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1 Introduction

The Institute for Operations Research and the Management Sciences (INFORMS)
defines operations research (OR) as “a discipline that deals with the application
of advanced analytical methods to help make better decisions.” It uses tools and
techniques from mathematics, including modeling, statistics, data analysis, and
optimization, to find a maximum (profit, yield) or minimum (cost, risk) solution
to a problem, typically in the presence of one or more system constraints. OR
as a discipline began during World War II with the study of military planning
and resource allocation problems, and as such, has had an applied focus from its
inception. Today, principles of OR are widely used in business practice, and OR is
a well-established research field.

OR’s application-driven focus lends itself excellently to a variety of practical
research problems of interest to industry, from scheduling to allocation to manage-
ment. At the same time, OR stands on rigorous mathematical footing, and students
with a more theoretical bent will have no shortage of problems involving structural
properties, uniqueness of solutions, and algorithms.

There are many classes of optimization problems that are of interest in OR
applications. A non-exhaustive list follows:

• Linear programming: The problem of optimizing a linear objective function
subject to linear equality and inequality constraints. The subject gained popular-
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ity due to the development of the Simplex method, one of the first reliable and
efficient optimization algorithms. (It should be noted that the word “program,”
in the OR context, is used to mean an optimization problem, and its use predates
that of computer programs.)

• Convex programming: A generalization of linear programming, convex pro-
gramming is the problem of optimizing a convex objective function subject to
convex constraints. Many practical optimization problems can be formulated
(or re-formulated) as convex problems. Again, efficient algorithms for the
solution of convex problems have been developed, especially for problems of
certain standard forms; thus, formulation of a problem as convex often leads to
computational tractability.

• Integer programming: The problem of optimizing a linear objective function
subject to linear equality and inequality constraints, in which some or all
variables are constrained to be integer-valued. Integer programs are non-convex
and are generally much more difficult to solve than linear programs.

• Stochastic programming: The problem of optimizing a system in which some
or all constraints or parameters depend on random variables.

• Dynamic programming: A technique for solving an optimization problem by
separating it into a collection of simpler sub-problems. Among other appli-
cations, they are useful for sequential decision-making, where the problem of
reaching some optimal state in the future is broken down into a series of finite or
countable individual problems at each time step.

• Combinatorial/network optimization: The problem of determining a discrete
optimal object from a finite set of objects on a graph, a set of vertices with arcs
connecting pairs of vertices. The famous Traveling Salesman problem of finding
a minimum-distance route connecting a known set of points is one such example.

In applications, oftentimes combinations of these problem classes are used.
However, in this short introduction, we focus on just the first two classes of
problems: linear programs and convex programs.

In these problems, there are two different sorts of quantities of interest: param-
eters and decision variables. Parameters are typically known and are treated as
constants for the purposes of solving the problem. Decision variables are the values
that we seek. For example, in determining a shortest-distance route between two
points on a map, the parameters would be the (fixed) distances of each road segment,
which are known; the decision variable would be the sequence of segments that we
decide to travel on. After the problem has been solved and we have a value for
the decision variables, we are often interested in how our solution depends on the
parameter values. In the example, how would our route change if any particular
segment on the map had been shorter, or longer, or removed altogether? This
procedure is called sensitivity analysis.

In this paper, we begin with linear programming, then move to the more general
convex programming, explaining the theory, providing examples, and describing
possible research ideas for both. We conclude with pointers to further reading as
well as software tools for solving these problems.
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2 Linear Programming

A linear program (LP) is a technique for optimization (minimization/maximization)
of a linear objective function subject to linear equality and inequality constraints.
Software packages exist for efficient solution of LPs, even in high dimensions
with many variables and constraints. Thus, formulating a problem as a LP is often
computationally advantageous. LPs have been used in many applications, including
shift scheduling, network design, and manufacturing. We begin this section with an
example, the diet problem. We then discuss a general formulation of LPs, as well as
algorithms for their solution. Finally, we end with a discussion of duality.

2.1 Diet Problem

Let us illustrate the basic idea through an example. We wish to construct a daily diet
with the minimum possible cost. The diet is selected from certain candidate foods
and must satisfy certain nutritional requirements. To begin, we consider only two
candidate foods: milk and bread; and four nutritional requirements: protein, carbs,
vitamins, and sugar. The parameters are given in the following chart.

Unit Milk Bread Min Req. Max Req.

Protein gram 6 2 6 none

Carbs gram 5 15 15 none

Vitamins gram 1 1 2 none

Sugar gram 0.6 1 none 3

Cost $ 0.3 0.2 none none

Let m be the number of units of milk to consume, and b the number of units of
bread; these are our decision variables. We seek m and b to minimize the total cost:

min 0.3m + 0.2b (1)

subject to the constraints:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

6m + 2b ≥ 6

5m + 15b ≥ 15

m + b ≥ 2

0.6m + b ≤ 3

m ≥ 0

b ≥ 0.

(2)

Here, the first, second, and third constraints correspond to the minimum require-
ments for protein, carbs, and vitamins, respectively. The fourth constraint corre-
sponds to the maximum requirement for sugar. The fifth and sixth constraints are
non-negativity constraints that ensure a physically meaningful result.
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Fig. 1 Constraints (solid
lines), feasible region (R), and
lines of constant cost (dotted
lines) for the diet problem.

m

b
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1

direction of decreasing cost

P

Since we have only two variables, we can easily plot the constraints on a pair of
axes. The region where all constraints are satisfied is known as the feasible region or
feasible set, and points in the feasible region are called feasible points. On Figure 1,
the feasible region is labeled R. On the same plot, we show dotted lines of constant
cost: where 0.3m + 0.2b is a constant. By moving in a direction of decreasing cost,
we can visually see that the lowest-cost point within the feasible region occurs at
point P, at (m, b) = (0.5, 1.5), which is also a vertex of R. The cost at point P is the
value of the objective function there: 0.3(0.5) + 0.2(1.5) = 0.45.

Upon viewing Figure 1, we make several observations. First, the feasible region
will always be a convex polygon. (It may be bounded or unbounded.) In 2D, we can
think of a convex polygon as one in which all interior angles are ≤ 180◦; a more
general definition of convexity is discussed in section 3.1. In higher dimensions, this
generalizes to a convex polytope.

Second, in this problem, the unique solution was a vertex. This will become
important later when we discuss solution algorithms.

2.2 Standard Forms

We now consider a general minimization LP. To avoid trivialities, assume that the
feasible region R is non-empty and that the objective function is bounded below
within R. Then there exists an optimal solution which is a vertex of the feasible
region. (A proof of this statement is given in section 2.6 of Bertsimas and Tsitsiklis
[2]). If there are multiple, non-unique solutions, they occur at an entire edge (or
face, in higher dimensions,) of R. Going back to the diet problem for a moment, this
would have happened happen if the lines of constant cost were parallel with one of
the three minimum requirements of Figure 1. Even in this case, there still exists a
solution at some vertex (in 2 dimensions, the vertices on either end of a polygon
edge). Since in a typical decision-making framework we only need one solution to
implement, the issue of uniqueness is less important, and we may restrict our search
for the solution to only vertices of the feasible region. This is a key motivation for
the Simplex method, which will be discussed shortly.
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Let x ∈ R
n be a vector containing the n decision variables and c ∈ R

n be a vector
containing the parameters representing coefficients of each corresponding variable
in the objective function. Assume the ith inequality constraint out of m total is of the
form

∑n
j=1 aijxj ≥ bi; then, all such constraints can be succinctly written in matrix-

vector notation as Ax ≥ b, where A ∈ R
m×n is a matrix containing the coefficients

of the constraint functions (including non-negativity constraints), b ∈ R
m is a vector

of the constraint right-hand side values, and “≥” is meant in the component-wise
sense. (We will shortly show that this assumption is not restrictive.) If this is the
case, then one general form of an LP is:

min c′x
subject to Ax ≥ b.

(3)

We have denoted transpose by ′; thus, c′x =
∑n

i=1 cixi. Other constraints can be
put into the form

∑n
j=1 aijxj ≥ bi as well: “≤” inequality constraints of the form

aijxj ≤ bi can be changed to greater-than through multiplication by −1, and “=”
constraints of the form aijxj = bi can be written as the pair of inequality constraints
aijxj ≥ bi and −aijxj ≥ −bi. Finally, any linear maximization problem max c′x is
equivalent to min−c′x.

The feasible region R ⊆ R
n is the set of points satisfying the constraints:

R =
{

x
∣
∣Ax ≥ b

}
. (4)

Geometrically when R exists it is a convex polytope.
While the general form (3) is geometrically intuitive, from an algorithmic

standpoint, it is often more convenient to write the constraints in a slightly different
way. Namely, we can equivalently define R of (4) as

R =
{

x
∣
∣Ax = b, x ≥ 0

}
. (5)

for a different A, x, and b. Namely, equality constraints of the form aijxj = bi are
left alone, while inequality constraints are converted to equality constraints via the
introduction of so-called “slack” or “surplus” variables. We proceed by example.
Consider the “≤” constraint:

3x1 + 4x2 + 5x3 ≤ 10. (6)

We introduce a new nonnegative variable x4, called the slack variable. Equa-
tion (6) can then be written equivalently as a pair of equality and non-negativity
constraints:

3x1 + 4x2 + 5x3 + x4 = 10, x4 ≥ 0 (7)
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A “≥” constraint can be handled in a similar way by introducing a so-called
surplus variable. The final conversion is to eliminate free variables, that is, variables
that are not restricted to be non-negative or non-positive. If x6 is a free variable, we
eliminate it and introduce two new non-negative variables x7, x8. The free variable
x6 can then be replaced with

x6 = x7 − x8, x7 ≥ 0, x8 ≥ 0. (8)

The LP with constraints written in the aforementioned form:

min c′x
subject to Ax = b,

x ≥ 0

(9)

is referred to as a “standard-form” LP.

Research Project 1. Develop a more realistic diet problem using nutritional
data and formulate it as an LP. For example, Bosch compared several fast
food chains to determine which, if any, offered a combination of entrees
could meet federal dietary guidelines at lowest cost [3]. Bosch’s formulation
was an integer program, where one or more variables is restricted to be
integer-valued. However, by relaxing this assumption, an analogous LP can
be developed.

Research Project 2. Scheduling problems are a classic area of interest in
OR. Develop a minimum-cost schedule for a company in which employees
work on various tasks by formulating the problem as a LP. Constraints could
include, but are not limited to, working hours for every individual employee;
total working hours spent on each task; and penalizing shift changes to avoid
frequent off-and-on times for each employee.

2.3 Solution of LPs

Many algorithms for solving LPs operate by first finding a feasible point and then
iteratively moving in a direction of improving objective function value. Because
the objective function is linear, any local optimum is also a global optimum; thus,
a greedy algorithm will find an optimum eventually. Once a feasible solution has
been found that moving in any direction would result in a worse objective function
value, the algorithm terminates. Algorithms for LPs thus often have an easily
understandable geometric interpretation. The main difficulty in solving LPs is that
most problems of interest lie in a high-dimensional space, oftentimes with thousands
(or more) of variables and constraints.
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Fig. 2 A toy problem in 3
variables: the feasible region
is a 3-dimensional convex
polyhedron. The Simplex
method, depicted with a red
arrow, follows edges from
vertex to vertex in a direction
of improving (decreasing, for
a minimization problem)
objective function value.

direction of
decreasing cost

In optimization, algorithmic computational complexity is often described in
terms of strongly polynomial, weakly polynomial, or non-polynomial time. We
assume basic arithmetic operations of addition, subtraction, multiplication, division,
and comparison take one time step to perform. The number of operations in a weakly
polynomial time algorithm is bounded by a polynomial in the number of constraints
and variables. For an algorithm to be strongly polynomial time, additionally the
memory used by the algorithm must be bounded by a polynomial in the number of
constraints and variables. Certain algorithms including interior-point methods are
weakly polynomial; however, no strongly polynomial method has yet been found
for LPs. In fact, the existence of such an algorithm was listed on Stephen Smale’s
18 open problems of mathematics for the 21st century [13]. Nevertheless, there
is a fortunate disconnect between theoretical and practical notions of run time, in
that algorithms exist for solving in LPs that are highly efficient for many practical
problems of interest, despite the fact that they are not strongly (or in many cases,
even weakly) polynomial in theory.

The first efficient algorithm for solving LPs was the Simplex method, developed
by George Dantzig in the 1940s. The Simplex method has an intuitive geometrical
interpretation and was widely used for several decades; even today, it lies at the
heart of many LP solvers.

2.3.1 The SimplexMethod
Without loss of generality, we consider a minimization problem. The Simplex
method begins with a subroutine to find a vertex of the feasible region, if one exists.
It then chooses the edge of the polytope with the fastest decrease (steepest descent)
in objective function. It then moves the solution along that edge until hitting a
vertex; then repeats. There are certain caveats to take into consideration at so-called
degenerate points, where several constraints coincide at the same point, and when a
tie for the steepest descent direction occurs, but the essential geometry is shown in
Figure 2.

The run time is, in theory, exponential in the number of variables. Indeed, a
worst-case scenario for an n-variable problem was found by Klee and Minty where
the Simplex method visits every vertex of a perturbed n-dimensional hypercube, of
which there are 2n, before finding the optimal solution [8]. Nevertheless, the average
behavior of the Simplex method on problems of interest seems to be significantly
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better. Of course, we have not provided a rigorous definition of “average behavior”;
indeed, the problem of defining such a concept and using it to define the run time of
Simplex method remains somewhat open [1, 12].

Research Project 3. Define an appropriate notion of average-case behavior
for the Simplex method. Computational experiments can be performed by
generating random problems according to some probabilistic setup, and
finding the run time of the Simplex method on each. Then, using regression,
find the relationship between the mean and variance of the observed run times
as a function of the problem size (number of variables + constraints).

2.3.2 Interior Point Methods
In contrast to the Simplex method, where the algorithm visits vertices of the
feasible polytope by traveling along edges of the region, interior point methods
travel through the interior of the feasible region. The basic idea in interior point
methods is to choose a path that optimizes a combination of a reduction in objective
value function and the distance from the edge of the feasible region. This is often
done through the introduction of a barrier function: a function that is inversely
proportional to the distance from the nearest edge of the polytope and thus carries
low values in the center and approaches +∞ on the edge itself. Let us introduce
a scalar α ≥ 0 that indicates the relative importance of the barrier function as
compared with the change in the objective value function c′x. By minimizing an
appropriate sum of the objective function value and α times the barrier function, we
find a path through the interior of the feasible region that depends on α. This path is
counterintuitive, as the barrier function avoids the boundary of the feasible region,
when it is known that all solutions lie on the boundary. However, by letting α → 0,
we can then recover the optimum of the original objective function.

Interior point methods have been developed which are weakly polynomial-time
in the number of variables. In practice they are often competitive with the Simplex
method and similar edge-tracing algorithms, and for some sparse problems are
significantly faster.

2.4 Transportation Problem

The following example illustrates another application that can be modeled as a LP.
In order to produce a certain product, raw material must be transported from the
mine to a plant where it is refined. Say a company has control over 2 mines in
Colorado and Virginia, and 3 plants in Alabama, Minnesota, and New Mexico. We
denote the mines C and V, and plants A, M, and N, respectively. Below is a table of
the parameters representing estimated shipping costs between each plant and mine,
in thousands of dollars per ton of material (Table 1).
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Table 1 Cost of shipping
from each mine to each plant,
in thousands of $ per ton of
ore.

Plant A Plant M Plant N

Mine C 22 18 7

Mine V 14 20 24

C

V

A

M

N

mines
plants

For a certain week, the Colorado mine is expected to output 150 tons of ore,
and the Virginia mine 130. To fulfill demand in the same week, the Alabama plant
requires at least 88 tons of ore, the Minnesota plant 125 tons, and the New Mexico
plant 55 tons.

Exercise 1.

(a) Formulate the problem as a linear program. Denote xCA as the decision variable
for the amount of ore shipped (in tons) from Colorado to Alabama, etc.

(b) A colleague suggests that it would be easiest if the Colorado mine exclusively
supplied New Mexico and Alabama, and the Virginia mine exclusively supplied
Minnesota (only enough to meet demand.) Check that this option is feasible.
Find the total shipping cost (in thousands of dollars) in this case.

(c) Solve for all x values using an off-the-shelf linear program solver. What is the
total shipping cost (in thousands of dollars) in this case? How much did we save
as compared to part (b)?

Solution 1.

(a)

min 22xCA + 18xCM + 7xCN + 14xVA + 20xVM + 24xVN

subject to xCA + xCM + xCN ≤ 150

xVA + xVM + xVN ≤ 130

xCA + xVA ≥ 88

xCM + xVM ≥ 125

xCN + xVN ≥ 55

xCA, xCM, xCN , xVA, xVM, xVN ≥ 0
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(b)

x =
[
xCA, xCM, xCN , xVA, xVM, xVN

]′
=

[
88, 0, 55, 0, 125, 0

]′

c′x =
[
22, 18, 7, 14, 20, 24

][
88, 0, 55, 0, 125, 0

]′
= 4831

(c)

x =
[
xCA, xCM, xCN , xVA, xVM, xVN

]′
=

[
0, 95, 55, 88, 30, 0

]′

c′x =
[
22, 18, 7, 14, 20, 24

][
0, 95, 55, 88, 30, 0

]′
= 3927

This solution represents a savings of 4831− 3927 = 904 dollars.

Research Project 4. Formulate the problem of delivering electricity to con-
sumers as a LP. Electricity must be delivered to meet demand and can come
from a variety of sources, such as coal, natural gas, wind, and solar. Investigate
the effect of a carbon tax on the solution by penalizing electricity coming from
nonrenewable resources. Consider how future growth in a certain geographic
area will affect the solution.

2.5 Duality

In calculus, students are typically taught the Lagrange multiplier method for
optimizing functions subject to equality constraints. The key idea there is to
introduce a new scalar parameter for each equality constraint (the multiplier),
and reformulate the hard constraints as soft constraints additively combined with
the original objective function (and scaled by the appropriate multiplier)– this
quantity is the Lagrangian L. The new problem is to optimize L with no constraints.
Assuming differentiability of L, this can be solved by equating the partial derivatives
of L with zero. For the proper choice of the multipliers, the presence or absence of
each hard constraint does not affect the optimal value of the objective function; thus,
the optimal solution to the original constrained problem and the new unconstrained
problem are the same.

Duality theory is a generalization of the Lagrange multiplier method that also
accounts for inequality constraints. We again associate a multiplier with each
constraint and seek a set of values for the multipliers such that the specific value of
the constraint does not affect the optimal objective function value. We consider the
standard-form LP of (9), which we call the “primal” problem. Let x∗ be an optimal
value of x, and assume x∗ exists. We relax the standard-form problem by changing
the hard constraint Ax − b = 0 to a soft one with the introduction of a length-m
vector of multipliers λ. We then have the problem:
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min c′x + λ′(b − Ax)
subject to x ≥ 0

(10)

Let g be the optimal value of this relaxed problem. Since g depends on λ, let us
consider it to be a function: g(λ). The relaxed problem is broader than the original
problem in that if Ax = b, we recover the original problem, but there are also feasible
points in which Ax �= b. In other words, the feasible region of the relaxed problem R′

contains the feasible region of the original problem R: R ⊆ R′. For this reason, the
minimum value of the objective function in R′ must be no larger than the minimum
value in R.

g(λ) = min
x≥0

(
c′x + λ′(b − Ax)

)
≤ c′x∗ + λ′(b − Ax∗) = c′x∗. (11)

Here, the inequality arises because x∗ is a member of the set x ≥ 0 and thus is a
feasible solution to the primal problem, and the final equality is due to the fact that
x∗ satisfies Ax∗ = b because it again is a feasible solution to the primal problem.
Thus, g(λ) is a lower bound for the optimal cost c′x∗.

Now consider the unconstrained problem:

max g(λ) (12)

This problem gives us the tightest possible lower bound for the optimal cost c′x∗.
This problem is known as the dual problem. Strong duality proves that the optimal
cost of the dual problem is equal to the optimal cost c′x∗ of the primal problem (see
Theorem 4.4 of Bertsimas and Tsitsiklis [2]). Continuing a bit further, we have

g(λ) = min
x≥0

(
c′x + λ′(b − Ax)

)
= λ′b +min

x≥0

(
(c′ − λ′A)x

)
. (13)

Noting that the quantity (c′ − λ′A)x can be made arbitrarily small unless c′ −
λ′A ≥ 0, we restrict our search in the dual problem to c′ − λ′A ≥ 0. The dual
problem then becomes, in its final form:

max λ′b
subject to λ′A ≤ c′

(14)

One important feature of duality is that the dual of the dual of a primal
problem is itself (see Theorem 4.1 of Bertsimas and Tsitsiklis [2]). Because of the
correspondence of the solutions of the primal and dual problems, solvers can make
use of both the primal and dual problems in searching for a solution. For example,
a dual Simplex method can be developed that pivots on the vertices of the dual
problem’s feasible region.
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3 Convex Programming

In this section we investigate the problem of minimizing convex problems, which
are defined as minimizing a convex function subject to convex constraints. Formally,
the problem is:

min f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

(15)

where x ∈ R
n are the variables, f0 : Rn → R is the objective function, and fi :

R
n → R, i = 1, . . . ,m are the constraint functions, and the objective and constraint

functions are convex. We define convexity in the sections to follow.
In general, convex optimization problems do not have analytical solutions, but

there do exist efficient algorithms for their solution. Convex programs are more
general than linear programs and a large number of problems can be formulated as
convex problems, though there are some tricks and such a formulation can often feel
more of an art than a science.

In this section, we begin by defining convex sets and functions. We then
give several well-known examples of classes of problems that are convex, before
concluding with a mention of some software packages for solving convex problems.

3.1 Convex Sets

Whereas linear programs have feasible regions that are convex polytopes, convex
programs have feasible regions that are general convex sets. A set S ⊆ R

n is
convex if

θx + (1− θ)y ∈ S, ∀ 0 ≤ θ ≤ 1, x, y ∈ S. (16)

In other words, for any two points in S, the line segment connecting them lies
entirely within S. Some examples of convex sets are given here.

• Convex hull: The convex hull of a set S is the intersection of all convex sets
containing S. Intuitively, the convex hull “fills in” the non-convex sections of the
set, or could be thought of as stretching an elastic band around S. If S ⊆ R

n is
a set of finite, discrete points x1, . . . , xk ∈ R

n, and θ1, . . . , θk are constants such
that

∑k
i=1 θi = 1 and θi ≥ 0 ∀i = 1, . . . , k, then the convex hull R is the set of

points:

R =
{

x ∈ R
n
∣
∣
∣x = θ1x1 + θ2x2 + . . .+ θkxk

}
(17)

which is also known as the convex combination of x1, x2, . . . , xk (Figure 3).
• Ellipsoid: A Euclidean ellipsoid R ⊂ R

n centered at xc ∈ R
n can be written as:

R =
{

xc + Au
∣
∣
∣||u||2 ≤ 1

}
(18)

with u ∈ R
n and A ∈ R

n×n and non-singular.
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Fig. 3 A is a set consisting of
the dark crescent along with
three isolated points. R
consists of the dark and light
regions and is the convex hull
of A.

A

R

• Hyperplanes and halfspaces: Take x ∈ R
n, a ∈ R

n and b ∈ R. A hyperplane
R ⊂ R

n can be defined as the set of points

R =
{

x
∣
∣
∣a′x = b, a �= 0

}
(19)

for some a and b. Similarly, a halfspace can be written as the set of points

R =
{

x
∣
∣
∣a′x ≤ b, a �= 0

}
. (20)

for some a and b.
• Convex polytope: Take x ∈ R

n, b ∈ R
m, and A ∈ R

m×n. As discussed in the
linear programming section, a convex polytope R ⊂ R

n is the set of points:

R =
{

x
∣
∣
∣Ax ≥ b

}
. (21)

Convex sets have many important properties, but perhaps the most important
is that the intersection of (even countably many) convex sets is convex. This fact
ensures that adding more convex constraints will still result in a convex program.

3.2 Convex Functions

A function f : Rn → R is convex if its domain is a convex set and:

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), 0 ≤ θ ≤ 1 (22)

Further, f is strictly convex if its domain is a convex set and:

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y), 0 ≤ θ ≤ 1 (23)

Clearly, all strictly convex function are convex, but the reverse is not true. The
graphical interpretation follows directly from the definition and is illustrated through
Figures 4 and 5.
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Fig. 4 f (t) is a strictly
convex function. For any x,y
in the domain of f (t), the line
segment connecting f (x) and
f (y) is strictly above the
function f (t) on x < t < y.

f(t)

t
x y

Fig. 5 f (t) is a convex, but
not strictly convex function.
For any x,y the line segment
connecting f (x) and f (y) is
strictly above the function
f (t) on x < t < y; however
this is not the case for x and z,
where the line segment
connecting f (x) and f (z) lies
directly on the function f (t).

f(t)

t
x yz

Some examples of convex functions follow.

• Linear-affine: f (x) = ax + b on R for any a, b ∈ R

• Exponential: eax on R for any a ∈ R

• Power: xa on x > 0 for a ≥ 1 or a ≤ 0
• Negative logarithm: − log(ax) on x > 0 for a > 0

If a function f is twice differentiable with open domain D, then it is convex if and
only if

∇2f (x) ≥ 0 ∀x ∈ D. (24)

Here x ∈ R
n and ∇2f (x) denotes the Hessian

∇2f (x)ij =
∂2f (x)
∂xi∂xj

, i, j = 1, . . . , n (25)

and “≥” is meant in the sense of a generalized inequality; in this case, that ∇2f (x)
is positive semi-definite (psd) (Figure 6).
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Fig. 6 A convex function
f : R2 → R. The feasible
region is R; the minimum of f
over R is x∗.

x∗

x1

x2

z

z = f(x1, x2)

R

We can also show that f is convex if it can be obtained from simple convex
functions by convexity-preserving operations, such as

• Nonnegative weighted sum of convex functions
• Pointwise maximum of convex functions
• Composition of convex functions

3.3 Classes of Convex Programs

Many solvers take advantage of certain structural properties of the convex program
in question. Here we list some important classes of convex programs seen in
applications.

• Linear program (LP): A linear objective function subject to linear equality
and inequality constraints; the feasible region is a convex polytope. Discussed
previously.

• Quadratic program (QP): A quadratic objective function subject to linear equality
and inequality constraints; the feasible region is therefore still a convex polytope.
The general form of a QP is:
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min 1
2x′Px + q′x + r

subject to Gx ≤ h, Ax = b
(26)

where the decision variable is x ∈ R
n, P is a psd matrix: P ∈ S

n
+, q ∈ R

n,
and r ∈ R

n. Here we have explicitly separated the inequality constraints and
equality constraints; the m inequality constraints are contained within Gx ≤ h
where G ∈ R

m×n and h ∈ R
m. The p equality constraints are contained within

Ax = b where A ∈ R
p×n and b ∈ R

p. P is required to be psd in order for the
objective function to be convex, as ∇2(x′Px + q′x + r) = P.

Exercise 2. Least-squares optimization
Formulate the linear least-squares approximation problem in n variables with

m > n data points as a QP.

Solution 2. If A is an m×n matrix containing the input data points and b is a m×1
vector containing the output data points, then the problem is:

min ||Ax − b||22 = x′A′Ax − 2b′Ax + b′b. (27)

The objective function here is quadratic in x, so we must show that A′A is psd. A
square matrix M ∈ R

p×p is psd if x′Mx ≥ 0 for all x ∈ R
p. For any x, we have

x′(A′A)x = (Ax)′(Ax) = ||Ax||2 ≥ 0. (28)

Thus, A is psd and so the objective function is convex. Furthermore, the
constraints are trivially linear as there are none. Therefore, this is a QP. We can
thus also consider the constrained least-squares problem, in which values of x must
lie in an interval l ≤ x ≤ u; it is also a QP:

min ||Ax − b||22 = x′A′Ax − 2b′Ax + b′b
subject to li ≤ xi ≤ ui, i = 1, . . . , n

(29)

Exercise 3. Portfolio optimization
This example is from section 4.7.6 of Boyd and Vandenberghe [4]. Consider the
problem of optimizing two criteria in assembling a financial portfolio: maximize the
mean return and minimize the variance of the return. Let x be a vector containing the
fractions of each of four possible assets. Each asset’s mean and standard deviation
of return is given as:



Mathematical Decision-Making with Linear and Convex Programming 187

Asset Mean Return Std.Dev. of Return

1 12% 20%

2 10% 10%

3 7% 5%

4 3% 0%

Furthermore, the correlation coefficients between assets are: ρ12 = 30% and ρ13 =
−40%; other pairs zero. Thus, the correlation matrix Σ is:

Σ =

⎡

⎢
⎢
⎣

0.22 0.3× 0.2× 0.1 −0.4× 0.2× 0.05 0

0.3× 0.2× 0.1 0.12 0 0

−0.4× 0.2× 0.05 0 0.052 0

0 0 0 0

⎤

⎥
⎥
⎦

We define the mean return vector to be p: p =
[
0.12, 0.1, 0.07, 0.3

]′
, and we

define a scaling factor μ that accounts for the relative importance of minimizing the
variance of the return against maximizing the mean return. Formulate the problem
as a quadratic program and solve.

Solution 3. The problem is formulated as:

min −p′x + μx′Σx
subject to 1′x = 1, x ≥ 0.

(30)

Here 1 represents a vector the same length as x with all entries being 1. Due to the
form of the objective function, this is a quadratic program with linear constraints.
The solution for various values of μ is graphed below, showing explicitly the tradeoff
between the standard deviation of return versus the mean return (Figure 7).

Research Project 5. Chapter 16 of Nocedal and Wright [11] delves into
algorithms for QPs. Similar to the Simplex method, looking deeper into the
run time of these algorithms for sample problems could provide an avenue to
more theoretical projects.

• Quadratically-constrained quadratic program (QCQP): A quadratic objective
function subject to convex quadratic constraints. The general form of a QCQP is:

min 1
2x′P0x + q′0x + r0

subject to 1
2x′Pix + q′ix + ri ≤ 0, i = 1, . . . ,m
Ax = b

(31)

with Pi ∈ S
n
+ ∀ i = 0, . . . ,m.



188 J. Kotas

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Std.Dev. of Return

M
ea

n 
R

et
ur

n

Fig. 7 Tradeoff between standard deviation and mean of the return.

• Second-order cone program (SOCP): A linear objective function subject to so-
called second-order cone constraints. The general form of a SOCP is:

min f ′x
subject to ||Aix + bi||2 ≤ c′ix + di, i = 1, . . . ,m

Fx = G
(32)

with Ai ∈ R
n1×n and F ∈ R

p×n. SOCPs are a generalization of QCQPs and LPs.
QCQPs can be turned into SOCPs by reformulating the objective function as a
constraint.

Research Project 6. One problem from the area of robotics and optimal
control is grasping a rigid body with robot fingers. To do so, we must
determine the amount of force each finger shall exert. Lobo et al. [9] describe
a formulation of this problem as a SOCP which takes into account friction
and equilibrium constraints and limits on contact forces. We may simply
be interested in whether the object can be grasped at all: this amounts to a
feasibility problem, where we simply determine whether or not the feasible
region is non-empty. If a solution does exist, we can investigate a variety

(continued)
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of problems, such as finding the gentlest grip in some sense, or finding a
grip which has the smallest difference in forces on each finger. Formulate the
problem with a given number of fingers and a given object. This problem
could also incorporate data-gathering, namely the physical properties of the
object to be grasped.

Research Project 7. Section 8.8 of Boyd and Vandenberghe [4] describes
a floor-planning problem, where we seek the minimum perimeter fence to
bound a set of rectangular objects of known dimension. Variants of the
problem, including having a minimum spacing between the objects and
allowing the dimensions (but not area) of the objects to vary, are considered.
These can be formulated as SOCPs (where the || · ||2 constraint corresponds
to a Euclidean distance) or in some cases even LPs depending on the variant.
Using this as a starting point, optimal packing problems can be considered
for boxes or other shapes. This application has uses in shipping and transport
problems.

• Semi-definite program (SDP): One general form of an SDP is:

min c′x
subject to x1F1 + x2F2 + . . .+ xnFn + G ≥ 0

Ax = b
(33)

with Fi,G ∈ S
k, i = 1, 2, . . . , n. The first constraint is known as a linear matrix

inequality (LMI) constraint; since the left hand side is a k × k matrix, the “≥”
here is a generalized inequality meaning that x1F1 + x2F2 + . . . + xnFn + G is
psd. If F1, . . . ,Fn,G are all diagonal, then this formulation reduces to a linear
program. SDPs are a generalization of SOCPs, as the SOCP constraints can be
written as LMIs.

Research Project 8. Weinberger and Saul have formulated learning algo-
rithms with applications to image processing as SDPs. Such algorithms can
recognize characters in handwritten text, or identify whether faces from
different image are the same person’s, even from different angles. Projects
could be developed to identify a range of objects in images [14, 15].
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Research Project 9. An abundance of SDP applications can be found in
the “Handbook of Semidefinite Programming” by Wolkowicz, Saigal, and
Vandenberghe [16]. Projects could involve extending these applications
and/or formulating new problems as SDPs.

3.4 Solvers

Many software packages exist to solve convex problems. One convenient solver
for solving convex problems of moderate size (including LPs) is CVX, [5] which
can be downloaded and used as a Matlab R© package. Other solvers include Gurobi
[6] and CPLEX, [7] all of which are free for academic use, as well as Matlab’s
Optimization ToolboxTM [10].

4 Concluding Remarks

Optimization is a powerful tool for solving many applied problems of interest to
operations research. In this brief chapter we discussed linear programming, followed
by the more general convex programming and specific forms therein. Many of
these classes of problems have efficient algorithms for their solution, even in high
dimensions; thus, formulation of an optimization problem in one of these forms
often results in greatly improved computational tractability. For the undergraduate
student, there are many open problems that are application-based. In addition,
delving into the inner workings of algorithms for generic problems could provide
an avenue to interesting projects.

4.1 Further Reading

Parts of this chapter were adapted from the textbooks “Introduction to Linear
Optimization” by Bertsimas and Tsitsiklis, [2] and “Convex Optimization” by
Boyd and Vandenberghe [4]. Another comprehensive text is Nocedal and Wright’s
“Numerical Optimization.” [11].
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