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Preface

In 2007, the National Research Council (NRC) released a document titled “Toxicity
Testing in the twenty-first Century: A Vision and a Strategy”, that called for a para-
digm shift in toxicology testing. The NRC report advocated for a testing platform to
be based on in vitro methods instead of whole animal testing, and that takes a path-
way approach by studying perturbations of biological systems and key toxicity
pathways. This approach would ideally use a combination of computational biology
and a comprehensive array of high-throughput in vitro tests, preferably with cells
and tissues. The adverse outcome pathway (AOP) framework was born out of this
NRC’s call for action. The concepts underlying the AOP framework are not neces-
sarily new. Risk assessors and researchers had already adopted mode-of-action
based approaches to determine mechanisms underlying adverse toxic effects, and
biologists and ecologists had espoused translating stress responses across levels of
biological organization for decades. However, what was new was the organizing
framework and structure, the common terminology and a convergence of new tools
(omics, computational, crowd-sourcing, global connectivity) that helped solidify
the framework and propel it forward. Now, almost a decade after its conception, we
have made great progress and the momentum is on the side of further development
and advances. Currently, there is a worldwide community of scientists that contrib-
ute to the online knowledgebase, and there are regularly scheduled workshops and
meetings that continue to move the science and framework forward, bringing in an
increasingly broader range of expertise. Those that work on AOPs are no longer just
biologists, but also include computer scientists, mathematicians, modelers, and
social scientists. The framework started as an approach to collect and organize bio-
logical information with the original purpose to determine how toxic chemicals can
perturb the biological pathways and affect apical endpoints relevant to individual
and population risk assessment. However, because the AOP framework is chemi-
cally agnostic, it can eventually be used to determine the impacts of any stressor,
and as such can potentially unite biologists that work at every level of biological
organization. The goal of this book was to explore the current state of the science
and regulatory aspects, but also to think a little outside the box and bring in authors
that could discuss areas of research that have not been addressed fully but would be
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viii Preface

required to move the AOP framework forward. While the title of this book implies
the use of systems biology approaches to advance the AOP framework, we also
wanted to include chapters focusing on novel technologies or approaches to advance
the understanding of potential molecular initiating events, key events or different
levels of biological organization. We asked authors to discuss topics such as epi-
genetics, omics, genetic engineering, cell free assays, life history and adaptation,
behavior and social acceptance. We also asked authors to discuss non-model spe-
cies, invertebrates, plants and the potential of the zebrafish embryo. We wanted to
describe novel quantitative and weight of evidence approaches that have the poten-
tial to overcome some barriers to prediction and we also wanted to reach scientists
that have not been very active in this field yet. We hope that by including these
topics and authors in this collection that this helps to advance the AOP framework
by connecting to a broader range of scientific expertise and by embracing new areas
of research.

Vicksburg, MS, USA Natalia Garcia-Reyero
East Lansing, MI, USA Cheryl A. Murphy
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Chapter 1
Advancing Adverse Outcome Pathways
for Risk Assessment

Natalia Garcia-Reyero and Cheryl A. Murphy

Abstract The Adverse Outcome Pathway (AOP) framework was first proposed by
Ankley and colleagues back in 2010 (Ankley et al. Environ Toxicol Chem 29:730-
741, 2010). AOPs organize information across biological levels of organization,
with common terminology and concepts and with the goal of informing human and
ecological risk assessment. Not only was the framework rapidly embraced, it also
spearheaded an unprecedented amount of research both nationally and internation-
ally dedicated to understanding, developing, and accepting AOPs. Although devel-
oping AOPs has made an impressive start, there are still areas of research that need
to be focused on. Many uncertainties remain in the use and acceptance of AOPs for
regulatory purposes and this book explores the advancement of AOPs for risk
assessment by focusing on different aspects of AOP development such as incorpo-
rating behavior, non-model species, invertebrates, plants, synthetic biology and epi-
genetics. Novel methods for developing predictive tools via quantitative methods
are explored, as well as social considerations of barriers to AOP acceptance.

1.1 Background

Risk assessment has long relied on mechanistic information for hazard prediction.
Some of the earlier endeavors include dose-response modeling efforts (Clewell
et al. 1995), and mode-of-action efforts such as the ones developed by the
International Program on Chemical Safety (IPCS) to determine modes-of-action of
pesticides and industrial chemicals of human relevance (Willett et al. 2014).
Conceivably, one of the first main efforts for pathway-based approaches is the
Mode of Action (MoA) framework for human health risk assessment. MoA is a
series of key events (KE) along a biological pathway from the initial chemical
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2 N. Garcia-Reyero and C.A. Murphy

interaction to the toxicological outcome, with KE being defined as measurable and
necessary precursors events to the adverse outcome (see Chap. 17 for more infor-
mation). The National Research Council further developed this concept by envi-
sioning a network of pathways leading to a predictive, hypothesis-driven toxicity
assessment (NRC 2007). This toxicity pathway was defined as a cellular response
pathway that, when sufficiently perturbed, is expected to result in adverse health
effects. More recently, this concept was further characterized for both human health
and ecological risk assessment as the adverse outcome pathway (AOP) (Ankley
et al. 2010). An AOP was defined as a conceptual construct that portrays existing
knowledge concerning the linkage between a direct molecular initiating event and
an adverse outcome that is relevant to risk assessment. AOPs are modular and com-
posed of reusable elements, key events (KEs) and key event relationships (KERS).
They are considered living documents that will evolve over time as new informa-
tion is available (Villeneuve et al. 2014). From the initial dose-response modeling
efforts to the MoA or AOP frameworks, it is clear that these pathway-based
approaches to understand and organize mechanistic information are the base of the
remarkable changes in the way risk assessment is performed (reviewed in (Willett
et al. 2014)). Delineating and understanding mechanisms and the physiological dif-
ferences between test species and target species, are the only path forward for
cross-species extrapolations, particularly for sensitive populations that are at risk of
extinction. Further, understanding mechanisms allows for the development of quan-
titative models to aid prediction, which in turn can be used to understand multiple
stressor scenarios.

1.2 AOQOP Development

Many challenges remain in the advancement of informative and predictive AOPs.
Particularly, there is a need to establish credible links between responses at the
molecular or cellular level and adverse outcomes measured at higher levels of bio-
logical organization. Therefore, computational tools and models that quantify KERs
within an AOP are of special interest and large efforts are being made to develop
them. There is also a need to understand how pathways differ by conditions and
states such as life stages, sex, exposure, and species. In this chapter, we explore
some of the main efforts being developed as well as some new potential areas of
interest to AOP development (see Fig. 1.1).

1.2.1 Alternative Methods and Non-model Species
Jor AOP Development

A very exciting aspect of AOPs is their potential to aid in the development of alter-
native methods and in vitro/in silico models that could lead to reducing and eventu-
ally eliminating animal testing (Garcia-Reyero 2015). Many ongoing international
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4 N. Garcia-Reyero and C.A. Murphy

efforts are focused on developing more predictive in vitro/in vivo methods to reduce
animal testing. For instance, the National Toxicology Program Interagency Center
for the Evaluation of Alternative Toxicological Methods (NICEATM) is an office
within the US National Institute of Environmental health Sciences (NIEHS) that
supports the development and evaluation of new, revised, and alternative methods to
identify potential hazards to human health and the environment, with a focus on
replacing, reducing, or refining animal use. Furthermore, the Interagency
Coordinating Committee on the Validation of Alterative Methods ICCVAM), a per-
manent committee of the NIEHS under NICEATM, is composed of representatives
from fifteen US Federal regulatory and research agencies that require, use, generate,
or disseminate toxicological and safety testing information. This committee also
maintains a page listing alternative testing methods accepted by US and interna-
tional regulatory authorities that can reduce animal use and improve animal welfare
(https://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/acceptance-of-alternative-
methods/index.html).

There are many other efforts focused on what is known as 3Rs (reduce, refine,
and replace) in research and regulation with the goal of guaranteeing that animal
welfare meets the highest standards and that the minimum use of animal studies are
performed. For instance, the Human Toxicology Project consortium (https://human-
toxicologyproject.org) is a group of stakeholders with the objective of accelerating
the implementation of a biological pathway-based approach to toxicology, which
will help develop better predictive tools and hasten the replacement of animal use in
toxicology. The American Society for Cellular and Computational Toxicology
(ASCCT) is a scientific society dedicated to the promotion of toxicology testing and
research that reduces and replaces the use of animals. The John Hopkins Center for
Alternatives to Animal Testing (CAAT) is part of the John Hopkins University and
promotes humane science by supporting the creation, development, validation and
use of alternatives to animals in research, product safety testing, and education.
They even have an official journal, ALTEX, dedicated to Alternatives to Animal
Experimentation, (http://altweb.jhsph.edu/altex/index.html). The PETA Interna-
tional Science Consortium http://www.piscltd.org.uk/) promotes non-animal
research methods and coordinates the scientific and regulatory expertise of its mem-
bers with the goal of replacing tests on animals.

These methods can help identify potential toxicity of chemicals or mixtures,
particularly when the molecular initiating events (MIE) or KEs leading to adverse
outcomes they measure have already been identified. Several efforts have been
made to link in vitro tests to AOPs. For instance, Vinken and Blaauboer developed
an in vitro basal cytotoxicity testing strategy for new chemicals that lack information
on potential toxicity. This approach was based on a newly proposed generic AOP
linking chemical insult to cell death (Vinken and Blaauboer 2017). The skin sensi-
tization AOP is another example where in vitro assays can provide an accurate pre-
diction of an adverse outcome. Three non-animal test methods addressing either the
MIE, KE2 or KE3 are accepted as OECD (Organisation for Economic Co-operation
and Development) test guidelines, therefore accelerating the development of inte-
grated approaches for testing and assessment (reviewed in (Ezendam et al. 2016)).
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Another example of high-throughput in vitro screening to detect MIEs and KEs
is the US EPA Endocrine Disruptor Screening Program (EDSP, see Chap. 2). The
EDSP is a regulatory program designed to screen and test chemicals for potential
endocrine bioactivity and the risk of endocrine disruption in humans and wildlife.
Other US federal programs such as the EPA’s Toxcast program (http://www2.epa.
gov/chemical-research/toxicity-forecasting) or the Tox21 collaboration (http:/
www.ncats.nih.gov/tox21) also use high throughput assays to screen thousands of
chemicals for hundreds of molecular targets as potential MIEs and KEs.

It is worth noting that the majority of these 3Rs efforts are focused on human
health-related AOPs. Nevertheless, there is increasing interest on efforts to develop
them for environmental-related AOPs. Chapter 3 explores the use of cell-free assays
as species agnostic, in vitro toxicity-testing tools of potential relevance to ecologi-
cal risk assessment. Similarly, Schroeder and colleagues advocate the use of high
throughput toxicity testing coupled with AOP knowledge for environmental moni-
toring and risk assessment (Schroeder et al. 2016). Arguably, the knowledge, tech-
niques and expertise acquired from the human health arena will be also applicable
to the development of environmental toxicology related AOPs.

1.2.1.1 Model and Non-model Species

Toxicity testing of chemicals is extremely costly in money, time, and animal lives.
This provides limitations to fully understand the hazard potential of many com-
pounds. While high throughput in vitro assays can rapidly provide accurate infor-
mation about the mechanisms of action or MIE of thousands of chemicals (Knudsen
etal. 2011; Kleinstreuer et al. 2014), they often fail to capture the potential adverse
effects at the organism level due to the lack of a complete system. The fish embryo,
and particularly the zebrafish (Danio rerio) embryo, has been proposed as a model
to address these limitations (reviewed in (Planchart 2016)). While fish embryo mod-
els are of interest because of their low maintenance and husbandry costs, they also
had reduced animal welfare concerns during the embryonic stages. The National
Institutes of Health Office of Laboratory Animal Welfare (NIH OLAW) considers
fish as live animals after hatching, which is now described to be at 72 h post fertil-
ization (hpf) for zebrafish. It also states that zebrafish larvae under 8 days of age do
not feel pain or distress. Nevertheless, new developments in the field are likely to
affect the standards and IACUC policies applied to zebrafish embryo research
(Moulder 2016; Bartlett and Silk 2016). (See Chap. 4 for more information on the
fish embryo for AOP development).

There is also increasing interest in using invertebrate model species for the devel-
opment of AOPs. Invertebrates provide many advantages over the use of vertebrate
species such as generally shorter life cycles that allows for faster chronic and full
cycle toxicity tests (see Chap. 5).

Current testing strategies for defining toxicity reference values in ecological risk
assessment rely on extensive animal testing with selected model species. Results are
then extrapolated to other species of interest. Nevertheless, this could lead to great
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uncertainty due to unknown species sensitivity differences. Toxicity pathway-based,
in vitro, in silico, and read-across approaches have been proposed to decrease uncer-
tainty in cross-species extrapolation for risk assessment or toxicity prediction on
non-model species (see Chap. 6).

1.2.2 Novel Approaches for AOP Development
1.2.2.1 Systems Approaches

There are many different approaches being used to advance AOPs. For instance,
omics technologies can provide mechanistic information on the effects of chemicals
and can therefore help elucidate mechanisms of toxicity (see Chap. 9). In recent
times, efforts have been focused on developing measurable linkages between KEs
in order to establish quantitative AOPs (qAOPs). Different systems and modeling
techniques are being considered and applied to develop measurable KERs such as
flux balance analysis, reverse toxicokinetic models, or physiologically-based mod-
els (see Chaps. 13 and 14). In particular, the linkages between qAOPs and dynamic
energy budgets (Chap. 14) could improve risk assessment by tapping into 30 years
of established metabolic theory and to constrain qAOPs within realistic energetic
demands of organismal function. Physiologically-based qAOPs that incorporate
cell-free assays can, in principle, be used to interpret the impact of multiple con-
taminants on ecologically-relevant endpoints such as egg production (Chap. 16).
Leonard and colleagues advocate the use of a tiered approach to incorporate AOPs
into risk assessment, both in poor and rich data scenarios, and explore the use of
systems approaches to develop AOPs (see Chap. 12). Systems approaches can also
lead to the development of computationally predicted AOPs (cpAOPs). These
cpAOPs can serve as scaffolds to accelerate the expert curation of AOPs and provide
guidance on testing strategies, such as identifying pathway targets that lack genomic
markers or high-throughput screening tests (Oki et al. 2016; Bell et al. 2016; Oki
and Edwards 2016).

Other efforts involving systems approaches include the use of machine learning
models to predict adverse outcomes from in vitro assays. Strickland and colleagues
combined data from in chemico and in vitro assays as well as physicochemical
properties and in silico read-across prediction of skin sensitization hazards into
groups. The groups were then evaluated using two machine learning approaches,
logistic regression and support vector machine. The models performed better at
prediction than any of the alternative methods alone or test batteries combining data
from the individual methods (Strickland et al. 2016). Models were also built to pre-
dict potency categories using four machine-learning approaches. A two-tiered strat-
egy modeling sensitizer/non-sensitizer responses and then classifying the sensitizers
as strong or weak provided the best performance (Zang et al. 2017). These results
suggest that computational models using non-animal methods may provide valuable
information to predict adverse outcomes.
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Computational models of biological systems at different scales can therefore
provide means and platforms to integrate biological understanding to facilitate
inference and extrapolation. Furthermore, the systematic organization of knowledge
into AOP frameworks can inform and direct design and development of predictive
models to enhance the use of mechanistic and in silico data for hazard assessment
(Wittwehr et al. 2016). In particular, models that can integrate suborganismal pro-
cesses to predict outcomes at higher levels of biological organization, such as popu-
lation or community level responses, are needed. Integration with dynamic energy
budgets and individual-based models is one such approach (Chap. 14) but there are
also many other ways to approach these problems. In order to advance the develop-
ment of qAOPs for ecological risk assessment Wittwehr and colleagues suggest
encouraging the engagement of the modeling community through crowd-sourcing
challenges. An example of a successful crowd-sourcing effort is the Dialogue on
Reverse Engineering Assessment and Methods (DREAM, (Stolovitzky et al. 2007)).
The DREAM challenge has revolutionized the use of systems biology approaches
and has pioneered the development of many of the algorithms that are now used.
Furthermore, the challenge not only brings researchers together to work towards a
common goal but also produces robust performance evaluation criteria (Wittwehr
et al. 2016). Thus, a similar approach could be used for the advancement of qAOPs.

1.2.2.2 Behavior

Behavioral assays are widely used in toxicology research and can be powerful indi-
cators of dysfunction because behavior integrates molecular, physiological, and
environmental stimuli. However, such assays are challenging to incorporate into the
AOP framework because of the difficulties in anchoring a behavioral change to
molecular response (Chap. 8) and then to inform human and ecological risk assess-
ments (Murphy et al. 2008). Recently, there has been a focus on understanding the
molecular processes involved in behavioral change (e.g., Raferty and Volz 2015; Jin
et al. 2016), but this area of research is in its infancy. Rather than assuming signifi-
cance to any behavioral perturbation, behavioral endpoints must be categorized and
validated as relevant for risk assessment for human or ecological health (Chap. 8),
because then mechanistic linkages to higher levels of biological organization are
possible.

1.2.2.3 Synthetic Biology and Genetic Engineering

The revolution in the field of synthetic biology and genetic modification has led to
developments and advancements hard to imagine just a few years ago (see Chap. 10).
Within the last 10 years, numerous tools have been developed for the genetic modi-
fication of many different species (Baltimore et al. 2015). These recent advance-
ments include a powerful gene-editing technology known as CRISPR that has been
described as the biggest game changer to hit biology since PCR (Ledford 2015).
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While these methods hold great promise in becoming standard techniques to under-
stand gene function in both model and non-model organisms, many are worried that
this fast developing field pace leaves little time for addressing the ethical and safety
issues that can raise from these types of experiments (Ledford 2015). For instance, a
recent study developed a gene drive system targeting female reproduction in the
malaria mosquito vector that could expedite the process to suppress mosquito popu-
lations to levels that do not support malaria transmission (Hammond et al. 2016).
These gene drive experiments that could manipulate wild populations should be con-
sidered and evaluated carefully in order to assess context-dependent risks (Champer
et al. 2016).

Genetic and synthetic biology approaches can also be used to elucidate MIEs,
including protein binding and function. For instance, using amino acid substitutions
can help understand specificity, and binding sites and could be useful for species
extrapolation. Targeted knockouts can help elucidate specific pathways and KEs,
and genetic devices can be used to elucidate both MIEs and KEs (see Chap. 10).

1.2.2.4 Epigenetics

The term epigenetics refers to both heritable processes independent of the DNA
sequences, and transcriptional regulatory processes that influence many cellular
properties (see Chap. 11). While it is now believed that an epigenetic change can be
either a molecular initiating event or a key event leading to adverse outcomes, epi-
genetic events have hardly been considered as part of an AOP. This is not only due
to the uncertainty related to how to incorporate them but also to the lack of under-
standing of the basic mechanisms underlying epigenetic regulation. Nevertheless,
the field is rapidly advancing and there is no doubt that epigenetics will be an impor-
tant part of heritable adverse effects understanding in the near future.

1.2.2.5 Metagenomics and the Microbiome

The term microbiome refers to the full collection of genes of all the microbes in a
community, even though it is often used to refer to the full collection of microbes in
such community, also known as microbiota. The importance of the microbiome has
been gaining recognition in the last years, even being described as the “last organ
under active research” (Baquero and Nombela 2012) or “microbial organ™ (Spor
et al. 2011). Many researchers now have shown the close relationship between the
microbiome, resistance, and susceptibility to stressors and diseases.

Claus and colleagues evaluated the relationship between (human) gut bacteria
and environmental pollutants in order to understand the relevance of the bacteria-
toxicant relationship for the host (Claus et al. 2016). Many factors can affect the
composition of the microbiome, including environmental and other stochastic fac-
tors as well as the host genetics (Spor et al. 2011; Claus et al. 2016). This is relevant
because the microbiome influences many critical roles in essential host processes,
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Fig. 1.2 Environmental chemicals and the gut microbiota can interact via multiple mechanisms.
(a) Environmental chemicals may be directly metabolized by the gut microbiota. (b) Xenobiotics
can be readily absorbed from the GI tract, then transported by the portal blood to the liver for
detoxification. The liver tends to oxidize xenobiotics, forming conjugates with glucuronic acid,
sulfate, or glutathione that can be excreted in the bile and enter the intestine where microbiota
metabolism can take place. The GI microbiota generally deconjugates and reduces the hepatic
xenobiotic metabolites, resulting in the formation of non-polar molecules of lower molecular
weight, which are readily reabsorbed. Microbiota-mediated deconjugation of metabolites previ-
ously conjugated by the liver may regenerate the original xenobiotic or form new toxic metabo-
lites. (¢) Environmental chemicals can interfere with the composition of microbiota. (d) Pollutants
can also change the metabolic activity of the microbiota (Adapted from Claus et al. (2016))

such as digestion, immunity, epithelial development, or disease outbreak in humans
and other vertebrates including fish (Nayak 2010; Giatsis et al. 2015). Human gut
microbiomes have the ability to metabolize chemicals and can be classified broadly
within five different core enzymatic families (azoreductases, nitroreductases,
B-glucuronidases, sulfatases and f-lyases) which are involved in the metabolism of
many environmental pollutants (Claus et al. 2016). It is clear that bacterial metabo-
lism of pollutants can affect their toxicity for the host. At the same time, pollutants
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can alter the composition of the microbiome, which could also contribute to their
toxicity (Fig. 1.2).

It is clear that the microbiome can play a role in the relative toxicity of a com-
pound and could be considered as a potential influence on KERs and even AOP
networks. While a better understanding of the microbiome influence on adverse
outcomes will need more intensive research, it should certainly be considered to
fully understand the toxicity of chemicals and/or their metabolites.

1.2.2.6 Genomics, Evolution and Adaptation

Ecotoxicology and the AOP framework are involved in understanding how chemi-
cals or stressors affect individuals, populations, and ecosystems. However, concerns
have often been raised by the scientific community about the oversimplification of
real ecological conditions (Calow and Forbes 2003; De Schamphelaere et al. 2011).
One of those oversimplifications relate to the fact that conventional AOPs are mostly
focused on understanding the adverse effects of a stressor on an individual/popula-
tion without taking into account genetic variability and adaptability, often using a
single genotype (De Schamphelaere et al. 2011). This increases robustness and pre-
dictability of the adverse outcomes but might fail in predicting effects on evolving
and adapting populations (Barata et al. 1998; Messiaen et al. 2010). Natural selec-
tion during stressor exposure might therefore be favoring more resistant genotypes
that could eventually lead to adapted populations, which could have significant
implications when assessing adverse effects.

Several studies illustrate the potential of populations to adapt to stressors. One of
the best-known examples involves the Elizabeth River system in southeastern
Virginia and its Atlantic killifish (Fundulus heteroclitus) populations. This aquatic
system is heavily contaminated with polycyclic aromatic hydrocarbons (PAHs).
While in some areas the populations were clearly impacted, some subpopulations
displayed a remarkable resistance to the PAHs toxic effects on embryonic
development (Di Giulio and Clark 2016). There is also evidence of an evolved toler-
ance to PAHs due to changes in enzymes related to oxidative phosphorylation
metabolism in killifish hepatocytes (Du et al. 2015), as well as genetic differentia-
tion at specific nucleotides in the aryl hydrocarbon receptors AHR1 and AHR2, and
specific AHR2 single nucleotide polymorphisms (SNPs) associated with a PCB-
resistant killifish population (Reitzel et al. 2014). Nacci and colleagues also pro-
vided genetic evidence for killifish adaptation to pollutants, therefore providing an
example of contemporary evolution driven by human-mediated selection on natural
populations (Nacci et al. 2016). Furthermore, a follow up study identified the
AhR-based signaling pathway as a target of selection for the killifish evolutionary
adaptation, also suggesting that killifish high nucleotide diversity has likely been
crucial for rapid adaptation (Reid et al. 2016).

While genetic variability and adaptation of populations might be extremely hard
to understand, quantify, and incorporate into the AOP framework, they certainly
warrant further study, particularly when the AOP framework is considered for
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environmental monitoring, or susceptible and vulnerable populations and species.
Mechanistic understanding underlying evolutionary theory, such as energetic trad-
eoffs may help formalize this endeavor (Groh et al. 2015). For example, the AOP
link to dynamic energy budgets theory may provide a way to incorporate life his-
tory traits into AOPs which may facilitate cross-species extrapolations (Chap. 14).

1.3 Current International Efforts and Challenges

International efforts are ongoing to further develop the AOP framework, including a
large project effort coordinated by the OECD known as the AOP knowledge base
(AOP-KB; http://aopkb.org) that provides a single point of access to several mod-
ules used for AOP development, exploration and description as well as AOP reposi-
tory (Fig. 1.3, Chap. 18). The AOP-KB is organized in a systematic, searchable, and
transparent manner according to an established set of guidelines and principles that

| , |
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Fig. 1.3 The AOP-KB is an international effort to aid in the development and acceptance of AOPs
and eventually AOP networks for both social acceptance and risk assessment
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facilitates evaluation of the suitability for various regulatory applications (Villeneuve
et al. 2014). The AOP Wiki (https://aopwiki.org/) is a collaborative international
effort and represents a central repository for AOPs. The AOP-Xplorer module is a
computational tool that enables the automated graphical representation of AOPs and
AOP networks among them. The Effectopedia module is a modeling platform
designed for collaborative development and utilization of AOPs. The Intermediate
Effects database will host chemical-related data derived from non-apical endpoint
methods and inform how individual compounds trigger MIEs and KEs.

The Society for the Advancement of AOPs (SAAOP) was created in 2014. The
purpose of SAAOP is to promote and advance scientific research that fosters the
development and use of adverse outcome pathways. The SAAOP maintains the
AOP-Wiki under the guidance of the OECD Expert Advisory Group on Molecular
Screening and Toxicogenomics (EAGMST).

In these times of social and political instability and overload of contradicting infor-
mation, it is important to ensure that novel approaches to risk assessment and policy-
making are transparent in order to avoid conflict and mistrust. AOPs are no exception,
particularly during the developmental stage when a clear quantitative correlation
between KE has not yet been established and assessment can be perceived as biased.
Elliot and colleagues (see Chap. 19) recommend that AOPs be employed in “win-
win” situations such as the assessment of alternative methods in order to improve
acceptance, while stressing the two principles that will allow the AOP framework to
move further with social consent: engagement and transparency. AOP development
exponential growth worldwide is overwhelming so it is important that standards,
quality controls, and strict peer-review processes are developed and met. As men-
tioned earlier, collaborative international efforts and transparency will be crucial for
the advancement of AOPs for risk assessment and for their social acceptance.

1.4 Conclusions and Future Considerations

Regardless of the many challenges, we believe that AOPs will continue revolution-
izing the (eco)toxicology and risk assessment world and will hopefully be key in the
development of novel, robust, and truly predictive alternative methods for animal
testing. AOPs unite biologists that work across all levels of biological organization
and because of a common framework and language, we expect AOPs to continue to
grow and evolve as more scientists and funding agencies adopt and adapt the AOP
framework. We hope that this book will inspire and promote discussion as well as
novel developments for the use of AOPs in risk assessment.
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Chapter 2
Use of High-Throughput and Computational
Approaches for Endocrine Pathway Screening

Patience Browne, Warren M. Casey, and David J. Dix

Abstract The Endocrine Disruptor Screening Program (EDSP) screens and tests
environmental chemicals for potential effects in the estrogen, androgen, and thyroid
hormone pathways, and is one of the only regulatory programs designed around a
mode of action framework. A variety of biological systems affect apical endpoints
used in regulatory risk assessments and without mechanistic data, endocrine disrup-
tion cannot be determined. When the EDSP was developed in 1998, computational
and high throughput approaches were intended to be part of the screening process,
however, methods at that time were limited in availability and performance.
Recently, the revolution in automated in vitro testing and computational toxicology
has generated excellent tools that can be used for endocrine screening. Toxicity
pathway and Adverse Outcome Pathway frameworks facilitate integrating diverse
data for screening chemicals for potential endocrine activity. In addition, pathway
frameworks can be used to evaluate performance of computational approaches as
alternatives for low throughput and animal-based assays. Similarly, pathway frame-
works may be used to evaluate the predictive performance of one or more computa-
tional models to predict downstream key events. Computational approaches such as
these may provide an alternative to the EDSP Tier 1 battery and used for weight of
evidence screening of a chemical’s potential endocrine activity.
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2.1 The Endocrine Disruptor Screening Program

The US EPA’s Endocrine Disruptor Screening Program (EDSP) is a regulatory pro-
gram designed to screen and test chemicals for potential endocrine bioactivity, and
the risk of endocrine disruption in humans and wildlife. The EDSP was established
in 1998 in response to amendments of the Food Quality Protection Act (FQPA) and
Federal Food, Drug and Cosmetic Act (FFDCA) compelling EPA screen chemicals
for potential estrogenic effects in humans (FQPA 1996; SDWA 1996). In response,
EPA convened the Endocrine Disruption Screening and Testing Advisory Committee
comprised of regulatory, industry, and academic experts to make recommendations
to the agency on development and implementation of an endocrine disruptor screen-
ing program. The committee recommended expanding the scope to include effects
of chemicals on the androgen and thyroid pathways in wildlife and humans, and to
do so employing a two-tiered screening and testing strategy (EDSTAC 1998). Tier
1 was developed to screen chemicals for their potential to interfere with estrogen,
androgen, and thyroid signaling pathways in both sexes of several vertebrate taxa.
The Tier 1 screening battery includes five in vitro assays that provide mechanistic
data and six short term, in vivo assays include bioassays measuring changes in
organ weights, as well as more complicated assays conducted in organisms with
functional neuroendocrine axes (Fig. 2.1). The resulting battery of 11 complemen-
tary assays, when considered collectively in a weight of evidence evaluation, was
expected to maximize sensitivity for identifying chemicals potential with endocrine
activity while reducing the limitations of individual assays. Tier 2 was developed to
characterize dose-response relationships and test for adverse effects of chemical
exposures. Also developed were four longer term, definitive Tier 2 assays that test
for endocrine disruption in mammals, fish, amphibians and birds, that include apical
endpoints necessary for risk assessment (Fig. 2.1).

Evaluating results from multiple screening and testing assays conducted at vari-
ous levels of biological organization can present a challenge for interpretation. In
order to rigorously screen chemicals in the EDSP Tier 1 data were conceptually
organized in “estrogenic”, “anti-estrogenic”, “androgenic”, “anti-androgenic”, and
“thyroid-active” endocrine pathways (EDSTAC 1998, US EPA 2011; Fig. 2.1). The
apical endpoints of Tier 2 testing assays used in the EDSP and risk assessment relate
to changes in growth, development and reproduction that are regulated by endocrine
and non-endocrine biological pathways. Linking upstream events and mechanistic
data from EDSP Tier 1 to adverse effects in Tier 2 requires confidence in the causal-
ity of an endocrine-specific mechanism. The EDSP screening and testing strategy
links mechanistic data to apical endpoints and is a unique regulatory program
designed around a toxicological mode of action framework (Fig. 2.2).

The biological and chemical domains of the EDSP are determined by the FQPA
and FFDCA statues under which the program was established. The EDSP is respon-
sible for evaluating potential endocrine effects of all pesticide active and inert ingre-
dients, and chemicals found in drinking water sources which conceivably could
include almost any chemicals in commerce (US EPA 2012). The universe of
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Fig. 2.1 The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) screening battery of 11
Tier 1 assays and definitive Tier 2 tests to identify dose-response relationships and adverse effects.
Screening and testing data are interpreted by endocrine pathway. Though overly simplistic because
whole-animal in vivo studies include multiple endpoints that measure effects at different levels of
biological organization, a generic AOP (top) can be overlaid on the Tier 1 screening and Tier 2
testing assays. E+ = estrogenic, E— = Anti-estrogenic, A+ = androgenic, A— = anti-androgenic,
HPG axis = hypothalamic pituitary gonadal axis, HPT axis = hypothalamic pituitary thyroid axis.
("EPA guidelines harmonized with OECD. EOGRT extended one generation reproductive toxicity,
MEOGRT Medaka extended one generation reproductive toxicity, LAGDA larval amphibian
growth and development assay, JOTT Japanese quail toxicity test)
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Fig. 2.2 The EPA EDSP Tier 1 and Tier 2 assays and endocrine screening and testing assays that
are part of the OECD Conceptual Framework with endpoints mapped to a generic Adverse
Outcome Pathway. MIE = Molecular Initiating Event. (MIE molecular initiating event, ER estro-
gen receptor, AR androgen receptor, ERTA estrogen receptor transactivation assay, FSTRA fish
short term reproduction assay, AMA amphibian metamorphosis assay, EOGRT extended one gen-
eration reproductive toxicity, MEOGRT Medaka extended one generation reproductive toxicity,
LAGDA larval amphibian growth and development assay)
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approximately 10,000 chemicals relevant to the EDSP includes both data-rich
chemicals subject to substantial in vivo testing prior to use (e.g., pesticide active
ingredients), and data-poor chemicals with limited data or use information (e.g.,
non-pesticide industrial chemicals). The first test orders for EDSP Tier 1 screening
on only 58 pesticide-active and 9 pesticide-inert ingredients were issued in 2009
(http://www?2.epa.gov/endocrine-disruption/overview-first-list-chemicals-tier-
1-screening-under-endocrine-disruptor). Manufacturers of eight active and seven
inert chemicals voluntarily opted out of the pesticide market, and data for the
remaining 52 ‘List 1 chemicals’ were submitted to EPA and weight of evidence
decisions were finalized in 2015 (http://www2.epa.gov/ingredients-used-pesticide-
products/endocrine-disruptor-screening-program-tier-1-assessments). A second list
of chemicals was identified in 2013, but test orders have yet to be issued by
EPA. Based on the current timeline, screening all the remaining chemicals in the
EDSP universe using the current EDSP Tier 1 battery would require decades.

In order to adequately screen and test chemicals for potential endocrine effects in
a timely manner, a more rapid approach needs to be adopted. When the EDSP was
initially conceived, in vitro high throughput screening (HTS) assays were proposed
as an initial step to provide mechanistic data and prioritize chemicals for further
in vivo screening. However, at the time, the availability and reliability of commer-
cially available assays were limited. In subsequent years, the technological revolu-
tion in biology has produced a number of reliable and readily available HTS tools
available for toxicity testing. US Federal programs such as the Tox21 collaboration
(http://www.ncats.nih.gov/tox21), and EPA’s ToxCast program (http://www2.epa.
gov/chemical-research/toxicity-forecasting) are now using HTS assays to screen
thousands of chemicals for hundreds of molecular targets, and ToxCast and Tox21
include many HTS assays relevant to estrogen, androgen, and thyroid pathways.
These HTS tools have obvious application to the EDSP program and can increase
the rate of chemical screening, identifying chemicals likely to pose the greatest risk
to wildlife and human health. Integrating high throughput and traditional animal-
based toxicology data could be difficult to interpret, but because the underlying
framework of the EDSP evaluates mechanistic and whole animal data and considers
effects across levels of biological organization ranging from molecule, cell, organ,
organ system, individual and population, inclusion of HTS data is a natural fit.

2.2 Toxicity Pathways and Adverse Outcome Pathways

Toxicity pathways, described in the National Resource Council report on Toxicity
testing in the twenty-first Century (NRC 2007), are cellular response pathways that
when sufficiently perturbed results in adverse health effects, but do not necessarily
include a molecular initiating event (MIE) or an adverse outcome. The Adverse
Outcome Pathway (AOP) framework was derived from the toxicity pathway con-
cept and is a framework for organizing biological and toxicological knowledge
(Ankley et al. 2010). There is substantial diversity in definitions of and components
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included in toxicity pathways (Whelan and Anderson 2013). Recent efforts have
attempted to avoid similar confusion by developing of precise vocabulary and defin-
ing criteria for evaluating candidate AOPs (Villeneuve et al. 2014a). AOPs begin
with a molecular initiating event and terminate with an adverse outcome, linked by
a series of biologically plausible and measurable intermediate key events at increas-
ingly complex levels of biological organization from cell to tissue, organ, and
organism or population. Relationships between levels of biological organization
may be causal, inferential, or putative and may be based on in vitro, in vivo or com-
putational data. Originally developed for ecotoxicology, population-level effects
were considered to be an adverse outcome (Ankley et al. 2010; Kramer et al. 2011).
As the framework has been adopted for human health assessment, adversity is gen-
erally considered a detrimental effect observed in an organism (Patlewicz et al.
2015). For the purposes of this discussion, a toxicity pathway may be considered a
part of a (putative) AOP (Fig. 2.3). While both toxicity pathways and AOPs repre-
sent a simplification of complex biological processes, they provide organizing
frameworks to link mechanistic information to data collected over different biologi-
cal scales and evaluate underlying biology knowledge (or gaps therein).

To support AOP development and foster collaboration and coordination among
an international community, an AOP Wiki was developed by the US EPA, US Army
Corps of Engineers, EU Joint Research Centre and other partners (https://aopkb.org/
aopwiki/index.php/Main_Page). In addition to its function as an open repository of
AQP information, this resource is also expected to promote collective participation
of a broader scientific and regulatory community in AOP development, evaluation,
exploration and application. Once an AOP is described, the supporting weight-of-
evidence and strength of predictive relationships between key events and adverse
outcomes can be evaluated using modified Bradford-Hill criteria to assess the
strength of experimental methods and biological relevance of the observed responses
(Becker et al. 2015; Vinken 2013; http://www.oecd.org/chemicalsafety/testing/
adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm).

Endocrine Screening and Testing

———— Key Events —| Adverse Outcome

(ellular g -
i ' |I'| ' ﬁ .

Adverse Outcome Pathway

Toxicity Pathway (part of AOP)

Fig. 2.3 A generic Adverse Outcome Pathway including a molecular initiating event (MIE), sev-
eral key events, and terminating in an adverse outcome which is at the level of the organism in
human health assessment and at the level of population for ecotoxicology. For the purposes of this
discussion, a Toxicity Pathway can be considered part of an AOP that may not include an adverse
outcome. EDSP Tier 1 screening includes potential molecular initiating events, but not adverse
outcomes. Similarly, EDSP Tier 2 testing assays provide organismal and population level apical
effects, but lack mechanistic data
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The AOP concept was intended to provide information on apical endpoints con-
sidered in risk assessment and regulatory decisions, although the initial develop-
ment of AOPs has focused on highly specific biological pathways, using the
framework primarily to identify gaps in biological pathways and generate research
hypotheses. A single MIE (e.g., ligand binding to the estrogen receptor) may be
associated with many separate AOPs, and similarly, an adverse outcome (e.g.,
reduced fecundity) may result from the perturbation in any one of several separate
pathways. Development of detailed individual AOPs may provide valuable insights
into underlying toxicological and physiological processes, but such fine scale con-
sideration of biological pathways is not generally applicable to regulatory science.
Alternatively, linking multiple AOPs in an AOP network that integrates several
MIEs leading to common key events and terminating in the same apical response
(Knapen et al. 2015; Villeneuve et al. 2014b) has clear utility as a framework for
organizing and identifying points of biological convergence common to more than
one MIE. For endocrine screening, portions of a multitude of putative AOPs are
assessed in the course of identifying bioactivity in relevant toxicity pathways.

2.3 Screening and Testing for Endocrine Bioactivity
and Potential Risk for Disruption

Toxicity pathway and AOP concepts are a natural fit in the EDSP evaluation of a
chemical’s potential endocrine effects. The AOP conceptual framework relies on
defined relationships between the MIE and downstream key events, relationships
that have been well established for the estrogen, androgen, and thyroid pathways
and inherent in the EDSP screening and testing approach. The EDSP screening
and testing integrates data collected at different levels of biological complexity
and was designed around a mode of action framework (EDSTAC 1998; US EPA
2011). Endocrine perturbation, if sufficiently strong, may impact apical endpoints,
but may be initially expressed as more subtle changes at cellular, organ, and
organismal levels. These subtle effects resulting from chemical exposure may be
overlooked in traditional acute and chronic toxicity studies if more fine-scale bio-
logical endpoints are not observed or apical responses may be incorrectly attrib-
uted to some other toxicity pathway in the absence of endocrine-specific
mechanistic data.

The EDSP screening and testing approach assumes underlying biological links
between endpoints measured in different assays and at different scales. While overly
simplistic because some in vivo EDSP assays measure cellular, organ, and organis-
mal endpoints, the putative biological relationships between endpoints in each
endocrine pathway can mapped to a generic AOP (Fig. 2.1). Tier | screening assays
represent a toxicity pathway rather than a complete AOP (Figs. 2.1 and 2.3). The
five in vitro screening assays are potential MIE or key events based on molecular or
cellular responses. Two of the six in vivo assays (Uterotrophic and Hershberger)
provide organ responses, and the four intact animal models (Male and Female
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Pubertal, Fish Short Term Reproduction Assay or FSTRA, and Amphibian
Metamorphosis Assay or AMA) provide data at the level of the organ system or
organism, but do not include endpoints considered adverse outcomes (Figs. 2.1 and
2.3). Tier 2 assays include apical endpoints that may be altered through a variety of
biological pathways such as impaired growth or reproduction, but do not include
information regarding a specific mechanistic of action (Figs. 2.1 and 2.3). Together,
Tier 1 and Tier 2 data can be integrated as a full AOP including both the molecular
initiating event and the adverse outcome (Figs. 2.1 and 2.3). Given the mode of
action framework inherent in the EDSP, inclusion of assays measuring different
levels of biological complexity and pathway-based organization for interpreting
data, the EDSP is excellent example of how application of AOP concepts can
strengthen science for regulatory decisions.

The EDSP is now incorporating HTS data in the endocrine screening and testing
framework (US EPA 2015; Browne et al. 2015). As mentioned previously, endo-
crine screening was always meant to include HTS data, and the recent availability
of hundreds of diverse HTS assays in programs such as ToxCast and Tox21 can
elucidate MIEs and the sequence of early key events for thousands of chemicals
structures. In addition to providing a framework for interpreting diverse biological
data, toxicity pathways or AOPs provide a context for incorporating additional data
(e.g., HTS) with Tier 1 screening battery and Tier 2 assay data in order to evaluate
the endocrine activity of environmental chemicals. Moreover, toxicity pathways or
AOPs can provide a context for comparing and evaluating the performance of alter-
native methods (e.g., HTS assays).

To increase available information and reduce the number of animals used to eval-
uate the safety of chemicals, there is widespread interest in using computational and
high throughput screening alternatives to traditional toxicological methods. When
initially proposed, Ankley et al. (2010) recognized adverse outcome pathways as
potential frameworks for integrating mechanistic data with conventional animal-
based studies and for building predictive models. The toxicity pathway or AOP
framework can be used to evaluate the performance of HTS alternatives to tradi-
tional, lower throughput in vitro assays that measure MIEs and key events, and can
also help characterize the ability of in vitro HTS methods to predict effects down-
stream in the pathway, including in vivo responses (Fig. 2.4).

Adoption of new scientific methods requires the new method to be appropriately
interrogated to establish the soundness of the data produced (i.e. validation). High
throughput and ultra-high throughput assays are usually conducted in the few, suit-
ably equipped laboratories capable of rapidly screening thousands of chemicals.
Traditional inter-laboratory validation studies may take years to complete and rely
on relatively few chemicals tested in multiple labs, and are both not appropriate for
high throughput methods and fail to exploit the advantages of HTS. In contrast,
implementing a performance-based approach allows for single lab validations by
examining the performance of high throughput methods against large sets of struc-
turally diverse reference chemicals that are active (or inactive) over a wide range of
potencies. For each molecular target, candidate reference chemicals can be identi-
fied from traditional toxicological methods and may be independent of the specific
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Fig. 2.4 A generic Adverse Outcome Pathway (AOP;) is shown (a) including a Molecular
Initiating Event (MIE) is indicated in purple, Key Events (KE) indicated in blue, and Adverse
Outcomes (AO) indicated in green. The pathway framework may be used to develop alternative
methods and determine predictive performance. A Toxicity Pathway (b) may be part of an AOP
and be used as an organizing frame work to determine how well predictive models predict down-
stream key events. Several models (¢) may be combined to predict more complex biological out-
comes and ultimately may predict the adverse outcome

assay method used to identify the chemical activity. For example, chemicals that are
active and inactive in estrogen receptor (ER) signaling may be identified from ER
binding, ER transactivation, cell proliferation, or ER cofactor recruitment assays.
Reference chemicals active in more than one type of assay reduces inclusion of
chemicals with erroneous activities due to their interaction with a particular assay
technology (e.g., chemophores, cytotoxic chemicals, etc.). Extending this logic, ref-
erence chemicals identified using this approach are likely to be active across mul-
tiple levels of a toxicity pathway. A case study using the estrogen receptor agonist
toxicity pathway is given below.

2.3.1 Estrogen Receptor Model

The EDSP is including HTS assay results to identify estrogen receptor agonist
activity and provide mechanistic data for inclusion in an AOP/toxicity pathway con-
text (US EPA 2015; Browne et al. 2015). Eighteen HTS assays that measure multi-
ple points in the ER signaling pathway using a variety of technologies include high
throughput analogues of Tier 1 in vitro ER assays (e.g., ER binding and ER transac-
tivation assays). Concentration-response data from these 18 ER assays were inte-
grated into an ER model, the output of which provides a model score of the potential
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agonist and antagonist activity, chemical potency, and a measure of assay-specific
false positive activity of each chemical run in ToxCast (Judson et al. 2015). The
redundancy of the 18 assays and inclusion of a variety of assays technologies repre-
sents a substantial benefit compare to the low throughput, animal-dependent Tier 1
EDSP in vitro assays.

The performance of the ER model was evaluated against a relatively large set of
structurally diverse reference chemicals. In vitro ER reference chemicals were iden-
tified by the Interagency Coordinating Committee on the Validation of Alternative
Test Methods (ICCVAM; http://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/test-
method-evaluations/endocrine-disruptors/in-vitro-assay-review/brd/index.html)
and OECD (2012) for the express purpose of validating novel in vitro assays. Forty
ER agonist reference chemicals with reproducible in vitro assay results included 28
agonists of differing potencies indicated by a range in ACs, (Activity Concentration
at 50% of maximum)and 12 inactive chemicals (Judson et al. 2015). The consensus
list of reference chemicals were positive or negative in multiple assay types and for
this reason, the results obtained were likely biologically relevant rather than arti-
facts of a single assay technology. The ER model predicted the activity of in vitro
reference chemicals with an overall accuracy of 93% and a false negative rate of 7%
(Browne et al. 2015).

In addition to evaluating the ER model as a one-for-one data alternative to the
low throughput ER binding and ER transactivation in vitro assays in the existing
EDSP Tier 1 battery, the ER model performance was evaluated against the results of
the rodent Uterotrophic bioassay measuring in vivo ER activation driving changes
in rodent uterine weight. A systematic review of Uterotrophic studies published in
scientific journals was undertaken to identify studies that were methodologically
consistent with the EDSP Tier 1 guideline (Kleinsteuer et al. 2015). “Guideline-
like” studies were identified for 103 chemicals and study details including chemical,
dosing, and uterine weight were extracted into a database (Kleinsteuer et al. 2015;
http://ntp.niehs.nih.gov/pubhealth/evalatm/tox21-support/endocrine-disruptors/
edhts.html). Of the 103 chemicals with guideline-like Uterotrophic studies, 43
chemicals had consistent ER agonist activities which was indicated by change in
uterine weight (or lack thereof) in two or more independent guideline-like studies
and were considered in vivo reference chemicals (Kleinsteuer et al. 2015). The
in vivo reference chemicals were then used to evaluate the ER model predictions of
the in vivo response. Again, the ER model performance was excellent against in vivo
reference chemicals with an accuracy of 86% with a false negative rate of 3%
(Browne et al. 2015).

Based on the performance of the ER model against the 40 in vitro reference
chemicals and 43 of in vivo ER agonist reference chemicals (65 unique chemicals),
EPA published a Federal Register Notice stating the intention of the agency to
accept computational tools and predictive models as alternative data for the current
EDSP Tier 1 ER binding, ERTA, and rodent uterotrophic screening assays (US
EPA 2015). The performance-based validation approach used to evaluate the ER
model predictions against both in vitro and in vivo assays relies on presumptive
relationships between the MIE (i.e. ER binding), and changes at the level of the
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protein, cell, and organ (i.e. change in uterine weight) consistent with the organiza-
tion and interpretation of the EDSP Tier | screening battery data. Computational
methods can be examined as one-to-one alternatives for the current low throughput
EDSP Tier 1 in vitro analogs, but as in the case of the ER model, when evaluated
in the context of an AOP/toxicity pathway framework, the alternative method accu-
rately predicts downstream key events in the estrogen agonist pathway (e.g.,
Fig. 2.4b).

2.3.2 Pathway Frameworks for Evaluating Computational
Methods for EDSP Tier 1 Assays

Currently, the EDSP Tier 1 battery includes low throughput in vitro assays for
androgen receptor (AR) binding, aromatase inhibition, and alteration of steroido-
genesis (Fig. 2.1). The ToxCast and Tox21 programs incorporate HTS alternatives
for these assays, and similarly to the ER model, the biological signaling pathway is
more extensively covered by multiple HTS assays that rely on different assay tech-
nologies. The EPA intends to adopt a similar pathway-based approach for validating
the one-to-one HTS alternatives for existing low throughput EDSP Tier 1 in vitro
assays, and to use an AOP organizing framework to investigate the performance of
the HTS assays and computational models to predict downstream in vivo endpoints,
following the endocrine pathway approach for interpreting data outlined in the
weight of evidence guidance (US EPA 2012). Though performance-based valida-
tion requires identifying a large, robust set of reference chemicals for each key event
in the AOP currently included in the EDSP screening battery, the need to generate
novel in vivo animal data for these purposes may be reduced by leveraging data in
the scientific literature following the example of Kleinsteuer et al. (2015), and can
further be used to populate endocrine AOPs.

In addition to examining computational alternatives for existing endpoints in
the Tier 1 screening battery, the ToxCast and Tox21 programs, along with other
emerging toxicological methods, provide mechanistic data that are not included in
current EDSP screening. For example, several in vitro assays for potential thyroid
hormone pathway MIEs are now available (https://www.ncbi.nlm.nih.gov/
pcassay ?term=thyroid). In addition to HTS assays for thyroid hormone receptor
interactions, which are not expected to be a common mechanism of action for thy-
roid active environmental chemicals, other MIEs such as thyroid peroxidase (TPO)
inhibition (Paul-Friedman et al. 2016), thyroid releasing hormone receptor bind-
ing, thyroid stimulating hormone receptor, and alteration of the sodium/iodide
symporter (NIS; Lacotte et al. 2013) are now available. These and other in vitro
assays that provide mechanistic information helpful for interpreting the endocrine
toxicity of environmental chemicals were not initially available for inclusion in
EDSP screening but can be easily incorporated into a weight of evidence evalua-
tion using an AOP or toxicity pathway framework.
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Fig. 2.5 A generic Network Adverse Outcome Pathway (AOP;) is shown (a) including several
Molecular Initiating Events (MIE) indicated in purple, Key Events (KE) indicated in blue, and an
Adverse Outcomes (AO) indicated in green. The AOP network may be used to develop alternative
methods for a weight of evidence to determine a chemical’s potential for endocrine bioactivity (b)
and may be considered in lieu of EDSP Tier 1 screening data

Initial attempts to include alternative toxicological approaches in the EDSP
have been limited to examining the performance of new technologies to predict
an MIE and early key events immediately downstream from the MIE (Fig. 2.4b).
Evaluations to date have been limited to the organ weight changes and have not
included whole-animal responses. Alternative methods are not likely to replace
in vivo methods on a like-for-like basis. For most chemicals, predicting whole-
animal responses measured in organisms with intact neuroendocrine axes (e.g.,
pubertal, fish, and amphibian assays) will be more complex and may require
integration of several predictive models (Fig. 2.4c), multiple MIEs or Key Events
(Fig. 2.5), and multiple endocrine pathways (Fig. 2.6). Predictive models may be
validated separately using the appropriate endocrine toxicity pathway, and then
models can be integrated to predict complicated biological responses (Fig. 2.6).
AOP concepts can continue to provide a valuable framework for organizing data
and interpreting the biological basis for integrated approaches to testing and
assessment used for making regulatory decisions, or identify additional data
needs (Burden et al. 2015, Allen et al. 2014; Patlewicz et al. 2015; Fig. 2.6).
Ultimately, in vitro tests may be implemented into integrated testing strategies
and provide alternatives to conventional in vivo endocrine toxicity testing
(Vinken 2013).
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Fig. 2.6 EDSP Tier 1 screening battery assays and Tier 2 testing assays and the high throughput
screening (HTS) assays and predictive model alternatives. In the case of whole-animal in vivo
assays (e.g., Female Rat Pubertal assay), several predictive models may be needed to predict the
outcome in an integrated approach to testing and assessment (IATA). ER estrogen receptor, AR
androgen receptor, STR steroidogenesis, THY thyroid

2.3.3 Pathway Frameworks for Evaluating Computational
Methods for Weight of Evidence Determinations
of Endocrine Activity

Interpretation of the potential endocrine activity of a chemical screened in the EDSP
Tier 1 battery is made by a weight of evidence determination, and a pathway-based
interpretation of Tier 1 screening battery results (Fig. 2.1). Because the more com-
plicated, whole-animal assays contain more than one endpoint measured at different
biological levels, mapping all Tier 1 endpoints in each endocrine pathway to a toxic-
ity pathway or AOP may improve the interpretation of Tier 1 battery results and add
to the underlying biological plausibility. The weight of evidence guidance describes
key lines of inquiry including agreement of outcomes within an individual assay
(i.e. “complementarity”) and among the different assays in the battery (i.e. “redun-
dancy”). Using the AOP/toxicity pathway framework to organize and evaluate
EDSP data, the consideration of redundancy in cellular and organ responses mea-
sured by different assays becomes easier to identify. Ultimately, predictive models
developed and integrated as alternatives for individual Tier 1 assays may be used,
alone or in combinations, as alternatives to the current screening data required for
the EDSP Tier 1 weight of evidence decisions on a chemicals potential endocrine
activity. Further, consideration of any other relevant scientific data can also be inte-
grated in pathway frameworks, and in combination with predictive models, may be
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adequate to determine if a chemical is a candidate for further testing and which tests
are appropriate.

Currently, pathway concepts are being used as an organizational framework for
validating alternative methods and integrating data for Tier 1 endocrine screening,
and as mentioned previously, Tier 1 assays do not include apical endpoints required
for risk assessment. Individual and population level responses that define adverse
outcomes for human health and ecotoxicology, respectively, are captured in the
longer, animal-intensive EDSP Tier 2 tests. As AOPs continue to be developed,
populated, and validated, the hope is that eventually, quantitative AOPs may be used
to model organism or population responses from upstream events in lieu of Tier 2
tests currently needed for risk assessment (Groh et al. 2015), but may take years to
develop and validate. Alternatively, working backward from an adverse outcome to
identify an upstream, measurable key event in an AOP or a point of convergence of
several AOPs may be interpreted as a qualitative biomarker or “tipping point”
toward the adverse outcome and may replace the need to demonstrate adversity in
whole-animal models. Identifying tipping points will also help to distinguish early
key events in an endocrine AOP that may be adaptive from later responses indicat-
ing loss of homeostatic function. Endocrine responses, by their nature, are variable
and compensate for a variety of physical and biological stressors. Apical effects due
to endocrine toxicity are likely to be general (e.g., altered development, reproduction)
and difficult to attribute to a specific pathway without underlying AOP relationships
anchoring the outcome to an endocrine-specific MIE. As AOP development and
application continues to expand, eventually in silico and in in vitro approaches that
target key events (KEs) along well defined pathways may provide sufficient infor-
mation for hazard identification and risk assessments with little to no in vivo testing
(e.g., MacKay et al. 2013).

The range of regulatory applications possible for a particular AOP is defined by
its completeness or maturation status. While incomplete AOPs can be used in first
tier screening, such as formation of chemical categories, advanced quantitative
AOPs with high level of certainty can be applied in full risk assessment. Thus, AOPs
provide a foundation for the design of informed approaches to testing and assess-
ment that can strategically deploy screening level analyses to effectively focus test-
ing resources and progressively employ more resource-intensive assays aimed at
reducing the uncertainty as required by risk assessment (Tollefsen et al. 2014).

A broader use of the AOP concept in endocrine screening and testing holds the
potential to improve the understanding and prediction of endocrine disruption
because development of respective AOPs would help to organize and evaluate exist-
ing and new knowledge. This would allow researchers to assess confidence in the
predictive relationships, as well as to identify data gaps to guide further research.
Elucidation of links between bioactivity and adverse effects in individuals or popu-
lations would provide the basis for a broader and more meaningful inclusion of
endocrine activity data into risk assessment frameworks. Importantly, improved
mechanistic understanding would facilitate the development of alternative tests, as
well as aid extrapolation across species by promoting the reciprocal use of toxicity
information generated in different species (Madden et al. 2014), and focus the test-
ing on key targets associated with a particular AOP or AOP network.
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Chapter 3
Cell-Free Assays in Environmental Toxicology

Adeline Arini, Krittika Mittal, and Niladri Basu

Abstract Predictive toxicology requires in vitro tests that can help prioritize,
screen, and evaluate a large number of chemicals (i.e., thousands) in a relatively
short period of time (days to weeks). Cell-free assays represent a relatively simple
in vitro tool that can characterize the interaction between test chemicals and bio-
chemical targets, and are increasingly being used to study a range of fish and wild-
life, and also screen single chemicals as well as complex mixtures of environmental
samples. The purpose of this chapter is to describe cell-free assays, and propose
them as a species agnostic, in vitro toxicity-testing tool of potential relevance to
ecological risk assessment. In doing so, the chapter aims to show that cell-free tests
are an attractive tool that can be used in predictive ecotoxicology especially consid-
ering the limited availability of test organisms (particularly species that are at-risk,
difficult to maintain in captivity, etc.), lack of proven cell-based tools (e.g., cell
cultures and cell lines), societal concerns over animal testing, sheer number of eco-
logical species to study, and vast inter-species differences.

3.1 Context

Thousands of chemicals need to be evaluated for regulatory purposes. For example,
large endeavours such as the European Union’s Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) program, the U.S. EPA
ToxCast program, and the Chemicals Management Plan (CMP) in Canada were
implemented in recent years to address legislative obligations and take action on
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chemicals believed to be harmful. However, these regulatory programs face major
hurdles. Foremost, the number of chemical substances for which toxicity data are
required is tremendous and backlogged (e.g., 85,000 on U.S. Toxic Substances
Contract Act inventory; 23,000 under Canada’s Domestic Substances List; 107,000
chemicals in EU manufactured within or imported into region in quantities exceed
1000 tons). This number continues to grow, and is substantially higher when consid-
ering the complex environmental samples (e.g., effluents) that need testing.

Historically, testing chemicals has relied on in vivo studies that use whole ani-
mals. In many respects, in vivo toxicity testing responds to the concept of “one
problem, one test” (Hartung 2009), which implies that a single animal study is con-
ducted to relate the effects of a single chemical with a single adverse outcome. A
major consequence of this is that only few classes of contaminants have been sub-
jected to intensive testing. There remains thousands of chemicals (including mix-
tures) for which few or no test data are available (Judson et al. 2009). In addition,
these types of studies yield findings that are largely descriptive, and the work is time
consuming and prohibitively costly. For example, the U.S. EPA estimates that tradi-
tional testing of a single chemical may take 4 years. and cost $1-20 M USD (Martin
etal. 2012). The EU REACH program realistic case scenario calculates the need for
54 million vertebrate animals and $13.6B USD to achieve registration goals (Rovida
and Hartung 2009). These realities represent major barriers to fulfilling legal obliga-
tions to manage chemicals.

The aforementioned limitations have been recognized by the U.S. National
Research Council (NRC) in their document entitled “Toxicity Testing in the 21st
Century: A Vision and a Strategy” (NRC 2007). The main outcome of this NRC
document was the recommendation of a new, predictive strategy as the cornerstone
of 21st century toxicity testing. This predictive strategy is based on understanding
and applying in vitro toxicity assays which predict cellular level effects that can
next be extrapolated to effects on individuals. It de-emphasizes the need to base
assessments on animal tests, thus promoting the 3-Rs principle for humane animal
research that was developed over 50 years ago (Russell et al. 1959). This new strat-
egy harnesses recent advancements in the fields of cellular and molecular biology,
toxicology, and computational biology among others. For example, advances in
measurement technologies and fundamental toxicological understanding at the
molecular level (i.e., transcriptomics, proteomics, metabolomics) have increased
the amount and types of information available and potentially useful to risk asses-
sors (Ankley et al. 2010). These are now contributing towards the development of
New Approach Methodologies (NAMs) as discussed in a recent workshop by the
European Chemicals Agency (ECHA 2016).

A major conclusion of the NRC report was the expansion and utilization of in
vitro tools in chemical risk assessment. In particular, the report articulated a need to
establish in vitro tests that can prioritize, screen and evaluate a large number of
chemicals (i.e., thousands) in a relatively short period of time (days to weeks).
Regarding in vitro tests that span a multitude of molecular, biochemical and physi-
ological systems, the expectation is that advanced computational and bioinformat-
ics platforms could integrate the complex data streams and predict whole organismal
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impacts. Such a plan lies at the heart of predictive toxicology. This is the basis of an
ambitious program launched by the U.S. Environmental Protection Agency in 2007
called Toxicity Forecaster (ToxCast™) (Judson et al. 2010). As detailed elsewhere
(Dix et al. 2007), ToxCast is comprised of several in vitro, automated chemical
screening technologies that provide a cost-effective and rapid approach to screen for
changes in biological activity in response to chemical exposure. The program has
nearly 1000 high-throughput and automated assays in its repertoire that cover
approximately 300 signalling pathways. The program has screened thousands of
chemicals including 300 well-studied chemicals that have undergone extensive ani-
mal testing (Phase 1, Proof of Concept; (Judson et al. 2010; Martin et al. 2011;
Sipes et al. 2011; Kavlock et al. 2012; Padilla et al. 2012)), >2000 chemicals from
a broad range of sources including consumer products, green chemicals, and food
additives (Phase 2, (Rotroff et al. 2013; Sipes et al. 2013)), and ~800 chemicals that
are known or suspected endocrine disruptors (E1K library; Karmaus et al. 2016). In
a recent paper, ToxCast scientists screened 10,000 chemicals (15 concentrations of
each chemical in 3 independent experiments) through 30 different cell-based assays
(Huang et al. 2016), and components of the testing platform are hailed to be able to
screen 10,000 chemicals within a week (Attene-Ramos et al. 2013). Performing the
same work in animals would have taken years and millions of dollars. Clearly the
cost/performance ratio makes these attractive as tools to screen, prioritize and eval-
uate a large number of chemicals, and thus meet regulatory obligations as well as
help satisfy societal concern.

The development of NAMS, particularly new in vitro tools for testing chemicals
such as those referred to above has near-exclusively been focused on human health
applications. Unfortunately they are of limited use in the ecological sciences in
which many more species (and their complex interactions) are under scrutiny. Very
few in vitro toxicity testing tools exist for the most standard ecotoxicological test
species, and there is almost nothing for native species of ecological relevance. This
is problematic since the extrapolation of results across species (i.e., from standard
test species to native species of ecological relevance) introduces tremendous uncer-
tainty, as does extrapolation from controlled laboratory tests to real-world environ-
ments (Villeneuve and Garcia-Reyero 2011). For example, native bird species can
be more sensitive or respond differently to chemicals than the standard lab model
(Head et al. 2008). These types of differences complicate decision-making and
often necessitate additional testing.

There is a clear need to accelerate the development and application of novel in
vitro toxicity testing tools for the purposes of ecological risk assessment, and this
has been recognized by leading scholars in the field (Villeneuve and Garcia-Reyero
2011). As such, the purpose of this chapter is to describe cell-free assays, and pro-
pose them as a species agnostic, in vitro toxicity-testing tool of potential relevance
to ecological risk assessment. The chapter describes cell-free tests and how they are
conducted, and also provides examples from the literature. In doing so, the chapter
aims to show that cell-free tests are an attractive tool that can be used in predictive
ecotoxicology especially considering the limited availability of test organisms (par-
ticularly species that are at-risk, difficult to maintain in captivity, etc.), lack of
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proven cell-based tools (e.g., cell cultures and cell lines), societal concerns over
animal testing, sheer number of ecological species to study, and vast inter-species
differences.

3.2 Description of Cell-Free Assays

Cell-free assays are simplified in vitro platforms that can help evaluate the effects of
a test chemical on a biochemical process. A number of other in vitro approaches are
also employed in toxicology such as primary cell cultures and immortalized cell
lines. These have the advantages of better retaining in vivo tissue-specific character-
istics and cell line longevity thus in some cases facilitating the study of functional
pathways (Bhogal et al. 2005) (Fig. 3.1). However, over time they tend to lose in
vivo properties and cell lines are available only for a select number of species suited
for laboratory studies. In comparison, while cell free platforms, typically performed
in tissue homogenates, cell lysates or on purified molecules, might represent an
over-simplified approach, with careful design consideration, the assays can provide
complementary and useful mechanistic information on the nature of biochemical
interactions (e.g., does the chemical act as an agonist or antagonist of a target
receptor).

Here we briefly describe the steps involved in running a common cell-free assay,
and focus on radioligand binding to a neurochemical receptor (Fig. 3.2). While
assays may be permitted on other organ systems, we focus on the nervous system
and draw upon examples based on previous work by our group (Basu et al. 2009;
Rutkiewicz et al. 2011; Arini et al. 2016). Briefly, for receptor binding assays, cel-
lular membranes are isolated by homogenizing cerebral tissues in a 1:10 solution of

Animal-based
assays

Cell-based assays Cell-free assays

Whole organism Living and functional cells Purified proteins
Nucleic acids
Cell lysates

\

Mechanistic Functional Mechanistic Functional Mechanistic Functional
interaction interaction interaction interaction interaction interaction

Entry barrier Absorption Cell permeability Catabolism DNA binding Gene expression
Distribution Signal transduction Receptor binding Proteomics
Metabolism Gene expression Protein oxidation Enzyme activity
Clearance Proteomics
Excretion Enzyme activity

Target localisation

Fig. 3.1 Schematic presentation of the main differences among animal-based, cell-based and cell-
free studies (Adapted from Englebienne (2005))
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Fig. 3.2 Schematic representation of cell-free receptor binding assays, in presence or absence of
a test chemical

buffer and then centrifuging the homogenate to isolate pellets, which are then
washed and re-suspended frozen until use. When needed, the cellular membranes
preparations are thawed and diluted to an optimal concentration, and then added to
microplates that contain a glass filter bottom. The membranes are incubated with
radioligands specific for the target of interest. The incubation conditions vary
dependent upon the particular assay (e.g., length of incubation, temperature, buffers
and assay cofactors). Following an incubation period, vacuum is applied to the well
thus filtering the bound radioactive ligand (i.e., the receptor-ligand complex is
trapped on the filter) from the unbound ligand that passes through the filter. The
radioactivity retained by the filter provides an index of binding. Specific binding to
receptors is defined as the difference in radioligand bound in the presence and
absence of excess amounts of an unlabelled displacer. These assays can next be run
in the presence of a test chemical to determine if that substance impairs ligand-
receptor interactions. A range of biochemical parameters can be investigated, such
as ligand affinity and saturation kinetics, and the inhibitory (or potentiating) effects
of a test chemical on such parameters can be quantified.

A great advantage of cell-free assays is that they are amenable for use from any
species from which tissue can be obtained. This is especially useful for ecological
species that are difficult to maintain under laboratory conditions or for which there
exists limited data. As an example, one gram of brain tissue can yield enough
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cell-free extract to populate ~5000 wells in standard microplates (~50 plates), which
can then be used to study hundreds of test chemicals. Cell-free assays can be per-
formed on field-collected specimens, with many assays being relatively unaffected
by post-mortem delays and storage conditions. For example, several components of
the cholinergic, dopaminergic, GABAergic and glutamate pathways were found to
be stable for several weeks under various storage and temperature conditions
(Stamler et al. 2005) and not affected by post-mortem delays of up to 3672 h
(Piggott et al. 1992; Rutkiewicz and Basu 2012).

3.3 Applications of Cell-Free Assays

Cell-free assays have been used in a number of biomedical applications and here we
provide select examples. Cell-free assays have been used to study signal transduc-
tion via G-protein coupled receptors (GPCRs), the commercial interest of which
lies in areas such as drug targeting, high-throughput screening systems and biosen-
sors (Leifert et al. 2005). A unique approach where synthetic biology intersects with
toxicology has been in the development of cell-free protein synthesis (CFPS) plat-
forms (Schmidt and Pei 2011). In these systems, proteins of interest are synthesized
under controlled conditions in which they can be actively monitored and rapidly
sampled (Schmidt and Pei 2011). First developed with E.coli extracts, known as
S30 extracts, a current example is Cytomim which is an E.coli cell-free platform
can be used to produce protein therapeutics, toxins and other biochemicals that are
difficult to make in vivo because of their toxicity or complexity (DeVries and Zubay
1967; Schmidt and Pei 2011). A final example are purified enzymatic systems from
fungi and bacteria that have been used to determine catabolism and biodegradation
of fluorinated aromatic compounds and provide information on their fate in the
environment using nuclear magnetic resonance (Murphy 2007). Together, these
examples showcase the breadth and versatility of cell-free platforms. Given the
chapter’s objective we restrict the following sections towards the application of
cell-free tests towards the toxicological testing of chemicals, particularly for eco-
logical risk assessment. For more information on synthetic biology approaches see
Chap. 19.

Arguably the most concerted effort to use cell-free assays has been through by
the US EPA’s ToxCast program that was briefly introduced earlier. The cell-free
methods in ToxCast have been performed using Novascreen from Caliper
Biosciences (Judson et al. 2010; Knudsen et al. 2011). Chemicals were evaluated in
approximately 300 signalling cell-free pathways: 77 G-protein coupled receptor
(GPCR) binding assays; 32 CYP-450-related enzyme activity assays; enzymatic
assays for 72 kinases, 22 phosphatases, 15 proteases, 6 histone deactylases (HDACs),
3 cholinesterases, and 14 other enzyme activities; 18 nuclear receptor binding
assays; 20 ion channel and ligand-gated ion channel activities; and 9 transporter
proteins, 2 mitochondrial pore proteins, and 2 other receptor types (Kavlock et al.
2012). First, a single concentration of test chemical was run through the assays.
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Second, a concentration-response assay was conducted for all active and some
selected inactive calls. Data from these assays are available online via the ToxCast
Database. Toxicity signatures from ToxCast are defined and evaluated by how well
these in vitro signals predict adverse outcomes in toxicity pathways relevant to
human health. It is hoped that molecular initiating events, as realized via in vitro
results, may be predictive of apical outcomes relevant to the whole organism. Some
ToxCast studies have paid specific attention to making such in vivo and in vitro
comparisons. For example, Knudsen et al. (2011) ran 292 high-throughput cell-free
assays to evaluate 320 environmental chemicals. In vitro data from acetylcholines-
terase assays were compared to in vivo data available in the literature for rats and
humans. A qualitative association between in vitro and in vivo activity was evident
for 16 of 17 (94%) chemicals studied and so the authors concluded that, to a reliable
extent, in vitro generally predicted the in vivo situation. Silva et al. (2015) compared
GABA(A) binding, dopamine binding and AChE activity after in vivo and in vitro
exposure to two pesticides (endosulfane and methidathion). This study showed
good concordance between in vitro and in vivo results for dopamine pathways with
endosulfan exposure. However, in other cases in vitro results were less representa-
tive of in vivo effects. The authors showed that some in vitro assays from ToxCast
resulted in false negatives in several critical endpoints. For instance, there is a strong
body of evidence in the literature relating endosulfan exposure to estrogenic and
anti-androgenic effects in vivo, including receptor binding, whereas endosulfan was
reported as being active only in a minimal number of ToxCast assays (Silva et al.
2015). The authors suggested that the discrepancy between in vivo and in vitro
responses was likely due to a lack of metabolic activation and limitations in assay
design. ToxCast was designed as a collaborative effort and hence, discrepancies
could also have resulted from the different analytical approaches or different assay
types used by the different collaborating teams to interpret the data, and this could
affect how a chemical is defined as having a positive or negative effect.

Cell-free assays have been extended to studying wild, native species not condu-
cive to lab-based experimentation, and the outcomes of some studies are briefly
reviewed here. The inhibition potential of inorganic and methyl mercury (HgCl,
and MeHgCl) on muscarinic cholinergic (mACh) receptor binding from both eco-
logical (mink, river otter) and biomedical (humans, rats, mice) tissue samples, was
characterized in two brain regions (cerebral cortex and cerebellum) thus resulting
in rich concentration-response data across organisms (Basu et al. 2005). The work
showed that, across all species, that inorganic mercury was a more potent inhibitor
of muscarinic receptor binding than organic mercury, and that the cerebellum was
more sensitive than the cerebral cortex. Species-sensitivity could be determined and
from most to least sensitive as: river otter > rat > mink > mouse > humans. The
mean IC50 value (concentration that inhibits receptor binding by 50%) between the
most and least sensitive species ranged from 5-8x. A follow-up study was per-
formed on cortical tissues from ringed seals to show that mercurials but not several
organochlorines (e.g., PCBs, toxaphene, DDT, dieldrin) inhibited muscarinic cho-
linergic receptor binding (Basu et al. 2006). Another follow-up study documented
that the M1 muscarinic receptor subtype was more sensitive to mercury-associated
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inhibition that than the M2 subtype (Basu et al. 2008). Taken together, these studies
demonstrate that cell-free assays are potentially useful in studying chemical-ligand
interactions in native species that are otherwise difficult to study in the lab, such as
marine mammals. The work demonstrates that cell-free assays may help resolve
differences across species and chemicals.

Cell-free in vitro systems may also be useful in screening real-world samples,
including complex mixtures. In a study concerning pulp and paper mill effluents,
goldfish brains were homogenized and cell-free preparations were exposed to pri-
mary and secondary effluent extracts (Basu et al. 2009). The results showed that the
extracts contained neuroactive substances that could alter the specific binding to
several receptors and the activity of enzymes involved in the reproductive signal-
ling. For instance, some extracts increased ligand-binding to Dopamine-2 (D2) and
GABA(A) receptors, whereas others competed with the N-methyl-D-aspartic acid
(NMDA) and muscarinic cholinergic (mACh) receptors and decreased their binding
by 26-75%. Activities of the monoamine oxidase (MAO) and the acetylcholinester-
ase (AChE) were the most impacted with enzyme inhibition reaching 50%. The
authors concluded that these cell-free assays provide a novel in vitro tool to high-
light the plausible mechanism by which pulp and paper mills effluents may impair
fish reproduction by interacting with neurotransmitter systems. In addition, these
in vitro data were used to model potential effects at the level of the whole organism
(Chap. 16). A similar approach was taken on wastewater effluents from an Area of
Concern (AOC) in the Great Lakes region of North America (Arini et al. 2016). In
this case two parallel approaches (in vivo and in vitro) were used to assess how the
exposure to wastewater treatment plant (WWTP) effluents or to extracts targeting
different classes of chemicals (steroid hormones, nonylphenols, bisphenol A) could
impact neurochemistry in fathead minnow (Pimephales promelas). The ability of
the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine
oxidase (MAOQ) and glutamine synthetase (GS)) and receptors (dopamine (D2) and
N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-
dependent neurotransmission were examined on brain homogenates. In vivo expo-
sure of FHM led to significant decreases of NMDA receptor binding in females and
increases of MAO activity in males (2.8-3.2-fold). In vivo and in vitro results for
FHM were consistent in some cases (but not in all cases). The main correlation was
found for MAO activity that increased after both in vivo and in vitro exposures to
steroid hormones-targeted extracts from the WWTP.

3.4 Concluding Remarks

Cell-free assays provide a simple in vitro tool to characterize the interaction between
test chemicals and biochemical targets, and ultimately these tools can be used to
prioritize, screen and evaluate a large number of chemicals (i.e., thousands) in a
relatively short period of time (days to weeks). Such has been shown via the
U.S. EPA’s ToxCast program, in which cell-free assays are an important component.
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Studies more oriented towards ecological risk assessment are beginning to show
that cell-free assays can be used to study a range of fish and wildlife, and also screen
single chemicals and complex mixtures of environmental samples.

There are several potential advantages of cell-free assays. Cell-free assays can be
developed on cell components from potentially any vertebrate, and thus are species
agnostic and may be of interest for organisms that are at-risk or difficult to maintain
in captivity. The data from cell-free assays can be used to inform risk assessment
and to provide additional evidence for read-across to toxicologically similar chemi-
cals. It can ultimately result in generating large databases and strengthening
decision-making and environmental management.

The assays are amenable to a high degree of automation, and scalable to high-
throughput screening. These types of assays can be run in a relatively rapid manner
and at a fraction of the cost associated with animal bioassays. Certain cell-free
assays can attain a high level of reproducibility, specificity, and sensitivity. When
assays are strung together into a systems/pathway-based manner, the assay results
may yield plentiful quantitative concentration-response data that may be used to
develop predictive models. This information may help develop hypotheses (e.g.,
candidate toxicants, sensitive pathways) to be further tested via animal models and
may also enable inter-species differences to be uncovered.

Cell-free assays characterize simple interactions between a molecular target and
a contaminant, and such an interaction may be considered a molecular initiating
event which represent the first sequence of events in an adverse outcome pathway
(Landesmann et al. 2013; Ankley et al. 2010). For example, the toxic actions of
domoic acid are mediated via its agonism of kainate receptors (Watanabe-Sailor
etal. 2011), and so this first key molecular initiating event could be developed into
a cell-free assay for the purposes of predictive ecotoxicology.

Despite the aforementioned advantages, as with any technology or method there
exist limitations. Foremost among them is that the assays represent a simplistic
biological system. They lack the requisite cellular machinery found in traditional in
vitro methods such as cell lines and cell cultures, yet one may argue that they repre-
sent more meaningful models than can be achieved in silico. They lack the meta-
bolic capacity of cells though future endeavours could aim to increase their realism
via co-incubations with biological cofactors (e.g., S9 fractions). Moving forward,
validation studies that enable comparisons between data from cell-free assays and
physiological responses from the whole organism are required to establish these in
vitro testing tools as reliable models.
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Chapter 4
The Fish Embryo as a Model for AOP

Development
Lucia Vergauwen, Steven Van Cruchten, and Dries Knapen

Abstract Fish are routinely used for evaluating aquatic toxicity to vertebrates to set
environmental quality standards. Tests using early life-stages of fish are more cost-
efficient compared to tests using adult fish while maintaining the physiological rel-
evance of a vertebrate whole-organism test system. Ethical considerations are also a
driver for the use of fish embryos since they are considered alternative testing mod-
els during the early stages of development. Additionally, both in human and environ-
mental toxicology there is a strong global interest in increasing the use of mechanistic
information to support hazard assessment. The AOP (adverse outcome pathway)
approach offers an interesting framework for developing mechanistically-based
alternative testing methods using fish embryos. Once developed, AOPs can facilitate
the identification of assays targeting key events, which have high predictive value for
an adverse outcome of interest. In this chapter we first discuss what kind of informa-
tion on the general biology and physiology of a fish species is important in order to
use the embryonic life stage of that species as a model for AOP development, includ-
ing aspects such as endocrinology, reproduction strategies, availability of genomic
information, transgenic lines, and biotransformation capacity during embryonic
development. Secondly, we provide an overview of strategies and examples of AOP
development using fish embryos. In this context, we discuss the application of an
iterative AOP development cycle, development of Fish Early Life-Stage (FELS)
AQPs for developing alternative strategies for chronic toxicity testing, development
of AOP networks, and development of fish AOPs for endocrine disruption.

L. Vergauwen
Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences,
University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology,
University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

S. Van Cruchten
Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp,
Universiteitsplein 1, 2610 Wilrijk, Belgium

D. Knapen (<)

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences,
University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

e-mail: dries.knapen @uantwerpen.be

© Springer International Publishing AG 2018 43
N. Garcia-Reyero, C.A. Murphy (eds.), A Systems Biology Approach

to Advancing Adverse Outcome Pathways for Risk Assessment,

DOI 10.1007/978-3-319-66084-4_4


mailto:dries.knapen@uantwerpen.be

44 L. Vergauwen et al.

4.1 Introduction

Both vertebrate and invertebrate toxicity tests are used to provide an ecologically
relevant basis for environmental quality criteria. Within the vertebrate tests, fish are
valuable sentinels for evaluating aquatic toxicity since they represent a high trophic
level in the aquatic food chain. However, testing for chronic fish toxicity is one of
the most animal demanding areas in environmental risk assessment. Around
30 years ago, the Fish Early Life-Stage (FELS) test (OECD Testing Guideline [TG]
210, OECD 2013b; OPPTS 850.1400, USEPA 1996) was introduced as an alterna-
tive to the fish full life cycle test (McKim 1977; Woltering 1984). The latter test
included all developmental life stages and assessed survival growth and reproduc-
tion. McKim et al. reviewed a set of 56 fish full life cycle tests and found that the
embryo-larval and early juvenile life stages were the most, or among the most,
sensitive and therefore concluded that tests with these early life stages could be use-
ful for establishing environmental water-quality criteria. Furthermore, experiments
using the early life-stages of fish are more cost-efficient compared to tests using
adult fish while maintaining the physiological relevance of a vertebrate whole-
organism test system. Currently, the FELS test is the primary guideline used to
estimate chronic toxicity of regulated chemicals (pesticides, industrial chemicals,
pharmaceuticals, food/feed additives, and cosmetics) to fish. Results obtained using
these test guidelines (TG) are used to support risk assessment around the world.

Although already more cost-efficient than adult fish tests, the FELS tests are
actually long-term tests. A FELS test starts with fertilized eggs and continues at
least until all the control fish are swimming and free-feeding. These tests generally
run for 1-2 months depending on the test species used. Therefore the FELS test is
still considered as a low-throughput in vivo test method which requires high num-
bers of fish (Volz et al. 2011). As such, ethical considerations are driving the devel-
opment of alternative test systems. For example, in Europe, toxicity testing carried
out in the framework of the REACH (Registration, Evaluation, and Authorization
of Chemicals) (EC 2006) legislation should be in line with the 3R principles to
Replace, Reduce, and Refine the use of laboratory animals (Russel and Burch
1959). According to the EU regulation on the use of laboratory animals, indepen-
dently feeding larval forms of non-human vertebrate animals, are protected (EC
2010). Fish embryos are therefore not protected until the stage of free-feeding, and
are candidate models for alternative testing. For the zebrafish (Danio rerio), the
limit was explicitly set to 5 days post fertilization (dpf) when kept at a temperature
of around 28 °C (EC 2012; Straehle et al. 2012). Apart from the reproductive sys-
tem, the major organ systems have developed at this age. Figure 4.1 shows differ-
ent life stages of the zebrafish, including 2 and 3 day old zebrafish (eleuthero)
embryos which are not protected under the European legislation on the use of
laboratory animals.

On top of ethical considerations driving the development of alternative tests,
both in human toxicology as well as in environmental toxicology, there is a strong
global interest in increasing the use of mechanistic information to support hazard
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Fig. 4.1 Photographs of zebrafish life stages. From top to bottom a zebrafish adult female, an
adult male, a 2 day old embryo just before hatching, and a 3 day old eleutheroembryo (develop-
mental phase before the larval phase, starting with hatching and ending with free-feeding) (All
images copyright (The copyright holder grants permission to use these images in the original
publication “Advancing Adverse Outcome Pathways for Risk Assessment”, as well as for all revi-
sions or versions, future editions, in any medium, such as in its electronic form, for all translations
in any foreign language, and for distribution throughout the world.) Dries Knapen, http://zebrafish-
lab.be)

assessment (Ankley et al. 2010; Krewski et al. 2010). The current FELS protocol
involves only apical endpoints, including survival, hatching, overall body appear-
ance and behavior, and final weight and length. Knowledge on the specific toxic
mechanism or mode of action of chemicals is not obtained. There is an urgent need


http://zebrafishlab.be
http://zebrafishlab.be

46 L. Vergauwen et al.

for high quality testing strategies to screen and prioritize thousands of chemicals at
an acceptable cost with the maximum of relevant information.

The AOP approach offers an interesting framework for developing alternatives to
the FELS test. In summary, an AOP is a detailed description of a chain of events
going from a molecular initiating event (MIE, a direct interaction of a chemical with
a molecular target, e.g. a hormone synthesizing enzyme) through a series of inter-
mediate key events (KE, e.g., altered hormone levels and subsequently impaired
development of a specific organ) spanning different levels of biological organiza-
tion, leading to an adverse outcome (AO, e.g., reduced survival) at the individual or
population level (Ankley et al. 2010; Villeneuve et al. 2014b, c). A KE is generally
defined as an observable change in biological state that is necessary (but not neces-
sarily sufficient by itself) for the progression toward a specific AO (Villeneuve et al.
2014b). Examples of KEs include changes in expression and/or function of genes,
proteins, and metabolites, alterations in cellular or tissue morphology, physiological
dysfunction, etc., along a causal pathway to an AO relevant to risk assessment
(mainly impaired growth, survival or reproduction). Since KEs must, by definition,
be measurable, there is a clear linkage between the AOP framework and assay
development, particularly with respect to development of alternatives to traditional
whole organism tests focused on direct observation of apical outcomes.

Once developed, AOPs can facilitate the identification of assays targeting KEs,
which have high predictive value for an AO of interest. They also provide biological
context for mechanistic information from existing assays, which can help increase
confidence in, and utility of their results for risk assessment and regulatory decision-
making. As such, AOPs could form a basis for a tiered testing strategy in which the
lower Tier molecular or cellular perturbations are predictive of higher-Tier out-
comes (Volz et al. 2011). AOP-specific data can be obtained at the different levels of
structural and functional organization. In Tier 1 In vitro high-throughput cell-based
assays can screen for molecular initiating events and the subsequent cellular
responses, e.g. receptor-specific reporter assays, axonal growth assays or cell viabil-
ity and functional assays using fish-specific cell lines derived from gill tissue or
liver, or primary fish- cell cultures. Tier 2 could involve a short-term fish embryo
test for whole-organism-based assessment of AOP-specific effects, and Tier 3 could
comprise the more chronic FELS test. The low-throughput FELS (Tier 3) test would
only be implemented if a chemical tested positive based on results obtained using
cell-based assays (Tier 1) and alternative methods (Tier 2). By using in silico, in
vitro and in vivo alternative tests as first medium/high-throughput systems to screen
and prioritize chemicals for FELS testing, the need for long-term and costly toxicity
tests requiring a large amount of animals would be reduced. The use of such a tiered
testing strategy is currently considered a promising approach (Volz et al. 2011).

Due to the considerations above, fish embryos have become popular model sys-
tems in (eco)toxicology. DarT (a 48 hpf [hours post fertilization] zebrafish embryo
test) was implemented to substitute fish tests in waste water evaluation in Germany
(DIN 2001; ISO 2007; Nagel 2002). More recent efforts have advanced the fish
embryo test as an alternative to the fish acute toxicity test (OECD TG 203; OECD
1992) for chemical registration under REACH (Embry et al. 2010; Lammer et al.



4 The Fish Embryo as a Model for AOP Development 47

2009; Lange et al. 1995). Braunbeck and Lammer (2006) reviewed existing infor-
mation to facilitate the submission of a testing guideline for the fish embryo test to
the OECD. The publication of OECD TG 236, the “Fish Embryo Acute Toxicity
(FET) Test” (OECD 2013a), describing a 96 h zebrafish embryo test (also called
ZFET), has greatly facilitated the use of fish embryos in toxicity studies, although
the FET test has not yet been officially approved as alternative to the fish acute tox-
icity test by regulators (Worth et al. 2014). While the Fish Acute Toxicity Test lists
a set of 7 recommended species (zebrafish, fathead minnow, common carp, medaka,
guppy, bluegill and rainbow trout), the FET test is currently only defined for zebraf-
ish. There have been efforts to compare results from FET tests using zebrafish,
medaka and fathead minnow. Braunbeck et al. (2005) reported that results obtained
with medaka and fathead minnow embryos are generally comparable to those
obtained with zebrafish embryos. They tested four compounds in the three species
and found that effect concentrations differed by a maximum factor of 10 among
species. This larger difference was observed for sodium dodecyl sulphate, for which
the medaka was significantly less sensitive than the other two species. Except for
2,4-dinitrophenol, which was most toxic in fathead minnow, zebrafish embryos
were most sensitive to all other substances. The authors also investigated some prac-
tical aspects of the standardization of fish embryo tests. Beekhuijzen et al. (2015)
attempted to facilitate harmonization of the zebrafish embryo test by discussing
optimal test conditions and scoring methodology. The testing guideline is currently
limited to observations of lethal endpoints and hatching, while scientific research
from the last decades has shown that many more sublethal toxic effects, such as
molecular, biochemical and physiological responses can be effectively investigated
using fish embryos. On the one hand, such more detailed measures of toxicity are
necessary to describe KEs and develop AOPs. In turn, AOPs can aid in standardiza-
tion of assays measuring detailed toxicity responses, and can provide the mechanis-
tic support which can finally lead to their incorporation in new testing guidelines.
For a more extensive review of the current status of alternative methods for regula-
tory toxicology, we refer to the recent Joint Research Council (JRC) report by Worth
et al. (2014).

Apart from its potential for regulatory testing applications in risk assessment, the
AOP framework can also aid in improving the fundamental understanding of bio-
logical processes and disruptions thereof, because it stimulates scientists to delin-
eate a cascade of events supported by a weight of evidence approach.

4.2 Key Information on General Biology and Physiology
of Fish Embryo Models

In the context of toxicity studies, the term fish embryo model is immediately linked
to a small set of fish species, primarily zebrafish, fathead minnow and medaka.
Together with three-spined stickleback, rainbow trout and sheepshead minnow,
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these are the recommended species to use in FELS and other tests (OECD 2013bj;
USEPA 1996). However, in these guidelines, the use of other species is not pre-
cluded. Both guidelines also provide a list of other well-documented species such as
coho salmon, chinook salmon, brown trout, common carp, bluegill, channel catfish,
and others. Even this extended list of well-known models is generally restricted to
bony fish, while for example cartilaginous fish have unique ion-regulatory mecha-
nisms with important implications for chemical toxicity. Also, traditionally, there
has been much more focus on freshwater fish compared to saltwater fish. Teleosts
form the largest group of extant vertebrates with a wide diversity and it is challeng-
ing to find adequate representation in toxicity testing.

When AOPs are developed for the purpose of risk assessment which is essen-
tially aimed at protecting all species, it is important to consider inter-species or
taxonomic applicability (Users’ handbook, OECD 2015). The development of
species-specific AOPs should be avoided. When considering the use of a less well-
known fish model, ideally, the toxicity of a set of model compounds should be
characterized, allowing comparison to established models concerning general
mechanisms of toxicity. Inter-species differences are often related to the
MIE. Differences in expression of molecular targets (e.g., receptors, enzymes) may
lead to differences in sensitivity or even in absence of a specific toxicity mechanism
in some species. Lalone et al. (2013b) showed that while reproductive capacity of
fathead minnow and medaka was susceptible to an androgen receptor antagonist,
Daphnia magna was insensitive due to the lack of a relevant homolog of the andro-
gen receptor. Lalone et al. (2013a) described a strategy that uses molecular sequence
information of molecular targets to predict which species may be more or less sus-
ceptible to a chemical with known MOA (mode of action). This approach was
applied in the development of an AOP for acetylcholinesterase inhibition leading to
acute mortality where sequence similarity of the enzyme acetylcholinesterase was
investigated (Russom et al. 2014). Higher level organismal properties may also
result in inter-species differences. Zebrafish embryos have been shown to be more
sensitive than medaka embryos in some cases, and it has been suggested that this is
due to the presence of a harder chorion surrounding medaka eggs (Schiller et al.
2014). Developing an AOP based on experimental evidence from a few different
species thereby increases confidence and applicability. For example, exposure to a
thyroid peroxidase inhibitor (thyroid peroxidase is crucial for thyroxine [T4] syn-
thesis) was shown to result in decreased levels of T4 and impaired inflation of the
anterior chamber of the swim bladder at comparable exposure concentrations in
zebrafish and fathead minnow early life stages (Nelson et al. 2016; Stinckens et al.
2016). The inclusion of less straightforward fish embryo models can further improve
the relevance and applicability of AOPs. Therefore, new upcoming models are wel-
come to contribute to AOP development and cross-species comparison. In this con-
text, an interesting recent development is the consideration of the killifish
(Nothobranchius furzeri) as a model for ecotoxicological testing, more specifically
for rapid chronic and multigenerational toxicity testing. It has a generation time of
<37 days, and produces drought resistant dormant eggs that can be stored ‘on the
shelf” and activated when needed (Philippe et al. 2015).
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In order to interpret toxic effects and make an a priori estimation of taxonomic
applicability of experimental findings, knowledge of the normal physiology of the
species is essential. For example, chemicals may impact ion-osmoregulation includ-
ing gill function, kidney function and ion pumps, the biotransformation capacity of
the liver, cardiovascular performance, respiratory function, or energy metabolism
among others. To interpret these effects, the availability of basic knowledge on the
normal functioning of these biological processes in the species under investigation
is needed. For some of these processes, important differences exist between fish
species. Another important aspect is basic knowledge of the endocrinology of the
species which is essential to understand the mechanisms of endocrine disrupting
compounds. In the following paragraphs we will discuss what kind of information
on the general biology and physiology of a fish species is important to use the
embryonic life stage of that species as a model for AOP development. Because of
the large variety of physiological strategies (e.g., reproduction) within the group of
fish it is important to consider specific aspects of the general biology and physiol-
ogy of fish species both when selecting an appropriate fish embryo model for AOP
development, and when interpreting results from toxicity tests. This knowledge is
important for studying the biological plausibility (a critical aspect of weight of evi-
dence, together with empirical evidence) of a KER (key event relationship), and
particularly important when the aim is to use AOPs as support to develop assays
which are predictive of relevant adverse outcomes (OECD 2015).

4.2.1 Stages of Embryonic Development

Fish embryonic development is considered representative of vertebrate embryonic
development in general and has therefore become an important model for develop-
mental biology. Although fish generally develop at a faster rate compared to mam-
mals, there are large differences between fish species in timing of important events
during development, such as hatching and the onset of free-feeding. When using the
embryo of a fish species to develop AOPs, basic knowledge of the embryonic devel-
opment informs on which stages of development are covered in toxicity studies, and
provides a basis to interpret toxicity observations. The better normal development is
characterized, the more accurate AOPs can be described. For zebrafish, the stages of
embryonic development were described in detail by Kimmel et al. (1995) and to
date this remains the main reference in this regard. Villeneuve et al. (2014a) recently
outlined a conceptual model of developmental morphological landmarks during
zebrafish embryogenesis (e.g., somite formation, cardiovascular system develop-
ment), that are observable during development, and therefore amenable for use in
AOP development (Fig. 4.2). Moreover, these developmental landmarks were out-
lined with the aim of relating them to FELS AOs rather than purely describing
embryonic development. For the fathead minnow, a developmental series was pub-
lished, describing 32 stages during pre-hatching development (Devlin et al. 1996).
The authors also provided an overview of species of which the embryonic
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Fig. 4.2 Preliminary conceptual model of developmental landmarks during zebrafish embryogen-
esis. The Y-axis shows a selection of developmental landmarks, and the X-axis shows the timing
during zebrafish embryonic development. Black bars represent the approximate duration of the
events that underlie each developmental landmark (Source: Villeneuve et al. (2014a), https://cre-
ativecommons.org/licenses/by/3.0/, no changes to the original figure were made)

development had been described at the time, together with their age at hatch. For
medaka, the stages of normal development were described by Iwamatsu (2004).
Fish are mostly ectothermic species and therefore the rate of development is
temperature dependent. According to the Zebrafish Book (Westerfield 1995), the
optimal temperature for growth and accurate developmental staging of zebrafish is
28.5 °C. The description of developmental stages published by Kimmel et al. (1995)
and widely cited in zebrafish literature, including in the FET testing guideline
(OECD 2013a), was recorded at 28.5 °C. The Commission Implementing Decision
2012/707/EU (EC 2012), stating that zebrafish are not protected up to 5 days post
fertilization (dpf) was similarly based on a temperature of approximately 28 °C.
Traditionally, OECD testing guidelines have recommended lower temperatures for
zebrafish toxicity testing, e.g., 21-25 °C (OECD TG 203, OECD 1992) or
26 +£ 1.5 °C (OECD TG 210, OECD 2013b). The recommended temperature for the
FET testis 26 = 1 °C (OECD 2013a). This has important implications when consid-
ering which stages of development are included in the specific time frame of a fish
embryo test. A 120 hpf test at 28.5 °C, which is an alternative test according to cur-
rent EU legislation, covers a substantially larger part of development than a 96 hpf
test at 26 °C. The stages included in the conceptual model published by Villeneuve
et al. (2014a) only comprise the first 48 h, and are therefore covered in both cases.


https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0

4 The Fish Embryo as a Model for AOP Development 51
4.2.2 Endocrinology

Although many pathways are conserved, there are specific differences in fish com-
pared to other vertebrates which may influence the interpretation of toxicity. For
example, in mammals, the primary mineralocorticoid is aldosterone. Fish do not
synthesize aldosterone, and 11-deoxycorticosterone is the suggested substitute for
aldosterone in fish. The main sex hormones in zebrafish are estradiol (an estrogen),
11-ketotestosterone (an androgen) and maturation-inducing hormone (MIH,
17a,20B-dihydroxy-4-pregnen-3-one) (Tokarz et al. 2013). Comparable to mam-
mals, estradiol regulates ovarian function and additionally, in fish, estradiol regu-
lates vitellogenin synthesis and yolk formation. In fish, 11-ketotestosterone rather
than testosterone is the primary endogenous androgen (de Waal et al. 2008). MIH
which regulates maturation of oocytes, has been identified in several fish species,
while it does not exist in mammals (Nagahama and Yamashita 2008).

Some hormones as well as transcripts coding for hormone receptors and steroid
synthesizing enzymes are available in the early embryo through maternal transfer.
This has been shown for estradiol and cortisol in zebrafish embryos, although the
role of these hormones during early embryonic development is still largely unclear
(Tokarz et al. 2013). Both in zebrafish and fathead minnow, maternal transfer of the
thyroid hormone T4 has been shown (Chang et al. 2012; Nelson et al. 2016). This is
important for AOP development using the fish embryo. We recently showed that
2-mercaptobenzothiazole (MBT), an inhibitor of thyroid peroxidase (TPO) which is
essential for thyroid hormone synthesis, did not affect inflation of the posterior
chamber occurring around 96 hpf in zebrafish and around 6 dpf in fathead minnow
(Nelson et al. 2016; Stinckens et al. 2016), although several studies have suggested
the involvement of thyroid hormones in posterior chamber inflation (Bagci et al.
2015; Heijlen et al. 2014; Jomaa et al. 2014; Liu and Chan 2002). The absence of
effects on posterior chamber inflation after inhibiting thyroid hormone synthesis
can possibly be explained by maternal transfer of T4 into the eggs. On the other
hand, inhibition of deiodinases which are necessary for activating thyroid hormones
regardless of maternal transfer, did lead to impaired posterior chamber inflation
(Bagci et al. 2015; Heijlen et al. 2014).

Vitellogenin (vtg), the fish egg yolk precursor protein, is synthesized by the
liver of many adult female fish and deposited in developing oocytes. Vtg synthesis
is under estrogenic regulation. It is therefore a long-established biomarker for eval-
uating endocrine disrupting potential of chemicals in fish and vtg measurements
are an important component of endocrine disruption testing (Ankley and Jensen
2014; OECD 2009a, 2011; Wheeler et al. 2005). Although the function of embry-
onic vtg expression is currently unknown, it has been shown that endocrine dis-
rupting compounds already induce vtg expression in fish embryos (Schiller et al.
2014). Since different endocrine disrupting modes of action can either increase or
decrease vtg levels, these AOPs can be interconnected and visualized in an AOP
network (see Sect. 4.3.3).
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4.2.3 Sex Determination and Differentiation

Teleosts show a high degree of diversity in sex determination and differentiation
mechanisms, ranging from genetic to environmental sex determination. While some
species have sex chromosomes such as mammals, many fish species have no hetero-
morphic chromosomes, similar to amphibian and reptile species. Additionally,
many fish species are undifferentiated gonochorists, in which an indifferent gonad
first develops into an ovary-like gonad which then further differentiates into either a
mature ovary or a testis. In zebrafish, this differentiation process occurs between 17
and 35 dpf at a temperature of 27 °C (Sun et al. 2013). This complicates sex identi-
fication and should be taken into account when using fish embryos to study effects
on sex ratio, and sex-specific traits or responses. Changes in sex ratio or intersex can
be an important adverse outcome when studying endocrine disruption. If this is the
intent of the study, often it will be necessary to culture the fish far beyond embry-
onic stages until they have developed gonads that can be histologically verified.
Some species develop clearly discernible secondary sex characteristics, which may
also be influenced by endocrine disruptors, namely papillary processes in male
medaka and nuptial tubercles in male fathead minnow (OECD 2009b). Chemicals
with endocrine modes of action may cause abnormal occurrence of secondary sex
characteristics in the opposite sex. For example, androgen receptor agonists can
cause the development of nuptial tubercles in female fathead minnow. In zebrafish,
secondary sex characteristics are difficult to observe objectively.

For medaka, a genetic marker (DMY) is available for identifying the true geno-
typic sex (Urushitani et al. 2007). However, the exact mechanism of sex determina-
tion in zebrafish is not yet fully understood. Zebrafish have no heteromorphic
chromosomes, and a sex-determining gene has not been identified. Recent advances
suggest a polygenic sex determination mechanism, where sex is determined by the
allelic combinations of several loci (Liew and Orban 2014). Additionally, environ-
mental factors (primarily temperature) can influence sex differentiation (Uchida
2004).

4.2.4 Reproduction

Fish have a large diversity of reproductive strategies, including for example internal
or external fertilization, open substrate spawners, mouth brooders, seasonal or year
round reproduction. This has important implications for toxicity studies using fish
embryos. Many fish species, including zebrafish, fathead minnow and medaka are
oviparous, meaning that the females spawn and the eggs are externally fertilized.
This offers a great advantage over viviparous animals because embryos can be col-
lected and exposed to chemicals immediately after fertilization without further
influences of the mother. Additionally, many of these species (including zebrafish,
fathead minnow and medaka) produce eggs year round, while three spined
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sticklebacks for example are seasonal breeders. Many cartilaginous fish and also
some bony fish such as the guppy (Poecilia reticulate) are (ovo)viviparous, meaning
that the offspring develops inside the mother either with or without a placenta. This
in turn offers the advantage of higher comparability to mammalian reproduction.

To actually measure reproductive failure as an adverse outcome, a mature repro-
ductive system is needed which is not developed in the fish embryo. Efforts are
underway to develop embryo tests which are predictive of reproductive effects in
later life stages, such that the need for animal tests is reduced. For this purpose it is
essential to document effects of endocrine disruptors in fish embryos. AOP develop-
ment can subsequently aid in selecting KEs which are predictive of reproductive
failure at later age.

4.2.5 Genetic Variability

For standard mammalian models (rats, mice, rabbits), strains have been developed
to decrease intra- and inter-laboratory variability. For fish this is less advanced. In
ecotoxicology, findings from the laboratory are extrapolated to field populations
and this can be done with higher accuracy when genetic variation in the sample is
high. On the other hand, reduced variation (by using clones or inbred strains)
increases the precision of the results (i.e. narrow confidence limits), resulting in a
trade-off between precision and accuracy (Forbes 1998). With regard to standard-
ization of diet composition, water characteristics, lighting and temperature a similar
trade-off concept is applicable. While applying standard conditions (e.g., optimal
breeding temperature) provides for low variation and thus high precision, this does
not take into account that natural conditions often deviate from the standards in the
environment. For example, when performing toxicological experiments aimed at
developing water quality criteria for chemicals in the environment, it has been
proven important to investigate toxicity in conditions that deviate from standard
laboratory conditions since they can influence toxicity (Vergauwen et al. 2013).
For zebrafish, a number of laboratory strains exist, which are referred to as wild-
type and outbred. Tiibingen is an important source of zebrafish strains, and most
strains are available from the Zebrafish International Resource Center (ZIRC,
https://zebrafish.org). Coe et al. (2009) assessed the genetic variation and diversity
of the most commonly used wild-type strains of zebrafish (AB, TE, TL, WIK) and
compared them to a sample of wild zebrafish from Bangladesh. The authors showed
that genetic variation of the four laboratory strains as well as fish purchased from a
commercial dealer was less than 20% of the variation found in wild fish. They also
constructed a phylogram showing that wild fish form a clade separate from all labo-
ratory strains, while they did not observe a clear grouping of any of the laboratory
strains, suggesting cross-breeding between those strains. The low level of genetic
variation in laboratory strains may affect behavior, fitness, susceptibility to chemicals,
etc. For the fathead minnow, many laboratories originally obtained a fathead min-
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now stock from the Newtown EPA facility in Cincinnati (OH, USA), and routinely
outbred them with wild fish according to the guidelines for the culture of fathead
minnows for use in toxicity tests (USEPA 1987). Medaka has a high tolerance to
inbreeding. Inbred strains have been developed which differ in behavior, body
shape, brain morphology and susceptibility to mutagens (Kirchmaier et al. 2015).
Both wild strains and inbred strains of medaka are available at the Japanese Medaka
Stock Center (National BioResource Project Medaka, NBRP Medaka; http://www.
shigen.nig.ac.jp).

4.2.6 Genomic Information

Genome projects for zebrafish (The Sanger Institute, www.sanger.ac.uk/Projects/D_
rerio), medaka (National Institute of Genetics) three-spined stickleback and rain-
bow trout, among others, and efforts for other species such as fathead minnow
(Burns et al. 2015) and carp provide genomic information. This information allows
for the easy application of toxicogenomic techniques to measure changes of tran-
scription and translation in response to a chemical insult. Such changes can be
important key events, especially on the upstream part of an AOP (MIE and KEs at
the cellular level). Additionally, it facilitates phylogenetic comparisons among spe-
cies to assess conservation of toxicity mechanisms and therefore taxonomic appli-
cability of AOPs (see Sect. 4.2).

In addition to DNA sequence information, it is often important to know the tim-
ing of activation of toxicity targets (e.g., enzymes, ion channels, receptors), in terms
of transcription and translation, during embryonic development. This may explain
susceptibility differences between life-stages which are important when the fish
embryo is used as an alternative to predict toxicity at later ages.

4.2.7 Availability of Knockdowns, Knockouts and Transgenic
Lines

The increasing availability of genomic information and the development of new
methodologies have led to an increasing flexibility to apply knockdowns as well
as genetic modifications in knockout and transgenic fish models. Lee et al. (2015)
recently provided an overview of available methods in fish and their application
in ecotoxicology. Zebrafish and medaka are the most popular model fish species
for genomic modifications (Lee et al. 2015). The Zebrafish Mutation Project
(ZMP) aims to create a knockout allele in every protein-coding gene in the zebraf-
ish genome (https://www.sanger.ac.uk/resources/zebrafish/zmp/). Here, we pro-
vide some examples of how these techniques can benefit AOP development and
application.


http://www.shigen.nig.ac.jp
http://www.shigen.nig.ac.jp
http://www.sanger.ac.uk/Projects/D_rerio
http://www.sanger.ac.uk/Projects/D_rerio
https://www.sanger.ac.uk/resources/zebrafish/zmp

4 The Fish Embryo as a Model for AOP Development 55

One of the most convincing lines of evidence for an AOP linking an MIE (for
example inhibition of an enzyme) to a specific phenotype, is the use of loss of func-
tion models such as knockdowns and knockouts. Morpholino knockdowns can be
designed to block RNA translation by hybridizing to the target sequence, usually
resulting in incomplete loss of function (Bill et al. 2009). RNAI is another means for
knockdown of specific genes (Kelly and Hurlstone 2011). Recent innovations with
regard to the generation of knockouts (complete loss of function through inactiva-
tion of the gene of interest) have greatly improved their application. While earlier
methodologies used random mutagenesis to create knockouts, during the last few
years targeted mutagenesis methods have been developed based on engineered
endonucleases such as zinc finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENSs) (Bedell et al. 2012; Doyon et al. 2008). Recently, a
new technique for targeted mutagenesis has emerged, the bacterial type II clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
(Cas) system, which is applicable in zebrafish (Gagnon et al. 2014; Hwang et al.
2013a, b; Jao et al. 2013). The CRISPR/Cas technology can be used for the purpose
of knockout as well as knock-in. Efforts are being made to apply the technology to
high-throughput gene targeting and phenotyping using zebrafish (Varshney et al.
2015). Using knockdowns or knockouts, it is possible to confirm the occurrence of
the KEs along multiple levels of biological organization in an AOP by specifically
inducing the MIE, for example knockdown of an enzyme as a model for chemical-
induced enzyme inhibition. This is much more convincing as weight of evidence for
the KERs in an AOP compared to chemical exposures, since chemicals are usually
suspected to target more than one MIE.

If binding to a specific receptor is thought to be the MIE of a hypothesized AOP,
knockdown or knockout of the specific receptor can be used to find out whether
this prohibits the progression of downstream KEs upon exposure to a chemical
thought to act through this AOP. For example, polyaromatic hydrocarbons (PAHs)
are often thought to cause toxicity through aryl hydrocarbon (AhR) receptor acti-
vation, similar to dioxins. Incardona et al. (2005) used AhR knockdown zebrafish
to show that developmental defects induced by weathered crude oil exposure are
mediated by low-molecular-weight tricyclic PAHs through an aryl hydrocarbon
receptor-independent disruption of cardiovascular function and morphogenesis.
Brown et al. (2015) further investigated the cardiotoxicity of weak AhR agonists
using AhR and cypla knockdowns. Such information is highly useful for AOP
development and can significantly contribute to the weight of evidence associated
to the KERs in an AOP.

Many transgenic zebrafish lines have been developed in which the expression of
a fluorescent protein (e.g., green fluorescent protein, GFP) is driven by the promo-
tor of a gene of interest. As a result, localized fluorescence can be detected upon
expression of the gene of interest. As a first application, this can aid in identifying
and visualizing specific tissues by targeting tissue-specific genes. For example, in
the vas::egfp zebrafish, expression of enhanced green fluorescent protein (eGFP) is
driven by the promoter of the germ-cell-specific gene vasa (vas). This aids in the
visualization of primordial germ cells during early embryonic development and the
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developing gonads later in development. Another example is the fli:egfp transgenic
zebrafish line in which the flil promotor drives expression of eGFP in all blood
vessels throughout embryogenesis (Lawson and Weinstein 2002). This model sys-
tem is ideal for observing vascular defects in response to chemical exposure (Delov
et al. 2014).

Transgenic fish, in addition to their role in visualization of specific cell-or tissue
types, can also function as reporter lines for chemical screening purposes when the
expression of fluorescent proteins is driven by the promotor of specific target genes.
For example, the TSHB:EGFP transgenic zebrafish can function as a model for
screening for thyroid-disrupting chemicals (Ji et al. 2012). Gorelick and Halpern
(2011) developed a zebrafish reporter line to screen for estrogen activity. This
approach is especially powerful when a reporter assay can be selected based on an
AOP describing the linkages between a KE that can be measured using the reporter,
and the AO of interest.

4.2.8 Biotransformation Capacity During Embryonic
Development

Biotransformation is the process by which an exogenous or endogenous compound
is chemically modified by enzymatic activity. Biotransformation is a physiological
phenomenon and is used to convert substances into those that are required for nor-
mal body function, e.g. steroidogenesis. However, biotransformation also serves as
an important defence mechanism by converting toxic xenobiotics into less harmful
substances that can be excreted from the body. In some cases though, biotransfor-
mation results in metabolites that are more toxic than the parent compound (Nebert
and Russell 2002). This process is then called bioactivation. Formally, biotransfor-
mation reactions are classified as Phase I and Phase II reactions. Phase I reactions
add a polar group to make compounds water-soluble, which is largely achieved by
Cytochrome P450 (CYP) enzymes but also other enzymes can be involved such as
the flavin-containing monooxygenase (FMO) system. Phase II reactions involve a
covalent attachment of a small polar endogenous molecule to create a final com-
pound of higher molecular weight (Ashauer et al. 2012). The latter is mainly
achieved by glucuronidation or sulfation but other conjugation reactions can also
occur. Finally, also Phase III reactions, which involve uptake and/or efflux of xeno-
biotics and/or their metabolites by transporters, influence the elimination of com-
pounds. Since the toxic effects of xenobiotics depend on the achieved exposure
within the organism, a thorough knowledge of Phase I, Phase II and Phase III reac-
tions is necessary for proper risk assessment. Especially in view of AOP develop-
ment, it is critical to know whether fish embryos biotransform chemicals in the same
way as an adult fish.

In adult zebrafish, there has been an exhaustive characterization of CYP-mediated
metabolism at the gene level, but also at the functional level. These studies suggest
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the presence of similar metabolic systems to those found in mammalian species
(reviewed by Saad et al. 2016a). Analysis of the zebrafish genome has uncovered a
total of 86 CYP genes that fall into seventeen categories of CYP gene families
(Genome Reference Consortium 2015). Of these CYP families, CYP1-3 is the main
xenobiotic metabolizing enzyme group. By using several well-characterized com-
pounds in vitro and in vivo, it has been demonstrated that zebrafish clearly possess
CYPI, 2 and 3 activity (Alderton et al. 2010; Chng et al. 2012; Diekmann 2013).
This CYP activity often also resembles the human situation (Chng et al. 2012),
although differences in metabolite profile and isoforms have been reported (Alderton
et al. 2010; Diekmann 2013). Zebrafish also possess Phase II metabolic capacities
as evidenced by UDP-glucuronosyltransferase (UGT) activity on testosterone
(Chng et al. 2012) and activity of different sulfotransferases (SULT) (Kurogi et al.
2010; Liu et al. 2010). Also, several drug transporters have been identified in the
zebrafish, e.g. 41 ABC transporters (Dean and Annilo 2005), of which some have
already been characterized functionally (Fischer et al. 2013). Several xenobiotics
also influence their concentrations in the organism by inhibition or induction of
particular enzymes or transporters. For CYP induction, pregnane X-receptor (PXR)
and aryl hydrocarbon receptor (AHR) are well known transcription factors in zebraf-
ish and humans (Reschly and Krasowski 2006). However, constitutive androstane
receptor (CAR), a third important regulatory mechanism of CYP induction in
humans (Waxman 1999), is absent in zebrafish and teleost fish in general. The num-
ber of substrates that stimulate PXR also appears to be more limited in zebrafish
than in humans (Ekins et al. 2008) although PXR and CYP3A are induced by a
similar mechanism in both species (Bresolin et al. 2005). For AHR, only one func-
tional AHR is detected in humans (Hahn 2002), whereas zebrafish AHR have mul-
tiple signaling members including AHR1a, AHR1b, AHR2, ARNT1, ARNT2 and
two AHR repressors (Karchner et al. 2005). ARNTS are aryl hydrocarbon receptor
nuclear translocators that dimerize with AHR after its translocation from the cytosol
into the nucleus. As such, the high DNA binding affinity of this complex stimulates
transcription of the CYPIAI gene and other genes (Denison and Nagy 2003).
Regarding substrate affinity, AHRs bind to a broad range of aromatic and halogenated
chemicals including planar halogenated aromatic hydrocarbons (pHAH) and poly-
cyclic aromatic hydrocarbons (PAH), which are both known as environmental con-
taminants. Also drug transporter activity can be affected in the zebrafish by
environmental chemicals, i.e. by inhibition, leading to so-called chemosensitisation
(Otte et al. 2010; Scholz et al. 2008).

The available information on the biotransformation capacity of zebrafish embryos
is much more limited. Most studies focus on the larval stages (96 hpf and 120 hpf),
which are at the end of organogenesis and thus vital information for the early devel-
opmental stages is lacking. Knobel et al. (2012) showed that the zebrafish embryos’
toxic response, evidenced by lethality, to 38 chemicals with different physicochemi-
cal properties and mode of action was similar to the response in adult fish. However,
the situation may be different for effects that are exerted by active metabolites and
not by the parent compound if the required biotransformation enzymes are not pres-
ent or mature yet in the embryo. The metabolic capability has been and still is a
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hurdle in the development of several alternative methods for animal experiments in
toxicology (Spielmann et al. 2006). For CYPs, distinct spatio-temporal patterns of
gene expression have been explored (Goldstone et al. 2010) and often already early
peaks in expression (up to 4 hpf) are detected (Glisic et al. 2014). This probably
indicates a maternal origin of the transcripts. Glisic et al. (2014) also showed that
the CYP expression is inducible in 24 hpf embryos in a similar way as in adults.
Indeed, atrazine exposure for up to 72 h significantly increased the CYPIA and
CYP3A65 mRNA levels, albeit at a 1000 times higher concentration than present in
the environment. For Phase II metabolism, it has also been shown that zebrafish
embryos express all major GST isoforms (Glisic et al. 2014) and all major UGTs
(Christen and Fent 2014) from very early on (4 hpf) and with clear temporal pat-
terns. Also drug transporter transcripts have been found in very early zebrafish
embryos (from 1 hpf onwards) (Fischer et al. 2013) and this was also reflected func-
tionally as ABCB1-like efflux was inhibited in 1, 6, 12, 24 and 48 hpf embryos
when using several transporter inhibitors. However, the available data are scarce on
the activity of CYPs and Phase II enzymes in zebrafish embryos. So far, the only
extensive study on metabolism in non-adult zebrafish was performed by Alderton
etal. (2010) and they mainly focused on larvae of 168 hpf. Several compounds were
tested, of which 3 were also evaluated in 72 hpf larvae. Although the 72 hpf and 168
hpf larvae were able to perform Phase I and/or Phase II metabolic reactions, only a
small fraction of most of the compounds was found as metabolites in the larvae.
Therefore, the authors concluded that the quantified metabolites were unlikely to
contribute to observed toxicity (Alderton et al. 2010). Phase I and Phase II metabo-
lism has also been reported by other groups in 96 hpf or older larvae (Creusot et al.
2014; Jones et al. 2010; Li et al. 2011). Otte et al. (2010) investigated earlier time
points and detected CYP1A activity, assessed by an EROD assay, as early as 8 hpf.
At that time point EROD activity was present in the cytoplasm of the envelope layer
and in the yolk syncytial layer as well. Saad et al. (2016b) also confirmed this early
EROD activity in homogenates of 5 hpf embryos and Briunig et al. (2015) detected
basal EROD activity in embryos at 24 hpf, which was clearly induced by beta-
naphthoflavone after 96 h of exposure. The presence of CYP activity during early
zebrafish embryonic development is not surprising as CYPs are also critical for
morphogenesis, e.g. the role of CYP26 in regulating the retinoic acid concentrations
in hindbrain development (Hernandez et al. 2007). However, the question remains
whether the biotransformation capacity of the embryos is sufficient to bioactivate
xenobiotics during the different developmental stages, in comparison to adult fish.
This is still a point of controversy. Weigt et al. (2011) performed a study with sev-
eral proteratogens and showed teratogenicity of the compounds. However, no analy-
sis of biotransformation was performed and therefore this study could not answer
whether these compounds were proteratogenic or teratogenic by themselves in the
zebrafish. So far, allyl alcohol is the only compound for which it has been clearly
demonstrated that zebrafish embryos cannot bioactivate it when exposed from 1.5
hpf until 50 hpf (Knobel et al. 2012). Although this was due to a lack in alcohol
dehydrogenase 8a activity in these embryos (Kluver et al. 2014) and not to imma-
ture Phase I or Phase Il reactions, this still underlines the importance of the embryo’s
metabolic capacity. Therefore, co-incubation of zebrafish embryos with an exogenous
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metabolic activation system (MAS) has been suggested on several occasions
(Busquet et al. 2008; Mattsson et al. 2012; Weigt et al. 2010). However, this com-
plicates the assay (Pype et al. 2015) and more importantly continuous co-incubation
is not possible due to embryotoxicity caused by MAS, i.e. liver microsomes and
NADPH, itself (Mattsson et al. 2012). Therefore, only short and intermittent co-
incubation of zebrafish embryos with MAS can be applied, which may lead to lack
of exposure to metabolites during critical windows of development and conse-
quently false negative results in the case of toxicity testing of proteratogens.
Biotransformation of xenobiotics has also been studied in the fathead minnow
and medaka, but to a lesser extent. Experiments with PXR inducers clotrimazole and
pregnane-16alpha-olone clearly increased the expression of PXR and CYP3A in the
fathead minnow (Crago and Klaper 2011). Furthermore, CYP3A inducer rifampicin
also clearly increased CYP3A activity in this species (Christen et al. 2010). CYP3A
activity has also been reported for adult medakas (Kullman et al. 2004). In juvenile
medakas, benzo(a)pyrene (BaP) induced the transcript levels of CYP1A and CYP2A
together with those of glutathione-S-transferase (GST) and UGT, including their
activity (Kim et al. 2014; Rhee et al. 2013). Interestingly, the pesticide aldicarb
appears to be biotransformed by FMOs in adult medakas (El-Alfy and Schlenk
1998). Regarding the biotransformation capacity of medaka embryos, the earliest
appearance of BaP metabolites was at 21-24 hpf in the yolk syncytial layer although
diffuse metabolic activity may also have been present at this time within the yolk
itself (Hornung et al. 2007). Recently, CYPIA activity could also be induced in
medaka embryos by using beta-naphthoflavone (Gonzalez-Doncel et al. 2015).

4.3 AOP Development Using Fish Embryos

There can be different drivers for using fish embryos in AOP development. For
example, AOP development can be driven by the need for alternative test methods
to replace animal testing. Testing for chronic toxicity using FELS tests and screen-
ing for endocrine disruption using sexual development tests (OECD TG 234; OECD
2011) and fish short-term reproduction assays (OECD TG 230; OECD 2009b)
require many animals and alternative methods are needed for these tests. AOPs can
aid in selecting endpoints that can be measured in the fish embryo and that are pre-
dictive of AOs of ecological relevance, namely growth, survival and reproduction,
which are traditionally measured in these animal tests. On the other hand, since
vertebrate development, physiology and anatomy is highly conserved, data from
fish (embryos) can be used as part of the weight of evidence to develop AOPs with
a broader taxonomic applicability (e.g., AChE inhibition leading to acute mortality,
Russom et al. 2014).

For AOP development, specific toxicity information is needed at multiple levels
of biological organization, rather than only apical endpoints. Even though fish
embryos are small, there is an enormous potential to measure endpoints ranging
from the molecular, over the biochemical to the physiological level. New techniques
are being developed or adapted from other model systems at a rapid pace.
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4.3.1 Iterative AOP Development Cycle

For AOP development, it is essential to gather weight of evidence to support link-
ages between key events. AOP development can be visualized as an iterative process
in which a hypothesized AOP is challenged experimentally and adapted accordingly
until it reaches the level of detail and confidence needed for the envisaged applica-
tion (left part of Fig. 4.3). Consequently, the AOP can be used to develop assays
based on KEs which are predictive of the AO (right part of Fig. 4.3). Assay develop-
ment can also give rise to new insights leading to updated versions of the AOP. In
this way AOPs are living documents (Villeneuve et al. 2014b). This concept is facil-
itated by the AOPWiki (https://aopwiki.org), which allows for continuous addition
and updates when new information becomes available. The fish embryo is highly
amenable to such an iterative AOP development approach since quick and low-cost
experiments can easily be set up to investigate specific KEs.

4.3.2 Development of FELS AOPs

AOQOP development can be tailored specifically to the goal of developing alternative
tests for assessing chronic fish toxicity. Since the FELS test is currently the most
important test to assess chronic toxicity, AOPs describing KEs measurable in the fish
embryo leading up to FELS AOs would facilitate selection of predictive assays.
There are two central criteria for KEs: (1) they should be measurable/observable,
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Fig. 4.3 Schematic representation of an iterative AOP development cycle. In the green part,
experiments are aimed at developing the AOP up to the level that it can be used to develop assays
based on upstream events that are predictive of downstream events (blue part)
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and (2) they should be essential, but not necessarily sufficient for the progression
from a defined biological perturbation toward a specific AO (Villeneuve et al. 2014b).

Villeneuve et al. (2014a) made some recommendations regarding the prioritiza-
tion of AOP development specifically for developing alternatives to the FELS test.
If the AO is directly observable in the fish embryo, there is no need to develop an
AOP since a fish embryo test can directly be used to screen for this AO. If the AO is
not directly observable in the fish embryo, delineating KEs leading to this AO may
lead to predictive fish embryo assays. If there are no KEs that can be observed in
fish embryo assays, in vitro assays may be considered. The latter two cases are con-
sidered priorities for AOP development.

Villeneuve et al. (2014b) presented an overview of common AOP development
strategies. One could start by identifying ecologically relevant FELS adverse out-
comes, and subsequently build AOPs delineating KEs which are measurable in fish
embryos leading up to these AOs of interest, the so called top-down approach. The
main AOs of regulatory relevance are growth, survival and reproduction, of which
the first two are covered in the FELS test. Since these AOs are not specific and thus
both are regulated by a broad array of factors, one would envision a highly compli-
cated AOP network making it difficult to prioritize. Therefore a middle-out approach,
starting from KEs that are observable in fish (not necessarily in embryos) and can
be plausibly linked to relevant AOs has been applied for FELS AOP development
(Groh et al. 2015; Villeneuve et al. 2014a). For this purpose, Villeneuve et al.
(2014a) started by outlining a conceptual model of developmental morphological
landmarks during zebrafish embryogenesis (e.g., somite formation, cardiovascular
system development), to aid in identifying KEs that lead to FELS AOs. The authors
used swim bladder inflation as an example KE to function as a starting point for
AOP development. During early development, zebrafish undergo an embryonic-to-
larval transition phase marking an important switch from yolk sac- to exogenous
feeding larvae around 120 hpf. This transition includes swim bladder inflation (pos-
terior chamber, around 96 hpf), structural and functional maturation of the mouth
and gastrointestinal tract, and resorption of the yolk sac (Liu and Chan 2002).
Impaired posterior chamber inflation is not directly lethal, but it impacts growth and
survival especially in natural habitats where swimming capacity is essential for for-
aging and predator avoidance (Czesny et al. 2005; Villeneuve et al. 2014a). Later
during development (around 21 dpf for zebrafish) the anterior swim bladder cham-
ber inflates, which has an additional role in hearing (Lechner and Ladich 2008;
Popper 1974). Since inflation of the posterior chamber is observed at the border of
legal limitations with regard to alternative testing, and inflation of the anterior
chamber can only be observed long after the time frame of the FET test, they are a
priority for AOP development. By selecting swim bladder inflation as a KE, the
biological pathways of interest have been narrowed down. Subsequently, a more
thorough study of the biological pathways leading to the normal formation and
function of the swim bladder allows for hypothesizing how chemicals can disrupt
these processes. In zebrafish, these formation processes have been studied in detail
(Robertson et al. 2007; Teoh et al. 2010; Winata et al. 2009; Yin et al. 2011). Several
studies have suggested the involvement of thyroid hormones in posterior chamber
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inflation (Jomaa et al. 2014; Liu and Chan 2002). Therefore, we hypothesized that
thyroid disruption can impair swim bladder inflation. Based on a literature search, a
putative AOP leading from thyroid peroxidase (TPO) inhibition to impaired swim
bladder inflation was constructed.

During the AOP development phase, knowledge gaps are usually identified. The
logical next steps for AOP development can include targeted experimental studies
that are set up to address these gaps and increase confidence in the hypothesized
AOP. This process can be iterated until the AOP is sufficiently developed to serve its
purpose (Fig. 4.3). In the thyroid example, assays were developed to measure the
KEs along this AOP and these assays were applied to test the hypothesized AOP in
two fish species, the zebrafish and the fathead minnow (Nelson et al. 2016; Stinckens
et al. 2016). The two species were exposed to 2-mercaptobenzothiazole (MBT), an
environmentally relevant TPO inhibitor. Whole-body T4 decreased upon MBT
exposure. Anterior chamber inflation was impaired, and there was a clear relation-
ship between T4 levels and the anterior chamber surface in zebrafish. The absence
of effects on posterior chamber inflation was not expected, but can possibly be
explained by maternal transfer of T4 into the eggs (see Sect. 4.2.2). Deiodinase (ID)
type 1 (ID1) and type 2 (ID2) are essential to activate T4 (including maternally
derived T4) into its biologically active form, T3. If the inflation process of the pos-
terior swim bladder chamber is indeed mediated by thyroid hormones, but maternal
T4 transfer is sufficient to compensate for TPO inhibition, we can assume that TPO
inhibitors do not impair posterior chamber inflation, while ID inhibitors do
(Stinckens et al. 2016). This has led to a new version of the hypothesized AOP. In
zebrafish deiodinase knockdown studies we indeed showed impaired posterior
chamber inflation (Bagci et al. 2015; Heijlen et al. 2014). When sufficiently devel-
oped, this AOP can be used for the selection of assays predictive for thyroid medi-
ated effects on swim bladder inflation, leading to reductions in growth and
survival.

Another example of applying a middle-out approach for FELS AOP develop-
ment was given by Groh et al. (2015). The authors selected growth as the FELS AO
of interest, and subsequently selected the KE ‘reduction in food intake’ as starting
point for middle-out AOP development. To ensure relevance of the AOP under
development, the authors applied four criteria to the selection of this KE: (1) the
process underlying the KE should be important for growth regulation, (2) the bio-
logical pathways underlying the KE should be highly conserved among species, (3)
the KE should be susceptible to many chemicals, (4) the KE should be induced at
environmentally relevant chemical concentrations. Subsequently, the authors identi-
fied impaired locomotion as a KE that is already observable in fish embryos and
plausibly linked to reduced food intake. From then on the authors developed a selec-
tion of case studies in which AOPs are delineated.

Volz et al. (2011) also used three case studies to delineate FELS AOPs as a basis
for a tiered testing approach to reduce the need for FELS tests. The AOPs were
based on three reference chemicals with known MOA: 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD)-induced cardiotoxicity, chlorpyrifos (CPF)-mediated inhibition
of neurite outgrowth, and linear alkylbenzene sulfonate (LAS)-induced gill toxicity
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and narcosis. Although such case studies are valuable starting points, it is important
to note that the goal of AOP development is not to develop AOPs that are chemical
specific, but to develop AOPs that reflect mechanisms through which several (classes
of) chemicals elicit toxicity (Villeneuve et al. 2014b). In a next step, evidence can
be assembled to support generalization over larger groups of chemicals.

4.3.3 Development of AOP Networks

A single AOP is considered as a pragmatic unit for AOP development and not as a
complete biological representation of toxicological processes encompassing all
possible molecular, biochemical and physiological components involved.
Consequently, individual AOPs are generally conceptualized as a “linear” construct,
without converging or diverging pathways connected to it. However, it is recognized
that a single AOP may not capture all events that contribute to any relevant toxic
effect. In the example of thyroid disruption (see Sect. 4.3.2), it became clear that
thyroid disruptors impact swim bladder inflation, with an important distinction
among specific subtypes of TH disrupting compounds (e.g., TPO inhibitors vs ID
inhibitors). In such cases, several MIEs can converge in the same downstream KEs.
AOP networks are defined as sets of AOPs sharing at least one common element,
and are capable of more realistically representing potential chemical effects. They
provide information on interactions between AOPs and have the potential to reveal
previously unknown links between biological pathways. Analysis of these AOP net-
works can aid the prioritization of assay development, whether the goal is to develop
a single assay with predictive utility of multiple outcomes, or development of assays
that are highly specific for a particular mode of action (Knapen et al. 2015). In
Knapen et al. (2015) we provided an example of an AOP network for reproductive
and developmental toxicity in fish that was built based on the five relevant AOPs
that were available for fish in the AOP Wiki (AOP Nos. 21, 23, 25, 29 and 30). This
way, we illustrated how AOP networks can be used for assay development and
refinement (Fig. 4.4). In this example, reduced estradiol synthesis in granulosa cells
is linked to two different MIEs, while reduced vitellogenin synthesis in hepatocytes
is linked to three different MIEs, meanwhile reduced testosterone concentration in
theca cells is uniquely linked to androgen receptor agonism. While all three KEs
lead to, and can potentially be used to predict, the same AO of decreased female
fecundity in terms either of egg production or embryonic survival, they have vary-
ing specificity with respect to the MIE triggering the chain of events. In general,
AOP networks therefore offer the potential to guide the development of assays with
different degrees of specificity for toxicological mode(s) of action, being indicative
of either a very specific MIE or, alternatively, of clusters of mechanistically related
MIEs. This type of assay development logic may be particularly useful for differen-
tial screening of compounds with unknown molecular targets, e.g. in the context of
Integrated Approaches to Testing and Assessment (IATA, Tollefsen et al. 2014), in
which sequential elimination of possible mechanisms may be quickly achieved
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Fig. 4.4 Example of an AOP network based on the five reproductive and developmental toxicity-
related AOPs that were available for fish in the AOP Wiki (Jan. 2015). MIEs are indicated in green,
KEs in orange, and AOs in red, as per the AOP Wiki template. The dotted squares indicate KEs
that are defined as changes in opposite direction (increase versus decrease) of the same biological
component. AHR aryl hydrocarbon receptor, GtH gonadotrope hormone, T testosterone, VIG
vitellogenin, E2 estradiol. KE descriptions have been directly derived from the AOP Wiki when-
ever possible. In some cases, slight modifications of descriptions were necessary to generate a re-
usable KE in this specific network. This figure illustrates the AOP network approach but does not
make any assumptions about the scientific validity of the underlying AOPs. AOPs, and hence the
depicted AOP network, may be subject to change before they are formally finalized (Source:
Reprinted from Knapen et al. (2015) with permission from Elsevier)

using assays probing strategically chosen KEs in an AOP network. Such an approach
has, for example, already been implicitly implemented to some extent in the Fish
Sexual Developmental Test (OECD TG 234, OECD 2011).

4.3.4 Development of Fish AOPs for Endocrine Disruption

When specifically developing AOPs for endocrine disruption, such as those in
Fig. 4.4, a number of aspects should be considered. There have been many different
definitions of endocrine disrupting chemicals (EDCs), some very strict and others
very broad. For regulatory applications, EDCs are currently widely defined as
agents that cause alterations in reproduction or development through direct effects
on the vertebrate hypothalamic—pituitary—thyroidal or hypothalamic—pituitary—
gonadal (HPG) axes (USEPA 1998). Both USEPA and OECD have developed tiered
testing frameworks to screen for endocrine disrupting potential at low levels of bio-
logical organization using non-animal tests before proceeding to long-term tests to
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observe the AO. The selection of appropriate exposure concentrations is essential to
avoid confounding effects of systemic toxicity on endocrine endpoints, and thereby
avoid false positives. For this reason, the concept of maximum tolerated concentra-
tion (MTC) has been adopted (Hutchinson et al. 2009; Wheeler et al. 2013). The
MTC is the highest concentration at which no mortality or signs of morbidity (e.g.,
feeding inhibition, abnormal behavior, morphology or color) are observed. Beyond
this MTC a specific toxicity observation cannot be attributed to a test chemical since
the general health of the organism has been compromised. Therefore, the test con-
centrations for tests assessing potential endocrine activity in fish should be below
this MTC.

Ankley et al. (2009) provided a conceptual model of how the hypothalamic—pitu-
itary—gonadal axis regulates fish reproduction and where/how chemicals with dif-
ferent MOAs can disrupt these pathways. This model has been important for the
development of AOPs leading from aromatase inhibition, estrogen receptor (ant)
agonism and androgen receptor (ant)agonism to reproductive impairment. These
AOPs for endocrine disruption in fish are among the most advanced AOPs devel-
oped thus far (current knowledge is integrated in the AOP network in Fig. 4.4).

These AOPs have been developed based on experimental data from adult fish
tests. In this respect, many of the aspects discussed in Sect. 4.2 are of particular
importance. Since the reproductive system is not yet developed in fish embryos,
reproductive dysfunction cannot be directly measured in embryos. Attempts are
being made to identify KEs that are already measurable in fish embryos and that
eventually lead to and thus are predictive of endocrine relevant AOs. A project cur-
rently on the OECD workplan in relation to endocrine disruptor testing and assess-
ment called ‘zebrafish embryo assay for the detection of endocrine active substances
acting through the estrogen receptor’ (EASZY), aims to detect endocrine active
substances acting through human ER, using transgenic cypl9alb-GFP zebrafish
embryos (Carvalho et al. 2014). Schiller et al. (2014) showed that transcription of
common endocrine disruption markers such as aromatase and vtg responded to
exposure to endocrine disrupting chemicals in zebrafish and medaka embryos, and
that the responses were generally comparable to those in later life stages.

Chemicals causing developmental outcomes are sometimes included in the group
of EDCs (see definition above). While fish embryos are used to investigate mecha-
nisms of toxicity which also occur in later life stages, they are obviously especially
useful to investigate disruptions of development. An example is the AOP for AhR
receptor activation leading to altered cardiovascular development and embryo toxic-
ity (Fig. 4.4).

4.4 Conclusion

Both vertebrate and invertebrate toxicity tests are used to provide an ecologically
relevant basis for environmental quality criteria. Within the vertebrate tests, fish are
valuable sentinels for evaluating aquatic toxicity since they represent a high trophic
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level in the aquatic food chain. Experiments using the early life-stages of fish are
more cost-efficient compared to tests using adult fish while maintaining the physi-
ological relevance of a vertebrate whole-organism test system. Ethical consider-
ations are also a driver of the use of fish embryos since they are considered alternative
testing models during early development.

The AOP approach offers an interesting framework for developing alternative
testing methods using fish embryos. For AOP development, specific toxicity infor-
mation is needed at multiple levels of biological organization, rather than only api-
cal endpoints. Even though fish embryos are small, there is an enormous potential
to measure endpoints ranging from the molecular, over the biochemical to the phys-
iological level. As a better fundamental understanding of fish biology under both
normal and chemical exposure conditions becomes available, the fish embryo is
becoming increasingly useful for AOP development. Once developed, AOPs can
facilitate the identification of assays targeting key events, which have high predic-
tive value for an adverse outcome of interest.
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Chapter 5
Invertebrate Model Species in AOP
Development

Geoff Hodges, Steve Gutsell, Nadine Taylor, Erica Brockmeier,
Emma Butler, Cecilie Rendal, and John Colbourne

Abstract In this chapter, we present the use of invertebrate model species in the
development of adverse outcome pathways (AOPs), its challenges, and the current
state of invertebrate toxicity studies. Invertebrates can contribute significantly
towards the development of robust AOPs, providing many advantages over the use
of vertebrate species. This includes a generally shorter life cycle allowing for
chronic and full life cycle toxicity tests, and a wide array of powerful molecular
genetic tools such as genome sequences, genomic engineering including gene
knock-outs, and comprehensive bioinformatics databases. Currently, the most
robustly developed invertebrate model species for toxicity testing include Daphnia,
Caenorhabditis elegans, plus members of the Drosophila genus. The potential use
of these and other invertebrate organisms for assessing chemical risk for most ani-
mals (including vertebrate species) is evaluated via a comparative phylogenetic
approach to ecotoxicological testing, seeking to discover the evolutionary origins
and distribution of toxicity pathways across the internal branches of the animal
phylogeny. Comparative —omics data from cellular and developmental studies sug-
gest a high degree of conservation in regulatory pathways in fly, worm and human.
By comparing —omics studies between vertebrates and invertebrate species in toxi-
cology, we begin to also discover coherence in pathway level responses, indicating
potentially numerous overlapping responses to specific stressors, even across spe-
cies that have different physiologies and ecological niches. At present, only a small
number of invertebrate AOPs are informed by evidence. Perhaps the most robust of
these is the Acetylcholinesterase inhibition (AChE) AOP for pesticides. We present
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a case study of using the AOP framework for risk assessment and discuss how the
use of models, such as those using Dynamic Energy Budget theory linked to popula-
tions, can enhance the use of AOPs for understanding and predicting chemical risk.

5.1 Introduction (Key Challenges)

Conventional methods of Environmental Risk Assessment (ERA) largely rely on
short-term acute toxicity tests carried out in the laboratory on various model species
that occupy different trophic levels; these studies are supported occasionally by
long-term chronic toxicity tests. Assessment factors, to account for the uncertainties
in extrapolating from laboratory data to the natural environment, are then used to
derive toxicity thresholds. However, since these factors lack a mechanistic/causal
basis and do not quantify variation both within and among species, they have lim-
ited potential for quantitatively estimating cross-species toxicity thresholds and are,
therefore, set to be protective rather than predictive. Economic as well as ethical
factors also influence the type of testing typically conducted for ERA; new regula-
tions are phasing out the use of vertebrate animal testing (Council Directive 2010/63/
EU), while the costs of conducting chronic toxicity studies on whole vertebrate
organisms are also prohibitive (REACH 2006).

The Adverse Outcome Pathway (AOP) approach looks at the effect of chemical
perturbation from the Molecular Initiating Event (MIE) through several Key Events
(KEs) which exhibit responses at various levels of biological organisation (e.g., cel-
lular, tissue, organ, etc.), which will lead to an Adverse Outcome (AO) that is rele-
vant to risk assessment (Ankley et al. 2010). The individual organism level AOs
commonly used in ecotoxicology describe impacts on survival, growth and repro-
duction. As more AOPs and KEs are documented, it may become possible to predict
and assess potential AOs using information from lower levels of biological organ-
isation as part of a new approach to ERA based on mechanistic understanding. As a
minimum the AOP framework provides a way to collect, organise and integrate
information from multiple sources to enable a safety decision to be made based on
risk assessment and for communication of that information in a biologically plau-
sible manner (Burden et al. 2015; Perkins et al. 2015).

Given that invertebrates account for at least 95% of all known animal species and
are critical to ecosystem structure and function (Verslycke et al. 2007), investiga-
tions using these key species are vital when obtaining data from which to develop
AOPs. Invertebrates offer many advantages over vertebrates, including their gener-
ally short life cycle, large brood sizes and the ease with which large numbers of
individuals may be studied. The use of invertebrates in toxicity testing is often cost-
effective, as thousands of organisms can be housed in single testing facilities. Many
invertebrates are longstanding model species for biomedical and basic research, and
their genome biology is very well understood for associating genetic diversity with
their phenotypic effects. For example, the genome size of Caenorhabditis elegans is



5 Invertebrate Model Species in AOP Development 77

only 100 megabases, with predicted protein products exhibiting 40% homology
between C. elegans and humans; many C. elegans genes having similar functions
with human proteins (The C. elegans Sequencing Consortium 1998). In fact, func-
tional annotations and associations among human genes are most often first discov-
ered in these systems (Williams and Auwerx 2015). Their discovery and predictive
power have yet to be fully aimed at supporting AOP development. Moreover, a
systems toxicology approach using a carefully chosen panel of such model species,
which includes a large swath of animal diversity, will reveal commonalities by vir-
tue of our common ancestry, thereby enabling cross-species predictions based on
phylogenetic principles.

This chapter will explore the benefits and limitations of using invertebrates as a
model species for AOP development from all perspectives, including:

» Appropriate invertebrate species selection

» Existing AOPs and KEs based on invertebrate data

e The importance of test design

* How invertebrate AOPs or KEs could be incorporated into risk assessment in the
future

5.2 Species Selection

5.2.1 Model Species

Model organisms can be defined in multiple ways. In general, model organisms have
particular experimental advantages: they can be easy to maintain in a laboratory set-
ting, are amenable to genetic analysis and manipulation, are used to understand the
genetic basis of disease, or are keystone species in ecology or representatives of
biodiversity (http://genome.wellcome.ac.uk/doc_WTD020803.html). Model organ-
isms can therefore, serve to understand the human condition (biomedical models)
and to understand how ecosystems function (ecological models). Model organisms
with significant research communities and characterized genomes have particular
value in research. Over the past decade, there has been a growing appreciation of the
democratization of genomics resulting in a new class of “emerging” model species
that are beginning to reveal genome diversity, the context dependency of gene func-
tions and their products, and the level of genetic variation for environmentally rele-
vant traits (Feder and Mitchell-Olds 2003; Tagu et al. 2014). From a comparative
biology perspective approach, the origins and conservation of genes, and their func-
tional associations, can be mapped onto the animal phylogeny to infer homology,
thereby increasing confidence in cross species extrapolation. By focussing attention
on research dedicated to discovering the molecular underpinnings for fitness related
responses to environmental conditions bridges an artificial divide between human-
and eco-toxicology. Given these developments, invertebrates are certainly important
for the discovering AOPs in risk assessment.
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The National Institute of Health maintains a list of approved model organisms
for use in biomedical research (http://www.nih.gov/science/models/). Of these, cur-
rently there are three invertebrate animal genera: Daphnia, Drosophila and
Caenorhabditis. These three species are commonly used in comparative genomics,
toxicology and/or ecotoxicology studies. These taxa offer a wealth of historical data
and biological knowledge from over a century of genetic investigations.

Daphnia species are small freshwater crustaceans, ubiquitous worldwide and
integral to the pelagic ecosystem (Lampert 2011). Fundamentally, Daphnia are a
long-established model species with an important role in determining chemical
safety criteria around the world, and is the most commonly used system for ecotoxi-
cological testing worldwide (Shaw et al. 2008). Highlights of the Daphnia system
are: (1) reproduction by cyclical parthenogenesis; genotypes can be maintained
indefinitely in a clonal fashion (Lampert 2011). It is possible to self or outcross
lineages, thereby experimentally dissecting the relative contributions of genes and
environment for toxicity by partitioning the variance between and among clones,
with biological replication involving fixed genetic backgrounds. (2) A draft sequence
assembly and annotation of the Daphnia genome (Colbourne et al. 2011). (3) A
transparent carapace that allows for imaging gene expression by fluorescence-based
assays in whole animals; (Gorokhova and Kyle 2002; Paul et al. 1998). (4) Methods
for reverse-genetic testing, including RNAi-based gene knockdown, CRISPR/
CAS9-based gene knockout, and transformation system (Kato et al. 2011, 2012;
Nakanishi et al. 2014). (5) Multiple mutation accumulation lines for obtaining direct
estimates of the mutational rates and spectra (Seyfert et al. 2008). (6) A bioinfor-
matics database (wFleaBase.org) modelled after Drosophila’s FlyBase.org. (7) A
large number of overlapping genes with human, more than any other sequenced
invertebrate (Colbourne et al. 2011). As it stands, few species can rival Daphnia for
possessing key biological attributes, research tools and infrastructure, as well as the
support of a global research community; the Daphnia Genomics Consortium. The
resources of this consortium can be used to discover how genomes and environ-
ments, including chemical stressors, interact. This is a key invertebrate species in all
current environmental risk assessment paradigms and as such is perfect for merging
known chemical effects with the testing paradigms being suggested.

Drosophila melanogaster (fruit fly, a dipteran insect) is a model organism that
has been utilized for over a century in the field of genetics and has numerous bio-
logical research tools available (FlyBase.org). The striking conservation of >60% of
human disease genes makes it an important model for neurological diseases, can-
cers, heart disease, metabolic diseases and diabetes, and responses to infection by
pathogens (www.flydiseasemodels.blogspot.com). The physiological attributes of
Drosophila including a brain, a beating heart, a tubular network analogous to lungs,
an osmoregulatory/excretory system analogous to kidneys and many other aspects
of physiology and homeostasis make it an excellent model species for the develop-
ment of AOPs that are highly applicable across species.

Caenorhabditis elegans (a nematode worm) is a much-used and long-established
model system for obtaining integrated information on the cellular, developmental,
and molecular aspects of the effects of toxicants on growth and development, as well
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as gene expression. There is a wealth of knowledge available on C. elegans biology;
an exceptionally detailed database on the cell and developmental biology as well as
gene and protein expression patterns and regulation (WormBase). C. elegans is a
practical and powerful species for toxicological testing having the added value of
being able to observe all of the somatic cells in the living organism (http:/www.
wormatlas.org). There is a conservation of neurophysiological components; shared
genetic networks and developmental programs between nematodes and vertebrates
make it an excellent model for these systems in particular. Several studies document
that responses in C. elegans following chemical exposure appear to be predictive of
developmental shifts or neurological damage in vertebrates (Leung et al. 2008). As a
result of the evolutionarily conserved nature of signal transduction and stress-
response pathways, it is likely that responses elicited in C. elegans will be applicable
to understanding similar processes in higher organisms, including humans.

Utilizing invertebrate models experimentally will help to reduce our reliance on
animal-based methods, positively impacting animal welfare whilst elucidating
mechanistic information that can aid in cross-species extrapolation (Burden et al.
2015). The short-generation time and ease of handling of invertebrates in the labora-
tory makes them amenable to high-throughput screening approaches for assessing
the cellular and molecular responses to chemicals that can take advantage of the
myriad of technical advances that have occurred over recent years. Although risk
assessment approaches have traditionally been based on the use of in vivo data gen-
eration supported by in silico methods, there has been a recent shift, in the US in
particular, to incorporate these new in vitro (cell-based) alternative approaches
(Ankley et al. 2008). AOPs represent one mechanism for helping to collate and
interpret these data in combination with more traditional apical endpoints (e.g.,
growth, reproduction, mortality) for assessments.

5.2.2 Using Phylogenetic Approaches to Maximize the Use
of Invertebrate Models and Existing Data in Risk
Assessment

The AOP is a conceptual framework for obtaining data on early mechanistic events,
leading to toxicity by a chemical, that can be linked to eventual adverse outcomes at
many levels of biological organization. By virtue of the rapidity and cost effectiveness
of in vitro and computational approaches, there is a growing database of the toxicologi-
cal potential of chemicals based on their disruption of pathways that are integral to cel-
lular functions (USEPA 2015). Yet despite the richness of this database for risk
assessment, these results do not reflect the complexity of whole organisms including
metabolic capacity, complex interactions among cells within tissues, tissues within
organs, organs within individuals, and individuals within populations and under varying
ecological settings. Cell-based assays also suffer from genetic homogeneity, frequent
aneuploidy or loss of specific functions and adaptation through homeostatic mecha-
nisms. In effect, all biological models suffer from inherent variation in their responses to
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environmental conditions because of natural genetic variation caused by mutation,
genetic drift and natural selection, even among populations of the same species.

Variability in the response to chemicals is well known and derives from differ-
ences in genetics, epigenetics, life histories (including development, sex), ecologi-
cal setting and lifestyles (Barata et al. 2002; De Coninck et al. 2014). Accounting
for innate variation among biological systems requires diversity in the assays used
to discover toxicity pathways — preferably discovering mechanisms that are shared
by evolutionary descent among many biological systems that altogether predict the
chemical effects on the vast majority of untested organisms, including humans.

A program of comparative, multiomics chemical screening research programme
using both invertebrate and vertebrate test species for discovering AOPs that are
built from evolutionarily conserved molecular mechanisms of toxic responses to
compounds is being pursued by a grassroots Consortium for Environmental Omics
and Toxicology (CEOT), which both widens the set of processes investigated for
potentially new mechanistic insights, and draws knowledge from genetic variation
as part of the AOP discovery process. By utilizing a suite of research-intensive
experimental organisms that are recognized biomedical model species, and by
including data from cell lines, researchers are enhancing their studies to include a
much broader range of potential adverse outcomes that complement higher through-
put in vitro experimental data. The molecular responses to hundreds, then thou-
sands, of chemically induced perturbations, measured by genome-wide RNA
profiling and non-targeted metabolomics, are extracted and combined into co-
responsive networks of genes and metabolites that show reproducible correlative
structure across many samples and test conditions. Machine learning approaches
are then used to relate the different omics data types, including forms of sparse
regression and feature selection that put forward candidate pathways of toxicologi-
cal relevance. The co-expression networks identified in this way are predicted to
participate in the same metabolic reactions in different species. This comparative
approach is a far more powerful notion than merely relying on shared sequence
similarity to infer functional gene-homology. The fact that genes share a common
evolutionary ancestor is important, but does not guarantee they retain similar bio-
logical roles. Yet by identifying clusters of genes that influence the same metabolic
processes, this research generalizes the notion of gene homology to homology at the
level of networks that function in the same way. These shared co-functioning net-
works need not be composed entirely of evolutionarily conserved genes, which is
important given the very large evolutionary distance among the test species. Several
studies have already suggested that pathways or biological processes (when discov-
ered) are more likely than genes to be functionally conserved among most animals.
Examples include DNA repair (Taylor and Lehmann 1998) and the decoding chro-
matin state and epigenetic information (Gerstein et al. 2014)

Using a phylogenetic approach that includes invertebrates is, therefore, necessary to
identify the evolutionary origins and preservation of toxicological pathways starting
from the base of the animal phylogeny, which can be useful to predict the susceptibility
of a large swath of animal diversity to chemicals (Burgess-Herbert and Euling 2013).
By studying the toxicological responses of organisms that vary in their phylogenetic
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relatedness, adverse outcomes are discovered from chemical exposure that are poten-
tially shared due to the inheritance of toxicological pathways (KEs) from a common
ancestor, thereby being predictive of the outcome in untested species along the same
evolutionary branch. Connecting (eco)toxicity and sensitivity data to the phylogeny of
the tested species can potentially provide an a priori prediction of a species’ sensitivity
to contaminants (Larras et al. 2014) and a comparative approach which overlays a spe-
cies’ trait values onto phylogenetic trees. This can then be used to determine whether
species possessing similar traits attributable to a shared history, or convergence, can
help in extrapolating these findings across species (Hammond et al. 2012).

5.3 AOP-Relevant Test Design (Benefits of Invertebrates
Over Other Sentinel Species)

To experimentally discover the molecular mechanisms involved in a toxicological
response, including MIEs, KEs and key event relationships (KER), test species such
as those listed above requires well-developed molecular platforms, powerful biologi-
cal research tools and support by large model species research communities. -Omics
can be used as one tool in an integrated approach (weight of evidence; WoE) in com-
bination with the readily available in silico or in vitro data to support the categorisa-
tion of chemicals by their KEs. There is still immense work to be done in identifying
and/or further elucidating the molecular mechanisms or relevant KEs. This is particu-
larly the case when trying to elucidate the molecular-level responses of model species
in order to predict survival, growth and reproduction following chronic exposure to a
chemical. The desired output is a new decision-making tool that includes a suite of
newly identified KEs that are predictive of chronic phenotypic responses to chemical
exposure, and which are indicative of a specific Mode of Action (MoA)/AOP.

There are several practical benefits that are associated with the choice of invertebrate
systems in the context of —omics experiments. The availability of genome sequence and
gene annotation information enables more comprehensive analyses of processes
informed by —omics experiments which are often derived by gene set enrichment analy-
sis (Subramanian et al. 2005) and determination of co-regulated pathways and biologi-
cal processes (http://geneontology.org). When comparing genome sequences available
for invertebrates and vertebrates, there is currently more invertebrate sequence informa-
tion (378 entries versus 311, as of June 2016) in the National Center for Biotechnology
Information (NCBI) genome database (www.ncbi.nlm.nih.gov/genome). Due to the
size of many experimental invertebrates, molecular samples are often obtained from
whole organisms, although tissue dissections can also be conducted. Commercially-
available microarrays currently include 13 vertebrate and 3 invertebrate species.
However, platforms are now available which allow custom microarrays from sequence
information to be made, opening up additional opportunities for developing and using
—omics tools for invertebrate species. In addition, the advent of RNASeq technologies
have enabled other approaches for measuring differential gene expression in species
where no prior genome sequence is available (Nookaew et al. 2012).
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As there is a crucial need in AOP development to address both the acute and
chronic effects of toxicant exposure (Patwardhan and Ghaskadbi 2013), inverte-
brates provide a solution to addressing long-term effects as well as impacts within
multiple life-cycles in a shorter experimental time frame. Such chronic exposure is
particularly relevant for ERA in which chemical exposure is often at low concentra-
tions over extended duration. Due to the shorter life cycles of invertebrate test spe-
cies (Buikema and Cairns 1980), complete toxicity assessments on multiple life
stages and windows of sensitivity are possible. In addition, laboratory and testing
space requirements are greatly reduced due to the size and life cycle length of inver-
tebrates, with a reduction in over 50% of the space and facilities required for toxic-
ity testing as compared to toxicity testing in fish (Buikema and Cairns 1980).

Considerations of sample quality control are required for the appropriate use of —
omics tools. For microarray experiments, RNA quality must be accurately assessed in
order to ensure samples are not degraded. While RNA extraction procedures are easily
available and provide reliable methods for invertebrate tissues (Stevanik et al. 2013;
Santiago-Vazquez et al. 2006; Spade et al. 2010), several species exhibit a ‘hidden
break’ in the 28S subunit of their ribosomal RNA (Ishikawa 1977). This makes assess-
ing RNA quality using methods such as RNA Integrity Number (RIN) evaluation using
tools such as the Agilent BioAnalyzer more difficult. Researchers must keep this in
mind when assessing RNA quality and have an SOP available for both RNA extraction
and appropriate quality control assessment for their invertebrate organism of interest.

In terms of biomass required, genome-wide studies of differential gene expres-
sion currently utilize low amounts of RNA, so a small number of these organisms are
sufficient for RNA-based studies. For example, four Daphnia magna at 5 days of age
were sufficient as a pooled number of samples for RNA extraction (Taylor et al.
2010). In metabolomics analyses, individual D. magna samples were collected for
both whole-body homogenates as well as hemolymph samples (approximately 1 pl
per organism), with extracts able to provide metabolite profiles using Fourier trans-
form ion cyclotron resonance mass spectrometry (FT-ICR MS) (Taylor et al. 2010).

For homogenization methods, difficulties may also arise with sequence-based —
omics studies, for example RNA-seq (Wang et al. 2009) if whole-body preps are
utilized. Carry-over of gut and intestine contents during whole-body homogeniza-
tions may skew these results to sequences found in internal bacterial contents. If
whole body preparations are to be utilized, appropriate depuration methods should
be used to avoid additional biases in the sequence analysis.

5.3.1 Pathways Inferred from —Omics Studies: A Comparison
Between Invertebrate and Vertebrate Test Systems

When thinking about the use of invertebrate test systems and identification of
MIEs and KEs for AOPs, an important question is if results from invertebrate
experiments are biologically relevant or analogous to the responses of vertebrates.
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Here we present a comparison of —omics analyses comparing vertebrate and
invertebrate test species and how biological results obtained relate between these
two systems.

5.3.1.1 Case Study 1: Nickel’s Impact on Global Gene Expression
Via Microarray Analysis

Nickel is a ubiquitous earth metal but is found in concentrated and potentially toxic
concentrations in some locations due to industrial activities such as mining and
smelting. Toxic responses in humans range from dermatitis to cancer (Vandenbrouck
et al. 2009). Several groups have used —omics tools to evaluate the toxic mechanism
of action of this chemical, as knowledge of how nickel toxicity is elicited in non-
mammalian species is currently not well-understood.

Vandenbrouck et al. (2009) exposed a single clone of Daphnia magna to four
waterborne concentrations of NiCl, (0.125, 0.5, 1, and 2 mg/L), which were below the
EC50 of immobility at 48 h. Exposures for RNA extraction and microarray analysis
were conducted for 96 h and additional growth measurements on D. magna were also
assessed. RNA from a pool of 45 D. magna was extracted using TRIzol and a custom
D. magna cDNA with 2445 genes related to life stage, moulting processes, and metab-
olism was used. After background correction and normalisation, significance analysis
of microarrays (SAM) (Tushers et al. 2001) was used with a 5% false discovery rate
(FDR) cut-off to determine differential gene expression. Blast2GO was used to deter-
mine differential regulation at the biological process level (www.blast2go.com).

Results demonstrated a dose-dependent increase in genes related to the D. magna
cuticle, as well as several genes related to chitin-steroid metabolism and protein
metabolism. Several ribosomal protein genes were downregulated in a dose-dependent
manner, as well as genes related to lipid, oxygen, and ATP transport. Physiological
data collected from this experiment showed a significant decrease of cellular energy
allocation and consumed energy after 96 h at the three highest doses of Ni2+
(Vandenbrouck et al. 2009). This physiological response related to the dose-depen-
dent changes in several metabolic processes, including decreases in oxygen and ATP
transport genes.

In a separate study, Mohamed et al. (2014) exposed Mediterranean mussel
(Mytilus galloprovinciali) to Ni. Mussels of 5—-6 cm in length from aquaculture were
acclimatized and exposed to 135 pg/L Ni via semi-static renewal for 4 days at both
a preferred and high water temperature (18 °C and 26 °C). RNA was extracted from
digestive glands of female mussels, and lysosomal membrane stability (LMS) was
also assessed as a physiological measure of bivalve stress. A custom cDNA array of
1748 mussel sequences (Mytarray V1.1) was used with a two-colour labelling.
Linear model for microarray analysis (Limma) (Smyth 2004) was used to determine
differential gene expression and Blast2GO for gene ontology annotation.

In the single-dose exposure, there was a significant decrease in lysosomal mem-
brane stability from the control, which is a characteristic response of bivalves to
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several toxic stressors (both biotic and abiotic) (Svendsen et al. 2004). Focusing on
results from the 18 °C exposure, as other studies were also conducted under normal
conditions for the test organism, pathways that were over-represented in the differ-
ential gene sets include response to chemical stimulus, ribosome biogenesis, cell
development, cellular catabolic process, and chitin metabolic process (Table 2,
Mohamed et al. 2014). While the primary focus of this paper was to determine dif-
ferential responses between Ni-exposure and temperature stress, the data revealed
overlapping gene expression responses with D. magna, specifically for genes and
pathways related to ribosome synthesis and chitin. Chitin forms part of both the
exoskeleton of arthropods and the shells of molluscs. Its differential regulation may
be a response to the chemical stressor and as an attempt to maintain homeostasis
during xenobiotic stress (Rodriguez-Serrano et al. 2009), and the presence in this
over-represented pathways in both D. magna and M. galloprovinciali exposures
demonstrated the usability of these types of data to infer responses in other species
of invertebrates.

When considering how these pathways relate to exposures conducted in verte-
brate organisms, one example from Bougas et al. (2013) exposed juvenile yellow
perch (Perca flavescens) to two concentrations of nickel. The low concentration
used in this study (68.5 pg/L) was an observed concentration in lakes from the
Sudbury region in Canada whilst the high concentration (542 pg/L) was five times
the low concentration and was known to result in significant metal accumulation for
the exposure duration. Juveniles were exposed for 45 days with weekly monitoring
of dissolved metal concentrations. Kidneys were collected upon completion of the
exposure to determine internal metal concentrations. Livers were used for RNA
extraction and microarray analysis using a 1000 probe custom chip with probe
selection conducted to represent genes related to metabolism and known metal
exposure responses, as well as a set of genes found differentially expressed between
two lakes in the region but not associated with metal exposure. A mixed ANOVA
was used with a multiple testing correction to determine differential gene expres-
sion, and Blast2GO was used for biological process analysis.

There were significantly increased concentrations of Ni in the kidneys over the
controls in both the low and high treatment groups. However, only the high dose of
Ni resulted in significant differential gene expression over the controls. Focusing
again on experiments conducted at a normal physiological temperature only, high
dose nickel exposure resulted in the following enriched processes and functional
categories: translation, ribosome biogenesis, iron binding, structural constituent of
ribosomes, and cellular homeostasis (Table 1, Bougas et al. 2013). Genes related to
ribosome biogenesis appear once again, and can also be found enriched in mouse
cells treated with Ni (Lu et al. 2010). It was proposed by the authors that this
decrease may be an adaptive response to overall decreased protein-level metabolism
during Ni exposures.

While these studies do not demonstrate convincing evidence for overlapping bio-
logical pathways between vertebrate and invertebrate species, they do give some
insight into the potential for such studies to provide information on the concordance
of processes exhibited between these species after nickel exposure. This could be



5 Invertebrate Model Species in AOP Development 85

true even in organisms with vastly different physiologies and using different expo-
sure scenarios (acute versus chronic). Although individual gene responses will dif-
fer, focusing on similarities at the pathway level can provide a more holistic insight
into how chemicals are interfering with normal processes during toxicant exposure,
demonstrating that results are relevant and coherent between invertebrate and verte-
brate systems. Indeed, early investigations from the modENCODE consortium,
(providing an encyclopedia of genomic functional elements in the model organisms
C. elegans and D. melanogaster) (www.modencode.org), at comparing the genome-
wide expression of human, worm and fly, discovered co-expression modules that
are shared across these animals, often functionally associated with cellular and
developmental processes (Gerstein et al. 2014). As expected, regulatory modules
that are shared among species were enriched by orthologous genes, yet those mod-
ules that are most conserved also contained the greatest number of interacting genes
(Gerstein et al. 2014). This key finding is reinvigorating the use of experimental
model species for understanding animal biology and the human condition. It also
provides a platform for the next big and transformative set of experiments that com-
bine genomics with toxicology using model invertebrate species to discover over-
lapping pathway-level biological responses shared among invertebrates to
vertebrates that can aid at identifying Mode of Action (MoA), which is useful in the
context of ERA.

5.4 Current State of AOPs

Invertebrates play an important role in the functioning of most ecosystems and
represent about 95% of the metazoan diversity (GIGA 2014). Yet despite this
fact, and the many discussed benefits of using invertebrate species as model
organisms (including the ability to investigate multigenerational and sublethal
endpoints with relative ease, plus the comparative wealth of existing in vivo
data), there is a surprising dearth of activity in using invertebrates in the develop-
ment of AOPs. This and the overall pace of discovery is reflected in the low
numbers of full or partial AOPs that are currently available or being developed as
part of activities driven by such organisations as the OECD, EPA etc. Here we
review the current state of several AOPs available through the AOP Wiki (as a
joint initiative between the European Commission — DG Joint Research Centre
(JRC) and U.S. Environmental Protection Agency (EPA)) (https://aopkb.org/aop-
wiki/index.php/Main_Page).

Of the AOPs in the wiki at this time, only a small number currently contain evi-
dence from and, therefore, are applicable to invertebrates. This perhaps reflects the
relatively early development of the majority of AOPs and also the limited knowledge
in being able to apply them across species. Since the value of any AOP is enhanced
when it is applicable for multiple species, this value is further increased if it is appli-
cable across multiple taxa. Therefore, it is perhaps not surprising that few of the
AOPs that currently are being developed are for invertebrate species exclusively.
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5.4.1 Case Study 2: Summary of AOP Linking
Acetylcholinesterase Inhibition (AChE) to Acute
Mortality Based on Multi Data Approaches

Perhaps the most robust of the developing pathways currently is the AOP linking
Acetylcholinesterase (AChE) inhibition to acute mortality (Russom et al. 2014)
which is described under AOP16 in the AOP wiki. AChE is found in many types of
conducting tissue including nerves and muscle, central and peripheral tissues, and
motor and sensory fibres, but it is primarily found in the blood, brain and muscles. Its
primary function is to hydrolyze the neurotransmitter Acetylcholine (ACh). AChE
contains both an anionic and an esteratic site (Quinn 1987). During neurotransmis-
sion ACh is released from the nerve into the synaptic cleft and binds to ACh recep-
tors, relaying the signal from the nerve. The signal is stopped when AChE hydrolyzes
ACh. There are extensive datasets describing the impact of AChE inhibiting chemi-
cals on the mortality in multiple species as exemplified by the prevalence of data
which continues to become available linking organophosphates such as Chlorpyrifos
to adverse effects in organisms. A simple search of the USEPA ECOTOX database
(www.epa.gov/ecotox) for example, reveals over 3700 recorded values for this com-
pound over the last 10 years. However, even for such a well-studied toxicity
pathway(s) where there is significant evidence to support the link between acetylcho-
linesterase inhibition and acute toxicity, the lack of quantification to allow prediction
of apical endpoints from in vitro or in vivo measurements highlights the scale of the
challenge in developing and using AOPs in risk assessment.

Much of the existing literature considering AChE inhibition has limited taxo-
nomic coverage. However, the review of the literature and AOP development by
Russom et al. (2014) considers the biological conservation of the MIE and evidence
supporting linkage of the MIE to AOs across a wide range of ecologically relevant
taxa at different life stages. In addition, the authors present a chemical category
approach to AOP development, considering toxicity data from a diversity of organo-
phosphate and carbamate insecticides that act via inhibition of AChE.

To help define the taxonomic domain of applicability, and to predict relative
intrinsic susceptibility to organophosphate and carbamate chemicals, Russom et al.
(2014) utilized a comparative method developed by Lal.one et al. (2013) to identify
ACHhE as a potential toxicological target across a greater swath of animal diversity.
This method identifies homologs, or genes that are shared across genomes by
evolutionary descent. The applied logic is that the greater the level of protein sequence
conservation, the greater the probability that they also retain their functions, which
are preserved by natural selection (the orthology—function conjecture; Gabaldén and
Koonin 2013). Although this premise is often true for identified orthologs (genes that
are shared because of speciation), those that are identified as paralogs (genes that are
shared because of duplication) often diverge in their functions. Therefore, the reli-
ability of methods at predicting toxicity by comparative genomics, especially com-
paring both vertebrates and invertebrates, continues to improve as more genome
sequences populate pre-computed databases that reconcile a gene tree with the
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corresponding species tree, for example OrthoDB (www.orthodb.org). Orthology
analysis has understandably become an important sub-discipline of bioinformatics
(Kriventseva et al. 2015; Dessimoz et al. 2012) in which attempts are made to iden-
tify orthologous genes which have descended from a single gene from the last com-
mon ancestor (Fang et al. 2010; Koonin 2005). Our search for AChE homologs
among the vertebrates and invertebrates within the OrthoDB V8 database of ortholo-
gous groups for major clades (Kriventseva et al. 2015) uncovers 395 genes in 169
animal species (out of 173); the gene is found as single copy in only 35 species (gene
ortholog group EOG8H1C6C at the Metazoa level). Phylogenetic reconstruction
reveals an ancient gene duplication event of the AChE gene prior to the origins of
Mammalia, resulting in most species having at least two copies in their genomes
(tree not shown). Not surprising, AChE among the invertebrates have a more com-
plex history of gene duplication and deletion along evolutionary lineages that include
the arthropods and echinoderms through to nematodes and trematodes. However,
despite such complexity, the tools and databases now available to researchers provide
them with improved opportunities to interrogate and demonstrate the true breadth of
the applicable domain of species for a given AOP; a trend which will increase as
genome sequences become available.

The MIE for AChE inhibition is triggered by the interaction of the chemical with
the anionic site of the enzyme, blocking the site for acetylcholine (ACh) and result-
ing in a build-up of ACh at synapses (KE2) and unregulated excitation (KE3) at
neuromuscular junctions, preganglionic neurotransmitters and postganglionic nerve
endings in the autonomous nervous system and neurotransmitters in the brain and
CNS (Fig. 5.1). Significantly, protein sequence alignments of the AChE enzyme
related to the MIE are relatively well-conserved across vertebrates and inverte-
brates, suggesting that the manner of the chemical interaction may be similar across
a wide range of species and taxa (Russom et al. 2014). Hence, the likely domain of
applicability ranges from invertebrate classes branchiopoda, insecta, arachnida,
cephalopoda, ascidiacea, trematoda, gastrapoda as well as amphibia, mammalia and
avia, thereby reflecting the ubiquitous nature of ACHE in all life stages in verte-
brates and invertebrates.

5.4.1.1 Evidence from Invertebrates Supporting the AChE KEs and KERs

Supporting evidence for developing the AChE AOP was found in existing empiri-
cal data from both the ECOTOX database and the scientific literature (Russom
et al. 2014). Studies preferentially selected were those which reported endpoints
indicative of neurotoxicity such as seizure activity, muscle responses, heart, res-
piration rates, etc. The ECOTOX database yielded significant numbers of studies
reporting physiological responses in terrestrial and aquatic organisms, only 39 of
which reported results that were associated with at least 3 KEs, and only 2 studies
which provided results supporting all 4 KEs (Fig. 5.1). The open literature also
provided a substantial number of studies linking AChE inhibition with down-
stream KEs.
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Lu et al. (2012) were able to provide evidence linking the MIE to KE4 (Fig. 5.1)
use gene silencing techniques. They were able to determine that AChE produced by
the TcAce 1 gene was responsible for cholinergic neurotransmissions, while AChE
produced by the TcAce2 gene is involved in noncholinergic activities including
growth and reproduction in the red flour beetle Tribolium castaneum.

Empirical evidence linking KE2 to KE4 (Fig. 5.1) has been found in a single
study using the earthworm Eisenia foetida (Reddy and Rao 2008). The study using
profenofos (PFF) demonstrated a link between increased AChE levels (measured
using the method described by Ellman et al. 1961) with body ruptures, lesions,
excessive formation of glandular cell mass and disintegration of muscles causing
internal coelomic pressure leading to mortality.

Some studies have attempted to quantify links between KEs for the ACHe
AOP. Barata et al. (2004) exposed Daphnia magna to organophosphorus and carba-
mate pesticides in order to assess the inhibition and subsequent recovery patterns of
both AChE and carboxylesterase (CbE), and related these patterns to individual
observed effects. Time course experiments were conducted using two concentra-
tions (the 24 h LC50 and 50% of the 24 h EC50) over a 48 h exposure period fol-
lowed by a 72 h recovery period to determine the concentration of each tested
compound (Chlorpyrifos, Malathion and Carbofuran) which caused a 50% inhibi-
tion of AChE and ChE (ICs), as well as the kinetics of inhibition and recovery.
Results indicated that AChE inhibition levels were greater than 50%. More specifi-
cally, 56% and 80% AChE inhibition was needed to impair survival to 10% and 50%
respectively.

Similar attempts to quantify links between AChE inhibition levels as an indicator
of KE2 linked to mortality (KE4) have been made using Caenorhabditis elegans as
the test species (Rajini et al. 2008). Specifically, the nematodes were exposed to a
number of organophosphorus (OP) insecticides for 4 h exposures over a range of
concentrations. AChE levels were determined using the Ellman et al. (1961) method
and linked to both acute lethal and sublethal behavioural effects. All OPs studied
produced significant toxicity at greater than 50% AChE inhibition.

Other studies using the freshwater shrimp (Paratya australiensis) and the com-
mon shrimp (Palaemon serratus) have also established a link between AChE inhibi-
tion following exposure to lethal concentrations OPs, demonstrating between 70%
and 100% inhibition of AChE at lethal doses (Abdullah et al. 1994; Bocquene and
Galgani 1991). Abdullah et al. also reported >40% reduction in AChE levels result-
ing from sublethal concentrations of 0.1-10 pg/L of profenofos test chemical.
Similarly studies with other invertebrate species investigating AChE inhibition in
midge larvae (Chironomus riparius) (Detra and Collins 1991) and the freshwater
gastropod Chilina gibbosa (Bianco et al. 2013) established strong links between
KE2 and KE4.

A number of other studies have shown links between the MIE and KE2, includ-
ing a study using the speckled shrimp Metapendeus monoceros (Reddy et al. 1990).
The authors reported a significant reduction in AChE activity concurrent with an
increase in ACh levels in nervous tissues.
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Fig. 5.2 Differential gene expression in C. elegans after chlorpyrifos (CPF), diazinon (DZN)
exposures, and mixture OP exposures (Adapted from Vinuela et al. (2010) (Figure 2 in original
manuscript))

5.4.1.2 -Omics Data Supporting the AChE Pathway

In the nematode C. elegans, Vifuela et al. (2010) evaluated differential gene expres-
sion after chlorpyrifos exposure. C. elegans were exposed from hatching to the L3
stage (72 h) to 0.5 mg/L of chlorpyrifos, a dose below the EC50 for reproduction
(3.5 mg/L) as well as growth (14 mg/L). Whole body RNA extracts were hybridised
to a whole-genome C. elegans array developed by the Genome Sequencing Center at
Washington University. Differential gene expression was determined using rank prod-
uct analysis with control of the false positive rate at 5%. Gene ontology information
was obtained from Wormbase (http://www.wormbase.org) and over-representation of
Gene Ontology (GO) terms was determined using a hypergeometric test (p-value cut-
off <0.01).

Chlorpyrifos exposure resulted in the differential regulation of 551 genes, with
key enriched GO terms in the categories of lipid transporter activity, lipid transport,
mono-oxygenase activity, immunity, transferase activity, iron binding, and electron
carrier activity (Fig. 5.2, Vifiuela et al. 2010). There was also a strong expression of
genes within the daf-16 pathway, such as glutathione S-transferase P 10 (gst-10)
which are involved in phase II detoxification. Vitellogenins were increased by chlor-
pyrifos exposure, as well as genes involved in the Insulin Growth Factor (IGF)
pathway.

In the marine bivalve Mytilus galloprovincialis, Dondero et al. (2011) con-
ducted exposures to chlorpyrifos for 4 days to 0.77 mg/L, equivalent to the EC50
for lysosomal membrane stability. Pathways with significant enrichment following
chlorpyrifos exposure include ion binding, transmembrane receptor activity, cata-
bolic processes, carbohydrate metabolism, iron oxidase, and oxidoredictase
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Fig. 5.3 Significant gene ontology terms associated with chlorpyrifos treatment in the maternal
rat brain (Adapted from Moreira et al. (2010))

(Dondero 2011). Chitinase activity was also found in catabolic process enriched
genes, which is consistent with results found in C. elegans following chlorpyrifos
exposures (Vinuela et al. 2010). Impacts on iron binding and iron-related processes
are also found in both of these systems, which are supported by findings that iron
levels have an impact on regulating acetylcholine receptor expression in rats (Han
and Kim 2015). Over-representation of genes within the iron binding and iron oxi-
dase pathways may be a concordant toxic response between nematodes and mus-
sels in response to OP stressors.

In a study by Moreira et al. (2010) looking at the maternal and fetal effects of
chlorpyrifos exposure, C57BL/6 mice (Mus musculus) dams were treated with up to
15 mg/kg/day of chlorpyrifos via subcutaneous injection, with the highest doses
(10, 12, and 15 mg/kg/day) resulting in decreased AChR activity in maternal brains.
RNA was extracted from fetal and maternal brains and microarray analysis con-
ducted using the affymetrix mouse whole genome 430 2.0 platform, which has over
39,000 transcripts. Differential gene expression was determined using the Limma
analysis and MAPPFinder was used to determine enriched biological processes.

Focusing on the maternal brain data, enriched GO processes include regulation
of transferase activity, lipid metabolism, carbohydrate biosynthesis, proton trans-
port, and myeloid cell differentiation (Fig. 5.3, Moreira 2010). Additional specific
biological information can be inferred from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, with the following pathways significantly
enriched by chlorpyrifos exposure in maternal brains: adherens junction, axon
guidance, ErbB signaling, GnRH signaling, and Jak-STAT signaling. Focusing on
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genes that had a peak upregulation at 10 mg/kg, genes related to lipid and phosphorus
metabolism are prevalent, and genes that are downregulated at this dose include
developmental processes, cell adhesion, nervous system development, lipid metab-
olism, secretory pathways, and synaptic transmission. In the fetal exposures, 5 out
of 43 genes related to oxidative stress were also present.

Whilst there was not complete overlap of pathways described in C. elegans and
M. musculus (Vinuela et al. 2010; Moreira et al. 2010) overlapping pathways related
to lipid and carbohydrate metabolism are prevalent in both the invertebrate and mam-
malian systems. The lack of other overlapping pathways could also an artefact of the
experimental design such as the nature of the dosing methods used (environmental
exposures versus direct injection). In another vertebrate model system, zebrafish
(Danio rerio) exposed to chlorpyrifos (35, 88 or 220 pg/L) for 24 h exhibited enrich-
ments in pathways related to morphogenesis, metabolism, transferase activity, kinase
activity, cell growth/replication, and catabolic processes (Tilton et al. 2011). These
pathways related to what was found in both invertebrate and mammalian systems,
and while some specific pathways may not intersect such as iron metabolism, this
could be due to varying genes and methods used when assigning GO categories
between model and non-model organisms. These pathway-level similarities provide
support to broader comparisons in the context of risk assessment as they provide sup-
port for similarities in key events and toxic modes of action.

One of the strengths of the AOP approach in ERA is in the value of combined
evidence. Information provided by invertebrates combined with data obtained from
mammalian, fish, and avian species using all-available evidence from in vitro, in
silico and in vivo as well as gene expression information to support the KEs and
KERs can be integrated to consider the adverse impacts of (in particular) chemical
stressors on organisms. This is particularly the case when considering chemicals
where there is a paucity of such data. However, even for chemicals for which target
effects are known and for which significant evidence exists to support the pathway
identification, the value of an AOP approach has the potential to significantly
enhance current approaches in identifying pathways across species for ERA pur-
poses. This is exemplified by the example of acetylcholinesterase inhibition, in
which the network of AOPs as a whole, including the indirect KERs, supports the
potential utility of in vitro or short-term in vivo measures of acetylcholinesterase
inhibition for identifying chemicals with potential to cause systemic neurotoxicity
at sub-narcotic concentrations. For example, Gong et al. (2010) demonstrated that
hexanitrohexaazaisowurtzitane exhibited strong neurotoxic behaviour in the earth-
worm Eisenia fetida using a range of information including behavioural observa-
tions and neurobiochemical and eletrophysiological measurements. However, at
present, while these approaches can in some cases provide strong evidence for the
activation of a particular pathway, quantitative understanding is not sufficiently
complete to accurately predict apical outcomes or potency from in vitro measure-
ments alone. In addition, well-known chemical initiators of these AOPs are known
to require metabolic activation, suggesting that chemical-specific ADME and
toxicokinetic considerations will be strong determinant of quantitative outcomes
along these AOPs (Groh et al. 2015).
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5.4.2 Other AOPs Using Invertebrates

The case study of AChE exemplifies the need for multiple data sources to identify,
support and quantify the pathway. Given the complexity of responses to a chemical
assault within an organism or the complexity of responses given the multiple stress-
ors to which organisms are exposed in the environment, single data types alone are
unlikely to be able to fully characterize subsequent impacts on the individual follow-
ing exposure to a chemical toxin. Such a problem was considered in a recent study
by De Coninck et al. (2014), where the authors limited the stressors to two. The
authors investigated the possibilities and limitations of using a genome-wide tran-
scription based approach to consider the impact of two stressors, cadmium and
microcystis (producing mycrocystin neurotoxin), on two genotypes of Daphnia
pulex isolated from two populations; one population was exposed to high levels of
cadmium (tolerant) for over a century and the other was exposed to naturally occur-
ring low a levels (sensitive). The authors were able to interrogate the effects of mix-
ture components and genotypes, both independently and in combination, to identify
interaction responses which contributed to tolerance in individuals. They identified
oxidative stress and polyunsaturated fatty acid metabolism-related pathways, as well
as trypsin and neurexin IV gene-families as candidates for the underlying causes of
genotypic differences in tolerance to microcystis. However, the approaches were less
successful in linking gene expression results from single chemical exposure to organ-
ismal responses. The study thus demonstrated the potential value of the technique for
better understanding and extricating pathways, but also highlighted that additional
techniques and information would be needed to understand key events quantitatively
and links to phenotypic and population relevant endpoints for application in risk
assessment, particularly after exposure to multiple stressors.

The study of neurotoxicity is of course not limited to AChE inhibitors alone.
Thousands of chemicals are known or thought to have neurotoxic properties and have
been studied in an environmental toxicology context. Other key neurotransmitter
pathways, in addition to the cholinergic pathway, which can be impacted and have
been studied include the Dopaminergic (DA), Serotonergic, GABAergic and
Glutamatergic acid pathways (Basu 2015). Invertebrates lend themselves well to
investigating some of these pathways more than others. The inhibition of gamma
aminobutyric acid (GABA) receptor is well-studied in vertebrates but perhaps less so
in invertebrates. However, ionotropic GABA receptors (iGABARs) have also been
described in many different phyla of invertebrates such as social amoeba (Dictyostelium
discodeum), cnidarians, mollusks, annelids, arthropods, nematodes, and chordates (as
described in the AOP under development in the AOP wiki). As such, the described
AOP has potential broad relevance across invertebrate as well as vertebrate taxa.

Perhaps more poignant is the current limited representation of invertebrate data
supporting other developing AOPs in the wiki. For example, there are currently two
AOPs under development related to N-methyl-D-aspartate receptors (NMDAR).
These are focussed primarily on mammalian brain development. The NMDA recep-
tor is a glutamate receptor and ion channel protein found in nerve cells and there is
significant evidence that such receptors are present in invertebrate species as well as
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mammalian species. The genes involved in ionotropic glutamate receptors have
been found to be significantly activated in daphnids (Toyota et al. 2015). Genes are
predicted to encode the subunits of an NMDA-type (NMDAR) iGluR necessary for
memory retention in C. elegans (Kano et al. 2008) and a partial cDNA encoding the
leech NR1 subunit of the NMDA receptor (HirNR1) has also been identified (Grey
et al. 2009). The inclusion of such information in developing AOPs will signifi-
cantly broaden their applicability across taxa.

The new developing AOP describing the alkylation of DNA in male pre-meiotic
germ cells leading to heritable mutations provides empirical evidence across the
KEs and KERs when it includes invertebrate data. Of particular relevance for the
broad applicability of the AOP is that data are reported for multiple species to sup-
port this indirect KER showing that a variety of O-alkylating agents cause male
germ cell mutations in many species including invertebrates such as Drosophila
(Stilwell et al. 2006; Raymond-Delpech et al. 2005).

5.5 Application to Environmental Risk Assessment

This section aims to illustrate how the AOP framework can be used in ERA with the
methods and tools that are currently available. Full AOPs are not currently neces-
sary to complete a robust risk assessment because the framework can still provide
valuable insights, even when only individual segments of the AOP are addressed.
The following is a conceptual approach to show the value of the AOP framework in
risk assessment. The approach here is limited to consider invertebrates. Figure 5.4
provides an overview of the AOP framework and the tools that are currently avail-
able to support the use of AOPs in environmental risk assessment.

5.5.1 QSARs

There is a long history of use of Quantitative Structure-Activity Relationships
(QSAR) in ERA for the prediction of hazard data. Many hundreds of models have
been developed to predict the aquatic toxicity of chemicals. The most widely accepted
QSAR models for prediction of aquatic toxicity are based on MoA. Therefore, to
apply QSARs to a novel chemical, it is first necessary to assign that chemical to a
MoA. This is often the most difficult step in applying QSARSs and is,therefore, the
largest potential source of error. An inaccurate assignment of MoA can lead to a
QSAR prediction several orders of magnitude different to the true value.

Although there are numerous QSARs developed that are based on invertebrate
test data, the current methods for predicting MoA from chemical structure are based
predominantly on insights from fish toxicity tests (Verhaar et al. 1992; Russom et al.
1997). It is unclear to what extent these MoA classifications are applicable across
other species, including invertebrates. Despite this, once a MoA is assigned, it is
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Fig. 5.4 AOP toolbox. The AOP framework is given in the green boxes. Lab based tools are given
as blue boxes. Toxicodynamic tools are given in grey. Toxicokinetic tools are given in yellow

generally applied across all species being assessed. The information captured in
AOPs and KEs related to aquatic toxicity, combined with application of phylogenetic
insights, will allow more informed predictions to be made across species by high-
lighting commonalities and, more importantly, differences between AOPs in differ-
ent species. It is anticipated that the grouping of chemicals for read across/QSAR
approaches will need to be updated in light of such developments as the existing
MoA classifications may not be sufficient to accommodate this level of detail.

The development of AOPs (and QSARSs) for sub-lethal AOs is a major need in the
area of ecotoxicology. As discussed above, invertebrate species are ideal candidates
for such work. As the network of pathways underlying sub-lethal effects is unveiled,
the use of QSARSs to predict KEs at lower levels of biological organisation may
become necessary.

5.5.2 InVitro Assays

While the majority of receptor binding assays are currently designed to inform
issues related to human health and pharmacology, these assays also have the poten-
tial to provide valuable insights for the identification of MoA and molecular initiat-
ing events in other species in cases where targets are conserved. Endocrine disruption
is a good example of this; despite the fact that the majority of research in this area
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has focused on vertebrate species, some of the most robust studies showing the
adverse effects of endocrine disruption have been carried out on invertebrates
(Oetken et al. 2004). For invertebrate risk assessment and AOP development, results
from such assays are rarely referenced despite the fact that that human and inverte-
brate genomes e.g., Daphnia magna, have an overlap in gene sequence of 56%
(Shaw et al. 2008). While there is a wealth of results from receptor binding assays,
it has not yet been systematically investigated how many of these assays are relevant
to a broader range of species, including invertebrates. What is required is a review
of how many of the commonly performed human health assays e.g., ToxCast (www.
epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data), are targeting pro-
teins which are also present in invertebrates. For this gene sequence comparison,
tools are available, e.g., SeqAPASS: Sequence alignment to predict across-species
susceptibility) (Lalone et al. 2013; https://cfpub.epa.gov/si/si_public_record_report.
cfm?dirEntryld=276372). This would allow currently available data to be used in
AOP development for invertebrates. In the future, it is possible that assays will be
available that can address invertebrate proteins directly.

5.5.3 Molecular Target Sequence Analysis

For all new human pharmaceuticals coming on to market, it became mandatory in the
EU in 2006 to conduct chronic endpoint studies on Daphnia, algae and early life stage
fish (Gunnarsson et al. 2008). However, this strategy alone is not predictive for all
wildlife species. The challenge of addressing the difficulties of assessing the impact of
chemical exposure on multiple species using data from a few is prominent in the envi-
ronmental risk assessment of all chemicals. It is an impossible task in environmental
risk assessment to conduct toxicity tests on every wildlife species to ensure complete
safety, let alone to address the complexity of potential ecological interactions influ-
encing sensitivity to toxicants. For this reason, tools for species extrapolation are
essential. One such method is to make use of results obtained from the comparative
genomics research community at detecting homologous elements across all sequenced
genomes and using molecular phylogenies and functional genomics data to under-
stand the functional preservation of these elements that include genes. Annotated draft
genome and transcriptome sequences are known for many species and their numbers
are increasing exponentially (Reddy et al. 2014). For example, Gunnarsson et al.
(2008) observed conservation of 1318 human drug targets across 16 species.
Remarkably this included 61% target conservation in Daphnia magna, highlighting
the significant conservation of ‘human’ targets across lower trophic level inverte-
brates. Searching for target conservation can lead to an increased efficiency in toxicity
testing by identifying appropriate test organisms (Ankley et al. 2007).

There are two main types of methods used to identify gene orthologs among spe-
cies: (1) orthology by sequence similarity searches that use local alignment algo-
rithms such as BLAST or Smith-Waterman (Altschul et al. 1990; Smith and
Waterman 1981) for all pairwise sequence comparisons; (2) phylogeny-based
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searches that aim to delineate speciation from gene duplication by comparing the
gene tree with the corresponding species tree (Goodman et al. 1979). Although the
methods for predicting the functional conservation of genes are regularly evaluated
against benchmarks that minimize known biases and pitfalls (Gabaldén et al. 2009;
Dessimoz et al. 2012), the toxicology community has developed a custom tool
(SeqAPASS) (Lalone et al. 2013), which take the peptide sequence for a known
target protein and aligns it with protein sequences from a publicly available sequence
databank. Orthologs are presumed using Blast and the output of this process is a
qualitative prediction of susceptible taxonomic groups. Despite the early stage of
the development of SeqAPASS and a need to evaluate its performance alongside the
>30 established comparative genomic databases (http://questfororthologs.org/),
several publications underline the potential benefits of such approaches (Lalone
et al. 2013; Schreiber et al. 2011; Russom et al. 2014).

There are limitations of using such tools in isolation. Only a limited number of
species across relevant taxonomic groups have genome maps which can limit the
applicability. Additionally, these tools tend to use a two dimensional protein struc-
tures and very little is known about the three dimensional structures and how the
docking site might vary on a similar protein across different species. To consider
three dimensional binding interactions is very time consuming, and the current tools
are not yet powerful enough to identify sensitive species with high levels of confi-
dence. Therefore, the molecular target sequence analysis tools can currently only be
used to identify vulnerable species groups and guide risk assessors in the selection
of test species.

Molecular —omics technologies now exist that can revolutionise testing and envi-
ronmental monitoring. These —omics technologies offer insight into the mechanisms
of toxicity by measuring the expression of 10,000s of genes and the levels of 1000s of
metabolites in an organism. These molecular data can then be used in AOPs to link
from the MIE or key event to the phenotypic responses (e.g., growth and reproduc-
tion) of organisms to pollutants. By understanding the gene expression or changes in
the metabolome in response to a given group of chemicals with a known MoA, the
resulting molecular signature can be used to identify similar responses in other spe-
cies. One of the main challenges which currently is preventing the full scale use of
such technologies in elucidating pathways is the current lack of a cohesive approach
to interpreting and differentiating gene expression data which connect to KEs (leading
to an AO by definition) from those connected to more incidental events in a pathway.

5.5.4 InVivo
5.54.1 Acute
There is a wealth of acute toxicity data for invertebrates and these data are usually fast,

easy, and relatively cheap to generate without the ethical dilemmas associated with
vertebrate species. In addition, the use of invertebrates also avoids the legal and
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regulatory constraints imposed on vertebrate species. However, the data mainly come
from a very narrow range of universally-recognized model species (i.e. D. magna, C.
elegans etc.) and provide limited information on toxicity mechanisms due to the lim-
ited range of endpoints which are traditionally recorded such as immobility and
survival.

While acute data are often criticised as too crude to provide population relevant,
mechanistic insights, it must be acknowledged that when generated carefully, these
values can provide valuable supporting evidence for AOPs through a better under-
standing of MoA. This evidence is enhanced when combined with other data such
as gene expression. Toxicokinetic concepts such as chemical activity and critical
body burden can help to define the MIE and related AOP. For example, Thomas
et al. (2015) illustrated how the use of the chemical activity framework can distin-
guish between baseline toxicants and specifically acting chemicals. The approach
utilizes an activity threshold for acute toxicity, where chemicals that exhibit activi-
ties in the range of 0.01-0.1 can be classed as acute baseline toxicants. Lower activi-
ties imply a more specific mode of action. This approach is similar to the critical
body burden approach where chemicals that have an internal concentration of
2-8 mM at acute EC50 are generally classed as baseline toxicants (van Wezel et al.
1996). Careful consideration of exposure concentrations is critical for this type of
analysis as nominal concentrations can misrepresent the actual free concentration in
the medium. Processes such as partitioning into organic compartments, evaporation,
precipitation, degradation and metabolism may significantly reduce the concentra-
tion of chemical which is available for uptake by the organism. Such processes, if
present, typically lead to an underestimation of the toxicity of the chemical.
Modelling approaches have been developed to help identify potential exposure-
related issues in advance of experimental work (Armitage et al. 2014) and advanced
passive exposure techniques have been developed to help overcome some of these
issues (Kramer et al. 2010).

5.5.4.2 Chronic

Despite some of the potentially useful aspects associated with acute toxicity data,
there is currently a call for more chronic data for invertebrate species. The use of
chronic data over acute data increases the confidence in risk assessments and allows
the use of reduced assessment factors. From an AOP perspective, however, there is
valuable information which is not captured when experiments are limited to stan-
dard test protocols. For instance, physiological and behavioural effects may provide
insights into key events or adverse outcomes. Furthermore, information on MIE can
be captured by taking samples for transcriptomics analyses. Such additional infor-
mation can support modelling and extrapolation both upwards and downwards in
the AOP. In short, we can obtain a stronger mechanistic understanding from the
results of these assays. A standard chronic toxicity assay may completely miss the
adverse event (i.e. reduction of offspring survival) or fail to identify important key
events (i.e. inhibition of growth).
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5.5.5 Use of Mechanistic Effect Models in AOPs

When assessing the potential for adverse effects in the environment following expo-
sure to a chemical, there is a need in ERA firstly to be able to determine the nature of
the adverse effect in relevant species, secondly at what concentration or dose that
impact occurs (the tipping point) and lastly how relevant that impact is, given the
actual exposure in the environment under consideration. AOPs provide a valuable
approach to be able to understand relevant mechanisms across relevant species at an
individual level. Critically, however, for use in ERA there is a need to be able to
extrapolate these findings to understanding impacts on populations. Predictive sys-
tems models are under development which can begin to account for some of the com-
plexity of chemical impacts on populations, communities and ecosystems. Models
such as Dynamic Energy Budget linked with Individual based models (DEB-IBM)
attempt to extrapolate from individual level effects to population effects (Martin et al.
2013). When combined with the AOP framework, mechanistic effect models (at the
sub individual level) even have the potential to be used to link chemical effects at dif-
ferent levels of biological organisation based on an understanding of the chemical
MoA (Groh et al. 2015); qualitative links have been established, for example, between
DEB models and transcriptomics data (Wren et al. 2011; Swain et al. 2010).

DEB modelling is a toxicodynamic modelling approach that relies on DEB theory
to link either steady-state or time-varying concentrations of a chemical to the effects
on the life history of an organism (Kooijman 2009). In simple terms, DEB considers
the total energy intake of an organism, and maps out how the organism will allocate
the available energy to the main processes in the life history: growth, maintenance,
reproduction, and maturation. Chemicals can either affect the direction of the energy
flow, or can affect the energy cost of one or more of the life history processes. DEB
uses measured time point data from toxicity experiments (growth, reproduction, sur-
vival) to determine the physiological mode of action (pMoA) — for example costs for
growth, costs for reproduction, maintenance costs, and decrease in feeding ability.
The pMoA differs from a traditional MoA in that it only considers the effect of a
chemical on the life history traits of an organism — or in other words — pMoA pro-
vides the population relevant effects of a chemical on an organism (Martin et al.
2013). Therefore, although DEB modelling occurs at the individual level, predicted
DEB parameters are suitable for extrapolating to the population level.

An example of this type of extrapolation for potential use in ERA is given in Martin
etal. (2013) where a comprehensive dataset for Daphnia magna was used to identify the
physiological mode of action (pMoA) and the subsequent dynamic population level
effects of 3,4-dichloroaniline. The data consisted of a 42 day chronic exposure study to
five continuous concentrations and a control with monitored growth, reproduction and
survival. The DEB analysis identified the most likely pMoA to be either embryonic
hazard or reproduction costs. It was not possible to definitively distinguish between
these two pMoAs — but as the dose-response curve fit with embryonic hazard as a pMoA
resulted in the highest likelihood this was used in the further analysis. Linking the DEB
parameters, chemical stress level and pMoA to an Individual Based Model (IBM)
resulted in accurate predictions of dynamic population level effects of the stressor.
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Fig.5.5 Anoverview of the species distribution in peer reviewed publications relating to Dynamic
Energy Budget theory

DEB models can be parameterized for any species, although initial parameteriza-
tion of a new species usually requires extensive measurements. However, of the 68
papers identified through the website of the department of Theoretical Biology of
the VU University of Amsterdam (http://www.bio.vu.nl/thb/) and the debtox infor-
mation page of Tjalling Jager (http://www.debtox.info/index.html), which deal with
the impact of chemical stressors on the individual level, 55 were based on data from
invertebrate studies. The most frequently used species were Daphnia magna
(n=12), Lymnaea stagnalis (n = 11), Mytilus edulis (n = 8), Caenorhabditis elegans
(n = 6) and FEisenia andrei (n = 6) (Fig. 5.5). Invertebrates lend themselves to DEB
modelling because of their relatively short life-cycle, ease of culturing, and feasibil-
ity of measuring the necessary DEB parameters. Whilst the examples of the exten-
sion of DEB theory to link AOPs to population level effects is not yet prevalent, for
invertebrates at least, DEB provides a tangible opportunity to enable AOPs poten-
tially to be integrated into an environmental risk assessment approach considering
population and potentially community level impacts.

5.6 Conclusion

Traditional ERA approaches used to understand the impacts of chemical exposure
rely heavily on short-term acute and/or chronic in-vivo toxicity tests using various
model species combined with a variety of assessment factors to derive toxicity
thresholds. However, since these factors lack a mechanistic basis, they have limited
potential for quantitatively estimating cross-species toxicity thresholds. AOPs pro-
vide a real opportunity to create a future framework for ERA based on a mechanistic,
exposure driven understanding at its core. They also enable the exploitation of the
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wealth of knowledge and data of traditionally discrete disciplines such as Toxicology
and (Eco)toxicology, Systems Toxicology and Environmental Genomics in helping
to define such mechanistic challenges in ERA as cross-species KE homology.

In such a framework, invertebrates offer some unique advantages over verte-
brates in the development of AOPs. Their short life cycle and relative ease in
which large numbers of organisms can be studied provides valuable opportuni-
ties to study the impact of chemical exposure at environmentally relevant con-
centrations over chronic time spans. Relatedly, economic as well as ethical
factors also influence the type of testing typically conducted for ERA; for exam-
ple, the time and labour required to perform chronic toxicity studies on whole
vertebrate organisms as well as the call for a reduction of animals used for testing
limits their use (REACH 2006). Invertebrates also lend themselves to genomic
and phylogenetic investigation and allow the study of sublethal key events. This
is facilitated by the fact that the basic biology of many invertebrates is well-
understood, with a number of model species with fully mapped genomes. Perhaps
one of the primary potential limitations of using invertebrates is that they are not
biologically representative of vertebrates due to differences in their physiology.
It is certainly true that differences will be observed ranging from individual gene
responses to depuration processes and for certain pathways the presence or
absence of receptors will drive differential responses across species. Yet, such
differences are also observed even among more closely related vertebrate spe-
cies. However, despite this, focussing on similarities rather than the differences
still allows significant conclusions to be drawn between species. Importantly,
there is strong conservation in drug targets between humans and invertebrates,
thereby demonstrating the applicability of using invertebrate species as a model
for potential effects on vertebrates. Comparative genomic methods and databases
including SeqAPASS may help to increase the ability to read across the results of
pathways in one species to other species for such cross species extrapolation.
Finally, and perhaps most importantly, the use of invertebrate models begins to
allow us to consider realistic options for extrapolating from individual to popula-
tion effects. Through the development and use of such models as those using
Dynamic Energy Budgets linked with population models, the potential for
extrapolating sub-individual events described by an AOP to population level
effects relevant for ERA decision making becomes a genuine possibility.
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Chapter 6
Non-model Species in Ecological Risk
Assessment

Markus Hecker

Abstract Ecological risk assessors are increasingly recognizing the need for objec-
tively characterizing the sensitivity of specific ecological receptors of interest to
environmental contaminants. Current testing strategies in support of ecological risk
assessments primarily rely on extensive animal testing, and on extrapolation from
standard laboratory model species to native species of relevance in local ecosys-
tems. In addition to the huge costs and large numbers of animals needed, it has been
shown that these approaches are often not adequately predictive, and thus, protec-
tive of organisms of interest. This chapter reviews the current challenges and devel-
opments in ecological and chemical risk assessment of non-model ecological
species with specific reference to the current paradigm shift in toxicity testing from
classic empirical live animal testing approaches to alternative concepts. The status
and applicability of (high-throughput) in vitro systems, predictive toxicity-pathway
models such as adverse outcome pathways (AOPs), quantitative structure-activity
relationship (QSARs), and computational approaches are discussed in context with
their potential to address current uncertainties in cross-species extrapolation of
chemical hazards and associated regulatory needs. Specifically, comparative ‘omics
and systems biology approaches are increasingly seen as powerful tools for cross-
species extrapolation based on the assumption that structural and functional simi-
larities or differences of specific molecular targets or pathways are likely to be one
of the main drivers of the intrinsic sensitivity of organisms to contaminants.
However, there are a number of uncertainties that remain to be addressed before
these approaches and associated computational tools such as USEPA’s SeqAPASS
tool become a viable option in non-model species risk assessment. Main concerns
include the limited number of mature toxicity pathways currently available, their
limited taxonomic application and their mostly qualitative nature. Furthermore,
large data gaps exist with regard to toxicodynamic and toxicokinetic properties of
chemicals in ecological species that determine target site concentrations, and that
are critical factors influencing intrinsic sensitivity. The chapter concludes by
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providing a theoretical road map for future research building on the current promis-
ing advances in the field of ecotoxicogenomics and computational biology com-
bined with alternative testing approaches using in vitro systems and early life stage
animal tests to anchor pathways to species-specific biological outcomes.

6.1 Introduction

Legislation in North America, Europe and other parts of the world, such as the
Canadian Environmental Protection Act (CEPA), the European Union’s Registration,
Evaluation and Authorization of Chemicals (REACH), the U.S. Safe Drinking
Water Act (SDWA), and the U.S. Toxic Substances Control Act (TSCA), mandates
the assessment of risks of chemicals to wildlife and human health. Under these
programs, regulators and industry are faced with the challenge to assess the toxico-
logical risks associated with an ever-increasing number of chemicals used by soci-
ety, and that are ultimately released, either intentionally or unintentionally, into the
environment. Assessment of the ecological risks of exposure to a certain pollutant
or a complex mixture of contaminants follows a standardized approach (e.g. Suter
et al. 2000) that aims to assess the probability of an adverse ecological outcome
such as a fish kill or the impact on the fitness of a population or community of
interest.

One of the key steps in ecological risk assessments of chemicals is the character-
ization of the hazard of the chemical or mixtures of concern to biological receptors
of interest. This is based on establishing so called toxicity reference values (TRVs)
that are derived by identifying threshold or effective concentrations such as No
Observable Adverse Effect Levels (NOAELs)/Lowest Observable Adverse Effect
Levels (LOAECS) or concentrations at which a certain effect level occurs (e.g. LC,
or EC,), respectively. To be of regulatory relevance, these TRVs are based on mea-
surements of apical outcomes including survival, reproduction, growth and devel-
opment (Calow et al. 1997; Suter 2004). Current testing strategies for the
determination of TRVs rely on extensive animal testing using selected model spe-
cies that are easy to culture in the laboratory and for which standardized testing
protocols exist. Data derived from these standard laboratory model species is then
extrapolated to predict the potential risks to native receptors of interest in local eco-
systems or to humans. These strategies pose a daunting challenge to regulators and
industry, as the number of chemical substances for which toxicity data are required
under the above legislations is tremendous (e.g., 23,000 under Canada’s Chemical
Management Plan (CMP), 84,000 under the US Toxic Substances Control Act
(TSCA), and 107,000 under the European Union’s Registration, Evaluation,
Authorization of Chemicals (REACH)). In addition to the ethical concerns sur-
rounding the use of large numbers of live animals needed to fulfill current testing
requirements, the associated time and monetary costs are prohibitive. For example,
the U.S. EPA estimates that it would take 3—4 years and one to 20 million US dollars
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to test a single chemical under their current testing mandates, and it was estimated
that testing costs resulting from the European Union REACH program would
amount to approximately 9.5 billion Euro and require 54 million animals (Rovida
and Hartung 2009).

In addition to the above-mentioned economic and ethical concerns with respect
to current hazard assessment approaches, there is a great amount of uncertainty
associated with their application in ecological risk assessment. The assessment of
the hazard of a contaminant to an ecological receptor of interest predominantly
relies on data generated with acute (short-term) in vivo toxicity studies with a few
selected laboratory model species and, to a much lesser extent, on sub-chronic or
chronic experiments trying to characterize the sublethal effects or the mode of
action of a chemical. These data are then extrapolated to native species of relevance
or interest in local ecosystems (further termed as “non-model species”). There is
great uncertainty associated with extrapolation from acute studies that mostly deal
with effects on survival to field scenarios representing long-term exposures at low
concentrations. Uncertainty also exists with regard to the extrapolation from model
laboratory species to non-model species and requires the application of safety fac-
tors, which sometimes can be as great as several orders of magnitude, to ensure risk
assessments are sufficiently protective (CEC 1996; Forbes and Calow 2002). While
such safety factors typically tend to provide a relatively “safe’” answer, in many situ-
ations they are likely to significantly overestimate the true risk that a chemical poses
to a receptor species. This can result in unrealistic hazard assessments (Chapman
et al. 1998) that could trigger unnecessary remediation measures, which themselves
can have significant impacts on the environment and are very costly. In other cases,
extrapolation from acute to chronic data or among species or taxonomic classes is
not acceptable (Allard et al. 2010). Given that data regarding acute toxicity is based
solely on mortality, it ignores the intricacies of toxic responses associated with
equally important apical responses such as reproduction, development and growth,
and which may be much more sensitive endpoints. Similarly, it was shown that with
increasing taxonomic distance the application of species extrapolation tools such as
interspecies correlation models become increasingly uncertain, resulting in unac-
ceptable error rates (Rainmondo et al. 2008).

In summary, knowledge about the hazards that environmental chemicals pose to
the diversity of non-model species is critical to enable objective ecological risk
assessments. However, traditional species extrapolation approaches that primarily
rely on live animal testing and extrapolation from laboratory model species are
insufficient for reliably predicting the sensitivity of the vast diversity of ecological
species to the large number of chemicals that need to be tested under current legisla-
tions. This book chapter reviews the current challenges associated with ecological
risk assessment of non-model species and summarizes recent developments and
approaches to address these challenges. Particularly, this paper examines recent
strategies such as functional omics, the adverse outcome pathway (AOP) concept,
computational methods, and in vitro testing that are proposed as the path forward to
address current limitations of both chemical and ecological risk assessment
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practices, and specifically, how they may help overcome the barriers associated with
species extrapolation.

6.2 Factors Contributing to Uncertainty in Non-model
Species Risk Assessment

6.2.1 Extrapolation from Standard Laboratory Models
to Native Species

Considering the multiplicity of organisms inhabiting earth’s ecosystems, the wide
range of their susceptibilities to environmental pollutants, and the limited amount of
species-specific toxicological information available, accurate prediction of risks of
chemical contaminants to ecosystems represents a huge challenge to risk assessors.
For example, assessment of contaminant risks to cold freshwater systems is rou-
tinely based on selected biotests with one or two species of algae, a few species of
crustaceans, midge larvae and certain model species of fishes, assuming that they
are reasonable representatives of aquatic communities. However, they often ignore
other key elements of these ecosystems such as microbial communities, other spe-
cies of insect larvae, worms, snails, amphibians, native fishes, etc. Similar limita-
tions are associated with terrestrial risk assessment strategies/guidelines (Fernandez
et al. 20006).

Traditionally, it has been assumed that organisms from the same class or family
would have comparative sensitivity to environmental pollutants, and thus, the use of
standard laboratory organisms would be sufficiently protective of wildlife species
(e.g. arainbow trout would allow to predict sensitivity of a sturgeon or lake trout, or
a chicken would be predictive of an eagle). However, within the past decade it has
become apparent that these assumptions often are not true, and that such extrapola-
tions are either not sufficiently protective or vastly overestimate the sensitivity of
phylogenetically related organisms to chemical toxicants (Allard et al. 2010;
Sanderson and Solomon 2009; Vardy et al. 2013). A second uncertainty stems from
the large diversity of species across ecosystems. Site-specific risk assessments are
based on the selection of receptors of concern from a list of species that are likely to
be exposed at the site of concern. The receptor(s) of concern should represent one
(or a few) species that are considered sensitive to the stressor of interest, potentially
threatened or endangered, or ecologically significant, etc. However, selection of the
appropriate receptor is often hampered by a lack of information that is available for
the majority of species in an ecosystem of interest, including their specific physio-
logical traits that would either render them vulnerable or tolerant to certain contami-
nants (see Sect. 6.3).

To fill some of the existing data gaps for non-standard test species (i.e. native
species of concern) the risk assessment community often relies on short-term
(mostly acute) toxicity tests that typically assess the effects of high concentrations
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of a chemical on survival of the test species. These tests are quickly completed
(typically within 48 to 96 h), and generate comparable data based on standardized
test protocols. The most common use of these data is for the construction of species
sensitivity distributions (SSDs) that aim to derive hazard concentrations protective
of the majority species in an ecosystem of concern (Rainmondo et al. 2008).
However, there are multiple drawbacks with this approach that render it of limited
usefulness for risk assessments of non-model species (Allard et al. 2010; Baird and
Van den Brink 2007):

1. Acute studies typically use mortality as the sole endpoint, which, depending on
the contaminant tested, may result in an unacceptable underestimation of risk
(even after application of large uncertainty factors) for certain chemical groups
with very specific modes of action (e.g. some endocrine disruptors, immunotoxi-
cants, etc.);

2. They mostly ignore toxicokinetic and toxicodynamic (accumulation, distribu-
tion, metabolization and elimination [ADME]) properties of a contaminant in a
given test species, and which are critical especially for bioaccumulative or bio-
logically (metabolically) active compounds;

3. They mostly focus on one life-stage (typically early life stages) that is consid-
ered most sensitive to the exposure with contaminants. However, data obtained
with an early life-stage test does not allow for conclusions to be made with
respect to critical biological functions unique to adulthood such as
reproduction;

4. They do not consider life-traits/-history of the target species, and which deter-
mine when, for how long and through what route organisms may be exposed;
and

5. They are limited to species that can be maintained for certain periods or cultured
in the laboratory. As a consequence, special interest species such as some endan-
gered species that are difficult to obtain or to maintain under laboratory condi-
tions can often not be assessed.

Increasingly, attempts have been made to develop and use specialized assays for
some non-common test organisms (e.g. Doering et al. 2014; Dwyer et al. 2005;
Fairchild et al. 2005; Vardy et al. 2011, 2013; Wang et al. 2007), as well as to inves-
tigate the sub-chronic or chronic effects of contaminants on organisms of interest
with the aim to generate information on more subtle effects (e.g. reproduction,
development, behavior). In doing so, it has become apparent that complete repre-
sentation of the diversity of organisms in hazard assessments using standard eco-
toxicological approaches will not be feasible using current standard testing
approaches. Even if increased resources were to be made available for the testing of
additional target receptors of interest, there are a number of ethical and logistical
hurdles that will be difficult to overcome. This is particularly true for species of
special interest such as endangered species and long-lived species.



112 M. Hecker

|

Toxicant-Biomolecule
Interaction(MIE)

Biological Effect

Fig. 6.1 Factors affecting the susceptibility of a species to environmental contaminants

EE Ecological Traits Life-History i
2 '
1S !
= !
2 External ;
= Exposure |
= :
i Toxicokinetic/ i
E Toxicodynamic ;
: Processes |
1= Internal Exposure i
2 at Target Sites i
o) i
3 !
1© ;

6.2.2 Causes for Differences in Species Sensitivity
to Contaminants

As discussed in the previous sections, there are a number of uncertainties with strat-
egies used to extrapolate from standard laboratory model species to native species
of relevance to ecological risk assessments. These uncertainties are a function of the
great differences in the inherent sensitivity of each species to contaminants, which
is rooted in their unique physiology, life-history, ecological niche, evolutionary
traits, adaptation and differences in ADME of contaminants (Fig. 6.1). The rele-
vance of biological or life history traits and their role in predicting species sensitiv-
ity in context with ecological risk assessments have already been thoroughly
reviewed elsewhere (e.g. Baird and Van den Brink 2007; Calow et al. 1997), and
will not be discussed in great detail here. It is acknowledged that the understanding
of the life history and ecological traits of a species such as generation time, time to
maturity, ecological niche (e.g. benthic vs pelagic), etc., are important when con-
ducting ecological risk assessments as it will determine the likelihood of external
exposure during critical life stages or periods, as well as the route and duration of
exposure. However, for any exposure to result in an adverse effect, the chemical or
mixture of chemicals of concern has to interfere with the function or structure of
certain bio-molecules (also termed the molecular initiating event [MIE]) that lead to
the alteration of normal physiological functioning of an organism, and which ulti-
mately manifests as reduced fitness. Therefore, the key to understanding the sensi-
tivity of a species to a contaminant or a chemical mixture is knowledge about its
specific mechanism of action. A second critical factor that determines the sensitivity
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of a species is the ADME properties of a compound that determine internal expo-
sure at the molecular target sites of a toxicant (Jager et al. 2011; Nichols et al. 1990).

6.2.3 Chemical Modes of Action and Their Role
in Determining Species-Specific Sensitivity

It has been recognized that the sensitivity of an organism to a toxicant is often
driven by the MIE that then initiates a cascade of downstream events ultimately
causing an adverse biological effect. Inter-species differences in sensitivity to
chemical exposure may then arise because of differences in molecular targets,
which have undergone changes throughout evolution (ECETOC 2007; Gunnarsson
et al. 2008; Celander et al. 2010). In cases where biological properties such as basic
cellular structures and functions of cells are highly conserved throughout evolution,
chemicals that interact with such processes are assumed to be comparable in their
toxicity among diverse species (Ashauer and Escher 2010; Vaal et al. 1997).
Examples include persistent hydrophobic chemicals that have the tendency to accu-
mulate in cell membranes, leading to alterations of the structure and functioning of
these membranes (i.e. non-polar narcosis; Rand 1995). In contrast, a large number
of chemicals elicit toxic mechanisms that are highly specific to certain physiologi-
cal traits, and thus, to certain groups of organisms to which these traits are unique
or where they play important biological roles. Examples include disruption of func-
tions such as photosynthesis in plants and algae or the production of egg yolk pro-
teins in oviparous animals. Some xenobiotics only interact with very specific
molecules such as receptors or enzymes while others are rather unspecific and affect
multiple processes simultaneously or are changed in their toxicological properties
through metabolic processes. While chemicals that interact only with specific bio-
molecules such as receptor proteins allow for the relatively simple categorization of
chemicals through approaches like quantitative structure-activity relationships
(QSAR) as well as the development of risk assessment tools such as relative potency
factors (RePs) as in the case of dioxin-like chemicals (DLCs; e.g. Van den Berg
et al. 20006), reliable effect assessment of chemicals that act via non-specific or mul-
tiple mechanisms is a greater challenge (Escher and Hermens 2002).

The best-characterized examples of the specific interactions of a substance with
a certain target molecule is demonstrated by chemicals that are ligands of nuclear
receptors. For example, studies have shown that the MIE that is likely to determine
in vivo sensitivity of certain vertebrate groups to DLCs is sensitivity of activation of
the arylhydrocarbon receptor (AhR). It was demonstrated that key amino acids in
the ligand binding domain of the AhR determine affinity of binding and are the
molecular basis for differences in sensitivity to DLCs among strains of mice (Mus
musculus) (Pandini et al. 2007) and among species of birds (Farmahin et al. 2013;
Head et al. 2008; Karchner et al. 2006). Similarly, key amino acids in the ligand-
binding domain of the AhR drive differences in sensitivity to activation between
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AhR1a and AhR1p of the African clawed frog (Xenopus laevis) (Odio et al. 2013)
and between AhR1a and AhR2 of zebrafish (Danio rerio) (Fraccalvieri et al. 2013).
In addition to studies of the AhR, some studies have attempted to link differences in
primary structure of the estrogen receptor (ER) with binding affinity of xenoestro-
gens among selected mammals, birds and fish (e.g. Matthews et al. 2000; Toyahama
etal. 2015). Interestingly, a thorough review of the pertinent ecotoxicological litera-
ture revealed that with a few exceptions, including those discussed above, there is
almost a complete lack of published research that investigated the role of the struc-
ture of molecular targets and how it may drive species-specific sensitivity to xeno-
biotics. This is surprising given the importance of the MIE and associated
molecule-toxicant interactions, especially when considering that identification of
specific molecular targets is common practice in the fields of drug discovery and
development of pesticides. One of the main reasons for this may be rooted in our
lack of understanding of the physiology of many of the species native to ecosystems
of concern. While there is a thorough coverage of the physiology of standard labora-
tory vertebrate species such as mice, chicken, quail, zebrafish, rainbow trout, and
many insect species because of their role in pharmacological and agricultural
research, very little is known about the myriad of species inhabiting the diverse
ecosystems of our planet (e.g. LaFont 2000). However, the current advances in “big
data” ‘omics and systems biology are likely to greatly stimulate research into the
basic biology of non-model species in ecotoxicology.

6.2.4 Toxicokinetic and Toxicodynamic Considerations
in Predicting Species Sensitivity

One of the main limitations of the mechanism-based characterization of species
sensitivities is the lack of the ability to integrate reliable metrics of the internal
exposure concentrations of the chemical of concern. Toxicologists have long recog-
nized that the ability of an organism to cope with a toxic insult is a function of its
physiological “machinery” that deals with the ADME of a chemical. For example,
in a review by Wang and Rainbow (2008) it was shown that metal bioaccumulation
was a function of different ion regulation (e.g. ion-channels or — pumps) and detoxi-
fication (e.g. induction of metallothionein and heat-shock proteins) strategies among
different fresh- and saltwater species of fishes. Another example is the difference in
inducibility of P450 phase I metabolic enzymes among different species of mam-
mals, and which significantly affects the genotoxic/mutagenic potency as well as
elimination of certain drugs (e.g. tamoxifen) and PAHs (e.g. benzo(a)pyrene) (Lewis
et al. 1998). For example, organisms with a slower metabolism may be at lesser risk
from exposure to compounds that need to be metabolically activated to elicit toxic-
ity (e.g. certain PAHs require metabolic activation to become genotoxic). However,
these organisms may be at greater risk from exposure to chemicals that are
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metabolically detoxified because of their slower metabolic activity. Other examples
of factors that significantly influence the internal exposure of organisms are surface
to volume ratio, lipid content, and life span, with the latter two being of great rele-
vance with regard to bioaccumulative contaminants (reviewed in Escher and
Hermens 2002).

Increasingly sophisticated models are being developed to predict the exposure
concentration at the biological target site of an organism. The simplest practitioner
models include toxicokinetic (TK) and toxicodynamic (TD) models. TK models
can predict the time course of a toxicant’s concentration at the site of toxic action,
including ADME processes (i.e. what happens with the chemical in an organism).
TD models can predict the dynamics of a toxicant’s interactions with a biological
target site and the resulting effects. TD models can be simple mathematical descrip-
tions of the kinetics of induction of toxicological effects, e.g. the study of carcino-
genesis, but ideally are based on a quantitative description of the underlying
mechanisms of toxicity (Jager et al. 2011). Traditional TK modeling approaches are
more pragmatic and assume organisms to consist of a single homogeneously mixed
compartment that accumulates and eliminates chemicals at specific rates (Barron
1990). By far, the most comprehensive and sophisticated state-of-the-art models in
this field are physiologically based TK (PBTK) models. In this type of model,
organs and tissue groups (e.g. liver and kidney) are explicitly represented by their
weight, their lipid and water content and the rate at which they are perfused by the
circulating blood (Nichols et al. 1990). Thus, PBTK models are capable of more
precisely predicting the internal concentration of chemicals in an animal’s body and
in specific organs at any time post exposure.

As discussed above, significant progress has been made in context with develop-
ing models that can predict the ADME properties of chemicals in organisms. One of
the main limitations of the routine application of TK, TD or PBTK models in eco-
logical risk assessment is the lack of information on the physiological parameters
for species other than the current standard laboratory models. To be useful, these
models will have to be calibrated for each species of interest based on its specific
physiological properties such as lipid and water content of target tissues, metabolic
activity, cardiac output and distribution of blood flow among tissues (Ashauer et al.
2011). Interestingly, a number of recent studies found that ADME properties devel-
oped for humans were reasonably predictive of pharmacological responses in fish
(Perkins et al. 2013). For example, the ratio of the acutely toxic and therapeutic drug
doses derived from pharmacological studies with mammals was shown to be predic-
tive of chronic toxicity of the same pharmaceuticals in fish (Berninger and Brooks
2010). Also, the use of species-specific in vitro (liver) models showed good promise
with regard to deriving parameters such as hepatic clearance rates that can be used
to parameterize species-specific PBTK models (Brinkmann et al. 2014; Han et al.
2007). In this context, recent developments in 3D tissues cultures and “mini-organs”
are anticipated to advance the way by which these models can be parametrized and
calibrated and will likely increase their accuracy.
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6.3 Novel Developments and Tools

The limitations of traditional ecological risk assessment approaches to address the
hazard assessment needs for the tens of thousands of chemicals mandated by cur-
rent legislations in Europe, North America, and some Asian countries have led to a
paradigm shift in toxicity testing (Villeneuve et al. 2014a, b). As a consequence,
toxicity testing in the twenty-first century is moving from classic approaches that
use empirical live animal testing to alternative concepts including (high-throughput)
in vitro systems, predictive toxicity-pathway models such as adverse outcome path-
ways (AOPs), quantitative structure-activity relationship (QSARs), and computa-
tional approaches (ECHA 2015; Kavlock et al. 2012; NCR 2007; Villeneuve and
Garcia-Reyero 2011). This section explores the utility of these novel concepts and
approaches to advance our ability to reliably predict sensitivity of non-model
species.

6.3.1 Toxicity Pathway-Based Approaches in Cross-Species
Extrapolation

Considering differences in the conservation and evolution of molecular targets of
chemicals, their biological context/applicability, and the potential that inter-species
differences in susceptibility to environmental pollutants may arise at multiple levels
of organization, it becomes apparent that there is unlikely to be one approach that
can be used to characterize and predict species sensitivity across all phyla and taxa.
However, as recently reviewed by Perkins et al. (2013), there is evidence that under-
standing the specific molecular perturbations caused by a chemical that can be
linked to an adverse outcome, and the conservation of these perturbations across
certain species or organism groups, represents a promising starting point for cross-
species extrapolation. Within animal groups, most fundamental pathways such as
development, reproduction, stress response, etc. tend to be highly conserved
(Adamska et al. 2007; Ankley and Johnson 2004; Rand-Weaver et al. 2013; Simmons
et al. 2009; Vallee et al. 2008). This is also likely to be true for the majority of the
macromolecules that regulate these pathways, such as receptors, enzymes and other
functional proteins that share common ancestral genes. In fact, decades of pharma-
cological research demonstrated that non-mammalian model species such as the
zebrafish and even invertebrates such as Drosophila melanogaster express highly
conserved molecular pathways directly applicable to humans and other mammals
(reviewed in Perkins et al. 2013), clearly showing the applicability of highly con-
served pathways to extrapolate among even very distantly related species (Garcia-
Reyeroetal. 2011). It needs to be noted, however, that gene function and conservation
is less and less conserved with increasing evolutionary distance, especially for pro-
cesses that do not have a shared evolutionary history. Examples include pathways
involved with development of skeletal structures or reproductive processes in
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vertebrates vs invertebrates, or the restriction of certain metabolic pathways, such as
the glycan pathway, to metazoans due to its specific role in processes associated
with multicellularity (Peregrin-Alvarez et al. 2009).

The recent advent of advanced, high-content and —throughput ‘omics and bioin-
formatics has made it possible to efficiently and reliably probe entire organismal
systems and to describe the complete molecular machinery driving these systems
within relatively short timeframes. In context with ecological risk assessment of
chemicals, ‘omics are increasingly seen as a powerful tool to characterize toxicity
pathways among species, and to identify conserved pathways or molecular targets
affected by contaminants (Perkins et al. 2013). One framework that has gained sig-
nificant attention with regard to characterizing toxicity pathways of chemicals is
that of the adverse outcome pathway (AOP). AOPs organize and evaluate biologi-
cally plausible and empirically-supported links among different levels of biological
organization (Ankley et al. 2010; Villeneuve et al. 2014a). They systematically link
molecular-level perturbations (e.g. the MIE) to an adverse outcome of regulatory
relevance through the characterisation of a series of Key Events (KEs). One of the
most common starting points within an AOP to investigate the intrinsic sensitivity
of an organism to a chemical is to compare the molecular structures (e.g. amino-
acid sequences) at the MIE (see Sect. 6.2.1; LalLone et al. 2013a). For example, it
has been demonstrated within vertebrate classes such as birds, mammals and fish
that the large differences in the sensitivity to DLCs are likely to be driven by small
differences in critical amino acid residues in the ligand-binding pocket of the AhR
(Karchner et al. 2006; Doering et al. 2014). Comparable relationships are hypothe-
sized to also occur for other molecular targets, particularly receptors such as the ER
(Matthews et al. 2000; Toyahama et al. 2015). However, although current computa-
tional cross-species extrapolation approaches such as the SeqAPASS model (Sect.
6.2.1) assume a direct link between structure of target molecules and susceptibility
to certain contaminants, there is little direct evidence for similar relationships for
molecules other than the above discussed receptors, highlighting the need for addi-
tional research in this field.

While information on the sequence and functional homology of a molecular tar-
get provides valuable insights for explaining the differential susceptibility of organ-
isms to contaminants, differences in the role of the MIE and/or KEs in downstream
biological functions can provide additional information. For example, while the
MIE of binding of agonists to the estrogen receptor may be highly conserved
between oviparous and viviparous animals, the role of KEs such as production of
vitellogenin represents a critical outcome in one class of organisms (e.g. fishes) but
not in another (e.g. mammals) resulting in very different biological outcomes
(Fig. 6.2). In other cases, interspecies differences in susceptibility to certain con-
taminants may arise through changes in less defined structural features such as cel-
lular membranes or even physiological processes that are only indirectly related to
the interaction with the target site, and for which structural sequence information
may not provide plausible explanations to the differences observed. This applies in
particular to species differences in catabolism or metabolism of endogenous and
exogenous ligands, where differences in ADME properties influence the
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Fig. 6.2 Examples of hypothetical adverse outcome pathways of nuclear estrogen receptor medi-
ated estrogenic responses in oviparous vertebrates and mammals leading to reproductive impair-
ment in adult organisms

concentrations at the biological targets (e.g. critical body residue), and thus, become
a driver in susceptibility considerations (ECETOC 2007; Escher et al. 2011).
Therefore, to be realistic and useful to regulators, cross-species extrapolation mod-
els that use conserved molecular targets or toxicity pathways to predict the sensitiv-
ity of an organism to contaminants need to integrate the TD and TK properties of
these chemicals in a given species. This is supported by a recent review of data
generated by USEPA’s Endocrine Disruptor Screening Program (EDSP) that com-
pared the responses to 12 model compounds between the 21 day fathead minnow
reproductive assay and a selection of rat assays (uterotrophic, Hershberger, and
male and female pubertal assays) (Ankley and Gray 2013). The authors confirmed
that the effects of potent (xeno)estrogens on ER-mediated pathways that are highly
conserved among vertebrates were in general predictable among species, even con-
sidering the different physiological manifestations in oviparous fish versus vivipa-
rous mammals. However, when comparing findings obtained for a weak ER agonist,
bisphenol A, two of the three rat assays produced negative results when compared
to the fish assay that tested positive. The likely cause for these differences was that
due to the oral dosing route used for rats compared to waterborne exposure of fish,
in rats most of the bisphenol A was likely to have been cleared from the system by
first-pass hepatic metabolism, further highlighting the role of ADME as well as
types of exposures in cross-species extrapolation. Interestingly, effects of chemicals
mediated through the AR or disruption of sex hormone steroidogenesis were less
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variable when comparing outcomes of the fathead minnow with the rat assay.
Overall, however, these data suggest that highly conserved biological pathways
such as hormone receptor-mediated or steroid synthesis-mediated reproductive
functions can be used as a starting point in AOP-based cross species hazard
assessments.

Despite evidence that identification of conserved toxicity pathways might be
useful for cross species extrapolations of toxicity, there are a number of remaining
uncertainties that need to be addressed before approaches such as conserved toxic-
ity pathways will be truly useful for ecological risk assessors. The major shortcom-
ing with regard to using AOPs in this context is the lack of maturity — or the
existence — of AOPs for most chemicals of regulatory concern and a strong bias in
availability of AOPs toward vertebrates. This represents a particular concern when
considering bacteria, plants and invertebrates. It is, however, acknowledged that
clearer definition and differentiation of AOP applicability for a given regulatory
need may assist in using data even if the AOP has not been fully developed (Tollefsen
et al. 2014). Another main concern includes the mostly qualitative nature of
approaches such as the AOP framework, which limits the prediction of the sensitiv-
ity across species as this is inadvertently linked to exposure concentrations (internal
and external). As reviewed by Perkins et al. (2013), factors such as exposure routes
for e.g. terrestrial (typically non-continues oral exposures) and aquatic (typically
continuous immersion) organisms render the comparison among these species dif-
ficult given the differences in ADME properties solely associated with exposure
route and frequency. Similarly, approaches are needed to integrate toxicokinetic and
—dynamic properties into current qualitative toxicity pathway models in order to
successfully use this approach for cross-species sensitivity assessments. Also, it
needs to be considered that each of the examples provided above are based on stan-
dard model species such as zebrafish, fathead minnow, rainbow trout, rat, mouse,
etc., for which extensive knowledge of their basic physiology, basal metabolic activ-
ity, etc. as well as large toxicological datasets for many chemicals are available.
However, no such information is available for the vast majority of the non-model
species of interest. This is particularly true for invertebrates, but even for large
groups of vertebrates, such as the fishes for which there are greater than 30,000 spe-
cies and very little information is available. For example, while being considered of
great priority in context with ecological risk assessments in North America and Asia
due to their endangered status, we know very little about the vulnerability to envi-
ronmental contaminants of ancient fishes such as sturgeons that are evolutionary far
removed from most of the modern teleosts. This is concerning as recent studies have
shown that some sturgeon species tend to be unique in their responses to certain
contaminants. For example, white sturgeon (Acipenser transmontanus) were shown
to be among the most sensitive species of fishes to the exposure with selected heavy
metals (e.g. copper) during certain early life stages, and which renders the protec-
tiveness of current water quality standards for these organisms questionable (Little
et al. 2012; Vardy et al. 2011, 2013). One hypothesis for this high sensitivity is a
blunted ability to mount a cellular stress response against metal ions as demon-
strated by a very low inducibility of functions involved with amelioration of toxicity
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including expression of metallothioneins that sequester metals as well as genes that
mediate anti-oxidant responses (Doering et al. 2015; Tang et al. 2016). This lack of
compensatory response is likely to have a significant impact on the TK/TD proper-
ties of metals in sturgeon, affecting internal exposure to metals at target tissues.

6.3.2 Species Read Across Approaches Using Conserved
Molecular Targets: SeqgAPASS

As discussed in Sect. 6.2, conservation of molecular targets of chemicals with spe-
cific modes of action is likely to provide some information regarding the intrinsic
susceptibility of a species. This assumption has been extensively used in the devel-
opment of pharmaceuticals for human and veterinary use as well as in the develop-
ment of pesticides to target specific pest species. This section provides a review of
a recent initiative by the USEPA that explores the concept of molecular target con-
servation as a tool to predict the susceptibility to chemicals with specific modes of
action across phylogenetic taxa (LalLone et al. 2013b). Specifically, this initiative
investigates the utility of protein sequences/structure similarity in predicting the
likelihood of susceptibility of any species for which sequence information is avail-
able, and which is termed Sequence Alignment to Predict Across Species
Susceptibility (SeqAPASS). SeqAPASS is a computational tool that aligns the
sequence of the functional molecule representing a MIE, such as a receptor or
enzyme, which has been shown to trigger an adverse effect. It relies on existing
information on the amino acid sequence of proteins and their structure. Initial case
studies have shown the promise of this tool to predict species susceptibility across
taxa for selected pharmaceuticals and pesticides (LaLone et al. 2013a). For exam-
ple, a comparison of the susceptibility to estrogenic chemicals based on ER sequence
similarities among animal taxa using protein sequence similarity analysis showed a
high degree of conservation among vertebrate species when using the human recep-
tor as query (LaLone et al. 2013b; Fig. 6.3). Furthermore, invertebrates were pre-
dicted to be generally less sensitive, which is in accordance with the absence of
functional ERs in many invertebrates. Furthermore, when comparing the intrinsic
susceptibility predictions derived from the SeqAPASS analysis for aquatic species
with empirical toxicity data these showed a good correlation.

The advantage of the SeqAPASS tool is that it utilizes relatively underutilized
and continuously expanding resources of data that aim to predict chemical suscep-
tibility across a broad range of taxa ranging from humans to viruses. However,
while existing databases within the National Centre for Biotechnology Information
(NCBI) are rapidly expanding and include more-and-more information on non-
model species, they are still far from providing a representative overview of the
animal and plant kingdoms. The SeqAPASS approach also allows the characteriza-
tion of chemicals that interact with multiple molecular targets by combining queries
from different data sets. As discussed in Sect. 6.2, current cross-species extrapolation
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Fig. 6.3 SeqAPASS analysis output of the distribution of homolog candidate proteins across spe-
cies within select taxa based on percent similarity to the human estrogen receptor (ER). The open
circle represents the human (Homo sapiens) ER, and solid circles represent the species with the
highest percent similarity within the specified taxonomic group. Box plots: the fop and bottom of
the box represent the 75th and 25th percentiles, respectively, and the top and bottom whiskers on
plot represent the 90th and 10th percentiles, respectively. Small black dots indicate outliers repre-
senting the 95th and 5th percentiles. The mean and median values for each taxon are represented
by horizontal thick and thin black lines on the box, respectively. In some cases, lines representing
mean and median overlap and are displayed as a single horizontal thick black line. If <3 species
represent a taxon, only maximum and mean values are shown. - - - indicates the cut-off for intrinsic
susceptibility predictions (based on ortholog analysis), with those above the line predicted to be
susceptible (Figure courtesy of Carlie Lal.one and modified from Lal.one et al. (2013b))

approaches often lack the inclusion of TK/TD properties. First attempts to combine
available mammalian ADME data such as drug clearance rates for approximately
1200 different human and veterinary drugs from 100 drug classes using a probabi-
listic distribution approach with the above-discussed SeqAPASS model showed
promise in prioritizing certain drug classes with regard to their ecotoxicological
risks (LaLone et al. 2013b). This demonstrates the potential of this model to be
integrated with other approaches important for a more realistic assessment of cross-
species sensitivities to contaminants. However, given the significant differences in
ADME properties between mammals and other vertebrates and invertebrates, much
additional work is needed to better characterize the ADME properties of chemicals
across species from all taxa that would be required to expand the above approach for
use with species other than current mammalian model organisms. Also, factors such
as life stage, life history, ability to mount a compensatory response, sex and other
critical factors driving an organism’s response to contaminant exposure are not con-
sidered by SeqAPASS.
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6.3.3 Alternatives to Live Animal Testing to Inform Cross-
Species Extrapolation

As discussed in the previous sections, there are multiple challenges with assessing
the effects of contaminants to native species of interest. Beyond any molecular,
biochemical and physiological differences across species, there are challenges asso-
ciated with maintaining wild species under laboratory conditions, including ethical
concerns when working with live animals, especially endangered species (which
can be of particular interest with regard to their sensitivity to environmental con-
taminants), and high investments in time, labour and cost involved with traditional
in vivo assays. Therefore, alternatives to animal testing are increasingly used as
tools to investigate the toxicity of chemicals. These include (1) computational in
silico models such as Quantitative Structure-Activity Relationships (QSARs), (2) in
vitro tests either using sub-cellular components, immortalized cell lines or primary
cell and tissue cultures, as well as (3) toxicity testing with early life stages of ovipa-
rous organism that are not considered live animals until they have depleted their
yolk-sacs, including in ovo assays with bird embryos or fish embryos prior to swim
up (Hartung and Hoffmann 2009; Knight 2008).

6.3.4 In Silico Approaches

Per definition, in toxicology in silico refers to any methodology that involves
computer-based planning, analysis, evaluation or prediction of toxicological infor-
mation (Hartung and Hoffmann 2009). For the purpose of this chapter, the focus is
those current computational approaches that are directly applicable to cross-species
sensitivity extrapolation. Toxicological in silico methodologies use experimental
data derived from in vivo or in vitro tests to identify commonalities and patterns
among chemicals or biological targets (molecular through populations/communi-
ties) that can be used to develop computational models to predict their hazard poten-
tial or susceptibility, respectively. The most common in silico approaches utilized in
chemical risk assessment are QSARSs, which are used to predict the potential toxi-
cological hazard of a chemical based on its structure and physicochemical proper-
ties (Bradbury 1994). To be useful in cross-species extrapolations, however,
knowledge about the actual target sites of the toxicants of interest is required. The
integration of QSARs with other predictive tools such as the above-discussed
SeqAPASS has the promise to identify certain taxa that may be particularly vulner-
able to certain contaminants based on predicted chemical-target site interactions.
Other important computational approaches in species sensitivity extrapolation are
species sensitivity distribution (SSD) tools such as interspecies correlation models
(Barron et al. 2012). These models primarily rely on acute toxicity data to develop
computational models based e.g. on QSAR properties. However, Barron et al.
(2012) found that such models were associated with significant variability, which
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limited their predictive power. Finally, in silico approaches include a number of
other current concepts discussed elsewhere in this book chapter, including the
SeqAPASSS model and USEPA’s ToxCast program.

6.3.5 In Vitro Approaches

In vitro assays are increasingly used to inform the potential toxicological risks of
chemicals because they often have great sensitivity to low concentrations, great
specificity of response, high throughput, and have a lesser cost than in vivo assays
(Gray et al. 1997). Additionally, in vitro assays require much fewer numbers of
animals compared to in vivo assays, which, for reasons outlined above, is becoming
increasingly important in toxicity testing. The relevance and utility of stable cell
line-based in vitro approaches in support of chemical hazard assessment and priori-
tization including the use of high-throughput screening in vitro batteries to identify
specific MIEs have been extensively reviewed in the past (see e.g. Kavlock et al.
2012; Perkins et al. 2013). Because they do not directly apply to cross-species
extrapolation, with the few exceptions discussed below, they will not be discussed
in detail here. Instead, this section focuses on the use of in vitro tests as an alterna-
tive tool to generate and test hypothesis pertaining to the sensitivity of non-model
species to environmental contaminants.

One method for in vitro testing that has shown potential with regard to identify-
ing species-specific sensitivities to environmental contaminants are tissue explants
or primary cell cultures (Beitel et al. 2014, 2015; Eisner et al. 2015). Such approaches
are beneficial as tissues maintain some of their natural functions (e.g. paracrine
interactions) outside their natural environment, as most of the necessary machinery
required for the cell- or tissue-specific function is present (Powlin et al. 1998; Gray
et al. 1997). Therefore, test systems using tissue explants could be used to identify
species-specific responses to the exposure with contaminants. Recent studies con-
firmed the potential of species-specific tissue explant assays to predict relative sen-
sitivity of selected key events (KEs) in native fish species to certain environmental
contaminants including endocrine disruptors and DLCs (Beitel et al. 2014, 2015;
Eisner et al. 2015). While absolute sensitivities (threshold or effective concentra-
tions) were not directly comparable, Eisner et al. (2015) demonstrated that the rela-
tive potencies of six DLCs to four evolutionary distinct fish species determined
using in vitro liver explants were directly correlated with embryo toxicity data.
Similar correlations in relative responses occurred when three different fish species
were exposed to estrogenic compounds (reviewed in Beitel et al. 2015). Furthermore,
Beitel et al. (2014) showed that tissues in primary culture were representative of
seasonal fluctuations in reproductive endocrine functioning (i.e. steroid synthesis)
in vivo, and allowed for identification of the most sensitive stage of the reproductive
cycle of three fish species native to North America. Therefore, it was hypothesized
that primary tissue cultures have the potential to identify most sensitive phases or
life stages of an organism. These initial data are promising with regard to the future
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potential of tissue culture assays to help in identifying species that may be particu-
larly vulnerable to the exposure with chemicals of concern. However, significant
work is still required to confirm and validate the predictive power of species-specific
tissue explant assays for in vivo effects for different classes of contaminants and
among greater numbers of diverse ecological species.

Stable cell lines have also been used as tools to characterize and compare MIEs
among different species, and to establish baseline information on the responsive-
ness of certain target molecules such as receptors to the exposure with contami-
nants. One of the best-described examples in the ecotoxicological literature is the
use of green monkey (COS-7) cells to characterize the role of the AhR in mediating
sensitivity of birds and fishes to DLCs (Doering et al. 2014; Farmahin et al. 2014;
Karchner et al. 2006). Transfection of COS-7 cells with AhRs from different species
of birds, and more recently fishes, was used successfully to categorize the in vivo
potency of variety of DLCs to activate AhR signalling (Farmahin et al. 2014;
Doering et al. 2014). In birds, COS-7 cells were used in conjunction with site-
directed mutagenesis studies replacing key amino acid in the ligand-binding domain
of the receptor to characterize the specific MIE driving species sensitivity, and based
on which the sensitivity of any bird species of interest can now be predicted. Similar
research is currently ongoing to characterise the role of amino acids in the ligand
binding domain of the AhR in determining sensitivity of fishes to the exposure with
DLCs. Successful completion of this work would represent a critical milestone in
advancing risk assessment of these priority pollutants across the greater than 30,000
species of fishes inhabiting our planet. Initial efforts are also currently underway to
characterize the molecular basis for the differences in potency of environmental
estrogens among fishes (Toyahama et al. 2015). Considering the potential of these
in vitro based tools in combination with recent advances in ‘omic technologies that
enable quick and inexpensive identification of the specific molecular composition
(e.g. gene or protein sequence information) of molecular targets of interest, it is
anticipated that similar approaches will become routine practice in the future to
elucidate specific MIEs that inform the sensitivity of different ecological species.

It should be acknowledged, however, that although numerous advantages exist
with regard to the potential of in vitro assays to predict sensitivity to contaminants
across species, there are remaining uncertainties regarding their use as surrogates
for in vivo assays. For example, ADME properties are often not, or only partially,
accounted for by in vitro assays. This can lead to false positive or false negative
results in cases of chemicals that are rapidly metabolized or that require metabolic
activation, respectively (Gray et al. 1997). Also, in vitro systems do not represent
organismal feedback systems and interactions among organs and tissues. Therefore,
it is unlikely that in vitro approaches will completely replace live animal testing in
the near future. However, it is anticipated that alternative tests will increasingly be
used in chemical prioritization and the identification of MIEs and associated molec-
ular toxicity pathways, and in combination with computational modeling such as
currently applied in USEPA’s ToxCast Program, will provide powerful tools to
advance our understanding of species-specific modes or chemical action while sig-
nificantly reducing the need for in vivo testing.
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6.3.6 Early Life Stage Testing

Another alternative testing approach that is increasingly applied in ecotoxicological
testing is the use of embryonic life-stages of oviparous animals, including fish and
birds. These embryos are not considered “live animals” under many legislations
(Knight 2008), although the exact life-stages at which these organisms are consid-
ered sentient animals differ among countries (Stréhle et al. 2012). Embryos of egg-
laying organisms are a powerful alternative to in vitro assays as they are representative
of the intricacies and complexity of whole organisms. While some embryos may not
have completely developed organ systems during very early stages, it could be
shown that they seem to present most of the molecular regulatory networks driving
adult physiological functions. For example, transcriptional analyses of zebrafish
embryos exposed to estrogenic chemicals revealed effects on the expression of
genes and pathways indicative of disruption of potential downstream events associ-
ated with estrogen signalling, steroid hormone production, and neurodevelopment,
regardless of the fact that some of these processes are not expressed in larval fish
(Schiller et al. 2013; Vosges et al. 2010). Zebrafish embryos have also been shown
to express complete pathways for other key physiological functions including thy-
roid signalling and cardiovascular system development (Hill 2005; Thienpont et al.
2011). Similarly, studies with early tadpole stages of the African clawed frog
(Xenopus laevis) around the time of sexual differentiation exposed to EE2 showed
that these early stages expressed molecular pathways whose disruption was indica-
tive of later effects on biological functions including metamorphosis, gonadal
development and growth (Tompsett et al. 2013). However, the vast majority of
research with early life stages has been conducted with very few model species such
as the zebrafish and the chicken, and it remains to be demonstrated whether effects
on embryonic stages of other non-model ecological receptors are similarly predic-
tive of biological effects that manifest in adult organisms.

Regardless of whether assays with early life stages is useful to predict effects at
later life stages, with some exceptions, embryos are thought to be among the most
sensitive life-stages to the exposure with contaminants (Mohammed 2013). This is
because most organ systems are developing during this time, a process that may be
vulnerable to toxic insults, the low volume to surface ratio allows fast uptake and
distribution of contaminants, the lack of efficient metabolism and clearance mecha-
nisms, and low fat reserves that may sequester lipophilic contaminants. Therefore,
toxic effects in embryos are considered to be a conservative proxy of the sensitivity
of a species to the exposure with pollutants with the exception of adult-specific
functions such as reproduction. Early life stage tests with most oviparous animals
are usually completed within a few days to weeks depending on the species of inter-
est, and they represent a great opportunity to assess species that typically cannot be
tested under controlled conditions, such as endangered or long-lived organisms.
This is particularly true for fishes and amphibians that produce hundreds to thou-
sands of eggs, and for which standard culture methods can be easily adopted. For
example, Vardy et al. (2013) demonstrated that early life stage studies with embryos
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of rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas)
and white sturgeon represented a reliable tool to predict the sensitivity to metals
among fish species. Also, two comparative studies conducted with shortnose (A.
brevirostum) and Atlantic (A. oxyrichnus) sturgeon (Chambers et al. 2012) and with
shovelnose (Saphirhynchus platorynchus) and pallid (S. albus) sturgeon (Buckler
et al. 2015) showed the utility of early life stages of endangered species to predict
their sensitivity to DLCs. Given the relative ease of obtaining and culturing of fish,
amphibian and bird embryos, and the relatively low cost and time investment needs
to conduct early life stage studies, it is surprising that there only have been a few
efforts to use them for cross-species extrapolation in ecotoxicology. As early devel-
opment across fishes, amphibians or birds is highly comparable within each of these
taxonomic groups, and considering the availability of standardized guidelines for
assessing endpoints in embryos (e.g. OECD 2013) they represent a highly promis-
ing tool in comparative ecotoxicology.

6.4 Conclusions

The ability to assess the hazards chemicals may pose to the vast diversity of ecologi-
cal species is increasingly becoming a necessity in ecological risk assessment. It
also is apparent that traditional testing approaches using live animals will not be
able to address these needs given the economic and ethical restrictions associated
with them. Acknowledging these limitations, and motivated by the current paradigm
shift from empirical testing to systems- and pathway-based approaches in the field
of human health and ecological risk assessment (NRC 2007; Villeneuve et al.
2014a), regulators, scientists and industry are currently exploring novel concepts
and methodologies to enable the prediction of the toxicological risks across species
and taxonomic groups. Particularly, the recognition that specific molecular targets
representing MIEs or KEs, or partial or entire toxicity pathways can be conserved
among or within taxonomic groups has resulted in a focus on comparative ‘omics as
predictive tools for cross-species extrapolation (Brockmeier et al. 2017). One plat-
form that is increasingly used in this context for identifying key processes that can
drive sensitivity of a species are AOPs because they cover all levels of biological
organization, provide biological context and inform the chemical and taxonomic
applicability of the toxicity pathway. However, there are a number of uncertainties
that remain to be addressed before AOPs and associated tools such as the above-
discussed SeqAPASS tool and other in silico methodologies become a viable option
in non-model species risk assessment, including the limited number of mature AOPs
currently available, their limited taxonomic application (virtually no AOPs exist for
microorganisms, invertebrates and plants) and their mostly qualitative nature.
Furthermore, large data gaps exist with regard to ADME properties of chemicals in
ecological species that determine target site concentrations, and are a critical factor
influencing intrinsic sensitivity.
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Therefore, there is the need to expand our current knowledge of the MIEs and
KEs for the large number of chemicals of environmental concern in addition to their
ADME properties across diverse species. A tiered approach exploiting (1) existing
knowledge about AOPs along with available sequence and functional homology
information when the MIE and KEs are well-characterized, and (2) generation of
custom de novo gene or protein sequence information to expand the knowledge base
may provide a feasible solution to rapidly characterize the taxonomic applicability
domain for certain pathways. In parallel, development and validation of models that
allow predicting the ADME properties of environmental contaminants across
diverse taxonomic groups are needed to enable prioritization of organism groups
with regard to their risk of internal exposure to contaminant groups of concern (e.g.
organisms with low metabolic activity are less likely to be at risk to the exposure
with chemicals that require metabolic activation). Based on this information, expert-
curated species similarity maps can be constructed with the goal of identifying so
called “forecaster species”, which allow extrapolation of sensitivity to similar spe-
cies that cannot be investigated due to feasibility or ethical reasons (e.g. endangered
species). The proposed approach is similar to the current practice in risk assessment
of dioxin-like contaminants for birds where species are categorized as chicken-like
(highly sensitive), pheasant-like (moderately sensitive), and quail-like (not sensi-
tive) (Karchner et al. 2006). Subsequent confirmation of these predictions to iden-
tify the main drivers of species-specific differences in susceptibility is proposed by
a combination of (1) advanced in silico modeling of MIEs or KEs across species
using tools such as SeqAPASS (LaLone et al. 2013b), (2) use of targeted high-
throughput in vitro assays following principles currently used in drug discovery (see
e.g. Doering et al. 2014; Farmahin et al. 2013), (3) conduct species-specific tissue
explant assays to generate hypotheses for mechanism-specific sensitivity (Beitel
et al. 2015; Eisner et al. 2015), and (4) develop of embryo toxicity tests for ovipa-
rous vertebrates that allow anchoring to an AO using relatively economical higher-
throughput systems while addressing animal welfare concerns. However, in vivo
whole organism tests will still be required to validate the predictions in cases where
the approaches proposed above are not adequate.
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Chapter 7
Green Algae and Networks for Adverse
Outcome Pathways

Anze Zupanic, Smitha Pillai, Diana Coman Schmid, and Kristin Schirmer

Abstract If adverse outcome pathways (AOPs) are to become the new standard
predictive tool for chemical risk assessment in ecotoxicology, substantial effort will
be required to construct AOPs for exposures to different chemical groups making
sure that we have enough representation of different test species to adequately cover
the tree of life. This should include plants, which have not yet received sufficient
attention from the AOP community. In this chapter, we present Chlamydomonas
reinhardtii, a unicellular green microalga that serves as a model organism for,
among others, photosynthesis and the circadian rhythm. We review C. reinhardtii as
a model organism for ecotoxicology and summarize different publicly available
genomic and OMICS resources for the species. We also present a new putative AOP
for C. reinhardtii exposed to silver, constructed based on integration of transcrip-
tomic and proteomic datasets. Finally, we present the current state-of-the-art bioin-
formatics procedures that can be used for constructing AOPs from OMICS type of
datasets and evaluate whether the approaches are suitable for C. reinhardtii.
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7.1 Introduction

The Adverse Outcome Pathway (AOP) is a knowledge-based toxicological frame-
work that covers the adverse effects of chemicals across multiple levels of biologi-
cal organization, from the molecular initiating event (MIE) to key events (KE) at the
level a of cell or tissue and to the final adverse outcome (AO) of ecological relevance
on the individual organism or population level (Ankley et al. 2010). The goal of
AQP developers is that AOPs become a predictive tool for chemical risk assessment
and thus become an important part in environmental regulatory decision-making
(Groh et al. 2015; Villeneuve et al. 2014). The extent to which this can be achieved
depends, among other aspects, on the validity of the assumptions behind the AOP
concept. For one, AOPs are not chemical specific, but rather general enough to
account for toxic actions of whole classes of chemicals. For example, while around
60% of all organic industrial chemicals are thought to be characterized as narcotics,
their action in fish seem to fall under two different AOPs, one based on changes in
cellular metabolism and one on more specific damage to the gill epithelium (Ankley
et al. 2010; Perkins et al. 2015; Volz et al. 2011). Another assumption behind AOPs
is that toxic responses are conserved among similar species and therefore these spe-
cies share AOPs for at least some MIEs. In this way it should be possible to use
AOPs for across species extrapolation, as was already shown for the neurotoxic
effects of cyclotrimethylenetrinitramine (Garcia-Reyero et al. 2011). If these
assumptions are valid, then a finite number of AOPs would be able to describe a vast
majority of the toxic effects of environmental chemicals and the only limitation for
the utility of the AOP concepts would be the amount of work researchers could
dedicate to AOP construction and the diversity of the constructed AOPs.

Until the beginning of 2016, approximately 50 different AOP related projects
have been registered with the OECD (Jan 19, 2016"). Most of the projects involve
developing AOPs for humans, rodents and fish, while not a single one deals with
adverse outcomes of chemicals on plants. For the AOP framework to become suc-
cessful, it is vital that the AOP assortment of species includes a much wider diver-
sity, ideally covering every branch of the tree of life. Among plant species, it would
make the most sense to start with model plant species with the most available bio-
logical knowledge, such as the annual Arabidopsis thaliana or the unicellular green
alga Chlamydomonas reinhardtii. Unicellular organisms, such as C. reinhardtii,
could serve as especially attractive targets for AOP development because (1) they
are easier to work with and more amenable to high throughput data collection, and
(2) the lack of the higher multicellular organization would make the developed
AOQPs shorter and more tractable. It is not yet clear how useful AOPs of unicellular
plants would be for understanding chemical toxicity to multicellular ones, but since
many biological processes are shared in the plant kingdom it is reasonable to assume
some level of across species extrapolation to be possible.

'http://www.oecd.org/env/ehs/testing/listsofprojectsontheaopdevelopmentprogrammeworkplan.
htm.
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In this chapter, we introduce C. reinhardtii as a model organism for ecotoxicology
and describe available resources for toxicological and OMICS types of data. We
present a hypothetical AOP for C. reinhardtii exposed to non-essential metals,
which we developed based on a time course exposure of the alga to silver and the
resulting combined transcriptomics/proteomics dataset. We conclude with a vision
for future development of AOPs for unicellular plant organisms based on high-
throughput OMICS.

7.2 The Alga C. reinhardtii as a Model Species

C. reinhardtii is a biflagellate unicellular green alga which is commonly found in
soil and freshwater. The alga is a heterothallic species that reproduces sexually or
asexually and can grow robustly under photoautotrophic, mixotrophic and hetero-
tropic conditions. It is about 10 pm in diameter with a glycoprotein rich cell wall, a
large single chloroplast, a nucleus, an eyespot which senses light, a pyrenoid which
stores starch and two anterior flagella for motility (Fig. 7.1). C. reinhardtii can be
cultured easily in the lab with a short generation time of 8—12 h and is amenable to
genetic manipulation, with a vast array of functional mutants available. It has three
genomes: the nuclear, the mitochondrial and the chloroplastic, which have been
sequenced (Merchant et al. 2007). Many strains, both lab generated and isolated

L~
flagella
nucleus

golgi vesicle
vacuole

chloroplast
I thylakoids

mitochondria

pyrenoid
cell wall

Fig. 7.1 Chlamydomonas reinhardtii and a schematic representation of a cell. Scale bar = 7.5 pm
(Source: Department of Environmental Toxicology, Eawag)
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from the environment, are available at the Chlamydomonas Resource Center.”
Extensive work in the last decade has produced a fairly well annotated genome,
with the most recent version at JGI v5.5,% including nearly 17,800 protein-coding
loci (Blaby et al. 2014). C. reinhardtii is a representative of the lineage which
evolved to early plants but it also shares features of animal cells, retained from the
last eukaryotic common ancestor (Cross and Umen 2015), making it a greatly ame-
nable model system. In the recent past C. reinhardtii has been used to study many
fundamental cellular processes including chloroplast biogenesis, photosynthesis
(Houille-Vernes et al. 2011), circadian rhythm (Matsuo and Ishiura 2008), flagellar
assembly and motility (Pazour and Witman 2000), DNA methylation, metabolism,
and sex determination (Harris 2001). Advances in genetic manipulation has further
allowed C. reinhardtii to be explored for the development of sustainable algal bio-
fuels and bioproducts (Scranton et al. 2015).

7.2.1 The Alga C. reinhardtii as a Model Species
Jor Ecotoxicology

Aquatic systems are sinks for accumulating toxicants and primary producers, such
as microalgae, comprise the base of the food chain from which effects can be propa-
gated to higher trophic levels. Therefore, the estimation of bioaccumulation and
toxicity to primary producers are important for accurate risk assessment and C.
reinhardtii is an excellent model in this regard. Indeed, C. reinhardtii is routinely
used in ecotoxicological risk assessment as one of the standard organisms for test-
ing effects of toxicants in fresh water, as suggested by the Organisation for Economic
Co-operation and Development (OECD) guidelines.* The routine tests mostly focus
on the inhibition of growth, which represents an adverse effect at the population
level and requires at least 24 h. A more detailed assessment of different physiologi-
cal endpoints is used to study the mechanisms of toxicity (Nestler et al. 2012). One
such physiological endpoint is the inhibition of photosynthetic yield, caused by
herbicides such as diuron, which can be quantified readily within minutes after
exposure. Another endpoint is ATP content, which is an indicator of the viability
and physiological state (e.g., stress) of the algae. Additionally, the regulation or
disturbance of oxidative and reductive processes, which are indicators for the pro-
duction of reactive oxygen species, can be measured by estimating oxidative dam-
age (Sarkar et al. 2005). However, these physiological endpoints, while easy and
relatively fast to estimate, do not reveal molecular mechanisms that precede organ-
ism level changes nor the adaptive responses that allow the organism to recover.

2http://www.chlamycollection.org/.
3https://phytozome.jgi.doe.gov/pz/portal . html.
*http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm.
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The advancement of quantitative OMICS technologies, such as transcriptomics
for abundance of RNA molecules, proteomics for abundance of proteins, and
metabolomics for abundance of internal metabolites, allows for measurement of
adaptive and toxic effects in a time and concentration dependent fashion at different
molecular levels. These different levels are likely to cover a larger proportion of
chemical-related KEs; therefore their integration with the traditionally measured
physiological responses could, in principle, be used to propose relatively complete
AOPs. To our knowledge, OMICS based AOPs have thus far not been proposed for
C. reinhardtii nor for any other ecotoxicologically relevant plant species. In the next
section, we will review the available OMICS datasets for C. reinhardtii and discuss
different approaches that could lead to AOP development from OMICS data.
Although the focus in the chapter is on C. reinhardtii, most of the proposed
approaches are general enough to be used for other species.

7.2.2 OMICS Resources for C. reinhardtii

The most mature and broadly used OMICS is transcriptomics, which is based on
either microarray or sequencing technology. In the last decade, the number of eco-
toxicological studies utilizing transcriptomics has consistently risen (Schirmer et al.
2010) as has the number of publicly available transcriptomic datasets in public
repositories. However, despite its amenability to transcriptomics, publicly available
studies in C. reinhardtii are still relatively rare, with only 28 stress related transcrip-
tomic datasets available for environmental and chemical related stress (a list can be
found in Table 7.1). Among the available studies, those looking at the effects of
insufficiency or excess of metabolic resources, such as nitrogen or sulphur, or essen-
tial metals, dominate, while those looking at chemical stress have only started
appearing in the last couple of years. We expect that the number of transcriptomic
studies will substantially increase in the future, enabling the use of integrative,
network-based methods for the discovery of the mechanisms of toxicity and the
definition of AOPs (Perkins et al. 2011) (see also below).

Other OMICS technologies have not yet achieved a similar technological matu-
rity, and consequently there have been fewer studies in general. For C. reinhardtii,
only mass spectroscopy based proteomics and metabolomics studies can be found
in double figures, if all publications, not only toxicological ones, are taken into
consideration (e.g., (Kleessen et al. 2015; Schmollinger et al. 2014)). Unfortunately,
as public repositories for these technologies have only recently started appearing
(e.g., the PRIDE repository for proteomics has only come online this year (Vizcaino
et al. 2016)), normally the only way to obtain the respective datasets is by contact-
ing the authors of the respective publications where they appeared. Hopefully, in the
near future the number of all OMICS studies and their availability will increase for
all species.
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Table 7.1 Transcriptomic, stress-related datasets for C. reinhardtii published by March 1, 2016 in
GEO (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

Stressor Repository ID Platform References
Cerium dioxide nanoparticles E-MTAB-2454 | Microarray | Taylor et al. (2016)
Heat shock E-GEOD-20859 | Microarray | Voss et al. (2011)
Heat shock, hemin and E-GEOD-20861 | Microarray | Voss et al. (2011)
mg-protoporphyrin
Oxidative stress E-GEOD-30646 |Microarray | Fischer et al. (2012)
Electrophilic stress E-GEOD-30646 | Microarray | Fischer et al. (2012)
Silver, silver nanoparticles E-GEOD-48677 |Microarray | Pillai et al. (2014)
Light irradiation E-GEOD-56800 |Microarray | Mettler et al. (2014)
Rotifer predation E-MEXP-3562 | Microarray | Becks et al. (2012)
Sulphur stress E-GEOD-33039 | Microarray | Toepel et al. (2011)
Sulphur starvation E-GEOD-33040 | Microarray | Toepel et al. (2011)
Nitrogen starvation E-GEOD-33041 | Microarray | Toepel et al. (2011)
Sulphur starvation E-SMDB-2992 | Microarray | Zhang et al. (2004)
Sulphur starvation E-GEOD-17970 |RNA-seq | Gonzalez-Ballester et al.
(2010)
Nitrogen starvation E-GEOD-24365 | RNA-seq Miller et al. (2010)
Copper E-GEOD-25124 |RNA-seq Castruita et al. (2011)
Oxidative stress E-GEOD-33548 | RNA-seq Fischer et al. (2012)
CO, E-GEOD-33927 | RNA-seq Fang et al. (2012)
Nitrogen starvation E-GEOD-34585 | RNA-seq Boyle et al. (2012)
Oxidative stress E-GEOD-34826 | RNA-seq Urzica et al. (2012)
Iron starvation E-GEOD-35305 |RNA-seq | Boyle etal. (2012)
Zinc starvation E-GEOD-41096 | RNA-seq Malasarn et al. (2013)
Iron starvation E-GEOD-44611 | RNA-seq Urzica et al. (2013)
Nitrogen starvation E-GEOD-51602 |RNA-seq | Blaby etal. (2014)
Phosphate starvation E-GEOD-56505 | RNA-seq No publication available
Sulfur starvation E-MTAB-1329 | RNA-seq Toepel et al. (2011)
Phosphate starvation E-MTAB-2556 | RNA-seq No publication available
UV-B stress E-GEOD-68739 | RNA-seq No publication available
Zinc starvation E-GEOD-58786 | RNA-seq No publication available

Lists with differentially expressed transcripts (based on the limma algorithm, (Ritchie et al. 2015))
for each individual dataset can be retrieved from http://www.eawag.ch/en/department/utox/pro-
jekte/integrative-network-toxicogenomics/

7.3 How to Use OMICS for AOPs?

7.3.1 From Gene Expression Through Pathways of Toxicity

to AOPs

While there are many potential methods for including OMICS datasets into the
construction of AOPs, a concrete path from OMICS to AOPs has not yet been pre-
sented for any species. Most often in ecotoxicological studies, individual
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Fig. 7.2 Schematic representation of the effects of silver in C. reinhardtii (Pillai et al. 2014)

transcriptomics datasets are analyzed to identify differentially expressed transcripts
in response to a stressor. This gene-centric approach is leveraged by pathway-centric
analyses, in which a priori known molecular pathways are tested for overrepresenta-
tion of differentially expressed transcripts. The identified pathways of toxicity are
then combined with the available knowledge of adverse outcomes for that particular
stressor, and finally used to inform AOP development.

For example, in one of our studies, the responses of C. reinhardtii at the tran-
script, protein and physiological levels on exposure to silver was estimated in a
concentration and time dependent manner (Pillai et al. 2014). We identified path-
ways of toxicity based on the perturbed expression of the transcripts and the pro-
teins and linked them to the observable physiological outcome. This enabled us to
put forward a conceptual mechanistic hypothesis for toxicity of silver on C. rein-
hardtii (Fig. 7.2). Silver is suggested to be transported into the cells by copper trans-
porters. In the cells, silver is distributed via the copper chaperones and this
concomitantly elicits several effects. Silver binds to thiol groups of proteins causing
mis-folding and damage, it replaces copper in key proteins of the electron transport
chain and photosystem and regulates the expression of proteins leading to inhibition
of ATP and photo-synthesis. The disturbance of the electron transport chain in the
photosystem leads to increased reactive oxygen species (ROS) production which
causes peroxidation of lipids and membrane damage. As a defense mechanism
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against the oxidative stress, the algae mount an antioxidant response. At lower con-
centrations of silver (10 and 100 nM), the antioxidant response is seemingly ade-
quate for the recovery of algae. At higher concentration (200 nM), in addition to the
antioxidant response, the efflux mechanism probably removes intracellular silver as
observed by decreasing intracellular concentrations, confirming a detoxification
process. Nonetheless, this exposure concentration resulted in the inhibition of the
growth of the population, an adverse outcome which integrates the many effects of
silver on different cellular processes.

In the original publication (Pillai et al. 2014), we stopped at the toxicity pathway
stage and did not propose a putative AOP. Since then, several excellent papers have
provided instructions for the development of AOPs for ecotoxicological risk assess-
ment (Groh et al. 2015). Here, we exploit the suggested strategy to develop an AOP
for silver in C. reinhardtii based on our previous results. On exposure to silver,
several biological processes were affected within durations spanning minutes to
hours. The bioaccumulation of silver over the duration of two generations of C.
reinhardtii (24 h) and the cumulative effect on key processes such as photosynthesis
and energy utilisation lead to the adverse outcome of growth inhibition. The effects
on photosynthesis appear to be initiated by the displacement of copper by silver
from plastocyanin of the photosystem, which we define as an MIE (Fig. 7.3).
Consequently, plastocyanin is misfolded (KE) and its function lost. This impairs
photosystem II and the process of photosynthesis (KE) and leads to production of
ROS (KE), which is followed by oxidative damage (KE). All of these KEs were
observed not only at the physiological level, but also at the molecular level, in the
form of dysregulation of transcripts and proteins. More importantly, the effects of
silver on individual cells had an adverse outcome on the growth of the population.
This preliminary AOP is mapped for defined acute exposure concentrations. It
would be valuable to incorporate modelling approaches which would allow predic-
tion of adverse effects for a range of environmentally relevant silver
concentrations.

7.3.2 From Reverse Engineering Gene Co-expression
Networks (GCNs) to AOPs

Another approach is to build AOPs not from a single OMICS dataset, but to leverage
in house and publicly available OMICS datasets by using data-driven algorithms. A
popular method for integration of OMICS is gene co-expression networks (GCN5),
which was successfully used on single studies interrogating transcriptomes under
different environmentally relevant conditions (Perkins et al. 2011; Williams et al.
2011). Construction of GCNs relies on the guilt by association assumption: genes
with a correlated (linearly or non-linearly) expression patterns across several differ-
ent conditions have a higher probability of participating in the same biological pro-
cesses and of being under common transcriptional regulatory programs. Consistently,
genes participating in the same pathways are usually found in densely correlated
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regions of the GNC, i.e. in co-expressed modules (Hansen et al. 2014; Heyndrickx
and Vandepoele 2012; Stuart et al. 2003; Wei et al. 2006).

GCNs can be used in a focused fashion when a specific toxicological pathway is
of interest and prior knowledge on some guide genes involved in the pathway are
available. In this approach, to find correlated genes which might have a similar
function one can query the neighbourhood of the guide genes in the co-expression
network. After experimental validation, annotation of genes with unknown func-
tions is enabled and the subsequent discovery of new biomarkers that can be used in
future assays covering key events in an AOP.

The algorithms used for constructing GCNs can also be applied for integration
with adverse outcomes, just as long as the measurements of these are available for
all the included studies/datasets. In other words, if there are several studies with
measured transcriptomics and physiological states, the transcripts and the physio-
logical states both feature in the same (correlation) network (Garcia-Reyero et al.
2014). The use of multiple OMICS together with data-driven GCN inference has the
distinct advantage that it enables the discovery of toxicologically relevant genes and
mechanisms, making use of all available data and without requiring comprehensive
gene functional annotation. In a recent paper, GCNs were used in combination with
text and database mining to infer the pathways of toxicity of MPTP (a chemical that
elicits Alzheimer like symptoms in mammals) in mice (Maertens et al. 2015).
Therefore it is possible to combine GCNs with other approaches as well in AOP
development.

To date, the GCN approach has not yet been used in C. reinhardtii for ecotoxico-
logical purposes. However, there are two publicly available databases that have
compiled some of the publicly available C. reinhardtii transcriptome datasets (Aoki
et al. 2016; Zheng et al. 2014). As well another study reports the use of GCNs
inferred from multiple datasets to investigate the evolution of light-dependent gene
regulatory modules across several plant species, including C. reinhardtii (Romero-
Campero et al. 2013). As more ecotoxicologically specific datasets become avail-
able, the GCN approach will become an option also for C. reinhardtii based AOP
construction.

7.4 Causal Networks

Another network approach that could lead to AOP development are causal networks.
Although these have until now mostly been used in human toxicological studies
where more data is available, they also hold promise for ecotoxicology. Causal net-
works are normally built starting from the known adverse outcome, such as a known
human disease caused by an environmental exposure, for example lung cancer after
exposure to tobacco smoke (Titz et al. 2016). After manually selecting scientific
articles covering a known adverse outcome and with a molecular mechanistic focus,
text mining is used to find sentences that feature causal connections between genes,
proteins, metabolites, etc. (Fig. 7.4). The recognized connections are collected into
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a knowledge database written in BEL (biological expression language) and then
joined together into a causal network that describes what is currently known about
the molecular processes behind the adverse outcome. Every node in the causal net-
work is then connected to several nodes of a second layer network that comprises all
known downstream targets of that node. For example, if a causal node is a transcrip-
tion factor, all its known targets would be in the second layer network. Finally,
transcript abundance measurements of the second layer are used to infer the activity
of the causal node, based on the transcript abundance of their downstream targets.
Those causal nodes that are active under different exposures would therefore be
prime targets for KE and KE assay development.

The quality of constructed causal networks depends greatly on the amount and
quality of information and data available for a specific adverse outcome and species
(Boue et al. 2015). Therefore it is probably not yet possible to construct them for
ecotoxicological purposes, except for the most studied adverse outcomes in the
most well studied species. For C. reinhartdii, the approach might work for inhibi-
tion of growth after chemical exposure. Other data mining based methods, such as
frequent itemset mining (Oki and Edwards 2016) require even more information to
be available and will be difficult to use for plant AOPs in the near future.

7.5 Towards Mechanistic Computable AOPs

Finally, although not yet attempted for AOP development, it would be possible to
integrate OMICS datasets with mechanistic mathematical modelling. A potential
approach of this is using genome-scale metabolic reconstructions and gene expres-
sion (either transcriptomic or proteomic) data to predict adverse metabolic pheno-
types and metabolic toxicity biomarkers. Two successful examples are prediction of
drug effects on growth of cancer cells (Folger et al. 2011) and prediction of growth
of C. reinhardtii exposed to different nutrient conditions (Imam et al. 2015). An
advantage of the metabolic modelling approach is the possibility of discovering
KEs at the level of endogenous metabolism, which has so far been missing in the
proposed AOPs. When the reconstruction of signalling or gene regulatory pathways
on the genome scale also becomes possible we will be one step closer to whole cell
models, which could be directly used as quantitative AOPs (Hyduke and Palsson
2010).

7.6 Conclusion

For AOPs to become one of the main tools for environmental risk assessment, their
development will have to move from the current mammal and fish focus to the other
branches of the tree of life. The AOP community should therefore try to involve
researchers that are working on non-vertebrate ecological and ecotoxicological
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model organisms and beyond. OMICS technologies and meta-OMICS integrative
analyses will undoubtedly play an important role in the effort to enrich the informa-
tion about the chemical sensitivity of the model and non-model species and should
be considered as the backbone of future AOP construction.
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Chapter 8

Neurobehavioral Analysis Methods
for Adverse Outcome Pathway (AOP) Models
and Risk Assessment

Francisco X. Mora-Zamorano, Jeremy K. Larson, and Michael J. Carvan I1I

Abstract The emerging use of neurobehavioral analysis techniques in toxicology
promotes the implementation of neurobehavior, a powerful integrator of molecular,
physiological, and environmental stimuli, in the development of Adverse Outcome
Pathway (AOP) models. In recent years, zebrafish have been extensively investi-
gated for their potential as a model organism in behavioral toxicology due to their
low maintenance cost and similarities with rodent behavior and physiology. This
chapter will review: (1) the beneficial role of neurobehavioral assays in the develop-
ment of AOPs; (2) the diverse neurobehavioral endpoints to be considered in the
evaluation of neurotoxicity and; (3) the challenges of integrating neurobehavioral
outcomes into AOP development. Discussion of the many neurobehavioral screen-
ing assays that have been adapted from rodents to zebrafish is included. Furthermore,
this chapter will review studies in which behavioral phenotypes and neurophysio-
logical outcomes have been anchored to specific molecular initiating events induced
by a chemical exposure. Although the study of the genetic and physiological basis
of behavior is still nascent, there are many noteworthy studies that have enabled the
creation of AOP models for the prediction of how chemical exposure affects the
behavior of individuals in a population and, in turn, how these alterations can affect
population dynamics.

8.1 Introduction

Neurobehavior is the study of an organism’s behavior and how it relates to the func-
tion of its nervous system. This powerful experimental endpoint serves as an inte-
grator of the diverse and complex internal (e.g., chemical, molecular, cellular,
physiological) and external (e.g., environmental) stimuli encountered by an
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organism. Therefore, the knowledge gained from neurobehavioral studies contrib-
ute significantly to the understanding of gene-environment interactions, physiology,
and ecology. Behavior is the output of molecular and cellular level events (i.e. gene
expression, neurotransmitter signaling, and neurodevelopment) that enable an
organism to respond to its surroundings (e.g., locomotion, foraging, escape preda-
tors, seek shelter, grow and reproduce). Importantly, such complex responses can be
compromised via environmental insult, such as exposure to a neurotoxicant.
Neurotoxicity is defined by the United States Environmental Protection Agency
(US EPA) as “an adverse change in the structure and/or function of the central and/
or peripheral nervous system measured at the neurochemical, behavioral, neuro-
physiological or anatomical levels” (Tilson et al. 1995). It is estimated that nearly
30% of all commercially used chemicals (currently >80,000 chemicals) possess
neurotoxic properties (Basu 2015). However, over the past four decades, few of
these chemicals have been extensively studied and characterized as neurotoxicants
(Bal-Price et al. 2015).

Neurobehavioral screening assays (NBSAs) provide an excellent platform to
identify the effects of a large number of potentially neurotoxic compounds. Some
NBSAs are particularly useful in toxicology and pharmacology due to their robust-
ness and the possibility of being automated and implemented in a high throughput
manner (Reif et al. 2015). NBSAs can also be a quite sensitive approach to identify
neurotoxic effects that would be otherwise too subtle to be elucidated by anatomical
or histological screens (Detrich III et al. 2009). However, the organism-level data
obtained from NBSAs is much more powerful for risk assessment purposes when
coupled with the knowledge of the mechanisms that mediate neurobehavior, as well
as the possible broader implications of behavior alterations. In such a scenario, the
data gathered by NBSAs allows the possibility of making meaningful predictions of
how chemical-induced behavioral alterations observed in individual organisms can
affect higher levels of biological organization (i.e., communities and populations).
Hence, the continued development and adoptions of a systems biological approach
(i.e., Adverse Outcome Pathway [AOP]) will significantly improve our ability to
make such predictions from neurobehavioral-derived data obtained in the labora-
tory. The AOP is a methodological framework that utilizes the knowledge of the
biological effects of molecular, cellular and organism-level events to predict the
potential adverse outcomes at higher levels of biological organization (Fig. 8.1)
(Landesmann et al. 2013; Ankley et al. 2010).This approach de-emphasizes the api-
cal adverse outcomes at the organismal level and higher, and focuses more on the
effects on initiating and intermediate measurable key events of biological organiza-
tion, which can be mechanistically linked to apical adverse effects of broad ecologi-
cal impact. This chapter will review: (1) the beneficial role of neurobehavioral
assays in the development of AOPs; (2) the diverse neurobehavioral endpoints to be
considered in the evaluation of neurotoxicity and; (3) the challenges of integrating
neurobehavioral outcomes into AOP development.
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Fig. 8.1 A conceptual neurobehavioral AOP diagram. Exposure to a neurotoxicant can initiate
molecular and/or cellular consequences that may impact different levels of behavioral complexity
and lead to an altered interaction between organisms (i.e., interactions required for reproduction
and survival), which could ultimately result in population decline due to a failure to reproduce,
vulnerability to predators and/or starvation

8.2 Neurobehavioral AOPs

For the purpose of clarity, this chapter will define neurobehavioral AOPs as any
AOP model that makes use of NBSA-derived data to make predictions of adverse
outcomes that may branch from behavioral alteration. As discussed extensively by
Bal-Price and collaborators (Bal-Price et al. 2015), the development of AOP models
specific to neurotoxicity outcomes is nascent. To illustrate this point, individual-
based models (also referred to as “agent-based” models) have existed for roughly
four decades and the development of these models specifically for the study of pop-
ulation dynamics has been in progress for two decades (DeAngelis and Grimm
2014). However, neurobehavior has only recently been considered and implemented
in such models to predict population-wide outcomes of neurotoxic exposure. One
example of such implementation is the use of behavioral data from methylmercury
exposed Atlantic croaker to predict impaired survival skills and, consequently, pop-
ulation decline (Alvarez Mdel et al. 2006).

A recent review (Groh et al. 2015) discussed three case studies of AOP models
of growth impairment. The molecular initiating events in these three models were
associated with exposure to pyrethroids, cadmium and selective serotonin reuptake
inhibitors, all of which have known neurological effects (Eriksson and Fredriksson
1991; Isbister et al. 2004; Wang and Du 2013). In all cases, the models indicated
that the effects of chemical exposure would initiate a cascade of physiological and
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metabolic reactions, causing behavioral alteration (i.e., locomotor impairment),
reduced food intake and, ultimately, decreased survival rates. Although these three
AOP models were not explicitly labeled as “neurobehavioral AOPs”, they all
described instances of adverse outcomes of behavioral alteration caused by the
exposure to a neurotoxicant. Through collaborative research, new neurobehavior
specific AOPs are currently being developed. For example, neurobehavioral AOPs
for methylmercury-exposed zebrafish and yellow perch (Perca flavescens) are under
development, and will integrate the effects of methylmercury on specific neurotrans-
mitters in the brain (Arini et al. 2016), behavior (Mora-Zamorano et al. 2016a) and
gene expression in both species (Mora-Zamorano et al.; manuscripts in prepara-
tion). The creation of neurobehavioral AOPs of these two fish species in parallel will
allow for comparison between model and non-model fish species and how they are
affected by environmental contaminants.

Regardless of the context or the rationale for developing an AOP model, this
approach invariably requires a sufficient a priori understanding of the linkages
between molecular initiating events, intermediate key events and apical events.
Therefore, establishing an AOP model on behavioral data can be particularly advan-
tageous, given that behavior inherently encompasses the molecular, physiological
and anatomical implications of neurotoxicant exposure. A neurobehavioral AOP
model consists of three essential levels of biological organization: (1) molecular-
level (i.e., toxicant-induced alteration in cell physiology/biochemistry), (2)
organism-level (i.e., behavioral alteration), and (3) population-level (i.e., apical out-
comes). It has been previously discussed that behavioral responses can be classified
into three hierarchical tiers: (1) basic motor responses (2) sensorimotor responses,
and (3) learning and memory (Tierney 2011). In this chapter, a “fourth tier” will be
added to this proposed hierarchy: (4) organism-organism (i.e., predator-prey) inter-
actions. The advantage of organizing behaviors by their complexity is that it facili-
tates the implementation of behavioral data into AOP models. For example,
spontaneous locomotor activity is a very fundamental behavior, while courtship,
prey capture and predator avoidance are much more complex (Scott and Sloman
2004). Ideally, a neurobehavioral AOP would link different levels of behavioral
complexity in a manner whereby fundamental behaviors predict the outcome of
more complex ones. Although neurobehavior is a practical and integrative endpoint
of neurotoxicity, it is also important to acknowledge its potential pitfalls. The most
obvious weakness is the fact that neurobehavior alone does not provide insight into
the vast and complex mechanisms that modulate it. More often than not, molecular
mechanisms that are very distinct from each other will render behavioral outcomes
that are practically indistinguishable (Groh et al. 2015).

8.3 Model Organisms in Neurobehavioral Studies

Model organisms belonging to a wide variety of taxa have been employed for neu-
robehavioral analysis for decades. Invertebrates such as the nematode C. elegans
and the fruit fly (D. Melanogaster) are two examples of model organisms that have
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been extensively utilized for such purposes (Benzer 1967; Cronin et al. 2006).
Among vertebrates, rodents have been historically the traditional animal models for
neurotoxicity screening (Eddins et al. 2010). As mammalian models, it is generally
accepted that neurotoxic effects observed in rodents are frequently predictive of
similar effects in humans (Bal-Price et al. 2015). Nonetheless, exclusively utilizing
rodents to assess the neurotoxicity of the thousands of commercially available
chemicals is proving to be prohibitively costly and time consuming (Perkins et al.
2013). Another widely utilized vertebrate model is the zebrafish (Danio rerio),
which has recently emerged as an increasingly popular model in toxicology (Mikldsi
and Andrew 2006). Despite being a non-mammalian model, orthologs for 70% of
all human genes have been identified in this model organism (Howe et al. 2013),
thus making this species well-suited to assess potential human and environmental
hazards. This chapter will focus primarily on zebrafish neurobehavior assays, and
assays developed originally developed for rodents that have now been adapted for
zebrafish research.

8.4 Neurobehavioral Endpoints and General Considerations

Neurotoxicants are capable of altering behavior via diverse mechanisms (e.g., affect
perception by altering the senses, alter gait and locomotion, modulate emotional
states and impair cognition; Fig. 8.2). To date, several detailed reviews have been
published summarizing behavioral assays that were designed to target a specific
mode of alteration (e.g., visual deficit, locomotor activity, startle responses, anxiety
and learning). The examples described herein are not all inclusive, but rather a con-
solidation of some of the most widely utilized assays in neurobehavioral toxicology
studies. Literature featuring the diverse types of neurobehavioral assays and their
documented application to ecotoxicology research are summarized in Table 8.1.
Prior to performing behavioral assays there are a number of important facets that
must be considered. Firstly, although developmental toxicity and teratogenesis are
not neurobehavioral endpoints, it is critical to recognize that overt morphological
abnormalities caused by chemical exposure can drastically affect behavioral output.
Therefore, it is highly advisable to perform a developmental toxicity screen prior to
any neurobehavioral assessment. This action will ensure that the origin of any
observed behavioral abnormalities stems from altered nervous system function
rather than independent morphological defects. The most acknowledged approach
to carry out a toxicity screen consists of observing a cohort of organisms and iden-
tifying the proportion of individuals in the cohort that present one or more
morphological abnormalities. For the sake of consistency, a scoring rubric can be
implemented to assign a value to the severity of morphological abnormalities, such
as the early life stage toxicity (ELS-tox) score (Heiden et al. 2005). In zebrafish,
scoring rubrics for developmental toxicity include observations of embryo mortal-
ity, blood circulation, somite formation, pigmentation, body morphology, swim
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Fig. 8.2 Behavioral outputs can originate from different levels of behavioral complexity, and the
interactions between these levels. Spontaneous locomotor output and reflexes are fundamental
behavioral outputs that require relatively “primitive” anatomical structures to be evoked (e.g.,
muscles, spinal cord and hindbrain). Sensorimotor responses and the processes of learning and
memory are more complex phenomena. However, all the aforementioned processes are required
for an organism to interact with other organisms and with the environment

bladder inflation and the presence of yolk sac edemas (Truong et al. 2011). It is also
important to consider that circadian rhythms can affect the way organisms behave
depending on the time of day (MacPhail et al. 2009), thus the duration of light/dark
cycles and/or disruption of normal illumination may impact experimental outcomes.
The developmental stage at which organisms are exposed to a neurotoxicant can
also alter the outcome (Weis and Weis 1995b). It is also not advisable to feed organ-
isms immediately prior to behavioral analysis, as this can affect the behavior of
zebrafish (Clift et al. 2014; Hurd et al. 1998).

8.4.1 Neuromotor Development

Locomotor activity is by far the most prominently documented and well understood
behavioral endpoint. It is also the most fundamental behavioral output that can be
plausibly linked to more complex behaviors such as foraging (Groh et al. 2015).
Neuromotor and reflex development are critical milestones during the early ontog-
eny of an organism. Likewise, these first manifestations of locomotor output are
arguably the earliest behavioral endpoints that can be observed and measured in a
developing organism.

8.4.1.1 Spontaneous Activity
Spontaneous tail flicks or contractions can be quantified in zebrafish embryos as

early as 30-hours post-fertilization (hpf) (Saint-Amant and Drapeau 1998). This
endpoint can be analyzed by empirical observation or video recording the embryos
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Table 8.1 Selected references describing the methodologies for different behavioral assays, as
well as the applications of these approaches in ecotoxicology

Examples of neurotoxic
Behavioral endpoint Selected references compounds assessed
Spontaneous activity Budick and O’Malley Chlorpyrifos; (Selderslaghs et al.
(2000) 2010)
Photomotor response (PMR) Kokel et al. (2011) Trimethyltin chloride; (Chen et al.
2011)
Visual motor response (VMR) | Emran et al. (2008) Perfluorooctane sulfonate;
(Spulber et al. 2014)
Visual startle, avoidance and Orger et al. (2009), Methylmercury; (Weber et al.
escape response Neuhauss (2003) 2008)
Optomotor response (OMR) Orger et al. (2009), PCB 1254; (Zhang et al. 2015)
Neuhauss (2003)
Optokinetic response (OKR) Orger et al. (2009), IN/A
Neuhauss (2003)
Touch response Budick and O’Malley Domoic acid; (Tiedeken et al.
(2000) 2005)
Olfactory-evoked locomotion | Lindsay and Vogt (2004) |*N/A
Olfactory conditioning Braubach et al. (2009) ‘N/A
Open field, diving test and Maximino et al. (2011) "Benzodiazepines; (Maximino
scototaxis etal. 2011)
Thigmotaxis Schnorr et al. (2012) PCBs; (Gonzalez et al. 2016)
Habituation Best et al. (2008) Chlorpyrifos; (Eddins et al. 2010)
Plus maze Sison and Gerlai (2010) | *N/A
Spatial alternation test Williams et al. (2002) Methylmercury; (Smith et al.
2010)
Predator avoidance Luca and Gerlai (2012) Methylmercury; (Alvarez Mdel
et al. 2006)
Prey capture Budick and O'Malley Methylmercury; (Mora-Zamorano
(2000) et al. 2016a)

“N/A indicates there are no known applications of the methodology in the field of ecotoxicology
thus far

"Although benzodiazepines are more amenable to be considered a chemical of pharmacological
relevance, the study cited represents a proof-of-concept with the potential of being utilized with
environmental contaminants

and manually counting the number of tail flicks thereafter. However, automated
analysis of tail flicks can also be achieved with a commercial system such as the
DanioScope suite, offered by Noldus Information Technology (Wageningen,
Netherlands). Alternatively, activity can be analyzed with a custom Imagel
(Schneider et al. 2012a) macro designed for such purpose, as suggested by Kokel
and collaborators (2010). Tail flicks in early embryonic stages of the zebrafish can
be induced via exposure to a brief and intense flash of light, this phenomenon has
been referred to as the photomotor response (PMR) (Kokel et al. 2010). The PMR
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has been characterized and documented in zebrafish embryos between 30 and 42
hpf (Kokel et al. 2010). Upon exposure to a sudden flash of light, the embryos
exhibit a robust sequence of tail bends that lasts 5-7 s, after which the embryos enter
a refractory period (>15 s) where they fail to respond to another flash of light.
Although the neurological basis of this response is seldom understood, the PMR
offers many advantages as a behavioral screening paradigm. The fish can be screened
as early as 1.5 days post-fertilization when they are still inside of their chorions, and
the small size of the embryos facilitates the use of 96-well microtiter plates to image
as many as 8—10 embryos per well, allowing for high throughput data acquisition.
This approach has been successfully utilized for the high-throughput screening of
the effects of many psychotropic compounds (Kokel and Peterson 2011).

Spontaneous activity can also be induced in zebrafish embryos as early as 36 hpf
via an acute exposure to an aqueous solution of nicotine (30-240 pM) (Mora-
Zamorano et al. 2016b). Nicotine induces a characteristic burst of activity by acting
as an agonist of nicotinic acetylcholine receptors in the spinal cord (Thomas et al.
2009). This behavioral paradigm has been previously utilized for genetic (Petzold
et al. 2009) and drug (Schneider et al. 2012b) screening. More recently, however,
this nicotine-evoked locomotor response (NLR) has been utilized to assess the
effects of methylmercury on the locomotor activity of 48 hpf zebrafish embryos
(Mora-Zamorano et al. 2016b). One advantage of this assay is that the NLR can be
directly anchored to the neurological basis of this behavior; the locomotor output
induced by nicotine is known to be mediated by the spinal cord (Thomas et al.
2009).

8.4.1.2 Development of Neuromotor Control

Fine motor control and coordination need to be developed in order for an organism
to interact with its environment. In zebrafish, the locomotor pattern of embryos
becomes mature once they reach 5 days of age (Lambert et al. 2012). In contrast, rat
pups acquire an adult-like locomotor pattern roughly between 13 and 16 days post-
birth (Geisler et al. 1993). Both zebrafish and rodents can be observed throughout
their development to identify possible delays in neuromotor milestones. To analyze
neuromotor development in zebrafish, the embryos are often videotaped and their
locomotor activity is tracked either manually by the observer or using machine
vision algorithms that allow the automation of the analysis process. Commercially
available systems to perform locomotion analysis in zebrafish include the Noldus
DanioVision and the Viewpoint ZebraBox (Ahmad et al. 2012). However, it is also
possible to analyze locomotor activity with freely available software such as ImageJ
or Ctrax (Branson et al. 2009). The use of ImageJ for activity analysis in zebrafish
larvae has been extensively described in previous studies (Colwill and Creton
2011a; Creton 2009; Richendrfer and Creton 2015; Richendrfer and Créton 2013).
The Ctrax motion tracking algorithm has been successful at quantifying the activity
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of developing zebrafish embryos from 3 to 5 days of age (Lambert et al. 2012), and
it has also been utilized to assess the effects of methylmercury on the swimming
behavior of zebrafish larvae (Mora-Zamorano et al. 2016a). In rodents, the analysis
of neuromotor development often involves observing the first manifestations of
activity in the pups, such as crawling, rearing and grooming (Geisler et al. 1993).
Later in development, rodents can be assessed for their performance in crossing
rods of different widths, pivoting and forelimb grip strength (Dubovicky et al.
2008).

8.4.2 Vision

Towards the end of the 1990s a number of research groups were interested in ana-
lyzing the genetic basis of vision. As a result, several behavioral assays have been
developed in both rodents and zebrafish to screen for visual acuity and impairment
(Fig. 8.3) (Neuhauss 2003; Prusky et al. 2000). Recent studies support that environ-
mental toxicants can yield vision abnormalities and subsequent behavioral abnor-
malities in zebrafish via dysregulated expression of photoreceptor cell-related genes
(Zhang et al. 2015), delayed retinal neurodifferentiation (Sun et al. 2016b), as well
as altered retinal morphology and electrophysiology (Weber et al. 2008). Examples
of the vision assays used in such studies are described below.

8.4.2.1 Visual Motor Response

The visual motor response (VMR) assay was originally developed to quantify the
locomotor output of multiple zebrafish larvae in response to sudden changes in light
intensity (Emran et al. 2008). This assay consists of recording the larvae in a
multiple-well plate that is placed on top of a light source. The recording apparatus
contains an infrared (IR) sensitive camera and a source of IR light to allow for video
recording in the dark. Additionally, the experimental setting is often surrounded by
a chamber that impedes the entrance of extraneous light. The experimenter can then
program the light source within the chamber to turn on or off; the duration of the
light and dark periods can be varied, as well as the number of times that these light-
dark cycles are repeated. Deeti et al. have recently described use of the VMR assay
to evaluate the safety of human oculotoxic drugs, thus highlighting its potential
inclusion in future high-throughput approaches (Deeti et al. 2014). The VMR has
only been extensively documented in the zebrafish, however, there have been recent
efforts to evaluate this behavioral paradigm in a non-model fish species (yellow
perch; Perca flavescens). Interestingly, the behavior exhibited by yellow perch was
the opposite of that observed in zebrafish, in other words, yellow perch exhibit
increased swimming activity during light periods, while zebrafish do so in dark
periods (Mora-Zamorano et al.; manuscript in preparation). This illustrates the
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Fig. 8.3 Among the approaches to assess sensorimotor function in zebrafish, assays for vision are
some of the most varied and documented. For instance, the optomotor response has been character-
ized in both (a) adult and (b) larval zebrafish, in both cases, the organisms swim in the perceived
direction of moving parallel lines. (¢) The optokinetic response has also been observed in adult and
larval zebrafish (only larval zebrafish depicted in image), in this assay the experimenter records the
saccadic movements of the eyes in response to a moving grating of bars. (d) Visual avoidance
assays are another approach to assess vision, one variation of these experiments in adult zebrafish
are performed by placing the fish in a vessel surrounded by a rotating drum with a single black bar,
which the fish avoids on each rotation. (e) A similar avoidance assay can be performed in larval
zebrafish placed on top of a computer monitor displaying a single moving bar on one side of the
recording arena, the larvae swim away from the visual stimulus and aggregate to the side of the
vessel where there is no stimulus

strong opinion of the authors that baseline behavioral data need to be thoroughly
evaluated prior to the assessment of toxicant effects, with the understanding that
activation of the same molecular pathway in two species may result in diametric
behaviors that only make sense after exploring life history differences.
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8.4.2.2 Visual Startle, Avoidance and Escape Response

A variety of startle and avoidance responses can be evoked with different kinds of
visual stimuli in both adult and larval zebrafish. For instance, a robust escape
response can be evoked in adult zebrafish by a black stripe inscribed on the inner
surface of a white rotating drum (Li and Dowling 1997). Similar escape maneuvers
have been reported in adult zebrafish presented with an expanding dot on an LCD
monitor, which presumably mimics a fast approaching predator (Ahmed et al. 2012;
Luca and Gerlai 2012). In zebrafish larvae, the visual startle response can be trig-
gered by a sudden change in light intensity (Colwill and Creton 201 1a, b), however,
in contrast with vibrational or touch-evoked startle responses, the visual startle
response in zebrafish larvae has been shown to not involve the Mauthner cell (Easter
Jr and Nicola 1996; Portugues and Engert 2009). The visual startle response has
been extensively studied by Burgess and Granato; this group has developed a soft-
ware tool (FLOTE software) to assess visual startle as well as other kinds of startle
responses in multiple zebrafish larvae simultaneously (Burgess et al. 2009). Larval
zebrafish are also known to actively avoid animations of moving dots and bars
(Colwill and Creton 2011b), which has led to the development of high-throughput
methodologies to assess avoidance behavior (Richendrfer and Créton 2013).

8.4.2.3 Optomotor Response

The optomotor response (OMR) is an innate behavior that has been observed pri-
marily in fish and insects. The OMR can be triggered by presenting a pattern of
moving vertical stripes, which is commonly achieved by means of a rotating drum,
but can also be presented on a computer monitor or with an LCD projector. Fish and
insects react to this stimulus by moving in the direction of the perceived movement
of the stripes, presumably in an attempt to adjust their trajectory in accordance to an
environment that appears to be moving. The OMR assay has been widely employed
to perform behavioral screens in adult and larval zebrafish (Neuhauss 2003; Li and
Dowling 1997; Orger et al. 2009), and there are reports that this assay successfully
elicits head movements in rodents (Abdeljalil et al. 2005).

8.4.2.4 Optokinetic Response

The optokinetic response (OKR) is a characterized by a series of saccadic eye
movements that occur in response to moving objects while the head remains station-
ary. This response has been observed in primates (Miles 1993) including humans
(Howard and Simpson 1989), as well as rodents (Scudder 2009), and in zebrafish
(Neuhauss 2003; Orger et al. 2009). Although this response has been well described,
it has not been extensively exploited in toxicology studies.
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8.4.3 Acoustic and Vibrational Startle

Both rodents and zebrafish exhibit a robust response to acoustic and vibrational
stimuli, both of which can be triggered by a speaker or a mechanical hammer. These
stimuli are often used to evaluate non-associative learning (habituation) in both
rodents and zebrafish (Wolman et al. 2011; Best et al. 2008; Pilz and Schnitzler
1996), as will be discussed below in more detail. However, both rodents and zebraf-
ish are well-established models for studying hearing loss and the screening of oto-
toxic compounds (Buck et al. 2012; Bang et al. 2002; Goldey et al. 1995). In
zebrafish, these assays consist of housing individual fish in tanks to which a sound
or vibration is delivered with a loud speaker. In order to increase the throughput,
multiple fish are often videotaped simultaneously by housing them in several con-
tiguous cubicles, after which the startle responses of the fish are analyzed (Bang
et al. 2002; Goldey et al. 1995; Bailey et al. 2013). In rodents, the procedure is very
similar to the aforementioned; organisms are housed in an acoustic startle chamber
and the startle stimulus is delivered by a loud speaker. Afterwards, the startle
response of the organism is videotaped for later analysis (Goldey et al. 1995).
Studies have focused on elucidating the molecular and neurophysiological mecha-
nisms (e.g., the potential role of vesicular glutamate transporter 3 (Obholzer et al.
2008) and glycinergic signaling (Hirata et al. 2011) of the acoustic startle response
(Bhandiwad et al. 2013; Lin et al. 2015; Burgess and Granato 2007; Tanimoto et al.
2009) and the optimization of experimental techniques (Bhandiwad and Sisneros
2016; Zeddies and Fay 2005). Coffin and Ramcharitar have extensively reviewed
chemically-induced ototoxicity in fish and its impact of neurobehavior (Coffin and
Ramcharitar 2016).

8.4.4 Touch Response

The touch response has been extensively documented in zebrafish embryos and
adults, and it represents one of the most fundamental behavioral assays available to
induce a robust locomotor response. A touch response test is a very simple proce-
dure that involves empirically observing or recording the organism to be tested with
a high speed camera (500-1000 frames per second) while touching the tail or the
head of the fish with a dissecting needle; a water jet to the tail or head may also be
used to evoke the touch response (Budick and O’Malley 2000). This straightforward
assay is suitable for quick preliminary screens to identify locomotor abnormalities
linked to neurodevelopmental defects (Patton and Zon 2001).
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8.4.5 Olfaction and Taste

Perhaps the least studied of the senses in both zebrafish and rodents are olfaction
and taste. In zebrafish, the chemosensory system is developed within the first 7 days
post-fertilization (dpf), presumably to support feeding upon yolk depletion (Lindsay
and Vogt 2004). The olfactory bulb in zebrafish is sensitive to five classes of odor-
ants: amino acids, bile salts, steroids, prostaglandins, and nucleotides (Bhinder and
Tierney 2012). Very few assays have been developed to assess olfactory-evoked
behavior in zebrafish; however, olfactory cues have been utilized in classical condi-
tioning experiments (Lindsay and Vogt 2004), both in rodents and in zebrafish
(Braubach et al. 2009). Other assays have focused in characterizing the locomotor
activity of zebrafish embryos after the addition of a variety of amino acids of which
L-alanine was reported to evoke a subtle yet consistent increase in the locomotor
output of larvae (Bhinder and Tierney 2012). Furthermore, brief exposure (from 80
to 83 hpf) of transgenic hsp70/eGFP zebrafish to waterborne cadmium (125 pM)
induced gene expression of heat-shock protein 70 (i.e., a biomarker of cellular
stress) in the olfactory neurons with concomitant observation of significant cell
death in this neuron type within cadmium-exposed wild-type zebrafish larvae com-
pared to control (Blechinger et al. 2007).Using an identical exposure paradigm,
juvenile (50 dpf) zebrafish exposed to 125 pM cadmium showed a significant
decrease in dashing activity (i.e., rapid bursts of apparently disoriented swimming)
and a significant increase in the time required to initiate a response to an alarm sub-
stance stimulus compared to control fish. Therefore, cadmium-induced toxicity of
the olfactory system can alter predator avoidance behaviors in teleosts. Nathan et al.
(2015) have suggested that the neuropeptide kisspeptinl may regulate the odorant
(alarm substance) evoked fear response in zebrafish via 5-HT1A and 5-HT2 sero-
tonin receptors.

In regard to taste, the molecular mechanisms of gustation in fish are relatively
unknown (Okada 2015). Similarly, research focused on investigating the effects of
environmental contaminants on neurobehavior via modulation of the gustatory
pathway in teleosts is scant. Vendrell-Llopis and Yaksi have revealed that taste stim-
uli of different categories evoked different neural activity in the brainstem of semi-
restrained juvenile 7g/elval3:GCaMP5] zebrafish as analyzed using a two-photon
microscope (Vendrell-Llopis and Yaksi 2015). Results also showed that the zebraf-
ish yielded weak behavioral responses (as assessed via angular tail speed and tail-
beat frequency) upon ingestion of amino acids relative to the heightened locomotor
output observed in the zebrafish that ingested sour and bitter taste stimuli. Thus, the
modulation of neurobehavior in zebrafish is dependent on the category of the taste
stimuli.
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8.4.6 Activity and Emotional Reactivity

The activity of an organism can serve as a proxy to identify emotional states such as
fear, anxiety, aggression or lethargy. One the simplest assays to perform for stress
and anxiety analysis is the open field test, which has been well-documented in both
rodents and zebrafish (Stewart et al. 2012; Cryan and Holmes 2005). During the
open field test, stressed organisms tend to spend more time around the edges of the
arena (thigmotaxis) and will avoid entering the center region of a brightly lit open
field (Champagne et al. 2010). In larval zebrafish, thigmotaxis has also been linked
to anxiety. Larvae that tend to spend more time close to the edges of an arena are
considered to be exhibiting an anxiety-like behavior (Schnorr et al. 2012).

A substantial number of assays have been developed to analyze stress and anxi-
ety in rodents. In addition to the open field test, there is also the light-dark prefer-
ence paradigm, in which the organism is placed in an open field and provided with
a dark box to hide. Other assays include the elevated plus maze and the elevated
zero maze. As their names imply, the elevated plus maze is a maze shaped like a plus
symbol of which two arms are enclosed and the other two are open. The maze itself
is elevated well above the ground level by means of a base. Similarly, the zero maze
is shaped like the number zero and is divided into four quadrants, two of which are
enclosed and the others are open, this maze is also elevated from the ground level.
In such assays, rodents will exhibit stress and anxiety by seeking shelter in a dark
and enclosed area, such as the dark box in the light-dark preference test or by avoid-
ing the risk of falling over the open sections of the plus or the zero mazes (Cryan
and Holmes 2005).

In zebrafish, one variation of the open field test is the diving test (Egan et al.
2009). In this assay, adult fish are placed in a deep and narrow tank, which enhances
the ability of the experimenter to observe spatial preference in the vertical axis. Fish
that spend more time in the bottom of the tank are considered to be exhibiting more
stress and anxiety than fish that spend more time in the top portion of the tank
(Bencan and Levin 2008). Other assays that evaluate anxiety rely on identifying the
spatial preference of fish in the horizontal axis and they are inspired by the assays
previously described in rodents (Champagne et al. 2010). One of the most docu-
mented of these methodologies is the light-dark spatial preference assay (Blaser and
Penalosa 2011). Commonly, stressed zebrafish tend to prefer being in a dark or
shaded area and avoid an illuminated area. Additionally, the evaluation of spatial
preference in fish can also be varied by presenting different aversive stimuli on one
side of the tank. Examples of these stimuli are animations of an expanding dot on an
LCD monitor (Luca and Gerlai 2012), images of predators (Bass and Gerlai 2008),
or even robotic models of a predator fish or bird (Cianca et al. 2013). A comparison
of rodent versus zebrafish assays of emotional reactivity is presented in Fig. 8.4.
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Anxiety assays in rodents
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Anxiety assays in zebrafish
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Fig. 8.4 Many assays designed to assess emotional reactivity (e.g., anxiety) in zebrafish were
adapted from rodent assays. Some examples of anxiety tests in rodents are the (a) open-field test,
(b) the light/dark exploration test, and different elevated mazes such as the (¢) plus maze and the
(d) zero maze. In zebrafish, the open field tests can be performed in different tank configurations,
such as a (e) shallow tank or a (f) deep and narrow tank where the “diving test” can be performed,
and the (g) light/dark exploration test is performed in a manner very similar to the (b) rodent coun-
terpart. (h) Assessment of fear and anxiety in zebrafish can also be performed by exposing the fish
to aversive visual stimuli on a computer screen, such as pictures of predatory fish or an expanding
dot mimicking a looming predator
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8.4.7 Learning and Memory

Rodent models have been extensively used to research the topic of learning and
memory; a search through the current literature in this topic will render a vast num-
ber of studies performed in rodents involving a variety of mazes, spatial discrimina-
tion chambers, visual discrimination tests, among other methods (Puzzo et al. 2014).
Using the same metric as Sison and Gerlai (2010) to gauge the prevalence of rodent
research in this topic versus that carried out in zebrafish, we find that to date (April
14, 2016) a PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) search of the key
words “mouse” and “learning” renders 25,705 results, whereas searching the words
“zebrafish” and “learning” renders only 347. Despite the emerging nature of learn-
ing and memory assessment in zebrafish, there are several noteworthy learning
assays that have been adapted from rodents to be exploited in zebrafish research.

8.4.7.1 Non-associative Learning

Habituation is a type of non-associative learning that is often analyzed and it is one
of the simplest learning tasks that can be performed. To assess this form of learning,
acoustic startle plasticity experiments have been performed in rodents for decades
(Davis and Gendelman 1977). The method for this assay typically consists of plac-
ing the subject inside of a sound-proof chamber to minimize background noise, a
loud sound pulse is then emitted at set time intervals and the reaction of the subject
is observed. The response of the subject attenuates after repeated stimuli until no
startle response is elicited at all (Valsamis and Schmid 2011). An analogous assay
has been developed in zebrafish embryos, which consists of visualizing the organ-
isms in 96-well microtiter plates, after which repeated acoustic startles are delivered
(Best et al. 2008), this is one of the few studies that has characterized a learning
paradigm in larval zebrafish, as the vast majority focus on adult organisms (Roberts
et al. 2014).

8.4.7.2 Associative Learning

Associative learning involves learning through linking different stimuli to one
another. The topic of behavioral assays to assess associative learning in zebrafish
has been previously covered in detail. In zebrafish, associative learning has been
assessed using the plus maze (Sison and Gerlai 2010), the T-maze (Colwill et al.
2005), spatial alternation tests (Williams et al. 2002; Smith and Weis 1997) and
classical conditioning (Valente et al. 2012). Associative learning experiments have
been utilized to assess learning and memory in zebrafish exposed to arsenic (de
Castro et al. 2009) and to methylmercury (Smith et al. 2010).
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8.4.8 Predator Avoidance and Prey Capture

In the context of AOP models for environmental risk assessment, two of the most
useful indicators of the success or decline of a population are the capacity of indi-
viduals to avoid predators and to capture prey. Many models rely on the assumption
that the effects on these two endpoints directly affect population dynamics. However,
there are far fewer studies that measure predator avoidance and prey capture than
those that assess more fundamental behaviors, such as spontaneous locomotion or
startle response. One reason for this may be the inherent technical challenges of
properly performing predator-prey interaction experiments, in addition to the widely
accepted notion that the much simpler spontaneous locomotion assays render
acceptable indicators of predator avoidance and prey capture success. Weis and col-
laborators (Weis and Candelmo 2012) have been at the forefront of documenting the
study of pollutants on predator-prey interactions in fish. In a recent review by this
research group (Weis and Candelmo 2012), the authors made reference to several
studies that measured predator-prey interactions in fish, curiously, a substantial
number of the current published assessments of predator-prey interactions in
response to pollutants have been carried out by Weis and collaborators themselves
(Weis and Candelmo 2012; Weis et al. 2003; Weis and Weis 1995a, b; Zhou et al.
2001; Zhou and Weis 1998). Other published works cited in this study were dated
(20 years, often more), and large time periods existed between studies. This illus-
trates the fact that not many research laboratories focus on the analysis of these
endpoints for ecotoxicology risk assessment despite the fact that predator-prey
interaction assays render data that can readily be placed in an ecological context.

In zebrafish larvae, prey capture has been long considered among the fundamen-
tal constituents of their behavioral repertoire. One of the best documented methods
to measure this endpoint is to supply the larvae with paramecia, then count the
number of paramecia captured by the larvae in a fixed amount of time under a
microscope (Budick and O’Malley 2000). However, for toxicology purposes, simi-
lar approaches have been utilized in two studies that assessed the effects of methyl-
mercury in prey capture success (Mora-Zamorano et al. 2016a; Samson et al. 2001).
Feeding assays in adult zebrafish are also extremely scarce. Notable examples are
the use of brine shrimp nauplii as positive reinforcement in an associative learning
assay in adult zebrafish exposed to methylmercury (Smith et al. 2010).

Predator avoidance assays in zebrafish have been mostly carried out utilizing
simulated predators. In zebrafish larvae, it has been reported that the fish swim away
from an aversive visual stimulus (e.g., an animated moving circle or bar), presumed
to be interpreted by the larvae as a threat (Colwill and Creton 2011a). Additionally,
an aversive response can be elicited in larval Atlantic croaker when presented with
the image of a black oval on a white card, which is swung towards the larvae by a
remotely operated pendulum. This approach is believed to simulate the cross section
of a predatory fish approaching the larvae, and it has been used to assess the effects
of methylmercury on predator evasion (Alvarez Mdel et al. 2006). In adult zebraf-
ish, the approaches to simulate predators have ranged range from painting a black
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bar on a white rotating drum to elicit an escape response every time the fish encoun-
ters the bar (Li and Dowling 1997), to animated sympatric predators and expanding
dots on a computer monitor (Luca and Gerlai 2012; Gerlai et al. 2009) and robotic
models of predatory fish and birds (Cianca et al. 2013). Out of these approaches, the
rotating drum and bar has been successfully utilized to assess vision impairment in
adult zebrafish exposed to methylmercury, and to determine whether selenomethio-
nine mitigates said vision impairments (Weber et al. 2008).

8.5 Challenges for Neurobehavioral AOP Development

Currently, the integration of behavioral endpoints into AOP models for risk assess-
ment faces a number of challenges. Neurobehavioral toxicology studies often focus
on the identification of abnormal phenotypes upon exposure to a chemical of inter-
est and do not necessarily anchor the observed phenotype to a specific molecular
and cellular insult. These actions hinder the discovery of molecular initiating events
that serve as the foundation of an AOP model. However, recent studies have started
to elucidate the molecular and cellular consequences associated with abnormal neu-
robehavioral outcomes as a result of emerging toxicology and pharmacology
research. For example, it has been shown that waterborne exposure of embryonic
zebrafish to 2, 2’ ,4,4-tetrabromodiphenyl ether (BDE-47; a predominant congener
of polybrominated diphenyl ethers [PBDEs] in the environment) significantly dis-
rupted spontaneous activity, decreased touch response (see Sect. 8.4.4) and free
swimming speed, and perturbed larval behavioral responses to illuminated versus
dark periods (i.e., visual motor response, see Sect. 8.4.2.1) (Chen et al. 2012).
Interestingly, these abnormal neurobehavioral phenotypes were associated with sig-
nificantly reduced axonal growth of primary and secondary motor neurons.
Similarly, Wang et al. have revealed that developmental exposure of zebrafish to the
endocrine-disrupting plasticizer, bisphenol A (BPA; 15 uM), produced a decrease in
the spontaneous movement, swimming speed, and touch response (compared to
control) associated with hindered axonal growth of spinal neurons and the abnormal
development of the axial musculature (Wang et al. 2013). Conversely, low-dose
developmental exposure (0.0068 uM; 1000-fold lower that the accepted human
exposure) of BPA and bisphenol S (i.e., commonly used replacement analog of
BPA) has been shown to induce hyperactivity in zebrafish via precocious hypotha-
lamic neurogenesis (Kinch et al. 2015). Neurochemical studies have begun to eluci-
date the role of neurotransmitter signaling in altering neurobehavior (Basu 2015).
Raftery and Volz have demonstrated that exposure of zebrafish embryos to abam-
ectin (an avermectin insecticide) eliminated spontaneous tail contractions via mod-
ulation of the y-aminobutyric (GABA) receptor (Raftery and Volz 2015). Jin et al.
have also demonstrated that exposure (until 96 hpf) of zebrafish embryos to imazalil
(300 pg/L), a fungicide that is extensively used in agriculture, significantly reduced
the average swimming speed and distance upon exposure via a concomitant reduc-
tion in acetylcholinesterase (AChE) gene expression and enzymatic activity
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compared to control (Jin et al. 2016). Moreover, exposures (until 5 dpf) of zebrafish
to the organophosphate flame retardants, tri-n-butyl phosphate (3125 pg/L) and tris
(2-butoxyethyl) phosphate (6250 pg/L), yielded a reduced swimming speed (in both
locomotor and visual motor response assays) associated with a significant decrease
in the gene expression of AChE without concurrent impact on AChE activity com-
pared to control (Sun et al. 2016a). However, in the same study, a reduction in both
AChE activity and gene expression was associated with reduced swimming speed
upon exposure to chorpyrifos (300 pg/L), an organophosphate pesticide (OPP).
Other research further supports the possible relationship between OPP-induced
alterations in neurobehavior and the inhibition of AChE (Yen et al. 2011), while
other studies suggest the contrary (Richendrfer and Creton 2015). Collectively, this
evidence suggests that AChE may be a common locus involved in the molecular
initiating events of neurotoxicant-induced alteration of neuromotor control that
necessitates further research.

Environmental contaminants also mediate neurotoxicity via targeting the signal-
ing pathways of the neurotransmitters dopamine and serotonin. Ek et al. (2016)
have reported that zebrafish exhibit similar behavioral phenotypes to those of rats
and humans, upon activation of the dopaminergic system, thus exemplifying the
zebrafish as a predictive translational model of neurobehavioral pharmacology and
toxicology. Disruption of the dopaminergic signaling has been shown to impact
memory and associative learning (Naderi et al. 2016), the consolidation of latent
learning of spatial information (Naderi et al. 2016), social and anxiety-related
behavior (Wang et al. 2016b), and locomotion (Tran et al. 2015) in zebrafish. Sub-
chronic exposure (45 days) of adult zebrafish to titanium oxide nanoparticles (TiO,
NP, 5-40 pg/L) impaired spatial recognition memory (as assessed via a Y-maze
assay) and locomotion compared to control (Sheng et al. 2014). This altered behav-
ior was associated with reduced concentrations of norepinephrine, dopamine, and
serotonin, neuronal apoptosis, and dysregulated expression of memory-related
genes in TiO,NP-exposed zebrafish brains compared to control. Wang et al. have
reported decreased locomotor behavior in larval zebrafish exposed (2-120 hpf) to
DE-71 (i.e., a mixture of polybrominated diphenyl ethers) compared to control. The
observed reduction in locomotion paralleled significant reductions in whole-body
concentrations of dopamine, down-regulation of genes related to the development
of dopaminergic neurons, and decreased expression of tyrosine hydroxylase and
dopamine transporter proteins in dopaminergic neurons (Wang et al. 2016a). Using
the same experimental paradigm, Wang et al. have also shown that DE-71 exposure
disrupts neurogenesis and inhibits serotonin synthesis (Wang et al. 2015). Insult of
the serotonergic pathway has been linked to abnormal social behavior and anxiety
in zebrafish (Herculano and Maximino 2014).

In addition to understanding the molecular mechanisms that govern changes in
neurobehavior, an effort must be made to classify behaviors in order of complexity
and establish links between the fundamental and complex behaviors. Kalueff and
collaborators (2013) have compiled a document describing 190 different behavioral
outputs in zebrafish larvae and adults, then proceeded to create a conceptual dia-
gram of the relationship between behaviors and other biological phenomena,
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including interaction among organisms (i.e., an ecologically relevant scenario) and
psychiatric disorders (i.e., human-health relevant scenario). With such a large num-
ber of behavioral endpoints that can potentially be analyzed, it is imperative to
establish the relationship of said behaviors with putative adverse outcomes. This
challenging task will require analyzing an assortment of different behavioral end-
points in parallel under standardized experimental conditions, preferably choosing
a variety of behaviors of different levels of complexity, rather than conducting stud-
ies where only one behavioral endpoint is analyzed. There is also a need to perform
cross-species validation of AOP models. The baseline behaviors of different species
can vary greatly, regardless of chemical exposure, therefore cross-species compari-
sons should be performed whenever possible, especially if behaviors observed in
fish models are to be translated to behaviors in rodents or humans. Furthermore, it
is vital to ensure analogous experimental conditions when assessing behavior in
different species, thus it is crucial to know the characteristics of the organisms to be
used as models and use this information to match experimental conditions as accu-
rately as possible (e.g., developmental stage of chemical exposure, developmental
stage at which behavioral assays are performed, etc.).

8.6 Conclusions

AOP models based on behavioral data are still a relatively new approach for envi-
ronmental and human health risk assessment. Few studies have made use of behav-
ioral data to make predictions of adverse outcomes. More neurobehavioral
toxicology studies that complement observed abnormal phenotypes with transcrip-
tomic, proteomic, and/or metabolomic data in effort to identify key molecular inter-
sections (i.e., common molecular initiating events among multiple classes of
chemicals) are a necessity. This will serve to link neurotoxicant-induced molecular
and/or cellular responses to adverse apical outcomes at the population and/or eco-
system level(s). In turn, the identification of such intersections will improve the
ability to predict system-level impacts and, ultimately, expedite human and ecologi-
cal risk assessment. The increasing use and simplification of NBSA methodologies,
paired with systems and molecular/biochemical biology-based approaches and the
promising features of the AOP model, will strengthen the use of behavior as a pre-
dictor of adverse outcomes in the future.
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Chapter 9
The Application of Omics Data
to the Development of AOPs

Mary T. McBride

Abstract Omics approaches offer potential for use in chemical hazard and risk
assessments when applied as part of a systems toxicology or integrative approach,
and when considered in the context of the adverse outcome pathway (AOP) frame-
work. Omics data provide individual snapshots of gene expression, protein expres-
sion and metabolite activity. When integrated, these individual snapshots yield deep
biological insights. Omics can provide mechanistic information about the effects of
chemicals and can help decipher toxicity mechanisms and modes of action. Omics
data have the potential to increase confidence in species extrapolation, and can be
used to identify biomarkers of exposure and toxicity. Although omics have been
used for more than a decade, acceptance of omics data in regulated applications has
been slow. The toxicology community is grappling with how to make use of omics
data in a regulatory framework, and how to use AOPs to drive regulatory decision-
making processes. In this chapter, an overview of major omics is provided that
includes recent advances and describes the potential application of omics data to the
development of AOPS while defining some of the challenges associated with the
broader acceptance of omics within a regulatory toxicology framework.

9.1 Introduction: Omics and Adverse Outcome Pathways

Traditional toxicity testing of industrial chemicals, pesticides, and pharmaceuticals
involves exposing animals to high doses of toxicants, observing the effects, and try-
ing to set safe exposure levels in humans by extrapolating to expected human
responses at lower doses. Whole animal testing based on well-established endpoints
provides a means to directly measure and quantify adverse effects at the tissue,
organ, and organism level (Suter et al. 2004). However, these tests typically do not
yield insights about crucial cellular or molecular responses from which we can
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begin to understand and identify fundamental mechanisms or mode-of-action
underlying toxicity. Mechanistic insights are critical to understand the causal link-
ages between exposures and adverse outcomes, and to formulate quantitative link-
ages between molecular and cellular events that go beyond simple correlations.

In an effort to overcome the shortcoming and limitations of traditional animal-
based toxicity testing, many groups are turning to approaches that integrate bio-
chemical and cell-based assays with high-content omics technologies, bioinformatics
and computational tools — approaches that offer potential for development of pre-
dictive toxicology (Bhattacharya et al. 2011; Cote et al. 2012; Hege Harrill and
Rusyn 2008; NRC 2007). For example, the Human Toxome project (http://human-
toxome.com/) aims to map human toxicity pathways (i.e., the human toxome). This
consortium has begun by mapping estrogenic pathways in human breast cancer
cells using a combination of transcriptomics and metabolomics (Bouhifd et al.
2014; Hartung and McBride 2011). In another approach, scientists at the Hamner
Institutes have used well-characterized compounds to map and model a small num-
ber of well-studied “prototype” pathways, including ligand activated pathways
(estrogen receptor, PPARa, and AhR) and stress activated pathways (DNA damage
and oxidative stress) that respond to environmental toxicants (Andersen et al. 2011).
Case studies are being developed to demonstrate how to use the new types of infor-
mation for human safety assessments. Detailed mechanistic studies reveal the dif-
ferences in nuclear receptor biology (a) between rats and humans, and (b) in vitro
and in vivo in the rat. These results have informed development of a novel in vitro
assay for receptor-mediated cell proliferation that have been extensively validated
using prototypical CAR agonists (McMullen et al. 2014, McMullen et al. 2016). In
additional to individual investigations and smaller-scale consortium, several large-
scale programs designed to develop, capture, catalog, and utilize mechanistic data
obtained from biological testing systems (including omics) have also been estab-
lished in recent years. These program include EPA’s ToxCast (http://epa.gov/ncct/
Tox21/) (Dix et al. 2007; Judson et al. 2010; Martin et al. 2010), the Tox-21
Consortium (Tox21C), a collaborative research effort between the EPA, NIH and
FDA (http://tox21.org/) (Attene-Ramos et al. 2013), SEURAT (http://www.seurat-1.
eu/) and the OECD Adverse Outcome Pathway (AOP) initiative (OECD 2013a, b;
Tralau and Luch 2015).

Omics are methods for the comprehensive study and analysis of complex bio-
logical samples. Although there are numerous omics, toxicology applications focus
primarily on genes (genomics), mRNA (transcriptomics), proteins (proteomics),
and metabolites (metabolomics). Traditional toxicology evaluates end points (e.g.,
phenotypic changes, disease, death) while omics measurements made at molecular
and cellular levels provide information that, when combined, reveal the relation-
ships between genes, proteins, and metabolites, and facilitate understanding of
molecular and cellular processes as an integrated system rather than as a collection
of disparate measurements or individual endpoints. Omics data can form the basis
of computational models that can be used to quantify the degree of molecular or
cellular perturbations and may also accelerate the development of dynamic multi-
scale biological models that will extend our ability to link exposures beyond the
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Fig. 9.1 A schematic depiction of an integrated omics experiment. Omics experiments may utilize
one or more types of experimental data sets (e.g., genomics, proteomics, metabolomics) measured
using different instrument platforms. Data sets can then be individually process and then inte-
grated, and using appropriate bioinformatics tools, the relationships between genes, proteins and
metabolites can be visualized, garnering new insights into fundamental disease mechanisms.
Placing data into biological context promotes deeper insights and better understanding, and facili-
tates hypothesis testing while helping to formulate future experiments

molecular and cellular levels to tissue or organ-level responses. Omics have been
used for more than 10 years to identify, classify, characterize, screen and prioritize
chemical compounds. For toxicology, most omics studies extend well beyond sim-
ple interpretations of gene expression or creating lists of metabolites; most studies
integrate endpoints at higher levels of biological organization (Connon et al. 2012).
Some examples include associating mechanistic responses to changes in reproduc-
tion, growth rates, viability of offspring, or other or physiological functions (Garcia-
Reyero et al. 2011; Van Aggelen et al. 2010). Omics are used to evaluate the effects
of compounds across doses, exposure times, and species; to identify novel signa-
tures or biomarkers of toxicity; to study toxicity pathways and to elucidate mode-
of-action (Waters and Fostel 2004; Fig. 9.1).

Moving towards more mechanistically-based risk assessments has increased the
complexity of data that toxicologists must now consider, including in vitro assays,
high-throughput screening results, computational models, and omics experiments
which generate very large data sets. The concept of adverse outcome pathways
(AOPs) was proposed to provide a framework for collecting and organizing all of
the existing knowledge associated with toxicological processes, from exposure to
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Fig. 9.2 Conceptual diagram of an adverse outcome pathway (AOP). Each AOP begins with a
molecular initiating event (MIE) in which a chemical interacts with a biological target leading to a
series of key events (KEs) that result in an adverse outcome (AO). Biological levels of organization
are shown in the fop row, while potentially measurable typical biological responses are shown in
the bottom row

adverse outcomes. Ankley et al. first defined an AOP as “a conceptual construct that
portrays existing knowledge concerning the linkage between a direct molecular ini-
tiating event (e.g., a molecular interaction between a xenobiotic and a specific bio-
molecule) and an adverse outcome at a biological level of organization relevant to
risk assessment” (Ankley et al. 2010). Although AOPs are often depicted as a series
of linear events (Fig. 9.2) they involve multiple independent, interacting response
networks where linked events span biological levels and involve many biological
entities (EFSA 2014).

The linkages between the molecular initiating event (MIE), the series of interme-
diate key events (KEs), and the adverse outcome (AO) may be causal, mechanistic,
inferred, or correlative and the information about these linkages may come from
various sources including in vivo tests, molecular and cell-based screening assays,
omics measurements, and computational methods (Groh et al. 2015). The KEs indi-
vidually correspond to empirically observable precursor steps that form parts of
toxicity pathways and mode-of-action (MOA); as such, they should be definable
and make sense from physiological and biochemical perspectives (OECD 2013a, b).
The AOP framework provides structure — a way to collect, organize, and display
knowledge across multiple levels of biological organization (i.e., molecular, cellu-
lar, tissue, etc.) that also helps to identify key gaps and facilitates prioritization of
research needed to fill those gaps (Villeneuve et al. 2014).

Well-developed AOPs are intended to serve as the central element of a toxico-
logical knowledge framework and are expected to guide experimental testing
approaches to support risk assessments and regulatory decision-making. While
there are currently more than 100 AOPs under development, only a few could be
considered complete or nearly complete. However, even incomplete AOPs can
inform chemical grouping, and “read-across” (predicting the toxicity of a chemical
based on structural similarities to other chemicals). (OECD 2013a, b), AOPs that are
more complete, with linkages that include quantitative information could form the
basis for an integrated approach to testing and assessment (IATA) and guide devel-
opment of integrated testing strategies (ITS) (Tollefsen et al. 2014).
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Omics technologies present both opportunities and challenges for toxicology,
and for human health risk assessments. Although omics have been used for more
than a decade, acceptance of omics data in regulated applications has been slow.
The toxicology community is grappling with how to make use of omics data in a
regulatory framework, and how to use AOPs to drive regulatory decision-making
processes. The goal of this chapter is to illustrate the application of omics to the
development of AOPs. Here, an overview of each the four major omics — genomics,
transcriptomics, proteomics and metabolomics — is presented, including recent
development and advances in each of these areas that are applicable to their use in
AOPs, followed by a summary of how omics data has been or could potentially be
applied to the development of AOPs, and concludes with a discussion of some of the
challenges associated with multi-omics data and the issues facing the broader
acceptance of omics within a regulatory toxicology framework.

9.2 Overview of OMICS

9.2.1 Genomics

The completion in 2003 of the Human Genome Project catalyzed the application of
genomics to understand the effects of drugs, industrial chemicals and other environ-
mental stressors on biological systems (Collins et al. 2003). Genomics is a scientific
discipline that studies genome structure and function. Genome sequencing provides
the specific order and identity of DNA nucleotide bases. Sequence information can
be used to identify functional regions of the genome (e.g., protein-coding genes,
regulatory sequences, non-coding regions), and genomes can be compared to look
for differences between genomes as well as for structural variations within a single
genome (e.g., single nucleotide polymorphisms, insertions, deletions, duplications,
copy number variations, methylation).

Recent Advances in Genomics The field of genomics is progressing so rapidly that
the National Human Genome Research Institute (NHGRI), one of the 27 Institutes
at the National Institutes of Health (NIH) produces a monthly highlight of what it
considers to be the “coolest genomic advances, broadly defined”. http://www.
genome.gov/27543594. Genomics technologies have developed and evolved at an
amazing pace in recent years, transforming our ability to catalogue and study the
information stored in genomes. Conventional capillary electrophoresis (CE)
sequencing, also known as “Sanger” or “first generation” sequencing methods have
been used for several decades to determine the order of the DNA base-pairs one by
one, and the technology played a central role in the Human Genome Project. While
CE sequencers are still used, and in fact still provide the “gold standard” for
sequencing accuracy, these applications have all but been replaced by next-
generation sequencing (NGS) approaches that enable massively parallel sequencing
of billions of DNA molecules simultaneously. NGS (also referred to as “second


http://www.genome.gov/27543594
http://www.genome.gov/27543594

182 M.T. McBride

generation” sequencing) has substantially reduced the time and costs of sequencing
and dramatically increased sequence output. The human genome, comprising 3.1
billion nucleotide bases required nearly $22 M and several years to sequence just a
decade ago; NGS platforms today can sequence that same genome for less than
$10 K in a matter of a few days and continuing innovations in NGS benchtop
sequencers are rapidly closing in on the goal of achieving the $1 K genome. A num-
ber of excellent reviews describe various NGS platforms in detail and compare their
performance characteristics (Mehinto et al. 2012; Loman et al. 2012; Metzker,
2010; Su et al. 2011).

Ultrafast DNA sequencing represents the third generation in DNA sequencing
and many strategies are under development; these include sequencing-by-
hybridization, nanopore sequencing, and sequencing-by-synthesis. These technolo-
gies sequence single DNA molecules in real time, in contrast to next-generation
instruments that sequence millions of very short DNA fragments in parallel. Third
generation strategies and platforms have been reviewed and compared but all of
these approaches provide improvements over current methods including higher-
throughput, faster turn-around times, longer read lengths, and reduced costs (Pareek
et al. 2011).

Advances in NGS have enabled a host of new applications such as the 1000
Genomes Project (a population-based whole genome sequencing effort to identify
common genetic variants), the Cancer Genome Atlas (TCGA), an effort to acceler-
ate our understanding of the molecular basis of cancer, and many other large-scale
research efforts (Green et al. 2011). The lower costs and higher throughput of
genome sequence information enabled by NGS have fueled tremendous growth in
disease research that aims to associate or correlate structural variations in DNA with
diseases. The most common structural variation is the single nucleotide polymor-
phism (SNP). SNPs are mutations in single nucleotides found throughout the
genome that have a phenotypic consequence that can often be associated with a
disease. Consequently, considerable effort has been focused to identify these SNP
“biomarkers”. Another structural variation is called the copy number variation
(CNV) which is an alteration where there is a gain or loss of large amounts of DNA
sequence; a number of studies have established correlations between CNVs and
disease (Girirajan et al. 2011).

NGS, coupled to other technologies such as oligonucleotide microarrays have
also enabled significant advances. Genome-wide association studies (GWAS) were
one of the most commonly used approaches to compare genomes: a typical GWAS
experiment might involve comparisons of large numbers of genomes from well-
phenotyped individuals to look for structural variants including SNPs. GWAS stud-
ies are focused largely on finding small differences between genomes; these
discoveries direct research towards targeted therapeutics for diseases, and have
given rise to entirely new disciplines such as epigenetics (looking for ways in which
the DNA itself rather than the nucleotide bases or the sequence gets modified) which
in turn effects gene expression and gene regulation. Hybrid technologies, like chro-
matin immune-precipitation coupled to DNA microarray (ChIP-chip) or sequencing
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(ChIP-seq) have been used to probe the genome-wide location and function of DNA
binding proteins and facilitate studies of DNA-protein interactions to unravel how
various transcription factors and other proteins interact with DNA to regulate gene
expression, while RNA sequencing (RNA-seq) enables sequencing of RNA tran-
scripts, a technique that vastly expands upon, and compliments, microarray-based
gene expression studies.

CRISPR/Cas9 is a new genomics advance that enables genome editing, allowing
researchers to make precise, targeted changes to the genome. This tool allows sci-
entists to study how changes in a gene sequence can affect gene function (Konermann
et al. 2015; Swiech et al. 2015). While the system has been studied since the 1980s
(Ishino et al. 1987) it has garnered significant attention since a 2012 publication
appeared, in which a team a scientists reported the use of the system as a gene-
editing tool (Jinek et al. 2012). That paper launched a flurry of genetic engineering
activity, with more than 20 new papers published each week on the topic today
(Cong et al. 2013).

Challenges for Genomics Demand for NGS systems, driven by lower costs and
higher throughput, is robust and does not show any signs of abating. The biggest
challenge for researchers using NGS approaches is managing the huge amounts of
data that are generated. Tools are required for data collection, storage, tracking, and
processing; adequate tools are not really readily available although these issues con-
stitute active areas of research and development. Enabling better data flow between
data producers and data consumers or end-users will require specialized data archi-
tecture and better integration with information systems, while interpretation of data
for clinical/diagnostics use will require the development of specialized tools and the
development and sharing of genome knowledge-bases.

9.2.2 Transcriptomics

The human genome is estimated to contain about 21,000 genes, but at any given
time, only a small fraction of genes are active. Assessing global gene expression in
response to environmental stress, genetic perturbations, or cell lifecycle is an essen-
tial step toward unraveling and understanding toxicological mechanisms or mode-
of-action. Gene activity can be inferred by identifying proteins but protein studies
are often very complex and challenging. It is far simpler to study gene expression
by examining the RNA message or “transcript”. The transcriptome comprises
~100,000 mRNA molecules, and also includes non-coding RNAs such as rRNA,
tRNA, and micro-RNAs.

Transcriptomics studies are usually carried out using oligonucleotide microar-
rays, NGS approaches, or real-time polymerase chain reaction (RT-PCR), although
RT-PCR is not used nearly as often for transcriptomics studies as either microarrays
or sequencing. Sequencing methods, collectively referred to as RNA-seq, include
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methods for determining sequence content, as well as the abundance of mRNAs,
non-coding RNAs and miRNAs, as well as ChIP-seq (chromatin immunoprecipitation
methods for measuring DNA-protein complexes) and methyl-seq (used to study
methylation sites). Microarrays and RNA-seq both capture the characteristic and
specific patterns of gene expression (i.e., “signatures”) for thousands of genes
simultaneously that result from exposures to a given toxicant under a given set of
experimental conditions and provide quantitative measurements of the dynamic
expression of mRNA molecules. This is in contrast to the static measure of DNA
provided by gene sequencing.

Microarray-based transcriptomics have been used for many years and is by far
the most widely-used of the omic approaches in toxicology. Cellular response to
toxicant exposures for the entire genome can be probed in a single microarray
experiment. Gene expression profiling enables the identification of specific genes
that are differentially expressed as a result of changes in environmental conditions.
Linking these gene changes to a chemically-induced phenotype (i.e., “phenotypic
anchoring”) facilitates predictive toxicity and elucidation of mode-of-action (Cui
and Paules 2010). Gene expression profiles obtained on separate arrays can be com-
pared to evaluate the effects of different compounds, doses and exposure times
across species, or between/within populations (Gerecke et al. 2009). Genes from
different samples that exhibit the same or similar expression profiles can be identi-
fied using statistical methods (e.g., clustering techniques), leading to potential
insights regarding common pathways, or mode-of-action, assuming the clustered
genes are functionally related (Afshari et al. 2011). Gene function and gene rela-
tionships within networks can be established and verified using gene knockout or
silencing techniques. Gene expression signatures also enable toxicants to be grouped
or classified into different toxicity classes, usually based on potency or mode-of-
action, and facilitate the prediction of toxicity of chemically-related compounds
(Fielden et al. 2007).

Gene expression profiles can guide the identification of biomarkers of toxicity,
even at very low exposure doses when no phenotypic changes have been observed.
For example, Heinloth et al. demonstrated how the analysis of gene expression pro-
files from liver samples obtained from rats exposed to sub-toxic doses of acetamino-
phen indicated subtle cellular injury that was not detectable by histopathology or
clinical chemistry methods (Heinloth et al. 2004). Such biomarkers of toxicity could
identify potentially toxic drug candidates even when there are no indicators of tox-
icity in preclinical studies (McBurney et al. 2009; McBurney et al. 2012). These
biomarkers could serve as the basis for suites of in vitro assays to assist in com-
pound screening, to group chemicals by toxicity class or mode-of-action, to monitor
drug therapies for safety and efficacy, and to monitor for exposures to environmen-
tal toxicants, even at sub-critical exposure levels.

Recent Advances in Transcriptomics Advances in NGS are driving advances in
transcriptomics. RNA transcripts can be sequenced in a cell and used to study RNA
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expression patterns, point mutations, alternative gene spliced transcripts, post-
transcriptional changes, gene fusion, SNPs and other mutations and changes in gene
expression. RNA-seq is increasingly being used to discover and study different
types of RNA (miRNA, siRNA, lincRNA, tRNA, etc); results of these studies have
the potential to identify new biomarkers as well. Compared to microarrays, RNA-
seq offers improved sensitivity, better precision, a much greater dynamic range
(microarrays lack sensitivity for genes expressed at either very low or very high
levels), and better reproducibility for both technical and biological replicates (Chen
et al. 2012). Progress in the application of transcriptomics to toxicology has been
impeded by a lack of discovery and data mining tools. Two of the largest toxicoge-
nomics databases, the Japanese Toxicogenomics

Project (TGP or TG-GATEs) and DrugMatrix were made publically available in
2011. The two databases were described and compared in a recent review (Chen
et al. 2012). Access to these large data repositories is expected to accelerate the
development of new bioinformatics and data mining tools and to provide new
opportunities for knowledge discovery.

Challenges for Transcriptomics Because gene expression profiling is largely
global in nature, such experiments generate massive amounts of data. Analysis
of this data requires a combination of statistical tools, bioinformatics, and data-
bases, and usually requires expertise in the biological system under study. While
many of the bioinformatics software tools and databases have become standard-
ized, interpretation of the data remains a significant challenge. Linking observed
changes in gene expression profiles to conventional toxicological endpoints
(i.e., phenotypic anchoring) remains a central challenge. Gene expression analy-
sis results often do not directly correlate to results from proteomics or metabo-
lomics; although all proteins are based on mRNA precursors, the expression
level of a given gene that codes for production of a protein does not correspond
to the amount of protein produced, as the expression level alone does not account
for post-translational modifications or other ways in which proteins are regu-
lated. This example underscores the need to fully utilize all available biological
information like that obtained from integrated omics studies and to combine that
information with computational modeling. No single biomarker or set of signa-
tures yet effectively serves as a disease or disease-state indicator and expres-
sion-based diagnostics are not yet at the point where they can reliably predict
disease or disease outcomes. This may be due to a variety of factors, including
cellular heterogeneity (lack of pure cell populations that yield distinct profiles)
or genetic heterogeneity (individuals in a population will not have the same
expression profiles, even when they all have the same disease) (Chuang et al.
2010). RNA-seq transcriptomics presents many of the same challenges that
were discussed for genomics (above), namely dealing with large amounts of
data, and developing tools for the management, processing, analysis, and inter-
pretation of this data.
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9.2.3 Proteomics

Proteomics is the comprehensive study of the entire compliment of proteins and
their modifications (i.e., the proteome) of an organism. The human proteome, esti-
mated to comprise between 250,000 and 1 million proteins (along with their post-
transcriptional, translational, and post-translational modifications) is highly
dynamic — it varies over time and even varies from cell to cell. Proteins exist in
concentrations that can span nine orders of magnitude, making low abundance pro-
teins extremely difficult to detect and characterize. Thus, proteomics measurements
are far more complex and challenging compared to the relatively straightforward
and somewhat static human genome and the smaller, more tractable human tran-
scriptome. Researchers perform a variety of proteomics studies that include the
global identification of all proteins in a sample (protein profiling) using discovery or
“shotgun” proteomics, the quantitative measurement of protein expression (i.e.,
abundance), the study of protein structures, including protein variations and modi-
fications, and the interactions of proteins and other molecules (e.g., protein-protein,
protein-DNA, etc.).

Recent Advances in Proteomics The main technologies used in proteomics are two-
dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass
spectrometry (LC-MS/MS). Advances in mass spectrometry in the past few years
now enable the routine identification and quantification of thousands of protein
components in samples and consequently, most proteomics studies are now per-
formed using liquid chromatography/mass spectrometry (LC/MS) because of its
sensitivity, selectivity, accuracy, speed and throughput (Chen and Pramanik 2009).

To date, most proteomics research has been done in an untargeted or discovery
mode. This approach has been used primarily to identify all proteins in a given
sample (protein profiling) without any prior knowledge of what proteins might be
present in a sample. More recently it has been used for differential quantification of
the identified proteins. A typical proteomics workflow is shown in Fig. 9.3. In this
approach, proteins extracted from cells, tissues or other complex sample matrices
are prepared in a series of steps (determined by experimental objectives) that may
include cell lysis, pre-fractionation, or other separation, purification and concentra-
tion techniques. Proteins are enzymatically digested into their smaller constituent
peptide fragments. Samples containing multiple proteins will generate many thou-
sands or hundreds of thousands of peptide fragments. To simplify analysis, peptides
are separated using liquid chromatography; peptides within LC fractions are ionized
and passed to the mass spectrometer. The mass analyzer filters the ions and records
their mass-to-charge (m/z) ratio along with their relative abundance as peaks that
populate a mass spectrum. lons comprising specific peaks (precursor ions) are
selected and further analyzed by tandem MS (MS/MS) to generate characteristic
fragment ions. The combinations of precursor m/z and their associated fragment
ions are then compared to sequences of known peptide fragments and identified.
Fragments are further assembled to enable identification of the protein sequence.
While this approach has enabled significant advances to whole proteome
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Fig. 9.3 A typical LC-MS/MS proteomics workflow, for either discovery or targeted proteomics.
Extracted proteins are digested to peptide fragments; peptide fractions are then further separated
and identified using HPLC. HPLC peptide fractions (a single fraction is indicated in the red circle
in the HPLC chromatogram) are ionized and passed to the mass spectrometer. The mass analyzer
filters the ions and records their mass-to-charge (m/z) ratio along with their relative abundance as
peaks that populate a mass spectrum. lons comprising specific peaks (precursor ions, indicated by
the red circle in the LC/MS spectrum) are selected and further analyzed by tandem LC (MS/MS)
to generate characteristic fragment ions. The combinations of precursor m/z and their associated
fragment ions are then compared to sequences of known peptide fragments and identified.
Fragments are then quantified and may be further assembled to enable identification of the protein
sequence

identification and mapping, it suffers from significant shortcomings: (1) the analysis
of a complete proteome remains challenging, expensive and time-consuming and
only a few labs have become truly expert in this approach; (2) results often cannot
be reproduced because of the way in which precursor ions are selected- even within
the same lab using the same sample; (3) the approach does not enable identification
of low-abundance proteins; and (4) in any experiment designed to address a specific
scientific question, a large numbers of “irrelevant” proteins will be identified, while
some number of relevant proteins will be missed (Domon and Aebersold 2010).
The emerging strategy of targeted proteomics enables researchers to detect, iden-
tify and quantify specific aspects of the proteome. In a targeted approach, the pro-
teins of interest are known in advance and the MS is programmed to select only
those certain signature peptides using a technique known as selected reaction moni-
toring (SRM) or sometimes referred to as multiple reaction monitoring (MRM).
This approach enables much greater sensitivity over discovery-based approaches,
and enables detection of low-abundance proteins. Absolute and relative quantifica-
tion is possible. SRM approaches are inherently multiplexed; tens to hundreds of
proteins can be monitored during the same experiment. It also provides vastly
improved reproducibility such that multiple labs can produce identical results (Marx
2013). One challenges to the targeted proteomics approach is that despite mass
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spectrometry sensitivity at the attomolar level, not all proteins will be detected and
only a limited number of measureable proteins can be included in the same experi-
ment (Titz et al. 2014).

Challenges for Proteomics Within toxicology, proteomics research efforts (toxico-
proteomics) have been largely directed towards identification of biomarkers with
prognostic or diagnostic value, reflecting the fact that discovery (untargeted) pro-
teomics has been the dominant strategy for the past decade. Biomolecules serve as
early indicators of disease and they can be used to monitor disease progression,
pharmacologic therapeutic response, and adverse responses to toxicants. Biomarker
discovery and identification has been largely focused on liver and kidney as a con-
sequence of studies driven by the pharmaceutical sector, although disease-specific
markers have also been identified (van Vliet 2011; Altelaar et al. 2013). Progress in
biomarker discovery, identification and validation for toxicology has been very slow
and many early supporters in the field have become disillusioned. The slow progress
does not reflect a lack of suitable biomarkers; rather, it reflects the inherent chal-
lenges of using an untargeted approach to discovery. Targeted proteomics is enabling
rapid advances within in vitro toxicology, for both biomarker discovery as well as
for expanding and developing our understanding of pathway-based molecular
mechanisms of toxicity. For example, identification and quantitation of proteins in
a sample can reveal that a signaling pathway is active; conversely, knowledge of
signaling pathways can be used to map and model human responses to chemical
exposures or to pharmaceuticals (Collings and Vaidya 2008).

Like other omic approaches, proteomics experiments generate very large data
sets that present significant data management, storage, transfer, analysis, and inter-
pretation challenges. Analysis is complex, and requires specific tools for data pro-
cessing, including statistical methods, databases, and bioinformatics tools. Although
significant progress has been made, much more needs to be done. Another major
challenge that will confront regulators is the lack of standardization across pro-
teomics technologies. For example, standardized sample preparation, handling, and
processing protocols should be implemented because molecular profiles obtained
from omics studies may be very sensitive — results can vary widely as a consequence
of differences in specimen type, collection/isolation/storage/processing methods,
the volume of sample used versus volume sample required for accurate result, the
number of replicate samples run vs. the number of replicates needed for statistical
analysis, and so on.

9.2.4 Metabolomics

Metabolites are small molecules, such as amino acids, lipids, organic acids and
sugars that are intermediate or end products of metabolism. Unlike genes and pro-
tein that can be altered and are subject to regulatory processes, metabolites are the
downstream products of gene expression (and also the end product of a toxic insult)
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and directly reflect biochemical end products that are closer to the phenotype (van
Ravenzwaay et al. 2007). Metabolomics is the study of metabolites and is used to
identify all of the metabolites present in a given cell or organism at a specific time
(global metabolite profiling) or to characterize specific metabolites with respect to
concentration or other parameters. In 2007, scientists completed the first draft of the
human metabolome, cataloging approximately 2500 metabolites, 1200 drugs and
3500 food components; this information is available in the Human Metabolome
Database (www.hmdb.ca), although it is still incomplete (Wishart et al. 2007).

Recent Advances in Metabolomics Modern metabolomics research had its origins
in nuclear magnetic resonance spectroscopy (NMR) but over the past two decades
mass spectrometry-based studies of metabolomics have become much more preva-
lent than NMR, due to the high sensitivity, specificity, and ability of MS to detect
and identify large numbers of metabolites. Gas chromatography/mass spectrometry
(GC/MS) was used to study complex samples and later researchers expanded into
liquid chromatography/mass spectrometry (LC/MS), driven by the advent of afford-
able, accurate mass, time-of-flight (TOF) instruments. The advantages and limita-
tions of each technology have been the subject of numerous reviews (Bouhifd et al.
2013; Dunn and Ellis 2005).

Metabolomics experiments are conducted using either targeted or untargeted
strategies (Fig. 9.4). Targeted metabolomics is a method used to determine the rela-
tive abundances and concentrations of a specific set of pre-selected metabolites,
usually related to a specific metabolic pathway. Targeted applications typically
employ triple quadruple LC/MS or GC/MS because the QQQ provides reliable,
sensitive and reproducible quantitative analysis. The method requires that the exact
structure of metabolites are known; therefore the instrument is first optimized
against standard compounds in selected reaction monitoring. While the method is
quantitative and enables direct comparisons of metabolites between samples, it also
requires that the exact structures of the metabolites under study are known and usu-
ally requires the use of analytical standards. Therefore, targeted metabolite studies
are limited to those metabolites catalogued in searchable mass spectra libraries;
available metabolomics databases, along with bioinformatics tools to facilitate data
analysis and interpretation have been described (Baker 2011; Go 2010; Patti et al.
2012; Wishart et al. 2013).

Untargeted (discovery) metabolomics methods are used to establish the metabo-
lite profile of a given sample. Untargeted metabolomics approaches usually employ
TOF or QTOF mass analyzers, as the instrument enables high resolution and accu-
rate mass measurements for identification and characterization, particularly with
unknown compounds. Discovery metabolomics experiments involve examining an
untargeted and unbiased suite of metabolites, finding the ones with statistically sig-
nificant variations in abundance within a set of experimental versus control samples,
and determining their chemical structure. An interpretation step allows the researcher
to connect the metabolite with the biological process or condition.

Metabolomics has been expanding rapidly and applications are now routine in
the areas of system biology, drug discovery, pharmaceutical research, early disease
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Fig. 9.4 Mass-spectrometry-based metabolomics workflows, for targeted (upper) and untargeted
(lower) applications. Targeted metabolomics is used to determine the relative abundances and
concentrations of a specific set of pre-selected metabolites, usually related to a specific metabolic
pathway. Sample metabolites are compared to standards and exact matches quantified. Untargeted
(discovery) metabolomics experiments involve examining an untargeted and unbiased suite of
metabolites, finding the ones with statistically significant variations in abundance within a set of
experimental versus control samples, and determining their chemical structure. An interpretation
step allows the researcher to connect the metabolite with the biological process or condition

detection, toxicology, newborn screening, food safety and nutrition science and
others. Metabolomics is finding broad acceptance and ready adoption in toxicology.
Even as early as 2000, metabolomics was explored as a technique for rapid in vivo
screening. The Consortium for Metabonomic Toxicology (COMET) performed
NMR-based studies to predict liver and kidney toxicity using serum and urine sam-
ples from rodents; that data is still used today (Lindon et al. 2005). The same
approach has been extended more broadly and now in vivo metabolomics are rou-
tinely used in drug development to screen for potential toxic effects of drug candi-
dates, as well as for mode-of-action studies (van Ravenzwaay et al. 2012).
Metabolomics is also being applied to in vitro toxicology. Rameriz et al. have pro-
vided a long list of suggested in vitro metabolomics applications for toxicology and
connected these suggestions to their actual implementation through active research
efforts (Ramirez et al. 2013). Just a few of the application areas they identified are:
(1) development of prediction models, where metabolite profiles obtained from
training compounds of known toxicities could be compared to unknown compounds
to predict their potential toxicity; (2) to rank/prioritize compounds and to sort or
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classify molecules with respect to their mode-of-action or predicted toxicities; (3)
to use pathway-based knowledge to pinpoint potential drug/compound molecular
targets and predict their mode-of-action and to map and model pathways of toxicity;
and (4) biomarker discovery.

Challenges for Metabolomics In order to gain acceptance by the regulatory com-
munity, metabolomics will have to overcome a number of technical challenges.
Quality control methods must be developed that ensure that in the process of prepar-
ing and analyzing samples, potential artifacts are not introduced. Advances are
needed for sample throughput that enable faster, more robust, reliable and repeat-
able sample preparation, measurement and analysis especially since mass spectrom-
etry experiments require that a large number of biological replicates are analyzed.
Metabolite identification is limited by existing databases and additional effort is
needed to expand and continuously update these databases. Similar to proteomics,
metabolomics experiments suffer from a lack of standardization that spans technol-
ogy platforms, analytical methods, statistical methods, data analysis and interpreta-
tion, etc. Metabolomics also generates very large data sets that present significant
data management, storage, transfer, analysis, and interpretation challenges.
Metabolomics analysis is complex, and requires specific tools for data processing,
including statistical methods, databases, and bioinformatics tools.

9.3 Application of OMICS Data to AOPs

Omics approaches hold considerable promise for the future of toxicity testing and
for the development of hazard assessments tools including AOPs. Their utility has
been demonstrated over the past decade, where omics approaches have been used to
identify, classify, characterize, screen and prioritize chemical compounds; to evalu-
ate the effects of compounds across doses, exposure times, and species; to identify
novel signatures or biomarkers of toxicity; to study toxicity pathways and to eluci-
date mode-of-action (Waters et al. 2004). Omics studies can be used to bridge in
vitro and in vivo data as well; for example, a hypothesis for MOA in a system can
be evaluated using appropriate in vitro and/or in vivo omics studies to verify/cor-
roborate a hypothesis. Omics studies can also be used to verify postulated links
between the upstream events and those that occur at the cellular and subcellular
levels, and omics data can also help fill in information gaps for poorly-defined
AOPs. Additionally, since potentially many AOPS may share a common MOA,
omics data may play a central role in fully mapping the early stage key events to
better define the points of divergence between AOPS that begin from a common
MOA.

Omics also provides endpoints of chemically-induced adverse effects for key
events associated with AOPs (EFSA 2014). Integrated omics data sets can be used
to develop comprehensive molecular, cellular, and organ — level profiles of key
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events in AOPs, setting a foundation for species comparison studies as well as for
studies that consider the range of chemical responses attributable to human
variability. Conversely, AOPs can be used to inform development of omic-based
predictive assays that could potentially be applied for hazard or risk assessments of
previously-uncharacterized chemical compounds or for use with complex mixtures
of chemicals. Taken together, the application of omics data to the development of
AOPs holds considerable promise for hazard and risk assessments, and may help to
validate integrated testing strategies and reduce reliance on animal testing.

Application of Genomics Data to AOPs As costs for NGS technologies continue to
decline while volume of sequence information generated continues to increase,
genomics-based research will also continue to accelerate and fuel tremendous
growth in research that aims to associate or correlate structural variations in DNA
with diseases. Genomics applications will continue to inform mechanism-of-action
studies, and new discoveries will direct research towards targeted therapeutics for
diseases. These studies will yield new insights into mechanisms underlying toxicity
and guide approaches towards eliminating, minimizing, or by-passing normal cell
responses to reduce adverse outcomes.

Application of Transcriptomics Data to AOPs The utility of microarrays has been
demonstrated in countless applications, but the three most common applications
are: grouping/classification of compounds, elucidation of mode-of-action, and bio-
marker identification. Others have reviewed and reported the application of tran-
scriptomics data for hazard assessments (OECD 2013a, b; Thomas et al. 2013;
US-EPA 2013). RNA-seq holds promise with improved sensitivity, better precision,
a much greater dynamic range (microarrays lack sensitivity for genes expressed at
either very low or very high levels), and better reproducibility.

Application of Proteomics Data to AOPs Proteomics are increasingly being used in
toxicology and hazard assessment (Van Summeren et al. 2012). Some typical appli-
cations of proteomics to human hazard assessment of chemicals include: (1) the
identification of toxicant protein targets to understand MOA; (2) biomarker discov-
ery and validation in major initiatives like the FDA’s Critical Path Initiative
(Woodcock and Woolsley 2008) or the EU-based InnoMed PredTox project.

Application of Metabolomics Data to AOPs Metabolites can be created in
response to chemicals that originate endogenously (inside the body) or exogenously
(outside of the body). Small changes in the genome or proteome can be easily
detected in the metabolome; the metabolome also reflects an organism’s response to
changes in the environment. For these reasons, the metabolome is often referred to
as the “ome” closest to the phenotype. Biomarker discovery and drug safety screens
are two examples where metabolomics has already enabled informed decision
making.
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9.4 Challenges to the Application of OMICs Data to AOPS

General Challenges A fundamental challenge confronting the use of omics
approaches across all scientific disciplines is that the omics experiments are techni-
cally very challenging, requiring complex molecular and analytical techniques,
highly specialized training, and sophisticated bioinformatics tools to analyze very
large data sets. In addition, researchers must have deep fundamental understanding
of biology in order to interpret the data and place it into a meaningful biological
context. Another key issue relates to the sensitivity of the methodologies which may
lead to the detection of changes that may not be biologically or toxicologically rel-
evant (EFSA 2014).

The lack of standardization and validation across the omics (especially pro-
teomics and metabolomics) has been previously described; this is indeed a chal-
lenge that must be addressed and overcome if omics data are to be accepted by the
regulatory community. Quality control, sample preparation, sample processing,
data processing, data analysis, and data interpretation are all areas that are ripe for
improved method development, standardization and harmonization.

Data Integration: Bioinformatics and Visualization Tools Experimental omics
approaches are high-throughput, data-driven, top-down approaches that generate
large amounts of data (Zhang et al. 2010). Combining data from different platforms
and assays across multiple experiments into a coherent approach that appropriately
weighs and evaluates the different data sources is quite challenging and represents
the next generation of pathway identification tools. The two main challenges for
integration of omics data sets are the limitations of bioinformatics and visualization
tools to enable researchers to analyze and interpret their data within a meaningful
biological context, and the overall processing, storage, and curation of data into
databases such that data can be easily accessed, retrieved, shared, and archived.
Bioinformatics tools will need to be built on novel, flexible architectures, to provide
a broad foundation for joint analysis and visualization of orthogonal data. Several
key processes, including transfer of different kinds of data between different soft-
ware applications, facilitating new custom visualizations, enabling statistical analy-
ses involving pathway databases, and providing workflow and help facilities in
order to ensure that the software is accessible to users with different levels of experi-
ence, are critical to pathway-based orthogonal analysis and must be considered. The
development and refinement of methods and tools for integration of omics data
constitutes an active area of research and several recent reviews provide excellent
summaries of available tools (Wanichthanarak et al. 2015; Fukishima et al. 2014).
Turning omics data sets into results that advance our understanding of the funda-
mental biology underlying the data requires considerable analysis and interpreta-
tion. Heterogeneous, multi-dimensional data must first be processed and analyzed
to extract the features of interest (e.g., genes, metabolites, etc.). Next, application-
specific steps, such as feature extraction (for metabolomics data, for example) and
identification or expression analysis (for transcriptomics data, for example) are
applied. The processed data sets are then ready for integration. This requires that
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databases are available that allow correlations between features, including genes,
proteins, metabolites, chemicals and other compounds of interest, along with con-
sideration of an array of experimentally-determined meta data (e.g., cell-based
imaging, pathology, chemical analysis, etc.). Any omics integration approach will
employ pathway-based analysis tools. Such analysis is limited by access to curated
biochemical pathways such as WikiPathways, KEGG, or BioCyc. These databases
represent an excellent starting point for data integration, but they are limited in that
they only provide a static view of biochemical pathways.

Network-based analyses extends the pathway approach by representing complex
interactions between genes, metabolites, and proteins without relying on predefined
or pre-determined biochemical pathways. These networks are useful to map multi-
ple omics experimental results and help identify altered regions of the networks
(Wanichthanarak et al. 2015). For example, GeneSpring software can be used to
combine heterogeneous data, such as genomic sequencing, gene expression, and
metabolomics abundance into one project, allowing investigators to analyze and
view results from different experiments in a single user interface.

The GeneSpring Pathway Architect module enables visualization and analysis of
curated pathway content using a variety of publically-available pathway databases
for building, annotating and querying biological pathways. GeneSpring incorpo-
rates Gene Ontology (GO) analysis, Gene Set Enrichment Analysis (GSEA), Gene
Set Analysis (GSA) and network analysis tools (Fasani et al. 2016). Correlation-
based tools (based on methods such as principal component analysis, canonical
correlation, analysis, or discriminant analysis) can be used to look at associations
between entities from a single type of omics data set, or between entities from dif-
ferent types of omics data (Rajasundaram and Selbig 2016). For example, identifi-
cation of co-regulated entities, such as genes and metabolites enables identification
or mapping to networks or pathways, which enables potential identification of
mechanisms. Correlation analysis, combined with predictive statistical approaches,
such as sparse partial least squares regression may reveal correlations with known
biological functions as well as correlations for which biological relevance remains
to be verified (Rajasundaram and Selbig 2016). Intuitive graphical displays that
employ a variety of plots, graphs and diagrams help users conceptualize and inter-
pret the information in their data, and other interactive visualization tools make it
easy to import/export graphical images and to compare results from different
experiments.

The pathway, network, and correlation tools discussed here are relatively simple
to use and are standard in most commercially-available data integration packages.
Other types of correlation-based tools (e.g., Bayesian networks, partial correlations)
that are far more sophisticated are also available, but they are also more difficult to
use, may be computationally challenging, and generally require a fairly detailed
biological understanding of the system under study.

Publically-Accessible Databases Given the complexity and sheer volume of data
generated in omics studies, there is an emerging need for comprehensive, publically-
accessible databases. Databases such as CEBS, ACToR, PubChem, GO, Gene Map
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Annotator and Pathway Profiler, Science Signaling Connections Map, BioCarta,
Reactome and KEGG are useful in this regard; of the more than 1000 biologically-
relevant databases are already publically available, several hundred are specifically
relevant to toxicology but many of those contain data that is not necessarily in a
format that is directly useable (Judson 2010). EPA’s ACToR, the Aggregated
Computational Toxicology Resource, is an example of a knowledgebase that brings
together diverse types of information into a system where interrelationships of indi-
vidual database elements (e.g., traditional toxicology, chemical structure informa-
tion, high throughput screening data, molecular pathway analysis, chemical data
repositories, peer reviewed published literature, and internal Agency databases) can
be explored and utilized (Judson et al. 2008). The ACToR database links informa-
tion from more than 400 source databases and data sets on chemical identity. All
published data associated with the ToxCast, ToxRefDB (a mineable, searchable
database of pesticide toxicity data) and Tox21C programs are consolidated within
ACToR and the knowledgebase is publically accessible. Given the existing utility
and advanced stage of development of ACToR, it could serve as the foundation upon
which to build out a complete knowledgebase for all twenty-first century toxicology
testing data and metadata.

9.5 Conclusion

Advances on omics approaches, combined with molecular toxicology provide both
opportunities and challenges for regulatory agencies and others who must consider
the use of these new tools and technologies when conducting hazard and risk assess-
ments. A variety of issues will need to be considered and resolved before omics data
can contribute significantly to risk assessments, but applying omics data today to
AOPs should help the toxicology community establish better linkages a-between
key events, which should in turn, lead to more quantitative AOPs.
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Chapter 10

Use of Genetic Manipulation for Evaluating
and Understanding Adverse Outcome
Pathways

Christopher Warner, Natalia Garcia-Reyero, and Edward Perkins

Abstract Innovations in biology have brought forth a new era of genetic manipula-
tion ranging from the creation of molecular scissors for targeted single-nucleotide
alterations, to a simultaneous inactivation of 62 genes in pig embryos to “humanize”
transplant tissue. Genetic engineering advances allow for novel testing paradigms to
understand chemical interactions and information flow in biological systems.
Emerging platforms may provide mechanistic knowledge of chemical stressor inter-
actions in biological systems to facilitate the development of alternative testing
methods, as well as prioritize higher tier toxicity testing for risk assessment. This
chapter will discuss recent advances in genetic manipulation and describe how these
techniques improve our understanding of toxicity across multiple biological scales.
These efforts will ultimately aid in validation of Adverse Outcome Pathway (AOP)
key event relationships for ecological risk assessment.

10.1 The Need for Validation Systems in Chemical Hazard
Assessments

Chemical hazard assessment has long relied on apical data generated in animal
toxicity tests and the application of both uncertainty factors and conservative
assumptions for decision making. However, due to the cost and time limitations, it
is not practical nor feasible to test all chemicals that could adversely affect ecosys-
tems using animal models with phenotypic end points (NRC 2007). Chemical
assessment approaches and regulatory efforts in the US and in Europe are moving
towards computational chemistry, high-throughput screening (HTS), in vitro assays
and biological pathway based measures to more effectively assess the potential for
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chemical to cause toxicity (Dix et al. 2007; Worth et al. 2014). These programs
highlight the need for developing, improving, and validating new laboratory tools
based on recent scientific advances to understand the hazards and risks posed by
chemicals. There have been a number of advances in tool development, including
biomarker discovery, model system development, systems biology, bioinformatic
analytics and computational toxicology (Mathieu 2013). Integration of these efforts
relies on an overarching framework that can extrapolate initiation of a toxicological
pathway to an adverse outcome, The Adverse Outcome Pathway (AOP) framework
provides a structure for organizing knowledge about the progression of toxicity
events across scales of biological organization that ultimately lead to adverse out-
comes at the organism or population level (Ankley et al. 2010). AOPs consist of a
sequence of key events from a molecular-level initiating event, where a chemical
binds to a receptor and an ensuing cascade of cellular, organ, and organism level
effects culminating in an adverse outcome of regulatory significance (Fig. 10.1;
Villeneuve et al. 2014). AOPs have been developed for a number of important sys-
tems, including the endocrine (Russom et al. 2014), acetyl cholinesterase (Watanabe
et al. 2011), oxidative-phosphorylation (Wilbanks et al. 2014), among many others
(Perkins et al. 2015; Tollefsen et al. 2014; Willett 2014).

The AOP framework relies on detailed knowledge on how key events within a
pathway interact to create response-response relationships across at all levels of
biological organization. Efforts to understand these relationships rely on mechanis-
tic understandings of biochemical and genetic interactions (Patlewicz et al. 2013).
However, conventional toxicological methods often fail to identify or describe
causal relationships across biological scales that are needed to confidently link
changes at the molecular initiating event (MIE) through a cascade of key events
(KE) to the adverse outcome (AQO). Alternative approaches, such as tools recently
developed for genetic engineering of cells and organisms, enable an unprecedented
ability to understand the mechanistic underpinnings of toxicological pathways and
adverse outcomes. In this chapter, we identify commonly used genetic manipulation
tools, then apply these tools to establish mechanistic relationships across multiple
levels of biological organization in the AOP framework.

Adverse Outcome Pathway

A
{ 1

3 Cellular Quganism Bogulation
b Besponses Response Besponse
Chemical T Lethality
Process binding to a — > Impaired Reproduction > "Wuht_lon Pecllne
caceghor sgnaling pathways Do Deostipiiont Extinction
Genetic Screens
In silico screening In Vive dosi ¥ G i ion, duplication, addition
Testing Methods o Vitri dlagrostics g ey
i vitro diagnostics.
*  Testing sufficiency of receptor *  Testing if cellular pathway activation
activation of signaling pathways affects the entire organism
U = Determine if receptor Dy Dos y of . ing Dose dep of
i binding is necessary in activation eellular sctivation
towicity *  Determining if Compensatory *  Determining if organismal
pathways are adequate Compensatory pathways are
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Fig. 10.1 Genetic engineering efforts integrated into an adverse outcome pathway
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10.2 Genetic Manipulation Tools

Genetic engineering is the modification of an organism’s genetic composition by
artificial means, often involving the transfer or modification of specific genes, from
one organism into entirely different species. Genetically modified organisms include
collections of permanent, conditional knock-outs (deletions), or knock-ins (gene
addition or duplication). Within the last 10 years, there have been numerous tools
developed for genetic modification of many species (Baltimore et al. 2015). These
also include transcriptional level modifications that can alter levels of protein within
a modified cell. Recent advancements in methods for genome modification, such as
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies
and CRISPR-associated (CRISPR/Cas9), enable experimentation that is cheaper
and faster than previous methods while permitting research that was not previously
possible (Yang et al. 2015).

These methods hold a promise in becoming standard experimental strategies for
testing the functional role of genes in both model and non-model organisms. The
recent generation of engineered nuclease-mediated mutants in rat, zebrafish, maize
and tobacco testifies to the significance of the methods and the list is expanding
rapidly (McMahon et al. 2012). Both of these methods can disrupt genes either
permanently or temporarily and allow for gain-of-function (overexpression of a
gene or dominant active), loss-of-function (gene expression knock down or domi-
nant negative), mosaic analysis, lineage-restricted studies and cell tracing experi-
ments. Transgenesis, the process of creating stable mutants, allows for targeted
changes of specific genes while transient reverse genetic approaches are tempo-
rary, typically quicker, cheaper, and require little animal facility space (Hogan
et al. 2008).

10.2.1 Engineered Nucleases and Homologous
Recombination: Examining the Role of Specific
Genes in an AOP

A direct way to demonstrate causality in a pathway and linkage to an AO is to block
a key event from activating in the presence of conditions that would otherwise acti-
vate the event and downstream events. This can be done genetically using engi-
neered nucleases and homologous recombination to make genes overexpress
(always on or expressed at much higher levels than normal) or remove genes to
observe their role in biological pathways and AOs. Often referred to as “molecular
scissors”, nuclease proteins allow for precision edits and additions to an organism’s
genome. A nuclease creates specific double-strand breaks along DNA at desired
locations in the genome, often guided using specific sequences. Nucleases edit
DNA through covalent bond alterations on DNA nucleotides, akin to a copy-paste
function (Zhao et al. 2014). Subsequent DNA breakage recruits the cell’s native
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repair machinery. This results in a genome alteration by replacing a region of DNA
with the desired insert (Esvelt and Wang 2013). There are currently four families of
engineered nucleases being used, including Zinc Finger Nucleases (ZFNs),
Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas9 sys-
tem, and engineered meganuclease re-engineered homing endonucleases. Each of
these proteins have distinct advantages in terms of availability, sequence specificity,
ease of use, targeting efficiency and off target mutations (Tan et al. 2012).

10.2.2 Altering Gene Expression Using RNA Interference

One limitation of methods that directly add to, or change, genes in genomes is that
these changes, once induced, are generally permanent, continuously affect the cell
or animal, and require lengthy selection to get transgenic lines for analysis. RNA
interference, or RNAI, is an approach that can be used to temporarily reduce or
eliminate expression of genes without the need for lengthy generation of transgenic
lines. RNAI is a gene regulation pathway that is controlled by small regulatory mol-
ecules of RNA. In the pathway, short double-stranded RNA molecules are bound by
the protein Dicer in a cell’s cytoplasm and are cleaved to produce a passenger strand,
which is degraded, and a guide strand. The guide strand directs the RNA-induced
silencing complex (RISC) to selectively destroy specific mRNAs that are comple-
mentary to the guide strand RNA (Bagasra and Prilliman 2004). In the laboratory,
double-stranded RNA can be synthesized with a sequence that is complementary to
a gene of interest and introduced into a cell or organism, where it activates the RNAi
pathway, degrading the mRNA of the complementary gene, and consequently
decreasing expression of the targeted gene. Since RNA targeting is introduced
directly into the cells that are targeted, application of RNAi approaches generally
provide only temporary inhibition of gene function. RNAI can also result in unpre-
dictable off-target effects due to partial matching to unintended targets in the
genome (Alic et al. 2012).

10.2.3 Genetic Manipulation in Developing In Vitro
and In Vivo Assays to Assess Key Events

MIE and KE are pragmatically defined as specific, measurable biological events. In
vivo and in vitro assays provide methods to quantify these observations. In vitro
methods utilize biological molecules (e.g. receptors, enzymes, or ion channels), or
biological tissue (cell lines, xenografts, or ex vivo organs) outside of whole animal
to determine if a chemical will bind to a biological target, activate a specific path-
way, or affect a cellular process (Fig. 10.2). Whereas in vivo methods include use of
whole animals for toxicity testing. Bacteria, yeast, worms, and zebrafish embryos
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Fig. 10.2 Chemical screening in zebrafish. Zebrafish embryos are assayed using large-scale, high-
throughput manipulation and analysis. (a) Identification of an embryonic phenotype that is a rele-
vant toxicity model is a key step in this process. Organic dyes, developmental abnormalities, delayed
development or expression of a genetically modified reporter can be used as metrics to sort out
chemical hits. (b) Once a relevant embryo phenotype is found or genetically modified, embryos can
be distributed into 96 well plates. Each well will receive a distinct small molecule, either manually
or with the aid of a liquid-handling robot. This method has been applied to screens ranging from
1000 to 26,000 molecules. (¢) Identifying the mechanism of hits depends upon the type of screening
employed. (d) While mechanistic evaluation is ongoing, chemical toxicity can be validated in mul-
tiple higher tier testing methods, including transgenic disease models or full animal studies

are preferred due to their small size, low cost, ease of genetic manipulation, and
short generation time. Figure 10.3 demonstrates one form of in vivo testing, where
a reporter gene is controlled by a response element, such as a developmental or
stress response promotor. Many assay systems exist that utilize genetic
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Element Gene
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Fig.10.3 In Vivo genetic circuit testing in zebrafish. DNA is synthesized with a response elements
to drive the expression of different fluorescent reporter proteins. DNA is transfected into zebrafish
embryos and maintained throughout the fish’s life cycle, often transmitting into offspring. Stable
transgenic zebrafish can be exposed to different environmental pollutants and toxicants. Cellular
responses to chemical stimulation can be visualized with fluorescent microscopy. Moreover, tissue
specific responses can be quantified by comparing against non-induced controls

manipulation (Table 10.1), each one targets a specific biomolecule and provides
various levels of information. We will describe in detail the Yeast 2 hybrid system
as it provides an elegant example of how genetic manipulation can be utilized to
assess the physiological relevance of signaling dynamics within a cell.

10.2.3.1 Yeast 2 Hybrid Systems to Identify Important Protein
Interactions in Key Events

The Yeast 2 Hybrid system (Y2H) screens for interacting proteins based on tran-
scriptional activation. The protein of interest, or “bait” is fused to a DNA binding
domain. Proteins that bind, or “fish” are fused to a transcriptional activation domain.
Any protein that binds to the “bait” will activate the transcription of a his reporter
gene. Y2H screens begin by constructing the bait plasmid, and a library of cDNAs
in the fish library. Each plasmid contains a selectable marker, such as an antibiotic,
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or essential amino acid. Plasmids are transformed into yeast cells. Cells are grown
in selective media so that cells containing both plasmids will grow. Cells are plated
onto media lacking histidine, so that colonies with interacting plasmids will grow.
Proteins from colonies are identified through DNA sequencing (Briickner et al.
2009; Lodish et al. 1995). There are many variations of this method, including the
type of reporter and cell lines used, as well as inducible systems and multi-
component systems that provide insights into more complex protein-protein interac-
tions (Kelly and Stumpf 2008; Charbonnier et al. 2008). This screen is relatively
simple to perform and can identify interacting proteins in a scalable system. This
screen has been used to for both hypothesis testing as well as exploratory work. For
example, Y2H have been used to confirm critical targets of the F-box protein ubiq-
uitin ligase involved in methylmercury toxicity (Lee et al. 2015). Y2H has also been
used to query chemical activity on estrogen signaling pathways for high throughput
endocrine disruption testing (Nishihara et al. 2000). This system, like many testing
platforms, is far from perfect. Both false positives and negatives plague the system,
however, where validation approaches are required. Moreover, expression bias
among cDNA libraries is well documented, and some protein partners may require
post-translational modifications, chaperone proteins, or other multiunit complexes
before interactions are observed (Chen et al. 2010). Ultimately, Y2H screens pro-
vide a functional assay where exposure of genetic manipulated cells provides evi-
dence for toxicity pathways and ultimately AOPs.

10.3 Application of Genetic Manipulation Approaches
to Understand and Define Key Event Relationships

Genetic manipulation can be used by toxicologists at all biological levels of organi-
zation within the AOP framework. Genetically manipulated organisms and tissues
provide a tool kit for both direct hypothesis testing as well as elucidating toxicity
pathways in an exploratory manner (Table 10.2)

Table 10.2 Overview of genetic engineering efforts to aid validating AOP relationships

Biological level Description Examples
Receptor binding | Chemical-protein interactions | Protein mutants for enhanced NMR and
(MIE) crystallography
GPCR receptors, PTM proteins in bacteria
and yeast
Cellular response | Genetic screens Functional genomics
Reporter circuits Genetic devices, biomarker discovery,
pathway specific assays
Organism Simplified model systems Reverse engineering of biological circuitry,
response Reproduction and disease models
developmental assays Reproducanimal models, iPSC, cell line

Disease models immortalization
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10.3.1 Use of Genetic Manipulation to Define MIEs

Testing whether a chemical interacts with a biological receptor, an MIE, is compli-
cated. Protein or nucleic acid receptor binding is typically tested through a variety
of in vivo and in vitro methods. Below we discuss how genetic engineering has
advanced our ability to understand MIEs.

10.3.1.1 Genetic Manipulation of Proteins for Greater Understanding
of Chemical-Protein Interactions

Genetic manipulation of peptides provides toxicologists a toolbox to better under-
stand protein structure and function. Functional relationships embody an underpin-
ning for the chemical-protein interactions that define receptor docking. For instance,
amino acid substitutions, where every version of an enzyme is made by switching
each amino acid for glycine is a routine practice to determine regions of interest. A
biologist can compare the activity or specificity of the mutated protein to the wild-
type, and map the enzymes active, allosteric and inhibitory binding sites. Structure-
activity relationships can be established based off of these peptide maps to
understand the primary structure of an enzyme. Protein maps provide working
knowledge that can be used for either specific hypothesis testing concerning chemi-
cal affinity, or for targets in high throughput screening for exploratory work. For
example, genetically engineered forms of native receptors allow enhanced struc-
tural analysis using NMR and X-ray crystallography (Ellison et al. 2011), which is
a fundamental requirement to ab initio analysis of receptor docking (Ritchie 2008).

Genetic manipulation also provides tools to understand higher order levels of
protein assembly. Protein folding and post translational modifications can be tested
by cloning peptides from one species into another one. With contrasting protein
assembly machinery, cells of one organism can express a protein distinctive from
cells of another organism. Species to species comparison is possible through these
assays that will inform MIE specificity.

Genetic manipulation can also be used to modify the epigenetic landscape of a
cell’s DNA. Engineered nucleases are able to target DNA in a sequence specific
manner and add or remove methylation to explore the role of methylation in modi-
fying chemical responses. Moreover, nucleic acid architecture, which is orches-
trated by a legion of proteins, can be modified through protein engineering. These
epigenetic tools can be used to inform toxicologists how toxicity progresses during
exposure through critical non-genetic pathways.

Invitrotesting of receptor docking provides direct evidence for an MIE. Comparing
organisms that express the receptor to ones that do not can definitively link an MIE
to subsequent key events and adverse outcomes. Inducible expression and overex-
pression of targeted receptors allows one to examine response-response relation-
ships between key events leading to adverse outcomes. Knocking out and
overexpression of receptors are possible in many cell types: prokaryotes, fungi,
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plants, invertebrates, fish, bird, and mammalian cell lines. Moreover, genetic engi-
neering techniques have advanced the ability for complex proteins to be expressed
in simpler model systems. For example complex membrane and nuclear receptors,
such as G-protein coupled receptors (Skretas and Georgiou 2008), post-translational
modified proteins (Kaminoka 2011), and steroid receptors (Wooge et al. 1992) can
be expressed in bacteria (Mattanovich et al. 2012) and yeast (Zoonens and Miroux
2010). These genetically altered cells are more convenient to work with because of
lower costs, faster life cycles and greater control of genetic backgrounds.

10.3.2 Genetic Approaches to Assess or Modify KE
at the Cellular Level

Chemical interactions with a receptor or other MIE is only biologically relevant
when downstream cellular pathways are activated and lead to a physiological change
at higher levels. To demonstrate causality, dose-response relationships between
chemicals and different events or response-response relationships between Key
Events are required. Moreover, threshold responses need to be established where
pathway activation is above a critical level that compensatory pathways are not
equipped to buffer the cell from a toxic response. Below are a number of the meth-
ods to determine cellular responses from perturbation of receptors or other MIEs.
While genetic screens can confirm if a gene or pathway is necessary to induce a
toxicity pathway, more nuanced approaches are required to determine how much of
a toxicant is required to induce the toxic response. In vivo dosimetry provides such
a platform. Typical experiments include dosing an animal or model system with an
increasing amount of compound. Phenotypic end points are measured and com-
pared against the amount of chemical present. Exposure-response curves provide
direct evidence for a threshold of perturbation and linkage between events accord-
ing to the modified Bradford hill criteria, i.e. temporal relationships, strength of
response, coherence of response etc.

10.3.2.1 Genetic Screen Based Determination of Biological Pathway/
Processes

Genetic manipulation provides materials that can directly link receptor activation to
downstream effects. When specific genes or pathways are involved, targeted knock
outs provide a clear link to the response by abolishing toxicity when the correspond-
ing gene is removed or knocked out of the organism (Gaytan and Vulpe 2014). For
exploratory work, genetic manipulation has incredibly expanded the options avail-
able to perform genetic screens where a phenotype of concern is selected from a
mutagenized population. Engineered nucleases and RNAi (Cullen and Arndt 2005)
or CRISPR/Cas9 knock-out libraries (Shalem et al. 2014) can identify specific
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genes responsible for the toxicity phenotype using high throughput assays. Genetic
screens using transgenic techniques have been applied to a number of ecological
models, including fruit flies (Danielsen et al. 2016), zebrafish (Holtzman et al.
2016), worms (Zugasti et al. 2016), and mice (Mohr et al. 2016).

10.3.2.2 Reporter Circuits

Genetic manipulation provides tools to generate biomarkers that simplify testing
methods. Many of the end points used in developing response curves can be either
complicated or expensive, for example, cell viability, cell proliferation, cytochrome
activity, kinase induction, DNA mutation, and hormone signaling use expensive
reagents and equipment. Engineered genetic devices, on the other hand, are simpli-
fied biological systems that can act as a pathway dipstick for toxicity testing.
Composed of DNA circuits, DNA devices can be either embedded in a cell or in a
standalone cell-free system. DNA circuitry enables chemical and genetic interac-
tions to be precisely queried in a system stripped of all other components, including
protein machinery, metabolic biproducts, genetic variability etc. Genetic devices
have been shown to report on a number of physiological cues, including intracellu-
lar nutrient levels, oxidative-reduction environment, cell-cycle advancement and
others (Haynes and Silver 2009). In these systems, a signal-responsive transcription
factor is fused to a DNA binding domain (e.g., Gal4) that binds to synthetic regula-
tory elements upstream of a minimal promoter and target gene. Sensors can also be
built by assembling minimal promoters with natural regulatory DNA elements that
are induced by endogenous transcription factors that respond to various stimuli. For
instance, the cellular metabolite thiamine pyrophosphate (TPP) is sensed by syn-
thetic riboswitches (Yamauchi et al. 2008). Using these engineered systems, moni-
toring biomarkers for stress is simplified. KEs relating to cellular toxicity can be
established based off of standalone testing systems that are free from the compli-
cated network of repair mechanisms, compensatory pathways and environmental
factors.

Biomarkers with spatial-temporal resolution are possible through genetic manip-
ulation. Visualizing proteins and nucleic acids through genetic fusions to reporter
proteins has become a rapidly growing field. Research laboratories working with
rats (Ma et al. 2014), mice (Yang et al. 2013), flies (Yu et al. 2014) and fish (Peterson
and MacRae 2011) have used epitope tags and fluorescent proteins to label endog-
enous proteins and generated gene expression reporters. In flies, a histone acetyl-
transferase protein encoded by the gene chameau was C-terminally tagged with
GFP, and myc was used to tag an uncharacterized gene, CG4221 (Yu et al. 2013). In
mice, the Sox2 gene was tagged with the V5 epitope (Yang et al. 2013). Additionally,
two different fluorescent reporters were generated for the genes nanog and Oct4
(Yang et al. 2013). These reporters used either the viral 2A peptide or an internal
ribosome entry site (IRES) to express fluorescent proteins with the same expression
pattern as the endogenous gene but not fused to the protein product. While these
groups used standard fluorescent proteins, a spectrum of fluorescent proteins of dif-
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ferent colors and with diverse functions are available (Dean and Palmer 2014;
Harrison et al. 2014). Moreover, because the CRISPR—Cas9 system is amenable to
multiplexing, tags could be added simultaneously to multiple genes or different
splice isoforms of a single gene. There is an ever-growing number of genetically
encoded molecular tags that can be used for functional analysis, protein purifica-
tion, or protein and RNA localization studies. Recruitment of cellular toxicity path-
ways can be confirmed through visualization of genetic fusions.

10.3.3 Understanding Events at the Organism Level
with Genetic Manipulation

Understanding how the concert of signaling pathways give rise to a toxic response
in any organism is a significant challenge. Moreover, deriving toxicity information
across organisms is even more complicated. Genetic manipulation provides genetic
test beds for hypothesis testing as well as model systems to explore how accurate
KERs describe or predict a toxic response.

10.3.3.1 Simplified Model Systems for Deriving Causality in Complicated
Biological Networks

Genetic manipulation provides systems to test ways in which biological compo-
nents interact. KEs are difficult to identify in complex biological systems as linear
models for dose-response relationships are hard to find in non-engineered systems.
Genetically engineered systems offer a biologically based model with reduced com-
plexity for teasing out mechanisms of toxicity. For example, genetically engineered
tumor models offer tissue specific phenotypes that can be probed to validate stressor
activity. Genetic modifications to cells provide increase sensitization to a particular
stressor, which can act to highlight relevant biological machinery of interest. For
example tumorigenecity of dioxin can be traced to sustained activation of the aryl-
hydrocarbon receptor (AhR). Overexpression of AhR in mouse models demon-
strates both the receptor is required for a tumor formation, but the complex
interaction of cell signaling pathways determine the severity of tumor formation in
a species specific manner. Tumor models with modified expression of AhR provided
direct evidence of dioxin’s effect on cell proliferation as the rate of growth was
proportional to expression levels (Shimba et al. 2002; Becker et al. 2015; Behnisch
et al. 2001).

Genetically modified model systems can be used to establish species specific
responses. Differences in dioxin sensitivity have been observed across a number of
species; vertebrates are more sensitive than other organisms. Amino acid substitu-
tions on the AhR explain some of the response differences (Karchner et al. 2006;
Head et al. 2008). However, AhR structure and expression of the aryl hydrocarbon
hydroxylase enzyme (AHH) does not account for all differences (Moriguchi et al.
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2003). Internal signaling, such as cytochrome mediated xenobiotic metabolism
provides resistance to dioxin stressors. Through genetic manipulation, differential
expression of these signaling pathways, along with the differences in AhR structure
and AHH activity clarify the species specific toxicity of dioxin (Uno et al. 2009) and
provide evidence for the dioxin AOP.

Organisms of higher life forms are also expressed into lower life forms through
genetic engineering, to provide understanding of biological information across spe-
cies in an efficient manner. For example, human immune systems have been cloned
into rat and mice for test beds in pharmaceutical sciences to establish KEs critical
for drug development. Mammalian proteins have been engineered into zebrafish for
hypothesis testing and high throughput screening of potential pollutants. Last, engi-
neered organisms provide test beds for understanding gene regulation and protein
expression. These methods demonstrate the power genetic manipulation has for
validating AOP relationships.

10.3.3.2 Reproduction and Developmental Assays

Genetic manipulation provides an assortment of tools to assess KE relationships
involved with reproduction and development, which contribute to population level
effects. There have been a number of tools aiding hypothesis testing of healthy
germline tissue. Plant development and reproduction, especially in flowering plants
has been challenged by long generation times and low transformation efficiency
with loss-of function assays. Instead, using a transcriptional gene silencing mecha-
nism to repress expression of specific MADS-box genes, Lu et al. (2007) demon-
strated flower morphology could be used as an indicator of reproductive success.
This method provided an efficient way to study genes involved in reproductive
stages of organisms with long life cycles and simplified exposure testing for apprais-
ing AOPs.

Genetic manipulation has advanced access to key biomarkers involved in repro-
ductive pathways. Fusion proteins of vertebrate hormones have provided simplified
systems for observing reproductive outcomes during exposure. Zhang et al. (2014)
deleted the hormone-specific B-genes of both FSH and LH in zebrafish using
TALENS and showed clear genetic relationships for key reproductive events, includ-
ing gonadal differentiation, puberty onset, gametogenesis, final maturation, and fer-
tility. Xu et al. 2014 investigated silkworm (Bombyx mori) reproduction by
combining transgenesis with TALEN technologies. The authors showed transgenic
animals co-expressing TALEN left and right arms targeting the female-specific
Bmdsx exon resulted in somatic mutations and female mutants lost fecundity
because of lack of egg storage and abnormal external genitalia, again demonstrating
simplified methods for elucidating mechanisms of reproductive toxicity.

Genetic manipulation has also provided cells throughout the differentiation pro-
cess that can be used to understand KER in critical steps in the developmental pro-
cess. Immortalization of cells through genetic manipulation provides biologic
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material for in vitro as discussed above, however, stem cells offer the unique advan-
tage of testing progression through the critical phases of growth and development.
Stem cells are capable of renewing themselves; that is, they can be continuously
cultured in an undifferentiated state, giving an indefinite pool of cells to work with
for large scale analysis (Yu et al. 2007). Moreover, stem cells have the ability to dif-
ferentiation into any cell type and form self-organizing organ like structures, pro-
viding a platform to recreate genomic, cellular and organismal tissues for precise
disease modeling and functional physiological studies (Gonzdlez 2016). While
human stem cells have been a major focus with recent research and development
efforts, animal model stem cells have also recently been developed, such as mouse
(Okita et al. 2007), rat (Kim et al. 2009), and zebrafish (Grandel et al. 2006; Chen
and Zon 2009) stem cells which can be used extensively for (eco)toxicology in vitro
testing. For instance, Davila et al. (2004) demonstrated how genetically manipu-
lated stem cells provide better in vitro models for screening genotoxic, epigenetic
toxicants and reproductive toxicology than conventional methods. Wang et al.
(2014) used mouse stem cells at various stages of development and differentiation
to show a susceptibility window to bisphenol A that leads to tumorigenesis through
cell compartment and self-renewal functions in the developing organisms. Stem
cells offer unprecedented advantages for toxicity assays, however, methods must be
standardized and cell lines need to be validated before experimentation is
implemented.

10.3.3.3 Disease Models

Disease models offer toxicologists biological material with an observable pathology
expressed with known etiology. Disease models can be useful to confirm AOP link-
ages at higher levels of biological organization. Creation of these models requires
precise genetic modifications and environmental exposure conditions. For example,
hepatoxicity models have been generated in zebrafish (Hill et al. 2005) using genetic
screens. Zebrafish mutants exhibiting hepatic pathology have been used to validate
functional roles in lipid metabolism and confirm toxic responses with specific gene
anomalies (Carten and Farber 2009). Metabolic disorders involving lipid metabo-
lism have been tested in murine models as well.

Transgenic mouse models have been made for various metabolic disease states.
Mouse models for lipotoxicity have been created in which excess lipid uptake,
driven by overexpression of fatty acid transport proteins in the heart leads to cardiac
dysfunction. In MHC-ACS mice, excess unmetabolized lipid is associated with car-
diomyocyte apoptosis, systolic heart failure and premature death (Chiu et al. 2001).
This novel mouse model uses a tissue specific tag to induce expression of a protein.
Using this targeting specificity, local perturbations in myocardial lipid metabolism
in the pathogenesis of inherited and acquired forms of heart failure are able to be
investigated. Transgenic overexpression of other enzymes involved in metabolic
pathways have been expressed in specific tissues using a similar approach, includ-
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ing: liver-type phosphofructokinase (Elson et al. 1994), Tissue-Nonspecific Alkaline
Phosphatase (Savinov et al. 2015) in Vascular Endothelium, Cardiomyocyte-
Specific PPAR /6 Overexpression (Kim et al. 2013) and many others (Masuzaki
et al. 2001). These disease models provide means to capture relevant biomolecular
interaction that give rise to a toxic response.

Disease models have been generated for neurodegenerative diseases caused by
gain of function mechanisms, where malformed proteins accumulate to a toxic
level. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by
loss of motor coordination due to the degeneration of cerebellar Purkinje cells and
brain stem neurons. Transgenic mice with a mutated SCA1 allele were generated
using conventional cloning and microinjection techniques (Burright et al. 1995).
These mice were crossbred with mice conditionally expressing heat shock proteins
(HSP70) (Marber et al. 1995). The resulting transgenic mouse has been used to
identify a myriad of neurological pathways and provide dose-response toxicity evi-
dence for a variety of stress response pathways. (Adachi et al. 2003; Muchowski
and Wacker 2005; Kim et al. 2016).

10.4 Future Considerations

With the gold rush of genetic advances, it is important to understand how these will
manifest into tools and platforms to advance understanding of biological systems.
Many of the complex interactions in biological systems can be identified, investi-
gated, and validated using these tools. Toxicologists can use these tools to confirm
key event relationships in AOPs, develop biomarkers for impact assessment, and
create high throughput test systems for efficient screening of chemicals. Careful
consideration should be employed when extrapolating evidence from engineered
systems, however. Genetic manipulation interferes with the inner workings of natu-
ral systems in ways that are not fully understood. Weight of evidence, and plausibil-
ity criteria are important to include when evaluating AOPs. Genetic manipulation
can simplify the process to understand chemical toxicity, however, rigorous studies
are needed before a final determination.
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Chapter 11
Considering Epigenetics in Adverse
Outcome Pathways

Kristine L. Willett

Abstract While the concept of epigenetics was first recognized in the 1940s,
appreciation for the potential of epigenetic change to be either the molecular initiat-
ing event or a key event underlying a phenotypic adverse outcome is much more
recent. Now it is well established that epigenetic transcriptional regulatory pro-
cesses are critical both during normal development and disease progression.
Environmental factors that act epigenetically during key developmental stages can
cause irreversible changes in gene expression, tissue structure or function and
increase the risk of developing adult disease. Furthermore, certain epigenetic conse-
quences (e.g. DNA methylation status) can be passed between generations impact-
ing offspring that were not ever exposed to the stressor. To date, the incorporation of
epigenetic events into adverse outcome pathways is limited by incomplete under-
standing of the basic mechanisms underlying epigenetic regulation of gene tran-
scription and how that is conserved, however advances are being made very quickly
in the field.

11.1 Epigenetics Definition

Working in the 1940s and 1950s, Conrad Waddington (Waddington 1942, 1956) is
attributed with first describing the concept of epigenetics (e.g. “above genetics”) in
his experiments wherein environmental stress combined with developmental plas-
ticity resulted in new phenotypes that were inheritable (Noble 2015). Today the
term epigenetics is interpreted more widely to be both heritable processes indepen-
dent of DNA sequence (e.g. X-chromosome inactivation and genome imprinting)
but also transcriptional regulatory processes that influence many different cellular
properties (Greally and Jacobs 2013). In biomedical research, comprehensive
understanding of the role of epigenetic mechanisms in health and disease is both a
research priority and rapidly expanding field (Portela and Esteller 2010). Epigenetic
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inheritance is well recognized and relatively common in plants (Heard and
Martienssen 2014). In higher organisms, certain associations between epigenetic
changes and disease phenotype, even if the exposure was during early development,
are becoming accepted, but true transgenerational epigenetic inheritance particu-
larly in humans is less clear (Heard and Martienssen 2014) despite high profile
publicity of the phenomena in the lay literature (e.g. Time cover story (Cloud 2010);
Science News (Saey 2013)).

When considering incorporating epigenetics into adverse outcome pathways, the
key events may be changes in: DNA methylation, histone modification or non-
coding RNA (Fig. 11.1). Each of these is a measurable response and associates, as
described in more detail below, with altered gene expression (e.g. key event rela-
tionship). While there is strong evidence of the key event relationship between these
particular epigenetic changes and altered gene expression, the molecular initiating
event, or how a chemical directly causes the epigenetic perturbation is still largely
unknown. Furthermore, while there is growing evidence in animal models that some
stressors cause epigenetic change, altered gene expression and adverse phenotypic
outcomes, much research is still needed to fill in subsequent event relationships to
quantitatively link all the key events.

DNA methylation is the most understood of the mechanisms of epigenetic con-
trol and has been extensively reviewed (Attwood et al. 2002; Ko et al. 2015; Szyf
2012). DNA methylation is an important mechanism regulating chromatin struc-
ture, transcriptional control, and normal cellular function (Doerfler 1983). DNA
methylation is sequence specific; methylated cytosines are mostly found in the
dinucleotide sequence ‘CG’. CpG islands are regions with a high density of ‘CG’
dinucleotides associated with the promoter regions of genes and are typically
unmethylated in active genes. Methylation of normally unmethylated CpG islands,
located in the 5" promoter region of genes, is associated with transcriptional inacti-
vation of chromosomes, transgenes, disease genes and certain developmentally
regulated genes (Kass et al. 2002). However, methylation of cytosine can also occur
in non-CpG sites including CHG and CHH sequence contexts, where H is an A, C,
or T (Feng et al. 2010) and can serve unknown functions. More recently, thanks to
new analytical technologies that facilitate whole genome methylation analysis
(Bock et al. 2010; Harris et al. 2010), studies have expanded from the focus on CpG
islands near transcriptional start sites and as a result the associations with gene
expression have become more complicated. CpG islands located in gene bodies
tend to be methylated in tissue specific patterns while methylation of CpGs not
located in islands is more dynamic (Jones 2012). In fact, in human embryonic stem
cells, methylation of CpG islands at the 3’ end of genes conferred tissue- and cell-
type specific gene activation whereas promoter CpG island methylation repressed
activation (Yu et al. 2013). CpGs methylation may also have a regulatory role in
gene splicing (Laurent et al. 2010). So while DNA methylation remains the most
studied aspect of epigenetic regulation, clearly it is a rapidly progressing field with
many unanswered questions.

CpG methylation is maintained by the enzymes DNA (cytosine-5)-methyltrans-
ferases (DNMTs). During mammalian embryonic development DNMT3a and
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DNMT3D establish de novo methylation while DNMT1 maintains methylation pat-
terns during DNA replication (Subramaniam et al. 2014). S-adenosyl-methionine
(SAM), a product of the folate/methionine cycles, serves as the methyl donor for
DNMT reactions, and dysregulation of SAM homeostasis is implicated in various
diseases (Martinez-Lopez et al. 2008; Mato and Lu 2007; Padmanabhan et al. 2013).
Demethylation activity is provided by TET1, TET2 and TET3 enzymes which cause
the ten-eleven translocation (TET)-mediated methylcytosine hydroxylation (SmC to
5hmC) (Shen et al. 2013). Proteins that selectively bind to ShmCs (hydroxymethyl-
cytosines) may also contribute to transcriptional regulation and thus play epigenetic
roles (Turlaro et al. 2013).

DNA methylation patterns can be altered by environmental factors that induce
epigenetic changes in DNA, in turn altering gene expression. It has been estimated
that in humans 37% of all germ-line mutations responsible for genetic diseases are
localized to CpG dinucleotides (Cooper and Youssoufian 1988). DNA methylation
may increase the mutation rate of an imprinted allele (that is inactive) resulting
in loci that have a high mutation rate. For example, five out of the six major muta-
tional hot spots in the pS3 tumor suppressor gene are methylated CpG sequences,
and these sites correlate with enhanced reactivity with benzo(a)pyrene diol epoxide
(Weisenbeger and Romano 2002). For this reason, particularly for stressors that are
mutagenic, there may be interdependence between epigenetic mechanisms, geno-
toxicity and/or DNA repair in the key event relationships of an adverse outcome
pathway (Heard and Martienssen 2014).

Histone modifications are another mediator of gene expression. Depending on
the covalent modification and which amino acid residue of the histone is modified,
transcription is predictably activated or repressed (Choudhuri et al. 2010; Srivastava
and Ahn 2015). For example, histone acetyltransferases (HATSs) by acetylating the
histone lysine residues, decrease the affinity of the histone relaxing the chromatin
so that transcriptional activators can initiate transcription. In contrast to acetylations
which are primarily activating, methylation and ubiquitination can be activating or
repressing depending on the residue modified, and sumoylations are primarily
repressing (Choudhuri et al. 2010; Portela and Esteller 2010). As the understanding
of histone modification advances, it like methylation, is becoming more compli-
cated in that cross-talk between histones with various modifications (Duan et al.
2008) as well as interactions with DNMTs have been reported (Tachibana et al.
2008; Wang et al. 2009).

Small non-coding RNAs (or microRNAS) can also contribute to chromatin state
maintenance by targeting loci for histone or DNA methylation, and thereby help
mediate epigenetically gene expression (Choudhuri et al. 2010; Sharma 2014;
Stuwe et al. 2014; Szyf 2015). For example, histone deacetylase enzyme (HDAC1)
expression can be repressed in cancer cells by a particular microRNA, the miR-
449a, highlighting the role of the microRNAs in regulating cell growth and viability
(Noonan et al. 2009). RNA interference occurs when microRNAs bind to 3’ untrans-
lated regions in target mRNAs and destabilize, degrade, and/or translationally
repress their targets. Six nucleotides of the 5" region of the microRNA are the seed
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sequence that interacts with the target RNA. Computational analysis has predicted
that more than 60% of human protein coding genes could pair with microRNAs
(Friedman et al. 2009), but the biological relevance of all the predicted interactions
is still being discovered.

11.2 Epigenetic Change as a Key Event in AOPs

Clearly, the molecular mechanisms underlying epigenetic control of gene expres-
sion are complicated and interrelated. Fundamental new knowledge about how
DNA methylation and histone modification is controlled and the roles of microR-
NAs in either process is being rapidly discovered. Undoubtedly, epigenetic change
will play a role in stressor adverse outcomes and will needed to be incorporated into
AOP approaches (Fig. 11.2). That said, there are several time-scales wherein epi-
genetic changes can influence adverse outcomes including: the developmental basis
for adult diseases, multigenerational impacts or even transgenerational impacts.
Examples of each have been reported in various animal models and/or humans as
highlighted below.

Epigenetic Change as a Key Event in an AOP

Toxicant | Macro-Molecular Cellular

5 | Interactions Responses
( [ '
M . Cherical —[ - Altered Signaling
Floparies * DNMTs | = Gene Acfivation
* HATS « Protein
* microRNAs Synthesis
Organ Responses Organism Population
Responses Responses

+ Altered Physiclogy + Lethality * Structural Change

+ Disrupted Homeostasis * Impaired Development + Extinction

+ Altered Tissue » Impaired Reproduction

Development/Function

Fig. 11.2 Epigenetic change can be incorporated as a key macro-molecular event responsible for
altered signaling in stressor adverse outcome pathways
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11.2.1 Epigenetics and Developmental Origins of Health
and Disease (DOHaD)

The toxicology community has begun to recognize that susceptibility to disease can
be set in utero as a result of exposure to contaminants or nutritional deficits
(Choudhuri et al. 2010; Heindel 2008; Szyf 2009). Similarly, differences early life
experiences have been correlated with epigenetic changes. For example, using
rodent models numerous studies have shown postnatal stress and/or lack of mater-
nal care results in adverse behaviors in adult offspring (reviewed in (Maccari et al.
2014)). One of the first studies linked maternal care, persistent changes in DNA
methylation and histone acetylation in hippocampal glucocorticoid receptor, and
heightened stress response in adult offspring (Weaver et al. 2004). The relationships
between adult behavior and epigenetic mechanisms were further validated by treat-
ments including methionine to stimulate DNA methylation (Weaver et al. 2005) and
trichostain A to inhibit histone deacetylase (Weaver et al. 2004). With the apprecia-
tion that during brain development, maturation, and learning epigenetic mecha-
nisms play a key role (Bender and Weber 2013; Gabel and Greenberg 2013; Lister
et al. 2013), it is not surprising that there is a plethora of new studies into the poten-
tial role epigenetics plays in mental diseases such as autism and psychotic disorders
(Abdolmaleky et al. 2005, 2015) and drug addiction (Kenny 2014).

The developmental importance of methylation homeostasis is provided by disrup-
tions caused by 5-Azacytidine (5azaC), an established inhibitor of DNA methylation.
In the chick embryo model 5azaC caused hypomethylation and activation of several
genes resulting in developmental abnormalities and arrest (Zagris and Podimatas
1994). Zebrafish embryos treated with 5-azaC and 5-azadC also exhibited DNA hypo-
methylation and developmental perturbations. The most common phenotypes were
loss of tail, abnormal patterning of somites and abnormal head development (Martin
et al. 1999). These studies established that DNA methylation was required for normal
gastrulation and subsequent patterning of the dorsal mesoderm in fish. Administration
of 5azaC to pregnant mice also resulted in perturbation of embryonic DNA synthesis,
low fetal weight and death of rapidly proliferating cells (Rogers et al. 1994).

Methylation dysregulation is apparent in diseases most notably cancer. Cancer
cells are characterized both by DNA mutations but also profound alterations in the
epigenome. In general, cancer cells have significantly less (20-60% less overall)
5-methylcytosine than normal cells, (Portela and Esteller 2010) but hypermethyl-
ation of certain promoters (e.g. tumor suppressor and DNA repair genes) is com-
mon. Additionally, miRNA downregulation and histone modifications (e.g. reduced
monoacetylated H4K16) are typical in human tumors, reviewed in (Portela and
Esteller 2010). Despite that numerous epigenetic changes that are constantly being
identified in all of the various cancer subtypes, it remains a challenge to distinguish
if the epigenetic changes are the key event or more of a bystander or consequence
effect. That said, for certain cancers new drug development is targeting epigenetic
mechanisms including DNMT inhibitors (Decitabine [Dacogen], 5-Azacytidine
[Vidaza]) and HDAC inhibitors (Vorinostat [Zolinza], Romidepsin [Istodax],
Belinostat [Beleodaq]) (Hamm and Costa 2015; Yoo and Jones 2006).
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11.2.2 Epigenetics and Multigenerational AOs

One of the seminal studies highlighting the potential for multigenerational epigen-
etic conservation of phenotypes used the Agouti model (Dolinoy et al. 2007a;
Morgan et al. 1999). In this mouse model a retrotransposon is inserted upstream of
the agouti gene. Agouti protein expression is related to yellow fur, obesity, and dia-
betic phenotypes. Because the transposon is controlled epigenetically, offspring will
express a mosaic of phenotypic fur color ranging from yellow to brown. Using this
model, bisphenol A (BPA), a well-recognized endocrine disrupting compound,
decreased retrotransposon methylation and offspring fur color was shifted to yel-
low. Furthermore, when maternal diet was supplemented with methyl donors includ-
ing folic acid, vitamin B12 and betaine the BPA-mediated hypomethylation was
reversed (Dolinoy et al. 2007b).

Similarly studies in sheep wherein ewes during the periconceptional period were
fed diets depleted in vitamin B12, folate, or methionine led in the adult offspring to
both methylation status changes in 4% of 1400 CpG islands investigated as well as
adverse outcomes. Adverse phenotypes predominated in the male offspring and
included increased blood pressure, adiposity, insulin resistance and altered immune
response (Sinclair et al. 2007).

Epidemiology cohorts also support the idea that nutritional deficits cause multi-
generational epigenetic impacts in humans. Many studies have tested the “thrifty
phenotype hypothesis” proposed by Hales and Barker (Hales and Barker 2001).
They proposed the now widely supported relationship between poor fetal growth (as
a consequence of poor fetal nutrition) and subsequent permanently compromised
glucose-insulin metabolism resulting in type 2 diabetes and metabolic syndrome.
The Dutch “Hunger Winter” cohort, adults that experienced famine during their
periconceptional period, had persistent hypermethylation in the insulin-like growth
factor 2 (IGF2) gene (Heijmans et al. 2008). Follow-up methylation studies of 15
additional loci in this cohort indicated that changes in DNA methylation were
dependent not only on nutritional stress but the timing and sex of the exposed off-
spring (Tobi et al. 2009). Likewise, human offspring born to diabetic (preexisting or
gestational) mothers are more likely to have higher birth weights and ultimately
develop obesity and diabetes (Fraser and Lawlor 2014; Patti 2013). Furthermore
many epigenetic changes have been identified in relevant growth and metabolic
genes (Quilter et al. 2014) (e.g. leptin, adiponectin, ABCALI etc. reviewed in (Ma
et al. 2015)).

The foundations of the epigenetics field were in nutritional impacts on the epig-
enome, but now the potential for multigenerational impacts of environmental toxi-
cants with an epigenetic key event is also emerging. For example, polycyclic
aromatic hydrocarbons (PAHs) are a ubiquitous class of combustion-associated
contaminants that are known carcinogens and reproductive toxicants. Epidemiologic
studies have shown prenatal exposure to PAHs (from maternal inhalation) is related
to neural tube defects (Ren et al. 2011), a lower mental development index at age 3
(Perera et al. 2006) and decrements in full-scale IQ and verbal 1Q at age 5 after
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adjustment for other confounding factors (Perera et al. 2009). PAHs are also linked
to preterm deliveries and small size for gestational age (Choi et al. 2008; Langlois
et al. 2014), low birth weights (Siddiqui et al. 2008) and cleft lip + palate (Langlois
et al. 2013). Disproportionate fetal growth is, in turn, related to coronary heart dis-
ease (Barker et al. 1993; Barker 1997). Multigenerational adverse outcomes of
paternal smoking are also beginning to be appreciated (Northstone et al. 2014).
Furthermore, recent studies have identified differences in global methylation and
gene specific promoter CpG island methylation in cord blood, placenta, newborns
and children exposed in utero to tobacco smoke or PAHs (Breton et al. 2009;
Herbstman et al. 2012; Joubert et al. 2012; Suter et al. 2011).

A clear challenge when considering either nutritional deficits or complex mix-
tures of environmental contaminant exposures is that multiple adverse developmen-
tal outcomes can manifest in offspring, and it is likely that epigenetic dysregulation
of an individual gene/protein or even pathway will not be responsible for all the
phenotypes. While single generational epigenetic transmission is well supported,
the human health impacts of truly transgenerational epigenetic inheritance is more
controversial.

11.2.3 Epigenetics and Transgenerational AOs

Similar to what was described for single generation nongenetic inheritance, in
humans the basis for transgenerational impacts is related to epidemiological studies
of dietary distress. Dietary distress in cohorts from Northern Sweden was sex-
dependently linked to mortality and diabetic deaths in grandchildren (Bygren et al.
2014; Pembrey 2010). As depicted in Fig. 11.3, in mammals, transgenerational
effects of a stressor cannot be reached until the F3 generation because both F1 and the
F2 germ cells are potentially exposed during the female Fo exposure (Skinner 2008).
Studies of human transgenerational epigenetic inheritance are obviously complicated
by the length of the studies to capture three or more generations and the retrospective
nature of the exposure. Additionally, a key question remains related to how epigenetic
changes escape the reprogramming that occurs twice both after fertilization and dur-
ing primordial germ cell differentiation (Szyf 2015). Better understanding of the
molecular mechanisms that allow for epigenetic marks to be transferred across gen-
erations will fundamentally strengthen the case for transgenerational epigenetic
inheritance (Heard and Martienssen 2014). Some of this understanding is being pro-
vided from various laboratory models that include rodents and fish.

A good example to illustrate the state of the knowledge on transgenerational
epigenetic inheritance is found in studies of vinclozolin, a dicarboximide fungicide
used on fruits, vegetables and turf grasses. The toxicity of vinclozolin is associated
with its anti-androgenic mechanisms particularly of its two metabolites M1 and M2.
Human reproductive hazards associated with exposure appear low (Zober et al.
1995) but incompletely assessed (James 1997). In rodents, perinatal vinclozolin
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Fig. 11.3 Multigenerational adverse outcomes can result from parental exposures to stressors
including chemical or nutrient deficiencies (depicted by lightning bolt). In pregnant mammals, a F,
exposure can also directly expose F; and F, generations in the embryonic and germ cell stages,
respectively. Potential transgenerational effects are not realized until the F; generation. In contrast,
because early development is external in fish, transgenerational effects can be measured in the F,
generation

exposure causes demasculization of the male reproductive system including
decreased anogenital distance, retained nipples, hypospadias, reduced sperm num-
bers (Gray Jr. et al. 1999) and altered sexual behaviors (Colbert et al. 2005) in off-
spring. The Skinner laboratory has published a series of papers reporting that
perinatal exposure to vinclozolin causes transgenerational (to F4) sperm defects
(Anway et al. 2005, 2008a), epigenetic altered gene expression in the testis (Anway
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et al. 2008b) and prostate (Anway and Skinner 2008). However, aspects of these
results were questioned (Renner 2009) by other groups unable to replicate vinclozo-
lin’s transgenerational effects (Gray and Furr 2008; Inawaka et al. 2009) and a man-
uscript was retracted (Chang et al. 2006). More recently, vinclozolin was found to
cause changes in differentially methylated domains of paternal and maternal
imprinted genes in mouse offspring sperm, but effects gradually disappeared from
F1 to F3 (Stouder and Paoloni-Giacobino 2010). These studies highlight the need to
consider sexual dimorphism in environmental epigenetic programming (Gabory
et al. 2009).

Another persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzodiox
in (TCDD), has shown transgenerational toxicities in both rodents and zebrafish
models. After FO rodent females were exposed to TCDD during gestation, subse-
quent generations were assessed for adult disease (Manikkam et al. 2012). F3
females had primordial follicle loss and polycystic ovarian disease, whereas adult
F3 males had kidney disease relative to controls. Furthermore, when F3 sperm were
analyzed, 50 differentially methylated regions in gene promoters were identified
(Manikkam et al. 2012). Reductions in fertility and skeleton abnormalities were
also observed transgenerationally in zebrafish after TCDD exposures (Baker et al.
2014b).

Zebrafish represent a useful model to study transgenerational effects. Because of
their external development, the true transgenerational (e.g. completely unexposed
generation) can be reached by F2 following an FO fish embryo exposure (see
Fig. 11.3) (Baker et al. 2014a; Greally and Jacobs 2013). Capitalizing on advan-
tages of high fecundity, low culture costs, transparent and conserved (Howe et al.
2013) developmental biology and genomics (Kettleborough et al. 2013), zebrafish
will continue to be relevant for studying multigenerational adverse outcomes
(Villeneuve et al. 2014). Again, while phenotypes are being observed across genera-
tions from environmental exposures, a critical remaining challenge is to fundamen-
tally prove the association between the observed epigenetic and phenotypic changes
to establish an adverse outcome pathway.

11.3 Experimental Challenges and Future Perspectives

Going forward, the major goal of AOP development is to improve regulatory deci-
sion making (Edwards et al. 2016). Given the extensive evidence that both epigen-
etic mechanisms are fundamental in development, health, and disease and dietary
and environmental stressors significantly impact the epigenetic homeostasis, there
is no doubt that ultimately epigenetics will need to be incorporated in key event
relationships of various AOPs. That said, there is a significant lack of fundamental
understanding of epigenetic mechanisms and nongenetic inheritance. Several
reviews have highlighted the issues associated with incorporating epigenetic impacts
into safety assessments and human health risk assessments (Alyea et al. 2014;
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Goodman et al. 2010; LeBaron et al. 2010). In a case study of vinclozolin epigenetic
human risk, the need for causal relationships between toxic endpoints and epigen-
etic alterations and the dose-dependence of epigenetic changes were specifically
highlighted (Alyea et al. 2014). Teasing out whether epigenetic change is a cause or
a result of a particular toxicity will remain a significant challenge. Furthermore,
researchers will need to be diligent in choosing appropriate research animal models,
developmental stages, tissue subtypes and epigenomic assays for subsequent appli-
cability (Greally and Jacobs 2013). Finally, adverse outcomes mediated by epigen-
etic change are not only relevant to human risk assessments and must also be broadly
considered in ecotoxicology as epigenetics may play a role in wildlife fitness and
resilience (Lee et al. 2015; Mirbahai and Chipman 2014; Schwindt 2015; Wang
et al. 2014). In sum, epigenetic change and its role in adverse outcomes within and
across generations is an exciting area of research that is undergoing exceedingly
rapid new discovery and has significant implications for the study of health and
disease.
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Chapter 12

Tiered Approaches to Incorporate the Adverse
Outcome Pathway Framework into Chemical-
Specific Risk-Based Decision Making

Jeremy Leonard, Shannon Bell, Noffisat Oki, Mark Nelms,
Yu-Mei Tan, and Stephen Edwards

Abstract The concept of Adverse Outcome Pathways (AOPs) arose as a means of
addressing the challenges associated with establishing relationships between high-
throughout (HT) in vitro dose response data and in vivo biological outcomes.
However, AOP development has also been met with challenges of its own, such as
the time, effort, and expertise necessary to achieve a scientifically sound construct
able to support ecotoxicology and human health risk assessment. Thus, a staged
development process has been developed to match the information content of an
AOQOP with the decision context in which it will be used. This approach allows effort
to be spent on detailed evidence evaluation and quantitative assessment of the
dose-response characteristics for those AOPs where this level of confidence and
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precision is needed. In addition, through advances in computational analytical
methodologies that integrate HT data (e.g., transcriptomic data) with traditional
toxicology information spanning a broad chemical and biological space, computa-
tionally predicted AOPs can be rapidly generated to help accelerate the curation of
AOPs. AOPs are chemical agnostic thereby allowing a single AOP to be coupled
with in vitro dose-response information from a variety of chemicals. To predict an
in vivo outcome, however, exposure and pharmacokinetic characteristics (i.e.,
absorption, metabolism, distribution, and elimination) must be considered. As with
the staged development process for AOPs, it is possible to develop ADME predic-
tions in a tiered manner such that lower tiers provide qualitative or semi-quantitative
predictions when data is lacking, and higher tiers provide quantitative predictions
with increasing confidence when data is abundant. Tiered approaches to AOP devel-
opment and ADME predictions provide a mechanism for using AOPs, with chemi-
cal-specific exposure and pharmacokinetic considerations, for risk assessment both
in data poor and data rich scenarios. They also provide a natural mechanism for
identifying areas of research that would have the highest impact on risk-based deci-
sion making by highlighting AOPs and/or ADME predictions that are insufficient to
address the decision context in which they could be used.

12.1 Integration of Adverse Outcome Pathways into the
Twenty-First Century Toxicity Testing Paradigm

Currently, tens of thousands of chemicals exist in commerce (Egeghy et al. 2012),
and there is a 12—-16% increase in the rate of chemicals that are newly registered by
the Chemical Abstracts Service on a yearly basis (Binetti et al. 2008). Traditionally,
toxicity testing for these chemicals has involved a complete array of in vivo animal
studies that provide apical endpoints associated with toxic outcomes arising from
exposures to environmental chemicals within whole biological systems (Krewski
et al. 2009). Testing using animal models offers several advantages, in that chemi-
cals can be studied in detail, and experimental conditions are well controlled. In
addition, pharmacokinetic (PK) properties (i.e., absorption, distribution, metabo-
lism, and elimination [ADME]) are included in the test itself, though extrapolation
from the test species to the target species is still required. Animal models hold sev-
eral disadvantages as well, such as large investments in time and cost, use of inbred
subjects in some cases, and challenges associated with extrapolating results from
the animal model to relevant human-health outcomes (Zurlo et al. 2001; Phillips
et al. 2009; Soldatow et al. 2013). More importantly, the limited resources available
for traditional toxicity testing renders it difficult to determine toxicity-related infor-
mation for the majority of the chemicals currently in commerce or to keep pace with
new registrations. Given these disadvantages, alternative toxicity testing protocols
are needed to provide toxicity information in order to keep pace with the more rapid
production of new chemicals.
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In 2004, the National Toxicology Program (NTP) proposed a new “roadmap” for
toxicity testing in the twenty-first century that focused on the refinement, replace-
ment, and reduction of animal studies with rapid screening protocols able to main-
tain scientific quality, promote animal welfare, and protect human health (Shukla
et al. 2010). Priority was placed on identification of primary pathways and molecu-
lar mechanisms that can be linked to disease (Andersen and Krewski 2009). One
strategy designed to meet this goal involved the development of high-throughput
(HT) in vitro assays related to computational modeling and toxicity (NRC 2007).
Such assays provide a rapid, cost-efficient means of evaluating thousands of under-
studied chemicals across hundreds of pathway-based toxicity endpoints at concen-
trations that are relevant to both environmental and human health (Sun et al. 2012),
and can aid in chemical prioritization for more extensive in vivo testing (Austin
et al. 2008; Kavlock et al. 2009).

In vitro assays are designed to determine the responses of technological targets,
which often act as surrogates for in vivo biological targets at selected chemical con-
centrations, and these data are used to assess hazard. Establishing relevance of these
in vitro perturbations to in vivo responses is often difficult, as these assays lack the
biological context of an in vivo system. For example, an in vitro assay can reveal
whether or not a certain chemical has the ability to bind with and perturb a techno-
logical target, but there remains some uncertainty as to what the resulting outcome
might be in a living organism. Interpreting the relationships between toxicant per-
turbations on an in vitro molecular target and adverse outcomes observed in a living
organism, as well as identifying the complex toxicity pathways leading to in vivo
adverse outcomes, gives rise to several challenges that should be addressed before
HT testing can be optimally applied in twenty-first century toxicity testing.

In response to these challenges, the concept of Adverse Outcome Pathways
(AOPs) was developed to aid in understanding the mechanistic basis of in vivo tox-
icity by establishing linkages between HT testing results and adverse biological
outcomes that are of concern in risk assessment and chemical management prac-
tices. An AOP is a linear construct whereby existing knowledge regarding the mech-
anistic basis for chemical toxicity is described by a series of key events that connect
an upstream molecular initiating event (MIE) to a downstream adverse outcome
(AO). This framework takes the toxicity pathway concept set forth by the National
Research Council (NRC 2007) and extends it to higher levels of biological organi-
zation, up to the population level (Villeneuve et al. 2014b). The original aim of the
AOP framework involved the use of pathway-based data to support ecotoxicology
risk assessment and research through non-direct measures of apical toxicological
outcomes (Ankley et al. 2010). The AOP framework has further been extended to
support human health risk assessment (Tollefsen et al. 2014) due to its ability to act
as a scaffold onto which various pathway-based data can be arranged, thereby
allowing a mechanistic connection between levels of biological organization to be
established (Vinken 2013).

Two fundamental components are utilized when describing an AOP: key events
(KEs) and key event relationships (KERs) (Villeneuve et al. 2014b). The KEs that
comprise an AOP describe measurable and requisite changes in the biological state
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at each level of organization. The inaugural KE within an AOP is the MIE, which is
defined as the interaction of a xenobiotic stressor with a molecular target (Ankley
etal. 2010) and is often analogous to a technological target used in an in vitro assay.
Upon sufficient perturbation, the MIE is followed by a series of intermediate KEs,
ideally at least one for each level of biological organization between the MIE and
the final endpoint in the AOP. The AOP is anchored on the other end by one or more
special KEs, the AOs that represent apical endpoints sufficient to support a chemical
management decision. Such outcomes can be captured at the individual level (e.g.,
organ dysfunction, cancer, abnormalities) for human health risk assessment or at the
population level (e.g., reduced species recruitment) in the case of an ecological risk
assessment (Kramer et al. 2011; Villeneuve et al. 2014b). The KERs link adjacent
KEs and provide scientific evidence supporting such a linkage. Additionally, KERs
introduce directionality to the AOP framework by identifying that KE in the rela-
tionship which can be found upstream and which can be found downstream.

An AOP is often comprised of one MIE, one AO, and at least one KE at each
intermediate level of biological organization (Ankley et al. 2010; Villeneuve et al.
2014a). Each AOP is considered to be separate from other AOPs during its develop-
ment. This is not intended to disregard the complexity contained within biological
systems and the ability of multiple signaling pathways to exert significant influence
upon one another; it is a strategy that more easily enables AOPs to be identified and
elucidated. Additionally, it is acknowledged that a single specific KE is likely to be
a component within multiple AOPs. These shared KEs allow AOPs to be joined
together to form AOP networks, in order to inform integrated approaches to testing
assessment (Tollefsen et al. 2014; Villeneuve et al. 2014b). The AOP framework
provides a biological context to the interpretation of in vitro hazard data (Tollefsen
etal. 2014), and thus, it enhances the applicability of new toxicity testing approaches
by providing information regarding relevant in vitro concentrations capable of per-
turbing an MIE. Due to its chemical-agnostic nature, the AOP framework enables
the evaluation of data from HT in vitro assays that are designed to simultaneously
measure the activity of large numbers of chemicals for a given molecular target in
only a fraction of the time required for traditional toxicity tests (Becker et al. 2015).
While the importance of chemical-specific characteristics (e.g., exposure and
ADME properties) is recognized by developers of the AOP framework, by nature
AOPs are most relevant to the hazard component of risk assessment.

Since the 1983 publication of the Red Book (NRC 1983), the core of risk assess-
ment has been defined by hazard identification, followed by the combination of
dose-response analysis and exposure assessment. This was refined in 2009 with the
publication of Science and Decisions (NRC 2009), which recommended improve-
ments to risk assessment by (1) introducing a decision context into the assessment
process; (2) developing more explicit decisions regarding the use of default safety
factors; and (3) handling uncertainty and variability in an appropriate manner when
establishing a reference concentration or dose (Abt et al. 2010). Hazard identification
and dose-response assessment have traditionally relied on overt toxicity data gener-
ated from laboratory animal studies. Such studies have the advantage of including
both the toxicokinetics and toxicodynamics of the chemical being tested, but with
the disadvantages described above. Exposure assessment has traditionally relied
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upon chemical-specific monitoring data or predictions to identify source, fate and
transport processes, along with final receptors for chemical exposure (MacIntosh
and Spengler 2000). Together these pieces of information can be used for risk charac-
terization of chemicals, often with little or no knowledge of the underlying mecha-
nisms driving either exposure or toxicity.

Risk assessment based on the new paradigms of HT toxicity and exposure evalu-
ation seeks to integrate in vitro screening assays able to identify hazard (Judson
et al. 2011; Vinken 2013), in silico models able to estimate exposure (Wambaugh
et al. 2014; Isaacs et al. 2014), and quantitative structure activity relationship
(QSAR)-based models, for prioritizing thousands of data-poor environmental
chemicals. Though the approaches used in traditional and HT risk assessment have
changed significantly over the years, both involve the necessary inputs of hazard
AND exposure. For AOPs to be applied in an optimal manner during risk assess-
ment, in vitro concentrations able to perturb the molecular target and induce an MIE
can be extrapolated to biologically-effective target tissue doses. These in turn can be
converted to external exposure levels through reverse dosimetry (Lin and Lu 1997,
Simmons et al. 2005; Stadnicka-Michalak et al. 2014; Groh et al. 2015) to support
risk-based decision-making processes (Benford et al. 2010). The ADME behaviors
of a chemical, which are lacking in in vitro assays, are the driving factors mediating
this biologically-effective dose.

The use of the AOP framework facilitates interpretation of HTT because an AOP
can be developed using a limited number of reference chemicals and then used to
interpret the HTT results for potentially hundreds of chemicals exhibiting positive
results for a given assay or assay battery. While the process for fully describing and
evaluating the AOP is laborious and time-consuming, AOPs at all stages of develop-
ment are available for use depending on the decision-making context. Similarly, full
characterization of the ADME properties for a chemical and accurate prediction of
its toxicokinetic behaviors requires a considerable effort, thus limiting the number
of chemicals for which such characterization can be performed. Fortunately, both
the AOP development process and ADME modeling are amenable to tiered
approaches that allow predictions to be made across the continuum from data-poor
to data-rich situations, albeit with tradeoffs in both confidence and precision for
those estimates (Fig. 12.1). These tiered approaches not only enable the use of AOPs
and ADME predictions from lower tiers when the decision-making context allows
for a higher degree of uncertainty and/or lower precision in the estimate, but they
also provide a mechanism for prioritizing AOP development to match the descrip-
tion of the AOP with the needs of decision makers. This avoids having a handful of
fully characterized AOPs for cases where that level of precision isn’t needed, while
also avoiding cases in which other less developed AOPs are not sufficient to support
the decisions for which they would be used.

At one extreme, a paucity of data or need for expedited processing may require
best estimates of KEs and their relationships, or may necessitate the qualitative
assessment of whether or not a stressor that binds with a technological target in vitro
might be capable of reaching the molecular analogue of that target in vivo. Such
lower-tier approaches likely do not provide a high level of confidence for making
informed decisions, but they can act as the groundwork for higher-tier approaches.
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Fig. 12.1 Graphical representation of the tiered structure of the Adverse Outcome Pathway (AOP)
and pharmacokinetic (e.g., absorption, distribution, metabolism, and elimination [ADME]) com-
ponents needed to determine mode of action (MOA) for supporting risk-based decisions. Blue
triangles represent the relative number of AOPs or ADME predictions that can be completed with
a fixed amount of effort. Lower tiers in each case require less input data and time expended evaluat-
ing the available information. For certain decisions such as screening and prioritization, this level
of confidence may be sufficient. Use of higher tiers increases the utility for a broader range of
risk-based decisions (illustrated by the green triangle in the center), but it also limits the number
of cases that can be considered due to the requirements of more input data and time for experimen-
tation and computational modeling that are necessary to achieve this higher level of confidence

Researchers seeking to conduct higher-tier analyses but lacking the necessary
resources or information can use results from lower-tier analyses as a means to iden-
tify data gaps. In doing so, the appropriate level of time and effort might be expended
in obtaining such critical information. At the other extreme, available data may be
sufficient to allow for development of AOPs using researcher expertise and knowl-
edge, as well as the development of computational models with the ability to predict
external chemical doses expected to result in an MIE. As the amount of empirical
data necessary for evaluation of relationships between KEs and AOs or parameter-
ization of models increases, so does confidence in the mechanistic processes leading
to an AO, along with an exposure or ADME model’s predictive capabilities. Thus,
risk assessors are provided with the ability to make more informed decisions. The
tiered approaches involved in AOP development and its application to risk assess-
ment will be discussed in further detail throughout the remainder of this chapter.

12.2 Accelerating Adverse Outcome Pathway Development
Via Systems Approaches

In 2012, the AOP development program was initiated by the Organization for
Economic Co-operation and Development (OECD) to promote the development
and use of AOPs. As an accompaniment to the development program, the OECD
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released a handbook that acts to advise AOP developers in regards to the key infor-
mation that should be included within the AOP, and also provides developers with a
template that can be used to aid in assembling and organizing such information in
support of the AOP (OECD 2013a; Villeneuve et al. 2014b). Villeneuve et al.
(Villeneuve et al. 2014b) described five fundamental principles for developing
AOPs: (1) AOPs are not chemical specific, i.e. any chemical able to sufficiently
perturb the MIE and the intermediate KEs may induce the AO; (2) AOPs are modu-
lar and composed of reusable components - notably key events (KEs) and key event
relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs
and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks
composed of multiple AOPs that share common KEs and KERs are likely to be the
functional unit of prediction for most real-world scenarios; and (5) AOPs are living
documents that will evolve over time as new knowledge is generated. By following
these principles during development, the individual KEs and KERs enable AOPs to
mimic the modularity held by biological systems, whereby different processes may
be conserved across multiple biological pathways.

The first step in the development process is to identify the KEs involved in the
progression of the AOP and the relationship(s) among them; thus, providing a scaf-
fold onto which the supporting evidence and information can be arranged. A num-
ber of strategies have been proposed that may be utilized when developing an AOP:
(1) bottom-up, i.e. start with MIE data and work to identify the mechanistic infor-
mation that links the MIE to the downstream KEs; (2) middle-out, i.e. start with data
for an intermediate KE and work to identify the mechanistic information that
anchors this KE to both an MIE and an AO; and (3) top-down, i.e. start with data for
an observable AO and work to identify the mechanistic information that links the
AO to the upstream KEs within the AOP (Villeneuve et al. 2014b; Groh et al. 2015).
The mechanistic information used to link each of the KEs present in an AOP may be
derived from a variety of sources: the available literature, in silico techniques, in
vitro assays, or in vivo tests. It is envisioned that each of these sources of informa-
tion will be used in concert during AOP development.

Typically, evaluations regarding the essentiality of each KE within an AOP are
aided by data from knock-out, knock-down, or reversibility studies. For example,
knocking out a specific gene associated with a given upstream KE could demon-
strate the essentiality of that KE by showing that perturbations upstream do not
result in an AO when that earlier step is blocked. These types of studies provide
researchers with the ability to determine whether preventing a perturbation of an
upstream KE will lead to a concomitant reduction in the observation of the down-
stream KE(s). Data generated from experiments that measure the difference in
observing the downstream KE(s) after the upstream KE has been impeded could
provide a high degree of weight of evidence that the upstream KE is essential. In
contrast, if no such evidence exists, or the results from certain experiments can be
disputed, the weight of evidence in essentiality would be weak (OECD 2013a;
Becker et al. 2015).

When sufficient information has been assembled, the evidence for each KE and
KER can be systematically evaluated, thereby providing support during the assessment
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of the entire AOP. Conducting the evaluation process in this manner enables identifica-
tion of any data gaps that may be present, whilst also acting as a guide for the most
appropriate use of the AOP within a risk management setting. Typically, modified
Bradford-Hill considerations are utilized when assessing the evidence for each compo-
nent within a given AOP as they can help determine the relevance of the identified
supporting information (Hill 1965; Meek et al. 2014; Becker et al. 2015). When taken
together, the Bradford-Hill considerations can enable assessments regarding the essen-
tiality of each KE and the empirical support and biological plausibility for each KER
that comprise the AOP (OECD 2013a).

Supporting data for each KE within the AOP should include the following: (1)
describing the role the KE plays under normal biological (homeostatic) conditions
and how the KE might be perturbed during the course of the AOP; and (2) describ-
ing the assay(s) that may be conducted to test for the impact of perturbation upon
the KE. The KERs in the AOP capture the evidence supporting the causal relation-
ships among the KEs, which is essential for the use of the AOP. This evidence con-
sists of the following components: (1) the biological plausibility of the relationship
between the two KEs, based upon current knowledge of how they interact under
homeostatic conditions; (2) the specific evidence establishing an association
between the upstream and downstream KEs, i.e. does the evidence that is present
support the proposal that a perturbation in the upstream KE induces a change in the
downstream KE; and (3) the uncertainty (if any) pertaining to the relationship
between the two KEs, i.e. is there evidence within the literature that contests the
relationship between the KEs. Additionally, if possible, the KER descriptions should
provide quantitative information regarding the relationship between the upstream
and downstream KEs, i.e. what level of response in the upstream KE elicits a
response in the downstream KE.

The most significant element within a weight of evidence determination for an
AOP over its entirety is assessment of the biological plausibility of each KER pres-
ent (OECD 2013a; Meek et al. 2014). Well-established biological knowledge and
related information is used to identify the supporting mechanistic evidence regard-
ing the presence of the KER between upstream and downstream KEs. A high degree
of confidence would be derived from well-established and well- documented mech-
anistic information that is accepted as true by the broader scientific community.
Meanwhile, a low degree of confidence would be derived from two KEs being sta-
tistically associated with one another without mechanistic understanding supporting
the KER (OECD 2013a; Meek et al. 2014).

Three main factors should be addressed when assessing the level of empirical
support for each KER, namely: (1) response-response concordance, i.e. is the
change in a downstream KE preceded by an appropriate change in a related
upstream KE; (2) temporal concordance, i.e. is a downstream KE observed to a
greater degree and at later time points than a related upstream KE; and (3) incidence
concordance, i.e. is a downstream KE observed with a lower incidence than that of
a related upstream KE. As the KER delineates the causative relationship between
the upstream and downstream KEs, it would be expected that, experimentally, the
upstream KE should be observed at lower chemical doses, earlier time points, and
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with increased incidence than the downstream KE. However, due to the technical
limitations inherent in the methods used to measure the perturbations of the KEs,
these assumptions might not necessarily hold true. Therefore, one must be careful
to consider these limitations when assembling the information for use within a
weight of evidence assessment for empirical support. As such, when conducting
weight of evidence, a high degree of confidence would be derived from extensive
evidence describing dose-response, temporal, and incidence concordance between
two KEs when assessing exposure to a variety of stressors. A low level of weight of
evidence would be achieved if studies were to show significant inconsistencies in
dose-response, temporal, and/or incidence concordance, or if data from different
species/taxa did not align when expected to due to conserved biological processes
(OECD 2013a; Becker et al. 2015).

Additionally, supporting evidence can be utilized to define the domain of appli-
cability for the AOP and its respective components, i.e. the species, life-stages, and
sexes of the organism(s) for which the AOP is relevant. Generally, the most restric-
tive KE present in the AOP is used to define the applicability domain of the entire
AOP. However, information for alternative species may be used for AOPs that have
been developed to assess a human health endpoint when the underlying biological
process is conserved. Working through each of these steps in turn, from the identi-
fication of the relevant KEs and KERs within an AOP, to assembling the supporting
evidence for each of those KE/KERs, to the culminating evaluation of the collected
evidence, is critical.

The process of AOP development represents a continuum in which supporting
evidence expands over time, and which is consistent with the fifth principle of
development previously described (Fig. 12.2). However, AOPs can be roughly clas-
sified according to their respective stage of development. Putative AOPs (pAOPs)
are manually curated by domain experts and may be the result of a literature review
or presented as part of a research publication. These pAOPs can include hypotheti-
cal linkages based solely on correlative evidence among KEs, with biological plau-
sibility based primarily on the judgment of domain experts and without an exhaustive
review of the literature. Formal AOPs (fAOPs) have undergone a formal evaluation
of the evidence supporting the KE relationships and essentiality of the KEs as
defined in the OECD AOP development handbook (OECD 2013b). AOPs at this
stage may be submitted to the OECD for review and possible endorsement.
Quantitative AOPs (qAOPs) incorporate dose-response data from reference chemi-
cals to quantitatively define the response-response relationships between each pair
of KEs, and allow predictions regarding the level of activation required for early
KEs to elicit a meaningful response at the AO. These efforts can use pAOPs or
fAOPs as the scaffold and will most often provide the evidence needed for formal
evaluation of a pAOP as a by-product of the quantitative data collected during the
process of defining the qAOP.

Recognizing the need for tools with the ability to facilitate the expert-driven AOP
development process, an AOP Knowledge base (AOP-KB) was developed via an
international collaboration under the auspices of the OECD AOP development pro-
gram. The AOP-KB is comprised of four modules: AOPXplorer, AOP-Wiki,
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Fig. 12.2 Tllustration of the phases of Adverse Outcome Pathway (AOP) development along the
continuum highlighted in Fig. 12.1. Computationally-predicted AOPs (cpAOPs) are created via
network inference algorithms and provide hypothetical AOPs in a network context for expert eval-
uation. AOPs that have undergone a preliminary evaluation by an expert are classified as putative
AOPs. Formal AOPs have undergone a weight of evidence evaluation as outlined by the
Organization for Economic Cooperation and Development handbook and have a weight of evi-
dence call for each key event relationship (KER) and essentiality calls for certain key events (KEs)
(represented by node size in figure). Quantitative AOPs define response-response relationships that
allow for the prediction of dose-response behavior at downstream KEs based on the dose-response
behavior of an upstream KE for a specific chemical. In most cases this will be based on a compu-
tational model that describes the mechanisms underlying the AOP

Effectopedia, and the Intermediate Effects DataBase. The first three modules enable
community-led efforts to develop and evaluate AOPs across all stages of AOP devel-
opment as described below. The last module provides a mechanism for submitting
AOQOP-related information for regulatory consideration in Europe and provides tools
linking AOPs to more chemical-specific toxicity data.

The pAOP development process can be facilitated via the use of the AOPXplorer
module. The AOPXplorer is a computational tool developed by the United States
Army Engineer Research and Development Center that provides users with a graph-
ical representation of the networks present within AOPs. This tool incorporates data
from multiple sources and provides bioinformatics capabilities that allow for data
integration. It fully incorporates existing AOPs from the other AOP-KB modules,
thus placing novel discoveries in the context of existing knowledge. It can also act
as a platform to incorporate computationally-predicted AOPs (cpAOPs) into the
development process, as discussed below.

After its development, the pAOP can be used as a scaffold onto which scientific
evidence supporting the inclusion of each KE or KER can be assembled; it is at this
stage that the AOP-Wiki can be utilized. The AOP-Wiki (https://aopwiki.org) is a
tool created by the European Commission’s Joint Research Center (JRC) and the
United States Environmental Protection Agency (USEPA) for organizing available
knowledge and published data, via crowd-sourcing, by providing a set of web-based
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forms tied specifically to the information requirements laid out in the OECD hand-
book (OECD 2013b). These structured forms can be used for depositing pAOPs and
fAOPs (and associated supporting data) that can be shared with the larger scientific
community. Using this peer-based, data sharing approach, one group can enter a
pAOP of interest into the AOP-Wiki and include a basic rationale for the assembly
of this pAOP. Experts in an area of biology specifically related to that pAOP could
then adopt it and provide the evidence for or against the AOP based on their more
extensive knowledge within that particular field. Scientists are thereby provided
with a mechanism to solicit expert feedback from other researchers working in the
areas of toxicology, public health, or biology to increase the impact of their own
studies when supporting risk assessors and decision makers.

Two distinct types of gAOPs require consideration: probabilistic and mechanis-
tic (Perkins et al. 2015). The qAOPs developed in a probabilistic manner can be
explored using bayesian network analysis to, for example, identify minimally suf-
ficient nodes or indicate whether inclusion of additional assays or KEs might
increase confidence in the AO. The AOPXplorer module can incorporate the evi-
dence evaluated during the fAOP development process with additional data, when
creating these probabilistic gqAOPs. As the number of AOPs increase, AOP networks
should emerge based upon KEs that are common to multiple AOPs within the AOP-
Wiki and Effectopedia. The AOPXplorer can then provide estimates of probabilities
of triggering AOs based on the interrelated AOPs collected from these sources.

In cases where more quantitative precision is required to predict the dose-
response of an AO for a chemical based on dose-response information from early
KEs, the development of a mechanistic gAOP is necessary. Mechanistic gAOPs
integrate dose or concentration-dependent quantitative information in order to
examine mathematical relationships along the pathway, and, thus, more closely rep-
resent the underlying biology. Their development requires quantitative response-
response information for each pair of KEs so that the level of change in the upstream
KE required to induce the downstream KE can be elucidated (Villeneuve et al.
2014a). Effectopedia (www.effectopedia.org) is designed to be an open-knowledge
aggregation and collaboration tool and was developed by the OECD to provide
details about the development of structured and cpAOPs in an encyclopedic manner.
It also enables development and analysis of mechanistic qQAOPs.

It is expected that reliable information of the highest quality will be derived from
expert-driven AOP development, especially when peer review from organizations
such as OECD is included in the development process. However, obtaining this high
level of reliability comes at a cost, namely the time that is required for experts to
invest in generation and review the AOPs. This problem especially arises when gen-
erating probabilistic gQAOPs and when using resources such as the AOPXplorer,
which are best suited for use with multiple AOPs for a given AO or with larger AOP
networks. Use of the AOP framework in context of a HT testing strategy, and as a
means of driving the development of testing batteries, requires sufficient AOP cov-
erage of the biological assay targets and information on how such targets are related
in vivo. In addition to the knowledge required regarding the relationships between a
given KE to other KEs within a given AOP, there is also a need to identify possible
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connections (if any) of that KE with other AOPs, in order to develop more informed
testing strategies. Given that biological systems are quite flexible and maintain an
inherent redundancy, it is not unreasonable to assume that multiple AOPs can exist
for a given AO and that the same KEs have the ability to span both multiple and
distinct AOPs. The labor-intensive curation of fAOPs and pAOPs implies the inabil-
ity of these AOP classes to meet the current needs for coverage of biological space.
Furthermore, because fAOPs can be considered as distinct units rather than more
integrated systems (e.g., networks or series of AOPs), they do not lend themselves
as-is to the designing of larger integrated testing strategies.

System biology-based computational methods have developed out of the need to
harness the more abundant coverage present in HT data (e.g., transcriptomic data
and other high content data types), and to meet the challenges associated with the
requirement for efficiently covering a vast chemical and biological space (Fig. 12.2
— lowest tier). These HT datasets, when combined with computational analytical
approaches, can facilitate and accelerate the AOP development process while simul-
taneously increasing knowledge of the biological space covered by these AOPs
(Bell et al. 2016; Oki et al. 2016). By leveraging large amounts of existing publi-
cally available data, computational approaches can be applied in the integration of
the various levels of biological organization in order to generate a network with the
ability to relate changes in biological pathways to measured phenotypes and AOs
(Perkins et al. 2011; Kleinstreuer et al. 2011; AbdulHameed et al. 2014; Oki et al.
2016). These cpAOPs not only can serve as scaffolds to help accelerate the curation
of pAOPs and fAOPs, but they can also aid in providing guidance during formula-
tion of testing strategies.

Oki et al. (2016) describes publically available datasets that provide information
at the various levels of biological organization and that can be used alongside exper-
imental data to develop cpAOP networks (Fig. 12.3). Experimental reference data
can be integrated by identifying direct linkages across experimental results or
through an identifier, or they may be described by identifying the co-occurrence of
certain items (frequent itemset mining) with the ability to span multiple experimen-
tal datasets possessing unclear associations (Bell et al. 2016). These connections
form a network, which is defined as a set of nodes (e.g., chemicals, phenotypes,
pathways, AOs, or assays) connected by edges (presence of a relationship). By
exploring the topology of the networks, the identity of AO-specific sub-networks
and cpAOPs can be determined.

These sub-networks offer a computational approach (via their structure) that
allows identification of nodes with high connectivity (e.g., KEs shared by multiple
cpAOPs), in order to determine sufficient KEs predictive of an AO, and to provide
insight on assay coverage. Overlaying this assay space onto a cpAOP network sig-
nificantly facilitates the identification of KEs that lack sufficient coverage (Bell
et al. 2016). Such identification can prove especially useful when searching for
shared and sufficient KEs that are optimal in the design of a minimal testing strat-
egy, such as determining the minimum number of biological assay targets required
to predict an AO. Knowledge derived from pAOPs and higher classes (e.g., fAOPs
and qAOPs) can be used to increase confidence in the cpAOP networks.
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The development of cpAOPs would benefit tremendously from inclusion of
ontologies and controlled vocabularies, as use of these standardized lexicons can
ease data integration by facilitating interoperability across databases. Such ontolo-
gies, which are currently under development for the AOP-KB, would serve a critical
role in computationally relating a human-curated AOP to one that was built in an
automated fashion, and can provide the appropriate frameworks for cross-referencing
of terms.

12.3 Expanding the Applicability of the Adverse Outcome
Pathway Framework Via Considerations of Exposure
and Pharmacokinetics

Evaluating the influence that exposure or ADME-related behaviors might have on a
chemical’s in vivo toxicological outcome, as related to its in vitro potency, can be
achieved through a series of qualitative and quantitative analyses, depending upon
data availability and specific goals of the researcher (Fig. 12.4). When data is abun-
dant, development of physiologically based pharmacokinetic (PBPK) and pharma-
codynamic (PD) models linking exposure to target tissue doses and subsequent
target tissue responses may be easily achieved and is an ideal scenario (Caldwell
et al. 2012). However, the sheer numbers of chemicals circulating throughout the
environment and in production (Egeghy et al. 2012), along with their wide spec-
trum of ADME properties, render the effort required to develop such chemical-
specific models time- and resource-prohibitive. In these data-poor situations,
alternative in silico methods and cheminformatics tools can be used to explore the
large chemical space more effectively by identifying molecular properties of

Fig. 12.4 Tiers for
incorporating information
related to chemical 5 i
exposure and ' Quantitative Modeling
pharmacokinetic behaviors ‘
when applying Adverse
Outcome Pathways into
risk-based decision making

Quantitative Ranking

High Clearance Low

Low Exposure/Potency High

Qualitative Screening
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Fig. 12.5 Queries of potential factors that allow investigators to qualitatively evaluate the ability
of a chemical to reach its intended internal (e.g., blood, tissue, cell, enzyme, membrane receptor)
target. For parent compounds, the chemical’s ability to reach its intended target should be tracked
from external exposure to distribution to that target. Unless metabolites are manufactured or are
generated through environmental processes (e.g., photolysis), the exposure and absorption poten-
tial of their parent compounds should be determined, and the ability to reach the intended target for
the metabolite itself should then be evaluated

chemicals that influence exposure and ADME-related behaviors and that aid in their
prediction (Sun 2005; Wegner et al. 2006). Using these alternative computational
approaches to refine HT in vitro results is preferable to building a detailed model
with predictions that cannot be validated in the absence of available PK data.

A qualitative workflow was developed recently to assess the potential for in vitro
active chemicals to reach an in vivo molecular target and trigger an MIE (Phillips
et al. 2016). The workflow begins with the selection of an AOP of interest, which
allows the associated molecular target induced by the MIE to be determined.
Chemicals found to be active in in vitro assays can be present in the environment, or
they might be active metabolic moieties of parent compounds that may or may not
exhibit in vitro activity themselves. Both the exposure and absorption potential of
the parent compound of an active metabolite require evaluation, as these two pro-
cesses are precursors to metabolite generation within the body. Assessing the ability
of the metabolite itself to access the molecular in vivo target should follow this
evaluation. If the metabolite is also known to be present in the environment, its own
exposure and absorption potential should also be queried (Fig. 12.5).
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In this qualitative workflow, exposure potentials are assigned to one of the four
general categories that are often intuitively accounted for: (1) exposure to the general
public; (2) exposure to individuals under special circumstances, such as workers or
those taking medication; (3) uncertain or unknown exposure; and (4) unlikely expo-
sure. As this first, qualitative, tier aims to be conservative in nature, those chemicals
with uncertain or unknown exposure are included with those chemicals exposed to
individuals and the general population, and advanced to the next step of the work-
flow. Those chemicals known to lack exposure potential will not reach the in vivo
molecular target, and, thus, are considered “low priority”.

Exposure potential can be determined through a variety of means, including
extraction of published data from research articles, technological monographs, or
registration eligibility documents. While there is a large degree of time invested in
compiling such empirical data, confidence in conclusions regarding exposure
potential is also much higher, and such data can be used in more computationally-
intense higher tiers. Alternatively, HT exposure models can provide rapid predic-
tions of exposure at several population percentiles for hundreds to thousands of
chemicals. For example, the HT Stochastic Human Exposure Dosimetry Simulation
(SHEDS-HT) model integrates population use patterns (e.g., frequency, duration,
time, and magnitude) derived from the Consolidated Human Activity Database
(McCurdy et al. 2000), chemical weight fractions (Goldsmith et al. 2014), and
known age-specific physiological parameters (e.g., skin surface area, inhalation
rate) to simulate exposure of chemicals comprising 200 consumer product types to
100,000 individuals across all age groups (Isaacs et al. 2014). It should be noted that
such HT exposure models, by design, take limited amounts of data as input to pro-
vide estimates with a large amount of uncertainty and error. Thus, investigators are
left with the decision regarding their desire to balance time and effort with precision
and accuracy.

Absorption and distribution potential can also be determined for chemicals using
empirical data extracted from resources such as those listed above. Alternatively,
physicochemical descriptors and chemical-specific properties can be examined to
assess absorption potential, i.e. can a chemical be absorbed via skin, and distribu-
tion potential, i.e. can a chemical cross the placenta. These descriptors can be pre-
dicted using cheminformatics tools and molecular chemistry models, such as
pharmacophore modeling, geometric optimization, and conformational analysis
(Goldsmith et al. 2012). There are several open-source and commercial platforms
available that provide a variety of QSAR models and algorithms based on two-
dimensional and three-dimensional structures to predict chemical-specific ADME
properties capable of mediating absorption and distribution. Chemicals that can be
systematically distributed may require further assessment regarding their potential
to reach a specific molecular target, i.e. is the chemical able to penetrate the blood-
brain barrier to access brain acetylcholinesterase (AChE). Those chemicals that are
capable of absorption and distribution can be considered of high priority and
advanced in order to undergo additional quantitative screening. Although elimina-
tion is considered a vital component of the ADME process, evaluating it in a qualita-
tive manner is challenging, as it can be assumed that all chemicals should eventually
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leave the body at some time in one form or another. Rather, the quantitative relation-
ship between intake rates and elimination rates is much more critical in influencing
chemical toxicity.

One of the pitfalls involved with the use of in vitro assays is the erroneous omis-
sion of chemicals that might appear to be inactive under assay conditions but that
may resolve into active metabolites or that may be active under in vivo conditions
(Eisenbrand et al. 2002; Kirkland et al. 2014), or inclusion of chemicals that are
rapidly bio-inactivated and eliminated quickly. If metabolites are included in in
vitro tests, it is because investigators recognize that these metabolites are known to
cause adverse health effects, and the parent compounds of these metabolites are
generally also known. Unfortunately, this scenario is more often the exception
rather than the norm, especially with regards to chemicals that are newly developed
and distributed to market. Identifying the multitudes of potential metabolites gener-
ated from a parent compound can prove arduous (Shlomi et al. 2008). Ideally, in
vivo testing can aid in this identification, and the different metabolites can then be
subjected to in vitro testing to verify whether they have the ability to induce a
molecular response (NRC 2007). However, this testing approach requires a great
deal of time and effort. Alternatively, QSAR-based modeling approaches can aid in
evaluating the potential for parent compounds to become metabolized, as well as in
predicting possible metabolites based on enzymatic activity and chemical structure
(Dimelow et al. 2011; Andrade et al. 2014; Kirchmair et al. 2015). While exogenous
metabolites are often detoxification products, some may be biologically active moi-
eties for particular molecular targets. Using fragment-based and molecular finger-
print analyses (Willett et al. 1998; Myint and Xie 2010) or chemotyping (Yang et al.
2015), the functional groups that mediate in vitro activity for known active com-
pounds can be compared to those of predicted metabolites in order to determine
which metabolites are most likely to also be active. These computational approaches
can be accomplished in only a fraction of the time of that required for in vivo test-
ing, and with lower cost than that associated with in vitro testing.

The utility of the qualitative screening workflow was demonstrated through a
case study involving prioritization of chemicals tested in the ToxCast™ in vitro
human AChE inhibition assay (Phillips et al. 2016). Of the 146 chemicals tested
within the assay, 30 were found to be active, and only 20 were retained as being high
priority after querying for exposure, absorption, and distribution potential. In addi-
tion to identifying false positives, which are referred to as those active chemicals
with the inability to reach an in vivo molecular target, similarity searching using
molecular fingerprints and a similarity threshold score of 75% identified 22 false
negatives. False negatives are referred to as those inactive chemicals that may be
parent compounds of active metabolites, or that exhibit activity in vivo but not in
vitro; in this case such false negatives were represented primarily by organophos-
phates and carbamates with weak in vivo AChE inhibition activity. Consideration of
ADME behaviors and exposure can aid in the refinement of in vitro results through
elimination of those chemicals that might otherwise have undergone additional test-
ing. In addition, consideration of the presence of false negatives in an assay can aid
in identification of possible inactive progenitors of active metabolites, as well as
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increase confidence in the resulting “active” or “inactive” hits in in vitro assays. For
example, if fewer false negatives are identified, this may suggest that an assay per-
forms reasonably well.

This lower tier qualitative approach is meant to be conservative due to large
uncertainties and data gaps regarding exposure and ADME information. As a result,
the number of chemicals designated as “high priority and of possible concern” may
remain larger than that required for sufficient allocation of funds and resources for
more extensive testing. When some amount of exposure and ADME data are avail-
able, either through measurements or reliable predictions, these data can be
integrated using higher tier quantitative analyses to estimate an in vivo concentra-
tion that may result in induction or inhibition of a molecular target as a basis for
chemical prioritization. There are multiple options available when conducting quan-
titative analyses, and the integrity of data is likely to be the most critical driving
factor in determining an appropriate approach. For example, when there is a lack of
empirical data concerning exposure levels and ADME properties, in silico methods
may be used to estimate these quantitative inputs. However, it should be recognized
that large amounts of uncertainty might be present in such predictions. In such a
case, it may be more appropriate to place chemicals into prioritization bins to allow
room for error, and investigators are left with the decision to subject all, or only
some, chemicals falling within the highest priority bin(s) to further testing.

In cases where data are abundant or sufficient to allow for parameterization and
evaluation of PK/PBPK and PD models, chemicals can then be investigated on an
individual basis to identify a point of departure capable of inducing in vivo toxicity
(Filipsson et al. 2003; Davis et al. 2011) and margin of exposure (MOE). Such an
approach, while being more low-throughput in nature when compared to relative
ranking of chemicals in priority bins, offers a more objective comparison for deci-
sion makers. Chemical-specific data, even when not lacking, may still hold many
inconsistencies due to the large variety in methodological procedures used in indi-
vidual research studies. In instances where data gaps and uncertainties exist, identi-
fication of parameters for which errors might hold a significant impact on the
predictability of a quantitative model is critical in gauging whether model outputs
are appropriate for higher tier risk assessment. Two possible higher tier approaches
involving quantitative analyses were demonstrated in case examples that are further
described below.

The first case study utilized a PK/PD model to prioritize 25 AChE inhibiting
chemicals based on their in vitro potency levels, daily absorbed rates, and clearance
rates (Leonard et al. 2016a). Specifically, a PK model consisting of (1) inputs of
daily absorbed doses of active chemicals or inactive parents of active metabolites;
(2) parameters that describe stoichiometric yield and metabolic rate of parental
biotransformation to active metabolites; and (3) clearance rates of both parents and
active metabolites, was used to estimate blood concentrations of active moieties at
average plasma concentrations integrated over time (C,y,). The C,,,, together with
in vitro potency data describing the concentration necessary to inhibit/induce
molecular target activity by 50% (ECs,) and maximum inhibitive/inductive activity
(Emax), Was then incorporated into a PD model to derive the in vivo toxicological



12 Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework... 253

activity of a chemical at a given absorbed dose and to allow chemicals to be placed
into discretized bins of increasing concern based on rankings of their activity. It was
found that those chemicals with moderate to high potency and exposure were
placed into higher priority bins, and that those chemicals that exhibited a very rapid
clearance were placed in a lower priority bin, even if potency was high (Leonard
et al. 2016a).

An additional component of this case study involved replacement of empirical
data describing model parameters with predicted values to examine how the uncer-
tainty in these variables might affect the priority ranking. Compared to other
variables, a higher number of bins were misassigned when daily absorbed doses
were predicted (Leonard et al. 2016a). This finding was unsurprising, as human
exposure can vary widely due to the plethora of activities that may allow an indi-
vidual to be exposed to a specific chemical, and to what degree, leading to a large
range of potential exposure levels for the population as a whole. In this case study,
SHEDS-HT was used to estimate daily absorbed doses for the population, and the
resulting distributions reflect the wide variety of consumer use patterns, including
age-specific, gender-specific, and occupation-specific activities (Isaacs et al. 2014).
Differences in individual exposure levels are also influenced by the number of
products certain chemicals are found in, as well as the weight fractions of those
chemicals in these products (Goldsmith et al. 2014).

While there is great value in coupling an AOP with lower-tier qualitative or quan-
titative approaches for priority ranking, further expansion of the utility of the AOP
framework in HT risk assessment can be achieved using higher-tier computational
models to compare external exposure concentrations and internal target doses capa-
ble of triggering an MIE (Groh et al. 2015). When chemical-specific and physiolog-
ical data is abundant, PBPK models can be developed to follow chemicals throughout
a biological system based on their ADME properties (Meibohm and Derendorf
1997). In this manner, in vivo chemical target tissue concentrations able to elicit an
adverse biological response, as determined through in vitro testing, can be linked to
external exposure levels that will result in such biologically-effective internal chem-
ical concentrations. Derivation of a MOE that is readily interpretable by risk
assessors can be accomplished by comparing these biologically-effective external
exposure levels to those levels likely to be encountered by the population (Fig. 12.6).
This quantitative approach has been used to estimate external conazole fungicide
concentrations with the ability to alter the xenobiotic CAR/PXR signaling pathway
in vivo (Judson et al. 2011), though in this example, only the two ADME properties
of intrinsic clearance and fraction of the chemical unbound to plasma proteins were
considered.

In the second quantitative case study, an integrated framework was developed to
utilize a PBPK/PD model, a HT exposure model, and in vitro potency data to derive
MOEs for chemicals of varying ability to inhibit the thyroid peroxidase (TPO)
enzyme (Leonard et al. 2016b). TPO plays a significant role in the synthesis of the
thyroid hormones thyroxine and triiodothyronine through its conversion of iodide
to iodine and by hydrogen peroxide-mediated oxidation (Jameson and Wheetman
2001). Specifically in this case study, a PBPK model was used to estimate thyroid
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Fig. 12.6 Applying in vitro to in vivo extrapolation (IVIVE) and reverse dosimetry approaches
during quantitative assessment of chemical risk. Such a workflow includes determining a biologi-
cal point of departure (POD), and external exposure concentration that will lead to that POD, by
integrating in vitro dose-response data and physiological mechanisms (e.g., tissue volume and
blood flow) into a pharmacokinetic (PK) or physiologically based pharmacokinetic (PBPK) and
pharmacodynamic (PD) model. A prioritization of chemicals can then be achieved by comparing
their PODs to known or predicted population exposure concentrations to estimate a margin of
exposure

chemical concentration, and this concentration was entered into a PD model, along
with ECs, and Ey,, potency data, to determine the oral equivalent dose necessary to
reduce the production and release of thyroid hormones by 10%, followed by reverse
dosimetry to derive the external exposure level necessary to result in the interal
biologically-effective tissue dose (ED,,). The ED,, was then compared to external
exposure levels predicted at the 50th and 95th population percentiles, using the
SHEDS-HT model, to derive a MOE. This integrated framework can be applied to
other AOPs using the most appropriate PBPK and PD models. For example, the
PBPK model can be expanded to investigate AOs across multiple life stages, such
as fetal exposure through placental transfer or infant exposure through contami-
nated breast milk. This case study also highlights the value of chemical-specific
exposure and ADME considerations in regards to increasing confidence in HT risk
assessment. For example, it was found that the ultraviolet absorber benzophe-
none-2 (Downs et al. 2013) exhibited the slowest estimated clearance and the third
highest potency of the six tested TPO-inhibiting chemicals (Paul et al. 2014), lead-
ing to it having the lowest MOE. In addition, although the antimicrobial chemical
triclosan exhibited only the 2nd lowest potency, its widespread abundance in a
number of consumer and industrial products (Thompson et al. 2005) resulted in the
highest predicted exposure level, leading to it having the 2nd lowest MOE (Leonard
et al. 2016b).

One of the core objectives of the new twenty-first century toxicity testing para-
digm is to utilize HT in vitro data to investigate toxicological pathways resulting



12 Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework... 255

from chemical exposure. However, interaction of a chemical with a molecular target
does not necessarily lead to an MIE and subsequent AO. Rather, a chemical that is
active in vitro must reach the in vivo target at the correct time and concentration
necessary to induce the MIE, especially in regards to AOPs involved with develop-
mental toxicity. Evaluating the risk of a chemical based on its in vitro potency alone
can certainly lead to erroneous conclusions in the risk assessment process, and con-
siderations of both exposure and ADME-related properties should enable managers
to make better-informed and more confident decisions.

12.4 From AOPs to Mode of Action (MOA): Considerations
for the Use of AOPs

While AOPs were originally developed in the context of ecological risk assessment
(Ankley et al. 2010), the mode of action (MOA) framework was developed to meet
the needs of researchers and regulators seeking to elucidate the mechanistic pro-
cesses leading to adverse biological outcomes for human health risk assessment
(Meek et al. 2003, 2014; Seed et al. 2005; Boobis et al. 2008). Many parallels exist
between the AOP and MOA frameworks, especially reliance on the identification of
KEs to describe the mechanistic basis for chemical toxicity when a complete
description of the mechanism of action is lacking. Just as with AOPs, MOA analysis
requires causal linkages to be established between upstream and downstream KEs.
More recently, there has been a concerted effort to synchronize the AOP and MOA
frameworks. As an example, the evaluation of weight of evidence and description of
the quantitative understanding for AOPs is derived from the corresponding literature
for MOA analysis (Meek et al. 2014).

The key difference between the AOP and MOA frameworks is the first principle
of AOP development; that is, AOPs are chemical-agnostic. This means that while
the perturbation will be from a chemical in most cases, no information specific to a
single chemical is included in the definition of an AOP. For example, an AOP in
which the MIE includes protein alkylation will necessarily be initiated by the bind-
ing of a chemical to the protein, but the AOP will be general for any chemical that
can serve as an alkylating agent for that protein. AOPs are intended to inform HT
toxicity testing where a large number of chemicals are screened across a battery of
assays. In this case, the AOP must be designed such that positive results in a particu-
lar assay for any chemical can be interpreted in light of that AOP. MOA analysis, in
contrast, is intended to directly inform decision makers regarding the risk of a spe-
cific chemical. In the latter case, some direct measure of toxicity for the chemical in
question is required along with other chemical-specific information, such as metab-
olism, that might influence the activity of the chemical.

Accounting for these subtle nuances, the MOA framework can be thought of as
an extension of the AOP framework, through consideration of chemical-specific
toxicity and ADME information. Integration of the AOP and MOA frameworks
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allows for the expansion of hazard assessment to dose-response assessment for spe-
cific chemicals (Mackay et al. 2014) through three critical components: (1) toxico-
kinetics of the chemical based on exposure and ADME information; (2)
chemical-agnostic toxicodynamics as determined through the AOP; and (3)
chemical-specific dose-response information derived from HT in vitro assays.
Chemical-specific dose-response relationships in vivo can then be obtained using
chemical-specific ADME information to map external exposure to target tissue
dose, followed by investigating the interaction of the chemical with the molecular
target and the ability of this interaction to lead to an adverse biological response. As
an example, a model that integrates data from 18 estrogen receptor-related in vitro
assays linked to an estrogen receptor signaling AOP has shown predictability that is
comparable to previous in vivo assays for identifying estrogenic compounds
(Browne et al. 2015; Judson et al. 2015). These dose-response estimates for specific
chemicals from the in vitro assays can be combined with exposure predictions,
along with PBPK/PD model-based predictions of human equivalent doses, to assess
whether those chemicals can attain external exposure levels that might lead to
adverse reproductive responses (Judson et al. 2014; Wetmore et al. 2015).

When assessing the utility of a particular AOP, it is important to consider its
relevance to species, life stage, and sex (Villeneuve et al. 2014a; Groh et al. 2015).
It should be noted that should such differences exist within or among species, only
PD differences can be addressed using AOPs. Identification of KEs related to ubiq-
uitous AOs across species (e.g., aromatase inhibition leading to reproductive diffi-
culties in species with estrogen receptors) provides an opportunity for scientists to
investigate species extrapolation for those KEs, such that toxicological studies
including the downstream KEs can be performed with a limited set of representative
species and extrapolated to the species of concern. In addition, human relevance/
species concordance may be determined based on available information for tested
species using the MOA framework, as it allows for estimation of quantitative differ-
ences in PK properties and behaviors that might vary across species or life-stages
(Meek et al. 2014). It should be recognized that establishing relevance among tested
taxa with other species or humans requires identification of conserved compart-
ments and KEs across all biological levels of organization, including the initial
molecular target, cellular mechanisms, and organ similarities.

If toxicity is implied for a specific chemical, in accordance with both a HT test
and whole organism test, that chemical can likely be listed as being of concern. The
HT assay evaluating, in essence, the same MOA as the whole organism test should
not be held to a higher standard in terms of its linkage to the AO. For example, the
concordance between an HT test and an in vivo test that relate to the same KE should
be evaluated in light of the concordance among the results from the in vivo assays
for that KE. If two tests address different KEs within an AOP, the overall confidence
in the portion of the AOP that lies downstream of each KE must be considered. If
one KE is upstream of a weak KER and the other is not, the confidence in the assay
connected to the downstream KE will be higher for accurately predicting that
AO. However, due consideration should be placed on the ability of the in vivo assay
to include ADME characteristics in addition to the AOP-related concerns.
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Combining AOPs with existing chemical toxicity data can provide a structured
framework for communicating toxicological outcomes to risk managers. For exam-
ple, QSAR-based in silico approaches can be coupled with existing in vitro toxicity
data for structurally similar chemicals in order to predict the toxicity of chemicals
that have not yet been tested, that lack of sufficient information for a decision, or
that are under development (Patlewicz et al. 2015; Alves et al. 2015a, b). Such
QSAR-based approaches can also allow in vivo toxicity to be predicted for chemi-
cals that are structurally similar to other chemicals that have undergone more exten-
sive in vivo toxicity testing. To determine whether additional chemical testing is
needed, AOPs have been identified as a key component of Integrated Approaches to
Testing and Assessment (IATA) strategies (Tollefsen et al. 2014). Confidence in
using read-across methods to design alternative testing strategies based on decision
context, mechanistic information, structural similarities, and data availability for
chemical groups is based on the understanding of toxicokinetics and toxicodynam-
ics for specific chemicals and can be increased with supporting in vitro data
(Patlewicz et al. 2015). When investigators are able to confidently predict in vivo
behaviors of specific chemicals tested through HT in vitro means, using sufficient
data obtained from MOA analysis, the synergy between the AOP and MOA frame-
works becomes obvious.

12.5 Conclusions

A broad coverage of toxicological space is required for AOPs to support the risk
assessment of chemicals. Investing effort on defining many AOPs and forgoing the
full evaluation of each will provide this broad coverage. Cases in which the AOPs
are determined to lack sufficient evidence to support a given decision can then be
used to prioritize those AOPs for further evaluation. Fortunately, as AOPs continue
to evolve, they take advantage of the incorporation of emerging technologies and
computational resources that allow for rapid development and that aid in better
understanding of the pathways involved in AOs of interest.

Though AOPs are chemical-independent by nature, when integrating informa-
tion related to characteristics that influence chemical toxicity, such as ADME-
related properties and exposure, results from HT in vitro assays can be refined to
provide greater confidence for decision makers. Incorporation of ADME behaviors
also enables the AOP framework to be extended to instances in which data avail-
ability allows for establishing linkages between chemical-specific dose-responses
and external exposure levels, or for determination of in silico predicted toxicity. The
contents presented in this chapter have only just begun to touch upon the challenges
faced during AOP development, along with the opportunities and advancements the
AOP framework can provide to the emerging field of toxicity testing in the twenty-
first century.
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Chapter 13
The Development of Quantitative AOPs

Irvin R. Schultz and Karen H. Watanabe

Abstract A quantitative adverse outcome pathway (qAOP) is a mathematical/
computational model that represents the dynamic processes linking a molecular ini-
tiating event with an adverse outcome. A unique feature that distinguishes a qQAOP
from other biologically based mathematical models is the prediction of key events
that are part of the qualitative adverse outcome pathway and are measurable experi-
mentally. This chapter reviews the evolution of qQAOPs, describes methods to develop
gqAOPs, and provides two case study examples focused on reproduction in fish.

13.1 Introduction

The concept of an Adverse Outcome Pathway (AOP) gained attention in 2009 and
was the focus of a 2009 SETAC Pellston Workshop entitled, “A Vision and Strategy
for Predictive Ecotoxicology in the 21st Century: Defining Adverse Outcome
Pathways Associated with Ecological Risk.” As described by Ankley et al. (2010),
AOQOPs provide a framework for organizing information about a molecular initiating
event (MIE) and the key events (KEs) that lead to an outcome of interest for risk
assessment. Based upon available scientific data, AOPs provide a qualitative/con-
ceptual description of the sequence of events leading to an adverse outcome and
guides toxicity testing strategies, particularly in the development of in vitro assays.
However, a large component of risk assessment relies on quantitative analyses that
must address a wide variety of toxicants, exposure concentrations, and their effects
upon wildlife species in a predictive fashion. Thus, an essential extension of an AOP
for quantitative risk assessment is the development of mathematical/computational
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model(s) that represent the dynamic processes in an AOP, which we refer to as a
quantitative AOP (qAOP).

There are now many examples in the toxicological literature of how quantitative
models can aid the risk assessment process that include prediction of (i) toxicant
exposure and disposition within the body (pharmaco—/toxicokinetics), (ii) specific
toxic effects (pharmaco—/toxicodynamics) or interactions associated with the MIE,
and (iii) adverse responses at higher biological scales (Nichols et al. 1991; Krauss
et al. 2012; Sturla et al. 2014). Quantitative models provide specific, unambiguous
predictions of toxicant effect(s) and/or changes in model variables that are linked to
apical endpoints (e.g. 17f-estradiol, vitellogenin (VTG), and reproduction). By
doing so, quantitative models also permit critical evaluation of hypotheses and
assumptions associated with an AOP. This may identify knowledge gaps that exist
in the system being modeled and guide future experimentation. Quantitative models
have been shown to be valuable because they can organize experimental facts and
assumptions in a logical manner, explore the implications of change on model
parameters through simulations, estimate parameter values that are difficult or
impossible to determine experimentally and prioritize research needs (Andersen
et al. 1995). While valuable in their own right, existing models typically represent
one or two scales of biological organization and thus cannot represent an entire AOP
without modification.

In this chapter, we describe methods and a few case studies of gAOPs that have
been developed since our first examination of how one could model a known AOP
at the Pellston Workshop in 2009 (Watanabe et al. 2011). Our working definition of
a qAOP is that it mathematically describes the processes of an AOP from the MIE
to the adverse outcome. Prior to qQAOP model development an established qualita-
tive AOP is needed to identify the MIE, KEs, and the outcome of interest. By defini-
tion, KEs are measureable experimentally and thus are natural endpoints for gQAOP
model prediction. In addition, a gqAOP model will be able to predict many other
endpoints for which model evaluation data may be available, but these endpoints
may not necessarily be identified as KEs. To date, two approaches have been used
to develop qAOP models: one that links existing biologically based models by tak-
ing output from one model as input into another model; and ab initio model devel-
opment. However, the development of gAOP models is just beginning and as our
understanding of biological processes improves, computer technology advances,
and AOP networks are identified, methods of model development will also change
to keep pace with technology.

13.2 Developing Quantitative Adverse QOutcome Pathways

An AOP is by definition a multiscale process that seeks to causally link changes at
lower levels of biological organization with adverse effects at higher levels such as
individuals and populations. This creates a challenge for qQAOP model development
for a number of reasons, but perhaps most notably are the temporal differences
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among biological scales. For example, many sub-cellular processes such as receptor
binding, signal transduction and enzyme kinetics operate at time scales of seconds
(or less) to minutes, while higher-level processes such as pharmacokinetic proper-
ties of hormones occur over hours-days or weeks. Tissue growth and development
can occur over a period of months while other organismal processes associated with
maturation and aging may take years. Further increasing biological scale, population-
level processes operate at generational time scales, which can be many tens-to-
hundreds of years. Thus, linking models of different scales requires careful thought
regarding the type of output from one scale and how it will subsequently be used as
input for a higher scale. A simple way to link biological scales and account for time
differences is to take a hierarchical approach, with output from lower scales sequen-
tially passed on to the next scale (Cilfone et al. 2015). For example, a simple multi-
scale model may be composed of a cell or tissue-based compartment (timescale in
minutes or hours) with a single predicted output that is used as an input parameter
for a model that predicts a whole-animal level process. This approach has been used
to relate a biochemical biomarker response with an adverse effect such as lethality.
A good example of this approach is the model developed by Wu et al. (2015) to
describe the relationship of fish gill Na+/K+ ATPase activity with metal induced
toxicity. In their model, predicted gill Na+/K+ ATPase activity is used to estimate a
“damage” parameter that is linked to a model of acute toxicity. The hierarchical
approach is initially attractive as it follows the organization of most qualitative
AOPs. However, strict hierarchical organization is limiting because the exchange of
information typically needs to occur in both directions across scales (Cilfone et al.
2015). From an AOP perspective, this reflects the potential for time-dependent
changes at higher scales to alter the behavior or output of lower scales. Examples of
where this may occur would be hormonal feedback mechanisms and adaptation or
acquired tolerance to a toxicant during long-term exposures.

Another consideration in multiscale AOP modeling is the level of understanding
or detail in knowledge regarding a specific biological scale. For example, the ability
to interrogate whole genome responses to toxicant exposure has provided an increas-
ingly thorough understanding of cellular processes that may be altered. This has
permitted development of highly complex cellular models of gene networks that can
describe processes or key events at a relatively fine degree of resolution (Le Novere
2015). Quantitative models at higher levels of biological scale are typically “coarser”
and do not describe processes with the same level of resolution. These differences
in resolution may cause problems with parameter estimation, especially in situa-
tions where significant data gaps exist about processes contributing to a key event.
In these situations the modeler may be forced to use data collected at higher biologi-
cal scales (e.g. whole organism, apical endpoints) to guide parameter estimation at
lower biological scales. This is sometimes referred to as disaggregation, because
values measured at higher scales typically reflect the interaction of many factors
occurring at lower scales and therefore need to be teased apart, which can introduce
greater error in their estimates (Yang 2013). From a qAOP perspective, the ideal
situation is to have the flow of information (output from one scale) proceed from
finer to coarser scales (Yang 2013). This tends to promote a bottom-up approach in
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AOP development that would begin with a detailed quantitative description of the
molecular initiating event and its effect at the cellular level. However, both middle-
out (e.g. tissue, organ system level response data) (Groh et al. 2015) and top-down
approaches (e.g. apical endpoint data) to AOP development are to be expected
because for many toxicants, knowledge about the MIE may be limited and toxicity
data may only be available from higher biological scales. In these latter cases, the
modeler may be forced to simplify quantitative descriptions at lower scales due to
difficulties in accurately estimating model parameters.

The approaches used for linking existing or newly developed models require the
modeler to first answer several important questions. What data are available to
inform model development and parameterization? How many levels of organiza-
tion (scales) are needed for the AOP? Will it be necessary to include large transi-
tions in scale (e.g. gene expression to apical endpoint)? How much detail (number
of equations and parameters) can be included within a scale? Answers to these
questions will emerge from the available toxicity data and knowledge about the
biology of the organism. It is helpful to keep in mind that all models reflect deliber-
ate choices made to include or exclude reactions or processes. There will always be
a need to manage model complexity by seeking to limit the number of equations
and parameters to those considered essential for model performance, and it is com-
mon to lump discrete processes into a single or few parameters to manage model
complexity. The challenge to the gQAOP modeler is to identify where and how best
to lump parameters. There is no standardized or approved method for doing this.
There are various statistical tools that can help guide when to increase or decrease
model complexity (Yamaoka et al. 1978) along with parameter sensitivity analysis
methods that can help determine whether a model parameter or groups of parame-
ters actually improves model performance. However, decisions on how many
parameters to include or exclude in a model is primarily based on available data,
biological knowledge, anticipated use of the model and prior modeling experience.
In the next sections, we discuss approaches used to create a gAOP that incorporates
currently available mathematical models and an AOP that requires new models to
be developed.

13.2.1 Incorporating Existing Models at Different Biological
Scales to Create a gAOP

One approach to develop a qAOP is to maximize existing resources by utilizing
quantitative (e.g., mathematical, statistical, and/or computational) models devel-
oped for different processes within an AOP. These models may represent one KE
relationship or span multiple KEs and relationships. Though an AOP is chemical
agnostic, a AOP requires specification of the chemical(s) of interest and the spe-
cies to which the qAOP applies. Thus, to adapt an existing model for use in a
qAOP, model parameters must be known for the chemical and species of interest,
which includes fixed parameters in the model that may need adjustment because of



13 The Development of Quantitative AOPs 267

interspecies or chemical differences, and user-defined input parameters that are set
by the user for a specific application. The following summarizes the main steps in
formulating a qQAOP model.

1. First obtain a qualitative AOP description from the AOP Wiki (https://aopkb.org/
aopwiki/index.php/Main_Page). The AOP Wiki is part of the OECD Adverse
Outcome Pathway Knowledge Base and serves as a repository for AOPs and
their supporting evidence. If a new (q)AOP is being created, consult the AOP
Wiki to see how these are formulated and organized.

2. Once an AOP is selected, a literature review should be performed to find any
quantitative models that have been developed for different parts of the AOP.

3. The existing models should be evaluated for applicability in the gAOP model.
For example, a model may exist for a KE relationship in a related species, but
required input data or parameter values may not be known for the species of
interest. In addition, model predictions need to be compatible or usable as input
into the following model that represents a higher level of biological organization.
Adjustments may be needed to translate units of measure, or time intervals at
which predictions are produced. Finally, differences in computer platforms and
software licensing requirements may need to be addressed. Thus, when utilizing
existing models, collaboration between model developers is helpful.

(a) When no model exists for one or more KE relationships, the qQAOP devel-
oper will need to develop the KE relationship(s). KEs, by definition, are
measurable experimentally. Thus data, if not already available, should be
obtained in order to develop the KE relationship(s) that is/are needed.

4. Once a set of models representing the AOP are linked in a gQAOP model, evalua-
tion of the qAOP model predictions with independent data sets should be per-
formed. If each existing model was developed for the species of interest, and was
independently evaluated, then it may not be necessary to perform an evaluation
of the output from the qAOP, though performing spot checks to ensure that the
links between models are working properly is always advisable.

13.2.2 Recent Examples of qAOP Model Development

In this section, three examples from the recent scientific literature of qQAOP develop-
ment are described. These three examples illustrate some of the challenges involved
in developing qAOP’s for eco-toxicologically relevant species, which require link-
ing data and output across several biological scales. For many species of interest,
the available biological and toxicological data may be limited to one or two scales.
Incorporating complex mathematical descriptions for each scale may be inappropri-
ate at present and simpler, more empirical approaches may be necessary to link
output between biological scales. A good example of this approach is presented in a
study by Miller et al. (2015) who focused on the effects of pulp mill effluents on
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reproduction in a population of white sucker (Catostomus commersoni). Many
years of field monitoring had indicated an association between exposure to effluents
and delays in time to maturation and decreased fecundity. An AOP was developed
that considered inhibition of ovarian steroidogenesis as the initiating event, which
was assumed to be associated with circulating levels of testosterone (Miller et al.
2015). The authors then developed an empirically-derived equation that was used to
relate circulating levels of testosterone with fecundity and the relative proportion of
breeding females in the population (Miller et al. 2015). The predicted effects on
reproduction were then used as inputs into a density-dependent population model of
white suckers to predict population level impacts of effluent exposure. In this exam-
ple, a tissue level measurement (circulating sex hormone) was used as the starting
point for the gAOP. This decision was based on the availability of testosterone mea-
surements, which were routinely made during monitoring. It also reflects a compro-
mise made by the authors in that more specific information on the effects of effluent
exposure on sex steroid synthesis was not available. Thus, extending the model to a
lower biological scale, such as the ovarian follicle and a more explicit description of
sex steroid synthesis would have required additional equations and parameters that
would have been difficult to estimate.

Another example of qAOP development is described by Ananthasubramaniam
et al. (2015) who worked with the freshwater invertebrate Daphnia magna. In this
study, a highly detailed bioenergetic model of Daphnia populations was developed
from laboratory data and included a large number of parameters describing many
physiological processes associated with feeding, growth, development and repro-
duction. A sensitivity analysis of these parameters was performed to determine how
changes in their values affected the predicted lifetime reproduction and long-term
growth rate of the population. Other experiments focused on gene expression
changes in Daphnia exposed to a suite of model toxicants. Toxicant associated gene
expression changes were then mapped to various physiological processes, which
were linked to parameters describing these processes in the population model. The
authors then suggest that relative changes in gene expression can be used to adjust
the corresponding model parameters to predict exposure impacts on Daphnia popu-
lations (Ananthasubramaniam et al. 2015). Here, gene expression changes are
directly being used to guide parameterization of a population-level model. However
the large transition in model scales (primarily sub-cellular to population level)
reduces the diagnostic power of the model as changes in fecundity were typically
associated with a generalized pattern of altered gene expression. The authors
acknowledged that a more mechanistic understanding of how subsets of genes influ-
ence daphnia physiology would likely improve specificity of model predictions for
diverse toxicants.

In a final example, a qAOP was developed for an aquatic plant Myriophyllum
spicatum exposed to a photosynthesis inhibitor (Riedl et al. 2015). Detailed metab-
olomic analysis was performed on leaf extracts to derive a dose-specific “meta-
bolic effect level index”, which condenses the observed changes in concentration
of various small molecules (Riedl et al. 2015). Other endpoints measured were
traditional plant apical endpoints including main shoot length, dry weight change
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and photosynthetic efficiency. A statistical model was then developed to relate
changes in the metabolic effect level index with the apical endpoints (Riedl et al.
2015). Thus, tissue level changes (in the metabolome) were used to estimate whole
organism level effects (growth). One challenge with this approach noted by the
authors and associated with expressing metabolomic responses as an index, was
that it tends to average all changes and assume that all discrete responses contrib-
ute equally to the adverse outcome (Riedl et al. 2015). The authors suggest future
improvements in their qQAOP would be to incorporate more specificity of the
metabolomic response, recognizing that some metabolites are more closely associ-
ated with a specific biochemical pathway that may have more or less contribution
to apical endpoint responses.

The recent interest in developing qAOP models has tended to focus on new
model development. This will likely change over time as more models are devel-
oped, providing more options for the aspiring qAOP modeler. Clearly, there are
tradeoffs to any qAOP model development, whether the modeler relies on linking
existing models or building a new model. The decision process for deciding whether
the advantages of one approach outweigh the disadvantages depends in part upon
the intended use of the gAOP model. Indeed, maximizing all available resources
and data should help to reduce the resources needed to develop the qAOP. If the
existing models have been evaluated independently, a certain amount of confidence
can be imparted upon the model predictions. However, translation of model output
to be used as input into a higher-level model requires care and diligence if manually
done, or slight modifications to the model code may be needed to automate the pro-
cess. These steps require time and effort. Having one quantitative model that spans
the entire AOP eliminates any concerns about compatible units of measure between
models or computer platform differences. Examples of both approaches are
described in the next section that focuses on two case studies.

13.3 Case Studies: Fish Reproduction

Reproduction is one of several core apical endpoints that a gQAOP model may need
to consider or predict because it can be translated to population outcomes. Over the
past 25 years, public concerns over endocrine disruption in wild fish populations
have spurred extensive research on the endocrinology of the fish reproductive sys-
tem. Endocrine control of reproduction in fishes is functionally similar to other
vertebrates and consists of the hypothalamus, the pituitary, the gonads and for fishes
and other egg-laying vertebrates the liver, and is often referred to as the HPGL axis.
Communication between these tissues occurs via the blood and specialized neuro-
secretory fibers from the hypothalamus to the pituitary. A minimum of five hor-
mones plays an essential role in sexual maturation starting with production of
gonadotropin-releasing hormone (GnRH) in the hypothalamus. The GnRH is sent
to the pituitary where it stimulates the synthesis of the gonadotropins (GTHs): fol-
licle-stimulating hormone (FSH) and luteinizing hormone (LH). In females, FSH
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stimulates growth of the ovarian follicles, each of which contains a single oocyte
(immature egg). The LH is involved in maturation and triggering ovulation.
Estradiol-17p (E2) in females, 11-ketotestosterone in males, along with progester-
ones such as 17,208-dihydroxy-4-pregnen-3-one (DHP), promote gonad growth
and induce gamete maturation, respectively. These hormones interact with each
other through positive and negative feedback creating an intricate network of path-
ways that ultimately synchronize processes culminating in the timely production of
mature eggs or sperm. In females, the liver is important because it synthesizes
VTG, which is induced by E2 and is an essential component of the growing oocytes.
Recent efforts to develop mathematical descriptions of fish reproduction have been
encouraged by similar efforts made for farm animals and humans (Pring et al. 2012;
Roblitz et al. 2013) and illustrate several of the challenges associated with qQAOP
model development such as incorporating time delays associated with different bio-
logical scales, the need to incorporate multiple sources of in vivo and in vitro
derived data and to extend organism-level models to the population level. This sec-
tion will present two case studies describing HPGL model development in different
types of fishes to highlight some of the approaches used to overcome these model-
ing challenges.

13.3.1 Ab initio gAOP Model: HPGL Model Development
and Use with gAOP in Rainbow Trout (Oncorhynchus
myKkiss)

Reproduction in most fish species including those important to regulatory testing
and environmental health research, can be divided into two large groups: group
synchronous spawners (a single large clutch of oocytes develop synchronously for
one spawning event) or asynchronous spawners (several small clutches are spawned
at different times during a reproductive season; fathead minnow, zebrafish, anchovy).
Among synchronous spawning fishes such as the salmonids (trout, salmon, chars),
some exhibit semelparity where death occurs after a single reproductive event,
while others exhibit iteroparity, where repeated spawning events can occur over
many years. Rainbow trout (Oncorhynchus mykiss) and other salmonid species have
a long history of experimental use including many toxicological studies that provide
a rich background of biological knowledge (Thorgaard et al. 2002). In addition,
trout and salmon are important aquaculture species with 2013 estimates of global
production exceeding 3,000,000 tons (FAO, http://www.fao.org/fishery/cultured-
species/search/en). Thus, there is strong interest in developing a mathematical
model of the salmonid reproductive axis to form a core of gqQAOP models for repro-
ductive effects of chemical and physical stressors.

An early mathematical model of female salmon reproduction focused on the
semelparous coho salmon (Oncorhynchus kisutch; (Kim et al. 2006)). One advantage
of working with semelparous species is that gamete maturation is highly synchronous
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(e.g. a much larger proportion of oocytes and spermatozoa exist in identical states
of development throughout the cycle; (Campbell et al. 2003; Luckenbach et al.
2008)). This facilitates a simpler description of gamete growth, which in the Kim
et al. (2006) study was treated as a sequential series of five steps. All oocytes were
assumed to be in each step or stage, with an empirically derived duration (days)
before all oocytes “jumped” to the next stage. This approach also permits segrega-
tion of GTH activity, which was used to arbitrarily restrict LH release until E2
declines during a narrowly defined time period preceding final oocyte maturation
(FOM) in the model. Another simplification was to treat GnRH as a type of “on” or
“off” switch; GnRH was only on (at a fixed level) between days 75 and 250 of the
reproductive cycle where it could stimulate FSH and LH synthesis. These model
features appeared biologically appropriate for salmon where LH is released from
the pituitary as a single massive surge prior to ovulation and FSH release is greatly
reduced during the few months preceding spawning. This model also did not include
an explicit description of vitellogenesis and assumed that impacts associated with
E2 synthesis directly reflected effects on oocyte maturation and spawning. However,
as efforts were begun to adapt this model to the iteroparous rainbow trout, it became
clear that a more detailed description of these processes including vitellogenesis,
was necessary.

Rainbow trout exhibit group synchronous reproduction with spawning occurring
annually once sexual maturity is attained, although spawning sometimes occurs
every 2 years depending on environmental conditions (Crim et al. 1992; Seamons
and Quinn 2010). The major environmental cue for the seasonality of the trout
reproductive cycle is annual photoperiod changes. Although trout are synchronous,
it is known that growth and development among individual oocytes can vary sub-
stantially during much of the reproductive cycle (Tyler et al. 1990). Thus, it was felt
that the HPGL model needed to include a capacity to allow sub-populations of
oocytes to exist within the ovary, particularly during the time period of active vitel-
logenesis when size variance among oocytes is most pronounced (Tyler et al. 1990).
Also, as a consequence of spawning multiple times in their lifetime, model assump-
tions about GnRH and FSH production needed to be updated along with the mecha-
nism of releasing LH from the pituitary.

To make the model development process more tractable, it was decided to ini-
tially separate the description of vitellogenesis from the rest of the model. This can
easily be done because the primary external input to VTG production by the liver is
blood plasma E2 while the output is VT'G. This permits the vitellogenesis model to
be viewed as a sub-model and incorporate as much biological detail as considered
necessary to describe many of the individual steps involved in VTG synthesis and
secretion. This approach was taken in the VTG model described by Sundling et al.
(2014). Their VTG model exemplifies several of the approaches used to describe
gene expression and protein synthesis with the added feature that the protein (VTG)
is actively secreted into the bloodstream. A common modeling approach to describe
the synthesis of a gene product (e.g. hormone or VTG) is to assume production rate
is the product of a biosignal (e.g. such as mRNA) and a proportionality constant
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that relates protein production rate to the corresponding biosignal. This approach is
often appropriate because for example, the synthesis of a protein such as FSH is
proportional to the amount of its mRNA in the pituitary. Time delays can be incor-
porated to account for the lag time between biosignal appearance and the initial
appearance of hormone or protein in the bloodstream. More complex relationships
between biosignal and the rate of hormone production, have been described and
can be incorporated as needed (Jusko and Ko 1994). With regard to VTG synthesis,
the Sundling et al. (2014) model assumes synthesis is regulated by estrogen recep-
tors (ER), which when bound by E2 activate transcription of genes associated with
VTG causing formation of VTG mRNA and protein. The model assumes E2 revers-
ibly binds to its receptor with rate constants used to characterize the binding of E2
to ER. The E2-ER complex triggers synthesis VTG mRNA, which actively pro-
duces VTG inside the liver. An amplification factor is included in the equation
describing VTG synthesis, which is needed to account for observations that one
mRNA molecule may be translated many times. From the liver, VTG is transferred
into plasma, where the plasma kinetics of secreted VTG is described using a clear-
ance-volume pharmacokinetic model similar to that described in Schultz et al.
(Schultz et al. 2001).

The trout VTG model has recently been incorporated into a second generation
HPG model to continuously predict annual spawning in female rainbow trout
(Gillies et al. 2016). In addition to continuously describing GnRH production, the
revised model explicitly describes oocyte size, which is used to define growth and
to differentiate the developmental stages of maturation. The model also permits
multiple subpopulations of oocytes to exist in the ovary to make it more biologi-
cally consistent. A conceptual view of the second-generation model is shown in
Fig. 13.1 (Left).

One application for the female trout HPGL model is for gAOP evaluation of toxi-
cants using in vitro derived data. The HPGL model is not exclusively linked with
one gAOP model or toxic mode of action, rather it is a quantitative tool to convert
experimentally measured effects on hormone synthesis or action in target tissues
such as the pituitary, ovary or liver into predicted effects on oocyte growth and ovu-
lation. Reverse toxicokinetic modeling approaches would then be used to estimate
environmental exposures needed to cause predicted adverse target organ concentra-
tions. Predicted effects on oocyte growth or maturation would also need to be used
as input into a population model. This overall approach offers advantages particu-
larly when only in vitro data are available, as many model parameters such as those
associated with gonadotropin synthesis and secretion (parameters mFSH, mLH,
FSH, LH), ovarian synthesis of estrogen and 17,20 DHP (parameters for basal E2
and FSH stimulated synthesis and DHP) and estrogen induced synthesis of VTG
(e.g. vtg mRNA, VTG) can be estimated from cell culture methods. Thus, multiple
toxic modes of action and target tissues (direct effects on both the pituitary and
ovary for example) can be accommodated. An example of model simulations is
shown in Fig. 13.1 (right) and a summary of the overall qQAOP process described is
shown in Fig. 13.2.
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Fig. 13.1 (Left) Conceptual description of a second-generation HPGL model for female trout. The
model is used to extrapolate results from select in vitro studies of tissues comprising the reproduc-
tive axis. HPGL model simulations provide estimates of target tissue levels that would be consid-
ered adverse (e.g. LOEC, AC50 or other internal dose metric) towards successful reproduction.
The corresponding environmental exposure levels needed to achieve the unwanted internal dose
metric is estimated using toxicokinetic models. Sources of input data for model parametrization
can come from in vivo and in vitro studies. The (right) panel shows an example of changes in E2
production and oocyte growth during a hypothetical exposure to the pharmaceutical fluoxetine.
Model simulations were performed assuming the rate of E2 synthesis decreased by 40%

13.3.2 Linking Existing Models to Create a qAOP Model:
Aromatase Inhibition in Fathead Minnow (Pimephales
promelas)

An AOP for aromatase inhibition was described by Ankley et al. (2010) and is
available in the AOP Wiki (https://aopwiki.org/; AOP:25). Figure 13.3 depicts the
AOP and Watanabe et al. (2014) provided an overview of qAOP development for
aromatase inhibition in fathead minnow, which is described in greater detail here.
Independently, models that simulate different KEs in the AOP were developed for
the hypothalamic-pituitary-gonadal axis (HPG) (Mayo et al. 2012; Cheng et al.
2016); oocyte growth dynamics (Li et al. 2011; Watanabe et al. 2016); and popula-
tion dynamics (Miller and Ankley 2004). The HPG axis model includes the MIE,
inhibition of the enzyme aromatase, and predicts chang