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Preface

In 2007, the National Research Council (NRC) released a document titled “Toxicity 
Testing in the twenty-first Century: A Vision and a Strategy”, that called for a para-
digm shift in toxicology testing. The NRC report advocated for a testing platform to 
be based on in vitro methods instead of whole animal testing, and that takes a path-
way approach by studying perturbations of biological systems and key toxicity 
pathways. This approach would ideally use a combination of computational biology 
and a comprehensive array of high-throughput in vitro tests, preferably with cells 
and tissues. The adverse outcome pathway (AOP) framework was born out of this 
NRC’s call for action. The concepts underlying the AOP framework are not neces-
sarily new. Risk assessors and researchers had already adopted mode-of-action 
based approaches to determine mechanisms underlying adverse toxic effects, and 
biologists and ecologists had espoused translating stress responses across levels of 
biological organization for decades. However, what was new was the organizing 
framework and structure, the common terminology and a convergence of new tools 
(omics, computational, crowd-sourcing, global connectivity) that helped solidify 
the framework and propel it forward. Now, almost a decade after its conception, we 
have made great progress and the momentum is on the side of further development 
and advances. Currently, there is a worldwide community of scientists that contrib-
ute to the online knowledgebase, and there are regularly scheduled workshops and 
meetings that continue to move the science and framework forward, bringing in an 
increasingly broader range of expertise. Those that work on AOPs are no longer just 
biologists, but also include computer scientists, mathematicians, modelers, and 
social scientists. The framework started as an approach to collect and organize bio-
logical information with the original purpose to determine how toxic chemicals can 
perturb the biological pathways and affect apical endpoints relevant to individual 
and population risk assessment. However, because the AOP framework is chemi-
cally agnostic, it can eventually be used to determine the impacts of any stressor, 
and as such can potentially unite biologists that work at every level of biological 
organization. The goal of this book was to explore the current state of the science 
and regulatory aspects, but also to think a little outside the box and bring in authors 
that could discuss areas of research that have not been addressed fully but would be 
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required to move the AOP framework forward. While the title of this book implies 
the use of systems biology approaches to advance the AOP framework, we also 
wanted to include chapters focusing on novel technologies or approaches to advance 
the understanding of potential molecular initiating events, key events or different 
levels of biological organization. We asked authors to discuss topics such as epi-
genetics, omics, genetic engineering, cell free assays, life history and adaptation, 
behavior and social acceptance. We also asked authors to discuss non-model spe-
cies, invertebrates, plants and the potential of the zebrafish embryo. We wanted to 
describe novel quantitative and weight of evidence approaches that have the poten-
tial to overcome some barriers to prediction and we also wanted to reach scientists 
that have not been very active in this field yet. We hope that by including these 
topics and authors in this collection that this helps to advance the AOP framework 
by connecting to a broader range of scientific expertise and by embracing new areas 
of research.

Vicksburg, MS, USA� Natàlia Garcia-Reyero
East Lansing, MI, USA� Cheryl A. Murphy
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Chapter 1   
Advancing Adverse Outcome Pathways 
for Risk Assessment             

Natàlia Garcia-Reyero and Cheryl A. Murphy

Abstract  The Adverse Outcome Pathway (AOP) framework was first proposed by 
Ankley and colleagues back in 2010 (Ankley et al. Environ Toxicol Chem 29:730–
741, 2010). AOPs organize information across biological levels of organization, 
with common terminology and concepts and with the goal of informing human and 
ecological risk assessment. Not only was the framework rapidly embraced, it also 
spearheaded an unprecedented amount of research both nationally and internation-
ally dedicated to understanding, developing, and accepting AOPs. Although devel-
oping AOPs has made an impressive start, there are still areas of research that need 
to be focused on. Many uncertainties remain in the use and acceptance of AOPs for 
regulatory purposes and this book explores the advancement of AOPs for risk 
assessment by focusing on different aspects of AOP development such as incorpo-
rating behavior, non-model species, invertebrates, plants, synthetic biology and epi-
genetics. Novel methods for developing predictive tools via quantitative methods 
are explored, as well as social considerations of barriers to AOP acceptance.

1.1  �Background

Risk assessment has long relied on mechanistic information for hazard prediction. 
Some of the earlier endeavors include dose-response modeling efforts (Clewell 
et  al. 1995), and mode-of-action efforts such as the ones developed by the 
International Program on Chemical Safety (IPCS) to determine modes-of-action of 
pesticides and industrial chemicals of human relevance (Willett et  al. 2014). 
Conceivably, one of the first main efforts for pathway-based approaches is the 
Mode of Action (MoA) framework for human health risk assessment. MoA is a 
series of key events (KE) along a biological pathway from the initial chemical 

N. Garcia-Reyero (*) 
Environmental Laboratory, US Army Engineer Research & Development Center,  
Vicksburg, MS, USA
e-mail: natalia@icnanotox.org 
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interaction to the toxicological outcome, with KE being defined as measurable and 
necessary precursors events to the adverse outcome (see Chap. 17 for more infor-
mation). The National Research Council further developed this concept by envi-
sioning a network of pathways leading to a predictive, hypothesis-driven toxicity 
assessment (NRC 2007). This toxicity pathway was defined as a cellular response 
pathway that, when sufficiently perturbed, is expected to result in adverse health 
effects. More recently, this concept was further characterized for both human health 
and ecological risk assessment as the adverse outcome pathway (AOP) (Ankley 
et al. 2010). An AOP was defined as a conceptual construct that portrays existing 
knowledge concerning the linkage between a direct molecular initiating event and 
an adverse outcome that is relevant to risk assessment. AOPs are modular and com-
posed of reusable elements, key events (KEs) and key event relationships (KERs). 
They are considered living documents that will evolve over time as new informa-
tion is available (Villeneuve et al. 2014). From the initial dose-response modeling 
efforts to the MoA or AOP frameworks, it is clear that these pathway-based 
approaches to understand and organize mechanistic information are the base of the 
remarkable changes in the way risk assessment is performed (reviewed in (Willett 
et al. 2014)). Delineating and understanding mechanisms and the physiological dif-
ferences between test species and target species, are the only path forward for 
cross-species extrapolations, particularly for sensitive populations that are at risk of 
extinction. Further, understanding mechanisms allows for the development of quan-
titative models to aid prediction, which in turn can be used to understand multiple 
stressor scenarios.

1.2  �AOP Development

Many challenges remain in the advancement of informative and predictive AOPs. 
Particularly, there is a need to establish credible links between responses at the 
molecular or cellular level and adverse outcomes measured at higher levels of bio-
logical organization. Therefore, computational tools and models that quantify KERs 
within an AOP are of special interest and large efforts are being made to develop 
them. There is also a need to understand how pathways differ by conditions and 
states such as life stages, sex, exposure, and species. In this chapter, we explore 
some of the main efforts being developed as well as some new potential areas of 
interest to AOP development (see Fig. 1.1).

1.2.1  �Alternative Methods and Non-model Species  
for AOP Development

A very exciting aspect of AOPs is their potential to aid in the development of alter-
native methods and in vitro/in silico models that could lead to reducing and eventu-
ally eliminating animal testing (Garcia-Reyero 2015). Many ongoing international 

N. Garcia-Reyero and C.A. Murphy
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efforts are focused on developing more predictive in vitro/in vivo methods to reduce 
animal testing. For instance, the National Toxicology Program Interagency Center 
for the Evaluation of Alternative Toxicological Methods (NICEATM) is an office 
within the US National Institute of Environmental health Sciences (NIEHS) that 
supports the development and evaluation of new, revised, and alternative methods to 
identify potential hazards to human health and the environment, with a focus on 
replacing, reducing, or refining animal use. Furthermore, the Interagency 
Coordinating Committee on the Validation of Alterative Methods (ICCVAM), a per-
manent committee of the NIEHS under NICEATM, is composed of representatives 
from fifteen US Federal regulatory and research agencies that require, use, generate, 
or disseminate toxicological and safety testing information. This committee also 
maintains a page listing alternative testing methods accepted by US and interna-
tional regulatory authorities that can reduce animal use and improve animal welfare 
(https://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/acceptance-of-alternative-
methods/index.html).

There are many other efforts focused on what is known as 3Rs (reduce, refine, 
and replace) in research and regulation with the goal of guaranteeing that animal 
welfare meets the highest standards and that the minimum use of animal studies are 
performed. For instance, the Human Toxicology Project consortium (https://human-
toxicologyproject.org) is a group of stakeholders with the objective of accelerating 
the implementation of a biological pathway-based approach to toxicology, which 
will help develop better predictive tools and hasten the replacement of animal use in 
toxicology. The American Society for Cellular and Computational Toxicology 
(ASCCT) is a scientific society dedicated to the promotion of toxicology testing and 
research that reduces and replaces the use of animals. The John Hopkins Center for 
Alternatives to Animal Testing (CAAT) is part of the John Hopkins University and 
promotes humane science by supporting the creation, development, validation and 
use of alternatives to animals in research, product safety testing, and education. 
They even have an official journal, ALTEX, dedicated to Alternatives to Animal 
Experimentation, (http://altweb.jhsph.edu/altex/index.html). The PETA Interna
tional Science Consortium http://www.piscltd.org.uk/) promotes non-animal 
research methods and coordinates the scientific and regulatory expertise of its mem-
bers with the goal of replacing tests on animals.

These methods can help identify potential toxicity of chemicals or mixtures, 
particularly when the molecular initiating events (MIE) or KEs leading to adverse 
outcomes they measure have already been identified. Several efforts have been 
made to link in vitro tests to AOPs. For instance, Vinken and Blaauboer developed 
an in vitro basal cytotoxicity testing strategy for new chemicals that lack information 
on potential toxicity. This approach was based on a newly proposed generic AOP 
linking chemical insult to cell death (Vinken and Blaauboer 2017). The skin sensi-
tization AOP is another example where in vitro assays can provide an accurate pre-
diction of an adverse outcome. Three non-animal test methods addressing either the 
MIE, KE2 or KE3 are accepted as OECD (Organisation for Economic Co-operation 
and Development) test guidelines, therefore accelerating the development of inte-
grated approaches for testing and assessment (reviewed in (Ezendam et al. 2016)).

N. Garcia-Reyero and C.A. Murphy
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Another example of high-throughput in vitro screening to detect MIEs and KEs 
is the US EPA Endocrine Disruptor Screening Program (EDSP, see Chap. 2). The 
EDSP is a regulatory program designed to screen and test chemicals for potential 
endocrine bioactivity and the risk of endocrine disruption in humans and wildlife. 
Other US federal programs such as the EPA’s Toxcast program (http://www2.epa.
gov/chemical-research/toxicity-forecasting) or the Tox21 collaboration (http://
www.ncats.nih.gov/tox21) also use high throughput assays to screen thousands of 
chemicals for hundreds of molecular targets as potential MIEs and KEs.

It is worth noting that the majority of these 3Rs efforts are focused on human 
health-related AOPs. Nevertheless, there is increasing interest on efforts to develop 
them for environmental-related AOPs. Chapter 3 explores the use of cell-free assays 
as species agnostic, in vitro toxicity-testing tools of potential relevance to ecologi-
cal risk assessment. Similarly, Schroeder and colleagues advocate the use of high 
throughput toxicity testing coupled with AOP knowledge for environmental moni-
toring and risk assessment (Schroeder et al. 2016). Arguably, the knowledge, tech-
niques and expertise acquired from the human health arena will be also applicable 
to the development of environmental toxicology related AOPs.

1.2.1.1  �Model and Non-model Species

Toxicity testing of chemicals is extremely costly in money, time, and animal lives. 
This provides limitations to fully understand the hazard potential of many com-
pounds. While high throughput in vitro assays can rapidly provide accurate infor-
mation about the mechanisms of action or MIE of thousands of chemicals (Knudsen 
et al. 2011; Kleinstreuer et al. 2014), they often fail to capture the potential adverse 
effects at the organism level due to the lack of a complete system. The fish embryo, 
and particularly the zebrafish (Danio rerio) embryo, has been proposed as a model 
to address these limitations (reviewed in (Planchart 2016)). While fish embryo mod-
els are of interest because of their low maintenance and husbandry costs, they also 
had reduced animal welfare concerns during the embryonic stages. The National 
Institutes of Health Office of Laboratory Animal Welfare (NIH OLAW) considers 
fish as live animals after hatching, which is now described to be at 72 h post fertil-
ization (hpf) for zebrafish. It also states that zebrafish larvae under 8 days of age do 
not feel pain or distress. Nevertheless, new developments in the field are likely to 
affect the standards and IACUC policies applied to zebrafish embryo research 
(Moulder 2016; Bartlett and Silk 2016). (See Chap. 4 for more information on the 
fish embryo for AOP development).

There is also increasing interest in using invertebrate model species for the devel-
opment of AOPs. Invertebrates provide many advantages over the use of vertebrate 
species such as generally shorter life cycles that allows for faster chronic and full 
cycle toxicity tests (see Chap. 5).

Current testing strategies for defining toxicity reference values in ecological risk 
assessment rely on extensive animal testing with selected model species. Results are 
then extrapolated to other species of interest. Nevertheless, this could lead to great 

1  Advancing Adverse Outcome Pathways for Risk Assessment
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uncertainty due to unknown species sensitivity differences. Toxicity pathway-based, 
in vitro, in silico, and read-across approaches have been proposed to decrease uncer-
tainty in cross-species extrapolation for risk assessment or toxicity prediction on 
non-model species (see Chap. 6).

1.2.2  �Novel Approaches for AOP Development

1.2.2.1  �Systems Approaches

There are many different approaches being used to advance AOPs. For instance, 
omics technologies can provide mechanistic information on the effects of chemicals 
and can therefore help elucidate mechanisms of toxicity (see Chap. 9). In recent 
times, efforts have been focused on developing measurable linkages between KEs 
in order to establish quantitative AOPs (qAOPs). Different systems and modeling 
techniques are being considered and applied to develop measurable KERs such as 
flux balance analysis, reverse toxicokinetic models, or physiologically-based mod-
els (see Chaps. 13 and 14). In particular, the linkages between qAOPs and dynamic 
energy budgets (Chap. 14) could improve risk assessment by tapping into 30 years 
of established metabolic theory and to constrain qAOPs within realistic energetic 
demands of organismal function. Physiologically-based qAOPs that incorporate 
cell-free assays can, in principle, be used to interpret the impact of multiple con-
taminants on ecologically-relevant endpoints such as egg production (Chap. 16). 
Leonard and colleagues advocate the use of a tiered approach to incorporate AOPs 
into risk assessment, both in poor and rich data scenarios, and explore the use of 
systems approaches to develop AOPs (see Chap. 12). Systems approaches can also 
lead to the development of computationally predicted AOPs (cpAOPs). These 
cpAOPs can serve as scaffolds to accelerate the expert curation of AOPs and provide 
guidance on testing strategies, such as identifying pathway targets that lack genomic 
markers or high-throughput screening tests (Oki et al. 2016; Bell et al. 2016; Oki 
and Edwards 2016).

Other efforts involving systems approaches include the use of machine learning 
models to predict adverse outcomes from in vitro assays. Strickland and colleagues 
combined data from in chemico and in vitro assays as well as physicochemical 
properties and in silico read-across prediction of skin sensitization hazards into 
groups. The groups were then evaluated using two machine learning approaches, 
logistic regression and support vector machine. The models performed better at 
prediction than any of the alternative methods alone or test batteries combining data 
from the individual methods (Strickland et al. 2016). Models were also built to pre-
dict potency categories using four machine-learning approaches. A two-tiered strat-
egy modeling sensitizer/non-sensitizer responses and then classifying the sensitizers 
as strong or weak provided the best performance (Zang et al. 2017). These results 
suggest that computational models using non-animal methods may provide valuable 
information to predict adverse outcomes.
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Computational models of biological systems at different scales can therefore 
provide means and platforms to integrate biological understanding to facilitate 
inference and extrapolation. Furthermore, the systematic organization of knowledge 
into AOP frameworks can inform and direct design and development of predictive 
models to enhance the use of mechanistic and in silico data for hazard assessment 
(Wittwehr et al. 2016). In particular, models that can integrate suborganismal pro-
cesses to predict outcomes at higher levels of biological organization, such as popu-
lation or community level responses, are needed. Integration with dynamic energy 
budgets and individual-based models is one such approach (Chap. 14) but there are 
also many other ways to approach these problems. In order to advance the develop-
ment of qAOPs for ecological risk assessment Wittwehr and colleagues suggest 
encouraging the engagement of the modeling community through crowd-sourcing 
challenges. An example of a successful crowd-sourcing effort is the Dialogue on 
Reverse Engineering Assessment and Methods (DREAM, (Stolovitzky et al. 2007)). 
The DREAM challenge has revolutionized the use of systems biology approaches 
and has pioneered the development of many of the algorithms that are now used. 
Furthermore, the challenge not only brings researchers together to work towards a 
common goal but also produces robust performance evaluation criteria (Wittwehr 
et al. 2016). Thus, a similar approach could be used for the advancement of qAOPs.

1.2.2.2  �Behavior

Behavioral assays are widely used in toxicology research and can be powerful indi-
cators of dysfunction because behavior integrates molecular, physiological, and 
environmental stimuli. However, such assays are challenging to incorporate into the 
AOP framework because of the difficulties in anchoring a behavioral change to 
molecular response (Chap. 8) and then to inform human and ecological risk assess-
ments (Murphy et al. 2008). Recently, there has been a focus on understanding the 
molecular processes involved in behavioral change (e.g., Raferty and Volz 2015; Jin 
et al. 2016), but this area of research is in its infancy. Rather than assuming signifi-
cance to any behavioral perturbation, behavioral endpoints must be categorized and 
validated as relevant for risk assessment for human or ecological health (Chap. 8), 
because then mechanistic linkages to higher levels of biological organization are 
possible.

1.2.2.3  �Synthetic Biology and Genetic Engineering

The revolution in the field of synthetic biology and genetic modification has led to 
developments and advancements hard to imagine just a few years ago (see Chap. 10). 
Within the last 10 years, numerous tools have been developed for the genetic modi-
fication of many different species (Baltimore et  al. 2015). These recent advance-
ments include a powerful gene-editing technology known as CRISPR that has been 
described as the biggest game changer to hit biology since PCR (Ledford 2015). 
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While these methods hold great promise in becoming standard techniques to under-
stand gene function in both model and non-model organisms, many are worried that 
this fast developing field pace leaves little time for addressing the ethical and safety 
issues that can raise from these types of experiments (Ledford 2015). For instance, a 
recent study developed a gene drive system targeting female reproduction in the 
malaria mosquito vector that could expedite the process to suppress mosquito popu-
lations to levels that do not support malaria transmission (Hammond et al. 2016). 
These gene drive experiments that could manipulate wild populations should be con-
sidered and evaluated carefully in order to assess context-dependent risks (Champer 
et al. 2016).

Genetic and synthetic biology approaches can also be used to elucidate MIEs, 
including protein binding and function. For instance, using amino acid substitutions 
can help understand specificity, and binding sites and could be useful for species 
extrapolation. Targeted knockouts can help elucidate specific pathways and KEs, 
and genetic devices can be used to elucidate both MIEs and KEs (see Chap. 10).

1.2.2.4  �Epigenetics

The term epigenetics refers to both heritable processes independent of the DNA 
sequences, and transcriptional regulatory processes that influence many cellular 
properties (see Chap. 11). While it is now believed that an epigenetic change can be 
either a molecular initiating event or a key event leading to adverse outcomes, epi-
genetic events have hardly been considered as part of an AOP. This is not only due 
to the uncertainty related to how to incorporate them but also to the lack of under-
standing of the basic mechanisms underlying epigenetic regulation. Nevertheless, 
the field is rapidly advancing and there is no doubt that epigenetics will be an impor-
tant part of heritable adverse effects understanding in the near future.

1.2.2.5  �Metagenomics and the Microbiome

The term microbiome refers to the full collection of genes of all the microbes in a 
community, even though it is often used to refer to the full collection of microbes in 
such community, also known as microbiota. The importance of the microbiome has 
been gaining recognition in the last years, even being described as the “last organ 
under active research” (Baquero and Nombela 2012) or “microbial organ” (Spor 
et al. 2011). Many researchers now have shown the close relationship between the 
microbiome, resistance, and susceptibility to stressors and diseases.

Claus and colleagues evaluated the relationship between (human) gut bacteria 
and environmental pollutants in order to understand the relevance of the bacteria-
toxicant relationship for the host (Claus et al. 2016). Many factors can affect the 
composition of the microbiome, including environmental and other stochastic fac-
tors as well as the host genetics (Spor et al. 2011; Claus et al. 2016). This is relevant 
because the microbiome influences many critical roles in essential host processes, 
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such as digestion, immunity, epithelial development, or disease outbreak in humans 
and other vertebrates including fish (Nayak 2010; Giatsis et al. 2015). Human gut 
microbiomes have the ability to metabolize chemicals and can be classified broadly 
within five different core enzymatic families (azoreductases, nitroreductases, 
β-glucuronidases, sulfatases and β-lyases) which are involved in the metabolism of 
many environmental pollutants (Claus et al. 2016). It is clear that bacterial metabo-
lism of pollutants can affect their toxicity for the host. At the same time, pollutants 

Fig. 1.2  Environmental chemicals and the gut microbiota can interact via multiple mechanisms. 
(a) Environmental chemicals may be directly metabolized by the gut microbiota. (b) Xenobiotics 
can be readily absorbed from the GI tract, then transported by the portal blood to the liver for 
detoxification. The liver tends to oxidize xenobiotics, forming conjugates with glucuronic acid, 
sulfate, or glutathione that can be excreted in the bile and enter the intestine where microbiota 
metabolism can take place. The GI microbiota generally deconjugates and reduces the hepatic 
xenobiotic metabolites, resulting in the formation of non-polar molecules of lower molecular 
weight, which are readily reabsorbed. Microbiota-mediated deconjugation of metabolites previ-
ously conjugated by the liver may regenerate the original xenobiotic or form new toxic metabo-
lites. (c) Environmental chemicals can interfere with the composition of microbiota. (d) Pollutants 
can also change the metabolic activity of the microbiota (Adapted from Claus et al. (2016))
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can alter the composition of the microbiome, which could also contribute to their 
toxicity (Fig. 1.2).

It is clear that the microbiome can play a role in the relative toxicity of a com-
pound and could be considered as a potential influence on KERs and even AOP 
networks. While a better understanding of the microbiome influence on adverse 
outcomes will need more intensive research, it should certainly be considered to 
fully understand the toxicity of chemicals and/or their metabolites.

1.2.2.6  �Genomics, Evolution and Adaptation

Ecotoxicology and the AOP framework are involved in understanding how chemi-
cals or stressors affect individuals, populations, and ecosystems. However, concerns 
have often been raised by the scientific community about the oversimplification of 
real ecological conditions (Calow and Forbes 2003; De Schamphelaere et al. 2011). 
One of those oversimplifications relate to the fact that conventional AOPs are mostly 
focused on understanding the adverse effects of a stressor on an individual/popula-
tion without taking into account genetic variability and adaptability, often using a 
single genotype (De Schamphelaere et al. 2011). This increases robustness and pre-
dictability of the adverse outcomes but might fail in predicting effects on evolving 
and adapting populations (Barata et al. 1998; Messiaen et al. 2010). Natural selec-
tion during stressor exposure might therefore be favoring more resistant genotypes 
that could eventually lead to adapted populations, which could have significant 
implications when assessing adverse effects.

Several studies illustrate the potential of populations to adapt to stressors. One of 
the best-known examples involves the Elizabeth River system in southeastern 
Virginia and its Atlantic killifish (Fundulus heteroclitus) populations. This aquatic 
system is heavily contaminated with polycyclic aromatic hydrocarbons (PAHs). 
While in some areas the populations were clearly impacted, some subpopulations 
displayed a remarkable resistance to the PAHs toxic effects on embryonic 
development (Di Giulio and Clark 2016). There is also evidence of an evolved toler-
ance to PAHs due to changes in enzymes related to oxidative phosphorylation 
metabolism in killifish hepatocytes (Du et al. 2015), as well as genetic differentia-
tion at specific nucleotides in the aryl hydrocarbon receptors AHR1 and AHR2, and 
specific AHR2 single nucleotide polymorphisms (SNPs) associated with a PCB-
resistant killifish population (Reitzel et al. 2014). Nacci and colleagues also pro-
vided genetic evidence for killifish adaptation to pollutants, therefore providing an 
example of contemporary evolution driven by human-mediated selection on natural 
populations (Nacci et  al. 2016). Furthermore, a follow up study identified the 
AhR-based signaling pathway as a target of selection for the killifish evolutionary 
adaptation, also suggesting that killifish high nucleotide diversity has likely been 
crucial for rapid adaptation (Reid et al. 2016).

While genetic variability and adaptation of populations might be extremely hard 
to understand, quantify, and incorporate into the AOP framework, they certainly 
warrant further study, particularly when the AOP framework is considered for 
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environmental monitoring, or susceptible and vulnerable populations and species. 
Mechanistic understanding underlying evolutionary theory, such as energetic trad-
eoffs may help formalize this endeavor (Groh et al. 2015). For example, the AOP 
link to dynamic energy budgets theory may provide a way to incorporate life his-
tory traits into AOPs which may facilitate cross-species extrapolations (Chap. 14).

1.3  �Current International Efforts and Challenges

International efforts are ongoing to further develop the AOP framework, including a 
large project effort coordinated by the OECD known as the AOP knowledge base 
(AOP-KB; http://aopkb.org) that provides a single point of access to several mod-
ules used for AOP development, exploration and description as well as AOP reposi-
tory (Fig. 1.3, Chap. 18). The AOP-KB is organized in a systematic, searchable, and 
transparent manner according to an established set of guidelines and principles that 

Fig. 1.3  The AOP-KB is an international effort to aid in the development and acceptance of AOPs 
and eventually AOP networks for both social acceptance and risk assessment
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facilitates evaluation of the suitability for various regulatory applications (Villeneuve 
et  al. 2014). The AOP Wiki (https://aopwiki.org/) is a collaborative international 
effort and represents a central repository for AOPs. The AOP-Xplorer module is a 
computational tool that enables the automated graphical representation of AOPs and 
AOP networks among them. The Effectopedia module is a modeling platform 
designed for collaborative development and utilization of AOPs. The Intermediate 
Effects database will host chemical-related data derived from non-apical endpoint 
methods and inform how individual compounds trigger MIEs and KEs.

The Society for the Advancement of AOPs (SAAOP) was created in 2014. The 
purpose of SAAOP is to promote and advance scientific research that fosters the 
development and use of adverse outcome pathways. The SAAOP maintains the 
AOP-Wiki under the guidance of the OECD Expert Advisory Group on Molecular 
Screening and Toxicogenomics (EAGMST).

In these times of social and political instability and overload of contradicting infor-
mation, it is important to ensure that novel approaches to risk assessment and policy-
making are transparent in order to avoid conflict and mistrust. AOPs are no exception, 
particularly during the developmental stage when a clear quantitative correlation 
between KE has not yet been established and assessment can be perceived as biased. 
Elliot and colleagues (see Chap. 19) recommend that AOPs be employed in “win-
win” situations such as the assessment of alternative methods in order to improve 
acceptance, while stressing the two principles that will allow the AOP framework to 
move further with social consent: engagement and transparency. AOP development 
exponential growth worldwide is overwhelming so it is important that standards, 
quality controls, and strict peer-review processes are developed and met. As men-
tioned earlier, collaborative international efforts and transparency will be crucial for 
the advancement of AOPs for risk assessment and for their social acceptance.

1.4  �Conclusions and Future Considerations

Regardless of the many challenges, we believe that AOPs will continue revolution-
izing the (eco)toxicology and risk assessment world and will hopefully be key in the 
development of novel, robust, and truly predictive alternative methods for animal 
testing. AOPs unite biologists that work across all levels of biological organization 
and because of a common framework and language, we expect AOPs to continue to 
grow and evolve as more scientists and funding agencies adopt and adapt the AOP 
framework. We hope that this book will inspire and promote discussion as well as 
novel developments for the use of AOPs in risk assessment.
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Chapter 2
Use of High-Throughput and Computational 
Approaches for Endocrine Pathway Screening

Patience Browne, Warren M. Casey, and David J. Dix

Abstract  The Endocrine Disruptor Screening Program (EDSP) screens and tests 
environmental chemicals for potential effects in the estrogen, androgen, and thyroid 
hormone pathways, and is one of the only regulatory programs designed around a 
mode of action framework. A variety of biological systems affect apical endpoints 
used in regulatory risk assessments and without mechanistic data, endocrine disrup-
tion cannot be determined. When the EDSP was developed in 1998, computational 
and high throughput approaches were intended to be part of the screening process, 
however, methods at that time were limited in availability and performance. 
Recently, the revolution in automated in vitro testing and computational toxicology 
has generated excellent tools that can be used for endocrine screening. Toxicity 
pathway and Adverse Outcome Pathway frameworks facilitate integrating diverse 
data for screening chemicals for potential endocrine activity. In addition, pathway 
frameworks can be used to evaluate performance of computational approaches as 
alternatives for low throughput and animal-based assays. Similarly, pathway frame-
works may be used to evaluate the predictive performance of one or more computa-
tional models to predict downstream key events. Computational approaches such as 
these may provide an alternative to the EDSP Tier 1 battery and used for weight of 
evidence screening of a chemical’s potential endocrine activity.

Disclaimer  The views expressed in this chapter are those of the authors and do not necessarily 
reflect the views or policies of the U.S. EPA or NIH
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2.1  �The Endocrine Disruptor Screening Program

The US EPA’s Endocrine Disruptor Screening Program (EDSP) is a regulatory pro-
gram designed to screen and test chemicals for potential endocrine bioactivity, and 
the risk of endocrine disruption in humans and wildlife. The EDSP was established 
in 1998 in response to amendments of the Food Quality Protection Act (FQPA) and 
Federal Food, Drug and Cosmetic Act (FFDCA) compelling EPA screen chemicals 
for potential estrogenic effects in humans (FQPA 1996; SDWA 1996). In response, 
EPA convened the Endocrine Disruption Screening and Testing Advisory Committee 
comprised of regulatory, industry, and academic experts to make recommendations 
to the agency on development and implementation of an endocrine disruptor screen-
ing program. The committee recommended expanding the scope to include effects 
of chemicals on the androgen and thyroid pathways in wildlife and humans, and to 
do so employing a two-tiered screening and testing strategy (EDSTAC 1998). Tier 
1 was developed to screen chemicals for their potential to interfere with estrogen, 
androgen, and thyroid signaling pathways in both sexes of several vertebrate taxa. 
The Tier 1 screening battery includes five in vitro assays that provide mechanistic 
data and six short term, in  vivo assays include bioassays measuring changes in 
organ weights, as well as more complicated assays conducted in organisms with 
functional neuroendocrine axes (Fig. 2.1). The resulting battery of 11 complemen-
tary assays, when considered collectively in a weight of evidence evaluation, was 
expected to maximize sensitivity for identifying chemicals potential with endocrine 
activity while reducing the limitations of individual assays. Tier 2 was developed to 
characterize dose-response relationships and test for adverse effects of chemical 
exposures. Also developed were four longer term, definitive Tier 2 assays that test 
for endocrine disruption in mammals, fish, amphibians and birds, that include apical 
endpoints necessary for risk assessment (Fig. 2.1).

Evaluating results from multiple screening and testing assays conducted at vari-
ous levels of biological organization can present a challenge for interpretation. In 
order to rigorously screen chemicals in the EDSP Tier 1 data were conceptually 
organized in “estrogenic”, “anti-estrogenic”, “androgenic”, “anti-androgenic”, and 
“thyroid-active” endocrine pathways (EDSTAC 1998, US EPA 2011; Fig. 2.1). The 
apical endpoints of Tier 2 testing assays used in the EDSP and risk assessment relate 
to changes in growth, development and reproduction that are regulated by endocrine 
and non-endocrine biological pathways. Linking upstream events and mechanistic 
data from EDSP Tier 1 to adverse effects in Tier 2 requires confidence in the causal-
ity of an endocrine-specific mechanism. The EDSP screening and testing strategy 
links mechanistic data to apical endpoints and is a unique regulatory program 
designed around a toxicological mode of action framework (Fig. 2.2).

The biological and chemical domains of the EDSP are determined by the FQPA 
and FFDCA statues under which the program was established. The EDSP is respon-
sible for evaluating potential endocrine effects of all pesticide active and inert ingre-
dients, and chemicals found in drinking water sources which conceivably could 
include almost any chemicals in commerce (US EPA 2012). The universe of 
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Fig. 2.1  The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) screening battery of 11 
Tier 1 assays and definitive Tier 2 tests to identify dose-response relationships and adverse effects. 
Screening and testing data are interpreted by endocrine pathway. Though overly simplistic because 
whole-animal in vivo studies include multiple endpoints that measure effects at different levels of 
biological organization, a generic AOP (top) can be overlaid on the Tier 1 screening and Tier 2 
testing assays. E+ = estrogenic, E− = Anti-estrogenic, A+ = androgenic, A− = anti-androgenic, 
HPG axis = hypothalamic pituitary gonadal axis, HPT axis = hypothalamic pituitary thyroid axis. 
(*EPA guidelines harmonized with OECD. EOGRT extended one generation reproductive toxicity, 
MEOGRT Medaka extended one generation reproductive toxicity, LAGDA larval amphibian 
growth and development assay, JQTT Japanese quail toxicity test)

Fig. 2.2  The EPA EDSP Tier 1 and Tier 2 assays and endocrine screening and testing assays that 
are part of the OECD Conceptual Framework with endpoints mapped to a generic Adverse 
Outcome Pathway. MIE = Molecular Initiating Event. (MIE molecular initiating event, ER estro-
gen receptor, AR androgen receptor, ERTA estrogen receptor transactivation assay, FSTRA fish 
short term reproduction assay, AMA amphibian metamorphosis assay, EOGRT extended one gen-
eration reproductive toxicity, MEOGRT Medaka extended one generation reproductive toxicity, 
LAGDA larval amphibian growth and development assay)

2  Use of High-Throughput and Computational Approaches for Endocrine Pathway…
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approximately 10,000 chemicals relevant to the EDSP includes both data-rich 
chemicals subject to substantial in vivo testing prior to use (e.g., pesticide active 
ingredients), and data-poor chemicals with limited data or use information (e.g., 
non-pesticide industrial chemicals). The first test orders for EDSP Tier 1 screening 
on only 58 pesticide-active and 9 pesticide-inert ingredients were issued in 2009 
(http://www2.epa.gov/endocrine-disruption/overview-first-list-chemicals-tier-
1-screening-under-endocrine-disruptor). Manufacturers of eight active and seven 
inert chemicals voluntarily opted out of the pesticide market, and data for the 
remaining 52 ‘List 1 chemicals’ were submitted to EPA and weight of evidence 
decisions were finalized in 2015 (http://www2.epa.gov/ingredients-used-pesticide-
products/endocrine-disruptor-screening-program-tier-1-assessments). A second list 
of chemicals was identified in 2013, but test orders have yet to be issued by 
EPA. Based on the current timeline, screening all the remaining chemicals in the 
EDSP universe using the current EDSP Tier 1 battery would require decades.

In order to adequately screen and test chemicals for potential endocrine effects in 
a timely manner, a more rapid approach needs to be adopted. When the EDSP was 
initially conceived, in vitro high throughput screening (HTS) assays were proposed 
as an initial step to provide mechanistic data and prioritize chemicals for further 
in vivo screening. However, at the time, the availability and reliability of commer-
cially available assays were limited. In subsequent years, the technological revolu-
tion in biology has produced a number of reliable and readily available HTS tools 
available for toxicity testing. US Federal programs such as the Tox21 collaboration 
(http://www.ncats.nih.gov/tox21), and EPA’s ToxCast program (http://www2.epa.
gov/chemical-research/toxicity-forecasting) are now using HTS assays to screen 
thousands of chemicals for hundreds of molecular targets, and ToxCast and Tox21 
include many HTS assays relevant to estrogen, androgen, and thyroid pathways. 
These HTS tools have obvious application to the EDSP program and can increase 
the rate of chemical screening, identifying chemicals likely to pose the greatest risk 
to wildlife and human health. Integrating high throughput and traditional animal-
based toxicology data could be difficult to interpret, but because the underlying 
framework of the EDSP evaluates mechanistic and whole animal data and considers 
effects across levels of biological organization ranging from molecule, cell, organ, 
organ system, individual and population, inclusion of HTS data is a natural fit.

2.2  �Toxicity Pathways and Adverse Outcome Pathways

Toxicity pathways, described in the National Resource Council report on Toxicity 
testing in the twenty-first Century (NRC 2007), are cellular response pathways that 
when sufficiently perturbed results in adverse health effects, but do not necessarily 
include a molecular initiating event (MIE) or an adverse outcome. The Adverse 
Outcome Pathway (AOP) framework was derived from the toxicity pathway con-
cept and is a framework for organizing biological and toxicological knowledge 
(Ankley et al. 2010). There is substantial diversity in definitions of and components 
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included in toxicity pathways (Whelan and Anderson 2013). Recent efforts have 
attempted to avoid similar confusion by developing of precise vocabulary and defin-
ing criteria for evaluating candidate AOPs (Villeneuve et al. 2014a). AOPs begin 
with a molecular initiating event and terminate with an adverse outcome, linked by 
a series of biologically plausible and measurable intermediate key events at increas-
ingly complex levels of biological organization from cell to tissue, organ, and 
organism or population. Relationships between levels of biological organization 
may be causal, inferential, or putative and may be based on in vitro, in vivo or com-
putational data. Originally developed for ecotoxicology, population-level effects 
were considered to be an adverse outcome (Ankley et al. 2010; Kramer et al. 2011). 
As the framework has been adopted for human health assessment, adversity is gen-
erally considered a detrimental effect observed in an organism (Patlewicz et  al. 
2015). For the purposes of this discussion, a toxicity pathway may be considered a 
part of a (putative) AOP (Fig. 2.3). While both toxicity pathways and AOPs repre-
sent a simplification of complex biological processes, they provide organizing 
frameworks to link mechanistic information to data collected over different biologi-
cal scales and evaluate underlying biology knowledge (or gaps therein).

To support AOP development and foster collaboration and coordination among 
an international community, an AOP Wiki was developed by the US EPA, US Army 
Corps of Engineers, EU Joint Research Centre and other partners (https://aopkb.org/
aopwiki/index.php/Main_Page). In addition to its function as an open repository of 
AOP information, this resource is also expected to promote collective participation 
of a broader scientific and regulatory community in AOP development, evaluation, 
exploration and application. Once an AOP is described, the supporting weight-of-
evidence and strength of predictive relationships between key events and adverse 
outcomes can be evaluated using modified Bradford-Hill criteria to assess the 
strength of experimental methods and biological relevance of the observed responses 
(Becker et  al. 2015; Vinken 2013; http://www.oecd.org/chemicalsafety/testing/
adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm).

Fig. 2.3  A generic Adverse Outcome Pathway including a molecular initiating event (MIE), sev-
eral key events, and terminating in an adverse outcome which is at the level of the organism in 
human health assessment and at the level of population for ecotoxicology. For the purposes of this 
discussion, a Toxicity Pathway can be considered part of an AOP that may not include an adverse 
outcome. EDSP Tier 1 screening includes potential molecular initiating events, but not adverse 
outcomes. Similarly, EDSP Tier 2 testing assays provide organismal and population level apical 
effects, but lack mechanistic data
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The AOP concept was intended to provide information on apical endpoints con-
sidered in risk assessment and regulatory decisions, although the initial develop-
ment of AOPs has focused on highly specific biological pathways, using the 
framework primarily to identify gaps in biological pathways and generate research 
hypotheses. A single MIE (e.g., ligand binding to the estrogen receptor) may be 
associated with many separate AOPs, and similarly, an adverse outcome (e.g., 
reduced fecundity) may result from the perturbation in any one of several separate 
pathways. Development of detailed individual AOPs may provide valuable insights 
into underlying toxicological and physiological processes, but such fine scale con-
sideration of biological pathways is not generally applicable to regulatory science. 
Alternatively, linking multiple AOPs in an AOP network that integrates several 
MIEs leading to common key events and terminating in the same apical response 
(Knapen et al. 2015; Villeneuve et al. 2014b) has clear utility as a framework for 
organizing and identifying points of biological convergence common to more than 
one MIE. For endocrine screening, portions of a multitude of putative AOPs are 
assessed in the course of identifying bioactivity in relevant toxicity pathways.

2.3  �Screening and Testing for Endocrine Bioactivity 
and Potential Risk for Disruption

Toxicity pathway and AOP concepts are a natural fit in the EDSP evaluation of a 
chemical’s potential endocrine effects. The AOP conceptual framework relies on 
defined relationships between the MIE and downstream key events, relationships 
that have been well established for the estrogen, androgen, and thyroid pathways 
and inherent in the EDSP screening and testing approach. The EDSP screening 
and testing integrates data collected at different levels of biological complexity 
and was designed around a mode of action framework (EDSTAC 1998; US EPA 
2011). Endocrine perturbation, if sufficiently strong, may impact apical endpoints, 
but may be initially expressed as more subtle changes at cellular, organ, and 
organismal levels. These subtle effects resulting from chemical exposure may be 
overlooked in traditional acute and chronic toxicity studies if more fine-scale bio-
logical endpoints are not observed or apical responses may be incorrectly attrib-
uted to some other toxicity pathway in the absence of endocrine-specific 
mechanistic data.

The EDSP screening and testing approach assumes underlying biological links 
between endpoints measured in different assays and at different scales. While overly 
simplistic because some in vivo EDSP assays measure cellular, organ, and organis-
mal endpoints, the putative biological relationships between endpoints in each 
endocrine pathway can mapped to a generic AOP (Fig. 2.1). Tier 1 screening assays 
represent a toxicity pathway rather than a complete AOP (Figs. 2.1 and 2.3). The 
five in vitro screening assays are potential MIE or key events based on molecular or 
cellular responses. Two of the six in vivo assays (Uterotrophic and Hershberger) 
provide organ responses, and the four intact animal models (Male and Female 
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Pubertal, Fish Short Term Reproduction Assay or FSTRA, and Amphibian 
Metamorphosis Assay or AMA) provide data at the level of the organ system or 
organism, but do not include endpoints considered adverse outcomes (Figs. 2.1 and 
2.3). Tier 2 assays include apical endpoints that may be altered through a variety of 
biological pathways such as impaired growth or reproduction, but do not include 
information regarding a specific mechanistic of action (Figs. 2.1 and 2.3). Together, 
Tier 1 and Tier 2 data can be integrated as a full AOP including both the molecular 
initiating event and the adverse outcome (Figs. 2.1 and 2.3). Given the mode of 
action framework inherent in the EDSP, inclusion of assays measuring different 
levels of biological complexity and pathway-based organization for interpreting 
data, the EDSP is excellent example of how application of AOP concepts can 
strengthen science for regulatory decisions.

The EDSP is now incorporating HTS data in the endocrine screening and testing 
framework (US EPA 2015; Browne et al. 2015). As mentioned previously, endo-
crine screening was always meant to include HTS data, and the recent availability 
of hundreds of diverse HTS assays in programs such as ToxCast and Tox21 can 
elucidate MIEs and the sequence of early key events for thousands of chemicals 
structures. In addition to providing a framework for interpreting diverse biological 
data, toxicity pathways or AOPs provide a context for incorporating additional data 
(e.g., HTS) with Tier 1 screening battery and Tier 2 assay data in order to evaluate 
the endocrine activity of environmental chemicals. Moreover, toxicity pathways or 
AOPs can provide a context for comparing and evaluating the performance of alter-
native methods (e.g., HTS assays).

To increase available information and reduce the number of animals used to eval-
uate the safety of chemicals, there is widespread interest in using computational and 
high throughput screening alternatives to traditional toxicological methods. When 
initially proposed, Ankley et al. (2010) recognized adverse outcome pathways as 
potential frameworks for integrating mechanistic data with conventional animal-
based studies and for building predictive models. The toxicity pathway or AOP 
framework can be used to evaluate the performance of HTS alternatives to tradi-
tional, lower throughput in vitro assays that measure MIEs and key events, and can 
also help characterize the ability of in vitro HTS methods to predict effects down-
stream in the pathway, including in vivo responses (Fig. 2.4).

Adoption of new scientific methods requires the new method to be appropriately 
interrogated to establish the soundness of the data produced (i.e. validation). High 
throughput and ultra-high throughput assays are usually conducted in the few, suit-
ably equipped laboratories capable of rapidly screening thousands of chemicals. 
Traditional inter-laboratory validation studies may take years to complete and rely 
on relatively few chemicals tested in multiple labs, and are both not appropriate for 
high throughput methods and fail to exploit the advantages of HTS.  In contrast, 
implementing a performance-based approach allows for single lab validations by 
examining the performance of high throughput methods against large sets of struc-
turally diverse reference chemicals that are active (or inactive) over a wide range of 
potencies. For each molecular target, candidate reference chemicals can be identi-
fied from traditional toxicological methods and may be independent of the specific 
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assay method used to identify the chemical activity. For example, chemicals that are 
active and inactive in estrogen receptor (ER) signaling may be identified from ER 
binding, ER transactivation, cell proliferation, or ER cofactor recruitment assays. 
Reference chemicals active in more than one type of assay reduces inclusion of 
chemicals with erroneous activities due to their interaction with a particular assay 
technology (e.g., chemophores, cytotoxic chemicals, etc.). Extending this logic, ref-
erence chemicals identified using this approach are likely to be active across mul-
tiple levels of a toxicity pathway. A case study using the estrogen receptor agonist 
toxicity pathway is given below.

2.3.1  �Estrogen Receptor Model

The EDSP is including HTS assay results to identify estrogen receptor agonist 
activity and provide mechanistic data for inclusion in an AOP/toxicity pathway con-
text (US EPA 2015; Browne et al. 2015). Eighteen HTS assays that measure multi-
ple points in the ER signaling pathway using a variety of technologies include high 
throughput analogues of Tier 1 in vitro ER assays (e.g., ER binding and ER transac-
tivation assays). Concentration-response data from these 18 ER assays were inte-
grated into an ER model, the output of which provides a model score of the potential 

Fig. 2.4  A generic Adverse Outcome Pathway (AOP;) is shown (a) including a Molecular 
Initiating Event (MIE) is indicated in purple, Key Events (KE) indicated in blue, and Adverse 
Outcomes (AO) indicated in green. The pathway framework may be used to develop alternative 
methods and determine predictive performance. A Toxicity Pathway (b) may be part of an AOP 
and be used as an organizing frame work to determine how well predictive models predict down-
stream key events. Several models (c) may be combined to predict more complex biological out-
comes and ultimately may predict the adverse outcome
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agonist and antagonist activity, chemical potency, and a measure of assay-specific 
false positive activity of each chemical run in ToxCast (Judson et al. 2015). The 
redundancy of the 18 assays and inclusion of a variety of assays technologies repre-
sents a substantial benefit compare to the low throughput, animal-dependent Tier 1 
EDSP in vitro assays.

The performance of the ER model was evaluated against a relatively large set of 
structurally diverse reference chemicals. In vitro ER reference chemicals were iden-
tified by the Interagency Coordinating Committee on the Validation of Alternative 
Test Methods (ICCVAM; http://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/test-
method-evaluations/endocrine-disruptors/in-vitro-assay-review/brd/index.html) 
and OECD (2012) for the express purpose of validating novel in vitro assays. Forty 
ER agonist reference chemicals with reproducible in vitro assay results included 28 
agonists of differing potencies indicated by a range in AC50 (Activity Concentration 
at 50% of maximum)and 12 inactive chemicals (Judson et al. 2015). The consensus 
list of reference chemicals were positive or negative in multiple assay types and for 
this reason, the results obtained were likely biologically relevant rather than arti-
facts of a single assay technology. The ER model predicted the activity of in vitro 
reference chemicals with an overall accuracy of 93% and a false negative rate of 7% 
(Browne et al. 2015).

In addition to evaluating the ER model as a one-for-one data alternative to the 
low throughput ER binding and ER transactivation in vitro assays in the existing 
EDSP Tier 1 battery, the ER model performance was evaluated against the results of 
the rodent Uterotrophic bioassay measuring in vivo ER activation driving changes 
in rodent uterine weight. A systematic review of Uterotrophic studies published in 
scientific journals was undertaken to identify studies that were methodologically 
consistent with the EDSP Tier 1 guideline (Kleinsteuer et al. 2015). “Guideline-
like” studies were identified for 103 chemicals and study details including chemical, 
dosing, and uterine weight were extracted into a database (Kleinsteuer et al. 2015; 
http://ntp.niehs.nih.gov/pubhealth/evalatm/tox21-support/endocrine-disruptors/
edhts.html). Of the 103 chemicals with guideline-like Uterotrophic studies, 43 
chemicals had consistent ER agonist activities which was indicated by change in 
uterine weight (or lack thereof) in two or more independent guideline-like studies 
and were considered in  vivo reference chemicals (Kleinsteuer et  al. 2015). The 
in vivo reference chemicals were then used to evaluate the ER model predictions of 
the in vivo response. Again, the ER model performance was excellent against in vivo 
reference chemicals with an accuracy of 86% with a false negative rate of 3% 
(Browne et al. 2015).

Based on the performance of the ER model against the 40 in vitro reference 
chemicals and 43 of in vivo ER agonist reference chemicals (65 unique chemicals), 
EPA published a Federal Register Notice stating the intention of the agency to 
accept computational tools and predictive models as alternative data for the current 
EDSP Tier 1 ER binding, ERTA, and rodent uterotrophic screening assays (US 
EPA 2015). The performance-based validation approach used to evaluate the ER 
model predictions against both in vitro and in vivo assays relies on presumptive 
relationships between the MIE (i.e. ER binding), and changes at the level of the 
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protein, cell, and organ (i.e. change in uterine weight) consistent with the organiza-
tion and interpretation of the EDSP Tier 1 screening battery data. Computational 
methods can be examined as one-to-one alternatives for the current low throughput 
EDSP Tier 1 in vitro analogs, but as in the case of the ER model, when evaluated 
in the context of an AOP/toxicity pathway framework, the alternative method accu-
rately predicts downstream key events in the estrogen agonist pathway (e.g., 
Fig. 2.4b).

2.3.2  �Pathway Frameworks for Evaluating Computational 
Methods for EDSP Tier 1 Assays

Currently, the EDSP Tier 1 battery includes low throughput in  vitro assays for 
androgen receptor (AR) binding, aromatase inhibition, and alteration of steroido-
genesis (Fig. 2.1). The ToxCast and Tox21 programs incorporate HTS alternatives 
for these assays, and similarly to the ER model, the biological signaling pathway is 
more extensively covered by multiple HTS assays that rely on different assay tech-
nologies. The EPA intends to adopt a similar pathway-based approach for validating 
the one-to-one HTS alternatives for existing low throughput EDSP Tier 1 in vitro 
assays, and to use an AOP organizing framework to investigate the performance of 
the HTS assays and computational models to predict downstream in vivo endpoints, 
following the endocrine pathway approach for interpreting data outlined in the 
weight of evidence guidance (US EPA 2012). Though performance-based valida-
tion requires identifying a large, robust set of reference chemicals for each key event 
in the AOP currently included in the EDSP screening battery, the need to generate 
novel in vivo animal data for these purposes may be reduced by leveraging data in 
the scientific literature following the example of Kleinsteuer et al. (2015), and can 
further be used to populate endocrine AOPs.

In addition to examining computational alternatives for existing endpoints in 
the Tier 1 screening battery, the ToxCast and Tox21 programs, along with other 
emerging toxicological methods, provide mechanistic data that are not included in 
current EDSP screening. For example, several in vitro assays for potential thyroid 
hormone pathway MIEs are now available (https://www.ncbi.nlm.nih.gov/
pcassay?term=thyroid). In addition to HTS assays for thyroid hormone receptor 
interactions, which are not expected to be a common mechanism of action for thy-
roid active environmental chemicals, other MIEs such as thyroid peroxidase (TPO) 
inhibition (Paul-Friedman et al. 2016), thyroid releasing hormone receptor bind-
ing, thyroid stimulating hormone receptor, and alteration of the sodium/iodide 
symporter (NIS; Lacotte et al. 2013) are now available. These and other in vitro 
assays that provide mechanistic information helpful for interpreting the endocrine 
toxicity of environmental chemicals were not initially available for inclusion in 
EDSP screening but can be easily incorporated into a weight of evidence evalua-
tion using an AOP or toxicity pathway framework.
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Initial attempts to include alternative toxicological approaches in the EDSP 
have been limited to examining the performance of new technologies to predict 
an MIE and early key events immediately downstream from the MIE (Fig. 2.4b). 
Evaluations to date have been limited to the organ weight changes and have not 
included whole-animal responses. Alternative methods are not likely to replace 
in vivo methods on a like-for-like basis. For most chemicals, predicting whole-
animal responses measured in organisms with intact neuroendocrine axes (e.g., 
pubertal, fish, and amphibian assays) will be more complex and may require 
integration of several predictive models (Fig. 2.4c), multiple MIEs or Key Events 
(Fig. 2.5), and multiple endocrine pathways (Fig. 2.6). Predictive models may be 
validated separately using the appropriate endocrine toxicity pathway, and then 
models can be integrated to predict complicated biological responses (Fig. 2.6). 
AOP concepts can continue to provide a valuable framework for organizing data 
and interpreting the biological basis for integrated approaches to testing and 
assessment used for making regulatory decisions, or identify additional data 
needs (Burden et  al. 2015, Allen et  al. 2014; Patlewicz et  al. 2015; Fig.  2.6). 
Ultimately, in vitro tests may be implemented into integrated testing strategies 
and provide alternatives to conventional in  vivo endocrine toxicity testing 
(Vinken 2013).

Fig. 2.5  A generic Network Adverse Outcome Pathway (AOP;) is shown (a) including several 
Molecular Initiating Events (MIE) indicated in purple, Key Events (KE) indicated in blue, and an 
Adverse Outcomes (AO) indicated in green. The AOP network may be used to develop alternative 
methods for a weight of evidence to determine a chemical’s potential for endocrine bioactivity (b) 
and may be considered in lieu of EDSP Tier 1 screening data
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2.3.3  �Pathway Frameworks for Evaluating Computational 
Methods for Weight of Evidence Determinations 
of Endocrine Activity

Interpretation of the potential endocrine activity of a chemical screened in the EDSP 
Tier 1 battery is made by a weight of evidence determination, and a pathway-based 
interpretation of Tier 1 screening battery results (Fig. 2.1). Because the more com-
plicated, whole-animal assays contain more than one endpoint measured at different 
biological levels, mapping all Tier 1 endpoints in each endocrine pathway to a toxic-
ity pathway or AOP may improve the interpretation of Tier 1 battery results and add 
to the underlying biological plausibility. The weight of evidence guidance describes 
key lines of inquiry including agreement of outcomes within an individual assay 
(i.e. “complementarity”) and among the different assays in the battery (i.e. “redun-
dancy”). Using the AOP/toxicity pathway framework to organize and evaluate 
EDSP data, the consideration of redundancy in cellular and organ responses mea-
sured by different assays becomes easier to identify. Ultimately, predictive models 
developed and integrated as alternatives for individual Tier 1 assays may be used, 
alone or in combinations, as alternatives to the current screening data required for 
the EDSP Tier 1 weight of evidence decisions on a chemicals potential endocrine 
activity. Further, consideration of any other relevant scientific data can also be inte-
grated in pathway frameworks, and in combination with predictive models, may be 

Fig. 2.6  EDSP Tier 1 screening battery assays and Tier 2 testing assays and the high throughput 
screening (HTS) assays and predictive model alternatives. In the case of whole-animal in vivo 
assays (e.g., Female Rat Pubertal assay), several predictive models may be needed to predict the 
outcome in an integrated approach to testing and assessment (IATA). ER estrogen receptor, AR 
androgen receptor, STR steroidogenesis, THY thyroid
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adequate to determine if a chemical is a candidate for further testing and which tests 
are appropriate.

Currently, pathway concepts are being used as an organizational framework for 
validating alternative methods and integrating data for Tier 1 endocrine screening, 
and as mentioned previously, Tier 1 assays do not include apical endpoints required 
for risk assessment. Individual and population level responses that define adverse 
outcomes for human health and ecotoxicology, respectively, are captured in the 
longer, animal-intensive EDSP Tier 2 tests. As AOPs continue to be developed, 
populated, and validated, the hope is that eventually, quantitative AOPs may be used 
to model organism or population responses from upstream events in lieu of Tier 2 
tests currently needed for risk assessment (Groh et al. 2015), but may take years to 
develop and validate. Alternatively, working backward from an adverse outcome to 
identify an upstream, measurable key event in an AOP or a point of convergence of 
several AOPs may be interpreted as a qualitative biomarker or “tipping point” 
toward the adverse outcome and may replace the need to demonstrate adversity in 
whole-animal models. Identifying tipping points will also help to distinguish early 
key events in an endocrine AOP that may be adaptive from later responses indicat-
ing loss of homeostatic function. Endocrine responses, by their nature, are variable 
and compensate for a variety of physical and biological stressors. Apical effects due 
to endocrine toxicity are likely to be general (e.g., altered development, reproduction) 
and difficult to attribute to a specific pathway without underlying AOP relationships 
anchoring the outcome to an endocrine-specific MIE.  As AOP development and 
application continues to expand, eventually in silico and in in vitro approaches that 
target key events (KEs) along well defined pathways may provide sufficient infor-
mation for hazard identification and risk assessments with little to no in vivo testing 
(e.g., MacKay et al. 2013).

The range of regulatory applications possible for a particular AOP is defined by 
its completeness or maturation status. While incomplete AOPs can be used in first 
tier screening, such as formation of chemical categories, advanced quantitative 
AOPs with high level of certainty can be applied in full risk assessment. Thus, AOPs 
provide a foundation for the design of informed approaches to testing and assess-
ment that can strategically deploy screening level analyses to effectively focus test-
ing resources and progressively employ more resource-intensive assays aimed at 
reducing the uncertainty as required by risk assessment (Tollefsen et al. 2014).

A broader use of the AOP concept in endocrine screening and testing holds the 
potential to improve the understanding and prediction of endocrine disruption 
because development of respective AOPs would help to organize and evaluate exist-
ing and new knowledge. This would allow researchers to assess confidence in the 
predictive relationships, as well as to identify data gaps to guide further research. 
Elucidation of links between bioactivity and adverse effects in individuals or popu-
lations would provide the basis for a broader and more meaningful inclusion of 
endocrine activity data into risk assessment frameworks. Importantly, improved 
mechanistic understanding would facilitate the development of alternative tests, as 
well as aid extrapolation across species by promoting the reciprocal use of toxicity 
information generated in different species (Madden et al. 2014), and focus the test-
ing on key targets associated with a particular AOP or AOP network.

2  Use of High-Throughput and Computational Approaches for Endocrine Pathway…
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Chapter 3
Cell-Free Assays in Environmental Toxicology

Adeline Arini, Krittika Mittal, and Niladri Basu

Abstract  Predictive toxicology requires in vitro tests that can help prioritize, 
screen, and evaluate a large number of chemicals (i.e., thousands) in a relatively 
short period of time (days to weeks). Cell-free assays represent a relatively simple 
in vitro tool that can characterize the interaction between test chemicals and bio-
chemical targets, and are increasingly being used to study a range of fish and wild-
life, and also screen single chemicals as well as complex mixtures of environmental 
samples. The purpose of this chapter is to describe cell-free assays, and propose 
them as a species agnostic, in vitro toxicity-testing tool of potential relevance to 
ecological risk assessment. In doing so, the chapter aims to show that cell-free tests 
are an attractive tool that can be used in predictive ecotoxicology especially consid-
ering the limited availability of test organisms (particularly species that are at-risk, 
difficult to maintain in captivity, etc.), lack of proven cell-based tools (e.g., cell 
cultures and cell lines), societal concerns over animal testing, sheer number of eco-
logical species to study, and vast inter-species differences.

3.1  �Context

Thousands of chemicals need to be evaluated for regulatory purposes. For example, 
large endeavours such as the European Union’s Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) program, the U.S.  EPA 
ToxCast program, and the Chemicals Management Plan (CMP) in Canada were 
implemented in recent years to address legislative obligations and take action on 
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chemicals believed to be harmful. However, these regulatory programs face major 
hurdles. Foremost, the number of chemical substances for which toxicity data are 
required is tremendous and backlogged (e.g., 85,000 on U.S.  Toxic Substances 
Contract Act inventory; 23,000 under Canada’s Domestic Substances List; 107,000 
chemicals in EU manufactured within or imported into region in quantities exceed 
1000 tons). This number continues to grow, and is substantially higher when consid-
ering the complex environmental samples (e.g., effluents) that need testing.

Historically, testing chemicals has relied on in vivo studies that use whole ani-
mals. In many respects, in vivo toxicity testing responds to the concept of “one 
problem, one test” (Hartung 2009), which implies that a single animal study is con-
ducted to relate the effects of a single chemical with a single adverse outcome. A 
major consequence of this is that only few classes of contaminants have been sub-
jected to intensive testing. There remains thousands of chemicals (including mix-
tures) for which few or no test data are available (Judson et al. 2009). In addition, 
these types of studies yield findings that are largely descriptive, and the work is time 
consuming and prohibitively costly. For example, the U.S. EPA estimates that tradi-
tional testing of a single chemical may take 4 years. and cost $1-20 M USD (Martin 
et al. 2012). The EU REACH program realistic case scenario calculates the need for 
54 million vertebrate animals and $13.6B USD to achieve registration goals (Rovida 
and Hartung 2009). These realities represent major barriers to fulfilling legal obliga-
tions to manage chemicals.

The aforementioned limitations have been recognized by the U.S.  National 
Research Council (NRC) in their document entitled “Toxicity Testing in the 21st 
Century: A Vision and a Strategy” (NRC 2007). The main outcome of this NRC 
document was the recommendation of a new, predictive strategy as the cornerstone 
of 21st century toxicity testing. This predictive strategy is based on understanding 
and applying in vitro toxicity assays which predict cellular level effects that can 
next be extrapolated to effects on individuals. It de-emphasizes the need to base 
assessments on animal tests, thus promoting the 3-Rs principle for humane animal 
research that was developed over 50 years ago (Russell et al. 1959). This new strat-
egy harnesses recent advancements in the fields of cellular and molecular biology, 
toxicology, and computational biology among others. For example, advances in 
measurement technologies and fundamental toxicological understanding at the 
molecular level (i.e., transcriptomics, proteomics, metabolomics) have increased 
the amount and types of information available and potentially useful to risk asses-
sors (Ankley et al. 2010). These are now contributing towards the development of 
New Approach Methodologies (NAMs) as discussed in a recent workshop by the 
European Chemicals Agency (ECHA 2016).

A major conclusion of the NRC report was the expansion and utilization of in 
vitro tools in chemical risk assessment. In particular, the report articulated a need to 
establish in vitro tests that can prioritize, screen and evaluate a large number of 
chemicals (i.e., thousands) in a relatively short period of time (days to weeks). 
Regarding in vitro tests that span a multitude of molecular, biochemical and physi-
ological systems, the expectation is that advanced computational and bioinformat-
ics platforms could integrate the complex data streams and predict whole organismal 
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impacts. Such a plan lies at the heart of predictive toxicology. This is the basis of an 
ambitious program launched by the U.S. Environmental Protection Agency in 2007 
called Toxicity Forecaster (ToxCast™) (Judson et al. 2010). As detailed elsewhere 
(Dix et  al. 2007), ToxCast is comprised of several in vitro, automated chemical 
screening technologies that provide a cost-effective and rapid approach to screen for 
changes in biological activity in response to chemical exposure. The program has 
nearly 1000 high-throughput and automated assays in its repertoire that cover 
approximately 300 signalling pathways. The program has screened thousands of 
chemicals including 300 well-studied chemicals that have undergone extensive ani-
mal testing (Phase 1, Proof of Concept; (Judson et  al. 2010; Martin et  al. 2011; 
Sipes et al. 2011; Kavlock et al. 2012; Padilla et al. 2012)), >2000 chemicals from 
a broad range of sources including consumer products, green chemicals, and food 
additives (Phase 2, (Rotroff et al. 2013; Sipes et al. 2013)), and ~800 chemicals that 
are known or suspected endocrine disruptors (E1K library; Karmaus et al. 2016). In 
a recent paper, ToxCast scientists screened 10,000 chemicals (15 concentrations of 
each chemical in 3 independent experiments) through 30 different cell-based assays 
(Huang et al. 2016), and components of the testing platform are hailed to be able to 
screen 10,000 chemicals within a week (Attene-Ramos et al. 2013). Performing the 
same work in animals would have taken years and millions of dollars. Clearly the 
cost/performance ratio makes these attractive as tools to screen, prioritize and eval-
uate a large number of chemicals, and thus meet regulatory obligations as well as 
help satisfy societal concern.

The development of NAMS, particularly new in vitro tools for testing chemicals 
such as those referred to above has near-exclusively been focused on human health 
applications. Unfortunately they are of limited use in the ecological sciences in 
which many more species (and their complex interactions) are under scrutiny. Very 
few in vitro toxicity testing tools exist for the most standard ecotoxicological test 
species, and there is almost nothing for native species of ecological relevance. This 
is problematic since the extrapolation of results across species (i.e., from standard 
test species to native species of ecological relevance) introduces tremendous uncer-
tainty, as does extrapolation from controlled laboratory tests to real-world environ-
ments (Villeneuve and Garcia-Reyero 2011). For example, native bird species can 
be more sensitive or respond differently to chemicals than the standard lab model 
(Head et  al. 2008). These types of differences complicate decision-making and 
often necessitate additional testing.

There is a clear need to accelerate the development and application of novel in 
vitro toxicity testing tools for the purposes of ecological risk assessment, and this 
has been recognized by leading scholars in the field (Villeneuve and Garcia-Reyero 
2011). As such, the purpose of this chapter is to describe cell-free assays, and pro-
pose them as a species agnostic, in vitro toxicity-testing tool of potential relevance 
to ecological risk assessment. The chapter describes cell-free tests and how they are 
conducted, and also provides examples from the literature. In doing so, the chapter 
aims to show that cell-free tests are an attractive tool that can be used in predictive 
ecotoxicology especially considering the limited availability of test organisms (par-
ticularly species that are at-risk, difficult to maintain in captivity, etc.), lack of 
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proven cell-based tools (e.g., cell cultures and cell lines), societal concerns over 
animal testing, sheer number of ecological species to study, and vast inter-species 
differences.

3.2  �Description of Cell-Free Assays

Cell-free assays are simplified in vitro platforms that can help evaluate the effects of 
a test chemical on a biochemical process. A number of other in vitro approaches are 
also employed in toxicology such as primary cell cultures and immortalized cell 
lines. These have the advantages of better retaining in vivo tissue-specific character-
istics and cell line longevity thus in some cases facilitating the study of functional 
pathways (Bhogal et al. 2005) (Fig. 3.1). However, over time they tend to lose in 
vivo properties and cell lines are available only for a select number of species suited 
for laboratory studies. In comparison, while cell free platforms, typically performed 
in tissue homogenates, cell lysates or on purified molecules, might represent an 
over-simplified approach, with careful design consideration, the assays can provide 
complementary and useful mechanistic information on the nature of biochemical 
interactions (e.g., does the chemical act as an agonist or antagonist of a target 
receptor).

Here we briefly describe the steps involved in running a common cell-free assay, 
and focus on radioligand binding to a neurochemical receptor (Fig.  3.2). While 
assays may be permitted on other organ systems, we focus on the nervous system 
and draw upon examples based on previous work by our group (Basu et al. 2009; 
Rutkiewicz et al. 2011; Arini et al. 2016). Briefly, for receptor binding assays, cel-
lular membranes are isolated by homogenizing cerebral tissues in a 1:10 solution of 

Fig. 3.1  Schematic presentation of the main differences among animal-based, cell-based and cell-
free studies (Adapted from Englebienne (2005))
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buffer and then centrifuging the homogenate to isolate pellets, which are then 
washed and re-suspended frozen until use. When needed, the cellular membranes 
preparations are thawed and diluted to an optimal concentration, and then added to 
microplates that contain a glass filter bottom. The membranes are incubated with 
radioligands specific for the target of interest. The incubation conditions vary 
dependent upon the particular assay (e.g., length of incubation, temperature, buffers 
and assay cofactors). Following an incubation period, vacuum is applied to the well 
thus filtering the bound radioactive ligand (i.e., the receptor-ligand complex is 
trapped on the filter) from the unbound ligand that passes through the filter. The 
radioactivity retained by the filter provides an index of binding. Specific binding to 
receptors is defined as the difference in radioligand bound in the presence and 
absence of excess amounts of an unlabelled displacer. These assays can next be run 
in the presence of a test chemical to determine if that substance impairs ligand-
receptor interactions. A range of biochemical parameters can be investigated, such 
as ligand affinity and saturation kinetics, and the inhibitory (or potentiating) effects 
of a test chemical on such parameters can be quantified.

A great advantage of cell-free assays is that they are amenable for use from any 
species from which tissue can be obtained. This is especially useful for ecological 
species that are difficult to maintain under laboratory conditions or for which there 
exists limited data. As an example, one gram of brain tissue can yield enough 

Fig. 3.2  Schematic representation of cell-free receptor binding assays, in presence or absence of 
a test chemical
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cell-free extract to populate ~5000 wells in standard microplates (~50 plates), which 
can then be used to study hundreds of test chemicals. Cell-free assays can be per-
formed on field-collected specimens, with many assays being relatively unaffected 
by post-mortem delays and storage conditions. For example, several components of 
the cholinergic, dopaminergic, GABAergic and glutamate pathways were found to 
be stable for several weeks under various storage and temperature conditions 
(Stamler et  al. 2005) and not affected by post-mortem delays of up to 36–72  h 
(Piggott et al. 1992; Rutkiewicz and Basu 2012).

3.3  �Applications of Cell-Free Assays

Cell-free assays have been used in a number of biomedical applications and here we 
provide select examples. Cell-free assays have been used to study signal transduc-
tion via G-protein coupled receptors (GPCRs), the commercial interest of which 
lies in areas such as drug targeting, high-throughput screening systems and biosen-
sors (Leifert et al. 2005). A unique approach where synthetic biology intersects with 
toxicology has been in the development of cell-free protein synthesis (CFPS) plat-
forms (Schmidt and Pei 2011). In these systems, proteins of interest are synthesized 
under controlled conditions in which they can be actively monitored and rapidly 
sampled (Schmidt and Pei 2011). First developed with E.coli extracts, known as 
S30 extracts, a current example is Cytomim which is an E.coli cell-free platform 
can be used to produce protein therapeutics, toxins and other biochemicals that are 
difficult to make in vivo because of their toxicity or complexity (DeVries and Zubay 
1967; Schmidt and Pei 2011). A final example are purified enzymatic systems from 
fungi and bacteria that have been used to determine catabolism and biodegradation 
of fluorinated aromatic compounds and provide information on their fate in the 
environment using nuclear magnetic resonance (Murphy 2007). Together, these 
examples showcase the breadth and versatility of cell-free platforms. Given the 
chapter’s objective we restrict the following sections towards the application of 
cell-free tests towards the toxicological testing of chemicals, particularly for eco-
logical risk assessment. For more information on synthetic biology approaches see 
Chap. 19.

Arguably the most concerted effort to use cell-free assays has been through by 
the US EPA’s ToxCast program that was briefly introduced earlier. The cell-free 
methods in ToxCast have been performed using Novascreen from Caliper 
Biosciences (Judson et al. 2010; Knudsen et al. 2011). Chemicals were evaluated in 
approximately 300 signalling cell-free pathways: 77  G-protein coupled receptor 
(GPCR) binding assays; 32 CYP-450-related enzyme activity assays; enzymatic 
assays for 72 kinases, 22 phosphatases, 15 proteases, 6 histone deactylases (HDACs), 
3 cholinesterases, and 14 other enzyme activities; 18 nuclear receptor binding 
assays; 20 ion channel and ligand-gated ion channel activities; and 9 transporter 
proteins, 2 mitochondrial pore proteins, and 2 other receptor types (Kavlock et al. 
2012). First, a single concentration of test chemical was run through the assays. 
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Second, a concentration-response assay was conducted for all active and some 
selected inactive calls. Data from these assays are available online via the ToxCast 
Database. Toxicity signatures from ToxCast are defined and evaluated by how well 
these in vitro signals predict adverse outcomes in toxicity pathways relevant to 
human health. It is hoped that molecular initiating events, as realized via in vitro 
results, may be predictive of apical outcomes relevant to the whole organism. Some 
ToxCast studies have paid specific attention to making such in vivo and in vitro 
comparisons. For example, Knudsen et al. (2011) ran 292 high-throughput cell-free 
assays to evaluate 320 environmental chemicals. In vitro data from acetylcholines-
terase assays were compared to in vivo data available in the literature for rats and 
humans. A qualitative association between in vitro and in vivo activity was evident 
for 16 of 17 (94%) chemicals studied and so the authors concluded that, to a reliable 
extent, in vitro generally predicted the in vivo situation. Silva et al. (2015) compared 
GABA(A) binding, dopamine binding and AChE activity after in vivo and in vitro 
exposure to two pesticides (endosulfane and methidathion). This study showed 
good concordance between in vitro and in vivo results for dopamine pathways with 
endosulfan exposure. However, in other cases in vitro results were less representa-
tive of in vivo effects. The authors showed that some in vitro assays from ToxCast 
resulted in false negatives in several critical endpoints. For instance, there is a strong 
body of evidence in the literature relating endosulfan exposure to estrogenic and 
anti-androgenic effects in vivo, including receptor binding, whereas endosulfan was 
reported as being active only in a minimal number of ToxCast assays (Silva et al. 
2015). The authors suggested that the discrepancy between in vivo and in vitro 
responses was likely due to a lack of metabolic activation and limitations in assay 
design. ToxCast was designed as a collaborative effort and hence, discrepancies 
could also have resulted from the different analytical approaches or different assay 
types used by the different collaborating teams to interpret the data, and this could 
affect how a chemical is defined as having a positive or negative effect.

Cell-free assays have been extended to studying wild, native species not condu-
cive to lab-based experimentation, and the outcomes of some studies are briefly 
reviewed here. The inhibition potential of inorganic and methyl mercury (HgCl2 
and MeHgCl) on muscarinic cholinergic (mACh) receptor binding from both eco-
logical (mink, river otter) and biomedical (humans, rats, mice) tissue samples, was 
characterized in two brain regions (cerebral cortex and cerebellum) thus resulting 
in rich concentration-response data across organisms (Basu et al. 2005). The work 
showed that, across all species, that inorganic mercury was a more potent inhibitor 
of muscarinic receptor binding than organic mercury, and that the cerebellum was 
more sensitive than the cerebral cortex. Species-sensitivity could be determined and 
from most to least sensitive as: river otter > rat > mink > mouse > humans. The 
mean IC50 value (concentration that inhibits receptor binding by 50%) between the 
most and least sensitive species ranged from 5-8x. A follow-up study was per-
formed on cortical tissues from ringed seals to show that mercurials but not several 
organochlorines (e.g., PCBs, toxaphene, DDT, dieldrin) inhibited muscarinic cho-
linergic receptor binding (Basu et al. 2006). Another follow-up study documented 
that the M1 muscarinic receptor subtype was more sensitive to mercury-associated 
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inhibition that than the M2 subtype (Basu et al. 2008). Taken together, these studies 
demonstrate that cell-free assays are potentially useful in studying chemical-ligand 
interactions in native species that are otherwise difficult to study in the lab, such as 
marine mammals. The work demonstrates that cell-free assays may help resolve 
differences across species and chemicals.

Cell-free in vitro systems may also be useful in screening real-world samples, 
including complex mixtures. In a study concerning pulp and paper mill effluents, 
goldfish brains were homogenized and cell-free preparations were exposed to pri-
mary and secondary effluent extracts (Basu et al. 2009). The results showed that the 
extracts contained neuroactive substances that could alter the specific binding to 
several receptors and the activity of enzymes involved in the reproductive signal-
ling. For instance, some extracts increased ligand-binding to Dopamine-2 (D2) and 
GABA(A) receptors, whereas others competed with the N-methyl-D-aspartic acid 
(NMDA) and muscarinic cholinergic (mACh) receptors and decreased their binding 
by 26–75%. Activities of the monoamine oxidase (MAO) and the acetylcholinester-
ase (AChE) were the most impacted with enzyme inhibition reaching 50%. The 
authors concluded that these cell-free assays provide a novel in vitro tool to high-
light the plausible mechanism by which pulp and paper mills effluents may impair 
fish reproduction by interacting with neurotransmitter systems. In addition, these 
in vitro data were used to model potential effects at the level of the whole organism 
(Chap. 16). A similar approach was taken on wastewater effluents from an Area of 
Concern (AOC) in the Great Lakes region of North America (Arini et al. 2016). In 
this case two parallel approaches (in vivo and in vitro) were used to assess how the 
exposure to wastewater treatment plant (WWTP) effluents or to extracts targeting 
different classes of chemicals (steroid hormones, nonylphenols, bisphenol A) could 
impact neurochemistry in fathead minnow (Pimephales promelas). The ability of 
the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine 
oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and 
N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-
dependent neurotransmission were examined on brain homogenates. In vivo expo-
sure of FHM led to significant decreases of NMDA receptor binding in females and 
increases of MAO activity in males (2.8–3.2-fold). In vivo and in vitro results for 
FHM were consistent in some cases (but not in all cases). The main correlation was 
found for MAO activity that increased after both in vivo and in vitro exposures to 
steroid hormones-targeted extracts from the WWTP.

3.4  �Concluding Remarks

Cell-free assays provide a simple in vitro tool to characterize the interaction between 
test chemicals and biochemical targets, and ultimately these tools can be used to 
prioritize, screen and evaluate a large number of chemicals (i.e., thousands) in a 
relatively short period of time (days to weeks). Such has been shown via the 
U.S. EPA’s ToxCast program, in which cell-free assays are an important component. 
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Studies more oriented towards ecological risk assessment are beginning to show 
that cell-free assays can be used to study a range of fish and wildlife, and also screen 
single chemicals and complex mixtures of environmental samples.

There are several potential advantages of cell-free assays. Cell-free assays can be 
developed on cell components from potentially any vertebrate, and thus are species 
agnostic and may be of interest for organisms that are at-risk or difficult to maintain 
in captivity. The data from cell-free assays can be used to inform risk assessment 
and to provide additional evidence for read-across to toxicologically similar chemi-
cals. It can ultimately result in generating large databases and strengthening 
decision-making and environmental management.

The assays are amenable to a high degree of automation, and scalable to high-
throughput screening. These types of assays can be run in a relatively rapid manner 
and at a fraction of the cost associated with animal bioassays. Certain cell-free 
assays can attain a high level of reproducibility, specificity, and sensitivity. When 
assays are strung together into a systems/pathway-based manner, the assay results 
may yield plentiful quantitative concentration-response data that may be used to 
develop predictive models. This information may help develop hypotheses (e.g., 
candidate toxicants, sensitive pathways) to be further tested via animal models and 
may also enable inter-species differences to be uncovered.

Cell-free assays characterize simple interactions between a molecular target and 
a contaminant, and such an interaction may be considered a molecular initiating 
event which represent the first sequence of events in an adverse outcome pathway 
(Landesmann et  al. 2013; Ankley et  al. 2010). For example, the toxic actions of 
domoic acid are mediated via its agonism of kainate receptors (Watanabe-Sailor 
et al. 2011), and so this first key molecular initiating event could be developed into 
a cell-free assay for the purposes of predictive ecotoxicology.

Despite the aforementioned advantages, as with any technology or method there 
exist limitations. Foremost among them is that the assays represent a simplistic 
biological system. They lack the requisite cellular machinery found in traditional in 
vitro methods such as cell lines and cell cultures, yet one may argue that they repre-
sent more meaningful models than can be achieved in silico. They lack the meta-
bolic capacity of cells though future endeavours could aim to increase their realism 
via co-incubations with biological cofactors (e.g., S9 fractions). Moving forward, 
validation studies that enable comparisons between data from cell-free assays and 
physiological responses from the whole organism are required to establish these in 
vitro testing tools as reliable models.
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Chapter 4   
The Fish Embryo as a Model for AOP 
Development             

Lucia Vergauwen, Steven Van Cruchten, and Dries Knapen

Abstract  Fish are routinely used for evaluating aquatic toxicity to vertebrates to set 
environmental quality standards. Tests using early life-stages of fish are more cost-
efficient compared to tests using adult fish while maintaining the physiological rel-
evance of a vertebrate whole-organism test system. Ethical considerations are also a 
driver for the use of fish embryos since they are considered alternative testing mod-
els during the early stages of development. Additionally, both in human and environ-
mental toxicology there is a strong global interest in increasing the use of mechanistic 
information to support hazard assessment. The AOP (adverse outcome pathway) 
approach offers an interesting framework for developing mechanistically-based 
alternative testing methods using fish embryos. Once developed, AOPs can facilitate 
the identification of assays targeting key events, which have high predictive value for 
an adverse outcome of interest. In this chapter we first discuss what kind of informa-
tion on the general biology and physiology of a fish species is important in order to 
use the embryonic life stage of that species as a model for AOP development, includ-
ing aspects such as endocrinology, reproduction strategies, availability of genomic 
information, transgenic lines, and biotransformation capacity during embryonic 
development. Secondly, we provide an overview of strategies and examples of AOP 
development using fish embryos. In this context, we discuss the application of an 
iterative AOP development cycle, development of Fish Early Life-Stage (FELS) 
AOPs for developing alternative strategies for chronic toxicity testing, development 
of AOP networks, and development of fish AOPs for endocrine disruption.
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4.1  �Introduction

Both vertebrate and invertebrate toxicity tests are used to provide an ecologically 
relevant basis for environmental quality criteria. Within the vertebrate tests, fish are 
valuable sentinels for evaluating aquatic toxicity since they represent a high trophic 
level in the aquatic food chain. However, testing for chronic fish toxicity is one of 
the most animal demanding areas in environmental risk assessment. Around 
30 years ago, the Fish Early Life-Stage (FELS) test (OECD Testing Guideline [TG] 
210, OECD 2013b; OPPTS 850.1400, USEPA 1996) was introduced as an alterna-
tive to the fish full life cycle test (McKim 1977; Woltering 1984). The latter test 
included all developmental life stages and assessed survival growth and reproduc-
tion. McKim et al. reviewed a set of 56 fish full life cycle tests and found that the 
embryo-larval and early juvenile life stages were the most, or among the most, 
sensitive and therefore concluded that tests with these early life stages could be use-
ful for establishing environmental water-quality criteria. Furthermore, experiments 
using the early life-stages of fish are more cost-efficient compared to tests using 
adult fish while maintaining the physiological relevance of a vertebrate whole-
organism test system. Currently, the FELS test is the primary guideline used to 
estimate chronic toxicity of regulated chemicals (pesticides, industrial chemicals, 
pharmaceuticals, food/feed additives, and cosmetics) to fish. Results obtained using 
these test guidelines (TG) are used to support risk assessment around the world.

Although already more cost-efficient than adult fish tests, the FELS tests are 
actually long-term tests. A FELS test starts with fertilized eggs and continues at 
least until all the control fish are swimming and free-feeding. These tests generally 
run for 1–2 months depending on the test species used. Therefore the FELS test is 
still considered as a low-throughput in vivo test method which requires high num-
bers of fish (Volz et al. 2011). As such, ethical considerations are driving the devel-
opment of alternative test systems. For example, in Europe, toxicity testing carried 
out in the framework of the REACH (Registration, Evaluation, and Authorization 
of Chemicals) (EC 2006) legislation should be in line with the 3R principles to 
Replace, Reduce, and Refine the use of laboratory animals (Russel and Burch 
1959). According to the EU regulation on the use of laboratory animals, indepen-
dently feeding larval forms of non-human vertebrate animals, are protected (EC 
2010). Fish embryos are therefore not protected until the stage of free-feeding, and 
are candidate models for alternative testing. For the zebrafish (Danio rerio), the 
limit was explicitly set to 5 days post fertilization (dpf) when kept at a temperature 
of around 28 °C (EC 2012; Straehle et al. 2012). Apart from the reproductive sys-
tem, the major organ systems have developed at this age. Figure 4.1 shows differ-
ent life stages of the zebrafish, including 2 and 3 day old zebrafish (eleuthero) 
embryos which are not protected under the European legislation on the use of 
laboratory animals.

On top of ethical considerations driving the development of alternative tests, 
both in human toxicology as well as in environmental toxicology, there is a strong 
global interest in increasing the use of mechanistic information to support hazard 

L. Vergauwen et al.



45

assessment (Ankley et al. 2010; Krewski et al. 2010). The current FELS protocol 
involves only apical endpoints, including survival, hatching, overall body appear-
ance and behavior, and final weight and length. Knowledge on the specific toxic 
mechanism or mode of action of chemicals is not obtained. There is an urgent need 

Fig. 4.1  Photographs of zebrafish life stages. From top to bottom a zebrafish adult female, an 
adult male, a 2 day old embryo just before hatching, and a 3 day old eleutheroembryo (develop-
mental phase before the larval phase, starting with hatching and ending with free-feeding) (All 
images copyright (The copyright holder grants permission to use these images in the original 
publication “Advancing Adverse Outcome Pathways for Risk Assessment”, as well as for all revi-
sions or versions, future editions, in any medium, such as in its electronic form, for all translations 
in any foreign language, and for distribution throughout the world.) Dries Knapen, http://zebrafish-
lab.be)
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for high quality testing strategies to screen and prioritize thousands of chemicals at 
an acceptable cost with the maximum of relevant information.

The AOP approach offers an interesting framework for developing alternatives to 
the FELS test. In summary, an AOP is a detailed description of a chain of events 
going from a molecular initiating event (MIE, a direct interaction of a chemical with 
a molecular target, e.g. a hormone synthesizing enzyme) through a series of inter-
mediate key events (KE, e.g., altered hormone levels and subsequently impaired 
development of a specific organ) spanning different levels of biological organiza-
tion, leading to an adverse outcome (AO, e.g., reduced survival) at the individual or 
population level (Ankley et al. 2010; Villeneuve et al. 2014b, c). A KE is generally 
defined as an observable change in biological state that is necessary (but not neces-
sarily sufficient by itself) for the progression toward a specific AO (Villeneuve et al. 
2014b). Examples of KEs include changes in expression and/or function of genes, 
proteins, and metabolites, alterations in cellular or tissue morphology, physiological 
dysfunction, etc., along a causal pathway to an AO relevant to risk assessment 
(mainly impaired growth, survival or reproduction). Since KEs must, by definition, 
be measurable, there is a clear linkage between the AOP framework and assay 
development, particularly with respect to development of alternatives to traditional 
whole organism tests focused on direct observation of apical outcomes.

Once developed, AOPs can facilitate the identification of assays targeting KEs, 
which have high predictive value for an AO of interest. They also provide biological 
context for mechanistic information from existing assays, which can help increase 
confidence in, and utility of their results for risk assessment and regulatory decision-
making. As such, AOPs could form a basis for a tiered testing strategy in which the 
lower Tier molecular or cellular perturbations are predictive of higher-Tier out-
comes (Volz et al. 2011). AOP-specific data can be obtained at the different levels of 
structural and functional organization. In Tier 1 In vitro high-throughput cell-based 
assays can screen for molecular initiating events and the subsequent cellular 
responses, e.g. receptor-specific reporter assays, axonal growth assays or cell viabil-
ity and functional assays using fish-specific cell lines derived from gill tissue or 
liver, or primary fish- cell cultures. Tier 2 could involve a short-term fish embryo 
test for whole-organism-based assessment of AOP-specific effects, and Tier 3 could 
comprise the more chronic FELS test. The low-throughput FELS (Tier 3) test would 
only be implemented if a chemical tested positive based on results obtained using 
cell-based assays (Tier 1) and alternative methods (Tier 2). By using in silico, in 
vitro and in vivo alternative tests as first medium/high-throughput systems to screen 
and prioritize chemicals for FELS testing, the need for long-term and costly toxicity 
tests requiring a large amount of animals would be reduced. The use of such a tiered 
testing strategy is currently considered a promising approach (Volz et al. 2011).

Due to the considerations above, fish embryos have become popular model sys-
tems in (eco)toxicology. DarT (a 48 hpf [hours post fertilization] zebrafish embryo 
test) was implemented to substitute fish tests in waste water evaluation in Germany 
(DIN 2001; ISO 2007; Nagel 2002). More recent efforts have advanced the fish 
embryo test as an alternative to the fish acute toxicity test (OECD TG 203; OECD 
1992) for chemical registration under REACH (Embry et al. 2010; Lammer et al. 
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2009; Lange et al. 1995). Braunbeck and Lammer (2006) reviewed existing infor-
mation to facilitate the submission of a testing guideline for the fish embryo test to 
the OECD. The publication of OECD TG 236, the “Fish Embryo Acute Toxicity 
(FET) Test” (OECD 2013a), describing a 96 h zebrafish embryo test (also called 
ZFET), has greatly facilitated the use of fish embryos in toxicity studies, although 
the FET test has not yet been officially approved as alternative to the fish acute tox-
icity test by regulators (Worth et al. 2014). While the Fish Acute Toxicity Test lists 
a set of 7 recommended species (zebrafish, fathead minnow, common carp, medaka, 
guppy, bluegill and rainbow trout), the FET test is currently only defined for zebraf-
ish. There have been efforts to compare results from FET tests using zebrafish, 
medaka and fathead minnow. Braunbeck et al. (2005) reported that results obtained 
with medaka and fathead minnow embryos are generally comparable to those 
obtained with zebrafish embryos. They tested four compounds in the three species 
and found that effect concentrations differed by a maximum factor of 10 among 
species. This larger difference was observed for sodium dodecyl sulphate, for which 
the medaka was significantly less sensitive than the other two species. Except for 
2,4-dinitrophenol, which was most toxic in fathead minnow, zebrafish embryos 
were most sensitive to all other substances. The authors also investigated some prac-
tical aspects of the standardization of fish embryo tests. Beekhuijzen et al. (2015) 
attempted to facilitate harmonization of the zebrafish embryo test by discussing 
optimal test conditions and scoring methodology. The testing guideline is currently 
limited to observations of lethal endpoints and hatching, while scientific research 
from the last decades has shown that many more sublethal toxic effects, such as 
molecular, biochemical and physiological responses can be effectively investigated 
using fish embryos. On the one hand, such more detailed measures of toxicity are 
necessary to describe KEs and develop AOPs. In turn, AOPs can aid in standardiza-
tion of assays measuring detailed toxicity responses, and can provide the mechanis-
tic support which can finally lead to their incorporation in new testing guidelines. 
For a more extensive review of the current status of alternative methods for regula-
tory toxicology, we refer to the recent Joint Research Council (JRC) report by Worth 
et al. (2014).

Apart from its potential for regulatory testing applications in risk assessment, the 
AOP framework can also aid in improving the fundamental understanding of bio-
logical processes and disruptions thereof, because it stimulates scientists to delin-
eate a cascade of events supported by a weight of evidence approach.

4.2  �Key Information on General Biology and Physiology 
of Fish Embryo Models

In the context of toxicity studies, the term fish embryo model is immediately linked 
to a small set of fish species, primarily zebrafish, fathead minnow and medaka. 
Together with three-spined stickleback, rainbow trout and sheepshead minnow, 
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these are the recommended species to use in FELS and other tests (OECD 2013b; 
USEPA 1996). However, in these guidelines, the use of other species is not pre-
cluded. Both guidelines also provide a list of other well-documented species such as 
coho salmon, chinook salmon, brown trout, common carp, bluegill, channel catfish, 
and others. Even this extended list of well-known models is generally restricted to 
bony fish, while for example cartilaginous fish have unique ion-regulatory mecha-
nisms with important implications for chemical toxicity. Also, traditionally, there 
has been much more focus on freshwater fish compared to saltwater fish. Teleosts 
form the largest group of extant vertebrates with a wide diversity and it is challeng-
ing to find adequate representation in toxicity testing.

When AOPs are developed for the purpose of risk assessment which is essen-
tially aimed at protecting all species, it is important to consider inter-species or 
taxonomic applicability (Users’ handbook, OECD 2015). The development of 
species-specific AOPs should be avoided. When considering the use of a less well-
known fish model, ideally, the toxicity of a set of model compounds should be 
characterized, allowing comparison to established models concerning general 
mechanisms of toxicity. Inter-species differences are often related to the 
MIE. Differences in expression of molecular targets (e.g., receptors, enzymes) may 
lead to differences in sensitivity or even in absence of a specific toxicity mechanism 
in some species. Lalone et al. (2013b) showed that while reproductive capacity of 
fathead minnow and medaka was susceptible to an androgen receptor antagonist, 
Daphnia magna was insensitive due to the lack of a relevant homolog of the andro-
gen receptor. Lalone et al. (2013a) described a strategy that uses molecular sequence 
information of molecular targets to predict which species may be more or less sus-
ceptible to a chemical with known MOA (mode of action). This approach was 
applied in the development of an AOP for acetylcholinesterase inhibition leading to 
acute mortality where sequence similarity of the enzyme acetylcholinesterase was 
investigated (Russom et  al. 2014). Higher level organismal properties may also 
result in inter-species differences. Zebrafish embryos have been shown to be more 
sensitive than medaka embryos in some cases, and it has been suggested that this is 
due to the presence of a harder chorion surrounding medaka eggs (Schiller et al. 
2014). Developing an AOP based on experimental evidence from a few different 
species thereby increases confidence and applicability. For example, exposure to a 
thyroid peroxidase inhibitor (thyroid peroxidase is crucial for thyroxine [T4] syn-
thesis) was shown to result in decreased levels of T4 and impaired inflation of the 
anterior chamber of the swim bladder at comparable exposure concentrations in 
zebrafish and fathead minnow early life stages (Nelson et al. 2016; Stinckens et al. 
2016). The inclusion of less straightforward fish embryo models can further improve 
the relevance and applicability of AOPs. Therefore, new upcoming models are wel-
come to contribute to AOP development and cross-species comparison. In this con-
text, an interesting recent development is the consideration of the killifish 
(Nothobranchius furzeri) as a model for ecotoxicological testing, more specifically 
for rapid chronic and multigenerational toxicity testing. It has a generation time of 
≤37 days, and produces drought resistant dormant eggs that can be stored ‘on the 
shelf’ and activated when needed (Philippe et al. 2015).
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In order to interpret toxic effects and make an a priori estimation of taxonomic 
applicability of experimental findings, knowledge of the normal physiology of the 
species is essential. For example, chemicals may impact ion-osmoregulation includ-
ing gill function, kidney function and ion pumps, the biotransformation capacity of 
the liver, cardiovascular performance, respiratory function, or energy metabolism 
among others. To interpret these effects, the availability of basic knowledge on the 
normal functioning of these biological processes in the species under investigation 
is needed. For some of these processes, important differences exist between fish 
species. Another important aspect is basic knowledge of the endocrinology of the 
species which is essential to understand the mechanisms of endocrine disrupting 
compounds. In the following paragraphs we will discuss what kind of information 
on the general biology and physiology of a fish species is important to use the 
embryonic life stage of that species as a model for AOP development. Because of 
the large variety of physiological strategies (e.g., reproduction) within the group of 
fish it is important to consider specific aspects of the general biology and physiol-
ogy of fish species both when selecting an appropriate fish embryo model for AOP 
development, and when interpreting results from toxicity tests. This knowledge is 
important for studying the biological plausibility (a critical aspect of weight of evi-
dence, together with empirical evidence) of a KER (key event relationship), and 
particularly important when the aim is to use AOPs as support to develop assays 
which are predictive of relevant adverse outcomes (OECD 2015).

4.2.1  �Stages of Embryonic Development

Fish embryonic development is considered representative of vertebrate embryonic 
development in general and has therefore become an important model for develop-
mental biology. Although fish generally develop at a faster rate compared to mam-
mals, there are large differences between fish species in timing of important events 
during development, such as hatching and the onset of free-feeding. When using the 
embryo of a fish species to develop AOPs, basic knowledge of the embryonic devel-
opment informs on which stages of development are covered in toxicity studies, and 
provides a basis to interpret toxicity observations. The better normal development is 
characterized, the more accurate AOPs can be described. For zebrafish, the stages of 
embryonic development were described in detail by Kimmel et al. (1995) and to 
date this remains the main reference in this regard. Villeneuve et al. (2014a) recently 
outlined a conceptual model of developmental morphological landmarks during 
zebrafish embryogenesis (e.g., somite formation, cardiovascular system develop-
ment), that are observable during development, and therefore amenable for use in 
AOP development (Fig. 4.2). Moreover, these developmental landmarks were out-
lined with the aim of relating them to FELS AOs rather than purely describing 
embryonic development. For the fathead minnow, a developmental series was pub-
lished, describing 32 stages during pre-hatching development (Devlin et al. 1996). 
The authors also provided an overview of species of which the embryonic 
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development had been described at the time, together with their age at hatch. For 
medaka, the stages of normal development were described by Iwamatsu (2004).

Fish are mostly ectothermic species and therefore the rate of development is 
temperature dependent. According to the Zebrafish Book (Westerfield 1995), the 
optimal temperature for growth and accurate developmental staging of zebrafish is 
28.5 °C. The description of developmental stages published by Kimmel et al. (1995) 
and widely cited in zebrafish literature, including in the FET testing guideline 
(OECD 2013a), was recorded at 28.5 °C. The Commission Implementing Decision 
2012/707/EU (EC 2012), stating that zebrafish are not protected up to 5 days post 
fertilization (dpf) was similarly based on a temperature of approximately 28 °C. 
Traditionally, OECD testing guidelines have recommended lower temperatures for 
zebrafish toxicity testing, e.g., 21–25  °C (OECD TG 203, OECD 1992) or 
26 ± 1.5 °C (OECD TG 210, OECD 2013b). The recommended temperature for the 
FET test is 26 ± 1 °C (OECD 2013a). This has important implications when consid-
ering which stages of development are included in the specific time frame of a fish 
embryo test. A 120 hpf test at 28.5 °C, which is an alternative test according to cur-
rent EU legislation, covers a substantially larger part of development than a 96 hpf 
test at 26 °C. The stages included in the conceptual model published by Villeneuve 
et al. (2014a) only comprise the first 48 h, and are therefore covered in both cases.

Fig. 4.2  Preliminary conceptual model of developmental landmarks during zebrafish embryogen-
esis. The Y-axis shows a selection of developmental landmarks, and the X-axis shows the timing 
during zebrafish embryonic development. Black bars represent the approximate duration of the 
events that underlie each developmental landmark (Source: Villeneuve et al. (2014a), https://cre-
ativecommons.org/licenses/by/3.0/, no changes to the original figure were made)
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4.2.2  �Endocrinology

Although many pathways are conserved, there are specific differences in fish com-
pared to other vertebrates which may influence the interpretation of toxicity. For 
example, in mammals, the primary mineralocorticoid is aldosterone. Fish do not 
synthesize aldosterone, and 11-deoxycorticosterone is the suggested substitute for 
aldosterone in fish. The main sex hormones in zebrafish are estradiol (an estrogen), 
11-ketotestosterone (an androgen) and maturation-inducing hormone (MIH, 
17α,20β-dihydroxy-4-pregnen-3-one) (Tokarz et  al. 2013). Comparable to mam-
mals, estradiol regulates ovarian function and additionally, in fish, estradiol regu-
lates vitellogenin synthesis and yolk formation. In fish, 11-ketotestosterone rather 
than testosterone is the primary endogenous androgen (de Waal et al. 2008). MIH 
which regulates maturation of oocytes, has been identified in several fish species, 
while it does not exist in mammals (Nagahama and Yamashita 2008).

Some hormones as well as transcripts coding for hormone receptors and steroid 
synthesizing enzymes are available in the early embryo through maternal transfer. 
This has been shown for estradiol and cortisol in zebrafish embryos, although the 
role of these hormones during early embryonic development is still largely unclear 
(Tokarz et al. 2013). Both in zebrafish and fathead minnow, maternal transfer of the 
thyroid hormone T4 has been shown (Chang et al. 2012; Nelson et al. 2016). This is 
important for AOP development using the fish embryo. We recently showed that 
2-mercaptobenzothiazole (MBT), an inhibitor of thyroid peroxidase (TPO) which is 
essential for thyroid hormone synthesis, did not affect inflation of the posterior 
chamber occurring around 96 hpf in zebrafish and around 6 dpf in fathead minnow 
(Nelson et al. 2016; Stinckens et al. 2016), although several studies have suggested 
the involvement of thyroid hormones in posterior chamber inflation (Bagci et al. 
2015; Heijlen et al. 2014; Jomaa et al. 2014; Liu and Chan 2002). The absence of 
effects on posterior chamber inflation after inhibiting thyroid hormone synthesis 
can possibly be explained by maternal transfer of T4 into the eggs. On the other 
hand, inhibition of deiodinases which are necessary for activating thyroid hormones 
regardless of maternal transfer, did lead to impaired posterior chamber inflation 
(Bagci et al. 2015; Heijlen et al. 2014).

Vitellogenin (vtg), the fish egg yolk precursor protein, is synthesized by the 
liver of many adult female fish and deposited in developing oocytes. Vtg synthesis 
is under estrogenic regulation. It is therefore a long-established biomarker for eval-
uating endocrine disrupting potential of chemicals in fish and vtg measurements 
are an important component of endocrine disruption testing (Ankley and Jensen 
2014; OECD 2009a, 2011; Wheeler et al. 2005). Although the function of embry-
onic vtg expression is currently unknown, it has been shown that endocrine dis-
rupting compounds already induce vtg expression in fish embryos (Schiller et al. 
2014). Since different endocrine disrupting modes of action can either increase or 
decrease vtg levels, these AOPs can be interconnected and visualized in an AOP 
network (see Sect. 4.3.3).
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4.2.3  �Sex Determination and Differentiation

Teleosts show a high degree of diversity in sex determination and differentiation 
mechanisms, ranging from genetic to environmental sex determination. While some 
species have sex chromosomes such as mammals, many fish species have no hetero-
morphic chromosomes, similar to amphibian and reptile species. Additionally, 
many fish species are undifferentiated gonochorists, in which an indifferent gonad 
first develops into an ovary-like gonad which then further differentiates into either a 
mature ovary or a testis. In zebrafish, this differentiation process occurs between 17 
and 35 dpf at a temperature of 27 °C (Sun et al. 2013). This complicates sex identi-
fication and should be taken into account when using fish embryos to study effects 
on sex ratio, and sex-specific traits or responses. Changes in sex ratio or intersex can 
be an important adverse outcome when studying endocrine disruption. If this is the 
intent of the study, often it will be necessary to culture the fish far beyond embry-
onic stages until they have developed gonads that can be histologically verified. 
Some species develop clearly discernible secondary sex characteristics, which may 
also be influenced by endocrine disruptors, namely papillary processes in male 
medaka and nuptial tubercles in male fathead minnow (OECD 2009b). Chemicals 
with endocrine modes of action may cause abnormal occurrence of secondary sex 
characteristics in the opposite sex. For example, androgen receptor agonists can 
cause the development of nuptial tubercles in female fathead minnow. In zebrafish, 
secondary sex characteristics are difficult to observe objectively.

For medaka, a genetic marker (DMY) is available for identifying the true geno-
typic sex (Urushitani et al. 2007). However, the exact mechanism of sex determina-
tion in zebrafish is not yet fully understood. Zebrafish have no heteromorphic 
chromosomes, and a sex-determining gene has not been identified. Recent advances 
suggest a polygenic sex determination mechanism, where sex is determined by the 
allelic combinations of several loci (Liew and Orban 2014). Additionally, environ-
mental factors (primarily temperature) can influence sex differentiation (Uchida 
2004).

4.2.4  �Reproduction

Fish have a large diversity of reproductive strategies, including for example internal 
or external fertilization, open substrate spawners, mouth brooders, seasonal or year 
round reproduction. This has important implications for toxicity studies using fish 
embryos. Many fish species, including zebrafish, fathead minnow and medaka are 
oviparous, meaning that the females spawn and the eggs are externally fertilized. 
This offers a great advantage over viviparous animals because embryos can be col-
lected and exposed to chemicals immediately after fertilization without further 
influences of the mother. Additionally, many of these species (including zebrafish, 
fathead minnow and medaka) produce eggs year round, while three spined 
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sticklebacks for example are seasonal breeders. Many cartilaginous fish and also 
some bony fish such as the guppy (Poecilia reticulate) are (ovo)viviparous, meaning 
that the offspring develops inside the mother either with or without a placenta. This 
in turn offers the advantage of higher comparability to mammalian reproduction.

To actually measure reproductive failure as an adverse outcome, a mature repro-
ductive system is needed which is not developed in the fish embryo. Efforts are 
underway to develop embryo tests which are predictive of reproductive effects in 
later life stages, such that the need for animal tests is reduced. For this purpose it is 
essential to document effects of endocrine disruptors in fish embryos. AOP develop-
ment can subsequently aid in selecting KEs which are predictive of reproductive 
failure at later age.

4.2.5  �Genetic Variability

For standard mammalian models (rats, mice, rabbits), strains have been developed 
to decrease intra- and inter-laboratory variability. For fish this is less advanced. In 
ecotoxicology, findings from the laboratory are extrapolated to field populations 
and this can be done with higher accuracy when genetic variation in the sample is 
high. On the other hand, reduced variation (by using clones or inbred strains) 
increases the precision of the results (i.e. narrow confidence limits), resulting in a 
trade-off between precision and accuracy (Forbes 1998). With regard to standard-
ization of diet composition, water characteristics, lighting and temperature a similar 
trade-off concept is applicable. While applying standard conditions (e.g., optimal 
breeding temperature) provides for low variation and thus high precision, this does 
not take into account that natural conditions often deviate from the standards in the 
environment. For example, when performing toxicological experiments aimed at 
developing water quality criteria for chemicals in the environment, it has been 
proven important to investigate toxicity in conditions that deviate from standard 
laboratory conditions since they can influence toxicity (Vergauwen et al. 2013).

For zebrafish, a number of laboratory strains exist, which are referred to as wild-
type and outbred. Tübingen is an important source of zebrafish strains, and most 
strains are available from the Zebrafish International Resource Center (ZIRC, 
https://zebrafish.org). Coe et al. (2009) assessed the genetic variation and diversity 
of the most commonly used wild-type strains of zebrafish (AB, TE, TL, WIK) and 
compared them to a sample of wild zebrafish from Bangladesh. The authors showed 
that genetic variation of the four laboratory strains as well as fish purchased from a 
commercial dealer was less than 20% of the variation found in wild fish. They also 
constructed a phylogram showing that wild fish form a clade separate from all labo-
ratory strains, while they did not observe a clear grouping of any of the laboratory 
strains, suggesting cross-breeding between those strains. The low level of genetic 
variation in laboratory strains may affect behavior, fitness, susceptibility to chemicals, 
etc. For the fathead minnow, many laboratories originally obtained a fathead min-
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now stock from the Newtown EPA facility in Cincinnati (OH, USA), and routinely 
outbred them with wild fish according to the guidelines for the culture of fathead 
minnows for use in toxicity tests (USEPA 1987). Medaka has a high tolerance to 
inbreeding. Inbred strains have been developed which differ in behavior, body 
shape, brain morphology and susceptibility to mutagens (Kirchmaier et al. 2015). 
Both wild strains and inbred strains of medaka are available at the Japanese Medaka 
Stock Center (National BioResource Project Medaka, NBRP Medaka; http://www.
shigen.nig.ac.jp).

4.2.6  �Genomic Information

Genome projects for zebrafish (The Sanger Institute, www.sanger.ac.uk/Projects/D_
rerio), medaka (National Institute of Genetics) three-spined stickleback and rain-
bow trout, among others, and efforts for other species such as fathead minnow 
(Burns et al. 2015) and carp provide genomic information. This information allows 
for the easy application of toxicogenomic techniques to measure changes of tran-
scription and translation in response to a chemical insult. Such changes can be 
important key events, especially on the upstream part of an AOP (MIE and KEs at 
the cellular level). Additionally, it facilitates phylogenetic comparisons among spe-
cies to assess conservation of toxicity mechanisms and therefore taxonomic appli-
cability of AOPs (see Sect. 4.2).

In addition to DNA sequence information, it is often important to know the tim-
ing of activation of toxicity targets (e.g., enzymes, ion channels, receptors), in terms 
of transcription and translation, during embryonic development. This may explain 
susceptibility differences between life-stages which are important when the fish 
embryo is used as an alternative to predict toxicity at later ages.

4.2.7  �Availability of Knockdowns, Knockouts and Transgenic 
Lines

The increasing availability of genomic information and the development of new 
methodologies have led to an increasing flexibility to apply knockdowns as well 
as genetic modifications in knockout and transgenic fish models. Lee et al. (2015) 
recently provided an overview of available methods in fish and their application 
in ecotoxicology. Zebrafish and medaka are the most popular model fish species 
for genomic modifications (Lee et  al. 2015). The Zebrafish Mutation Project 
(ZMP) aims to create a knockout allele in every protein-coding gene in the zebraf-
ish genome (https://www.sanger.ac.uk/resources/zebrafish/zmp/). Here, we pro-
vide some examples of how these techniques can benefit AOP development and 
application.
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One of the most convincing lines of evidence for an AOP linking an MIE (for 
example inhibition of an enzyme) to a specific phenotype, is the use of loss of func-
tion models such as knockdowns and knockouts. Morpholino knockdowns can be 
designed to block RNA translation by hybridizing to the target sequence, usually 
resulting in incomplete loss of function (Bill et al. 2009). RNAi is another means for 
knockdown of specific genes (Kelly and Hurlstone 2011). Recent innovations with 
regard to the generation of knockouts (complete loss of function through inactiva-
tion of the gene of interest) have greatly improved their application. While earlier 
methodologies used random mutagenesis to create knockouts, during the last few 
years targeted mutagenesis methods have been developed based on engineered 
endonucleases such as zinc finger nucleases (ZFNs) and transcription activator-like 
effector nucleases (TALENs) (Bedell et al. 2012; Doyon et al. 2008). Recently, a 
new technique for targeted mutagenesis has emerged, the bacterial type II clustered 
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 
(Cas) system, which is applicable in zebrafish (Gagnon et al. 2014; Hwang et al. 
2013a, b; Jao et al. 2013). The CRISPR/Cas technology can be used for the purpose 
of knockout as well as knock-in. Efforts are being made to apply the technology to 
high-throughput gene targeting and phenotyping using zebrafish (Varshney et  al. 
2015). Using knockdowns or knockouts, it is possible to confirm the occurrence of 
the KEs along multiple levels of biological organization in an AOP by specifically 
inducing the MIE, for example knockdown of an enzyme as a model for chemical-
induced enzyme inhibition. This is much more convincing as weight of evidence for 
the KERs in an AOP compared to chemical exposures, since chemicals are usually 
suspected to target more than one MIE.

If binding to a specific receptor is thought to be the MIE of a hypothesized AOP, 
knockdown or knockout of the specific receptor can be used to find out whether 
this prohibits the progression of downstream KEs upon exposure to a chemical 
thought to act through this AOP. For example, polyaromatic hydrocarbons (PAHs) 
are often thought to cause toxicity through aryl hydrocarbon (AhR) receptor acti-
vation, similar to dioxins. Incardona et al. (2005) used AhR knockdown zebrafish 
to show that developmental defects induced by weathered crude oil exposure are 
mediated by low-molecular-weight tricyclic PAHs through an aryl hydrocarbon 
receptor-independent disruption of cardiovascular function and morphogenesis. 
Brown et al. (2015) further investigated the cardiotoxicity of weak AhR agonists 
using AhR and cyp1a knockdowns. Such information is highly useful for AOP 
development and can significantly contribute to the weight of evidence associated 
to the KERs in an AOP.

Many transgenic zebrafish lines have been developed in which the expression of 
a fluorescent protein (e.g., green fluorescent protein, GFP) is driven by the promo-
tor of a gene of interest. As a result, localized fluorescence can be detected upon 
expression of the gene of interest. As a first application, this can aid in identifying 
and visualizing specific tissues by targeting tissue-specific genes. For example, in 
the vas::egfp zebrafish, expression of enhanced green fluorescent protein (eGFP) is 
driven by the promoter of the germ-cell-specific gene vasa (vas). This aids in the 
visualization of primordial germ cells during early embryonic development and the 
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developing gonads later in development. Another example is the fli:egfp transgenic 
zebrafish line in which the fli1 promotor drives expression of eGFP in all blood 
vessels throughout embryogenesis (Lawson and Weinstein 2002). This model sys-
tem is ideal for observing vascular defects in response to chemical exposure (Delov 
et al. 2014).

Transgenic fish, in addition to their role in visualization of specific cell-or tissue 
types, can also function as reporter lines for chemical screening purposes when the 
expression of fluorescent proteins is driven by the promotor of specific target genes. 
For example, the TSHβ:EGFP transgenic zebrafish can function as a model for 
screening for thyroid-disrupting chemicals (Ji et al. 2012). Gorelick and Halpern 
(2011) developed a zebrafish reporter line to screen for estrogen activity. This 
approach is especially powerful when a reporter assay can be selected based on an 
AOP describing the linkages between a KE that can be measured using the reporter, 
and the AO of interest.

4.2.8  �Biotransformation Capacity During Embryonic 
Development

Biotransformation is the process by which an exogenous or endogenous compound 
is chemically modified by enzymatic activity. Biotransformation is a physiological 
phenomenon and is used to convert substances into those that are required for nor-
mal body function, e.g. steroidogenesis. However, biotransformation also serves as 
an important defence mechanism by converting toxic xenobiotics into less harmful 
substances that can be excreted from the body. In some cases though, biotransfor-
mation results in metabolites that are more toxic than the parent compound (Nebert 
and Russell 2002). This process is then called bioactivation. Formally, biotransfor-
mation reactions are classified as Phase I and Phase II reactions. Phase I reactions 
add a polar group to make compounds water-soluble, which is largely achieved by 
Cytochrome P450 (CYP) enzymes but also other enzymes can be involved such as 
the flavin-containing monooxygenase (FMO) system. Phase II reactions involve a 
covalent attachment of a small polar endogenous molecule to create a final com-
pound of higher molecular weight (Ashauer et  al. 2012). The latter is mainly 
achieved by glucuronidation or sulfation but other conjugation reactions can also 
occur. Finally, also Phase III reactions, which involve uptake and/or efflux of xeno-
biotics and/or their metabolites by transporters, influence the elimination of com-
pounds. Since the toxic effects of xenobiotics depend on the achieved exposure 
within the organism, a thorough knowledge of Phase I, Phase II and Phase III reac-
tions is necessary for proper risk assessment. Especially in view of AOP develop-
ment, it is critical to know whether fish embryos biotransform chemicals in the same 
way as an adult fish.

In adult zebrafish, there has been an exhaustive characterization of CYP-mediated 
metabolism at the gene level, but also at the functional level. These studies suggest 
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the presence of similar metabolic systems to those found in mammalian species 
(reviewed by Saad et al. 2016a). Analysis of the zebrafish genome has uncovered a 
total of 86 CYP genes that fall into seventeen categories of CYP gene families 
(Genome Reference Consortium 2015). Of these CYP families, CYP1–3 is the main 
xenobiotic metabolizing enzyme group. By using several well-characterized com-
pounds in vitro and in vivo, it has been demonstrated that zebrafish clearly possess 
CYP1, 2 and 3 activity (Alderton et al. 2010; Chng et al. 2012; Diekmann 2013). 
This CYP activity often also resembles the human situation (Chng et  al. 2012), 
although differences in metabolite profile and isoforms have been reported (Alderton 
et al. 2010; Diekmann 2013). Zebrafish also possess Phase II metabolic capacities 
as evidenced by UDP-glucuronosyltransferase (UGT) activity on testosterone 
(Chng et al. 2012) and activity of different sulfotransferases (SULT) (Kurogi et al. 
2010; Liu et al. 2010). Also, several drug transporters have been identified in the 
zebrafish, e.g. 41 ABC transporters (Dean and Annilo 2005), of which some have 
already been characterized functionally (Fischer et al. 2013). Several xenobiotics 
also influence their concentrations in the organism by inhibition or induction of 
particular enzymes or transporters. For CYP induction, pregnane X-receptor (PXR) 
and aryl hydrocarbon receptor (AHR) are well known transcription factors in zebraf-
ish and humans (Reschly and Krasowski 2006). However, constitutive androstane 
receptor (CAR), a third important regulatory mechanism of CYP induction in 
humans (Waxman 1999), is absent in zebrafish and teleost fish in general. The num-
ber of substrates that stimulate PXR also appears to be more limited in zebrafish 
than in humans (Ekins et al. 2008) although PXR and CYP3A are induced by a 
similar mechanism in both species (Bresolin et al. 2005). For AHR, only one func-
tional AHR is detected in humans (Hahn 2002), whereas zebrafish AHR have mul-
tiple signaling members including AHR1a, AHR1b, AHR2, ARNT1, ARNT2 and 
two AHR repressors (Karchner et al. 2005). ARNTs are aryl hydrocarbon receptor 
nuclear translocators that dimerize with AHR after its translocation from the cytosol 
into the nucleus. As such, the high DNA binding affinity of this complex stimulates 
transcription of the CYP1A1 gene and other genes (Denison and Nagy 2003). 
Regarding substrate affinity, AHRs bind to a broad range of aromatic and halogenated 
chemicals including planar halogenated aromatic hydrocarbons (pHAH) and poly-
cyclic aromatic hydrocarbons (PAH), which are both known as environmental con-
taminants. Also drug transporter activity can be affected in the zebrafish by 
environmental chemicals, i.e. by inhibition, leading to so-called chemosensitisation 
(Otte et al. 2010; Scholz et al. 2008).

The available information on the biotransformation capacity of zebrafish embryos 
is much more limited. Most studies focus on the larval stages (96 hpf and 120 hpf), 
which are at the end of organogenesis and thus vital information for the early devel-
opmental stages is lacking. Knöbel et al. (2012) showed that the zebrafish embryos’ 
toxic response, evidenced by lethality, to 38 chemicals with different physicochemi-
cal properties and mode of action was similar to the response in adult fish. However, 
the situation may be different for effects that are exerted by active metabolites and 
not by the parent compound if the required biotransformation enzymes are not pres-
ent or mature yet in the embryo. The metabolic capability has been and still is a 
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hurdle in the development of several alternative methods for animal experiments in 
toxicology (Spielmann et al. 2006). For CYPs, distinct spatio-temporal patterns of 
gene expression have been explored (Goldstone et al. 2010) and often already early 
peaks in expression (up to 4 hpf) are detected (Glisic et al. 2014). This probably 
indicates a maternal origin of the transcripts. Glisic et al. (2014) also showed that 
the CYP expression is inducible in 24 hpf embryos in a similar way as in adults. 
Indeed, atrazine exposure for up to 72 h significantly increased the CYP1A and 
CYP3A65 mRNA levels, albeit at a 1000 times higher concentration than present in 
the environment. For Phase II metabolism, it has also been shown that zebrafish 
embryos express all major GST isoforms (Glisic et al. 2014) and all major UGTs 
(Christen and Fent 2014) from very early on (4 hpf) and with clear temporal pat-
terns. Also drug transporter transcripts have been found in very early zebrafish 
embryos (from 1 hpf onwards) (Fischer et al. 2013) and this was also reflected func-
tionally as ABCB1-like efflux was inhibited in 1, 6, 12, 24 and 48 hpf embryos 
when using several transporter inhibitors. However, the available data are scarce on 
the activity of CYPs and Phase II enzymes in zebrafish embryos. So far, the only 
extensive study on metabolism in non-adult zebrafish was performed by Alderton 
et al. (2010) and they mainly focused on larvae of 168 hpf. Several compounds were 
tested, of which 3 were also evaluated in 72 hpf larvae. Although the 72 hpf and 168 
hpf larvae were able to perform Phase I and/or Phase II metabolic reactions, only a 
small fraction of most of the compounds was found as metabolites in the larvae. 
Therefore, the authors concluded that the quantified metabolites were unlikely to 
contribute to observed toxicity (Alderton et al. 2010). Phase I and Phase II metabo-
lism has also been reported by other groups in 96 hpf or older larvae (Creusot et al. 
2014; Jones et al. 2010; Li et al. 2011). Otte et al. (2010) investigated earlier time 
points and detected CYP1A activity, assessed by an EROD assay, as early as 8 hpf. 
At that time point EROD activity was present in the cytoplasm of the envelope layer 
and in the yolk syncytial layer as well. Saad et al. (2016b) also confirmed this early 
EROD activity in homogenates of 5 hpf embryos and Bräunig et al. (2015) detected 
basal EROD activity in embryos at 24 hpf, which was clearly induced by beta-
naphthoflavone after 96 h of exposure. The presence of CYP activity during early 
zebrafish embryonic development is not surprising as CYPs are also critical for 
morphogenesis, e.g. the role of CYP26 in regulating the retinoic acid concentrations 
in hindbrain development (Hernandez et al. 2007). However, the question remains 
whether the biotransformation capacity of the embryos is sufficient to bioactivate 
xenobiotics during the different developmental stages, in comparison to adult fish. 
This is still a point of controversy. Weigt et al. (2011) performed a study with sev-
eral proteratogens and showed teratogenicity of the compounds. However, no analy-
sis of biotransformation was performed and therefore this study could not answer 
whether these compounds were proteratogenic or teratogenic by themselves in the 
zebrafish. So far, allyl alcohol is the only compound for which it has been clearly 
demonstrated that zebrafish embryos cannot bioactivate it when exposed from 1.5 
hpf until 50 hpf (Knöbel et al. 2012). Although this was due to a lack in alcohol 
dehydrogenase 8a activity in these embryos (Kluver et al. 2014) and not to imma-
ture Phase I or Phase II reactions, this still underlines the importance of the embryo’s 
metabolic capacity. Therefore, co-incubation of zebrafish embryos with an exogenous 
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metabolic activation system (MAS) has been suggested on several occasions 
(Busquet et al. 2008; Mattsson et al. 2012; Weigt et al. 2010). However, this com-
plicates the assay (Pype et al. 2015) and more importantly continuous co-incubation 
is not possible due to embryotoxicity caused by MAS, i.e. liver microsomes and 
NADPH, itself (Mattsson et al. 2012). Therefore, only short and intermittent co-
incubation of zebrafish embryos with MAS can be applied, which may lead to lack 
of exposure to metabolites during critical windows of development and conse-
quently false negative results in the case of toxicity testing of proteratogens.

Biotransformation of xenobiotics has also been studied in the fathead minnow 
and medaka, but to a lesser extent. Experiments with PXR inducers clotrimazole and 
pregnane-16alpha-olone clearly increased the expression of PXR and CYP3A in the 
fathead minnow (Crago and Klaper 2011). Furthermore, CYP3A inducer rifampicin 
also clearly increased CYP3A activity in this species (Christen et al. 2010). CYP3A 
activity has also been reported for adult medakas (Kullman et al. 2004). In juvenile 
medakas, benzo(a)pyrene (BaP) induced the transcript levels of CYP1A and CYP2A 
together with those of glutathione-S-transferase (GST) and UGT, including their 
activity (Kim et  al. 2014; Rhee et  al. 2013). Interestingly, the pesticide aldicarb 
appears to be biotransformed by FMOs in adult medakas (El-Alfy and Schlenk 
1998). Regarding the biotransformation capacity of medaka embryos, the earliest 
appearance of BaP metabolites was at 21–24 hpf in the yolk syncytial layer although 
diffuse metabolic activity may also have been present at this time within the yolk 
itself (Hornung et  al. 2007). Recently, CYP1A activity could also be induced in 
medaka embryos by using beta-naphthoflavone (Gonzalez-Doncel et al. 2015).

4.3  �AOP Development Using Fish Embryos

There can be different drivers for using fish embryos in AOP development. For 
example, AOP development can be driven by the need for alternative test methods 
to replace animal testing. Testing for chronic toxicity using FELS tests and screen-
ing for endocrine disruption using sexual development tests (OECD TG 234; OECD 
2011) and fish short-term reproduction assays (OECD TG 230; OECD 2009b) 
require many animals and alternative methods are needed for these tests. AOPs can 
aid in selecting endpoints that can be measured in the fish embryo and that are pre-
dictive of AOs of ecological relevance, namely growth, survival and reproduction, 
which are traditionally measured in these animal tests. On the other hand, since 
vertebrate development, physiology and anatomy is highly conserved, data from 
fish (embryos) can be used as part of the weight of evidence to develop AOPs with 
a broader taxonomic applicability (e.g., AChE inhibition leading to acute mortality, 
Russom et al. 2014).

For AOP development, specific toxicity information is needed at multiple levels 
of biological organization, rather than only apical endpoints. Even though fish 
embryos are small, there is an enormous potential to measure endpoints ranging 
from the molecular, over the biochemical to the physiological level. New techniques 
are being developed or adapted from other model systems at a rapid pace.
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4.3.1  �Iterative AOP Development Cycle

For AOP development, it is essential to gather weight of evidence to support link-
ages between key events. AOP development can be visualized as an iterative process 
in which a hypothesized AOP is challenged experimentally and adapted accordingly 
until it reaches the level of detail and confidence needed for the envisaged applica-
tion (left part of Fig. 4.3). Consequently, the AOP can be used to develop assays 
based on KEs which are predictive of the AO (right part of Fig. 4.3). Assay develop-
ment can also give rise to new insights leading to updated versions of the AOP. In 
this way AOPs are living documents (Villeneuve et al. 2014b). This concept is facil-
itated by the AOPWiki (https://aopwiki.org), which allows for continuous addition 
and updates when new information becomes available. The fish embryo is highly 
amenable to such an iterative AOP development approach since quick and low-cost 
experiments can easily be set up to investigate specific KEs.

4.3.2  �Development of FELS AOPs

AOP development can be tailored specifically to the goal of developing alternative 
tests for assessing chronic fish toxicity. Since the FELS test is currently the most 
important test to assess chronic toxicity, AOPs describing KEs measurable in the fish 
embryo leading up to FELS AOs would facilitate selection of predictive assays. 
There are two central criteria for KEs: (1) they should be measurable/observable, 

Fig. 4.3  Schematic representation of an iterative AOP development cycle. In the green part, 
experiments are aimed at developing the AOP up to the level that it can be used to develop assays 
based on upstream events that are predictive of downstream events (blue part)
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and (2) they should be essential, but not necessarily sufficient for the progression 
from a defined biological perturbation toward a specific AO (Villeneuve et al. 2014b).

Villeneuve et al. (2014a) made some recommendations regarding the prioritiza-
tion of AOP development specifically for developing alternatives to the FELS test. 
If the AO is directly observable in the fish embryo, there is no need to develop an 
AOP since a fish embryo test can directly be used to screen for this AO. If the AO is 
not directly observable in the fish embryo, delineating KEs leading to this AO may 
lead to predictive fish embryo assays. If there are no KEs that can be observed in 
fish embryo assays, in vitro assays may be considered. The latter two cases are con-
sidered priorities for AOP development.

Villeneuve et al. (2014b) presented an overview of common AOP development 
strategies. One could start by identifying ecologically relevant FELS adverse out-
comes, and subsequently build AOPs delineating KEs which are measurable in fish 
embryos leading up to these AOs of interest, the so called top-down approach. The 
main AOs of regulatory relevance are growth, survival and reproduction, of which 
the first two are covered in the FELS test. Since these AOs are not specific and thus 
both are regulated by a broad array of factors, one would envision a highly compli-
cated AOP network making it difficult to prioritize. Therefore a middle-out approach, 
starting from KEs that are observable in fish (not necessarily in embryos) and can 
be plausibly linked to relevant AOs has been applied for FELS AOP development 
(Groh et  al. 2015; Villeneuve et  al. 2014a). For this purpose, Villeneuve et  al. 
(2014a) started by outlining a conceptual model of developmental morphological 
landmarks during zebrafish embryogenesis (e.g., somite formation, cardiovascular 
system development), to aid in identifying KEs that lead to FELS AOs. The authors 
used swim bladder inflation as an example KE to function as a starting point for 
AOP development. During early development, zebrafish undergo an embryonic-to-
larval transition phase marking an important switch from yolk sac- to exogenous 
feeding larvae around 120 hpf. This transition includes swim bladder inflation (pos-
terior chamber, around 96 hpf), structural and functional maturation of the mouth 
and gastrointestinal tract, and resorption of the yolk sac (Liu and Chan 2002). 
Impaired posterior chamber inflation is not directly lethal, but it impacts growth and 
survival especially in natural habitats where swimming capacity is essential for for-
aging and predator avoidance (Czesny et al. 2005; Villeneuve et al. 2014a). Later 
during development (around 21 dpf for zebrafish) the anterior swim bladder cham-
ber inflates, which has an additional role in hearing (Lechner and Ladich 2008; 
Popper 1974). Since inflation of the posterior chamber is observed at the border of 
legal limitations with regard to alternative testing, and inflation of the anterior 
chamber can only be observed long after the time frame of the FET test, they are a 
priority for AOP development. By selecting swim bladder inflation as a KE, the 
biological pathways of interest have been narrowed down. Subsequently, a more 
thorough study of the biological pathways leading to the normal formation and 
function of the swim bladder allows for hypothesizing how chemicals can disrupt 
these processes. In zebrafish, these formation processes have been studied in detail 
(Robertson et al. 2007; Teoh et al. 2010; Winata et al. 2009; Yin et al. 2011). Several 
studies have suggested the involvement of thyroid hormones in posterior chamber 
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inflation (Jomaa et al. 2014; Liu and Chan 2002). Therefore, we hypothesized that 
thyroid disruption can impair swim bladder inflation. Based on a literature search, a 
putative AOP leading from thyroid peroxidase (TPO) inhibition to impaired swim 
bladder inflation was constructed.

During the AOP development phase, knowledge gaps are usually identified. The 
logical next steps for AOP development can include targeted experimental studies 
that are set up to address these gaps and increase confidence in the hypothesized 
AOP. This process can be iterated until the AOP is sufficiently developed to serve its 
purpose (Fig. 4.3). In the thyroid example, assays were developed to measure the 
KEs along this AOP and these assays were applied to test the hypothesized AOP in 
two fish species, the zebrafish and the fathead minnow (Nelson et al. 2016; Stinckens 
et al. 2016). The two species were exposed to 2-mercaptobenzothiazole (MBT), an 
environmentally relevant TPO inhibitor. Whole-body T4 decreased upon MBT 
exposure. Anterior chamber inflation was impaired, and there was a clear relation-
ship between T4 levels and the anterior chamber surface in zebrafish. The absence 
of effects on posterior chamber inflation was not expected, but can possibly be 
explained by maternal transfer of T4 into the eggs (see Sect. 4.2.2). Deiodinase (ID) 
type 1 (ID1) and type 2 (ID2) are essential to activate T4 (including maternally 
derived T4) into its biologically active form, T3. If the inflation process of the pos-
terior swim bladder chamber is indeed mediated by thyroid hormones, but maternal 
T4 transfer is sufficient to compensate for TPO inhibition, we can assume that TPO 
inhibitors do not impair posterior chamber inflation, while ID inhibitors do 
(Stinckens et al. 2016). This has led to a new version of the hypothesized AOP. In 
zebrafish deiodinase knockdown studies we indeed showed impaired posterior 
chamber inflation (Bagci et al. 2015; Heijlen et al. 2014). When sufficiently devel-
oped, this AOP can be used for the selection of assays predictive for thyroid medi-
ated effects on swim bladder inflation, leading to reductions in growth and 
survival.

Another example of applying a middle-out approach for FELS AOP develop-
ment was given by Groh et al. (2015). The authors selected growth as the FELS AO 
of interest, and subsequently selected the KE ‘reduction in food intake’ as starting 
point for middle-out AOP development. To ensure relevance of the AOP under 
development, the authors applied four criteria to the selection of this KE: (1) the 
process underlying the KE should be important for growth regulation, (2) the bio-
logical pathways underlying the KE should be highly conserved among species, (3) 
the KE should be susceptible to many chemicals, (4) the KE should be induced at 
environmentally relevant chemical concentrations. Subsequently, the authors identi-
fied impaired locomotion as a KE that is already observable in fish embryos and 
plausibly linked to reduced food intake. From then on the authors developed a selec-
tion of case studies in which AOPs are delineated.

Volz et al. (2011) also used three case studies to delineate FELS AOPs as a basis 
for a tiered testing approach to reduce the need for FELS tests. The AOPs were 
based on three reference chemicals with known MOA: 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD)–induced cardiotoxicity, chlorpyrifos (CPF)–mediated inhibition 
of neurite outgrowth, and linear alkylbenzene sulfonate (LAS)-induced gill toxicity 

L. Vergauwen et al.



63

and narcosis. Although such case studies are valuable starting points, it is important 
to note that the goal of AOP development is not to develop AOPs that are chemical 
specific, but to develop AOPs that reflect mechanisms through which several (classes 
of) chemicals elicit toxicity (Villeneuve et al. 2014b). In a next step, evidence can 
be assembled to support generalization over larger groups of chemicals.

4.3.3  �Development of AOP Networks

A single AOP is considered as a pragmatic unit for AOP development and not as a 
complete biological representation of toxicological processes encompassing all 
possible molecular, biochemical and physiological components involved. 
Consequently, individual AOPs are generally conceptualized as a “linear” construct, 
without converging or diverging pathways connected to it. However, it is recognized 
that a single AOP may not capture all events that contribute to any relevant toxic 
effect. In the example of thyroid disruption (see Sect. 4.3.2), it became clear that 
thyroid disruptors impact swim bladder inflation, with an important distinction 
among specific subtypes of TH disrupting compounds (e.g., TPO inhibitors vs ID 
inhibitors). In such cases, several MIEs can converge in the same downstream KEs. 
AOP networks are defined as sets of AOPs sharing at least one common element, 
and are capable of more realistically representing potential chemical effects. They 
provide information on interactions between AOPs and have the potential to reveal 
previously unknown links between biological pathways. Analysis of these AOP net-
works can aid the prioritization of assay development, whether the goal is to develop 
a single assay with predictive utility of multiple outcomes, or development of assays 
that are highly specific for a particular mode of action (Knapen et  al. 2015). In 
Knapen et al. (2015) we provided an example of an AOP network for reproductive 
and developmental toxicity in fish that was built based on the five relevant AOPs 
that were available for fish in the AOP Wiki (AOP Nos. 21, 23, 25, 29 and 30). This 
way, we illustrated how AOP networks can be used for assay development and 
refinement (Fig. 4.4). In this example, reduced estradiol synthesis in granulosa cells 
is linked to two different MIEs, while reduced vitellogenin synthesis in hepatocytes 
is linked to three different MIEs, meanwhile reduced testosterone concentration in 
theca cells is uniquely linked to androgen receptor agonism. While all three KEs 
lead to, and can potentially be used to predict, the same AO of decreased female 
fecundity in terms either of egg production or embryonic survival, they have vary-
ing specificity with respect to the MIE triggering the chain of events. In general, 
AOP networks therefore offer the potential to guide the development of assays with 
different degrees of specificity for toxicological mode(s) of action, being indicative 
of either a very specific MIE or, alternatively, of clusters of mechanistically related 
MIEs. This type of assay development logic may be particularly useful for differen-
tial screening of compounds with unknown molecular targets, e.g. in the context of 
Integrated Approaches to Testing and Assessment (IATA, Tollefsen et al. 2014), in 
which sequential elimination of possible mechanisms may be quickly achieved 
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using assays probing strategically chosen KEs in an AOP network. Such an approach 
has, for example, already been implicitly implemented to some extent in the Fish 
Sexual Developmental Test (OECD TG 234, OECD 2011).

4.3.4  �Development of Fish AOPs for Endocrine Disruption

When specifically developing AOPs for endocrine disruption, such as those in 
Fig. 4.4, a number of aspects should be considered. There have been many different 
definitions of endocrine disrupting chemicals (EDCs), some very strict and others 
very broad. For regulatory applications, EDCs are currently widely defined as 
agents that cause alterations in reproduction or development through direct effects 
on the vertebrate hypothalamic–pituitary–thyroidal or hypothalamic–pituitary–
gonadal (HPG) axes (USEPA 1998). Both USEPA and OECD have developed tiered 
testing frameworks to screen for endocrine disrupting potential at low levels of bio-
logical organization using non-animal tests before proceeding to long-term tests to 

Fig. 4.4  Example of an AOP network based on the five reproductive and developmental toxicity-
related AOPs that were available for fish in the AOP Wiki (Jan. 2015). MIEs are indicated in green, 
KEs in orange, and AOs in red, as per the AOP Wiki template. The dotted squares indicate KEs 
that are defined as changes in opposite direction (increase versus decrease) of the same biological 
component. AHR aryl hydrocarbon receptor, GtH gonadotrope hormone, T testosterone, VTG 
vitellogenin, E2 estradiol. KE descriptions have been directly derived from the AOP Wiki when-
ever possible. In some cases, slight modifications of descriptions were necessary to generate a re-
usable KE in this specific network. This figure illustrates the AOP network approach but does not 
make any assumptions about the scientific validity of the underlying AOPs. AOPs, and hence the 
depicted AOP network, may be subject to change before they are formally finalized (Source: 
Reprinted from Knapen et al. (2015) with permission from Elsevier)
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observe the AO. The selection of appropriate exposure concentrations is essential to 
avoid confounding effects of systemic toxicity on endocrine endpoints, and thereby 
avoid false positives. For this reason, the concept of maximum tolerated concentra-
tion (MTC) has been adopted (Hutchinson et al. 2009; Wheeler et al. 2013). The 
MTC is the highest concentration at which no mortality or signs of morbidity (e.g., 
feeding inhibition, abnormal behavior, morphology or color) are observed. Beyond 
this MTC a specific toxicity observation cannot be attributed to a test chemical since 
the general health of the organism has been compromised. Therefore, the test con-
centrations for tests assessing potential endocrine activity in fish should be below 
this MTC.

Ankley et al. (2009) provided a conceptual model of how the hypothalamic–pitu-
itary–gonadal axis regulates fish reproduction and where/how chemicals with dif-
ferent MOAs can disrupt these pathways. This model has been important for the 
development of AOPs leading from aromatase inhibition, estrogen receptor (ant)
agonism and androgen receptor (ant)agonism to reproductive impairment. These 
AOPs for endocrine disruption in fish are among the most advanced AOPs devel-
oped thus far (current knowledge is integrated in the AOP network in Fig. 4.4).

These AOPs have been developed based on experimental data from adult fish 
tests. In this respect, many of the aspects discussed in Sect. 4.2 are of particular 
importance. Since the reproductive system is not yet developed in fish embryos, 
reproductive dysfunction cannot be directly measured in embryos. Attempts are 
being made to identify KEs that are already measurable in fish embryos and that 
eventually lead to and thus are predictive of endocrine relevant AOs. A project cur-
rently on the OECD workplan in relation to endocrine disruptor testing and assess-
ment called ‘zebrafish embryo assay for the detection of endocrine active substances 
acting through the estrogen receptor’ (EASZY), aims to detect endocrine active 
substances acting through human ER, using transgenic cyp19a1b-GFP zebrafish 
embryos (Carvalho et al. 2014). Schiller et al. (2014) showed that transcription of 
common endocrine disruption markers such as aromatase and vtg responded to 
exposure to endocrine disrupting chemicals in zebrafish and medaka embryos, and 
that the responses were generally comparable to those in later life stages.

Chemicals causing developmental outcomes are sometimes included in the group 
of EDCs (see definition above). While fish embryos are used to investigate mecha-
nisms of toxicity which also occur in later life stages, they are obviously especially 
useful to investigate disruptions of development. An example is the AOP for AhR 
receptor activation leading to altered cardiovascular development and embryo toxic-
ity (Fig. 4.4).

4.4  �Conclusion

Both vertebrate and invertebrate toxicity tests are used to provide an ecologically 
relevant basis for environmental quality criteria. Within the vertebrate tests, fish are 
valuable sentinels for evaluating aquatic toxicity since they represent a high trophic 
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level in the aquatic food chain. Experiments using the early life-stages of fish are 
more cost-efficient compared to tests using adult fish while maintaining the physi-
ological relevance of a vertebrate whole-organism test system. Ethical consider-
ations are also a driver of the use of fish embryos since they are considered alternative 
testing models during early development.

The AOP approach offers an interesting framework for developing alternative 
testing methods using fish embryos. For AOP development, specific toxicity infor-
mation is needed at multiple levels of biological organization, rather than only api-
cal endpoints. Even though fish embryos are small, there is an enormous potential 
to measure endpoints ranging from the molecular, over the biochemical to the phys-
iological level. As a better fundamental understanding of fish biology under both 
normal and chemical exposure conditions becomes available, the fish embryo is 
becoming increasingly useful for AOP development. Once developed, AOPs can 
facilitate the identification of assays targeting key events, which have high predic-
tive value for an adverse outcome of interest.
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Chapter 5
Invertebrate Model Species in AOP 
Development

Geoff Hodges, Steve Gutsell, Nadine Taylor, Erica Brockmeier,  
Emma Butler, Cecilie Rendal, and John Colbourne

Abstract  In this chapter, we present the use of invertebrate model species in the 
development of adverse outcome pathways (AOPs), its challenges, and the current 
state of invertebrate toxicity studies. Invertebrates can contribute significantly 
towards the development of robust AOPs, providing many advantages over the use 
of vertebrate species. This includes a generally shorter life cycle allowing for 
chronic and full life cycle toxicity tests, and a wide array of powerful molecular 
genetic tools such as genome sequences, genomic engineering including gene 
knock-outs, and comprehensive bioinformatics databases. Currently, the most 
robustly developed invertebrate model species for toxicity testing include Daphnia, 
Caenorhabditis elegans, plus members of the Drosophila genus. The potential use 
of these and other invertebrate organisms for assessing chemical risk for most ani-
mals (including vertebrate species) is evaluated via a comparative phylogenetic 
approach to ecotoxicological testing, seeking to discover the evolutionary origins 
and distribution of toxicity pathways across the internal branches of the animal 
phylogeny. Comparative –omics data from cellular and developmental studies sug-
gest a high degree of conservation in regulatory pathways in fly, worm and human. 
By comparing –omics studies between vertebrates and invertebrate species in toxi-
cology, we begin to also discover coherence in pathway level responses, indicating 
potentially numerous overlapping responses to specific stressors, even across spe-
cies that have different physiologies and ecological niches. At present, only a small 
number of invertebrate AOPs are informed by evidence. Perhaps the most robust of 
these is the Acetylcholinesterase inhibition (AChE) AOP for pesticides. We present 
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a case study of using the AOP framework for risk assessment and discuss how the 
use of models, such as those using Dynamic Energy Budget theory linked to popula-
tions, can enhance the use of AOPs for understanding and predicting chemical risk.

5.1  �Introduction (Key Challenges)

Conventional methods of Environmental Risk Assessment (ERA) largely rely on 
short-term acute toxicity tests carried out in the laboratory on various model species 
that occupy different trophic levels; these studies are supported occasionally by 
long-term chronic toxicity tests. Assessment factors, to account for the uncertainties 
in extrapolating from laboratory data to the natural environment, are then used to 
derive toxicity thresholds. However, since these factors lack a mechanistic/causal 
basis and do not quantify variation both within and among species, they have lim-
ited potential for quantitatively estimating cross-species toxicity thresholds and are, 
therefore, set to be protective rather than predictive. Economic as well as ethical 
factors also influence the type of testing typically conducted for ERA; new regula-
tions are phasing out the use of vertebrate animal testing (Council Directive 2010/63/
EU), while the costs of conducting chronic toxicity studies on whole vertebrate 
organisms are also prohibitive (REACH 2006).

The Adverse Outcome Pathway (AOP) approach looks at the effect of chemical 
perturbation from the Molecular Initiating Event (MIE) through several Key Events 
(KEs) which exhibit responses at various levels of biological organisation (e.g., cel-
lular, tissue, organ, etc.), which will lead to an Adverse Outcome (AO) that is rele-
vant to risk assessment (Ankley et al. 2010). The individual organism level AOs 
commonly used in ecotoxicology describe impacts on survival, growth and repro-
duction. As more AOPs and KEs are documented, it may become possible to predict 
and assess potential AOs using information from lower levels of biological organ-
isation as part of a new approach to ERA based on mechanistic understanding. As a 
minimum the AOP framework provides a way to collect, organise and integrate 
information from multiple sources to enable a safety decision to be made based on 
risk assessment and for communication of that information in a biologically plau-
sible manner (Burden et al. 2015; Perkins et al. 2015).

Given that invertebrates account for at least 95% of all known animal species and 
are critical to ecosystem structure and function (Verslycke et al. 2007), investiga-
tions using these key species are vital when obtaining data from which to develop 
AOPs. Invertebrates offer many advantages over vertebrates, including their gener-
ally short life cycle, large brood sizes and the ease with which large numbers of 
individuals may be studied. The use of invertebrates in toxicity testing is often cost-
effective, as thousands of organisms can be housed in single testing facilities. Many 
invertebrates are longstanding model species for biomedical and basic research, and 
their genome biology is very well understood for associating genetic diversity with 
their phenotypic effects. For example, the genome size of Caenorhabditis elegans is 
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only 100 megabases, with predicted protein products exhibiting 40% homology 
between C. elegans and humans; many C. elegans genes having similar functions 
with human proteins (The C. elegans Sequencing Consortium 1998). In fact, func-
tional annotations and associations among human genes are most often first discov-
ered in these systems (Williams and Auwerx 2015). Their discovery and predictive 
power have yet to be fully aimed at supporting AOP development. Moreover, a 
systems toxicology approach using a carefully chosen panel of such model species, 
which includes a large swath of animal diversity, will reveal commonalities by vir-
tue of our common ancestry, thereby enabling cross-species predictions based on 
phylogenetic principles.

This chapter will explore the benefits and limitations of using invertebrates as a 
model species for AOP development from all perspectives, including:

•	 Appropriate invertebrate species selection
•	 Existing AOPs and KEs based on invertebrate data
•	 The importance of test design
•	 How invertebrate AOPs or KEs could be incorporated into risk assessment in the 

future

5.2  �Species Selection

5.2.1  �Model Species

Model organisms can be defined in multiple ways. In general, model organisms have 
particular experimental advantages: they can be easy to maintain in a laboratory set-
ting, are amenable to genetic analysis and manipulation, are used to understand the 
genetic basis of disease, or are keystone species in ecology or representatives of 
biodiversity (http://genome.wellcome.ac.uk/doc_WTD020803.html). Model organ-
isms can therefore, serve to understand the human condition (biomedical models) 
and to understand how ecosystems function (ecological models). Model organisms 
with significant research communities and characterized genomes have particular 
value in research. Over the past decade, there has been a growing appreciation of the 
democratization of genomics resulting in a new class of “emerging” model species 
that are beginning to reveal genome diversity, the context dependency of gene func-
tions and their products, and the level of genetic variation for environmentally rele-
vant traits (Feder and Mitchell-Olds 2003; Tagu et al. 2014). From a comparative 
biology perspective approach, the origins and conservation of genes, and their func-
tional associations, can be mapped onto the animal phylogeny to infer homology, 
thereby increasing confidence in cross species extrapolation. By focussing attention 
on research dedicated to discovering the molecular underpinnings for fitness related 
responses to environmental conditions bridges an artificial divide between human- 
and eco-toxicology. Given these developments, invertebrates are certainly important 
for the discovering AOPs in risk assessment.

5  Invertebrate Model Species in AOP Development
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The National Institute of Health maintains a list of approved model organisms 
for use in biomedical research (http://www.nih.gov/science/models/). Of these, cur-
rently there are three invertebrate animal genera: Daphnia, Drosophila and 
Caenorhabditis. These three species are commonly used in comparative genomics, 
toxicology and/or ecotoxicology studies. These taxa offer a wealth of historical data 
and biological knowledge from over a century of genetic investigations.

Daphnia species are small freshwater crustaceans, ubiquitous worldwide and 
integral to the pelagic ecosystem (Lampert 2011). Fundamentally, Daphnia are a 
long-established model species with an important role in determining chemical 
safety criteria around the world, and is the most commonly used system for ecotoxi-
cological testing worldwide (Shaw et al. 2008). Highlights of the Daphnia system 
are: (1) reproduction by cyclical parthenogenesis; genotypes can be maintained 
indefinitely in a clonal fashion (Lampert 2011). It is possible to self or outcross 
lineages, thereby experimentally dissecting the relative contributions of genes and 
environment for toxicity by partitioning the variance between and among clones, 
with biological replication involving fixed genetic backgrounds. (2) A draft sequence 
assembly and annotation of the Daphnia genome (Colbourne et  al. 2011). (3) A 
transparent carapace that allows for imaging gene expression by fluorescence-based 
assays in whole animals; (Gorokhova and Kyle 2002; Paul et al. 1998). (4) Methods 
for reverse-genetic testing, including RNAi-based gene knockdown, CRISPR/
CAS9-based gene knockout, and transformation system (Kato et  al. 2011, 2012; 
Nakanishi et al. 2014). (5) Multiple mutation accumulation lines for obtaining direct 
estimates of the mutational rates and spectra (Seyfert et al. 2008). (6) A bioinfor-
matics database (wFleaBase.org) modelled after Drosophila’s FlyBase.org. (7) A 
large number of overlapping genes with human, more than any other sequenced 
invertebrate (Colbourne et al. 2011). As it stands, few species can rival Daphnia for 
possessing key biological attributes, research tools and infrastructure, as well as the 
support of a global research community; the Daphnia Genomics Consortium. The 
resources of this consortium can be used to discover how genomes and environ-
ments, including chemical stressors, interact. This is a key invertebrate species in all 
current environmental risk assessment paradigms and as such is perfect for merging 
known chemical effects with the testing paradigms being suggested.

Drosophila melanogaster (fruit fly, a dipteran insect) is a model organism that 
has been utilized for over a century in the field of genetics and has numerous bio-
logical research tools available (FlyBase.org). The striking conservation of >60% of 
human disease genes makes it an important model for neurological diseases, can-
cers, heart disease, metabolic diseases and diabetes, and responses to infection by 
pathogens (www.flydiseasemodels.blogspot.com). The physiological attributes of 
Drosophila including a brain, a beating heart, a tubular network analogous to lungs, 
an osmoregulatory/excretory system analogous to kidneys and many other aspects 
of physiology and homeostasis make it an excellent model species for the develop-
ment of AOPs that are highly applicable across species.

Caenorhabditis elegans (a nematode worm) is a much-used and long-established 
model system for obtaining integrated information on the cellular, developmental, 
and molecular aspects of the effects of toxicants on growth and development, as well 
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as gene expression. There is a wealth of knowledge available on C. elegans biology; 
an exceptionally detailed database on the cell and developmental biology as well as 
gene and protein expression patterns and regulation (WormBase). C. elegans is a 
practical and powerful species for toxicological testing having the added value of 
being able to observe all of the somatic cells in the living organism (http://www.
wormatlas.org). There is a conservation of neurophysiological components; shared 
genetic networks and developmental programs between nematodes and vertebrates 
make it an excellent model for these systems in particular. Several studies document 
that responses in C. elegans following chemical exposure appear to be predictive of 
developmental shifts or neurological damage in vertebrates (Leung et al. 2008). As a 
result of the evolutionarily conserved nature of signal transduction and stress-
response pathways, it is likely that responses elicited in C. elegans will be applicable 
to understanding similar processes in higher organisms, including humans.

Utilizing invertebrate models experimentally will help to reduce our reliance on 
animal-based methods, positively impacting animal welfare whilst elucidating 
mechanistic information that can aid in cross-species extrapolation (Burden et al. 
2015). The short-generation time and ease of handling of invertebrates in the labora-
tory makes them amenable to high-throughput screening approaches for assessing 
the cellular and molecular responses to chemicals that can take advantage of the 
myriad of technical advances that have occurred over recent years. Although risk 
assessment approaches have traditionally been based on the use of in vivo data gen-
eration supported by in silico methods, there has been a recent shift, in the US in 
particular, to incorporate these new in vitro (cell-based) alternative approaches 
(Ankley et  al. 2008). AOPs represent one mechanism for helping to collate and 
interpret these data in combination with more traditional apical endpoints (e.g., 
growth, reproduction, mortality) for assessments.

5.2.2  �Using Phylogenetic Approaches to Maximize the Use 
of Invertebrate Models and Existing Data in Risk 
Assessment

The AOP is a conceptual framework for obtaining data on early mechanistic events, 
leading to toxicity by a chemical, that can be linked to eventual adverse outcomes at 
many levels of biological organization. By virtue of the rapidity and cost effectiveness 
of in vitro and computational approaches, there is a growing database of the toxicologi-
cal potential of chemicals based on their disruption of pathways that are integral to cel-
lular functions (USEPA 2015). Yet despite the richness of this database for risk 
assessment, these results do not reflect the complexity of whole organisms including 
metabolic capacity, complex interactions among cells within tissues, tissues within 
organs, organs within individuals, and individuals within populations and under varying 
ecological settings. Cell-based assays also suffer from genetic homogeneity, frequent 
aneuploidy or loss of specific functions and adaptation through homeostatic mecha-
nisms. In effect, all biological models suffer from inherent variation in their responses to 
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environmental conditions because of natural genetic variation caused by mutation, 
genetic drift and natural selection, even among populations of the same species.

Variability in the response to chemicals is well known and derives from differ-
ences in genetics, epigenetics, life histories (including development, sex), ecologi-
cal setting and lifestyles (Barata et al. 2002; De Coninck et al. 2014). Accounting 
for innate variation among biological systems requires diversity in the assays used 
to discover toxicity pathways – preferably discovering mechanisms that are shared 
by evolutionary descent among many biological systems that altogether predict the 
chemical effects on the vast majority of untested organisms, including humans.

A program of comparative, multiomics chemical screening research programme 
using both invertebrate and vertebrate test species for discovering AOPs that are 
built from evolutionarily conserved molecular mechanisms of toxic responses to 
compounds is being pursued by a grassroots Consortium for Environmental Omics 
and Toxicology (CEOT), which both widens the set of processes investigated for 
potentially new mechanistic insights, and draws knowledge from genetic variation 
as part of the AOP discovery process. By utilizing a suite of research-intensive 
experimental organisms that are recognized biomedical model species, and by 
including data from cell lines, researchers are enhancing their studies to include a 
much broader range of potential adverse outcomes that complement higher through-
put in  vitro experimental data. The molecular responses to hundreds, then thou-
sands, of chemically induced perturbations, measured by genome-wide RNA 
profiling and non-targeted metabolomics, are extracted and combined into co-
responsive networks of genes and metabolites that show reproducible correlative 
structure across many samples and test conditions. Machine learning approaches 
are then used to relate the different omics data types, including forms of sparse 
regression and feature selection that put forward candidate pathways of toxicologi-
cal relevance. The co-expression networks identified in this way are predicted to 
participate in the same metabolic reactions in different species. This comparative 
approach is a far more powerful notion than merely relying on shared sequence 
similarity to infer functional gene-homology. The fact that genes share a common 
evolutionary ancestor is important, but does not guarantee they retain similar bio-
logical roles. Yet by identifying clusters of genes that influence the same metabolic 
processes, this research generalizes the notion of gene homology to homology at the 
level of networks that function in the same way. These shared co-functioning net-
works need not be composed entirely of evolutionarily conserved genes, which is 
important given the very large evolutionary distance among the test species. Several 
studies have already suggested that pathways or biological processes (when discov-
ered) are more likely than genes to be functionally conserved among most animals. 
Examples include DNA repair (Taylor and Lehmann 1998) and the decoding chro-
matin state and epigenetic information (Gerstein et al. 2014)

Using a phylogenetic approach that includes invertebrates is, therefore, necessary to 
identify the evolutionary origins and preservation of toxicological pathways starting 
from the base of the animal phylogeny, which can be useful to predict the susceptibility 
of a large swath of animal diversity to chemicals (Burgess-Herbert and Euling 2013). 
By studying the toxicological responses of organisms that vary in their phylogenetic 
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relatedness, adverse outcomes are discovered from chemical exposure that are poten-
tially shared due to the inheritance of toxicological pathways (KEs) from a common 
ancestor, thereby being predictive of the outcome in untested species along the same 
evolutionary branch. Connecting (eco)toxicity and sensitivity data to the phylogeny of 
the tested species can potentially provide an a priori prediction of a species’ sensitivity 
to contaminants (Larras et al. 2014) and a comparative approach which overlays a spe-
cies’ trait values onto phylogenetic trees. This can then be used to determine whether 
species possessing similar traits attributable to a shared history, or convergence, can 
help in extrapolating these findings across species (Hammond et al. 2012).

5.3  �AOP-Relevant Test Design (Benefits of Invertebrates 
Over Other Sentinel Species)

To experimentally discover the molecular mechanisms involved in a toxicological 
response, including MIEs, KEs and key event relationships (KER), test species such 
as those listed above requires well-developed molecular platforms, powerful biologi-
cal research tools and support by large model species research communities. –Omics 
can be used as one tool in an integrated approach (weight of evidence; WoE) in com-
bination with the readily available in silico or in vitro data to support the categorisa-
tion of chemicals by their KEs. There is still immense work to be done in identifying 
and/or further elucidating the molecular mechanisms or relevant KEs. This is particu-
larly the case when trying to elucidate the molecular-level responses of model species 
in order to predict survival, growth and reproduction following chronic exposure to a 
chemical. The desired output is a new decision-making tool that includes a suite of 
newly identified KEs that are predictive of chronic phenotypic responses to chemical 
exposure, and which are indicative of a specific Mode of Action (MoA)/AOP.

There are several practical benefits that are associated with the choice of invertebrate 
systems in the context of –omics experiments. The availability of genome sequence and 
gene annotation information enables more comprehensive analyses of processes 
informed by –omics experiments which are often derived by gene set enrichment analy-
sis (Subramanian et al. 2005) and determination of co-regulated pathways and biologi-
cal processes (http://geneontology.org). When comparing genome sequences available 
for invertebrates and vertebrates, there is currently more invertebrate sequence informa-
tion (378 entries versus 311, as of June 2016) in the National Center for Biotechnology 
Information (NCBI) genome database (www.ncbi.nlm.nih.gov/genome). Due to the 
size of many experimental invertebrates, molecular samples are often obtained from 
whole organisms, although tissue dissections can also be conducted. Commercially-
available microarrays currently include 13 vertebrate and 3 invertebrate species. 
However, platforms are now available which allow custom microarrays from sequence 
information to be made, opening up additional opportunities for developing and using 
–omics tools for invertebrate species. In addition, the advent of RNASeq technologies 
have enabled other approaches for measuring differential gene expression in species 
where no prior genome sequence is available (Nookaew et al. 2012).
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As there is a crucial need in AOP development to address both the acute and 
chronic effects of toxicant exposure (Patwardhan and Ghaskadbi 2013), inverte-
brates provide a solution to addressing long-term effects as well as impacts within 
multiple life-cycles in a shorter experimental time frame. Such chronic exposure is 
particularly relevant for ERA in which chemical exposure is often at low concentra-
tions over extended duration. Due to the shorter life cycles of invertebrate test spe-
cies (Buikema and Cairns 1980), complete toxicity assessments on multiple life 
stages and windows of sensitivity are possible. In addition, laboratory and testing 
space requirements are greatly reduced due to the size and life cycle length of inver-
tebrates, with a reduction in over 50% of the space and facilities required for toxic-
ity testing as compared to toxicity testing in fish (Buikema and Cairns 1980).

Considerations of sample quality control are required for the appropriate use of –
omics tools. For microarray experiments, RNA quality must be accurately assessed in 
order to ensure samples are not degraded. While RNA extraction procedures are easily 
available and provide reliable methods for invertebrate tissues (Stevanik et al. 2013; 
Santiago-Vazquez et  al. 2006; Spade et  al. 2010), several species exhibit a ‘hidden 
break’ in the 28S subunit of their ribosomal RNA (Ishikawa 1977). This makes assess-
ing RNA quality using methods such as RNA Integrity Number (RIN) evaluation using 
tools such as the Agilent BioAnalyzer more difficult. Researchers must keep this in 
mind when assessing RNA quality and have an SOP available for both RNA extraction 
and appropriate quality control assessment for their invertebrate organism of interest.

In terms of biomass required, genome-wide studies of differential gene expres-
sion currently utilize low amounts of RNA, so a small number of these organisms are 
sufficient for RNA-based studies. For example, four Daphnia magna at 5 days of age 
were sufficient as a pooled number of samples for RNA extraction (Taylor et  al. 
2010). In metabolomics analyses, individual D. magna samples were collected for 
both whole-body homogenates as well as hemolymph samples (approximately 1 μl 
per organism), with extracts able to provide metabolite profiles using Fourier trans-
form ion cyclotron resonance mass spectrometry (FT-ICR MS) (Taylor et al. 2010).

For homogenization methods, difficulties may also arise with sequence-based –
omics studies, for example RNA-seq (Wang et al. 2009) if whole-body preps are 
utilized. Carry-over of gut and intestine contents during whole-body homogeniza-
tions may skew these results to sequences found in internal bacterial contents. If 
whole body preparations are to be utilized, appropriate depuration methods should 
be used to avoid additional biases in the sequence analysis.

5.3.1  �Pathways Inferred from –Omics Studies: A Comparison 
Between Invertebrate and Vertebrate Test Systems

When thinking about the use of invertebrate test systems and identification of 
MIEs and KEs for AOPs, an important question is if results from invertebrate 
experiments are biologically relevant or analogous to the responses of vertebrates. 
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Here we present a comparison of –omics analyses comparing vertebrate and 
invertebrate test species and how biological results obtained relate between these 
two systems.

5.3.1.1  �Case Study 1: Nickel’s Impact on Global Gene Expression 
Via Microarray Analysis

Nickel is a ubiquitous earth metal but is found in concentrated and potentially toxic 
concentrations in some locations due to industrial activities such as mining and 
smelting. Toxic responses in humans range from dermatitis to cancer (Vandenbrouck 
et al. 2009). Several groups have used –omics tools to evaluate the toxic mechanism 
of action of this chemical, as knowledge of how nickel toxicity is elicited in non-
mammalian species is currently not well-understood.

Vandenbrouck et  al. (2009) exposed a single clone of Daphnia magna to four 
waterborne concentrations of NiCl2 (0.125, 0.5, 1, and 2 mg/L), which were below the 
EC50 of immobility at 48 h. Exposures for RNA extraction and microarray analysis 
were conducted for 96 h and additional growth measurements on D. magna were also 
assessed. RNA from a pool of 45 D. magna was extracted using TRIzol and a custom 
D. magna cDNA with 2445 genes related to life stage, moulting processes, and metab-
olism was used. After background correction and normalisation, significance analysis 
of microarrays (SAM) (Tushers et al. 2001) was used with a 5% false discovery rate 
(FDR) cut-off to determine differential gene expression. Blast2GO was used to deter-
mine differential regulation at the biological process level (www.blast2go.com).

Results demonstrated a dose-dependent increase in genes related to the D. magna 
cuticle, as well as several genes related to chitin-steroid metabolism and protein 
metabolism. Several ribosomal protein genes were downregulated in a dose-dependent 
manner, as well as genes related to lipid, oxygen, and ATP transport. Physiological 
data collected from this experiment showed a significant decrease of cellular energy 
allocation and consumed energy after 96  h at the three highest doses of Ni2+ 
(Vandenbrouck et al. 2009). This physiological response related to the dose-depen-
dent changes in several metabolic processes, including decreases in oxygen and ATP 
transport genes.

In a separate study, Mohamed et  al. (2014) exposed Mediterranean mussel 
(Mytilus galloprovinciali) to Ni. Mussels of 5–6 cm in length from aquaculture were 
acclimatized and exposed to 135 μg/L Ni via semi-static renewal for 4 days at both 
a preferred and high water temperature (18 °C and 26 °C). RNA was extracted from 
digestive glands of female mussels, and lysosomal membrane stability (LMS) was 
also assessed as a physiological measure of bivalve stress. A custom cDNA array of 
1748 mussel sequences (Mytarray V1.1) was used with a two-colour labelling. 
Linear model for microarray analysis (Limma) (Smyth 2004) was used to determine 
differential gene expression and Blast2GO for gene ontology annotation.

In the single-dose exposure, there was a significant decrease in lysosomal mem-
brane stability from the control, which is a characteristic response of bivalves to 
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several toxic stressors (both biotic and abiotic) (Svendsen et al. 2004). Focusing on 
results from the 18 °C exposure, as other studies were also conducted under normal 
conditions for the test organism, pathways that were over-represented in the differ-
ential gene sets include response to chemical stimulus, ribosome biogenesis, cell 
development, cellular catabolic process, and chitin metabolic process (Table  2, 
Mohamed et al. 2014). While the primary focus of this paper was to determine dif-
ferential responses between Ni-exposure and temperature stress, the data revealed 
overlapping gene expression responses with D. magna, specifically for genes and 
pathways related to ribosome synthesis and chitin. Chitin forms part of both the 
exoskeleton of arthropods and the shells of molluscs. Its differential regulation may 
be a response to the chemical stressor and as an attempt to maintain homeostasis 
during xenobiotic stress (Rodriguez-Serrano et al. 2009), and the presence in this 
over-represented pathways in both D. magna and M. galloprovinciali exposures 
demonstrated the usability of these types of data to infer responses in other species 
of invertebrates.

When considering how these pathways relate to exposures conducted in verte-
brate organisms, one example from Bougas et al. (2013) exposed juvenile yellow 
perch (Perca flavescens) to two concentrations of nickel. The low concentration 
used in this study (68.5 μg/L) was an observed concentration in lakes from the 
Sudbury region in Canada whilst the high concentration (542 μg/L) was five times 
the low concentration and was known to result in significant metal accumulation for 
the exposure duration. Juveniles were exposed for 45 days with weekly monitoring 
of dissolved metal concentrations. Kidneys were collected upon completion of the 
exposure to determine internal metal concentrations. Livers were used for RNA 
extraction and microarray analysis using a 1000 probe custom chip with probe 
selection conducted to represent genes related to metabolism and known metal 
exposure responses, as well as a set of genes found differentially expressed between 
two lakes in the region but not associated with metal exposure. A mixed ANOVA 
was used with a multiple testing correction to determine differential gene expres-
sion, and Blast2GO was used for biological process analysis.

There were significantly increased concentrations of Ni in the kidneys over the 
controls in both the low and high treatment groups. However, only the high dose of 
Ni resulted in significant differential gene expression over the controls. Focusing 
again on experiments conducted at a normal physiological temperature only, high 
dose nickel exposure resulted in the following enriched processes and functional 
categories: translation, ribosome biogenesis, iron binding, structural constituent of 
ribosomes, and cellular homeostasis (Table 1, Bougas et al. 2013). Genes related to 
ribosome biogenesis appear once again, and can also be found enriched in mouse 
cells treated with Ni (Lu et  al. 2010). It was proposed by the authors that this 
decrease may be an adaptive response to overall decreased protein-level metabolism 
during Ni exposures.

While these studies do not demonstrate convincing evidence for overlapping bio-
logical pathways between vertebrate and invertebrate species, they do give some 
insight into the potential for such studies to provide information on the concordance 
of processes exhibited between these species after nickel exposure. This could be 
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true even in organisms with vastly different physiologies and using different expo-
sure scenarios (acute versus chronic). Although individual gene responses will dif-
fer, focusing on similarities at the pathway level can provide a more holistic insight 
into how chemicals are interfering with normal processes during toxicant exposure, 
demonstrating that results are relevant and coherent between invertebrate and verte-
brate systems. Indeed, early investigations from the modENCODE consortium, 
(providing an encyclopedia of genomic functional elements in the model organisms 
C. elegans and D. melanogaster) (www.modencode.org), at comparing the genome-
wide expression of human, worm and fly, discovered co-expression modules that 
are shared across these animals, often functionally associated with cellular and 
developmental processes (Gerstein et al. 2014). As expected, regulatory modules 
that are shared among species were enriched by orthologous genes, yet those mod-
ules that are most conserved also contained the greatest number of interacting genes 
(Gerstein et al. 2014). This key finding is reinvigorating the use of experimental 
model species for understanding animal biology and the human condition. It also 
provides a platform for the next big and transformative set of experiments that com-
bine genomics with toxicology using model invertebrate species to discover over-
lapping pathway-level biological responses shared among invertebrates to 
vertebrates that can aid at identifying Mode of Action (MoA), which is useful in the 
context of ERA.

5.4  �Current State of AOPs

Invertebrates play an important role in the functioning of most ecosystems and 
represent about 95% of the metazoan diversity (GIGA 2014). Yet despite this 
fact, and the many discussed benefits of using invertebrate species as model 
organisms (including the ability to investigate multigenerational and sublethal 
endpoints with relative ease, plus the comparative wealth of existing in  vivo 
data), there is a surprising dearth of activity in using invertebrates in the develop-
ment of AOPs. This and the overall pace of discovery is reflected in the low 
numbers of full or partial AOPs that are currently available or being developed as 
part of activities driven by such organisations as the OECD, EPA etc. Here we 
review the current state of several AOPs available through the AOP Wiki (as a 
joint initiative between the European Commission – DG Joint Research Centre 
(JRC) and U.S. Environmental Protection Agency (EPA)) (https://aopkb.org/aop-
wiki/index.php/Main_Page).

Of the AOPs in the wiki at this time, only a small number currently contain evi-
dence from and, therefore, are applicable to invertebrates. This perhaps reflects the 
relatively early development of the majority of AOPs and also the limited knowledge 
in being able to apply them across species. Since the value of any AOP is enhanced 
when it is applicable for multiple species, this value is further increased if it is appli-
cable across multiple taxa. Therefore, it is perhaps not surprising that few of the 
AOPs that currently are being developed are for invertebrate species exclusively.

5  Invertebrate Model Species in AOP Development
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5.4.1  �Case Study 2: Summary of AOP Linking 
Acetylcholinesterase Inhibition (AChE) to Acute 
Mortality Based on Multi Data Approaches

Perhaps the most robust of the developing pathways currently is the AOP linking 
Acetylcholinesterase (AChE) inhibition to acute mortality (Russom et  al. 2014) 
which is described under AOP16 in the AOP wiki. AChE is found in many types of 
conducting tissue including nerves and muscle, central and peripheral tissues, and 
motor and sensory fibres, but it is primarily found in the blood, brain and muscles. Its 
primary function is to hydrolyze the neurotransmitter Acetylcholine (ACh). AChE 
contains both an anionic and an esteratic site (Quinn 1987). During neurotransmis-
sion ACh is released from the nerve into the synaptic cleft and binds to ACh recep-
tors, relaying the signal from the nerve. The signal is stopped when AChE hydrolyzes 
ACh. There are extensive datasets describing the impact of AChE inhibiting chemi-
cals on the mortality in multiple species as exemplified by the prevalence of data 
which continues to become available linking organophosphates such as Chlorpyrifos 
to adverse effects in organisms. A simple search of the USEPA ECOTOX database 
(www.epa.gov/ecotox) for example, reveals over 3700 recorded values for this com-
pound over the last 10  years. However, even for such a well-studied toxicity 
pathway(s) where there is significant evidence to support the link between acetylcho-
linesterase inhibition and acute toxicity, the lack of quantification to allow prediction 
of apical endpoints from in vitro or in vivo measurements highlights the scale of the 
challenge in developing and using AOPs in risk assessment.

Much of the existing literature considering AChE inhibition has limited taxo-
nomic coverage. However, the review of the literature and AOP development by 
Russom et al. (2014) considers the biological conservation of the MIE and evidence 
supporting linkage of the MIE to AOs across a wide range of ecologically relevant 
taxa at different life stages. In addition, the authors present a chemical category 
approach to AOP development, considering toxicity data from a diversity of organo-
phosphate and carbamate insecticides that act via inhibition of AChE.

To help define the taxonomic domain of applicability, and to predict relative 
intrinsic susceptibility to organophosphate and carbamate chemicals, Russom et al. 
(2014) utilized a comparative method developed by LaLone et al. (2013) to identify 
AChE as a potential toxicological target across a greater swath of animal diversity. 
This method identifies homologs, or genes that are shared across genomes by 
evolutionary descent. The applied logic is that the greater the level of protein sequence 
conservation, the greater the probability that they also retain their functions, which 
are preserved by natural selection (the orthology–function conjecture; Gabaldón and 
Koonin 2013). Although this premise is often true for identified orthologs (genes that 
are shared because of speciation), those that are identified as paralogs (genes that are 
shared because of duplication) often diverge in their functions. Therefore, the reli-
ability of methods at predicting toxicity by comparative genomics, especially com-
paring both vertebrates and invertebrates, continues to improve as more genome 
sequences populate pre-computed databases that reconcile a gene tree with the 
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corresponding species tree, for example OrthoDB (www.orthodb.org). Orthology 
analysis has understandably become an important sub-discipline of bioinformatics 
(Kriventseva et al. 2015; Dessimoz et al. 2012) in which attempts are made to iden-
tify orthologous genes which have descended from a single gene from the last com-
mon ancestor (Fang et  al. 2010; Koonin 2005). Our search for AChE homologs 
among the vertebrates and invertebrates within the OrthoDB V8 database of ortholo-
gous groups for major clades (Kriventseva et al. 2015) uncovers 395 genes in 169 
animal species (out of 173); the gene is found as single copy in only 35 species (gene 
ortholog group EOG8H1C6C at the Metazoa level). Phylogenetic reconstruction 
reveals an ancient gene duplication event of the AChE gene prior to the origins of 
Mammalia, resulting in most species having at least two copies in their genomes 
(tree not shown). Not surprising, AChE among the invertebrates have a more com-
plex history of gene duplication and deletion along evolutionary lineages that include 
the arthropods and echinoderms through to nematodes and trematodes. However, 
despite such complexity, the tools and databases now available to researchers provide 
them with improved opportunities to interrogate and demonstrate the true breadth of 
the applicable domain of species for a given AOP; a trend which will increase as 
genome sequences become available.

The MIE for AChE inhibition is triggered by the interaction of the chemical with 
the anionic site of the enzyme, blocking the site for acetylcholine (ACh) and result-
ing in a build-up of ACh at synapses (KE2) and unregulated excitation (KE3) at 
neuromuscular junctions, preganglionic neurotransmitters and postganglionic nerve 
endings in the autonomous nervous system and neurotransmitters in the brain and 
CNS (Fig.  5.1). Significantly, protein sequence alignments of the AChE enzyme 
related to the MIE are relatively well-conserved across vertebrates and inverte-
brates, suggesting that the manner of the chemical interaction may be similar across 
a wide range of species and taxa (Russom et al. 2014). Hence, the likely domain of 
applicability ranges from invertebrate classes branchiopoda, insecta, arachnida, 
cephalopoda, ascidiacea, trematoda, gastrapoda as well as amphibia, mammalia and 
avia, thereby reflecting the ubiquitous nature of ACHE in all life stages in verte-
brates and invertebrates.

5.4.1.1  �Evidence from Invertebrates Supporting the AChE KEs and KERs

Supporting evidence for developing the AChE AOP was found in existing empiri-
cal data from both the ECOTOX database and the scientific literature (Russom 
et al. 2014). Studies preferentially selected were those which reported endpoints 
indicative of neurotoxicity such as seizure activity, muscle responses, heart, res-
piration rates, etc. The ECOTOX database yielded significant numbers of studies 
reporting physiological responses in terrestrial and aquatic organisms, only 39 of 
which reported results that were associated with at least 3 KEs, and only 2 studies 
which provided results supporting all 4 KEs (Fig. 5.1). The open literature also 
provided a substantial number of studies linking AChE inhibition with down-
stream KEs.

5  Invertebrate Model Species in AOP Development
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Lu et al. (2012) were able to provide evidence linking the MIE to KE4 (Fig. 5.1) 
use gene silencing techniques. They were able to determine that AChE produced by 
the TcAce 1 gene was responsible for cholinergic neurotransmissions, while AChE 
produced by the TcAce2 gene is involved in noncholinergic activities including 
growth and reproduction in the red flour beetle Tribolium castaneum.

Empirical evidence linking KE2 to KE4 (Fig. 5.1) has been found in a single 
study using the earthworm Eisenia foetida (Reddy and Rao 2008). The study using 
profenofos (PFF) demonstrated a link between increased AChE levels (measured 
using the method described by Ellman et  al. 1961) with body ruptures, lesions, 
excessive formation of glandular cell mass and disintegration of muscles causing 
internal coelomic pressure leading to mortality.

Some studies have attempted to quantify links between KEs for the ACHe 
AOP. Barata et al. (2004) exposed Daphnia magna to organophosphorus and carba-
mate pesticides in order to assess the inhibition and subsequent recovery patterns of 
both AChE and carboxylesterase (CbE), and related these patterns to individual 
observed effects. Time course experiments were conducted using two concentra-
tions (the 24 h LC50 and 50% of the 24 h EC50) over a 48 h exposure period fol-
lowed by a 72  h recovery period to determine the concentration of each tested 
compound (Chlorpyrifos, Malathion and Carbofuran) which caused a 50% inhibi-
tion of AChE and ChE (IC50), as well as the kinetics of inhibition and recovery. 
Results indicated that AChE inhibition levels were greater than 50%. More specifi-
cally, 56% and 80% AChE inhibition was needed to impair survival to 10% and 50% 
respectively.

Similar attempts to quantify links between AChE inhibition levels as an indicator 
of KE2 linked to mortality (KE4) have been made using Caenorhabditis elegans as 
the test species (Rajini et al. 2008). Specifically, the nematodes were exposed to a 
number of organophosphorus (OP) insecticides for 4 h exposures over a range of 
concentrations. AChE levels were determined using the Ellman et al. (1961) method 
and linked to both acute lethal and sublethal behavioural effects. All OPs studied 
produced significant toxicity at greater than 50% AChE inhibition.

Other studies using the freshwater shrimp (Paratya australiensis) and the com-
mon shrimp (Palaemon serratus) have also established a link between AChE inhibi-
tion following exposure to lethal concentrations OPs, demonstrating between 70% 
and 100% inhibition of AChE at lethal doses (Abdullah et al. 1994; Bocquene and 
Galgani 1991). Abdullah et al. also reported >40% reduction in AChE levels result-
ing from sublethal concentrations of 0.1–10  μg/L of profenofos test chemical. 
Similarly studies with other invertebrate species investigating AChE inhibition in 
midge larvae (Chironomus riparius) (Detra and Collins 1991) and the freshwater 
gastropod Chilina gibbosa (Bianco et  al. 2013) established strong links between 
KE2 and KE4.

A number of other studies have shown links between the MIE and KE2, includ-
ing a study using the speckled shrimp Metapendeus monoceros (Reddy et al. 1990). 
The authors reported a significant reduction in AChE activity concurrent with an 
increase in ACh levels in nervous tissues.

5  Invertebrate Model Species in AOP Development
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5.4.1.2  �–Omics Data Supporting the AChE Pathway

In the nematode C. elegans, Viñuela et al. (2010) evaluated differential gene expres-
sion after chlorpyrifos exposure. C. elegans were exposed from hatching to the L3 
stage (72 h) to 0.5 mg/L of chlorpyrifos, a dose below the EC50 for reproduction 
(3.5 mg/L) as well as growth (14 mg/L). Whole body RNA extracts were hybridised 
to a whole-genome C. elegans array developed by the Genome Sequencing Center at 
Washington University. Differential gene expression was determined using rank prod-
uct analysis with control of the false positive rate at 5%. Gene ontology information 
was obtained from Wormbase (http://www.wormbase.org) and over-representation of 
Gene Ontology (GO) terms was determined using a hypergeometric test (p-value cut-
off <0.01).

Chlorpyrifos exposure resulted in the differential regulation of 551 genes, with 
key enriched GO terms in the categories of lipid transporter activity, lipid transport, 
mono-oxygenase activity, immunity, transferase activity, iron binding, and electron 
carrier activity (Fig. 5.2, Viñuela et al. 2010). There was also a strong expression of 
genes within the daf-16 pathway, such as glutathione S-transferase P 10 (gst-10) 
which are involved in phase II detoxification. Vitellogenins were increased by chlor-
pyrifos exposure, as well as genes involved in the Insulin Growth Factor (IGF) 
pathway.

In the marine bivalve Mytilus galloprovincialis, Dondero et  al. (2011) con-
ducted exposures to chlorpyrifos for 4 days to 0.77 mg/L, equivalent to the EC50 
for lysosomal membrane stability. Pathways with significant enrichment following 
chlorpyrifos exposure include ion binding, transmembrane receptor activity, cata-
bolic processes, carbohydrate metabolism, iron oxidase, and oxidoredictase 

Fig. 5.2  Differential gene expression in C. elegans after chlorpyrifos (CPF), diazinon (DZN) 
exposures, and mixture OP exposures (Adapted from Vinuela et al. (2010) (Figure 2 in original 
manuscript))
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(Dondero 2011). Chitinase activity was also found in catabolic process enriched 
genes, which is consistent with results found in C. elegans following chlorpyrifos 
exposures (Vinuela et al. 2010). Impacts on iron binding and iron-related processes 
are also found in both of these systems, which are supported by findings that iron 
levels have an impact on regulating acetylcholine receptor expression in rats (Han 
and Kim 2015). Over-representation of genes within the iron binding and iron oxi-
dase pathways may be a concordant toxic response between nematodes and mus-
sels in response to OP stressors.

In a study by Moreira et al. (2010) looking at the maternal and fetal effects of 
chlorpyrifos exposure, C57BL/6 mice (Mus musculus) dams were treated with up to 
15 mg/kg/day of chlorpyrifos via subcutaneous injection, with the highest doses 
(10, 12, and 15 mg/kg/day) resulting in decreased AChR activity in maternal brains. 
RNA was extracted from fetal and maternal brains and microarray analysis con-
ducted using the affymetrix mouse whole genome 430 2.0 platform, which has over 
39,000 transcripts. Differential gene expression was determined using the Limma 
analysis and MAPPFinder was used to determine enriched biological processes.

Focusing on the maternal brain data, enriched GO processes include regulation 
of transferase activity, lipid metabolism, carbohydrate biosynthesis, proton trans-
port, and myeloid cell differentiation (Fig. 5.3, Moreira 2010). Additional specific 
biological information can be inferred from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis, with the following pathways significantly 
enriched by chlorpyrifos exposure in maternal brains: adherens junction, axon 
guidance, ErbB signaling, GnRH signaling, and Jak-STAT signaling. Focusing on 

Fig. 5.3  Significant gene ontology terms associated with chlorpyrifos treatment in the maternal 
rat brain (Adapted from Moreira et al. (2010))

5  Invertebrate Model Species in AOP Development
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genes that had a peak upregulation at 10 mg/kg, genes related to lipid and phosphorus 
metabolism are prevalent, and genes that are downregulated at this dose include 
developmental processes, cell adhesion, nervous system development, lipid metab-
olism, secretory pathways, and synaptic transmission. In the fetal exposures, 5 out 
of 43 genes related to oxidative stress were also present.

Whilst there was not complete overlap of pathways described in C. elegans and 
M. musculus (Vinuela et al. 2010; Moreira et al. 2010) overlapping pathways related 
to lipid and carbohydrate metabolism are prevalent in both the invertebrate and mam-
malian systems. The lack of other overlapping pathways could also an artefact of the 
experimental design such as the nature of the dosing methods used (environmental 
exposures versus direct injection). In another vertebrate model system, zebrafish 
(Danio rerio) exposed to chlorpyrifos (35, 88 or 220 μg/L) for 24 h exhibited enrich-
ments in pathways related to morphogenesis, metabolism, transferase activity, kinase 
activity, cell growth/replication, and catabolic processes (Tilton et al. 2011). These 
pathways related to what was found in both invertebrate and mammalian systems, 
and while some specific pathways may not intersect such as iron metabolism, this 
could be due to varying genes and methods used when assigning GO categories 
between model and non-model organisms. These pathway-level similarities provide 
support to broader comparisons in the context of risk assessment as they provide sup-
port for similarities in key events and toxic modes of action.

One of the strengths of the AOP approach in ERA is in the value of combined 
evidence. Information provided by invertebrates combined with data obtained from 
mammalian, fish, and avian species using all-available evidence from in vitro, in 
silico and in vivo as well as gene expression information to support the KEs and 
KERs can be integrated to consider the adverse impacts of (in particular) chemical 
stressors on organisms. This is particularly the case when considering chemicals 
where there is a paucity of such data. However, even for chemicals for which target 
effects are known and for which significant evidence exists to support the pathway 
identification, the value of an AOP approach has the potential to significantly 
enhance current approaches in identifying pathways across species for ERA pur-
poses. This is exemplified by the example of acetylcholinesterase inhibition, in 
which the network of AOPs as a whole, including the indirect KERs, supports the 
potential utility of in vitro or short-term in vivo measures of acetylcholinesterase 
inhibition for identifying chemicals with potential to cause systemic neurotoxicity 
at sub-narcotic concentrations. For example, Gong et al. (2010) demonstrated that 
hexanitrohexaazaisowurtzitane exhibited strong neurotoxic behaviour in the earth-
worm Eisenia fetida using a range of information including behavioural observa-
tions and neurobiochemical and eletrophysiological measurements. However, at 
present, while these approaches can in some cases provide strong evidence for the 
activation of a particular pathway, quantitative understanding is not sufficiently 
complete to accurately predict apical outcomes or potency from in vitro measure-
ments alone. In addition, well-known chemical initiators of these AOPs are known 
to require metabolic activation, suggesting that chemical-specific ADME and 
toxicokinetic considerations will be strong determinant of quantitative outcomes 
along these AOPs (Groh et al. 2015).
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5.4.2  �Other AOPs Using Invertebrates

The case study of AChE exemplifies the need for multiple data sources to identify, 
support and quantify the pathway. Given the complexity of responses to a chemical 
assault within an organism or the complexity of responses given the multiple stress-
ors to which organisms are exposed in the environment, single data types alone are 
unlikely to be able to fully characterize subsequent impacts on the individual follow-
ing exposure to a chemical toxin. Such a problem was considered in a recent study 
by De Coninck et  al. (2014), where the authors limited the stressors to two. The 
authors investigated the possibilities and limitations of using a genome-wide tran-
scription based approach to consider the impact of two stressors, cadmium and 
microcystis (producing mycrocystin neurotoxin), on two genotypes of Daphnia 
pulex isolated from two populations; one population was exposed to high levels of 
cadmium (tolerant) for over a century and the other was exposed to naturally occur-
ring low a levels (sensitive). The authors were able to interrogate the effects of mix-
ture components and genotypes, both independently and in combination, to identify 
interaction responses which contributed to tolerance in individuals. They identified 
oxidative stress and polyunsaturated fatty acid metabolism-related pathways, as well 
as trypsin and neurexin IV gene-families as candidates for the underlying causes of 
genotypic differences in tolerance to microcystis. However, the approaches were less 
successful in linking gene expression results from single chemical exposure to organ-
ismal responses. The study thus demonstrated the potential value of the technique for 
better understanding and extricating pathways, but also highlighted that additional 
techniques and information would be needed to understand key events quantitatively 
and links to phenotypic and population relevant endpoints for application in risk 
assessment, particularly after exposure to multiple stressors.

The study of neurotoxicity is of course not limited to AChE inhibitors alone. 
Thousands of chemicals are known or thought to have neurotoxic properties and have 
been studied in an environmental toxicology context. Other key neurotransmitter 
pathways, in addition to the cholinergic pathway, which can be impacted and have 
been studied include the Dopaminergic (DA), Serotonergic, GABAergic and 
Glutamatergic acid pathways (Basu 2015). Invertebrates lend themselves well to 
investigating some of these pathways more than others. The inhibition of gamma 
aminobutyric acid (GABA) receptor is well-studied in vertebrates but perhaps less so 
in invertebrates. However, ionotropic GABA receptors (iGABARs) have also been 
described in many different phyla of invertebrates such as social amoeba (Dictyostelium 
discodeum), cnidarians, mollusks, annelids, arthropods, nematodes, and chordates (as 
described in the AOP under development in the AOP wiki). As such, the described 
AOP has potential broad relevance across invertebrate as well as vertebrate taxa.

Perhaps more poignant is the current limited representation of invertebrate data 
supporting other developing AOPs in the wiki. For example, there are currently two 
AOPs under development related to N-methyl-D-aspartate receptors (NMDAR). 
These are focussed primarily on mammalian brain development. The NMDA recep-
tor is a glutamate receptor and ion channel protein found in nerve cells and there is 
significant evidence that such receptors are present in invertebrate species as well as 
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mammalian species. The genes involved in ionotropic glutamate receptors have 
been found to be significantly activated in daphnids (Toyota et al. 2015). Genes are 
predicted to encode the subunits of an NMDA-type (NMDAR) iGluR necessary for 
memory retention in C. elegans (Kano et al. 2008) and a partial cDNA encoding the 
leech NR1 subunit of the NMDA receptor (HirNR1) has also been identified (Grey 
et  al. 2009). The inclusion of such information in developing AOPs will signifi-
cantly broaden their applicability across taxa.

The new developing AOP describing the alkylation of DNA in male pre-meiotic 
germ cells leading to heritable mutations provides empirical evidence across the 
KEs and KERs when it includes invertebrate data. Of particular relevance for the 
broad applicability of the AOP is that data are reported for multiple species to sup-
port this indirect KER showing that a variety of O-alkylating agents cause male 
germ cell mutations in many species including invertebrates such as Drosophila 
(Stilwell et al. 2006; Raymond-Delpech et al. 2005).

5.5  �Application to Environmental Risk Assessment

This section aims to illustrate how the AOP framework can be used in ERA with the 
methods and tools that are currently available. Full AOPs are not currently neces-
sary to complete a robust risk assessment because the framework can still provide 
valuable insights, even when only individual segments of the AOP are addressed. 
The following is a conceptual approach to show the value of the AOP framework in 
risk assessment. The approach here is limited to consider invertebrates. Figure 5.4 
provides an overview of the AOP framework and the tools that are currently avail-
able to support the use of AOPs in environmental risk assessment.

5.5.1  �QSARs

There is a long history of use of Quantitative Structure-Activity Relationships 
(QSAR) in ERA for the prediction of hazard data. Many hundreds of models have 
been developed to predict the aquatic toxicity of chemicals. The most widely accepted 
QSAR models for prediction of aquatic toxicity are based on MoA. Therefore, to 
apply QSARs to a novel chemical, it is first necessary to assign that chemical to a 
MoA. This is often the most difficult step in applying QSARs and is,therefore, the 
largest potential source of error. An inaccurate assignment of MoA can lead to a 
QSAR prediction several orders of magnitude different to the true value.

Although there are numerous QSARs developed that are based on invertebrate 
test data, the current methods for predicting MoA from chemical structure are based 
predominantly on insights from fish toxicity tests (Verhaar et al. 1992; Russom et al. 
1997). It is unclear to what extent these MoA classifications are applicable across 
other species, including invertebrates. Despite this, once a MoA is assigned, it is 
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generally applied across all species being assessed. The information captured in 
AOPs and KEs related to aquatic toxicity, combined with application of phylogenetic 
insights, will allow more informed predictions to be made across species by high-
lighting commonalities and, more importantly, differences between AOPs in differ-
ent species. It is anticipated that the grouping of chemicals for read across/QSAR 
approaches will need to be updated in light of such developments as the existing 
MoA classifications may not be sufficient to accommodate this level of detail.

The development of AOPs (and QSARs) for sub-lethal AOs is a major need in the 
area of ecotoxicology. As discussed above, invertebrate species are ideal candidates 
for such work. As the network of pathways underlying sub-lethal effects is unveiled, 
the use of QSARs to predict KEs at lower levels of biological organisation may 
become necessary.

5.5.2  �In Vitro Assays

While the majority of receptor binding assays are currently designed to inform 
issues related to human health and pharmacology, these assays also have the poten-
tial to provide valuable insights for the identification of MoA and molecular initiat-
ing events in other species in cases where targets are conserved. Endocrine disruption 
is a good example of this; despite the fact that the majority of research in this area 

Fig. 5.4  AOP toolbox. The AOP framework is given in the green boxes. Lab based tools are given 
as blue boxes. Toxicodynamic tools are given in grey. Toxicokinetic tools are given in yellow
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has focused on vertebrate species, some of the most robust studies showing the 
adverse effects of endocrine disruption have been carried out on invertebrates 
(Oetken et al. 2004). For invertebrate risk assessment and AOP development, results 
from such assays are rarely referenced despite the fact that that human and inverte-
brate genomes e.g., Daphnia magna, have an overlap in gene sequence of 56% 
(Shaw et al. 2008). While there is a wealth of results from receptor binding assays, 
it has not yet been systematically investigated how many of these assays are relevant 
to a broader range of species, including invertebrates. What is required is a review 
of how many of the commonly performed human health assays e.g., ToxCast (www.
epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data), are targeting pro-
teins which are also present in invertebrates. For this gene sequence comparison, 
tools are available, e.g., SeqAPASS: Sequence alignment to predict across-species 
susceptibility) (Lalone et al. 2013; https://cfpub.epa.gov/si/si_public_record_report.
cfm?dirEntryId=276372). This would allow currently available data to be used in 
AOP development for invertebrates. In the future, it is possible that assays will be 
available that can address invertebrate proteins directly.

5.5.3  �Molecular Target Sequence Analysis

For all new human pharmaceuticals coming on to market, it became mandatory in the 
EU in 2006 to conduct chronic endpoint studies on Daphnia, algae and early life stage 
fish (Gunnarsson et al. 2008). However, this strategy alone is not predictive for all 
wildlife species. The challenge of addressing the difficulties of assessing the impact of 
chemical exposure on multiple species using data from a few is prominent in the envi-
ronmental risk assessment of all chemicals. It is an impossible task in environmental 
risk assessment to conduct toxicity tests on every wildlife species to ensure complete 
safety, let alone to address the complexity of potential ecological interactions influ-
encing sensitivity to toxicants. For this reason, tools for species extrapolation are 
essential. One such method is to make use of results obtained from the comparative 
genomics research community at detecting homologous elements across all sequenced 
genomes and using molecular phylogenies and functional genomics data to under-
stand the functional preservation of these elements that include genes. Annotated draft 
genome and transcriptome sequences are known for many species and their numbers 
are increasing exponentially (Reddy et  al. 2014). For example, Gunnarsson et  al. 
(2008) observed conservation of 1318 human drug targets across 16 species. 
Remarkably this included 61% target conservation in Daphnia magna, highlighting 
the significant conservation of ‘human’ targets across lower trophic level inverte-
brates. Searching for target conservation can lead to an increased efficiency in toxicity 
testing by identifying appropriate test organisms (Ankley et al. 2007).

There are two main types of methods used to identify gene orthologs among spe-
cies: (1) orthology by sequence similarity searches that use local alignment algo-
rithms such as BLAST or Smith-Waterman (Altschul et  al. 1990; Smith and 
Waterman 1981) for all pairwise sequence comparisons; (2) phylogeny-based 
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searches that aim to delineate speciation from gene duplication by comparing the 
gene tree with the corresponding species tree (Goodman et al. 1979). Although the 
methods for predicting the functional conservation of genes are regularly evaluated 
against benchmarks that minimize known biases and pitfalls (Gabaldón et al. 2009; 
Dessimoz et  al. 2012), the toxicology community has developed a custom tool 
(SeqAPASS) (Lalone et  al. 2013), which take the peptide sequence for a known 
target protein and aligns it with protein sequences from a publicly available sequence 
databank. Orthologs are presumed using Blast and the output of this process is a 
qualitative prediction of susceptible taxonomic groups. Despite the early stage of 
the development of SeqAPASS and a need to evaluate its performance alongside the 
>30 established comparative genomic databases (http://questfororthologs.org/), 
several publications underline the potential benefits of such approaches (Lalone 
et al. 2013; Schreiber et al. 2011; Russom et al. 2014).

There are limitations of using such tools in isolation. Only a limited number of 
species across relevant taxonomic groups have genome maps which can limit the 
applicability. Additionally, these tools tend to use a two dimensional protein struc-
tures and very little is known about the three dimensional structures and how the 
docking site might vary on a similar protein across different species. To consider 
three dimensional binding interactions is very time consuming, and the current tools 
are not yet powerful enough to identify sensitive species with high levels of confi-
dence. Therefore, the molecular target sequence analysis tools can currently only be 
used to identify vulnerable species groups and guide risk assessors in the selection 
of test species.

Molecular –omics technologies now exist that can revolutionise testing and envi-
ronmental monitoring. These –omics technologies offer insight into the mechanisms 
of toxicity by measuring the expression of 10,000s of genes and the levels of 1000s of 
metabolites in an organism. These molecular data can then be used in AOPs to link 
from the MIE or key event to the phenotypic responses (e.g., growth and reproduc-
tion) of organisms to pollutants. By understanding the gene expression or changes in 
the metabolome in response to a given group of chemicals with a known MoA, the 
resulting molecular signature can be used to identify similar responses in other spe-
cies. One of the main challenges which currently is preventing the full scale use of 
such technologies in elucidating pathways is the current lack of a cohesive approach 
to interpreting and differentiating gene expression data which connect to KEs (leading 
to an AO by definition) from those connected to more incidental events in a pathway.

5.5.4  �In Vivo

5.5.4.1  �Acute

There is a wealth of acute toxicity data for invertebrates and these data are usually fast, 
easy, and relatively cheap to generate without the ethical dilemmas associated with 
vertebrate species. In addition, the use of invertebrates also avoids the legal and 
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regulatory constraints imposed on vertebrate species. However, the data mainly come 
from a very narrow range of universally-recognized model species (i.e. D. magna, C. 
elegans etc.) and provide limited information on toxicity mechanisms due to the lim-
ited range of endpoints which are traditionally recorded such as immobility and 
survival.

While acute data are often criticised as too crude to provide population relevant, 
mechanistic insights, it must be acknowledged that when generated carefully, these 
values can provide valuable supporting evidence for AOPs through a better under-
standing of MoA. This evidence is enhanced when combined with other data such 
as gene expression. Toxicokinetic concepts such as chemical activity and critical 
body burden can help to define the MIE and related AOP. For example, Thomas 
et al. (2015) illustrated how the use of the chemical activity framework can distin-
guish between baseline toxicants and specifically acting chemicals. The approach 
utilizes an activity threshold for acute toxicity, where chemicals that exhibit activi-
ties in the range of 0.01–0.1 can be classed as acute baseline toxicants. Lower activi-
ties imply a more specific mode of action. This approach is similar to the critical 
body burden approach where chemicals that have an internal concentration of 
2–8 mM at acute EC50 are generally classed as baseline toxicants (van Wezel et al. 
1996). Careful consideration of exposure concentrations is critical for this type of 
analysis as nominal concentrations can misrepresent the actual free concentration in 
the medium. Processes such as partitioning into organic compartments, evaporation, 
precipitation, degradation and metabolism may significantly reduce the concentra-
tion of chemical which is available for uptake by the organism. Such processes, if 
present, typically lead to an underestimation of the toxicity of the chemical. 
Modelling approaches have been developed to help identify potential exposure-
related issues in advance of experimental work (Armitage et al. 2014) and advanced 
passive exposure techniques have been developed to help overcome some of these 
issues (Kramer et al. 2010).

5.5.4.2  �Chronic

Despite some of the potentially useful aspects associated with acute toxicity data, 
there is currently a call for more chronic data for invertebrate species. The use of 
chronic data over acute data increases the confidence in risk assessments and allows 
the use of reduced assessment factors. From an AOP perspective, however, there is 
valuable information which is not captured when experiments are limited to stan-
dard test protocols. For instance, physiological and behavioural effects may provide 
insights into key events or adverse outcomes. Furthermore, information on MIE can 
be captured by taking samples for transcriptomics analyses. Such additional infor-
mation can support modelling and extrapolation both upwards and downwards in 
the AOP.  In short, we can obtain a stronger mechanistic understanding from the 
results of these assays. A standard chronic toxicity assay may completely miss the 
adverse event (i.e. reduction of offspring survival) or fail to identify important key 
events (i.e. inhibition of growth).

G. Hodges et al.



99

5.5.5  �Use of Mechanistic Effect Models in AOPs

When assessing the potential for adverse effects in the environment following expo-
sure to a chemical, there is a need in ERA firstly to be able to determine the nature of 
the adverse effect in relevant species, secondly at what concentration or dose that 
impact occurs (the tipping point) and lastly how relevant that impact is, given the 
actual exposure in the environment under consideration. AOPs provide a valuable 
approach to be able to understand relevant mechanisms across relevant species at an 
individual level. Critically, however, for use in ERA there is a need to be able to 
extrapolate these findings to understanding impacts on populations. Predictive sys-
tems models are under development which can begin to account for some of the com-
plexity of chemical impacts on populations, communities and ecosystems. Models 
such as Dynamic Energy Budget linked with Individual based models (DEB-IBM) 
attempt to extrapolate from individual level effects to population effects (Martin et al. 
2013). When combined with the AOP framework, mechanistic effect models (at the 
sub individual level) even have the potential to be used to link chemical effects at dif-
ferent levels of biological organisation based on an understanding of the chemical 
MoA (Groh et al. 2015); qualitative links have been established, for example, between 
DEB models and transcriptomics data (Wren et al. 2011; Swain et al. 2010).

DEB modelling is a toxicodynamic modelling approach that relies on DEB theory 
to link either steady-state or time-varying concentrations of a chemical to the effects 
on the life history of an organism (Kooijman 2009). In simple terms, DEB considers 
the total energy intake of an organism, and maps out how the organism will allocate 
the available energy to the main processes in the life history: growth, maintenance, 
reproduction, and maturation. Chemicals can either affect the direction of the energy 
flow, or can affect the energy cost of one or more of the life history processes. DEB 
uses measured time point data from toxicity experiments (growth, reproduction, sur-
vival) to determine the physiological mode of action (pMoA) – for example costs for 
growth, costs for reproduction, maintenance costs, and decrease in feeding ability. 
The pMoA differs from a traditional MoA in that it only considers the effect of a 
chemical on the life history traits of an organism – or in other words – pMoA pro-
vides the population relevant effects of a chemical on an organism (Martin et  al. 
2013). Therefore, although DEB modelling occurs at the individual level, predicted 
DEB parameters are suitable for extrapolating to the population level.

An example of this type of extrapolation for potential use in ERA is given in Martin 
et al. (2013) where a comprehensive dataset for Daphnia magna was used to identify the 
physiological mode of action (pMoA) and the subsequent dynamic population level 
effects of 3,4-dichloroaniline. The data consisted of a 42 day chronic exposure study to 
five continuous concentrations and a control with monitored growth, reproduction and 
survival. The DEB analysis identified the most likely pMoA to be either embryonic 
hazard or reproduction costs. It was not possible to definitively distinguish between 
these two pMoAs – but as the dose-response curve fit with embryonic hazard as a pMoA 
resulted in the highest likelihood this was used in the further analysis. Linking the DEB 
parameters, chemical stress level and pMoA to an Individual Based Model (IBM) 
resulted in accurate predictions of dynamic population level effects of the stressor.

5  Invertebrate Model Species in AOP Development



100

DEB models can be parameterized for any species, although initial parameteriza-
tion of a new species usually requires extensive measurements. However, of the 68 
papers identified through the website of the department of Theoretical Biology of 
the VU University of Amsterdam (http://www.bio.vu.nl/thb/) and the debtox infor-
mation page of Tjalling Jager (http://www.debtox.info/index.html), which deal with 
the impact of chemical stressors on the individual level, 55 were based on data from 
invertebrate studies. The most frequently used species were Daphnia magna 
(n = 12), Lymnaea stagnalis (n = 11), Mytilus edulis (n = 8), Caenorhabditis elegans 
(n = 6) and Eisenia andrei (n = 6) (Fig. 5.5). Invertebrates lend themselves to DEB 
modelling because of their relatively short life-cycle, ease of culturing, and feasibil-
ity of measuring the necessary DEB parameters. Whilst the examples of the exten-
sion of DEB theory to link AOPs to population level effects is not yet prevalent, for 
invertebrates at least, DEB provides a tangible opportunity to enable AOPs poten-
tially to be integrated into an environmental risk assessment approach considering 
population and potentially community level impacts.

5.6  �Conclusion

Traditional ERA approaches used to understand the impacts of chemical exposure 
rely heavily on short-term acute and/or chronic in-vivo toxicity tests using various 
model species combined with a variety of assessment factors to derive toxicity 
thresholds. However, since these factors lack a mechanistic basis, they have limited 
potential for quantitatively estimating cross-species toxicity thresholds. AOPs pro-
vide a real opportunity to create a future framework for ERA based on a mechanistic, 
exposure driven understanding at its core. They also enable the exploitation of the 

Fig. 5.5  An overview of the species distribution in peer reviewed publications relating to Dynamic 
Energy Budget theory
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wealth of knowledge and data of traditionally discrete disciplines such as Toxicology 
and (Eco)toxicology, Systems Toxicology and Environmental Genomics in helping 
to define such mechanistic challenges in ERA as cross-species KE homology.

In such a framework, invertebrates offer some unique advantages over verte-
brates in the development of AOPs. Their short life cycle and relative ease in 
which large numbers of organisms can be studied provides valuable opportuni-
ties to study the impact of chemical exposure at environmentally relevant con-
centrations over chronic time spans. Relatedly, economic as well as ethical 
factors also influence the type of testing typically conducted for ERA; for exam-
ple, the time and labour required to perform chronic toxicity studies on whole 
vertebrate organisms as well as the call for a reduction of animals used for testing 
limits their use (REACH 2006). Invertebrates also lend themselves to genomic 
and phylogenetic investigation and allow the study of sublethal key events. This 
is facilitated by the fact that the basic biology of many invertebrates is well-
understood, with a number of model species with fully mapped genomes. Perhaps 
one of the primary potential limitations of using invertebrates is that they are not 
biologically representative of vertebrates due to differences in their physiology. 
It is certainly true that differences will be observed ranging from individual gene 
responses to depuration processes and for certain pathways the presence or 
absence of receptors will drive differential responses across species. Yet, such 
differences are also observed even among more closely related vertebrate spe-
cies. However, despite this, focussing on similarities rather than the differences 
still allows significant conclusions to be drawn between species. Importantly, 
there is strong conservation in drug targets between humans and invertebrates, 
thereby demonstrating the applicability of using invertebrate species as a model 
for potential effects on vertebrates. Comparative genomic methods and databases 
including SeqAPASS may help to increase the ability to read across the results of 
pathways in one species to other species for such cross species extrapolation. 
Finally, and perhaps most importantly, the use of invertebrate models begins to 
allow us to consider realistic options for extrapolating from individual to popula-
tion effects. Through the development and use of such models as those using 
Dynamic Energy Budgets linked with population models, the potential for 
extrapolating sub-individual events described by an AOP to population level 
effects relevant for ERA decision making becomes a genuine possibility.
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Chapter 6
Non-model Species in Ecological Risk 
Assessment

Markus Hecker

Abstract  Ecological risk assessors are increasingly recognizing the need for objec-
tively characterizing the sensitivity of specific ecological receptors of interest to 
environmental contaminants. Current testing strategies in support of ecological risk 
assessments primarily rely on extensive animal testing, and on extrapolation from 
standard laboratory model species to native species of relevance in  local ecosys-
tems. In addition to the huge costs and large numbers of animals needed, it has been 
shown that these approaches are often not adequately predictive, and thus, protec-
tive of organisms of interest. This chapter reviews the current challenges and devel-
opments in ecological and chemical risk assessment of non-model ecological 
species with specific reference to the current paradigm shift in toxicity testing from 
classic empirical live animal testing approaches to alternative concepts. The status 
and applicability of (high-throughput) in vitro systems, predictive toxicity-pathway 
models such as adverse outcome pathways (AOPs), quantitative structure-activity 
relationship (QSARs), and computational approaches are discussed in context with 
their potential to address current uncertainties in cross-species extrapolation of 
chemical hazards and associated regulatory needs. Specifically, comparative ‘omics 
and systems biology approaches are increasingly seen as powerful tools for cross-
species extrapolation based on the assumption that structural and functional simi-
larities or differences of specific molecular targets or pathways are likely to be one 
of the main drivers of the intrinsic sensitivity of organisms to contaminants. 
However, there are a number of uncertainties that remain to be addressed before 
these approaches and associated computational tools such as USEPA’s SeqAPASS 
tool become a viable option in non-model species risk assessment. Main concerns 
include the limited number of mature toxicity pathways currently available, their 
limited taxonomic application and their mostly qualitative nature. Furthermore, 
large data gaps exist with regard to toxicodynamic and toxicokinetic properties of 
chemicals in ecological species that determine target site concentrations, and that 
are critical factors influencing intrinsic sensitivity. The chapter concludes by 
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providing a theoretical road map for future research building on the current promis-
ing advances in the field of ecotoxicogenomics and computational biology com-
bined with alternative testing approaches using in vitro systems and early life stage 
animal tests to anchor pathways to species-specific biological outcomes.

6.1  �Introduction

Legislation in North America, Europe and other parts of the world, such as the 
Canadian Environmental Protection Act (CEPA), the European Union’s Registration, 
Evaluation and Authorization of Chemicals (REACH), the U.S.  Safe Drinking 
Water Act (SDWA), and the U.S. Toxic Substances Control Act (TSCA), mandates 
the assessment of risks of chemicals to wildlife and human health. Under these 
programs, regulators and industry are faced with the challenge to assess the toxico-
logical risks associated with an ever-increasing number of chemicals used by soci-
ety, and that are ultimately released, either intentionally or unintentionally, into the 
environment. Assessment of the ecological risks of exposure to a certain pollutant 
or a complex mixture of contaminants follows a standardized approach (e.g. Suter 
et al. 2000) that aims to assess the probability of an adverse ecological outcome 
such as a fish kill or the impact on the fitness of a population or community of 
interest.

One of the key steps in ecological risk assessments of chemicals is the character-
ization of the hazard of the chemical or mixtures of concern to biological receptors 
of interest. This is based on establishing so called toxicity reference values (TRVs) 
that are derived by identifying threshold or effective concentrations such as No 
Observable Adverse Effect Levels (NOAELs)/Lowest Observable Adverse Effect 
Levels (LOAECs) or concentrations at which a certain effect level occurs (e.g. LCx 
or ECx), respectively. To be of regulatory relevance, these TRVs are based on mea-
surements of apical outcomes including survival, reproduction, growth and devel-
opment (Calow et  al. 1997; Suter 2004). Current testing strategies for the 
determination of TRVs rely on extensive animal testing using selected model spe-
cies that are easy to culture in the laboratory and for which standardized testing 
protocols exist. Data derived from these standard laboratory model species is then 
extrapolated to predict the potential risks to native receptors of interest in local eco-
systems or to humans. These strategies pose a daunting challenge to regulators and 
industry, as the number of chemical substances for which toxicity data are required 
under the above legislations is tremendous (e.g., 23,000 under Canada’s Chemical 
Management Plan (CMP), 84,000 under the US Toxic Substances Control Act 
(TSCA), and 107,000 under the European Union’s Registration, Evaluation, 
Authorization of Chemicals (REACH)). In addition to the ethical concerns sur-
rounding the use of large numbers of live animals needed to fulfill current testing 
requirements, the associated time and monetary costs are prohibitive. For example, 
the U.S. EPA estimates that it would take 3–4 years and one to 20 million US dollars 
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to test a single chemical under their current testing mandates, and it was estimated 
that testing costs resulting from the European Union REACH program would 
amount to approximately 9.5 billion Euro and require 54 million animals (Rovida 
and Hartung 2009).

In addition to the above-mentioned economic and ethical concerns with respect 
to current hazard assessment approaches, there is a great amount of uncertainty 
associated with their application in ecological risk assessment. The assessment of 
the hazard of a contaminant to an ecological receptor of interest predominantly 
relies on data generated with acute (short-term) in vivo toxicity studies with a few 
selected laboratory model species and, to a much lesser extent, on sub-chronic or 
chronic experiments trying to characterize the sublethal effects or the mode of 
action of a chemical. These data are then extrapolated to native species of relevance 
or interest in  local ecosystems (further termed as “non-model species”). There is 
great uncertainty associated with extrapolation from acute studies that mostly deal 
with effects on survival to field scenarios representing long-term exposures at low 
concentrations. Uncertainty also exists with regard to the extrapolation from model 
laboratory species to non-model species and requires the application of safety fac-
tors, which sometimes can be as great as several orders of magnitude, to ensure risk 
assessments are sufficiently protective (CEC 1996; Forbes and Calow 2002). While 
such safety factors typically tend to provide a relatively “safe” answer, in many situ-
ations they are likely to significantly overestimate the true risk that a chemical poses 
to a receptor species. This can result in unrealistic hazard assessments (Chapman 
et al. 1998) that could trigger unnecessary remediation measures, which themselves 
can have significant impacts on the environment and are very costly. In other cases, 
extrapolation from acute to chronic data or among species or taxonomic classes is 
not acceptable (Allard et al. 2010). Given that data regarding acute toxicity is based 
solely on mortality, it ignores the intricacies of toxic responses associated with 
equally important apical responses such as reproduction, development and growth, 
and which may be much more sensitive endpoints. Similarly, it was shown that with 
increasing taxonomic distance the application of species extrapolation tools such as 
interspecies correlation models become increasingly uncertain, resulting in unac-
ceptable error rates (Rainmondo et al. 2008).

In summary, knowledge about the hazards that environmental chemicals pose to 
the diversity of non-model species is critical to enable objective ecological risk 
assessments. However, traditional species extrapolation approaches that primarily 
rely on live animal testing and extrapolation from laboratory model species are 
insufficient for reliably predicting the sensitivity of the vast diversity of ecological 
species to the large number of chemicals that need to be tested under current legisla-
tions. This book chapter reviews the current challenges associated with ecological 
risk assessment of non-model species and summarizes recent developments and 
approaches to address these challenges. Particularly, this paper examines recent 
strategies such as functional omics, the adverse outcome pathway (AOP) concept, 
computational methods, and in vitro testing that are proposed as the path forward to 
address current limitations of both chemical and ecological risk assessment 
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practices, and specifically, how they may help overcome the barriers associated with 
species extrapolation.

6.2  �Factors Contributing to Uncertainty in Non-model 
Species Risk Assessment

6.2.1  �Extrapolation from Standard Laboratory Models 
to Native Species

Considering the multiplicity of organisms inhabiting earth’s ecosystems, the wide 
range of their susceptibilities to environmental pollutants, and the limited amount of 
species-specific toxicological information available, accurate prediction of risks of 
chemical contaminants to ecosystems represents a huge challenge to risk assessors. 
For example, assessment of contaminant risks to cold freshwater systems is rou-
tinely based on selected biotests with one or two species of algae, a few species of 
crustaceans, midge larvae and certain model species of fishes, assuming that they 
are reasonable representatives of aquatic communities. However, they often ignore 
other key elements of these ecosystems such as microbial communities, other spe-
cies of insect larvae, worms, snails, amphibians, native fishes, etc. Similar limita-
tions are associated with terrestrial risk assessment strategies/guidelines (Fernández 
et al. 2006).

Traditionally, it has been assumed that organisms from the same class or family 
would have comparative sensitivity to environmental pollutants, and thus, the use of 
standard laboratory organisms would be sufficiently protective of wildlife species 
(e.g. a rainbow trout would allow to predict sensitivity of a sturgeon or lake trout, or 
a chicken would be predictive of an eagle). However, within the past decade it has 
become apparent that these assumptions often are not true, and that such extrapola-
tions are either not sufficiently protective or vastly overestimate the sensitivity of 
phylogenetically related organisms to chemical toxicants (Allard et  al. 2010; 
Sanderson and Solomon 2009; Vardy et al. 2013). A second uncertainty stems from 
the large diversity of species across ecosystems. Site-specific risk assessments are 
based on the selection of receptors of concern from a list of species that are likely to 
be exposed at the site of concern. The receptor(s) of concern should represent one 
(or a few) species that are considered sensitive to the stressor of interest, potentially 
threatened or endangered, or ecologically significant, etc. However, selection of the 
appropriate receptor is often hampered by a lack of information that is available for 
the majority of species in an ecosystem of interest, including their specific physio-
logical traits that would either render them vulnerable or tolerant to certain contami-
nants (see Sect. 6.3).

To fill some of the existing data gaps for non-standard test species (i.e. native 
species of concern) the risk assessment community often relies on short-term 
(mostly acute) toxicity tests that typically assess the effects of high concentrations 
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of a chemical on survival of the test species. These tests are quickly completed 
(typically within 48 to 96 h), and generate comparable data based on standardized 
test protocols. The most common use of these data is for the construction of species 
sensitivity distributions (SSDs) that aim to derive hazard concentrations protective 
of the majority species in an ecosystem of concern (Rainmondo et  al. 2008). 
However, there are multiple drawbacks with this approach that render it of limited 
usefulness for risk assessments of non-model species (Allard et al. 2010; Baird and 
Van den Brink 2007):

	1.	 Acute studies typically use mortality as the sole endpoint, which, depending on 
the contaminant tested, may result in an unacceptable underestimation of risk 
(even after application of large uncertainty factors) for certain chemical groups 
with very specific modes of action (e.g. some endocrine disruptors, immunotoxi-
cants, etc.);

	2.	 They mostly ignore toxicokinetic and toxicodynamic (accumulation, distribu-
tion, metabolization and elimination [ADME]) properties of a contaminant in a 
given test species, and which are critical especially for bioaccumulative or bio-
logically (metabolically) active compounds;

	3.	 They mostly focus on one life-stage (typically early life stages) that is consid-
ered most sensitive to the exposure with contaminants. However, data obtained 
with an early life-stage test does not allow for conclusions to be made with 
respect to critical biological functions unique to adulthood such as 
reproduction;

	4.	 They do not consider life-traits/-history of the target species, and which deter-
mine when, for how long and through what route organisms may be exposed; 
and

	5.	 They are limited to species that can be maintained for certain periods or cultured 
in the laboratory. As a consequence, special interest species such as some endan-
gered species that are difficult to obtain or to maintain under laboratory condi-
tions can often not be assessed.

Increasingly, attempts have been made to develop and use specialized assays for 
some non-common test organisms (e.g. Doering et  al. 2014; Dwyer et  al. 2005; 
Fairchild et al. 2005; Vardy et al. 2011, 2013; Wang et al. 2007), as well as to inves-
tigate the sub-chronic or chronic effects of contaminants on organisms of interest 
with the aim to generate information on more subtle effects (e.g. reproduction, 
development, behavior). In doing so, it has become apparent that complete repre-
sentation of the diversity of organisms in hazard assessments using standard eco-
toxicological approaches will not be feasible using current standard testing 
approaches. Even if increased resources were to be made available for the testing of 
additional target receptors of interest, there are a number of ethical and logistical 
hurdles that will be difficult to overcome. This is particularly true for species of 
special interest such as endangered species and long-lived species.
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6.2.2  �Causes for Differences in Species Sensitivity 
to Contaminants

As discussed in the previous sections, there are a number of uncertainties with strat-
egies used to extrapolate from standard laboratory model species to native species 
of relevance to ecological risk assessments. These uncertainties are a function of the 
great differences in the inherent sensitivity of each species to contaminants, which 
is rooted in their unique physiology, life-history, ecological niche, evolutionary 
traits, adaptation and differences in ADME of contaminants (Fig. 6.1). The rele-
vance of biological or life history traits and their role in predicting species sensitiv-
ity in context with ecological risk assessments have already been thoroughly 
reviewed elsewhere (e.g. Baird and Van den Brink 2007; Calow et al. 1997), and 
will not be discussed in great detail here. It is acknowledged that the understanding 
of the life history and ecological traits of a species such as generation time, time to 
maturity, ecological niche (e.g. benthic vs pelagic), etc., are important when con-
ducting ecological risk assessments as it will determine the likelihood of external 
exposure during critical life stages or periods, as well as the route and duration of 
exposure. However, for any exposure to result in an adverse effect, the chemical or 
mixture of chemicals of concern has to interfere with the function or structure of 
certain bio-molecules (also termed the molecular initiating event [MIE]) that lead to 
the alteration of normal physiological functioning of an organism, and which ulti-
mately manifests as reduced fitness. Therefore, the key to understanding the sensi-
tivity of a species to a contaminant or a chemical mixture is knowledge about its 
specific mechanism of action. A second critical factor that determines the sensitivity 
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of a species is the ADME properties of a compound that determine internal expo-
sure at the molecular target sites of a toxicant (Jager et al. 2011; Nichols et al. 1990).

6.2.3  �Chemical Modes of Action and Their Role 
in Determining Species-Specific Sensitivity

It has been recognized that the sensitivity of an organism to a toxicant is often 
driven by the MIE that then initiates a cascade of downstream events ultimately 
causing an adverse biological effect. Inter-species differences in sensitivity to 
chemical exposure may then arise because of differences in molecular targets, 
which have undergone changes throughout evolution (ECETOC 2007; Gunnarsson 
et al. 2008; Celander et al. 2010). In cases where biological properties such as basic 
cellular structures and functions of cells are highly conserved throughout evolution, 
chemicals that interact with such processes are assumed to be comparable in their 
toxicity among diverse species (Ashauer and Escher 2010; Vaal et  al. 1997). 
Examples include persistent hydrophobic chemicals that have the tendency to accu-
mulate in cell membranes, leading to alterations of the structure and functioning of 
these membranes (i.e. non-polar narcosis; Rand 1995). In contrast, a large number 
of chemicals elicit toxic mechanisms that are highly specific to certain physiologi-
cal traits, and thus, to certain groups of organisms to which these traits are unique 
or where they play important biological roles. Examples include disruption of func-
tions such as photosynthesis in plants and algae or the production of egg yolk pro-
teins in oviparous animals. Some xenobiotics only interact with very specific 
molecules such as receptors or enzymes while others are rather unspecific and affect 
multiple processes simultaneously or are changed in their toxicological properties 
through metabolic processes. While chemicals that interact only with specific bio-
molecules such as receptor proteins allow for the relatively simple categorization of 
chemicals through approaches like quantitative structure-activity relationships 
(QSAR) as well as the development of risk assessment tools such as relative potency 
factors (RePs) as in the case of dioxin-like chemicals (DLCs; e.g. Van den Berg 
et al. 2006), reliable effect assessment of chemicals that act via non-specific or mul-
tiple mechanisms is a greater challenge (Escher and Hermens 2002).

The best-characterized examples of the specific interactions of a substance with 
a certain target molecule is demonstrated by chemicals that are ligands of nuclear 
receptors. For example, studies have shown that the MIE that is likely to determine 
in vivo sensitivity of certain vertebrate groups to DLCs is sensitivity of activation of 
the arylhydrocarbon receptor (AhR). It was demonstrated that key amino acids in 
the ligand binding domain of the AhR determine affinity of binding and are the 
molecular basis for differences in sensitivity to DLCs among strains of mice (Mus 
musculus) (Pandini et al. 2007) and among species of birds (Farmahin et al. 2013; 
Head et al. 2008; Karchner et al. 2006). Similarly, key amino acids in the ligand-
binding domain of the AhR drive differences in sensitivity to activation between 
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AhR1α and AhR1β of the African clawed frog (Xenopus laevis) (Odio et al. 2013) 
and between AhR1a and AhR2 of zebrafish (Danio rerio) (Fraccalvieri et al. 2013). 
In addition to studies of the AhR, some studies have attempted to link differences in 
primary structure of the estrogen receptor (ER) with binding affinity of xenoestro-
gens among selected mammals, birds and fish (e.g. Matthews et al. 2000; Toyahama 
et al. 2015). Interestingly, a thorough review of the pertinent ecotoxicological litera-
ture revealed that with a few exceptions, including those discussed above, there is 
almost a complete lack of published research that investigated the role of the struc-
ture of molecular targets and how it may drive species-specific sensitivity to xeno-
biotics. This is surprising given the importance of the MIE and associated 
molecule-toxicant interactions, especially when considering that identification of 
specific molecular targets is common practice in the fields of drug discovery and 
development of pesticides. One of the main reasons for this may be rooted in our 
lack of understanding of the physiology of many of the species native to ecosystems 
of concern. While there is a thorough coverage of the physiology of standard labora-
tory vertebrate species such as mice, chicken, quail, zebrafish, rainbow trout, and 
many insect species because of their role in pharmacological and agricultural 
research, very little is known about the myriad of species inhabiting the diverse 
ecosystems of our planet (e.g. LaFont 2000). However, the current advances in “big 
data” ‘omics and systems biology are likely to greatly stimulate research into the 
basic biology of non-model species in ecotoxicology.

6.2.4  �Toxicokinetic and Toxicodynamic Considerations 
in Predicting Species Sensitivity

One of the main limitations of the mechanism-based characterization of species 
sensitivities is the lack of the ability to integrate reliable metrics of the internal 
exposure concentrations of the chemical of concern. Toxicologists have long recog-
nized that the ability of an organism to cope with a toxic insult is a function of its 
physiological “machinery” that deals with the ADME of a chemical. For example, 
in a review by Wang and Rainbow (2008) it was shown that metal bioaccumulation 
was a function of different ion regulation (e.g. ion-channels or – pumps) and detoxi-
fication (e.g. induction of metallothionein and heat-shock proteins) strategies among 
different fresh- and saltwater species of fishes. Another example is the difference in 
inducibility of P450 phase I metabolic enzymes among different species of mam-
mals, and which significantly affects the genotoxic/mutagenic potency as well as 
elimination of certain drugs (e.g. tamoxifen) and PAHs (e.g. benzo(a)pyrene) (Lewis 
et al. 1998). For example, organisms with a slower metabolism may be at lesser risk 
from exposure to compounds that need to be metabolically activated to elicit toxic-
ity (e.g. certain PAHs require metabolic activation to become genotoxic). However, 
these organisms may be at greater risk from exposure to chemicals that are 
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metabolically detoxified because of their slower metabolic activity. Other examples 
of factors that significantly influence the internal exposure of organisms are surface 
to volume ratio, lipid content, and life span, with the latter two being of great rele-
vance with regard to bioaccumulative contaminants (reviewed in Escher and 
Hermens 2002).

Increasingly sophisticated models are being developed to predict the exposure 
concentration at the biological target site of an organism. The simplest practitioner 
models include toxicokinetic (TK) and toxicodynamic (TD) models. TK models 
can predict the time course of a toxicant’s concentration at the site of toxic action, 
including ADME processes (i.e. what happens with the chemical in an organism). 
TD models can predict the dynamics of a toxicant’s interactions with a biological 
target site and the resulting effects. TD models can be simple mathematical descrip-
tions of the kinetics of induction of toxicological effects, e.g. the study of carcino-
genesis, but ideally are based on a quantitative description of the underlying 
mechanisms of toxicity (Jager et al. 2011). Traditional TK modeling approaches are 
more pragmatic and assume organisms to consist of a single homogeneously mixed 
compartment that accumulates and eliminates chemicals at specific rates (Barron 
1990). By far, the most comprehensive and sophisticated state-of-the-art models in 
this field are physiologically based TK (PBTK) models. In this type of model, 
organs and tissue groups (e.g. liver and kidney) are explicitly represented by their 
weight, their lipid and water content and the rate at which they are perfused by the 
circulating blood (Nichols et al. 1990). Thus, PBTK models are capable of more 
precisely predicting the internal concentration of chemicals in an animal’s body and 
in specific organs at any time post exposure.

As discussed above, significant progress has been made in context with develop-
ing models that can predict the ADME properties of chemicals in organisms. One of 
the main limitations of the routine application of TK, TD or PBTK models in eco-
logical risk assessment is the lack of information on the physiological parameters 
for species other than the current standard laboratory models. To be useful, these 
models will have to be calibrated for each species of interest based on its specific 
physiological properties such as lipid and water content of target tissues, metabolic 
activity, cardiac output and distribution of blood flow among tissues (Ashauer et al. 
2011). Interestingly, a number of recent studies found that ADME properties devel-
oped for humans were reasonably predictive of pharmacological responses in fish 
(Perkins et al. 2013). For example, the ratio of the acutely toxic and therapeutic drug 
doses derived from pharmacological studies with mammals was shown to be predic-
tive of chronic toxicity of the same pharmaceuticals in fish (Berninger and Brooks 
2010). Also, the use of species-specific in vitro (liver) models showed good promise 
with regard to deriving parameters such as hepatic clearance rates that can be used 
to parameterize species-specific PBTK models (Brinkmann et al. 2014; Han et al. 
2007). In this context, recent developments in 3D tissues cultures and “mini-organs” 
are anticipated to advance the way by which these models can be parametrized and 
calibrated and will likely increase their accuracy.
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6.3  �Novel Developments and Tools

The limitations of traditional ecological risk assessment approaches to address the 
hazard assessment needs for the tens of thousands of chemicals mandated by cur-
rent legislations in Europe, North America, and some Asian countries have led to a 
paradigm shift in toxicity testing (Villeneuve et al. 2014a, b). As a consequence, 
toxicity testing in the twenty-first century is moving from classic approaches that 
use empirical live animal testing to alternative concepts including (high-throughput) 
in vitro systems, predictive toxicity-pathway models such as adverse outcome path-
ways (AOPs), quantitative structure-activity relationship (QSARs), and computa-
tional approaches (ECHA 2015; Kavlock et al. 2012; NCR 2007; Villeneuve and 
Garcia-Reyero 2011). This section explores the utility of these novel concepts and 
approaches to advance our ability to reliably predict sensitivity of non-model 
species.

6.3.1  �Toxicity Pathway-Based Approaches in Cross-Species 
Extrapolation

Considering differences in the conservation and evolution of molecular targets of 
chemicals, their biological context/applicability, and the potential that inter-species 
differences in susceptibility to environmental pollutants may arise at multiple levels 
of organization, it becomes apparent that there is unlikely to be one approach that 
can be used to characterize and predict species sensitivity across all phyla and taxa. 
However, as recently reviewed by Perkins et al. (2013), there is evidence that under-
standing the specific molecular perturbations caused by a chemical that can be 
linked to an adverse outcome, and the conservation of these perturbations across 
certain species or organism groups, represents a promising starting point for cross-
species extrapolation. Within animal groups, most fundamental pathways such as 
development, reproduction, stress response, etc. tend to be highly conserved 
(Adamska et al. 2007; Ankley and Johnson 2004; Rand-Weaver et al. 2013; Simmons 
et al. 2009; Vallee et al. 2008). This is also likely to be true for the majority of the 
macromolecules that regulate these pathways, such as receptors, enzymes and other 
functional proteins that share common ancestral genes. In fact, decades of pharma-
cological research demonstrated that non-mammalian model species such as the 
zebrafish and even invertebrates such as Drosophila melanogaster express highly 
conserved molecular pathways directly applicable to humans and other mammals 
(reviewed in Perkins et al. 2013), clearly showing the applicability of highly con-
served pathways to extrapolate among even very distantly related species (Garcia-
Reyero et al. 2011). It needs to be noted, however, that gene function and conservation 
is less and less conserved with increasing evolutionary distance, especially for pro-
cesses that do not have a shared evolutionary history. Examples include pathways 
involved with development of skeletal structures or reproductive processes in 
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vertebrates vs invertebrates, or the restriction of certain metabolic pathways, such as 
the glycan pathway, to metazoans due to its specific role in processes associated 
with multicellularity (Peregrin-Alvarez et al. 2009).

The recent advent of advanced, high-content and –throughput ‘omics and bioin-
formatics has made it possible to efficiently and reliably probe entire organismal 
systems and to describe the complete molecular machinery driving these systems 
within relatively short timeframes. In context with ecological risk assessment of 
chemicals, ‘omics are increasingly seen as a powerful tool to characterize toxicity 
pathways among species, and to identify conserved pathways or molecular targets 
affected by contaminants (Perkins et al. 2013). One framework that has gained sig-
nificant attention with regard to characterizing toxicity pathways of chemicals is 
that of the adverse outcome pathway (AOP). AOPs organize and evaluate biologi-
cally plausible and empirically-supported links among different levels of biological 
organization (Ankley et al. 2010; Villeneuve et al. 2014a). They systematically link 
molecular-level perturbations (e.g. the MIE) to an adverse outcome of regulatory 
relevance through the characterisation of a series of Key Events (KEs). One of the 
most common starting points within an AOP to investigate the intrinsic sensitivity 
of an organism to a chemical is to compare the molecular structures (e.g. amino-
acid sequences) at the MIE (see Sect. 6.2.1; LaLone et al. 2013a). For example, it 
has been demonstrated within vertebrate classes such as birds, mammals and fish 
that the large differences in the sensitivity to DLCs are likely to be driven by small 
differences in critical amino acid residues in the ligand-binding pocket of the AhR 
(Karchner et al. 2006; Doering et al. 2014). Comparable relationships are hypothe-
sized to also occur for other molecular targets, particularly receptors such as the ER 
(Matthews et al. 2000; Toyahama et al. 2015). However, although current computa-
tional cross-species extrapolation approaches such as the SeqAPASS model (Sect. 
6.2.1) assume a direct link between structure of target molecules and susceptibility 
to certain contaminants, there is little direct evidence for similar relationships for 
molecules other than the above discussed receptors, highlighting the need for addi-
tional research in this field.

While information on the sequence and functional homology of a molecular tar-
get provides valuable insights for explaining the differential susceptibility of organ-
isms to contaminants, differences in the role of the MIE and/or KEs in downstream 
biological functions can provide additional information. For example, while the 
MIE of binding of agonists to the estrogen receptor may be highly conserved 
between oviparous and viviparous animals, the role of KEs such as production of 
vitellogenin represents a critical outcome in one class of organisms (e.g. fishes) but 
not in another (e.g. mammals) resulting in very different biological outcomes 
(Fig. 6.2). In other cases, interspecies differences in susceptibility to certain con-
taminants may arise through changes in less defined structural features such as cel-
lular membranes or even physiological processes that are only indirectly related to 
the interaction with the target site, and for which structural sequence information 
may not provide plausible explanations to the differences observed. This applies in 
particular to species differences in catabolism or metabolism of endogenous and 
exogenous ligands, where differences in ADME properties influence the 
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concentrations at the biological targets (e.g. critical body residue), and thus, become 
a driver in susceptibility considerations (ECETOC 2007; Escher et  al. 2011). 
Therefore, to be realistic and useful to regulators, cross-species extrapolation mod-
els that use conserved molecular targets or toxicity pathways to predict the sensitiv-
ity of an organism to contaminants need to integrate the TD and TK properties of 
these chemicals in a given species. This is supported by a recent review of data 
generated by USEPA’s Endocrine Disruptor Screening Program (EDSP) that com-
pared the responses to 12 model compounds between the 21 day fathead minnow 
reproductive assay and a selection of rat assays (uterotrophic, Hershberger, and 
male and female pubertal assays) (Ankley and Gray 2013). The authors confirmed 
that the effects of potent (xeno)estrogens on ER-mediated pathways that are highly 
conserved among vertebrates were in general predictable among species, even con-
sidering the different physiological manifestations in oviparous fish versus vivipa-
rous mammals. However, when comparing findings obtained for a weak ER agonist, 
bisphenol A, two of the three rat assays produced negative results when compared 
to the fish assay that tested positive. The likely cause for these differences was that 
due to the oral dosing route used for rats compared to waterborne exposure of fish, 
in rats most of the bisphenol A was likely to have been cleared from the system by 
first-pass hepatic metabolism, further highlighting the role of ADME as well as 
types of exposures in cross-species extrapolation. Interestingly, effects of chemicals 
mediated through the AR or disruption of sex hormone steroidogenesis were less 

Fig. 6.2  Examples of hypothetical adverse outcome pathways of nuclear estrogen receptor medi-
ated estrogenic responses in oviparous vertebrates and mammals leading to reproductive impair-
ment in adult organisms
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variable when comparing outcomes of the fathead minnow with the rat assay. 
Overall, however, these data suggest that highly conserved biological pathways 
such as hormone receptor-mediated or steroid synthesis-mediated reproductive 
functions can be used as a starting point in AOP-based cross species hazard 
assessments.

Despite evidence that identification of conserved toxicity pathways might be 
useful for cross species extrapolations of toxicity, there are a number of remaining 
uncertainties that need to be addressed before approaches such as conserved toxic-
ity pathways will be truly useful for ecological risk assessors. The major shortcom-
ing with regard to using AOPs in this context is the lack of maturity  – or the 
existence – of AOPs for most chemicals of regulatory concern and a strong bias in 
availability of AOPs toward vertebrates. This represents a particular concern when 
considering bacteria, plants and invertebrates. It is, however, acknowledged that 
clearer definition and differentiation of AOP applicability for a given regulatory 
need may assist in using data even if the AOP has not been fully developed (Tollefsen 
et  al. 2014). Another main concern includes the mostly qualitative nature of 
approaches such as the AOP framework, which limits the prediction of the sensitiv-
ity across species as this is inadvertently linked to exposure concentrations (internal 
and external). As reviewed by Perkins et al. (2013), factors such as exposure routes 
for e.g. terrestrial (typically non-continues oral exposures) and aquatic (typically 
continuous immersion) organisms render the comparison among these species dif-
ficult given the differences in ADME properties solely associated with exposure 
route and frequency. Similarly, approaches are needed to integrate toxicokinetic and 
–dynamic properties into current qualitative toxicity pathway models in order to 
successfully use this approach for cross-species sensitivity assessments. Also, it 
needs to be considered that each of the examples provided above are based on stan-
dard model species such as zebrafish, fathead minnow, rainbow trout, rat, mouse, 
etc., for which extensive knowledge of their basic physiology, basal metabolic activ-
ity, etc. as well as large toxicological datasets for many chemicals are available. 
However, no such information is available for the vast majority of the non-model 
species of interest. This is particularly true for invertebrates, but even for large 
groups of vertebrates, such as the fishes for which there are greater than 30,000 spe-
cies and very little information is available. For example, while being considered of 
great priority in context with ecological risk assessments in North America and Asia 
due to their endangered status, we know very little about the vulnerability to envi-
ronmental contaminants of ancient fishes such as sturgeons that are evolutionary far 
removed from most of the modern teleosts. This is concerning as recent studies have 
shown that some sturgeon species tend to be unique in their responses to certain 
contaminants. For example, white sturgeon (Acipenser transmontanus) were shown 
to be among the most sensitive species of fishes to the exposure with selected heavy 
metals (e.g. copper) during certain early life stages, and which renders the protec-
tiveness of current water quality standards for these organisms questionable (Little 
et al. 2012; Vardy et al. 2011, 2013). One hypothesis for this high sensitivity is a 
blunted ability to mount a cellular stress response against metal ions as demon-
strated by a very low inducibility of functions involved with amelioration of toxicity 
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including expression of metallothioneins that sequester metals as well as genes that 
mediate anti-oxidant responses (Doering et al. 2015; Tang et al. 2016). This lack of 
compensatory response is likely to have a significant impact on the TK/TD proper-
ties of metals in sturgeon, affecting internal exposure to metals at target tissues.

6.3.2  �Species Read Across Approaches Using Conserved 
Molecular Targets: SeqAPASS

As discussed in Sect. 6.2, conservation of molecular targets of chemicals with spe-
cific modes of action is likely to provide some information regarding the intrinsic 
susceptibility of a species. This assumption has been extensively used in the devel-
opment of pharmaceuticals for human and veterinary use as well as in the develop-
ment of pesticides to target specific pest species. This section provides a review of 
a recent initiative by the USEPA that explores the concept of molecular target con-
servation as a tool to predict the susceptibility to chemicals with specific modes of 
action across phylogenetic taxa (LaLone et al. 2013b). Specifically, this initiative 
investigates the utility of protein sequences/structure similarity in predicting the 
likelihood of susceptibility of any species for which sequence information is avail-
able, and which is termed Sequence Alignment to Predict Across Species 
Susceptibility (SeqAPASS). SeqAPASS is a computational tool that aligns the 
sequence of the functional molecule representing a MIE, such as a receptor or 
enzyme, which has been shown to trigger an adverse effect. It relies on existing 
information on the amino acid sequence of proteins and their structure. Initial case 
studies have shown the promise of this tool to predict species susceptibility across 
taxa for selected pharmaceuticals and pesticides (LaLone et al. 2013a). For exam-
ple, a comparison of the susceptibility to estrogenic chemicals based on ER sequence 
similarities among animal taxa using protein sequence similarity analysis showed a 
high degree of conservation among vertebrate species when using the human recep-
tor as query (LaLone et al. 2013b; Fig. 6.3). Furthermore, invertebrates were pre-
dicted to be generally less sensitive, which is in accordance with the absence of 
functional ERs in many invertebrates. Furthermore, when comparing the intrinsic 
susceptibility predictions derived from the SeqAPASS analysis for aquatic species 
with empirical toxicity data these showed a good correlation.

The advantage of the SeqAPASS tool is that it utilizes relatively underutilized 
and continuously expanding resources of data that aim to predict chemical suscep-
tibility across a broad range of taxa ranging from humans to viruses. However, 
while existing databases within the National Centre for Biotechnology Information 
(NCBI) are rapidly expanding and include more-and-more information on non-
model species, they are still far from providing a representative overview of the 
animal and plant kingdoms. The SeqAPASS approach also allows the characteriza-
tion of chemicals that interact with multiple molecular targets by combining queries 
from different data sets. As discussed in Sect. 6.2, current cross-species extrapolation 
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approaches often lack the inclusion of TK/TD properties. First attempts to combine 
available mammalian ADME data such as drug clearance rates for approximately 
1200 different human and veterinary drugs from 100 drug classes using a probabi-
listic distribution approach with the above-discussed SeqAPASS model showed 
promise in prioritizing certain drug classes with regard to their ecotoxicological 
risks (LaLone et  al. 2013b). This demonstrates the potential of this model to be 
integrated with other approaches important for a more realistic assessment of cross-
species sensitivities to contaminants. However, given the significant differences in 
ADME properties between mammals and other vertebrates and invertebrates, much 
additional work is needed to better characterize the ADME properties of chemicals 
across species from all taxa that would be required to expand the above approach for 
use with species other than current mammalian model organisms. Also, factors such 
as life stage, life history, ability to mount a compensatory response, sex and other 
critical factors driving an organism’s response to contaminant exposure are not con-
sidered by SeqAPASS.
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Fig. 6.3  SeqAPASS analysis output of the distribution of homolog candidate proteins across spe-
cies within select taxa based on percent similarity to the human estrogen receptor (ER). The open 
circle represents the human (Homo sapiens) ER, and solid circles represent the species with the 
highest percent similarity within the specified taxonomic group. Box plots: the top and bottom of 
the box represent the 75th and 25th percentiles, respectively, and the top and bottom whiskers on 
plot represent the 90th and 10th percentiles, respectively. Small black dots indicate outliers repre-
senting the 95th and 5th percentiles. The mean and median values for each taxon are represented 
by horizontal thick and thin black lines on the box, respectively. In some cases, lines representing 
mean and median overlap and are displayed as a single horizontal thick black line. If <3 species 
represent a taxon, only maximum and mean values are shown. - - - indicates the cut-off for intrinsic 
susceptibility predictions (based on ortholog analysis), with those above the line predicted to be 
susceptible (Figure courtesy of Carlie LaLone and modified from LaLone et al. (2013b))
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6.3.3  �Alternatives to Live Animal Testing to Inform Cross-
Species Extrapolation

As discussed in the previous sections, there are multiple challenges with assessing 
the effects of contaminants to native species of interest. Beyond any molecular, 
biochemical and physiological differences across species, there are challenges asso-
ciated with maintaining wild species under laboratory conditions, including ethical 
concerns when working with live animals, especially endangered species (which 
can be of particular interest with regard to their sensitivity to environmental con-
taminants), and high investments in time, labour and cost involved with traditional 
in vivo assays. Therefore, alternatives to animal testing are increasingly used as 
tools to investigate the toxicity of chemicals. These include (1) computational in 
silico models such as Quantitative Structure-Activity Relationships (QSARs), (2) in 
vitro tests either using sub-cellular components, immortalized cell lines or primary 
cell and tissue cultures, as well as (3) toxicity testing with early life stages of ovipa-
rous organism that are not considered live animals until they have depleted their 
yolk-sacs, including in ovo assays with bird embryos or fish embryos prior to swim 
up (Hartung and Hoffmann 2009; Knight 2008).

6.3.4  �In Silico Approaches

Per definition, in toxicology in silico refers to any methodology that involves 
computer-based planning, analysis, evaluation or prediction of toxicological infor-
mation (Hartung and Hoffmann 2009). For the purpose of this chapter, the focus is 
those current computational approaches that are directly applicable to cross-species 
sensitivity extrapolation. Toxicological in silico methodologies use experimental 
data derived from in vivo or in vitro tests to identify commonalities and patterns 
among chemicals or biological targets (molecular through populations/communi-
ties) that can be used to develop computational models to predict their hazard poten-
tial or susceptibility, respectively. The most common in silico approaches utilized in 
chemical risk assessment are QSARs, which are used to predict the potential toxi-
cological hazard of a chemical based on its structure and physicochemical proper-
ties (Bradbury 1994). To be useful in cross-species extrapolations, however, 
knowledge about the actual target sites of the toxicants of interest is required. The 
integration of QSARs with other predictive tools such as the above-discussed 
SeqAPASS has the promise to identify certain taxa that may be particularly vulner-
able to certain contaminants based on predicted chemical-target site interactions. 
Other important computational approaches in species sensitivity extrapolation are 
species sensitivity distribution (SSD) tools such as interspecies correlation models 
(Barron et al. 2012). These models primarily rely on acute toxicity data to develop 
computational models based e.g. on QSAR properties. However, Barron et  al. 
(2012) found that such models were associated with significant variability, which 
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limited their predictive power. Finally, in silico approaches include a number of 
other current concepts discussed elsewhere in this book chapter, including the 
SeqAPASSS model and USEPA’s ToxCast program.

6.3.5  �In Vitro Approaches

In vitro assays are increasingly used to inform the potential toxicological risks of 
chemicals because they often have great sensitivity to low concentrations, great 
specificity of response, high throughput, and have a lesser cost than in vivo assays 
(Gray et  al. 1997). Additionally, in vitro assays require much fewer numbers of 
animals compared to in vivo assays, which, for reasons outlined above, is becoming 
increasingly important in toxicity testing. The relevance and utility of stable cell 
line-based in vitro approaches in support of chemical hazard assessment and priori-
tization including the use of high-throughput screening in vitro batteries to identify 
specific MIEs have been extensively reviewed in the past (see e.g. Kavlock et al. 
2012; Perkins et  al. 2013). Because they do not directly apply to cross-species 
extrapolation, with the few exceptions discussed below, they will not be discussed 
in detail here. Instead, this section focuses on the use of in vitro tests as an alterna-
tive tool to generate and test hypothesis pertaining to the sensitivity of non-model 
species to environmental contaminants.

One method for in vitro testing that has shown potential with regard to identify-
ing species-specific sensitivities to environmental contaminants are tissue explants 
or primary cell cultures (Beitel et al. 2014, 2015; Eisner et al. 2015). Such approaches 
are beneficial as tissues maintain some of their natural functions (e.g. paracrine 
interactions) outside their natural environment, as most of the necessary machinery 
required for the cell- or tissue-specific function is present (Powlin et al. 1998; Gray 
et al. 1997). Therefore, test systems using tissue explants could be used to identify 
species-specific responses to the exposure with contaminants. Recent studies con-
firmed the potential of species-specific tissue explant assays to predict relative sen-
sitivity of selected key events (KEs) in native fish species to certain environmental 
contaminants including endocrine disruptors and DLCs (Beitel et al. 2014, 2015; 
Eisner et al. 2015). While absolute sensitivities (threshold or effective concentra-
tions) were not directly comparable, Eisner et al. (2015) demonstrated that the rela-
tive potencies of six DLCs to four evolutionary distinct fish species determined 
using in vitro liver explants were directly correlated with embryo toxicity data. 
Similar correlations in relative responses occurred when three different fish species 
were exposed to estrogenic compounds (reviewed in Beitel et al. 2015). Furthermore, 
Beitel et al. (2014) showed that tissues in primary culture were representative of 
seasonal fluctuations in reproductive endocrine functioning (i.e. steroid synthesis) 
in vivo, and allowed for identification of the most sensitive stage of the reproductive 
cycle of three fish species native to North America. Therefore, it was hypothesized 
that primary tissue cultures have the potential to identify most sensitive phases or 
life stages of an organism. These initial data are promising with regard to the future 
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potential of tissue culture assays to help in identifying species that may be particu-
larly vulnerable to the exposure with chemicals of concern. However, significant 
work is still required to confirm and validate the predictive power of species-specific 
tissue explant assays for in vivo effects for different classes of contaminants and 
among greater numbers of diverse ecological species.

Stable cell lines have also been used as tools to characterize and compare MIEs 
among different species, and to establish baseline information on the responsive-
ness of certain target molecules such as receptors to the exposure with contami-
nants. One of the best-described examples in the ecotoxicological literature is the 
use of green monkey (COS-7) cells to characterize the role of the AhR in mediating 
sensitivity of birds and fishes to DLCs (Doering et al. 2014; Farmahin et al. 2014; 
Karchner et al. 2006). Transfection of COS-7 cells with AhRs from different species 
of birds, and more recently fishes, was used successfully to categorize the in vivo 
potency of variety of DLCs to activate AhR signalling (Farmahin et  al. 2014; 
Doering et  al. 2014). In birds, COS-7 cells were used in conjunction with site-
directed mutagenesis studies replacing key amino acid in the ligand-binding domain 
of the receptor to characterize the specific MIE driving species sensitivity, and based 
on which the sensitivity of any bird species of interest can now be predicted. Similar 
research is currently ongoing to characterise the role of amino acids in the ligand 
binding domain of the AhR in determining sensitivity of fishes to the exposure with 
DLCs. Successful completion of this work would represent a critical milestone in 
advancing risk assessment of these priority pollutants across the greater than 30,000 
species of fishes inhabiting our planet. Initial efforts are also currently underway to 
characterize the molecular basis for the differences in potency of environmental 
estrogens among fishes (Toyahama et al. 2015). Considering the potential of these 
in vitro based tools in combination with recent advances in ‘omic technologies that 
enable quick and inexpensive identification of the specific molecular composition 
(e.g. gene or protein sequence information) of molecular targets of interest, it is 
anticipated that similar approaches will become routine practice in the future to 
elucidate specific MIEs that inform the sensitivity of different ecological species.

It should be acknowledged, however, that although numerous advantages exist 
with regard to the potential of in vitro assays to predict sensitivity to contaminants 
across species, there are remaining uncertainties regarding their use as surrogates 
for in vivo assays. For example, ADME properties are often not, or only partially, 
accounted for by in vitro assays. This can lead to false positive or false negative 
results in cases of chemicals that are rapidly metabolized or that require metabolic 
activation, respectively (Gray et al. 1997). Also, in vitro systems do not represent 
organismal feedback systems and interactions among organs and tissues. Therefore, 
it is unlikely that in vitro approaches will completely replace live animal testing in 
the near future. However, it is anticipated that alternative tests will increasingly be 
used in chemical prioritization and the identification of MIEs and associated molec-
ular toxicity pathways, and in combination with computational modeling such as 
currently applied in USEPA’s ToxCast Program, will provide powerful tools to 
advance our understanding of species-specific modes or chemical action while sig-
nificantly reducing the need for in vivo testing.

M. Hecker



125

6.3.6  �Early Life Stage Testing

Another alternative testing approach that is increasingly applied in ecotoxicological 
testing is the use of embryonic life-stages of oviparous animals, including fish and 
birds. These embryos are not considered “live animals” under many legislations 
(Knight 2008), although the exact life-stages at which these organisms are consid-
ered sentient animals differ among countries (Strähle et al. 2012). Embryos of egg-
laying organisms are a powerful alternative to in vitro assays as they are representative 
of the intricacies and complexity of whole organisms. While some embryos may not 
have completely developed organ systems during very early stages, it could be 
shown that they seem to present most of the molecular regulatory networks driving 
adult physiological functions. For example, transcriptional analyses of zebrafish 
embryos exposed to estrogenic chemicals revealed effects on the expression of 
genes and pathways indicative of disruption of potential downstream events associ-
ated with estrogen signalling, steroid hormone production, and neurodevelopment, 
regardless of the fact that some of these processes are not expressed in larval fish 
(Schiller et al. 2013; Vosges et al. 2010). Zebrafish embryos have also been shown 
to express complete pathways for other key physiological functions including thy-
roid signalling and cardiovascular system development (Hill 2005; Thienpont et al. 
2011). Similarly, studies with early tadpole stages of the African clawed frog 
(Xenopus laevis) around the time of sexual differentiation exposed to EE2 showed 
that these early stages expressed molecular pathways whose disruption was indica-
tive of later effects on biological functions including metamorphosis, gonadal 
development and growth (Tompsett et  al. 2013). However, the vast majority of 
research with early life stages has been conducted with very few model species such 
as the zebrafish and the chicken, and it remains to be demonstrated whether effects 
on embryonic stages of other non-model ecological receptors are similarly predic-
tive of biological effects that manifest in adult organisms.

Regardless of whether assays with early life stages is useful to predict effects at 
later life stages, with some exceptions, embryos are thought to be among the most 
sensitive life-stages to the exposure with contaminants (Mohammed 2013). This is 
because most organ systems are developing during this time, a process that may be 
vulnerable to toxic insults, the low volume to surface ratio allows fast uptake and 
distribution of contaminants, the lack of efficient metabolism and clearance mecha-
nisms, and low fat reserves that may sequester lipophilic contaminants. Therefore, 
toxic effects in embryos are considered to be a conservative proxy of the sensitivity 
of a species to the exposure with pollutants with the exception of adult-specific 
functions such as reproduction. Early life stage tests with most oviparous animals 
are usually completed within a few days to weeks depending on the species of inter-
est, and they represent a great opportunity to assess species that typically cannot be 
tested under controlled conditions, such as endangered or long-lived organisms. 
This is particularly true for fishes and amphibians that produce hundreds to thou-
sands of eggs, and for which standard culture methods can be easily adopted. For 
example, Vardy et al. (2013) demonstrated that early life stage studies with embryos 
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of rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas) 
and white sturgeon represented a reliable tool to predict the sensitivity to metals 
among fish species. Also, two comparative studies conducted with shortnose (A. 
brevirostum) and Atlantic (A. oxyrichnus) sturgeon (Chambers et al. 2012) and with 
shovelnose (Saphirhynchus platorynchus) and pallid (S. albus) sturgeon (Buckler 
et al. 2015) showed the utility of early life stages of endangered species to predict 
their sensitivity to DLCs. Given the relative ease of obtaining and culturing of fish, 
amphibian and bird embryos, and the relatively low cost and time investment needs 
to conduct early life stage studies, it is surprising that there only have been a few 
efforts to use them for cross-species extrapolation in ecotoxicology. As early devel-
opment across fishes, amphibians or birds is highly comparable within each of these 
taxonomic groups, and considering the availability of standardized guidelines for 
assessing endpoints in embryos (e.g. OECD 2013) they represent a highly promis-
ing tool in comparative ecotoxicology.

6.4  �Conclusions

The ability to assess the hazards chemicals may pose to the vast diversity of ecologi-
cal species is increasingly becoming a necessity in ecological risk assessment. It 
also is apparent that traditional testing approaches using live animals will not be 
able to address these needs given the economic and ethical restrictions associated 
with them. Acknowledging these limitations, and motivated by the current paradigm 
shift from empirical testing to systems- and pathway-based approaches in the field 
of human health and ecological risk assessment (NRC 2007; Villeneuve et  al. 
2014a), regulators, scientists and industry are currently exploring novel concepts 
and methodologies to enable the prediction of the toxicological risks across species 
and taxonomic groups. Particularly, the recognition that specific molecular targets 
representing MIEs or KEs, or partial or entire toxicity pathways can be conserved 
among or within taxonomic groups has resulted in a focus on comparative ‘omics as 
predictive tools for cross-species extrapolation (Brockmeier et al. 2017). One plat-
form that is increasingly used in this context for identifying key processes that can 
drive sensitivity of a species are AOPs because they cover all levels of biological 
organization, provide biological context and inform the chemical and taxonomic 
applicability of the toxicity pathway. However, there are a number of uncertainties 
that remain to be addressed before AOPs and associated tools such as the above-
discussed SeqAPASS tool and other in silico methodologies become a viable option 
in non-model species risk assessment, including the limited number of mature AOPs 
currently available, their limited taxonomic application (virtually no AOPs exist for 
microorganisms, invertebrates and plants) and their mostly qualitative nature. 
Furthermore, large data gaps exist with regard to ADME properties of chemicals in 
ecological species that determine target site concentrations, and are a critical factor 
influencing intrinsic sensitivity.
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Therefore, there is the need to expand our current knowledge of the MIEs and 
KEs for the large number of chemicals of environmental concern in addition to their 
ADME properties across diverse species. A tiered approach exploiting (1) existing 
knowledge about AOPs along with available sequence and functional homology 
information when the MIE and KEs are well-characterized, and (2) generation of 
custom de novo gene or protein sequence information to expand the knowledge base 
may provide a feasible solution to rapidly characterize the taxonomic applicability 
domain for certain pathways. In parallel, development and validation of models that 
allow predicting the ADME properties of environmental contaminants across 
diverse taxonomic groups are needed to enable prioritization of organism groups 
with regard to their risk of internal exposure to contaminant groups of concern (e.g. 
organisms with low metabolic activity are less likely to be at risk to the exposure 
with chemicals that require metabolic activation). Based on this information, expert-
curated species similarity maps can be constructed with the goal of identifying so 
called “forecaster species”, which allow extrapolation of sensitivity to similar spe-
cies that cannot be investigated due to feasibility or ethical reasons (e.g. endangered 
species). The proposed approach is similar to the current practice in risk assessment 
of dioxin-like contaminants for birds where species are categorized as chicken-like 
(highly sensitive), pheasant-like (moderately sensitive), and quail-like (not sensi-
tive) (Karchner et al. 2006). Subsequent confirmation of these predictions to iden-
tify the main drivers of species-specific differences in susceptibility is proposed by 
a combination of (1) advanced in silico modeling of MIEs or KEs across species 
using tools such as SeqAPASS (LaLone et  al. 2013b), (2) use of targeted high-
throughput in vitro assays following principles currently used in drug discovery (see 
e.g. Doering et al. 2014; Farmahin et al. 2013), (3) conduct species-specific tissue 
explant assays to generate hypotheses for mechanism-specific sensitivity (Beitel 
et al. 2015; Eisner et al. 2015), and (4) develop of embryo toxicity tests for ovipa-
rous vertebrates that allow anchoring to an AO using relatively economical higher-
throughput systems while addressing animal welfare concerns. However, in vivo 
whole organism tests will still be required to validate the predictions in cases where 
the approaches proposed above are not adequate.
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Chapter 7
Green Algae and Networks for Adverse 
Outcome Pathways

Anze Zupanic, Smitha Pillai, Diana Coman Schmid, and Kristin Schirmer

Abstract  If adverse outcome pathways (AOPs) are to become the new standard 
predictive tool for chemical risk assessment in ecotoxicology, substantial effort will 
be required to construct AOPs for exposures to different chemical groups making 
sure that we have enough representation of different test species to adequately cover 
the tree of life. This should include plants, which have not yet received sufficient 
attention from the AOP community. In this chapter, we present Chlamydomonas 
reinhardtii, a unicellular green microalga that serves as a model organism for, 
among others, photosynthesis and the circadian rhythm. We review C. reinhardtii as 
a model organism for ecotoxicology and summarize different publicly available 
genomic and OMICS resources for the species. We also present a new putative AOP 
for C. reinhardtii exposed to silver, constructed based on integration of transcrip-
tomic and proteomic datasets. Finally, we present the current state-of-the-art bioin-
formatics procedures that can be used for constructing AOPs from OMICS type of 
datasets and evaluate whether the approaches are suitable for C. reinhardtii.
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7.1  �Introduction

The Adverse Outcome Pathway (AOP) is a knowledge-based toxicological frame-
work that covers the adverse effects of chemicals across multiple levels of biologi-
cal organization, from the molecular initiating event (MIE) to key events (KE) at the 
level a of cell or tissue and to the final adverse outcome (AO) of ecological relevance 
on the individual organism or population level (Ankley et al. 2010). The goal of 
AOP developers is that AOPs become a predictive tool for chemical risk assessment 
and thus become an important part in environmental regulatory decision-making 
(Groh et al. 2015; Villeneuve et al. 2014). The extent to which this can be achieved 
depends, among other aspects, on the validity of the assumptions behind the AOP 
concept. For one, AOPs are not chemical specific, but rather general enough to 
account for toxic actions of whole classes of chemicals. For example, while around 
60% of all organic industrial chemicals are thought to be characterized as narcotics, 
their action in fish seem to fall under two different AOPs, one based on changes in 
cellular metabolism and one on more specific damage to the gill epithelium (Ankley 
et al. 2010; Perkins et al. 2015; Volz et al. 2011). Another assumption behind AOPs 
is that toxic responses are conserved among similar species and therefore these spe-
cies share AOPs for at least some MIEs. In this way it should be possible to use 
AOPs for across species extrapolation, as was already shown for the neurotoxic 
effects of cyclotrimethylenetrinitramine (Garcia-Reyero et  al. 2011). If these 
assumptions are valid, then a finite number of AOPs would be able to describe a vast 
majority of the toxic effects of environmental chemicals and the only limitation for 
the utility of the AOP concepts would be the amount of work researchers could 
dedicate to AOP construction and the diversity of the constructed AOPs.

Until the beginning of 2016, approximately 50 different AOP related projects 
have been registered with the OECD (Jan 19, 20161). Most of the projects involve 
developing AOPs for humans, rodents and fish, while not a single one deals with 
adverse outcomes of chemicals on plants. For the AOP framework to become suc-
cessful, it is vital that the AOP assortment of species includes a much wider diver-
sity, ideally covering every branch of the tree of life. Among plant species, it would 
make the most sense to start with model plant species with the most available bio-
logical knowledge, such as the annual Arabidopsis thaliana or the unicellular green 
alga Chlamydomonas reinhardtii. Unicellular organisms, such as C. reinhardtii, 
could serve as especially attractive targets for AOP development because (1) they 
are easier to work with and more amenable to high throughput data collection, and 
(2) the lack of the higher multicellular organization would make the developed 
AOPs shorter and more tractable. It is not yet clear how useful AOPs of unicellular 
plants would be for understanding chemical toxicity to multicellular ones, but since 
many biological processes are shared in the plant kingdom it is reasonable to assume 
some level of across species extrapolation to be possible.

1 http://www.oecd.org/env/ehs/testing/listsofprojectsontheaopdevelopmentprogrammeworkplan.
htm.
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In this chapter, we introduce C. reinhardtii as a model organism for ecotoxicology 
and describe available resources for toxicological and OMICS types of data. We 
present a hypothetical AOP for C. reinhardtii exposed to non-essential metals, 
which we developed based on a time course exposure of the alga to silver and the 
resulting combined transcriptomics/proteomics dataset. We conclude with a vision 
for future development of AOPs for unicellular plant organisms based on high-
throughput OMICS.

7.2  �The Alga C. reinhardtii as a Model Species

C. reinhardtii is a biflagellate unicellular green alga which is commonly found in 
soil and freshwater. The alga is a heterothallic species that reproduces sexually or 
asexually and can grow robustly under photoautotrophic, mixotrophic and hetero-
tropic conditions. It is about 10 μm in diameter with a glycoprotein rich cell wall, a 
large single chloroplast, a nucleus, an eyespot which senses light, a pyrenoid which 
stores starch and two anterior flagella for motility (Fig. 7.1). C. reinhardtii can be 
cultured easily in the lab with a short generation time of 8–12 h and is amenable to 
genetic manipulation, with a vast array of functional mutants available. It has three 
genomes: the nuclear, the mitochondrial and the chloroplastic, which have been 
sequenced (Merchant et al. 2007). Many strains, both lab generated and isolated 

Fig. 7.1  Chlamydomonas reinhardtii and a schematic representation of a cell. Scale bar = 7.5 μm 
(Source: Department of Environmental Toxicology, Eawag)

7  Green Algae and Networks for Adverse Outcome Pathways



136

from the environment, are available at the Chlamydomonas Resource Center.2 
Extensive work in the last decade has produced a fairly well annotated genome, 
with the most recent version at JGI v5.5,3 including nearly 17,800 protein-coding 
loci (Blaby et  al. 2014). C. reinhardtii is a representative of the lineage which 
evolved to early plants but it also shares features of animal cells, retained from the 
last eukaryotic common ancestor (Cross and Umen 2015), making it a greatly ame-
nable model system. In the recent past C. reinhardtii has been used to study many 
fundamental cellular processes including chloroplast biogenesis, photosynthesis 
(Houille-Vernes et al. 2011), circadian rhythm (Matsuo and Ishiura 2008), flagellar 
assembly and motility (Pazour and Witman 2000), DNA methylation, metabolism, 
and sex determination (Harris 2001). Advances in genetic manipulation has further 
allowed C. reinhardtii to be explored for the development of sustainable algal bio-
fuels and bioproducts (Scranton et al. 2015).

7.2.1  �The Alga C. reinhardtii as a Model Species 
for Ecotoxicology

Aquatic systems are sinks for accumulating toxicants and primary producers, such 
as microalgae, comprise the base of the food chain from which effects can be propa-
gated to higher trophic levels. Therefore, the estimation of bioaccumulation and 
toxicity to primary producers are important for accurate risk assessment and C. 
reinhardtii is an excellent model in this regard. Indeed, C. reinhardtii is routinely 
used in ecotoxicological risk assessment as one of the standard organisms for test-
ing effects of toxicants in fresh water, as suggested by the Organisation for Economic 
Co-operation and Development (OECD) guidelines.4 The routine tests mostly focus 
on the inhibition of growth, which represents an adverse effect at the population 
level and requires at least 24 h. A more detailed assessment of different physiologi-
cal endpoints is used to study the mechanisms of toxicity (Nestler et al. 2012). One 
such physiological endpoint is the inhibition of photosynthetic yield, caused by 
herbicides such as diuron, which can be quantified readily within minutes after 
exposure. Another endpoint is ATP content, which is an indicator of the viability 
and physiological state (e.g., stress) of the algae. Additionally, the regulation or 
disturbance of oxidative and reductive processes, which are indicators for the pro-
duction of reactive oxygen species, can be measured by estimating oxidative dam-
age (Sarkar et al. 2005). However, these physiological endpoints, while easy and 
relatively fast to estimate, do not reveal molecular mechanisms that precede organ-
ism level changes nor the adaptive responses that allow the organism to recover.

2 http://www.chlamycollection.org/.
3 https://phytozome.jgi.doe.gov/pz/portal.html.
4 http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm.
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The advancement of quantitative OMICS technologies, such as transcriptomics 
for abundance of RNA molecules, proteomics for abundance of proteins, and 
metabolomics for abundance of internal metabolites, allows for measurement of 
adaptive and toxic effects in a time and concentration dependent fashion at different 
molecular levels. These different levels are likely to cover a larger proportion of 
chemical-related KEs; therefore their integration with the traditionally measured 
physiological responses could, in principle, be used to propose relatively complete 
AOPs. To our knowledge, OMICS based AOPs have thus far not been proposed for 
C. reinhardtii nor for any other ecotoxicologically relevant plant species. In the next 
section, we will review the available OMICS datasets for C. reinhardtii and discuss 
different approaches that could lead to AOP development from OMICS data. 
Although the focus in the chapter is on C. reinhardtii, most of the proposed 
approaches are general enough to be used for other species.

7.2.2  �OMICS Resources for C. reinhardtii

The most mature and broadly used OMICS is transcriptomics, which is based on 
either microarray or sequencing technology. In the last decade, the number of eco-
toxicological studies utilizing transcriptomics has consistently risen (Schirmer et al. 
2010) as has the number of publicly available transcriptomic datasets in public 
repositories. However, despite its amenability to transcriptomics, publicly available 
studies in C. reinhardtii are still relatively rare, with only 28 stress related transcrip-
tomic datasets available for environmental and chemical related stress (a list can be 
found in Table 7.1). Among the available studies, those looking at the effects of 
insufficiency or excess of metabolic resources, such as nitrogen or sulphur, or essen-
tial metals, dominate, while those looking at chemical stress have only started 
appearing in the last couple of years. We expect that the number of transcriptomic 
studies will substantially increase in the future, enabling the use of integrative, 
network-based methods for the discovery of the mechanisms of toxicity and the 
definition of AOPs (Perkins et al. 2011) (see also below).

Other OMICS technologies have not yet achieved a similar technological matu-
rity, and consequently there have been fewer studies in general. For C. reinhardtii, 
only mass spectroscopy based proteomics and metabolomics studies can be found 
in double figures, if all publications, not only toxicological ones, are taken into 
consideration (e.g., (Kleessen et al. 2015; Schmollinger et al. 2014)). Unfortunately, 
as public repositories for these technologies have only recently started appearing 
(e.g., the PRIDE repository for proteomics has only come online this year (Vizcaino 
et al. 2016)), normally the only way to obtain the respective datasets is by contact-
ing the authors of the respective publications where they appeared. Hopefully, in the 
near future the number of all OMICS studies and their availability will increase for 
all species.
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7.3  �How to Use OMICS for AOPs?

7.3.1  �From Gene Expression Through Pathways of Toxicity 
to AOPs

While there are many potential methods for including OMICS datasets into the 
construction of AOPs, a concrete path from OMICS to AOPs has not yet been pre-
sented for any species. Most often in ecotoxicological studies, individual 

Table 7.1  Transcriptomic, stress-related datasets for C. reinhardtii published by March 1, 2016 in 
GEO (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

Stressor Repository ID Platform References

Cerium dioxide nanoparticles E-MTAB-2454 Microarray Taylor et al. (2016)
Heat shock E-GEOD-20859 Microarray Voss et al. (2011)
Heat shock, hemin and 
mg-protoporphyrin

E-GEOD-20861 Microarray Voss et al. (2011)

Oxidative stress E-GEOD-30646 Microarray Fischer et al. (2012)
Electrophilic stress E-GEOD-30646 Microarray Fischer et al. (2012)
Silver, silver nanoparticles E-GEOD-48677 Microarray Pillai et al. (2014)
Light irradiation E-GEOD-56800 Microarray Mettler et al. (2014)
Rotifer predation E-MEXP-3562 Microarray Becks et al. (2012)
Sulphur stress E-GEOD-33039 Microarray Toepel et al. (2011)
Sulphur starvation E-GEOD-33040 Microarray Toepel et al. (2011)
Nitrogen starvation E-GEOD-33041 Microarray Toepel et al. (2011)
Sulphur starvation E-SMDB-2992 Microarray Zhang et al. (2004)
Sulphur starvation E-GEOD-17970 RNA-seq Gonzalez-Ballester et al. 

(2010)
Nitrogen starvation E-GEOD-24365 RNA-seq Miller et al. (2010)
Copper E-GEOD-25124 RNA-seq Castruita et al. (2011)
Oxidative stress E-GEOD-33548 RNA-seq Fischer et al. (2012)
CO2 E-GEOD-33927 RNA-seq Fang et al. (2012)
Nitrogen starvation E-GEOD-34585 RNA-seq Boyle et al. (2012)
Oxidative stress E-GEOD-34826 RNA-seq Urzica et al. (2012)
Iron starvation E-GEOD-35305 RNA-seq Boyle et al. (2012)
Zinc starvation E-GEOD-41096 RNA-seq Malasarn et al. (2013)
Iron starvation E-GEOD-44611 RNA-seq Urzica et al. (2013)
Nitrogen starvation E-GEOD-51602 RNA-seq Blaby et al. (2014)
Phosphate starvation E-GEOD-56505 RNA-seq No publication available
Sulfur starvation E-MTAB-1329 RNA-seq Toepel et al. (2011)
Phosphate starvation E-MTAB-2556 RNA-seq No publication available
UV-B stress E-GEOD-68739 RNA-seq No publication available
Zinc starvation E-GEOD-58786 RNA-seq No publication available

Lists with differentially expressed transcripts (based on the limma algorithm, (Ritchie et al. 2015)) 
for each individual dataset can be retrieved from http://www.eawag.ch/en/department/utox/pro-
jekte/integrative-network-toxicogenomics/
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transcriptomics datasets are analyzed to identify differentially expressed transcripts 
in response to a stressor. This gene-centric approach is leveraged by pathway-centric 
analyses, in which a priori known molecular pathways are tested for overrepresenta-
tion of differentially expressed transcripts. The identified pathways of toxicity are 
then combined with the available knowledge of adverse outcomes for that particular 
stressor, and finally used to inform AOP development.

For example, in one of our studies, the responses of C. reinhardtii at the tran-
script, protein and physiological levels on exposure to silver was estimated in a 
concentration and time dependent manner (Pillai et al. 2014). We identified path-
ways of toxicity based on the perturbed expression of the transcripts and the pro-
teins and linked them to the observable physiological outcome. This enabled us to 
put forward a conceptual mechanistic hypothesis for toxicity of silver on C. rein-
hardtii (Fig. 7.2). Silver is suggested to be transported into the cells by copper trans-
porters. In the cells, silver is distributed via the copper chaperones and this 
concomitantly elicits several effects. Silver binds to thiol groups of proteins causing 
mis-folding and damage, it replaces copper in key proteins of the electron transport 
chain and photosystem and regulates the expression of proteins leading to inhibition 
of ATP and photo-synthesis. The disturbance of the electron transport chain in the 
photosystem leads to increased reactive oxygen species (ROS) production which 
causes peroxidation of lipids and membrane damage. As a defense mechanism 

Fig. 7.2  Schematic representation of the effects of silver in C. reinhardtii (Pillai et al. 2014)
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against the oxidative stress, the algae mount an antioxidant response. At lower con-
centrations of silver (10 and 100 nM), the antioxidant response is seemingly ade-
quate for the recovery of algae. At higher concentration (200 nM), in addition to the 
antioxidant response, the efflux mechanism probably removes intracellular silver as 
observed by decreasing intracellular concentrations, confirming a detoxification 
process. Nonetheless, this exposure concentration resulted in the inhibition of the 
growth of the population, an adverse outcome which integrates the many effects of 
silver on different cellular processes.

In the original publication (Pillai et al. 2014), we stopped at the toxicity pathway 
stage and did not propose a putative AOP. Since then, several excellent papers have 
provided instructions for the development of AOPs for ecotoxicological risk assess-
ment (Groh et al. 2015). Here, we exploit the suggested strategy to develop an AOP 
for silver in C. reinhardtii based on our previous results. On exposure to silver, 
several biological processes were affected within durations spanning minutes to 
hours. The bioaccumulation of silver over the duration of two generations of C. 
reinhardtii (24 h) and the cumulative effect on key processes such as photosynthesis 
and energy utilisation lead to the adverse outcome of growth inhibition. The effects 
on photosynthesis appear to be initiated by the displacement of copper by silver 
from plastocyanin of the photosystem, which we define as an MIE (Fig.  7.3). 
Consequently, plastocyanin is misfolded (KE) and its function lost. This impairs 
photosystem II and the process of photosynthesis (KE) and leads to production of 
ROS (KE), which is followed by oxidative damage (KE). All of these KEs were 
observed not only at the physiological level, but also at the molecular level, in the 
form of dysregulation of transcripts and proteins. More importantly, the effects of 
silver on individual cells had an adverse outcome on the growth of the population. 
This preliminary AOP is mapped for defined acute exposure concentrations. It 
would be valuable to incorporate modelling approaches which would allow predic-
tion of adverse effects for a range of environmentally relevant silver 
concentrations.

7.3.2  �From Reverse Engineering Gene Co-expression 
Networks (GCNs) to AOPs

Another approach is to build AOPs not from a single OMICS dataset, but to leverage 
in house and publicly available OMICS datasets by using data-driven algorithms. A 
popular method for integration of OMICS is gene co-expression networks (GCNs), 
which was successfully used on single studies interrogating transcriptomes under 
different environmentally relevant conditions (Perkins et al. 2011; Williams et al. 
2011). Construction of GCNs relies on the guilt by association assumption: genes 
with a correlated (linearly or non-linearly) expression patterns across several differ-
ent conditions have a higher probability of participating in the same biological pro-
cesses and of being under common transcriptional regulatory programs. Consistently, 
genes participating in the same pathways are usually found in densely correlated 
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regions of the GNC, i.e. in co-expressed modules (Hansen et al. 2014; Heyndrickx 
and Vandepoele 2012; Stuart et al. 2003; Wei et al. 2006).

GCNs can be used in a focused fashion when a specific toxicological pathway is 
of interest and prior knowledge on some guide genes involved in the pathway are 
available. In this approach, to find correlated genes which might have a similar 
function one can query the neighbourhood of the guide genes in the co-expression 
network. After experimental validation, annotation of genes with unknown func-
tions is enabled and the subsequent discovery of new biomarkers that can be used in 
future assays covering key events in an AOP.

The algorithms used for constructing GCNs can also be applied for integration 
with adverse outcomes, just as long as the measurements of these are available for 
all the included studies/datasets. In other words, if there are several studies with 
measured transcriptomics and physiological states, the transcripts and the physio-
logical states both feature in the same (correlation) network (Garcia-Reyero et al. 
2014). The use of multiple OMICS together with data-driven GCN inference has the 
distinct advantage that it enables the discovery of toxicologically relevant genes and 
mechanisms, making use of all available data and without requiring comprehensive 
gene functional annotation. In a recent paper, GCNs were used in combination with 
text and database mining to infer the pathways of toxicity of MPTP (a chemical that 
elicits Alzheimer like symptoms in mammals) in mice (Maertens et  al. 2015). 
Therefore it is possible to combine GCNs with other approaches as well in AOP 
development.

To date, the GCN approach has not yet been used in C. reinhardtii for ecotoxico-
logical purposes. However, there are two publicly available databases that have 
compiled some of the publicly available C. reinhardtii transcriptome datasets (Aoki 
et  al. 2016; Zheng et  al. 2014). As well another study reports the use of GCNs 
inferred from multiple datasets to investigate the evolution of light-dependent gene 
regulatory modules across several plant species, including C. reinhardtii (Romero-
Campero et al. 2013). As more ecotoxicologically specific datasets become avail-
able, the GCN approach will become an option also for C. reinhardtii based AOP 
construction.

7.4  �Causal Networks

Another network approach that could lead to AOP development are causal networks. 
Although these have until now mostly been used in human toxicological studies 
where more data is available, they also hold promise for ecotoxicology. Causal net-
works are normally built starting from the known adverse outcome, such as a known 
human disease caused by an environmental exposure, for example lung cancer after 
exposure to tobacco smoke (Titz et al. 2016). After manually selecting scientific 
articles covering a known adverse outcome and with a molecular mechanistic focus, 
text mining is used to find sentences that feature causal connections between genes, 
proteins, metabolites, etc. (Fig. 7.4). The recognized connections are collected into 
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a knowledge database written in BEL (biological expression language) and then 
joined together into a causal network that describes what is currently known about 
the molecular processes behind the adverse outcome. Every node in the causal net-
work is then connected to several nodes of a second layer network that comprises all 
known downstream targets of that node. For example, if a causal node is a transcrip-
tion factor, all its known targets would be in the second layer network. Finally, 
transcript abundance measurements of the second layer are used to infer the activity 
of the causal node, based on the transcript abundance of their downstream targets. 
Those causal nodes that are active under different exposures would therefore be 
prime targets for KE and KE assay development.

The quality of constructed causal networks depends greatly on the amount and 
quality of information and data available for a specific adverse outcome and species 
(Boue et al. 2015). Therefore it is probably not yet possible to construct them for 
ecotoxicological purposes, except for the most studied adverse outcomes in the 
most well studied species. For C. reinhartdii, the approach might work for inhibi-
tion of growth after chemical exposure. Other data mining based methods, such as 
frequent itemset mining (Oki and Edwards 2016) require even more information to 
be available and will be difficult to use for plant AOPs in the near future.

7.5  �Towards Mechanistic Computable AOPs

Finally, although not yet attempted for AOP development, it would be possible to 
integrate OMICS datasets with mechanistic mathematical modelling. A potential 
approach of this is using genome-scale metabolic reconstructions and gene expres-
sion (either transcriptomic or proteomic) data to predict adverse metabolic pheno-
types and metabolic toxicity biomarkers. Two successful examples are prediction of 
drug effects on growth of cancer cells (Folger et al. 2011) and prediction of growth 
of C. reinhardtii exposed to different nutrient conditions (Imam et al. 2015). An 
advantage of the metabolic modelling approach is the possibility of discovering 
KEs at the level of endogenous metabolism, which has so far been missing in the 
proposed AOPs. When the reconstruction of signalling or gene regulatory pathways 
on the genome scale also becomes possible we will be one step closer to whole cell 
models, which could be directly used as quantitative AOPs (Hyduke and Palsson 
2010).

7.6  �Conclusion

For AOPs to become one of the main tools for environmental risk assessment, their 
development will have to move from the current mammal and fish focus to the other 
branches of the tree of life. The AOP community should therefore try to involve 
researchers that are working on non-vertebrate ecological and ecotoxicological 
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model organisms and beyond. OMICS technologies and meta-OMICS integrative 
analyses will undoubtedly play an important role in the effort to enrich the informa-
tion about the chemical sensitivity of the model and non-model species and should 
be considered as the backbone of future AOP construction.
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Chapter 8
Neurobehavioral Analysis Methods 
for Adverse Outcome Pathway (AOP) Models 
and Risk Assessment

Francisco X. Mora-Zamorano, Jeremy K. Larson, and Michael J. Carvan III

Abstract  The emerging use of neurobehavioral analysis techniques in toxicology 
promotes the implementation of neurobehavior, a powerful integrator of molecular, 
physiological, and environmental stimuli, in the development of Adverse Outcome 
Pathway (AOP) models. In recent years, zebrafish have been extensively investi-
gated for their potential as a model organism in behavioral toxicology due to their 
low maintenance cost and similarities with rodent behavior and physiology. This 
chapter will review: (1) the beneficial role of neurobehavioral assays in the develop-
ment of AOPs; (2) the diverse neurobehavioral endpoints to be considered in the 
evaluation of neurotoxicity and; (3) the challenges of integrating neurobehavioral 
outcomes into AOP development. Discussion of the many neurobehavioral screen-
ing assays that have been adapted from rodents to zebrafish is included. Furthermore, 
this chapter will review studies in which behavioral phenotypes and neurophysio-
logical outcomes have been anchored to specific molecular initiating events induced 
by a chemical exposure. Although the study of the genetic and physiological basis 
of behavior is still nascent, there are many noteworthy studies that have enabled the 
creation of AOP models for the prediction of how chemical exposure affects the 
behavior of individuals in a population and, in turn, how these alterations can affect 
population dynamics.

8.1  �Introduction

Neurobehavior is the study of an organism’s behavior and how it relates to the func-
tion of its nervous system. This powerful experimental endpoint serves as an inte-
grator of the diverse and complex internal (e.g., chemical, molecular, cellular, 
physiological) and external (e.g., environmental) stimuli encountered by an 
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organism. Therefore, the knowledge gained from neurobehavioral studies contrib-
ute significantly to the understanding of gene-environment interactions, physiology, 
and ecology. Behavior is the output of molecular and cellular level events (i.e. gene 
expression, neurotransmitter signaling, and neurodevelopment) that enable an 
organism to respond to its surroundings (e.g., locomotion, foraging, escape preda-
tors, seek shelter, grow and reproduce). Importantly, such complex responses can be 
compromised via environmental insult, such as exposure to a neurotoxicant. 
Neurotoxicity is defined by the United States Environmental Protection Agency 
(US EPA) as “an adverse change in the structure and/or function of the central and/
or peripheral nervous system measured at the neurochemical, behavioral, neuro-
physiological or anatomical levels” (Tilson et al. 1995). It is estimated that nearly 
30% of all commercially used chemicals (currently >80,000 chemicals) possess 
neurotoxic properties (Basu 2015). However, over the past four decades, few of 
these chemicals have been extensively studied and characterized as neurotoxicants 
(Bal-Price et al. 2015).

Neurobehavioral screening assays (NBSAs) provide an excellent platform to 
identify the effects of a large number of potentially neurotoxic compounds. Some 
NBSAs are particularly useful in toxicology and pharmacology due to their robust-
ness and the possibility of being automated and implemented in a high throughput 
manner (Reif et al. 2015). NBSAs can also be a quite sensitive approach to identify 
neurotoxic effects that would be otherwise too subtle to be elucidated by anatomical 
or histological screens (Detrich III et al. 2009). However, the organism-level data 
obtained from NBSAs is much more powerful for risk assessment purposes when 
coupled with the knowledge of the mechanisms that mediate neurobehavior, as well 
as the possible broader implications of behavior alterations. In such a scenario, the 
data gathered by NBSAs allows the possibility of making meaningful predictions of 
how chemical-induced behavioral alterations observed in individual organisms can 
affect higher levels of biological organization (i.e., communities and populations). 
Hence, the continued development and adoptions of a systems biological approach 
(i.e., Adverse Outcome Pathway [AOP]) will significantly improve our ability to 
make such predictions from neurobehavioral-derived data obtained in the labora-
tory. The AOP is a methodological framework that utilizes the knowledge of the 
biological effects of molecular, cellular and organism-level events to predict the 
potential adverse outcomes at higher levels of biological organization (Fig.  8.1) 
(Landesmann et al. 2013; Ankley et al. 2010).This approach de-emphasizes the api-
cal adverse outcomes at the organismal level and higher, and focuses more on the 
effects on initiating and intermediate measurable key events of biological organiza-
tion, which can be mechanistically linked to apical adverse effects of broad ecologi-
cal impact. This chapter will review: (1) the beneficial role of neurobehavioral 
assays in the development of AOPs; (2) the diverse neurobehavioral endpoints to be 
considered in the evaluation of neurotoxicity and; (3) the challenges of integrating 
neurobehavioral outcomes into AOP development.
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8.2  �Neurobehavioral AOPs

For the purpose of clarity, this chapter will define neurobehavioral AOPs as any 
AOP model that makes use of NBSA-derived data to make predictions of adverse 
outcomes that may branch from behavioral alteration. As discussed extensively by 
Bal-Price and collaborators (Bal-Price et al. 2015), the development of AOP models 
specific to neurotoxicity outcomes is nascent. To illustrate this point, individual-
based models (also referred to as “agent-based” models) have existed for roughly 
four decades and the development of these models specifically for the study of pop-
ulation dynamics has been in progress for two decades (DeAngelis and Grimm 
2014). However, neurobehavior has only recently been considered and implemented 
in such models to predict population-wide outcomes of neurotoxic exposure. One 
example of such implementation is the use of behavioral data from methylmercury 
exposed Atlantic croaker to predict impaired survival skills and, consequently, pop-
ulation decline (Alvarez Mdel et al. 2006).

A recent review (Groh et al. 2015) discussed three case studies of AOP models 
of growth impairment. The molecular initiating events in these three models were 
associated with exposure to pyrethroids, cadmium and selective serotonin reuptake 
inhibitors, all of which have known neurological effects (Eriksson and Fredriksson 
1991; Isbister et al. 2004; Wang and Du 2013). In all cases, the models indicated 
that the effects of chemical exposure would initiate a cascade of physiological and 

Fig. 8.1  A conceptual neurobehavioral AOP diagram. Exposure to a neurotoxicant can initiate 
molecular and/or cellular consequences that may impact different levels of behavioral complexity 
and lead to an altered interaction between organisms (i.e., interactions required for reproduction 
and survival), which could ultimately result in population decline due to a failure to reproduce, 
vulnerability to predators and/or starvation
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metabolic reactions, causing behavioral alteration (i.e., locomotor impairment), 
reduced food intake and, ultimately, decreased survival rates. Although these three 
AOP models were not explicitly labeled as “neurobehavioral AOPs”, they all 
described instances of adverse outcomes of behavioral alteration caused by the 
exposure to a neurotoxicant. Through collaborative research, new neurobehavior 
specific AOPs are currently being developed. For example, neurobehavioral AOPs 
for methylmercury-exposed zebrafish and yellow perch (Perca flavescens) are under 
development, and will integrate the effects of methylmercury on specific neurotrans-
mitters in the brain (Arini et al. 2016), behavior (Mora-Zamorano et al. 2016a) and 
gene expression in both species (Mora-Zamorano et  al.; manuscripts in prepara-
tion). The creation of neurobehavioral AOPs of these two fish species in parallel will 
allow for comparison between model and non-model fish species and how they are 
affected by environmental contaminants.

Regardless of the context or the rationale for developing an AOP model, this 
approach invariably requires a sufficient a priori understanding of the linkages 
between molecular initiating events, intermediate key events and apical events. 
Therefore, establishing an AOP model on behavioral data can be particularly advan-
tageous, given that behavior inherently encompasses the molecular, physiological 
and anatomical implications of neurotoxicant exposure. A neurobehavioral AOP 
model consists of three essential levels of biological organization: (1) molecular-
level (i.e., toxicant-induced alteration in cell physiology/biochemistry), (2) 
organism-level (i.e., behavioral alteration), and (3) population-level (i.e., apical out-
comes). It has been previously discussed that behavioral responses can be classified 
into three hierarchical tiers: (1) basic motor responses (2) sensorimotor responses, 
and (3) learning and memory (Tierney 2011). In this chapter, a “fourth tier” will be 
added to this proposed hierarchy: (4) organism-organism (i.e., predator-prey) inter-
actions. The advantage of organizing behaviors by their complexity is that it facili-
tates the implementation of behavioral data into AOP models. For example, 
spontaneous locomotor activity is a very fundamental behavior, while courtship, 
prey capture and predator avoidance are much more complex (Scott and Sloman 
2004). Ideally, a neurobehavioral AOP would link different levels of behavioral 
complexity in a manner whereby fundamental behaviors predict the outcome of 
more complex ones. Although neurobehavior is a practical and integrative endpoint 
of neurotoxicity, it is also important to acknowledge its potential pitfalls. The most 
obvious weakness is the fact that neurobehavior alone does not provide insight into 
the vast and complex mechanisms that modulate it. More often than not, molecular 
mechanisms that are very distinct from each other will render behavioral outcomes 
that are practically indistinguishable (Groh et al. 2015).

8.3  �Model Organisms in Neurobehavioral Studies

Model organisms belonging to a wide variety of taxa have been employed for neu-
robehavioral analysis for decades. Invertebrates such as the nematode C. elegans 
and the fruit fly (D. Melanogaster) are two examples of model organisms that have 
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been extensively utilized for such purposes (Benzer 1967; Cronin et  al. 2006). 
Among vertebrates, rodents have been historically the traditional animal models for 
neurotoxicity screening (Eddins et al. 2010). As mammalian models, it is generally 
accepted that neurotoxic effects observed in rodents are frequently predictive of 
similar effects in humans (Bal-Price et al. 2015). Nonetheless, exclusively utilizing 
rodents to assess the neurotoxicity of the thousands of commercially available 
chemicals is proving to be prohibitively costly and time consuming (Perkins et al. 
2013). Another widely utilized vertebrate model is the zebrafish (Danio rerio), 
which has recently emerged as an increasingly popular model in toxicology (Miklósi 
and Andrew 2006). Despite being a non-mammalian model, orthologs for 70% of 
all human genes have been identified in this model organism (Howe et al. 2013), 
thus making this species well-suited to assess potential human and environmental 
hazards. This chapter will focus primarily on zebrafish neurobehavior assays, and 
assays developed originally developed for rodents that have now been adapted for 
zebrafish research.

8.4  �Neurobehavioral Endpoints and General Considerations

Neurotoxicants are capable of altering behavior via diverse mechanisms (e.g., affect 
perception by altering the senses, alter gait and locomotion, modulate emotional 
states and impair cognition; Fig. 8.2). To date, several detailed reviews have been 
published summarizing behavioral assays that were designed to target a specific 
mode of alteration (e.g., visual deficit, locomotor activity, startle responses, anxiety 
and learning). The examples described herein are not all inclusive, but rather a con-
solidation of some of the most widely utilized assays in neurobehavioral toxicology 
studies. Literature featuring the diverse types of neurobehavioral assays and their 
documented application to ecotoxicology research are summarized in Table 8.1.

Prior to performing behavioral assays there are a number of important facets that 
must be considered. Firstly, although developmental toxicity and teratogenesis are 
not neurobehavioral endpoints, it is critical to recognize that overt morphological 
abnormalities caused by chemical exposure can drastically affect behavioral output. 
Therefore, it is highly advisable to perform a developmental toxicity screen prior to 
any neurobehavioral assessment. This action will ensure that the origin of any 
observed behavioral abnormalities stems from altered nervous system function 
rather than independent morphological defects. The most acknowledged approach 
to carry out a toxicity screen consists of observing a cohort of organisms and iden-
tifying the proportion of individuals in the cohort that present one or more 
morphological abnormalities. For the sake of consistency, a scoring rubric can be 
implemented to assign a value to the severity of morphological abnormalities, such 
as the early life stage toxicity (ELS-tox) score (Heiden et al. 2005). In zebrafish, 
scoring rubrics for developmental toxicity include observations of embryo mortal-
ity, blood circulation, somite formation, pigmentation, body morphology, swim 

8  Neurobehavioral Analysis Methods for Adverse Outcome Pathway (AOP) Models…



154

bladder inflation and the presence of yolk sac edemas (Truong et al. 2011). It is also 
important to consider that circadian rhythms can affect the way organisms behave 
depending on the time of day (MacPhail et al. 2009), thus the duration of light/dark 
cycles and/or disruption of normal illumination may impact experimental outcomes. 
The developmental stage at which organisms are exposed to a neurotoxicant can 
also alter the outcome (Weis and Weis 1995b). It is also not advisable to feed organ-
isms immediately prior to behavioral analysis, as this can affect the behavior of 
zebrafish (Clift et al. 2014; Hurd et al. 1998).

8.4.1  �Neuromotor Development

Locomotor activity is by far the most prominently documented and well understood 
behavioral endpoint. It is also the most fundamental behavioral output that can be 
plausibly linked to more complex behaviors such as foraging (Groh et al. 2015). 
Neuromotor and reflex development are critical milestones during the early ontog-
eny of an organism. Likewise, these first manifestations of locomotor output are 
arguably the earliest behavioral endpoints that can be observed and measured in a 
developing organism.

8.4.1.1  �Spontaneous Activity

Spontaneous tail flicks or contractions can be quantified in zebrafish embryos as 
early as 30-hours post-fertilization (hpf) (Saint-Amant and Drapeau 1998). This 
endpoint can be analyzed by empirical observation or video recording the embryos 

Fig. 8.2  Behavioral outputs can originate from different levels of behavioral complexity, and the 
interactions between these levels. Spontaneous locomotor output and reflexes are fundamental 
behavioral outputs that require relatively “primitive” anatomical structures to be evoked (e.g., 
muscles, spinal cord and hindbrain). Sensorimotor responses and the processes of learning and 
memory are more complex phenomena. However, all the aforementioned processes are required 
for an organism to interact with other organisms and with the environment
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and manually counting the number of tail flicks thereafter. However, automated 
analysis of tail flicks can also be achieved with a commercial system such as the 
DanioScope suite, offered by Noldus Information Technology (Wageningen, 
Netherlands). Alternatively, activity can be analyzed with a custom ImageJ 
(Schneider et al. 2012a) macro designed for such purpose, as suggested by Kokel 
and collaborators (2010). Tail flicks in early embryonic stages of the zebrafish can 
be induced via exposure to a brief and intense flash of light, this phenomenon has 
been referred to as the photomotor response (PMR) (Kokel et al. 2010). The PMR 

Table 8.1  Selected references describing the methodologies for different behavioral assays, as 
well as the applications of these approaches in ecotoxicology

Behavioral endpoint Selected references
Examples of neurotoxic 
compounds assessed

Spontaneous activity Budick and O’Malley 
(2000)

Chlorpyrifos; (Selderslaghs et al. 
2010)

Photomotor response (PMR) Kokel et al. (2011) Trimethyltin chloride; (Chen et al. 
2011)

Visual motor response (VMR) Emran et al. (2008) Perfluorooctane sulfonate; 
(Spulber et al. 2014)

Visual startle, avoidance and 
escape response

Orger et al. (2009), 
Neuhauss (2003)

Methylmercury; (Weber et al. 
2008)

Optomotor response (OMR) Orger et al. (2009), 
Neuhauss (2003)

PCB 1254; (Zhang et al. 2015)

Optokinetic response (OKR) Orger et al. (2009), 
Neuhauss (2003)

aN/A

Touch response Budick and O’Malley 
(2000)

Domoic acid; (Tiedeken et al. 
2005)

Olfactory-evoked locomotion Lindsay and Vogt (2004) aN/A
Olfactory conditioning Braubach et al. (2009) aN/A
Open field, diving test and 
scototaxis

Maximino et al. (2011) bBenzodiazepines; (Maximino 
et al. 2011)

Thigmotaxis Schnörr et al. (2012) PCBs; (Gonzalez et al. 2016)
Habituation Best et al. (2008) Chlorpyrifos; (Eddins et al. 2010)
Plus maze Sison and Gerlai (2010) aN/A
Spatial alternation test Williams et al. (2002) Methylmercury; (Smith et al. 

2010)
Predator avoidance Luca and Gerlai (2012) Methylmercury; (Alvarez Mdel 

et al. 2006)
Prey capture Budick and O'Malley 

(2000)
Methylmercury; (Mora-Zamorano 
et al. 2016a)

aN/A indicates there are no known applications of the methodology in the field of ecotoxicology 
thus far
bAlthough benzodiazepines are more amenable to be considered a chemical of pharmacological 
relevance, the study cited represents a proof-of-concept with the potential of being utilized with 
environmental contaminants

8  Neurobehavioral Analysis Methods for Adverse Outcome Pathway (AOP) Models…



156

has been characterized and documented in zebrafish embryos between 30 and 42 
hpf (Kokel et  al. 2010). Upon exposure to a sudden flash of light, the embryos 
exhibit a robust sequence of tail bends that lasts 5–7 s, after which the embryos enter 
a refractory period (>15  s) where they fail to respond to another flash of light. 
Although the neurological basis of this response is seldom understood, the PMR 
offers many advantages as a behavioral screening paradigm. The fish can be screened 
as early as 1.5 days post-fertilization when they are still inside of their chorions, and 
the small size of the embryos facilitates the use of 96-well microtiter plates to image 
as many as 8–10 embryos per well, allowing for high throughput data acquisition. 
This approach has been successfully utilized for the high-throughput screening of 
the effects of many psychotropic compounds (Kokel and Peterson 2011).

Spontaneous activity can also be induced in zebrafish embryos as early as 36 hpf 
via an acute exposure to an aqueous solution of nicotine (30–240  μM) (Mora-
Zamorano et al. 2016b). Nicotine induces a characteristic burst of activity by acting 
as an agonist of nicotinic acetylcholine receptors in the spinal cord (Thomas et al. 
2009). This behavioral paradigm has been previously utilized for genetic (Petzold 
et al. 2009) and drug (Schneider et al. 2012b) screening. More recently, however, 
this nicotine-evoked locomotor response (NLR) has been utilized to assess the 
effects of methylmercury on the locomotor activity of 48 hpf zebrafish embryos 
(Mora-Zamorano et al. 2016b). One advantage of this assay is that the NLR can be 
directly anchored to the neurological basis of this behavior; the locomotor output 
induced by nicotine is known to be mediated by the spinal cord (Thomas et  al. 
2009).

8.4.1.2  �Development of Neuromotor Control

Fine motor control and coordination need to be developed in order for an organism 
to interact with its environment. In zebrafish, the locomotor pattern of embryos 
becomes mature once they reach 5 days of age (Lambert et al. 2012). In contrast, rat 
pups acquire an adult-like locomotor pattern roughly between 13 and 16 days post-
birth (Geisler et al. 1993). Both zebrafish and rodents can be observed throughout 
their development to identify possible delays in neuromotor milestones. To analyze 
neuromotor development in zebrafish, the embryos are often videotaped and their 
locomotor activity is tracked either manually by the observer or using machine 
vision algorithms that allow the automation of the analysis process. Commercially 
available systems to perform locomotion analysis in zebrafish include the Noldus 
DanioVision and the Viewpoint ZebraBox (Ahmad et al. 2012). However, it is also 
possible to analyze locomotor activity with freely available software such as ImageJ 
or Ctrax (Branson et al. 2009). The use of ImageJ for activity analysis in zebrafish 
larvae has been extensively described in previous studies (Colwill and Creton 
2011a; Creton 2009; Richendrfer and Creton 2015; Richendrfer and Créton 2013). 
The Ctrax motion tracking algorithm has been successful at quantifying the activity 
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of developing zebrafish embryos from 3 to 5 days of age (Lambert et al. 2012), and 
it has also been utilized to assess the effects of methylmercury on the swimming 
behavior of zebrafish larvae (Mora-Zamorano et al. 2016a). In rodents, the analysis 
of neuromotor development often involves observing the first manifestations of 
activity in the pups, such as crawling, rearing and grooming (Geisler et al. 1993). 
Later in development, rodents can be assessed for their performance in crossing 
rods of different widths, pivoting and forelimb grip strength (Dubovický et  al. 
2008).

8.4.2  �Vision

Towards the end of the 1990s a number of research groups were interested in ana-
lyzing the genetic basis of vision. As a result, several behavioral assays have been 
developed in both rodents and zebrafish to screen for visual acuity and impairment 
(Fig. 8.3) (Neuhauss 2003; Prusky et al. 2000). Recent studies support that environ-
mental toxicants can yield vision abnormalities and subsequent behavioral abnor-
malities in zebrafish via dysregulated expression of photoreceptor cell-related genes 
(Zhang et al. 2015), delayed retinal neurodifferentiation (Sun et al. 2016b), as well 
as altered retinal morphology and electrophysiology (Weber et al. 2008). Examples 
of the vision assays used in such studies are described below.

8.4.2.1  �Visual Motor Response

The visual motor response (VMR) assay was originally developed to quantify the 
locomotor output of multiple zebrafish larvae in response to sudden changes in light 
intensity (Emran et  al. 2008). This assay consists of recording the larvae in a 
multiple-well plate that is placed on top of a light source. The recording apparatus 
contains an infrared (IR) sensitive camera and a source of IR light to allow for video 
recording in the dark. Additionally, the experimental setting is often surrounded by 
a chamber that impedes the entrance of extraneous light. The experimenter can then 
program the light source within the chamber to turn on or off; the duration of the 
light and dark periods can be varied, as well as the number of times that these light-
dark cycles are repeated. Deeti et al. have recently described use of the VMR assay 
to evaluate the safety of human oculotoxic drugs, thus highlighting its potential 
inclusion in future high-throughput approaches (Deeti et al. 2014). The VMR has 
only been extensively documented in the zebrafish, however, there have been recent 
efforts to evaluate this behavioral paradigm in a non-model fish species (yellow 
perch; Perca flavescens). Interestingly, the behavior exhibited by yellow perch was 
the opposite of that observed in zebrafish, in other words, yellow perch exhibit 
increased swimming activity during light periods, while zebrafish do so in dark 
periods (Mora-Zamorano et  al.; manuscript in preparation). This illustrates the 
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strong opinion of the authors that baseline behavioral data need to be thoroughly 
evaluated prior to the assessment of toxicant effects, with the understanding that 
activation of the same molecular pathway in two species may result in diametric 
behaviors that only make sense after exploring life history differences.

Fig. 8.3  Among the approaches to assess sensorimotor function in zebrafish, assays for vision are 
some of the most varied and documented. For instance, the optomotor response has been character-
ized in both (a) adult and (b) larval zebrafish, in both cases, the organisms swim in the perceived 
direction of moving parallel lines. (c) The optokinetic response has also been observed in adult and 
larval zebrafish (only larval zebrafish depicted in image), in this assay the experimenter records the 
saccadic movements of the eyes in response to a moving grating of bars. (d) Visual avoidance 
assays are another approach to assess vision, one variation of these experiments in adult zebrafish 
are performed by placing the fish in a vessel surrounded by a rotating drum with a single black bar, 
which the fish avoids on each rotation. (e) A similar avoidance assay can be performed in larval 
zebrafish placed on top of a computer monitor displaying a single moving bar on one side of the 
recording arena, the larvae swim away from the visual stimulus and aggregate to the side of the 
vessel where there is no stimulus
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8.4.2.2  �Visual Startle, Avoidance and Escape Response

A variety of startle and avoidance responses can be evoked with different kinds of 
visual stimuli in both adult and larval zebrafish. For instance, a robust escape 
response can be evoked in adult zebrafish by a black stripe inscribed on the inner 
surface of a white rotating drum (Li and Dowling 1997). Similar escape maneuvers 
have been reported in adult zebrafish presented with an expanding dot on an LCD 
monitor, which presumably mimics a fast approaching predator (Ahmed et al. 2012; 
Luca and Gerlai 2012). In zebrafish larvae, the visual startle response can be trig-
gered by a sudden change in light intensity (Colwill and Creton 2011a, b), however, 
in contrast with vibrational or touch-evoked startle responses, the visual startle 
response in zebrafish larvae has been shown to not involve the Mauthner cell (Easter 
Jr and Nicola 1996; Portugues and Engert 2009). The visual startle response has 
been extensively studied by Burgess and Granato; this group has developed a soft-
ware tool (FLOTE software) to assess visual startle as well as other kinds of startle 
responses in multiple zebrafish larvae simultaneously (Burgess et al. 2009). Larval 
zebrafish are also known to actively avoid animations of moving dots and bars 
(Colwill and Creton 2011b), which has led to the development of high-throughput 
methodologies to assess avoidance behavior (Richendrfer and Créton 2013).

8.4.2.3  �Optomotor Response

The optomotor response (OMR) is an innate behavior that has been observed pri-
marily in fish and insects. The OMR can be triggered by presenting a pattern of 
moving vertical stripes, which is commonly achieved by means of a rotating drum, 
but can also be presented on a computer monitor or with an LCD projector. Fish and 
insects react to this stimulus by moving in the direction of the perceived movement 
of the stripes, presumably in an attempt to adjust their trajectory in accordance to an 
environment that appears to be moving. The OMR assay has been widely employed 
to perform behavioral screens in adult and larval zebrafish (Neuhauss 2003; Li and 
Dowling 1997; Orger et al. 2009), and there are reports that this assay successfully 
elicits head movements in rodents (Abdeljalil et al. 2005).

8.4.2.4  �Optokinetic Response

The optokinetic response (OKR) is a characterized by a series of saccadic eye 
movements that occur in response to moving objects while the head remains station-
ary. This response has been observed in primates (Miles 1993) including humans 
(Howard and Simpson 1989), as well as rodents (Scudder 2009), and in zebrafish 
(Neuhauss 2003; Orger et al. 2009). Although this response has been well described, 
it has not been extensively exploited in toxicology studies.
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8.4.3  �Acoustic and Vibrational Startle

Both rodents and zebrafish exhibit a robust response to acoustic and vibrational 
stimuli, both of which can be triggered by a speaker or a mechanical hammer. These 
stimuli are often used to evaluate non-associative learning (habituation) in both 
rodents and zebrafish (Wolman et al. 2011; Best et  al. 2008; Pilz and Schnitzler 
1996), as will be discussed below in more detail. However, both rodents and zebraf-
ish are well-established models for studying hearing loss and the screening of oto-
toxic compounds (Buck et  al. 2012; Bang et  al. 2002; Goldey et  al. 1995). In 
zebrafish, these assays consist of housing individual fish in tanks to which a sound 
or vibration is delivered with a loud speaker. In order to increase the throughput, 
multiple fish are often videotaped simultaneously by housing them in several con-
tiguous cubicles, after which the startle responses of the fish are analyzed (Bang 
et al. 2002; Goldey et al. 1995; Bailey et al. 2013). In rodents, the procedure is very 
similar to the aforementioned; organisms are housed in an acoustic startle chamber 
and the startle stimulus is delivered by a loud speaker. Afterwards, the startle 
response of the organism is videotaped for later analysis (Goldey et  al. 1995). 
Studies have focused on elucidating the molecular and neurophysiological mecha-
nisms (e.g., the potential role of vesicular glutamate transporter 3 (Obholzer et al. 
2008) and glycinergic signaling (Hirata et al. 2011) of the acoustic startle response 
(Bhandiwad et al. 2013; Lin et al. 2015; Burgess and Granato 2007; Tanimoto et al. 
2009) and the optimization of experimental techniques (Bhandiwad and Sisneros 
2016; Zeddies and Fay 2005). Coffin and Ramcharitar have extensively reviewed 
chemically-induced ototoxicity in fish and its impact of neurobehavior (Coffin and 
Ramcharitar 2016).

8.4.4  �Touch Response

The touch response has been extensively documented in zebrafish embryos and 
adults, and it represents one of the most fundamental behavioral assays available to 
induce a robust locomotor response. A touch response test is a very simple proce-
dure that involves empirically observing or recording the organism to be tested with 
a high speed camera (500–1000 frames per second) while touching the tail or the 
head of the fish with a dissecting needle; a water jet to the tail or head may also be 
used to evoke the touch response (Budick and O’Malley 2000). This straightforward 
assay is suitable for quick preliminary screens to identify locomotor abnormalities 
linked to neurodevelopmental defects (Patton and Zon 2001).
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8.4.5  �Olfaction and Taste

Perhaps the least studied of the senses in both zebrafish and rodents are olfaction 
and taste. In zebrafish, the chemosensory system is developed within the first 7 days 
post-fertilization (dpf), presumably to support feeding upon yolk depletion (Lindsay 
and Vogt 2004). The olfactory bulb in zebrafish is sensitive to five classes of odor-
ants: amino acids, bile salts, steroids, prostaglandins, and nucleotides (Bhinder and 
Tierney 2012). Very few assays have been developed to assess olfactory-evoked 
behavior in zebrafish; however, olfactory cues have been utilized in classical condi-
tioning experiments (Lindsay and Vogt 2004), both in rodents and in zebrafish 
(Braubach et al. 2009). Other assays have focused in characterizing the locomotor 
activity of zebrafish embryos after the addition of a variety of amino acids of which 
L-alanine was reported to evoke a subtle yet consistent increase in the locomotor 
output of larvae (Bhinder and Tierney 2012). Furthermore, brief exposure (from 80 
to 83 hpf) of transgenic hsp70/eGFP zebrafish to waterborne cadmium (125 μM) 
induced gene expression of heat-shock protein 70 (i.e., a biomarker of cellular 
stress) in the olfactory neurons with concomitant observation of significant cell 
death in this neuron type within cadmium-exposed wild-type zebrafish larvae com-
pared to control (Blechinger et  al. 2007).Using an identical exposure paradigm, 
juvenile (50  dpf) zebrafish exposed to 125  μM cadmium showed a significant 
decrease in dashing activity (i.e., rapid bursts of apparently disoriented swimming) 
and a significant increase in the time required to initiate a response to an alarm sub-
stance stimulus compared to control fish. Therefore, cadmium-induced toxicity of 
the olfactory system can alter predator avoidance behaviors in teleosts. Nathan et al. 
(2015) have suggested that the neuropeptide kisspeptin1 may regulate the odorant 
(alarm substance) evoked fear response in zebrafish via 5-HT1A and 5-HT2 sero-
tonin receptors.

In regard to taste, the molecular mechanisms of gustation in fish are relatively 
unknown (Okada 2015). Similarly, research focused on investigating the effects of 
environmental contaminants on neurobehavior via modulation of the gustatory 
pathway in teleosts is scant. Vendrell-Llopis and Yaksi have revealed that taste stim-
uli of different categories evoked different neural activity in the brainstem of semi-
restrained juvenile Tg[elval3:GCaMP5] zebrafish as analyzed using a two-photon 
microscope (Vendrell-Llopis and Yaksi 2015). Results also showed that the zebraf-
ish yielded weak behavioral responses (as assessed via angular tail speed and tail-
beat frequency) upon ingestion of amino acids relative to the heightened locomotor 
output observed in the zebrafish that ingested sour and bitter taste stimuli. Thus, the 
modulation of neurobehavior in zebrafish is dependent on the category of the taste 
stimuli.
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8.4.6  �Activity and Emotional Reactivity

The activity of an organism can serve as a proxy to identify emotional states such as 
fear, anxiety, aggression or lethargy. One the simplest assays to perform for stress 
and anxiety analysis is the open field test, which has been well-documented in both 
rodents and zebrafish (Stewart et al. 2012; Cryan and Holmes 2005). During the 
open field test, stressed organisms tend to spend more time around the edges of the 
arena (thigmotaxis) and will avoid entering the center region of a brightly lit open 
field (Champagne et al. 2010). In larval zebrafish, thigmotaxis has also been linked 
to anxiety. Larvae that tend to spend more time close to the edges of an arena are 
considered to be exhibiting an anxiety-like behavior (Schnörr et al. 2012).

A substantial number of assays have been developed to analyze stress and anxi-
ety in rodents. In addition to the open field test, there is also the light-dark prefer-
ence paradigm, in which the organism is placed in an open field and provided with 
a dark box to hide. Other assays include the elevated plus maze and the elevated 
zero maze. As their names imply, the elevated plus maze is a maze shaped like a plus 
symbol of which two arms are enclosed and the other two are open. The maze itself 
is elevated well above the ground level by means of a base. Similarly, the zero maze 
is shaped like the number zero and is divided into four quadrants, two of which are 
enclosed and the others are open, this maze is also elevated from the ground level. 
In such assays, rodents will exhibit stress and anxiety by seeking shelter in a dark 
and enclosed area, such as the dark box in the light-dark preference test or by avoid-
ing the risk of falling over the open sections of the plus or the zero mazes (Cryan 
and Holmes 2005).

In zebrafish, one variation of the open field test is the diving test (Egan et al. 
2009). In this assay, adult fish are placed in a deep and narrow tank, which enhances 
the ability of the experimenter to observe spatial preference in the vertical axis. Fish 
that spend more time in the bottom of the tank are considered to be exhibiting more 
stress and anxiety than fish that spend more time in the top portion of the tank 
(Bencan and Levin 2008). Other assays that evaluate anxiety rely on identifying the 
spatial preference of fish in the horizontal axis and they are inspired by the assays 
previously described in rodents (Champagne et al. 2010). One of the most docu-
mented of these methodologies is the light-dark spatial preference assay (Blaser and 
Penalosa 2011). Commonly, stressed zebrafish tend to prefer being in a dark or 
shaded area and avoid an illuminated area. Additionally, the evaluation of spatial 
preference in fish can also be varied by presenting different aversive stimuli on one 
side of the tank. Examples of these stimuli are animations of an expanding dot on an 
LCD monitor (Luca and Gerlai 2012), images of predators (Bass and Gerlai 2008), 
or even robotic models of a predator fish or bird (Cianca et al. 2013). A comparison 
of rodent versus zebrafish assays of emotional reactivity is presented in Fig. 8.4.
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Fig. 8.4  Many assays designed to assess emotional reactivity (e.g., anxiety) in zebrafish were 
adapted from rodent assays. Some examples of anxiety tests in rodents are the (a) open-field test, 
(b) the light/dark exploration test, and different elevated mazes such as the (c) plus maze and the 
(d) zero maze. In zebrafish, the open field tests can be performed in different tank configurations, 
such as a (e) shallow tank or a (f) deep and narrow tank where the “diving test” can be performed, 
and the (g) light/dark exploration test is performed in a manner very similar to the (b) rodent coun-
terpart. (h) Assessment of fear and anxiety in zebrafish can also be performed by exposing the fish 
to aversive visual stimuli on a computer screen, such as pictures of predatory fish or an expanding 
dot mimicking a looming predator

8  Neurobehavioral Analysis Methods for Adverse Outcome Pathway (AOP) Models…



164

8.4.7  �Learning and Memory

Rodent models have been extensively used to research the topic of learning and 
memory; a search through the current literature in this topic will render a vast num-
ber of studies performed in rodents involving a variety of mazes, spatial discrimina-
tion chambers, visual discrimination tests, among other methods (Puzzo et al. 2014). 
Using the same metric as Sison and Gerlai (2010) to gauge the prevalence of rodent 
research in this topic versus that carried out in zebrafish, we find that to date (April 
14, 2016) a PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) search of the key 
words “mouse” and “learning” renders 25,705 results, whereas searching the words 
“zebrafish” and “learning” renders only 347. Despite the emerging nature of learn-
ing and memory assessment in zebrafish, there are several noteworthy learning 
assays that have been adapted from rodents to be exploited in zebrafish research.

8.4.7.1  �Non-associative Learning

Habituation is a type of non-associative learning that is often analyzed and it is one 
of the simplest learning tasks that can be performed. To assess this form of learning, 
acoustic startle plasticity experiments have been performed in rodents for decades 
(Davis and Gendelman 1977). The method for this assay typically consists of plac-
ing the subject inside of a sound-proof chamber to minimize background noise, a 
loud sound pulse is then emitted at set time intervals and the reaction of the subject 
is observed. The response of the subject attenuates after repeated stimuli until no 
startle response is elicited at all (Valsamis and Schmid 2011). An analogous assay 
has been developed in zebrafish embryos, which consists of visualizing the organ-
isms in 96-well microtiter plates, after which repeated acoustic startles are delivered 
(Best et al. 2008), this is one of the few studies that has characterized a learning 
paradigm in larval zebrafish, as the vast majority focus on adult organisms (Roberts 
et al. 2014).

8.4.7.2  �Associative Learning

Associative learning involves learning through linking different stimuli to one 
another. The topic of behavioral assays to assess associative learning in zebrafish 
has been previously covered in detail. In zebrafish, associative learning has been 
assessed using the plus maze (Sison and Gerlai 2010), the T-maze (Colwill et al. 
2005), spatial alternation tests (Williams et  al. 2002; Smith and Weis 1997) and 
classical conditioning (Valente et al. 2012). Associative learning experiments have 
been utilized to assess learning and memory in zebrafish exposed to arsenic (de 
Castro et al. 2009) and to methylmercury (Smith et al. 2010).
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8.4.8  �Predator Avoidance and Prey Capture

In the context of AOP models for environmental risk assessment, two of the most 
useful indicators of the success or decline of a population are the capacity of indi-
viduals to avoid predators and to capture prey. Many models rely on the assumption 
that the effects on these two endpoints directly affect population dynamics. However, 
there are far fewer studies that measure predator avoidance and prey capture than 
those that assess more fundamental behaviors, such as spontaneous locomotion or 
startle response. One reason for this may be the inherent technical challenges of 
properly performing predator-prey interaction experiments, in addition to the widely 
accepted notion that the much simpler spontaneous locomotion assays render 
acceptable indicators of predator avoidance and prey capture success. Weis and col-
laborators (Weis and Candelmo 2012) have been at the forefront of documenting the 
study of pollutants on predator-prey interactions in fish. In a recent review by this 
research group (Weis and Candelmo 2012), the authors made reference to several 
studies that measured predator-prey interactions in fish, curiously, a substantial 
number of the current published assessments of predator-prey interactions in 
response to pollutants have been carried out by Weis and collaborators themselves 
(Weis and Candelmo 2012; Weis et al. 2003; Weis and Weis 1995a, b; Zhou et al. 
2001; Zhou and Weis 1998). Other published works cited in this study were dated 
(20 years, often more), and large time periods existed between studies. This illus-
trates the fact that not many research laboratories focus on the analysis of these 
endpoints for ecotoxicology risk assessment despite the fact that predator-prey 
interaction assays render data that can readily be placed in an ecological context.

In zebrafish larvae, prey capture has been long considered among the fundamen-
tal constituents of their behavioral repertoire. One of the best documented methods 
to measure this endpoint is to supply the larvae with paramecia, then count the 
number of paramecia captured by the larvae in a fixed amount of time under a 
microscope (Budick and O’Malley 2000). However, for toxicology purposes, simi-
lar approaches have been utilized in two studies that assessed the effects of methyl-
mercury in prey capture success (Mora-Zamorano et al. 2016a; Samson et al. 2001). 
Feeding assays in adult zebrafish are also extremely scarce. Notable examples are 
the use of brine shrimp nauplii as positive reinforcement in an associative learning 
assay in adult zebrafish exposed to methylmercury (Smith et al. 2010).

Predator avoidance assays in zebrafish have been mostly carried out utilizing 
simulated predators. In zebrafish larvae, it has been reported that the fish swim away 
from an aversive visual stimulus (e.g., an animated moving circle or bar), presumed 
to be interpreted by the larvae as a threat (Colwill and Creton 2011a). Additionally, 
an aversive response can be elicited in larval Atlantic croaker when presented with 
the image of a black oval on a white card, which is swung towards the larvae by a 
remotely operated pendulum. This approach is believed to simulate the cross section 
of a predatory fish approaching the larvae, and it has been used to assess the effects 
of methylmercury on predator evasion (Alvarez Mdel et al. 2006). In adult zebraf-
ish, the approaches to simulate predators have ranged range from painting a black 
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bar on a white rotating drum to elicit an escape response every time the fish encoun-
ters the bar (Li and Dowling 1997), to animated sympatric predators and expanding 
dots on a computer monitor (Luca and Gerlai 2012; Gerlai et al. 2009) and robotic 
models of predatory fish and birds (Cianca et al. 2013). Out of these approaches, the 
rotating drum and bar has been successfully utilized to assess vision impairment in 
adult zebrafish exposed to methylmercury, and to determine whether selenomethio-
nine mitigates said vision impairments (Weber et al. 2008).

8.5  �Challenges for Neurobehavioral AOP Development

Currently, the integration of behavioral endpoints into AOP models for risk assess-
ment faces a number of challenges. Neurobehavioral toxicology studies often focus 
on the identification of abnormal phenotypes upon exposure to a chemical of inter-
est and do not necessarily anchor the observed phenotype to a specific molecular 
and cellular insult. These actions hinder the discovery of molecular initiating events 
that serve as the foundation of an AOP model. However, recent studies have started 
to elucidate the molecular and cellular consequences associated with abnormal neu-
robehavioral outcomes as a result of emerging toxicology and pharmacology 
research. For example, it has been shown that waterborne exposure of embryonic 
zebrafish to 2, 2′,4,4-tetrabromodiphenyl ether (BDE-47; a predominant congener 
of polybrominated diphenyl ethers [PBDEs] in the environment) significantly dis-
rupted spontaneous activity, decreased touch response (see Sect. 8.4.4) and free 
swimming speed, and perturbed larval behavioral responses to illuminated versus 
dark periods (i.e., visual motor response, see Sect. 8.4.2.1) (Chen et  al. 2012). 
Interestingly, these abnormal neurobehavioral phenotypes were associated with sig-
nificantly reduced axonal growth of primary and secondary motor neurons. 
Similarly, Wang et al. have revealed that developmental exposure of zebrafish to the 
endocrine-disrupting plasticizer, bisphenol A (BPA; 15 μM), produced a decrease in 
the spontaneous movement, swimming speed, and touch response (compared to 
control) associated with hindered axonal growth of spinal neurons and the abnormal 
development of the axial musculature (Wang et  al. 2013). Conversely, low-dose 
developmental exposure (0.0068  μM; 1000-fold lower that the accepted human 
exposure) of BPA and bisphenol S (i.e., commonly used replacement analog of 
BPA) has been shown to induce hyperactivity in zebrafish via precocious hypotha-
lamic neurogenesis (Kinch et al. 2015). Neurochemical studies have begun to eluci-
date the role of neurotransmitter signaling in altering neurobehavior (Basu 2015).

Raftery and Volz have demonstrated that exposure of zebrafish embryos to abam-
ectin (an avermectin insecticide) eliminated spontaneous tail contractions via mod-
ulation of the γ-aminobutyric (GABA) receptor (Raftery and Volz 2015). Jin et al. 
have also demonstrated that exposure (until 96 hpf) of zebrafish embryos to imazalil 
(300 μg/L), a fungicide that is extensively used in agriculture, significantly reduced 
the average swimming speed and distance upon exposure via a concomitant reduc-
tion in acetylcholinesterase (AChE) gene expression and enzymatic activity 
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compared to control (Jin et al. 2016). Moreover, exposures (until 5 dpf) of zebrafish 
to the organophosphate flame retardants, tri-n-butyl phosphate (3125 μg/L) and tris 
(2-butoxyethyl) phosphate (6250 μg/L), yielded a reduced swimming speed (in both 
locomotor and visual motor response assays) associated with a significant decrease 
in the gene expression of AChE without concurrent impact on AChE activity com-
pared to control (Sun et al. 2016a). However, in the same study, a reduction in both 
AChE activity and gene expression was associated with reduced swimming speed 
upon exposure to chorpyrifos (300  μg/L), an organophosphate pesticide (OPP). 
Other research further supports the possible relationship between OPP-induced 
alterations in neurobehavior and the inhibition of AChE (Yen et al. 2011), while 
other studies suggest the contrary (Richendrfer and Creton 2015). Collectively, this 
evidence suggests that AChE may be a common locus involved in the molecular 
initiating events of neurotoxicant-induced alteration of neuromotor control that 
necessitates further research.

Environmental contaminants also mediate neurotoxicity via targeting the signal-
ing pathways of the neurotransmitters dopamine and serotonin. Ek et  al. (2016) 
have reported that zebrafish exhibit similar behavioral phenotypes to those of rats 
and humans, upon activation of the dopaminergic system, thus exemplifying the 
zebrafish as a predictive translational model of neurobehavioral pharmacology and 
toxicology. Disruption of the dopaminergic signaling has been shown to impact 
memory and associative learning (Naderi et al. 2016), the consolidation of latent 
learning of spatial information (Naderi et  al. 2016), social and anxiety-related 
behavior (Wang et al. 2016b), and locomotion (Tran et al. 2015) in zebrafish. Sub-
chronic exposure (45 days) of adult zebrafish to titanium oxide nanoparticles (TiO2 
NP, 5–40 μg/L) impaired spatial recognition memory (as assessed via a Y-maze 
assay) and locomotion compared to control (Sheng et al. 2014). This altered behav-
ior was associated with reduced concentrations of norepinephrine, dopamine, and 
serotonin, neuronal apoptosis, and dysregulated expression of memory-related 
genes in TiO2NP-exposed zebrafish brains compared to control. Wang et al. have 
reported decreased locomotor behavior in larval zebrafish exposed (2–120 hpf) to 
DE-71 (i.e., a mixture of polybrominated diphenyl ethers) compared to control. The 
observed reduction in locomotion paralleled significant reductions in whole-body 
concentrations of dopamine, down-regulation of genes related to the development 
of dopaminergic neurons, and decreased expression of tyrosine hydroxylase and 
dopamine transporter proteins in dopaminergic neurons (Wang et al. 2016a). Using 
the same experimental paradigm, Wang et al. have also shown that DE-71 exposure 
disrupts neurogenesis and inhibits serotonin synthesis (Wang et al. 2015). Insult of 
the serotonergic pathway has been linked to abnormal social behavior and anxiety 
in zebrafish (Herculano and Maximino 2014).

In addition to understanding the molecular mechanisms that govern changes in 
neurobehavior, an effort must be made to classify behaviors in order of complexity 
and establish links between the fundamental and complex behaviors. Kalueff and 
collaborators (2013) have compiled a document describing 190 different behavioral 
outputs in zebrafish larvae and adults, then proceeded to create a conceptual dia-
gram of the relationship between behaviors and other biological phenomena, 
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including interaction among organisms (i.e., an ecologically relevant scenario) and 
psychiatric disorders (i.e., human-health relevant scenario). With such a large num-
ber of behavioral endpoints that can potentially be analyzed, it is imperative to 
establish the relationship of said behaviors with putative adverse outcomes. This 
challenging task will require analyzing an assortment of different behavioral end-
points in parallel under standardized experimental conditions, preferably choosing 
a variety of behaviors of different levels of complexity, rather than conducting stud-
ies where only one behavioral endpoint is analyzed. There is also a need to perform 
cross-species validation of AOP models. The baseline behaviors of different species 
can vary greatly, regardless of chemical exposure, therefore cross-species compari-
sons should be performed whenever possible, especially if behaviors observed in 
fish models are to be translated to behaviors in rodents or humans. Furthermore, it 
is vital to ensure analogous experimental conditions when assessing behavior in 
different species, thus it is crucial to know the characteristics of the organisms to be 
used as models and use this information to match experimental conditions as accu-
rately as possible (e.g., developmental stage of chemical exposure, developmental 
stage at which behavioral assays are performed, etc.).

8.6  �Conclusions

AOP models based on behavioral data are still a relatively new approach for envi-
ronmental and human health risk assessment. Few studies have made use of behav-
ioral data to make predictions of adverse outcomes. More neurobehavioral 
toxicology studies that complement observed abnormal phenotypes with transcrip-
tomic, proteomic, and/or metabolomic data in effort to identify key molecular inter-
sections (i.e., common molecular initiating events among multiple classes of 
chemicals) are a necessity. This will serve to link neurotoxicant-induced molecular 
and/or cellular responses to adverse apical outcomes at the population and/or eco-
system level(s). In turn, the identification of such intersections will improve the 
ability to predict system-level impacts and, ultimately, expedite human and ecologi-
cal risk assessment. The increasing use and simplification of NBSA methodologies, 
paired with systems and molecular/biochemical biology-based approaches and the 
promising features of the AOP model, will strengthen the use of behavior as a pre-
dictor of adverse outcomes in the future.
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Chapter 9
The Application of Omics Data 
to the Development of AOPs

Mary T. McBride

Abstract  Omics approaches offer potential for use in chemical hazard and risk 
assessments when applied as part of a systems toxicology or integrative approach, 
and when considered in the context of the adverse outcome pathway (AOP) frame-
work. Omics data provide individual snapshots of gene expression, protein expres-
sion and metabolite activity. When integrated, these individual snapshots yield deep 
biological insights. Omics can provide mechanistic information about the effects of 
chemicals and can help decipher toxicity mechanisms and modes of action. Omics 
data have the potential to increase confidence in species extrapolation, and can be 
used to identify biomarkers of exposure and toxicity. Although omics have been 
used for more than a decade, acceptance of omics data in regulated applications has 
been slow. The toxicology community is grappling with how to make use of omics 
data in a regulatory framework, and how to use AOPs to drive regulatory decision-
making processes. In this chapter, an overview of major omics is provided that 
includes recent advances and describes the potential application of omics data to the 
development of AOPS while defining some of the challenges associated with the 
broader acceptance of omics within a regulatory toxicology framework.

9.1  �Introduction: Omics and Adverse Outcome Pathways

Traditional toxicity testing of industrial chemicals, pesticides, and pharmaceuticals 
involves exposing animals to high doses of toxicants, observing the effects, and try-
ing to set safe exposure levels in humans by extrapolating to expected human 
responses at lower doses. Whole animal testing based on well-established endpoints 
provides a means to directly measure and quantify adverse effects at the tissue, 
organ, and organism level (Suter et al. 2004). However, these tests typically do not 
yield insights about crucial cellular or molecular responses from which we can 
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begin to understand and identify fundamental mechanisms or mode-of-action 
underlying toxicity. Mechanistic insights are critical to understand the causal link-
ages between exposures and adverse outcomes, and to formulate quantitative link-
ages between molecular and cellular events that go beyond simple correlations.

In an effort to overcome the shortcoming and limitations of traditional animal-
based toxicity testing, many groups are turning to approaches that integrate bio-
chemical and cell-based assays with high-content omics technologies, bioinformatics 
and computational tools – approaches that offer potential for development of pre-
dictive toxicology (Bhattacharya et  al. 2011; Cote et  al. 2012; Hege Harrill and 
Rusyn 2008; NRC 2007). For example, the Human Toxome project (http://human-
toxome.com/) aims to map human toxicity pathways (i.e., the human toxome). This 
consortium has begun by mapping estrogenic pathways in human breast cancer 
cells using a combination of transcriptomics and metabolomics (Bouhifd et  al. 
2014; Hartung and McBride 2011). In another approach, scientists at the Hamner 
Institutes have used well-characterized compounds to map and model a small num-
ber of well-studied “prototype” pathways, including ligand activated pathways 
(estrogen receptor, PPARα, and AhR) and stress activated pathways (DNA damage 
and oxidative stress) that respond to environmental toxicants (Andersen et al. 2011). 
Case studies are being developed to demonstrate how to use the new types of infor-
mation for human safety assessments. Detailed mechanistic studies reveal the dif-
ferences in nuclear receptor biology (a) between rats and humans, and (b) in vitro 
and in vivo in the rat. These results have informed development of a novel in vitro 
assay for receptor-mediated cell proliferation that have been extensively validated 
using prototypical CAR agonists (McMullen et al. 2014, McMullen et al. 2016). In 
additional to individual investigations and smaller-scale consortium, several large-
scale programs designed to develop, capture, catalog, and utilize mechanistic data 
obtained from biological testing systems (including omics) have also been estab-
lished in recent years. These program include EPA’s ToxCast (http://epa.gov/ncct/
Tox21/) (Dix et  al. 2007; Judson et  al. 2010; Martin et  al. 2010), the Tox-21 
Consortium (Tox21C), a collaborative research effort between the EPA, NIH and 
FDA (http://tox21.org/) (Attene-Ramos et al. 2013), SEURAT (http://www.seurat-1.
eu/) and the OECD Adverse Outcome Pathway (AOP) initiative (OECD 2013a, b; 
Tralau and Luch 2015).

Omics are methods for the comprehensive study and analysis of complex bio-
logical samples. Although there are numerous omics, toxicology applications focus 
primarily on genes (genomics), mRNA (transcriptomics), proteins (proteomics), 
and metabolites (metabolomics). Traditional toxicology evaluates end points (e.g., 
phenotypic changes, disease, death) while omics measurements made at molecular 
and cellular levels provide information that, when combined, reveal the relation-
ships between genes, proteins, and metabolites, and facilitate understanding of 
molecular and cellular processes as an integrated system rather than as a collection 
of disparate measurements or individual endpoints. Omics data can form the basis 
of computational models that can be used to quantify the degree of molecular or 
cellular perturbations and may also accelerate the development of dynamic multi-
scale biological models that will extend our ability to link exposures beyond the 
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molecular and cellular levels to tissue or organ-level responses. Omics have been 
used for more than 10 years to identify, classify, characterize, screen and prioritize 
chemical compounds. For toxicology, most omics studies extend well beyond sim-
ple interpretations of gene expression or creating lists of metabolites; most studies 
integrate endpoints at higher levels of biological organization (Connon et al. 2012). 
Some examples include associating mechanistic responses to changes in reproduc-
tion, growth rates, viability of offspring, or other or physiological functions (Garcia-
Reyero et al. 2011; Van Aggelen et al. 2010). Omics are used to evaluate the effects 
of compounds across doses, exposure times, and species; to identify novel signa-
tures or biomarkers of toxicity; to study toxicity pathways and to elucidate mode-
of-action (Waters and Fostel 2004; Fig. 9.1).

Moving towards more mechanistically-based risk assessments has increased the 
complexity of data that toxicologists must now consider, including in vitro assays, 
high-throughput screening results, computational models, and omics experiments 
which generate very large data sets. The concept of adverse outcome pathways 
(AOPs) was proposed to provide a framework for collecting and organizing all of 
the existing knowledge associated with toxicological processes, from exposure to 

Fig. 9.1  A schematic depiction of an integrated omics experiment. Omics experiments may utilize 
one or more types of experimental data sets (e.g., genomics, proteomics, metabolomics) measured 
using different instrument platforms. Data sets can then be individually process and then inte-
grated, and using appropriate bioinformatics tools, the relationships between genes, proteins and 
metabolites can be visualized, garnering new insights into fundamental disease mechanisms. 
Placing data into biological context promotes deeper insights and better understanding, and facili-
tates hypothesis testing while helping to formulate future experiments

9  The Application of Omics Data to the Development of AOPs
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adverse outcomes. Ankley et al. first defined an AOP as “a conceptual construct that 
portrays existing knowledge concerning the linkage between a direct molecular ini-
tiating event (e.g., a molecular interaction between a xenobiotic and a specific bio-
molecule) and an adverse outcome at a biological level of organization relevant to 
risk assessment” (Ankley et al. 2010). Although AOPs are often depicted as a series 
of linear events (Fig. 9.2) they involve multiple independent, interacting response 
networks where linked events span biological levels and involve many biological 
entities (EFSA 2014).

The linkages between the molecular initiating event (MIE), the series of interme-
diate key events (KEs), and the adverse outcome (AO) may be causal, mechanistic, 
inferred, or correlative and the information about these linkages may come from 
various sources including in vivo tests, molecular and cell-based screening assays, 
omics measurements, and computational methods (Groh et al. 2015). The KEs indi-
vidually correspond to empirically observable precursor steps that form parts of 
toxicity pathways and mode-of-action (MOA); as such, they should be definable 
and make sense from physiological and biochemical perspectives (OECD 2013a, b). 
The AOP framework provides structure – a way to collect, organize, and display 
knowledge across multiple levels of biological organization (i.e., molecular, cellu-
lar, tissue, etc.) that also helps to identify key gaps and facilitates prioritization of 
research needed to fill those gaps (Villeneuve et al. 2014).

Well-developed AOPs are intended to serve as the central element of a toxico-
logical knowledge framework and are expected to guide experimental testing 
approaches to support risk assessments and regulatory decision-making. While 
there are currently more than 100 AOPs under development, only a few could be 
considered complete or nearly complete. However, even incomplete AOPs can 
inform chemical grouping, and “read-across” (predicting the toxicity of a chemical 
based on structural similarities to other chemicals). (OECD 2013a, b), AOPs that are 
more complete, with linkages that include quantitative information could form the 
basis for an integrated approach to testing and assessment (IATA) and guide devel-
opment of integrated testing strategies (ITS) (Tollefsen et al. 2014).

Fig. 9.2  Conceptual diagram of an adverse outcome pathway (AOP). Each AOP begins with a 
molecular initiating event (MIE) in which a chemical interacts with a biological target leading to a 
series of key events (KEs) that result in an adverse outcome (AO). Biological levels of organization 
are shown in the top row, while potentially measurable typical biological responses are shown in 
the bottom row
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Omics technologies present both opportunities and challenges for toxicology, 
and for human health risk assessments. Although omics have been used for more 
than a decade, acceptance of omics data in regulated applications has been slow. 
The toxicology community is grappling with how to make use of omics data in a 
regulatory framework, and how to use AOPs to drive regulatory decision-making 
processes. The goal of this chapter is to illustrate the application of omics to the 
development of AOPs. Here, an overview of each the four major omics – genomics, 
transcriptomics, proteomics and metabolomics  – is presented, including recent 
development and advances in each of these areas that are applicable to their use in 
AOPs, followed by a summary of how omics data has been or could potentially be 
applied to the development of AOPs, and concludes with a discussion of some of the 
challenges associated with multi-omics data and the issues facing the broader 
acceptance of omics within a regulatory toxicology framework.

9.2  �Overview of OMICS

9.2.1  �Genomics

The completion in 2003 of the Human Genome Project catalyzed the application of 
genomics to understand the effects of drugs, industrial chemicals and other environ-
mental stressors on biological systems (Collins et al. 2003). Genomics is a scientific 
discipline that studies genome structure and function. Genome sequencing provides 
the specific order and identity of DNA nucleotide bases. Sequence information can 
be used to identify functional regions of the genome (e.g., protein-coding genes, 
regulatory sequences, non-coding regions), and genomes can be compared to look 
for differences between genomes as well as for structural variations within a single 
genome (e.g., single nucleotide polymorphisms, insertions, deletions, duplications, 
copy number variations, methylation).

Recent Advances in Genomics  The field of genomics is progressing so rapidly that 
the National Human Genome Research Institute (NHGRI), one of the 27 Institutes 
at the National Institutes of Health (NIH) produces a monthly highlight of what it 
considers to be the “coolest genomic advances, broadly defined”. http://www.
genome.gov/27543594. Genomics technologies have developed and evolved at an 
amazing pace in recent years, transforming our ability to catalogue and study the 
information stored in genomes. Conventional capillary electrophoresis (CE) 
sequencing, also known as “Sanger” or “first generation” sequencing methods have 
been used for several decades to determine the order of the DNA base-pairs one by 
one, and the technology played a central role in the Human Genome Project. While 
CE sequencers are still used, and in fact still provide the “gold standard” for 
sequencing accuracy, these applications have all but been replaced by next-
generation sequencing (NGS) approaches that enable massively parallel sequencing 
of billions of DNA molecules simultaneously. NGS (also referred to as “second 
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generation” sequencing) has substantially reduced the time and costs of sequencing 
and dramatically increased sequence output. The human genome, comprising 3.1 
billion nucleotide bases required nearly $22 M and several years to sequence just a 
decade ago; NGS platforms today can sequence that same genome for less than 
$10  K in a matter of a few days and continuing innovations in NGS benchtop 
sequencers are rapidly closing in on the goal of achieving the $1 K genome. A num-
ber of excellent reviews describe various NGS platforms in detail and compare their 
performance characteristics (Mehinto et  al. 2012; Loman et  al. 2012; Metzker, 
2010; Su et al. 2011).

Ultrafast DNA sequencing represents the third generation in DNA sequencing 
and many strategies are under development; these include sequencing-by-
hybridization, nanopore sequencing, and sequencing-by-synthesis. These technolo-
gies sequence single DNA molecules in real time, in contrast to next-generation 
instruments that sequence millions of very short DNA fragments in parallel. Third 
generation strategies and platforms have been reviewed and compared but all of 
these approaches provide improvements over current methods including higher-
throughput, faster turn-around times, longer read lengths, and reduced costs (Pareek 
et al. 2011).

Advances in NGS have enabled a host of new applications such as the 1000 
Genomes Project (a population-based whole genome sequencing effort to identify 
common genetic variants), the Cancer Genome Atlas (TCGA), an effort to acceler-
ate our understanding of the molecular basis of cancer, and many other large-scale 
research efforts (Green et  al. 2011). The lower costs and higher throughput of 
genome sequence information enabled by NGS have fueled tremendous growth in 
disease research that aims to associate or correlate structural variations in DNA with 
diseases. The most common structural variation is the single nucleotide polymor-
phism (SNP). SNPs are mutations in single nucleotides found throughout the 
genome that have a phenotypic consequence that can often be associated with a 
disease. Consequently, considerable effort has been focused to identify these SNP 
“biomarkers”. Another structural variation is called the copy number variation 
(CNV) which is an alteration where there is a gain or loss of large amounts of DNA 
sequence; a number of studies have established correlations between CNVs and 
disease (Girirajan et al. 2011).

NGS, coupled to other technologies such as oligonucleotide microarrays have 
also enabled significant advances. Genome-wide association studies (GWAS) were 
one of the most commonly used approaches to compare genomes: a typical GWAS 
experiment might involve comparisons of large numbers of genomes from well-
phenotyped individuals to look for structural variants including SNPs. GWAS stud-
ies are focused largely on finding small differences between genomes; these 
discoveries direct research towards targeted therapeutics for diseases, and have 
given rise to entirely new disciplines such as epigenetics (looking for ways in which 
the DNA itself rather than the nucleotide bases or the sequence gets modified) which 
in turn effects gene expression and gene regulation. Hybrid technologies, like chro-
matin immune-precipitation coupled to DNA microarray (ChIP-chip) or sequencing 
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(ChIP-seq) have been used to probe the genome-wide location and function of DNA 
binding proteins and facilitate studies of DNA-protein interactions to unravel how 
various transcription factors and other proteins interact with DNA to regulate gene 
expression, while RNA sequencing (RNA-seq) enables sequencing of RNA tran-
scripts, a technique that vastly expands upon, and compliments, microarray-based 
gene expression studies.

CRISPR/Cas9 is a new genomics advance that enables genome editing, allowing 
researchers to make precise, targeted changes to the genome. This tool allows sci-
entists to study how changes in a gene sequence can affect gene function (Konermann 
et al. 2015; Swiech et al. 2015). While the system has been studied since the 1980s 
(Ishino et al. 1987) it has garnered significant attention since a 2012 publication 
appeared, in which a team a scientists reported the use of the system as a gene-
editing tool (Jinek et al. 2012). That paper launched a flurry of genetic engineering 
activity, with more than 20 new papers published each week on the topic today 
(Cong et al. 2013).

Challenges for Genomics  Demand for NGS systems, driven by lower costs and 
higher throughput, is robust and does not show any signs of abating. The biggest 
challenge for researchers using NGS approaches is managing the huge amounts of 
data that are generated. Tools are required for data collection, storage, tracking, and 
processing; adequate tools are not really readily available although these issues con-
stitute active areas of research and development. Enabling better data flow between 
data producers and data consumers or end-users will require specialized data archi-
tecture and better integration with information systems, while interpretation of data 
for clinical/diagnostics use will require the development of specialized tools and the 
development and sharing of genome knowledge-bases.

9.2.2  �Transcriptomics

The human genome is estimated to contain about 21,000 genes, but at any given 
time, only a small fraction of genes are active. Assessing global gene expression in 
response to environmental stress, genetic perturbations, or cell lifecycle is an essen-
tial step toward unraveling and understanding toxicological mechanisms or mode-
of-action. Gene activity can be inferred by identifying proteins but protein studies 
are often very complex and challenging. It is far simpler to study gene expression 
by examining the RNA message or “transcript”. The transcriptome comprises 
~100,000 mRNA molecules, and also includes non-coding RNAs such as rRNA, 
tRNA, and micro-RNAs.

Transcriptomics studies are usually carried out using oligonucleotide microar-
rays, NGS approaches, or real-time polymerase chain reaction (RT-PCR), although 
RT-PCR is not used nearly as often for transcriptomics studies as either microarrays 
or sequencing. Sequencing methods, collectively referred to as RNA-seq, include 
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methods for determining sequence content, as well as the abundance of mRNAs, 
non-coding RNAs and miRNAs, as well as ChIP-seq (chromatin immunoprecipitation 
methods for measuring DNA-protein complexes) and methyl-seq (used to study 
methylation sites). Microarrays and RNA-seq both capture the characteristic and 
specific patterns of gene expression (i.e., “signatures”) for thousands of genes 
simultaneously that result from exposures to a given toxicant under a given set of 
experimental conditions and provide quantitative measurements of the dynamic 
expression of mRNA molecules. This is in contrast to the static measure of DNA 
provided by gene sequencing.

Microarray-based transcriptomics have been used for many years and is by far 
the most widely-used of the omic approaches in toxicology. Cellular response to 
toxicant exposures for the entire genome can be probed in a single microarray 
experiment. Gene expression profiling enables the identification of specific genes 
that are differentially expressed as a result of changes in environmental conditions. 
Linking these gene changes to a chemically-induced phenotype (i.e., “phenotypic 
anchoring”) facilitates predictive toxicity and elucidation of mode-of-action (Cui 
and Paules 2010). Gene expression profiles obtained on separate arrays can be com-
pared to evaluate the effects of different compounds, doses and exposure times 
across species, or between/within populations (Gerecke et al. 2009). Genes from 
different samples that exhibit the same or similar expression profiles can be identi-
fied using statistical methods (e.g., clustering techniques), leading to potential 
insights regarding common pathways, or mode-of-action, assuming the clustered 
genes are functionally related (Afshari et al. 2011). Gene function and gene rela-
tionships within networks can be established and verified using gene knockout or 
silencing techniques. Gene expression signatures also enable toxicants to be grouped 
or classified into different toxicity classes, usually based on potency or mode-of-
action, and facilitate the prediction of toxicity of chemically-related compounds 
(Fielden et al. 2007).

Gene expression profiles can guide the identification of biomarkers of toxicity, 
even at very low exposure doses when no phenotypic changes have been observed. 
For example, Heinloth et al. demonstrated how the analysis of gene expression pro-
files from liver samples obtained from rats exposed to sub-toxic doses of acetamino-
phen indicated subtle cellular injury that was not detectable by histopathology or 
clinical chemistry methods (Heinloth et al. 2004). Such biomarkers of toxicity could 
identify potentially toxic drug candidates even when there are no indicators of tox-
icity in preclinical studies (McBurney et al. 2009; McBurney et al. 2012). These 
biomarkers could serve as the basis for suites of in vitro assays to assist in com-
pound screening, to group chemicals by toxicity class or mode-of-action, to monitor 
drug therapies for safety and efficacy, and to monitor for exposures to environmen-
tal toxicants, even at sub-critical exposure levels.

Recent Advances in Transcriptomics  Advances in NGS are driving advances in 
transcriptomics. RNA transcripts can be sequenced in a cell and used to study RNA 
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expression patterns, point mutations, alternative gene spliced transcripts, post-
transcriptional changes, gene fusion, SNPs and other mutations and changes in gene 
expression. RNA-seq is increasingly being used to discover and study different 
types of RNA (miRNA, siRNA, lincRNA, tRNA, etc); results of these studies have 
the potential to identify new biomarkers as well. Compared to microarrays, RNA-
seq offers improved sensitivity, better precision, a much greater dynamic range 
(microarrays lack sensitivity for genes expressed at either very low or very high 
levels), and better reproducibility for both technical and biological replicates (Chen 
et al. 2012). Progress in the application of transcriptomics to toxicology has been 
impeded by a lack of discovery and data mining tools. Two of the largest toxicoge-
nomics databases, the Japanese Toxicogenomics

Project (TGP or TG-GATEs) and DrugMatrix were made publically available in 
2011. The two databases were described and compared in a recent review (Chen 
et  al. 2012). Access to these large data repositories is expected to accelerate the 
development of new bioinformatics and data mining tools and to provide new 
opportunities for knowledge discovery.

Challenges for Transcriptomics  Because gene expression profiling is largely 
global in nature, such experiments generate massive amounts of data. Analysis 
of this data requires a combination of statistical tools, bioinformatics, and data-
bases, and usually requires expertise in the biological system under study. While 
many of the bioinformatics software tools and databases have become standard-
ized, interpretation of the data remains a significant challenge. Linking observed 
changes in gene expression profiles to conventional toxicological endpoints 
(i.e., phenotypic anchoring) remains a central challenge. Gene expression analy-
sis results often do not directly correlate to results from proteomics or metabo-
lomics; although all proteins are based on mRNA precursors, the expression 
level of a given gene that codes for production of a protein does not correspond 
to the amount of protein produced, as the expression level alone does not account 
for post-translational modifications or other ways in which proteins are regu-
lated. This example underscores the need to fully utilize all available biological 
information like that obtained from integrated omics studies and to combine that 
information with computational modeling. No single biomarker or set of signa-
tures yet effectively serves as a disease or disease-state indicator and expres-
sion-based diagnostics are not yet at the point where they can reliably predict 
disease or disease outcomes. This may be due to a variety of factors, including 
cellular heterogeneity (lack of pure cell populations that yield distinct profiles) 
or genetic heterogeneity (individuals in a population will not have the same 
expression profiles, even when they all have the same disease) (Chuang et al. 
2010). RNA-seq transcriptomics presents many of the same challenges that 
were discussed for genomics (above), namely dealing with large amounts of 
data, and developing tools for the management, processing, analysis, and inter-
pretation of this data.
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9.2.3  �Proteomics

Proteomics is the comprehensive study of the entire compliment of proteins and 
their modifications (i.e., the proteome) of an organism. The human proteome, esti-
mated to comprise between 250,000 and 1 million proteins (along with their post-
transcriptional, translational, and post-translational modifications) is highly 
dynamic – it varies over time and even varies from cell to cell. Proteins exist in 
concentrations that can span nine orders of magnitude, making low abundance pro-
teins extremely difficult to detect and characterize. Thus, proteomics measurements 
are far more complex and challenging compared to the relatively straightforward 
and somewhat static human genome and the smaller, more tractable human tran-
scriptome. Researchers perform a variety of proteomics studies that include the 
global identification of all proteins in a sample (protein profiling) using discovery or 
“shotgun” proteomics, the quantitative measurement of protein expression (i.e., 
abundance), the study of protein structures, including protein variations and modi-
fications, and the interactions of proteins and other molecules (e.g., protein-protein, 
protein-DNA, etc.).

Recent Advances in Proteomics  The main technologies used in proteomics are two-
dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass 
spectrometry (LC–MS/MS). Advances in mass spectrometry in the past few years 
now enable the routine identification and quantification of thousands of protein 
components in samples and consequently, most proteomics studies are now per-
formed using liquid chromatography/mass spectrometry (LC/MS) because of its 
sensitivity, selectivity, accuracy, speed and throughput (Chen and Pramanik 2009).

To date, most proteomics research has been done in an untargeted or discovery 
mode. This approach has been used primarily to identify all proteins in a given 
sample (protein profiling) without any prior knowledge of what proteins might be 
present in a sample. More recently it has been used for differential quantification of 
the identified proteins. A typical proteomics workflow is shown in Fig. 9.3. In this 
approach, proteins extracted from cells, tissues or other complex sample matrices 
are prepared in a series of steps (determined by experimental objectives) that may 
include cell lysis, pre-fractionation, or other separation, purification and concentra-
tion techniques. Proteins are enzymatically digested into their smaller constituent 
peptide fragments. Samples containing multiple proteins will generate many thou-
sands or hundreds of thousands of peptide fragments. To simplify analysis, peptides 
are separated using liquid chromatography; peptides within LC fractions are ionized 
and passed to the mass spectrometer. The mass analyzer filters the ions and records 
their mass-to-charge (m/z) ratio along with their relative abundance as peaks that 
populate a mass spectrum. Ions comprising specific peaks (precursor ions) are 
selected and further analyzed by tandem MS (MS/MS) to generate characteristic 
fragment ions. The combinations of precursor m/z and their associated fragment 
ions are then compared to sequences of known peptide fragments and identified. 
Fragments are further assembled to enable identification of the protein sequence. 
While this approach has enabled significant advances to whole proteome 
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identification and mapping, it suffers from significant shortcomings: (1) the analysis 
of a complete proteome remains challenging, expensive and time-consuming and 
only a few labs have become truly expert in this approach; (2) results often cannot 
be reproduced because of the way in which precursor ions are selected- even within 
the same lab using the same sample; (3) the approach does not enable identification 
of low-abundance proteins; and (4) in any experiment designed to address a specific 
scientific question, a large numbers of “irrelevant” proteins will be identified, while 
some number of relevant proteins will be missed (Domon and Aebersold 2010).

The emerging strategy of targeted proteomics enables researchers to detect, iden-
tify and quantify specific aspects of the proteome. In a targeted approach, the pro-
teins of interest are known in advance and the MS is programmed to select only 
those certain signature peptides using a technique known as selected reaction moni-
toring (SRM) or sometimes referred to as multiple reaction monitoring (MRM). 
This approach enables much greater sensitivity over discovery-based approaches, 
and enables detection of low-abundance proteins. Absolute and relative quantifica-
tion is possible. SRM approaches are inherently multiplexed; tens to hundreds of 
proteins can be monitored during the same experiment. It also provides vastly 
improved reproducibility such that multiple labs can produce identical results (Marx 
2013). One challenges to the targeted proteomics approach is that despite mass 

Fig. 9.3  A typical LC-MS/MS proteomics workflow, for either discovery or targeted proteomics. 
Extracted proteins are digested to peptide fragments; peptide fractions are then further separated 
and identified using HPLC. HPLC peptide fractions (a single fraction is indicated in the red circle 
in the HPLC chromatogram) are ionized and passed to the mass spectrometer. The mass analyzer 
filters the ions and records their mass-to-charge (m/z) ratio along with their relative abundance as 
peaks that populate a mass spectrum. Ions comprising specific peaks (precursor ions, indicated by 
the red circle in the LC/MS spectrum) are selected and further analyzed by tandem LC (MS/MS) 
to generate characteristic fragment ions. The combinations of precursor m/z and their associated 
fragment ions are then compared to sequences of known peptide fragments and identified. 
Fragments are then quantified and may be further assembled to enable identification of the protein 
sequence
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spectrometry sensitivity at the attomolar level, not all proteins will be detected and 
only a limited number of measureable proteins can be included in the same experi-
ment (Titz et al. 2014).

Challenges for Proteomics  Within toxicology, proteomics research efforts (toxico-
proteomics) have been largely directed towards identification of biomarkers with 
prognostic or diagnostic value, reflecting the fact that discovery (untargeted) pro-
teomics has been the dominant strategy for the past decade. Biomolecules serve as 
early indicators of disease and they can be used to monitor disease progression, 
pharmacologic therapeutic response, and adverse responses to toxicants. Biomarker 
discovery and identification has been largely focused on liver and kidney as a con-
sequence of studies driven by the pharmaceutical sector, although disease-specific 
markers have also been identified (van Vliet 2011; Altelaar et al. 2013). Progress in 
biomarker discovery, identification and validation for toxicology has been very slow 
and many early supporters in the field have become disillusioned. The slow progress 
does not reflect a lack of suitable biomarkers; rather, it reflects the inherent chal-
lenges of using an untargeted approach to discovery. Targeted proteomics is enabling 
rapid advances within in vitro toxicology, for both biomarker discovery as well as 
for expanding and developing our understanding of pathway-based molecular 
mechanisms of toxicity. For example, identification and quantitation of proteins in 
a sample can reveal that a signaling pathway is active; conversely, knowledge of 
signaling pathways can be used to map and model human responses to chemical 
exposures or to pharmaceuticals (Collings and Vaidya 2008).

Like other omic approaches, proteomics experiments generate very large data 
sets that present significant data management, storage, transfer, analysis, and inter-
pretation challenges. Analysis is complex, and requires specific tools for data pro-
cessing, including statistical methods, databases, and bioinformatics tools. Although 
significant progress has been made, much more needs to be done. Another major 
challenge that will confront regulators is the lack of standardization across pro-
teomics technologies. For example, standardized sample preparation, handling, and 
processing protocols should be implemented because molecular profiles obtained 
from omics studies may be very sensitive – results can vary widely as a consequence 
of differences in specimen type, collection/isolation/storage/processing methods, 
the volume of sample used versus volume sample required for accurate result, the 
number of replicate samples run vs. the number of replicates needed for statistical 
analysis, and so on.

9.2.4  �Metabolomics

Metabolites are small molecules, such as amino acids, lipids, organic acids and 
sugars that are intermediate or end products of metabolism. Unlike genes and pro-
tein that can be altered and are subject to regulatory processes, metabolites are the 
downstream products of gene expression (and also the end product of a toxic insult) 
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and directly reflect biochemical end products that are closer to the phenotype (van 
Ravenzwaay et al. 2007). Metabolomics is the study of metabolites and is used to 
identify all of the metabolites present in a given cell or organism at a specific time 
(global metabolite profiling) or to characterize specific metabolites with respect to 
concentration or other parameters. In 2007, scientists completed the first draft of the 
human metabolome, cataloging approximately 2500 metabolites, 1200 drugs and 
3500 food components; this information is available in the Human Metabolome 
Database (www.hmdb.ca), although it is still incomplete (Wishart et al. 2007).

Recent Advances in Metabolomics  Modern metabolomics research had its origins 
in nuclear magnetic resonance spectroscopy (NMR) but over the past two decades 
mass spectrometry-based studies of metabolomics have become much more preva-
lent than NMR, due to the high sensitivity, specificity, and ability of MS to detect 
and identify large numbers of metabolites. Gas chromatography/mass spectrometry 
(GC/MS) was used to study complex samples and later researchers expanded into 
liquid chromatography/mass spectrometry (LC/MS), driven by the advent of afford-
able, accurate mass, time-of-flight (TOF) instruments. The advantages and limita-
tions of each technology have been the subject of numerous reviews (Bouhifd et al. 
2013; Dunn and Ellis 2005).

Metabolomics experiments are conducted using either targeted or untargeted 
strategies (Fig. 9.4). Targeted metabolomics is a method used to determine the rela-
tive abundances and concentrations of a specific set of pre-selected metabolites, 
usually related to a specific metabolic pathway. Targeted applications typically 
employ triple quadruple LC/MS or GC/MS because the QQQ provides reliable, 
sensitive and reproducible quantitative analysis. The method requires that the exact 
structure of metabolites are known; therefore the instrument is first optimized 
against standard compounds in selected reaction monitoring. While the method is 
quantitative and enables direct comparisons of metabolites between samples, it also 
requires that the exact structures of the metabolites under study are known and usu-
ally requires the use of analytical standards. Therefore, targeted metabolite studies 
are limited to those metabolites catalogued in searchable mass spectra libraries; 
available metabolomics databases, along with bioinformatics tools to facilitate data 
analysis and interpretation have been described (Baker 2011; Go 2010; Patti et al. 
2012; Wishart et al. 2013).

Untargeted (discovery) metabolomics methods are used to establish the metabo-
lite profile of a given sample. Untargeted metabolomics approaches usually employ 
TOF or QTOF mass analyzers, as the instrument enables high resolution and accu-
rate mass measurements for identification and characterization, particularly with 
unknown compounds. Discovery metabolomics experiments involve examining an 
untargeted and unbiased suite of metabolites, finding the ones with statistically sig-
nificant variations in abundance within a set of experimental versus control samples, 
and determining their chemical structure. An interpretation step allows the researcher 
to connect the metabolite with the biological process or condition.

Metabolomics has been expanding rapidly and applications are now routine in 
the areas of system biology, drug discovery, pharmaceutical research, early disease 
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detection, toxicology, newborn screening, food safety and nutrition science and 
others. Metabolomics is finding broad acceptance and ready adoption in toxicology. 
Even as early as 2000, metabolomics was explored as a technique for rapid in vivo 
screening. The Consortium for Metabonomic Toxicology (COMET) performed 
NMR-based studies to predict liver and kidney toxicity using serum and urine sam-
ples from rodents; that data is still used today (Lindon et  al. 2005). The same 
approach has been extended more broadly and now in vivo metabolomics are rou-
tinely used in drug development to screen for potential toxic effects of drug candi-
dates, as well as for mode-of-action studies (van Ravenzwaay et  al. 2012). 
Metabolomics is also being applied to in vitro toxicology. Rameriz et al. have pro-
vided a long list of suggested in vitro metabolomics applications for toxicology and 
connected these suggestions to their actual implementation through active research 
efforts (Ramirez et al. 2013). Just a few of the application areas they identified are: 
(1) development of prediction models, where metabolite profiles obtained from 
training compounds of known toxicities could be compared to unknown compounds 
to predict their potential toxicity; (2) to rank/prioritize compounds and to sort or 

Fig. 9.4  Mass-spectrometry-based metabolomics workflows, for targeted (upper) and untargeted 
(lower) applications. Targeted metabolomics is used to determine the relative abundances and 
concentrations of a specific set of pre-selected metabolites, usually related to a specific metabolic 
pathway. Sample metabolites are compared to standards and exact matches quantified. Untargeted 
(discovery) metabolomics experiments involve examining an untargeted and unbiased suite of 
metabolites, finding the ones with statistically significant variations in abundance within a set of 
experimental versus control samples, and determining their chemical structure. An interpretation 
step allows the researcher to connect the metabolite with the biological process or condition
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classify molecules with respect to their mode-of-action or predicted toxicities; (3) 
to use pathway-based knowledge to pinpoint potential drug/compound molecular 
targets and predict their mode-of-action and to map and model pathways of toxicity; 
and (4) biomarker discovery.

Challenges for Metabolomics  In order to gain acceptance by the regulatory com-
munity, metabolomics will have to overcome a number of technical challenges. 
Quality control methods must be developed that ensure that in the process of prepar-
ing and analyzing samples, potential artifacts are not introduced. Advances are 
needed for sample throughput that enable faster, more robust, reliable and repeat-
able sample preparation, measurement and analysis especially since mass spectrom-
etry experiments require that a large number of biological replicates are analyzed. 
Metabolite identification is limited by existing databases and additional effort is 
needed to expand and continuously update these databases. Similar to proteomics, 
metabolomics experiments suffer from a lack of standardization that spans technol-
ogy platforms, analytical methods, statistical methods, data analysis and interpreta-
tion, etc. Metabolomics also generates very large data sets that present significant 
data management, storage, transfer, analysis, and interpretation challenges. 
Metabolomics analysis is complex, and requires specific tools for data processing, 
including statistical methods, databases, and bioinformatics tools.

9.3  �Application of OMICS Data to AOPs

Omics approaches hold considerable promise for the future of toxicity testing and 
for the development of hazard assessments tools including AOPs. Their utility has 
been demonstrated over the past decade, where omics approaches have been used to 
identify, classify, characterize, screen and prioritize chemical compounds; to evalu-
ate the effects of compounds across doses, exposure times, and species; to identify 
novel signatures or biomarkers of toxicity; to study toxicity pathways and to eluci-
date mode-of-action (Waters et al. 2004). Omics studies can be used to bridge in 
vitro and in vivo data as well; for example, a hypothesis for MOA in a system can 
be evaluated using appropriate in vitro and/or in vivo omics studies to verify/cor-
roborate a hypothesis. Omics studies can also be used to verify postulated links 
between the upstream events and those that occur at the cellular and subcellular 
levels, and omics data can also help fill in information gaps for poorly-defined 
AOPs. Additionally, since potentially many AOPS may share a common MOA, 
omics data may play a central role in fully mapping the early stage key events to 
better define the points of divergence between AOPS that begin from a common 
MOA.

Omics also provides endpoints of chemically-induced adverse effects for key 
events associated with AOPs (EFSA 2014). Integrated omics data sets can be used 
to develop comprehensive molecular, cellular, and organ  – level profiles of key 
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events in AOPs, setting a foundation for species comparison studies as well as for 
studies that consider the range of chemical responses attributable to human 
variability. Conversely, AOPs can be used to inform development of omic-based 
predictive assays that could potentially be applied for hazard or risk assessments of 
previously-uncharacterized chemical compounds or for use with complex mixtures 
of chemicals. Taken together, the application of omics data to the development of 
AOPs holds considerable promise for hazard and risk assessments, and may help to 
validate integrated testing strategies and reduce reliance on animal testing.

Application of Genomics Data to AOPs  As costs for NGS technologies continue to 
decline while volume of sequence information generated continues to increase, 
genomics-based research will also continue to accelerate and fuel tremendous 
growth in research that aims to associate or correlate structural variations in DNA 
with diseases. Genomics applications will continue to inform mechanism-of-action 
studies, and new discoveries will direct research towards targeted therapeutics for 
diseases. These studies will yield new insights into mechanisms underlying toxicity 
and guide approaches towards eliminating, minimizing, or by-passing normal cell 
responses to reduce adverse outcomes.

Application of Transcriptomics Data to AOPs  The utility of microarrays has been 
demonstrated in countless applications, but the three most common applications 
are: grouping/classification of compounds, elucidation of mode-of-action, and bio-
marker identification. Others have reviewed and reported the application of tran-
scriptomics data for hazard assessments (OECD 2013a, b; Thomas et  al. 2013; 
US-EPA 2013). RNA-seq holds promise with improved sensitivity, better precision, 
a much greater dynamic range (microarrays lack sensitivity for genes expressed at 
either very low or very high levels), and better reproducibility.

Application of Proteomics Data to AOPs  Proteomics are increasingly being used in 
toxicology and hazard assessment (Van Summeren et al. 2012). Some typical appli-
cations of proteomics to human hazard assessment of chemicals include: (1) the 
identification of toxicant protein targets to understand MOA; (2) biomarker discov-
ery and validation in major initiatives like the FDA’s Critical Path Initiative 
(Woodcock and Woolsley 2008) or the EU-based InnoMed PredTox project.

Application of Metabolomics Data to AOPs  Metabolites can be created in  
response to chemicals that originate endogenously (inside the body) or exogenously 
(outside of the body). Small changes in the genome or proteome can be easily 
detected in the metabolome; the metabolome also reflects an organism’s response to 
changes in the environment. For these reasons, the metabolome is often referred to 
as the “ome” closest to the phenotype. Biomarker discovery and drug safety screens 
are two examples where metabolomics has already enabled informed decision 
making.
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9.4  �Challenges to the Application of OMICs Data to AOPS

General Challenges  A fundamental challenge confronting the use of omics 
approaches across all scientific disciplines is that the omics experiments are techni-
cally very challenging, requiring complex molecular and analytical techniques, 
highly specialized training, and sophisticated bioinformatics tools to analyze very 
large data sets. In addition, researchers must have deep fundamental understanding 
of biology in order to interpret the data and place it into a meaningful biological 
context. Another key issue relates to the sensitivity of the methodologies which may 
lead to the detection of changes that may not be biologically or toxicologically rel-
evant (EFSA 2014).

The lack of standardization and validation across the omics (especially pro-
teomics and metabolomics) has been previously described; this is indeed a chal-
lenge that must be addressed and overcome if omics data are to be accepted by the 
regulatory community. Quality control, sample preparation, sample processing, 
data processing, data analysis, and data interpretation are all areas that are ripe for 
improved method development, standardization and harmonization.

Data Integration: Bioinformatics and Visualization Tools  Experimental omics 
approaches are high-throughput, data-driven, top-down approaches that generate 
large amounts of data (Zhang et al. 2010). Combining data from different platforms 
and assays across multiple experiments into a coherent approach that appropriately 
weighs and evaluates the different data sources is quite challenging and represents 
the next generation of pathway identification tools. The two main challenges for 
integration of omics data sets are the limitations of bioinformatics and visualization 
tools to enable researchers to analyze and interpret their data within a meaningful 
biological context, and the overall processing, storage, and curation of data into 
databases such that data can be easily accessed, retrieved, shared, and archived. 
Bioinformatics tools will need to be built on novel, flexible architectures, to provide 
a broad foundation for joint analysis and visualization of orthogonal data. Several 
key processes, including transfer of different kinds of data between different soft-
ware applications, facilitating new custom visualizations, enabling statistical analy-
ses involving pathway databases, and providing workflow and help facilities in 
order to ensure that the software is accessible to users with different levels of experi-
ence, are critical to pathway-based orthogonal analysis and must be considered. The 
development and refinement of methods and tools for integration of omics data 
constitutes an active area of research and several recent reviews provide excellent 
summaries of available tools (Wanichthanarak et al. 2015; Fukishima et al. 2014).

Turning omics data sets into results that advance our understanding of the funda-
mental biology underlying the data requires considerable analysis and interpreta-
tion. Heterogeneous, multi-dimensional data must first be processed and analyzed 
to extract the features of interest (e.g., genes, metabolites, etc.). Next, application-
specific steps, such as feature extraction (for metabolomics data, for example) and 
identification or expression analysis (for transcriptomics data, for example) are 
applied. The processed data sets are then ready for integration. This requires that 
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databases are available that allow correlations between features, including genes, 
proteins, metabolites, chemicals and other compounds of interest, along with con-
sideration of an array of experimentally-determined meta data (e.g., cell-based 
imaging, pathology, chemical analysis, etc.). Any omics integration approach will 
employ pathway-based analysis tools. Such analysis is limited by access to curated 
biochemical pathways such as WikiPathways, KEGG, or BioCyc. These databases 
represent an excellent starting point for data integration, but they are limited in that 
they only provide a static view of biochemical pathways.

Network-based analyses extends the pathway approach by representing complex 
interactions between genes, metabolites, and proteins without relying on predefined 
or pre-determined biochemical pathways. These networks are useful to map multi-
ple omics experimental results and help identify altered regions of the networks 
(Wanichthanarak et al. 2015). For example, GeneSpring software can be used to 
combine heterogeneous data, such as genomic sequencing, gene expression, and 
metabolomics abundance into one project, allowing investigators to analyze and 
view results from different experiments in a single user interface.

The GeneSpring Pathway Architect module enables visualization and analysis of 
curated pathway content using a variety of publically-available pathway databases 
for building, annotating and querying biological pathways. GeneSpring incorpo-
rates Gene Ontology (GO) analysis, Gene Set Enrichment Analysis (GSEA), Gene 
Set Analysis (GSA) and network analysis tools (Fasani et al. 2016). Correlation-
based tools (based on methods such as principal component analysis, canonical 
correlation, analysis, or discriminant analysis) can be used to look at associations 
between entities from a single type of omics data set, or between entities from dif-
ferent types of omics data (Rajasundaram and Selbig 2016). For example, identifi-
cation of co-regulated entities, such as genes and metabolites enables identification 
or mapping to networks or pathways, which enables potential identification of 
mechanisms. Correlation analysis, combined with predictive statistical approaches, 
such as sparse partial least squares regression may reveal correlations with known 
biological functions as well as correlations for which biological relevance remains 
to be verified (Rajasundaram and Selbig 2016). Intuitive graphical displays that 
employ a variety of plots, graphs and diagrams help users conceptualize and inter-
pret the information in their data, and other interactive visualization tools make it 
easy to import/export graphical images and to compare results from different 
experiments.

The pathway, network, and correlation tools discussed here are relatively simple 
to use and are standard in most commercially-available data integration packages. 
Other types of correlation-based tools (e.g., Bayesian networks, partial correlations) 
that are far more sophisticated are also available, but they are also more difficult to 
use, may be computationally challenging, and generally require a fairly detailed 
biological understanding of the system under study.

Publically-Accessible Databases  Given the complexity and sheer volume of data 
generated in omics studies, there is an emerging need for comprehensive, publically-
accessible databases. Databases such as CEBS, ACToR, PubChem, GO, Gene Map 
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Annotator and Pathway Profiler, Science Signaling Connections Map, BioCarta, 
Reactome and KEGG are useful in this regard; of the more than 1000 biologically-
relevant databases are already publically available, several hundred are specifically 
relevant to toxicology but many of those contain data that is not necessarily in a 
format that is directly useable (Judson 2010). EPA’s ACToR, the Aggregated 
Computational Toxicology Resource, is an example of a knowledgebase that brings 
together diverse types of information into a system where interrelationships of indi-
vidual database elements (e.g., traditional toxicology, chemical structure informa-
tion, high throughput screening data, molecular pathway analysis, chemical data 
repositories, peer reviewed published literature, and internal Agency databases) can 
be explored and utilized (Judson et al. 2008). The ACToR database links informa-
tion from more than 400 source databases and data sets on chemical identity. All 
published data associated with the ToxCast, ToxRefDB (a mineable, searchable 
database of pesticide toxicity data) and Tox21C programs are consolidated within 
ACToR and the knowledgebase is publically accessible. Given the existing utility 
and advanced stage of development of ACToR, it could serve as the foundation upon 
which to build out a complete knowledgebase for all twenty-first century toxicology 
testing data and metadata.

9.5  �Conclusion

Advances on omics approaches, combined with molecular toxicology provide both 
opportunities and challenges for regulatory agencies and others who must consider 
the use of these new tools and technologies when conducting hazard and risk assess-
ments. A variety of issues will need to be considered and resolved before omics data 
can contribute significantly to risk assessments, but applying omics data today to 
AOPs should help the toxicology community establish better linkages a-between 
key events, which should in turn, lead to more quantitative AOPs.
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Chapter 10
Use of Genetic Manipulation for Evaluating 
and Understanding Adverse Outcome 
Pathways

Christopher Warner, Natàlia Garcia-Reyero, and Edward Perkins

Abstract  Innovations in biology have brought forth a new era of genetic manipula-
tion ranging from the creation of molecular scissors for targeted single-nucleotide 
alterations, to a simultaneous inactivation of 62 genes in pig embryos to “humanize” 
transplant tissue. Genetic engineering advances allow for novel testing paradigms to 
understand chemical interactions and information flow in biological systems. 
Emerging platforms may provide mechanistic knowledge of chemical stressor inter-
actions in biological systems to facilitate the development of alternative testing 
methods, as well as prioritize higher tier toxicity testing for risk assessment. This 
chapter will discuss recent advances in genetic manipulation and describe how these 
techniques improve our understanding of toxicity across multiple biological scales. 
These efforts will ultimately aid in validation of Adverse Outcome Pathway (AOP) 
key event relationships for ecological risk assessment.

10.1  �The Need for Validation Systems in Chemical Hazard 
Assessments

Chemical hazard assessment has long relied on apical data generated in animal 
toxicity tests and the application of both uncertainty factors and conservative 
assumptions for decision making. However, due to the cost and time limitations, it 
is not practical nor feasible to test all chemicals that could adversely affect ecosys-
tems using animal models with phenotypic end points (NRC 2007). Chemical 
assessment approaches and regulatory efforts in the US and in Europe are moving 
towards computational chemistry, high-throughput screening (HTS), in vitro assays 
and biological pathway based measures to more effectively assess the potential for 

C. Warner • N. Garcia-Reyero (*) • E. Perkins 
US Army Engineer Research and Development Center, Environmental Laboratory,  
Vicksburg, MS 39180, USA
e-mail: natalia@icnanotox.org

mailto:natalia@icnanotox.org


200

chemical to cause toxicity (Dix et  al. 2007; Worth et  al. 2014). These programs 
highlight the need for developing, improving, and validating new laboratory tools 
based on recent scientific advances to understand the hazards and risks posed by 
chemicals. There have been a number of advances in tool development, including 
biomarker discovery, model system development, systems biology, bioinformatic 
analytics and computational toxicology (Mathieu 2013). Integration of these efforts 
relies on an overarching framework that can extrapolate initiation of a toxicological 
pathway to an adverse outcome, The Adverse Outcome Pathway (AOP) framework 
provides a structure for organizing knowledge about the progression of toxicity 
events across scales of biological organization that ultimately lead to adverse out-
comes at the organism or population level (Ankley et al. 2010). AOPs consist of a 
sequence of key events from a molecular-level initiating event, where a chemical 
binds to a receptor and an ensuing cascade of cellular, organ, and organism level 
effects culminating in an adverse outcome of regulatory significance (Fig.  10.1; 
Villeneuve et al. 2014). AOPs have been developed for a number of important sys-
tems, including the endocrine (Russom et al. 2014), acetyl cholinesterase (Watanabe 
et al. 2011), oxidative-phosphorylation (Wilbanks et al. 2014), among many others 
(Perkins et al. 2015; Tollefsen et al. 2014; Willett 2014).

The AOP framework relies on detailed knowledge on how key events within a 
pathway interact to create response-response relationships across at all levels of 
biological organization. Efforts to understand these relationships rely on mechanis-
tic understandings of biochemical and genetic interactions (Patlewicz et al. 2013). 
However, conventional toxicological methods often fail to identify or describe 
causal relationships across biological scales that are needed to confidently link 
changes at the molecular initiating event (MIE) through a cascade of key events 
(KE) to the adverse outcome (AO). Alternative approaches, such as tools recently 
developed for genetic engineering of cells and organisms, enable an unprecedented 
ability to understand the mechanistic underpinnings of toxicological pathways and 
adverse outcomes. In this chapter, we identify commonly used genetic manipulation 
tools, then apply these tools to establish mechanistic relationships across multiple 
levels of biological organization in the AOP framework.

Fig. 10.1  Genetic engineering efforts integrated into an adverse outcome pathway
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10.2  �Genetic Manipulation Tools

Genetic engineering is the modification of an organism’s genetic composition by 
artificial means, often involving the transfer or modification of specific genes, from 
one organism into entirely different species. Genetically modified organisms include 
collections of permanent, conditional knock-outs (deletions), or knock-ins (gene 
addition or duplication). Within the last 10 years, there have been numerous tools 
developed for genetic modification of many species (Baltimore et al. 2015). These 
also include transcriptional level modifications that can alter levels of protein within 
a modified cell. Recent advancements in methods for genome modification, such as 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies 
and CRISPR-associated (CRISPR/Cas9), enable experimentation that is cheaper 
and faster than previous methods while permitting research that was not previously 
possible (Yang et al. 2015).

These methods hold a promise in becoming standard experimental strategies for 
testing the functional role of genes in both model and non-model organisms. The 
recent generation of engineered nuclease-mediated mutants in rat, zebrafish, maize 
and tobacco testifies to the significance of the methods and the list is expanding 
rapidly (McMahon et al. 2012). Both of these methods can disrupt genes either 
permanently or temporarily and allow for gain-of-function (overexpression of a 
gene or dominant active), loss-of-function (gene expression knock down or domi-
nant negative), mosaic analysis, lineage-restricted studies and cell tracing experi-
ments. Transgenesis, the process of creating stable mutants, allows for targeted 
changes of specific genes while transient reverse genetic approaches are tempo-
rary, typically quicker, cheaper, and require little animal facility space (Hogan 
et al. 2008).

10.2.1  �Engineered Nucleases and Homologous 
Recombination: Examining the Role of Specific  
Genes in an AOP

A direct way to demonstrate causality in a pathway and linkage to an AO is to block 
a key event from activating in the presence of conditions that would otherwise acti-
vate the event and downstream events. This can be done genetically using engi-
neered nucleases and homologous recombination to make genes overexpress 
(always on or expressed at much higher levels than normal) or remove genes to 
observe their role in biological pathways and AOs. Often referred to as “molecular 
scissors”, nuclease proteins allow for precision edits and additions to an organism’s 
genome. A nuclease creates specific double-strand breaks along DNA at desired 
locations in the genome, often guided using specific sequences. Nucleases edit 
DNA through covalent bond alterations on DNA nucleotides, akin to a copy-paste 
function (Zhao et  al. 2014). Subsequent DNA breakage recruits the cell’s native 
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repair machinery. This results in a genome alteration by replacing a region of DNA 
with the desired insert (Esvelt and Wang 2013). There are currently four families of 
engineered nucleases being used, including Zinc Finger Nucleases (ZFNs), 
Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas9 sys-
tem, and engineered meganuclease re-engineered homing endonucleases. Each of 
these proteins have distinct advantages in terms of availability, sequence specificity, 
ease of use, targeting efficiency and off target mutations (Tan et al. 2012).

10.2.2  �Altering Gene Expression Using RNA Interference

One limitation of methods that directly add to, or change, genes in genomes is that 
these changes, once induced, are generally permanent, continuously affect the cell 
or animal, and require lengthy selection to get transgenic lines for analysis. RNA 
interference, or RNAi, is an approach that can be used to temporarily reduce or 
eliminate expression of genes without the need for lengthy generation of transgenic 
lines. RNAi is a gene regulation pathway that is controlled by small regulatory mol-
ecules of RNA. In the pathway, short double-stranded RNA molecules are bound by 
the protein Dicer in a cell’s cytoplasm and are cleaved to produce a passenger strand, 
which is degraded, and a guide strand. The guide strand directs the RNA-induced 
silencing complex (RISC) to selectively destroy specific mRNAs that are comple-
mentary to the guide strand RNA (Bagasra and Prilliman 2004). In the laboratory, 
double-stranded RNA can be synthesized with a sequence that is complementary to 
a gene of interest and introduced into a cell or organism, where it activates the RNAi 
pathway, degrading the mRNA of the complementary gene, and consequently 
decreasing expression of the targeted gene. Since RNA targeting is introduced 
directly into the cells that are targeted, application of RNAi approaches generally 
provide only temporary inhibition of gene function. RNAi can also result in unpre-
dictable off-target effects due to partial matching to unintended targets in the 
genome (Alic et al. 2012).

10.2.3  �Genetic Manipulation in Developing In Vitro  
and In Vivo Assays to Assess Key Events

MIE and KE are pragmatically defined as specific, measurable biological events. In 
vivo and in vitro assays provide methods to quantify these observations. In vitro 
methods utilize biological molecules (e.g. receptors, enzymes, or ion channels), or 
biological tissue (cell lines, xenografts, or ex vivo organs) outside of whole animal 
to determine if a chemical will bind to a biological target, activate a specific path-
way, or affect a cellular process (Fig. 10.2). Whereas in vivo methods include use of 
whole animals for toxicity testing. Bacteria, yeast, worms, and zebrafish embryos 
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Fig. 10.2  Chemical screening in zebrafish. Zebrafish embryos are assayed using large-scale, high-
throughput manipulation and analysis. (a) Identification of an embryonic phenotype that is a rele-
vant toxicity model is a key step in this process. Organic dyes, developmental abnormalities, delayed 
development or expression of a genetically modified reporter can be used as metrics to sort out 
chemical hits. (b) Once a relevant embryo phenotype is found or genetically modified, embryos can 
be distributed into 96 well plates. Each well will receive a distinct small molecule, either manually 
or with the aid of a liquid-handling robot. This method has been applied to screens ranging from 
1000 to 26,000 molecules. (c) Identifying the mechanism of hits depends upon the type of screening 
employed. (d) While mechanistic evaluation is ongoing, chemical toxicity can be validated in mul-
tiple higher tier testing methods, including transgenic disease models or full animal studies

are preferred due to their small size, low cost, ease of genetic manipulation, and 
short generation time. Figure 10.3 demonstrates one form of in vivo testing, where 
a reporter gene is controlled by a response element, such as a developmental or 
stress response promotor. Many assay systems exist that utilize genetic 
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manipulation (Table  10.1), each one targets a specific biomolecule and provides 
various levels of information. We will describe in detail the Yeast 2 hybrid system 
as it provides an elegant example of how genetic manipulation can be utilized to 
assess the physiological relevance of signaling dynamics within a cell.

10.2.3.1  �Yeast 2 Hybrid Systems to Identify Important Protein 
Interactions in Key Events

The Yeast 2 Hybrid system (Y2H) screens for interacting proteins based on tran-
scriptional activation. The protein of interest, or “bait” is fused to a DNA binding 
domain. Proteins that bind, or “fish” are fused to a transcriptional activation domain. 
Any protein that binds to the “bait” will activate the transcription of a his reporter 
gene. Y2H screens begin by constructing the bait plasmid, and a library of cDNAs 
in the fish library. Each plasmid contains a selectable marker, such as an antibiotic, 

Fig. 10.3  In Vivo genetic circuit testing in zebrafish. DNA is synthesized with a response elements 
to drive the expression of different fluorescent reporter proteins. DNA is transfected into zebrafish 
embryos and maintained throughout the fish’s life cycle, often transmitting into offspring. Stable 
transgenic zebrafish can be exposed to different environmental pollutants and toxicants. Cellular 
responses to chemical stimulation can be visualized with fluorescent microscopy. Moreover, tissue 
specific responses can be quantified by comparing against non-induced controls

C. Warner et al.
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or essential amino acid. Plasmids are transformed into yeast cells. Cells are grown 
in selective media so that cells containing both plasmids will grow. Cells are plated 
onto media lacking histidine, so that colonies with interacting plasmids will grow. 
Proteins from colonies are identified through DNA sequencing (Brückner et  al. 
2009; Lodish et al. 1995). There are many variations of this method, including the 
type of reporter and cell lines used, as well as inducible systems and multi-
component systems that provide insights into more complex protein-protein interac-
tions (Kelly and Stumpf 2008; Charbonnier et al. 2008). This screen is relatively 
simple to perform and can identify interacting proteins in a scalable system. This 
screen has been used to for both hypothesis testing as well as exploratory work. For 
example, Y2H have been used to confirm critical targets of the F-box protein ubiq-
uitin ligase involved in methylmercury toxicity (Lee et al. 2015). Y2H has also been 
used to query chemical activity on estrogen signaling pathways for high throughput 
endocrine disruption testing (Nishihara et al. 2000). This system, like many testing 
platforms, is far from perfect. Both false positives and negatives plague the system, 
however, where validation approaches are required. Moreover, expression bias 
among cDNA libraries is well documented, and some protein partners may require 
post-translational modifications, chaperone proteins, or other multiunit complexes 
before interactions are observed (Chen et al. 2010). Ultimately, Y2H screens pro-
vide a functional assay where exposure of genetic manipulated cells provides evi-
dence for toxicity pathways and ultimately AOPs.

10.3  �Application of Genetic Manipulation Approaches 
to Understand and Define Key Event Relationships

Genetic manipulation can be used by toxicologists at all biological levels of organi-
zation within the AOP framework. Genetically manipulated organisms and tissues 
provide a tool kit for both direct hypothesis testing as well as elucidating toxicity 
pathways in an exploratory manner (Table 10.2)

Table 10.2  Overview of genetic engineering efforts to aid validating AOP relationships

Biological level Description Examples

Receptor binding 
(MIE)

Chemical-protein interactions Protein mutants for enhanced NMR and 
crystallography
GPCR receptors, PTM proteins in bacteria 
and yeast

Cellular response Genetic screens
Reporter circuits

Functional genomics
Genetic devices, biomarker discovery, 
pathway specific assays

Organism 
response

Simplified model systems
Reproduction and 
developmental assays
Disease models

Reverse engineering of biological circuitry, 
disease models
Reproducanimal models, iPSC, cell line 
immortalization
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10.3.1  �Use of Genetic Manipulation to Define MIEs

Testing whether a chemical interacts with a biological receptor, an MIE, is compli-
cated. Protein or nucleic acid receptor binding is typically tested through a variety 
of in vivo and in vitro methods. Below we discuss how genetic engineering has 
advanced our ability to understand MIEs.

10.3.1.1  �Genetic Manipulation of Proteins for Greater Understanding 
of Chemical-Protein Interactions

Genetic manipulation of peptides provides toxicologists a toolbox to better under-
stand protein structure and function. Functional relationships embody an underpin-
ning for the chemical-protein interactions that define receptor docking. For instance, 
amino acid substitutions, where every version of an enzyme is made by switching 
each amino acid for glycine is a routine practice to determine regions of interest. A 
biologist can compare the activity or specificity of the mutated protein to the wild-
type, and map the enzymes active, allosteric and inhibitory binding sites. Structure-
activity relationships can be established based off of these peptide maps to 
understand the primary structure of an enzyme. Protein maps provide working 
knowledge that can be used for either specific hypothesis testing concerning chemi-
cal affinity, or for targets in high throughput screening for exploratory work. For 
example, genetically engineered forms of native receptors allow enhanced struc-
tural analysis using NMR and X-ray crystallography (Ellison et al. 2011), which is 
a fundamental requirement to ab initio analysis of receptor docking (Ritchie 2008).

Genetic manipulation also provides tools to understand higher order levels of 
protein assembly. Protein folding and post translational modifications can be tested 
by cloning peptides from one species into another one. With contrasting protein 
assembly machinery, cells of one organism can express a protein distinctive from 
cells of another organism. Species to species comparison is possible through these 
assays that will inform MIE specificity.

Genetic manipulation can also be used to modify the epigenetic landscape of a 
cell’s DNA. Engineered nucleases are able to target DNA in a sequence specific 
manner and add or remove methylation to explore the role of methylation in modi-
fying chemical responses. Moreover, nucleic acid architecture, which is orches-
trated by a legion of proteins, can be modified through protein engineering. These 
epigenetic tools can be used to inform toxicologists how toxicity progresses during 
exposure through critical non-genetic pathways.

In vitro testing of receptor docking provides direct evidence for an MIE. Comparing  
organisms that express the receptor to ones that do not can definitively link an MIE 
to subsequent key events and adverse outcomes. Inducible expression and overex-
pression of targeted receptors allows one to examine response-response relation-
ships between key events leading to adverse outcomes. Knocking out and 
overexpression of receptors are possible in many cell types: prokaryotes, fungi, 
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plants, invertebrates, fish, bird, and mammalian cell lines. Moreover, genetic engi-
neering techniques have advanced the ability for complex proteins to be expressed 
in simpler model systems. For example complex membrane and nuclear receptors, 
such as G-protein coupled receptors (Skretas and Georgiou 2008), post-translational 
modified proteins (Kaminoka 2011), and steroid receptors (Wooge et al. 1992) can 
be expressed in bacteria (Mattanovich et al. 2012) and yeast (Zoonens and Miroux 
2010). These genetically altered cells are more convenient to work with because of 
lower costs, faster life cycles and greater control of genetic backgrounds.

10.3.2  �Genetic Approaches to Assess or Modify KE 
at the Cellular Level

Chemical interactions with a receptor or other MIE is only biologically relevant 
when downstream cellular pathways are activated and lead to a physiological change 
at higher levels. To demonstrate causality, dose-response relationships between 
chemicals and different events or response-response relationships between Key 
Events are required. Moreover, threshold responses need to be established where 
pathway activation is above a critical level that compensatory pathways are not 
equipped to buffer the cell from a toxic response. Below are a number of the meth-
ods to determine cellular responses from perturbation of receptors or other MIEs. 
While genetic screens can confirm if a gene or pathway is necessary to induce a 
toxicity pathway, more nuanced approaches are required to determine how much of 
a toxicant is required to induce the toxic response. In vivo dosimetry provides such 
a platform. Typical experiments include dosing an animal or model system with an 
increasing amount of compound. Phenotypic end points are measured and com-
pared against the amount of chemical present. Exposure-response curves provide 
direct evidence for a threshold of perturbation and linkage between events accord-
ing to the modified Bradford hill criteria, i.e. temporal relationships, strength of 
response, coherence of response etc.

10.3.2.1  �Genetic Screen Based Determination of Biological Pathway/
Processes

Genetic manipulation provides materials that can directly link receptor activation to 
downstream effects. When specific genes or pathways are involved, targeted knock 
outs provide a clear link to the response by abolishing toxicity when the correspond-
ing gene is removed or knocked out of the organism (Gaytán and Vulpe 2014). For 
exploratory work, genetic manipulation has incredibly expanded the options avail-
able to perform genetic screens where a phenotype of concern is selected from a 
mutagenized population. Engineered nucleases and RNAi (Cullen and Arndt 2005) 
or CRISPR/Cas9 knock-out libraries (Shalem et  al. 2014) can identify specific 
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genes responsible for the toxicity phenotype using high throughput assays. Genetic 
screens using transgenic techniques have been applied to a number of ecological 
models, including fruit flies (Danielsen et  al. 2016), zebrafish (Holtzman et  al. 
2016), worms (Zugasti et al. 2016), and mice (Mohr et al. 2016).

10.3.2.2  �Reporter Circuits

Genetic manipulation provides tools to generate biomarkers that simplify testing 
methods. Many of the end points used in developing response curves can be either 
complicated or expensive, for example, cell viability, cell proliferation, cytochrome 
activity, kinase induction, DNA mutation, and hormone signaling use expensive 
reagents and equipment. Engineered genetic devices, on the other hand, are simpli-
fied biological systems that can act as a pathway dipstick for toxicity testing. 
Composed of DNA circuits, DNA devices can be either embedded in a cell or in a 
standalone cell-free system. DNA circuitry enables chemical and genetic interac-
tions to be precisely queried in a system stripped of all other components, including 
protein machinery, metabolic biproducts, genetic variability etc. Genetic devices 
have been shown to report on a number of physiological cues, including intracellu-
lar nutrient levels, oxidative-reduction environment, cell-cycle advancement and 
others (Haynes and Silver 2009). In these systems, a signal-responsive transcription 
factor is fused to a DNA binding domain (e.g., Gal4) that binds to synthetic regula-
tory elements upstream of a minimal promoter and target gene. Sensors can also be 
built by assembling minimal promoters with natural regulatory DNA elements that 
are induced by endogenous transcription factors that respond to various stimuli. For 
instance, the cellular metabolite thiamine pyrophosphate (TPP) is sensed by syn-
thetic riboswitches (Yamauchi et al. 2008). Using these engineered systems, moni-
toring biomarkers for stress is simplified. KEs relating to cellular toxicity can be 
established based off of standalone testing systems that are free from the compli-
cated network of repair mechanisms, compensatory pathways and environmental 
factors.

Biomarkers with spatial-temporal resolution are possible through genetic manip-
ulation. Visualizing proteins and nucleic acids through genetic fusions to reporter 
proteins has become a rapidly growing field. Research laboratories working with 
rats (Ma et al. 2014), mice (Yang et al. 2013), flies (Yu et al. 2014) and fish (Peterson 
and MacRae 2011) have used epitope tags and fluorescent proteins to label endog-
enous proteins and generated gene expression reporters. In flies, a histone acetyl-
transferase protein encoded by the gene chameau was C-terminally tagged with 
GFP, and myc was used to tag an uncharacterized gene, CG4221 (Yu et al. 2013). In 
mice, the Sox2 gene was tagged with the V5 epitope (Yang et al. 2013). Additionally, 
two different fluorescent reporters were generated for the genes nanog and Oct4 
(Yang et al. 2013). These reporters used either the viral 2A peptide or an internal 
ribosome entry site (IRES) to express fluorescent proteins with the same expression 
pattern as the endogenous gene but not fused to the protein product. While these 
groups used standard fluorescent proteins, a spectrum of fluorescent proteins of dif-
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ferent colors and with diverse functions are available (Dean and Palmer 2014; 
Harrison et al. 2014). Moreover, because the CRISPR–Cas9 system is amenable to 
multiplexing, tags could be added simultaneously to multiple genes or different 
splice isoforms of a single gene. There is an ever-growing number of genetically 
encoded molecular tags that can be used for functional analysis, protein purifica-
tion, or protein and RNA localization studies. Recruitment of cellular toxicity path-
ways can be confirmed through visualization of genetic fusions.

10.3.3  �Understanding Events at the Organism Level 
with Genetic Manipulation

Understanding how the concert of signaling pathways give rise to a toxic response 
in any organism is a significant challenge. Moreover, deriving toxicity information 
across organisms is even more complicated. Genetic manipulation provides genetic 
test beds for hypothesis testing as well as model systems to explore how accurate 
KERs describe or predict a toxic response.

10.3.3.1  �Simplified Model Systems for Deriving Causality in Complicated 
Biological Networks

Genetic manipulation provides systems to test ways in which biological compo-
nents interact. KEs are difficult to identify in complex biological systems as linear 
models for dose-response relationships are hard to find in non-engineered systems. 
Genetically engineered systems offer a biologically based model with reduced com-
plexity for teasing out mechanisms of toxicity. For example, genetically engineered 
tumor models offer tissue specific phenotypes that can be probed to validate stressor 
activity. Genetic modifications to cells provide increase sensitization to a particular 
stressor, which can act to highlight relevant biological machinery of interest. For 
example tumorigenecity of dioxin can be traced to sustained activation of the aryl-
hydrocarbon receptor (AhR). Overexpression of AhR in mouse models demon-
strates both the receptor is required for a tumor formation, but the complex 
interaction of cell signaling pathways determine the severity of tumor formation in 
a species specific manner. Tumor models with modified expression of AhR provided 
direct evidence of dioxin’s effect on cell proliferation as the rate of growth was 
proportional to expression levels (Shimba et al. 2002; Becker et al. 2015; Behnisch 
et al. 2001).

Genetically modified model systems can be used to establish species specific 
responses. Differences in dioxin sensitivity have been observed across a number of 
species; vertebrates are more sensitive than other organisms. Amino acid substitu-
tions on the AhR explain some of the response differences (Karchner et al. 2006; 
Head et al. 2008). However, AhR structure and expression of the aryl hydrocarbon 
hydroxylase enzyme (AHH) does not account for all differences (Moriguchi et al. 

10  Use of Genetic Manipulation for Evaluating and Understanding Adverse Outcome…



212

2003). Internal signaling, such as cytochrome mediated xenobiotic metabolism 
provides resistance to dioxin stressors. Through genetic manipulation, differential 
expression of these signaling pathways, along with the differences in AhR structure 
and AHH activity clarify the species specific toxicity of dioxin (Uno et al. 2009) and 
provide evidence for the dioxin AOP.

Organisms of higher life forms are also expressed into lower life forms through 
genetic engineering, to provide understanding of biological information across spe-
cies in an efficient manner. For example, human immune systems have been cloned 
into rat and mice for test beds in pharmaceutical sciences to establish KEs critical 
for drug development. Mammalian proteins have been engineered into zebrafish for 
hypothesis testing and high throughput screening of potential pollutants. Last, engi-
neered organisms provide test beds for understanding gene regulation and protein 
expression. These methods demonstrate the power genetic manipulation has for 
validating AOP relationships.

10.3.3.2  �Reproduction and Developmental Assays

Genetic manipulation provides an assortment of tools to assess KE relationships 
involved with reproduction and development, which contribute to population level 
effects. There have been a number of tools aiding hypothesis testing of healthy 
germline tissue. Plant development and reproduction, especially in flowering plants 
has been challenged by long generation times and low transformation efficiency 
with loss-of function assays. Instead, using a transcriptional gene silencing mecha-
nism to repress expression of specific MADS-box genes, Lu et al. (2007) demon-
strated flower morphology could be used as an indicator of reproductive success. 
This method provided an efficient way to study genes involved in reproductive 
stages of organisms with long life cycles and simplified exposure testing for apprais-
ing AOPs.

Genetic manipulation has advanced access to key biomarkers involved in repro-
ductive pathways. Fusion proteins of vertebrate hormones have provided simplified 
systems for observing reproductive outcomes during exposure. Zhang et al. (2014) 
deleted the hormone-specific β-genes of both FSH and LH in zebrafish using 
TALENs and showed clear genetic relationships for key reproductive events, includ-
ing gonadal differentiation, puberty onset, gametogenesis, final maturation, and fer-
tility. Xu et  al. 2014 investigated silkworm (Bombyx mori) reproduction by 
combining transgenesis with TALEN technologies. The authors showed transgenic 
animals co-expressing TALEN left and right arms targeting the female-specific 
Bmdsx exon resulted in somatic mutations and female mutants lost fecundity 
because of lack of egg storage and abnormal external genitalia, again demonstrating 
simplified methods for elucidating mechanisms of reproductive toxicity.

Genetic manipulation has also provided cells throughout the differentiation pro-
cess that can be used to understand KER in critical steps in the developmental pro-
cess. Immortalization of cells through genetic manipulation provides biologic 
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material for in vitro as discussed above, however, stem cells offer the unique advan-
tage of testing progression through the critical phases of growth and development. 
Stem cells are capable of renewing themselves; that is, they can be continuously 
cultured in an undifferentiated state, giving an indefinite pool of cells to work with 
for large scale analysis (Yu et al. 2007). Moreover, stem cells have the ability to dif-
ferentiation into any cell type and form self-organizing organ like structures, pro-
viding a platform to recreate genomic, cellular and organismal tissues for precise 
disease modeling and functional physiological studies (González 2016). While 
human stem cells have been a major focus with recent research and development 
efforts, animal model stem cells have also recently been developed, such as mouse 
(Okita et al. 2007), rat (Kim et al. 2009), and zebrafish (Grandel et al. 2006; Chen 
and Zon 2009) stem cells which can be used extensively for (eco)toxicology in vitro 
testing. For instance, Davila et al. (2004) demonstrated how genetically manipu-
lated stem cells provide better in vitro models for screening genotoxic, epigenetic 
toxicants and reproductive toxicology than conventional methods. Wang et  al. 
(2014) used mouse stem cells at various stages of development and differentiation 
to show a susceptibility window to bisphenol A that leads to tumorigenesis through 
cell compartment and self-renewal functions in the developing organisms. Stem 
cells offer unprecedented advantages for toxicity assays, however, methods must be 
standardized and cell lines need to be validated before experimentation is 
implemented.

10.3.3.3  �Disease Models

Disease models offer toxicologists biological material with an observable pathology 
expressed with known etiology. Disease models can be useful to confirm AOP link-
ages at higher levels of biological organization. Creation of these models requires 
precise genetic modifications and environmental exposure conditions. For example, 
hepatoxicity models have been generated in zebrafish (Hill et al. 2005) using genetic 
screens. Zebrafish mutants exhibiting hepatic pathology have been used to validate 
functional roles in lipid metabolism and confirm toxic responses with specific gene 
anomalies (Carten and Farber 2009). Metabolic disorders involving lipid metabo-
lism have been tested in murine models as well.

Transgenic mouse models have been made for various metabolic disease states. 
Mouse models for lipotoxicity have been created in which excess lipid uptake, 
driven by overexpression of fatty acid transport proteins in the heart leads to cardiac 
dysfunction. In MHC-ACS mice, excess unmetabolized lipid is associated with car-
diomyocyte apoptosis, systolic heart failure and premature death (Chiu et al. 2001). 
This novel mouse model uses a tissue specific tag to induce expression of a protein. 
Using this targeting specificity, local perturbations in myocardial lipid metabolism 
in the pathogenesis of inherited and acquired forms of heart failure are able to be 
investigated. Transgenic overexpression of other enzymes involved in metabolic 
pathways have been expressed in specific tissues using a similar approach, includ-

10  Use of Genetic Manipulation for Evaluating and Understanding Adverse Outcome…



214

ing: liver-type phosphofructokinase (Elson et al. 1994), Tissue-Nonspecific Alkaline 
Phosphatase (Savinov et  al. 2015) in Vascular Endothelium, Cardiomyocyte-
Specific PPAR β/δ Overexpression (Kim et al. 2013) and many others (Masuzaki 
et al. 2001). These disease models provide means to capture relevant biomolecular 
interaction that give rise to a toxic response.

Disease models have been generated for neurodegenerative diseases caused by 
gain of function mechanisms, where malformed proteins accumulate to a toxic 
level. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by 
loss of motor coordination due to the degeneration of cerebellar Purkinje cells and 
brain stem neurons. Transgenic mice with a mutated SCA1 allele were generated 
using conventional cloning and microinjection techniques (Burright et  al. 1995). 
These mice were crossbred with mice conditionally expressing heat shock proteins 
(HSP70) (Marber et  al. 1995). The resulting transgenic mouse has been used to 
identify a myriad of neurological pathways and provide dose-response toxicity evi-
dence for a variety of stress response pathways. (Adachi et al. 2003; Muchowski 
and Wacker 2005; Kim et al. 2016).

10.4  �Future Considerations

With the gold rush of genetic advances, it is important to understand how these will 
manifest into tools and platforms to advance understanding of biological systems. 
Many of the complex interactions in biological systems can be identified, investi-
gated, and validated using these tools. Toxicologists can use these tools to confirm 
key event relationships in AOPs, develop biomarkers for impact assessment, and 
create high throughput test systems for efficient screening of chemicals. Careful 
consideration should be employed when extrapolating evidence from engineered 
systems, however. Genetic manipulation interferes with the inner workings of natu-
ral systems in ways that are not fully understood. Weight of evidence, and plausibil-
ity criteria are important to include when evaluating AOPs. Genetic manipulation 
can simplify the process to understand chemical toxicity, however, rigorous studies 
are needed before a final determination.
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Chapter 11
Considering Epigenetics in Adverse  
Outcome Pathways

Kristine L. Willett

Abstract  While the concept of epigenetics was first recognized in the 1940s, 
appreciation for the potential of epigenetic change to be either the molecular initiat-
ing event or a key event underlying a phenotypic adverse outcome is much more 
recent. Now it is well established that epigenetic transcriptional regulatory pro-
cesses are critical both during normal development and disease progression. 
Environmental factors that act epigenetically during key developmental stages can 
cause irreversible changes in gene expression, tissue structure or function and 
increase the risk of developing adult disease. Furthermore, certain epigenetic conse-
quences (e.g. DNA methylation status) can be passed between generations impact-
ing offspring that were not ever exposed to the stressor. To date, the incorporation of 
epigenetic events into adverse outcome pathways is limited by incomplete under-
standing of the basic mechanisms underlying epigenetic regulation of gene tran-
scription and how that is conserved, however advances are being made very quickly 
in the field.

11.1  �Epigenetics Definition

Working in the 1940s and 1950s, Conrad Waddington (Waddington 1942, 1956) is 
attributed with first describing the concept of epigenetics (e.g. “above genetics”) in 
his experiments wherein environmental stress combined with developmental plas-
ticity resulted in new phenotypes that were inheritable (Noble 2015). Today the 
term epigenetics is interpreted more widely to be both heritable processes indepen-
dent of DNA sequence (e.g. X-chromosome inactivation and genome imprinting) 
but also transcriptional regulatory processes that influence many different cellular 
properties (Greally and Jacobs 2013). In biomedical research, comprehensive 
understanding of the role of epigenetic mechanisms in health and disease is both a 
research priority and rapidly expanding field (Portela and Esteller 2010). Epigenetic 
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inheritance is well recognized and relatively common in plants (Heard and 
Martienssen 2014). In higher organisms, certain associations between epigenetic 
changes and disease phenotype, even if the exposure was during early development, 
are becoming accepted, but true transgenerational epigenetic inheritance particu-
larly in humans is less clear (Heard and Martienssen 2014) despite high profile 
publicity of the phenomena in the lay literature (e.g. Time cover story (Cloud 2010); 
Science News (Saey 2013)).

When considering incorporating epigenetics into adverse outcome pathways, the 
key events may be changes in: DNA methylation, histone modification or non-
coding RNA (Fig. 11.1). Each of these is a measurable response and associates, as 
described in more detail below, with altered gene expression (e.g. key event rela-
tionship). While there is strong evidence of the key event relationship between these 
particular epigenetic changes and altered gene expression, the molecular initiating 
event, or how a chemical directly causes the epigenetic perturbation is still largely 
unknown. Furthermore, while there is growing evidence in animal models that some 
stressors cause epigenetic change, altered gene expression and adverse phenotypic 
outcomes, much research is still needed to fill in subsequent event relationships to 
quantitatively link all the key events.

DNA methylation is the most understood of the mechanisms of epigenetic con-
trol and has been extensively reviewed (Attwood et al. 2002; Ko et al. 2015; Szyf 
2012). DNA methylation is an important mechanism regulating chromatin struc-
ture, transcriptional control, and normal cellular function (Doerfler 1983). DNA 
methylation is sequence specific; methylated cytosines are mostly found in the 
dinucleotide sequence ‘CG’. CpG islands are regions with a high density of ‘CG’ 
dinucleotides associated with the promoter regions of genes and are typically 
unmethylated in active genes. Methylation of normally unmethylated CpG islands, 
located in the 5′ promoter region of genes, is associated with transcriptional inacti-
vation of chromosomes, transgenes, disease genes and certain developmentally 
regulated genes (Kass et al. 2002). However, methylation of cytosine can also occur 
in non-CpG sites including CHG and CHH sequence contexts, where H is an A, C, 
or T (Feng et al. 2010) and can serve unknown functions. More recently, thanks to 
new analytical technologies that facilitate whole genome methylation analysis 
(Bock et al. 2010; Harris et al. 2010), studies have expanded from the focus on CpG 
islands near transcriptional start sites and as a result the associations with gene 
expression have become more complicated. CpG islands located in gene bodies 
tend to be methylated in tissue specific patterns while methylation of CpGs not 
located in islands is more dynamic (Jones 2012). In fact, in human embryonic stem 
cells, methylation of CpG islands at the 3′ end of genes conferred tissue- and cell-
type specific gene activation whereas promoter CpG island methylation repressed 
activation (Yu et al. 2013). CpGs methylation may also have a regulatory role in 
gene splicing (Laurent et al. 2010). So while DNA methylation remains the most 
studied aspect of epigenetic regulation, clearly it is a rapidly progressing field with 
many unanswered questions.

CpG methylation is maintained by the enzymes DNA (cytosine-5)-methyltrans-
ferases (DNMTs). During mammalian embryonic development DNMT3a and 
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DNMT3b establish de novo methylation while DNMT1 maintains methylation pat-
terns during DNA replication (Subramaniam et al. 2014). S-adenosyl-methionine 
(SAM), a product of the folate/methionine cycles, serves as the methyl donor for 
DNMT reactions, and dysregulation of SAM homeostasis is implicated in various 
diseases (Martinez-Lopez et al. 2008; Mato and Lu 2007; Padmanabhan et al. 2013). 
Demethylation activity is provided by TET1, TET2 and TET3 enzymes which cause 
the ten-eleven translocation (TET)-mediated methylcytosine hydroxylation (5mC to 
5hmC) (Shen et al. 2013). Proteins that selectively bind to 5hmCs (hydroxymethyl-
cytosines) may also contribute to transcriptional regulation and thus play epigenetic 
roles (Iurlaro et al. 2013).

DNA methylation patterns can be altered by environmental factors that induce 
epigenetic changes in DNA, in turn altering gene expression. It has been estimated 
that in humans 37% of all germ-line mutations responsible for genetic diseases are 
localized to CpG dinucleotides (Cooper and Youssoufian 1988). DNA methylation 
may increase the mutation rate of an imprinted allele (that is inactive) resulting 
in loci that have a high mutation rate. For example, five out of the six major muta-
tional hot spots in the p53 tumor suppressor gene are methylated CpG sequences, 
and these sites correlate with enhanced reactivity with benzo(a)pyrene diol epoxide 
(Weisenbeger and Romano 2002). For this reason, particularly for stressors that are 
mutagenic, there may be interdependence between epigenetic mechanisms, geno-
toxicity and/or DNA repair in the key event relationships of an adverse outcome 
pathway (Heard and Martienssen 2014).

Histone modifications are another mediator of gene expression. Depending on 
the covalent modification and which amino acid residue of the histone is modified, 
transcription is predictably activated or repressed (Choudhuri et al. 2010; Srivastava 
and Ahn 2015). For example, histone acetyltransferases (HATs) by acetylating the 
histone lysine residues, decrease the affinity of the histone relaxing the chromatin 
so that transcriptional activators can initiate transcription. In contrast to acetylations 
which are primarily activating, methylation and ubiquitination can be activating or 
repressing depending on the residue modified, and sumoylations are primarily 
repressing (Choudhuri et al. 2010; Portela and Esteller 2010). As the understanding 
of histone modification advances, it like methylation, is becoming more compli-
cated in that cross-talk between histones with various modifications (Duan et al. 
2008) as well as interactions with DNMTs have been reported (Tachibana et  al. 
2008; Wang et al. 2009).

Small non-coding RNAs (or microRNAs) can also contribute to chromatin state 
maintenance by targeting loci for histone or DNA methylation, and thereby help 
mediate epigenetically gene expression (Choudhuri et  al. 2010; Sharma 2014; 
Stuwe et al. 2014; Szyf 2015). For example, histone deacetylase enzyme (HDAC1) 
expression can be repressed in cancer cells by a particular microRNA, the miR-
449a, highlighting the role of the microRNAs in regulating cell growth and viability 
(Noonan et al. 2009). RNA interference occurs when microRNAs bind to 3′ untrans-
lated regions in target mRNAs and destabilize, degrade, and/or translationally 
repress their targets. Six nucleotides of the 5′ region of the microRNA are the seed 
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sequence that interacts with the target RNA. Computational analysis has predicted 
that more than 60% of human protein coding genes could pair with microRNAs 
(Friedman et al. 2009), but the biological relevance of all the predicted interactions 
is still being discovered.

11.2  �Epigenetic Change as a Key Event in AOPs

Clearly, the molecular mechanisms underlying epigenetic control of gene expres-
sion are complicated and interrelated. Fundamental new knowledge about how 
DNA methylation and histone modification is controlled and the roles of microR-
NAs in either process is being rapidly discovered. Undoubtedly, epigenetic change 
will play a role in stressor adverse outcomes and will needed to be incorporated into 
AOP approaches (Fig. 11.2). That said, there are several time-scales wherein epi-
genetic changes can influence adverse outcomes including: the developmental basis 
for adult diseases, multigenerational impacts or even transgenerational impacts. 
Examples of each have been reported in various animal models and/or humans as 
highlighted below.

Fig. 11.2  Epigenetic change can be incorporated as a key macro-molecular event responsible for 
altered signaling in stressor adverse outcome pathways
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11.2.1  �Epigenetics and Developmental Origins of Health 
and Disease (DOHaD)

The toxicology community has begun to recognize that susceptibility to disease can 
be set in utero as a result of exposure to contaminants or nutritional deficits 
(Choudhuri et al. 2010; Heindel 2008; Szyf 2009). Similarly, differences early life 
experiences have been correlated with epigenetic changes. For example, using 
rodent models numerous studies have shown postnatal stress and/or lack of mater-
nal care results in adverse behaviors in adult offspring (reviewed in (Maccari et al. 
2014)). One of the first studies linked maternal care, persistent changes in DNA 
methylation and histone acetylation in hippocampal glucocorticoid receptor, and 
heightened stress response in adult offspring (Weaver et al. 2004). The relationships 
between adult behavior and epigenetic mechanisms were further validated by treat-
ments including methionine to stimulate DNA methylation (Weaver et al. 2005) and 
trichostain A to inhibit histone deacetylase (Weaver et al. 2004). With the apprecia-
tion that during brain development, maturation, and learning epigenetic mecha-
nisms play a key role (Bender and Weber 2013; Gabel and Greenberg 2013; Lister 
et al. 2013), it is not surprising that there is a plethora of new studies into the poten-
tial role epigenetics plays in mental diseases such as autism and psychotic disorders 
(Abdolmaleky et al. 2005, 2015) and drug addiction (Kenny 2014).

The developmental importance of methylation homeostasis is provided by disrup-
tions caused by 5-Azacytidine (5azaC), an established inhibitor of DNA methylation. 
In the chick embryo model 5azaC caused hypomethylation and activation of several 
genes resulting in developmental abnormalities and arrest (Zagris and Podimatas 
1994). Zebrafish embryos treated with 5-azaC and 5-azadC also exhibited DNA hypo-
methylation and developmental perturbations. The most common phenotypes were 
loss of tail, abnormal patterning of somites and abnormal head development (Martin 
et al. 1999). These studies established that DNA methylation was required for normal 
gastrulation and subsequent patterning of the dorsal mesoderm in fish. Administration 
of 5azaC to pregnant mice also resulted in perturbation of embryonic DNA synthesis, 
low fetal weight and death of rapidly proliferating cells (Rogers et al. 1994).

Methylation dysregulation is apparent in diseases most notably cancer. Cancer 
cells are characterized both by DNA mutations but also profound alterations in the 
epigenome. In general, cancer cells have significantly less (20–60% less overall) 
5-methylcytosine than normal cells, (Portela and Esteller 2010) but hypermethyl-
ation of certain promoters (e.g. tumor suppressor and DNA repair genes) is com-
mon. Additionally, miRNA downregulation and histone modifications (e.g. reduced 
monoacetylated H4K16) are typical in human tumors, reviewed in (Portela and 
Esteller 2010). Despite that numerous epigenetic changes that are constantly being 
identified in all of the various cancer subtypes, it remains a challenge to distinguish 
if the epigenetic changes are the key event or more of a bystander or consequence 
effect. That said, for certain cancers new drug development is targeting epigenetic 
mechanisms including DNMT inhibitors (Decitabine [Dacogen], 5-Azacytidine 
[Vidaza]) and HDAC inhibitors (Vorinostat [Zolinza], Romidepsin [Istodax], 
Belinostat [Beleodaq]) (Hamm and Costa 2015; Yoo and Jones 2006).
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11.2.2  �Epigenetics and Multigenerational AOs

One of the seminal studies highlighting the potential for multigenerational epigen-
etic conservation of phenotypes used the Agouti model (Dolinoy et  al. 2007a; 
Morgan et al. 1999). In this mouse model a retrotransposon is inserted upstream of 
the agouti gene. Agouti protein expression is related to yellow fur, obesity, and dia-
betic phenotypes. Because the transposon is controlled epigenetically, offspring will 
express a mosaic of phenotypic fur color ranging from yellow to brown. Using this 
model, bisphenol A (BPA), a well-recognized endocrine disrupting compound, 
decreased retrotransposon methylation and offspring fur color was shifted to yel-
low. Furthermore, when maternal diet was supplemented with methyl donors includ-
ing folic acid, vitamin B12 and betaine the BPA-mediated hypomethylation was 
reversed (Dolinoy et al. 2007b).

Similarly studies in sheep wherein ewes during the periconceptional period were 
fed diets depleted in vitamin B12, folate, or methionine led in the adult offspring to 
both methylation status changes in 4% of 1400 CpG islands investigated as well as 
adverse outcomes. Adverse phenotypes predominated in the male offspring and 
included increased blood pressure, adiposity, insulin resistance and altered immune 
response (Sinclair et al. 2007).

Epidemiology cohorts also support the idea that nutritional deficits cause multi-
generational epigenetic impacts in humans. Many studies have tested the “thrifty 
phenotype hypothesis” proposed by Hales and Barker (Hales and Barker 2001). 
They proposed the now widely supported relationship between poor fetal growth (as 
a consequence of poor fetal nutrition) and subsequent permanently compromised 
glucose-insulin metabolism resulting in type 2 diabetes and metabolic syndrome. 
The Dutch “Hunger Winter” cohort, adults that experienced famine during their 
periconceptional period, had persistent hypermethylation in the insulin-like growth 
factor 2 (IGF2) gene (Heijmans et al. 2008). Follow-up methylation studies of 15 
additional loci in this cohort indicated that changes in DNA methylation were 
dependent not only on nutritional stress but the timing and sex of the exposed off-
spring (Tobi et al. 2009). Likewise, human offspring born to diabetic (preexisting or 
gestational) mothers are more likely to have higher birth weights and ultimately 
develop obesity and diabetes (Fraser and Lawlor 2014; Patti 2013). Furthermore 
many epigenetic changes have been identified in relevant growth and metabolic 
genes (Quilter et al. 2014) (e.g. leptin, adiponectin, ABCA1 etc. reviewed in (Ma 
et al. 2015)).

The foundations of the epigenetics field were in nutritional impacts on the epig-
enome, but now the potential for multigenerational impacts of environmental toxi-
cants with an epigenetic key event is also emerging. For example, polycyclic 
aromatic hydrocarbons (PAHs) are a ubiquitous class of combustion-associated 
contaminants that are known carcinogens and reproductive toxicants. Epidemiologic 
studies have shown prenatal exposure to PAHs (from maternal inhalation) is related 
to neural tube defects (Ren et al. 2011), a lower mental development index at age 3 
(Perera et al. 2006) and decrements in full-scale IQ and verbal IQ at age 5 after 
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adjustment for other confounding factors (Perera et al. 2009). PAHs are also linked 
to preterm deliveries and small size for gestational age (Choi et al. 2008; Langlois 
et al. 2014), low birth weights (Siddiqui et al. 2008) and cleft lip ± palate (Langlois 
et al. 2013). Disproportionate fetal growth is, in turn, related to coronary heart dis-
ease (Barker et  al. 1993; Barker 1997). Multigenerational adverse outcomes of 
paternal smoking are also beginning to be appreciated (Northstone et  al. 2014). 
Furthermore, recent studies have identified differences in global methylation and 
gene specific promoter CpG island methylation in cord blood, placenta, newborns 
and children exposed in utero to tobacco smoke or PAHs (Breton et  al. 2009; 
Herbstman et al. 2012; Joubert et al. 2012; Suter et al. 2011).

A clear challenge when considering either nutritional deficits or complex mix-
tures of environmental contaminant exposures is that multiple adverse developmen-
tal outcomes can manifest in offspring, and it is likely that epigenetic dysregulation 
of an individual gene/protein or even pathway will not be responsible for all the 
phenotypes. While single generational epigenetic transmission is well supported, 
the human health impacts of truly transgenerational epigenetic inheritance is more 
controversial.

11.2.3  �Epigenetics and Transgenerational AOs

Similar to what was described for single generation nongenetic inheritance, in 
humans the basis for transgenerational impacts is related to epidemiological studies 
of dietary distress. Dietary distress in cohorts from Northern Sweden was sex-
dependently linked to mortality and diabetic deaths in grandchildren (Bygren et al. 
2014; Pembrey 2010). As depicted in Fig.  11.3, in mammals, transgenerational 
effects of a stressor cannot be reached until the F3 generation because both F1 and the 
F2 germ cells are potentially exposed during the female Fo exposure (Skinner 2008). 
Studies of human transgenerational epigenetic inheritance are obviously complicated 
by the length of the studies to capture three or more generations and the retrospective 
nature of the exposure. Additionally, a key question remains related to how epigenetic 
changes escape the reprogramming that occurs twice both after fertilization and dur-
ing primordial germ cell differentiation (Szyf 2015). Better understanding of the 
molecular mechanisms that allow for epigenetic marks to be transferred across gen-
erations will fundamentally strengthen the case for transgenerational epigenetic 
inheritance (Heard and Martienssen 2014). Some of this understanding is being pro-
vided from various laboratory models that include rodents and fish.

A good example to illustrate the state of the knowledge on transgenerational 
epigenetic inheritance is found in studies of vinclozolin, a dicarboximide fungicide 
used on fruits, vegetables and turf grasses. The toxicity of vinclozolin is associated 
with its anti-androgenic mechanisms particularly of its two metabolites M1 and M2. 
Human reproductive hazards associated with exposure appear low (Zober et  al. 
1995) but incompletely assessed (James 1997). In rodents, perinatal vinclozolin 
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exposure causes demasculization of the male reproductive system including 
decreased anogenital distance, retained nipples, hypospadias, reduced sperm num-
bers (Gray Jr. et al. 1999) and altered sexual behaviors (Colbert et al. 2005) in off-
spring. The Skinner laboratory has published a series of papers reporting that 
perinatal exposure to vinclozolin causes transgenerational (to F4) sperm defects 
(Anway et al. 2005, 2008a), epigenetic altered gene expression in the testis (Anway 

Fig. 11.3  Multigenerational adverse outcomes can result from parental exposures to stressors 
including chemical or nutrient deficiencies (depicted by lightning bolt). In pregnant mammals, a F0 
exposure can also directly expose F1 and F2 generations in the embryonic and germ cell stages, 
respectively. Potential transgenerational effects are not realized until the F3 generation. In contrast, 
because early development is external in fish, transgenerational effects can be measured in the F2 
generation
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et al. 2008b) and prostate (Anway and Skinner 2008). However, aspects of these 
results were questioned (Renner 2009) by other groups unable to replicate vinclozo-
lin’s transgenerational effects (Gray and Furr 2008; Inawaka et al. 2009) and a man-
uscript was retracted (Chang et al. 2006). More recently, vinclozolin was found to 
cause changes in differentially methylated domains of paternal and maternal 
imprinted genes in mouse offspring sperm, but effects gradually disappeared from 
F1 to F3 (Stouder and Paoloni-Giacobino 2010). These studies highlight the need to 
consider sexual dimorphism in environmental epigenetic programming (Gabory 
et al. 2009).

Another persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzodiox
in (TCDD), has shown transgenerational toxicities in both rodents and zebrafish 
models. After F0 rodent females were exposed to TCDD during gestation, subse-
quent generations were assessed for adult disease (Manikkam et  al. 2012). F3 
females had primordial follicle loss and polycystic ovarian disease, whereas adult 
F3 males had kidney disease relative to controls. Furthermore, when F3 sperm were 
analyzed, 50 differentially methylated regions in gene promoters were identified 
(Manikkam et  al. 2012). Reductions in fertility and skeleton abnormalities were 
also observed transgenerationally in zebrafish after TCDD exposures (Baker et al. 
2014b).

Zebrafish represent a useful model to study transgenerational effects. Because of 
their external development, the true transgenerational (e.g. completely unexposed 
generation) can be reached by F2 following an F0 fish embryo exposure (see 
Fig. 11.3) (Baker et al. 2014a; Greally and Jacobs 2013). Capitalizing on advan-
tages of high fecundity, low culture costs, transparent and conserved (Howe et al. 
2013) developmental biology and genomics (Kettleborough et al. 2013), zebrafish 
will continue to be relevant for studying multigenerational adverse outcomes 
(Villeneuve et al. 2014). Again, while phenotypes are being observed across genera-
tions from environmental exposures, a critical remaining challenge is to fundamen-
tally prove the association between the observed epigenetic and phenotypic changes 
to establish an adverse outcome pathway.

11.3  �Experimental Challenges and Future Perspectives

Going forward, the major goal of AOP development is to improve regulatory deci-
sion making (Edwards et al. 2016). Given the extensive evidence that both epigen-
etic mechanisms are fundamental in development, health, and disease and dietary 
and environmental stressors significantly impact the epigenetic homeostasis, there 
is no doubt that ultimately epigenetics will need to be incorporated in key event 
relationships of various AOPs. That said, there is a significant lack of fundamental 
understanding of epigenetic mechanisms and nongenetic inheritance. Several 
reviews have highlighted the issues associated with incorporating epigenetic impacts 
into safety assessments and human health risk assessments (Alyea et  al. 2014; 

K.L. Willett



229

Goodman et al. 2010; LeBaron et al. 2010). In a case study of vinclozolin epigenetic 
human risk, the need for causal relationships between toxic endpoints and epigen-
etic alterations and the dose-dependence of epigenetic changes were specifically 
highlighted (Alyea et al. 2014). Teasing out whether epigenetic change is a cause or 
a result of a particular toxicity will remain a significant challenge. Furthermore, 
researchers will need to be diligent in choosing appropriate research animal models, 
developmental stages, tissue subtypes and epigenomic assays for subsequent appli-
cability (Greally and Jacobs 2013). Finally, adverse outcomes mediated by epigen-
etic change are not only relevant to human risk assessments and must also be broadly 
considered in ecotoxicology as epigenetics may play a role in wildlife fitness and 
resilience (Lee et  al. 2015; Mirbahai and Chipman 2014; Schwindt 2015; Wang 
et al. 2014). In sum, epigenetic change and its role in adverse outcomes within and 
across generations is an exciting area of research that is undergoing exceedingly 
rapid new discovery and has significant implications for the study of health and 
disease.
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Chapter 12   
Tiered Approaches to Incorporate the Adverse 
Outcome Pathway Framework into Chemical-
Specific Risk-Based Decision Making             

Jeremy Leonard, Shannon Bell, Noffisat Oki, Mark Nelms,  
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Abstract  The concept of Adverse Outcome Pathways (AOPs) arose as a means of 
addressing the challenges associated with establishing relationships between high-
throughout (HT) in vitro dose response data and in vivo biological outcomes. 
However, AOP development has also been met with challenges of its own, such as 
the time, effort, and expertise necessary to achieve a scientifically sound construct 
able to support ecotoxicology and human health risk assessment. Thus, a staged 
development process has been developed to match the information content of an 
AOP with the decision context in which it will be used. This approach allows effort 
to be spent on detailed evidence evaluation and quantitative assessment of the 
dose-response characteristics for those AOPs where this level of confidence and 
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precision is needed. In addition, through advances in computational analytical 
methodologies that integrate HT data (e.g., transcriptomic data) with traditional 
toxicology information spanning a broad chemical and biological space, computa-
tionally predicted AOPs can be rapidly generated to help accelerate the curation of 
AOPs. AOPs are chemical agnostic thereby allowing a single AOP to be coupled 
with in vitro dose-response information from a variety of chemicals. To predict an 
in vivo outcome, however, exposure and pharmacokinetic characteristics (i.e., 
absorption, metabolism, distribution, and elimination) must be considered. As with 
the staged development process for AOPs, it is possible to develop ADME predic-
tions in a tiered manner such that lower tiers provide qualitative or semi-quantitative 
predictions when data is lacking, and higher tiers provide quantitative predictions 
with increasing confidence when data is abundant. Tiered approaches to AOP devel-
opment and ADME predictions provide a mechanism for using AOPs, with chemi-
cal-specific exposure and pharmacokinetic considerations, for risk assessment both 
in data poor and data rich scenarios. They also provide a natural mechanism for 
identifying areas of research that would have the highest impact on risk-based deci-
sion making by highlighting AOPs and/or ADME predictions that are insufficient to 
address the decision context in which they could be used.

12.1  �Integration of Adverse Outcome Pathways into the 
Twenty-First Century Toxicity Testing Paradigm

Currently, tens of thousands of chemicals exist in commerce (Egeghy et al. 2012), 
and there is a 12–16% increase in the rate of chemicals that are newly registered by 
the Chemical Abstracts Service on a yearly basis (Binetti et al. 2008). Traditionally, 
toxicity testing for these chemicals has involved a complete array of in vivo animal 
studies that provide apical endpoints associated with toxic outcomes arising from 
exposures to environmental chemicals within whole biological systems (Krewski 
et al. 2009). Testing using animal models offers several advantages, in that chemi-
cals can be studied in detail, and experimental conditions are well controlled. In 
addition, pharmacokinetic (PK) properties (i.e., absorption, distribution, metabo-
lism, and elimination [ADME]) are included in the test itself, though extrapolation 
from the test species to the target species is still required. Animal models hold sev-
eral disadvantages as well, such as large investments in time and cost, use of inbred 
subjects in some cases, and challenges associated with extrapolating results from 
the animal model to relevant human-health outcomes (Zurlo et al. 2001; Phillips 
et al. 2009; Soldatow et al. 2013). More importantly, the limited resources available 
for traditional toxicity testing renders it difficult to determine toxicity-related infor-
mation for the majority of the chemicals currently in commerce or to keep pace with 
new registrations. Given these disadvantages, alternative toxicity testing protocols 
are needed to provide toxicity information in order to keep pace with the more rapid 
production of new chemicals.
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In 2004, the National Toxicology Program (NTP) proposed a new “roadmap” for 
toxicity testing in the twenty-first century that focused on the refinement, replace-
ment, and reduction of animal studies with rapid screening protocols able to main-
tain scientific quality, promote animal welfare, and protect human health (Shukla 
et al. 2010). Priority was placed on identification of primary pathways and molecu-
lar mechanisms that can be linked to disease (Andersen and Krewski 2009). One 
strategy designed to meet this goal involved the development of high-throughput 
(HT) in vitro assays related to computational modeling and toxicity (NRC 2007). 
Such assays provide a rapid, cost-efficient means of evaluating thousands of under-
studied chemicals across hundreds of pathway-based toxicity endpoints at concen-
trations that are relevant to both environmental and human health (Sun et al. 2012), 
and can aid in chemical prioritization for more extensive in vivo testing (Austin 
et al. 2008; Kavlock et al. 2009).

In vitro assays are designed to determine the responses of technological targets, 
which often act as surrogates for in vivo biological targets at selected chemical con-
centrations, and these data are used to assess hazard. Establishing relevance of these 
in vitro perturbations to in vivo responses is often difficult, as these assays lack the 
biological context of an in vivo system. For example, an in vitro assay can reveal 
whether or not a certain chemical has the ability to bind with and perturb a techno-
logical target, but there remains some uncertainty as to what the resulting outcome 
might be in a living organism. Interpreting the relationships between toxicant per-
turbations on an in vitro molecular target and adverse outcomes observed in a living 
organism, as well as identifying the complex toxicity pathways leading to in vivo 
adverse outcomes, gives rise to several challenges that should be addressed before 
HT testing can be optimally applied in twenty-first century toxicity testing.

In response to these challenges, the concept of Adverse Outcome Pathways 
(AOPs) was developed to aid in understanding the mechanistic basis of in vivo tox-
icity by establishing linkages between HT testing results and adverse biological 
outcomes that are of concern in risk assessment and chemical management prac-
tices. An AOP is a linear construct whereby existing knowledge regarding the mech-
anistic basis for chemical toxicity is described by a series of key events that connect 
an upstream molecular initiating event (MIE) to a downstream adverse outcome 
(AO). This framework takes the toxicity pathway concept set forth by the National 
Research Council (NRC 2007) and extends it to higher levels of biological organi-
zation, up to the population level (Villeneuve et al. 2014b). The original aim of the 
AOP framework involved the use of pathway-based data to support ecotoxicology 
risk assessment and research through non-direct measures of apical toxicological 
outcomes (Ankley et al. 2010). The AOP framework has further been extended to 
support human health risk assessment (Tollefsen et al. 2014) due to its ability to act 
as a scaffold onto which various pathway-based data can be arranged, thereby 
allowing a mechanistic connection between levels of biological organization to be 
established (Vinken 2013).

Two fundamental components are utilized when describing an AOP: key events 
(KEs) and key event relationships (KERs) (Villeneuve et al. 2014b). The KEs that 
comprise an AOP describe measurable and requisite changes in the biological state 
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at each level of organization. The inaugural KE within an AOP is the MIE, which is 
defined as the interaction of a xenobiotic stressor with a molecular target (Ankley 
et al. 2010) and is often analogous to a technological target used in an in vitro assay. 
Upon sufficient perturbation, the MIE is followed by a series of intermediate KEs, 
ideally at least one for each level of biological organization between the MIE and 
the final endpoint in the AOP. The AOP is anchored on the other end by one or more 
special KEs, the AOs that represent apical endpoints sufficient to support a chemical 
management decision. Such outcomes can be captured at the individual level (e.g., 
organ dysfunction, cancer, abnormalities) for human health risk assessment or at the 
population level (e.g., reduced species recruitment) in the case of an ecological risk 
assessment (Kramer et al. 2011; Villeneuve et al. 2014b). The KERs link adjacent 
KEs and provide scientific evidence supporting such a linkage. Additionally, KERs 
introduce directionality to the AOP framework by identifying that KE in the rela-
tionship which can be found upstream and which can be found downstream.

An AOP is often comprised of one MIE, one AO, and at least one KE at each 
intermediate level of biological organization (Ankley et al. 2010; Villeneuve et al. 
2014a). Each AOP is considered to be separate from other AOPs during its develop-
ment. This is not intended to disregard the complexity contained within biological 
systems and the ability of multiple signaling pathways to exert significant influence 
upon one another; it is a strategy that more easily enables AOPs to be identified and 
elucidated. Additionally, it is acknowledged that a single specific KE is likely to be 
a component within multiple AOPs. These shared KEs allow AOPs to be joined 
together to form AOP networks, in order to inform integrated approaches to testing 
assessment (Tollefsen et al. 2014; Villeneuve et al. 2014b). The AOP framework 
provides a biological context to the interpretation of in vitro hazard data (Tollefsen 
et al. 2014), and thus, it enhances the applicability of new toxicity testing approaches 
by providing information regarding relevant in vitro concentrations capable of per-
turbing an MIE. Due to its chemical-agnostic nature, the AOP framework enables 
the evaluation of data from HT in vitro assays that are designed to simultaneously 
measure the activity of large numbers of chemicals for a given molecular target in 
only a fraction of the time required for traditional toxicity tests (Becker et al. 2015). 
While the importance of chemical-specific characteristics (e.g., exposure and 
ADME properties) is recognized by developers of the AOP framework, by nature 
AOPs are most relevant to the hazard component of risk assessment.

Since the 1983 publication of the Red Book (NRC 1983), the core of risk assess-
ment has been defined by hazard identification, followed by the combination of 
dose-response analysis and exposure assessment. This was refined in 2009 with the 
publication of Science and Decisions (NRC 2009), which recommended improve-
ments to risk assessment by (1) introducing a decision context into the assessment 
process; (2) developing more explicit decisions regarding the use of default safety 
factors; and (3) handling uncertainty and variability in an appropriate manner when 
establishing a reference concentration or dose (Abt et al. 2010). Hazard identification 
and dose-response assessment have traditionally relied on overt toxicity data gener-
ated from laboratory animal studies. Such studies have the advantage of including 
both the toxicokinetics and toxicodynamics of the chemical being tested, but with 
the disadvantages described above. Exposure assessment has traditionally relied 
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upon chemical-specific monitoring data or predictions to identify source, fate and 
transport processes, along with final receptors for chemical exposure (MacIntosh 
and Spengler 2000). Together these pieces of information can be used for risk charac-
terization of chemicals, often with little or no knowledge of the underlying mecha-
nisms driving either exposure or toxicity.

Risk assessment based on the new paradigms of HT toxicity and exposure evalu-
ation seeks to integrate in vitro screening assays able to identify hazard (Judson 
et al. 2011; Vinken 2013), in silico models able to estimate exposure (Wambaugh 
et  al. 2014; Isaacs et  al. 2014), and quantitative structure activity relationship 
(QSAR)-based models, for prioritizing thousands of data-poor environmental 
chemicals. Though the approaches used in traditional and HT risk assessment have 
changed significantly over the years, both involve the necessary inputs of hazard 
AND exposure. For AOPs to be applied in an optimal manner during risk assess-
ment, in vitro concentrations able to perturb the molecular target and induce an MIE 
can be extrapolated to biologically-effective target tissue doses. These in turn can be 
converted to external exposure levels through reverse dosimetry (Lin and Lu 1997; 
Simmons et al. 2005; Stadnicka-Michalak et al. 2014; Groh et al. 2015) to support 
risk-based decision-making processes (Benford et al. 2010). The ADME behaviors 
of a chemical, which are lacking in in vitro assays, are the driving factors mediating 
this biologically-effective dose.

The use of the AOP framework facilitates interpretation of HTT because an AOP 
can be developed using a limited number of reference chemicals and then used to 
interpret the HTT results for potentially hundreds of chemicals exhibiting positive 
results for a given assay or assay battery. While the process for fully describing and 
evaluating the AOP is laborious and time-consuming, AOPs at all stages of develop-
ment are available for use depending on the decision-making context. Similarly, full 
characterization of the ADME properties for a chemical and accurate prediction of 
its toxicokinetic behaviors requires a considerable effort, thus limiting the number 
of chemicals for which such characterization can be performed. Fortunately, both 
the AOP development process and ADME modeling are amenable to tiered 
approaches that allow predictions to be made across the continuum from data-poor 
to data-rich situations, albeit with tradeoffs in both confidence and precision for 
those estimates (Fig. 12.1). These tiered approaches not only enable the use of AOPs 
and ADME predictions from lower tiers when the decision-making context allows 
for a higher degree of uncertainty and/or lower precision in the estimate, but they 
also provide a mechanism for prioritizing AOP development to match the descrip-
tion of the AOP with the needs of decision makers. This avoids having a handful of 
fully characterized AOPs for cases where that level of precision isn’t needed, while 
also avoiding cases in which other less developed AOPs are not sufficient to support 
the decisions for which they would be used.

At one extreme, a paucity of data or need for expedited processing may require 
best estimates of KEs and their relationships, or may necessitate the qualitative 
assessment of whether or not a stressor that binds with a technological target in vitro 
might be capable of reaching the molecular analogue of that target in vivo. Such 
lower-tier approaches likely do not provide a high level of confidence for making 
informed decisions, but they can act as the groundwork for higher-tier approaches. 
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Researchers seeking to conduct higher-tier analyses but lacking the necessary 
resources or information can use results from lower-tier analyses as a means to iden-
tify data gaps. In doing so, the appropriate level of time and effort might be expended 
in obtaining such critical information. At the other extreme, available data may be 
sufficient to allow for development of AOPs using researcher expertise and knowl-
edge, as well as the development of computational models with the ability to predict 
external chemical doses expected to result in an MIE. As the amount of empirical 
data necessary for evaluation of relationships between KEs and AOs or parameter-
ization of models increases, so does confidence in the mechanistic processes leading 
to an AO, along with an exposure or ADME model’s predictive capabilities. Thus, 
risk assessors are provided with the ability to make more informed decisions. The 
tiered approaches involved in AOP development and its application to risk assess-
ment will be discussed in further detail throughout the remainder of this chapter.

12.2  �Accelerating Adverse Outcome Pathway Development 
Via Systems Approaches

In 2012, the AOP development program was initiated by the Organization for 
Economic Co-operation and Development (OECD) to promote the development 
and use of AOPs. As an accompaniment to the development program, the OECD 

Fig. 12.1  Graphical representation of the tiered structure of the Adverse Outcome Pathway (AOP) 
and pharmacokinetic (e.g., absorption, distribution, metabolism, and elimination [ADME]) com-
ponents needed to determine mode of action (MOA) for supporting risk-based decisions. Blue 
triangles represent the relative number of AOPs or ADME predictions that can be completed with 
a fixed amount of effort. Lower tiers in each case require less input data and time expended evaluat-
ing the available information. For certain decisions such as screening and prioritization, this level 
of confidence may be sufficient. Use of higher tiers increases the utility for a broader range of 
risk-based decisions (illustrated by the green triangle in the center), but it also limits the number 
of cases that can be considered due to the requirements of more input data and time for experimen-
tation and computational modeling that are necessary to achieve this higher level of confidence
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released a handbook that acts to advise AOP developers in regards to the key infor-
mation that should be included within the AOP, and also provides developers with a 
template that can be used to aid in assembling and organizing such information in 
support of the AOP (OECD 2013a; Villeneuve et  al. 2014b). Villeneuve et  al. 
(Villeneuve et  al. 2014b) described five fundamental principles for developing 
AOPs: (1) AOPs are not chemical specific, i.e. any chemical able to sufficiently 
perturb the MIE and the intermediate KEs may induce the AO; (2) AOPs are modu-
lar and composed of reusable components - notably key events (KEs) and key event 
relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs 
and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks 
composed of multiple AOPs that share common KEs and KERs are likely to be the 
functional unit of prediction for most real-world scenarios; and (5) AOPs are living 
documents that will evolve over time as new knowledge is generated. By following 
these principles during development, the individual KEs and KERs enable AOPs to 
mimic the modularity held by biological systems, whereby different processes may 
be conserved across multiple biological pathways.

The first step in the development process is to identify the KEs involved in the 
progression of the AOP and the relationship(s) among them; thus, providing a scaf-
fold onto which the supporting evidence and information can be arranged. A num-
ber of strategies have been proposed that may be utilized when developing an AOP: 
(1) bottom-up, i.e. start with MIE data and work to identify the mechanistic infor-
mation that links the MIE to the downstream KEs; (2) middle-out, i.e. start with data 
for an intermediate KE and work to identify the mechanistic information that 
anchors this KE to both an MIE and an AO; and (3) top-down, i.e. start with data for 
an observable AO and work to identify the mechanistic information that links the 
AO to the upstream KEs within the AOP (Villeneuve et al. 2014b; Groh et al. 2015). 
The mechanistic information used to link each of the KEs present in an AOP may be 
derived from a variety of sources: the available literature, in silico techniques, in 
vitro assays, or in vivo tests. It is envisioned that each of these sources of informa-
tion will be used in concert during AOP development.

Typically, evaluations regarding the essentiality of each KE within an AOP are 
aided by data from knock-out, knock-down, or reversibility studies. For example, 
knocking out a specific gene associated with a given upstream KE could demon-
strate the essentiality of that KE by showing that perturbations upstream do not 
result in an AO when that earlier step is blocked. These types of studies provide 
researchers with the ability to determine whether preventing a perturbation of an 
upstream KE will lead to a concomitant reduction in the observation of the down-
stream KE(s). Data generated from experiments that measure the difference in 
observing the downstream KE(s) after the upstream KE has been impeded could 
provide a high degree of weight of evidence that the upstream KE is essential. In 
contrast, if no such evidence exists, or the results from certain experiments can be 
disputed, the weight of evidence in essentiality would be weak (OECD 2013a; 
Becker et al. 2015).

When sufficient information has been assembled, the evidence for each KE and 
KER can be systematically evaluated, thereby providing support during the assessment 
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of the entire AOP. Conducting the evaluation process in this manner enables identifica-
tion of any data gaps that may be present, whilst also acting as a guide for the most 
appropriate use of the AOP within a risk management setting. Typically, modified 
Bradford-Hill considerations are utilized when assessing the evidence for each compo-
nent within a given AOP as they can help determine the relevance of the identified 
supporting information (Hill 1965; Meek et al. 2014; Becker et al. 2015). When taken 
together, the Bradford-Hill considerations can enable assessments regarding the essen-
tiality of each KE and the empirical support and biological plausibility for each KER 
that comprise the AOP (OECD 2013a).

Supporting data for each KE within the AOP should include the following: (1) 
describing the role the KE plays under normal biological (homeostatic) conditions 
and how the KE might be perturbed during the course of the AOP; and (2) describ-
ing the assay(s) that may be conducted to test for the impact of perturbation upon 
the KE. The KERs in the AOP capture the evidence supporting the causal relation-
ships among the KEs, which is essential for the use of the AOP. This evidence con-
sists of the following components: (1) the biological plausibility of the relationship 
between the two KEs, based upon current knowledge of how they interact under 
homeostatic conditions; (2) the specific evidence establishing an association 
between the upstream and downstream KEs, i.e. does the evidence that is present 
support the proposal that a perturbation in the upstream KE induces a change in the 
downstream KE; and (3) the uncertainty (if any) pertaining to the relationship 
between the two KEs, i.e. is there evidence within the literature that contests the 
relationship between the KEs. Additionally, if possible, the KER descriptions should 
provide quantitative information regarding the relationship between the upstream 
and downstream KEs, i.e. what level of response in the upstream KE elicits a 
response in the downstream KE.

The most significant element within a weight of evidence determination for an 
AOP over its entirety is assessment of the biological plausibility of each KER pres-
ent (OECD 2013a; Meek et al. 2014). Well-established biological knowledge and 
related information is used to identify the supporting mechanistic evidence regard-
ing the presence of the KER between upstream and downstream KEs. A high degree 
of confidence would be derived from well-established and well- documented mech-
anistic information that is accepted as true by the broader scientific community. 
Meanwhile, a low degree of confidence would be derived from two KEs being sta-
tistically associated with one another without mechanistic understanding supporting 
the KER (OECD 2013a; Meek et al. 2014).

Three main factors should be addressed when assessing the level of empirical 
support for each KER, namely: (1) response-response concordance, i.e. is the 
change in a downstream KE preceded by an appropriate change in a related 
upstream KE; (2) temporal concordance, i.e. is a downstream KE observed to a 
greater degree and at later time points than a related upstream KE; and (3) incidence 
concordance, i.e. is a downstream KE observed with a lower incidence than that of 
a related upstream KE. As the KER delineates the causative relationship between 
the upstream and downstream KEs, it would be expected that, experimentally, the 
upstream KE should be observed at lower chemical doses, earlier time points, and 
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with increased incidence than the downstream KE. However, due to the technical 
limitations inherent in the methods used to measure the perturbations of the KEs, 
these assumptions might not necessarily hold true. Therefore, one must be careful 
to consider these limitations when assembling the information for use within a 
weight of evidence assessment for empirical support. As such, when conducting 
weight of evidence, a high degree of confidence would be derived from extensive 
evidence describing dose-response, temporal, and incidence concordance between 
two KEs when assessing exposure to a variety of stressors. A low level of weight of 
evidence would be achieved if studies were to show significant inconsistencies in 
dose-response, temporal, and/or incidence concordance, or if data from different 
species/taxa did not align when expected to due to conserved biological processes 
(OECD 2013a; Becker et al. 2015).

Additionally, supporting evidence can be utilized to define the domain of appli-
cability for the AOP and its respective components, i.e. the species, life-stages, and 
sexes of the organism(s) for which the AOP is relevant. Generally, the most restric-
tive KE present in the AOP is used to define the applicability domain of the entire 
AOP. However, information for alternative species may be used for AOPs that have 
been developed to assess a human health endpoint when the underlying biological 
process is conserved. Working through each of these steps in turn, from the identi-
fication of the relevant KEs and KERs within an AOP, to assembling the supporting 
evidence for each of those KE/KERs, to the culminating evaluation of the collected 
evidence, is critical.

The process of AOP development represents a continuum in which supporting 
evidence expands over time, and which is consistent with the fifth principle of 
development previously described (Fig. 12.2). However, AOPs can be roughly clas-
sified according to their respective stage of development. Putative AOPs (pAOPs) 
are manually curated by domain experts and may be the result of a literature review 
or presented as part of a research publication. These pAOPs can include hypotheti-
cal linkages based solely on correlative evidence among KEs, with biological plau-
sibility based primarily on the judgment of domain experts and without an exhaustive 
review of the literature. Formal AOPs (fAOPs) have undergone a formal evaluation 
of the evidence supporting the KE relationships and essentiality of the KEs as 
defined in the OECD AOP development handbook (OECD 2013b). AOPs at this 
stage may be submitted to the OECD for review and possible endorsement. 
Quantitative AOPs (qAOPs) incorporate dose-response data from reference chemi-
cals to quantitatively define the response-response relationships between each pair 
of KEs, and allow predictions regarding the level of activation required for early 
KEs to elicit a meaningful response at the AO.  These efforts can use pAOPs or 
fAOPs as the scaffold and will most often provide the evidence needed for formal 
evaluation of a pAOP as a by-product of the quantitative data collected during the 
process of defining the qAOP.

Recognizing the need for tools with the ability to facilitate the expert-driven AOP 
development process, an AOP Knowledge base (AOP-KB) was developed via an 
international collaboration under the auspices of the OECD AOP development pro-
gram. The AOP-KB is comprised of four modules: AOPXplorer, AOP-Wiki, 
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Effectopedia, and the Intermediate Effects DataBase. The first three modules enable 
community-led efforts to develop and evaluate AOPs across all stages of AOP devel-
opment as described below. The last module provides a mechanism for submitting 
AOP-related information for regulatory consideration in Europe and provides tools 
linking AOPs to more chemical-specific toxicity data.

The pAOP development process can be facilitated via the use of the AOPXplorer 
module. The AOPXplorer is a computational tool developed by the United States 
Army Engineer Research and Development Center that provides users with a graph-
ical representation of the networks present within AOPs. This tool incorporates data 
from multiple sources and provides bioinformatics capabilities that allow for data 
integration. It fully incorporates existing AOPs from the other AOP-KB modules, 
thus placing novel discoveries in the context of existing knowledge. It can also act 
as a platform to incorporate computationally-predicted AOPs (cpAOPs) into the 
development process, as discussed below.

After its development, the pAOP can be used as a scaffold onto which scientific 
evidence supporting the inclusion of each KE or KER can be assembled; it is at this 
stage that the AOP-Wiki can be utilized. The AOP-Wiki (https://aopwiki.org) is a 
tool created by the European Commission’s Joint Research Center (JRC) and the 
United States Environmental Protection Agency (USEPA) for organizing available 
knowledge and published data, via crowd-sourcing, by providing a set of web-based 

Fig. 12.2  Illustration of the phases of Adverse Outcome Pathway (AOP) development along the 
continuum highlighted in Fig. 12.1. Computationally-predicted AOPs (cpAOPs) are created via 
network inference algorithms and provide hypothetical AOPs in a network context for expert eval-
uation. AOPs that have undergone a preliminary evaluation by an expert are classified as putative 
AOPs. Formal AOPs have undergone a weight of evidence evaluation as outlined by the 
Organization for Economic Cooperation and Development handbook and have a weight of evi-
dence call for each key event relationship (KER) and essentiality calls for certain key events (KEs) 
(represented by node size in figure). Quantitative AOPs define response-response relationships that 
allow for the prediction of dose-response behavior at downstream KEs based on the dose-response 
behavior of an upstream KE for a specific chemical. In most cases this will be based on a compu-
tational model that describes the mechanisms underlying the AOP
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forms tied specifically to the information requirements laid out in the OECD hand-
book (OECD 2013b). These structured forms can be used for depositing pAOPs and 
fAOPs (and associated supporting data) that can be shared with the larger scientific 
community. Using this peer-based, data sharing approach, one group can enter a 
pAOP of interest into the AOP-Wiki and include a basic rationale for the assembly 
of this pAOP. Experts in an area of biology specifically related to that pAOP could 
then adopt it and provide the evidence for or against the AOP based on their more 
extensive knowledge within that particular field. Scientists are thereby provided 
with a mechanism to solicit expert feedback from other researchers working in the 
areas of toxicology, public health, or biology to increase the impact of their own 
studies when supporting risk assessors and decision makers.

Two distinct types of qAOPs require consideration: probabilistic and mechanis-
tic (Perkins et al. 2015). The qAOPs developed in a probabilistic manner can be 
explored using bayesian network analysis to, for example, identify minimally suf-
ficient nodes or indicate whether inclusion of additional assays or KEs might 
increase confidence in the AO. The AOPXplorer module can incorporate the evi-
dence evaluated during the fAOP development process with additional data, when 
creating these probabilistic qAOPs. As the number of AOPs increase, AOP networks 
should emerge based upon KEs that are common to multiple AOPs within the AOP-
Wiki and Effectopedia. The AOPXplorer can then provide estimates of probabilities 
of triggering AOs based on the interrelated AOPs collected from these sources.

In cases where more quantitative precision is required to predict the dose-
response of an AO for a chemical based on dose-response information from early 
KEs, the development of a mechanistic qAOP is necessary. Mechanistic qAOPs 
integrate dose or concentration-dependent quantitative information in order to 
examine mathematical relationships along the pathway, and, thus, more closely rep-
resent the underlying biology. Their development requires quantitative response-
response information for each pair of KEs so that the level of change in the upstream 
KE required to induce the downstream KE can be elucidated (Villeneuve et  al. 
2014a). Effectopedia (www.effectopedia.org) is designed to be an open-knowledge 
aggregation and collaboration tool and was developed by the OECD to provide 
details about the development of structured and cpAOPs in an encyclopedic manner. 
It also enables development and analysis of mechanistic qAOPs.

It is expected that reliable information of the highest quality will be derived from 
expert-driven AOP development, especially when peer review from organizations 
such as OECD is included in the development process. However, obtaining this high 
level of reliability comes at a cost, namely the time that is required for experts to 
invest in generation and review the AOPs. This problem especially arises when gen-
erating probabilistic qAOPs and when using resources such as the AOPXplorer, 
which are best suited for use with multiple AOPs for a given AO or with larger AOP 
networks. Use of the AOP framework in context of a HT testing strategy, and as a 
means of driving the development of testing batteries, requires sufficient AOP cov-
erage of the biological assay targets and information on how such targets are related 
in vivo. In addition to the knowledge required regarding the relationships between a 
given KE to other KEs within a given AOP, there is also a need to identify possible 
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connections (if any) of that KE with other AOPs, in order to develop more informed 
testing strategies. Given that biological systems are quite flexible and maintain an 
inherent redundancy, it is not unreasonable to assume that multiple AOPs can exist 
for a given AO and that the same KEs have the ability to span both multiple and 
distinct AOPs. The labor-intensive curation of fAOPs and pAOPs implies the inabil-
ity of these AOP classes to meet the current needs for coverage of biological space. 
Furthermore, because fAOPs can be considered as distinct units rather than more 
integrated systems (e.g., networks or series of AOPs), they do not lend themselves 
as-is to the designing of larger integrated testing strategies.

System biology-based computational methods have developed out of the need to 
harness the more abundant coverage present in HT data (e.g., transcriptomic data 
and other high content data types), and to meet the challenges associated with the 
requirement for efficiently covering a vast chemical and biological space (Fig. 12.2 
– lowest tier). These HT datasets, when combined with computational analytical 
approaches, can facilitate and accelerate the AOP development process while simul-
taneously increasing knowledge of the biological space covered by these AOPs 
(Bell et al. 2016; Oki et al. 2016). By leveraging large amounts of existing publi-
cally available data, computational approaches can be applied in the integration of 
the various levels of biological organization in order to generate a network with the 
ability to relate changes in biological pathways to measured phenotypes and AOs 
(Perkins et al. 2011; Kleinstreuer et al. 2011; AbdulHameed et al. 2014; Oki et al. 
2016). These cpAOPs not only can serve as scaffolds to help accelerate the curation 
of pAOPs and fAOPs, but they can also aid in providing guidance during formula-
tion of testing strategies.

Oki et al. (2016) describes publically available datasets that provide information 
at the various levels of biological organization and that can be used alongside exper-
imental data to develop cpAOP networks (Fig. 12.3). Experimental reference data 
can be integrated by identifying direct linkages across experimental results or 
through an identifier, or they may be described by identifying the co-occurrence of 
certain items (frequent itemset mining) with the ability to span multiple experimen-
tal datasets possessing unclear associations (Bell et al. 2016). These connections 
form a network, which is defined as a set of nodes (e.g., chemicals, phenotypes, 
pathways, AOs, or assays) connected by edges (presence of a relationship). By 
exploring the topology of the networks, the identity of AO-specific sub-networks 
and cpAOPs can be determined.

These sub-networks offer a computational approach (via their structure) that 
allows identification of nodes with high connectivity (e.g., KEs shared by multiple 
cpAOPs), in order to determine sufficient KEs predictive of an AO, and to provide 
insight on assay coverage. Overlaying this assay space onto a cpAOP network sig-
nificantly facilitates the identification of KEs that lack sufficient coverage (Bell 
et  al. 2016). Such identification can prove especially useful when searching for 
shared and sufficient KEs that are optimal in the design of a minimal testing strat-
egy, such as determining the minimum number of biological assay targets required 
to predict an AO. Knowledge derived from pAOPs and higher classes (e.g., fAOPs 
and qAOPs) can be used to increase confidence in the cpAOP networks.
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The development of cpAOPs would benefit tremendously from inclusion of 
ontologies and controlled vocabularies, as use of these standardized lexicons can 
ease data integration by facilitating interoperability across databases. Such ontolo-
gies, which are currently under development for the AOP-KB, would serve a critical 
role in computationally relating a human-curated AOP to one that was built in an 
automated fashion, and can provide the appropriate frameworks for cross-referencing 
of terms.

12.3  �Expanding the Applicability of the Adverse Outcome 
Pathway Framework Via Considerations of Exposure 
and Pharmacokinetics

Evaluating the influence that exposure or ADME-related behaviors might have on a 
chemical’s in vivo toxicological outcome, as related to its in vitro potency, can be 
achieved through a series of qualitative and quantitative analyses, depending upon 
data availability and specific goals of the researcher (Fig. 12.4). When data is abun-
dant, development of physiologically based pharmacokinetic (PBPK) and pharma-
codynamic (PD) models linking exposure to target tissue doses and subsequent 
target tissue responses may be easily achieved and is an ideal scenario (Caldwell 
et al. 2012). However, the sheer numbers of chemicals circulating throughout the 
environment and in production (Egeghy et al. 2012), along with their wide spec-
trum of ADME properties, render the effort required to develop such chemical-
specific models time- and resource-prohibitive. In these data-poor situations, 
alternative in silico methods and cheminformatics tools can be used to explore the 
large chemical space more effectively by identifying molecular properties of 

Fig. 12.4  Tiers for 
incorporating information 
related to chemical 
exposure and 
pharmacokinetic behaviors 
when applying Adverse 
Outcome Pathways into 
risk-based decision making
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chemicals that influence exposure and ADME-related behaviors and that aid in their 
prediction (Sun 2005; Wegner et al. 2006). Using these alternative computational 
approaches to refine HT in vitro results is preferable to building a detailed model 
with predictions that cannot be validated in the absence of available PK data.

A qualitative workflow was developed recently to assess the potential for in vitro 
active chemicals to reach an in vivo molecular target and trigger an MIE (Phillips 
et al. 2016). The workflow begins with the selection of an AOP of interest, which 
allows the associated molecular target induced by the MIE to be determined. 
Chemicals found to be active in in vitro assays can be present in the environment, or 
they might be active metabolic moieties of parent compounds that may or may not 
exhibit in vitro activity themselves. Both the exposure and absorption potential of 
the parent compound of an active metabolite require evaluation, as these two pro-
cesses are precursors to metabolite generation within the body. Assessing the ability 
of the metabolite itself to access the molecular in vivo target should follow this 
evaluation. If the metabolite is also known to be present in the environment, its own 
exposure and absorption potential should also be queried (Fig. 12.5).

Fig. 12.5  Queries of potential factors that allow investigators to qualitatively evaluate the ability 
of a chemical to reach its intended internal (e.g., blood, tissue, cell, enzyme, membrane receptor) 
target. For parent compounds, the chemical’s ability to reach its intended target should be tracked 
from external exposure to distribution to that target. Unless metabolites are manufactured or are 
generated through environmental processes (e.g., photolysis), the exposure and absorption poten-
tial of their parent compounds should be determined, and the ability to reach the intended target for 
the metabolite itself should then be evaluated
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In this qualitative workflow, exposure potentials are assigned to one of the four 
general categories that are often intuitively accounted for: (1) exposure to the general 
public; (2) exposure to individuals under special circumstances, such as workers or 
those taking medication; (3) uncertain or unknown exposure; and (4) unlikely expo-
sure. As this first, qualitative, tier aims to be conservative in nature, those chemicals 
with uncertain or unknown exposure are included with those chemicals exposed to 
individuals and the general population, and advanced to the next step of the work-
flow. Those chemicals known to lack exposure potential will not reach the in vivo 
molecular target, and, thus, are considered “low priority”.

Exposure potential can be determined through a variety of means, including 
extraction of published data from research articles, technological monographs, or 
registration eligibility documents. While there is a large degree of time invested in 
compiling such empirical data, confidence in conclusions regarding exposure 
potential is also much higher, and such data can be used in more computationally-
intense higher tiers. Alternatively, HT exposure models can provide rapid predic-
tions of exposure at several population percentiles for hundreds to thousands of 
chemicals. For example, the HT Stochastic Human Exposure Dosimetry Simulation 
(SHEDS-HT) model integrates population use patterns (e.g., frequency, duration, 
time, and magnitude) derived from the Consolidated Human Activity Database 
(McCurdy et  al. 2000), chemical weight fractions (Goldsmith et  al. 2014), and 
known age-specific physiological parameters (e.g., skin surface area, inhalation 
rate) to simulate exposure of chemicals comprising 200 consumer product types to 
100,000 individuals across all age groups (Isaacs et al. 2014). It should be noted that 
such HT exposure models, by design, take limited amounts of data as input to pro-
vide estimates with a large amount of uncertainty and error. Thus, investigators are 
left with the decision regarding their desire to balance time and effort with precision 
and accuracy.

Absorption and distribution potential can also be determined for chemicals using 
empirical data extracted from resources such as those listed above. Alternatively, 
physicochemical descriptors and chemical-specific properties can be examined to 
assess absorption potential, i.e. can a chemical be absorbed via skin, and distribu-
tion potential, i.e. can a chemical cross the placenta. These descriptors can be pre-
dicted using cheminformatics tools and molecular chemistry models, such as 
pharmacophore modeling, geometric optimization, and conformational analysis 
(Goldsmith et al. 2012). There are several open-source and commercial platforms 
available that provide a variety of QSAR models and algorithms based on two-
dimensional and three-dimensional structures to predict chemical-specific ADME 
properties capable of mediating absorption and distribution. Chemicals that can be 
systematically distributed may require further assessment regarding their potential 
to reach a specific molecular target, i.e. is the chemical able to penetrate the blood-
brain barrier to access brain acetylcholinesterase (AChE). Those chemicals that are 
capable of absorption and distribution can be considered of high priority and 
advanced in order to undergo additional quantitative screening. Although elimina-
tion is considered a vital component of the ADME process, evaluating it in a qualita-
tive manner is challenging, as it can be assumed that all chemicals should eventually 

J. Leonard et al.



251

leave the body at some time in one form or another. Rather, the quantitative relation-
ship between intake rates and elimination rates is much more critical in influencing 
chemical toxicity.

One of the pitfalls involved with the use of in vitro assays is the erroneous omis-
sion of chemicals that might appear to be inactive under assay conditions but that 
may resolve into active metabolites or that may be active under in vivo conditions 
(Eisenbrand et al. 2002; Kirkland et al. 2014), or inclusion of chemicals that are 
rapidly bio-inactivated and eliminated quickly. If metabolites are included in in 
vitro tests, it is because investigators recognize that these metabolites are known to 
cause adverse health effects, and the parent compounds of these metabolites are 
generally also known. Unfortunately, this scenario is more often the exception 
rather than the norm, especially with regards to chemicals that are newly developed 
and distributed to market. Identifying the multitudes of potential metabolites gener-
ated from a parent compound can prove arduous (Shlomi et al. 2008). Ideally, in 
vivo testing can aid in this identification, and the different metabolites can then be 
subjected to in vitro testing to verify whether they have the ability to induce a 
molecular response (NRC 2007). However, this testing approach requires a great 
deal of time and effort. Alternatively, QSAR-based modeling approaches can aid in 
evaluating the potential for parent compounds to become metabolized, as well as in 
predicting possible metabolites based on enzymatic activity and chemical structure 
(Dimelow et al. 2011; Andrade et al. 2014; Kirchmair et al. 2015). While exogenous 
metabolites are often detoxification products, some may be biologically active moi-
eties for particular molecular targets. Using fragment-based and molecular finger-
print analyses (Willett et al. 1998; Myint and Xie 2010) or chemotyping (Yang et al. 
2015), the functional groups that mediate in vitro activity for known active com-
pounds can be compared to those of predicted metabolites in order to determine 
which metabolites are most likely to also be active. These computational approaches 
can be accomplished in only a fraction of the time of that required for in vivo test-
ing, and with lower cost than that associated with in vitro testing.

The utility of the qualitative screening workflow was demonstrated through a 
case study involving prioritization of chemicals tested in the ToxCast™ in vitro 
human AChE inhibition assay (Phillips et al. 2016). Of the 146 chemicals tested 
within the assay, 30 were found to be active, and only 20 were retained as being high 
priority after querying for exposure, absorption, and distribution potential. In addi-
tion to identifying false positives, which are referred to as those active chemicals 
with the inability to reach an in vivo molecular target, similarity searching using 
molecular fingerprints and a similarity threshold score of 75% identified 22 false 
negatives. False negatives are referred to as those inactive chemicals that may be 
parent compounds of active metabolites, or that exhibit activity in vivo but not in 
vitro; in this case such false negatives were represented primarily by organophos-
phates and carbamates with weak in vivo AChE inhibition activity. Consideration of 
ADME behaviors and exposure can aid in the refinement of in vitro results through 
elimination of those chemicals that might otherwise have undergone additional test-
ing. In addition, consideration of the presence of false negatives in an assay can aid 
in identification of possible inactive progenitors of active metabolites, as well as 

12  Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework...



252

increase confidence in the resulting “active” or “inactive” hits in in vitro assays. For 
example, if fewer false negatives are identified, this may suggest that an assay per-
forms reasonably well.

This lower tier qualitative approach is meant to be conservative due to large 
uncertainties and data gaps regarding exposure and ADME information. As a result, 
the number of chemicals designated as “high priority and of possible concern” may 
remain larger than that required for sufficient allocation of funds and resources for 
more extensive testing. When some amount of exposure and ADME data are avail-
able, either through measurements or reliable predictions, these data can be 
integrated using higher tier quantitative analyses to estimate an in vivo concentra-
tion that may result in induction or inhibition of a molecular target as a basis for 
chemical prioritization. There are multiple options available when conducting quan-
titative analyses, and the integrity of data is likely to be the most critical driving 
factor in determining an appropriate approach. For example, when there is a lack of 
empirical data concerning exposure levels and ADME properties, in silico methods 
may be used to estimate these quantitative inputs. However, it should be recognized 
that large amounts of uncertainty might be present in such predictions. In such a 
case, it may be more appropriate to place chemicals into prioritization bins to allow 
room for error, and investigators are left with the decision to subject all, or only 
some, chemicals falling within the highest priority bin(s) to further testing.

In cases where data are abundant or sufficient to allow for parameterization and 
evaluation of PK/PBPK and PD models, chemicals can then be investigated on an 
individual basis to identify a point of departure capable of inducing in vivo toxicity 
(Filipsson et al. 2003; Davis et al. 2011) and margin of exposure (MOE). Such an 
approach, while being more low-throughput in nature when compared to relative 
ranking of chemicals in priority bins, offers a more objective comparison for deci-
sion makers. Chemical-specific data, even when not lacking, may still hold many 
inconsistencies due to the large variety in methodological procedures used in indi-
vidual research studies. In instances where data gaps and uncertainties exist, identi-
fication of parameters for which errors might hold a significant impact on the 
predictability of a quantitative model is critical in gauging whether model outputs 
are appropriate for higher tier risk assessment. Two possible higher tier approaches 
involving quantitative analyses were demonstrated in case examples that are further 
described below.

The first case study utilized a PK/PD model to prioritize 25 AChE inhibiting 
chemicals based on their in vitro potency levels, daily absorbed rates, and clearance 
rates (Leonard et al. 2016a). Specifically, a PK model consisting of (1) inputs of 
daily absorbed doses of active chemicals or inactive parents of active metabolites; 
(2) parameters that describe stoichiometric yield and metabolic rate of parental 
biotransformation to active metabolites; and (3) clearance rates of both parents and 
active metabolites, was used to estimate blood concentrations of active moieties at 
average plasma concentrations integrated over time (CAvg). The CAvg, together with 
in vitro potency data describing the concentration necessary to inhibit/induce 
molecular target activity by 50% (EC50) and maximum inhibitive/inductive activity 
(EMax), was then incorporated into a PD model to derive the in vivo toxicological 
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activity of a chemical at a given absorbed dose and to allow chemicals to be placed 
into discretized bins of increasing concern based on rankings of their activity. It was 
found that those chemicals with moderate to high potency and exposure were 
placed into higher priority bins, and that those chemicals that exhibited a very rapid 
clearance were placed in a lower priority bin, even if potency was high (Leonard 
et al. 2016a).

An additional component of this case study involved replacement of empirical 
data describing model parameters with predicted values to examine how the uncer-
tainty in these variables might affect the priority ranking. Compared to other 
variables, a higher number of bins were misassigned when daily absorbed doses 
were predicted (Leonard et  al. 2016a). This finding was unsurprising, as human 
exposure can vary widely due to the plethora of activities that may allow an indi-
vidual to be exposed to a specific chemical, and to what degree, leading to a large 
range of potential exposure levels for the population as a whole. In this case study, 
SHEDS-HT was used to estimate daily absorbed doses for the population, and the 
resulting distributions reflect the wide variety of consumer use patterns, including 
age-specific, gender-specific, and occupation-specific activities (Isaacs et al. 2014). 
Differences in individual exposure levels are also influenced by the number of 
products certain chemicals are found in, as well as the weight fractions of those 
chemicals in these products (Goldsmith et al. 2014).

While there is great value in coupling an AOP with lower-tier qualitative or quan-
titative approaches for priority ranking, further expansion of the utility of the AOP 
framework in HT risk assessment can be achieved using higher-tier computational 
models to compare external exposure concentrations and internal target doses capa-
ble of triggering an MIE (Groh et al. 2015). When chemical-specific and physiolog-
ical data is abundant, PBPK models can be developed to follow chemicals throughout 
a biological system based on their ADME properties (Meibohm and Derendorf 
1997). In this manner, in vivo chemical target tissue concentrations able to elicit an 
adverse biological response, as determined through in vitro testing, can be linked to 
external exposure levels that will result in such biologically-effective internal chem-
ical concentrations. Derivation of a MOE that is readily interpretable by risk 
assessors can be accomplished by comparing these biologically-effective external 
exposure levels to those levels likely to be encountered by the population (Fig. 12.6). 
This quantitative approach has been used to estimate external conazole fungicide 
concentrations with the ability to alter the xenobiotic CAR/PXR signaling pathway 
in vivo (Judson et al. 2011), though in this example, only the two ADME properties 
of intrinsic clearance and fraction of the chemical unbound to plasma proteins were 
considered.

In the second quantitative case study, an integrated framework was developed to 
utilize a PBPK/PD model, a HT exposure model, and in vitro potency data to derive 
MOEs for chemicals of varying ability to inhibit the thyroid peroxidase (TPO) 
enzyme (Leonard et al. 2016b). TPO plays a significant role in the synthesis of the 
thyroid hormones thyroxine and triiodothyronine through its conversion of iodide 
to iodine and by hydrogen peroxide-mediated oxidation (Jameson and Wheetman 
2001). Specifically in this case study, a PBPK model was used to estimate thyroid 
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chemical concentration, and this concentration was entered into a PD model, along 
with EC50 and EMax potency data, to determine the oral equivalent dose necessary to 
reduce the production and release of thyroid hormones by 10%, followed by reverse 
dosimetry to derive the external exposure level necessary to result in the interal 
biologically-effective tissue dose (ED10). The ED10 was then compared to external 
exposure levels predicted at the 50th and 95th population percentiles, using the 
SHEDS-HT model, to derive a MOE. This integrated framework can be applied to 
other AOPs using the most appropriate PBPK and PD models. For example, the 
PBPK model can be expanded to investigate AOs across multiple life stages, such 
as fetal exposure through placental transfer or infant exposure through contami-
nated breast milk. This case study also highlights the value of chemical-specific 
exposure and ADME considerations in regards to increasing confidence in HT risk 
assessment. For example, it was found that the ultraviolet absorber benzophe-
none-2 (Downs et al. 2013) exhibited the slowest estimated clearance and the third 
highest potency of the six tested TPO-inhibiting chemicals (Paul et al. 2014), lead-
ing to it having the lowest MOE. In addition, although the antimicrobial chemical 
triclosan exhibited only the 2nd lowest potency, its widespread abundance in a 
number of consumer and industrial products (Thompson et al. 2005) resulted in the 
highest predicted exposure level, leading to it having the 2nd lowest MOE (Leonard 
et al. 2016b).

One of the core objectives of the new twenty-first century toxicity testing para-
digm is to utilize HT in vitro data to investigate toxicological pathways resulting 

Fig. 12.6  Applying in vitro to in vivo extrapolation (IVIVE) and reverse dosimetry approaches 
during quantitative assessment of chemical risk. Such a workflow includes determining a biologi-
cal point of departure (POD), and external exposure concentration that will lead to that POD, by 
integrating in vitro dose-response data and physiological mechanisms (e.g., tissue volume and 
blood flow) into a pharmacokinetic (PK) or physiologically based pharmacokinetic (PBPK) and 
pharmacodynamic (PD) model. A prioritization of chemicals can then be achieved by comparing 
their PODs to known or predicted population exposure concentrations to estimate a margin of 
exposure
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from chemical exposure. However, interaction of a chemical with a molecular target 
does not necessarily lead to an MIE and subsequent AO. Rather, a chemical that is 
active in vitro must reach the in vivo target at the correct time and concentration 
necessary to induce the MIE, especially in regards to AOPs involved with develop-
mental toxicity. Evaluating the risk of a chemical based on its in vitro potency alone 
can certainly lead to erroneous conclusions in the risk assessment process, and con-
siderations of both exposure and ADME-related properties should enable managers 
to make better-informed and more confident decisions.

12.4  �From AOPs to Mode of Action (MOA): Considerations 
for the Use of AOPs

While AOPs were originally developed in the context of ecological risk assessment 
(Ankley et al. 2010), the mode of action (MOA) framework was developed to meet 
the needs of researchers and regulators seeking to elucidate the mechanistic pro-
cesses leading to adverse biological outcomes for human health risk assessment 
(Meek et al. 2003, 2014; Seed et al. 2005; Boobis et al. 2008). Many parallels exist 
between the AOP and MOA frameworks, especially reliance on the identification of 
KEs to describe the mechanistic basis for chemical toxicity when a complete 
description of the mechanism of action is lacking. Just as with AOPs, MOA analysis 
requires causal linkages to be established between upstream and downstream KEs. 
More recently, there has been a concerted effort to synchronize the AOP and MOA 
frameworks. As an example, the evaluation of weight of evidence and description of 
the quantitative understanding for AOPs is derived from the corresponding literature 
for MOA analysis (Meek et al. 2014).

The key difference between the AOP and MOA frameworks is the first principle 
of AOP development; that is, AOPs are chemical-agnostic. This means that while 
the perturbation will be from a chemical in most cases, no information specific to a 
single chemical is included in the definition of an AOP. For example, an AOP in 
which the MIE includes protein alkylation will necessarily be initiated by the bind-
ing of a chemical to the protein, but the AOP will be general for any chemical that 
can serve as an alkylating agent for that protein. AOPs are intended to inform HT 
toxicity testing where a large number of chemicals are screened across a battery of 
assays. In this case, the AOP must be designed such that positive results in a particu-
lar assay for any chemical can be interpreted in light of that AOP. MOA analysis, in 
contrast, is intended to directly inform decision makers regarding the risk of a spe-
cific chemical. In the latter case, some direct measure of toxicity for the chemical in 
question is required along with other chemical-specific information, such as metab-
olism, that might influence the activity of the chemical.

Accounting for these subtle nuances, the MOA framework can be thought of as 
an extension of the AOP framework, through consideration of chemical-specific 
toxicity and ADME information. Integration of the AOP and MOA frameworks 
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allows for the expansion of hazard assessment to dose-response assessment for spe-
cific chemicals (Mackay et al. 2014) through three critical components: (1) toxico-
kinetics of the chemical based on exposure and ADME information; (2) 
chemical-agnostic toxicodynamics as determined through the AOP; and (3) 
chemical-specific dose-response information derived from HT in vitro assays. 
Chemical-specific dose-response relationships in vivo can then be obtained using 
chemical-specific ADME information to map external exposure to target tissue 
dose, followed by investigating the interaction of the chemical with the molecular 
target and the ability of this interaction to lead to an adverse biological response. As 
an example, a model that integrates data from 18 estrogen receptor-related in vitro 
assays linked to an estrogen receptor signaling AOP has shown predictability that is 
comparable to previous in vivo assays for identifying estrogenic compounds 
(Browne et al. 2015; Judson et al. 2015). These dose-response estimates for specific 
chemicals from the in vitro assays can be combined with exposure predictions, 
along with PBPK/PD model-based predictions of human equivalent doses, to assess 
whether those chemicals can attain external exposure levels that might lead to 
adverse reproductive responses (Judson et al. 2014; Wetmore et al. 2015).

When assessing the utility of a particular AOP, it is important to consider its 
relevance to species, life stage, and sex (Villeneuve et al. 2014a; Groh et al. 2015). 
It should be noted that should such differences exist within or among species, only 
PD differences can be addressed using AOPs. Identification of KEs related to ubiq-
uitous AOs across species (e.g., aromatase inhibition leading to reproductive diffi-
culties in species with estrogen receptors) provides an opportunity for scientists to 
investigate species extrapolation for those KEs, such that toxicological studies 
including the downstream KEs can be performed with a limited set of representative 
species and extrapolated to the species of concern. In addition, human relevance/
species concordance may be determined based on available information for tested 
species using the MOA framework, as it allows for estimation of quantitative differ-
ences in PK properties and behaviors that might vary across species or life-stages 
(Meek et al. 2014). It should be recognized that establishing relevance among tested 
taxa with other species or humans requires identification of conserved compart-
ments and KEs across all biological levels of organization, including the initial 
molecular target, cellular mechanisms, and organ similarities.

If toxicity is implied for a specific chemical, in accordance with both a HT test 
and whole organism test, that chemical can likely be listed as being of concern. The 
HT assay evaluating, in essence, the same MOA as the whole organism test should 
not be held to a higher standard in terms of its linkage to the AO. For example, the 
concordance between an HT test and an in vivo test that relate to the same KE should 
be evaluated in light of the concordance among the results from the in vivo assays 
for that KE. If two tests address different KEs within an AOP, the overall confidence 
in the portion of the AOP that lies downstream of each KE must be considered. If 
one KE is upstream of a weak KER and the other is not, the confidence in the assay 
connected to the downstream KE will be higher for accurately predicting that 
AO. However, due consideration should be placed on the ability of the in vivo assay 
to include ADME characteristics in addition to the AOP-related concerns.
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Combining AOPs with existing chemical toxicity data can provide a structured 
framework for communicating toxicological outcomes to risk managers. For exam-
ple, QSAR-based in silico approaches can be coupled with existing in vitro toxicity 
data for structurally similar chemicals in order to predict the toxicity of chemicals 
that have not yet been tested, that lack of sufficient information for a decision, or 
that are under development (Patlewicz et  al. 2015; Alves et  al. 2015a, b). Such 
QSAR-based approaches can also allow in vivo toxicity to be predicted for chemi-
cals that are structurally similar to other chemicals that have undergone more exten-
sive in vivo toxicity testing. To determine whether additional chemical testing is 
needed, AOPs have been identified as a key component of Integrated Approaches to 
Testing and Assessment (IATA) strategies (Tollefsen et  al. 2014). Confidence in 
using read-across methods to design alternative testing strategies based on decision 
context, mechanistic information, structural similarities, and data availability for 
chemical groups is based on the understanding of toxicokinetics and toxicodynam-
ics for specific chemicals and can be increased with supporting in vitro data 
(Patlewicz et al. 2015). When investigators are able to confidently predict in vivo 
behaviors of specific chemicals tested through HT in vitro means, using sufficient 
data obtained from MOA analysis, the synergy between the AOP and MOA frame-
works becomes obvious.

12.5  �Conclusions

A broad coverage of toxicological space is required for AOPs to support the risk 
assessment of chemicals. Investing effort on defining many AOPs and forgoing the 
full evaluation of each will provide this broad coverage. Cases in which the AOPs 
are determined to lack sufficient evidence to support a given decision can then be 
used to prioritize those AOPs for further evaluation. Fortunately, as AOPs continue 
to evolve, they take advantage of the incorporation of emerging technologies and 
computational resources that allow for rapid development and that aid in better 
understanding of the pathways involved in AOs of interest.

Though AOPs are chemical-independent by nature, when integrating informa-
tion related to characteristics that influence chemical toxicity, such as ADME-
related properties and exposure, results from HT in vitro assays can be refined to 
provide greater confidence for decision makers. Incorporation of ADME behaviors 
also enables the AOP framework to be extended to instances in which data avail-
ability allows for establishing linkages between chemical-specific dose-responses 
and external exposure levels, or for determination of in silico predicted toxicity. The 
contents presented in this chapter have only just begun to touch upon the challenges 
faced during AOP development, along with the opportunities and advancements the 
AOP framework can provide to the emerging field of toxicity testing in the twenty-
first century.
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Abstract  A quantitative adverse outcome pathway (qAOP) is a mathematical/
computational model that represents the dynamic processes linking a molecular ini-
tiating event with an adverse outcome. A unique feature that distinguishes a qAOP 
from other biologically based mathematical models is the prediction of key events 
that are part of the qualitative adverse outcome pathway and are measurable experi-
mentally. This chapter reviews the evolution of qAOPs, describes methods to develop 
qAOPs, and provides two case study examples focused on reproduction in fish.

13.1  �Introduction

The concept of an Adverse Outcome Pathway (AOP) gained attention in 2009 and 
was the focus of a 2009 SETAC Pellston Workshop entitled, “A Vision and Strategy 
for Predictive Ecotoxicology in the 21st Century: Defining Adverse Outcome 
Pathways Associated with Ecological Risk.” As described by Ankley et al. (2010), 
AOPs provide a framework for organizing information about a molecular initiating 
event (MIE) and the key events (KEs) that lead to an outcome of interest for risk 
assessment. Based upon available scientific data, AOPs provide a qualitative/con-
ceptual description of the sequence of events leading to an adverse outcome and 
guides toxicity testing strategies, particularly in the development of in vitro assays. 
However, a large component of risk assessment relies on quantitative analyses that 
must address a wide variety of toxicants, exposure concentrations, and their effects 
upon wildlife species in a predictive fashion. Thus, an essential extension of an AOP 
for quantitative risk assessment is the development of mathematical/computational 
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model(s) that represent the dynamic processes in an AOP, which we refer to as a 
quantitative AOP (qAOP).

There are now many examples in the toxicological literature of how quantitative 
models can aid the risk assessment process that include prediction of (i) toxicant 
exposure and disposition within the body (pharmaco−/toxicokinetics), (ii) specific 
toxic effects (pharmaco−/toxicodynamics) or interactions associated with the MIE, 
and (iii) adverse responses at higher biological scales (Nichols et al. 1991; Krauss 
et al. 2012; Sturla et al. 2014). Quantitative models provide specific, unambiguous 
predictions of toxicant effect(s) and/or changes in model variables that are linked to 
apical endpoints (e.g. 17β-estradiol, vitellogenin (VTG), and reproduction). By 
doing so, quantitative models also permit critical evaluation of hypotheses and 
assumptions associated with an AOP. This may identify knowledge gaps that exist 
in the system being modeled and guide future experimentation. Quantitative models 
have been shown to be valuable because they can organize experimental facts and 
assumptions in a logical manner, explore the implications of change on model 
parameters through simulations, estimate parameter values that are difficult or 
impossible to determine experimentally and prioritize research needs (Andersen 
et al. 1995). While valuable in their own right, existing models typically represent 
one or two scales of biological organization and thus cannot represent an entire AOP 
without modification.

In this chapter, we describe methods and a few case studies of qAOPs that have 
been developed since our first examination of how one could model a known AOP 
at the Pellston Workshop in 2009 (Watanabe et al. 2011). Our working definition of 
a qAOP is that it mathematically describes the processes of an AOP from the MIE 
to the adverse outcome. Prior to qAOP model development an established qualita-
tive AOP is needed to identify the MIE, KEs, and the outcome of interest. By defini-
tion, KEs are measureable experimentally and thus are natural endpoints for qAOP 
model prediction. In addition, a qAOP model will be able to predict many other 
endpoints for which model evaluation data may be available, but these endpoints 
may not necessarily be identified as KEs. To date, two approaches have been used 
to develop qAOP models: one that links existing biologically based models by tak-
ing output from one model as input into another model; and ab initio model devel-
opment. However, the development of qAOP models is just beginning and as our 
understanding of biological processes improves, computer technology advances, 
and AOP networks are identified, methods of model development will also change 
to keep pace with technology.

13.2  �Developing Quantitative Adverse Outcome Pathways

An AOP is by definition a multiscale process that seeks to causally link changes at 
lower levels of biological organization with adverse effects at higher levels such as 
individuals and populations. This creates a challenge for qAOP model development 
for a number of reasons, but perhaps most notably are the temporal differences 
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among biological scales. For example, many sub-cellular processes such as receptor 
binding, signal transduction and enzyme kinetics operate at time scales of seconds 
(or less) to minutes, while higher-level processes such as pharmacokinetic proper-
ties of hormones occur over hours-days or weeks. Tissue growth and development 
can occur over a period of months while other organismal processes associated with 
maturation and aging may take years. Further increasing biological scale, population-
level processes operate at generational time scales, which can be many tens-to-
hundreds of years. Thus, linking models of different scales requires careful thought 
regarding the type of output from one scale and how it will subsequently be used as 
input for a higher scale. A simple way to link biological scales and account for time 
differences is to take a hierarchical approach, with output from lower scales sequen-
tially passed on to the next scale (Cilfone et al. 2015). For example, a simple multi-
scale model may be composed of a cell or tissue-based compartment (timescale in 
minutes or hours) with a single predicted output that is used as an input parameter 
for a model that predicts a whole-animal level process. This approach has been used 
to relate a biochemical biomarker response with an adverse effect such as lethality. 
A good example of this approach is the model developed by Wu et al. (2015) to 
describe the relationship of fish gill Na+/K+ ATPase activity with metal induced 
toxicity. In their model, predicted gill Na+/K+ ATPase activity is used to estimate a 
“damage” parameter that is linked to a model of acute toxicity. The hierarchical 
approach is initially attractive as it follows the organization of most qualitative 
AOPs. However, strict hierarchical organization is limiting because the exchange of 
information typically needs to occur in both directions across scales (Cilfone et al. 
2015). From an AOP perspective, this reflects the potential for time-dependent 
changes at higher scales to alter the behavior or output of lower scales. Examples of 
where this may occur would be hormonal feedback mechanisms and adaptation or 
acquired tolerance to a toxicant during long-term exposures.

Another consideration in multiscale AOP modeling is the level of understanding 
or detail in knowledge regarding a specific biological scale. For example, the ability 
to interrogate whole genome responses to toxicant exposure has provided an increas-
ingly thorough understanding of cellular processes that may be altered. This has 
permitted development of highly complex cellular models of gene networks that can 
describe processes or key events at a relatively fine degree of resolution (Le Novere 
2015). Quantitative models at higher levels of biological scale are typically “coarser” 
and do not describe processes with the same level of resolution. These differences 
in resolution may cause problems with parameter estimation, especially in situa-
tions where significant data gaps exist about processes contributing to a key event. 
In these situations the modeler may be forced to use data collected at higher biologi-
cal scales (e.g. whole organism, apical endpoints) to guide parameter estimation at 
lower biological scales. This is sometimes referred to as disaggregation, because 
values measured at higher scales typically reflect the interaction of many factors 
occurring at lower scales and therefore need to be teased apart, which can introduce 
greater error in their estimates (Yang 2013). From a qAOP perspective, the ideal 
situation is to have the flow of information (output from one scale) proceed from 
finer to coarser scales (Yang 2013). This tends to promote a bottom-up approach in 
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AOP development that would begin with a detailed quantitative description of the 
molecular initiating event and its effect at the cellular level. However, both middle-
out (e.g. tissue, organ system level response data) (Groh et al. 2015) and top-down 
approaches (e.g. apical endpoint data) to AOP development are to be expected 
because for many toxicants, knowledge about the MIE may be limited and toxicity 
data may only be available from higher biological scales. In these latter cases, the 
modeler may be forced to simplify quantitative descriptions at lower scales due to 
difficulties in accurately estimating model parameters.

The approaches used for linking existing or newly developed models require the 
modeler to first answer several important questions. What data are available to 
inform model development and parameterization? How many levels of organiza-
tion (scales) are needed for the AOP? Will it be necessary to include large transi-
tions in scale (e.g. gene expression to apical endpoint)? How much detail (number 
of equations and parameters) can be included within a scale? Answers to these 
questions will emerge from the available toxicity data and knowledge about the 
biology of the organism. It is helpful to keep in mind that all models reflect deliber-
ate choices made to include or exclude reactions or processes. There will always be 
a need to manage model complexity by seeking to limit the number of equations 
and parameters to those considered essential for model performance, and it is com-
mon to lump discrete processes into a single or few parameters to manage model 
complexity. The challenge to the qAOP modeler is to identify where and how best 
to lump parameters. There is no standardized or approved method for doing this. 
There are various statistical tools that can help guide when to increase or decrease 
model complexity (Yamaoka et al. 1978) along with parameter sensitivity analysis 
methods that can help determine whether a model parameter or groups of parame-
ters actually improves model performance. However, decisions on how many 
parameters to include or exclude in a model is primarily based on available data, 
biological knowledge, anticipated use of the model and prior modeling experience. 
In the next sections, we discuss approaches used to create a qAOP that incorporates 
currently available mathematical models and an AOP that requires new models to 
be developed.

13.2.1  �Incorporating Existing Models at Different Biological 
Scales to Create a qAOP

One approach to develop a qAOP is to maximize existing resources by utilizing 
quantitative (e.g., mathematical, statistical, and/or computational) models devel-
oped for different processes within an AOP. These models may represent one KE 
relationship or span multiple KEs and relationships. Though an AOP is chemical 
agnostic, a qAOP requires specification of the chemical(s) of interest and the spe-
cies to which the qAOP applies. Thus, to adapt an existing model for use in a 
qAOP, model parameters must be known for the chemical and species of interest, 
which includes fixed parameters in the model that may need adjustment because of 
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interspecies or chemical differences, and user-defined input parameters that are set 
by the user for a specific application. The following summarizes the main steps in 
formulating a qAOP model.

	1.	 First obtain a qualitative AOP description from the AOP Wiki (https://aopkb.org/
aopwiki/index.php/Main_Page). The AOP Wiki is part of the OECD Adverse 
Outcome Pathway Knowledge Base and serves as a repository for AOPs and 
their supporting evidence. If a new (q)AOP is being created, consult the AOP 
Wiki to see how these are formulated and organized.

	2.	 Once an AOP is selected, a literature review should be performed to find any 
quantitative models that have been developed for different parts of the AOP.

	3.	 The existing models should be evaluated for applicability in the qAOP model. 
For example, a model may exist for a KE relationship in a related species, but 
required input data or parameter values may not be known for the species of 
interest. In addition, model predictions need to be compatible or usable as input 
into the following model that represents a higher level of biological organization. 
Adjustments may be needed to translate units of measure, or time intervals at 
which predictions are produced. Finally, differences in computer platforms and 
software licensing requirements may need to be addressed. Thus, when utilizing 
existing models, collaboration between model developers is helpful.

	(a)	 When no model exists for one or more KE relationships, the qAOP devel-
oper will need to develop the KE relationship(s). KEs, by definition, are 
measurable experimentally. Thus data, if not already available, should be 
obtained in order to develop the KE relationship(s) that is/are needed.

	4.	 Once a set of models representing the AOP are linked in a qAOP model, evalua-
tion of the qAOP model predictions with independent data sets should be per-
formed. If each existing model was developed for the species of interest, and was 
independently evaluated, then it may not be necessary to perform an evaluation 
of the output from the qAOP, though performing spot checks to ensure that the 
links between models are working properly is always advisable.

13.2.2  �Recent Examples of qAOP Model Development

In this section, three examples from the recent scientific literature of qAOP develop-
ment are described. These three examples illustrate some of the challenges involved 
in developing qAOP’s for eco-toxicologically relevant species, which require link-
ing data and output across several biological scales. For many species of interest, 
the available biological and toxicological data may be limited to one or two scales. 
Incorporating complex mathematical descriptions for each scale may be inappropri-
ate at present and simpler, more empirical approaches may be necessary to link 
output between biological scales. A good example of this approach is presented in a 
study by Miller et al. (2015) who focused on the effects of pulp mill effluents on 
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reproduction in a population of white sucker (Catostomus commersoni). Many 
years of field monitoring had indicated an association between exposure to effluents 
and delays in time to maturation and decreased fecundity. An AOP was developed 
that considered inhibition of ovarian steroidogenesis as the initiating event, which 
was assumed to be associated with circulating levels of testosterone (Miller et al. 
2015). The authors then developed an empirically-derived equation that was used to 
relate circulating levels of testosterone with fecundity and the relative proportion of 
breeding females in the population (Miller et al. 2015). The predicted effects on 
reproduction were then used as inputs into a density-dependent population model of 
white suckers to predict population level impacts of effluent exposure. In this exam-
ple, a tissue level measurement (circulating sex hormone) was used as the starting 
point for the qAOP. This decision was based on the availability of testosterone mea-
surements, which were routinely made during monitoring. It also reflects a compro-
mise made by the authors in that more specific information on the effects of effluent 
exposure on sex steroid synthesis was not available. Thus, extending the model to a 
lower biological scale, such as the ovarian follicle and a more explicit description of 
sex steroid synthesis would have required additional equations and parameters that 
would have been difficult to estimate.

Another example of qAOP development is described by Ananthasubramaniam 
et al. (2015) who worked with the freshwater invertebrate Daphnia magna. In this 
study, a highly detailed bioenergetic model of Daphnia populations was developed 
from laboratory data and included a large number of parameters describing many 
physiological processes associated with feeding, growth, development and repro-
duction. A sensitivity analysis of these parameters was performed to determine how 
changes in their values affected the predicted lifetime reproduction and long-term 
growth rate of the population. Other experiments focused on gene expression 
changes in Daphnia exposed to a suite of model toxicants. Toxicant associated gene 
expression changes were then mapped to various physiological processes, which 
were linked to parameters describing these processes in the population model. The 
authors then suggest that relative changes in gene expression can be used to adjust 
the corresponding model parameters to predict exposure impacts on Daphnia popu-
lations (Ananthasubramaniam et  al. 2015). Here, gene expression changes are 
directly being used to guide parameterization of a population-level model. However 
the large transition in model scales (primarily sub-cellular to population level) 
reduces the diagnostic power of the model as changes in fecundity were typically 
associated with a generalized pattern of altered gene expression. The authors 
acknowledged that a more mechanistic understanding of how subsets of genes influ-
ence daphnia physiology would likely improve specificity of model predictions for 
diverse toxicants.

In a final example, a qAOP was developed for an aquatic plant Myriophyllum 
spicatum exposed to a photosynthesis inhibitor (Riedl et al. 2015). Detailed metab-
olomic analysis was performed on leaf extracts to derive a dose-specific “meta-
bolic effect level index”, which condenses the observed changes in concentration 
of various small molecules (Riedl et  al. 2015). Other endpoints measured were 
traditional plant apical endpoints including main shoot length, dry weight change 

I.R. Schultz and K.H. Watanabe



269

and photosynthetic efficiency. A statistical model was then developed to relate 
changes in the metabolic effect level index with the apical endpoints (Riedl et al. 
2015). Thus, tissue level changes (in the metabolome) were used to estimate whole 
organism level effects (growth). One challenge with this approach noted by the 
authors and associated with expressing metabolomic responses as an index, was 
that it tends to average all changes and assume that all discrete responses contrib-
ute equally to the adverse outcome (Riedl et al. 2015). The authors suggest future 
improvements in their qAOP would be to incorporate more specificity of the 
metabolomic response, recognizing that some metabolites are more closely associ-
ated with a specific biochemical pathway that may have more or less contribution 
to apical endpoint responses.

The recent interest in developing qAOP models has tended to focus on new 
model development. This will likely change over time as more models are devel-
oped, providing more options for the aspiring qAOP modeler. Clearly, there are 
tradeoffs to any qAOP model development, whether the modeler relies on linking 
existing models or building a new model. The decision process for deciding whether 
the advantages of one approach outweigh the disadvantages depends in part upon 
the intended use of the qAOP model. Indeed, maximizing all available resources 
and data should help to reduce the resources needed to develop the qAOP. If the 
existing models have been evaluated independently, a certain amount of confidence 
can be imparted upon the model predictions. However, translation of model output 
to be used as input into a higher-level model requires care and diligence if manually 
done, or slight modifications to the model code may be needed to automate the pro-
cess. These steps require time and effort. Having one quantitative model that spans 
the entire AOP eliminates any concerns about compatible units of measure between 
models or computer platform differences. Examples of both approaches are 
described in the next section that focuses on two case studies.

13.3  �Case Studies: Fish Reproduction

Reproduction is one of several core apical endpoints that a qAOP model may need 
to consider or predict because it can be translated to population outcomes. Over the 
past 25 years, public concerns over endocrine disruption in wild fish populations 
have spurred extensive research on the endocrinology of the fish reproductive sys-
tem. Endocrine control of reproduction in fishes is functionally similar to other 
vertebrates and consists of the hypothalamus, the pituitary, the gonads and for fishes 
and other egg-laying vertebrates the liver, and is often referred to as the HPGL axis. 
Communication between these tissues occurs via the blood and specialized neuro-
secretory fibers from the hypothalamus to the pituitary. A minimum of five hor-
mones plays an essential role in sexual maturation starting with production of 
gonadotropin-releasing hormone (GnRH) in the hypothalamus. The GnRH is sent 
to the pituitary where it stimulates the synthesis of the gonadotropins (GTHs): fol-
licle-stimulating hormone (FSH) and luteinizing hormone (LH). In females, FSH 
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stimulates growth of the ovarian follicles, each of which contains a single oocyte 
(immature egg). The LH is involved in maturation and triggering ovulation. 
Estradiol-17β (E2) in females, 11-ketotestosterone in males, along with progester-
ones such as 17,20β-dihydroxy-4-pregnen-3-one (DHP), promote gonad growth 
and induce gamete maturation, respectively. These hormones interact with each 
other through positive and negative feedback creating an intricate network of path-
ways that ultimately synchronize processes culminating in the timely production of 
mature eggs or sperm. In females, the liver is important because it synthesizes 
VTG, which is induced by E2 and is an essential component of the growing oocytes. 
Recent efforts to develop mathematical descriptions of fish reproduction have been 
encouraged by similar efforts made for farm animals and humans (Pring et al. 2012; 
Roblitz et al. 2013) and illustrate several of the challenges associated with qAOP 
model development such as incorporating time delays associated with different bio-
logical scales, the need to incorporate multiple sources of in  vivo and in  vitro 
derived data and to extend organism-level models to the population level. This sec-
tion will present two case studies describing HPGL model development in different 
types of fishes to highlight some of the approaches used to overcome these model-
ing challenges.

13.3.1  �Ab initio qAOP Model: HPGL Model Development 
and Use with qAOP in Rainbow Trout (Oncorhynchus 
mykiss)

Reproduction in most fish species including those important to regulatory testing 
and environmental health research, can be divided into two large groups: group 
synchronous spawners (a single large clutch of oocytes develop synchronously for 
one spawning event) or asynchronous spawners (several small clutches are spawned 
at different times during a reproductive season; fathead minnow, zebrafish, anchovy). 
Among synchronous spawning fishes such as the salmonids (trout, salmon, chars), 
some exhibit semelparity where death occurs after a single reproductive event, 
while others exhibit iteroparity, where repeated spawning events can occur over 
many years. Rainbow trout (Oncorhynchus mykiss) and other salmonid species have 
a long history of experimental use including many toxicological studies that provide 
a rich background of biological knowledge (Thorgaard et  al. 2002). In addition, 
trout and salmon are important aquaculture species with 2013 estimates of global 
production exceeding 3,000,000 tons (FAO, http://www.fao.org/fishery/cultured-
species/search/en). Thus, there is strong interest in developing a mathematical 
model of the salmonid reproductive axis to form a core of qAOP models for repro-
ductive effects of chemical and physical stressors.

An early mathematical model of female salmon reproduction focused on the 
semelparous coho salmon (Oncorhynchus kisutch; (Kim et al. 2006)). One advantage 
of working with semelparous species is that gamete maturation is highly synchronous 
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(e.g. a much larger proportion of oocytes and spermatozoa exist in identical states 
of development throughout the cycle; (Campbell et  al. 2003; Luckenbach et  al. 
2008)). This facilitates a simpler description of gamete growth, which in the Kim 
et al. (2006) study was treated as a sequential series of five steps. All oocytes were 
assumed to be in each step or stage, with an empirically derived duration (days) 
before all oocytes “jumped” to the next stage. This approach also permits segrega-
tion of GTH activity, which was used to arbitrarily restrict LH release until E2 
declines during a narrowly defined time period preceding final oocyte maturation 
(FOM) in the model. Another simplification was to treat GnRH as a type of “on” or 
“off” switch; GnRH was only on (at a fixed level) between days 75 and 250 of the 
reproductive cycle where it could stimulate FSH and LH synthesis. These model 
features appeared biologically appropriate for salmon where LH is released from 
the pituitary as a single massive surge prior to ovulation and FSH release is greatly 
reduced during the few months preceding spawning. This model also did not include 
an explicit description of vitellogenesis and assumed that impacts associated with 
E2 synthesis directly reflected effects on oocyte maturation and spawning. However, 
as efforts were begun to adapt this model to the iteroparous rainbow trout, it became 
clear that a more detailed description of these processes including vitellogenesis, 
was necessary.

Rainbow trout exhibit group synchronous reproduction with spawning occurring 
annually once sexual maturity is attained, although spawning sometimes occurs 
every 2 years depending on environmental conditions (Crim et al. 1992; Seamons 
and Quinn 2010). The major environmental cue for the seasonality of the trout 
reproductive cycle is annual photoperiod changes. Although trout are synchronous, 
it is known that growth and development among individual oocytes can vary sub-
stantially during much of the reproductive cycle (Tyler et al. 1990). Thus, it was felt 
that the HPGL model needed to include a capacity to allow sub-populations of 
oocytes to exist within the ovary, particularly during the time period of active vitel-
logenesis when size variance among oocytes is most pronounced (Tyler et al. 1990). 
Also, as a consequence of spawning multiple times in their lifetime, model assump-
tions about GnRH and FSH production needed to be updated along with the mecha-
nism of releasing LH from the pituitary.

To make the model development process more tractable, it was decided to ini-
tially separate the description of vitellogenesis from the rest of the model. This can 
easily be done because the primary external input to VTG production by the liver is 
blood plasma E2 while the output is VTG. This permits the vitellogenesis model to 
be viewed as a sub-model and incorporate as much biological detail as considered 
necessary to describe many of the individual steps involved in VTG synthesis and 
secretion. This approach was taken in the VTG model described by Sundling et al. 
(2014). Their VTG model exemplifies several of the approaches used to describe 
gene expression and protein synthesis with the added feature that the protein (VTG) 
is actively secreted into the bloodstream. A common modeling approach to describe 
the synthesis of a gene product (e.g. hormone or VTG) is to assume production rate 
is the product of a biosignal (e.g. such as mRNA) and a proportionality constant 
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that relates protein production rate to the corresponding biosignal. This approach is 
often appropriate because for example, the synthesis of a protein such as FSH is 
proportional to the amount of its mRNA in the pituitary. Time delays can be incor-
porated to account for the lag time between biosignal appearance and the initial 
appearance of hormone or protein in the bloodstream. More complex relationships 
between biosignal and the rate of hormone production, have been described and 
can be incorporated as needed (Jusko and Ko 1994). With regard to VTG synthesis, 
the Sundling et al. (2014) model assumes synthesis is regulated by estrogen recep-
tors (ER), which when bound by E2 activate transcription of genes associated with 
VTG causing formation of VTG mRNA and protein. The model assumes E2 revers-
ibly binds to its receptor with rate constants used to characterize the binding of E2 
to ER. The E2-ER complex triggers synthesis VTG mRNA, which actively pro-
duces VTG inside the liver. An amplification factor is included in the equation 
describing VTG synthesis, which is needed to account for observations that one 
mRNA molecule may be translated many times. From the liver, VTG is transferred 
into plasma, where the plasma kinetics of secreted VTG is described using a clear-
ance-volume pharmacokinetic model similar to that described in Schultz et  al. 
(Schultz et al. 2001).

The trout VTG model has recently been incorporated into a second generation 
HPG model to continuously predict annual spawning in female rainbow trout 
(Gillies et al. 2016). In addition to continuously describing GnRH production, the 
revised model explicitly describes oocyte size, which is used to define growth and 
to differentiate the developmental stages of maturation. The model also permits 
multiple subpopulations of oocytes to exist in the ovary to make it more biologi-
cally consistent. A conceptual view of the second-generation model is shown in 
Fig. 13.1 (Left).

One application for the female trout HPGL model is for qAOP evaluation of toxi-
cants using in vitro derived data. The HPGL model is not exclusively linked with 
one qAOP model or toxic mode of action, rather it is a quantitative tool to convert 
experimentally measured effects on hormone synthesis or action in target tissues 
such as the pituitary, ovary or liver into predicted effects on oocyte growth and ovu-
lation. Reverse toxicokinetic modeling approaches would then be used to estimate 
environmental exposures needed to cause predicted adverse target organ concentra-
tions. Predicted effects on oocyte growth or maturation would also need to be used 
as input into a population model. This overall approach offers advantages particu-
larly when only in vitro data are available, as many model parameters such as those 
associated with gonadotropin synthesis and secretion (parameters mFSH, mLH, 
FSH, LH), ovarian synthesis of estrogen and 17,20 DHP (parameters for basal E2 
and FSH stimulated synthesis and DHP) and estrogen induced synthesis of VTG 
(e.g. vtg mRNA, VTG) can be estimated from cell culture methods. Thus, multiple 
toxic modes of action and target tissues (direct effects on both the pituitary and 
ovary for example) can be accommodated. An example of model simulations is 
shown in Fig. 13.1 (right) and a summary of the overall qAOP process described is 
shown in Fig. 13.2.
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13.3.2  �Linking Existing Models to Create a qAOP Model: 
Aromatase Inhibition in Fathead Minnow (Pimephales 
promelas)

An AOP for aromatase inhibition was described by Ankley et  al. (2010) and is 
available in the AOP Wiki (https://aopwiki.org/; AOP:25). Figure 13.3 depicts the 
AOP and Watanabe et al. (2014) provided an overview of qAOP development for 
aromatase inhibition in fathead minnow, which is described in greater detail here. 
Independently, models that simulate different KEs in the AOP were developed for 
the hypothalamic-pituitary-gonadal axis (HPG) (Mayo et  al. 2012; Cheng et  al. 
2016); oocyte growth dynamics (Li et al. 2011; Watanabe et al. 2016); and popula-
tion dynamics (Miller and Ankley 2004). The HPG axis model includes the MIE, 
inhibition of the enzyme aromatase, and predicts changes in steroid hormones 
(e.g., 17β-estradiol, testosterone) and plasma VTG. The oocyte growth dynamics 
model uses plasma VTG concentration as input, and predicts oocyte growth and 
daily spawning. Predictions of spawning as a function of time were then input into 
the population dynamics model to predict future trajectories. Through a 

Fig. 13.1  (Left) Conceptual description of a second-generation HPGL model for female trout. The 
model is used to extrapolate results from select in vitro studies of tissues comprising the reproduc-
tive axis. HPGL model simulations provide estimates of target tissue levels that would be consid-
ered adverse (e.g. LOEC, AC50 or other internal dose metric) towards successful reproduction. 
The corresponding environmental exposure levels needed to achieve the unwanted internal dose 
metric is estimated using toxicokinetic models. Sources of input data for model parametrization 
can come from in vivo and in vitro studies. The (right) panel shows an example of changes in E2 
production and oocyte growth during a hypothetical exposure to the pharmaceutical fluoxetine. 
Model simulations were performed assuming the rate of E2 synthesis decreased by 40%
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Fig. 13.2  Generalized overview of quantitative AOP using the trout HPGL model

Fig. 13.3  Overview of qAOP development for aromatase inhibition in fathead minnow
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collaborative effort of model developers and experimentalists, the three models 
were linked to construct a qAOP for aromatase inhibition in female fathead min-
nows as shown in Fig. 13.4.

Fadrozole hydrochloride (Fad, CASRN 102676-31-3) is a highly specific, revers-
ible inhibitor of the aromatase enzyme that was used in Japan to treat breast cancer 
(Sainsbury 2004). In a 21-day reproduction study, Ankley et al. (2002) exposed fat-
head minnows to 2, 10, or 50 μg Fad/L in a group spawning design study. For each 
treatment concentration, two HPG axis models where run to predict plasma VTG 
concentrations as a function of time (Fig. 13.5a, b).

Fig. 13.4  Quantitative AOP for aromatase inhibition formed by linking previously developed 
computational models that represent different scales

Fig. 13.5  (a, b) Hypothalamus-pituitary-gonadal axis model predictions of plasma vitellogenin 
concentrations vs. time (Reproduced from Watanabe et  al. (2014). (a) Mayo et  al. (2012); (b) 
Cheng et al. (2016))
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The plasma VTG concentrations were used as input into a modified version of 
the oocyte growth dynamics model (Watanabe et al. 2016) that accepts time varying 
plasma VTG concentrations. Three groups of four fathead minnows (12 fish total) 
were simulated to reproduce the experimental design, then the results were used as 
input into the population dynamics model. Figure  13.6 shows average fecundity 
calculated from the oocyte growth dynamics model predictions. Figure 13.6a does 
not show results for the 10 or 50 μg Fad/L treatments because the Mayo et al. (2012) 
model predicted plasma VTG concentrations essentially equal to zero (see 
Fig. 13.5a). The predicted average fecundity values are plotted with the experimen-
tally observed average fecundity from Ankley et al. (2002), and shows good agree-
ment for control (unexposed) fish. The 2 μg Fad/L treatment predictions from the 
Mayo et al. model yielded average fecundity values higher than results from the 
Cheng et al. model, and on average higher than the experimentally observed values. 
This results from the higher plasma VTG concentration profile predicted by the 
Mayo et al. model.

Mean cumulative fecundity (average cumulative fecundity for three groups vs 
time) over 21  days was used to inform recruitment in the population dynamics 
model. Figure 13.7 show changes in population size vs. time (over 20 years). A 
dramatic difference in population trajectory is predicted for the 2 μg Fad/L treat-
ment due to the different HPG axis models. Yet, both HPG axis models did a reason-
ably good job of predicting plasma VTG measured at the end of the 21-day 
reproduction study, and average fecundity values calculated from the oocyte growth 
dynamics model matched experimentally observed values well with a slightly better 
“fit” obtained using the Cheng et al. model plasma VTG concentrations.

While it may appear contradictory to have two different HPG axis models that 
predict plasma VTG concentrations there is value in comparing predictions from 
different models. A computational model cannot represent all the mechanistic pro-
cesses within biological systems – in part because of a lack of knowledge, but also 
due to computational limitations – and different approaches to modeling a system 

Fig. 13.6  (a, b) Predicted average fecundity calculated from oocyte growth dynamics model sim-
ulation results (Reproduced from Watanabe et al. (2014). Plasma vitellogenin concentrations as a 
function of time predicted by two HPG axis models were used as input: (a) the Mayo et al. (2012) 
model; (b) Cheng et al. (2016) model)
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are valid as long as they fit the available data. When these models are used to make 
predictions that were not constrained by measured data, differences in model for-
mulation can produce vastly different model predictions. These case studies illus-
trate how existing models can be used to create qAOP models, and some of the 
challenges that arise.

13.4  �Summary

This chapter describes methods to create qAOP models for a variety of adverse 
outcomes and species. Two approaches to qAOP model development were high-
lighted in the Case Studies section: ab initio model development and linking exist-
ing models that span different KEs in an AOP. Both approaches are valid and using 
one or the other depends upon the research question or application, e.g., risk 
assessment, and available resources. Research applications of qAOP models 
include testing hypotheses about biological processes and how an adverse outcome 
changes, facilitating experimental design, and predicting outcomes for different 
levels of molecular initiation. qAOP models can also support ecological risk 
assessments by predicting adverse outcomes from diverse sources of data includ-
ing those made from in vitro assay measurements. To our knowledge, none of the 
models described here have been used in a formal ecological risk assessment. 
However, the AOP concept is still relatively new and the need for qAOP models is 
slowly being recognized. A similar process occurred for mammalian biologically 
based dose-response models and human risk assessments. There was a delay of 
many years between the description of models such as physiologically based phar-
macokinetic models and their use in risk assessments (Andersen et al. 1987; Friess 
1987; Bois et al. 1989; Clewell et al. 1995). In future years, we expect many differ-
ent types of qAOP models to be developed and become essential tools for ecologi-
cal risk assessments.

Fig. 13.7  (a, b) Population effects predicted from changes in fecundity (Reproduced from 
Watanabe et al. (2014). Fecundity predictions from oocyte growth dynamics model using plasma 
vitellogenin predicted by: (a) Mayo et al. (2012) model; and (b) Cheng et al. (2016) model)
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Abstract  Ecological risk assessment quantifies the likelihood of undesirable 
impacts of stressors, primarily at high levels of biological organization. Data used 
to inform ecological risk assessments come primarily from tests on individual 
organisms or from suborganismal studies, indicating a disconnect between primary 
data and protection goals. We know how to relate individual responses to population 
dynamics using individual-based models, and there are emerging ideas on how to 
make connections to ecosystem services. However, there is no established method-
ology to connect effects seen at higher levels of biological organization with subor-
ganismal dynamics, despite progress made in identifying Adverse Outcome 
Pathways (AOPs) that link molecular initiating events to ecologically relevant key 
events. This chapter is a product of a working group at the National Center for 
Mathematical and Biological Synthesis (NIMBioS) that assessed the feasibility of 
using dynamic energy budget (DEB) models of individual organisms as a “pivot” 
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connecting suborganismal processes to higher level ecological processes. AOP 
models quantify explicit molecular, cellular or organ-level processes, but do not 
offer a route to linking sub-organismal damage to adverse effects on individual 
growth, reproduction, and survival, which can be propagated to the population level 
through individual-based models. DEB models describe these processes, but use 
abstract variables with undetermined connections to suborganismal biology. We 
propose linking DEB and quantitative AOP models by interpreting AOP key events 
as measures of damage-inducing processes in a DEB model. Here, we present a 
conceptual model for linking AOPs to DEB models and review existing modeling 
tools available for both AOP and DEB.

14.1  �Introduction

The adverse outcome pathway (AOP) framework conceptualizes the transfer of 
information from molecular to organismal levels of organization as the first step in 
scaling up to inform human and ecological risk assessment (Ankley et al. 2010). 
The AOP framework is an effective tool for arranging information at the sub-
organismal levels of organization, and may aid in interpreting data from high-
throughput screening methods for the purpose of risk assessment. With these 
methods, the potential of thousands of chemicals to interact with molecular and 
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cellular processes can be determined rapidly and cost efficiently (see Chap. 2), but 
how those interactions translate into impact on organismal performance and eco-
logical processes remains obscure (Margiotta-Casaluci et  al. 2016). For human 
health risk assessment, which focuses on the protection of the individual, AOPs that 
link lower level events to organismal level responses may be sufficient. Thus, 
adverse outcomes may include cellular endpoints such as skin sensitization, or cell 
proliferation (see Chap. 11). Ecological risk assessments are generally concerned 
with the protection of populations, food webs, or ecosystems, so there is a critical 
need to develop AOPs that inform these higher levels of biological organization. 
The approach thus far has focused on adverse outcomes on individuals that relate to 
the general processes of growth, survival and reproduction, which are processes that 
are included in population-level assessments (Kramer et al. 2011).

In an AOP framework, existing knowledge is organized around the causal link-
ages between observable biological changes or key events (KEs) that are integral to 
the progression from a molecular initiating event (MIE) to an adverse outcome 
(AO) and are considered relevant to regulatory decision making (Ankley et  al. 
2010). These predictive causal linkages between KEs are called key event relation-
ships (KERs). The AOPs describe biological relationships between KEs, and how 
stressors or contaminants perturb those relationships. As such, AOPs are not chemi-
cally specific. But, to understand how a chemical could impact an AOP, understand-
ing of chemical-specific properties including potency and pharmacokinetic factors 
(i.e., absorption, distribution, metabolism and excretion (ADME)) is critical because 
these properties ultimately define the magnitude and duration of perturbation at the 
MIE (Villeneuve et al. 2014).

More specifically for our purposes, a quantitative AOP (qAOP) mathematically 
describes the processes of an AOP from an MIE to an adverse outcome (Chap. 13). 
A qAOP can be a series of quantitative response-response relationships that describe 
transitions between key events (Conolly et al. 2017 ); these response-response rela-
tionships are ideally mechanistic, but correlative information can also be useful.

Obtaining the mechanistic detailed information necessary to develop qAOPs on 
a single species is challenging (e.g. Chap. 13; Margiotta-Casaluci et al. 2016), and 
so it is infeasible to repeat this exercise for thousands of species. Also, existing 
AOPs generally converge on a single biological endpoint as if independent (e.g., 
growth or reproduction), and thus ignore the trade-offs implied by resource limita-
tion, e.g., through the competition for energy among physiological processes. 
Further, linking a molecular chain of events to effects on growth and reproduction, 
requires the use of a generalizable theory at the organismal level of organization, 
one that can explain the effects of toxicants on an organism’s acquisition of resources 
from the environment and the consequences for energy demanding traits such as 
growth and reproduction (Jager et al. 2016).

Dynamic Energy Budget (DEB) theory (Kooijman 2010; Nisbet et  al. 2000) 
offers such a mechanistic framework, and is the best-tested and most comprehen-
sive theory for the energy budget of organisms (Jager et al. 2016). DEB models have 
been developed for many species for over three decades, have impressive calibra-
tion and validation, and have been used to determine toxic effects on organisms and 
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populations (DEBTox: http://www.debtox.info/). The DEB approach employs uni-
fying metabolic theory that can theoretically be applied to any species using a small 
number of parameters; this approach can potentially be used to determine effects of 
chemicals on many more species (e.g. Jager et al. 2006, 2011; Muller et al. 2010; 
Martin et  al. 2013). Moreover, the approach offers the possibility to extrapolate 
population and higher level dynamics from individual level energy budget by the 
means of individual based modelling (Martin et al. 2013; Gergs et al. 2014, 2016) 
which would provide a connection to the AOP beyond the organism level if we 
could relate the AOP to some feature of a DEB model.

Dynamic energy budget models describe the process of assimilation of energy or 
mass and internal use for physiological functions. Although the term “Dynamic 
Energy Budget (DEB)” theory is sometimes used to refer to any dynamic represen-
tation of energy budgets, it is most commonly used to refer to the comprehensive 
theory of metabolic organization due to Kooijman (1986, 2010; Sousa et al. 2008). 
The standard DEB model (Kooijman et al. 2008), uses a small number of differen-
tial equations and parameters to describe individual life history processes that are 
based on energy fluxes: organisms assimilate resources from the environment and 
subsequently allocate energy, through a reserve compartment, to maintenance, 
growth (increase in structure) and the reproduction system, i.e., they mature and 
after reaching puberty stop maturation and start reproduction. Both structure and 
reserve contribute to biomass, whereby only structure requires maintenance and 
only reserve fuels metabolic processes. These state variables link to observable 
traits such as body size or time to first reproduction, but, because of their rather 
abstract nature, none of them can be measured directly.

Kooijman’s DEB theory captures the metabolic dynamics of an individual organ-
ism through its entire life-cycle, be it ectothermic or endothermic, autotrophic or 
heterotrophic, and is explicitly tied to food/substrate availability and temperature. 
Basic to DEB theory is the coherence between levels of biological and ecological 
organization, using the life cycle of an individual as primary focus, from which sub- 
and supra-organismic levels are considered. Thus, DEB theory bears promise to 
serve as a pivotal framework for building process-based models that link molecular, 
cellular, and tissue level responses to apical endpoints, such as survival, growth, and 
reproduction, subsequently to those at higher levels of ecological organization.

The qAOP and DEB models have complementary strengths and weaknesses 
(Rohr et al. 2016). The qAOPs offer tight connections with known biochemistry at 
the cost of parameter richness, and have limited ability to quantitatively predict 
whole organism level responses to stressors with consideration of energetic trad-
eoff between growth, development, and reproduction. DEB models are parameter 
sparse (Kearney et al. 2015), and describe performance of complete organisms, but 
their variables are defined abstractly and are only implicitly related to measured 
physiological and biochemical endpoints. Identifying linkages between qAOP and 
DEB models could transform risk assessment, but the challenge lies in the different 
computational and mathematical approaches used by qAOPs and 
DEB. Computational AOP approaches use pathway analyses, network systems and 
statistics to link the molecular responses to ODEs (Watanabe et al. 2017 ). The 
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systems of ODEs in some AOP-based models have state variables that represent 
specific enzymes or metabolites; compounds associated with measured response to 
a stressor (e.g. Table 14.1 in Murphy et al. 2009). DEB models use a small number 
of more abstract state variables such as “reserve” or “structure” that represent 
loosely defined combinations or “metabolic clusters” of compounds (e.g. Table 14.2 
of Nisbet et al. 2000), but make immediate predictions of quantities that are critical 
for population dynamics, such as reproduction rates. Linking the two approaches 
will involve the mathematical problem of model order reduction, as well as bio-
logical interpretation of the variables in a reduced qAOP model in the context of 
those used in DEB theory.

14.2  �DEB and Ecotoxicology

The appealing simplicity and generality of DEB theory comes with a price; model 
quantities and processes have a relatively high level of abstraction. This makes the 
application of DEB theory challenging because the state variables and parameters 
may not be directly observable. Auxiliary assumptions (that may be organism spe-
cific) link these variables to quantities that can be measured directly such as length, 
wet or dry weight, respiration, time to/length at first brood, egg output, and so on 
(Lika et al. 2011). There is a large body of literature on methods for estimating DEB 
model parameters, including routine multivariate, nonlinear regression (or analo-
gous likelihood) methods (Kooijman et al. 2008), a computer-intensive state-space 
method (Fujiwara et al. 2005), a Bayesian approach (Johnson et al. 2013) and an 
innovative, heuristic “pseudo-Bayesian” approach (Lika et al. 2011).

Table 14.1  Proposed variables and equations used to characterize response to 
toxicity within an organism

Variables
K = {K1, K2, . … … …}= set of sub-organismal key events from AOP
R = {R1, R2, . … … …}= set of damage-related variables – may overlap with K.
Q = {Q1, Q2, . … … …}= set of internal toxicant-related concentrations
B = {B1, B2, . … … …}= set of DEB model variables
E = {E1, E2, . … … …} = set of environment variables
Dynamics

d

dt
d

dt

B
B R E Q

R
Q R K B

=

= (

functionsof

functionsof occasionally

, , ,

, , ))

= −
d

dt

Q
B Qfunctionsof TKmodel,
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Table 14.2  A “toy” model that illustrates the proposed classification of model variables

Variables
K1 = level of upregulation of gene K1

R1 = K2 = intracellular ROS concentration Z
R2 = K3 = intracellular antioxidant concentration A
R3 = intracellular concentration of damaged proteins P
Q1 = intracellular concentration of contaminant Q
B1 = total structural biomass of bacteria MV

B2 = reserve density in bacteria e
E1 = substrate concentration in environment S
E2 = contaminant concentration in the environment C (assumed constant here)
Dynamics of R-variables (damage related)

Dynamics of B-variables (bioenergetics)

dM

dt

ve mg

e g
hV =

−( )
+

−
� �� ��

production of

structure from

reserve

(PP M
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dt
f e
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DDEB dynamics

Dynamics of Q-variables (TK)

dQ

dt
k C k Qi e= −

 
one compartment kinetics

Dynamics of E-variable (environment)

dS

dt
fMV= −α��� ��

uptake of substrate by cells

The variable names that would match the proposed classification in Table 14.1 are on the left, more 
familiar names used in the dynamic equations are on the right.
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Currently, the most widely used approach to the estimation of DEB parameters 
(called “add-my-pet” http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/index.html) 
is based on the implicit assumption that a single parameter set can explain the life 
history of a cohort of organisms that is followed in empirical experiments over time. 
Inter-individual differences within a cohort of a species are usually treated as mea-
surement error. These differences might, however, be caused by differences among 
the individuals in terms of their physiology and in initial conditions; recognizing 
this would require more sophisticated statistical approaches incorporating process 
error. Intra-species variations might not only have consequences for the statistical 
power of the parameter estimation and model validity (Jager 2013), but are the basis 
of differential sensitivity to chemical exposure (Gergs et al. 2015) and are drivers 
for selection in an evolutionary time scale.

Research using DEB models to interpreting toxicity data started with a simpli-
fied DEB model (Kooijman and Metz 1984); continuing research over the following 
decade lead to a suite of models (Kooijman and Bedaux 1996) that are still being 
developed. Collectively these models are referred to as DEBtox. Within DEBtox 
models several options for an effect are considered and are referred to as “physio-
logical modes of action” (Álvarez et al. 2006). The concept of physiological modes 
of action summarizes how a stressor might interfere with processes along the cas-
cade of energy assimilation and allocation as represented in the DEB model. Within 
this framework, a chemical might act on the assimilation of food, increase the costs 
for somatic and maturity maintenance rate, increased costs for structure or the costs 
for reproduction or pose a hazard to embryo (Jager and Zimmer 2012). A toxicoki-
netic model (see next subsection) may link the exposure concentration and the 
effect, and a stress function is applied to the different DEB parameters, thus, param-
eter values change proportional to the (internal) toxicant concentration.

DEBtox and related models have been used to analyze toxicity data such as 
derived from growth and reproduction tests under constant exposure conditions 
(Jager et  al. 2006; Jager and Selck 2011; Goussen et  al. 2015), or time-varying 
exposure (Pieters et al. 2006) and effects resulting from chemical mixtures (Jager 
et  al. 2010). These models have usually been applied to organismal growth and 
reproduction data to derive the suitable physiological mode of action. However, in 
many cases, the analyzed data could be well described by any of the physiological 
modes of action and additional data on respiration and feeding are needed for iden-
tification (Muller et al. 2010; Jager et al. 2016). Furthermore, sublethal chemical 
effects might not be adequately described by a single mode of action, rather it is 
conceivable that organisms respond in multiple ways to the same toxicant.

Recently, a simplified version of standard DEB (isomorphic animal) was pro-
posed for use in ecotoxicology (Jager and Zimmer 2012). Compared to the standard 
formulation, this version has a reduced number of input parameters. This simplifica-
tion, however, has several limitations: (1) reserve is assumed to be in a steady state 
with the food level, which is only realistic at conditions of constant food, (2) repro-
duction is initiated at a constant size irrespective of food availability and chemical 
exposure and (3) the energetic costs for producing one egg is constant, thus, mater-
nal effects are not considered. More flexibility with regard to variable environmen-
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tal conditions is possible by the use of the somewhat more complex standard DEB 
model (Kooijman et al. 2008) which explicitly accounts for maturation and uses 
maturation thresholds, e.g., for puberty, thus, modelled individuals are allowed to 
reproduce at smaller size when food is not at ad libitum. However, the concept of 
physiological modes of action is also applicable to the standard DEB model and the 
applicability of these models in an individual based population modelling frame-
work, for the purpose of effect extrapolation of higher biological levels, have been 
demonstrated for chemical stress (Martin et al. 2014) and stress due to food limita-
tion and crowding (Gergs et al. 2014).

14.3  �Toxicokinetic-Toxicodynamic Models

Our descriptions of the qAOP and DEB models do not yet consider specific toxi-
cants since AOPs and DEB models are chemical agnostic. To connect with toxicity, 
we assume that response to contaminants is related to internal (i.e., within organ-
ism) concentrations of the contaminant. Thus, modeling toxicity requires coupling 
the model representation of physiological processes (qAOP or DEB) to toxicoki-
netic (TK) and toxicodynamic (TD) sub-models. TK models describe the dynamics 
of bioaccumulation, elimination, and chemical transformations of chemical con-
taminants within an organism. Toxicodynamic (TD), sometimes called “toxic 
effect”, models describe processes leading from toxicant interation with a biological 
target to effects.

The literature contains many approaches to modeling survival that use TK-TD 
approaches but do not consider detailed physiological processes that cause mortal-
ity. These have, to a great extent, been reconciled within the General Unified 
Threshold model for Survival (GUTS, Jager et al. 2011). Current GUTS implemen-
tations consider two TD alternatives: death due to variation in individual tolerance 
and stochastic death. Within stochastic death models, the hazard rate, i.e., the event 
rate at time t, conditional on survival until time t, for an individual thereby increases 
linearly with the dose metric beyond a threshold, and an organism has an increased 
probability of mortality. In contrast, in individual tolerance models, the threshold 
follows a frequency distribution within a population and death is instantaneous for 
an organism when dose metric exceeds the individual survival threshold.

In GUTS, there is a dose metric, assumed proportional to the hazard (i.e., per 
capita mortality) rate, that may include processes such as bioaccumulation, distribu-
tion within the organism, biotransformation and elimination, damage accrual and 
recovery, and physiological compensation processes. These dose metrics are also 
applicable in the context of sublethal effects (e.g., Muller et al. 2015). The most 
simple dose metric is the scaled internal concentration when information on body 
residues is lacking. A TD stage of damage can be used to link internal concentra-
tions (full body residues or concentration at target site, depending on TK model 
complexity) and effects. The complexity of the damage model can considerably 
differ among studies, depending on the processes considered in the approach. One 
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approach is to use a one parameter scaled damage model (Jager et al. 2011), while 
other approaches may include damage accrual and recovery (Ashauer et al. 2007) 
although in the latter approach the rate constant for damage accrual is interpreted as 
a combined parameter for damage and effect. In one example. Jager and Kooijman 
(2005) consider receptor kinetics in the damage process for analyzing of survival of 
organisms exposed to organophosphorus pesticides. Here, they assume that func-
tional receptors are knocked out by the chemical, and functional receptors are turned 
into non-functional ones. Veltman et  al. (2014) extend this approach to predict 
sodium loss and acute mortality in several aquatic species. Enzyme (acetylcholines-
terase) inhibition was also considered in the time-dependent accrual of damage on 
the molecular level to explain differential sensitivity at the organism level 
(Kretschmann et al. 2011, 2012). We will consider the TK-TD definition of damage 
to aid our conceptual model that links AOP to DEB.

14.4  �Linking AOP to DEB

We propose a conceptual model to initiate exploration into mechanistically linking 
AOP to DEB (Fig. 14.1).

Essentially an AOP represents a pathway that is integral to a DEB, and we pro-
pose that translations from one to other are possible because of mutual constraints 
(Fig. 14.1). Within the AOP, KEs and adverse outcomes that occur at the molecular, 
cellular, organ and whole organism level can influence DEB parameters, by impos-
ing damage, a term common to both the TKTD and DEB literature. This potentially 
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Fig. 14.1  Schematic relating parallel descriptions of sub-organismal processes (AOP and DEB) 
and how they can interact to improve predictions of how whole organisms respond to stressors
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integrates the AOP into a more holistic DEB model that uses a small number of 
variables to describe the integrated effect of all metabolic processes, allows for trad-
eoffs of energy between growth, reproduction and survival, which are population 
relevant outputs. Feedbacks from the DEB to AOP (whole organism processes to 
molecular response) allow for mass balance constraints and ground AOPs in realis-
tic scenarios that allow for energetic tradeoffs within an organism.

14.4.1  �Mathematical Formalism

A model of organism-level dynamics should not simply allow everything to be con-
nected to everything else. Figure 14.2 suggests a mathematical structure that recog-
nizes 5 types of variables (summarized in Table 14.1) and their causal connections. 

Ce
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KE (M ) DAMAGEKE (C) KE (O)

KE (M) DAMAGEKE (C) KE (O)

KE (M) DAMAGEKE (C) KE (O)

KE (M) DAMAGEKE (C) KE (O)
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Key Event Network
“Damage”

Connect AOPs Key Events with chemical transformations 
in energy flow diagram

Maturity or 
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Fig. 14.2  A conceptual framework to link AOPs to DEB for a particular stressor/contaminant 
scenario will first require an inventory of the key events (KEs) affected in different organs and at 
different levels of biological organization, − such as molecular, cellular, organ level responses, 
noted as KE(M), KE(C), KE(O) this key event network then would translate to a damage term that 
would have to be related to key rates or allocation “decisions” (indicated by green arrows in lower 
panel) in dynamic energy budget models. Ce refers to concentration of toxicant external to the 
organism, and Ci is the concentration inside the organism
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KEs are measureable endpoints in an AOP. These key events either represent, or are 
themselves, measures of damage that is manifest at the level of cells, organs or of 
the entire organism. Damage is caused, directly or indirectly, by internal toxicant 
concentrations– the accumulation of damage being described by some TK/TD rep-
resentation. Damage impacts the processes in a bioenergetic model. In this chapter 
we have in mind Kooijman’s (2010) DEB model with abstract variables (structure, 
reserve etc.), but the conceptual links are appropriate for other bioenergetics models 
that have variables corresponding to quantities such as biomasses, or measures of 
chemical concentration that are directly observable.

The connections described in Fig. 14.2 restrict the form of dynamic equations we 
can use (see Table 14.1 for a list of variables and functional dependencies). In appli-
cations that we can currently envision, the model of the complete organism will use 
dynamic (differential or difference) equations to describe “performance” – growth, 
development, reproduction, risk of mortality etc. These are described by the DEB 
model which is tightly coupled to the body burden dynamics (growth impacts inter-
nal toxicant concentration and vice versa), and also to the damage dynamics. 
Changes in internal concentrations are described by a TK submodel. The damage 
variables will commonly be decoupled from the higher level processes, but connec-
tion is possible, e.g. oxidative stress involves production or reactive oxygen species 
(ROS) from both “routine” metabolism and from toxicity.

To illustrate this process we describe a “toy” model suggested by previous work 
(Hanegraaf and Muller 2001; Klanjscek et  al. 2012, 2016). We consider a batch 
culture of bacteria as a multicellular super-organism exposed to a soluble toxicant. 
The toxicant generates intracellular ROS that in turn stimulates production of an 
anti-oxidant enzyme for which there is a genetic marker. Up-regulation of this gene 
constitutes a key event. We assume that all rates are directly proportional to struc-
tural biomass (V1-morphy in the terminology used in DEB papers); then the above 
structure describes both a single organism and a population.

The toy model describes one way to link AOP to DEBs, but there are numerous 
ways to accomplish these linkages, and the numerous linkages should be explored 
in full to determine if there are generalizable processes. For different species and 
different stressors, there are different types of key events in the AOP that are mea-
sureable or observable. For example, in Daphnia, much of the effects of contami-
nants is measured at either the molecular level, or the whole organism level, and so 
to link AOP to DEB in Daphnia, the KE(M) would have to be directly translated to 
DEB rates. In other organisms, for example fish, key events have been measured at 
molecular, cellular and organ level responses, and some integration has been done 
through physiological models (Murphy et al. 2005; Watanabe et al. 2009; Gillies 
et al. 2016). The key event network would then integrate the responses of KE(M), 
KE(C) and KE(O) and translate that to DEB rates. There are numerous ways to 
integrate data at the various levels of biological organization before trying to link to 
DEB parameters, and we describe a few ideas below.

14  Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual…



292

14.4.2  �Gene Expression Analysis

There are a multitude of statistical methods available to analyze and interpret 
OMICs (eg. transcriptomics, proteomics, lipidomics, metabolomics) based data. 
Most commonly the initial analysis aims at identifying features such as genes, 
metabolites or proteins, which are significantly changed as a result of a given per-
turbation. These gene lists can then be used as inputs to functional enrichment 
approaches to identify biological processes which are altered, which is then used for 
interpretation of the response of the organism to the given perturbation. The biologi-
cal processes could be represented by DEB rates and fluxes. To increase statistical 
power and reduce the overall complexity of OMICs data, data summarization tech-
niques such as component analyses (Principal (PCA) and Independent (ICA)), or 
clustering of profiles can be applied and then a standard analysis pipeline resumed. 
In relation to AOPs, time and dose components play a large role. Analysis method-
ologies for such data are still limited, but can be approached via linear modelling 
techniques to identify changing features over the course of the exposures. More 
applicable in the context of AOPs is a time-delay correlation analysis which can 
provide a directed network indicating which features are influencing other features 
over time. With the inclusion of additional measurements, such as phenotypic char-
acterizations, the neighborhood of these can be explored and interpreted in a bio-
logical context and related to rates and parameters relevant for DEB models 
(Villaverde et al. 2014; Zoppoli et al. 2010).

14.4.3  �Data Integration

In recent years, with the advent of OMICs technologies and its ever reducing cost, 
it has become feasible to integrate multiple levels of biological organization and 
analyze those in a more comprehensive manner. While the computational approaches 
for true integration of multi-level data are still scarce, a simpler integration across 
these levels has been approached in a number of publications (Rohart et al. 2017; 
Antczak et  al. 2006; Van Aggelen et  al. 2010; Williams et  al. 2011; Joyce and 
Palsson, 2006). AOPs in particular would benefit greatly from multi-level analysis 
approaches as an AOP inherently represents the combination of many biological 
levels. Metaboanalyst 3.0 (http://www.metaboanalyst.ca/faces/home.xhtml) is an 
excellent example of the current state of multi-level integration, allowing for metab-
olite and gene expression level integration to understand the possible affected path-
ways within a given organism. With the increase of available metabolic models for 
more and more species, a more integrated methodology could be developed for 
understanding effects across multiple levels.
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14.5  �Other Modeling Approaches that Complement 
the AOP-DEB Modeling Framework

There are a number of different quantitative tools available to augment qAOPs from 
MIE to physiological processes and we describe them here along with their limita-
tions if they were to be the only tool used for chemical risk assessment. These tools 
can define key events or key event relationships which could eventually be linked to 
DEB to improve their utility. Some of these tools include toxicant dynamics within, 
even though an AOP itself is chemical agnostic.

14.5.1  �Metabolic Network Models

Several methods have been developed to probe the relationship between genotype 
and phenotype using the large volumes of high-throughput molecular data and are 
broadly classified as metabolic network models (Henry et  al. 2010; Lewis et  al. 
2012). Some of these methods are more quantitative and mechanistic than others, 
such as constraint-based models, stochastic and deterministic kinetic models. 
Metabolic network models break down metabolic pathways into respective reac-
tions and enzymes. As a starting point, the more popular techniques are constraint-
based models such as flux-balance analysis (FBA), which require very little kinetic 
information, and can be done on a large scale. FBA can calculate steady-state meta-
bolic fluxes for very large models with over 2000 reactions and do this by describing 
a system of linear equations related to concentration changes in a metabolic network 
using matrix algebra (Kauffman et al. 2003; Raman and Chandra 2009; Orth et al. 
2010). Some assumptions for FBA include steady state or exponential growth (for 
simple linear equations) and that the system is optimized for maximum growth 
(Kauffman et al. 2003). Constraints, related to boundary constraints (for example 
nutrient uptake/and excretion), or internal constraints that limit the rates or direction 
of reactions within an organism, can be added to the flux rates of the reactions 
within the network (Price et al. 2004). A major drawback of this approach is the lack 
of inherent dynamic or regulatory predictions and no explicit representation of met-
abolic concentrations (Bordbar et al. 2014). More predictive models include sto-
chastic and deterministic kinetic models because they require detailed understanding 
of kinetic parameters, but these models are often challenging to parameterize. 
Furthermore, kinetic models that capture biological stochasticity and biophysics, 
are challenging to model across various timescales (Bordbar et al. 2014). Ideally, 
progression of models would move from constraint based → deterministic → sto-
chastic kinetic models as information and hypotheses progress, and much research 
has been focused on improving these models for future use. Recently published 
reviews (Ghaffari et al. 2015; Yizhak et al. 2015) survey studies of cancer metabo-
lism by reconstructed metabolic model approaches and discusses challenges such 
approaches face.

14  Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual…



294

Predictive metabolic network models are restrictive and challenging to apply to 
ecological risk assessment because of the vast quantities of data needed to parame-
terize all the kinetic processes in these models. Very few of these models include 
post-translational processes, allow for feedback, are truly mechanistic and make 
broad assumptions that limit the system to assumptions of steady state and optimal 
growth. However, once connections between qAOPs and DEB are established, it is 
possible that the fluxes and rates from the DEB model could provide additional 
constraints that could realistically ground the FBA model within an entire 
organism.

14.5.2  �Mechanistic Physiological Models

The U.S. National Research Council’s report on toxicity testing in the twenty first 
century (NRC 2007) advocated for the development of various types of biologically 
based dose response (BBDR) models that more closely link toxicant induced cel-
lular or sub-cellular perturbations with whole organism effects. This is in recogni-
tion that biological systems are organized along several interconnected scales and 
that no single scale can be fully considered in isolation. In contrast to empirical, 
statistical based techniques, BBDR or physiologically-based models link molecular 
initiating events to apical endpoints by incorporating mathematical descriptions of 
processes at different levels of biological organization. An important feature of any 
physiological model is the ability to describe the system in its natural or undisturbed 
state prior to injury. Physiological and BBDR types of mathematical models can be 
linked with diverse types of biological data to allow more complex descriptions of 
a cell, tissue or whole organism processes. Typically, these models are formulated 
as ordinary differential equations with measureable biological quantities or key 
events as state variables. Many physiologically-based models aim to predict the 
temporal dynamics of injury following exposure to a stressor. Analysis of these 
models can uncover critical features, such as thresholds in exposure beyond which 
an organism can no longer recover. Interactions between scales such as hormonal 
signaling and feedback can also be incorporated. A major challenge in developing 
physiologically-based models includes choosing state variables and functional rela-
tionships among those variables appropriately and wisely, especially given existing 
knowledge about physiological function and details of the molecular initiating event 
may be incomplete.

Recently, several physiological models were developed to characterize the repro-
ductive effects of exposure to endocrine disrupters in fish, including Atlantic croaker 
(Murphy et al. 2005, 2009) salmon and trout (Kim et al. 2006; Sundling et al. 2014; 
Gillies et al. 2016) and fathead minnows (Watanabe et al. 2009; Shoemaker et al. 
2010; Li et al. 2011; Connolly et al. 2017). These modeling efforts reflect the impor-
tance of predicting stressor effects on fecundity and success of spawning. 
Opportunities for future model development not yet explored include additional 
endocrine signaling, neurological function and linking changes in neuronal activity 
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and damage with cognitive effects and behavioral changes. There are also examples 
of advanced multiscale models for mammalian systems that could be adapted to 
lower vertebrates, including models developed for cardiac function, which incorpo-
rate diverse processes such as cellular electrical activation, dynamic tissue mechan-
ics associated with contraction, and fluid mechanic properties of blood passing 
through the heart (ten Tusscher et al. 2004; Crowcombe et al. 2016).

BBDR models can be quite useful for DEBs. The dynamics of particular pro-
cesses, for example hormone production, can potentially be linked to specific DEB 
parameters. We have explored linking dynamics of estradiol and its role in repro-
duction, to the kappa variable in DEB and have been able to successfully mechanis-
tically connect the two processes (Muller et al. in prep). These connections can be 
particularly valuable because standard DEB has the control mechanisms implied 
and cannot directly deal with process disturbances due to the toxicant action.

14.5.3  �Physiologically Based Toxicokinetic Models (PBTK)

Physiologically based toxicokinetic (PBTK) models include compartments for organs 
and tissues that have an influence upon the absorption, distribution, metabolism and 
elimination (ADME) of a toxicant, and they are used to predict target tissue chemical 
concentrations and effects, respectively. Numerous PBTK models have been devel-
oped for human health risk assessment beginning with a model for styrene in rats and 
humans (Ramsey and Andersen 1984), and for waterborne chemicals in rainbow trout 
(Nichols et al. 1991). Since the emphasis of this chapter is upon integrating AOPs with 
DEB models, the example that follows focuses upon a PBTK model developed for 
female fathead minnows; an example for rainbow trout is described in Chap. 16.

A next-generation PBTK model for female fathead minnows (Pimphales promelas) 
was developed to predict the ADME of estrogenic and androgenic chemicals (Li et al. 
2011). Where a traditional PBTK model focuses entirely upon the disposition of a xeno-
biotic chemical(s) in the body, Li et al. integrated xenobiotic chemical disposition (i.e., 
17α-ethinylestradiol and 17β-trenbolone) with their interaction and effect upon endog-
enous steroid hormone levels (e.g., 17β-estradiol) through estrogen and androgen recep-
tor binding in certain tissue compartments. The model contains six tissue compartments 
(Fig. 14.1, Chap. 13): gill, brain, gonad, liver, blood, and “other” (a composite of the 
remaining tissues). Mathematically, a system of ordinary differential equations describes 
the dynamics of endogenous compounds (e.g., 17β-estradiol, testosterone, estrogen 
receptor, and vitellogenin), and xenobiotic compounds (17α-ethinylestradiol and 
17β-trenbolone). This model robustly predicted plasma concentrations of 17β-estradiol, 
testosterone and vitellogenin in unexposed female fathead minnows and females 
exposed to 17α-ethinylestradiol and 17β-trenbolone. In a qAOP context, a PBTK model 
such as this can be used to span multiple key events and make predictions of changes in 
plasma vitellogenin that can then be used as input into an oocyte growth dynamics 
model to predict changes in spawning and fecundity. A review of different approaches 
to quantitative AOP model development is described in Chap. 13.
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PBTK and BBDR models require large amounts of data about the physiological, 
biochemical, and physicochemical processes that occur in biological systems. The 
fact that these data are often not available from only one source raises concerns 
about the accuracy and validity as well as the comparability of the different types of 
data used to develop each model. Crump et al. (2010) identified several concerns on 
the use of BBDR models (and by extension PBTK) to predict low-dose toxicity. 
According to them, these models do not eliminate the need for empirical modeling 
of the relationship between dose and effect, but only move it from the whole organ-
ism to a lower level of biological organization while introducing significant sources 
of uncertainty. They concluded that BBDR models are unlikely to be fruitful in 
reducing uncertainty in quantitative estimates of risk from low-level exposures. 
Additionally, they believe that the use of in vitro data in these models will introduce 
new issues regarding extrapolation of data from in vitro systems. As some processes 
are well characterized and others are not, information gaps may exist. These infor-
mation gaps may cause the model to fail to optimally predict the outcomes of a 
specific behavior or stressor. It is therefore crucial to emphasize that the quality of 
the simulations depends on the model, the data and their purpose, and the uncer-
tainty of the data used to build the model should be properly reflected. Simulation 
results should be supported by experimental data and should not replace reliable 
data as primary degree of evidence. Furthermore, it should be noticed that poor 
quality modeling practices could lead to biased predictions or overestimation of the 
predictive power of the model. In order to minimize bias, it would be necessary to 
perform extensive and continuous evaluation of the model.

PBTK models, similar to physiologically-based models, could be linked to 
DEBtox models, but in this case the toxicant dynamics would be included. Although 
we have not explored this, we can envision that these linkages would greatly improve 
the DEBtox predictions because detailed mechanistic information from existing 
toxicity tests could then be included into DEBtox and would greatly improve pre-
dictions of whole organism response and could also inform population or commu-
nity predictions.

14.5.4  �Quantitative Structure Activity Relationships (QSAR)

Structure Activity Relationship, SARs, and Quantitative SARs (QSARs), by defini-
tion, link specific chemical structural features to biological responses or outcomes. 
The most basic form of SAR models have been developed to predict hazard identi-
fication based on physico-chemical properties and measured whole animal toxicity. 
For example, the Verhaar modeling scheme (Verhaar et al. 1992, now implemented 
in ToxTree http://Toxtree.sourceforge.net, Ellison et al. 2015) predicts the toxicity 
of pollutants classified by broad mechanisms of action (MOA), such as narcosis, 
from simple chemical properties such as hydrophobicity. The utility of this approach 
has been expanded as models are being built using much more extensive data 
(ECOTOX http://www.epa.gov//ecotox/) and sophisticated computational 
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chemistry approaches that resolve much finer MOA assignments (e.g., Barron et al. 
2015). However, the impossibility of assessing risks on a chemical-by-chemical 
basis and the mandate to reduce whole animal testing necessitates the need to 
develop predictive toxicological approaches that rely more heavily on information 
derived from in silico and in vitro methodologies. Largely driven by human health 
concerns, programs like the US’s ToxCast (http://www.epa.gov/ncct/toxcast) and 
Tox21 (http://www.epa.gov/ncct/Tox21), and Japan’s Toxicogenomics Project 
(http://toxico.nibio.go.jp/english/index.html) produce data, databases and tools for 
computational toxicology. These analytical and predictive tools can include QSARs 
that relate, for example, chemical features to fine-scale outcomes such as the likeli-
hood of off-target effects to pharmacological agents (QSAR Toolbox from OECD, 
e.g., Sullivan et al. 2014). Through the availability of detailed chemical information 
and novel analyses, QSAR is providing increasingly sophisticated compound 
descriptions which have the potential to link structural features to mechanisms 
(review, Garcia-Serna et  al. 2015). Despite challenges associated with linking 
QSAR with genomics data, interactions between chemical features and molecular 
networks have been modeled successfully to predict toxic mechanisms and out-
comes for certain systems (e.g., Antczak et al. 2010). And because few mechanisms 
of action are well known, this approach seems especially valuable as a discovery 
tool: for example, providing strong evidence for putative adverse outcome pathways 
(AOPs) associated with narcosis by lipophilic compounds (Antczak et al. 2015).

The AOP concept provides a linear representation of the linkages between MIEs, 
KEs and adverse outcomes which are causally linked and are inherently indepen-
dent of specific chemical stressor. QSAR/SARs on the other hand are inherently 
chemical specific, linking chemical structural features to response or activity of a 
given biological process. By design QSARs aim to provide a predictive framework 
for read-across of the chemical space to link to the biological process. The main 
limitation is the narrow set of features with highly cross-correlated variables which 
provide a challenge to the development and interpretation of these types of models. 
This can also result in false correlations and model overfitting which reduces the 
predictive power and their applicability in the quest to understanding biological 
variation. While QSARs have been designed to be mechanistically driven, recent 
applications have become more correlative to explain certain biological behavior. 
The best-known application of QSAR is its involvement in the prediction of toxicity 
from Log Kow values, which has been shown to be highly predictive for a large 
amount of chemicals across multiple species (Cronin and Schultz 2001; Patlewicz 
et  al. 2003; Claeys et  al. 2013). Inclusion of additional variables, such as gene 
expression, can improve this fit but also provide a basis for biological interpretation 
(Antczak 2015).

Due to the different application of the use of chemicals within QSAR and the 
AOP concepts, the inclusion of QSAR in qAOPs (for example PBTK) might be ill 
placed but could provide a new dimension for read-across and association of chemi-
cals for DEBtox.
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14.6  �Conclusion

In this chapter we described a conceptual model for linking AOP to DEB. We used the 
damage concept from TKTD models to translate the key event effects from AOP to 
DEB parameters and rates, and are embracing some concepts inherent in DEBtox. 
The case study we presented is a first attempt and relates oxidative stress to DEB 
parameters in a single cell organism. Our working group is currently working on two 
case studies based on Daphnia and rainbow trout that merge information collected for 
AOPs with DEB. For rainbow trout, we focus on endocrine disruption for which there 
are quantitative AOPs that integrate molecular, cellular and organ level responses to 
predict effects on reproduction. Connecting with a DEB representation required mod-
ifying the “standard” DEB model to include feedbacks that characterize the integrated 
effects of hormonal control mechanisms (Muller et al. in prep). With Daphnia, there 
is little organ level data, so we seek correlative connections with transcriptomic data. 
Daphnia were exposed to a gradient of food rations and contaminant concentrations 
versus time with measurements of gene expression and contaminant body burdens 
along with routine measurements of size, survival and reproduction. Gene expression 
data (interpreted as key events), summarized using statistical analyses appear to 
exhibit some molecular responses that may correlate with parameters controlling rel-
evant DEB fluxes. We hope, that with continued exploration, we could select a final 
set of key events, or a key event network that could inform specified DEB parameters 
and rates. Eventually we envision a system where AOPs link to DEB rates, and the 
DEB is then used to constrain AOPs within the construct of a whole organism where 
energetic tradeoffs between physiological processes are considered. Such a system 
would improve the predictive power of suborganismal key events, and place such KEs 
into a framework that would allow for extrapolation to population (via IBMS) and up 
to population, community, and ecosystem effects. Also, by accounting for energetic 
tradeoffs within an organism, we can use the multitude of existing DEB models for 
other species or employ evolutionary life history theory to modify the AOP-DEB sys-
tem to make more realistic predictions from KEs for species where the extensive 
information needed to build qAOPs is lacking.
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Chapter 15
Weight of Evidence Frameworks in Evaluation 
of Adverse Outcome Pathways

Taylor Rycroft, Olivia Massey, Christy M. Foran, and Igor Linkov

Abstract  Weight of Evidence (WoE) is an assessment mechanism used to 
systematically consider a collection of scientific data that addresses a specific 
hypothesis. WoE frameworks are used to help form a reasonable conclusion based 
on all available information, and are commonly utilized in risk assessment. They 
have recently been applied to toxicological assessments that seek to understand 
Adverse Outcome Pathways (AOPs), or the cascade of physiological events that 
link toxicant exposure to a downstream adverse health outcome. In case studies, 
WoE methods have proven useful in assessing AOPs and estimating pathway-based 
risk. However, WoE approaches vary considerably and have received criticism for 
their lack of transparency, reproducibility, and quantitative rigor. The subjective 
nature of qualitative WoE constructs has led to a push for a quantitative methodol-
ogy that is consistent, objective, and robust. The purpose of this chapter is to pro-
vide a brief background on WoE methodology and its historical use in AOP 
discovery, as well as highlight progress in the development of a standardized quan-
titative WoE framework. An example of a newly proposed standardized quantitative 
WoE framework for AOPs is discussed, and gaps and suggested improvements are 
examined in order to identify next steps towards making quantitative WoE methods 
for AOPs more objective, transparent, and reproducible.
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15.1  �Introduction

Weight of Evidence (WoE) is an assessment mechanism used across an array of 
disciplines to systematically consider a collection of scientific data that addresses a 
specific hypothesis (Linkov et al. 2011, 2015; Gough 2007). Commonly used in risk 
assessment as a method of interpreting epidemiological and toxicological data, 
WoE evaluations seek to summarize multiple lines of evidence (LoE) and form a 
reasonable conclusion based on all available information (Weed 2005). Typically, 
each scientific data source (e.g. a scientific paper) serves as an independent LoE that 
either supports or opposes the hypothesis, and the relevance and quality of each LoE 
is scored using a set of criteria. LoE scores are then integrated into an aggregate 
WoE that provides the justification for a final conclusion about the hypothesis.

WoE frameworks have been utilized in toxicological assessments that seek to 
understand the cascade of physiological events that link toxicant exposure to a 
downstream adverse health outcome, a sequence known as an Adverse Outcome 
Pathway (AOP) (Ankley et  al. 2010). Once each element in an AOP’s chain of 
events has been proposed, WoE techniques are incorporated to help evaluate the 
degree of certainty for each individual linkage and the overall pathway. This struc-
tured analysis ultimately aids an assessor in deciding whether sufficient evidence 
exists to confidently describe how a substance causes harm to humans or the envi-
ronment. By systematically scoring and comparing proposed linkages and path-
ways, AOP development using WoE can help predict potential hazards and inform 
regulatory measures for substances with limited toxicology data.

Establishing a toxicity profile for a substance using traditional in vivo toxicology 
studies is time- and resource-intensive (Krewski et al. 2010). As the library of syn-
thetic chemicals continues to expand, AOPs have emerged as a novel alternative for 
mechanistically assessing a wide array of substances with limited toxicity data 
(Villeneuve et al. 2014a, b). Simply, an AOP is a map that connects Key Events 
(KEs), or changes in biological state that are measurable and essential to the pro-
gression of a defined biological disturbance (Vinken et  al. 2013). As shown in 
Fig. 15.1, the sequence begins with a molecular initiating event (MIE), or the initial 
point of interaction between the stressor and the biological receptor within the 
organism, and advances through a string of higher order biological events  – the 
KEs – culminating in the adverse outcome (AO). KEs are connected to one another 
via linkages defined as Key Event Relationships (KERs) (Becker et al. 2015).

While useful in assessing AOPs and estimating pathway-based risk, WoE meth-
ods vary considerably and have received criticism for their lack of transparency, 
reproducibility, and quantitative rigor. The very definition of WoE is inconsistent 
and ambiguous in the literature. Researchers commonly use the term in a meta-
phorical sense – where “weight of evidence” is taken to mean that a collection of 
studies supports a hypothesis – but provide no further explanation of the specific 
methodology used to weigh each line of evidence (Weed 2005). Current WoE prac-
tice mostly underutilizes quantitative methods, and risk assessors rely heavily on 
qualitative WoE methods to make a decision, combining empirical evidence with 

T. Rycroft et al.



305

expert judgment (Linkov et  al. 2011, 2015). The subjective nature of qualitative 
WoE constructs has led to a push for a quantitative methodology that is consistent, 
objective, and robust.

The purpose of this chapter is to provide a brief background on WoE methodol-
ogy and its historical use in toxicological assessments and AOP discovery. 
Additionally, this section aims to highlight progress in the development of a consis-
tent quantitative WoE framework, as well as underscore gaps and propose potential 
improvements that can make quantitative WoE methods more objective, transpar-
ent, and reproducible.

15.2  �WoE Approaches

Contemporary WoE methodologies have advanced with the evolution of statistical 
science. In the 1960s, it was proposed that WoE processes should follow an inher-
ently Bayesian statistical approach in which “prior” beliefs for or against a particu-
lar hypothesis are updated after evaluation of information or evidence in order to 
achieve a “posterior” belief (Good 1960). Regulatory frameworks of WoE for AOPs, 
however, have not historically utilized Bayesian techniques. Reviews conducted in 
2005 and 2009 (Weed 2005; Linkov et al. 2009) found WoE methods to be primarily 
qualitative in nature with a general lack of agreement in methodology. In 2014, the 
National Research Council (NRC) reviewed EPA’s Integrated Risk Information 
System (IRIS) assessments of formaldehyde and methanol and found a primary 
“challenge” faced during review was determining “how the phrase weight of evi-
dence is used by EPA and others” (National Research Council 2014). The NRC 
declared the subjective nature of WoE in its historical application to be “far too 
vague” and “of little scientific use.” In response, a number of WoE models tailored 
to AOPs were set in rigid frameworks and presented (Collier et al. 2016). These 
models were more quantitative and deemed less subjective than either traditional 
WoE methods or the methods recommended by NRC to be used in place of WoE.

Historically, a number of WoE applications have been applied to hazard assess-
ments. Linkov et  al. performed a literature review of 114 papers in which WoE 
methods were employed and described the range of approaches and categorized 
them by their quantitative rigor (shown in Table 15.1) (Linkov et al. 2009).

Listing evidence is the simplest WoE application and the only method that does 
not attempt to integrate the individual LoEs. Instead, assessors present LoEs for or 

Fig. 15.1  Adverse outcome pathway (AOP) (Adapted from OECD 2014)
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against a certain hypothesis but do not draw conclusions or discuss the lines in 
detail. A major drawback of this approach is that by omitting a conclusion with a 
logical justification, readers may reach different determinations depending on their 
unique interpretation of the evidence (Linkov et al. 2011).

Best Professional Judgment utilizes authoritative, professional opinions to 
integrate the LoEs and form a conclusion. To justify a decision, the subject matter 
expert may offer background from previous experiences that are similar to the case 
at hand. There is inherent subjectivity and risk of bias with this approach, but esti-
mations can be made more rigorous if additional expert opinions are solicited and 
convergence towards a common decision emerges.

Causal criteria and logic constructs both employ best professional judgement 
to combine LoEs but are considered more rigorous and transparent because they 
specify a consistent analytical structure that is reproducible for future studies. The 
method of causal criteria involves using a preset structure to evaluate cause and 
effect relationships. The Bradford Hill causal criteria (Hill 1965) generally provide 
this structure, but assessors have also formulated their own case-specific causal cri-
teria. Generally, an assessor provides an overview of the criteria used for evaluating 
causality and then proceeds to describe evidence that the criteria have been fulfilled, 
thus “proving” the cause and effect relationship.

Table 15.1  Categories of existing WoE methods

WoE method Explanation Rigor

Listing evidence Single LoEs presented without integration or 
weighting

Least quantitative

Best professional 
judgment

Lines of evidence qualitatively integrated 
without numerical evaluation

Causal criteria Cause and effect relationships evaluated using 
criteria-based methods

Logic construct Qualitative logic methods provide 
standardized evaluation of single LoEs

Scoring Simple weighting or ranking techniques 
integrate LoEs quantitatively

Indexing Empirical models integrate LoEs into a single 
value

Quantification Mathematical models used to weigh the body 
of evidence

Most quantitative

Adapted from Linkov et al. (2009)
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Assessors also use a standard set of criteria or an agreed protocol when applying 
logic constructs. With this method, the set of criteria against which evidence is 
measured is more constrained than in a causal criteria assessment because the logic 
construct follows a firm set of guidelines or best practices (often prescribed by an 
agency or professional organization) with little flexibility. For example, if exposure 
to a toxicant was the first KE in an AOP and the toxicant was not present at the site 
of concern, then a logic method would determine no risk of adverse outcome but a 
causal criteria assessment would still consider episodic exposures or other factors 
that could lead to toxicant exposure. Causal criteria and logic constructs are more 
mechanistic and systematic than listing evidence and best professional judgement, 
but they are still inherently subjective and qualitative.

The scoring and indexing methods both assign scores to individual LoEs and are 
of similar quantitative strength. Multiple scoring methods exist, but most assign 
weights based on best professional judgement for characteristics of the evidence 
such as consistency, specificity, or strength of association. The assigned weight rep-
resents the relative importance of the characteristic or criterion, and the score is an 
assessment of the LoE’s performance on that criterion. Once a score is determined, 
individual LoEs can be compared to one another or summed into categories that 
help the assessor reach a conclusion. Indexing differs from scoring in that it aims to 
roll-up the scores from the LoEs into a single overarching confidence score for the 
AOP. This confidence score is then compared to a predetermined threshold value 
that informs the conclusion. Despite their inherent quantitative nature, both scoring 
and indexing are of limited value because they fail to quantify judgments in a sys-
tematic way, such as with formal probability techniques or decision analysis strate-
gies, and therefore lack reproducibility and transparency.

Quantitative WoE frameworks are the most rigorous of the range of methods and 
make use of established mathematical models to evaluate the body of evidence and 
project the likelihood and uncertainty of a conclusion. Probability distributions, cor-
relations, and other statistical methods are employed under strict guidelines, making 
these frameworks transparent and reproducible in nature. While large amounts of 
data are necessary for quantitative WoE frameworks to project useful estimations, 
these techniques are essential when analyzing complex systems with interrelated 
LoEs. Examples of such methods are multi-criteria decision analysis (MCDA) and 
Bayesian modeling. MCDA is a set of methods designed to ensure that the synthesis 
of multiple sources of information is documented and directed toward a stated goal 
(Linkov et al. 2006). The MCDA approach uses the evaluation and integration of 
subjective priorities to compare alternatives; in the context of AOP it has been pro-
posed as a way to characterize the relative confidence in KEs within the same AOP 
(Collier et al. 2016) or in alternative AOPs between a MIE and AO (Becker et al. 
2017). Bayesian modeling focuses on updating probability distributions based on 
prior information. While Bayesian models are the most rigorous WoE method, prac-
tical applications are often limited by data availability (National Research Council 
(NRC); Committee to Review the IRIS Process; Board on Environmental Studies 
and Toxicology; Division on Earth and Life Studies 2014).
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Not all WoE evaluations for AOPs require intensive quantitative analysis. When 
determining the quantitative rigor of the WoE method, Linkov, et al. suggests the 
general rule of selecting “the most quantitative method that satisfies the problem 
scale and complexity.” This allows one to achieve the most robust possible decision 
and gain access to the benefits of employing quantitative techniques while ensuring 
a valid conclusion (Linkov et al. 2011).

15.3  �Trend Towards a Standardized Quantitative WoE 
Framework for Comparing AOPs

In response to the critiques that traditional, more-qualitative, WoE methods lack 
rigor, transparency and reproducibility, the regulatory science community is moving 
towards a standard framework for quantitative, comparative WoE assessments that 
can be used consistently by AOP developers and risk assessors (OECD 2013; Becker 
et al. 2017). Such a framework is intended to enable assessors to better convey the 
sufficiency of the scientific evidence that supports a hypothesized AOP. This suffi-
ciency, in turn, can be compared to that of other hypothesized AOPs and can provide 
justification for selecting one AOP alternative over another in order to answer a 
specific research question. Depending on the assessor’s objective, the hypothesized 
AOP that is best supported by the scientific evidence may be used to inform efforts 
to limit the occurrence of the AO, such as regulation of the chemical that induced 
the MIE or drug development to disrupt the pathway, or simply to direct further 
toxicology research toward a particular KE.

In a step towards improving the consistency of AOP assessment, the World 
Health Organization (WHO), through its International Program on Chemical Safety 
(IPCS), has developed the Mode of Action Framework and Human Relevance 
Framework (Boobis et al. 2006), and the Organization for Economic Cooperation 
and Development (OECD) has designed the Users’ Handbook Supplement to the 
Guidance Document for Developing and Assessing AOPs (OECD 2014). The OECD 
guidance promotes increased consistency for WoE determinations by prompting an 
assessor to answer defining questions about the underlying LoEs and to measure the 
empirical support as “strong,” “moderate,” or “weak” based on general definitions.

One example of a newly proposed standardized quantitative WoE framework that 
augments the structures set forth by WHO/IPCS and OECD is the concept of quan-
titative confidence scoring. This method employs tailored Bradford-Hill (BH) con-
siderations (Becker et al. 2015) to compare the degree of confidence in hypothesized 
AOPs. Briefly, the recommended procedure for quantitative confidence scoring is as 
follows (adapted from Becker et al. 2017):

	1.	 From a supported MIE to AO relationship, hypothesize multiple AOP alterna-
tives and their associated KEs and KERs.

	2.	 Qualitatively evaluate the scientific evidence relevant to each AOP alternative.
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	3.	 Quantitatively score the strength of evidence for each KE in the AOP path using 
tailored BH considerations for causality.

	4.	 Derive the weighted score for each KE by multiplying the quantitative rating of 
the evidence for the KE by the weight of each BH criterion.

	5.	 Derive the overall “confidence score” for the AOP by summing the scores of the 
KEs and dividing by the total possible score.

	6.	 Compare the resultant confidence scores of the AOP alternatives.

The tailored BH considerations (Meek et al. 2014a, b) referenced in step three 
are a truncated subset of the initial list of nine BH criteria for causation (Hill 1965). 
Deemed the most relevant criteria for use in AOP development, the following five 
considerations were selected for the quantitative confidence scoring method:

•	 Biological Plausibility, which answers the question “Are the KEs accepted by 
the scientific community to be consistent with biological understanding?”

•	 Essentiality, which answers the question “If the upstream event is blocked, will 
the downstream event still occur?”

•	 Dose response and temporal concordance, which answers the question “does the 
KE occur at a dose lower than the AO, and does the KE occur in the proposed 
chronology?”

•	 Consistency, which answers the question “do the observed events occur in other 
test systems?”

•	 Analogy, which answers the question “do the observed events occur for a broader 
set of substances?”

Each of the five criteria have associated defining questions that are posed for the 
collective body of evidence and a qualitative score  – “strong,” “moderate,” or 
“weak” – is assigned to the evidence. This score is translated to a quantitative rating 
from −3 to 3, where a larger absolute value represents stronger evidence and a nega-
tive rating indicates counter-evidence for the relationship.

In step four of the quantitative confidence scoring process, the BH considerations 
are given a numerical weight based on their perceived importance. The weight of 
each criteria may vary depending on the assessor and the context of the assessment, 
but an initial proposal in the regulatory science community is to assign 40% weight 
of importance to both essentiality and dose response and temporal concordance and 
10% weight of importance to both consistency and analogy. While biological plau-
sibility has been recognized as a critical BH criterion, its weight of importance has 
not been proposed and requires additional consideration (Becker et al. 2017). Scores 
for a KE are then derived by multiplying the weight of the BH consideration by the 
evidence ranking to get a score for that specific criteria (Fig. 15.2). The overall score 
for the KE is derived by summing the scores from each of the five BH criteria. 
Summing the scores for the individual KEs and dividing by the maximum possible 
score establishes the “confidence score” for the hypothesized AOP, which can be 
used to compare the strength of the AOP to other hypothesized AOPs.

Although still in its proof of concept stage, quantitative confidence scoring rep-
resents a practical and reliable approach for standardizing quantitative WoE analysis 
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in AOP development. Compared to qualitative methods, a framework like 
quantitative confidence scoring allows for a structured assessment that results in a 
numerical representation of the degree of scientific confidence in an AOP. The final 
confidence score allows an assessor to determine the best-supported AOP relative to 
other hypothesized AOPs for the same MIE-AO relationship, highlight uncertainty, 
and clearly communicate findings to a non-technical audience. An additional benefit 
of a quantitative WoE framework is that it allows for sensitivity analyses. By chang-
ing criteria weighting schemes, an assessor can determine the sensitivity of the WoE 
for each KE which can be used to highlight areas where additional research would 
be most impactful to developing a greater degree of confidence in the AOP (Becker 
et al. 2015).

15.4  �Potential Improvements in WoE Approaches

As with any maturing methodology, certain considerations should be addressed to 
improve the robustness and increase the adoption of a standardized quantitative 
WoE framework. There are three integral elements of a standard WoE framework 
that can be refined and highlighted by assessors to ensure relevant and consistent 
outcomes: the grading of LoEs (including the incorporation of new evidence), the 
context of WoE analysis, and the sufficiency of the AOP.  Acknowledging and 
addressing these factors will, respectively, ensure the evaluation framework is trans-
parent and repeatable and allow revision as new studies are completed, provide 
material evidence to justify a decision, and provide empirical support for the AOP.

Fig. 15.2  Example WoE scoring using Tailored BH considerations (Adapted from Becker et al. 
2017)
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15.4.1  �Grading of Evidence

Current quantitative WoE frameworks require a qualitative evaluation of the col-
lected scientific evidence relevant to the AOP. This collective evaluation of evidence 
informs the assignment of scores for individual KEs, such as “strong” (S), “moder-
ate” (M), or “weak” (W). Utilization of expert judgement to complete this task is the 
most subjective component of the WoE analysis because two expert assessors may 
reach different conclusions as to which descriptor is appropriate (S, M, or W) when 
presented with the same set of evidence. The OECD identified this limitation and 
attempted to limit variability in evidence scoring by providing refined guidance for 
deriving evidence descriptors (OECD 2014). Even if a consistently measurable 
rubric for scoring the scientific evidence is applied, the relevant, collected scientific 
evidence that supports or refutes the AOP is constantly changing.

Each scientific study should serve as a LoE, and each LoE should be evaluated 
individually when deriving the score for the KE, rather than collectively. The 
U.S. Environmental Protection Agency (EPA) adopted this approach in its final ver-
sion of Guidelines for Carcinogen Risk Assessment, advocating for an assessment of 
all of the individual LoEs followed by a single integrative step to achieve the overall 
WoE for a cancer determination (US EPA Risk Assessment Forum 2005). This 
improvement from the original EPA Guidelines allows each LoE to be measured 
objectively before the importance of that measurement is considered.

To evaluate individual LoEs, “rules of evidence,” in the form of a consistent 
rubric, should be defined that state how quality, technical merit, and applicability 
should be graded for each LoE. This way, assessors are guided toward the same 
“strong,” “moderate,” or “weak” conclusion about a piece of evidence. The chal-
lenge with guiding assessors to the same objective conclusion about an individual 
LoE rather than a subjective conclusion about the overall collection of evidence, 
however, is that a standard scoring rubric must be developed and accepted. Currently, 
no standard LoE scoring rubric exists, although many AOP assessors use similar 
criteria to measure the reliability and quality of LoEs. Juberg et al. (2013) demon-
strated how individual LoEs in an AOP evaluation can be evaluated for reliability 
and quality using the Klimisch criteria (Klimisch et al. 1997) and the Toxicological 
Data Reliability Assessment Tool (Schneider et al. 2009). By measuring each LoE 
against these guidelines, the authors were able to establish a more objective and 
thorough WoE narrative for the AOP, increasing the likelihood that an assessor seek-
ing to reproduce their results would reach the same conclusions (Juberg et al. 2013). 
Despite their proven utility in the assessment of in vivo and in vitro toxicology stud-
ies, neither the Klimisch criteria nor the ToxRTool serve as a universal standard in 
LoE evaluation for AOPs.

To establish a standard LoE scoring rubric for AOPs, all AOP assessors must 
agree on the attributes that define a quality study (e.g. extent of peer review, use of 
GLP or an accepted testing guideline, clarity and reproducibility, etc.). These attri-
butes will form the backbone of the consistent rubric. Assuming agreement can be 
reached, the rubric must also contain an element that evaluates how well the study 
applies to the KE being scored (within the context of the specific AOP being 
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assessed) and the specific criteria (e.g. BH criteria) that it supports or refutes. All 
assessors – regulatory scientists, chemical screeners, etc. – should be able to be eas-
ily trained in using this standard rubric, and user testing must show that the same 
“strong”, “moderate,” or “weak” conclusion is consistently achieved for the indi-
vidual LoE. Integration of components from each of the aforementioned assessment 
criteria - the OECD guidance for deriving WoE descriptors, the Klimisch criteria, 
the ToxRTool - and several evaluative criteria utilized by government agencies such 
as the General Assessment Factors established by the EPA (US EPA Science Policy 
Council 2003; Collier et al. 2016) may serve as the logical foundation for construct-
ing an AOP-specific LoE scoring rubric.

Once scored using the standard rubric, LoEs should be systematically combined 
into an overall evaluation for the collective evidence (the WoE), rather than quali-
tatively aggregated, so that assessors reach the same objective conclusions about 
the WoE for a given KE. A variety of methods have been used for this systematic 
aggregation process, and which method is appropriate depends on the way(s) the 
output will be used. A review by Burton et  al. (2002) analyzed eight WoE 
approaches for their advantages and disadvantages and identified Tabular Decision 
Matrices as being more robust, sensitive, and transparent than qualitative combina-
tion (Burton et al. 2002). Using a tabular decision matrix, individual LoEs and their 
respective scores can be arranged as line items in a table and a logic model can be 
applied that rapidly computes the WoE. Logic for combining LoE scores into an 
aggregate WoE may take the form of a simple summation or an average, where the 
output value falls into a spectrum of “strong,” “moderate,” or “weak” evidence 
categories. Alternatively, a threshold number of studies may be preferred, such that 
as long as two “strong” studies are present in the set of LoEs, the overall WoE can 
be considered “strong.” The number of studies must also be factored into this 
assessment, so that, for example, four studies with an average score of “medium” 
would carry a stronger WoE than a single “medium” study. Logic constructs for 
aggregating LoEs should be tested using AOP case studies and a preferred method 
should be recommended for adoption as the standard that will facilitate the consis-
tent grading of evidence for AOPs.

An additional advantage to scoring LoEs separately rather than as a collective is 
that assessors can easily and transparently add newly published scientific informa-
tion and recalculate an existing AOP score. The above-described systematic method 
of combining LoEs allows an assessor to insert a new LoE into the WoE calculation 
without having to subjectively reevaluate the collection of LoEs. Infrastructure that 
supports the incorporation of new evidence has already been constructed in the form 
of an AOP Wiki (AOP-Wiki 2014), a knowledgebase built by the EPA and sanctioned 
by the OECD. AOPs are submitted to the AOP Wiki where they undergo OECD 
approval. Leveraging this AOP repository, a wiki data manager could monitor sug-
gested changes to an approved AOP and bring stakeholders – those that developed 
the AOP and those that identified the new relevant LoE – together to gain consensus 
for integration of the new data. The modified AOP could then be re-published to the 
wiki for collaborative discussion, peer-review, and OECD re-approval.
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15.4.2  �Context of WoE Analyses

The LoE scoring rubric and aggregation method suggested above is designed to 
steer all assessors to a consistent conclusion of strength of the WoE. The implica-
tions of the WoE conclusion may be different across assessors, however, and the 
application of different criteria weight schemes may lead to variation in AOP scores 
despite the same underlying evidence. For example, for the same WoE score (S, M, 
W), a regulatory scientist may not be convinced that a criterion is fulfilled while a 
pharmaceutical researcher may feel they have enough evidence to continue explor-
ing the KE. The same context-dependence applies when evaluating the complete 
AOP. A weight scheme assigned to the criteria (such as the 40%, 40%, 10%, 10% 
weighting scheme assigned to the BH criteria in the quantitative confidence scoring 
example) may make sense for regulatory scientists but may not accurately portray 
the priorities of a pharmaceutical researcher trying to infer toxicity from one cellu-
lar receptor to another.

Such context-driven flexibility in criteria weighting is beneficial at this stage of 
the AOP analysis because it empowers a variety of stakeholders to engage in AOP 
evaluation by providing the freedom to adjust the weights of criteria according to 
their unique priorities. The advantage to enabling broader stakeholder participation 
in AOP assessment is that it may lead to increased KE discovery by bringing together 
a greater knowledge of chemicals and their effects, a chief objective of the OECD 
AOP Knowledge Base project (OECD 2016). The disadvantage to a non-standardized 
weight scheme is that it restricts comparison of AOP scores to assessments that use 
the identical weight scheme. The same kind of flexibility has been necessary in 
applying WoE in the context of the Sediment Quality Triad (SQT; Chapman et al. 
2002). As adoption of a standardized WoE framework increases, discipline-specific 
(e.g. pharmaceutical science, regulatory science, etc.) weighting schemes may 
emerge, allowing for broader AOP score interpretation. Until then, AOP assessors 
should always highlight the weight scheme used and should only compare AOP 
scores derived from the same weight scheme (Collier et al. 2016).

15.4.3  �Sufficiency of the AOP

The AOP concept addresses questions pertaining to whether and how a particular 
MIE can cause an AO (Ankley et al. 2010). In utilizing a standardized WoE frame-
work to analyze AOPs, an assessor seeks a deeper understanding of the AOP, asking 
what is known about the MIE-AO relationship, and is there sufficient scientific evi-
dence to justify proceeding with my research objective? The weight scheme applied 
and the degree of evidence deemed “sufficient” depends on the unique objectives of 
the assessor and the research question posed, and greater confidence is required for 
applications with greater potential impact (Meek et al. 2011). For a pharmaceutical 
researcher, the research objective may be to develop a therapy that disrupts a link in 
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the AOP chain. An AOP evaluation using the standardized WoE framework can 
point the researcher to the priority AOP alternative to allocate R&D resources 
towards. For a regulatory scientist at a governing body, the objective may be to 
impose protective restrictions in an effort to prevent exposure to the chemical that 
prompted the MIE. An AOP evaluation using the standardized WoE framework can 
help a regulator substantiate claims of hazard and causality and identify areas where 
more research would bolster their claim. In both applications, a standardized quan-
titative WoE framework for AOP assessment is best suited for research questions 
that can be answered with comparative analysis (Becker et al. 2017), where multiple 
hypothesized AOP alternatives are evaluated using a standard method and their 
resulting scores are compared. If the research question calls for an absolute charac-
terization of the degree of empirical evidence, the standardized quantitative WoE 
framework falls short because the overall score for an AOP cannot be interpreted 
without context.

While AOPs provide a useful simplification of intricate and complex biochemi-
cal processes, they are not intended to represent the complete set of interactions that 
take place when a system responds to a chemical stimulus. A standardized quantita-
tive WoE framework can help identify the AOP that is best supported by current 
scientific knowledge, but it cannot confirm the magnitude of the influence of that 
pathway. There may be several branches that connect the same MIE to the same AO 
(Villeneuve et al. 2014a), with one branch serving as the most influential pathway. 
Inhibition of that operative pathway, however, may not prevent the AO from occur-
ring via secondary pathways. The reality that there may be multiple important path-
ways must be emphasized when assessors present results of AOP comparisons.

Finally, there must be acknowledgment of the tenet a chain is only as strong as 
its weakest link. Like other biological sequences of events, demonstrating that the 
majority of individual links in the AOP chain are strong does not imply that the 
entire chain is strong (Rosenblum et al. 1996). A single KE with weak empirical 
support indicates that the AOP requires either more research (Collier et al. 2016) or 
an adjustment to the pathway, such as a substitution of the weak KE or insertion of 
a pathway around it. It is important for assessors to communicate the restrictions 
and limitations of their evaluations so audiences do not misinterpret conclusions 
and implications of AOP discovery.

15.5  �Concluding Remarks

In summary, a standardized quantitative WoE framework can provide a consistent 
method for evaluating scientific evidence relevant to AOPs. Although proposed 
frameworks like quantitative confidence scoring are still novel and relatively 
untested, their application holds significant promise. AOPs developed as proofs of 
concept have shown that a standardized quantitative WoE framework improves 
upon traditional qualitative methods by enhancing the rigor, transparency, and 
reproducibility of WoE determinations. Additionally, quantitative methods excel at 
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identifying areas where further research would have the greatest impact on an AOP’s 
score. A standardized quantitative WoE framework can help justify management 
decisions across fields such as toxicology research, drug development, and regula-
tory science, and can be refined and improved as it becomes a more commonly 
employed element of the analytical toolbox used by risk assessors and AOP 
developers.

References

Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols 
JW, Russom CL, Schmieder PK (2010) Adverse outcome pathways: a conceptual framework 
to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

AOP-Wiki (2014) Users’ handbook supplement to the guidance document for developing and 
assessing AOPs. From https://aopkb.org/common/AOP_Handbook.pdf

Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van 
Der Burg B, Villeneuve DL (2015) Increasing scientific confidence in adverse outcome path-
ways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. 
Regul Toxicol Pharmacol 72(3):514–537

Becker RA, Dellarco V, Seed J, Kronenberg JM, Meek B, Foreman J, Palermo C, Kirman C, 
Linkov I, Schoeny R, Dourson M (2017) Quantitative weight of evidence to assess confidence 
in potential modes of action. Regul Toxicol Pharmacol 86:205–220

Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, Willcocks D, Farland W 
(2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. 
Crit Rev Toxicol 36(10):781–792

Burton GA, Chapman PM, Smith EP (2002) Weight-of-evidence approaches for assessing ecosys-
tem impairment. Hum Ecol Risk Assess 8(7):1657–1673

Chapman PM, McDonald BG, Lawrence GS (2002) Weight-of-evidence issues and frameworks 
for sediment quality (and other) assessments. Hum Ecol Risk Assess 8(7):1489–1515

Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ (2016) 
A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol 
Pharmacol 75:46–57

Good IJ (1960) Weight of evidence, corroboration, explanatory power, information and the utility 
of experiments. J R Stat Soc Series B (Methodol) 22(2):319–331

Good, I. J. (1991). Weight of evidence and the Bayesian likelihood ratio. The use of statistics in 
forensic science, 85–106.

Gough D (2007) Weight of evidence: a framework for the appraisal of the quality and relevance of 
evidence. Res Pap Educ 22(2):213–228

Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58(5):295
Juberg DR, Gehen SC, Coady KK, LeBaron MJ, Kramer VJ, Lu H, Marty MS (2013) Chlorpyrifos: 

weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid 
pathways. Regul Toxicol Pharmacol 66(3):249–263

Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality 
of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25(1):1–5

Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC III, Boekelheide K, Brent R, Charnley 
G, Cheung VG, Green S Jr (2010) Toxicity testing in the 21st century: a vision and a strategy. 
J Toxicol Environ H, Part B 13(2–4):51–138

Linkov I, Satterstrom F, Kiker G, Batchelor C, Bridges T, Ferguson E (2006) From comparative 
risk assessment to multi-criteria decision analysis and adaptive management: recent develop-
ments and applications. Environ Int 32(8):1072–1093

15  Weight of Evidence Frameworks in Evaluation of Adverse Outcome Pathways

https://aopkb.org/common/AOP_Handbook.pdf


316

Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T (2009) Weight-of-evidence evaluation in 
environmental assessment: review of qualitative and quantitative approaches. Sci Total Environ 
407(19):5199–5205

Linkov I, Welle P, Loney D, Tkachuk A, Canis L, Kim J, Bridges T (2011) Use of multicriteria 
decision analysis to support weight of evidence evaluation. Risk Anal 31(8):1211–1225

Linkov I, Massey O, Keisler J, Rusyn I, Hartung T (2015) From “weight of evidence” to quantitative 
data integration using multicriteria decision analysis and Bayesian methods. ALTEX 32(1):3

Meek ME, Boobis AR, Crofton KM, Heinemeyer G, Raaij MV, Vickers C (2011) Risk assess-
ment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol 
Pharmacol 60(Suppl 1):S1–S14

Meek M, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C (2014a) New devel-
opments in the evolution and application of the WHO/IPCS framework on mode of action/
species concordance analysis. J Appl Toxicol 34(1):1–18

Meek M, Palermo CM, Bachman AN, North CM, Jeffrey Lewis R (2014b) Mode of action human 
relevance (species concordance) framework: evolution of the Bradford Hill considerations and 
comparative analysis of weight of evidence. J Appl Toxicol 34(6):595–606

National Research Council (NRC); Committee to Review the IRIS Process; Board on Environmental 
Studies and Toxicology; Division on Earth and Life Studies (2014) Review of EPA’s Integrated 
Risk Information System (IRIS) process. National Academies Press (US), Washington, DC

OECD (2013). Guidance document on developing and assessing adverse outcome pathways. 
Series on testing and assessment, No. 184, Vol. ENV/JM/MONO(2013)6. Organisation for 
Economic Cooperation and Development, Environment Directorate, Paris

OECD (2014) Users’ handbook supplement to the guidance document for developing and assess-
ing AOPs [ENV/JM/MONO(2013)6]. From: https://aopkb.org/common/AOP_Handbook.pdf

OECD (2016) Adverse outcome pathways, molecular screening and toxicogenomics. www.oecd.
org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicoge-
nomics.htm. Accessed 4 Oct 2016

Rosenblum JS, Gilula NB, Lerner RA (1996) On signal sequence polymorphisms and diseases of 
distribution. Proc Natl Acad Sci 93(9):4471–4473

Schneider K, Schwarz M, Burkholder I, Kopp-Schneider A, Edler L, Kinsner-Ovaskainen A, 
Hartung T, Hoffmann S (2009) “ToxRTool”, a new tool to assess the reliability of toxicological 
data. Toxicol Lett 189(2):138–144

US EPA Risk Assessment Forum (2005) Guidelines for Carcinogen risk assessment. EPA/630/P--
03/001F. https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_
final_3-25-05.pdf

US EPA Science Policy Council (2003) A summary of general assessment factors for evaluating 
the quality of scientific and technical information. Science Policy Council, U.S. Environmental 
Protection Agency, Washington, DC

Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann 
B, Lettieri T, Munn S, Nepelska M, Ottinger MA (2014a) Adverse outcome pathway (AOP) 
development I: strategies and principles. Toxicol Sci 142(2):312–320

Villeneuve D, Volz DC, Embry MR, Ankley GT, Belanger SE, Léonard M, Schirmer K, Tanguay 
R, Truong L, Wehmas L (2014b) Investigating alternatives to the fish early-life stage test: a 
strategy for discovering and annotating adverse outcome pathways for early fish development. 
Environ Toxicol Chem 33(1):158–169

Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, Willett C, Whelan M, 
Rogiers V (2013) Development of an adverse outcome pathway from drug-mediated bile salt 
export pump inhibition to cholestatic liver injury. Toxicol Sci 136(1):97–106

Weed DL (2005) Weight of evidence: a review of concept and methods. Risk Anal 25(6):1545–1557

T. Rycroft et al.

https://aopkb.org/common/AOP_Handbook.pdf
http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf
https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf


317© Springer International Publishing AG 2018 
N. Garcia-Reyero, C.A. Murphy (eds.), A Systems Biology Approach  
to Advancing Adverse Outcome Pathways for Risk Assessment, 
DOI 10.1007/978-3-319-66084-4_16

Chapter 16
Using a Vitellogenesis Model to Link in vitro 
Neurochemical Effects of Pulp and Paper  
Mill Effluents to Adverse Reproductive 
Outcomes in Fish

Brandon M. Armstrong, Cheryl A. Murphy, and Niladri Basu

B.M. Armstrong (*) • C.A. Murphy 
Department of Fisheries and Wildlife, Michigan State University,  
East Lansing, MI 48824, USA
e-mail: armst116@msu.edu 

N. Basu 
Faculty of Agricultural and Environmental Sciences, McGill University,  
Montreal H9X 3V9, QC, Canada

Department of Environmental Health Sciences, University of Michigan  
School of Public Health, Ann Arbor, MI, USA
e-mail:   niladri.basu@mcgill.ca

Abstract  Many environmental contaminants may cause adverse reproductive 
effects through disruption of the neuroendocrine system. Pulp and paper mill efflu-
ent can contain up to 250 different contaminants and has been linked to reproductive 
impairment in fish. We used data from an in vitro study that characterized the poten-
tial neurochemical effects of pulp and paper mill effluent, to model vitellogenin 
production after exposure to different effluent fractions. We hypothesized that dis-
rupted in vitro γ-aminobuytric acid and dopamine signaling could be modeled to 
simulate reproductive impairment in fish, specifically reduced vitellogenin produc-
tion. These neurotransmitters are involved in the release of gonadotropin releasing 
hormone from the hypothalamus, which stimulates downstream processes related to 
vitellogenin production in the liver of female fish. In our approach, we integrated 
the in vitro results into a fish vitellogenesis model to predict adverse reproductive 
outcomes at the individual level. Our model results indicate that exposure to toxi-
cants within the pulp and paper mill effluent, which interferes with neurotransmis-
sion, may cause harmful reproductive effects by impairing vitellogenin production. 
While the model has yet to be validated, our proof of principle approach highlights 
the use of computational models as a means to integrate results from in vitro studies 
that assess complex mixtures to potentially adverse effects on fish reproduction.
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16.1  �Introduction

16.1.1  �Environmental Mixtures & Their Effects

Aquatic organisms are exposed to complex mixtures of stressors in their environ-
ment derived from both natural and anthropogenic sources. Predatory cues, food 
limitations, temperature fluctuations, hypoxia and salinity are just a few of the 
stressors that exist within aquatic environments (Holmstrup et  al. 2010; Hooper 
et al. 2013). Anthropogenic sources can also include the release of chemical com-
pounds through household and industrial wastes and agricultural practices (Kolpin 
et al. 2002; Adams 2005). For example, in a recent survey of 139 streams across the 
United States, over 80 organic wastewater contaminants, including personal care 
products, agricultural, industrial and household compounds and pharmaceuticals 
were detected and at least one of these compounds was detected in 80% of the 
streams sampled (Kolpin et al. 2002). Understanding how these stressors interact 
with one another in a complex mixture to produce biological effects remains a dif-
ficult yet pressing task for ecotoxicology.

Complex mixtures may cause long-term adverse effects on communities inhabit-
ing aquatic environments. A commonly measured adverse effect is mortality; how-
ever sublethal effects may occur following exposures to doses lower than those that 
induce mortality. Often, contaminants impair behavior, gene expression and physi-
ological function (Laws 2000), which may interfere with bioenergetics, endocrine 
and neuroendocrine functions and immunity of organisms. Chemical interactions 
within complex mixtures may result in adverse effects even below their individual 
no-observable-adverse-effect concentration (NOAEC; Monosson 2005). For exam-
ple, Armstrong et al. (2015) determined that a mixture of unionized ammonia (NH3; 
0.03 mg/L) and the pharmaceutical 17α-ethinylestradiol (EE2; 0.25 ng/L) at their 
respective NOAEC resulted in increased fathead minnow mortality during a 21 day 
exposure.

16.1.2  �Future Direction of Environmental Toxicology

Traditionally, toxicological studies have assessed the effects of a single contaminant 
on a single organismal species. Many of these studies were conducted offering opti-
mal environmental conditions for a chosen organism that could survive in a labora-
tory setting. Additionally, these studies focused on laboratory model species, which 
aren’t necessarily predictive of wild species. Lastly, many of them did not assess the 
interactions that may occur between stressors and that these interactions may culmi-
nate in cumulative, synergistic, antagonistic or additive effects. Therefore, effect 
concentrations derived from single contaminant exposures may fall short in protect-
ing aquatic organisms inhabiting environments where complex mixtures of environ-
mental stressors exist.
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Assessing the biological effects of chemical mixtures is a challenge as there are 
currently over 85,000 registered chemicals on the U.S. Environmental Protection 
Agency’s Toxic Substances Control Act (TSCA) chemical substance inventory 
(U.S. EPA 2015). Fully assessing the biological effects of each chemical on every 
species inhabiting aquatic environment is not attainable. It is also impractical to 
determine the effects of every possible combination of chemicals found in a com-
plex mixture using traditional approaches. Chemical instrumentation analyses can 
determine the types and quantities of each chemical associated with a chemical 
mixture; however this technique offers little or no information on biological effects 
stemming from an exposure to that mixture. Biological methods can be used to 
derive effect concentrations for various endpoints however these methods cannot 
determine which chemical in the mixture (or their interactions) are producing the 
observed biological effect.

Exposure to contaminants that evoke sublethal effects within individuals can 
indicate exposure through identifiable profiles, known as biomarkers, which can be 
measured at the molecular, biochemical or cellular level (U.S.  EPA 2012). 
Biomarkers are quantifiable biological responses used to indicate the biological 
state of an organism or cell (Carvan et al. 2008). These biomarkers are generally 
easier to measure than conducting whole-organism and/or population-level studies, 
and so, a goal of toxicology today is to extrapolate from mechanistically relevant 
molecular and subcellular biomarkers to whole individual and population/commu-
nity level effects.

Biomarkers are not without their own set of limitations. Biomarkers only provide 
a measurement at a single time point and due to the complexity of organismal sys-
tems one must consider the temporal dependence of a biomarker from the onset of 
exposure (Forbes et al. 2006). Measuring multiple biomarkers at any given time may 
only lead to ambiguity as individual biomarkers likely have different dose-response 
curves (Depledge 1994; Forbes et al. 2006). Forbes et al. (2006) suggested that suites 
of biomarkers must be linked to a mechanistic model tied to some measurement of 
fitness in order to be useful. When coupled with a mechanistic model anchored to an 
exposure or toxicologically relevant phenotype, biomarkers measured in an indi-
vidual can be useful predictors of population risk (Carvan et al. 2008).

For ecotoxicological purposes, sublethal effects must be translated to population 
level impacts. There are significant limitations to obtaining population-level data to 
evaluate the thousands of anthropogenic chemicals, many have been recognized by 
the U.S. National Research Council (NRC 2007) who suggested that new, predictive 
approaches be developed to examine toxicant effects. These recommendations 
range from molecular level changes in individuals to impacts on entire populations 
(NRC 2007). The NRC suggested that researchers and regulators move away from 
the reliance on in vivo studies to in vitro model systems. One approach that can help 
meet these goals is the adverse outcome pathway (AOP), a conceptual framework 
linking molecular initiating events caused by contaminant exposures to adverse out-
comes at higher levels of organization considered relevant to risk assessment 
(Ankley et al. 2010).

16  Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp…
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An AOP framework approach can be used to assess the risks of environmental 
contaminant mixtures to fish and wildlife by scaling molecular data to the individual 
and also to the population level (Watanabe et al. 2011). This framework could help 
population modeling and ecological risk assessment efforts by linking ecotoxicol-
ogy data with mechanistic predictors of effects to reproduction and population sur-
vival (Kramer et al. 2011). Currently, AOPs are being developed to relate chronic 
toxicity to impaired fish growth (Groh et al. 2015) and reproduction (Ankley et al. 
2010). As further AOPs are established, modeling approaches will be needed to link 
several AOPs into an integrated key event network (Chap. 14). This linkage process 
is necessary as it is unlikely that exposure to a chemical will result in only a single 
AOP being activated, especially considering the wide range of molecular targets 
within complex organisms.

In this chapter we investigated a pulp and paper mill effluent (PPME) case study 
to show, as proof of principle, a way to integrate in vitro neurochemical data into a 
fish vitellogenesis model to predict adverse reproductive effects following exposure 
to complex mixtures. The vitellogenesis model was adapted from Murphy et  al. 
(2005) to include the release of neurotransmitters specific to fish reproduction and 
their binding to associated receptors, which influence the downstream production of 
sex steroids. We included processes for γ-aminobutyric acid (GABA) and dopamine 
(DA) as they are the two primary neurotransmitters involved in controlling gonado-
tropin production in fish. Neurotransmitters binding to their respective receptors 
and the activity of their associated degrading enzymes can be measured using cell-
free in vitro assays. We leveraged data from an in vitro study (Basu et al. 2009) 
which exposed common goldfish whole brain extracts to fractionated PPME and 
characterized subsequent impairments to GABA and DA receptor binding and 
enzyme activity. Our objective was to incorporate the in vitro neurochemical data 
into the mathematical model and simulate the hypothalamic-pituitary-gonadal-liver 
(HPGL) axis of a generic female fish by predicting cumulative vitellogenin produc-
tion over one spawning season. Model simulations for each effluent fraction were 
then compared against a control to determine if an impairment of vitellogenin pro-
duction would result from PPME exposure.

16.1.3  �Neurotransmitters & Fish Reproduction

Vertebrate reproduction is controlled by many hormones and compounds within the 
HPGL axis, Fig. 16.1 (Van Der Kraak et al. 1998; Trudeau et al. 2000).

Environmental cues, such as temperature and photoperiod, stimulate the release 
of neurotransmitters. Neurotransmitters facilitate the body’s communication sys-
tem, including reproduction, by acting as chemical messengers and activating spe-
cific receptors in post synaptic cells, Fig. 16.2 (Lauder 1993).

Neural cells transmit information from one cell to another at the synapse, the nar-
row space between the axon of initiating cell and recipient cell (McGeer et al. 2013). 
The initiating cell generates an action potential that travels through the axon to the 
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terminal triggering the release of neurotransmitters from the axon to the synapse. 
The neurotransmitters then bind to post-synaptic receptors of the recipient cell and 
depolarize the cell membrane. The chemical signal is converted back to an electrical 
signal and either destroyed or cleared. There are three major classes of neurotrans-
mitters: biogenic amines, amino acids and neuropeptides (Kurreck and Stein 2015).

There are a number of mechanisms in which toxicants can cause neurotoxicity. 
Once released, neurotransmitters must then bind to receptors to initiate the signal-
ing process. Toxicants can impede the cell signaling by binding or activating these 
receptors and/or inhibiting neurotransmitter release. Inactivation of free (unbound) 
neurotransmitters within the synaptic cleft occurs through enzymatic degradation. 
Toxicants may disrupt enzyme activity within the hypothalamus (Basu et al. 2009). 
Disruption of neurotransmitter receptor binding or enzyme activity may cause 
downstream effects including altered sex hormone dynamics, which may impair 
reproduction (Fig. 16.1).

Dopamine is a biogenic amine neurotransmitter that acts directly at the pituitary 
cell level to inhibit the release of gonadotropin through interaction with the gonado-
trope D2 receptor (Zohar et al. 2010). In some species such as the goldfish, Carassius 
auratus, DA has been shown to inhibit both gonadotropin release directly as well as 
gonadotropin releasing hormone (GnRH) mediated gonadotropin secretion 
(Popesku et al. 2008). This is thought to be an evolutionary mechanism to prevent 
spawning during periods of poor environmental conditions (Zohar et  al. 2010). 

Fig. 16.1  The hormonal cascade of the fish hypothalamic-pituitary-gonadal-liver axis and subse-
quent reproduction

16  Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp…
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Once released, free DA is subject to reuptake into the presynaptic terminal by DA 
transporters or degradation by the enzyme monoamine oxidase (MAO) (Bortolato 
et al. 2008). The role of DA is dependent on the fish species. For example, DA inhi-
bition of GnRH was found to be very high in cyprinids and was much less pro-
nounced in salmonids and nearly absent in Atlantic croaker, Micropogonias 
undulates (Van Der Kraak 2009) and percids (Zakes and Demska-Zakes 2005; 
Dabrowski et al. 1994; Żarski et al. 2015) which suggests dopamine’s role in fish 
reproduction is a species-dependent process (Levavi-Sivan et al. 2010).

The γ-aminobutyric acid is an amino acid neurotransmitter found in the brain of 
vertebrates (Zohar et al. 2010). Once released it is reabsorbed by the presynaptic 
terminal, degraded by the enzyme GABA-transaminase (GABA-T) or bound to post 
synaptic terminal receptors (Treiman 2001). In mammals, GABA acts as an inhibi-
tory neurotransmitter within the brain and, through interactions with GnRH neu-
rons, GABA inhibits GnRH release (Smith and Jennes 2001). However, in fish, 
GABA has a stimulatory role in reproduction by promoting GnRH secretion from 
the hypothalamus through exciting GnRH neurons and inhibiting DA release 
(Popesku et al. 2008; Watanabe et al. 2014). For example, rainbow trout injected 
with a single dose of GABA exhibited increased LH release from the pituitary 
(Mananos et  al. 1999; Levavi-Sivan et  al. 2010) likely through actions on the 

Fig. 16.2  Simplified schematic of a chemical synapse. Neurotransmitters are released from the 
presynaptic neuron terminal into the synaptic cleft. The neurotransmitters then are able to bind to 
open receptor sites on the postsynaptic terminal to elicit a response. Unbound neurotransmitters 
are subjected to enzymatic degradation and transporter reuptake
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hypothalamic GnRH neurons which directly innervate the pituitary (Peter et  al. 
1990). There are two types of GABA receptors localized throughout the hypothala-
mus, GABAA and GABAB (Maffucci and Gore 2009). While the specific functions 
of these two receptor types aren’t completely understood, mammalian research has 
shown that activation of the GABAA receptor blocks the proestrus LH surge and 
release whereas in fish, GABAA receptor activation excites GnRH neurons 
(Watanabe et al. 2014).

16.1.4  �Pulp and Paper Mill Effluent

The conversion of wood fibers into paper products generates a large amount of pol-
lution (Ali and Sreekrishnan 2001) with up to 100 million kg of pollutants released 
into the environment each year (Dey et al. 2013). Additionally, the industry is one 
of the largest in terms of water consumption, as the formation of paper products 
requires an expansive amount of freshwater (Thompson et al. 2001). Pulp and paper 
mill effluents can contain over 250 different chemicals at various stages of the treat-
ment process (Ali and Sreekrishnan 2001) including chlorinated compounds, fatty 
acids, tannins, organic polymers and sulfuric compounds (Zayas et al. 2011).

Several studies have shown that exposure to PPME can impair fish reproduction. 
For example, female largemouth bass exposed to PPME (≥ 20% effluent) for 
56  days exhibited reduced 17β-estradiol and vitellogenin production (Sepulveda 
et al. 2003). Additionally, fathead minnow egg production was significantly reduced 
following a 5-day exposure to 100% PPME (Waye et  al. 2014b). The chemicals 
found in PPME can also alter in vitro neurochemical signaling in fish (Basu et al. 
2009), which may be a mechanism for disrupted reproduction in fish exposed to the 
effluent (Kovacs et al. 2013). In this case study, we will focus on the neurochemical 
effects of PPME reported by Basu et al. (2009).

Basu et  al. (2009) assessed the potential neurochemical effects of PPME in 
goldfish brain tissue by measuring changes in GABA and DA neurotransmitter 
receptor binding and associated enzyme activities (Basu et al. 2009). The PPME 
was collected following primary treatment (clarifier) and secondary treatment (con-
ventional activated sludge) from a facility in Eastern Canada and fractionated into 
different chemical components using classic solvent polarity (hexane, ethyl acetate 
and water) and polyphenolic extraction (Polyvinylpolypyrrolidone, PVPP) meth-
ods. While the fractionation process used did not identify the exact active com-
pounds within the effluent, it did separate out chemicals into different classes based 
on unique properties of the individual compounds. Using an in vitro technique 
which measured changes in receptor binding and enzyme activity, Basu et  al. 
(2009) reported that chemicals in both the primary and secondary PPME extracts 
can disrupt the function of neurotransmission in fish brains in vitro (Table 16.1). 
The data collected by Basu et al. (2009), by itself, is hard to interpret on higher 
levels of biological organization, such as an individual’s reproductive potential, as 
some receptors were increased while their respective enzymes were also increased. 

16  Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp…
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For example, the hexane fraction of the primary effluent increased GABA binding 
to the GABAA receptor by 289%, which may indicate increased gonadotropin pro-
duction. However, GABA-transaminase activity was also increased 169%, which 
may inhibit gonadotropin production. It is difficult to determine if reproduction 
would be impaired based on this in vitro information alone.

Linking neurochemical changes with vitellogenin production may provide a 
scheme to better interpret the aforementioned work. Vitellogenin is a precursor pro-
tein for egg yolk in oviparous organisms (Arukwe and GoskØyr 2003) and is directly 
related to fecundity and egg quality in an individual fish (Miller et al. 2007). Thus, 
vitellogenin is an important biomarker of exposure to endocrine disrupting contami-
nants. The neurochemical effects of PPME reported by Basu et al. (2009) may lead 
to downstream effects along the HPG axis and disrupt reproduction, specifically 
vitellogenin production. The results from Basu et al. (2009) suggest that dopamine 
in the brain may be increased due to the general trend of decreased MAO activity. 
Female rainbow trout exposed to 0.01 mg/L hydrogen cyanide for 12 days exhibited 
increased brain dopamine levels which correlated with reduced plasma vitellogenin 
levels and smaller oocytes (Ruby et al. 1986; Szabo et al. 1991). The GABA results 
reported by Basu et al. (2009) are hard to determine if there would be an increase or 
decreased effect on GnRH production as there was a general increase in GABA-T 
activity but decrease in GABAA receptor binding. In another study, injection of the 
GABA receptor agonist, muscimol (0.1 μg/g) increased serum LH in female gold-
fish after 30 min (Trudeau et al. 1993). Similarly, a single injection of the GABA-T 
inhibitor, γ-vinyl-GABA (300 μg/g), in female goldfish increased serum LH at days 
1, 7 and 14 which returned to baseline levels by day 21 (Trudeau et al. 1993). We 
assume that both of these results would lead to increased vitellogenin production.

Based on these prior studies, we hypothesized that exposure to PPME and its 
subsequent GABA and DA signaling disruption (as determined using cell-free 
in vitro methods) within the hypothalamus will lead to reduced liver vitellogenin 
production in female fish. Therefore, the goal of this study was to incorporate a 
neurochemical compartment to an existing fish vitellogenesis computational model 
(Murphy et al. 2009) to link neurochemical changes to impaired fish vitellogenin 
production using an AOP framework.

16.2  �Computational Model of the Fish HPGL Axis

The model consisted of a series of differential equations which determined the 
rate of change of 11 state variables within five compartments; Hypothalamus, 
Pituitary, Ovary, Liver and Blood. Hypothalamic state variables included GABA 
and DA (nmol/mg) neurotransmitters, GABAA and D2 receptors (nM) and GnRH 
(ng/ml). LH release into circulation (ng/ml) was the sole state variable in the pitu-
itary compartment. The gonad compartment consisted of T and E2 sex steroid 
concentration (ng/ml). The liver compartment contained the state variables estro-
gen receptor (nM) and the blood compartment contained the state variables steroid 
binding proteins (nM) and vitellogenin (mg/ml).

16  Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp…
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The model schematic showing relationships between state variables is presented 
in Fig. 16.3. A description of all variables, parameters, initial values and associated 
units used in the model are listed in Table 16.2. The simulations ran for 6 months to 
correspond to the period of vitellogenesis in a generic female fish (Murphy et al. 
2005). Fourth-order Runge-Kutta integration with a time step of 0.0001 h was used 
to solve the model. The model was developed in FORTRAN 90 with the Lahey 
Fujitsu compiler (version 7.3) to perform simulation experiments.

The model was driven by the release of the neurotransmitters GABA 
(Syn[GABA]; Eq. 16.1, nmol/mg/h) and DA (Syn[DA] Eq. 16.2, nmol/mg/h). Many 
neurochemicals are released in a pulsatile manner (Terasawa 1994) including 
GABA (Maffucci and Gore 2009) and DA (van den Pol 2010). Additionally, the 
circadian rhythm of many hormones is believed to be caused by a diurnal circle of 
hypothalamic neurotransmitters (Macho et al. 1986) and GABA and DA have been 
shown have a circadian rhythm in other brain regions (Castaneda et  al. 2004). 
Therefore we characterized the neurotransmitter release using a slightly modified 
diurnal cycling function (Murphy et  al. 2005) which included neurotransmitter 
inhibition parameters. Neurotransmitters were released into the system for the first 
2 months of the simulation to correspond to the period of gonadal recrudescence 
(Murphy et al. 2005). The release of GABA and DA were subjected to either a DA 
(inhDA) or GABA (inhGABA) inhibition rate, respectively (Popesku et  al. 2008). 
During vitellogenesis, E2 has been shown to stimulate the production of DA in 
salmonids (Zohar et al. 2010) and therefore our model included an E2 derived DA 
stimulation rate (StimE2DA). Additionally, it was reported that GABA transmission to 
GnRH neurons is reduced by E2 (Watanabe et al. 2014), therefore we included an 
E2 inhibition (InhE2GABA) rate in the GABA release function.

Fig. 16.3  Conceptual compartmentalized computational model of the fish HPGL axis
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Once released, the concentrations of free (unbound) GABA and DA neurotrans-
mitters ([GABA], Eq.  16.3; [DA], Eq.  16.4, nmol/mg) within the hypothalamus 
compartment were bound to a receptor, degraded by an enzyme or cleared from the 
synapse via a reuptake transporter. GABA was bound to GABAA receptors or 
degraded by the GABA-T enzyme whereas DA was bound to D2 receptors or 
degraded by MAO.  The concentration of free neurotransmitters was calculated 
based on the amount being released, adding the concentration disassociating from 
the receptor and subtracting the concentration bound to a receptor, degraded by an 
enzyme or undergoing reuptake by a transporter.

	

dGABA

dt
Syn GABA ka GABA GABA A

kd GABA GABA A

GABA

GABA

= [ ]− [ ] −[ ]
+ −[ ]_ −− −Up DegGABA GABA 	

(16.3)

	

dDA

dt
Syn DA ka DA D kd DA D Up DegDA DA DA DA= [ ]− [ ][ ]+ [ ]− −2 2_

	
(16.4)

Enzymatic degradation (Deg; Eqs. 16.5 and 16.6; nmol/mg/h) and synaptic reup-
take (Up; Eqs.  16.7 and 16.8, nmol/mg/h) of both GABA and DA followed 
Michaelis-Menten kinetics as has been reported in other studies (Wheeler and 
Hollingsworth 1979, Venton et al. 2003) using the parameters V (maximum rate) 
and k (half saturation rate). Enzyme degradation multipliers (MultGABA-T and 
MultMAO) were incorporated to simulate PPME exposure, further detailed in Sect. 
16.2.6. We assumed that in vitro enzyme activity was directly related to degradation 
rates of the neurotransmitters.

	

degGABA
GABAT

GABAT
GABA T

V GABA

k GABA
Mult=

[ ]
+ [ ]
∗ ∗

−

	

(16.5)

	

degDA
MAO

MAO
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V DA

k DA
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[ ]
+ [ ]
∗ ∗

	

(16.6)
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Up
V GABA

k GABAGABA
GABA
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=
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+ [ ]
∗

	

(16.7)

	

Up
V DA

k DADA
DA
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=
[ ]
+ [ ]
∗

	

(16.8)

Additionally, we assumed that ligand-receptor binding followed a generalized 
mathematical formula (Murphy et  al. 2005). For example, the concentration of 
ligand bound receptors ([GABA_GABA-A], Eq. 16.9; [DA_D2], Eq. 16.10, nmol/
mg/h) was calculated as the association rate constant (ka; Table 16.2) multiplied by 
the number of open receptors ([GABA-A] or [D2]) and the concentration of unbound 
ligand ([GABA] or [DA]). The concentration dissociating from the receptor was 
calculated by multiplying the dissociation rate constant (kd; Table 16.2) by the con-
centration of ligand bound receptors.

	

dGABA GABA A

dt
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kd GABA GABA A
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−
= [ ] −[ ]
− −[ ] 	

(16.9)

	

dDA D
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2
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(16.10)

The concentration of open neurotransmitter receptors [GABA-A; Eq. 16.11] and 
[DA-D2; Eq. 16.12] were calculated based on a basal receptor induction rate (kind, 
1/h), the amount of ligand associating or disassociating to the receptor and a basal 
elimination rate of the receptor (kelim, 1/h). Neurotransmitter receptor binding mul-
tipliers (MultGABA-A and MultD2R) were incorporated to simulate PPME exposure, 
further detailed in Sect. 16.2.6.
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kind GABA A
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kd GA
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(16.11)

	

dD

dt
kind D ka DA D kd DA kelim MultD DA DA D D D R

2
2 22 2 2 2= [ ]− [ ][ ]+ [ ]−( )∗

	
(16.12)

The release of GnRH was a ratio of GABAStim to DAInhib (Eq. 16.13, ng/ml) 
where GABAStim (Eq.  16.14) and DAInhib (Eq.  16.14) were second order 
Michaelis-Menten kinetic equation, similar to what has been used in LH simula-
tions (Blum et  al.  2000). The amount of free GnRH in the system ([GnRH], 
Eq. 16.16, ng/ml) was calculated by subtracting the amount being converted into 
luteinizing hormone (LH) from the amount of GnRH being released.
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Syn GnRH GabaStim DAInhib[ ] = /

	
(16.13)
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(16.15)

	

dGnRH

dt
Syn GnRH Syn LH= [ ]− [ ]

	
(16.16)

16.2.1  �Pituitary Compartment

The GnRH stimulated LH release rate (GnRHStim, Eq. 16.17, ng/ml) was calcu-
lated as a second-order Michaelis-Menten kinetic equation (Blum et  al. 2000). 
Circulating E2 can diffuse through pituitary tissue and inhibit the release of LH 
(Van Der Kraak 2009). Therefore the actual amount of LH being released into the 
system (SynLH, Eq. 16.18, ng/ml) included an E2 inhibition rate (Murphy et  al. 
2005). The concentration of free LH ([LH], Eq. 16.19, ng/ml) was calculated by 
subtracting the amount of LH being converted into testosterone (T) from the con-
centration of LH being synthesized.

	

GnRHStim
GnRH

GnRH
=

[ ]
+ [ ]

∗5

2 0

2

2
.

	

(16.17)

	

Syn LH
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E
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[ ]

1
2
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(16.18)

	

dLH

dt
Syn LH Syn T= [ ]− [ ]

	
(16.19)

16.2.2  �Gonad Compartment

Once LH was released into the blood it traveled to the ovary to promote T synthesis 
(Syn[T], Eq. 16.20, ng/ml) within the gonad which was calculated as a Hill function 
(Murphy et al. 2005). The concentration of T in the system ([T], Eq. 16.21, ng/ml) 
was calculated by subtracting the enzymatic degradation rate (kdegT, ng/ml/h), the 
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concentration being bound by steroid binding proteins (SBP) and the amount of T 
being converted into E2 (Syn[E2], ng/ml) from the amount of T being synthesized 
and dissociated from SBP (Murphy et al. 2005).

	

Syn T
V LH

k LH

T

H

T
H H

T

T T
[ ] = [ ]

+ [ ]

∗

	

(16.20)

	

dT

dt
Syn T kdeg T kd SBP T Syn E ka T SBPT T T= [ ]− [ ]+ [ ]− [ ]− [ ][ ]_ 2

	
(16.21)

The synthesis of E2 from the aromatization of T (Syn[E2], Eq. 16.22, ng/ml) was 
defined by a Hill function (Murphy et al. 2005). The concentration of free E2 in the 
system ([E2], Eq. 16.23, ng/ml) was dependent upon Syn[E2] and the concentration 
being degraded by enzymes, associated to and dissociated from the liver estrogen 
receptors (ER) and the concentration associating to and disassociating from blood 
SBP (Murphy et al. 2005). It is important to note that we only characterized the 
initial surge of E2 production, which occurs during the early vitellogenic period. We 
did not model the ovulatory surge that occurs prior to spawning.
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E
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2 2
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16.2.3  �Blood Compartment

SBP are located in the plasma of teleost fish, which bind to free sex steroid hor-
mones (T and E2) to prevent their metabolic degradation (Murphy et al. 2005). We 
assumed free and bound steroid hormones are at equilibrium in the blood, however, 
only the free hormone is physiologically active (Hammond 2016). In the model, the 
concentration of unbound SBP in the blood ([SBP]; Eq. 16.24, nM) was calculated 
by subtracting the concentration of E2 and T being associated to unbound SBP from 
the concentration of E2 and T dissociating from bound SBP (Murphy et al. 2005). 
The concentration of bound SBP to T and E2 ([SBP-T] & [SBP-E2], Eqs. 16.25 and 
16.26, nM, respectively) was calculated by subtracting the concentration of ligands 
being dissociated from the amount of ligands associating to unbound SBP (Murphy 
et al. 2005).
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16.2.4  �Liver Compartment

Once the free E2 reached the liver it bound to an open estrogen receptor (ER), form-
ing the ER-E2 complex (Murphy et al. 2005). Unbound ER concentration ([ER], 
Eq. 16.27, nM) was calculated by subtracting the amount of E2 being associated to 
unbound ER from the concentration of E2 dissociating from bound ER. k1 and k_1 
are the association and dissociation rate constants for E2 to ER (Murphy et  al. 
2005). Additionally, we assumed a background degradation rate (kdegu) of unbound 
ER and an induction rate (k2) where activated ER lead to further production of 
unbound ER (Murphy et al. 2005). Fish have three distinct ERs, ERα, ERβ and ERγ 
(Sabo-Attwood et al. 2004). Each receptor type has its own distinct physiological 
action and its concentration depends on the species and tissue (Leaños-Castañeda and 
Van Der Kraak 2007). In our model, we assume all of the vitellogenin production 
comes from the binding of E2 to the ERβ subtype (Leaños-Castañeda and Van Der 
Kraak 2007; Nelson and Habibi 2013).

	

dER

dt
k ER kdegu ER k ER E k ER EE= [ ]− [ ]+ [ ]− [ ][ ]∗1 15 2 1 2 1 22. _ _

	
(16.27)

	

dER E

dt
k E ER kdega ER E k ER E k ER E

_
_ _ _

2
1 2 2 1 2 2 2= [ ][ ]− [ ]− [ ]− [ ]

	
(16.28)

Once ER was bound by E2, the model assumed a forward rate constant (k3) of 
vitellogenin production ([VTG], Eq. 16.29, ng/ml) (Murphy et al. 2005). Vitellogenin 
is a good indicator of egg production because as the oocyte is growing, it is continu-
ally being filled with vitellogenin derived yolk proteins. Therefore we assumed a 
direct relationship between cumulative vitellogenin predicted by the model and 
fecundity (Miller et al. 2007).

	

dVTG

dt
k ER E= [ ]3 2_

	
(16.29)
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16.2.5  �Model Calibration

The generic female vitellogenesis model was calibrated for yellow perch (Perca 
flavescens) using sex steroid data collected over their early vitellogenic period, 
which runs from September through December and peaks in October (Fig. 16.4; 
Debofsky et al. 2015). Concentrations of in vivo plasma E2 and T was measured in 
mature female yellow perch using a radioimmunoassay technique (Jensen et  al. 
2011). Parameter values specific to neurotransmitter inhibition and receptor produc-
tion, kelimG, kelimD, kindG, kindD, inhGABA, inhDA (Armstrong 2016), were 
incrementally adjusted during repeated simulations until the modeled sex steroid 
concentrations roughly mimicked the laboratory measurements.

16.2.6  �PPME Simulation Conditions

Basu et al. (2009) assessed the potential neurochemical effects of both primary and 
secondary effluent from an Eastern Canadian pulp and paper mill. Both effluents 
were fractionated into four extracts by two methods of extraction; classic polarity 
and polyphenolic extraction. Whole brain tissues from male and female common 
goldfish were incubated with the effluent extracts for 30 min. Radioligand binding 
to both GABA and DA receptors was measured in vitro for each effluent extract 

Fig. 16.4  Sexually mature female yellow perch (Perca flavescens) were raised in an indoor labora-
tory environment. Plasma 17β-estradiol concentrations during early vitellogenesis were obtained 
over a 3 month period using a radioimmunoassay technique and used to calibrate computational 
HPGL model. Error bars ±1 standard error, N = 12
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using male and female common goldfish whole brain tissue. MAO and GABA-T 
proteins concentrations were determined in whole brain tissue. GABA-T enzyme 
activity was determined by incubating 5 μg of protein homogenates in 100  mM 
potassium pyrophosphate buffer containing 5  mM α-ketoglutarate, 4  mM NAD, 
3.5 mM 2-mercaptoethanol, 10 μM pyridoxal-5′-phosphate, pH 8.6 for 15 min at 
37 °C. 10 mM GABA was added and the absorbance was observed every 10 s for 
2 min and maximal velocity of the enzyme reaction calculated. A final effluent con-
centration of 0.5 mg/ml was added and the enzyme activity measured. Similarly, 
MAO activity was measured by mixing 5 μg of protein with 100 μM 10-acetyl-3,7-
dihydroxyphenoxazine, 200  mU horseradish peroxidase and 100  mM tyramine. 
Samples were incubated for 30 min and the production of resorufin was monitored 
between 30 and 50 min.

The neurotransmitter receptor binding and enzyme activity data obtained from 
Basu et al. (2009) were incorporated into the model as multipliers, expressed as a 
percent change from the control (Table 16.1). Multipliers for enzyme activity were 
incorporated in the enzyme degradation Eqs. 16.5 and 16.6 for GABA-T and MAO, 
respectively. Additionally, neurochemical receptor binding multipliers for GABAA 
and D2 were added to the state variable Eqs. 16.11 and 16.12, respectively. Five 
separate simulations were run for both the primary and secondary PPME, one for 
each fraction.

16.3  �Modeled Effects of PPME on the Fish HPGL Axis

16.3.1  �Neurochemicals

The model predicted that free GABA would reach its highest concentration on day 
14 following the onset of gonadal recrudescence at 2120 nmol/mg in the control 
brain tissue (Fig. 16.5). The PVPP water and PVPP ethanol fractions from the pri-
mary effluent increased the maximum concentration of free GABA by 29.1% and 
80.3%, respectively, compared to the control (Fig. 16.5a). The increase was due to 
the decreased number of receptor sites available for GABA binding, 71.4 and 50.8% 
of the control, respectively. The hexane fraction decreased the maximum concentra-
tion of free GABA by 68.1%. This decrease in free GABA resulted due to the 
increased number of receptor sites (288.9% of the control) and increased GABA-T 
enzyme activity (168.6% of the control). The remaining primary effluent fractions, 
ethyl acetate and water, slightly reduced the maximum concentration of free GABA 
by 10.5% and 0.1%, respectively. The secondary PPME resulted in increased GABA 
concentrations during all modeled fraction simulations (Fig.  16.5b). The highest 
concentration of free GABA was increased by 23.9%, 41.9%, 216.0%, 266.7% and 
278.3% nmol/mg in the ethyl acetate, hexane, PVPP ethanol, water only and PVPP 
water fractions, respectively, compared to the control. These increases were due to 
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the fact that all fractions reduced in vitro GABA receptor binding compared to the 
control (Table 16.1).

Modeled free DA reached a maximum concentration by day 3 at 127 nmol/mg in 
the control brain tissue. This maximum concentration was followed by a quick 
decline to 39.8 nmol/mg at day 20 in the control due to the increased free GABA 
concentration and subsequent DA inhibition. As E2 increased in circulation, which 
inhibited GABA release, the free DA then increased to 58.4 nmol/mg in the control 
brain tissue by day 60. The model predicted that exposure to the primary effluent 
would result in a slight increase in the maximum concentration of free DA by 
103.2%, 104.6%, 106.8%, 107.2% and 107% nmol/mg in the ethyl acetate, PVPP 
water, PVPP ethanol, and hexane fractions, respectively, compared to the control 
(Fig. 16.6a). The water fraction resulted in a 2.4% decrease in maximum concentra-
tion of DA. The low concentration of free DA at day 30 due to GABA inhibition was 
reduced by 12.1%, 23.1%, and 47.5% nmol/mg in the water, PVPP water and PVPP 
ethanol fractions, respectively and increased by 17.8% and 38.2% in the hexane and 
ethyl acetate fractions, respectively, compared to the control. Interestingly, even 
after the neurotransmitter release was shut off at day 60, dopamine was still present 
in the hexane fraction for an additional 60 days. Overall, the highest concentration 
of the free DA increased by 0.02%, 1.1% and 3.1% in the ethyl acetate, hexane and 
water only simulations and decreased by 0.4% and 1.8% in the PVPP water and 
PVPP ethanol simulations, respectively. However, because all of the secondary 
PPME effluent fractions increased the amount of free GABA, all fraction simula-
tions predicted a lower concentration at day 30 in free DA (Fig. 16.6b). The subse-

Fig. 16.5  Effects of primary (a) and secondary (b) pulp and paper mill effluent on modeled free 
γ-aminobuytric acid (GABA) in a generic female fish during vitellogenesis. * indicates when the 
neurotransmitter release function was turned off
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quent free DA low concentration was reduced by 22.3%, 26.6%, 52.0%, 63.3% and 
66.38% in the ethyl acetate, hexane, PVPP ethanol, PVPP water and water only 
simulation, respectively, compared to the control.

16.3.2  �Sex Steroid and Vitellogenin Production

Free plasma E2 production reached the highest concentration of 5.0 ng/ml in the 
control simulation. The maximum concentration was slightly increased by 2.3%, 
4.5% and 5.7% in the water only, PVPP water and PVPP ethanol fractions of the 
primary PPME, respectively. The ethyl acetate and hexane fractions reduced the 
maximum concentration of free E2 compared to the control by 10.0 and 81.2%, 
respectively, in the primary PPME.  All simulated fractions from the secondary 
PPME slightly increased free E2 compared to the control simulation. The maximum 
concentration of E2 increased 3.9%, 4.5%, 5.1%, 5.6%, and 6.0% ng/ml in the ethyl 
acetate, hexane, PVPP ethanol, PVPP water and water only fractions of the second-
ary PPME, respectively.

Modeled cumulative vitellogenin was 459.4 mg/ml in the control after the simu-
lation (Fig. 16.7). Only the water only fraction from the primary PPME increased 
modeled cumulative vitellogenin, which was 111.5% of the control. The remaining 
fractions from the primary PPME reduced modeled cumulative vitellogenin, by 
7.8%, 11.9%, 16.9% and 90.1% in the PVPP water, PPVP ethanol, ethyl acetate, 

Fig. 16.6  Effects of primary (a) and secondary (b) pulp and paper mill effluent on modeled free 
dopamine (DA) in a generic female fish during vitellogenesis. * indicates when the neurotransmit-
ter release function was turned off
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and hexane fraction simulations, respectively (Fig. 16.7a). There was a lesser effect 
on cumulative vitellogenin from the secondary PPME simulations. In comparison to 
the control simulation, the hexane and ethyl acetate fractions slightly increased 
cumulative vitellogenin by 1.2% while the PVPP ethanol, PVPP water and water 
only fractions reduced cumulative vitellogenin by 1.7%, 8.8% and 16.9%, respec-
tively (Fig. 16.7b).

16.3.3  �Relating Effects on Vitellogenin to Egg Production

If we assume that vitellogenin production is directly related to egg production as 
described in other studies (Miller et al. 2007; Murphy et al. 2009), we can convert 
the cumulative vitellogenin results into an estimated fecundity effect (Fig. 16.8). 
Using the control simulation as our baseline, the model predicts a 111.5% increase 
in fecundity in the water only fraction from the primary PPME. The PVPP water, 
PVPP ethanol, ethyl acetate and hexane fractions each would reduce fecundity to 
92.2%, 88.1%, 83.1% and 9.9%, respectively, of the control. The secondary PPME 
ethyl acetate and hexane fractions would slightly increase fecundity 101.9%, while 
the PVPP ethanol, PVPP water and water only fractions would reduce fecundity to 
98.3%, 91.2% and 84.1%, respectively, compared to the control. Additionally, 
assuming that the effects caused by individual fractions are additive to one another, 
we would expect that fecundity would be reduced by 92.6 and 6.9% in the primary 
and secondary PPME, respectively, compared to the control.

Fig. 16.7  Effects of primary (a) and secondary (b) pulp and paper mill effluent on modeled cumu-
lative vitellogenin production in a generic female fish during vitellogenesis
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16.3.4  �Comparison of Primary and Secondary PPME

Using a computational vitellogenesis model, we linked changes in neurochemical in 
vitro data for a complex mixture within PPME to adverse effects of vitellogenin 
production in a generic adult female fish to demonstrate how this could be done. 
While we don’t have chemistry data to know the exact contaminants within the 
PPME – which may be over 250 different compounds (Ali and Sreekrishnan 2001), 
the in vitro work conducted by Basu et al. (2009) determined that at least 4 different 
molecular initiating events, changes to GABA and DA receptor binding and MAO 
and GABA-T enzyme activity, can occur following exposure. The model suggests 
that disrupted GABA and DA receptor binding and associated enzyme activity due 
to exposure to both primary and secondary treated PPME would reduce vitellogenin 
production, with the primary PPME having a more pronounced (13x) effect. 
Secondary treatment of the PPME reduced the modeled reproductive toxicity of the 
effluent, vitellogenin production increased 10x and comparable to the level of the 
control (102%).

Pulp and paper mill effluent can contain phytochemicals such as terpene, a prod-
uct derived from conifer resin (Waye et al. 2014a; Basu et al. 2009). Terpene is a 
non-polar lipophilic, organic chemical, which can be extracted with hexane and 

Fig. 16.8  Extrapolating the effects of primary and secondary pulp and paper mill effluent on vitel-
logenin production to egg production in a generic female fish during vitellogenesis. Dashed line 
represents an unexposed female fish’s egg production
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other similar solvents (Basu et al. 2009). Terpenoids and other phytochemicals are 
hormonally active compounds present in bleached kraft pulp mill effluent (Belknap 
et al. 2006), which has been shown to reduce testosterone production in mummi-
chog (Dube and MacLatchy 2000). The primary PPME hexane extract simulation 
resulted in a 90.1% decrease in cumulative vitellogenin production in comparison to 
the control. The lack of vitellogenin inhibition (102% of the control) during the 
secondary PPME hexane extract simulation suggests that these substances may be 
removed during the secondary stage treatment process.

16.3.5  �Future Model Development & Data Gaps

This model is still in the early stages of development and its intent is not to predict 
future population changes nor recommend any regulatory changes. Research needs 
to be conducted to test the validity of the assumptions made in this model, most 
importantly the Michaelis-Menten kinetic values for the neurotransmitters, many of 
which  were derived from the mammalian and avian literature. Additionally, the 
model was developed for a generic single batch synchronous spawning generic 
female fish and calibrated using sex steroid data collected from a percid laboratory 
study. The in vitro work conducted by Basu et al. (2009) used common goldfish as 
a model species, which is an asynchronous spawner capable of spawning many 
times over the course of their breeding season.

The work by Basu et al. (2009) used pooled data from both male and female 
whole brains for their in vitro assays. Future work assessing the potential of PPME 
to affect GABA and DA dynamics and subsequent vitellogenin production should 
focus on only female brains, specifically the hypothalamus region, and preferably 
from individuals. To test the validity of the model, vitellogenin and egg production 
should be measured in vivo from female fish exposed to PPME in order to provide 
a population relevant 2nd anchor to the integrated AOP vitellogenesis model 
(Fig. 16.9). These data would also allow us to test the assumption that reductions in 
vitellogenin directly relate to a reduction in egg production for fish exposed to 
PPME. Modeling exercises such as this can greatly advance the environmental toxi-
cology field by synthesizing available information and directing future research 
towards addressing data gaps.

Future research should also look at testing in vitro effects of whole effluent on 
GABA and DA neurochemical processes. The Basu et al. (2009) paper fractionated 
the effluent into different chemical classes; however, it did not assess the effects of 
the whole effluent nor its predicted concentration in receiving waters. Without these 
data, we do not have a way to determine if these chemicals within the PPME are 
acting synergistically, antagonistically or additively to one another. Additional anal-
ysis of the specific chemical compounds found within the effluent fractions would 
also be beneficial in determining the active compounds of the effluent.
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16.3.6  �Proof of Principle and Future Intent

While not yet validated, these simulations demonstrate proof of principle for using 
computational modeling to link molecular effects of complex mixtures to adverse 
effects on fish populations. Once validated, this model can be used as a screening 
tool using in vitro data to help direct in vivo exposures towards potentially more 
harmful contaminants. The traditional fish short-term reproductive assay for assess-
ing estrogenic chemical effects takes 35 days to conduct and is only capable of test-
ing either just a few concentrations of a single contaminant or a single concentration 
of a mixture of just a couple of contaminants (Ankley et al. 2001; Armstrong et al. 
2015). With over 85,000 registered chemicals on the U.S. Environmental Protection 
Agency’s TSCA Chemical Substance Inventory (U.S.  EPA 2015), it would be 
impractical to conduct in vivo methods on every chemical and even more impracti-
cal to test complex chemical mixtures. The effects of thousands of chemicals at 
varying concentrations and their mixtures can be collected in that same 35 day time 
span using in vitro methods. High-throughput screening can currently screen 
100,000 compounds per day with the potential to test up to one million samples per 
day (Szymański et al. 2012). The data from these assays can be extremely variable 
and hard to relate to an in vivo response (Basu et al. 2009; Knudsen et al. 2011), 
however when coupled with a computational model using an AOP framework, 
quantifiable linkages can be made relating in vitro data to adverse in vivo effects.

Taking an Integrated AOP approach, we hypothetically linked together several 
molecular initiating events that may result in the same adverse outcome – impair-
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ment of vitellogenin production. Using a computational model to create quantitative 
linkages within the AOP framework, we extrapolated from in vitro neurochemical 
data to an adverse population outcome stemming from PPME exposure (Fig. 16.10).

It is likely that several AOPs will be activated due to exposure to complex mix-
tures. In order for computational models and AOPs to be used for risk assessment 
purposes they must undergo strict developmental guidelines, which include testing 
for reliability and robustness (OECD 2013). Weight of evidence analyses then need 
to be conducted for each key element of the AOP(s) (Becker et al. 2015). These 
analyses can include a simple qualitative method by assigning a level of confidence 
(very strong, strong moderate, weak, very weak) to the amount of data available 
linking key events within an AOP to an apical endpoint (OECD 2013). Additionally, 
a quantitative weight of evidence approach can be applied where an expert panel 
uses specific criteria to apply weights and scores to individual lines of evidence for 
each key event within an AOP. This criterion would include mechanistic relationships 
between key events, evidence of a downstream key event being impaired if an 
upstream key event is blocked, and consistency across a wide range of taxa and 
stressors for which the key event(s) occur. A mathematical or statistical model 

Fig. 16.10  Conceptual vitellogenesis model of an integrated adverse outcome pathway 
(AOP) framework to link multiple initiating events to adverse effects on egg production. Black 
arrows indicate either a inhibitory (-) or stimulatory (+) relationship between two state variables. 
Red arrows indicate positive (+) or negative (-) feedback loops. GABA: γ-aminobutyric acid; DA: 
dopamine; GnRH: gonadotropin releasing hormone; LH: luteinizing hormone; T: testosterone; E2: 
17β-estradiol; ER: estrogen receptor; and VTG: vitellogenin 
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would then evaluate the weights and scores to determine an overall conclusion for 
support of the new AOP (Becker et al. 2015). The AOPs linked in this model are 
strictly hypothetical as none have been directly linked to vitellogenin production, 
nor has a weight of evidence approach been applied. Further research is needed to 
determine if GABA receptor antagonism, D2 receptor agonism, increased GABA-T 
activity and/or decreased MAO activity results in reduced vitellogenin production. 
As more single AOPs are tested and become available, future computational models 
could be updated to create a stronger integrated AOP framework.

With this research, we have a better understanding of how contaminant mixtures 
can affect fish populations, which is invaluable for developing guidelines for accept-
able contaminant loads for healthy ecosystems. Once validated, we can use this 
approach in combination with the U.S.  Environmental Agency’s ToxCast™ pro-
gram to help prioritize chemicals for further toxicological analyses. The ToxCast™ 
program consists of data collected from high-throughput screening assays and uses 
computational toxicology methods to predict toxicity of specific compounds 
(Knudsen et al. 2011).
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Chapter 17   
Use of Adverse Outcome Pathways in Human 
Risk Assessment and Toxicology             

Catherine Willett, Suzanne Fitzpatrick, Bette Meek, and Carl Westmoreland

Abstract  Mechanistic information has been used for many years to inform chemi-
cal hazard and risk assessments. NRC reports and several agency strategic plans in 
recent years promote the large-scale use of mechanistic information, organized in 
the form of pathways at different levels of biological organization as a basis to 
underpin a dramatic change in the way chemical assessment is performed. As a 
result, there now exist international collaborations to develop the data and knowl-
edge bases, guidance and principles for development and use of “Adverse Outcome 
Pathways” (AOPs). Many of the principles for developing and using pathways are 
based on experience with Mode of Action frameworks for human health risk assess-
ment. Expert groups within the Organization for Economic Cooperation and 
Development (OECD) are publishing guidance and partnering with the US EPA and 
European Commissions Joint Research Centre (JRC) to develop a public knowledge 
base for building AOPs on a large scale. Although this direction is fairly new, there 
are many pathways already in development. In addition, pathway-based approaches 
are increasingly being applied to a variety of assessments of hazard in a number of 
sectors. This chapter describes the genesis of the AOP concept, the development of 
the necessary tools based on international collaborations, and provides some exam-
ples of the use of AOPs in human health risk assessment.
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17.1  �Introduction: Use of Mechanistic Information 
in Determining Hazard for Human Health

Consideration of mechanistic information in hazard assessment makes sense from 
the point of view that understanding the biological process(es) affected by chemical 
exposure will increase confidence in decisions and predictions made about the use 
of that chemical. It would also increase confidence in grouping similar chemicals, 
and in predicting potential outcomes of cumulative exposure of similar chemicals. 
From this reckoning came the realization that the better our understanding of biol-
ogy generally, and the greater our knowledge about chemical-biological interac-
tions, the better informed and less uncertain hazard and risk assessments will 
become overall. Hence, the desire for a systematic approach to collect, evaluate and 
organize this information has increased dramatically over the past few years, and 
the use of this information is becoming more wide-spread. This chapter describes 
some of these efforts.

The incorporation of mechanistic information in risk assessment has a long his-
tory, including dose-response modeling efforts (for example, see Clewell et  al. 
1995) and mode-of-action frameworks, such as those developed by the International 
Life Sciences Institute (Meek et al. 2003; Seed et al. 2005) and evolved and extended 
more recently by the International Program on Chemical Safety (IPCS) to deter-
mine human relevance of mode- of-action(s) of pesticides and industrial chemicals 
(Boobis et al. 2006, 2008), and the creation of mode-of-action pathways in drug 
development (e.g., Iorio et al. 2010) and their application (e.g., Schadt and Lum 
2006). Indeed, these efforts were novel in considering the systematic application of 
molecular and chemical mechanistic information to the interpretation of empirical 
data on complex endpoints and responded to increasing early recognition of the 
importance of such information to increase predictivity and decrease uncertainty in 
risk assessment for regulatory purposes (See, for example, US EPA 2005a).

17.1.1  �Early Applications of Mechanistic Information 
in Hazard and Risk Characterization

Mechanistic information has been described as the entirety of “critical biological 
factors that regulate particular biological processes and their interrelationships…
occurring at all levels of organization: population, organism, organ, cell and molecu-
lar” (Becking 1995). Mechanistic information has been used for decades in all steps 
of risk assessment (hazard identification, dose-response modeling, exposure model-
ing, and overall risk characterization) to decrease uncertainty and increase predictiv-
ity in comparison to traditionally adopted application of default assumptions to 
empirical data . One of the first areas of toxicology in which mechanistic under-
standing was applied was carcinogenicity, due in part to the mechanistic information 
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available (in particular, that on mutagenicity) and the importance of the endpoint. 
An example of an early application of mechanistic information is the adoption of 
differential defaults for dose-response modeling for compounds acting via a muta-
genic mode of action using linear models) versus those for which early mutation 
isn’t the key event for the critical effect where models assume a threshold). This 
results in the development of “safe” doses for all endpoints except cancer, where for 
compounds which are mutagenic, the incidence of disease in the population is esti-
mated. Mechanistic information has also been incorporated into more sophisticated 
pharmacokinetic modeling to estimate the “effective dose” of the active form of a 
substance in the target tissue, for example in the liver after exposure of a chemical 
by inhalation, by including information about physiological and metabolic processes 
that occur in the relevant tissues (Conolly and Andersen 1993; Clewell et al. 1995). 
Mechanistic information has also been used to support interspecies extrapolation 
and coverage of sensitive populations by including specific physiological differ-
ences between the test species and the target species (e.g. species differences in the 
efficiency of uptake, clearance or metabolism of the chemical by relevant tissues, 
differences in tissue and blood volume), thus decreasing uncertainly about the 
extrapolation and estimation of safe exposure (reviewed in Becking 1995 and Haber 
et al. 2001; Meek et al. 2002a, b; IPCS 2005).

17.1.2  �Mode-of-Action (MoA) Frameworks

The formal consideration or mechanistic information in the hazard assessment of 
chemicals is commonly referenced as mode of action analysis. Early work by the 
International Life Sciences Institute and more recently IPCS in the development of 
cancer and non-cancer MoA species concordance frameworks outline a systematic 
process of describing and documenting mechanistic support for chemical specific 
MoA in animals and comparing those with likely MoA in humans to determine 
human relevance (Meek et al. 2003; Seed et al. 2005; Boobis et al. 2006, 2008). 
They include reference to several founding principles of pathway-based approaches:

–– MoA is defined as a series of key events along a biological pathway from the 
initial chemical interaction through to the toxicological outcome, with key events 
being defined as measurable necessary precursor events to the adverse outcome 
(for a list of terms and definitions, see Table 17.1);

–– that a MoA does not need to reflect complete mechanistic understanding to be 
useful and that its use depends on level of completeness (e.g., incomplete MoA 
can inform testing strategies but is likely not sufficient to support hazard 
classification);

–– focus on the most likely mode of action which meaningfully integrates informa-
tion on potential early key events but considers the plausibility of alternative 
modes;
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–– definition of a “key event” as a step in the pathway that is critical to development 
of the toxicological outcome and is measurable; a requirement to systematically 
establish causation between key events;

–– the importance of quantitation in the application of MoA to risk assessment; and 
the need to establish relevance to human biology,

–– taking into account both chemical specific toxico-kinetics and -dynamics.

Establishing evidence for the MoA hypothesis is based on considerations modi-
fied from those of Bradford-Hill and introduced originally for establishing the cau-
sality of observed associations in epidemiological studies (Bradford-Hill 1965). 
The IPCS frameworks recommend determining human relevance by answering four 
key questions: (1) is there sufficient weight-of-evidence (WoE) for the MoA in ani-
mals? (2) can human relevance be excluded on the basis of qualitative differences 
in key events? (3) can human relevance be excluded on the basis of quantitative 

Table 17.1  Definitions of some common and important terms relating to adverse outcome 
pathways

Adverse outcome
Pathway (AOP)

OECD 
(2013a)

An AOP is a sequence of events from the exposure of an 
individual or population to a chemical substance through a 
final adverse (toxic) effect at the individual level (for human 
health) or population level (for ecotoxicological endpoints). 
The key events in an AOP should be definable and make 
sense from a physiological and biochemical perspective. 
AOPs incorporate the toxicity pathway and mode of action 
for an adverse effect. AOPs may be related to other 
mechanisms and pathways as well as to detoxification routes

Integrated 
approach to testing 
and assessment 
(IATA)

OECD 
(2015c)

A structured approach that strategically integrates and 
weights all relevant data to inform regulatory decisions 
regarding potential hazard and/or risk and/or the need for 
further targeted testing and therefore optimizing and 
potentially reducing the number of tests that need to be 
conducted

Intermediate event OECD 
(2013a)

Biological events that lie “between the molecular initiating 
event and the apical outcome” from which the key events 
are identified

Key event (KE) Meek et al. 
(2014a)

“An empirically observable step or its marker, which is a 
necessary element of the mode of action critical to the 
outcome (i.e., necessary, but not necessarily sufficient in its 
own right); key events are measurable and reproducible”

Key event 
relationship (KER)

OECD 
(2014)

A scientifically-based relationship that connects one key 
event to another, defines a directed relationship between the 
two (i.e., identifies one as upstream and the other as 
downstream), and facilitates inference or extrapolation of 
the state of the downstream key event from the known, 
measured, or predicted state of the upstream key event

Mode of action 
(MoA)

Meek et al. 
(2014a)

“A biologically plausible series of key events leading to an 
effect”

Initiating
event (MIE)

OECD 
(2011)

The initial point of chemical-biological interaction within 
the organism that starts the pathway
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differences in key events? and (4) do the quantitative differences affect the default 
uncertainty factors applied in risk assessment?

The MoA framework has been updated to accommodate insights from the 
expanding application of pathway-based approaches to risk assessment in general 
(Meek et al. 2014a and b). The updated framework references more explicit descrip-
tion of the application of information on mode of action in a more predictive context 
(i.e., predicting later key events and adverse outcomes from earlier key events) and 
the contribution of chemical-specific information such as metabolism and chemical 
agnostic information at different levels of biological complexity. In this framework, 
MoA and Adverse Outcome Pathways (see below) are considered conceptually 
similar, with a distinction that MoA does not necessarily imply adversity, though an 
adverse outcome has often been included as a key event in MoA descriptions; it can 
also refer, for example, to a description of key events documenting the basis for the 
therapeutic efficacy of drugs (Table 17.2). Two applications of the updated frame-
work are presented; for observed (in vivo) effects and for hypothesized events, with 
several case studies being presented for each, as concrete examples of regulatory 
application taking into consideration of the weight of integrated evidence using 
modified Bradford- Hill considerations, to transparently document the level of 
confidence.

MoA/human relevance framework has been incorporated into international guid-
ance (EFSA 2006; EC 2003; IPCS 2006; JMPR 2006; OECD 2002; UNECE 2007) 
and is routinely used in toxicological assessments by the US EPA (organic arsenic: 
U.S. EPA 2005b, 2007; chloroform: US EPA 1999; atrazine: US EPA 2000, and 
Dellarco and Baetcke 2005), the United Kingdom (COC 2004), Health Canada (see, 
for example, Liteplo and Meek 2003), Australia (see, for example, NICNAS 2006), 
and others (US EPA 2007a and b; Meek et al. 2008; Carmichael et al. 2011). Some 
limitations to the use of this approach have been that traditional animal tests do not 
provide data to support MoA development or assessment, therefore, such assess-
ment requires a fair amount of additional specialized animal experimentation as 
well as in vitro analyses. In addition, weight of evidence has been inconsistently 
documented in part due to limited experience evaluating adequate mechanistic 
information. Other barriers have included a lack of harmonized terminology and 
assessment methods as well as human information for comparison (note, these 
issues currently pertain to all pathway based approaches) (Carmichael et al. 2011). 
Creation and use of a common knowledge base may address these issues (see 
below). This experience prompted development of the original prototype of the 
AOP wiki (previously described as the MOA wiki).

17.1.3  �Adverse Outcome Pathways

In its seminal 2007 report Toxicity Testing for the twenty-first Century: a Vision and 
a Strategy, the National Academies of Science panel describes a “new toxicity-
testing system that evaluates biologically significant perturbations in key toxicity 
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Table 17.2  Modified Bradford-Hill considerations as guidance for evaluating relative confidence 
in AOP KERs and overall

Biological Plausibility Defining question: is there a mechanistic (i.e., structural or functional) 
relationship between the KEupstream and the KEdowstream consistent with established biological 
knowledge?a, b, c

High (strong) confidence: extensive 
understanding of the KER based on 
extensive previous documentation and 
broad acceptance (e.g., mutation leading 
to tumors), i.e., an established 
mechanistic basis

Moderate confidence: 
the KER is plausible 
based on analogy to 
accepted biological 
relationships, but 
scientific understanding 
is not completely 
established

Low (weak) confidence: 
there is empirical 
support for an 
association between 
KEs (see empirical 
evidence below), but the 
structural or functional 
relationship between 
them is not understood

Essentialityd Defining question: are downstream KEs and/or the adverse outcome prevented if 
an upstream K E is blocked?
High (strong) confidence: direct evidence 
from specifically designed experimental 
studies illustrating essentiality for at least 
one of the important key events (e.g., 
stop/reversibility/recovery studies, 
antagonism, knockout models, etc.)

Moderate confidence: 
indirect evidence that 
sufficient modification 
of an expected 
modulating factor 
attenuates or augments a 
KE (e.g., augmentation 
of proliferative response 
in the KEupstream leading 
to an increase in 
KEdownstream or in the AO)

Low (weak) confidence: 
no or contradictory 
experimental evidence 
of the essentiality of any 
of the K E

Empirical Evidencee, f Defining questions: does the empirical evidence support that a change in 
KEupstream leads to an appropriate change in KEdownstream? Does KEupstream occur at lower doses and 
earlier time points than KEdownstream and is the incidence of KEupstream greater than that for the 
KeyEventdownstream? Are there inconsistencies in empirical support across taxa, species and 
stressors that don’t align with an expected pattern for the hypothesized AOP? (Note: in many 
cases, evidence that contributes to quantitative understanding of a KER also provides empirical 
support for the relationship, and such relevant information should be considered as part of the 
overall weight-of-evidence evaluation of the concordance of empirical observations and 
consistency of the KER)
High (strong) confidence: multiple 
studies showing dependent change in 
both events following exposure to a wide 
range of specific stressors. Extensive 
evidence for temporal, dose-response and 
incidence concordance and no or few 
critical data gaps or conflicting data

Moderate confidence: 
demonstrated dependent 
change in both events 
following exposure to a 
small number of specific 
stressors and some 
evidence inconsistent 
with an expected pattern 
that may be explained 
by factors such as 
experimental design, 
technical considerations, 
differences among 
laboratories, etc

Low (weak) confidence: 
limited or no studies 
reporting dependent 
change in both events 
following exposure to a 
specific stressor (i.e., 
endpoints never 
measured in the same 
study or not at all); and/
or significant 
inconsistencies in 
empirical support across 
taxa and species that 
don’t align with 
expected pattern for 
hypothesized AOP

(continued)
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pathways by using new methods in computational biology and a comprehensive 
array of in vitro tests based on human biology” (NRC 2007). In this context, a “tox-
icity pathway” is a normal biological pathway that becomes perturbed beyond the 
point of homeostatic correction leading to toxicity. A description of toxicity begins 
with chemical characterization, progresses through elucidation of the chemical 
interaction with the biological system (the pathway), involves targeted testing to 
query effects at critical steps of the pathway, and dose-response extrapolation to 
estimate human exposures required to elicit the effect. Additional population-based 
modeling is required to predict ecological effects.

The related concept of “adverse outcome pathways”, or AOPs, arose from the 
field of ecotoxicology as a way of improving the efficiency of chemical assessment 
by effectively integrating information on various levels of biological organization 
for risk assessment for an increasing number of chemicals and endpoints (Ankley 
et al. 2010). An AOP describes the events that occur following exposure to chemi-
cals or other stressors, beginning with the molecular interaction of the chemical 
with a biomolecule (e.g., a protein, receptor, etc.) – the molecular initiating event 
(MIE) – followed by a description of the sequential cellular and tissue perturbations 
(intermediate events, IE) that lead to the eventual toxicological effect – or adverse 
outcome (AO) – which is at the individual level for most human health endpoints or 
at the population level for environmental endpoints. The AOP framework allows for 
the integration of all types of information at these different levels of biological 
organization, from molecular to population level, to provide a rational, biologically 
based argument (or series of hypotheses) to predict the outcome of an initiating 
event. In this description, the AOP builds on the MoA concepts and includes the 
“toxicity pathways” as described in the 2007 NRC report. Notable distinctions 
between MoA and AOP is that MoA is more chemical or group specific; MoA 

Table 17.2  (continued)
From OECD (2016)
a The guidance for “high”, “moderate” and “low” draws on limited current experience. Additional 
delineation of the nature of relevant evidence in these broadly defined categories requires more 
experience with larger numbers of documented AOPs
b “Direct evidence” implies specifically designed experiments to consider the relevant element. 
“Indirect evidence” normally relates to empirical support and is largely duplicative of Element 3 
[empirical evidence]
c To the extent possible, each of the relevant Bradford Hill considerations is addressed for each of 
the KERs (biological plausibility and empirical support) and KEs (essentiality) and separate ratio-
nales provided
d While the essentiality of each of the KEs is addressed separately, delineation of the degree of 
confidence is based on consideration of evidence for all of the KEs within the AOP and therefore, 
only one rationale is required
e This is normally considered on the basis of tabular presentation of available data on temporal and 
dose-response aspects, in a template that documents the extent of support. See, for example, Meek 
and Klaunig (2010)
f Note that this relates to concordance of dose response, temporal and incidence relationships for 
KERs rather than the KEs; the defining question is not whether or not there is a dose response 
relationship for the KE but rather there is concordance with that for earlier and later KEs. This is 
normally demonstrated in studies with different types of stressors
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includes critical metabolic key events and MoA species concordance analysis takes 
into account both qualitative and quantitative toxicokinetic and toxicodynamic vari-
ations within and between species. AOPs are, then, building blocks to which chemi-
cal or group specific space and metabolism and toxicokinetics need to be added to 
conduct MoA analysis (Table 17.1).

The Organization for Economic Coordination and Development (OECD) held a 
Workshop on Using Mechanistic Information in Forming Chemical Categories in 
2010, one of the first workshops to gather scientific expertise to guide further AOP 
development (OECD 2011). The 2010 workshop focused on the use of AOPs in 
building chemical categories for read-across, how AOPs might be used in Integrated 
Approaches to Testing and Assessment (IATA) and in identifying Key Events (KEs) 
(KEs are intermediate events that are (1) essential for the progression to the adverse 
outcome and (2) measurable; OECD 2008).

Since the 2010 workshop, OECD has published guidance that includes a tem-
plate for development (OECD 2013a) and updated guidance in the form of a 
Handbook (OECD 2016). The Guidance/Handbook includes a description of the 
elements and uses of AOPs, a glossary of terms, and a template for developing an 
AOP. The goals of this guidance are to provide consistency in structure and facilitate 
harmonized use of AOPs.

According to the OECD Guidance/Handbook, an AOP consists of three main 
types of elements: one MIE leading to one adverse outcome with any number of 
intermediate KEs (Fig. 17.1). Although a MIE can be associated with a number of 

Fig. 17.1  General outline and description of AOP elements (From Becker et al. 2015)
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different adverse effects, and similarly an adverse effect can result from a number of 
different MIEs, OECD has defined an AOP as being a linear pathway from one MIE 
to one adverse outcome, to streamline the development and use of AOPs,. A full 
description of an MIE should include cellular/tissue location – as immediately elic-
ited intermediate events may be similar in two different AOPs, but differ in cell-type 
or tissue location (for example, metabolic transformation of a chemical to an elec-
trophilic species may occur in both skin sensitization and liver fibrosis – only in 
keratinocytes for the former and hepatocytes for the latter). In order for an interme-
diate event to be identified as a “key event (KE),” it must be able to be evaluated 
experimentally and causally linked to the adverse outcome. A key event may be 
shared between two or more AOPs. The OECD Handbook describes the process for 
evaluating WoE for each step in development of an AOP.

The discrepancy between the artifice of the OECD’s practical definition of an 
AOP, and the reality of the biology it is intended to model, has caused some con-
sternation; however, there is full realization that this is an over-simplification; bio-
logical complexity is more accurately described by an interdependent network of 
pathways (Villeneuve et  al. 2014a). The OECD nomenclature and guidance is 
intended as an initial practical step to initiate the process of pathway development 
and use.

The OECD is collaborating with the European Commission’s Joint Research 
Centre, the US Army Corps of Engineers and the US Environmental Protection 
Agency to develop the infrastructure necessary for the advancement of AOP 
approaches. An important element of the AOP infrastructure is the Adverse Outcome 
Pathway Knowledge Base (AOP KB).1 The AOP KB is an information technology 
system to capture, manage and share AOP information and currently consists of four 
modules: (1) the AOP-WIKI, a text-based tool allowing the management of AOP-
related knowledge [AOPs, KEs, and relationships between them (key event relation-
ships or KERs)] in a Wikipedia-like environment, (2) Effectopedia, a graphical tool 
for implementing quantitative models depicting the qualitative and quantitative 
relationship between two events in an AOP, (3) AOP explorer, a computational tool 
that will automatically generate graphical representations of AOPs and AOP net-
works and (4) an Intermediate Effects Database to manage information about 
chemical-specific MIE and intermediate effects (information here can be linked to 
the AOP Wiki; AOPs themselves are not chemical-specific).

The AOP Wiki, which became publically available in 2014, leads AOP develop-
ers through the steps to capture the scientific information needed to document an 
AOP, The AOP-Wiki follows and implements OECD guidance on how to describe 
AOPs. The Wiki also provides a collaborative space for groups to develop AOPs 
independent of geography or organizational boundaries. The OECD Handbook 
includes detailed instructions for developing and documenting AOPs and uploading 
the relevant information into the AOP Wiki (OECD 2016). The conventions and best 
practices of describing the various AOP elements are further explained by Villeneuve 
et al. (2014a and b).

1 http://aopkb.org/
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There are currently dozens of projects in the OECD AOP work plan (53 as of 
September, 2017), and several recent workshops and publications have advanced 
the theory and addressed practical issues of developing and evaluating AOPs and 
have begun to explore the potential use of AOPs in regulatory decision-making (see 
for example SEURAT-1 2014; Willett et al. 2014a, b; Garcia-Reyero 2015; Groh 
et al. 2015a and b; Villeneuve et al. 2014a; Becker et al. 2015; Perkins et al. 2015; 
Tollefsen et al. 2014). Regulatory application of AOPs is specific to the regulatory 
need being addressed and by necessity requires engagement and consideration from 
the regulatory community (further discussion below). Some current examples, as 
well as theoretical considerations, of the use of AOPs to improve the confidence in 
chemical hazard and risk decision-making, focusing on human health endpoints, are 
explored in Sect. 17.2.

17.2  �How AOPs Can be Applied Within Various Regulatory 
Decision Contexts

The information necessary for chemical assessment decision-making depends on 
the context of the decision, with regard to both the level (regulatory vs non-
regulatory, e.g. prioritization, read-across, classification and labelling, risk assess-
ment or management) and the regulatory/legislative framework (e.g. industrial 
chemicals, pesticides, consumer products, or pharmaceuticals. Similarly, the poten-
tial of an AOP to support various types of decisions is related to its completeness, 
the confidence in the underlying information (and extent of its documentation), and 
the strength of information supporting the relationships between the AOP elements 
(between the MIE and Key Events and the eventual AO, termed Key Event 
Relationships, or KERs). It is important to recognize that AOPs at any level of 
development can be useful in supporting potential application since they provide a 
framework within which to organize and relate biological information, thereby 
bringing as much information to bear as possible for potential use. However, it is 
critically important to consider the overall confidence in the various supporting ele-
ments in determining the extent to which a given AOP can be relied upon (or AOP 
network) to within a particular decision context.

17.2.1  �Confidence in an AOP is Related to Its use in a Given 
Decision Context

There are many different types of decisions to which AOPs can contribute, includ-
ing (1) supporting chemical category formation and “read-across,”(allowing infor-
mation from one chemical to be used for another, related chemical) (2) screening 
and priority setting for further testing, (3) hazard identification (4) classification and 
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labeling, (5) designing integrated testing strategies (ITS) or integrated approaches 
to testing and assessment (IATA), and (6) risk assessment. Necessarily, chemical 
specific information on exposure, metabolism and toxicokinetics (i.e. mode of 
action analysis) and quantitation relevant to dose-response analysis is also taken 
into account to varying extents in these different applications.

Different types of decisions require different levels of confidence, depending on 
the consequences of the decision. For example, in screening a large number of 
chemicals to identify those that require more attention, it isn’t necessary to be abso-
lutely certain of the hazard that chemical pay present – only that it is likely to pres-
ent more of a hazard than the other chemicals. Whereas, if you are making a risk 
assessment about a particular chemical, you need to be more certain about the levels 
of safe exposure, and the potential consequences of exposure to that chemical. 
Therefore, the extent of resource allocation can be tailored to the needs of the par-
ticular decision to be made.

As the intended application progresses from the decisions listed in 1–5 above, a 
corresponding increase in the level of evidence and certainty is normally required to 
ensure adequate confidence in decision- making (put another way, the consequences 
of a wrong decision are greater) (Fig. 17.2). For example, to inform structure activ-
ity relationship (SAR) modeling or to prioritize chemicals for further testing and/or 
assessment, there should be good evidence of biological plausibility linking the 
screening assay to the adverse outcome; similarly hazard identification requires that 
the KEs being measured are linked to the AO with fairly high confidence. To 
decrease uncertainty for higher level decision contexts some quantitative under-
standing of the relationships between the events being measured and with the 
adverse outcome, is likely desirable depending on specific decision context. For 
example, to increase confidence in a risk decision for a specific chemical, it is 
important to have some information about the level of certainty that a KE, measured 
at a certain activity, will lead to the particular AO. Similarly, there are corollary 
hierarchies of increasingly informed chemical specific exposure, toxicokinetic 
(including metabolic) and dose-response data (i.e. potency) that are necessarily 
combined with information on AOPs to inform application. As more information is 
gathered about the relationships between intersecting pathways (and potential feed-
back loops), the prediction of the level of response becomes less uncertain as does 

Fig. 17.2  Relationship 
between the certainty of 
the AOP and the extent to 
which it can be relied upon 
within different decision 
contexts
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the specificity of prediction of a particular outcome (the likelihood of one outcome 
occurring vs another potential outcome); the eventual goal of the AOP approach is 
to develop such a predictive system to characterize likely response for specific 
chemical parameters.

17.2.2  �Evaluating Confidence in an AOP

Confidence in an AOP involves two general aspects: the quality, nature (e.g. qualita-
tive or quantitative) and amount of supporting information used to inform various 
elements of the pathway (e.g. KEs and KERs), and the availability, quality and 
appropriateness of assays and prediction models used to query the pathway and 
predict the AO. The OECD guidance, template and handbook largely address the 
former aspect, including a template for collecting information and references and 
for evaluating the WoE of the information supporting each element, and for captur-
ing quantitative information about KERs. The OECD Handbook also includes a 
table for evaluating the overall confidence in the AOP, based on modified Bradford-
Hill considerations for evaluating MoA, mentioned in Sect. 17.1.2 (Meek et  al. 
2014a, b), and gives guidance on evaluating the WoE of each considerations for 
each element (KEs and KERs) and for the AOP overall [and evaluating each as high 
(strong), moderate, or low (weak)]. Examples of early evaluations of AOPs using 
these considerations can be found in Becker et al. (2015). These authors also pro-
pose a preliminary multi-criteria decision analysis (MCDA) model for quantifying 
the WoE analysis of AOPs.

Briefly, the Bradford-Hill considerations have been modified to apply to evalua-
tion of AOPs (which represent the toxicodynamic components of a mode of action) 
and have been rank ordered as: biological plausibility of the KER, essentiality of the 
KE (within the context of the AOP) and empirical support for the KER (including 
dose-response, temporal relationship of responses, and consistency of supporting 
information) (Table 17.2 OECD 2016; Becker et al. 2015). The OECD handbook 
provides a template for capturing this information and evaluation for each KE and 
KER; such documentation is intended to provide transparency critical to communi-
cating and increasing consistency in documentation of and resulting confidence in 
WoE evaluations of the information supporting AOPs, as a basis for increasing the 
confidence in the application of AOPs in decision making.

The second aspect of confidence in the use of AOPs – evaluating the quality and 
appropriateness of AOPs for a purpose-specific application has received less atten-
tion; however, a “scientific confidence framework (CFI)” for such an evaluation has 
been proposed (Cox et al. 2014) and applied to the use of AOPs (Patlewicz et al. 
2015). The CFI is based on OECD Quantitative Structure-Activity Relationship 
(QSAR) validation principles and Institute of Medicine biomarkers guidance and 
consists of three basic elements: (1) analytic validation of query assays, (2) qualifi-
cation of prediction models and (3) WoE evaluation of the use of the prediction 
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model in a specific decision context. Patlewicz et  al. (2015) outline how these 
evaluations could be done for a number of examples; prioritization of chemicals for 
endocrine evaluation, read across for skin sensitization, and development of an inte-
grated testing approach for skin sensitization. Evaluation of AOPs, their constituent 
elements and potential applications is still at an early stage, and is likely to evolve 
with case studies and experience.

17.3  �Application of AOPs within IATA; Theory 
and Examples

OECD defines Integrated approaches to testing and assessment (IATA) as “a struc-
tured approach that strategically integrates and weights all relevant data to inform 
regulatory decisions regarding potential hazard and/or risk and/or the need for fur-
ther targeted testing and therefore optimizing and potentially reducing the number 
of tests that need to be conducted” (Fig. 17.3; OECD 2015c). IATA are envisioned 
as an iterative hypothesis generating and testing process that defines how to assess 
or test strategically based on regulatory needs, which is generally framed in prob-
lem formulation for different assessment and management objectives (Meek et al. 
2014a). The use of IATA in hazard and risk assessment has been explored by OECD 
(2008) and the US EPA (2011), and the use of AOPs to support IATA was the topic 
of a recent OECD workshop (OECD 2015c). IATA and Integrated Testing Strategies 
(ITS) are similar; however ITS have tended to relate principally to hazard (particu-
larly in Europe), while IATA may involve considerations of exposure, since this is 
also a critical driver of testing strategies in some decision contexts.

Fig. 17.3  The Role of an AOP within an IATA. An IATA begins with problem formulation, which 
includes the decision context. This will dictate what kind of information needs to be gathered and 
assessed (for example, if the decision is hazard-base, there is no need for exposure information). 
AOP information can support an IATA in several ways; by informing interpretation of existing 
information, by supporting chemical grouping and read-across; by informing testing strategies to 
obtain additional needed information; and to support weight-of-evidence evaluations performed in 
the process of decision-making
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While AOPs can be used as a basis upon which to formulate testing strategies, 
AOPs themselves do not consider the context of the decision addressed by a testing 
strategy, e.g. the regulatory (or non-regulatory) context, exposure, level of decision 
(e.g. individual or population), etc.; rather, they provide the mechanistic building 
blocks on dynamic key events to which chemical or group specific toxicokinetic 
information can be added to address testing and/or assessment needs relevant to 
specific chemicals and/or groups. IATA envisages construction of a decision matrix, 
combined with iterative data generation as necessary, to address testing needs within 
the context of a particular application, based on problem formulation (which 
includes among other things, specification of the scope and goal of the particular 
decision) (Fig. 17.4). AOPs are an important component of IATA, which are antici-
pated to provide a consistently documented knowledge foundation for testing bio-
logical hypotheses, thereby informing testing strategies. Principles for developing 
an AOP-supported IATA have been suggested (Tollefsen et al. 2014): (a) define the 
endpoint of regulatory concern being assessed; (b) define the purpose/application 
for which the IATA is proposed; (c) describe the rationale, including mechanistic 
basis (e.g. AOP), according to which the IATA is constructed; (d) describe the indi-
vidual information sources constituting the IATA; (e) characterize the predictive 
performance and applicability domain of the IATA, or IATA subcomponent(s) that 
can be expressed as a prediction model(s).

Fig. 17.4  Estrogen receptor-mediated reproductive impairment AOP with ToxCast assays. KEs 
along the ER pathway include gene activation, cell proliferation (in estrogen-responsive tissues) 
and resulting organ weight changes, as well as other modifications of gonadal tissues that can lead 
to reproductive impairment, and, for ecotoxicological application, to changes in populations. 
EPA’s ToxCast program includes 17 assays that directly measure estrogen activity via a number of 
outputs (ER binding, ER dimerization, ER-dependent gene activation, cell proliferation) as well as 
via a number of read-out technologies (protein displacement, fluorescence, luminescence, cell 
number). Using combined output from these assays, EPA has developed an interpretation algo-
rithm that predicts ER activity with high confidence (Browne et al. 2015; Judson et al. 2015; see 
these references for a detailed description of the assays and prediction model)
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17.3.1  �Examples of Application of an AOP Supported IATA 
for Chemical Categorization and Read-Across

17.3.1.1  �Skin Sensitization

The AOP for sensitization has been well-described (OECD 2012a), with several 
KEs identified and assays for many KEs developed and validated, diagrammed in 
Fig. 17.4 (e.g. OECD 2015a, b). Since there are well-understood KE’s along the 
pathway, and the links to the AO are strongly supported, this AOP has potential to 
be suitable for several applications, including informing chemical categories, haz-
ard identification and hazard characterization (see below). The MIE has been thor-
oughly described and there is sufficient supporting data for the MIE to allow the 
creation of several predictive models that assist in chemical grouping and read-
across. Well-established assays exist for most of the KEs (listed in Fig. 17.4) that 
allow the design of strongly predictive integrated testing strategies. In fact, the 
amount of data that has been collected from KE assays has allowed the creation of 
profilers for each KE that have been incorporated into the OECD QSAR toolbox 
(Patlewicz et al. 2014, 2015; http://www.oecd.org/chemicalsafety/risk-assessment/
theoecdqsartoolbox.htm). (The OECD QSAR toolbox is a collection of predictive 
models, chemical profilers, and supporting databases to assist with chemical char-
acterization). A number of profilers are available to identify structural alerts or to 
derive quantitative mechanistic models for predicting sensitization potential and/or 
potency (Patlewicz et al. 2014, 2015).

To support chemical categories, profilers would be used to identify structural 
alerts for electrophilic properties, indicating potential sensitizing activity. Based on 
the wealth of information supporting the sensitization MIE and the strong linkages 
to the AO, results from a mechanistic test addressing the MIE (e.g. the DPRA, or 
other models that incorporate kinetics, e.g. glutathione depletion; Schultz et  al. 
2005) should be sufficient to support read-across for this endpoint; this potential is 
currently being explored by the European Commission’s Joint Research Centre.2 To 
effectively use OECD QSAR toolbox profilers and prediction models, care must be 
taken to ensure that the chemical in question is within the domain of the models 
being used.

17.3.1.2  �REACH

Arguably the world’s largest chemicals testing program, the European Regulation 
for Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH; 
EC 2006), provides ample opportunity, in theory at any rate, for use of AOP-
supported IATA to streamline testing. The European Chemicals Agency (ECHA) 

2 https://eurl-ecvam.jrc.ec.europa.eu/validation-regulatory-acceptance/topical-toxicity/
skin-sensitisation
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has provided extensive guidance on the use of QSAR for grouping of chemicals and 
the use of ITS for specific endpoints (ECHA 2008, 2015). The potential use of IATA 
(including QSAR for read across or ITS for specific endpoints) has thus far been 
limited, due to some part to the nascent state of AOP-supported IATA as well as lack 
of familiarity with these novel approaches by both registrants and regulators. Use is 
also hampered by regulatory and legislative requirements for traditional test data.

For example, sensitization potential (not potency) is required in Annex VII (for 
all chemicals produced or imported in amounts of one tonne per year or more), and 
is therefore one of the mostly broadly required endpoints. REACH Annex VII was 
updated in 2016 to indicate a preference for in vitro methods to satify skin sensitiza-
tion requirments (EC 2016a), largely based on the OECD AOP (OECD 2012a, c) 
and proposed EURL-ECVAM/OECD AOP-based IATA  (EC 2017). The timely 
acceptance of ITS (and the associated IATA) for skin sensitization is important to 
allow use for the 2018 registration deadline for chemicals produced or imported in 
volumes of 1–100 tonnes per year.

Other endpoints that could be prioritized for application of AOP-based IATA in 
the near term based on the extent of their development are acute fish toxicity (Ankley 
et al. 2010), which is required in Annex VIII (chemicals at 10 tonnes per year or 
greater), and carcinogenicity (Benigni 2014), required in Annex X (chemicals at 
1000 tonnes or greater; mutagenicity is required in Annex VIII, and a positive find-
ing in vitro or in vivo can trigger a rodent cancer bioassay).

17.3.1.3  �US EPA Pesticide Registration

Registration of pesticides requires extensive toxicological information, including a 
broad array of acute and chronic endpoints (e.g. in the US, pesticide registration 
requirements can be found in the Federal Code of Regulations 40 Part 158: http://
www.gpo.gov/fdsys/granule/CFR-2012-title40-vol25/CFR-2012-title40-vol25-
part158). Initial assessment of pesticide actives and formulations involves generat-
ing information on six acute endpoints (often called the “six pack”) that is used for 
classification and handling instructions: acute oral, dermal and inhalation toxicity; 
dermal and eye irritation; and sensitization potential. Non-animal methods and ITS 
are available for some of these endpoints, including dermal and eye irritation and 
sensitization (described above). The US EPA provides guidance on waiving or 
bridging acute endpoints (US EPA 2012a); waiving of an endpoint is generally 
acceptable when physical or chemical characteristics make testing moot (e.g. oral 
acute toxicity can be waived for gases or highly volatile substances), bridging is 
generally based on use similarity or composition (for example, if a registered sub-
stance for which there is toxicological information is used in a different product, but 
at a lesser concentration than a registered product, information for that substance 
can be bridged). The US EPA is working with the National Institutes of Health’s 
National Toxicology Program’s NTP Interagency Center for the Evaluation of 
Alternative Methods (NICEATM) on predicting acute dermal toxicity from acute 
oral data (https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/
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acute-systemic-tox/index.html). As described above, identifying chemical catego-
ries can also be used to read-across toxicological information from a tested sub-
stance to a similar, non-tested substance.

To date, these approaches are limited for traditional toxicity endpoints consid-
ered in repeat-dose studies; however, addressing these endpoints through the use of 
AOP-supported ITS is part of EPA’s long-term strategic plan (http://www.epa.gov/
pesticides/science/testing-assessment.html).

17.3.2  �Examples of Use of an AOP-Supported IATA 
for Chemical Prioritization and Initial Hazard 
Identification

17.3.2.1  �Endocrine Disruptors in the EU

In the EU, the identification of endocrine active substances is of increasing priority. 
For REACH purposes, proven endocrine disrupting chemicals (EDCs) are consid-
ered equivalent to substances of very high concern (SVHC) and therefore subject to 
authorization. The World Health Organization (WHO) defines “An endocrine dis-
ruptor is an exogenous substance or mixture that alters function(s) of the endocrine 
system and consequently causes adverse health effects in an intact organism, or its 
progeny, or (sub) populations.” (IPCS 2002); the European Commission has adopted 
this definition. Based on this definition, identification of an EDC requires proving 
both the mechanism (alters function of the endocrine system) and an adverse out-
come (adverse health effects in an intact organism, progeny or subpopulations). The 
European Commission recently issued criteria for identifying EDCs in the context 
of EU pesticide legislation (EU 2016b). These criteria closely follow the WHO defi-
nition and require establishing an endocrine mode of action linked to an adverse 
oucome in an intact animal. The WHO definition does not specify which endocrine 
systems are included, but a 2012 WHO report suggests the intention is to broaden 
the definition beyond estrogen, androgen and thyroid pathways, perhaps to include 
metabolism, fat storage, bone development and the immune system (UNEP/WHO 
2012). To adequately cover the breath of possible chemical effects in such a wide 
array of potential adverse outcomes, it is clear that reliance on AOP-based IATA 
will be critical for development of a practicable assessment program.

17.3.2.2  �The US EDSP

As a result of a legislative mandate, the US EPA has invested resources for nearly 
twenty years to design a program to test for endocrine activity (the Endocrine 
Disruptor Screening Program (EDSP); http://www.epa.gov/endo). EPA estimates 
that approximately 10,000 chemicals (pesticides and drinking water contaminants) 
fall under the remit of the EDSP as possible endocrine active substances, and 
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therefore are looking for ways to identify priority chemicals for testing (US EPA 
2012b). In addition, the current EDSP screening battery (Tier 1 of the EDSP), which 
consists of 11 assays, is expensive (approximately 1 million USD), time consuming 
(taking several years to perform the assays and assess results), and uses more than 
500 animals per chemical (Industry comments to EPA, http://www.regulations.
gov/#!documentDetail;D  =  EPA-HQ-OPP-2012-0818-0027; Willett et  al. 2011). 
Positive results in the screen will likely lead to more extensive testing in single or 
multi-generation tests in one or more species (Tier 2 of the EDSP), testing that may 
cost millions more and use thousands of animals. EPA has outlined a strategic plan 
for moving away from such resource intensive screening and testing that incorpo-
rates the spirit of the recommendations made by the National Academies of Science 
(NRC 2007; US EPA 2009a). As part of this process, the EPA is developing a high-
throughput screening approach for endocrine activity, as a subset of its ToxCast™ 
program (http://www.epa.gov/ncct/toxcast), starting with estrogen, as proof of prin-
ciple for the approach, before developing similar approaches for androgen and thy-
roid activity (US EPA 2014; Browne et al. 2015).

An AOP for estrogen receptor mediated reproductive impairment has been pro-
posed based on a large amount of supporting data from fish (this AOP is limited to 
nuclear receptor form of estrogen receptor alpha (and perhaps beta) (Fig.  17.4; 
OECD 2009; OECD 2011); and rodents (OECD 2007). This AOP is well supported 
and has formed the basis of a decision tree to screen large libraries of mostly inac-
tive chemicals (US EPA 2009c).

The immediate decision context for EPA is prioritization of chemicals under 
remit of the EDSP, and, if possible, initial hazard identification (possibly replacing 
Tier 1 screening). The ToxCast battery includes 17 ER-related assays (Fig. 17.4), 16 
of which address either the MIE or the first KE (ER binding, ER dimerization, or 
transcriptional activation), and one cell proliferation assay that has been shown to 
be estrogen-responsive (Wilson et al. 2004). EPA has published a number of evalu-
ations of estrogen activity based on ToxCast assay results (Reif et al. 2010; Rotroff 
et al. 2013; US EPA 2014) and has recently proposed an associated computational 
model, the performance of which has been compared with results from accepted 
in vitro and in vivo assays (Browne et al. 2015). Based on these results, EPA is pro-
posing to use this computational model to prioritize chemicals for the EDSP and for 
preliminary identification of estrogenic activity, thereby replacing three of the Tier 
1 assays, the ER binding, ER transcriptional activation and uterotrophic assays. 
Since the AOP is well supported with evidence linking the MIE of ER binding 
through the KEs of transcriptional activation and gonadal cellular changes through 
to the adverse outcomes of altered sex ratio, altered sexual behavior and population 
effects (in fish), the AOP supports the application of these assays to hazard identifi-
cation. The OECD has developed a conceptual framework and extensive guidance 
to suggest possible additional considerations, including additional testing, to further 
characterize hazard and risk (OECD 2012b).

In addition, the US EPA’s ToxCast program is developing methods for prioritizing 
chemicals based on a broad battery of assays (in addition to those related to estrogen 
activity) combined with pathway information and consideration of potential for 
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exposure (Wambaugh et al. 2014). Such approaches could potentially be applied to 
other aspects of EPA’s regulatory programs or for example, in identifying “greener” 
(in this case, less toxic) pesticide substances (Sanderson 2011; Richard 2014).

17.3.2.3  �Prioritizing Drug Candidates

Mode of action information, combined with high-throughput screening, has been 
used for decades by pharmaceutical companies to identify and prioritize promising 
chemicals for further development from libraries of thousands of potential drug 
candidates. The practical considerations of screening potential drug candidates have 
generally been more streamlined than those for other classes of chemicals: drug 
candidates are usually chosen or designed with a particular biological mechanism or 
activity in mind; drugs are intended to be highly bioactive (in contrast with other 
classes of chemicals whose biological activities are incidental and associated expo-
sure generally several orders of magnitude lower); chemical libraries of drug candi-
dates are generally highly related chemicals, and therefore applicability of the 
chemical domain of individual tests is of less concern; and finally, there is a single 
organism of concern. In spite of improvements in the efficiency of preclinical 
screening, successful identification of efficacious therapeutics with few off-target 
toxicities remains rare. Because the high-throughput, mechanistic assays are used 
for prioritization and early activity identification, the assays focus primarily on MIE 
and early KEs. The prediction of drug candidates with improved efficacy and safety 
would be facilitated by further elaboration of AOPs and disease pathways, along 
with the design of IATA based on them (Langley 2011; Langley et al. 2015).

Pharmaceutical companies are uniquely suited to take advantage of this approach 
in that they have access to human data as well as a broad spectrum of animal data 
for many different chemistries. Thus far, 6 pharmaceutical companies have donated 
a total of 135 failed drugs (with associated data) to the Tox21 program for screen-
ing (http://www.epa.gov/comptox/dsstox/sdf_toxcst.html). This is in addition to 
some 2800 NCGC inventory of marketed, withdrawn and investigational drugs 
contained in the NCGC chemical inventory (Huang et al. 2011; http://www.epa.
gov/comptox/dsstox/sdf_tox21s.html#Description). Data from Tox21 screening of 
these drugs should provide additional mechanistic information that can be used to 
inform AOPs.

17.3.2.4  �Skin Sensitization

As mentioned in Sect. 17.3.1.1, the AOP for sensitization has been well-described, 
with several validated assays mapped to KEs (Fig.  17.5; OECD 2012a). Several 
integrated testing strategies (ITS) have been evaluated for identifying skin sensitiz-
ing potential (Maxwell et al. 2011; Bauch et al. 2012; Natsch et al. 2013; Jaworska 
et al. 2013; van der Veen et al. 2014) and potency (McKim et al. 2012; Nukada et al. 
2013; Tsujita-Inoue et al. 2014). A composite ITS has been proposed and shown to 
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perform favorably compared with results from animal tests (Urbisch et al. 2015). 
Although these in  vitro methods and integrated strategies were being developed 
simultaneously with the AOP for skin sensitization, the AOP nonetheless provides 
biological rationale and support for the use of these ITS for assessing sensitizing 
potential, and in some cases, potency. The European Union Reference Laboratory 
for alternatives to animal testing (EURL-ECVAM) is currently working with an 
expert group at OECD to develop an AOP-based IATA that provides a framework 
for applying a collection of ITS in different regulatory contexts (Urbisch et al. 2015; 
EC 2017).

17.3.2.5  �Personal Care Product Safety Assessment

The need for AOP-based IATA for assessing human health endpoints is particularly 
great in the area of assuring the safety of ingredients in cosmetics and personal care 
products due to the European Cosmetics Regulation,3 which prohibits the testing 
and sale of cosmetics containing ingredients that have been tested on animals. A full 
ban on marketing cosmetics containing ingredients tested on animals came into 

3 European Commission Directive 76/768/EEC covering regulation of cosmetics as amended by 
Directive 2003/15/EC introducing a test ban from 2004 and sales ban from 2009, later postponed 
until 2013. http://ec.europa.eu/growth/sectors/cosmetics/index_en.htm

Fig. 17.5  Skin sensitization AOP with validated query assays. The MIE for the vast majority of 
chemicals is protein reactivity. This MIE is strongly linked to sensitization, and can be predictive 
of this AO on its own for many chemicals. Chemical-protein modification in the skin causes gene- 
and cytokine-induction in both keratinocytes and dendritic cells (immune cells located in the skin)
(cellular responses). Activation of dendritic cells also causes them to process the modified protein 
and migrate to the local lymph nodes, where they present this antigen to immature T cells (organ 
response). The immature T cells then become activated to recognize this antigen and migrate into 
the body to cause an allergy the next time the skin is exposed (organism response)
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force in March 2013; ingredients tested on animals after this date cannot be used in 
cosmetics marketed within the EU.  Similar legislation has been passed in other 
countries (e.g. India,4 Israel,5 Norway6and New Zealand7).

Due to the prohibition on testing on animals, the European Commission (EC) 
and cosmetics industry have invested in the development of alternative approaches 
to assessing the safety of cosmetics ingredients, work that has included develop-
ment of in silico prediction of toxicity, in vitro methods, mathematical modelling 
approaches, integrated strategies and AOPs.8 Several alternative methods, based not 
so much on AOPs or mechanism, but on direct replacement methods that mimic the 
animal tests, are available for skin and eye irritation and have widespread regulatory 
acceptance (OECD 2013b, c, 2015d, e, f, g, h, i; US EPA 2015). As described above, 
the IATA for skin sensitization were in part, a result of these efforts (e.g. Maxwell 
et al. 2011; Urbisch et al. 2015). Remaining challenges include evolving these qual-
itative tools, which were developed for hazard identification, to an approach that 
will allow quantitation of sensitizer potency as a basis for consideration of “safe” 
levels of ingredients within cosmetic products. Despite understanding of the key 
events that drive skin sensitization, the quantitative characterization of hazard data 
from non-animal tests to establish safe levels of human exposure for sensitizing 
chemicals remains a key gap (MacKay et al. 2013).

In addition, several joint EC Framework Program projects have focused on 
repeat-dose systemic toxicity for which there are currently no non-animal 
approaches, most recently the SEURAT-1 project (Safety Evaluation Ultimately 
Replacing Animal Testing) which is developing AOPs for mitochondrial and liver 
toxicity, among others (SEURAT-1 2014). Development and application of 
AOP-based IATAs aspects of systemic toxicity necessitate an evolution in think-
ing from toxicity testing for specific endpoints to more mechanistically driven 
approaches, as illustrated by the SEURAT-1 strategy. Once again, a key challenge 
in this area is to develop methodologies that will allow robust assessment of risk 
based on both novel exposure data (understanding the kinetics of systemic expo-
sure to ingredients) and evolving understanding of more predictive quantitation 
of hazard.

4 Testing ban in force from May 2014: Drugs & Cosmetics Act, Rule 148-C; sales ban in force from 
October 2014: Drugs & Cosmetics Act, Rule 135-B (import ban).
5 Testing ban in force since Jan 2013: Amendment to the Animal Experimentation Law; Sales ban 
in force since Jan 2015: Draft Pharmacists’ Regulations (Cosmetics) 2012–5773.
6 Act relating to cosmetic products and body care products, etc. 2005: http://app.uio.no/ub/ujur/
oversatte-lover/data/lov-20051221-126-eng.pdf, see also http://www.mattilsynet.no/language/
english/cosmetics/import_of_cosmetics_to_norway/importing_cosmetics_to_norway.8321
7 New Zealand: Animal Welfare Legislation Recognizes Animals as Sentient, Bans Cosmetic 
Testing: http://www.loc.gov/lawweb/servlet/lloc_news?disp3_l205404408_text
8 E.g. Framework Programme 6 projects ACuteTox, Sens-it-iv, Re-Pro-Tect; Framework 
Programme 7 projects SEURAT-1).
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17.4  �Summary and Future Directions

There is widespread interest in developing systems biology approaches for improv-
ing chemical assessment. In recent years, there has been progress in developing 
tools to implement pathway-based mechanistic information, including 
internationally-coordinated development of an AOP knowledgebase, extensive 
guidance and publications on developing and evaluating AOPs and AOP-based 
IATA.

To evolve more mechanistically based hazard and risk assessment further, criti-
cal areas that should be prioritized include development of more predictive consid-
eration of exposure based on key parameters, as well as incorporation of metabolism 
and chemical-specific toxicokinetic and toxicodynamic information. This will con-
tribute additionally to increased understanding of the conditions under which adap-
tation is likely to occur vs those which result in adversity.

The information used to develop pathway-based approaches may be quite differ-
ent from the information ultimately generated by assays that appropriately query the 
pathway with specific chemicals. Understanding the metabolism and toxicokinetics 
of test chemicals within query assays is equally important, as is an understanding of 
the actual in vitro exposure associated with alterations in pathways (rather than reli-
ance on nominal concentrations). When choosing or developing assays or combina-
tions of assays and mathematical models for use within IATA, consideration should 
be given to how well the assays represent key events, as a basis for characterization 
of AOPs for use in hazard and risk assessment and how well the mathematical mod-
els represent the underlying biology.

There may be hundreds or even thousands of biological “pathways” that poten-
tially are affected by chemicals; however, these pathways intersect and overlap to 
form a relational web of biological processes. Up to this point, development of 
AOPs has been voluntary and pathways chosen largely based on specific expertise 
and interest. To develop a useful systems knowledgebase, it would be helpful to 
prioritize AOP development, based on for example, regulatory or human or environ-
mental health priorities as well as those pathways most frequently implicated from 
understanding the chemistry of MIEs (e.g. Allen et  al. 2014). This necessarily 
requires early input from the regulatory community, which is, in part, being 
addressed in collaborative international programs involving both researchers and 
regulators.

Since pathway development is continually enhanced by additional information, 
it will be necessary to discern when a pathway is sufficiently mature for a particular 
application. Since the purpose of incorporating pathway understanding into chemi-
cal evaluation is to decrease uncertainty in decision-making, the (potentially 
reduced) uncertainty of alternative approaches will need to be transparently 
described and compared with that of traditional less predictive approaches.

Success of a systems biology approach to toxicology improves with additional 
information and additional expertise. The approach is also not limited to scientists 
working in the field of toxicology but would benefit by synergism with other 
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disciplines such as medicine and disease research. It is important to engage stake-
holders as broadly as possible, including additional regulatory sectors (e.g. pharma-
ceutical) as well as regions (e.g. other non-OECD countries like Brazil, China and 
Russia). Equally important to building high confidence pathway networks and reli-
able testing strategies to fully implement this strategy is to engage stakeholders that 
will use these approaches (regulators, risk assessors in industry) and those affected 
by the decisions (the public, groups concerned with human and environmental 
heath). Regulators need to be engaged at many levels, during pathway and evalua-
tion strategy development, finding effective ways to use these new approaches 
within the context of existing regulations or by modifying regulations as necessary, 
and by relating this information to the regulated community. Outreach to interested 
public stakeholders is critical to address concerns early on and to transparently com-
municate intentions, methods, and results.

All of this work will require high level coordination and leadership from all 
countries participating in this process. It will also be important to identify sources 
of dedicated funding, through government, industry, and public-private partner-
ships. If enough resources are applied in a coordinated fashion, we can look forward 
to a not-so-distant future where predictive modeling, informed by well-documented 
AOPs, can support IATA that will provide more certain decisions regarding human 
and environmental health, more quickly, more effectively, and using fewer animals 
that our current system allows.
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Chapter 18
Use and Acceptance of AOPs for Regulatory 
Applications

Clemens Wittwehr

Abstract  Adverse Outcome Pathways (AOPs) play an increasingly important role 
in risk and hazard assessment, giving scientists across many disciplines and organ-
isations the opportunity to jointly collect and discuss their knowledge about the 
biological and toxicological processes leading to an Adverse Outcome. While this 
knowledge becomes more distributed and accepted by the scientific mainstream, its 
acceptance in a regulatory context is still not well developed. A promising avenue 
for increasing visibility and applicability of AOPs in the regulatory context is the 
role they play in the development of Integrated Approaches to Testing and 
Assessment (IATA), where the mechanistic knowledge AOPs provide will underpin 
testing strategies accepted by regulators and relying less and less on animal testing. 
The development of a standardised exchange format for AOPs (AOP-XML) and of 
an OECD-endorsed regulatory reporting format for results of non-classical test 
methods (OHT 201) are further enabling factors for any upcoming adoption of 
AOPs in the regulatory world.

18.1  �Regulatory Acceptance and Regulatory Use

Modern society embraces risk avoidance; people tend to be better informed than 
ever about intrinsic hazards of the products they are using every day or the risk that 
comes from exposure with environmental chemicals. This has led and still leads to 
a wide range of regulations that are supposed to guarantee safety of chemicals and 
other related products. The majority of these regulations rely on animal tests, and 
about a fifth to a quarter of all animal experiments is done for regulatory purposes. 
Many initiatives underline the need to replace, reduce, or refine (“3R” principle) 
laboratory animal use, but the regulatory acceptance and use of existing and emerg-
ing 3R models is not yet wide spread.
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EURL ECVAM (European Union Reference Laboratory – European Centre for 
the Validation of Alternative methods) defines Regulatory Acceptance of a test 
method as

its formal acceptance by regulatory authorities indicating that the test method may be used 
to provide information to meet a specific regulatory requirement. This includes, but is not 
limited to, a formal adoption of a test method by EU and/or OECD as an EU test method 
and included in the EU Test Methods Regulation and/or as an OECD Test Guideline, 
respectively. EURL ECVAM (2016)

Schiffelers et al. (2012) define Regulatory Acceptance as referring

[…] to the written or unwritten adoption of testing strategies by regulatory authorities. 
Regulatory acceptance in this context is defined as the formal adoption of a (validated) test 
method by a regulatory agency/authority. Depending on the product sector, regulatory 
acceptance can be accomplished at a national, European, and/or a global level.

The same authors define Regulatory Use as referring

[…] to the actual uptake of a method by a regulatory authority or a manufacturer for quality 
and/or safety testing purposes. This step is often also referred to as implementation. In the 
field of policy science, however, implementation would cover the whole process from the 
initial intention to work towards alternatives to the actual use.

What is common to all these definitions is that Regulatory science should be kept 
in pace with technological developments, and early involvement of regulators in 
international initiatives is crucial to achieve progress in this rapidly evolving field, 
especially as well working feedback mechanisms between regulator and the regu-
lated industry are crucial. Regulated organisations (e.g. chemical companies) often 
have a knowledge advantage, because they are the ones promoting technical prog-
ress in their field and are intimately familiar with emerging issues. Regulators do 
not have this advantage of using new methods (3R methods, in this case) in the 
research phase or in the production process. It is therefore a fact that regulatory 
authorities have problems properly assessing an alternative method.

Risk aversion therefore leads to a certain degree of inertia in the field of 3R mod-
els acceptance, a typical phenomenon in all technology transitions. The paradigm 
shift from observational toxicology towards predictive approaches – an underlying 
goal of the application of alternative methods – therefore requires intensive dissemi-
nation and communication efforts.

A novel approach for this communication and dissemination effort between the 
stakeholders (regulators, industry, and research) is the joint effort to create and 
apply AOPs, which can in that context be conceived as a general framework that 
allows the placement of available information on a particular biological pathway 
into an organized, usable format. Information in an AOP format can then be used for 
assessing chemical risks in a several ways, including:

•	 Informing Integrated Approaches to Testing and Assessment (IATA, see below)
•	 Hazard identification and characterisation
•	 Read-across and chemical classification
•	 Priority setting/screening/ranking for further testing
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•	 Quantitative considerations

The AOP works then as a wireframe onto which existing knowledge is pinned in 
a globally agreed format giving an overview of the extent to which the Molecular 
Initiating Events (MIE), the Key Events (KE), the Key Event Relationships (KER) 
and the Adverse Outcomes (AO) are understood.

18.2  �IATA: The Missing Link Between AOPs and Regulatory 
Acceptance

The Organisation for Economic Co-operation and Development (OECD) is actively 
working towards the adoption of methods to replace animal tests where possible, or 
to refine existing tests to reduce the number of animals used and minimise 
suffering.

A number of OECD Test Guidelines are already based on non-animal tests, 
including but not limited to skin corrosion/irritation, phototoxicity and skin absorp-
tion, eye damage/irritation, genotoxicity and endocrine disruption.

To be comfortable when using alternative methods for complex endpoints, like 
carcinogenicity or developmental/reproductive toxicity, science has to provide evi-
dence for how toxicity is brought about at the molecular level resulting subsequently 
in an effect at organ or organism level. Once the mechanism underlying the toxicity 
is understood, the adverse outcome can be predicted based on sound scientific 
evidence.

An AOP is an objective and systematic mechanistic based framework that pro-
vides the biological context to facilitate the interpretation of results from alternative 
testing and non-testing approaches in predicting an adverse effect and facilitates 
their application in regulatory decision-making: AOPs help to organise and analyse 
relevant mechanistic data on a given substance or group of substances.

Structured approaches are used for (a) chemical(s) or group(s) of chemicals, and 
they strategically integrate and weight all available data and guide the targeted gen-
eration of new data where required (hypothesis driven) to inform regulatory deci-
sions regarding the hazard identification (potential), hazard characterisation 
(potency) and/or safety assessment (potential/potency and exposure).

While AOPs are focused on toxicodynamics phenomena from the moment of the 
MIE, they are chemical-independent and do not give information about the chemical-
related steps that precede the MIE: exposure, bioavailability, external vs internal 
dose, ADME (absorption, distribution, metabolism, excretion) considerations etc. 
are not subject of an AOP.

In order for an AOP to fully support the application of alternative methods in the 
regulatory context, it must therefore be embedded in a larger framework taking into 
account all aspects of toxicity, i.e. not only toxicodynamics but also toxicokinetics.

This larger framework is the OECD-led initiative for Integrated Approaches to 
Testing and Assessment, or IATA, as shown in Fig. 18.1 taken from OECD (2015):
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Current thinking is that the degree to which an IATA needs to be populated by a 
full complement of information will be dependent on the ultimate purpose it is 
being used for. Thus flexibility is foreseen in the construction of IATA depending on 
the regulatory need and tailored to the substance(s) under consideration. However, 
there is also a need to provide regulators with some degree of consistency and 
understanding of the assumptions on which the IATA is based, with the AOP con-
cept (at least for the toxicodynamics part) being an ideal and transparent organising 
framework.

Tollefsen et al. (2014), when focusing on how IATA and AOP can work together, 
suggest

a framework that is driven by the problem formulation, which involves a consideration of 
the risk management scope, the data requirements and the level of acceptable uncertainty 
associated with the decision being made.

Depending on the regulatory application the necessary level of AOP confidence 
is determined. Tollefsen et al. (2014) continues:

If the outcome derived from the framework is of insufficient confidence, then additional 
data might need to be generated through new testing and assessment. The new information 
derived will then be passed back into the framework for re-evaluation. Indeed a decision 
outcome could result in more thorough regulatory follow up or implementation of measures 
to reduce use and/or exposure. Any new information generated will also be used to augment 
the corresponding AOP.

To summarize: In the past, the Adverse Outcome, or (eco-)toxicological end-
point, was the focus of all testing strategies (mostly animal-based), as shown in 
Fig. 18.2.

Fig. 18.1  IATA and AOPs
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The IATA-based approach will, as shown in Fig. 18.3, be a game changer: With 
regulatory-relevant Adverse Outcomes obviously still at the centre of risk assess-
ment, they will be treated indirectly via methods (mostly non-classical) that are 
brought together in an IATA:

The main contribution AOPs bring to IATA is the mechanistic knowledge that is 
needed to underpin any regulatory decision about the acceptance of any non-classic 
test method. The better the AOP used in an IATA describes the reasoning behind the 
way toxicity is triggered in a special case, the more likely is the regulatory accep-
tance of the methods suggested to produce the evidence necessary to proof the pres-
ence or absence of a certain Key Event and subsequently the Adverse Outcome.

It is therefore not 100% correct to talk about “regulatory acceptance” of AOPs as 
such, but about the increased probability of regulatory acceptance and use of 3R 
methods illustrated in an IATA underpinned by a reliable, trusted AOP:

Confidence in an AOP is therefore crucial for its applicability in the regulatory 
context; and confidence can only be generated by a broad consensus, which requires 
a formal lifecycle procedure for each AOP, ideally governed by an international 
body.

Fig. 18.2  Classical test 
guidelines focussing on 
adverse outcome 
(endpoint)

Fig. 18.3  IATA underpinned by AOP
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18.3  �The AOP Adoption Process at OECD

In order to elicit the knowledge from a broad scientific basis, AOPs are best created 
in a decentralised crowdsourcing environment, with a strong steering element at a 
central level. Crowdsourcing is

the practice of obtaining needed services, ideas, or content by soliciting contributions from 
a large group of people and especially from the online community rather than from tradi-
tional employees or suppliers. (Merriam-Webster 2016)

Such an environment was created by the OECD in 2012: The OECD AOP pro-
gram encourages stakeholders to contribute and peer-review their AOP knowledge. 
The relevant ICT tools (AOP-KB, AOP-KB Wiki etc.) are developed in a collabora-
tive fashion between major scientific and regulatory bodies (see Chaps. 1 and 12) 
and at time of print the AOP-KB Wiki is open to the public for AOP browsing and 
open to registered users for AOP entering and editing.

This section will describe the workflow of the AOP creation and review, as well 
as the bodies that interact to support the necessary procedures.

AOPs are ideally created in the AOP-KB Wiki (https://aopwiki.org) from scratch, 
i.e. no paper or other electronic formats (Word etc.) are necessary; the principle of 
crowdsourcing facilitates an approach in which even first draft ideas should be 
exposed to the participating crowd, encouraging commenting, edits, and additions.

The following parties are involved in the typical lifecycle of an AOP:

•	 The Working Group of the National Coordinators for the Test Guidelines 
(WNT) and the Task Force for Hazard Assessment (TFHA) as the OECD bod-
ies that steer the AOP and IATA processes.

•	 The OECD Extended Advisory Group on Molecular Screening and 
Toxicogenomics (EAGMST), a group of experts from various areas of toxicol-
ogy, designated by governmental or non-governmental affiliations (academia, 
agencies, industry, animal welfare groups, scientific societies, etc.). The 
EAGMST meets twice per year (one face to face meeting and one teleconfer-
ence) to keep pace with new developments.

•	 The EAGMST is the governing body of the OECD AOP program and decides 
about the addition of an AOP to its work program.

•	 The Society for the Advancement of AOPs (SAAOP, http://www.saaop.org/), a 
group of professionals in the AOP and ICT arena, who are responsible for the 
hosting, development and maintenance of the AOP-KB Wiki, following guide-
lines issued by the EAGMST. SAAOP provides summary reports on the status 
and use of the AOP-KB Wiki for the semi-annual meetings of the EAGMST. These 
bi-annual reports also provide a summary of all SAAOP responses to any 
EAGMST requests for information on, or requests for changes to, the AOP-KB 
Wiki. Figure 18.4 shows the logo of SAAOP.

•	 The “crowd”, i.e. the scientific community interested in browsing or contribut-
ing AOP knowledge.
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Figure 18.5 shows the typical AOP lifecycle (from bottom to top):
The following rules and principles apply:

•	 AOPs can get into the AOP-KB Wiki via two channels:

–– Members of the crowd (scientific community) request write access to the 
AOP-KB Wiki from the SAAOP and start entering their AOP knowledge.

Fig. 18.4  SAAOP Logo

Fig. 18.5  AOP lifecycle
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–– Members of the crowd (scientific community) request the addition of their 
AOP to the OECD work program (see http://www.oecd.org/chemicalsafety/
testing/adverse-outcome-pathways-molecular-screening-and-toxicogenom-
ics.htm for guidance); write access to the AOP-KB Wiki is automatic.

•	 AOPs in the lowest tier (not on the OECD work program) can, but do not have to 
go through the EAGMST procedure to get onto the OECD work program.

•	 Once an AOP is considered mature enough by its authors, it can undergo an inter-
nal review by members of the EAGMST.

•	 Once the AOP has successfully passed the EAGMST review, it is handed over for 
external review to experts nominated by the WNT and the TFHA.

•	 Once an AOP is endorsed by the WNT/TFHA it is considered adopted by the 
OECD.

•	 Adopted AOPs are conserved as snapshot in the AOP-KB Wiki for later refer-
ence, but the AOP authors and the crowd are invited to develop the AOP further 
as science evolves.

While AOPs can be used in IATAs at any stage of their development, it is of 
course recommended to use them especially in their reviewed, ideally in their 
adopted stage. The further up in their lifecycle AOPs are, the likelier it is that regula-
tory authorities will be inclined to trust IATAs based on them.

At time of print, the following AOPs are fully adopted and endorsed by the 
OECD:

•	 Alkylation of DNA in male pre-meiotic germ cells leading to heritable 
mutations

•	 Aromatase inhibition leading to reproductive dysfunction
•	 Binding of agonists to ionotropic glutamate receptors in adult brain causes exci-

totoxicity that mediates neuronal cell death, contributing to learning and memory 
impairment

•	 Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) 
during brain development induces impairment of learning and memory abilities

•	 Covalent Protein binding leading to Skin Sensitisation
•	 Protein Alkylation leading to Liver Fibrosis

–– Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) 
during brain development leads to neurodegeneration with impairment in 
learning and memory in aging

–– Androgen receptor agonism leading to reproductive dysfunction

18.4  �Method References in the MIE, KE and AO Wiki 
Entries

In addition to promoting AOP usage via IATAs, an important element in the regula-
tory acceptance of 3R methods via AOPs is mentioning them explicitly in the 
AOP-KB Wiki entries for MIEs, KEs and AOs.
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Figure 18.6 shows a well written entry for the MIE “Dendritic Cells, Activation” 
(https://aopkb.org/aopwiki/index.php/Event:398) in the AOP “Covalent Protein 
binding leading to Skin Sensitisation” (https://aopkb.org/aopwiki/index.php/
Aop:40):

The verbal and tabular description of all test methods available to show that a 
chemical is implicated in an AOP-relevant event is the link between the AOP think-
ing and its possible application in a regulatory context.

18.5  �AOP-XML

While AOPs are normally created in the AOP-KB Wiki, making it possible to create 
them with any third party tool would further promote the concept. In order to facili-
tate this, the OECD has started a project to create an AOP-XML standard. XML 
stands for Extensible Markup Language (XML), which is

a simple, very flexible text format […] Originally designed to meet the challenges of large-
scale electronic publishing, XML is also playing an increasingly important role in the 
exchange of a wide variety of data on the Web and elsewhere. (W3C 2015)

Any third party whose application can produce an export file compatible with 
this AOP-XML Schema would then be able to share its AOPs with the official web-
site. At time of print, the Schema is scheduled to be officially adopted by OECD in 
late 2017 or early 2018. An import mechanism that will allow importing AOP-
XML-formatted files into the AOP-KB Wiki has already been developed and will be 
published in parallel to the AOP-XML format itself.

With the AOP-XML Schema in place, information exchange and submission of 
AOPs as part of regulatory dossiers will become easier as regulators would receive 
AOP information in a format they are familiar with and cumbersome standardising 
effort would be no longer necessary. The AOP-XML Schema will become part of 
the OECD series of global standardized formats that aim at making world-wide data 
exchange between stakeholders a straightforward task. AOP-XML is actually 
inspired by the OECD Harmonised Templates (OHT, see http://www.oecd.org/ehs/

Fig. 18.6  Reference to 3R methods in AOP MIE article
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templates/), which are standard reporting formats for 100+ phys/chem, human 
health and ecological hazard properties, already now the prescribed way to submit 
chemical dossiers to regulatory authorities, esp. to the European Chemicals Agency 
(ECHA) under REACH (Registration, Evaluation, Authorisation and Restriction of 
Chemicals), which also promotes alternative methods for the hazard assessment of 
substances in order to reduce the number of tests on animals. Being able to attach 
AOP information in the AOP-XML format to a chemical dossier will increase the 
visibility and usefulness of the AOP concept.

18.6  �OECD Harmonised Template 201: Intermediate Effects

Consideration and ultimately acceptance of AOP-derived results in regulatory con-
texts can be further promoted by using a standardised data format to report non-
classical test method results. AOP knowledge, if properly captured and presented, 
leads to a better understanding of toxicity mechanisms, and ultimately the AOP 
knowledge – derived from testing several chemicals – may be extrapolated to pre-
dict the toxicity of all chemicals that trigger the same MIE.  Until recently, the 
absence of a template to report Intermediate Effects (like MIEs and KEs) was a 
blocking factor.

The OECD had already designed and published 114 OECD Harmonised 
Templates (OHTs) to report test results concerning:

•	 physical/chemical properties (e.g. boiling point, density, flammability, …),
•	 human toxicity (e.g. carcinogenicity, acute toxicity, …)
•	 environmental toxicity (e.g. aquatic toxicity, terrestrial toxicity, …) and
•	 other properties describing degradation, accumulation etc.

These templates are geared towards results derived from classical (mostly OECD 
guideline) studies, focusing on apical endpoints, i.e. Adverse Outcomes.

However, reporting MIEs or KEs with such a classical OHT would tie them 
inseparably to the one Adverse Outcome the one template covers, which is undesir-
able, as the (in-vitro, in-silico mechanistic) information is then not easily accessible 
for building AOPs leading to other Adverse Outcomes: A Key Event can be relevant 
not only for one AOP, but several. Reporting the Intermediate Effect in an 
“AO-neutral” template makes the data available for all kinds of AOPs.

A new, AO-neutral OHT was therefore needed that would allow reporting obser-
vations from mechanistic (in-vitro and in-silico) tests, without immediately locking 
into one of several AOs the Intermediate Effect could lead to.

Knowing not only about results of animal tests (classical OHTs), but being able 
to cross-reference these test results with the intermediate effect observations (new 
OHT) has the potential to lead the way towards a less animal-centred hazard 
assessment.

OECD therefore started an initiative to come up with a stable, stakeholder-
endorsed OHT for reporting on “intermediate effects” – being observed via in vitro 
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assays and possibly other non-animal test methods (computational predictions etc.). 
The template was titled “OHT 201 – Intermediate effects”.

OHT 201 was endorsed by the OECD Joint Meeting in 2015 and was finally 
published in August 2016, see http://www.oecd.org/ehs/templates/harmonised-tem-
plates-intermediate-effects.htm for more details.

The basic principle of OHT 201 is that:

•	 one or several objective observation(s) (= results from non-classical test 
methods)

•	 lead(s) to one subjective conclusion (= Intermediate Effect present, yes or no).

A properly filled in OHT 201 template therefore conveys a clear statement:

•	 Based on Observations O1, O2, …,
•	 a certain Chemical
•	 triggers/does not trigger
•	 a certain Intermediate Effect
•	 on a certain Biological Level
•	 at a certain Effect Concentration.

With OHT 201 being implemented in IUCLID (the International Uniform 
ChemicaL Database, see http://iuclid.eu/) the ICT system used by industry to fulfil 
reporting obligations under more and more legislative programmes (e.g. REACH), 
the notion of Intermediate Effects (and implicitly AOPs and predictive toxicology) 
has started to get attention in the regulatory world. This is a first step towards the 
acceptance of results from alternative tests for regulatory purposes, with the ulti-
mate goal of replacing in-vivo-centred Adverse Outcome observations with 
alternative-methods-centred IATA/AOP considerations as the basis for risk 
assessment.

18.7  �Conclusion

AOPs provide mechanistic knowledge on how, when and to what extent biological 
processes are disturbed so that an Adverse Outcome results. While this mechanistic 
knowledge is of paramount importance to better understand toxicology, it can only 
be “accepted” in the regulatory context in combination with testing strategies based 
on exactly that knowledge. The regulatory acceptance of AOPs will therefore be an 
indirect one: AOP knowledge (ideally endorsed by the OECD in a dedicated review 
process) will inform Integrated Approaches to Testing and Assessment (IATA) lead-
ing to a mix of (less) classical and (more) non-classical, (more) in-vitro/in-silico 
and (less) in-vivo test methods fulfilling the needs of any specific hazard or risk 
assessment case. AOPs and non-classical test results will be stored in OECD-
published data exchange and reporting formats, thereby further facilitating their 
uptake by regulators.
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Chapter 19
The Future of Adverse Outcome Pathways: 
Analyzing their Social Context

Kevin C. Elliott, Cheryl A. Murphy, and Natàlia Garcia-Reyero

Abstract  This chapter places the development of adverse outcome pathways 
(AOPs) in their social context. It begins by highlighting the intense social and politi-
cal polarization that currently exists around environmental regulations. Given this 
context, any gaps, assumptions, or uncertainties associated with AOPs are likely to 
receive intense scrutiny whenever they have regulatory implications that could gen-
erate adverse consequences for particular stakeholder groups. Therefore, the chap-
ter argues that in the near future, AOPs are likely to be much more fruitful when 
they are employed in “win-win” contexts, such as in the design of safer chemicals 
or the assessment of alternative products and methods. Moreover, AOPs are likely 
to be more useful and more widely accepted if their development process is charac-
terized by two principles: engagement and transparency. Following these principles 
has the potential to alleviate some of the conflict that has characterized recent chem-
ical regulatory policy.

19.1  �Introduction

The adverse outcome pathway (AOP) framework organizes available biological 
information along levels of biological organization and has the potential to revolu-
tionize the chemical risk-assessment process by helping to elucidate the causal rela-
tionships between molecular level processes (Molecular Initiating Events; MIEs); 
cellular, organ level, organ system and organism-level processes (generically termed 
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Key Events; KEs); and Adverse Outcomes (AOs) that are informative for risk 
assessment (Garcia-Reyero 2015). The AOP framework was born as a response to 
the release of a National Research Council report in 2007 entitled Toxicity Testing 
in the 21st Century (NRC 2007). This report envisioned a revolution of toxicity test-
ing, moving from whole-organism testing to a set of in vitro, in silico, and pathway-
based tools to predict toxicity. This vision was rapidly embraced by the ecotoxicology 
community and led to the conception of the AOP concept (Ankley et al. 2010).

Currently, risk assessments are based on slow, expensive toxicity tests of indi-
vidual chemicals (typically administered at high doses) on specific species of exper-
imental animals. In contrast, our social goals would be better served if we could 
quickly assess the direct and indirect ways in which mixtures of chemicals at real-
istic doses affect human health and the ecosystem services on which we depend 
(Forbes and Calow 2012). Furthermore, there is ever-increasing social and ethical 
pressure to minimize the use of animals for toxicity testing due to concerns about 
animal welfare (“Animal Rights and Wrongs” 2011). Therefore, AOPs could poten-
tially give regulators the causal understanding to predict the effects of chemicals at 
multiple levels of biological organization without performing slow, expensive, 
socially and ethically controversial, and sometimes unreliable animal tests.

Despite this potential, AOPs face a number of challenges. Perhaps most impor-
tantly, it is not obvious how the analysis of causal pathways at the molecular level 
can reliably predict emergent toxic properties at much higher biological levels that 
arise from extremely complex interactions and feedback processes (Forbes and 
Calow 2012). This has the potential to limit the usefulness of AOPs in the context of 
risk assessment, because stakeholders are likely to exploit these uncertainties to cast 
doubt on results that conflict with their interests (Sarewitz 2004). Of course, our 
knowledge is constantly evolving and improving, and partial AOPs can still gener-
ate valuable information for regulatory purposes (Perkins et al. 2015). Nevertheless, 
failure to recognize the polarized social context surrounding chemical regulations 
and its implications for the development of AOPs has the potential to generate con-
flict and prevent them from reaching their full potential.

This chapter explores the social context surrounding AOPs in order to determine 
how they can be developed in a manner that is most likely to yield fruitful results. 
Section 19.2 highlights the polarization and conflict that surrounds contemporary 
chemical regulations. Given this context, Sect. 19.3 argues that in the near future 
AOPs are likely to be most useful in “win-win” settings where stakeholders do not 
have incentives to emphasize their uncertainties and limitations. Section 19.4 pro-
poses that the quality and social utility of AOPs is most likely to be maximized if the 
development process is characterized by efforts at engagement and transparency. In 
sum, the chapter emphasizes that AOPs are being developed in a very sensitive 
social and political context, and therefore they are much more likely to play a fruit-
ful role in future regulatory policy if those developing AOPs remain cognizant of 
that context.
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19.2  �The Setting

To appreciate how AOPs are likely to be received by different stakeholders, it is 
important to consider the current social context surrounding chemical regulations in 
the United States and around the world. One of the central features of this social 
context is conflict. Since at least the time of Rachel Carson, industry and citizen 
groups have clashed over the assessment of risks associated with industrial chemi-
cals. A number of books have recently appeared with titles like Doubt Is Their 
Product (Michaels 2008), Merchants of Doubt (Oreskes and Conway 2010), Global 
Spin (Beder 2000), and Deceit and Denial (Markowitz and Rosner 2002). These 
books express the concern that the chemical industry has engaged in many of the 
same strategies as the tobacco industry, seeking to manufacture public uncertainty 
about the harmfulness of its products.

In Merchants of Doubt, for example, historians Naomi Oreskes and Erik Conway 
argued that many of the same scientists, institutions, and strategies appeared over 
and over in a number of different regulatory conflicts over the past 60 years. When 
the tobacco industry began to face evidence that their products were harmful during 
the 1950s, they enlisted the influential public relations (PR) firm Hill and Knowlton 
to help them craft a plan for responding. They developed a number of strategies for 
deflecting public attention from the harmfulness of tobacco: (1) funding “decoy” 
research designed to avoid obtaining evidence that tobacco was harmful; (2) attack-
ing scientists who publicized evidence about the health effects of tobacco; (3) with-
holding research findings that put tobacco in an unfavorable light; and (4) casting 
doubt on studies that appeared to provide evidence that tobacco was harmful (Elliott 
2016). The tobacco companies enlisted very influential scientists, including Fred 
Seitz, a former president of the National Academy of Sciences and Rockefeller 
University, to administer grant programs on their behalf and to launch organizations 
like The Advancement of Sound Science Coalition (TASSC) (Oreskes and Conway 
2010). Many of these same scientists and organizations, including TASSC and Hill 
and Knowlton, were later active in casting doubt on the scientific evidence for 
numerous other environmental and public-health hazards, including acid rain, the 
ozone hole, industrial chemicals, fast food, and climate change (Elliott 2016; 
Oreskes and Conway 2010).

These activities have contributed to public skepticism about the chemical indus-
try. In his book Doubt Is Their Product, David Michaels (2008) argues that the 
industry has employed a variety of the same questionable strategies as the tobacco 
industry in an effort to defend harmful chemicals like lead, asbestos, chromium, 
benzene, beryllium, and dioxin. Recently, bisphenol-A (BPA) has become a hot-
button subject of controversy, because independently funded studies appear to iden-
tify a number of harmful effects that have not been found in industry-funded studies 
(Myers 2009; Vandenburg and Prins 2016). Those associated with the industry-
funded research have responded that their studies were performed according to the 
standardized test guidelines approved by the Organization for Economic Cooperation 
and Development (OECD) and other regulatory bodies (Tyl 2009). But critics of the 
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industry-funded studies argue that they had design flaws and that the standardized 
protocols do not incorporate cutting-edge techniques for identifying effects from 
endocrine disrupting chemicals (Myers et al. 2009; Vandenburg and Prins 2016).

These cases illustrate the considerable distrust that has arisen between different 
stakeholders over risk assessments of industrial chemicals. Industry contends that 
environmental organizations and citizen groups are quick to call for regulating and 
banning chemicals based on preliminary data and without paying adequate attention 
to the costs of regulations. Critics of industry-funded studies argue that those stud-
ies are often designed in ways that minimize the potential for finding harmful effects 
(Myers et al. 2009). They also contend that industry pays product-defense compa-
nies to perform questionable re-analyses of independently-funded studies in order 
to “manufacture uncertainty” about evidence that their products are harmful 
(Michaels 2008). As a result, the regulatory process has been slowed to a virtual 
standstill by litigation and conflict (Cranor 2011).

One of the motivations behind the development of AOPs is to speed up the regu-
latory process and alleviate this gridlock. By facilitating the use of in vitro and in 
silico techniques, the use of AOPs has the potential to generate results much more 
quickly and cheaply than with animal or epidemiological studies. Moreover, by 
uncovering underlying mechanisms, they could help regulators to address non-
monotonic dose responses and chemical mixtures. Nevertheless, this potential could 
easily be lost if AOPs become subject to the same controversy that has plagued the 
existing chemical regulatory process.

Literature in the field of science and technology studies (STS) has shown that 
when there are high stakes surrounding scientific information, any uncertainties or 
assumptions or methodological concerns become subject to intense scrutiny and 
debate (Funtowicz and Ravetz 1992; Hackett et al. 2007; Sarewitz 2004). At the 
early stages of their development, AOPs will be subject to a host of uncertainties 
and assumptions, including questions about the quality of the data underlying them, 
the causal factors linking key events (KEs) in AOPs, the relationships among mul-
tiple AOPs in networks, the potential for variations in effects across species and 
members of species, the effects of feedback loops within and between levels of 
biological organization, the linear construct of AOPs, and other factors. While exist-
ing whole-animal tests are also fraught with uncertainties (Greek and Menache 
2013; Hartung 2013), companies are still likely to fear that the use of new in vitro 
and in silico methods could come back to “bite” them if they are not as predictive as 
expected. In contrast, many animal-welfare organizations strongly support the use 
of the new methods, but this is unlikely to ease the concerns of many scientists who 
already feel threatened by these organizations and question their motives (“Animal 
Rights and Wrongs” 2011).

Because of these many uncertainties and accompanying values, the potential for 
AOPs to help alleviate gridlock could easily be lost if they are employed in ways 
that aggravate existing conflicts over chemical regulation and risk assessment. For 
example, if an AOP or a network of AOPs were to serve as the primary basis for 
arguing that particular chemicals should be subject to increased or decreased regula-
tion, stakeholders opposed to the decisions would be likely to highlight the 
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limitations of AOPs in excruciating detail (Sarewitz 2004). While it could be fruitful 
in some contexts to clarify the strengths and weaknesses of these techniques, it is 
unlikely that the criticisms that they would receive in a polarized regulatory envi-
ronment would actually serve a fruitful purpose. Instead, the criticisms would sim-
ply contribute to ongoing gridlock and obfuscation. Therefore, it would be wise to 
develop AOPs in a manner that minimizes the potential for them to become subject 
to intense social controversy (see Fig. 19.1). The next section considers contexts in 
which they could be developed and implemented without generating significant 
conflict, and the following section proposes principles for developing AOPs in a 
manner that is likely to maximize their usefulness and acceptance.

19.3  �The Importance of Context

Given the highly conflicted social setting surrounding the development of AOPs and 
the uncertainties associated with them, they are initially likely to be most useful in 
contexts where stakeholders do not have significant incentives to create gridlock by 
questioning their results. In other words, the best contexts for employing AOPs in 
the near future are likely to be those in which they generate “win-win” scenarios or 
at least those in which no stakeholders have a great deal to lose. For example, there 
are increasing calls for industry to find ways to engineer “safety by design” into new 
chemicals (Colvin 2003; McDonough and Braungart 2002). Many contemporary 
conflicts over chemical regulations occur because industry is threatened with having 
to pull very profitable products from the market. But if better techniques were avail-
able for predicting which chemical classes or structures were least likely to display 
toxic properties, companies could choose to focus on developing chemicals that 
were less likely to be toxic. This would be beneficial to all stakeholders, so AOPs 
would receive widespread support if they could assist in this process of designing 
safer products. As AOPs are developed, they will vary in terms of their scientific 

Fig. 19.1  An illustration of how new AOPs are likely to be received differently, depending on 
whether they are applied to high-stakes contexts (e.g., contentious risk assessments) or low-stakes 
contexts (e.g., chemical prioritization or alternatives assessment)
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completeness and the uncertainty associated with all their components (e.g., the 
characteristics of specific KEs), but even relatively incomplete AOPs can still pro-
vide valuable information about correlations between MIEs and AOs (Perkins et al. 
2015).

Closely related to the goal of designing safer products is the practice of “alterna-
tives assessment,” in which chemicals are compared to find the safest ones that can 
be used to perform a given task. Performing alternatives assessment is another way 
to generate “win-win” scenarios in which industry finds new chemicals that are 
comparable in terms of cost and convenience but that have less toxic properties than 
previous ones. For example, the state of Massachusetts passed a Toxic Use Reduction 
Act in 1989 that required companies to perform alternatives assessment. It created 
a list of chemicals that raised health concerns, but rather than banning them it 
required companies using large quantities of the chemicals to report their annual 
usage and to investigate potential alternatives. In the years following the legislation, 
companies found that in many cases they could actually save money by using alter-
native chemicals that were less toxic (Tickner 1999, 2003). The use of AOPs could 
potentially help to provide information about alternatives that would be difficult or 
much slower to obtain otherwise. For example, when an MIE or KE has already 
been linked to an AO, it can facilitate the development of high-throughput or in vitro 
assays to identify compounds that are likely to generate the AO and alternatives that 
are less likely to do so (Perkins et al. 2015). In settings like these, there would be 
relatively few incentives to challenge the results of AOPs unless the costs of safer 
alternatives were much higher than those of other compounds.

Another arena in which AOPs could prove to be very helpful, even in the early 
stages of their development, is in the prioritization of chemicals for further testing 
(Groh et al. 2014). There are currently about 80,000 industrial chemicals in produc-
tion, and little is known about the toxicity of most of those chemicals, because they 
do not fall in the categories of pesticides or pharmaceuticals that have been subject 
to an extensive pre-market regulatory system (Cranor 2011). Therefore, as regula-
tory agencies strive to catch up with this massive backlog, they are faced with dif-
ficult decisions about which chemicals should be studied most intensively at present 
and which ones are not as important to investigate in the near future. This is another 
arena in which there is relatively little to lose by employing AOPs to accelerate and 
improve the prioritization process. For industry, there is much less to lose when 
chemicals are chosen for further testing than when they are threatened with actual 
regulation of a chemical. And for citizens and environmental groups, efforts to 
improve and accelerate the prioritization process are appealing, even if they are 
somewhat imperfect.

One might challenge our recommended focus on designing safer chemicals, 
assessing alternatives, and prioritizing chemicals for further testing by insisting that 
it prevents AOPs from meeting their full regulatory potential. From this critical 
perspective, the “holy grail” is for AOPs to be used in performing risk assessments 
that can be accepted for regulatory purposes, and the concern is that we are selling 
AOPs short by calling for more modest uses. Our response is that by starting with 
these modest uses, we “thread the needle” between two potential dangers. On one 
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hand, if AOPs are introduced into the regulatory environment too aggressively, they 
risk being caught up in the political debates discussed in Sect. 19.2, which could 
significantly impair their future acceptance. On the other hand, the future usefulness 
of AOPs could be severely compromised if regulators do not play a role in their 
development, and it seems wasteful to avoid using AOPs until they are fully devel-
oped (Garcia-Reyero 2015). Our proposals allow regulators to begin using AOPs in 
ways that are relatively unlikely to generate conflict, thereby exploring the power of 
AOPs to play a role in more politically controversial risk assessments in the future.

As scientists and policy makers explore different uses for AOPs, it may be help-
ful for them to employ weight of evidence (WoE) approaches to help guide their 
decision making. A WoE evaluation documents the level of confidence in extrapola-
tion beyond the empirical data. Building on the Bradford-Hill considerations (Hill 
1965), WoE approaches have already been applied to AOP development, with the 
criteria of biological plausibility, essentiality, and empirical evidence applied to 
each AOP key event relationship (Becker et  al. 2015). There are qualitative 
approaches to assessing level of confidence in a key event relationship (very strong, 
strong moderate, weak, very weak), but there are also quantitative weight of evi-
dence approaches. For example, an expert panel could develop and use specific 
criteria to apply weights and scores to individual lines of evidence for each key 
event relationship within an AOP.  These criteria would evaluate the mechanistic 
relationships between key events, using evidence of a downstream key event being 
impaired if an upstream key event is blocked and the consistency across a wide 
range of taxa and stressors for which the key event(s) occur as supporting informa-
tion. Mathematical or statistical models would be developed to evaluate the weights 
and scores to determine the strength in the confidence of the AOP key event rela-
tionship (Becker et al. 2015). The quantitative approach is attractive because it has 
the potential to enhance the transparency and reproducibility of AOP WoE determi-
nations on key event relationships.

19.4  �Principles for Future Development

In addition to being strategic about the contexts in which AOPs are employed, 
another important step for increasing their future success is to let two principles 
guide their development: engagement and transparency. The STS literature high-
lights the importance of both principles. In the past two decades, there has been a 
backlash against the “deficit model” of the public’s understanding of science. In the 
latter part of the twentieth century, many figures working in science policy acted as 
if most public opposition to science and technology could be attributed to a deficit 
or lack of scientific understanding on the part of the public. A report published by 
the British Royal Society (1985), The Public Understanding of Science, is often 
cited as an example of this perspective. In response to this view, many scholars have 
pointed out that public opposition can stem from a number of different factors, 
including concerns about the social impacts or risks or values associated with 

19  The Future of Adverse Outcome Pathways: Analyzing their Social Context



398

particular lines of research and technological innovation (see e.g., Elliott 2017; 
Wynne 2005).

Given that stakeholders can have legitimate concerns about the background 
assumptions or values or social impacts associated with a line of research, science 
policy makers have become increasingly concerned to incorporate broad engage-
ment among multiple stakeholders in decision making (Elliott 2011, 2017; Guston 
2008, 2014; NRC 1996). This engagement can take a variety of different forms. It 
can involve surveys, focus groups, or public comment periods, all of which provide 
opportunities for the public to inform decision makers. It can also involve various 
types of public meetings in which experts educate the public. Perhaps most interest-
ing are recent efforts to promote “two-way” engagement, in which technical experts 
and citizens can exchange information. For example, consensus conferences, citi-
zens’ juries, and citizen advisory committees typically employ small groups of citi-
zens that are able to hear from experts and become educated about an issue before 
providing feedback to policy makers.

Other approaches involve participatory collaborative modeling, which uses the 
structure of system dynamics to involve multiple stakeholders. System dynamics 
simulation models can offer significant benefits to public involvement processes. 
Various stakeholders can participate in virtual worlds to allow them to learn how 
complex systems work, by modifying different aspects of the simulation and con-
tributing to the model building process (Sterman 1994; Stave 2002). In fact, when 
participatory systems modeling is involved in group decision processes (when com-
pared to traditional group facilitation process), participants appear to have better 
structured discussions, stronger mental models, and reach sound decisions faster 
(Dwyer and Stave 2008).

A number of justifications can be given for these efforts at promoting engage-
ment in the arena of science policy (Fiorino 1990). One justification is democratic: 
people have rights to be involved in decision-making processes that have the poten-
tial to impact them significantly (Elliott 2009; Shrader-Frechette 1995). Another 
justification is that science and technology are likely to be more effective and useful 
when they are guided by people with a wide range of expertise. Importantly, this 
expertise can involve the “local knowledge” of citizens who do not have a great deal 
of technical expertise but who have important on-the-ground information about how 
scientific and technical developments are likely to be used and received (Elliott 
2009, 2017; Wynne 1989). A third justification for engagement is instrumental: new 
scientific and technological advances are often more likely to be accepted if a wide 
range of stakeholders have had a hand in developing them (Fiorino 1990).

The potential for scientific and technical advances to be more widely accepted 
when multiple stakeholders are involved in developing them is especially important 
to consider in the case of AOPs, given the tense political environment surrounding 
chemical regulations described in Sect. 19.2 of this chapter. There have been note-
worthy cases where collaborative research efforts eased conflicts among stakehold-
ers that were otherwise highly suspicious of one another. For example, in the wake 
of the Exxon Valdez oil spill, local citizens were highly suspicious of the petroleum 
industry. In an effort to alleviate this tension, a well-respected citizen group 
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collaborated with the petroleum industry to perform a risk assessment of different 
approaches for moving barges through Prince William Sound (Busenberg 1999; 
Douglas 2005). Similarly, when evidence emerged that the pollen from genetically 
engineered Bt corn might be harming Monarch butterfly populations, a collabora-
tive research effort involving representatives from industry, NGOs, academia, and 
government yielded high-quality findings that helped to resolve the controversy 
(Pew Initiative 2002). Of course, collaborative research projects do not always work 
out so well. Recent collaborative efforts to study methane emissions from hydraulic 
fracturing sites and to study the effects of neonicotinoid insecticides on bee hives 
have had limited success (Kleinman and Suryanarayanan 2015; Song and Bagley 
2015). But this does not mean that multi-stakeholder engagement should be aban-
doned; rather, it is important to reflect further about how collaborations can be 
developed in ways that maintain trust and confidence in the legitimacy of the pro-
cess (Elliott 2011).

So far, the development of AOPs has proceeded in a manner that captures many 
of the goals of engagement, not only in expertise and goals, but also in space, as 
AOPs are now a worldwide movement and effort. For instance, several of the work-
shops that have been crucial in the development of AOPs included participants from 
industry, academia, government, and NGOs, both US-based and international. As 
discussed in Garcia-Reyero (2015), a recent workshop held in 2014 (http://www.
saaop.org//workshops/somma.html) that focused on the use and development of 
AOPs for regulatory applications not only brought together participants and spon-
sors from industry, NGOs, government, and academia (all both US-based and inter-
national), but also brought together human health and eco-health experts. This 
pioneering effort led to other workshops and efforts that maintained this set of prin-
ciples on international and organizational collaboration, which spurred the develop-
ment of AOPs for both human health and ecological assessment (e.g., “Adverse 
Outcome Pathways: From Research to Regulation,” held in September 2014  in 
Bethesda, MD, sponsored by the National Toxicology Program; https://ntp.niehs.
nih.gov/pubhealth/evalatm/3rs-meetings/past-meetings/aop-wksp-2014/index.
html; SETAC Pellston Workshop: Advancing the Adverse Outcome Pathway 
Concept – An International Horizon Scanning Approach, April 2017).

One way in which the engagement process surrounding AOPs could potentially 
be improved would be to incorporate greater citizen involvement in the develop-
ment process, perhaps through participatory modeling or other collaborative strate-
gies. Ultimately, if AOPs are to be useful for risk assessments, environmental groups 
and other citizen organizations need to feel comfortable with their reliability. It 
would behoove those developing AOPs to take steps to identify the concerns that 
these groups might have and to explore ways to address them. A preliminary step 
along these lines would be to incorporate members of environmental or public-
health-oriented NGOs in working groups that are developing AOPs.

Fortunately, these efforts are already underway. Several non-profit organizations, 
such as People for the Ethical Treatment of Animals (PETA), Physicians Committee 
for Responsible Medicine, the Humane Society of the United States, and ILSI 
Health and Environmental Science Institute, are working very closely with 
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government agencies and regulators on alternative methods and AOP development, 
as well as communicating these efforts to educate and inform society. Eventually, it 
would also be valuable to initiate a focus group or consensus conference in which 
citizens could discuss their perspectives on AOPs. Some international conferences 
such as the Society of Environmental Chemistry and Toxicology (SETAC), the 
Society of Toxicology (SOT), and the American Society for Cellular and 
Computational Toxicology (ASCCT) annual meetings have already been heavily 
involved in AOP development and acceptance, with many talks, sessions, and train-
ing opportunities related to the AOP concept. Increasing international efforts in 
these directions and including non-scientist citizens would continue to give regula-
tors an advance sense of major issues that need to be addressed in order to imple-
ment AOPs in a regulatory context.

In addition to engagement, transparency is a second crucial principle that should 
guide the development of AOPs. Efforts to promote transparency can encompass a 
number of different practices (Nosek et al. 2015). Some important practices include 
the public sharing of data, materials, and analytical techniques (e.g., Soranno et al. 
2015). Other important practices that promote transparency include acknowledging 
crucial assumptions or judgments that underlie scientific interpretations or method-
ologies (Elliott 2017; Elliott and Resnik 2014). A related practice is the disclosure 
of relationships or conflicts of interest (COIs) that could influence one’s judgment. 
Psychological research indicates that conflicts of interest can have significant effects 
on our reasoning, and many journals have recently taken steps to require disclosure 
of these interests in published articles (Elliott and Resnik 2015). Because of con-
cerns about maintaining proprietary control over intellectual property, industry 
sometimes faces challenges with transparency (e.g., with regard to the data underly-
ing safety studies). Despite these limitations, it is still important to pursue as much 
transparency as possible in all sectors.

Transparency is important for several reasons. First, it helps to facilitate effective 
engagement. If all stakeholders do not have access to the data and methods underly-
ing scientific developments, they are not able to contribute effectively to subsequent 
deliberations about them (Soranno et al. 2015). Transparency is also crucial for pro-
moting the quality of scientific work. Scientists and policy makers are currently 
very concerned that a great deal of scientific research appears not to be consistently 
reproducible (Alberts et al. 2015). Transparency can help alleviate this concern. By 
making key data, assumptions, methods, and COIs known, it allows for greater 
opportunities to analyze and evaluate the quality of results. Philosophers of science 
argue that meaningful criticism by scientists with an adequate range of perspectives 
is central to scientific objectivity (Douglas 2004; Elliott 2017; Longino 2002).

Fortunately, the research community appears to be taking very promising steps 
to promote transparency concerning research on AOPs. A clear example is the AOP-
Knowledge Base (AOP-KB; http://aopkb.org/) project, a collaborative effort 
between the Organization for Economic Cooperation and Development (OECD), 
the US Environmental Protection Agency (EPA), the European Commission Joint 
Research Center (JRC), and the US Army Engineer Research & Development 
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Center (ERDC). The AOP-KB involves several modules related to AOP development, 
such as Effectopedia, AOP-Xplorer, and the AOP Wiki, a repository for AOPs that 
will be eventually approved by OECD as official AOPs when sufficient confidence 
and evidence is provided. The OECD launched the AOP Development programme 
in 2012 under the umbrella of the OECD Advisory Group on Molecular Screening 
and Toxicogenomics, which includes members from many OECD countries. As part 
of this programme, they published the Guidance Document on Developing and 
Assessing Adverse Outcome Pathways (2013). This programme has played a key 
role within AOP development, harmonizing international efforts and promoting 
transparency of both the data and the process. In order to maximize the future 
acceptability of AOPs in the regulatory context, it will be important to continue 
making the data and methods underlying AOPs publicly available and to be forth-
right about the assumptions and uncertainties associated with them.

In keeping with the principles of engagement and transparency, the development 
of AOPs could provide a unique opportunity to experiment with new approaches for 
performing chemical risk assessments. Recent initiatives along these lines include 
the EPA’s ToxCast program that developed high throughput, in vitro, automated 
chemical screening technology that allows for rapid screening for changes in bio-
logical activity in thousands of assays in response to chemical exposure (Huang 
et al. 2016). Currently, the key safety studies that inform regulatory risk assessments 
are almost always performed either by the chemical industry or by contract research 
organizations (CROs) that are paid by industry. As discussed in Sect. 19.2, this cre-
ates financial conflicts of interest that contribute to significant public skepticism 
about the study results. A number of figures have recently argued that these con-
cerns could be alleviated by creating a separate institute within a federal agency like 
the US Environmental Protection Agency (EPA) or an international body like the 
Organization for Economic Cooperation and Development (OECD) (see e.g., 
Krimsky 2003; Volz and Elliott 2012). This institute could be responsible for con-
tracting out chemical safety studies to academic labs or CROs. Even though the 
institute would presumably be funded by taxes or fees assessed to the chemical 
industry, it would still lessen COIs associated with chemical safety studies, because 
the labs performing the studies would no longer be paid directly by industry. In 
some cases, the institute could also facilitate collaborative efforts in which multiple 
stakeholders work together to design research projects on emerging issues.

While this proposal would be politically very difficult to implement at present, 
the development of AOPs and the advancement of the ToxCast program could pro-
vide greater opportunities to implement something along these lines. The use of 
AOPs could streamline the process of risk assessment so that it would be less 
resource intensive and more efficient. As a result, it might be feasible to perform 
more of the necessary research within federal agencies rather than in external labo-
ratories. Those developing AOPs should look for ways to facilitate this process, 
given its potential to lessen the polarization that has plagued recent regulatory deci-
sion making.
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19.5  �Conclusion

AOPs have great potential to move chemical risk assessment forward in ways that 
lessen costs, improve animal welfare, increase efficiency, and generate more realis-
tic predictions of the toxic effects that are likely to be observed on endpoints that 
matter for regulatory purposes. Nevertheless, they also face a number of significant 
challenges, given the difficulties of moving from causal relationships at the molecu-
lar level to emergent toxic properties at much higher levels of biological organiza-
tion. As a result, their usefulness could be seriously hampered by the extreme 
polarization that has characterized recent chemical regulatory policy. In order to 
alleviate this polarization, we recommend, at least in the near term, that AOPs be 
employed in “win-win” contexts such as the design of safer chemicals and the 
assessment of alternatives. This would enable a range of stakeholders to begin 
exploring and improving AOPs in settings where they do not have incentives to 
reject the findings out of hand. Furthermore, the usefulness and social acceptance of 
AOPs are likely to be increased if those developing them strive to keep promoting 
two principles: engagement and transparency. By doing so, they will provide oppor-
tunities for multiple stakeholders to influence their development, thereby lessening 
subsequent polarization.
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Absorption assessment

illustrative material, 240, 249
tiered assessment models, 240

Acetylcholinesterase (AChE) inhibition
binding studies, 86
illustrative material, 88
inhibitory chemicals case study, 86
omics data, 90–92
pesticides mortality AOP, 86–92
supporting evidence for AOP, 87

Acoustic stimuli, in neurobehavioral  
analysis, 160

Activity, in neurobehavioral analysis, 162–163
ACToR, see Aggregated computational 

toxicology resource (ACToR)
Acute toxicity tests, of standard models, 110
Adaptation, in AOP development, 10–11
ADME properties

and cross-species extrapolation, 117–119
illustrative material, 240
non-model species testing, 111
tiered modeling approaches, 127, 238
workflow for exposure potentials, 250

Adverse outcome pathway (AOP) approach
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study, 86–94
advantages of, 1–12
alternative methods development, 2–6
approved list (OECD), 401
background, 1–2
behavioral assays in, 7
components of, 237

confidence evaluation, 241
with C. reinhardtii, 134–137
cross-species extrapolation and, 2, 6, 134
DEB models and (see Dynamic Energy 

Budgets)
definitions within, 119
development aspects (see AOP 

development)
epigenetics in, 80
ERA applications and benefits, 94–100
ethical considerations, 44, 66
evolution and adaptation in, 10–11
fish embryo models (see fish embryo 

models)
future development principles, 12
genetic engineering validation, 127
guidance literature, 6
in human health risk assessment, 1, 168
within IATA, 361–369
illustrative material, 64
integrated AOP approach, 81
international efforts, 11–12
invertebrate model species (see invertebrate 

model species)
iterative cycles, 43, 60
mechanistic effect models, 99–100
metagenomics and microbiomes in, 8–10
in model species, 75–101
and mode of action frameworks, 308
molecular target sequence analysis in, 96–97
network development, 63–64
neurobehavioral (see neurobehavioral 

analysis)
in non-model species testing, 108
omics use, 177–195
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Adverse outcome pathway (AOP) approach 
(cont.)

phylogenetic approach in, 79–81
for plant species, 134
qAOPs (see quantitative AOPs (qAOPs)
in regulatory decisions, 358–361
social contexts, 391–402
for sub-lethal AOs, 95
systems approaches, 6–7, 240–248
test design factors, 81–85
and toxicity pathways, 18–20
typical lifecycle, 384
weight of evidence techniques (see Weight 

of Evidence methods (WoE)
Adverse outcomes (AOs)

in AOP development strategies, 61
in AOP framework, 10, 11, 46, 94, 95, 99, 

119, 200
causal networks, 142–144
definition, 27
in EDSP screening, 366
epigenetic considerations, 219–229
illustrative material, 22, 25, 247
sub-lethal, 95

Aggregated computational toxicology resource 
(ACToR), features, 195

Agouti model, in bisphenol A study, 225
AhR, see Arylhydrocarbon receptor (AhR)
Algae, see Chlamydomonas reinhardtii
Alternative methods development

and cross-species extrapolation, 122
current efforts, 12, 47
endocrine disruption pathways, 64–65
ethical considerations, 44, 66
regulatory applications, 380, 388
social contexts, 400
validation, 4, 23, 380 (see also Adverse 

outcome pathway (AOP) approach)
Alternatives assessment, benefits, 396
ALTEX, 4
American society for cellular and 

computational toxicology (ASCCT)
AOP development, 400
objectives, 4

Androgen pathways
and EDSP screening, 16, 18
vinclozolin toxicity, 226

Animal testing
cell-based and cell-free comparisons, 34
in current strategies, 5
in EDSP screening, 5
reduction efforts, 101
social contexts, 394

Anxiety responses
illustrative material, 163
in zebrafish, 162, 163, 167

AOP-DEB modeling framework, see Dynamic 
Energy Budgets

AOP development
Bradford-Hill considerations, 308
current regulatory challenges, 4
current strategies, 85
domain of applicability, 86, 87
fundamental principles, 2
KE criteria, 2, 6
KER criteria, 49, 81, 94
and OECD AOP adoption, 384–386
prioritization of, 61
for risk assessment, 94–100
social contexts, 397, 400, 401
stages of, 49–50

AOP Knowledge Base (AOP-KB)
AOP workflow, 384
features and uses, 11
transparency, 400

AOP networks
definition, 63
development of, 63–64
sub-network structures, 246, 247

AOP-supported IATA
categorization and read-across, 363–365
prioritization and hazard identification, 

365–369
theory, 361–369

AOP Wiki
AOP workflow, 384
AOP-XML standard, 387
entry format, 386–387
features and uses, 267
illustrative material, 64
in qAOP formulation, 243
vertebrate-invertebrate studies, 80

AOP-XML standard, 387
AOP-Xplorer, features and uses, 401
Apical endpoints

AOP development limitations, 59
DEB modeling, 284
in EDSP screening, 16, 20
in FELS protocol, 45
in mechanistic models, 319, 363
in qAOP development, 268
traditional use, 268 (see also adverse 

outcomes (AOs))
Apical outcomes, regulatory significance, 108
aquatic toxicity, 44, 65, 94, 95, 388

QSAR models, 94–95
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Aromatase inhibition
fathead minnow AOP, 273–277
illustrative material, 274, 275

Arylhydrocarbon receptor (AhR)
and species sensitivity, 114
tumor models, 211
zebrafish studies, 114

ASCCT, see American Society for Cellular 
and Computational Toxicology 
(ASCCT)

Associative learning, in neurobehavioral 
analysis, 164

Atlantic croaker (Micropogonias undulates)
endocrine disruption, 322
illustrative material, 322
predator evasion, 165
reproductive endocrinology, 322

Atlantic killifish (Fundulus heteroclitus), 
adaptation to PAHs, 10

A Vision and Strategy for Predictive 
Ecotoxicology in the 21st Century: 
Defining Adverse Outcome Pathways 
Associated with Ecological Risk 
(SETAC Workshop), 263

5-Azacytidine (5azaC), in methylation 
homeostasis, 224

B
Bass, largemouth, 323
Bayesian modeling, in WoE contexts, 307
BBDR models, see Biologically based dose 

response (BBDR) models
Behavioral assays, in AOP framework, 7
Behavioral responses, see neurobehavioral 

analysis
Best Professional Judgment, WoE method, 306
Bioactivation, in zebrafish, 56
Bioinformatics procedures

AOP development from omics, 178
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omics challenges, 117
orthology analysis, 87
in predictive toxicology, 178 (see also 

specific platform or model)
Biologically based dose response (BBDR) 

models, and DEB modeling, 277
Biomarkers

in genetically engineered systems, 211
limitations, 319
in toxicoproteomics, 188

Biotransformation
of xenobiotics, 59

in zebrafish, 56–59
Bisphenol A (BPA), Agouti model study, 225
Blast2GO, in nickel case study, 83, 84
Bottom-up AOP development, 241
Bradford-Hill considerations

in AOP development, 308
illustrative material, 354
in mode of action frameworks, 308, 352
in weight of evidence methodology, 354, 397

Brain
DNA methylation studies, 224
mercury receptor binding, 37

C
Caenorhabditis elegans

AChE inhibition studies, 89
genome, 76, 90
illustrative material, 90
in neurobehavioral analysis, 152
qAOP links, 76
testing advantages, 76, 79

Caliper Biosciences, Novascreen, 36
Canadian Environmental Protection Act 

(CEPA), 108
Cancer

epigenetic findings, 224
Guidelines for Carcinogen Risk 

Assessment, 311
metabolic model approaches, 144
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uses, 181
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endocrinology, 321
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embryo, 49, 61, 125

Catostomus commersoni, 268
Causal criteria method, WoE method, 306, 307
Causal networks, in AOP development, 142–144
Cell-free assays

advantages, 34, 35
applications, 36–38
examples, 36
limitations, 37, 39

Cell-free protein synthesis (CFPS) platforms, 
development of, 36

Chemical-ligand interactions, cell-free assays 
in, 38

Chemical prioritization
AOP-supported IATA, 365–369
AOP uses, 365–369

Chemical risk assessment
alternatives assessment, 402
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Chemical risk assessment (cont.)
AOPs in decision-making, 46
current strategies, 134
illustrative material, 254
mixtures challenges, 318–319
socio-political considerations, 401
species sensitivity in, 114
systems biology approaches, 370 (see also 

Decision-making)
Chemicals Management Plan (CMP), current 

challenges, 31
Chlamydomonas reinhardtii

AOP development with, 137
characteristics and genomes, 135
as model species, 135–137
omics data and resources, 135

Chlamydomonas Resource Center, 136
Chlorpyrifos

AO data, 90
gene expression data, 97

Circadian rhythms
in fish HPGL cycles, 326
and neurobehavior, 154

Citizen concerns
and AOP development, 400 (see also 

Social context of AOP development)
Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR)
uses, 55 (see also CRISPR/Cas9)

Coho salmon (Oncorhynchus kisutch), 
reproduction model, 270

Collaborative efforts in AOP development
international efforts, 12
mechanistic-based, 381
stakeholder concerns, 401

COMET, see Consortium for Metabonomic 
Toxicology (COMET)

Commission Implementing Decision 
2012/707/EU, 50

Comparative genomics, invertebrate studies, 86
Computationally-predicted AOPs (cpAOPs)

AOP-Xplorer use, 12
in EDSP screening, 6
illustrative material, 244, 247
systems biology-based, 246
uses, 6

Computational tools
as alternative method, 23
in AOP development, 2
importance of, 357
and omics, 178 (see also computationally-

predicted AOPs (cpAOPs))
Confidence levels

in AOP evaluation, 313

in risk assessment, 359
Conflicts of interest (COIs), in AOP 

development, 400, 401
Consortium for Environmental Omics and 

Toxicology (CEOT), goals of, 80
Consortium for Metabonomic Toxicology 

(COMET), 190
Constitutive androstane receptor (CAR), and 

zebrafish, 57
Contract research organizations (CROs), in 

AOP development, 401
Convergence

AOPs in identification, 20
resource limitation considerations, 27

Copy number variations (CNVs), in genomics, 
181, 182

Correlation analysis, with omics data, 194
Cosmetics safety, AOP-supported IATA, 369
Costs, see Economic factors
cpAOPs, see computationally-predicted AOPs 

(cpAOPs)
CpG methylation, epigenetic effects, 220
CRISPR/Cas9, gene editing, 183, 202
Cross-species modeling

challenges, 122
early life stage approaches, 119
genetic engineering approaches, 212
in silico approaches, 122–123
in vitro approaches, 123
mechanistic information support, 79
QSARs in, 122
systems approach, 126
toxicity-based pathway approaches, 116–120

Crowdsourcing
and OECD AOP adoption, 245
and qAOP development, 7

Ctrax, use of, 156
Cyclotrimethylenetrinitramine, neurotoxic 

effects, 134
Cytochrome P450 (CYP) reactions

in fathead minnow, 59
in medaka, 59
in zebrafish, 57, 58

Cytomim, uses, 36

D
Damage, in TKTD models, 381
Daphnia

AChE inhibition study, 89
cadmium and microcystis AOPs, 93
DEB modeling, 100
in nickel case study, 83–85
testing advantages, 78
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Daphnia Genomics Consortium, 78
DarT, 46
DEB models, see Dynamic Energy Budgets
Deceit and Denial (Markowitz and Rosner 

2002), 393
Decision-making

empirical KER support, 81
exposure and PK considerations, 252
illustrative material, 248, 361
knowledge bases, 134
regulatory AOP applications, 381
in risk assessment process, 255
systems approaches to AOP development, 

240–248
WoE analysis in, 310, 360

Dendritic cells, AOP-Wiki entry, 387
Deterministic models, DEB  

modeling and, 99, 100
Developmental Origins of Health and Disease 

(DOHaD), epigenetics role, 224
Developmental process, 85, 92, 212, see 

Differentiation (cell); Growth
Diabetes, epigenetic factors, 225
Diet, distress and epigenetics, 226
Differentiation (sex), and fish embryo  

testing, 52
Differentiation (cell), genetically engineered 

assays, 399
2,4-Dinitrophenol, FET test results, 47
Dioxin-like compounds (DLCs)

species sensitivity studies, 113
tumor models, 211

Disaggregation, qAOP challenges, 265
Disease models, for AOP validation, 207, 213
Distribution assessment, illustrative material, 

45, 100, 121, 203, 240, 249
Diving test, zebrafish, 155, 162, 163
DNA alkylation, in male germ cells, 94, 386
DNA methylation

as epigenetic mechanism, 222, 224
illustrative material, 223

Dopamine-2 (D2) receptors, binding studies, 38
Dopaminergic (DA) pathways

in fish HPGL model, 325
and fish reproduction, 322
in vivo and in vitro comparisons, 37
studies, 93

Dopaminergic system, memory and learning 
disruption, 167

Dose-response assessment
HT risk assessment, 236
traditional approaches, 319

Dose-response models
early use of, 1

probabilistic and mechanistic, 245
Doubt Is Their Product (Michaels 2008), 393
DREAM (Dialogue on Reverse Engineering 

Assessment and Methods) challenge, 7
Drosophila melanogaster

in neurobehavioral analysis, 78, 116
testing advantages, 78

Drug candidates, AOP-supported IATA, 367
DrugMatrix, uses, 185
Dynamic Energy Budgets (DEB)

AOP to DEB linking model, 289–292
ecotoxicology uses, 285–288
and gene expression analysis, 292
illustrative material, 100
Kooijman DEB theory, 284
and mechanistic physiological  

models, 294–295
and metabolic network models, 293–294
model characteristics, 285
model mathematics and equations, 290–291
population extrapolation, 7, 76, 101
qAOP links, 284
and QSARs, 296–297
toxicokinetic-toxicodynamic models, 288–289

E
EAGMST, see OECD Extended Advisory 

Group on Molecular Screening and 
Toxicogenomics (EAGMST)

Early life stage testing
for non-model species, 107, 108 (see also 

Fish embryo models)
EASZY project, predictive goals, 65
Ecological Risk Assessment (ERA)

AOP development goals, 4
chemical mixtures challenges, 112
computational models, 7
core components, 238
C. reinhardtii use, 144
current strategies, 108
DEB modeling in (see Dynamic Energy 

Budgets)
decision-making (see Decision-making)
neurobehavioral endpoints (see 

Neurobehavioral analysis)
in non-model species (see Non-model 

species risk assessment)
qAOP usefulness, 7
social contexts of AOP development, 399 

(see also Environmental Risk 
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in environmental regulation, 76
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Economic factors (cont.)
in genetic engineering, 76
in omics uses, 6
and tiered chemical testing, 244

ECOTOX database, AO data, 86, 87
Ecotoxicology, see Ecological Risk 

Assessment (ERA); Toxicity testing
EDCs, see Endocrine disrupting chemicals 

(EDCs)
Effectopedia module, features, 12
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receptor-binding studies, 37
white sucker study and AOPs, 268

Eisenia fetida, AChE inhibition data, 92
Embryonic development, fish embryo  

models, 49–50
Emotional reactivity

epigenetics in, 162
illustrative material, 163
in neurobehavioral analysis, 162

Endocrine bioactivity
and EDSP screening, 5, 16, 20
and fish embryo models, 49

Endocrine disrupting chemicals (EDCs)
AOP-supported IATA, 365
definition, 64

Endocrine disruption
Agouti model, 225
AOPs for fish, 16
AOP-supported IATA, 365
fish computational models, 24
Human Toxome project on, 178
invertebrate studies, 64–65
physiological models, 294

Endocrine Disruptor Screening Program 
(EDSP)

chemical prioritization, 365–367
computational methods in, 24–26
Estrogen Receptor model in, 22–24
future pathways use, 16–18
illustrative material, 17, 19, 25, 26
objectives of, 16
scope and methods, 26–27
toxicity pathways and AOPs, 18–20
Weight of Evidence computations, 26–27

Endocrinological considerations, in fish 
embryo testing, 51

Endosulfan exposure, in vivo and in vitro 
comparisons, 37

Endpoints
alternative methods, 27
as mechanistic measure, 165
pesticides, 16
as toxicological values, 24

Engagement, in AOP development, see Social 
context of AOP development

Environmental Protection Agency (EPA)
AOP development collaborations, 19
ECOTOX database, 86, 87
Guidelines for Carcinogen Risk 

Assessment, 311
high-throughput screening, 341, 366
illustrative material, 17
mode of action frameworks in, 353
pesticide registration strategies, 364–365

Environmental Risk Assessment (ERA)
AOP approach benefits, 92
AOP framework in, 94
cell-free platforms in, 34, 36
endocrine disruption, 65
factors in, 98
QSARs in, 94–95
social contexts of AOP development, 393

Enzymatic assays, cell-free assays, 36
Epigenetics

in AOP development, 228
and AOP key events, 397
challenges and future uses, 228–229
Developmental Origins of Health and 

Disease (DOHaD), 224
genetic engineering and, 7–8
illustrative material, 233
mechanisms, 220
and multigenerational AOs, 225–226
and transgenerational AOs, 226–228

ERA, see Environmental Risk Assessment 
(ERA)

EROD assays, CYP reactions, 58
Estradiol, in DEB modeling, 295
Estrogen pathways, and EDSP screening, 16, 18
Estrogen receptor (ER) model

and EDSP screening, 24
illustrative material, 17, 26, 118, 121
SeqAPASS correlations, 120, 127
vitellogenesis and, 332

Ethical considerations
of animal testing, 76, 122
in AOP development, 44
in aquatic toxicity evaluation, 44
in assessment and policy-making, 12
of embryo model use, 44
of genetic modification and synthetic 

biology, 7
zebrafish use, 44

EU Joint Research Centre, AOP development 
collaborations, 19

European Chemicals Agency (ECHA)
on NAMs, 32
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QSAR guidance, 116, 364
European Commission (EC), AOP-supported 

IATA, 363, 365
European Union Reference Laboratory for 

alternatives to animal testing 
(EURL-ECVAM)

AOP-supported IATA, 364
Regulatory Acceptance definition, 380

Europe, FELS testing regulations, 46
Evolution, in AOP development, 10–11
Exposure assessment

HT risk assessment, 239, 253, 254
illustrative material, 238
traditional approaches, 319

Extrapolation data
DEB modeling, 76
NRC recommendations, 355
standard laboratory to native species, 

110–111
uncertainties with, 112

F
Fadrozole hydrochloride, fathead minnow 

study, 275
fAOPs, see Formal AOPs (fAOPs)
Fathead minnow (Pimephales promelas)

aromatase inhibition AOP, 273–277
bioactivation in, 56
embryo studies, 47
endocrine PBTK model, 295
FET test results, 47
illustrative material, 274
PPME exposure, 323
receptor-binding studies, 38
thyroid pathways, 126

FBA, see Flux-balance analysis (FBA)
Fecundity, oocyte growth dynamics model, 

276, 277
Federal Food, Drug and Cosmetic Act 

(FFDCA), and EDSP, 16
Feeding assays, scarcity for zebrafish, 165
FELS test

advantages of, 60
AOP development, 44, 46, 59

Fetal effects, chlorpyrifos exposure study, 91
FET (Fish Embryo Acute Toxicity Test), 

guidelines for, 47
Fish

reproductive endocrinology, 269–277 (see 
also fish embryo models)

Fish Acute Toxicity Test, 46, 47
Fish Early Life-Stage (FELS) AOPs, see FELS 

test

Fish Embryo Acute Toxicity (FET) test, 47, 
50, 61

Fish embryo models
advantages of, 52
in AOP development strategies, 5
biotransformation in, 56–59
embryonic development stages, 49–50
endocrine disruption models, 64–65
endocrinological considerations, 51
physiological considerations in, 49
reproductive considerations, 52–53
sex determination and differentiation, 52
taxonomic applicability of, 48

Fish Sexual Developmental Test,  
KE selection, 64

FLOTE software, for visual startle, 159
Fluorescent proteins, in endocrine  

screening, 56
Flux-balance analysis (FBA)

features, 294
and KERs, 6

Follicle-stimulating hormone (FSH), in HPGL 
model, 269

Food Quality Protection Act (FQPA), and 
EDSP, 16

Formal AOPs (fAOPs), definition, 243
FSH, see Follicle-stimulating hormone (FSH)
Fundulus heteroclitus, see Atlantic killifish 

(Fundulus heteroclitus)

G
GABA, see γ-aminobutyric acid (GABA)
GABA(A) receptors

binding studies, 38
computational models, 325

γ-aminobutyric acid (GABA)
fish gonadotropin production, 320
in fish HPGL model, 325
pathway studies, 93

Gene co-expression networks (GCNs), and 
AOP development, 140–142

Gene expression
assay methods, 22
DEB modeling and, 292
in ecotoxicology, 78
epigenetic effects, 182, 222
genetic engineering and, 55
illustrative material, 90, 221
in metabolic pathways, 213

Gene knockdowns
genetic engineering and, 54
testing advantages, 78
use in AOP development, 54
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Gene knockouts
genetic engineering and, 54
testing advantages, 78
use in AOP development, 54

Gene ontology
illustrative material, 91
invertebrate models, 90, 91

General Unified Threshold model for Survival 
(GUTS), 288

GeneSpring software, for omics mapping, 194
Genetic engineering

AOP relationship validation, 199–200
CRISPR/Cas9 use, 201, 202
illustrative material, 200, 207
for in vivo and in vitro assays, 202–207
for KE cellular level effects, 32
knockdowns, knockouts and transgenics, 54
for organism level modeling, 270
tools used, 7
use considerations, 8

Genetic screens, for KE cellular activity, 209–210
Genetic variability, in AOP development, 53–54
Genome Sequencing Center (Washington 

University), 90
Genome-wide association studies (GWAS), 

uses, 182
Genomics

AOP applications, 54
comparative genomics and orthology, 78, 

86, 96, 97, 101
current challenges, 109
fish species, 54
human, 181–183, 186
overview, 181–183
recent advances and uses, 181 (see also 

Bioinformatics procedures)
Global Spin (Beder 2000), 393
Glutamatergic acid pathway, studies, 93
Glutamine synthetase (GS) receptors, binding 

studies, 38
GnRH, see Gonadotropin-releasing hormone 

(GnRH)
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in effluent exposure, 325
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transduction by, 36
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and DEB modeling, 293
epigenetic effects, 222
genetically engineered assays, 211
inhibition as AO, 140
regulatory AOs, 61
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Assessing Adverse Outcome Pathways 
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Guidelines for Carcinogen Risk Assessment 
(Environmental Protection Agency), 311
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for Survival (GUTS)
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AOPs in decision-making, 199
AOP-supported IATA, 365–369
DEB models, 287
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mode of action analysis, 109, 191, 192, 256
toxicology and, 111
weight of evidence methods (see (Weight 

of Evidence methods (WoE)))
Hazard identification, AOP relevance, 358
High-throughput screening (HTS)

cell-free assays, 36, 39
current developments, 79
EDSP use, 18, 26
genomic uses, 6
limitations, 18
metabolic network models, 293
ultra-high methods, 21

Histone modification
as epigenetic mechanism, 224
illustrative material, 223

Homologous recombination, AOP uses, 
201–202

Hormones
in fish embryo testing, 51
HPG(L) axis models, 273 (see also 

endocrine disruption)
HPG(L) axis models

fathead minnow, 273
fish computational model, 276
illustrative material, 17, 273, 274, 276, 

326, 334
neurotransmitters in, 336
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features, 250
Humane Society of the United States, and 

AOP development, 399
Human Genome Project, advances since, 181
Human gut microbiomes, and toxicity, 9
Human health

AOPs in risk assessment, 1, 5, 255
mode of action frameworks, 16
multi-and transgenerational epigenetic 

effects, 226
PBTK models for risk assessment, 295
toxicity pathways, 19

Human Toxicology Project, objectives, 4
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IATA, see Integrated Approaches to Testing 

and Assessment (IATA)
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Indexing method, WoE method, 307
Individual based models (IBMs), in prediction, 
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In silico assays

cell-free assay comparison, 36–38
and cross-species extrapolation, 122
limitations, 39

Integrated AOPs, for ecotoxicology, 237
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AOP use in, 361–369
illustrative material, 382
regulatory acceptance and uses, 381–383
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International Program on Chemical Safety 
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International Uniform Chemical Database 
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Invertebrate model species
AChE inhibition AOP, 86–87
advantages of, 77, 101
AOP development challenges, 76–77
cadmium and microcystis AOPs, 93
criteria and definitions, 82–83
ERA applications, 94–100
illustrative material, 88
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AOP linkages, 213
and cross-species extrapolation, 123
in EDSP screening, 16
genetic manipulation for, 202–207
illustrative material, 254
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