predicate

LiveLet requires the live set X of the let statement to contain the free variables
of the expression e, and the variables live in the continuation s, except the newly
defined variable x. We also require x to be in the live set Xs of the continuation.
This reflects that x must be considered live during the let-statement even if x is
not used afterwards, because x is overwritten and hence cannot hold a value that
is still used later on. LiveReturn requires the free variables of the expression
to be live. LiveApp requires the live-ins of the function that are not parameters
to be live. LiveIf requires the live variables of the consequence, the alternative,
and the free variables of the condition to be live. LiveFun requires that variables
live in continuation s2 are live. The parameters are recorded in the context Z,

434 J. Rosemann et al.

and the live-ins X1 are recorded in the context Λ. The live-ins X1 contain all
variables live in the function body and all parameters, regardless of whether a
parameter is used: x ⊆ X1. This reflects that unused parameters are overwritten
during function application, and hence occupy a register or a spill slot.

4.2 Minimal Live Sets and Live Set Annotations

Live-in annotations uniquely determine the minimal live set for every program
point; those live sets can be computed by a bottom-up traversal. Since liveness
annotations are part of the syntax, every algorithm or judgment formulated
on the syntax can easily refer to and compute with the live-ins at function
definitions. This allows us to concisely describe how the live sets change during
spilling, we can explain changes to live sets by explaining them just for the live-
ins at function definitions. The effect on the other live sets in the program is
then uniquely determined. We write Z | Λ � live s for ∃X.Z | Λ � live s : X and
use this notation whenever we want to hide the precise form of the live set.

5 Spilling

Spilling transforms a program into an equivalent program by inserting spills
and loads such that the number of registers in the maximal live set is after-
wards bounded by a given integer k. In our framework, spilling consists of two
steps: First, a spilling algorithm inserts spilling annotations into the program
that describe where spills and loads should be placed. Second, the spills and
loads are inserted into the program as prescribed by these spilling annotations,
which yields the spilled program. The spilled program also contains live set
annotations at function definitions, and we describe in Sect. 7.2 how those are
recomputed according to the spilling annotations.

Spilling annotations are three-tuples embedded in the syntax at every sub-
term. A statement with spilling annotation has the form s ... (S,L,), where S
is the set of variables to be spilled (spill set) and L is the set of variables to
be loaded (load set). The third component is only required if s is a function
applications or a function definition, and we discuss its purpose below. We call
a statement that contains such annotations a spill statement.

A spill statement can be turned into a spilled program via the recursive func-
tion doSpill, which we now informally describe. We assume that the variables are
partitioned into two countably-infinite sets V = VR ·∪ VM , and require that the

doSpillLocal(s ... ({x1, ..., xn}
� �� �

spills

, {y1, ..., ym}
� �� �

loads

,)) =

let slot x1 = x1 in ...

let slot xn = xn in

let y1 = slot y1 in ...

let ym = slot ym in s

Listing 2.: Definition of doSpillLocal

Verified Spilling and Translation Validation with Repair 435

1 fun f x y z := Rf ={y, z},Mf ={c, x, z}
2 if y > 0 then

3 let a := y+z in

4 f x a z Rapp = {a, z},Mapp = {x, z}
5 else if y = 0 then

6

7

8 x + c L = {c, x}
9 else

10 let w := y*y in

11 let a := y+w in

12 f x a z Rapp = {a},Mapp = {x, z}

fun f X y z Z :=

if y > 0 then

let a := y+z in

f X a z Z

else if y = 0 then

let x := X in

let c := C in

x + c

else

let w := y*y in

let a := y+w in

f X a Z Z

Listing 3: A spill statement on the left (non-empty sets in spilling annotations
are indicated by equations) and the resulting spilled program on the right. The
live-ins of f are {x, y, z, c}. The variable c is free in f . Lowercase variables denote
registers, uppercase variables denote spill slots. In line 4, z is passed in register
and memory to avoid loading z in line 3. The application in line 12 implicitly
loads z (3rd parameter).

spill statement only contains variables from VR. We further assume an injection
slot : VR → VM which we use to generate names for spill slots (cf. CompCert [8]).

To generate the spilled program for s ... (S,L,), doSpill first prepends the
statement s with spills for each variable in S, followed by the loads for each
variable in L as depicted in Listing 2. For let statements, conditionals, and return
statements this is all that needs to be done. Function definitions and applications
require some additional work, which we describe next.

Function definitions take a pair of sets (Rf ,Mf) as third component of the
spilling annotation: fun f x1, . . . , xn := s1 in s2 ... (S,L, (Rf ,Mf)). We call
the pair (Rf ,Mf) the live-in cover and require it to cover the live-ins Xf of f ,
i.e. Rf ∪ Mf = Xf . The set Rf specifies the variables the function expects to
reside in registers, and the set Mf specifies the variables the function expects to
reside in memory. The sets Rf and Mf are not necessarily disjoint, as a function
may want a variable to reside both in register and in memory when it is applied
(see Listing 3). Besides inserting spills and loads according to S and L as already
described, the function parameters must be modified to account for parameters
that are passed in spill slots. For this purpose, every parameter xi ∈ Mf \ Rf is
replaced by the name slot xi in x. Furthermore, for any parameter xi ∈ Mf ∩Rf

an additional parameter with name slot xi is inserted directly after xi.
Function applications have a pair of sets (Rapp,Mapp) as third component of

spilling information and take the form f y1, . . . , yn ... (S,L, (Rapp,Mapp)). We
require all function arguments yi to be variables, and that Rapp ∪ Mapp =
{y1, . . . , yn}. The sets Rapp and Mapp indicate the availability of argument vari-
ables at the function application. If an argument variable yi is available in a
register, then the spilling algorithm sets yi ∈ Rapp, if it is in memory, then
yi ∈ Mapp. Besides inserting spills and loads according to S and L as already

436 J. Rosemann et al.

described, doSpill modifies the argument vector y1, . . . , yn. For every parameter
xi ∈ Rf such that the corresponding argument variable yi is not in Rapp (i.e.
not available in a register), the variable yi is replaced by the name slot yi in the
argument vector. For every parameter xi ∈ Mf \ Rf such that the correspond-
ing argument variable yi is in Mapp (i.e. available in memory), the variable yi
is replaced by the name slot yi in the argument vector. Furthermore, for every
parameter xi ∈ Mf ∩ Rf an additional argument is inserted directly after the
corresponding argument variable (yi or slot yi) in y1, . . . , yn, and the name of
the additional argument is slot yi if yi ∈ Mapp and yi otherwise. In this way,
Rf and Mf are used to avoid implicit loads and stores at function application
if availability, as indicated in Rapp and Mapp, permits. Since spill slots are just
a partition of the variables, parameter passing can copy between spill slots and
registers if the argument variable yi for a register parameter xi is only avail-
able in memory, or vice versa. This fits nicely in our setting, as we handle the
generation of these implicit spills and loads later on, when parameter passing is
lowered to parallel moves. In line 12 of Listing 3, for example, the application
implicitly loads z. In contrast, availability of z in both register and memory at
the application in line 4 allows avoiding any implicit loads and stores. Assuming
y > 0 holds for most executions, this is beneficial for performance.

6 A Correctness Criterion for Spilling

We define a correctness predicate for spilling on spill statements of the form
Z | Σ | R | M � spillk s ... (S,L,). Note that as described in Sect. 5, the spilling
annotation (S,L,) is embedded in the syntax. The correctness predicate is
defined relative to sets R and M , which contain the variables currently in regis-
ters, and in memory, respectively. Additionally, the parameter context Z maps
function names to their parameter list, and the live-in cover context Σ maps
functions to their live-in cover. The parameter k is the register bound. The rules
defining the predicate are given in Fig. 3.

6.1 Description of the Rules of the Inductive Predicate

The predicate consists of two generic rules that handle spilling and loading, and
one rule for each statement. Rules for statements only apply once spills and loads
have been handled. This is achieved by requiring empty spill and load sets in
statement rules, and requiring an empty spill set in the load rule. SpillSpill
requires S ⊆ R to ensure only variables currently in registers are spilled. The
new memory state is M ∪ S. SpillLoad requires the spill set to be empty. Its
second premise ensures there are enough free registers to load all values. The
kill set K represents the variables that may be overwritten because they are not
used anymore or are already spilled. R \ K ∪ L is the new register state after
loading. Clearly, K is most useful if K ⊆ R, but our proofs do not require this
restriction. We also do not include K in the spilling annotation, as the spilling
algorithm would have to compute liveness information to provide it. Simple

Verified Spilling and Translation Validation with Repair 437

Fig. 3. Inductive correctness predicate spillk

spilling algorithms, such as the one we verify in Sect. 8.1, never need to compute
liveness information.

SpillReturn requires that the free variables are in the registers. SpillIf
requires the consequence and the alternative to fulfill the predicate on the same
configuration, and that the variables used in the condition are in registers. Spill-
Let deals with the new variable x, which needs a register. The resulting register
state is R \K ∪{x}, the size of which must be bounded by the register bound k.
This imposes a lower bound on k. The kill set K reflects that there might be a
variable y holding the value of a variable required to evaluate the expression e,
that is then overwritten to store the value of x. In this case K = {y}.

SpillApp uses the sets Rf and Mf from the corresponding function defini-
tion. The premises Rf \Zf ⊆ R and Mf \Zf ⊆ M require that all live-ins of the
function except parameters are available in registers and memory at the appli-
cation. The remaining premises require that all argument variables are available
either in the registers (Rapp) or in the memory (Mapp), as discussed in Sect. 5.
Note that the argument vector y is variables only, i.e. applications can only
have variables as arguments. SpillFun refers to the live-in set Xf embedded in
the syntax to require that the live-in cover (Rf ,Mf) covers the live-ins Xf of
the program: Rf ∪ Mf = Xf . The rule also requires the function to expect at
most k variables in registers: |Rf | ≤ k. The parameters and the live-in cover are

438 J. Rosemann et al.

recorded in the context. The condition for the function body s1 uses Rf and Mf

as register and memory sets, respectively.

6.2 Formalization of the Spill Predicate in Coq

The predicate spillk is realized with five rules in the Coq development instead
of the seven rules presented here. Each of the five rules corresponds to a consec-
utive application of SpillSpill, SpillLoad and one of the statement-specific
rules. The five-rule system behaves better under inversion and induction in Coq,
but we think the formulation with seven rules provides more insight. The Coq
development contains a formal proof of the equivalence of the two systems.

7 Soundness of the Correctness Predicate

In this section we show that our spilling predicate is sound. We show that if s
is renamed apart and all variables in s are in VR, and the spilling and live-in
annotations in s are sound, the following holds for the spilled program s′:

(Section 7.1) all variables in s′ are in a register when used
(Section 7.2) at most k registers are used in s′

(Section 7.3) s and s′ have the same behavior.

7.1 Variables in Registers

Figure 4 defines a predicate that ensures every variable is in a register when
used. The inference rules are straightforward. The predicate also ensures that
let-statements that assign to memory have a single register on the right-hand
side. We define merge (R,M) = R ∪ M and slotMerge (R,M) = R ∪ slot M and
analogously their pointwise liftings.

Fig. 4. Predicate vir

Lemma 1. Let Z | Σ | R | M � spillk s and Z | Λ � live s and let s be
renamed apart and let all variables in s be in VR. If R ∪ M ∪ ⋃

Z ⊆ VR then
vir (doSpillZ Λ s).

Proof. The conditions follow directly by induction on spillk s.

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SpillSoundSeven.html
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.VarInRegister.html#var_in_register

Verified Spilling and Translation Validation with Repair 439

7.2 Register Bound

After the spilling phase, the liveness information in the program changed tremen-
dously. Spills and loads introduce new live ranges, and shorten live ranges of
already defined variables. To prove correctness of the spilling predicate, we must
show that after spilling the register pressure is lowered to k. To formally estab-
lish the bound, we show that the number of variables from VR in each live set
in the spilled program is bounded by k. The following observation is key to this
proof: The live-ins of a function after spilling can be obtained from the live-ins
of the function before spilling by keeping the variables passed in registers, and
adding the slots of the variables passed in memory. This property can be seen
in the rule SpillFun, where we require Rf ∪ Mf = Xf .

In the Coq development, the statements of the following lemmas involve
the algorithm that reconstructs minimal liveness information we informally
described in Sect. 4.2, but omitted in this presentation for the sake of simplicity.

Lemma 2. Let Z | Σ | R | M � spillk s and Z |merge Σ � live s and let s be
renamed apart and let all variables in s be in VR. If R ∪ M ∪ ⋃

Z ⊆ VR then
Z | slotMerge Σ � live doSpillZ Σ s.

Proof. By induction on spillk s; mostly simple but tedious set constraints.

Lemma 3. Let Z | Σ | R | M � spillk s and let s be renamed apart and let all
variables in s be in VR. If |R| ≤ k and R ∪ M ∪ ⋃

Z ⊆ VR then for live set X
in the minimal liveness derivation Z | slotMerge Σ � live doSpillZ Σ s the bound
|VR ∩ X| ≤ k holds.

Proof. By induction on s. The proof uses a technical lemma about the way the
liveness reconstruction deals with forward-propagation that was difficult to find.

7.3 Semantic Equivalence

In this section we show that the spilled program is semantically equivalent to the
original program. Semantic equivalence means trace-equivalence à la CompCert.
As proof tool we use a co-inductively defined simulation relation. See our previous
work [11,12] for details on simulation and proof technique. The verification is
done with respect to the imperative semantics of IL. This allows for a simple
treatment of the new variables that each spill and each load introduces. A typical
spill and load looks as follows:

let x = 5 in

fun f () = x in

...

f()

let x = 5 in

fun f () = x in

let X = x in // spill

...

let x = X in // load

f()

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.ReconstrLiveSound.html#reconstr_live_sound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RegisterBound.html#register_bounded

440 J. Rosemann et al.

Note that in a semantics with binding, serious effort would be required to intro-
duce additional function parameters after spilling and loading. In the above
example, f would need to take x as a parameter. We postpone the introduc-
tion of additional parameters to a phase after spilling, where we switch to the
functional semantics again to do register allocation. Changing the semantics from
imperative to functional corresponds to SSA construction and is in line with prac-
tical implementations of SSA-based register allocation [4] that break the SSA
invariant during spilling, and then perform some form of SSA (re-)construction.

Lemma 4. Let s be a spill statement where all variables are renamed apart and
in VR. Let Z | Σ | R | M � spillk s and Z |merge Σ � live s : X and V =R V ′

and V =M (λx.V ′(slot x)). If V ′ is defined on R ∪ slot M and R ∪ M ⊆ VR

and L and L′ are suitably related then (L, V, s) and (L′, V ′, doSpillZ Σ s) are in
simulation.

8 Case Study: Verified Spilling Algorithms

A spilling algorithm translates a statement with live-in annotations to a spill
statement, that is, it inserts spilling annotations. The following algorithms are
implemented in Coq and verified using the correctness predicate.

8.1 SimpleSpill

The naive spilling algorithm simpleSpill loads the required values before each
statement, without considering that some values might still be available in a
register. After a variable is assigned, the algorithm immediately spills the vari-
able. This is a very simple algorithm, and it corresponds to the spilling strategy
used in the very first version of CompCert [8].

Theorem 1. Let Z |merge Σ � live s and let s be renamed apart and let all
variables in s be in VR and let every expression in s contain at most k different
variables. If every live set X in s is bounded by R ∪ M and the first component
in Σf is empty for every f then Z | Σ | R | M � spillk simpleSpill s.

Proof. By induction on s in less than 100 lines.

8.2 SplitSpill

The spilling algorithm splitSpill follows three key ideas: Variables are loaded as
late as possible, but in contrast to simpleSpill, only values not already available
in registers. If a register must be freed for a load, the algorithm lets an oracle
choose the variable to be spilled from the list of variables live and currently in a
register. The correctness requirement for the oracle is trivial. The oracle enables
live range splitting based on an external heuristic, similar to the approach of
Braun and Hack [4]. In contrast to Braun’s algorithm, splitSpill cannot hoist
loads from their uses.

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SpillSim.html#sim_I
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SimpleSpill.html#simpleSpill_sat_spillSound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO

Verified Spilling and Translation Validation with Repair 441

Theorem 2. Let Z |merge Σ � live s and let s be renamed apart and let all
variables in s be in VR and let every expression in s contain at most k different
variables. If every live set X in s is bounded by R∪M and and for every f such
that (Rf ,Mf) = Σf we have |Rf | ≤ k then Σ | Z | R | M � spillk splitSpill s.

Proof. By induction on s in less than 500 lines.

9 Translation Validation with Repair

We devise a translation validator repairSpill for our correctness predicate. The
translation validator repairSpill operates on a statement with liveness and spilling
annotations, and assumes the liveness to be sound. Besides deciding whether
the spilling annotation is sound, repairSpill also repairs the spilling annotation if
necessary. The output of repairSpill always contains sound spilling annotations.
Furthermore, we show that repairSpill leaves the spilling annotations unchanged
if they are already sound with respect to the provided live-in annotation and
our correctness predicate.

To explain the principle behind repairSpill, it is instructive to understand how
the algorithm recomputes a live-in cover (Rf ,Mf) from the (possibly unsound)
spilling annotation using the corresponding live-ins Xf from the sound live-in
annotation. Let take k X be a function that yields a k-sized subset from X or X
if |X| ≤ k. The new live-in cover (R′

f ,M ′
f) is obtained as follows:

R′
f = take k (Rf ∩ Xf)

M ′
f = (Xf \ R′

f) ∪ (Mf ∩ Xf)

These equations have two important properties: First, it holds R′
f ∪ M ′

f = Xf ,
so the equations produce a correct live-in cover independent of the input sets
Rf and Mf . Second, if Rf ∪ Mf = Xf and |Rf | ≤ k then R′

f = Rf and hence
M ′

f = Mf , i.e. the original live-in cover is retained, if it is valid. repairSpill
transforms every spill and load set in the spilling annotation in a similar way
such that these two properties hold.

The kill sets K appearing in the derivation of spillk are not recorded in the
spilling annotation, because we did not want to require the spilling algorithm
to compute them. To check whether a spilling annotation is correct, repairSpill
must reconstruct kill sets. Maximal kill sets can be reconstructed in a back-
wards fashion from spilling annotation similar to how minimal liveness infor-
mation can be reconstructed (Sect. 4.2). A maximal kill set upper-bounds the
variables that can be soundly killed. The correctness of the kill sets repairSpill
reconstructs depends on the correctness of the spilling annotation. For this rea-
son, we designed repairSpill in such a way that the correctness of its output does
not depend on the correctness of the kill sets. This is similar to the fact that
the correctness of R′

f and M ′
f in the equations above does not depend on the

correctness of Rf and Mf . If the spilling annotation is correct, however, the
kill sets are correct and ensure that the algorithm does not change the spilling
annotation.

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SplitSpill.html#splitSpillKO_sat_spillSound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO

442 J. Rosemann et al.

Consider, for example, a conditional if e then s else t : (S,L,) where S
and L are the potentially unsound spill and load sets. From the memory state
(R,M) and the assumption fv e ⊆ R ∪ M the algorithm produces sound spill
and load sets S′ and L′ that agree with S and L if those are already sound. For
correctness, we only require fv e ⊆ R. We use the following definitions:

pick k s t = s ∪ take (k − |s|) (t \ s)
pickload k R M S Le = (fv e ∩ R ∩ Q) ∪ P

where Q = L ∩ ((S ∩ R) ∪ M)
and where P = pick (k − |fv e ∩ R|) (fv e \ R) (Q \ (fv e ∩ R))

We can now pick the new load set L′ = pickload k R M S Le. Lemmas 5 and 6
establish that L′ satisfies the register bound and loads the variables necessary
to evaluate e. Lemma 7 shows that L′ = L if L was already correct.

Lemma 5. If |fv e| ≤ k then |pickload k R M S Le| ≤ k−|fv e∩R\(L∩(S∪M))|.
Lemma 6. (fv e ∩ R \ (L ∩ (S ∪ M))) ∪ (fv e \ R) ⊆ pickload k R M S Le.

Lemma 7. Let S ⊆ R and L ⊆ S ∪ M and fv e \ R ⊆ L and |fv e ∪ L| ≤ k then
pickload k R M S Le = L.

We developed definitions similar to pickload that allow repairSpill to transform
every spill and load set in the spilling annotation. Correct sets are retained, and
incorrect sets are repaired. NP-completeness of the spilling problem makes it
unlikely that quality guarantees hold for a polynomial-time repair algorithm.

Theorem 3 (Correctness). Let Z |merge Σ � live s : X and let R,M be sets
of variables such that X ⊆ R∪M and let every expression in s contain at most k
different variables. If for every f such that (Rf ,Mf) = Σf we have |Rf | ≤ k
then Z | Σ | R | M � spillk (repairSpill k Z Σ R M s).

Theorem 4 (Idempotence). Let s be renamed apart and let Z |merge Σ �
live s : X and let Z | Σ | R | M � spillk s. If for every f such that (Rf ,Mf) = Σf

we have |Rf | ≤ k then repairSpill k Z Σ R M s = s.

10 Conclusion

We presented a correctness predicate for spilling algorithms that permits arbi-
trary live range splitting. To our knowledge, it is the first formally proven correct-
ness predicate for spilling on term-based SSA and the first to support arbitrary
live range splitting. The conditions of our correctness predicate are mainly set
constraints, and our case studies show that the predicate simplifies correctness
proofs of spilling algorithms.

Based on the correctness predicate, we defined a translation validator for
spilling algorithms with repair. The algorithm takes any spilling annotation and

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#pick_load_card
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#incl_pick_load
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#pick_load_eq
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RepairSpillSound.html#repair_spill_sound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RepairSpillIdem.html#repair_spill_idem

Verified Spilling and Translation Validation with Repair 443

repairs it if necessary. Our algorithm combines the flexibility of translation val-
idation with the correctness guarantees of verification.

This work is part of the verified compiler LVC. LVC has about 50k LoC and
extracts to an executable verified compiler. The spilling framework presented in
this paper is about 8k LoC. A considerable difference between the paper and the
formal proofs is the presentation of liveness information: In the formal devel-
opment, liveness reconstruction must, of course, be handled by a Coq function,
and we must prove that is function is correct and yields minimal live sets.

References

1. Barthe, G., Demange, D., Pichardie, D.: A formally verified SSA-based middle-end.
In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 47–66. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28869-2 3

2. Blazy, S., Robillard, B., Appel, A.W.: Formal verification of coalescing graph-
coloring register allocation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012,
pp. 145–164. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11957-6 9

3. Bouchez, F., Darte, A., Rastello, F.: On the complexity of spill everywhere under
SSA form. In: LCTES, San Diego, California, USA, 13–15 June 2007

4. Braun, M., Hack, S.: Register spilling and live-range splitting for SSA-form pro-
grams. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp.
174–189. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00722-4 13

5. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: PLDI, Boston,
Massachusetts, USA, 23–25 June 1982

6. George, L., Appel, A.W.: Iterated register coalescing. ACM Trans. Program. Lang.
Syst. 18(3), 300–324 (1996)

7. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006). doi:10.1007/11688839 20

8. Leroy, X.: A formally verified compiler back-end. JAR 43(4), 363–446 (2009)
9. Poletto, M., Sarkar, V.: Linear scan register allocation. TOPLAS 21(5), 895–913

(1999)
10. Rideau, S., Leroy, X.: Validating register allocation and spilling. In: Gupta, R.

(ed.) CC 2010. LNCS, vol. 6011, pp. 224–243. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11970-5 13

11. Schneider, S., Smolka, G., Hack, S.: A linear first-order functional intermediate
language for verified compilers. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS,
vol. 9236, pp. 344–358. Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 23

12. Schneider, S., Smolka, G., Hack, S.: An inductive proof method for simulation-
based compiler correctness (2016). CoRR abs/1611.09606

13. Tan, Y.K., et al.: A new verified compiler backend for CakeML. In: ICFP, Nara,
Japan, 18–22 September 2016

http://dx.doi.org/10.1007/978-3-642-28869-2_3
http://dx.doi.org/10.1007/978-3-642-11957-6_9
http://dx.doi.org/10.1007/978-3-642-00722-4_13
http://dx.doi.org/10.1007/11688839_20
http://dx.doi.org/10.1007/978-3-642-11970-5_13
http://dx.doi.org/10.1007/978-3-642-11970-5_13
http://dx.doi.org/10.1007/978-3-319-22102-1_23

A Verified Generational Garbage
Collector for CakeML

Adam Sandberg Ericsson, Magnus O. Myreen(B), and Johannes Åman Pohjola

Chalmers University of Technology, Gothenburg, Sweden
myreen@chalmers.se

Abstract. This paper presents the verification of a generational copy-
ing garbage collector for the CakeML runtime system. The proof is split
into an algorithm proof and an implementation proof. The algorithm
proof follows the structure of the informal intuition for the generational
collector’s correctness, namely, a partial collection cycle in a generational
collector is the same as running a full collection on part of the heap, if one
views pointers to old data as non-pointers. We present a pragmatic way
of dealing with ML-style mutable state, such as references and arrays, in
the proofs. The development has been fully integrated into the in-logic
bootstrapped CakeML compiler, which now includes command-line argu-
ments that allow configuration of the generational collector. All proofs
were carried out in the HOL4 theorem prover.

1 Introduction

High-level programming languages such as ML, Haskell, Java, Javascript and
Python provide an abstraction of memory which removes the burden of mem-
ory management from the application programmer. The most common way to
implement this memory abstraction is to use garbage collectors in the language
runtimes. The garbage collector is a routine which is invoked when the memory
allocator finds that there is not enough free space to perform allocation. The
collector’s purpose is to produce new free space. It does so by traversing the
data in memory and deleting data that is unreachable from the running applica-
tion. There are two classic algorithms: mark-and-sweep collectors mark all live
objects and delete the others; copying collectors copy all live objects to a new
heap and then discard the old heap and its dead objects.

Since garbage collectors are an integral part of programming language imple-
mentations, their performance is essential to make the memory abstraction seem
worthwhile. As a result, there have been numerous improvements to the classic
algorithms mentioned above. There are variants of the classic algorithms that
make them incremental (do a bit of garbage collection often), generational (run
the collector only on recent data in the heap), or concurrent (run the collector
as a separate thread alongside the program).

This paper’s topic is the verification of a generational copying collector for
the CakeML compiler and runtime system [15]. The CakeML project has pro-
duced a formally verified compiler for an ML-like language called CakeML. The
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 444–461, 2017.
DOI: 10.1007/978-3-319-66107-0 28

A Verified Generational Garbage Collector for CakeML 445

compiler produces binaries that include a verified language runtime, with sup-
porting routines such as an arbitrary precision arithmetic library and a garbage
collector. One of the main aims of the CakeML compiler project is to produce a
verified system that is as realistic as possible. This is why we want the garbage
collector to be more than just an implementation of one of the basic algorithms.

Contributions.

– To the best of our knowledge, this paper presents the first completed formal
verification of a generational garbage collector. However, it seems that the
CertiCoq project [1] is in the process of verifying a generational garbage
collector.

– We present a pragmatic approach to dealing with mutable state, such as ML-
style references and arrays, in the context of implementation and verification
of a generational garbage collector. Mutable state adds a layer of complexity
since generational collectors need to treat pointers from old data to new data
with special care. The CertiCoq project does not include mutable data, i.e.
their setting is simpler than ours in this respect.

– We describe how the generational algorithm can be verified separately from
the concrete implementation. Furthermore, we show how the proof can be
structured so that it follows the intuition of informal explanations of the
form: a partial collection cycle in a generational collector is the same as
running a full collection on part of the heap if one views pointers to old data
as non-pointers.

– This paper provides more detail than any previous CakeML publication on
how algorithm-level proofs can be used to write and verify concrete implemen-
tations of garbage collectors for CakeML, and how these are integrated into
the full CakeML compiler and runtime. The updated in-logic bootstrapped
compiler comes with new command-line arguments that allow configuration
of the generational garbage collector.

2 Approach

In this section, we give a high-level overview of the work and our approach to
it. Subsequent sections will cover some—but for lack of space, not all—of these
topics in more detail.

Algorithm-Level Modelling and Verification:

– The intuition behind the copying garbage collection is important in order
to understand this paper. Section 3.1 provides an explanation of the basic
Cheney copying collector algorithm. Section 3.2 continues with how the basic
algorithm can be modified to run as a generational collector. It also describes
how we deal with mutable state such as ML-style references and arrays.

446 A. Sandberg Ericsson et al.

– Section 3.3 describes how the algorithm has been modelled as HOL functions.
These algorithm-level HOL functions model memory abstractly, in particu-
lar we use HOL lists to represent heap segments. This representation neatly
allows us to avoid awkward reasoning about potential overlap between mem-
ory segments. It also works well with the separation logic we use later to map
the abstract heaps to their concrete memory representations, in Sect. 4.2.

– Section 3.4 defines the main correctness property, gc related, that any garbage
collector must satisfy: for every pointer traversal that exists in the original
heap from some root, there must be a similar pointer traversal possible in the
new heap.

– A generational collector can run either a partial collection, which collects only
some part of the heap, or a full collection of the entire heap. We show that the
full collection satisfies gc related. To show that a run of the partial collector
also satisfies gc related, we exploit a simulation argument that allows us to
reuse the proofs for the full collector. Intuitively, a run of the partial collector
on a heap segment h simulates a run of the full collector on a heap containing
only h. Section 3.4 provides some details on this.

Implementation and Integration into the CakeML Compiler:

– The CakeML compiler goes through several intermediate languages on the
way from source syntax to machine code. The garbage collector is introduced
gradually in the intermediate languages DataLang (abstract data), Word-

Lang (machine words, concrete memory, but abstract stack) and StackLang

(more concrete stack).
– The verification of the compiler phase from DataLang to WordLang specifies

how abstract values of DataLang are mapped to instantiations of the heap
types that the algorithm-level garbage collection operates over, Sect. 4.1. We
prove that gc related implies that from DataLang’s point of view, nothing
changes when a garbage collector is run.

– For the verification of the DataLang to WordLang compiler, we also specify
how each instantiation of the algorithm-level heap types maps into Word-

Lang’s concrete machine words and memory, Sect. 4.2. Here we implement
and verify a shallow embedding of the garbage collection algorithm. This
shallow embedding is used as a primitive by the semantics of WordLang.

– Further down in the compiler, the garbage collection primitive needs to be
implemented by a deep embedding that can be compiled with the rest of
the code. This happens in StackLang, where a compiler phase attaches an
implementation of the garbage collector to the currently compiled program
and replaces all occurrences of Alloc by a call to the new routine. Imple-
menting the collector in StackLang is tedious because StackLang is very
low- level—it comes after instruction selection and register allocation. How-
ever, the verification proof is relatively straight-forward since one only has
to show that the StackLang deep embedding computes the same function as
the shallow embedding mentioned above.

– Finally, the CakeML compiler’s in-logic bootstrap needs updating to work
with the new garbage collection algorithm. The bootstrap process itself does

A Verified Generational Garbage Collector for CakeML 447

not need much updating, illustrating the resilience of the bootstrapping pro-
cedure to such changes. We extend the bootstrapped compiler to recog-
nise command-line options specifying which garbage collector is to be gen-
erated: --gc=none for no garbage collector; --gc=simple for the previous
non-generational copying collector; and --gc=gensize for the generational
collector described in the present paper. Here size is the size of the nursery
generation in number of machine words. With these command-line options,
users can generate a binary with a specific instance of the garbage collector
installed.

Mechanised Proofs. The development was carried out in HOL4. The sources
are available at http://code.cakeml.org/. The algorithm and its proofs are
under compiler/backend/gc; the shallow embedding and its verification proof
is under compiler/backend/proofs/data to word gcProofScript.sml; the
StackLang deep embedding is in compiler/backend/stack allocScript.sml;
its verification is in compiler/backend/proofs/stack allocProofScript.sml.

Terminology. The heap is the region of memory where heap elements are allo-
cated and which is to be garbage collected. A heap element is the unit of memory
allocation. A heap element can contain pointers to other heap elements. The col-
lection of all program visible variables is called the roots.

3 Algorithm Modelling and Verification

Garbage collectors are complicated pieces of code. As such, it makes sense to
separate the reasoning about algorithm correctness from the reasoning about the
details of its more concrete implementations. Such a split also makes the algo-
rithm proofs more reusable than proofs that depend on implementation details.
This section focuses on the algorithm level.

3.1 Intuition for Basic Algorithm

Intuitively, a Cheney copying garbage collector copies the live elements from the
current heap into a new heap. We will call the heaps old and new. In its simplest
form, the algorithm keeps track of two boundaries inside the new heap. These
split the new heap into three parts, which we will call h1, h2, and unused space.

old: new:

h1 h2 unused

content of old heap here content of new heap here

Throughout execution, the heap segment h1 will only contain pointers to the
new heap, and heap segment h2 will only contain pointers to the old heap, i.e.
pointers that are yet to be processed.

The algorithm’s most primitive operation is to move a pointer ptr, and the
data element d that ptr points at, from the old heap to the new one. The move

http://code.cakeml.org/

448 A. Sandberg Ericsson et al.

primitive’s behaviour depends on whether d is a forward pointer or not. A for-
ward pointer is a heap element with a special tag to distinguish it from other
heap elements. Forward pointers will only ever occur in the heap if the garbage
collector puts them there; between collection cycles, they are never present nor
created.

If d is not a forward pointer, then d will be copied to the end of heap segment
h2, consuming some of the unused space, and ptr is updated to be the address
of the new location of d. A forward pointer to the new location is inserted at the
old location of d, namely at the original value of ptr. We draw forward pointers
as hollow boxes with dashed arrows illustrating where they point. Solid arrows
that are irrelevant for the example are omitted in these diagrams.

old: new:

h1 h2 unused

Before move of ptr:

ptr

old: new:

h1 h2 unused

After move of ptr:

ptr

If d is already a forward pointer, the move primitive knows that this element
has been moved previously; it reads the new pointer value from the forward
pointer, and leaves the memory unchanged.

The algorithm starts from a state where the new heap consists of only free
space. It then runs the move primitive on each pointer in the list of roots. This
processing of the roots populates h2.

Once the roots have been processed, the main loop starts. The main loop
picks the first heap element from h2 and applies the move primitive to each
of the pointers that that heap element contains. Once the pointers have been
updated, the boundary between h1 and h2 can be moved, so that the recently
processed element becomes part of h1.

old: new:

h1 h2 unused

Before iteration of main loop:

old: new:

h1 h2 unused

After iteration of main loop:

This process is repeated until h2 becomes empty, and the new heap contains
no pointers to the old heap. The old heap can then be discarded, since it only
contains data that is unreachable from the roots. The next time the garbage
collector runs, the previous old heap is used as the new heap.

A Verified Generational Garbage Collector for CakeML 449

3.2 Intuition for Generational Algorithm

Generational garbage collectors attempt to run the collector only on part of the
heap. The motivation is that new data tends to be short-lived while old data
tends to stay live. By running the collector on new data only, one avoids copying
around old data unnecessarily.

The intuition is that a partial collection focuses on a small segment of the
full heap and ignores the rest, but operates as a normal full collection on this
small segment.

old:

Partial collection pretends that a small part is the entire heap:

. new:

The collector operates as normal on part of heap:

old: new:

Finally, the external new segment is copied back:

new:

For the partial collection to work we need:

(a) the partial algorithm to treat all pointers to the outside (old data) as non-
pointers, in order to avoid copying old data into its new memory region.

(b) that outside data does not point into the currently collected segment of
the heap, because the partial collector should be free to move around and
delete elements in the segment it is working on without looking at the heap
outside.

In ML programs, most data is immutable, which means that old data cannot
point at new data. However, ML programs also use references and arrays (hence-
forth both will be called references) that are mutable. References are usually used
sparingly, but are dangerous for a generational garbage collector because they
can point into the new data from old data.

Our pragmatic solution is to make sure immutable data is allocated from
the bottom of the heap upwards, and references are allocated from the top
downwards, i.e. the memory layout is as follows. This diagram also shows that we
use a GC trigger pointer, which causes a GC invocation whenever one attempts
to allocate past the GC trigger pointer.

current: immutable data here . . . | unused space here . . . | references

GC trigger
start of nursery gen.

relevant part for the
next partial collection

used as extra roots
by partial collections

450 A. Sandberg Ericsson et al.

We modify the simple garbage collection algorithm described above to main-
tain this layout, and we make each run of the partial collection algorithm treat
the references as roots that are not part of the heap. This way we can meet the
two requirements (a) and (b) from above.

Our approach means that references will never be collected by a partial col-
lection. However, they will be collected when the full collection is run.

Full collections happen if there is a possibility that the partial collector might
fail to free up enough space, i.e. if the amount of unused space prior to collection
is less than the amount of new memory requested. Note that there is no heuristic
involved here: if there is enough space for the allocation between the GC trigger
pointer and the actual end of the heap, then a partial collection is performed.

3.3 Formalisation

The algorithm-level formalisation represents heaps abstractly as lists, where each
element is of type heap element. The definition of heap element is intentionally
somwewhat abstract with type variables. We use this flexiblity to verify the
partial collector for our generational version, in the next section.

Addresses are of type heap address and can either be an actual pointer with
some data attached, or a non-pointer Data. A heap element can be unused space,
a forward pointer, or actual data.

α heap address = Pointer num α | Data α

(α, β) heap element =
Unused num

| ForwardPointer num α num
| DataElement (α heap address list) num β

Each heap element carries its concrete length, i.e. how many machine words
the eventual memory representation will hold. The length function, el length,
returns l plus one because we do not allow heap elements of length zero.

el length (Unused l) = l + 1
el length (ForwardPointer n d l) = l + 1
el length (DataElement xs l data) = l + 1

The natural number (type num in HOL) in Pointer values is an offset from
the start of the relevant heap. We define a lookup function heap lookup that
fetches the content of address a from a heap xs:

heap lookup a [] = None
heap lookup a (x ::xs) =
if a = 0 then Some x
else if a < el length x then None
else heap lookup (a − el length x) xs

A Verified Generational Garbage Collector for CakeML 451

The generational garbage collector has two main routines: gen gc full which
runs a collection on the entire heap including the references, and gen gc partial
which runs only on part of the heap, treating the references as extra roots. Both
use the record type gc state to represent the heaps. In a state s, the old heap
is in s.heap, and the new heap comprises the following fields: s.h1 and s.h2 are
the heap segments h1 and h2 from before, s.n is the length of the unused space,
and s.r2, s.r1 are for references what s.h1 and s.h2 are for immutable data; s.ok
is a boolean representing whether s is a well-formed state that has been arrived
at through a well-behaved execution. It has no impact on the behaviour of the
garbage collector; its only use is in proofs, where it serves as a convenient trick
to propagate invariants downwards in refinement proofs.

Figure 1 shows the HOL function implementing the move primitive for the
partial generational algorithm. It follows what was described informally in the
section above: it does nothing when applied to a non-pointer, or to a pointer that
points outside the current generation. When applied to a pointer to a forward
pointer, it follows the forward pointer but leaves the heap unchanged. When
applied to a pointer to some data element d, it inserts d at the end of h2,
decrements the amount of unused space by the length of d, and inserts at the
old location of d a forward pointer to its new location. When applied to an invalid
pointer (i.e. to an invalid heap location, or to a location containing unused space)
it does nothing except set the ok field of the resultant state to false; we prove
later that this never happens.

Fig. 1. The algorithm implementation of the move primitive for gen gc partial.

The HOL function gen gc full move implements the move primitive for the
full generational collection; its definition is elided for space reasons. It is similar

452 A. Sandberg Ericsson et al.

to gen gc partial move, but differs in two main ways: first, it does not consider
generation boundaries. Second, in order to maintain the memory layout it must
distinguish between pointers to references and pointers to immutable data, allo-
cating references at the end of the new heap’s unused space and immutable data
at the beginning. Note that gen gc partial move does not need to consider point-
ers to references, since generations are entirely contained in the immutable part
of the heap.

The algorithms for an entire collection cycle consist of several HOL functions
in a similar style; the functions implementing the move primitive are the most
interesting of these. The main responsibility of the others is to apply the move
primitive to relevant roots and heap elements, following the informal explana-
tions in previous sections.

3.4 Verification

For each collector (gen gc full and gen gc partial), we prove that they do not lose
any live elements. We formalise this notion with the gc related predicate shown
below. If a collector can produce heap2 from heap1, there must be a map f such
that gc related f heap1 heap2. The intuition is that if there was a heap element
at address a in heap1 that was retained by the collector, the same heap element
resides at address f a in heap2.

The conjuncts of the following definition state, respectively: that f must be
an injective map into the set of valid addresses in heap2; that its domain must
be a subset of the valid addresses into heap2; and that for every data element d
at address a ∈ domain f , every address reachable from d is also in the domain
of f , and f a points to a data element that is exactly d with all its pointers
updated according to f. Separately, we require that the roots are in domain f .

gc related f heap1 heap2 ⇐⇒
injective (apply f) (domain f)
{ a | isSomeDataElement (heap lookup a heap2) } ∧

(∀ i . i ∈ domain f ⇒ isSomeDataElement (heap lookup i heap1)) ∧
∀ i xs l d .
i ∈ domain f ∧ heap lookup i heap1 = Some (DataElement xs l d) ⇒
heap lookup (apply f i) heap2 =
Some (DataElement (addr map (apply f) xs) l d) ∧

∀ ptr u. mem (Pointer ptr u) xs ⇒ ptr ∈ domain f

Proving a gc related-correctness result for gen gc full, as below, is a substan-
tial task that requires a non-trivial invariant, similar to the one we presented in
earlier work [10]. The main correctness theorem is as follows; we will not give
further details of its proofs in this paper; for such proofs see [10].

A Verified Generational Garbage Collector for CakeML 453

� roots ok roots heap ∧ heap ok heap conf .limit ⇒
∃ state f .
gen gc full conf (roots,heap) = (addr map (apply f) roots,state) ∧
(∀ ptr u. mem (Pointer ptr u) roots ⇒ ptr ∈ domain f) ∧
gc related f heap (state.h1 ++ heap expand state.n ++ state.r1)

The theorem above can be read as saying: if all roots are pointers to data
elements in the heap (abbreviated roots ok), if the heap has length conf.limit,
and if all pointers in the heap are valid non-forward pointers back into the heap
(abbreviated heap ok), then a call to gen gc full results in a state that is gc related
via a mapping f whose domain includes the roots (and hence, by definition of
gc related, all live elements).

The more interesting part is the verification of gen gc partial, which we con-
duct by drawing a formal analogy between how gen gc full operates and how
gen gc partial operates on a small piece of the heap. The proof is structured in
two steps:

1. we first prove a simulation result: running gen gc partial is the same as running
gen gc full on a state that has been modified to pretend that part of the heap
is not there and the references are extra roots.

2. we then show a gc related result for gen gc partial by carrying over the same
result for gen gc full via the simulation result.

For the simulation result, we instantiate the type variables in the gen gc full
algorithm so that we can embed pointers into Data blocks. The idea is that
encoding pointers to locations outside the current generation as Data causes
gen gc full to treat them as non-pointers, mimicking the fact that gen gc partial
does not collect there.

The type we use for this purpose is defined as follows:

(α, β) data sort = Protected α | Real β

and the translation from gen gc partial’s pointers to pointers on the pretend-heap
used by gen gc full in the simulation argument is:

to gen heap address conf (Data a) = Data (Real a)
to gen heap address conf (Pointer ptr a) =
if ptr < conf .gen start then Data (Protected (Pointer ptr a))
else if conf .refs start ≤ ptr then Data (Protected (Pointer ptr a))
else Pointer (ptr − conf .gen start) (Real a)

Similar to gen functions, elided here, encode the roots, heap, state and config-
uration for a run of gen gc partial into those for a run of gen gc full. We prove
that for every execution of gen gc partial starting from an ok state, and the cor-
responding execution of gen gc full starting from the encoding of the same state

454 A. Sandberg Ericsson et al.

through the to gen functions, encoding the results of the former with to gen
yields precisely the results of the latter.

Initially, we made an attempt to do the gc related proof for gen gc partial
using the obvious route of manually adapting all loop invariants and proofs for
gen gc full into invariants and proofs for gen gc partial. This soon turned out to
overly cumbersome; hence we switched to the current approach because it seemed
more expedient and more interesting. As a result, the proofs for gen gc partial
are more concerned with syntactic properties of the encoding than with semantic
properties of the collector as such. The syntactic arguments are occasionally quite
tedious, but we believe this approach still leads to more understandable and less
repetitive proofs.

Finally, note that gc related is the same correctness property that we use for
the previous copying collector; this makes it straightforward to prove that the
top-level correctness theorem of the CakeML compiler remains true if we swap
out the garbage collector.

3.5 Combining the Partial and Full Collectors

An implementation that uses the generational collector will mostly run the par-
tial collector and occasionally the full one. At the algorithm level, we define
a combined collector and leave it up to the implementation to decide when a
partial collection is to be run. The choice is made visible to the implementation
by having a boolean input do partial to the combined function. The combined
function will produce a valid heap regardless of the value of do partial.

Our CakeML implementation (next section) runs a partial collection if the
allocation will succeed even if the collector does not manage to free up any space,
i.e., if there is already enough space on the other side of the GC trigger pointer
before the GC starts (Sect. 3.2).

4 Implementation and Integration into CakeML Compiler

The concept of garbage collection is introduced in the CakeML compiler at
the point where a language with unbounded memory (DataLang) is compiled
into a language with a concrete finite memory (WordLang). Here the garbage
collector’s role is to automate memory deallocation and to implement the illusion
of an unbounded memory.

This section sketches how the collector algorithm’s types get instantiated,
how the data refinement is specified, and how an implementation of the garbage
collector algorithm is verified.

4.1 Instantiating the Algorithm’s Types

The language which comes immediately prior to the introduction of the garbage
collector, DataLang, stores values of type v in its variables.

A Verified Generational Garbage Collector for CakeML 455

v = Number int | Word64 (64 word) | Block num (v list)
| CodePtr num | RefPtr num

DataLang gets compiled into a language called WordLang where memory
is finite and variables are of type word loc. A word loc is either a machine word
Word w, or a code location Loc l1 l2.

α word loc = Word (α word) | Loc num num

In what follows we will show through an example how an instance of v is
represented. We would have liked to provide more detail, but the definitions
involved are simply too verbose to be included here. We will use the following
DataLang value as our running example.

Block 3 [Number 5; Number 80000000000000]

The relation v inv specifies how values of type v relate to the heap addresses
and heaps that the garbage collection algorithms operate on. Below is the Number
case from the definition of v inv. If integer i is small enough to fit into a tagged
machine word, then the head address x must be Data that carries the value of
the small integer, and there is no requirement on the heap. If integer i is too
large to fit into a machine word, then the heap address must be a Pointer to a
heap location containing the data for the bignum representing integer i.

v inv conf (Number i) (x ,f ,heap) ⇐⇒
if small int (: α) i then x = Data (Word (Smallnum i))
else
∃ ptr .
x = Pointer ptr (Word 0w) ∧
heap lookup ptr heap = Some (Bignum i)

Bignum i =
let (sign,payload) = sign and words of integer i
in
DataElement [] (length payload) (NumTag sign,map Word payload)

In the definition of v inv, f is a finite map that specifies how semantic location
values for reference pointers (RefPtr) are to be represented as addresses.

v inv conf (RefPtr n) (x ,f ,heap) ⇐⇒
x = Pointer (apply f n) (Word 0w) ∧ n ∈ domain f

The Block case below shows how constructors and tuples, Blocks, are represented.

456 A. Sandberg Ericsson et al.

v inv conf (Block n vs) (x ,f ,heap) ⇐⇒
if vs = [] then
x = Data (Word (BlockNil n)) ∧ n < dimword (: α) div 16

else
∃ ptr xs.
list rel (λ v x ′. v inv conf v (x ′,f ,heap)) vs xs ∧
x = Pointer ptr (Word (ptr bits conf n (length xs))) ∧
heap lookup ptr heap = Some (BlockRep n xs)

When v inv is expanded for the case of our running example, we get the fol-
lowing constraint on the heap. The address x must be a pointer to a DataElement
which contains Data representing integer 5, and a pointer to some memory loca-
tion which contains the machine words representing bignum 80000000000000.
Here we assume that the architecture has 32-bit machine words. Below one can
see that the first Pointer is given information, ptr bits conf 3 2, about the length,
2, and tag, 3, of the Block that it points to. Such information is used to speed
up pattern matching. If the information fits into the lower bits of the pointer,
then the pattern matcher does not need to follow the pointer to know whether
there is a match.

� v inv conf (Block 3 [Number 5; Number 80000000000000]) (x ,f ,heap) ⇐⇒
∃ ptr1 ptr2.
x = Pointer ptr1 (Word (ptr bits conf 3 2)) ∧
heap lookup ptr1 heap =
Some
(DataElement [Data (Word (Smallnum 5)); Pointer ptr2 (Word 0w)] 2

(BlockTag 3,[])) ∧
heap lookup ptr2 heap = Some (Bignum 80000000000000)

The following is an instantiation of heap that satisfies the constraint set out
by v inv for representing our running example.

� v inv conf (Block 3 [Number 5; Number 80000000000000])
(Pointer 0 (Word (ptr bits conf 3 2)),f ,
[DataElement [Data (Word (Smallnum 5)); Pointer 3 (Word 0w)] 2

(BlockTag 3,[]); Bignum 80000000000000])

As we know, the garbage collector moves heap elements and changes the
addresses. However, it will only transform heaps in a way that respects gc related.
We prove that v inv properties can be transported from one heap to another if
they are gc related. In other words, execution of a garbage collector does not
interfere with this data representation.

� gc related g heap1 heap2 ∧ (∀ ptr u. x = Pointer ptr u ⇒ ptr ∈ domain g) ∧
v inv conf w (x ,f ,heap1) ⇒
v inv conf w (addr apply (apply g) x ,g ◦ f ,heap2)

Here addr apply f (Pointer x d) = Pointer (f x) d.

A Verified Generational Garbage Collector for CakeML 457

4.2 Data Refinement down to Concrete Memory

The relation provided by v inv only gets us halfway down to WordLang’s mem-
ory representation. In WordLang, values are of type word loc, and memory is
modelled as a function, αword → α word loc, and an address domain set.

We use separation-logic formulas to specify how lists of heap elements are
represented in memory. We define separating conjunction *, and use fun2set to
turn the memory function m and its domain set dm into something we can write
separation logic assertions about. The relevant definitions are:

� split s (u,v) ⇐⇒ u ∪ v = s ∧ u ∩ v = ∅
� p * q = (λ s. ∃ u v . split s (u,v) ∧ p u ∧ q v)
� a �→ x = (λ s. s = { (a,x) })
� fun2set (m,dm) = { (a,m a) | a ∈ dm }

Using these, we define word heap a heaf conf to assert that a heap element list
heap is in memory, starting at address a, and word el asserts the same thing
about individual heap elements. Figure 2 shows an expansion of the word heap
assertion applied to our running example.

Fig. 2. Running example expanded to concrete memory assertion

458 A. Sandberg Ericsson et al.

4.3 Implementing the Garbage Collector

The garbage collector is used in the WordLang semantics as a function that the
semantics of Alloc applies to memory when the allocation primitive runs out of
memory. At this level, the garbage collector is essentially a function from a list
of roots and a concrete memory to a new list of roots and concrete memory.

To implement the new garbage collector, we define a HOL function at the
level of a concrete memory, and prove that it correctly mimics the operations
performed by the algorithm-level implementation from Sect. 3. The following
is an excerpt of the theorem relating gen gc partial move with its refinement
word gen gc partial move. This states that the concrete memory is kept faithful
to the algorithm’s operations over the heaps. We prove similar theorems about
the other components of the garbage collectors.

� gen gc partial move gc conf s x = (x1,s1) ∧
word gen gc partial move conf (word addr conf x ,. . .) = (w ,. . .) ∧ . . . ∧
(word heap a s.heap conf * word heap p s.h2 conf * . . .) (fun2set (m,dm)) ⇒
w = word addr conf x1 ∧ . . . ∧
(word heap a s1.heap conf * word heap p1 s1.h2 conf * . . .) (fun2set (m1,dm))

5 Discussion of Related Work

Anand et al. [1] reports that the CertiCoq project has a “high-performance
generational garbage collector” and a project is underway to verify this using
Verifiable C in Coq. Their setting is simpler than ours in that their programs
are purely functional, i.e. they can avoid dealing with the added complexity of
mutable state. The text also suggests that their garbage collector is specific to a
fixed data representation. In contrast, the CakeML compiler allows a highly con-
figurable data representation, which is likely to become more configurable in the
future. The CakeML compiler generates a new garbage collector implementation
for each configuration of the data representation.

CakeML’s original non-generational copying collector has its origin in the
verified collector described in Myreen [10]. The same verified algorithm was
used for a verified Lisp implementation [11] which in turn was used underneath
the proved-to-be-sound Milawa prover [2]. These Lisp and ML implementations
are amongst the very few systems that use verified garbage collectors as mere
components of much larger verified implementations. Verve OS [16] and Ironclad
Apps [7] are verified stacks that use verified garbage collectors internally.

Numerous abstract garbage collector algorithms have been mechanically ver-
ified before. However, most of these only verify the correctness at the algorithm-
level implementation and only consider mark-and-sweep algorithms. Noteworthy
exceptions include Hawblitzel and Petrank [8] and McCreight [9]; recent work
by Gammie et al. [4] is also particularly impressive.

Hawblitzel and Petrank [8] show that performant verified x86 code for sim-
ple mark-and-sweep and Cheney copying collectors can be developed using the
Boogie verification condition generator and the Z3 automated theorem prover.

A Verified Generational Garbage Collector for CakeML 459

Their method requires the user to write extensive annotations in the code to be
verified. These annotations are automatically checked by the tools. Their col-
lector implementations are realistic enough to show good results on off-the-shelf
C# benchmarks. This required them to support complicated features such as
interior pointers, which CakeML’s collector does not support. We decided to not
support interior pointers in CakeML because they are not strictly needed and
they would make the inner loop of the collector a bit more complicated, which
would probably cause the inner loop to run a little slower.

McCreight [9] verifies copying and incremental collectors implemented in
MIPS-like assembly. The development is done in Coq, and casts his verification
efforts in a common framework based on ADTs that all the collectors refine.

Gammie et al. [4] verify a detailed model of a state-of-the-art concurrent
collector in Isabelle/HOL, with respect to an x86-TSO memory model.

Pavlovic et al. [13] focus on an earlier step, namely the synthesis of con-
current collection algorithms from abstract specifications. The algorithms thus
obtained are at a similar level of abstraction to the algorithm-level implementa-
tion we start from. The specifications are cast in lattice-theoretic terms, so e.g.
computing the set of live nodes is fixpoint iteration over a function that follows
pointers from an element. A main contribution is an adaptation of the classic
fixpoint theorems to a setting where the monotone function under consideration
may change, which can be thought of as representing interference by mutators.

This paper started by listing incremental, generational, and concurrent as
variations on the basic garbage collection algorithms. There have been prior ver-
ifications of incremental algorithms (e.g. [6,9,12,14]) and concurrent ones (e.g.
[3–5,13]), but we believe that this paper is the first to report on a successful
verification of a generational garbage collector.

6 Summary

This paper describes how a generational copying garbage collector has been
proved correct and integrated into the verified CakeML compiler. The algorithm-
level part of the proof is structured to follow the usual informal argument for a
generational collector’s correctness: a partial collection is the same as running
a full collection on part of the heap if pointers to old data are treated as non-
pointers. To the best of our knowledge, this paper is the first to report on a
completed formal verification of a generational garbage collector.

What We Did Not Do. The current implementation lacks support for (a) nested
nursery generations, and (b) the ability to switch garbage collector mode (e.g.
from non-generational to generational, or adjust the size of the nursery) midway
through execution of the application program. We expect both extensions to
fit within the approach taken in this paper and neither to require modification
of the algorithm-level proofs. For (a), one would keep track of multiple nursery
starting points in the immutable part of the heap. These parts are left untouched
by collections of the inner nursery generations. For (b), one could run a full

460 A. Sandberg Ericsson et al.

generational collection to introduce the special heap layout when necessary. This
is possible since the correctness theorem for gen gc full does not assume that the
references are at the top end of the heap when it starts.

Acknowledgements. We thank Ramana Kumar for comments on drafts of this text.
This work was partly supported by the Swedish Research Council and the Swedish
Foundation for Strategic Research.

References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: a verified compiler for Coq. In: Coq for
Programming Languages (CoqPL) (2017)

2. Davis, J., Myreen, M.O.: The reflective Milawa theorem prover is sound (down to
the machine code that runs it). J. Autom. Reason. 55(2), 117–183 (2015)

3. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-
the-fly garbage collection: an exercise in cooperation. Commun. ACM 21(11), 966–
975 (1978)

4. Gammie, P., Hosking, A.L., Engelhardt, K.: Relaxing safely: verified on-the-fly
garbage collection for x86-TSO. In: Grove, D., Blackburn, S. (eds.) Programming
Language Design and Implementation (PLDI). ACM (2015)

5. Gonthier, G.: Verifying the safety of a practical concurrent garbage collector. In:
Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 462–465. Springer,
Heidelberg (1996). doi:10.1007/3-540-61474-5 103

6. Havelund, K.: Mechanical verification of a garbage collector. In: Rolim, J., et al.
(eds.) IPPS 1999. LNCS, vol. 1586, pp. 1258–1283. Springer, Heidelberg (1999).
doi:10.1007/BFb0098007

7. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad apps: end-to-end security via automated full-system verification. In:
Operating Systems Design and Implementation (OSDI), pp. 165–181. USENIX
Association, Broomfield (2014)

8. Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors.
In: ACM SIGPLAN Notices, vol. 44, no. 1, pp. 441–453 (2009). http://dl.acm.org/
citation.cfm?id=1480935

9. McCreight, A.: The Mechanized Verification of Garbage Collector Implementa-
tions. Ph.D. thesis, Yale University, December 2008

10. Myreen, M.O.: Reusable verification of a copying collector. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 142–156.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15057-9 10

11. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In:
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 265–280. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 20

12. Nieto, L.P., Esparza, J.: Verifying single and multi-mutator garbage collectors with
Owicki-Gries in Isabelle/HOL. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS,
vol. 1893, pp. 619–628. Springer, Heidelberg (2000). doi:10.1007/3-540-44612-5 57

13. Pavlovic, D., Pepper, P., Smith, D.R.: Formal derivation of concurrent garbage
collectors. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol.
6120, pp. 353–376. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13321-3 20

http://dx.doi.org/10.1007/3-540-61474-5_103
http://dx.doi.org/10.1007/BFb0098007
http://dl.acm.org/citation.cfm?id=1480935
http://dl.acm.org/citation.cfm?id=1480935
http://dx.doi.org/10.1007/978-3-642-15057-9_10
http://dx.doi.org/10.1007/978-3-642-22863-6_20
http://dx.doi.org/10.1007/3-540-44612-5_57
http://dx.doi.org/10.1007/978-3-642-13321-3_20

A Verified Generational Garbage Collector for CakeML 461

14. Russinoff, D.M.: A mechanically verified incremental garbage collector. Formal
Aspects Comput. 6(4), 359–390 (1994)

15. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: Garrigue, J., Keller, G., Sumii, E. (eds.)
International Conference on Functional Programming (ICFP). ACM (2016)

16. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Programming Language Design and Implementa-
tion (PLDI), pp. 99–110. ACM, New York (2010)

A Formalisation of Consistent Consequence
for Boolean Equation Systems

Myrthe van Delft1, Herman Geuvers2,3, and Tim A.C. Willemse3(B)

1 Fortiss, München, Germany
mecvandelft@gmail.com

2 Radboud University Nijmegen, Nijmegen, The Netherlands
herman@cs.ru.nl

3 Eindhoven University of Technology, Eindhoven, The Netherlands
T.A.C.Willemse@TUe.nl

Abstract. Boolean equation systems are sequences of least and great-
est fixpoint equations interpreted over the Boolean lattice. Such equa-
tion systems arise naturally in verification problems such as the modal
μ-calculus model checking problem. Solving a Boolean equation system
is a computationally challenging problem, and for this reason, abstrac-
tion techniques for Boolean equation systems have been developed. The
notion of consistent consequence on Boolean equation systems was intro-
duced to more effectively reason about such abstraction techniques. Prior
work on consistent consequence claimed that this notion can be fully
characterised by a sound and complete derivation system, building on
rules for logical consequence. Our formalisation of the theory of consis-
tent consequence and the derivation system in the proof assistant Coq
reveals that the system is, nonetheless, unsound. We propose a fix for
the derivation system and show that the resulting system (system CC)
is indeed sound and complete for consistent consequence. Our formalisa-
tion of the consistent consequence theory furthermore points at a subtle
mistake in the phrasing of its main theorem, and how to correct this.

1 Introduction

The model checking problem for the modal μ-calculus, a typical problem in
software and hardware verification, is polynomial-time equivalent to solving a
Boolean equation system [10]. Indeed, several state-of-the-art tool sets, such as
mCRL2 [3] and CADP [6], solve their verification problems by transforming
these to solving such equation systems. A Boolean equation system is essentially
a sequence of equations of the form σX = f , where f is a propositional formula,
and where one is interested in either the least (if σ = μ) or greatest (if σ = ν)
solution to X that is logically equivalent to f .

M. van Delft—Partially funded by the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under grant agreement no. 674875.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 462–478, 2017.
DOI: 10.1007/978-3-319-66107-0 29

A Formalisation of Consistent Consequence for Boolean Equation Systems 463

The complexity of computing the solution to a Boolean equation system
depends on the alternations of the fixpoint symbols μ and ν, the mutual depen-
dency of equations and the size of the equation system. Boolean equation sys-
tems resulting from model checking problems often have reasonably low degrees
of alternations between fixpoint symbols so, in practice, the major factor is the
size of the equation system. These observations have led to the development of
several forms of abstraction that help reduce the size of a given Boolean equation
system while preserving knowledge about the solution of the original equation
system. The latter can be quite involved due to the intricacies in the semantics
of a Boolean equation system. For this reason [7] introduces the notion of consis-
tent consequence, generalising the notion of consistent correlation [18]; consistent
consequence is further studied in [2].

A key observation in [2,7] is that abstraction can often be understood as a
way to build an argument for a statement that is stronger than needed for what
one needs to prove. While in a purely propositional logic setting this is somehow
captured by modus ponens, in an equation system setting, this is captured by
consistent consequence. In this context, if one can show that a propositional
variable Y is a consistent consequence of propositional variable X, and X has
solution tt , then so has Y . In [2,8,18] it is shown that various forms of abstraction
yield, by construction, a consistent consequence between a ‘concrete’ Boolean
equation system and its (smaller) abstraction.

To better understand consistent consequence and illustrate that it is a natural
generalisation of logical consequence to the setting of Boolean equation systems,
in [7] a derivation system for logical consequence for propositional formulae in
positive form was extended by two derivation rules. The resulting derivation sys-
tem was claimed to soundly and completely characterise consistent consequence.
Unfortunately, as we show in this paper (see our Example 28), the soundness
claim of the derivation system is not valid due to an unsound derivation rule.
Moreover, one of the main theorems of [7] turns out to be ill-phrased as we show
using a small example (see our Example 23) that contradicts the theorem.

Contributions. First, we show that by removing the unsound rule we still obtain
a complete derivation system, which we call system CC. This essentially restores
the claim of correctness of the derivation system postulated in [7]. Second, we
adjust the definition of consistent consequence in such a way that the main
theorem of [7] holds. Third, we provide a formalisation of the theory of Boolean
equation systems, consistent consequence and its main theorem, the derivation
system and the proofs of soundness and completeness in the proof assistant
Coq [14].

Related Work. Boolean equation systems are instances of the more general fix-
point equation systems, in which equations are interpreted over arbitrary com-
plete lattices rather than the Boolean lattice. A formalisation in PVS of vari-
ous theorems and lemmata for fixpoint equation systems, including those found
in [10], is described in [15]. We note that this formalisation does not include the
notion of consistent consequence, nor its proof system. Boolean equation systems

464 M. van Delft et al.

are also intimately tied to parity games. These are two-player games played on
coloured, directed graphs. One of the main results for such games is that they
are positionally determined; a formalised proof thereof, in Isabelle/HOL, can
be found in [4]. In [12], an algorithm for the model checking problem for the
modal μ-calculus is formalised in Coq. More general considerations concerning
the formalisation of fixpoint theorems in Coq include, e.g. [1].

Structure. In Sect. 2 we briefly reiterate standard mathematical results about
fixpoints and complete lattices. Section 3 recalls Boolean equation systems and
Sect. 4 introduces the notion of consistent consequence. The (corrected) deriva-
tion system for consistent consequence, along with its formalisation in Coq and
the proofs of soundness and completeness, is discussed in Sect. 5. We finish with
a brief outlook on future work in Sect. 6. The Coq code accompanying this paper
was developed in Coq version CoqIDE 8.5pl2. For more detailed descriptions of
the proofs we refer to [16] and the formalisation in Coq, see [17].

2 Preliminaries

A poset (A,≤), is a set A paired with a binary relation ≤⊆ A×A that is reflexive,
antisymmetric and transitive. If all subsets of a given poset (A,≤) have both
a supremum (least upper bound) and an infimum (greatest lower bound), then
(A,≤) is a complete lattice.

For the remainder of this section, we fix some arbitrary complete lattice
(A,≤). We denote the supremum of a set A′ ⊆ A by

⊔
A′; its infimum is denoted�

A′. The element A⊥ is an abbreviation of
⊔ ∅ whereas A� abbreviates

� ∅.
Let f : A → A be an arbitrary endofunction on A. A fixpoint of f is an element
a ∈ A such that f(a) = a. The least fixpoint of f , denoted by μf , is the
fixpoint of f such that, for all other fixpoints a of f , μf ≤ a. Dually, the greatest
fixpoint of f , written νf , is the fixpoint of f such that, for all other fixpoints
a of f , a ≤ νf . Furthermore, we say that f is monotone iff for all a ≤ b, also
f(a) ≤ f(b). By Tarski’s Theorem [13], monotone endofunctions on a complete
lattice are guaranteed to have least and greatest fixpoints; these are given by
μf =

�{a ∈ A | f(a) ≤ a} and νf =
⊔{a ∈ A | f(a) ≥ a}. Furthermore, in a

complete lattice, the least and greatest fixpoints of f can be obtained using a
transfinite approximation, see also, e.g. [11].

Definition 1. For ordinal α, limit ordinal λ and σ ∈ {μ, ν}, the approximant
σαf of f is defined by induction:

σ0f = Aσ μλf = f(
⊔

α<λ

σαf)

σα+1f = f(σαf) νλf = f(
�

α<λ

σαf)

Lemma 2. If (A,≤) is a complete lattice then there is some α such that μf =
μαf ; likewise, there is some α such that νf = ναf .

A Formalisation of Consistent Consequence for Boolean Equation Systems 465

If (A,≤) is a complete lattice and B is an arbitrary non-empty set, then the
set of functions from B to A, denoted by AB , together with the ordering f � g,
defined as f(b) ≤ g(b) for all b ∈ B, is a complete lattice.

3 Boolean Equation Systems

Boolean equation systems (BESs) are essentially finite sequences of least and
greatest fixpoint equations of the form σX = f . Each right-hand side of an
equation is a propositional formula in positive form and each left-hand side
consists of a fixpoint sign σ ∈ {μ, ν} and a propositional variable X taken from
a countable set X of propositional variables. For a thorough exposition on the
theory of Boolean equation systems, we refer to [10]; we here recall only the
concepts and results needed for understanding the core results of the paper.

Definition 3. In Coq: propForm.
The set of propositional formulae is given through the following grammar:

f ::= 	 | ⊥ | X ∈ X | f ∨ f | f ∧ f

The semantics of a propositional formula is given in the context of an envi-
ronment. An environment is a mapping from the set of propositional variables
X to the set of Booleans B = {ff , tt}. Note that the set (B,≤), with ff ≤ tt , is a
complete lattice. We typically use symbols η, θ to denote environments. We write
η ≤ θ iff for all X ∈ X we have η(X) ≤ θ(X). The supremum of η and θ, denoted
η+θ is then the pointwise disjunction of η and θ, viz. (η+θ)(X) = η(X)θ(X).
We define the least environment θ⊥ as θ⊥(X) = ff for all X and, dually, the
largest environment θ� as θ�(X) = tt for all X.

Definition 4. In Coq: propForm solution.
Let θ : X → B be an arbitrary environment. The semantics of a propositional
formula f is defined inductively as follows:

[[]]θ = tt [[X]]θ = θ(X) [[⊥]]θ = ff
[[f ∧ g]]θ = [[f]]θ � [[g]]θ [[f ∨ g]]θ = [[f]]θ [[g]]θ

Note that the set of operators on propositional formulae excludes implication and
negation for reasons that will become apparent when we introduce the seman-
tics of Boolean equation systems. Nonetheless, the theory of consistent conse-
quence put forward in [7] revolves around a notion of logical consequence among
variables in a Boolean equation system. Logical consequence and equivalence
between propositional formulae is defined as follows.

Definition 5. In Coq: propForm cons.
Let f, g be arbitrary propositional formulae. We say that f implies g, written
f ⇒ g, iff for all environments θ we have [[f]]θ ≤ [[g]]θ. We say that f is equivalent
to g, denoted f ⇔ g, if both f ⇒ g and g ⇒ f .

466 M. van Delft et al.

We here follow [5] in our treatment of Boolean equation systems; i.e. a Boolean
equation system is represented as a sequence of blocks (which are sequences of
Boolean equations), where each block is paired with a fixpoint symbol σ ∈ {μ, ν}.
Formally, a Boolean equation is an equation of the form (X = f), where X is
a propositional variable and f is a propositional formula; a block is then a non-
empty sequence 〈Xi = fXi

〉n
i=1 of Boolean equations.

Definition 6. In Coq: BES.
A Boolean equation system E is a sequence of fixpoint symbol and block pairs
generated by the following grammar:

E ::= Eμ | Eν Eμ ::= ε | (μB) Eν Eν ::= ε | (νB) Eμ

where ε denotes the empty list and B is a block.

Given a block B, we write bndB for the set of propositional variables occurring
at the left-hand sides in the equations of B; if the context is clear, we simply
write bnd. If for each X ∈ bndB there is exactly one equation in B with X as
its left-hand side, we say that B is well-formed and we write fX to refer to the
right-hand side propositional formula belonging to the equation for X. We lift
the definitions of bndB, fX and well-formed from blocks to Boolean equation
systems in the natural way. Throughout this paper, we only consider well-formed
blocks and BESs. A BES E is closed if all right-hand sides of its equations refer
only to constants or variables taken from bndE .

Definition 7. In Coq: rank.
Let E be a BES. Variables X,Y have equal rank, written X ∼E Y , iff either
X,Y �∈ bndE , or there exists a block B in E such that X,Y ∈ bndB .

Example 8. An example of a closed Boolean equation system F , consisting of
two blocks, is given below:

ν〈(X0 = X1 ∨ X4) (X1 = X2 ∨ X5) (X2 = X0 ∨ X6) (X3 = X7)〉
μ〈(X4 = X0) (X5 = X0 ∧ X2) (X6 = X1) (X7 = X7 ∧ X3)〉

Note that we have X0 ∼ X1 ∼ X2 ∼ X3 and X4 ∼ X5 ∼ X6 ∼ X7. �
Each block B in a BES induces a monotone operator on the set of environments;
the semantics of a BES is then defined inductively on the structure of the BES
using the monotone operator induced by the blocks of the BES.

Definition 9. In Coq: unfold block.
Let B = 〈Xi = fXi

〉n
i=1 be a block of Boolean equations. Block B induces an

operator ‖B‖ on environments θ as follows:

‖B‖θ = θ[〈Xi := [[fXi
]]θ〉n

i=1]

where θ[〈Xi := bi〉n
i=1] is the environment that assigns bi to Xi for i ∈ [1, . . . , n]

and θ(Y) to all Y /∈ bndB .

A Formalisation of Consistent Consequence for Boolean Equation Systems 467

We define the operator ‖B‖n inductively as (‖B‖0)θ = θ and (‖B‖n+1)(θ) =
‖B‖((‖B‖n)θ); i.e. ‖B‖n denotes applying operator ‖B‖ n-times to an
environment.

Lemma 10. In Coq: unfold block monotone.
Let B be a block of Boolean equations. Operator ‖B‖ is a monotone operator
on the complete lattice (BX ,≤) of environments.

Consequently, operator ‖B‖ has a least and a greatest fixpoint. Observe that the
lattice (BX ,≤) is infinite, so it is not obvious that the least and greatest fixpoint
of this operator can be computed. However, it follows from some simple obser-
vations that we can compute least and greatest fixpoints of this operator using
a finite approximation. This result essentially follows from the fact that ‖B‖ is
monotone and the value of each of the (fixed number of) propositional variables
bound in B can change at most once. More formally, for a block B consisting
of n Boolean equations, we have (‖B‖n)θ = (‖B‖n+1)θ for all environments θ
satisfying ‖B‖θ ≤ θ or θ ≤ ‖B‖θ. We next define the semantics of a Boolean
equation system.

Definition 11. In Coq: BES solution.
The semantics of a BES E in the context of an environment θ, denoted [[E]]θ is
defined inductively as follows:

[[ε]]θ = θ

[[(σB)E]]θ = [[E]](θ[〈Xi := (σF (E , B, θ))(Xi)〉n
i=1])

where B is a block 〈Xi = fXi
〉n
i=1 and F is an operator on environments defined

as follows:

F (E , B, θ) = λη ∈ B
X .‖B‖([[E]](θ[〈Xi := η(Xi)〉n

i=1]))

We remark that for a closed equation system E , the semantics of E assigns a
truth value to a bound variable that is independent of the environment θ; that
is, we have [[E]]θ(X) = [[E]]η(X) for all X ∈ bndE in case E is closed.

Example 12. A simple algorithm for ‘solving’ a Boolean equation system is
Gauß elimination [9,10]. This algorithm is based on the standard laws for
Boolean simplification and the following three rules: (1) local fixpoint elimination,
(2) left substitution and (3) right substitution. Rule (1), local fixpoint elimina-
tion, replaces an equation X = f by X = f [X := ⊥] in a least fixpoint block
and by X = f [X :=] in a greatest fixpoint block. Rule (2), left substitution,
allows for replacing an equation Y = g by Y = g[X := f] whenever there is
an equation X = f that is either in the same block as Y ’s equation or some
block following Y ’s. Rule (3), right substitution, allows for replacing an equa-
tion Y = g by Y = g[X := f] whenever there is an equation X = f that is
either in the same block as Y ’s equation or some block preceding Y ’s; right sub-
stitution is only permitted when f contains no propositional variables. The Gauß
elimination algorithm solves the first equation of a Boolean equation system by

468 M. van Delft et al.

alternatingly applying rule (1), local fixpoint elimination, and, subsequently, rule
(2), left substitution (exhaustively), processing the equations last-to-first. As a
last step, the algorithm exhaustively applies rule (3), right substitution, replac-
ing every ‘solved’ propositional variable with its solution. Repeating the Gauß
elimination algorithm, possibly several times, will solve the entire system. This
requires at most N runs of the Gauß elimination algorithm, where N is the
number of equations in a system.

Reconsider the Boolean equation system F of Example 8. For F , Gauß elim-
ination starts by replacing the equation X7 = X7 ∧ X3 by X7 = ⊥ ∧ X3, which
we can further simplify to X7 = ⊥. Next, the algorithm replaces the equation
X3 = X7 by X3 = ⊥. Note that this effectively removes all references to X7

in all equations preceding that of X7. Next, the algorithm will apply local fix-
point elimination for X6 = X1 (which is ‘ineffective’) and replace the equation
X2 = X0 ∨ X6 by X2 = X0 ∨ X1; and so forth. By repeating this process one
eventually solves X0. Using right substitution, every propositional variable in F
is solved; we find that for all environments θ we have:

[[F]]θ(X3) = [[F]]θ(X7) = ff , and
[[F]]θ(X0) = [[F]]θ(X1) = [[F]]θ(X2) = [[F]]θ(X4) = [[F]]θ(X5) = [[F]]θ(X6) = tt

We remark that the solution to X0 is ‘easy’ to compute since X0 effectively only
depends on X4 and X4 only depends on X0; the dependence of X0 on X1 turns
out to be inessential for the solution to X0. The solution to X1, on the other
hand, is ‘harder’ to compute since it depends on many more equations. �

4 Consistent Consequences

An important technique often used in model checking is to apply methods of
abstraction to approximate solutions, to avoid the state space explosion prob-
lem. Since Boolean equation systems can encode model checking problems, it
is natural to consider abstraction techniques on such equation systems. How-
ever, proving soundness of such techniques is often quite tedious. The notion
of consistent consequence [7] facilitates the reasoning involved in these proofs
of soundness, reducing the problem of showing soundness to showing that the
abstraction technique induces a consistent consequence relation. Showing that a
given relation is a consistent consequence is often easier than reasoning directly
with the semantics of Boolean equation systems. We here briefly review the
notion of consistent consequence and how it relates to the semantics of a Boolean
equation system.

Let R ⊆ X ×X be an arbitrary relation on propositional variables. We denote
the reflexive, transitive closure of R by R∗. A relation on propositional variables
induces a set of environments that are consistent with the relation.

Definition 13. In Coq: consistent environment.
Let θ be an environment. We say that θ is consistent with R iff for all X,Y for
which (X,Y) ∈ R, we have θ(X) ≤ θ(Y). The set of all environments consistent
with R is denoted ΘR.

A Formalisation of Consistent Consequence for Boolean Equation Systems 469

Note that in particular the environments θ⊥ and θ� are consistent with every
relation R. We generalise logical consequence to logical consequence relative to
a given relation R.

Definition 14. In Coq: rel cons.
Let f, g be arbitrary propositional formulae. We say that g is a consequence of
f relative to R, denoted f

R=⇒ g iff for all θ ∈ ΘR we have [[f]]θ ≤ [[g]]θ.

We next lift the notion of relative consequence to Boolean equation systems.

Definition 15. In Coq: consistent consequence.
Let E be a BES. A relation R ⊆ X × X is a consistent consequence on E iff, for
all (X,Y) ∈ R, we have:

1. X ∼E Y ,
2. If X,Y ∈ bndE then also fX

R=⇒ fY

We say that Y is a consistent consequence of X, written X �E Y , if there exists
a consistent consequence relation R ⊆ bndE ×bndE on E for which (X,Y) ∈ R.
If E is clear from the context we simply write X � Y . In Coq: cc max.

In fact, �E is again a consistent consequence relation on E and it is the largest
consistent consequence relation contained in bndE × bndE . This follows from
the following lemma.

Lemma 16. In Coq: union maintains cc.
For BES E and relations R,S which are consistent consequence relations on E ,
also R ∪ S is a consistent consequence relation on E .

The notion of consistent consequence and the semantics of a Boolean equation
system are tightly linked. Informally, a consistent consequence underapproxi-
mates the semantics of a Boolean equation system. We make this statement
more precise in the following two lemmata and Theorem 20, and illustrate it in
the example below.

Example 17. Reconsider the Boolean equation system F of Example 8 once
more. We obtain, among others, that X3 � X0 � X1 � X2 � X0 and X7 �

X4 � X5 � X6 � X4. Proving that this is the case, one can take the transitive
closure of the relation R defined as:

{(X3,X0), (X0,X1), (X1,X2), (X2,X0), (X7,X4), (X4,X5), (X5,X6), (X6,X4)}.

One can check that R∗ is such that for all environments θ ∈ ΘR∗ the second
condition of Definition 15 is met for all pairs in R∗. �
The first lemma claims that each operator ‖B‖ induced by a block B transforms
environments consistent with R into environments again consistent with R.

Lemma 18. In Coq: unfold block maintains consistency.
Let B be a block of Boolean equations, and let R be a consistent consequence
on σB for some σ ∈ {μ, ν}. Then for all θ ∈ ΘR we have (‖B‖θ) ∈ ΘR.

470 M. van Delft et al.

Furthermore, given two environments consistent with a consistent consequence
relation on a BES consisting of a single block, the result of replacing in one
of the environments the interpretation of all variables in the BES with their
interpretation in the other environment results in an environment consistent
with the consistent consequence relation.

Lemma 19. In Coq: redef bnd consistent.
Let E be a Boolean equation system and let 〈Xi = fXi

〉n
i=1 be a block in E .

If R is a consistent consequence on E and we have η, θ ∈ ΘR then (θ[〈Xi :=
η(Xi)〉n

i=1]) ∈ ΘR.

The theorem below firmly links the notion of consistent consequence and the
semantics of a Boolean equation system; it is one of the main theorems in [7].
Informally, it states that the solution to a Boolean equation system is consistent
with every consistent consequence relation.

Theorem 20. In Coq: cc BES semantics.
Let E be a BES and R a consistent consequence relation on E . Then for all
θ ∈ ΘR we have [[E]]θ ∈ ΘR.

As a corollary of the Theorem above we find the following result, which sub-
stantiates the informal claim made earlier, stating that a consistent consequence
underapproximates the solution to a Boolean equation system.

Corollary 21. Let E be a closed BES. Then, for all environments θ and all
variables X,Y such that X �E Y we have [[E]]θ(X) implies [[E]]θ(Y).

Example 22. From Example 17 we know that X3 � X0. Since [[F]]θ(X3) = ff ,
we cannot deduce the truth value of [[F]]θ(X0). However, from X0 � X1 and the
fact that [[F]]θ(X0) = tt, we can conclude [[F]]θ(X1) = tt. �
In practice, this means that if one can ‘cheaply’ compute that [[E]]θ(X) = tt and
prove that X � Y , then we have a way of proving that [[E]]θ(Y) = tt without
explicitly computing [[E]]θ(Y). The abstraction techniques explored in, e.g. [2]
are based on exactly this concept, guaranteeing that a (finite representation
of a potentially infinite) BES is reduced to a smaller BES whose semantics
approximates the semantics of the original BES.

Variations on Consistent Consequence. In [7] the definition of consistent conse-
quence only places restrictions on related bound variables; that is, in [7] a relation
R is a consistent consequence relation if for all bound variables X,Y such that
(X,Y) ∈ R, properties 1 and 2 hold. However, using this definition, Theorem20
(Theorem 1 in [7]) fails, as the following example illustrates.

Example 23. Consider the Boolean equation system E given by μ〈(X =
Z)(Y = Y)〉. The relation R = {(X,Y), (Z, Y)} is clearly a consistent con-
sequence in the sense of [7]. However, for θ� ∈ ΘR we have [[E]]θ�(X) =
[[E]]θ�(Z) = tt whereas [[E]]θ�(Y) = ff . But then [[E]]θ� /∈ ΘR, contradicting
Theorem20. �

A Formalisation of Consistent Consequence for Boolean Equation Systems 471

The main problem with the definition from [7] is that unbound variables can be
related to bound variables; we forbid this explicitly in our definition.

In [2] the consistent consequence relation is defined for parameterised Boolean
equation systems. Like in [7], the notion of consistent consequence allows for
relating bound and unbound variables in [2]. The counterpart of our Theorem20
in [2] again reasons about arbitrary consistent consequence relations for bound
variables, falling into the pitfall of the example above. However, contrary to [7],
but similar to [18], the relation � in [2] coincides with � in our Definition 15 since
it requires the existence of a consistent consequence relation R that is restricted
to bound variables only. As a result, for that relation, Theorem20 does hold.

5 A Derivation System for Consistent Consequence

The two-stage approach of defining � as the union of all consistent consequence
relations can make the notion hard to understand. An additional complication
is that checking that an arbitrary relation R is a consistent consequence rela-
tion requires reasoning about all environments θ taken from the infinite set ΘR.
In [7], a derivation system for consistent consequence has been presented, show-
ing that a consistent consequence can indeed be understood as a form of logical
consequence on propositional formulae lifted to Boolean equation systems.

While in [7] soundness and completeness of the derivation system are claimed,
it turns out that there is a subtle mistake in the derivation system rendering
the entire system unsound, see also Example 28. We show that by removing
the dubious rule, one arrives at a sound and complete derivation system for
consistent consequence.

5.1 The Derivation System CC

We first present the corrected derivation system, which we dub system CC, and
which we base upon the derivation system of [7].

Definition 24. In Coq: prv tree.
Given a BES E , we define the derivation system for consistent consequence for E ,
which we call CC. (The dependency on E is left implicit.) CC derives judgments of
the form Γ �cc α ⊂ β using rules from Table 1. Here, α, β, . . . are propositional
formulae and Γ is a context consisting of a sequence of relations on propositional
variables of the form X ⊂ Y , and α ⊂ β is a relation between propositional
formulae. For X ⊂ Y ∈ Γ we require that X,Y ∈ bndE and X ∼E Y . The
formulas fX and fY in the rule CC are the formulas bound to X, resp. Y , in E .

The rules for logical consequence on negation-free propositional formulae
axiomatise associativity (AS), distributivity (DS), absorption (AB), idempotence
(ID), supremum (SUP) and infimum (INF) and top (TOP) and bottom (BOT).
These axioms, together with the reflexivity axiom (REF), the transitivity rule
(TRA) and the context rule (CTX) form the basis of our derivation systems. From
the two lemmata below it follows that these derivation rules exactly characterise
logical consequence.

472 M. van Delft et al.

Table 1. Derivation system for logical consequence on negation-free propositional for-
mulae and consistent consequence on an equation system E .

Lemma 25. In Coq: complete cons.
For all propositional formulae f, g, if f ⇒ g then we can derive Γ �cc f ⊂ g
without rules CC and CNT.

Lemma 26. For propositional formulae f, g, if we can derive Γ �cc f ⊂ g
without rules CC and CNT, then f ⇒ g.

It turns out that for a sound and complete derivation system for consistent con-
sequence it suffices to add two rules to the axiomatisation of logical consequence.
The first rule, rule CNT allows one to conclude ‘facts’ from the context Γ . The
second rule, rule CC states that we can conclude (in the context of some Γ) that
X ⊂ Y holds, representing that Y is a consistent consequence of X, if we can
derive that the right-hand side of Y is a consequence of X assuming X ⊂ Y
(in addition to Γ). Note that there is an inkling of circular reasoning in this
rule since the right-hand side of Y and X might themselves consist of Y and X
again.

A Formalisation of Consistent Consequence for Boolean Equation Systems 473

Example 27. Reconsider Example 17. There, we claimed that we have X3�X0.
Using the derivation system we are able to derive the very same using, among
others, the CC and CNT rules:

Γ2 �cc X7 ∧ X3 ⊂ X3
INF

Γ2 �cc X3 ⊂ X0
CNT

Γ2 �cc X7 ∧ X3 ⊂ X0
TRA

Γ1 �cc X7 ⊂ X4
CC

Γ1 �cc X4 ⊂ X1 ∨ X4
SUP

Γ1 �cc X7 ⊂ X1 ∨ X4
TRA

�cc X3 ⊂ X0
CC

where context Γ1 contains X3 ⊂ X0 and context Γ2 contains both X3 ⊂ X0 and
X7 ⊂ X4. �
The derivation system of [7] includes, in addition to the rules of Table 1, the
following substitution rule:

SUB

Γ �cc α ⊂ β

Γ �cc ας ⊂ βς

where ς is a substitution mapping propositional variables to propositional formu-
lae. While substitution is in itself sound for logical consequence for negation-free
propositional logic (axiomatised by the first block of axioms in Table 1), it causes
problems in the setting of consistent consequence as illustrated by the following
example.

Example 28. Consider the following Boolean equation system:

μ〈(X = A)(Y = B)〉 ν〈(A = A)〉 μ〈(B = B)〉
We can deduce that X has solution tt and Y has solution ff . By Corollary 21,
we cannot have X � Y . Combining rule SUB and CC we are nonetheless capable
of deriving X ⊂ Y :

X ⊂ Y �cc X ⊂ Y
CNT

X ⊂ Y �cc A ⊂ B
SUB using substitution ς(X) = A, ς(Y) = B

�cc X ⊂ Y
CC

Consequently, the derivation system for ⊂ of [7] is not sound for �. �
Formalising CCin Coq. In Coq, the derivation system is represented as the induc-
tive type prv tree : BES→statement→Prop, which has a constructor for every
derivation rule in Table 1. A term of type statement is a triple of a relation
and two propositional formulas: Γ �cc f ⊂ g; the type statement is defined
as the Inductive type with one constructor stmt : (relation propVar)→
propForm→propForm→statement. Constructing a derivation tree is done by
combining constructors of the type prv tree.

Reasoning on the properties of the derivation system in Coq, often amounts
to showing that certain properties are sufficient for knowing that it is possible to
create a derivation tree or vice versa. For example, (as we will show), if we have
X �E Y for a pair of variables, then we can create a proof tree with ∅ �cc X ⊂ Y
as the root. Vice versa, if we can derive ∅ �cc X ⊂ Y for bound X,Y , then
X

�E=⇒ Y , which (as we will later see) tells us that X �E Y .

474 M. van Delft et al.

5.2 Soundness and Completeness

We recall that CC without the rules CC and CNT is sound and complete for
negation-free propositional logic (Lemmas 25 and 26). For soundness and com-
pleteness of the full CC system we want to prove that for X,Y bound in E ,
∅ �cc X ⊂ Y is derivable if and only if X �E Y . In the derivation system we use
a Γ , so we will have to prove something stronger: a property about Γ �cc X ⊂ Y .
This implies that we also have to strengthen the notion X �E Y by adding Γ .

Definition 29. In Coq: relative cc.
Let Γ ⊆ X × X be a relation on propositional variables. A relation R ⊆ X × X
is a consistent consequence on E relative to Γ if, for all (X,Y) ∈ R, we have:

1. X ∼E Y ,
2. If X,Y ∈ bnd, then fX

R∪Γ===⇒ fY

We say that Y is a consistent consequence of X relative to Γ , written �
Γ
E if

there exists a consistent consequence relation R ⊆ bndE × bndE on E relative
to Γ such that (X,Y) ∈ Γ ∪ R. In Coq: rel cc max.

The link between consistent consequence and consistent consequence relative to
a context Γ is given by the following Lemma.

Lemma 30. In Coq: cc relative empty, empty relative cc.
For any relation R, R is a consistent consequence on E iff R is a consistent
consequence on E relative to ∅.

We will prove that for variables X,Y bound in E , Γ �cc X ⊂ Y is derivable if and
only if X �

Γ
E Y ; thus, the derivation system is sound and complete for consistent

consequence when considering the bound variables in a BES. We first consider
soundness. The following Proposition is proved by induction on the derivation.
(In Coq terminology: by induction on prv tree E (stmt G f g).)

Proposition 31. In Coq: soundness.
Let f, g be propositional formulae and let Γ be an arbitrary context. If Γ �cc

f ⊂ g is derivable, then f
�

Γ
E==⇒ g.

This proposition underlies the proof of soundness, which is a direct consequence
by taking Γ = ∅.

Theorem 32. In Coq: prv system sound bnd.
For propositional variables X,Y ∈ bnd, if ∅ �cc X ⊂ Y is derivable, then X�Y .

Similar to [7], our proof of completeness is built on the fact that CC is complete
for logical consequence for negation-free propositional formula. In [7], the (faulty)
proof of completeness was built on the unsound SUB rule. Nonetheless, the main
idea for proving completeness that is exploited in [7] remains valid. The idea is
to decompose a goal f ⊂ g into a set of simple goals (relating only propositional
variables) of the form X ⊂ Y . This is made precise by the following Lemma.

A Formalisation of Consistent Consequence for Boolean Equation Systems 475

Lemma 33. In Coq: derivable set derivable rel cons.
For all contexts Γ ⊆ X × X , relations R ⊆ bnd × bnd, and propositional
formulae f, g satisfying f

R=⇒ g, the following rule is derivable:

{Γ �cc X ⊂ Y | (X,Y) ∈ R}
Γ �cc f ⊂ g

The proof uses a number of properties of the system CC. First of all, the ‘stan-
dard’ logical rules are derivable in CC: For example, if Γ �cc f1 ⊂ g and
Γ �cc f2 ⊂ g, then Γ �cc f1 ∨ f2 ⊂ g, as the following derivation illustrates:

Γ �cc f2 ⊂ g

Γ �cc f1 ∨ f2 ⊂ f1 ∨ g
CTX

Γ �cc f1 ⊂ g

Γ �cc f1 ∨ g ⊂ g ∨ g
CTX

Γ �cc g ∨ g ⊂ g
ID2

Γ �cc f1 ∨ g ⊂ g
TRA

Γ �cc f1 ∨ f2 ⊂ g
TRA

Using these, one can prove, inside CC, that every formula f is equivalent to its
disjunctive normal form DNF(f). A disjunctive normal form is a disjunction
of conjunctions of literals, where the literals are ⊥, 	 or a variable X. These
conjunctions are called clauses and in our case of negation-free propositional
logic, there are only positive literals (i.e. we only have X as literal, not ¬X).

Furthermore, the fact that we are in negation-free propositional logic means
that our logic is constructive in the sense of (a) below. We also have (b).

(a) If c1 ∨ . . . ∨ cn
R=⇒ d1 ∨ . . . ∨ dm, where all ci and dj are clauses, then

∀i∃j(ci
R=⇒ dj).

(b) If X1 ∧ . . . ∧ Xp
R=⇒ Y1 ∧ . . . ∧ Y�, where all Xi and Yj are variables, then

∀j∃i(Xi
R=⇒ Yj).

These properties are the crucial steps for proving Lemma 33. We write cf∈f to
denote that cf is a clause in f and X∈cf to denote that X is a variable in the
clause cf .

Proof (Lemma 33). Consider the propositional formulas f, g such that f
R=⇒ g for

some relation R. We may assume that f and g are in disjunctive normal form,
and that f �⇔ ⊥. Then, for every clause cf in f , there is a clause cg in g, such

that cf
R=⇒ cg, by (a) above. Therefore, by (b) above,

∀cf∈f ∃dg∈g ∀Yg∈dg ∃Xf∈cf (Xf
R=⇒ Xg) (1)

It can be shown (in Coq: min env conj) that Xf
R=⇒ Xg implies (Xf , Yg) ∈ R∗

(the transitive reflexive closure of R).
The proof now follows from the fact that the system is sound for logical

consequence: From {Γ �cc X ⊂ Y | (X,Y) ∈ R} one can derive {Γ �cc X ⊂
Y | (X,Y) ∈ R∗} and it can be shown that if (1) holds, then f

R=⇒ g. �

476 M. van Delft et al.

Now the proof of completeness of the derivation system CC proceeds roughly
as follows. Suppose X � Y . We use rule CC to conclude ∅ �cc X ⊂ Y from
X ⊂ Y �cc fX ⊂ fY . The latter goal can be decomposed using the lemma
above, so we need to prove {Γ �cc X ⊂ Y | (X,Y) ∈ R} for some Γ and R.
Repeating the CC rule to prove the next subgoals we eventually must arrive at
conclusions that can be drawn from the context using the CNT rule. Note that
the number of applications of CC is limited since in every application of CC, Γ
grows by one and we can have at most |bnd|2 different pairs of propositional
variables to which rule CC is applicable before ‘revisiting’ a subgoal.

Lemma 34. In Coq: complete propVar.
For any context Γ and for all X,Y such that X�

Γ
E Y we can derive Γ �cc X ⊂ Y .

Proof. Take a relation Γ ⊆ (bndE)2, and variables X,Y s.t. X�
Γ
E Y . We proceed

by induction on the size of (bndE)2 \ Γ .

– Case (bndE)2 \ Γ = 0. Then �
Γ
E ⊆ Γ , thus X ⊂ Y ∈ Γ . We can complete

the derivation using CNT.
– Case (bndE)2 \ Γ = n + 1. If X ⊂ Y ∈ Γ we can complete the derivation

using CNT. If X = Y then we can complete the derivation using REF. Oth-
erwise, there exists a consistent consequence relation R relative to Γ , such
that (X,Y) ∈ R. We derive Γ,X ⊂ Y �cc fX ⊂ fY (and then Γ,X ⊂ Y by
the rule CC). We have f

R=⇒ g, so, by Lemma 33, we are done if we derive
{Γ,X ⊂ Y �cc X ′ ⊂ Y ′ | (X ′, Y ′) ∈ R}. This is possible according to the
induction hypothesis: we know X ′

�
Γ,X⊂Y
E Y ′, so Γ,X ⊂ Y �cc X ′ ⊂ Y ′. �

From the previous lemma and Lemma 30 we can conclude the completeness of
the system.

Theorem 35. In Coq: complete.
For all propositional variables X,Y satisfying X�Y , we can derive ∅ �cc X ⊂ Y .

Proof. Follows from Lemmas 30 and 34. �

6 Conclusions

We have formalised the notion of consistent consequence [7] in the Coq proof
assistant. Consistent consequence underlies various forms of abstraction in the
setting of Boolean equation systems (BES) [10], which have applications in soft-
ware and hardware verification. We have shown that the derivation system of [7]
for consistent consequence, which is claimed to be sound and complete, contains
a serious flaw caused by an unsound rule. We have proved that soundness can be
recovered by removing this rule. For our proof of completeness of the modified
derivation system we have had to deviate substantially from the original proof
(which essentially relied on the unsound rule, and was thus faulty). Moreover,
our formalisation revealed an inaccuracy in the phrasing of the main correctness
theorem for consistent consequence in [7], and which we could trace back to an

A Formalisation of Consistent Consequence for Boolean Equation Systems 477

omission in the definition of consistent consequence. We have shown that by
fixing the latter, we can restore validity of the main theorem.

The Coq code, see [17], consists of over 5500 lines of Coq, comprising 178
Lemmas and 79 Definitions; of these Definitions, 2 are Records, 7 are Induc-
tive definitions and 22 are Fixpoint definitions. Many of the notions in the field
of BES are defined inductively, and therefore can be encoded into Coq quite
directly. Most functions are defined by structural recursion (Fixpoint in Coq)
and proofs proceed by induction, which are both features that are readily avail-
able in Coq. Similarly, the derivation system CC is straightforwardly defined in
Coq by defining the inductive type family of derivation trees, indexed by a BES
and a triple Γ �cc f ⊂ g, the conclusion of the derivation tree. This inductive
type facilitates the soundness proof, which proceeds by induction on the deriva-
tion. The completeness proof is more interesting, as it uses a transformation to
disjunctive normal forms, and it also essentially uses the fact that all proposi-
tional formulas are negation-free. A technical complication in the proof is that
the inductive argument that proves completeness is not on the size of Γ but on
the number of variables that are not bound in Γ .

Future Work. The main point for future work is to extend the system CC to
reason about consistent consequence for parametrised Boolean equation systems
(PBES) [8,18]. Then variables range over predicates over data, for example we
would have X(n) where n ranges over N, and we would look for the least (or
greatest) X(n) satisfying certain equations. In the case of PBES, the least solu-
tion to an equation may require a transfinite iteration (as summarised in Sect. 2).
This would also require a serious modification of our formalisation in Coq, which
now relies on the fact that we can compute the least solution in a finite number
of steps.

References

1. Bertot, Y., Komendantsky, V.: Fixed point semantics and partial recursion in Coq.
In: PPDP, pp. 89–96. ACM (2008)

2. Cranen, S., Gazda, M., Wesselink, W., Willemse, T.A.C.: Abstraction in fixpoint
logic. ACM Trans. Comput. Log. 16(4/29), 29:1–29:39 (2015)

3. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink,
W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

4. Dittmann, C.: Positional determinacy of parity games. In: Archive of Formal Proofs
(2015)

5. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

6. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: a toolbox for the con-
struction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73368-3 18

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-540-73368-3_18
http://dx.doi.org/10.1007/978-3-540-73368-3_18

478 M. van Delft et al.

7. Gazda, M.W., Willemse, T.A.C.: Consistent consequence for boolean equation sys-
tems. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 277–288. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-27660-6 23

8. Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parame-
terised boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). doi:10.1007/
978-3-319-11936-6 16

9. Mader, A.: Modal μ-calculus, model checking and Gauß elimination. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS
1995. LNCS, vol. 1019, pp. 72–88. Springer, Heidelberg (1995). doi:10.1007/
3-540-60630-0 4

10. Mader, A.: Verification of modal properties using boolean equation systems. Ph.D.
thesis, Technische Universität München (1997)

11. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

12. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998).
doi:10.1007/BFb0054171

13. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955)

14. The Coq Development Team. http://coq.inria.fr
15. van de Pol, J.C.: Operations on fixpoint equation systems. Unpublished note; avail-

able from the author upon request
16. van Delft, M.E.C.: Consistent consequences formalized. Master’s thesis, Eindhoven

University of Technology (2016)
17. van Delft, M.E.C., Geuvers, H., Willemse, T.A.C. http://doi.org/10.4121/uuid:

a06e90c7-9ca1-45df-ad37-e99bdbf75b78
18. Willemse, T.A.C.: Consistent correlations for parameterised boolean equation sys-

tems with applications in correctness proofs for manipulations. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15375-4 40

http://dx.doi.org/10.1007/978-3-642-27660-6_23
http://dx.doi.org/10.1007/978-3-319-11936-6_16
http://dx.doi.org/10.1007/978-3-319-11936-6_16
http://dx.doi.org/10.1007/3-540-60630-0_4
http://dx.doi.org/10.1007/3-540-60630-0_4
http://dx.doi.org/10.1007/BFb0054171
http://coq.inria.fr
http://doi.org/10.4121/uuid:a06e90c7-9ca1-45df-ad37-e99bdbf75b78
http://doi.org/10.4121/uuid:a06e90c7-9ca1-45df-ad37-e99bdbf75b78
http://dx.doi.org/10.1007/978-3-642-15375-4_40

Homotopy Type Theory in Lean

Floris van Doorn1, Jakob von Raumer2, and Ulrik Buchholtz3(B)

1 Carnegie Mellon University, Pittsburgh, USA
fpvdoorn@gmail.com

2 University of Nottingham, Nottingham, UK
jakob@von-raumer.de

3 TU Darmstadt, Darmstadt, Germany
ulrikbuchholtz@gmail.com

Abstract. We discuss the homotopy type theory library in the Lean
proof assistant. The library is especially geared toward synthetic homo-
topy theory. Of particular interest is the use of just a few primitive
notions of higher inductive types, namely quotients and truncations, and
the use of cubical methods.

Keywords: Homotopy type theory · Formalized mathematics · Lean ·
Proof assistants

1 Introduction

Homotopy type theory (HoTT) refers to the homotopical interpretation of
Martin-Löf’s dependent type theory [3,22], which grew out of the groupoid model
of [13]. In the standard interpretation, every type-theoretical construct corre-
sponds to a homotopy-invariant construction on spaces. An important example
is the identity type, which corresponds to the path space construction.

Just like extensional type theory can be interpreted in a variety of categories,
for instance elementary toposes, it is expected that homotopy type theory has
homotopy-coherent interpretations in higher toposes. Conversely, the interpreta-
tion has inspired new type-theoretic ideas such as higher inductive types (HITs)
and Voevodsky’s univalence axiom. (See the HoTT book [21] for more about
HoTT.)

Most previous formalizations of HoTT used proof assistants that were not
originally designed with the homotopy interpretation in mind. In Coq we have
both Voevodsky et al.’s UniMath project [23] and the HoTT library [4]. In Agda,
there is another substantial HoTT library [5]. The former library eschews the
use of HITs by instead using Voevodsky’s resizing axiom. Common for all of
these libraries is that certain tricks are used to accommodate HoTT: resizing is
implemented bluntly in UniMath using the inconsistent principle type-in-type,
while HITs are implemented in the other libraries using “Licata’s trick” [15].
There is also an impressive experimental proof assistant implementing cubical
type theory [7] which is designed with the homotopy interpretation in mind, but
it lacks many features that make a proof assistant convenient to use, and the
library is so far rudimentary.
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 479–495, 2017.
DOI: 10.1007/978-3-319-66107-0 30

480 F. van Doorn et al.

Contributions. In this paper, we report on a new library1 for HoTT in the
proof assistant Lean [18]. Lean is open source and implements dependent type
theory. It is designed to have a small kernel, with many features built outside
the kernel. We describe Lean in greater detail in Sect. 2. The cloc tool2 reports
the library as having 30 400 lines of specification and proof and 3 600 lines of
comments. Thus, our library is roughly the same size as the Coq HoTT library,
which has 29 800 lines of specification and proof. Our library includes many
theorems from synthetic homotopy theory and a large algebraic hierarchy. We
describe the library in more detail in Sect. 3. In the library we heavily use cubical
techniques for higher path algebra, see Sect. 4. We also have a novel approach
to implement HITs, which amounts to having two simple built-in HITs and
reducing everything else to those, as described in Sect. 5.

2 The Lean Proof Assistant

Lean [18] is an interactive theorem prover which is mainly developed at Microsoft
Research and Carnegie Mellon University. The project was started in 2013 by
Leonardo de Moura and has since gained the attention of academics as well
as hands-on users. Lean is an open-source program released under the Apache
License 2.0 and welcomes additions to its code and mathematical libraries.

In its short history, Lean has undergone several major changes. The second
version (Lean 2) supports two kernel modes. The standard mode is for proof
irrelevant reasoning, in which Prop, the bottom universe, contains types whose
objects are considered to be judgmentally equal. Since this is incompatible with
homotopy type theory, a second HoTT mode was added, where proof irrelevance
is not present. In 2016, the third major version of Lean (Lean 3) was released
[17]. In this version, many components of Lean have been rewritten. Of note, the
unification procedure has been restricted, since the full higher-order unification
which is available in Lean 2 can lead to timeouts and error messages that are
unrelated to the actual mistakes. Due to certain design decisions, such as proof
erasure in the virtual machine and a function definition package which requires
axiom K [11], the homotopy type theory mode is currently not supported in
Lean 3. This has led to the situation that the homotopy type theory library is
kept in the still maintained but not further developed Lean 2. In the future we
hope that we will find a way to support a version of homotopy type theory in
Lean 3 or a fork thereof.

The HoTT kernel of Lean 2 provides the following primitive notions:

– Type universes Type.{u} : Type.{u + 1} for each universe level u ∈ N.
In Lean, this chain of universes is non-cumulative, and all universes are
predicative.

1 Available as part of: https://github.com/leanprover/lean2.
2 https://github.com/AlDanial/cloc.

https://github.com/leanprover/lean2
https://github.com/AlDanial/cloc

Homotopy Type Theory in Lean 481

– Function types A → B : Type.{max u v} for types A : Type.{u} and
B : Type.{v} as well as dependent function types Πa, B a :Type.{max u
v} for each type A : Type.{u} and type family B : A → Type.{v}. These
come with the usual β and η rules.

– inductive types and inductive type families, as proposed by Peter Dybjer [10].
Every inductive definition adds its constructors and dependent recursors to
the environment. Pattern matching is not part of the kernel

– two kinds of higher inductive types: n-truncation and (typal) quotients (cf.
Sect. 5).

Outside the kernel, Lean’s elaborator uses backtracking search to infer
implicit information. It does the following simultaneously.

– The elaborator fills in implicit arguments, which can be inferred from the
context, such as the type of the term to be constructed and the given explicit
arguments. Users mark implicit arguments with curly braces. For example, the
type of equality is eq : Π{A : Type}, {A → A → Type}, which allows
the user to write eq a1 a2 or a1 = a2 instead of @eq A a1 a2. The symbol @
allows the user to fill in implicit arguments explicitly. The elaborator supports
both first-order unification and higher-order unification.

– We can mark functions as coercions, which are then “silently” applied when
needed. For example, we have equivalences f : A � B, which is a structure
consisting of a function A → B with a proof that the function is an equivalence.
The map (A � B) → (A → B) is marked as a coercion. This means that
we can write f a for f : A � B and a : A, and the coercion is inserted
automatically.

– Lean was designed with type classes in mind, which can provide canonical
inhabitants of certain types. This is especially useful for algebraic structures
(see Sect. 3.3) and for type properties like truncatedness and connectedness.
Type class instances can refer to other type classes, so that we can chain
them together. This makes it possible for Lean to automatically infer why
types are n-truncated if our reasoning requires this, for example when we are
eliminating out of a truncated type. For example we show that the type of
functors between categories C and D is equivalent to an iterated sigma type.

Σ 0 → 1 Π → 0 0

Π 1 0 ×
Π

1 ◦ 1 ◦ 1 �
Note the use of coercions here: F0: C → D really means a function from the
objects of C to the objects of D. From this equivalence, Lean’s type class
inference can automatically infer that functor C D is a set if the objects of D
form a set. Type class inference will repeatedly apply the rules when sigma-
types and pi-types are sets, and use the facts that hom-sets are sets and that
equalities in sets are sets (in total 20 rules are applied for this example).

482 F. van Doorn et al.

– Instead of giving constructions by explicit terms, we can also make use of
Lean’s tactics, which give us an alternative way to construct terms step by
step. This is especially useful if the proof term is large, or if the elaboration
relies heavily on higher-order unification.

– We can define custom syntax, including syntax with binding. In the following
example we declare two custom notations.

infix · := concat
notation �Σ� binders �, �r:(scoped P, sigma P) := r

The first line allows us to write p · q for path concatenation concat
p q. The second line allows us to write Σ x, P x instead of sigma P.
This notation can also be chained: Σ (A : Type) (a : A), a = a means
sigma (λ(A : Type), sigma (λ(a : A), a = a)).

2.1 Consistency of HoTT Lean

Voevodsky’s model of univalence in simplicial sets [14] covers the type theory
with empty, unit, disjoint sums, pi, sigma, identity, and W-types and one univa-
lent universe à la Tarski closed under the these type formers. The model validates
the β and η rules for function types.

The cubical type theory of [8] interprets Martin-Löf type theory using
Andrew Swan’s construction of the identity types. (The cubical path types of
this model do not satisfy the computation rule for identity types.) It has been
checked that the corresponding model in cubical sets based on de Morgan alge-
bras models two HITs, namely suspension and propositional truncation. (The
model even satisfies the computation rules for the path constructors.) The tech-
nique used also covers pushouts, so by the reduction of n-truncation to pushouts
[19], the models covers all n-truncations. We believe this model also covers all
the ordinary inductive families supported by Lean, but this has not been checked
in detail.

Mark Bickford’s formalization of the cubical model3 covers a whole hierarchy
of universes like we have in the Lean kernel. It additionally verifies some novel
type constructors such as a higher dimensional intersection type.

These models provide us with high confidence that the logic implemented by
the Lean HoTT kernel is consistent. Furthermore, the kernel is very small com-
pared to other kernels implementing dependent type theory. The kernel does not
contain pattern matching, a termination checker, fixpoint operations or module
management. This increases the confidence that the kernel implements the logic
correctly. Furthermore, the only thing we do outside the kernel to extend the
logic is to posit the univalence axiom; we do not use type-in-type or Licata’s
trick or anything else which might introduce inconsistencies.

3 http://www.nuprl.org/wip/Mathematics/cubical!type!theory/.

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/

Homotopy Type Theory in Lean 483

3 The Structure of the Library

In this section we describe the overall structure of the homotopy type theory
library and we highlight some examples.

The library contains a markdown file in each folder to describe the contents
of the files in that folder. For readers familiar with [21], the library includes a
file4 book.md that describes where in the library the various parts of the book
are formalized.

Figures 1, 2, 3 and 4 contain graphs of the files in various parts of the library;
the edges denote the dependencies of the files. Each folder contains a file default
which only contains imports of various files in the folder and which is imported
if the user imports the folder. There are also three additional folders: types (see
Subsect. 3.2), cubical, related to the cubical methods discussed in Sect. 4; and
hit, related to higher inductive types as discussed in Sect. 5. There are also some
files in the root folder which we do not describe here.

There is a separate Spectral repository,5 the goal of which is to formalize the
Serre Spectral Sequence, and which will be merged into the Lean-HoTT library
in the future. Some examples below are located in this repository.

3.1 The Initial Part of the Library

Figure 1 illustrates the files of the initial part of the library. These files are
imported by default when opening a Lean file. The very first file, datatypes,
defines the basic datatypes, such as unit, empty, eq, prod, sum, sigma, bool,
nat. Higher up, the path file develops the basic properties of the identity type
(also called equality or identification type) in HoTT. This includes the basic
properties of homotopies, transport and the low-dimensional ∞-groupoid struc-
ture of types.

In the rest of the files we define equivalences, posit the univalence axiom
and derive function extensionality from univalence (in equiv, ua and funext,
respectively). However, in order to be able to track which definitions only depend
on function extensionality and not univalence, via the print axioms command,
we also add function extensionality directly as an axiom.

Lastly, we develop n-truncated types, initialize the primitive HITs, prove that
types with decidable equality are sets [12] and define the basic notions of pointed
types (in trunc, hit, hedberg and pointed, respectively).

3.2 Facts About Types

The files in subdirectory types develop in more detail the properties and con-
structions related to individual types and type formers. For types like sum, sigma
and pi we characterize the equality in that type, define the functorial action

4 https://github.com/leanprover/lean2/blob/master/hott/book.md.
5 It has 7 700 lines of code and 1 400 lines of comments. It is available at https://

github.com/cmu-phil/Spectral.

https://github.com/leanprover/lean2/blob/master/hott/book.md
https://github.com/cmu-phil/Spectral
https://github.com/cmu-phil/Spectral

484 F. van Doorn et al.

Fig. 1. The initial part of the library Fig. 2. The algebraic hierarchy

Homotopy Type Theory in Lean 485

and show that the functorial action preserves equivalences. In univ we prove
properties of type universes, such as the object classifier property. Of particular
importance is the file pointed, which contains properties of pointed types, maps,
equivalences and homotopies, which contains over 2 000 lines (also counting the
corresponding file in the Spectral repository).

3.3 The Algebraic Hierarchy

The algebraic hierarchy, all in the algebra subdirectory, is structured as seen
in Fig. 2. That figure does not contain files that depend on the category theory
sublibrary. The algebraic hierarchy defines common algebraic structures, starting
with small structures, like semigroups and partial orders, and extending them
to groups, rings, all the way up to discrete linear ordered fields. (Discrete means
that the order is decidable.)

We combine the “partially bundled” approach with the “fully bundled” app-
roach in the algebraic hierarchy, similar to how algebraic structres in the Coq
library are defined [20]. The partially bundled approach means that given a type
A we define what it means that A has a group-structure or ring-structure. This
is used for concrete structures, and we use type classes to infer these inhabi-
tants. For example, we prove that N forms a decidable linear ordered semiring,
and mark this as an instance. If we want to show that for n m k : N we have
(n ∗ m) ∗ k = n ∗ (m ∗ k), we can use mul.assoc, the theorem that multi-
plication in any semigroup is associative. Then type class inference will try to
show that N is a semigroup, and it will use the instance that every decidable
linear ordered semiring is a semigroup. We use Lean’s extend syntax to easily
define new algebraic structures. For example, the following code defines a struc-
ture ab group of abelian groups, which consists of the fields of both group and
comm monoid. Also, the instances ab group A → group A and ab group A →
comm monoid A are automatically generated.

structure ab_group [class] (A : Type)
extends group A, comm_monoid A

We use the fully bundled approach when doing group theory and other algebra. A
bundled structure is a type together with a structure on that type. For example,
this is the definition of a bundled group:

structure Group := (carrier : Type) (struct : group carrier)

We define Group.carrier to be a coercion. We make Group.struct an instance,
which means that if we have to synthesize a term of type group (Group.carrier
G), Lean will automatically find this instance. We use the bundled structures for
group theory. For example, if G H : Group then we define the product group G
×g H. We use ×g for the product of two groups to disambiguate it from other
products, like the product of two types, two pointed types or two truncated
types (type class inference does not work well to disambiguate here, since all
these structures coerce to types).

486 F. van Doorn et al.

If we go back to the example (n ∗ m) ∗ k = n ∗ (m ∗ k) on N, we also
interpret the multiplication symbol on N using type class inference. In this case,
Lean will try to find an instance of has mul N, where has mul is a type class
stating that the type has a multiplication. Lean can find this instance since we
have a general instance semigroup A → has mul A. However, since we want to
also have additive semigroups, we have a different notion of additive semigroups,
add semigroup, with corresponding instance add semigroup A → has add A.

To minimize overhead, we can define additive structures as the multiplicative
counterpart, and then prove theorems about additive structures by using the
corresponding theorem for multiplicative structures. We do have to manually
define the instances for additive structures. Here is an example for semigroups:

definition add_semigroup [class] : Type → Type := semigroup
definition has_add_of_add_semigroup [instance] (A : Type)

[s : add_semigroup A] : has_add A :=
has_add.mk (@semigroup.mul A s)
definition add.assoc {A : Type} [s : add_semigroup A] (a b c :

A)
: (a + b) + c = a + (b + c) :=

@mul.assoc A s a b c

This approach has advantages and disadvantages. An advantage is that theorem
names are different for additive structures and multiplicative structures, so we
can write add.assoc for associativity of addition and mul.assoc for associativ-
ity of multiplication. Furthermore, we can easily define a ring by extending an
additive abelian group and a multiplicative monoid (plus distributivity).

A disadvantage is that operations that are traditionally not written using
+ or ∗, such as concatenating two lists, do not fall in either category. Also, in
our formalization we make a distinction between additive and multiplicative
groups. Since we define additive groups as multiplicative groups, we can still
apply theorems about multiplicative groups to additive groups, but some care
is needed when doing this: if one applies a theorem about multiplicative groups
with assumption n ∗ k = 1 to an additive group, the new subgoal becomes
n ∗ k = 1, even though in an additive group this really means n + k = 0.

All the algebraic structures we mentioned so far (not including has mul and
has add) are assumed to be sets, i.e., 0-truncated. We also have variants of some
of these structures which are not assumed to be sets. For example, we have
inf group and inf ab group, which are (abelian) groups without the assump-
tion that they are sets, but without higher coherences. This is useful for, e.g.,
loop spaces or pointed maps into loop spaces, since those types are not groups,
but will become groups (the homotopy and cohomology groups) after applying
set-truncation.

3.4 Homotopy Theory

The homotopy theory part of the library is organized as shown in Fig. 3. Almost
all results in Chap. 8 of the HoTT book have been formalized in Lean. In

Homotopy Type Theory in Lean 487

particular it contains various results about connectedness, a version of the
Freudenthal suspension theorem, the complex and quaternionic Hopf fibration [6]
and the long exact sequence of homotopy groups. Together these results show:

definition πnSn (n : N) : πg[n+1] (S∗ (n+1)) �g gZ
definition π3S2 : πg[3] (S∗ 2) �g gZ

This is to say that the n-th homotopy group of the n-sphere (for n ≥1) and the
3rd homotopy group of the 2-sphere are group isomorphic to the integers. Of note
here is the notation πg[n] A which denotes the n-th homotopy group of A, as a
group. In contrast, we also have the operation π[n] A which is the n-th homo-
topy group of A as a pointed type, which is also defined for n = 0. Originally, we
defined ghomotopy group : N → Type → Group where ghomotopy group n
A is the (n+1)-st homotopy group of A and we had notation πg[n+1] A for this.
However, this requires the user to write the third homotopy group as πg[2+1].
To remedy this, we changed the definition of ghomotopy group to have type
Π(n : N) [H : is succ n], Type → Group, where H is a proof that n is a
successor of a natural number, and which is synthesized using type class infer-
ence.

We also prove Whitehead’s principle for truncated types and the Seifert-
van Kampen theorem, and we define the Eilenberg-Maclane spaces and show
that they are unique. Furthermore, we define operations on types of homotopy
theoretic significance, such as cofibers, joins, and wedge and smash products,
and prove various properties about them, such as the associativity of the join
and smash products and the fact that the suspension and smash product have
right adjoints, respectively loop spaces and pointed maps.

3.5 Category Theory

It seems a constant across many libraries of formalized mathematics that the
development of category theory takes up a substantial fraction of the files, and
our library is the same way, as can be seen in Fig. 4. Highlights include the
Yoneda lemma and the Rezk completion [1].

As an example from this part of the library, consider this excerpt which
formalizes the fact that the Yoneda embedding preserves existing limits:

definition yoneda_embedding (C : Precategory) : C ⇒ cset ^c
Cop

variables {C D : Precategory}
definition preserves_existing_limits [class] (G : C ⇒ D) :=
Π(I : Precategory) (F : I ⇒ C)

[H : has_terminal_object (cone F)],
is_terminal (cone_obj_compose G (terminal_object (cone F)))

theorem preserves_existing_limits_yoneda_embedding
(C : Precategory)
: preserves_existing_limits (yoneda_embedding C)

488 F. van Doorn et al.

Fig. 3. The homotopy theory part of the library

4 Path Algebra and Cubical Methods

The core innovation in homotopy type theory is its new interpretation of equality.
In contrast to proof irrelevant Martin-Löf type theory, we need to be careful
about choosing well-behaved equality proofs in the library since we might need to
prove lemmas about these proof objects themselves. We want to maintain brevity
using tactics and equational rewriting while making sure that the generated
proofs do not become unwieldy.

After defining equality on a type A in the library’s prelude as an induc-
tive type family over two objects of A which is generated by the reflexivity
witness refl : Π(x : A), x = x, we can provide operations and proofs for
the basic higher groupoid structure of these “equality paths”: Concatenation
p · q and inversion p−1 of paths as well as proofs about associativity and
cancellation. These are constructed using the dependent recursor of equality
which we call path induction and which, for each a : A, provides a function
Π(b : A) (p : a = b), P b p given the reflexivity case P a (refl a). Like-
wise, we can prove the functoriality of functions with respect to equality: For a
function f : A → B and p : a = a′ we define ap f p : f a = f a′ by induc-
tion on p. Using an equality p : a = a′ in a type A to compare elements of two

Homotopy Type Theory in Lean 489

F
ig
.
4
.
T

h
e

ca
te

g
o
ry

th
eo

ry
p
a
rt

o
f
th

e
li
b
ra

ry
(c

=
co

n
st

ru
ct

io
n
s,

f=
fu

n
ct

o
r,

l=
li
m

it
s)

490 F. van Doorn et al.

fibers in a type family C over A, we define the transport of an element x : C a
along p as p � x : C a′.

For higher paths and dependent paths, we follow what Dan Licata calls the
“cubical approach” [16]. The basic notion is that of pathover, or a “path over
a path”, which compares elements x : C a and y : C a′ in different fibers
of a type family over some path p : a = a′ in the base type. We define the
type of pathovers above a base point a : A and x : C a to be the type family
pathover C x : Π{a′: A}, a = a′→ C a′→ Type which is inductively gen-
erated by

idpo : x =[refl a] x

where x =[p] x′ is notation for pathover x p x′. This definition allows us
to define a version apd f p : f a =[p] f a′ of ap for dependent functions
f : Π(a : A), C a. It is also used by Lean to express the dependent eliminators
for higher inductive types (c.f. Sect. 5). To work with pathovers we provide a
variety of operations and lemmas, analogous to the higher groupoid structure of
paths. Pathovers correspond to equalities in a sigma type.

For higher paths in a type, we use squares and squareovers. Just like paths
were defined as an inductive type family indexed by their endpoints we define
the squares in a certain type A as the type family indexed by four corners and
four paths between those corners, which is generated by some identity square
with refl on all its sides. Squares arise naturally when you need to prove a
pathover in an equality type, which is often required when proving equalities
involving higher inductive types.

Squareovers are dependent squares over a square. It takes as arguments a
square in the base type and four pathovers over the sides of this square. These
correspond to squares in a sigma type. We also have a library of cubes three-
dimensional equalities. We could generalize these to cubeovers, though we didn’t
need those yet.

5 Higher Inductive Types

One novel idea in homotopy type theory is the introduction of higher inductive
types or HITs [21, Chap. 6]. Higher inductive types are a generalization of induc-
tive types. With inductive types you can specify which terms or points are freely
added to that type. In contrast, when defining a HIT, you can specify not only
the points in that type, but also paths and higher paths. For example, the circle
S1 is a HIT with one point constructor and one path constructor:6

HIT circle : Type :=
| base : S1

| loop : base = base

6 Although we use syntax inspired by the Lean syntax for inductive types, this is not
valid syntax in Lean.

Homotopy Type Theory in Lean 491

This means that the circle is generated by one point and one path
loop : base = base. There will be more loops in the circle, such as refl base
and loop · loop and loop−1, which are all different. Higher inductive types have
elimination principles analogous to those of ordinary inductive types.

The most commonly used proof assistants which have HoTT support (such as
Coq and Agda) do not support HITs natively. Just adding HITs as constants is
not satisfactory, because then the computation rules are not judgmental equali-
ties. Instead, users of Coq use “Dan Licata’s trick” [15]. The idea is that to define
a higher inductive type, one first defines a private inductive type inside a module
with only the point constructors, and then adds the path constructors as axioms.
One then defines the desired induction principle using the induction principle
of the private inductive type and adds the computation rules of this induction
principle on paths as additional axioms. Then the user closes the module, and
the result is that only the data of the higher inductive type are accessible, while
the induction principle of the private inductive type is hidden. This ensures that
the computation rules are judgmentally true for point constructors (but not for
path constructors), but a disadvantage is that inside the module inconsistent
axioms were assumed, and one needs to trust that the code in these modules
does not introduce an inconsistency in the system. In Agda the rewriting feature
is used so that users can extend the kernel with judgmental rewrite rules, though
there are no checks for any rewrite rule declared in this way.

In Lean we follow an approach similar to Agda rewriting feature, by build-
ing in judgmental rewrite ryles. However, we only extend the kernel with the
rewrite rules for two “trusted” higher inductive types, namely the n-truncation
and the typal quotient (quotient for short). The quotient is parameterized by a
type A and a family of types R : A → A → Type. So “typal” (the adjective of
“type”) means that we quotient by a family of types and not a family of mere
propositions. The quotient is the following HIT:

HIT quotient (A : Type) (R : A → A → Type) : Type :=
| i : A → quotient A R
| e : Π{x y : A}, R x y → i x = i y

For the n-truncation and the quotient, we add the type formation rule, point and
path constructors, and induction principle as constants/axioms.7 Then we add
the judgmental computation rules for the point constructors to the Lean kernel;
the Lean kernel is extensible in such a way that certain new computation rules
can be added to it. After that, we add the computation rules on paths as axioms.
As remarked in Subsect. 2.1, we know that the resulting type theory is consistent,
because n-truncations and typal quotients can be reduced to pushouts, and type
theory with univalent universes closed under pushouts is modeled by [8].

Given these two HITs, we define all other HITs in the Lean HoTT
library using just these two. Some reductions are simple, for example the

7 For the n-truncation we treat the fact that the new type is n-truncated as a “path-
constructor.” In [21, Sect. 7.3] it is explained that the fact that a type is n-truncated
can be reduced to (recursive) path constructors.

492 F. van Doorn et al.

homotopy pushout of f : A → B and g : A → C is the quotient on type
B + C with the edges R defined as an inductive family with constructor
Π(a : A), R (inl (f a)) (inr (g a)). Proving the usual induction princi-
ple for the pushout is then trivial. Given the pushout, we have defined the other
usual HITs: the suspension, circle, join, smash, wedge, cofiber, mapping cylinder
and spheres. In particular, we define circle as sphere 1, which is susp (susp
empty). We can then prove the usual induction principle for this type, and it
satisfies the computation rules on the point constructors judgmentally.

We can also define HITs with 2-path constructors using quotients. This uses a
method similar to the hubs-and-spokes method described in [21, Sect. 6.7]. From
the elimination principle of the circle it follows that for any path p : x = x in
type A we can define a map f : S1 → A with ap f loop = p by circle induc-
tion. Then we can prove the equivalence

(p = refl x) � Σ(x0 : A), Π(z : S1), f z = x0

This equivalence informally states that filling in a loop is the same as adding
a new point x0, the hub, and spokes f z = x0 for every z : S1, similar to the
spokes in a wheel. This means that in a higher inductive type, we can replace a
2-path constructor p = refl x by a new point constructor x0 : A and a family
of 1-path constructors Π(z : S1), f z = x0.

However, this does not quite define 2-HITs in terms of the quotient, since this
family of path constructors refers to other path constructors (via the definition
of f), which is not allowed in quotients. For this reason, we construct 2-HITs
using two nested quotients. We first define a quotient with only the 1-paths and
the hubs, and then use another quotient to add the spokes.

For a formal treatment of this, we need the following inductive family, which
are the paths in a graph:

inductive path {A} (R : A → A → Type) : A → A → Type :=

| of_rel : Π{a a′ : A}, R a a′ → path R a a′

| of_path : Π{a a′ : A}, a = a′ → path R a a′

| symm : Π{a a′ : A}, path R a a′ → path R a′ a

| trans : Π{a a′ a′′}, path R a a′ → path R a′ a′′ → path R a a′′

A specification for a (nonrecursive) 2-HIT consists of a type A and two
families R : A → A → Type and Q : Π{a a′: A}, path R a a′ → path
R a a′ → Type. Using this, we define the 2-HIT two quotient A R Q with con-
structors

HIT two_quotient A R Q : Type :=
| i0 : A → two_quotient A R Q
| i1 : Π{a a′ : A}, R a a′ → i0 a = i0 a′

| i2 : Π{a a′ : A} {r r′ : path R a a′}, Q r r′ →
extend i1 r = extend i1 r′

Homotopy Type Theory in Lean 493

where extend i1 r is the action of i1 on paths in R, e.g. extend i1(trans
r1 r2) := extend i1 r1· extend i1 r2. We first define a special case
where the 2-path constructor has only reflexivities on the right hand side.
We call this simple two quotient A R Q′, where Q′ has type Π(a : A),
path R a a → Type and where

i2′ : Π{a} {r : path R a a′}, Q r → extend i1 r = refl (i0 a)

As mentioned before, we define simple two quotient A R Q in two steps. We
first define a type X with only the 1-path constructors and the hubs:

X := quotient A R + Σ(a : A) (r : path R a a), Q′ r

We then define simple two quotient A R Q′:= quotient X R′ where

inductive R′ : X → X → Type :=
| mk : Π{a : A} (r : path R a a) (q : Q′ r) (x : S1),

R′ (f q x) (inr (a,q))

with f q : S1 → X defined by induction so that ap (f q) (loop) =
extend (inl ◦e) r for q : Q′r.

We now prove the expected (dependent) induction principle, (nondependent)
recursion principle, and computation rules for this two-quotient. The only com-
putation rule which we did not manage to prove is the computation rule of the
induction principle on 2-paths. However, this rule is not necessary to determine
the type up to equivalence.

We then define the general version, two quotient A R Q, to be equal to
simple two quotient A R Q′ where:

inductive Q′ : Π{a : A}, path R a a → Type :=
| q0 : Π{a a′ : A} {r r′ : path R a a′},

Q r r′ → Q′ (trans r (symm r′))

We then show that two quotient A R Q and trunc n (two quotient A R Q)
have the right elimination principles and computation rules. It (perhaps surpris-
ingly) requires quite some work to show that the correct computation rules of
the truncated version follow from the untruncated version.

This allows us to define all nonrecursive HITs with point, 1-path and 2-path
constructors. For example, we define the torus T2:= two quotient unit R Q.
Here R �� = bool, which gives two path constructors p and q from the base-
point to itself. Q is generated by the constructor q0 : Q (trans [ff] [tt])
(trans [ff] [tt]) where [b] is notation for of rel b. This gives a path
p · q = q · p. We also define the groupoid quotient : For a groupoid G we define
its quotient as trunc 1 (two quotient G (@hom G) Q) where:

inductive Q :=
| q0 : Π(a b c) (g : hom b c) (f : hom a b),

Q (g ◦ f) (trans f g)

If G is just a group (considered as a groupoid with a single object), then the
groupoid quotient of G is exactly the Eilenberg-MacLane space K G 1.

494 F. van Doorn et al.

We have also defined the propositional truncation just using quotients in
Lean [9]. An extension of this construction to n-truncations has been given on
paper [19]. If we formalize this generalization in Lean, it is possible to remove
n-truncations as a primitive HIT in Lean.

6 Conclusion

We have described the HoTT library for the Lean proof assistant, which formal-
izes many results in HoTT, including higher inductive types, synthetic homotopy
theory and category theory. It has a large library of pointed types, and uses cubi-
cal methods for reasoning about higher paths. In the future, we hope to make a
HoTT mode for Lean 3, possibly using a version of cubical type theory [2,8].

Acknowledgments. We wish to thank the members of the HoTT group at Carnegie
Mellon University for many fruitful discussions and Lean hacking sessions, and in par-
ticular Steve Awodey and Jeremy Avigad who have been very supportive of our work.
Additionally, we deeply appreciate all the times Leonardo de Moura fixed an issue in
the Lean kernel to accommodate our library. Lastly, we want to thank all contributors
to the HoTT library and the Spectral repository, most notably Egbert Rijke and Mike
Shulman.

The first and second authors gratefully acknowledge the support of the Air Force
Office of Scientific Research through MURI grant FA9550-15-1-0053. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the AFOSR.

References

1. Ahrens, B., Kapulkin, K., Shulman, M.: Univalent categories and the Rezk com-
pletion. Mathe. Struct. Comput. Sci. 25(5), 1010–1039 (2015)

2. Angiuli, C., Harper, R., Wilson, T.: Computational higher-dimensional type the-
ory. In: Proceedings of the 44th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2017. ACM (2017)

3. Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. In: Math-
ematical Proceedings of the Cambridge Philosophical Society, vol. 146, no. 1, pp.
45–55 (2009)

4. Bauer, A., Gross, J., LeFanu Lumsdaine, P., Shulman, M., Sozeau, M., Spitters,
B.: The HoTT library: a formalization of homotopy type theory in Coq. ArXiv
e-prints, October 2016

5. Brunerie, G., Hou (Favonia), K.B., Cavallo, E., Finster, E., Cockx, J., Sattler,
C., Jeris, C., Shulman, M., et al.: Homotopy Type Theory in Agda (2017). Code
library. https://github.com/HoTT/HoTT-Agda

6. Buchholtz, U., Rijke, E.: The cayley-dickson construction in homotopy type theory.
ArXiv e-prints, October 2016

7. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory. Code
library. https://github.com/mortberg/cubicaltt

https://github.com/HoTT/HoTT-Agda
https://github.com/mortberg/cubicaltt

Homotopy Type Theory in Lean 495

8. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a construc-
tive interpretation of the univalence axiom. In: 21st International Conference on
Types for Proofs and Programs (TYPES 2015). LIPIcs. Leibniz International Pro-
ceedings in Informatics, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016, to
appear)

9. van Doorn, F.: Constructing the propositional truncation using non-recursive hits.
In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, pp. 122–129. ACM (2016)

10. Dybjer, P.: Inductive families. Formal Aspects Comput. 6(4), 440–465 (1994)
11. Goguen, H., McBride, C., McKinna, J.: Eliminating dependent pattern matching.

In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and
Computation. LNCS, vol. 4060, pp. 521–540. Springer, Heidelberg (2006). doi:10.
1007/11780274 27

12. Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. J. Funct. Pro-
gram. 8(4), 413–436 (1998)

13. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Twen-
tyfive Years of Constructive Type Theory (Venice, 1995). Oxford Logic Guides,
vol. 36, pp. 83–111. Oxford University Press, New York (1998)

14. Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after
voevodsky) (2012, preprint)

15. Licata, D.: Running circles around (in) your proof assistant; or, quotients that
compute. blog post, April 2011. http://homotopytypetheory.org/2011/04/23/
running-circles-around-in-your-proof-assistant/

16. Licata, D., Brunerie, G.: A cubical approach to synthetic homotopy theory. In: Pro-
ceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), LICS 2015, pp. 92–103. IEEE Computer Society, Washington, DC
(2015)

17. de Moura, L., Ebner, G., Roesch, J., Ullrich, S.: The Lean theorem prover. Slides,
January 2017. https://leanprover.github.io/presentations/20170116 POPL

18. de Moura, L., Kong, S., Avigad, J., van Doorn, F., van Raumer, J.: The
lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.)
CADE 2015. LNCS, vol. 9195, pp. 378–388. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 26

19. Rijke, E.: The join construction. ArXiv e-prints, January 2017
20. Spitters, B., van der Weegen, E.: Developing the algebraic hierarchy with type

classes in Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 490–493. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5 35

21. The Univalent Foundations Program: Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013). http://
homotopytypetheory.org/book

22. Voevodsky, V.: A very short note on the homotopy λ-calculus (2006). http://
www.math.ias.edu/vladimir/Site3/Univalent Foundations files/Hlambda short
current.pdf

23. Voevodsky, V., Mörtberg, A., Ahrens, B., Lelay, C., Pannila, T., Matthes, R.: Uni-
Math: Univalent Mathematics (2017). Code library. https://github.com/UniMath

http://dx.doi.org/10.1007/11780274_27
http://dx.doi.org/10.1007/11780274_27
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://leanprover.github.io/presentations/20170116_POPL
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-642-14052-5_35
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
http://www.math.ias.edu/vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://github.com/UniMath

Verifying a Concurrent Garbage Collector Using
a Rely-Guarantee Methodology

Yannick Zakowski1(B), David Cachera1, Delphine Demange2, Gustavo Petri3,
David Pichardie1, Suresh Jagannathan4, and Jan Vitek5

1 ENS Rennes – IRISA – Inria, Rennes, France
yannick.zakowski@irisa.fr

2 Université Rennes 1 – IRISA – Inria, Rennes, France
3 IRIF – Université Paris Diderot, Paris, France

4 Purdue University, West Lafayette, USA
5 Northeastern University, Boston, USA

Abstract. Concurrent garbage collection algorithms are an emblematic chal-
lenge in the area of concurrent program verification. In this paper, we address
this problem by proposing a mechanized proof methodology based on the popular
Rely-Guarantee (RG) proof technique. We design a specific compiler intermedi-
ate representation (IR) with strong type guarantees, dedicated support for abstract
concurrent data structures, and high-level iterators on runtime internals. In addi-
tion, we define an RG program logic supporting an incremental proof methodol-
ogy where annotations and invariants can be progressively enriched.

We formalize the IR, the proof system, and prove the soundness of the method-
ology in the Coq proof assistant. Equipped with this IR, we prove a fully concur-
rent garbage collector where mutators never have to wait for the collector.

1 Introduction

Modern programming languages like ML, Java, and C# rely on garbage collection (GC)
for the automatic reclamation of memory no longer used by the application. The GC is
considered to be one of the most subtle parts of modern runtime systems, carefully
engineered to minimize runtime overheads of the applications it supports. A family
of garbage collection algorithms, named on-the-fly garbage collectors [2], allows the
detection of garbage and its reclamation to occur concurrently with an application’s
threads. Such algorithms are notably difficult to implement, test, and prove, and consti-
tute a significant challenge for mechanized verification. Many on-the-fly algorithms are
inherently racy, and some algorithms never require application threads (called muta-
tors) to wait for the collector thread, which detects and frees unused memory. This
paper focuses on an emblematic algorithm in this landscape [3–5], where no locks are
required – i.e. it is lock-free.

This material is based upon work supported by grants ANR 14-CE28-0004, NSF CCF-
1318227, CCF-1544542, SHF-1518844 and ONR N00014-15-1-2332.

c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 496–513, 2017.
DOI: 10.1007/978-3-319-66107-0 31

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 497

This challenge has been identified and addressed in various settings [8,9,11,12].
This paper provides an independent proof, and it explores a different proof method in
the design space. First, the backbone of the formalization is a new compiler intermedi-
ate representation, named RtIR, which we use to implement the garbage collector. Our
experience implementing on-the-fly garbage collectors [20] indicates that the choice of
programming abstractions is of paramount importance in reasoning and optimizing this
kind of algorithm. This concern necessitates a representation that makes the expres-
sion and proof of invariants tractable. Moreover, in this work, we strive to make our
proof well suited to the context of a larger project, described in [1,14], aiming at the
formal verification of a compiler for concurrent, managed languages. Our intermediate
representation has special support for the implementation of efficient runtime mecha-
nisms: (i) strong type guarantees, (ii) abstract concurrent data structures, (iii) high-level
iterators for reflective inspection of objects, used to implement low-level services, e.g.
ensuring the garbage collector visits every live object (iv) native support for threads,
and (v) native support for the root management of a concurrent garbage collector (each
thread must be able to iterate over the set of memory references it can access directly).

Another important characteristic of our approach is the dedicated rely-guarantee
program logic that accompanies our intermediate representation. While previous
approaches [8,9,12] attack the proof by means of an abstract state transition system
requiring a monolithic global invariant to be established, we follow the well established
rely-guarantee [15] (RG) methodology. RG is a major technique for proving the correct-
ness of concurrent programs that provides explicit thread-modular reasoning. In this
setting, interferences between threads are described using binary relations: relies and
guarantees. Each thread is proved correct under the assumption it is interleaved with
threads fulfilling a rely relation. The effect of the thread itself on the shared memory
must respect its guarantee relation. This guarantee must also be coherent with respect
to the relies that the other threads assume. Being able to reason in a thread modular
way is key to realize a tractable correctness proof because it avoids the need to explic-
itly consider all possible interleavings. We prove the soundness of our RG logic, and
develop a set of tactics that reduce the proof effort required to discharge the invariants.

Finally, we report on an original incremental proof technique that we put in place
to carry out this massive endeavour. Starting from the full GC implementation, we pro-
gressively annotate the program in order to prove stronger and stronger invariants. At
each level, dedicated specification annotations and tactics allow us to refine and reuse
what has been proved at the previous levels.

Using the Coq proof assistant, we achieved the following formalizations: (i) the syn-
tax, semantics and the soundness of an RG program logic for our intermediate represen-
tation, (ii) a number of tactics and structural lemmas to facilitate the so-called stability
proofs required by the RG methodology, (iii) a realistic implementation of Domani et
al.’s GC algorithm [5] in our intermediate representation and (iv) an RG proof ensuring
the correctness of the GC: the collector never frees references accessible by the running
threads. Our formal development is available online [7].

498 Y. Zakowski et al.

2 The RTIR INTERMEDIATE REPRESENTATION

2.1 Syntax

Figure 1 shows the syntax of RtIR (RunTime IR). It provides two kinds of variables:
global or shared variables that can be accessed by all threads, and local variables used
for thread-local computations. Expressions (e) are built from constants and local vari-
ables with the usual arithmetic and boolean operators. Commands include standard
instructions, such as skip, assume e, local variable update x = e, and classic com-
binators: sequencing, non-deterministic choice (c1 ⊕ c2), and loops. The usual con-
ditional (if e then c1 else c2) can be defined as (assume e; c1) ⊕ (assume !e; c2),
where we write !e for the boolean negation of e. While loops and repeat-until loops
can be encoded similarly. RtIR also provides atomic blocks (atomic c). In our GC,
we use atomic blocks only to add ghost-code – code only used for the proof, not tak-
ing part in the computation – and to model linearizable data structures. These atomic
constructs can be refined into low-level, fine-grained implementations using techniques
like [14,26].

Fig. 1. Simplified syntax of RtIR. Proof annotations elided.

Instruction alloc(rn) allocates a new object in the heap by extracting a fresh refer-
ence from the freelist – a pool of unused references – and initializing all of its fields in
the record name rn to their default value. Conversely, free puts a reference back into
the freelist. Instruction isFree? looks up the freelist to test whether a reference is in it.
We use these memory management primitives to implement the GC.

In RtIR, basic instructions related to shared-memory accesses are fine-grained, i.e.
they perform exactly one global operation (either read or write). These include loads
and stores to global variables and field loads and updates. This allows us, when con-
ducting the proofs, to consider each possible interleaving of memory operations arising
from different threads, while keeping the semantics reasonably simple. Apart from these
basic memory accesses, RtIR provides abstract concurrent queues which implement
the mark buffers of [5], accessible through standard operations y = x.top(), x.pop(),
x.push(y), x = y.empty?(). The use of these buffers, necessary for the implementa-
tion of the GC, will be made clear in Sect. 4. While we could implement these data
structures directly in RtIR, we argue that to carry out the proof of the GC, it is better
to reason about them at a higher level, and hence to assume that they behave atomi-
cally. Implementing these data structures in a correct and linearizable [13] fashion is

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 499

an orthogonal problem, that we address separately [26]. Mark buffers also provide an
operation X = y.copy(), to perform a deep copy, only used in ghost code.

A salient ingredient of RtIR is its native support for iterators, allowing to easily
express many bookkeeping tasks of the GC. The iterator foreach (x in l) do c od,
where the variable x can be free in command c, iterates c through all elements x
of the static list l. Some more sophisticated bookkeeping tasks include the visiting
of all the fields of a given object, the marking of each of the roots – references
bound to local variables – of mutators, or the visiting of every object in the heap
(performed during the sweeping phase). In those cases, the lists of elements to be
iterated upon is not known statically, so we provide dedicated iterators. The iterator
foreachField (f of x) do c od iterates c on all the fields f of the object stored in
x. Command foreachRoot (r of t) do c od iterates over the roots of mutator thread
t, while foreachObject x do c od iterates over all objects. We stress the fact that
iterators have a fine-grained behavior: the body command c executes in a small-step
fashion.

2.2 Operational Semantics

The operational semantics of RtIR is mostly standard. We provide two kinds of opera-
tional semantics: (i) a big-step semantics, used to define the semantic validity of Hoare-
like tuples for basic instructions (see Sect. 3), as well as commands in atomic blocks;
(ii) a small-step interleaving semantics used to prove our final soundness results. We
only present here the description of execution states, and refer the interested reader to
the Coq development [7] for the formal semantics.

Typing Information. The semantics of RtIR is enriched with typing information.
Basic types in typ include TNum for numeric constants, TRef for references to regu-
lar objects (see below), and TRefSet for non-null references to abstract mark-buffers.
Local variables, global variables, and field identifiers are declared to have exactly one of
these types, respectively accessible through functions lvar typ, gvar typ and fid typ.
RtIR manipulates two kinds of values: numeric values in the Coq type Z and references
in ref. Types are mapped to values with the function value of type typ → Type.

typ � { TNum, TRef, TRefSet }
lvar � varId × typ

gvar � varId × typ

fid � fieldId × typ

Definition value (t:typ):Type :=

match t with

| TNum ⇒ Z

| TRef | TRefSet ⇒ ref end.

Execution States. Local (resp. global) environments map local (resp. global) variables
to values of their declared type. Environments are hence dependent functions of type:

Definition lenv := ∀ x:lvar, value (lvar_typ x).

Definition genv := ∀ X:gvar, value (gvar_typ X).

500 Y. Zakowski et al.

A thread-local state is defined by a local environment and a command to execute. A
global state includes a global environment ge and a heap hp – a partial map from refer-
ences to objects. We consider two distinct kinds of objects: regular objects, mapping
fields to values, and abstract mark-buffers.

Definition thread_state := (cmd * lenv).

Record gstate := { ge: genv; freelist: ref → bool;

hp: ref → option object; roots: tid → ref → nat }.

Global states also include two components essential to the implementation of a GC:
roots and a freelist. The freelist is indeed a shared data structure, while roots are
considered to be thread-local – mutators are responsible for handling their own roots
with thread-local counters. Here, we model roots as part of the global state only to ease
proof annotations – our final theorem is an invariant of the program global state.

Finally, execution states include the states of all threads and a global state.

Definition state := ((tid → option thread_state) * gstate).

Well-Typedness Invariants. A number of invariants are guaranteed by typing: (i) each
variable in the local or global environment contains a value of the appropriate type, (ii)
any reference of type TRef is either null, in the domain of the heap, or in the freelist,
and (iii) each abstract mark-buffer is accessible from a unique global variable, indexed
by a thread identifier. This mechanism enforces separation of mark-buffers by typing.

3 RTIR PROOF SYSTEM

On top of RtIR, we design a program logic, based on a variation of rely-guarantee (RG).
In a nutshell, RG [15] extends Hoare-logic to handle concurrency in a thread modular
fashion. In addition to the standard Hoare-tuples, side conditions ensure that program
annotations take into account the possible interferences of other threads. When thinking
about a particular thread’s code, we shall refer to the actions of the other concurrent
threads as its context. This context is formally encoded as a rely relation stating its
possible execution steps. Thus, each annotation in the code of a thread must be proved
to be stable w.r.t. its rely condition, meaning that its validity is not affected by possible
state changes induced by any number of rely steps. We follow a similar approach to
encode guarantees (cf. Sect. 1). In fact, throughout our development we only ever need
to define guarantees, and we synthesize the relies of other threads from guarantees.

High-Level Design Choices of Proof Rules. In our approach, we firstly annotate a pro-
gram, as is usually done on paper, and then prove the annotated program using syntax-
directed proof rules. We thus extend the syntax of commands to include annotations.
Syntax-directed proof rules were capital for proof automation.

The proof system decouples sequential and concurrent reasoning. Its first layer is a
Hoare-like system, with no use of relies or guarantees. A second layer handles interfer-
ence: proof obligations about relies, guarantees and stability checks of annotations.

Finally, to avoid polluting programs with routine annotations, typically the global
invariants, the first layer of the system assumes that such invariants hold, and the second
layer requires to separately prove their invariance as a stability check.

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 501

Annotations. We use a shallow embedding into Coq, with annotations of type either
pred� gstate→lenv→Prop, or gpred� gstate→Prop when they deal with the global
state only. Typically, the global invariant of the GC is of type gpred. We also define the
usual logical connectives on pred and gpred with the expected meaning. Conjunction is
written A⩕B and implication is written A−→B. Annotations of type gpred are automati-
cally cast into pred when needed.

The syntax presented in Sect. 2 is extended to take annotations into account. While
elementary commands that do not utilize the global state do not need to be extended,
basic commands accessing memory (e.g. field loads and updates, global loads and
stores, and mark-buffer operations) have to take an extra argument of type pred, rep-
resenting the pre-condition of the command. This is also the case for loops, annotated
with a loop-invariant, and atomic blocks, whose body may affect the global state. The
semantics of RtIR completely ignores annotations which are only relevant for proofs.

In the sequel, we use the informal notation P@c for a command c annotated with P.

Sequential Layer. We start by defining the following predicate, I � t: 〈P〉 c 〈Q〉 that
corresponds to the validity of a sequential Hoare tuple, with respect to the big-step
operational semantics of commands. This semantic judgment asserts that, for thread t, if
command c runs in a state satisfying precondition P, and if the execution terminates, the
final state must satisfy post-condition Q under the assumption that the global predicate
I is an invariant. Proving that I is indeed invariant is done separately.

First-layer logic judgments for commands are of the form I 	 t: 〈P〉 c 〈Q〉. For
basic commands which do not require annotations and simple command composi-
tions (sequence, non-deterministic choice and loops), proof rules follow the traditional
weakest-precondition style. This can be seen in the following rules:

I 	 t: 〈P〉 skip 〈P〉

I 	 t: 〈P〉 c1 〈R〉
I 	 t: 〈R〉 c2 〈Q〉

I 	 t: 〈P〉 c1; c2 〈Q〉

I 	 t: 〈P1〉 c1〈Q〉
I 	 t: 〈P2〉 c2〈Q〉

I 	 t: 〈P1 ⩕ P2〉 c1 ⊕ c2 〈Q〉
On the other hand, commands that require annotations directly embed the semantic

judgment I � t: 〈P〉 c 〈Q〉 as a proof obligation. For instance:

I � t: 〈P〉 P@X = e 〈Q〉
I 	 t: 〈P〉 P@X = e 〈Q〉

I � t: 〈P〉 c 〈Q〉
I 	 t: 〈P〉 P@atomic c 〈Q〉

Interference Layer. This layer takes into account threads interference with a given
command, handling the validity of guarantees and the stability of program annotations
w.r.t. the context. This can be seen in the definition of a valid RG tuple:

Record RGt (t:tid) (R:rg) (G:list rg) (I:gpred) (P Q:pred) (c:cmd) := {

RGt_hoare: I 	 t: 〈P〉 c 〈Q〉
; RGt_stable: stable I P R ∧ stable I Q R ∧ AllStable I c R

; RGt_guarantee: AllRespectGuarantee t I c G }.

Here, the type rg� gstate→gstate→Prop defines relies and guarantees as binary
relations between global states. In our development, we build them from annotated

502 Y. Zakowski et al.

commands. For a command P@c, the associated rg is defined by running the (big-step)
operational semantics of c from a pre-state satisfying P to a post-state (in Sect. 5, we
explain how our proof methodology benefits from this definition).

Predicate stable defines the stability of a pred w.r.t. a rely, given some invariant:

Definition stable (I:gpred) (H:pred) (R:rg) : Prop := ∀ gs1 gs2 l,

I gs1 ∧ H gs1 l ∧ R gs1 gs2 ∧ I gs2 → H gs2 l.

The predicate AllStable builds the conjunction of the stability conditions for all asser-
tions syntactically appearing therein. We omit its formal definition here.

The validity of the guarantee of a command (predicate AllRespectGuarantee) fol-
lows the same principle, this time accumulating proof obligations that all elementary
effects of the command are reflected by an elementary guarantee in the list G.

Program RG Specification. The RG specification of a program p is defined as a record
considering guarantees G and pre- and post-conditions P and Q for all threads. Formally:

Record RGt_prog (G:tid → rg) (I:gpred) (P Q:tid → pred) (p:program) := {

RGp_t:∀ t ∈ (threads p), RGt t (Rely G t) (G t) I (P t) (Q t) (cmd t p)

; RGp_I:∀ t, stable TTrue I (G t) }.

Obligation RGp t requires that each thread’s command is proved valid. It is worth noting
that only guarantees need to be considered: for each thread, we build its rely from other
threads’ guarantees (Rely G t). This significantly reduces redundancies in specifica-
tions. Second, obligation RGp I requires that I is invariant. We encode this as a stabil-
ity condition under the union of all threads’ guarantees, assuming the trivial invariant
TTrue� (fun _ _ ⇒ True). Indeed, as all threads’ code satisfy their guarantees, this
is enough to prove that the global invariant I is preserved by any number of program
steps.

Reasoning About Iterators. As expected, the case of iterators is more involved. We
illustrate their treatment on foreach. Though more technically involved, others itera-
tors are similar. Recall that foreach iterates on a list of data of type A, morally rep-
resenting a loop. Hence, its proof involves a loop invariant, predicated over the visited
elements of the list. Predicates annotating foreach are thus indexed by a list of vis-
ited elements. And, as the loop body may include annotations about visited elements,
we also index it by a list of visited elements and a current element. Summing up, the
syntax of foreach, extended with annotations is P@foreach (x in l) do c od where
annotation P has type list A → pred, and c has type list A → A → cmd. The asso-
ciated proof rule is:

∀ a seen, prefix (seen++[a]) l →
I 	 t: 〈P seen〉 (c seen a) 〈P (seen++[a])〉

P l ⩕ I −→ Q

I 	 t: 〈P nil〉 P@foreach (x in l) do c od 〈Q〉
The first premise amounts to proving a valid tuple whose pre- and post-conditions

are adjusted to the list of already visited elements. The second premise requires pre-
condition P applied to the whole list of elements to entail the post-condition of the

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 503

iterator itself. We define a more general rule in Coq, to get an induction principle usable
to prove the soundness of the logic.

Soundness of the Logic. Soundness states that invariant I holds in every state reach-
able from a well-formed initial state – which must satisfy I by construction – through
the small-step semantics mentionned in Sect. 2. Formally:

Hypothesis init_wf : ∀ tsi gsi, init_state p (tsi,gsi) →
RGt_prog G I P p Q (* program RG spec *)

∧ (∀ t c le, tsi(t) = Some(c, le) → P t gsi le) (* pre-conds. hold *)

∧ I gsi. (* I holds initially *)

Theorem soundness : ∀ ts gs, reachable init_state p (ts,gs) → I gs.

The proof of this theorem relies on an auxiliary proof system, proved equivalent
to the one presented earlier. The auxiliary system reuses the same basic components,
but proof rules now require to prove everything in situ: the invariant, the pre- and post-
conditions, the stability of annotations, and the validity of guarantees. For instance,
compare the rule for instruction X = e in the previous system (left) with the proof rule
of the auxiliary system (right):

I � t: 〈P〉 P@X = e 〈Q〉
I 	 t: 〈P〉 P@X = e 〈Q〉

TTrue � t: 〈P ⩕ I〉 P@X = e 〈Q ⩕ I〉
stable TTrue (P ⩕ I) G stable TTrue (Q ⩕ I) G

RespectGuarantee t I G (P@X = e)

R, G, I 	 t: 〈P〉 P@X = e 〈Q〉
This auxiliary system is very close to the classic RG [15,25]. Its verbosity makes it
easier to reason about the soundness proof.

The soundness proof itself consists in a subject-reduction lemma w.r.t. the following
property: in the current execution state, every possible thread currently running is in fact
running a piece of code that conforms to RGt (the pre-conditions map P is hence updated
at each step), and the global invariant I holds. Invariance of I follows from the fact that,
in each rule of the auxiliary system, the invariant is part of the pre- and post-conditions,
which are stable against any step of the rely and the guarantee of the stepping thread.

4 The Concurrent Garbage Collector

We now describe our implementation in RtIR of the concurrent GC, and its associ-
ated correctness theorem. The algorithm is based on [5], a variant of the well known
concurrent mark-and-sweep algorithm due to Doligez et al. [3,4].

Main Theorem. Intuitively, we want to show that the collector thread never reclaims
memory that could potentially be used by mutators. To do this, we program the col-
lector and the mutators in RtIR, and prove that their parallel composition preserves an
invariant on global execution states, using the soundness theorem of our program logic.

The particularity of mutators is that they participate to the bookkeeping required for
the collection to be correct. In practice, bookkeeping code is injected in client code by

504 Y. Zakowski et al.

the compiler. Here, we consider a Most General Client (MGC) representing a collector
thread composed with an arbitrary number of mutators with identifiers in Mut, each
running relevant injected pieces of code.1

mutator � loop
(
update(x, f, v)
⊕ load(x, f) ⊕ alloc()
⊕ cooperate() ⊕ changeRoots()

)

mgc � collector ‖ mutator ‖ ... ‖ mutator
Recall that the special global variable freelist a pool of unused references. Hence,
upon allocation, a reference is fetched from the freelist. Symmetrically, to reclaim an
unused object, the collector puts back its reference into the freelist.

Our main invariant establishes that in a given state gs, any reference r reachable
from any mutator m is not in the freelist, and hence has not been collected.

Definition I_correct: gpred :=

fun gs ⇒ ∀ m r, In m Mut ∧ Reachable_from m gs r → ¬ in_freelist gs r.

We can now formulate our main theorem. It uses the predicate reachable mgc stating
that a global state gs can be reached, from a predefined initial state, by the code of the
mgc shown above.

Theorem gc_sound: ∀ gs, reachable_mgc gs → I_correct gs.

The initial state we consider is obtained by a startup phase of the runtime, that carefully
initializes intrinsic features of the runtime, and establishes key invariants.

Evidently, this theorem would be impossible to prove without the aid of other inter-
mediate invariants. In the sequel we explain the important aspects of the implementa-
tion, and a few salient auxiliary invariants. Describing the algorithm and our code in full
details is out of the scope of this paper. We refer the reader to the explanations in [5]
and to the formal proof [7] for details.

High-Level Principles of the Algorithm. Our GC is of the mark and sweep family:
the heap is traversed, marking objects that are presumably alive, i.e. reachable from
mutators local variables, henceforth called roots. Once the marking procedure finishes,
the sweeping procedure reclaims objects detected as not reachable by putting them back
in the freelist.

The marking conventions to denote the reachability of objects follows the tricolor
convention [2]. Color WHITE is used for objects not yet visited. GREY is used for visited,
hence presumably live objects, whose children (through fields accesses) have not yet
been visited. BLACK is used for visited objects whose children have all been visited.
In our implementation, colors WHITE and BLACK are implemented with numerical con-
stants. We explain the encoding of GREY later. The heap traversal (marking) procedure
is called tracing, and completes once no GREY objects remain.

1 We present a simplified pseudo-code of the MGC, with variable x, field f, and value v assumed
non-deterministically chosen from the thread environment. The actual definition in Coq is an
operational characterization of this thread system.

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 505

// collector ::=
while (true) do
atomic // ghost

stage[C] = CLEAR
phantom_flipped = 0

atomic // linearizable[4]
foreachObject o do

if !(isFree?(o)) then
o.color = WHITE

od
phantom_flipped = 1

handshake() // SYNCH1
handshake() // SYNCH2
stage[C] = TRACING
handshake() // ASYNCH
trace()
stage[C] = SWEEPING
sweep()
stage[C] = RESTING

od

Listing 1. Collector

// handshake() ::=
phantom_hdsk = 1 phase[C] =

phase[C] + 1 mod 3
foreach (m in Mut) do

repeat skip
until phase[m]==phase[C]

od phantom_hdsk = 0

Listing 2. Handshake

// tid m : cooperate ::=
if phase[m] != phase[C] then

if phase[C] == ASYNCH then
foreachRoot (r of m) do

markGrey(buffer[m], r)
od

phase[m] = phase[C]

Listing 3. Cooperate

// tid m : update(x,f,v) ::=
if (phase[m] != ASYNCH

stage[C] == TRACING) then
old = x.f
markGrey(buffer[m],old)
markGrey(buffer[m],v)

x.f = v

Listing 4. Write Barrier

// markGrey(buffer,x) ::=
if (x != NULL

&& x.color != BLACK) then
buffer.push(x)

Listing 5. MarkGrey

Extra care is required to cope with the concurrent execution of mutators: they could
modify the object graph at any point, and thus invalidate the properties of the coloring.
In particular, mutators are responsible for publishing their own roots by marking them
as GREY before tracing begins. This is the goal of the cooperate procedure. Similarly,
object field update should not break color-related reachability invariants during tracing.
This is the goal of the so-called write-barriers, implemented by the update procedure.
Finally, the right color should be assigned to newly allocated objects. For space reasons,
we elude the details of the alloc procedure that we have implemented, and refer to our
formalization [7] and the descriptions in [5] for the details.

All these subtle procedures, run by the collector and the mutators, are orchestrated
using the global variable stage[C], which encodes for the various stages of the collec-
tion cycle (including the tracing and sweeping), and the global variables phase[m] – one
for each mutator – and phase[C] – one for the collector – to coordinate mutators with
the collector. A diagrammatic representation of a collection cycle is shown in Fig. 2,
gathering all previously mentioned ingredients. We will refer to it below in more detail.

RTIR Implementation and Main Invariants. Let us now describe the implementa-
tion. Code snippets in RtIR use a simplified syntax from the one we presented above
for space and readability reasons.

Stage and Phase Protocol. The code of the collector is presented in Listing 1. For the
moment, we concentrate only on the calls to the handshake() procedure (Listing 2), and
its counterpart cooperate() (Listing 3) executed by the mutators. A collection cycle is
structured using four stages: CLEAR, TRACING, SWEEPING and RESTING. The current stage
is written by the collector to a global variable stage[C]. This global variable allows
mutators to coordinate with the collector at a coarse level. At a finer level, a handshake
mechanism is required, and the status of each thread, the mutators and the collector,
is tracked with a phase variable, with values ranging over ASYNCH, SYNCH1 or SYNCH2.
Each phase is encoded with a dedicated integer between 0 and 2. Instead of presenting

506 Y. Zakowski et al.

SYNCH1

SYNCH2

ASYNCH

SYNCH1

SYNCH2

ASYNCH

phase[C]

phase[m]

trace sweep

collection
ends

TRACING SWEEPING RESTING

write barrier
black allocationwhite allocation

publish
roots

stage[C]

a
t
o
m
i
c

(
b
l
a
c
k

→
w
h
i
t
e
)

CLEAR

Fig. 2. Timeline of a collection cycle. All mutators are coalesced into the bottom line, and the
collector is shown in the top line. Dotted lines represent the GC start of a new stage, and dashed
lines represent the end of a phase change (handshake).

a detailed description to justify these phases, let us point out that the original algorithm
of [4] used only two phases, which was later discovered to be incorrect. A new phase
was added to correct it in [3].

We concentrate now on the horizontal lines of Fig. 2, showing the evolution of
phase[C], as well as the aggregated representation of all the phase[m] variables of
mutators. Each phase starts by the collector modifying the phase[C] variable (second
line of Listing 2). Mutators query it (first line of Listing 3), to acknowledge possi-
ble changes, in which case mutators respond by updating their own phase[m] variable
(the last line of Listing 3). When the collector acknowledges that all mutators have
updated phase[m], the phase transition is completed (dashed line in Fig. 2). Importantly,
phase[C] and phase[m] are subject to race conditions. We also point out that threads do
never stop their execution while executing cooperate.

An important invariant relating the phases of the collector and the mutators is that
any mutator’s phase is at most one step behind the collector’s phase.

Definition I_phases : gpred := fun gs ⇒
∀ m, In m Mut → phase[C]gs = phase[m]gs ∨ phase[C]gs=(phase[m]gs+1) mod 3.

Buffers and GREY. Objects are marked GREY with the markGrey procedure (Listing 5)
when mutators publish their roots (Listing 3) and during the write barriers (Listing 4).
Each mutator owns a buffer[m] abstract data structure, in which it adds references to
be traced. Hence, buffer[m] serves as an interface between mutators and the collector
to mark objects as GREY. In other words, an object is considered GREY if it is present in
any buffer and its color field is WHITE. In this sense, GREY is a convention rather than
a constant like BLACK or WHITE.

Write Barriers. Their code is shown in Listing 4. The barrier will conditionally either
directly update the field f (fast-path) or markGrey two objects (slow-path).2 Notice that
the slow-path of the write barrier is only executed when the collector is ready to start
tracing, and not after it starts sweeping (see Fig. 2). The code of write barriers is intrin-
sically racy since the client code itself might contain races at the field; moreover, the

2 The write barrier in [5] avoids marking old in some cases. We drop this optimization.

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 507

1 // trace() ::=
2 all_empty = false
3 while (!all_empty) do
4 atomic // ghost code
5 foreach (m in Mut) do
6 phantom_buffer[m].copy(buffer[m])
7 od
8 all_empty = true
9 foreach (m in Mut) do

10 is_empty = buffer[m].isEmpty()
11 while (!is_empty) do
12 all_empty = false
13 x = buffer[m].top()
14 if (x.color == WHITE) then
15 buffer[C].push(x)
16 buffer[m].pop()
17 else buffer[m].pop()
18 is_empty = buffer[m].isEmpty()
19 od
20 od
21

22 while (!buffer[C].isEmpty()) do
23 all_empty = false
24 ob = buffer[C].top()
25 if (ob.color == WHITE) then
26 foreachField (f of ob) do
27 if (ob.f!=NULL
28 && ob.f.color==WHITE) then
29 buffer[C].push(ob.f)
30 od
31 ob.color = BLACK
32 buffer[C].pop()
33 od
34 od
35

36

37 // sweep() ::=
38 foreachObject o do
39 if (!isFree?(o) && o.color == WHITE) then
40 free(o)
41 od

Listing 6. Trace and Sweep (Collector)

accesses to the buffer data structures are not protected by synchronization between
mutators and the collector. Finally, we emphasize that the order in which the markGrey

operations are performed in the write barrier is critical to the GC correctness.

Trace. This is the most challenging code to verify, and its verification by means of
program logics would be remarkably hard without some of the design choices of RtIR,
and our proof methodology.

The trace procedure (Listing 6) traverses the object graph starting from GREY

objects. More precisely, the collector visits each of the mutators buffer[m] in the
foreach loop at Line 9, transferring their contents into its own buffer[C]. If the collec-
tor sees empty buffers for all mutators, tracing ends. Otherwise, it traverses the graph
starting from objects in buffer[C], and marking BLACK objects whose children have
been seen.

Regarding the complexity of the code, we emphasize that it contains three nested
loops, a number of foreach constructs, and heavily uses the buffer abstract data struc-
tures. Moreover, it exhibits races in all threads (through write barriers and buffer oper-
ations) since it traverses the object graph, while mutators concurrently modify it.

An important invariant establishes that during the tracing phase, any WHITE object
that is alive must be reachable from a GREY object, signaling that it still has to be visited.
Since another invariant, I black to white, states that any path from a BLACK object to a
WHITE object goes through a GREY object, this translates to the property that all objects
reachable from the roots are either BLACK, or reachable from a GREY one.

Definition I_trace_grey_reach_white : gpred := fun gs ⇒ ∀ m r,

stage[C]gs� CLEAR ∧ In m Mut ∧ phase[m]gs=ASYNCH ∧ Reachable_from m gs r→
Black gs r ∨ (∃ r0, Grey Mut gs r0 ∧ reachable gs r0 r).

When this code terminates, we are able to prove that: (i) there are no more GREY

objects, (ii) all objects reachable from the mutators roots are BLACK, and consequently
(iii) there are no WHITE objects reachable from any of the mutators roots.

508 Y. Zakowski et al.

Property (i), namely that all buffers are simultaneously empty at the end of tracing
(Listing 6, Line 35), is particularly difficult to prove, given the write barriers executed
concurrently by mutators. We prove that this property is established at Line 4 of the
last iteration of the enclosing while loop. We proceed as follows. We first prove that,
at Line 4, buffer[C] is always empty. As for mutators’ buffers, we use ghost vari-
ables phantom buffer[m] to take their snapshot at Line 4. Mutators can only push on
their buffers, so, in a given iteration of the enclosing while loop, if a mutator buffer
is empty, so was its ghost counterpart during the same iteration. In the last iteration
of the while loop, all buffers are witnessed empty, one at a time. But this implies that
all phantom buckets are simultaneously empty at Line 8. This, in turn, implies that
all buffers are, this time simultaneously, empty at Line 4. This property remains true
until Line 35: it is both stable under mutators’ guarantees, and preserved by the while
loop. Indeed, if all buffers are empty (there are no GREY objects), the above invari-
ant I trace grey reach white implies that both the old and new objects that markGrey
could push on a buffer are in fact BLACK, and thus not pushed on any buffer (Listing 5).
As a consequence, no reference is pushed on the collector’s buffer (Line 15).

Sweep. The sweep phase (Listing 6) recycles all the objects that remain WHITE after
TRACING. This is the only place where instruction free is ever used. Note that this
code is also non-blocking. A key property, whose proof we have sketched above, is that
during sweeping, no GREY objects remains. Formally,

Definition I_sweep_no_grey : gpred := fun gs ⇒
(stage[C]gs = SWEEPING ∨ stage[C]gs = RESTING) → ∀ r, ¬ Grey Mut gs r.

This invariant, with I trace grey reach white above, implies that no WHITE object is
reachable from any thread-local variable.

5 Proof Methodology

Mechanizing such a sizable proof raises methodological concerns. While the proof
system of Sect. 3 separates proof concerns between sequential reasoning and stability
checks, we deal here with the intrinsic complexity of the proof and its scalability.

First, stating upfront the right set of invariants, guarantees, and assertions is unreal-
istic for such a proof. To tackle this issue, we group invariants related to distinct aspects,
e.g. the phase protocol or coloring invariants. To reflect this structure in our proof, and
avoid constant refactoring of proof scripts, we design an incremental workflow.

Second, we must deal with the quantity of proof obligations. For the GC code, proof
obligation RGp I involves 18 invariants, which must be proved stable under 17 guaran-
tees, thus requiring 306 stability proof obligations. On top of this, proof obligation
RGt stable adds more than 60 annotated lines of code, each bearing several predicates,
that must be proved stable under significant subsets of the 17 guarantees. This becomes
quickly intractable without a disciplined methodology and automation.

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 509

0- Synch Protocol

5- Colors, Reachability, Correctness

trace_grey_reach_white

correctblack_to_white

pointsto_freelist

sweep_no_grey

sweep_asynch

phase_val synch

late_mut_trace

2- Buffers aux.1- Colors in heap
white_or_black buffers_exist

in_buffer_no_null

phant_buffers_exist

stage_val

3- Stage aux. 4- Phantom aux.

hs_flipped

flipped_clear

hs_clear-trace

Fig. 3. Main Invariants of the GC. Numbers are timestamps in the incremental proof methodology.
Dependencies are shown with boxes (inter-dependency) and arrows.

5.1 Workflow

Figure 3 shows the major invariants of the GC, organized in groups. In each boxed
group, invariants are inter-dependent, while arrows indicate a dependency of the target
group on the source group.

RG proofs are thread-modular, but RG does not solve the interdependency prob-
lem: invariants, guarantees and code annotations are all eventually connected to form
the end-result. To maximize proof reuse, we use a simple mechanism: invariants I and
guarantees G are indexed by a natural number – morally a timestamp of their introduc-
tion into the development (Fig. 3). When introducing a new increment to an invariant,
all invariants with a lower timestamp are not modified. Nor are their proofs, resulting in
an incremental, non-destructive methodology. More concretely, at each level:

1. we enrich the invariant, refine the guarantees and code annotations;
2. we prove the new stability proof obligations, for which we can reuse prior stability

proofs, and we use automation to discharge as many obligations as possible;
3. we adapt sequential Hoare proofs, and prove that enriched guarantees are still valid.

This workflow proved robust during our development, allowing for an incremental
and manageable proof effort. We detail below the first two items of this methodology.

5.2 Incremental Proofs

Let us focus on obligation RGp I from Sect. 3, which requires establishing the invariant
stability under all threads’ guarantees. Let us fix a thread and index both the invariant
and guarantee by n. The obligation is thus (stable TTrue (I n) (G n)). Let us now
see how we establish (stable TTrue (I n+1) (G n+1)) by using the already proved
(stable TTrue (I n) (G n)) obligation.

Monotonicity of I and G. We build (I n+1) as a conjunction of prior established invari-
ant (I n), and the increment at the current level: (I n+1) � (I n)⩕ (Ic n+1). Hence,
we have that ∀n, (I n+1) −→ (I n).

Recall that in our proof system, guarantees are expressed through the effect of a
command, under certain hypotheses on the pre-state. At each level, the command will

510 Y. Zakowski et al.

not change – it is effectively executed by the code. Levels are rather used to refine
the hypotheses on the pre-state. Therefore, guarantees are monotonic in the sense that
∀n, (G n+1) ⊆ (G n): they are made more precise as the level index increases.

Reuse of Proof of Prior Invariants. We start by proving that prior invariant (I n) is
stable under refined guarantee (G n+1), i.e. (stable TTrue (I n) (G n+1)). To do so,
we reuse our previous proofs at level n and conclude with the following lemma using
guarantee monotonicity – below, we abuse notations and use as a valid Coq identifier.

Lemma stable_refineG: ∀_ I G1 G2, G2 ⊆ G1 ∧ stable _ I G1 → stable _ I G2.

New Invariant Stability. It remains to prove the stability of increment (Ic n+1) under
refined guarantee (G n+1). In simple cases, (stable TTrue (Ic n+1) (G n+1)) is
provable independently from prior invariants. In this case, we combine the stabilities
of (Ic n+1) and (I n) into the one of (I n+1) with lemma stable and:

Lemma stable_and: ∀ _ I1 I2 G,

stable _ I1 G ∧ stable _ I2 G → stable _ (I1 ⩕ I2) G.

However, the situation is often more involved, requiring prior invariants to prove the
stability of (Ic n+1). Formally, we have (stable (I n) (Ic n+1) (G n+1)). We can
then combine the stability of (I n) and (Ic n+1) under (G n+1) using this lemma:

Lemma stable_with: ∀ _ I1 I2 G,

stable _ I1 G ∧ stable I1 I2 G → stable _ (I1 ⩕ I2) G.

5.3 Proof Scalability

To tackle the blowup of stability checks alluded to earlier, we built a toolkit of structural
stability lemmas, and develop some tactic-based partial automation. This allowed us to
discharge automatically 186 obligations among the 306 obligations induced by RGp I.
The remaining obligations are also partially reduced by the automation.

Structural Lemmas. Structural lemmas serve three purposes. First, they are critical to
enable the incremental methodology delineated above. Second, they allow for complex
stability proof obligations to be simplified: both annotations, invariants, and interfer-
ences can be structurally split up. Thus, intrinsically complex arguments are isolated
from trivial ones, that are automatically discharged. Finally, to reuse as much proofs as
possible, we rely on a custom notion of stability under extra-hypotheses:

Definition stable_hyps (I: gpred) (H P: pred) (R: rg): Prop := ∀ gs1 gs2 l,

I gs1 ∧ H gs1 l ∧ P gs1 l ∧ R gs1 gs2 ∧ I gs2 ∧ H gs2 l → P gs2 l.

Typically, this notion allows to leverage stability results from previous levels, notably
through the following lemmas:

Lemma stable_weakI: ∀ I1 I2 P G, I2 ⊆ I1 → stable I1 P G → stable I2 P G.

Lemma stable_weakH : ∀ I (H P: pred) R,

stable I H R → stable_hyps I H P R → stable I (H ⩕ P) R.

By decomposing annotations and relaxing interferences, we can factor out the proof of
stability of annotations that reappear in the code.

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 511

Automation. We developed a set of tactics that simplify stability goals into elementary
ones before attempting to solve them. This leads to clearer goals and more tractable
proof contexts. The tactics combine our structural lemmas with two additional ideas:
systematic inversion on guarantee actions – defined operationally using commands –
and rewriting in predicates.

6 Related Work

Concurrent GC. The literature on garbage collection is vast. We refer the reader to [16]
for a comprehensive and up-to-date presentation of garbage collection techniques. We
use [5] as a starting point. It is a state-of-the-art non-blocking concurrent GC based on
the earlier DLG algorithm [3,4]. Many of the invariants we prove are inspired by those
of [3].

Mechanized GC Proofs. Many prior efforts have tackled the verification of sequen-
tial GCs [11,18]. Unfortunately, the addition of concurrency renders these approaches
inadequate. Insofar our work could be subsequently integrated into a verified run-time,
it is possible to reuse some methodological aspects of [19], such as the structuring in a
multi-layer refinement of the garbage collection specification.

The first mechanized proof of a concurrent GC was presented by Gonthier [9].
Unlike ours, Gonthier’s proof rests on an abstract encoding of the algorithm. Our devel-
opment sidesteps this additional modelling step by proving the implementation in RtIR.
A similar remark can be made of the approaches in [8,10], which formalize GCs in the
PVS and Isabelle/HOL provers respectively.

Liang et al. [17] provide a proof of a mostly-concurrent GC based on the RGSim
methodology. While the meta-theory of the logic is mechanized, the proof of the GC
itself is not.

Mechanized Concurrent Program Logics. In [21] an RG logic for a simple impera-
tive concurrent language is formalized and proved sound in Isabelle/HOL. In contrast,
our program logic is customized for runtime system implementations, and therefore
supports local and global environments, references, iterators, etc. Also, the proof rules
of [21] mix sequential reasoning with side conditions about stability and guarantee
checks. We decouple these aspects and avoid redundancies by extracting relies from the
guarantees of the context.

Other approaches to the mechanized verification of concurrent code are [6,17,23,
24] to mention but a few. These works are mostly concerned with concurrent data
structure correctness, whereas we are concerned with the implementation of a runtime
system.

7 Conclusion

This paper presents the mechanized proof of an emblematic challenge in program veri-
fication: an on-the-fly concurrent garbage collector. Overcoming this challenge requires
a number of methodological advances. We follow a programming language-based app-
roach: a well-chosen intermediate representation, a companion program logic, and a

512 Y. Zakowski et al.

dedicated proof workflow. RtIR strikes a balance between low-level features for the
expression of efficient concurrent code, and high-level features which remove the bur-
den of dealing with low-level details in the proofs. Our program logic is inspired by
Rely-Guarantee, a milestone in concurrency proof techniques, but one that has hereto-
fore not been used for the mechanized verification of garbage collectors. Our incremen-
tal proof workflow, combined with specific and efficient tool support via Coq tactics, is
efficient and flexible enough for such a verification challenge.

There are two major avenues for future work. The first is pragmatic, and concerns
the embedding of our work in a verified compiler tool chain. Using our theorem about
the most-general client, we can build a refinement proof between an IR with implicit
memory management and RtIR. We then need to have a fully executable version of the
GC. This would require cleaning up ghost code, coding iterators as low-level macros,
and implementing abstract concurrent data structures natively supported by RtIR. The
two first tasks are essentially administrative. The third task is more challenging, requir-
ing us to formally prove an atomicity refinement result for linearizable, fine-grained
data-structures. To that end, we have developed the meta-theory in [26].

The second is methodological. Our proof is the first GC proof to be mechanized
using Rely-Guarantee, but it does not take advantage of other tools like Separation
Logic [22]. Methods combining RG and Separation Logic exist [25]. It remains to be
seen how (or if) these techniques could improve our current proof.

Acknowledgement. We thank the anonymous reviewers and Peter Gammie for their thorough
comments and suggestions on how to improve the final version of the paper. We also thank Vin-
cent Laporte for his work earlier in this project, and his help on implementing parts of the garbage
collector presented here.

References

1. Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., Vitek, J., Plan, B.: a
buffered memory model for java. In: POPL 2013, pp. 329–342 (2013)

2. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-the-fly
garbage collection: an exercise in cooperation. Commun. ACM 21(11), 966–975 (1978)

3. Doligez, D., Gonthier, G.: Portable, unobtrusive garbage collection for multiprocessor sys-
tems. In: Proceedings POPL 1994, pp. 70–83 (1994)

4. Doligez, D., Leroy, X.: A concurrent, generational garbage collector for a multithreaded
implementation of ML. In: Proceedings of POPL 1993, pp. 113–123 (1993)

5. Domani, T., Kolodner, E.K., Lewis, E., Salant, E.E., Barabash, K., Lahan, I., Levanoni, Y.,
Petrank, E., Yanover, I.: Implementing an on-the-fly garbage collector for Java. In: Proceed-
ings of ISMM 2000, pp. 155–166 (2000)

6. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceedings of POPL
2009, pp. 2–15 (2009)

7. Zakowski, Y., et al.: Verifying a concurrent garbage collector using an RG methodology
(2017). http://www.irisa.fr/celtique/ext/cgc/

8. Gammie, P., Hosking, A.L., Engelhardt, K.: Relaxing safely: verified on-the-fly garbage col-
lection for x86-TSO. In: Proceedings of PLDI 2015, pp. 99–109 (2015)

9. Gonthier, G.: Verifying the safety of a practical concurrent garbage collector. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 462–465. Springer, Heidelberg
(1996). doi:10.1007/3-540-61474-5 103

http://www.irisa.fr/celtique/ext/cgc/
http://dx.doi.org/10.1007/3-540-61474-5_103

Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology 513

10. Havelund, K.: Mechanical verification of a garbage collector. In: Rolim, J., et al. (eds.)
IPPS 1999. LNCS, vol. 1586, pp. 1258–1283. Springer, Heidelberg (1999). doi:10.1007/
BFb0098007

11. Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors. In: Pro-
ceedings of POPL 2009, pp. 441–453 (2009)

12. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refinement rea-
soning for concurrent programs. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 449–465. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 26

13. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

14. Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., Vitek, J.: Atomicity refinement for
verified compilation. ACM Trans. Program. Lang. Syst. 36(2), 6:1–6:30 (2014)

15. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

16. Jones, R., Hosking, A., Moss, E.: Handbook, The Garbage Collection: The Art of Automatic
Memory Management, 1st edn. Chapman & Hall/CRC, Boca Raton (2011)

17. Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional verification
of concurrent program transformations. ACM Trans. Program. Lang. Syst. 36, 3 (2014)

18. McCreight, A., Chevalier, T., Tolmach, A.P.: A certified framework for compiling and exe-
cuting garbage-collected languages. In: Proceedings of ICFP 2010, pp. 273–284 (2010)

19. Myreen, M.O.: Reusable Verification of a Copying Collector. In: VSTTE 2010 (2010)
20. Pizlo, F., Ziarek, L., Maj, P., Hosking, A.L., Blanton, E., Vitek, J.: Schism: fragmentation-

tolerant real-time garbage collection. In: Proceedings of PLDI (2010)
21. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.) ESOP 2003.

LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003). doi:10.1007/3-540-36575-3 24
22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings

of LICS 2002, pp. 55–74 (2002)
23. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained concurrent

programs. In: Proceedings of PLDI 2015, pp. 77–87. ACM (2015)
24. Vafeiadis, V.: Concurrent separation logic and operational semantics. Electron. Notes Theor.

Comput. Sci. 276, 335–351 (2011)
25. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Caires,

L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-74407-8 18

26. Zakowski, Y., Cachera, D., Demange, D., Pichardie, D.: Compilation of linearizable data
structures - a mechanised RG logic for semantic refinement. Technical report (2017). https://
hal.archives-ouvertes.fr/hal-01538128

http://dx.doi.org/10.1007/BFb0098007
http://dx.doi.org/10.1007/BFb0098007
http://dx.doi.org/10.1007/978-3-319-21668-3_26
http://dx.doi.org/10.1007/3-540-36575-3_24
http://dx.doi.org/10.1007/978-3-540-74407-8_18
https://hal.archives-ouvertes.fr/hal-01538128
https://hal.archives-ouvertes.fr/hal-01538128

Formalization of the Fundamental Group
in Untyped Set Theory Using Auto2

Bohua Zhan(B)

Massachusetts Institute of Technology, Cambridge, USA
bzhan@mit.edu

Abstract. We present a new framework for formalizing mathematics
in untyped set theory using auto2. Using this framework, we formalize
in Isabelle/FOL the entire chain of development from the axioms of set
theory to the definition of the fundamental group for an arbitrary topo-
logical space. The auto2 prover is used as the sole automation tool, and
enables succinct proof scripts throughout the project.

1 Introduction

Auto2, introduced by the author in [17], is a proof automation tool for the proof
assistant Isabelle. It is designed to be a powerful, extensible prover that can
consistently solve “routine” tasks encountered during a proof, thereby enabling
a style of formalization using succinct proof scripts written in a custom, purely
declarative language.

In this paper, we present an application of auto2 to formalization of math-
ematics in untyped set theory1. In particular, we discuss the formalization in
Isabelle/FOL of the entire chain of development from the axioms of set theory
to the definition of the fundamental group for an arbitrary topological space.
Along the way, we discuss several improvements to auto2 as well as strategies of
usage that allow us to work effectively with untyped set theory.

The contribution of this paper is two-fold. First, we demonstrate that the
auto2 system is capable of independently supporting proof developments on a
relatively large scale. In the previous paper, several case studies for auto2 were
given in Isabelle/HOL. Each case study is at most several hundred lines long,
and the use of auto2 is mixed with the use of other Isabelle tactics, as well as
proof scripts provided by Sledgehammer. In contrast, the example we present in
this paper is a unified development consisting of over 13,000 lines of theory files
and 3,500 lines of ML code (not including the core auto2 program). The auto2
prover is used exclusively starting from basic set theory.

Second, we demonstrate one way to manage the additional complexity in
proofs that arise when working with untyped set theory. For a number of rea-
sons, untyped set theory is considered to be difficult to work with. For example,
everything is represented as sets, including objects such as natural numbers that

1 Code available at https://github.com/bzhan/auto2.
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 514–530, 2017.
DOI: 10.1007/978-3-319-66107-0_32

https://github.com/bzhan/auto2

Formalization of the Fundamental Group in Untyped Set Theory 515

we usually do not think of as sets. Moreover, statements of theorems tend to
be longer in untyped set theory than in typed theories, since assumptions that
would otherwise be included in type constraints must now be stated explicitly.
In this paper, we show that with appropriate definitions of basic concepts and
setup for automation, all these complexities can be managed, without sacrificing
the inherent flexibility of the logic.

We now give an outline for the rest of the paper. In Sect. 2, we sketch our
choice of definitions of basic concepts in axiomatic set theory. In particular,
we describe how to use tuples to realize extensible records, and build up the
hierarchy of algebraic structures. In Sect. 3, we review the main ideas of the
auto2 system, and describe several additional features, as well as strategies of
usage, that allow us to manage the additional complexities of untyped set theory.

In Sect. 4, we give two examples of proof scripts using auto2, taken from the
proofs of the Schroeder-Bernstein theorem and a challenge problem in analysis
from Lasse Rempe-Gillen. In Sect. 5, we describe our main example, the defi-
nition of the fundamental group, in detail. Given a topological space X and a
base point x on X, the fundamental group π1(X,x) is defined on the quotient
of the set of loops in X based at x, under the equivalence relation given by path
homotopy. Multiplication on π1(X,x) comes from joining two loops end-to-end.
Formalizing this definition requires reasoning about algebraic and topological
structures, equivalence relations, as well as continuous functions on real num-
bers. We believe this is a sufficiently challenging task with which to test the
maturity of our framework, although it has been achieved before in the Mizar
system. HOL Light and Isabelle/HOL also formalized the essential ideas on path
homotopy. We review these and other related works in Sect. 6, and conclude in
Sect. 7.

2 Basic Constructions in Set Theory

We now discuss our choice of definitions of basic concepts, starting with the
choice of logic. Our development is based on the FOL (first-order logic) instan-
tiation of Isabelle. The initial parts are similar to those in Isabelle/ZF, and we
refer to [13,14] for detailed explanations.

The only Isabelle types available are i for sets, o for propositions (booleans),
and function types formed from them. We call objects with types other than i and
o meta-functions, to distinguish them from functions defined within set theory
(which have type i). It is possible to define higher-order meta-functions in FOL,
and supply them with arguments in the form of lambda expressions. Theorems
can be quantified over variables with functional type at the outermost level.
These can be thought of as theorem-schemas in a first-order theory. However,
one can only quantify over variables of type i inside the statement of a theorem,
and the only equalities defined within FOL are those between types i (notation
· = ·) and o (notation · ←→ ·). In practice, these restrictions mean that any
functions that we wish to consider as first-class objects must be defined as set-
theoretic functions.

516 B. Zhan

2.1 Axioms of Set Theory

For uniformity of presentation, we start our development from FOL rather than
theories in Isabelle/ZF. However, the list of axioms we use is mostly the same.
The only main addition is the axiom of global choice, which we use as an easier-
to-apply version of the axiom of choice. Note that as in Isabelle/ZF, several of
the axioms introduce new sets or meta-functions, and declare properties satisfied
by them. The exact list of axioms is as follows:

extension: "∀ z. z ∈ x ←→ z ∈ y =⇒ x = y"
empty_set: "x /∈ ∅"
collect: "x ∈ Collect(A,P) ←→ (x ∈ A ∧ P(x))"
upair: "x ∈ Upair(y,z) ←→ (x = y ∨ x = z)"
union: "x ∈ ⋃ C ←→ (∃ A∈C. x∈A)"
power: "x ∈ Pow(S) ←→ x ⊆ S"
replacement: "∀ x∈A. ∀ y z. P(x,y) ∧ P(x,z) −→ y = z =⇒

b ∈ Replace(A,P) ←→ (∃ x∈A. P(x,b))"
foundation: "x �= ∅ =⇒ ∃ y∈x. y ∩ x = ∅"
infinity: "∅ ∈ Inf ∧ (∀ y∈Inf. succ(y) ∈ Inf)"
choice: "∃ x. x∈S =⇒ Choice(S) ∈ S"

Next, we define several basic constructions in set theory. They are summa-
rized in the following table. See [13] for more explanations.

Notation Definition
THE x. P(x)

⋃
(Replace({∅}, λx y. P(y)))

{b(x). x∈A} Replace(A, λx y. y = b(x))
SOME x∈A. P(x) Choice({x∈A. P(x)})

〈a,b〉 {{a}, {a,b}}
fst(p) THE a. ∃ b. p = 〈a,b〉
snd(p) THE b. ∃ a. p = 〈a,b〉

〈a1, . . . , an〉 〈a1,〈a2,〈· · · , an〉〉〉
if P then a else b THE z. P ∧ z=a ∨ ¬P ∧ z=b

⋃
a∈I. X

⋃
{X(a). a∈I}

A × B
⋃

x∈A. ⋃ y∈B. {〈x,y〉}

2.2 Extensible Records as Tuples

We now consider the problem of representing records. In our framework, records
are used to represent functions, algebraic and topological structures, as well as
morphisms between structures. It is often advantageous for records of different
types to share certain fields. For example, groups and rings should share the
multiplication operator, rings and ordered rings should share both addition and
multiplication operators, and so on.

It is well-known that when formalizing mathematics using set theory, records
can be represented as tuples. To achieve sharing of fields, the key idea is to assign
each shared field a fixed position in the tuple.

We begin with the example of functions. A function is a record consisting of
a source set (domain), a target set (codomain), and the graph of the function. In

Formalization of the Fundamental Group in Untyped Set Theory 517

particular, we consider two functions with the same graph but different target
sets to be different functions (another structure called family is used to represent
functions without specified target set). The three fields are assigned to the first
three positions in the tuple:

definition "source(F) = fst(F)"
definition "target(F) = fst(snd(F))"
definition "graph(F) = fst(snd(snd(F)))"

A function with source S, target T, and graph G is represented by the tuple
〈S,T,G,∅〉 (we append an ∅ at the end so the definition of graph works prop-
erly). For G to actually represent a function, it must satisfy the conditions for a
functional graph:

definition func_graphs :: "i ⇒ i ⇒ i" where
"func_graphs(X,Y) = {G∈Pow(X×Y). (∀a∈X. ∃!y. 〈a,y〉∈G)}"

The set of all functions from S to T (denoted S → T) is then given by:

definition function_space :: "i ⇒ i ⇒ i" (infixr "→" 60) where
"A → B = {〈A,B,G,∅〉. G∈func_graphs(A,B)}"

Functions can be created using the following constructor. Note this is a
higher-order meta-function. The argument b can be supplied by a lambda
expression.

definition Fun :: "[i, i, i ⇒ i] ⇒ i" where
"Fun(A,B,b) = 〈A, B, {p∈A×B. snd(p) = b(fst(p))}, ∅〉"
Evaluation of a function f at x (denoted f �x) is then defined as:

definition feval :: "i ⇒ i ⇒ i" (infixl " �" 90) where
"f � x = (THE y. 〈x,y〉∈graph(f))"

2.3 Algebraic Structures

The second major use of records is to represent algebraic structures. In our
framework, we will define structures such as groups, abelian groups, rings, and
ordered rings. The carrier set of a structure is assigned to the first position. The
order relation, additive data, and multiplicative data are assigned to the third,
fourth, and fifth position, respectively. This is expressed as follows:

definition "carrier(S) = fst(S)"
definition "order_graph(S) = fst(snd(snd(S)))"
definition "zero(S) = fst(fst(snd(snd(snd(S)))))"
definition "plus_fun(S) = snd(fst(snd(snd(snd(S)))))"
definition "one(S) = fst(fst(snd(snd(snd(snd(S))))))"
definition "times_fun(S) = snd(fst(snd(snd(snd(snd(S))))))"

Here order_graph is a subset of S×S , and plus_fun, times_fun are elements
of S×S→S . Hence, the operators ≤,+, and ∗ can be defined as follows:

518 B. Zhan

definition "le(R,x,y) ←→ 〈x,y〉∈order_graph(R)"
definition "plus(R,x,y) = plus_fun(R) �〈x,y〉"
definition "times(R,x,y) = times_fun(R) �〈x,y〉"

These are abbreviated to x ≤R y, x +R y , and x ∗R y , respectively (in both
theory files and throughout this paper, we use ∗ to denote multiplication in
groups and rings, and × to denote product on sets and other structures). We
also abbreviate x ∈ carrier(S) to x ∈. S .

The constructor for group-like structures is as follows:

definition Group :: "[i, i, i ⇒ i ⇒ i] ⇒ i" where
"Group(S,u,f) = 〈S,∅,∅,∅,〈u,λp∈S×S. f(fst(p),snd(p))∈S〉,∅〉"
The following predicate asserts that a structure contains at least the fields

of a group-like structure, with the right membership properties (1G abbreviates
one(G)):

definition is_group_raw :: "i ⇒ o" where
"is_group_raw(G) ←→

1G ∈. G ∧ times_fun(G) ∈ carrier(G) × carrier(G) → carrier(G)

To check whether such a structure is in fact a monoid/group, we use the
following predicates:

definition is_monoid :: "i ⇒ o" where
"is_monoid(G) ←→ is_group_raw(G) ∧

(∀ x∈.G. ∀ y∈.G. ∀ z∈.G. (x ∗G y) ∗G z = x ∗G (y ∗G z)) ∧
(∀ x∈.G. 1G ∗G x = x ∧ x ∗G 1G = x)"

definition units :: "i ⇒ i" where
"units(G) = {x ∈. G. (∃ y∈.G. y ∗G x = 1G ∧ x ∗G y = 1G)}"

definition is_group :: "i ⇒ o" where
"is_group(G) ←→ is_monoid(G) ∧ carrier(G) = units(G)"

Note these definitions are meaningful on any structure that has multiplicative
data. Likewise, we can define a predicate is_abgroup for abelian groups, that is
meaningful for any structure that has additive data. These can be combined
with distributive properties to define the predicate for a ring:

definition is_ring :: "i ⇒ o" where
"is_ring(R) ←→ (is_ring_raw(R) ∧ is_abgroup(R) ∧ is_monoid(R) ∧

is_left_distrib(R) ∧ is_right_distrib(R) ∧ 0R �= 1R)"

Likewise, we can define the predicate for ordered rings, and constructors for
such structures. Structures are used to represent the hierarchy of numbers: we let
nat int, ra, and real denote the set of natural numbers, integers, etc., while
N,Z,Q, and R denote the corresponding structures. Hence, addition on natural
numbers is denoted by x +N y , addition on real numbers by x +R y , etc. We
can also state and prove theorems such as is_ord_field(R) , which contains all
proof obligations for showing that the real numbers form an ordered field.

Formalization of the Fundamental Group in Untyped Set Theory 519

2.4 Morphism Between Structures

Finally, we discuss morphisms between structures. Morphisms can be considered
as an extension of functions, with additional fields specifying structures on the
source and target sets. The two additional fields are assigned to the fourth and
fifth positions in the tuple:

definition "source_str(F) = fst(snd(snd(snd(F))))"
definition "target_str(F) = fst(snd(snd(snd(snd(F)))))"

The constructor for a morphism is as follows (here S and T are the source and
target structures, while the source and target sets are automatically derived):

definition Mor :: "[i, i, i ⇒ i] ⇒ i" where
"Mor(S,T,b) = (let A = carrier(S) in let B = carrier(T) in

〈A, B, {p∈A×B. snd(p) = b(fst(p))}, S, T, ∅〉)"

The space of morphisms (denoted S ⇀ T) is given by:

definition mor_space :: "i ⇒ i ⇒ i" (infix "⇀" 60) where
"mor_space(S,T) = (let A = carrier(S) in let B = carrier(T) in

{〈A,B,G,S,T,∅〉. G∈func_graphs(A,B)})"

Note the notation f �x for evaluation still works for morphisms. Several other
concepts defined in terms of evaluation, such as image and inverse image, con-
tinue to be valid for morphisms as well, as are lemmas about these concepts.
However, operations that construct new morphisms, such as inverse and compo-
sition, must be redefined. We will use g ◦ f to denote the composition of two
functions, and g ◦m f to denote the composition of two morphisms.

Having morphisms store the source and target structures means we can define
properties such as homomorphism on groups as a predicate:

definition is_group_hom :: "i ⇒ o" where
"is_group_hom(f) ←→ (let S = source_str(f) in let T = target_str(f) in

is_morphism(f) ∧ is_group(S) ∧ is_group(T) ∧
(∀ x∈.S. ∀ y∈.S. f �(x ∗S y) = f �x ∗T f �y))"

The following lemma then states that the composition of two homomorphisms
is a homomorphism (this is proved automatically using auto2):

lemma group_hom_compose:
"is_group_hom(f) =⇒ is_group_hom(g) =⇒
target_str(f) = source_str(g) =⇒ is_group_hom(g ◦m f)"

3 Auto2 in Untyped Set Theory

In this section, we describe several additional features of auto2, as well as general
strategies of using it to manage the complexities of untyped set theory.

520 B. Zhan

We begin with an overview of the auto2 system (see [17] for details). Auto2
is a theorem prover packaged as a tactic in Isabelle. It works with a collection
of rules of reasoning called proof steps. New proof steps can be added at any
time within an Isabelle theory. They can also be deleted at any time, although
it is rarely necessary to add and delete the same proof step more than once. In
general, when building an Isabelle theory, the user is responsible for specifying,
by adding proof steps, how to use the results proved in that theory. In return,
the user no longer needs to worry about invoking these results by name in future
developments.

The overall algorithm of auto2 is as follows. First, the statement to be proved
is converted into contradiction form, so the task is always to derive a contra-
diction from a list of assumptions. During the proof, auto2 maintains a list of
items, the two most common types of which are propositions (that are derived
from the assumptions) and terms (that have appeared so far in the proof). Each
item resides in a box, which can be thought of as a subcase of the statement to
be proved (the box corresponding to the original statement is called the home
box). A proof step is a function that takes as input one or two items, and outputs
either new items, new cases, or the action of shadowing one of the input items,
or resolving a box by proving a contradiction in that box.

The main loop of the algorithm repeatly applies the current collection of
proof steps and adds any new items and cases in a best-first-search manner,
until some proof step derives a contradiction in the home box. In addition to the
list of items, auto2 also maintains several tables. The most important of which is
the rewrite table, which keeps track of the list of currently known equalities (not
containing arbitrary variables), and maintains the congruence closure of these
equalities. There are two other tables: the property table and the well-form table,
which we will discuss later in this section.

There are two broad categories of proof steps, which we call the standard and
special proof steps in this paper. A standard proof step applies an existing theo-
rem in a specific direction. It matches the input items to one or two patterns in
the statement of the theorem, and applies the theorem to derive a new proposi-
tion. Here the matching is up to rewriting (E-matching) using the rewrite table.
A special proof step can have more complex behavior, and is usually written as
an ML function. The vast majority of proof steps in our example are standard,
although special proof steps also play an important role.

The auto2 prover is not intended to be complete. For example, it may inten-
tionally apply a theorem in only one of several possible directions, in order to
narrow the search space. For more difficult theorems, auto2 provides a custom
language of proof scripts, allowing the user to specify intermediate steps of the
proof. Generally, when proving a result using auto2, the user will first try to
prove it without any scripts, and in case of failure, successively add intermediate
steps, perhaps by referring to an informal proof of the result. In case of failure,
auto2 will indicate the first intermediate step that it is unable to prove, as well
as what it is able to derive in the course of proving that step. We will show
examples of proof scripts in Sect. 4.

Formalization of the Fundamental Group in Untyped Set Theory 521

The current version of auto2 can be set up to work with different logics in
Isabelle. It contains a core program, for reasoning about predicate logic and
equality, that is parametrized over the list of constants and theorems for the
target logic. In particular, auto2 is now set up and tested to work with both
HOL and FOL in Isabelle.

3.1 Encapsulation of Definitions

One commonly cited problem with untyped set theory is that every object is a
set, including those that are not usually considered as sets. Common examples
of the latter include ordered pairs, natural numbers, functions, etc. In informal
treatments of mathematics, these definitions are only used to establish some
basic properties of the objects concerned. Once these properties are proved, the
definitions are never used again.

In formal developments, when automation is used to produce large parts of
the proof, one potential problem is that the automation may needlessly expand
the original definitions of objects, rather than focusing on their basic properties.
This increases the search space and obscures the essential ideas of the proof.
Using the ability to delete proof steps in auto2, this problem can be avoided
entirely. For any definition that we wish to drop in the end, we use the following
three-step procedure:

1. The definition is stated and added to auto2 as rewrite rules.
2. Basic properties of the object being defined are stated and proved. These

properties are added to auto2 as appropriate proof steps.
3. The rewrite rules for the original definition are deleted.

For example, after the definitions concerning the representation of functions
as tuples in Sect. 2.2, we prove the following lemmas, and add them as appro-
priate proof steps (as indicated by the attributes in brackets):

lemma lambda_is_function [backward]:
"∀ x∈A. f(x)∈B =⇒ Fun(A,B,f) ∈ A → B"

lemma beta [rewrite]:
"F = Fun(A,B,f) =⇒ x ∈ source(F) =⇒ is_function(F) =⇒ F �x = f(x)"

lemma feval_in_range [typing]:
"is_function(f) =⇒ x ∈ source(f) =⇒ f �x ∈ target(f)"

After proving these (and a few more) lemmas, the rewriting rules for the
definitions of Fun, function_space, feval , etc., are removed. Note that all lemmas
above are independent of the representation of functions as tuples. Hence, this
representation is effectively hidden from the point of view of the prover. Some
of the original definitions may be temporarily re-added in rare instances (for
example when defining the concept of morphisms).

522 B. Zhan

3.2 Property and Well-Form Tables

In this section, we discuss two additional tables maintained by auto2 during a
proof. The property table is already present in the version introduced in [17],
but not discussed in that paper. The well-form table is new.

The main motivation for both tables is that for many theorems, especially
those stated in an untyped logic, some of its assumptions can be considered as
“side conditions”. To give a basic example, consider the following lemma:

lemma unit_l_cancel:
"is_monoid(G) =⇒ y ∈. G =⇒ z ∈. G =⇒ x ∗G y = x ∗G z =⇒
x ∈ units(G) =⇒ y = z"

In this lemma, the last two assumptions are the “main” assumptions, while the
first three are side conditions asserting that the variables in the main assumptions
are well-behaved in some sense. In Isabelle/HOL, these side conditions may be
folded into type or type-class constraints.

We consider two kinds of side conditions. The first kind, like the first assump-
tion above, checks that one of the variables in the main assumptions satisfy a cer-
tain predicate. In Isabelle/HOL, these may correspond to type-class constraints.
In auto2, we call these property assumptions. More precisely, given any predicate
(in FOL this means constant of type i ⇒ o), we can register it as a property.
The property table records the list of properties satisfied by each term that has
appeared so far in the proof. Properties propagate through equalities: if P(a) is
in the property table, and a = b is known from the rewrite table, then P(b) is
automatically added to the property table. The user can also add theorems of
certain forms as further propagation rules for the property table (we omit the
details here).

The second kind of side conditions assert that certain terms occuring in the
main assumptions are well-formed. We use the terminology of well-formedness
to capture a familiar feature of mathematical language: that an expression may
make implicit assumptions about its subterms. These conditions can be in the
form of type constraints. For example, the expression a +R b implicitly assumes
that a and b are elements in the carrier set of R. However, this concept is much
more general. Some examples of well-formedness conditions are summarized in
the following table:

Term Conditions
⋂

A A �= ∅
f � x x ∈ source(f)
g ◦ f target(f) = source(g)
g ◦m f target_str(f) = source_str(g)
a +R b a ∈. R, b ∈. R
inv(R,a) a ∈ units(R)
a /R b a ∈. R, b ∈ units(R)

subgroup(G,H) is_subgroup_set(G,H)
quotient_group(G,H) is_normal_subgroup_set(G,H)

Formalization of the Fundamental Group in Untyped Set Theory 523

In general, given any meta-function f, any propositional expression in terms
of the arguments of f can be registered as a well-formedness condition of f. In
particular, well-formedness conditions are not necessarily properties. For exam-
ple, the condition a ∈. R for a +R b involves two variables and hence is not
a property. The well-form table records, for every term encountered so far in
the proof, the list of its well-formedness conditions that are satisfied. Whenever
a new fact is added, auto2 checks against every known term to see whether it
verifies a well-formedness condition of that term.

The property and well-form tables are used in similar ways in standard proof
steps. After the proof step matches one or two patterns in the “main” assumptions
or conclusion of the theorem that it applies, it checks for the side conditions in
the two tables, and proceed to apply the theorem only if all side conditions are
found. Of course, this requires proof steps to be re-applied if new properties or
well-formedness conditions of a term becomes known.

3.3 Well-Formed Conversions

Algebraic simplification is an important part of any automatic prover. For every
kind of algebraic structure, e.g. monoids, groups, abelian groups, and rings, there
is a concept of normal form of an expression, and two terms can be equated if
they have the same normal form. In untyped set theory, such computation of
normal forms is complicated by the fact that the relevant rewriting rules have
extra assumptions. For example, the rule for associativity of addition is:

is_abgroup(R) =⇒ x ∈. R =⇒ y ∈. R =⇒ z ∈. R =⇒
x +R (y +R z) = (x +R y) +R z

The first assumption can be verified at the beginning of the normalization
process. The remaining assumptions, however, are more cumbersome. In par-
ticular, they may require membership status of terms that arise only during
the normalization. For example, when normalizing the term a+R (b+R (c+R d)) ,
we may first rewrite it to a+R ((b+R c)+R d) . The next step, however, requires
b+R c ∈. R , where b+R c does not occur initially and may not have occured so
far in the proof. In typed theories, this poses no problem, since b+c will be
automatically given the same type as b and c when the term is created.

In untyped set theory, such membership information must be kept track of
and derived when necessary. The concept of well-formed terms provides a natural
framework for doing this. Before performing algebraic normalization on a term,
we first check for all relevant well-formedness conditions. If all conditions are
present, we produce a data structure (of type wfterm in Isabelle/ML) contain-
ing the certified term as well as theorems asserting well-formedness conditions.
A theorem is called a well-formed rewrite rule if its main conclusion is an equality,
each of its assumptions is a well-formedness condition for terms on the left side
of the equality, and it has additional conclusions that verify all well-formedness
conditions for terms on the right side of the equality that are not already present
in the assumptions. For example, the associativity rule stated above is not yet a

524 B. Zhan

well-formed rewrite rule: there is no justification for x+R y ∈. R , which is a well-
formedness condition for the term (x+R y)+R z on the right side of the equality.
The full well-formed rewrite rule is:

is_abgroup(R) =⇒ x ∈. R =⇒ y ∈. R =⇒ z ∈. R =⇒
x +R (y +R z) = (x +R y) +R z ∧ x +R y ∈. R

Given a well-formed rewrite rule, we can produce a well-formed conversion
that acts on wfterm objects, in a way similar to how equalities produce regular
conversions that act on cterm objects in Isabelle/ML. Like regular conversions,
well-formed conversions can be composed in various ways, and full normalization
procedures can be written using the language of well-formed conversions. These
normalization procedures in turn form the basis of several special proof steps.
We give two examples:

– Given two terms s and t that are non-atomic with respect to operations in
R , where R is a monoid (group/abelian group/ring), normalize s and t using
the rules for R . If the normalizations are equal, output s = t.

– Given two propositions a ≤R b and ¬(c ≤R d) , where R is an ordered ring.
Compare the normalizations of b −R a and d −R c . If they are equal, output
a contradiction.

These proof steps, when combined with proof scripts provided by the user,
allow algebraic manipulations to be performed rapidly. They replace the handling
of associative-commutative functions for HOL discussed in [17].

3.4 Discussion

We conclude this section with a discussion of our overall approach to untyped
set theory, and compare it with other approaches. One feature of our approach
is that we do not seek to re-institute a concept of types in our framework, but
simply replace type constraints with set membership conditions (or predicates,
for constraints that cannot be described by a set). The aim is to fully preserve
the flexibility of set-membership as compared to types. Empirically, most of the
extra assumptions that arise in the statement of theorems can be taken care of
by classifying them as properties or well-formedness conditions. Our approach
can be contrasted with that taken by Mizar, which defines a concept of soft types
[16] within the core of the system.

Every framework for formalizing modern mathematics need a way to deal
with structures. In Mizar, structures are defined in the core of the system as
partial functions on selectors [9,15]. In both Isabelle/HOL and IsarMathLib’s
treatement of abstract algebra, structures are realized with extensive use of
locales. For Coq, one notable approach is the use of Canonical Structures [10]
in the formalization of the Odd Order Theorem. We chose a relatively simple
scheme of realizing structures as tuples, which is sufficient for the present pur-
poses. Representing them as partial functions on selectors, as in Mizar, is more
complicated but may be beneficial in the long run.

Formalization of the Fundamental Group in Untyped Set Theory 525

Finally, we emphasize that we do not make any modification to Isabelle/FOL
in our development. The concept of well-formed terms, for example, is meaningful
only to the automation. The whole of auto2’s design, including the ability for
users to add new proof steps, follows the LCF architecture. To have confidence
in the proofs, one only need to trust the existing Isabelle system, the ten axioms
stated in Sect. 2.1, and the definitions involved in the statement of the results.

4 Examples of Proof Scripts

Using the techniques in the above two sections, we formalized enough mathemat-
ics in Isabelle/FOL to be able to define the fundamental group. In addition to
work directly used for that purpose, we also formalized several interesting results
on the side. These include the well-ordering theorem and Zorn’s lemma, the first
isomorphism theorem for groups, and the intermediate value theorem. Two more
examples will be presented in the remainder of this section, to demonstrate the
level of succinctness of proof scripts that can be achieved.

Throughout our work, we referred to various sources including both mathe-
matical texts and other formalizations. We list these sources here:

– Axioms of set theory and basic operations on sets, construction of natural
numbers using least fixed points: from Isabelle/ZF [13,14].

– Equivalence and order relations, arbitrary products on sets, well-ordering
theorem and Zorn’s lemma: from Bourbaki’s Theory of Sets [2].

– Group theory and the construction of real numbers using Cauchy sequences:
from my previous case studies [17], which in turn is based on corresponding
theories in the Isabelle/HOL library.

– Point-set topology and construction of the fundamental group: from Topology
by Munkres [12].

4.1 Schroeder-Bernstein Theorem

For our first example, we present the proof of the Schroeder-Bernstein theo-
rem. See [14] for a presentation of the same proof in Isabelle/ZF. The bijec-
tion is constructed by gluing together two functions. Auto2 is able to prove
automatically that under certain conditions, the gluing is a bijection (lemma
glue_function2_bij). For the Schroeder-Bernstein theorem, a proof script (pro-
vided by the user) is needed. This is given immediately after the statement of
the theorem.

definition glue_function2 :: "i ⇒ i ⇒ i" where
"glue_function2(f,g) = Fun(source(f)∪source(g), target(f)∪target(g),

λx. if x ∈ source(f) then f �x else g �x)”

lemma glue_function2_bij [backward]:
"f ∈ A ∼= B =⇒ g ∈ C ∼= D =⇒ A ∩ C = ∅ =⇒ B ∩ D = ∅ =⇒
glue_function2(f,g) ∈ (A ∪ C) ∼= (B ∪ D)"

526 B. Zhan

theorem schroeder_bernstein:
"injective(f) =⇒ injective(g) =⇒ f ∈ X → Y =⇒ g ∈ Y → X =⇒
equipotent(X,Y)"

LET "X_A = lfp(X, λW. X – g ��(Y – f ��W))" THEN
LET "X_B = X – X_A, Y_A = f ��X_A, Y_B = Y – Y_A" THEN
HAVE "X – g ��Y_B = X_A" THEN
HAVE "g ��Y_B = X_B" THEN
LET "f’ = func_restrict_image(func_restrict(f,X_A))" THEN
LET "g’ = func_restrict_image(func_restrict(g,Y_B))" THEN
HAVE "glue_function2(f’, inverse(g’)) ∈ (X_A ∪ X_B) ∼= (Y_A ∪ Y_B)"

4.2 Rempe-Gillen’s Challenge

For our second example, we present our solution to a challenge problem proposed
by Lasse Rempe-Gillen in a mailing list discussion2. See [1] for proofs of the same
result in several other systems. The statement to be proved is:

Lemma 1. Let f be a continuous real-valued function on the real line, such
that f(x) > x for all x. Let x0 be a real number, and define the sequence xn

recursively by xn+1 := f(xn). Then xn diverges to infinity.

Our solution is as follows. We make use of several previously proved results:
any bounded increasing sequence in R converges (line 2), a continuous function
f maps a sequence converging to x to a sequence converging to f �x (line 4), and
finally that the limit of a sequence in R is unique.

lemma rempe_gillen_challenge:
"real_fun(f) =⇒ continuous(f) =⇒ incr_arg_fun(f) =⇒ x0 ∈. R =⇒
S = Seq(R, λn. nfold(f,n,x0)) =⇒ ¬upper_bounded(S)"

HAVE "seq_incr(S)" WITH HAVE "∀ n∈.N. S �(n +R 1) ≥R S �n" THEN
CHOOSE "x, converges_to(S,x)" THEN
LET "T = Seq(R, λn. f �(S �n))" THEN
HAVE "converges_to(T,f �x)" THEN
HAVE "converges_to(T,x)" WITH (

HAVE "∀ r>R0R. ∃ k∈.N. ∀ n≥Nk. |T �n −Rx |R <R r" WITH (
CHOOSE "k ∈. N, ∀ n≥Nk. |S �n −R x |R <R r" THEN
HAVE "∀ n≥Nk. |T �n −R x |R <R r" WITH HAVE "T �n = S �(n +N 1)"))

5 Construction of the Fundamental Group

In this section, we describe our construction of the fundamental group. We will
focus on stating the definitions and main results without proof, to demonstrate
the expressiveness of untyped set theory under our framework. The entire for-
malization including proofs is 864 lines long.

Let I be the interval [0,1] , equipped with the subspace topology from the
topology on R. Given two continuous maps f and g from S to T, a homotopy
between f and g is a continuous map from the product topology on S × I to
T that restricts to f and g at S × {0} and S × {1} , respectively:
2 http://www.cs.nyu.edu/pipermail/fom/2014-October/018243.html.

http://www.cs.nyu.edu/pipermail/fom/2014-October/018243.html

Formalization of the Fundamental Group in Untyped Set Theory 527

definition is_homotopy :: "[i, i, i] ⇒ o" where
"is_homotopy(f,g,F) ←→

(let S = source_str(f) in let T = target_str(f) in
continuous(f) ∧ continuous(g) ∧
S = source_str(g) ∧ T = target_str(g) ∧ F ∈ S ×T I ⇀T T ∧
(∀ x∈.S. F �〈x,0R〉 = f �x ∧ F �〈x,1R〉 = g �x))"

A path is a continuous function from the interval. A homotopy between two
paths is a path homotopy if it remains constant on {0} × I and {1} × I :

definition is_path :: "i ⇒ o" where
"is_path(f) ←→ (f ∈ I ⇀T target_str(f))"

definition is_path_homotopy :: "[i, i, i] ⇒ o" where
"is_path_homotopy(f,g,F) ←→

(is_path(f) ∧ is_path(g) ∧ is_homotopy(f,g,F) ∧
(∀ t∈.I. F �〈0R,t〉 = f �(0R) ∧ F �〈1R,t〉 = f �(1R)))"

Two paths are path-homotopic if there exists a path homotopy between them.
This is an equivalence relation on paths.

definition path_homotopic :: "i ⇒ i ⇒ o" where
"path_homotopic(f,g) ←→ (∃ F. is_path_homotopy(f,g,F))"

The path product is defined by gluing two morphisms. It is continuous by
the pasting lemma:

definition I1 = subspace(R, closed_interval(R,0R,1R /R 2R))
definition I2 = subspace(R, closed_interval(R,1R /R 2R,1R))
definition interval_lower = Mor(I1,I,λt. 2R ∗R t)
definition interval_upper = Mor(I2,I,λt. 2R ∗R t −R 1R)

definition path_product :: "i ⇒ i ⇒ i" (infixl "�" 70) where
"f � g = glue_morphism(I, f ◦m interval_lower, g ◦m interval_upper)"

The loop space is a set of loops on X. Path homotopy gives an equivalence
relation on the loop space, and we define loop_classes to be the quotient set:

definition loop_space :: "i ⇒ i ⇒ i" where
"loop_space(X,x) = {f ∈ I ⇀T X. f �(0R) = x ∧ f �(1R) = x}"

definition loop_space_rel :: "i ⇒ i ⇒ i" where
"loop_space_rel(X,x) = Equiv(loop_space(X,x), λf g.

path_homotopic(f,g))"

definition loop_classes :: "i ⇒ i ⇒ i" where
"loop_classes(X,x) = loop_space(X,x) // loop_space_rel(X,x)"

Finally, the fundamental group is defined as:

528 B. Zhan

definition fundamental_group :: "i ⇒ i ⇒ i" ("π1") where
"π1(X,x) = (let R = loop_space_rel(X,x) in

Group(loop_classes(X,x), equiv_class(R,const_mor(I,X,x)),
λf g. equiv_class(R,rep(R,f) � rep(R,g))))"

To show that the fundamental group is actually a group, we need to show
that the path product respects the equivalence relation given by path homotopy,
and is associative up to equivalence (along with properties about inverse and
identity). The end result is:

lemma fundamental_group_is_group:
"is_top_space(X) =⇒ x ∈. X =⇒ is_group(π1(X,x))"

An important property of the fundamental group is that a continuous func-
tion between topological spaces induces a homomorphism between their funda-
mental groups. This is defined as follows:

definition induced_mor :: "i ⇒ i ⇒ i" where
"induced_mor(k,x) =

(let X = source_str(k) in let Y = target_str(k) in
let R = loop_space_rel(X,x) in let S = loop_space_rel(Y,k �x) in
Mor(π1(X,x), π1(Y,k �x), λf. equiv_class(S, k ◦m rep(R,f))))"

The induced map is a homomorphism satisfying functorial properties:

lemma induced_mor_is_homomorphism:
"continuous(k) =⇒ X = source_str(k) =⇒ Y = target_str(k) =⇒
x ∈ source(k) =⇒ induced_mor(k,x) ∈ π1(X,x) ⇀G π1(Y,k �x)"

lemma induced_mor_id:
"is_top_space(X) =⇒ x ∈. X =⇒
induced_mor(id_mor(X),x) = id_mor(π1(X,x))"

lemma induced_mor_comp:
"continuous(k) =⇒ continuous(h) =⇒
target_str(k) = source_str(h) =⇒ x ∈ source(k) =⇒
induced_mor(h ◦m k, x) = induced_mor(h, k �x) ◦m induced_mor(k, x)"

6 Related Work

In Isabelle, the main library for formalized mathematics using FOL is
Isabelle/ZF. The basics of Isabelle/ZF is described in [13,14]. We also point
to [13] for a review of older work on set theory from automated deduction and
artificial intelligence communities. Outside the official library, IsarMathLib [5]
is a more recent project based on Isabelle/ZF. It formalized more results in
abstract algebra and point-set topology, and also constructed the real numbers.
The initial parts of our development closedly parallels that in Isabelle/ZF, but
we go further in several directions including constructing the number system.
The primary difference between our work and IsarMathLib is that we use auto2

Formalization of the Fundamental Group in Untyped Set Theory 529

for proofs, and develop our own system for handling structures, so that we do
not make use of Isabelle tactics, Isar, or locales.

Outside Isabelle, the major formalization projects using set theory include
Metamath [11] and Mizar [4], both of which have extensive mathematical
libraries. There are some recent efforts to reproduce the Mizar environment in
HOL-type systems [6,8]. While there are some similarities between our frame-
work and Mizar’s, we do not aim for an exact reproduction. In particular, we
maintain the typical style of stating definitions and theorems in Isabelle. More
comparisons between our approach and Mizar are discussed in Sect. 3.4.

Mizar formalized not just the definition of the fundamental group [7], but
several of its properties, including the computation of the fundamental group of
the circle. There is also a formalization of path homotopy in HOL Light which
is then ported to Isabelle/HOL. This is used for the proof of the Brouwer fixed-
point theorem and the Cauchy integral theorem, although the fundamental group
itself does not appear to be constructed.

In homotopy type theory, one can work with fundamental groups (and higher-
homotopy groups) using synthetic definitions. This has led to formalizations of
results about homotopy groups that are well beyond what can be achieved today
using standard definitions (see [3] for a more recent example). We emphasize that
our definition of the fundamental group, as with Mizar’s, follows the standard
one in set theory.

7 Conclusion

We applied the auto2 prover to the formalization of mathematics using untyped
set theory. Starting from the axioms of set theory, we formalized the definition
of the fundamental group, as well as many other results in set theory, group
theory, point-set topology, and real analysis. The entire development contains
over 13,000 lines of theory files and 3,500 lines of ML code, taking the author
about 5 months to complete. On a laptop with two 2.0GHz cores, it can be
compiled in about 24min. Through this work, we demonstrated the ability of
auto2 to scale to relatively large projects. We also hope this result can bring
renewed interest to formalizing mathematics in untyped set theory in Isabelle.

Acknowledgements. The author would like to thank the anonymous referees for
their comments. This research is completed while the author is supported by NSF
Award No. 1400713.

References

1. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reason. 9(1), 101–148 (2016)

2. Bourbaki, N.: Theory of Sets. Springer, Heidelberg (2000)
3. Brunerie, G.: On the homotopy groups of spheres in homotopy type theory. Ph.D.

thesis. https://arxiv.org/abs/1606.05916

https://arxiv.org/abs/1606.05916

530 B. Zhan

4. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. Spec. Issue: User Tutor. I 3(2), 153–245 (2010)

5. IsarMathLib. http://www.nongnu.org/isarmathlib/
6. Kaliszyk, C., Pak, K., Urban, J.: Towards a Mizar environment for Isabelle: foun-

dations and language. In: Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (CPP 2016), New York, pp. 58–65 (2016)

7. Kornilowicz, A., Shidama, Y., Grabowski, A.: The fundamental group. Formalized
Math. 12(3), 261–268 (2004)

8. Kuncar, O.: Reconstruction of the Mizar type system in the HOL light system. In:
Pavlu, J., Safrankova, J. (eds.) WDS Proceedings of Contributed Papers: Part I -
Mathematics and Computer Sciences, pp. 7–12. Matfyzpress (2010)

9. Lee, G., Rudnici, P.: Alternative aggregates in Mizar. In: Kauers, M., Kerber, M.,
Miner, R., Windsteiger, W. (eds.) Calculemus/MKM 2007. LNCS (LNAI), vol.
4573, pp. 327–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73086-6_26

10. Mahboubi, A., Tassi, E.: Canonical structures for the working Coq user. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 19–34.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_5

11. Megill, N.D.: Metamath: a computer language for pure mathematics. http://us.
metamath.org/downloads/metamath.pdf

12. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)
13. Paulson, L.C.: Set theory for verification: I. From foundations to functions. J.

Automated Reason. 11(3), 353–389 (1993)
14. Paulson, L.C.: Set theory for verification: II. Induction and recursion. J. Automated

Reason. 15(2), 167–215 (1995)
15. Trybulec, A.: Some features of the Mizar language. In: ESPRIT Workshop (1993)
16. Wiedijk, F.: Mizar’s soft type system. In: Schneider, K., Brandt, J. (eds.) TPHOLs

2007. LNCS, vol. 4732, pp. 383–399. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74591-4_28

17. Zhan, B.: AUTO2, a saturation-based heuristic prover for higher-order logic. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 441–456. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4_27

http://www.nongnu.org/isarmathlib/
http://dx.doi.org/10.1007/978-3-540-73086-6_26
http://dx.doi.org/10.1007/978-3-642-39634-2_5
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf
http://dx.doi.org/10.1007/978-3-540-74591-4_28
http://dx.doi.org/10.1007/978-3-540-74591-4_28
http://dx.doi.org/10.1007/978-3-319-43144-4_27

Author Index

Allamigeon, Xavier 28
Åman Pohjola, Johannes 444
Aspinall, David 114

Bentkamp, Alexander 46
Benzaken, Véronique 171
Bernard, Sophie 65
Besson, Frédéric 81
Blanchette, Jasmin Christian 46
Blazy, Sandrine 81
Bohrer, Rose 207
Boldo, Sylvie 98
Buchholtz, Ulrik 479
Butler, David 114

Cachera, David 496
Cauderlier, Raphaël 131
Cohen, Cyril 148
Contejean, Évelyne 171
Cruz-Filipe, Luís 164

Demange, Delphine 496
Dubois, Catherine 131
Dumbrava, Stefania 171

Forster, Yannick 189
Fulton, Nathan 207

Gabrielli, Andrea 225
Gascón, Adrià 114
Genin, Daniel 336
Geuvers, Herman 462
Gheri, Lorenzo 241
Gilbert, Frédéric 262

Hack, Sebastian 427
Heule, Marijn 269
Hóu, Zhé 285
Hunt Jr., Warren 269

Jagannathan, Suresh 496
Jeannin, Jean-Baptiste 336

Johansson, Moa 1
Joldes, Mioara 98

Kaliszyk, Cezary 12
Katz, Ricardo D. 28
Kaufmann, Matt 269
Kirst, Dominik 304
Klakow, Dietrich 46
Kohlhase, Michael 319
Kouskoulas, Yanni 336

Lambán, Laureano 354
Larchey-Wendling, Dominique 371
Larsen, Kim S. 164
Liu, Yang 285
Lochbihler, Andreas 389

Maggesi, Marco 225
Martín-Mateos, Francisco J. 354
Mitsch, Stefan 207
Müller, Dennis 319
Muller, Jean-Michel 98
Myreen, Magnus O. 444

Owre, Sam 319

Pattinson, Dirk 410
Petri, Gustavo 496
Pichardie, David 496
Platzer, André 207
Popescu, Andrei 241
Popescu, Valentina 98

Rabe, Florian 319
Rosemann, Julian 427
Rouhling, Damien 148
Rubio, Julio 354
Ruiz-Reina, José-Luis 354

Sanán, David 285
Sandberg Ericsson, Adam 444
Schmidt, Aurora 336

Schneider, Sigurd 427
Schneider-Kamp, Peter 164
Smolka, Gert 189, 304

Tiu, Alwen 285
Tiwari, Mukesh 410

Urban, Josef 12

van Delft, Myrthe 462
van Doorn, Floris 479

Vitek, Jan 496
von Raumer, Jakob 479
Vyskočil, Jiří 12

Wetzler, Nathan 269
Wilke, Pierre 81
Willemse, Tim A.C. 462

Zakowski, Yannick 496
Zhan, Bohua 514

532 Author Index

	Preface
	Organization
	Invited Talks
	Whitebox Automation
	Automated Theory Exploration for Interactive Theorem Proving An Introduction to the Hipster System
	Automating Formalization by Statistical and Semantic Parsing of Mathematics
	Contents
	Automated Theory Exploration for Interactive Theorem Proving:
	1 Introduction
	2 Architecture of a Theory Exploration System
	2.1 Conjecture Generation
	2.2 Proving Discovered Conjectures

	3 Ongoing and Future Work
	4 Summary
	References

	Automating Formalization by Statistical and Semantic Parsing of Mathematics
	1 Introduction: Learning Formal Understanding
	1.1 Contributions

	2 Informalized Flyspeck and PCFG
	2.1 Informalized Flyspeck
	2.2 The Informal-to-Formal Translation Task
	2.3 Probabilistic Context Free Grammars

	3 PCFG for the Informal-to-Formal Task
	3.1 HOL Types as Nonterminals
	3.2 Semantic Concepts as Nonterminals
	3.3 Modified CYK Parsing and Its Initial Performance

	4 Limits of the Context-Free Grammars
	5 Using Probabilities of Deeper Subtrees
	5.1 Efficient Implementation of Deeper Subtrees

	6 Experimental Evaluation
	6.1 Machine Learning Evaluation
	6.2 ATP Evaluation

	7 Conclusion and Future Work
	References

	A Formalization of Convex Polyhedra Based on the Simplex Method
	1 Introduction
	2 Polyhedra, Linear Programming and Duality
	3 The Three Ingredients of the Simplex Method
	4 Lexicographic Pivoting Rule
	5 Phase II of the Simplex Method, and Farkas Lemma
	6 Complete Implementation of the Simplex Method
	7 Outcome of the Effective Approach
	8 Conclusion
	References

	A Formal Proof of the Expressiveness of Deep Learning
	1 Introduction
	2 Mathematical Preliminaries
	3 The Theorems of Network Capacity
	4 Restructured Proof of the Theorems
	5 Formal Libraries
	6 Formalization of the Fundamental Theorem
	7 Discussion and Related Work
	8 Conclusion
	References

	Formalization of the Lindemann-Weierstrass Theorem
	1 Introduction
	2 Context
	2.1 Mathematical Context
	2.2 Stating the Lindemann-Weierstrass Theorem in Coq
	2.3 Proof Context

	3 Following the Proof
	3.1 Baker's Reformulation
	3.2 Simplifying the 's
	3.3 Simplifying the 's
	3.4 Proving the Final Lemma

	4 Conclusion
	4.1 Related Work
	4.2 Future Work

	References

	CompCertS: A Memory-Aware Verified C Compiler Using Pointer as Integer Semantics
	1 Introduction
	2 Background on CompCert
	2.1 Architecture of the CompCert Compiler
	2.2 The Memory Model of CompCert
	2.3 A Symbolic Memory Model for CompCert
	2.4 Memory Injections

	3 Proof Challenges for Pointers as Integers
	3.1 Proving the Correctness of SimplLocals
	3.2 Optimisations

	4 Preservation of Memory Consumption
	4.1 Evolution of Stack Memory Usage Throughout Compilation
	4.2 The Stacking Compiler Pass

	5 Related Work
	6 Conclusion
	References

	Formal Verification of a Floating-Point Expansion Renormalization Algorithm
	1 Introduction
	2 Floating-Point Expansions
	2.1 Pen-and-Paper Definitions
	2.2 Coq Definitions

	3 Renormalization Algorithm for FPEs
	4 Formal Proof
	4.1 Prerequisites
	4.2 Formal Proof of the First Level
	4.3 Formal Proof of the Second Level

	5 Conclusion
	References

	How to Simulate It in Isabelle: Towards Formal Proof for Secure Multi-Party Computation
	1 Introduction
	2 CryptHOL and Extensions
	3 Computational Indistinguishability in Isabelle
	4 Semi-honest Security and Simulation-Based Proofs
	4.1 Probabilistic Programming Used for Simulation-Based Proofs

	5 Secure Multiplication Protocol
	5.1 Formal Proof of Security

	6 Naor-Pinkas Protocol
	6.1 The Formal Proof

	7 Towards Evaluating Arbitrary Functionalities
	8 Conclusion
	References

	FoCaLiZe and Dedukti to the Rescue for Proof Interoperability
	1 Introduction
	2 Dedukti, a Universal Proof Language
	3 FoCaLiZe, Zenon Modulo, and Focalide to the Rescue
	4 MathTransfer, a Library of Transfer Theorems
	5 Methodology for Dedukti-Based Interoperability
	6 Presentation of the Example: An Incomplete Coq Proof of the Sieve of Eratosthenes
	6.1 Programming the Sieve of Eratosthenes in Coq
	6.2 Specification and Correctness Proof

	7 Mixing the Proofs
	7.1 Linking HOL and Coq in Dedukti
	7.2 Extension of the MathTransfer Hierarchies up to the Prime Divisor Lemma
	7.3 Instantiation of Coq Natural Numbers
	7.4 Instantiation of HOL Natural Numbers
	7.5 Instantiation of the Morphism

	8 Conclusion
	References

	A Formal Proof in COP of LaSalle's Invariance Principle
	1 Introduction
	2 A Stronger Result
	2.1 LaSalle's Invariance Principle
	2.2 Relaxing Hypotheses
	2.3 Strengthening the Conclusion

	3 Formalization
	3.1 Real Analysis and Notations
	3.2 On Differential Equations
	3.3 Convergence to a Set
	3.4 Compactness

	4 The Formal Statement of LaSalle's Invariance Principle
	5 On Classical Reasoning
	6 Related Work
	7 Conclusion and Future Work
	References

	How to Get More Out of Your Oracles
	1 Introduction
	2 Methodology
	3 Case Studies
	4 Concluding Remarks
	References

	Certifying Standard and Stratified Datalog Inference Engines in SSReflect
	1 Introduction
	2 Preliminaries
	2.1 Standard Datalog
	2.2 Stratified Datalog

	3 A Mechanized Standard Datalog Engine
	3.1 Formalizing Standard Datalog
	3.2 Mechanizing the Bottom-Up Evaluation Engine
	3.3 Formal Characterization of the Bottom-Up Evaluation Engine

	4 A Mechanized Stratified Datalog Engine
	4.1 Formalizing Stratified Datalog
	4.2 Mechanizing the Stratified Evaluation Engine
	4.3 Formal Characterization of the Stratified Evaluation Engine

	5 Related Work
	6 Conclusion, Lessons and Perspectives
	References

	Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq
	1 Introduction
	2 Specification
	3 Definition of L
	4 Uniformly Confluent Reduction Semantics
	5 Scott Encoding of Numbers
	6 Scott Encoding of Terms
	7 Decidable and Recognisable Classes
	8 Reduction Lemma and Rice's Theorem
	9 Step-Indexed Interpreter and Modesty
	10 Choose
	11 Results Obtained with Self-Interpreters
	12 Enumerable Classes
	13 Markov's Principle
	References

	Bellerophon: Tactical Theorem Proving for Hybrid Systems
	1 Introduction
	2 Background
	3 The Bellerophon Tactic Language
	4 Demonstration of Tactical Hybrid Systems Proving
	5 Automatic Tactics in the Bellerophon Standard Library
	5.1 Tactical Automation for Differential Equations
	5.2 Tactical Automation for Hybrid Systems

	6 Related Work
	7 Conclusion and Future Work
	References

	Formalizing Basic Quaternionic Analysis
	1 Introduction
	2 Related Work
	3 The Core Library
	3.1 The Definition of Quaternion
	3.2 Computing with Quaternions
	3.3 The Geometry of Quaternions
	3.4 Elementary Quaternionic Analysis

	4 Slice Regular Functions
	4.1 The Definition of Slice Regular Function
	4.2 Power Expansions of Slice Regular Functions

	5 Pythagorean-Hodograph Curves
	5.1 Formalization of PH Curves and Hermite Interpolation Problem
	5.2 PH Cubic and Quintic Interpolant

	6 Conclusions
	References

	A Formalized General Theory of Syntax with Bindings
	1 Introduction
	2 Design Decisions
	2.1 Standalone Abstractions
	2.2 Freshness and Substitution
	2.3 Advantages and Obligations from Working with Terms ModuloAlpha
	2.4 Many-Sortedness
	2.5 Possibly Infinite Branching

	3 General Terms with Bindings
	3.1 Quasiterms
	3.2 Alpha-Equivalence
	3.3 Good Quasiterms and Regularity of Variables
	3.4 Terms and Their Properties

	4 Reasoning and Definition Principles
	4.1 Fresh Induction
	4.2 Freshness- and Substitution- Sensitive Recursion

	5 Sorting the Terms
	5.1 Binding Signatures
	5.2 Well-Sorted Terms over a Signature
	5.3 From Good to Well-Sorted
	5.4 End Product

	6 Discussion, Related Work and Future Work
	References

	Proof Certificates in PVS
	1 Introduction
	2 Proofs Certificates in PVS
	2.1 Expressions and Conversion
	2.2 Reasoning
	2.3 Proof Objects

	3 Checking PVS Proofs Using Dedukti and Metitarski
	3.1 Translating Proofs to Dedukti
	3.2 Checking Assumptions with MetiTarski

	4 Results
	References

	Efficient, Verified Checking of Propositional Proofs
	1 Introduction
	2 ACL2 Preliminaries
	3 SAT Proof-Checker Code
	3.1 A Sequence of Checkers
	3.2 Performance

	4 Correctness Proofs
	4.1 Deletion ([drat])
	4.2 Linear RAT ([lrat-1], [lrat-2], [lrat-3])
	4.3 Using Stobjs ([lrat-4])
	4.4 The [lrat-5] Proof

	5 Conclusion
	References

	Proof Tactics for Assertions in Separation Logic
	1 Introduction
	2 Preliminaries
	2.1 Separation Algebra
	2.2 Further Extension of Separation Algebra
	2.3 The Labelled Sequent Calculus LSPASL

	3 Basic Proof Search
	4 Advanced Tactics for Proof Search
	4.1 Formula-Driven Tactics for the * Connective
	4.2 Tactics for Magic Wand
	4.3 Tactics for the Heap Model

	5 Examples
	6 Case Study
	7 Related Work
	References

	Categoricity Results for Second-Order ZF in Dependent Type Theory
	1 Introduction
	2 Axiom System and Inner Models
	3 Cumulative Hierarchy
	4 Embedding Theorem
	5 Categoricity Results
	6 Discussion
	References

	Making PVS Accessible to Generic Services by Interpretation in a Universal Format
	1 Introduction
	2 Preliminaries
	3 Defining the PVS Logic in a Logical Framework
	4 Translating the PVS Library
	5 Applications
	5.1 Browsing and Interaction
	5.2 Graph Viewer
	5.3 Search

	6 Conclusion
	References

	Formally Verified Safe Vertical Maneuvers for Non-deterministic, Accelerating Aircraft Dynamics
	1 Introduction
	2 Overview
	3 Modeling and Assumptions
	4 Vertical Safety Predicates
	5 Formalizing Guarantees
	6 Extending Safety Guarantees to ACAS X
	7 Application to ACAS X Coordination Logic
	8 Related Work
	9 Conclusion
	References

	Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms
	1 Introduction
	2 A Data Structure for Reasoning in the Logic
	2.1 Matrices as Lists of Lists
	2.2 An Abstract Representation for Matrix Normal Form Computation

	3 Using Abstract Stobjs to Represent Matrices
	3.1 A Stobj for Computing Matrix Normal Forms
	3.2 The Abstract Stobj

	4 An Algorithm to Compute a Column Echelon Form
	4.1 Definition of the Algorithm
	4.2 Main Theorems Proved
	4.3 Experimental Results

	5 Related Work and Conclusions
	References

	Typing Total Recursive Functions in Coq
	1 Introduction
	2 Avoiding Small-Step Operational Semantics
	3 Reifying P into P for P:N{ Prop, Type}
	3.1 Existential Quantification in Coq
	3.2 The Case of Predicates of Type NProp
	3.3 Reification of Predicates of Type NType

	4 Dependent Types for Recursive Algorithms
	5 A Decidable Semantics for Recursive Algorithms
	5.1 Relational and Big-Step Semantics
	5.2 Cost Aware Big-Step Semantics
	5.3 Properties of Cost Aware Big-Step Semantics

	6 The Totality of Coq
	7 Discussion: Other Approaches, Church Thesis
	8 Reifying Undecidable Predicates
	9 The Structure of the Coq Source Code
	References

	Effect Polymorphism in Higher-Order Logic (Proof Pearl)
	1 Introduction
	2 Abstract Value-Monomorphic Monads in HOL
	2.1 Failure and Exception
	2.2 State
	2.3 Probabilistic Choice
	2.4 Combining Abstract Monads
	2.5 Further Abstract Monads

	3 Implementations of Monads and Monad Transformers
	3.1 The Identity Monad
	3.2 The Probability Monad
	3.3 The Failure and Exception Monad Transformer
	3.4 The State Monad Transformer
	3.5 Composing Monads with Transformers
	3.6 Further Monads and Monad Transformers
	3.7 Overloading the Monad Operations

	4 Moving Between Monad Instances
	5 Related Work
	6 Conclusion
	References

	Schulze Voting as Evidence Carrying Computation
	1 Introduction
	2 Formal Specification of Schulze Voting
	3 A Scrutiny Sheet for the Schulze Method
	4 Schulze Voting as Inductive Type
	5 All Schulze Election Have Winners
	6 Experimental Results
	7 Discussion
	8 Conclusion and Further Work
	References

	Verified Spilling and Translation Validation with Repair
	1 Introduction
	2 Related Work
	3 Syntax and Semantics of IL
	3.1 Expressions
	3.2 Syntax
	3.3 Semantics
	3.4 Renaming Apart

	4 Liveness
	4.1 Description of the Rules of the Inductive Predicate
	4.2 Minimal Live Sets and Live Set Annotations

	5 Spilling
	6 A Correctness Criterion for Spilling
	6.1 Description of the Rules of the Inductive Predicate
	6.2 Formalization of the Spill Predicate in Coq

	7 Soundness of the Correctness Predicate
	7.1 Variables in Registers
	7.2 Register Bound
	7.3 Semantic Equivalence

	8 Case Study: Verified Spilling Algorithms
	8.1 SimpleSpill
	8.2 SplitSpill

	9 Translation Validation with Repair
	10 Conclusion
	References

	A Verified Generational Garbage Collector for CakeML
	1 Introduction
	2 Approach
	3 Algorithm Modelling and Verification
	3.1 Intuition for Basic Algorithm
	3.2 Intuition for Generational Algorithm
	3.3 Formalisation
	3.4 Verification
	3.5 Combining the Partial and Full Collectors

	4 Implementation and Integration into CakeML Compiler
	4.1 Instantiating the Algorithm's Types
	4.2 Data Refinement down to Concrete Memory
	4.3 Implementing the Garbage Collector

	5 Discussion of Related Work
	6 Summary
	References

	A Formalisation of Consistent Consequence for Boolean Equation Systems
	1 Introduction
	2 Preliminaries
	3 Boolean Equation Systems
	4 Consistent Consequences
	5 A Derivation System for Consistent Consequence
	5.1 The Derivation System CC
	5.2 Soundness and Completeness

	6 Conclusions
	References

	Homotopy Type Theory in Lean
	1 Introduction
	2 The Lean Proof Assistant
	2.1 Consistency of HoTT Lean

	3 The Structure of the Library
	3.1 The Initial Part of the Library
	3.2 Facts About Types
	3.3 The Algebraic Hierarchy
	3.4 Homotopy Theory
	3.5 Category Theory

	4 Path Algebra and Cubical Methods
	5 Higher Inductive Types
	6 Conclusion
	References

	Verifying a Concurrent Garbage Collector Using a Rely-Guarantee Methodology
	1 Introduction
	2 The RTIR INTERMEDIATE REPRESENTATION
	2.1 Syntax
	2.2 Operational Semantics

	3 RTIR PROOF SYSTEM
	4 The Concurrent Garbage Collector
	5 Proof Methodology
	5.1 Workflow
	5.2 Incremental Proofs
	5.3 Proof Scalability

	6 Related Work
	7 Conclusion
	References

	Formalization of the Fundamental Group in Untyped Set Theory Using Auto2
	1 Introduction
	2 Basic Constructions in Set Theory
	2.1 Axioms of Set Theory
	2.2 Extensible Records as Tuples
	2.3 Algebraic Structures
	2.4 Morphism Between Structures

	3 Auto2 in Untyped Set Theory
	3.1 Encapsulation of Definitions
	3.2 Property and Well-Form Tables
	3.3 Well-Formed Conversions
	3.4 Discussion

	4 Examples of Proof Scripts
	4.1 Schroeder-Bernstein Theorem
	4.2 Rempe-Gillen's Challenge

	5 Construction of the Fundamental Group
	6 Related Work
	7 Conclusion
	References

	Author Index

