
Introduction to Competitive Graph Coloring

C. Dunn, V. Larsen, and J.F. Nordstrom

Suggested Prerequisites. Ideally a first course in Graph Theory or Discrete
Mathematics. However, mathematical maturity and experience writing proofs will
suffice.

1 Introduction

The map-coloring game was first presented in Martin Gardner’s “Mathematical
Games” column in Scientific American in 1981 [24]. Invented by Steven J. Brams,
the game involves two players, Alice and Bob, alternating coloring the countries on
a map such that two countries that share a nontrivial border must receive different
colors. The first player, Alice, wants to ensure that the map eventually gets colored
with the finite set of colors with which the players begin. The second player, Bob,
however, wants to ensure that there comes a time in the game when there is an
uncolored country for which none of the existing colors can be used. The interesting
question is then, for a given map what is the least number of colors necessary such
that Alice has a winning strategy? Unfortunately, this game did not receive any
attention from the graph theory community at the time. Ten years later, Bodlaender
reintroduced the r-coloring game [4] within the broader context of graphs. In the
original formulation of the game on graphs, we begin with a finite graph, G, and a set
X of r colors. Two players, Alice and Bob, alternate coloring the uncolored vertices
of G using colors from X. At each step of the game, the players must choose to color
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Fig. 1 Alice and Bob playing with two colors on G.

an uncolored vertex with a legal color. Alice goes first. In the basic formation of the
game, a color α ∈ X is legal for an uncolored vertex u if u has no neighbors already
colored α. Alice wins the game if all vertices of the graph are colored; otherwise,
Bob wins. Although both players must use a legal color, Alice is trying to ensure
that at every stage of the game all vertices have a legal color available, while Bob
would like to force a situation in which an uncolored vertex exists for which there
is no legal color.

For example, suppose Alice and Bob are playing the game on the graph G in
Figure 1 with two colors which we will call α and β. If u is colored α, then only
β is legal for v. However, if u is colored α and w is colored β, then v will have no
legal color.

Notice, on this small example, we can see that if Alice first colors v, with α, then
β is always legal for u and w. Thus Alice wins on G. However, if Alice first colors
u with α, then Bob can color w with β, leaving v with no legal color. Hence Bob
wins.

The least r such that Alice has a winning strategy for this game on G is called
the game chromatic number of G, denoted χg(G). The game chromatic number was
first introduced by Bodlaender in [4]. It has since been studied extensively, including
in [11, 23, 27].

In our example, it should be clear that Bob will win the 1-coloring game on G.
We have demonstrated a strategy for Alice to win the 2-coloring game on G. Thus,
χg(G) = 2.

1.1 Trees and Forests

We begin by looking at the game chromatic number for trees and forests and
comparing it to the usual chromatic number of a graph, denoted χ(G).

Consider the rooted tree T in Figure 2. The chromatic number of T , χ(T), is 2
since we can alternate colors on each level. In particular, each vertex will have a
different color from its parent and from its children. All children of a vertex v can
have the same color since no children of v are adjacent to each other.

Since every tree can be represented by a rooted tree, we can generalize the
method in the example to show that for any tree, T , χ(T) ≤ 2.

Now consider the game chromatic number of a tree T . If Bob is always able to
color two children of a vertex, v, different colors, then Alice cannot color T with
two colors, since v will have no legal color. The reader can check that the tree in
Figure 2 has game chromatic number greater than 2. No matter what Alice does,
Bob is able to force a vertex to have no legal color.
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Fig. 2 Tree T .

Fig. 3 The smallest tree T
with χg(T) = 4.

The following theorems give some known results for the game chromatic number
of trees and forests, which will be explored in more detail in Section 2.

Theorem 1 (Faigle, et al. [23]). If F is a forest, then χg(F) ≤ 4. Moreover, there
exists a forest F with χg(F) = 4.

Theorem 2 (Dunn et al. [18]). Let F be a forest and let �(F) be the length of the
longest path in F. Then χg(F) = 2 if and only if:

1. 1 ≤ �(F) ≤ 2, or
2. �(F) = 3, |V(F)| is odd, and every component with diameter 3 is a path.

Consider the tree in Figure 3. It is the smallest tree T with χg(T) = 4.

Theorem 3 (Dunn et al. [18]). If F is a forest with |V(F)| ≤ 13 then χg(F) ≤ 3.
Although we know a bound for the game chromatic number of trees and forests,

classifying trees with game chromatic number 3 or 4 remains open.
It has been well established that the parameter χg(G) has some interesting and

possibly unexpected properties. For example, while it is true that if H is a subgraph
of G then χ(H) ≤ χ(G), it is not necessarily the case that χg(H) ≤ χg(G). For
example, as discussed in [3], if G = Kn,n and n ≥ 2 we have that χg(G) = 3.
However, if M is any perfect matching in G, then χg(G − M) = n. So for n ≥ 4,
χg(G − M) > χg(G).

We now briefly look at some variations of the coloring game.
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1.2 The (r, d)-Relaxed Coloring Game

Let r be a positive integer, d be a nonnegative integer, and G be a finite graph.
Two players, Alice and Bob, play a game on G by coloring the uncolored vertices
with colors from a set X of r colors. At all times, the subgraph induced by a color
class must have maximum degree at most d. Alice wins the game if all vertices
are eventually colored; otherwise, Bob wins. We call this the (r, d)-relaxed coloring
game. In particular, we have modified the original coloring game by changing the
definition of a legal color. At any point in the game for any α ∈ X, let Cα be the
set of vertices colored α at that point. We say that a color α ∈ X is legal for the
uncolored vertex u, if after u is colored α we have that Δ(G[Cα]) ≤ d, where G[Cα]
is the subgraph of G induced by the vertices in Cα.

The least r for which Alice has a winning strategy for this game on G is called
the d-relaxed game chromatic number of G, denoted dχg(G). When d = 0, we have
the usual coloring game and the game chromatic number of G, χg(G). The relaxed
game chromatic number has been considered in [6,14–16,26]. We will examine the
d-relaxed game chromatic number further in Section 3.

Suppose that Alice and Bob are playing the (r, d)-relaxed coloring game on a
graph G. For the purposes of analyzing strategies for Alice or Bob, we note that a
color α is legal for an uncolored vertex u if the following two conditions hold:

1. The vertex u has at most d neighbors already colored α.
2. If v is a neighbor of u and v is already colored α, then v has at most d − 1

neighbors already colored α.

It might seem that if we increase the defect, then Alice could more easily win
with fewer colors. It is known that if G = Kn,n with n ≥ 2, then 1χg(G) = n. But
as we saw in Section 1.1, if G = Kn,n and n ≥ 2 we have that χg(G) = 3. Thus, for
n ≥ 4, there is a class of graphs for which 0χg(G) = 3 but 1χg(G) ≥ 4.

Although the (r, d)-relaxed game is a common way to change the definition
of a legal color, there are many other ways to relax the conditions of the game.
For example, we also explore the notion of a clique-relaxed game in Section 4. In
the k-clique-relaxed r-coloring game on a finite graph G, a color α is legal for an
uncolored vertex u if coloring u with α does not result in a monochromatic (k + 1)-
clique. As before, we can find the least number of colors required for Alice to have
a winning strategy on G. We call this the k-clique-relaxed game chromatic number
of G, denoted χg

(k)(G).

1.3 Edge Coloring and Total Coloring

Another variation of the coloring game is to consider the game on edges rather than
vertices. The rules are similar to the vertex coloring game. We begin with a finite
graph, G, and a set X of r colors. Two players, Alice and Bob, alternate coloring the
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uncolored edges of G using colors from X. At each step of the game, the players
must choose to color an uncolored edge with a legal color. Alice goes first. A color
α ∈ X is legal for an uncolored edge e if e has no incident edges already colored α.
Alice wins the game if all edges of the graph are colored; otherwise, Bob wins. The
least number of colors required for Alice to have a winning strategy on G is called
the game chromatic index of G, denoted χg

′(G). This is explored in Section 5.
Once we have considered edge coloring and vertex coloring, a natural extension

might be to consider total coloring. In a total coloring game, explored in Section 6,
Alice and Bob alternate coloring vertices and edges.

2 Classifying Forests by Game Chromatic Number

In this section we examine the classic coloring game played on forests and trees. In
[23], it was shown that the game chromatic number of a forest is at most 4. In this
section, we focus on the question “Do there exist simple criteria for determining the
game chromatic number of a forest?”

It is trivial to see that only edgeless forests have game chromatic number 1.
Further exploration of this question is in the paper [18]. We will prove some
results from the paper to highlight strategies which are helpful in exploring game
coloring problems. First, we show that forests with game chromatic number 2 have
determining criteria. We also demonstrate how a separator strategy is used to prove
that small trees have game chromatic number at most 3. There is not any known
criteria for differentiating between forests with game chromatic number 3 and 4.

2.1 Forests with Game Chromatic Number 2

We begin by showing the proof of Theorem 2, restated below.

Theorem 2 (Dunn et al. [18]). Let F be a forest and let �(F) be the length of the
longest path in F. Then χg(F) = 2 if and only if:

1. 1 ≤ �(F) ≤ 2, or
2. �(F) = 3, |V(F)| is odd, and every component with diameter 3 is a path.

Proof. Suppose that the condition is not met by some forest F. If �(F) < 1, then
it is easy to see that χg(F) = 1. Thus �(F) ≥ 3. First, assume that �(F) > 3
and that Alice colors x with α as her first move. If there is a vertex y at distance 2
from x then Bob can color y with β. The common neighbor of x and y has no legal
color available, so Bob wins. Thus we assume that there is no such y. Then, some
component of F not containing x must contain a path subgraph with 5 vertices, P5.
Let v1, v2, v3, v4, v5 be the vertices of this P5. Bob will color v3 with α on his first
turn, and on his second he can color either v1 or v5 with β and win the 2-coloring
game on F.
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Now assume that �(F) = 3 and that Alice colors x with α as her first move; if
there is a vertex y at distance 2 from x, then Bob will win the 2-coloring game as
above. Thus x is not in a component with diameter 3. If there is a component with
diameter 3 that is not a path, then this component has a vertex, u, of degree 3 or
more that is adjacent to at least two leaves, v1 and v2. Bob colors v1 with α. Unless
Alice colors u with β, Bob will win on his second move by coloring an uncolored
neighbor of u with β. If Alice colors u with β, then because the component has
diameter 3, there exists a vertex at distance 2 from u. Bob colors this with α and
wins the 2-coloring game on F.

Thus every component with diameter 3 is a path, but |V(F)| is even. Let T1 be a
path component with diameter 3. Because |V(F)| is even Bob can play so that Alice
is the first to color a vertex in T1 (unless Bob wins the game before that point). When
Alice colors a vertex x in T1, Bob immediately colors a vertex at distance 2 from x
with a different color and wins the 2-coloring game on F.

Now suppose that a forest F satisfies the condition of the theorem. We will show
that Alice can win the 2-coloring game on F. If diam(F) ≤ 2 then note that Bob
can only win if, in a component of diameter 2, two leaves are colored using different
colors before the central vertex is colored. Therefore, Alice will win the 2-coloring
game by using the following strategy. (1) If possible, color the central vertex in the
component Bob most recently played in. (2) Otherwise, color the central vertex in
a component with no colored vertices. (3) If neither of those are possible, color any
uncolored vertex.

If there are components of diameter 3, then they are all paths and |V(F)| is odd.
By parity, Alice can always choose a vertex to color so that either it is not in a
P4 component or it is in the same P4 component that Bob just played in. Alice’s
strategy is as follows: if Bob colors x in a P4 component using color α, Alice
colors the unique vertex at distance 2 from x with α. If it is Alice’s first turn, or
if Bob did not color in a P4 component, then she follows her strategy from the case
where diam(F) ≤ 2 with the additional restriction that she does not choose a vertex
from a P4 component. Using this strategy, no uncolored vertex will ever have two
differently colored neighbors. Therefore, Alice will win the 2-coloring game on F.

In the proof above, we identify configurations which allow Bob to win the
r-coloring game (in this case, an uncolored vertex with two differently colored
neighbors), and implement a strategy for Bob (or Alice) which forces (or avoids)
these configurations. These two methods are at the heart of many proofs in game
coloring, so finding such configurations is both a tractable and useful exercise for
students.

2.2 Smallest Tree with Game Chromatic Number 4

Now that forests with game chromatic number 2 are classified, the investigation
turns to the differences between forests with game chromatic numbers 3 and 4. Some
simple observations can be made: in order for Bob to win the 3-coloring game on a
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Fig. 4 The tree T′ has game
chromatic number 4 by
Theorem 4

x1 x2 x3 x4

Fig. 5 The tree T0; the two
shaded vertices have color α
and unshaded vertices are
uncolored.

x1

x1′

x1′′

x2

x2′

x2′′

forest F there must be a vertex of degree 3 or more. Thus linear forests have game
chromatic number at most 3. It is a natural question to ask how small a forest with
game chromatic number 4 can be.

Using small configurations on which Bob can win the 3-coloring game, we show
that the graph T ′ in Figure 4 is the smallest tree with game chromatic number 4.

Lemma 1. Let T0 be the partially colored tree shown in Figure 5. Bob can win the
3-coloring game on T0.

Proof. Suppose it is Alice’s turn. If she colors x1 or x2, or if she colors any uncolored
leaf with a color other than α, Bob can immediately color so that either x1 or x2 has
no legal color available. Therefore, we may assume without loss of generality that
Alice colors x′1 with α. Bob will color x′2 with β. Now if Alice colors x2 with γ, then
Bob can color x′′1 with β and win. If Alice does not color x2 with γ, then Bob will
color either x1 or x′′2 with γ and win because x2 has no legal color available.

Suppose instead that it is Bob’s turn. He colors x′2 with β. Exactly as above, Bob
has a winning response to any move Alice can make.

Theorem 4 (Dunn et al. [18]). The tree T ′ (Figure 4) has game chromatic
number 4.

Proof. We show that χg(T ′) = 4 by showing that Bob has a winning strategy when
playing the 3-coloring game on T ′. Bob’s goal is to attain the configuration T0 from
Lemma 1. If Alice colors (with α) one of x1, x2, x3, x4 or a leaf adjacent to either x1
or x4, then Bob colors one of the xi at distance 3 away from Alice’s move using α. By
Lemma 1, Bob will win the 3-coloring game. Otherwise, we may assume without
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loss of generality that Alice colors a leaf adjacent to x2 with α; Bob responds by
coloring the other leaf adjacent to x2 with β. Unless Alice now colors x2, Bob can
make it uncolorable on his next turn. However, if Alice colors x2 (necessarily with
γ), then Bob can color a leaf of x4 with γ and win by Lemma 1.

The proof of Theorem 4 highlights some of the potential difficulty in using
partially colored subgraphs in a larger graph. When creating a strategy for one player
that focuses on a subgraph, an opponent can either color a vertex in that subgraph,
a vertex that is not on that subgraph but affects color choices for uncolored vertices
in the subgraph, or a vertex that has no effect on the subgraph in question.

To show that trees with fewer vertices than T ′ have game chromatic number at
most 3, we need some lemmas regarding small trees. More detailed proofs can be
found in [18].

Lemma 2. If T is a tree with |V(G)| ≤ 13, then there exists a vertex v ∈ V(T) such
that every component of T − v has at most 6 vertices.

Proof. Choose v so that the order of the largest component in T − v is minimized.

Lemma 3. If T is a tree on at most 7 vertices, then T has at most two vertices of
degree 3 or more and at most one vertex of degree 4 or more.

Proof. This can be shown by examining the degree sum of a counterexample.
In order to prove Theorem 3, it is useful to describe a separator strategy. At any

point in the game, the forest F will be partially colored. Using the partial coloring,
we define a collection of trunks as follows. For each colored vertex x with degree d,
split x into d colored vertices, say x1, x2, . . . , xd, so that each xi is colored the same
as x and is adjacent to exactly one neighbor of x. After each colored vertex is split
in this fashion, the resulting graph will be a collection of trees, called trunks. Any
colored vertex in a trunk must be a leaf of that trunk; if every vertex in a trunk is
colored then it is a K2 component. Defined a different way, given a forest F and a
partial coloring, a trunk R is a maximal connected subgraph of F such that every
colored vertex in R is a leaf of R. It is important to note that coloring a vertex in one
trunk has no effect on available colors in another trunk. We now restate and prove
Theorem 3.

Theorem 3 (Dunn et al. [18]). If F is a forest with |V(F)| ≤ 13 then χg(F) ≤ 3.

Proof. Let F be a forest with |V(F)| ≤ 13 and let T be the component with the most
vertices. By Lemma 2, there exists a vertex v ∈ V(T) such that every component of
T − v has size at most 6. Alice colors this vertex, and now each trunk of F has order
at most 7 and at most 1 colored vertex.

We call a vertex v dangerous if v has at least as many uncolored neighbors
as legal colors available for it. Alice will win the 3-coloring game if there are
no dangerous vertices in F. We show that Alice has a strategy which eliminates
dangerous vertices in each trunk of F, and therefore has a strategy that will win the
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3-coloring game on F. Alice will always play in the same trunk as Bob; if there
are no uncolored vertices in that trunk Alice will play in a new trunk as if Bob just
colored v.

Let R be the trunk of F where Bob just played. By Lemma 3, R has at most 2
dangerous vertices. If there are fewer than 2 dangerous vertices then Alice will color
any remaining dangerous vertex on her turn, and then no dangerous vertices exist in
R. If there are two dangerous vertices in R, then we consider the following cases:

Case 1 Some dangerous vertex x has no colored neighbors.
Alice colors the other dangerous vertex with any legal color. After Bob’s next

move in this trunk, Alice colors x if it is still uncolored.

Case 2 Some dangerous vertex x has two colored neighbors.
Alice colors x with any available color. Since the colored vertices of R lie on a

path, the other dangerous vertex x′ has at most one colored neighbor. After Bob’s
next move in this trunk, Alice colors x′ if it is still uncolored.

Case 3 Each dangerous vertex has exactly one colored neighbor.
By Lemma 3 at least one dangerous vertex, say x, has degree 3; let the other

dangerous vertex be x′. If x and x′ are not adjacent then Alice can color x first and
then x′ later, as in Case 2. If x and x′ are adjacent, then x must have an uncolored
neighbor u distinct from x′. Alice colors u with the same color as the previously
colored neighbor of x. Therefore, x is no longer a dangerous vertex, and x′ has only
1 colored neighbor. After Bob’s next move in this trunk, Alice can color x′ if it is
still uncolored.

In all cases, Alice is able to eliminate the dangerous vertices before Bob is able to
surround any vertex with 3 distinct colors. Therefore, Alice can win the 3-coloring
game on F.

By using this trunk coloring strategy and considering the different cases on
maximum degree and diameter, it can be shown that T ′ is in fact the unique forest
on 14 vertices with game chromatic number 4 [18]. A main idea in this proof is that
if there are few dangerous vertices, then Alice will have an easier time creating a
winning strategy. Further utilizing this idea, one can prove some conditions under
which a forest F has χg(F) ≤ 3.

Theorem 5 (Dunn et al. [18]). A forest F has game chromatic number at most 3
if there exists a vertex b such that, if Alice starts by coloring b, every trunk R of F
either

1. has no neighboring vertices whose degrees are both 3 or more, or
2. has a vertex v ∈ R with degree 3 or more which is adjacent to every vertex in R

with degree 3 or more, and v is not adjacent to a colored vertex.

In fact, [18] proves something slightly stronger, but we omit that statement here
in order to avoid a technical definition.
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The proofs of Theorems 4 and 3 might lead one to believe that, if we can restrict
the maximum degree of a forest, then Bob will not have the flexibility required to
win the 3-coloring game. However, the following result shows that this is false.

Theorem 6 (Dunn et al. [18]). There exists a tree T with Δ(T) = 3 and
χg(T) = 4.

When outlining a strategy for Alice in the 3-coloring game on trees with
maximum degree 3, the authors of [18] found a partially colored subgraph for
which the strategy did not work. In fact, Bob could win the 3-coloring game on
this subgraph. Working backwards, the authors pieced together a tree on which Bob
can force this partially colored subgraph to occur.

As an aside, this is not an uncommon path towards interesting results. Recently,
Steinberg’s Conjecture (every planar graph without 4-cycles and 5-cycles is 3-
colorable) was proven to be false [7] using this “method”. As a team of mathe-
maticians were working on a lemma needed to prove the conjecture, a gap in the
proof turned into a counterexample to that lemma, which led to a counterexample
to the entire conjecture!

Every known example of trees with Δ(T) = 3 and χg(T) = 4 have even order;
the proof of Theorem 6 relies on the fact that Alice cannot avoid coloring first
in a particular subgraph. One unanswered question regarding forests with game
chromatic number 3 and 4 is if it is possible that maximum degree 3 implies
χg(T) ≤ 3 for trees with odd order.

3 Relaxed-Coloring Games

In this section we will consider a variation of the game in which the subgraphs
induced by each color class must satisfy the condition of having maximum degree
bounded by a predetermined constant d. In this version of the game, the players are
in the process of creating a defect coloring or relaxed coloring of the graph. Such
colorings have been examined in [8–10,21]. To highlight some of the strategies that
have been employed to provide upper bounds on the associated parameter, we will
provide results with trees. However, these strategies have been useful with many
classes of graphs.

First we will define the game, which we will refer to as the (r, d)-relaxed coloring
game. Let G be a finite graph and let X be a set of r colors, for some positive integer
r. Let d be a nonnegative integer. We call d the defect. For each α ∈ X, we call
the set of all vertices colored α the color class of α, denoted Cα. In this version
of the game, a color α ∈ X is legal for an uncolored vertex u if, after u has been
colored α, the subgraph induced by color class Cα must have maximum degree at
most d. More succinctly, at every point in the game, for every α ∈ X, it must be true
that Δ(G[Cα]) ≤ d. Note that if d = 0, this is the original version of the coloring
game. For a fixed d, the least r such that Alice has a winning strategy for this game
is called the d-relaxed game chromatic number of G and is denoted by dχg(G). For
a fixed r, the least d for which Alice has a winning strategy for this game is called
the r-game defect of G and is denoted by defg(G, r).
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At any time in the game, we define the defect of a colored vertex x ∈ Cα to be
the number of neighbors of x already colored α. We denote this value by def(x).

In terms of the analysis of a strategy, one must evaluate two things when
considering the color α for the uncolored vertex u:

1. the vertex u must be adjacent to at most d vertices already colored α; and
2. if v is adjacent to u and v has already been colored α, then v can be adjacent to

at most d − 1 vertices already colored α.

Theorem 7 (Chou et al. [6]). If T is a tree, then 1χg(T) ≤ 3.
We will present two proofs of this theorem. First, we will provide the argument

used by Chou, Wang, and Zhu in [6]. This uses a separator strategy as introduced
in Section 2. The second result uses an activation strategy. Activation strategies
have proven to be quite useful for many classes of graphs, and can be seen as the
culmination of the work in a number of papers [11,23,27,28,30,31]. We will present
a number of activation strategies in later sections.

Proof. (Separator Argument) Suppose in the process of the game, the tree T is
partially colored. We obtain a collection of subtrees as follows: for each colored
vertex x with degree d, we split x into d colored vertices, say x1, x2, . . . , xd, so that
each xi is colored the same color as x and is incident with exactly one of the original
edges incident to x in T . After splitting each of the colored vertices of T , we obtain
a collection of smaller partially colored trees, say T1,T2, . . . ,Tm, which we will call
trunks, such that ∪m

i=1E(Ti) = E(T). Note that in each Ti, it is the case that only
some of the leaves may be colored.

Alice’s goal in selecting the vertices to color is simply to ensure that after she
has colored her chosen vertex, each of the trunks of the partially colored T has at
most two colored leaves. Suppose Alice can achieve this goal. Then after Bob colors
a vertex, each trunk Ti has at most two colored vertices, with the exception of one
trunk which may have three colored vertices. Moreover, if the trunk Ti has three
colored leaves, then one of those leaves was just colored by Bob. We will call this
the new colored leaf of Ti.

It is easy to prove inductively that Alice can achieve her goal. If after Bob’s move
there is a trunk Ti containing three colored leaves, then Alice will choose the vertex
that lies at the intersection of the paths joining these three colored vertices. Suppose
Alice has chosen vertex u ∈ V(Ti) by this process. She will then choose a color for
u as follows: if the colored leaves of Ti use at most two colors, Alice will choose a
color that has not been used on Ti. Otherwise, Ti has three distinctly colored leaves.
Alice will color u with the color of the new colored leaf, v, of Ti.

To show that this works, it suffices to show that in the case that Ti has three
distinctly colored leaves, then the color of v is legal for u. This is obvious as v has
no other colored neighbors. Thus, Alice can color u with the color assigned to v.
This will affect the defect of at most two vertices: u and v. Each will then have
defect of at most 1. Thus, following this strategy, all vertices of T will be colored
and Alice will win.
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For the second proof of this result, we will define what we will call the Tree
Strategy for Alice. Suppose Alice and Bob are playing the coloring game on the
tree T = (V,E). Alice picks a vertex r and orients all edges in the tree toward r.
The resulting orientation on T has the property that every vertex v ∈ V \ { r } has
a unique outneighbor which we denote p(v). We call p(v) the parent of v and refer
to v as a child of p(v). Continuing this notation, let p2(v) = p(p(v)). Inductively, if
pi(v) is defined, let pi+1(v) = p(pi(v)). We define the set of descendants of a vertex
v by

G(v) := {w ∈ V | v = pk(w) for some k }.

We then define G[v] := G(v) ∪ { v }.
Throughout the game, vertices go from uncolored to colored. At any time in the

game, let U be the set of uncolored vertices and C be the set of colored vertices.
Alice will maintain a set A of active vertices. One way of viewing the notion of an
active vertex is to think of it like a post-it note that Alice places on vertices that are
becoming dangerous, yet not requiring immediate attention. When her strategy leads
her to consider a vertex that already has such a post-it note, she knows that it is now
time to color this vertex. Alice will only color vertices that are active; however, she
may activate a vertex and color it on the same turn. For simplicity, we will assume
that any vertex that Bob colors also becomes active; thus C ⊆ A. Whenever a vertex
is colored it is added to C, and whenever a vertex is activated it is added to A. When
a vertex v is colored, let c(v) be that color. For any color α ∈ X, we say that α is
eligible for a vertex v if either p(v) ∈ U or c(p(v)) �= α. Note that if |X| ≥ 2, every
uncolored vertex must have at least one eligible color.

Tree Strategy
On her first move, Alice will color the vertex r with any color. Suppose Bob has just
colored vertex b. Alice’s strategy will have two stages: a search stage and a coloring
stage. In the search stage, she seeks the vertex u that she will color. In the coloring
stage, she selects the color for u.

Search Stage

• Initial Step
– If p(b) ∈ U, then set x := p(b) and move to the recursive step.
– If p(b) ∈ C, c(b) = c(p(b)), and p2(b) ∈ U, then set u := p2(b) and move to

the coloring stage.
– Otherwise, let u be any uncolored vertex such that p(u) ∈ C and move to the

coloring stage, activating u if u is inactive.
• Recursive Step

– If x /∈ A and p(x) ∈ U, then activate x, set x := p(x) and repeat the recursive
step.

– Otherwise, activate x if it is inactive, set u := x, and move to the coloring
stage.
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Coloring Stage

• Choose an eligible color for u which minimizes def(u).

We are now ready to provide our second proof of Theorem 7.

Proof. (Activation Argument) Let T be a tree and let |X| = 3. Alice will employ the
Tree Strategy defined above. Suppose u = p(v) and u is uncolored. Then the first
time a vertex in G[v] is activated, necessarily by Bob, Alice will take action at u by
coloring (if u is already active) or by activating.

Suppose that Alice has chosen to color vertex u. Suppose x and y are the first two
children of u to be activated, and x is activated first. Note that on the turn that x is
activated, Alice takes action at u by activating it. Assuming that she does not also
color u on this turn, suppose that w is the first vertex in G[y] to be activated. Then
when w is activated (by Bob coloring it), y is activated and Alice moves to color u.

Now suppose that Alice is choosing a color for u. First note that u has at most
three colored neighbors: p(u) and at most two children, again say x and y. If the
number of colors used on these three neighbors is at most two, then Alice’s strategy
dictates that she will use a color not used in the set of neighbors of u, N(u).
Otherwise, it must be the case that p(u), x, and y are all colored distinctly. Since
there is only one vertex in G[y] colored, then Alice can safely color u with c(y) as
this results in def(u) = def(y) = 1, with the defect of no other vertex affected. We
note that Bob can borrow this strategy at any time. So at any time in the game, it is
possible to color any uncolored vertex with a legal color. Thus, all vertices of T will
eventually be colored, and Alice will win.

We note that while the bound in Theorem 7 is known to be sharp [6], we do not
know the necessary and sufficient characteristics of a tree T to determine whether
1χg(T) = 3 or 1χg(T) = 2.

4 The Clique-Relaxed Game

Earlier, we examined the graph coloring game using d-relaxed coloring rules on
vertices and on edges. Exploring different modifications to standard coloring rules
can open up a wide range of interesting competitive coloring problems. Another
relaxation of standard coloring rules is clique-relaxed coloring, where the aim is to
avoid large monochromatic cliques (complete subgraphs).

In this section, we examine the game coloring version of clique-relaxed coloring;
we focus on planar and outerplanar graphs. A planar graph is a graph that can be
drawn in the plane such that no edges cross each other. Each region bounded by the
edges is called a face and the infinitely large unbounded face is called the outer face.
One specific type of planar graph is an outerplanar graph, which is a planar graph
that can be drawn so that every vertex belongs to the outer face.
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Recall that ω(G) denotes the size of the largest clique in G. We say that a vertex
coloring of a graph G is a proper k-clique-relaxed coloring if ω(H) ≤ k for each
subgraph H induced by one of the color classes. The k-clique-relaxed chromatic
number of G, denoted χ(k)(G), is the smallest k such that G has a proper k-clique-
relaxed coloring.

Although there appears to be very little proven about this parameter in the
literature, it seems like a natural variation of other coloring relaxations and has
interesting properties with regards to competitive graph coloring. Notice that for
any graph G, we get χ(1)(G) = 0χg(G) = χ(G) and that χ(k)(G) ≤ χ(k−1)(G) for
every positive integer k. The following theorem gives an upper bound for χ(k)(G) in
terms of the standard chromatic number χ(G).

Theorem 8 (Dunn et al. [17]). Let G be a graph. Then χ(k)(G) ≤
⌈
χ(G)

k

⌉
for any

positive integer k.

Proof. Let G be a graph where χ(G) = r. Color the vertices of G properly with r
colors which we denote α1, . . . , αr. We divide the r colors into s :=

⌈
r
k

⌉
groups, all

of size exactly k except possibly the last group. We label these groups A1, . . . ,As and
recolor all vertices in Ai with color βi. There are s colors used in this new coloring.
Suppose, for the sake of contradiction, that H ⊆ G is a (k + 1)-clique where each
vertex of H receives color βi. Then by the pigeonhole principle, at least two vertices
x and y in Ai were colored αj originally for some j. Thus xy cannot be an edge of G,
which contradicts the fact that H is a (k + 1)-clique.

Using this theorem we are able to give bounds for χ(k)(G) for some classes of
graphs. The Four Color Theorem [2] shows that χ(G) ≤ 4 for all planar graphs
G. Also, it is also easy to show that χ(G) ≤ 3 for outerplanar graphs G. These
observations lead to the following corollary.

Corollary 1. If G is a planar graph, then χ(k)(G) ≤ 2 when 2 ≤ k ≤ 3 and
χ(k)(G) = 1 when k ≥ 4. Moreover, if G is an outerplanar graph, then χ(2)(G) ≤ 2
and χ(k)(G) = 1 when k ≥ 3.
These bounds are sharp as K4 is a planar graph with χ(k)(K4) = 2 when 2 ≤ k ≤ 3
and K3 is an outerplanar graph with χ(2)(K3) = 2.

To play the k-clique-relaxed r-coloring game on a graph G, two players (Alice
and Bob) will take turns coloring uncolored vertices of G with legal colors coming
from a fixed set X of r colors. A color α ∈ X is legal for an uncolored vertex u if
coloring u with α does not create a monochromatic (k+1)-clique. Said another way,
α is not a legal color for u if G[N(u)] contains a k-clique H where each vertex of H
is colored α. Alice always colors first, and she wins the game when all the vertices
are colored. Therefore, Bob will win if there is at least one uncolored vertex u in G
whose neighborhood contains monochromatic k-cliques in each of the r colors. The
k-clique-relaxed game chromatic number of G, denoted χg

(k)(G), is the least r such
that Alice has a winning strategy in the k-clique-relaxed r-coloring game.
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The first observation is that χg
(1)(G) = 0χg(G). In [17], the authors investigate

the k-clique-relaxed game chromatic number on outerplanar graphs. Because the
maximum clique size in an outerplanar graph is 3, it follows that χg

(k)(G) = 1
when G is an outerplanar graph and k ≥ 3. Therefore, the focus is on the 2-clique-
relaxed coloring game. In the following result, Alice’s strategy is to use a vertex
ordering given by Guan and Zhu [25] to implement a separator strategy similar to
the one used on trees (see Section 3).

Theorem 9 (Dunn et al. [17]). Let G be an outerplanar graph. Then
χg

(2)(G) ≤ 4.

Proof. Let G be an outerplanar graph. Alice’s strategy is to define auxiliary graphs
G′ and T , and to use these graphs to choose which vertex to color. First, let G′ be
the graph obtained by adding edges to G until the graph is maximally outerplanar.
Guan and Zhu [25] showed that for every maximally planar graph, there is a linear
ordering L := v1, . . . , vn of the vertices of H such that v1v2 is on the outer face
and, for all i ≥ 3, the vertex vi is adjacent to exactly two vertices va(i) and vb(i)

such that a(i) < b(i) < i. We call va(i) and vb(i) the major parent and minor parent
(respectively) of vi.

To create the graph T , Alice deletes from G′ all the edges of the form vivb(i).
Note that v1v2 is still an edge and for each i ≥ 3 the vertex vi is adjacent to exactly
one vertex with lower index; thus, T must be a tree. As in the separator strategy
of Section 3, Alice can ensure that after her turn each trunk of T has at most two
colored vertices. Bob may possibly color a third vertex in a trunk, so each uncolored
vertex vi that Alice chooses has at most 3 colored neighbors in T . It is possible that
vi has more colored neighbors in G, as vivb(i) could be an edge in G. Further, [25]
showed that each vertex in G′ is the minor parent to at most two vertices. Therefore
vi is adjacent to at most six colored vertices in the original graph G. In the 2-clique
relaxed 4-coloring game, a vertex will have a legal color unless it is adjacent to
monochromatic K2 subgraphs in each of the 4 colors. Because vi is adjacent to at
most 6 colored vertices, there is a legal color for Alice to use.

Bob will also always have a legal move, because Alice’s strategy leaves at most
two colored vertices in each trunk of T . Therefore, uncolored vertices have at most
5 colored neighbors in G on Bob’s turn.

The bound in Theorem 9 has no sharpness example; in [17] an example is given
where Bob has a winning strategy for the 2-clique-relaxed 2-coloring game on
an outerplanar graph. Bob’s strategy uses the symmetry of the graph to create a
particular partially colored subgraph on which an uncolored vertex can be made
uncolorable. It remains open whether or not there exists an outerplanar graph where
Bob has a winning strategy for the 2-clique-relaxed 3-coloring game.

Theorem 10 (Dunn et al. [17]). There exists an outerplanar graph G with
χ(2)(G) ≥ 3.
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Fig. 6 An outerplanar graph
with χ(2)(G) ≥ 3.

v

u1

u2 u3

Figure 6 provides an example of an outerplanar graph with χ(2)(G) ≥ 3. The
proof can be found in [17].

This raises the question of whether there exists an outerplanar graph G such that
χg

(2)(G) = 4. Further results in [17] show a subclass of outerplanar graphs in
which no such example can be found.

The question of clique-relaxed coloring games on planar graphs also remains
open. Because the maximum clique size in a planar graph is four, the games of
interest on planar graphs are the 2- and 3-clique-relaxed games.

5 Edge Coloring

The focus of this section is a variation of the game in which Alice and Bob alternate
coloring edges rather than vertices. The most obvious consequence of analyzing this
version of the game is that the maximum degree of the graph becomes an important
component of the upper bounds for the corresponding parameters.

Let G be a finite graph and let r be a positive integer and d be a nonnegative
integer. As used before, d is the defect and X is a set of r colors. The players alternate
coloring, with Alice coloring an edge first. We say that a color α ∈ X is legal for an
uncolored edge e if the following conditions are satisfied:

1. the edge e is incident with at most d edges already colored α; and
2. if e′ is an edge incident to e and e′ has already been colored α, then e′ is adjacent

to at most d − 1 edges already colored α.

Note that if e is colored α, then at this point in the game, every edge has at most
d neighbors colored α. Alice wins if every edge is eventually legally colored. Bob
wins if there comes a time in the game when there is an uncolored edge for which
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Fig. 7 For an edge
e = xp(x), the vertex
p(p(x)) = p2(x), the edge
p(e), and the sets B(e) and
S(e).

p(p(x)) p(x) x

p(e) e

B(e)

S(e)

no legal color exists. For a fixed defect d, the least r such that Alice has a winning
strategy for this game is called the d-relaxed game chromatic index of G, denoted
dχg

′(G). Similarly, for a fixed r, the r-edge-game defect of G, denoted defg
′(G, r),

is the least d such that Alice has a winning strategy. This game was first introduced
in [13].

We will present some of the work done in [19] restricted to trees, which
generalized the results in [13]. Further work in this area can be seen in [1,5,22,29].
We begin by defining terminology and notation, and by providing a winning strategy
for Alice in the edge coloring game on trees. Let T be a tree with Δ(T) = Δ for
some positive integer Δ. For her strategy, Alice chooses an arbitrary leaf r ∈ V(T)
at which she roots T . She then regards all edges in T as oriented toward r. Let e0 be
the unique edge in T that is incident to r. For each vertex v ∈ V \{ r }, define p(v) to
be the unique outneighbor of v. Then for each edge e ∈ E, there is a unique vertex
x ∈ V such that e = xp(x). We now introduce some terminology, as illustrated in
Figure 7.

For every edge e = xp(x) with e �= e0, define the parent of e, denoted p(e), to
be the edge p(x)p2(x), where p2(x) = p(p(x)). We say that e is a child of p(e).
Note that, because p(x) is well defined, p(e) is also well defined. Whenever pi(e) is
defined and pi(e) is not incident with the root, define pi+1(e) = p(pi(e)). As in the
second (activation) proof of Theorem 7, we define the descendants of e to be

G(e) = {e′ ∈ E | e = pk(e′) for some positive integer k}.
For each edge e = xp(x), define the siblings of e to be

B(e) = {yp(y) ∈ E | p(y) = p(x) and y �= x}
and B[e] = B(e) ∪ {e}. Define the children of e to be

S(e) = {yp(y) ∈ E | x = p(y)}.
We call the set of all edges incident to an edge e the neighborhood of e, denoted

N(e).
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Fix j ∈ [Δ− 3] and let X be a set of Δ− j colors. Note that |X| ≥ 3. At any point
in the game, let C and U be the set of colored and uncolored edges, respectively. For
each α ∈ X, we call the set of all edges colored α the color class of α, denoted Cα.
For a colored edge e, denote the color of e by c(e).

Similar to the notion with vertices, for each colored edge e, define the defect of
e to be the number of neighbors of e colored with c(e). If e is uncolored, we set the
defect of e to be zero. We denote the defect of e by def(e). Thus

def(e) =

{∣∣N(e) ∩ Cc(e)

∣∣ , if e ∈ C;

0, otherwise.

We say that color α ∈ X is eligible for edge e if p(e) /∈ Cα. We denote the set
of eligible colors for e by X(e). When coloring an edge e, Alice always chooses an
eligible color. Note that since |X| ≥ 3, this is always possible.

In most strategies for vertex-coloring games, Alice avoids increasing the defect
of a vertex when she can. The interesting aspect of this edge strategy is that in some
cases, it will be necessary for her to do just the opposite. She will attempt to reach a
minimum threshold for the defect of some edges. For any edge e, we say that B[e] is
secure if there exist edges e1, e2, . . . , ej+1 ∈ B(e) and a color α such that c(ei) = α
for i ∈ [j + 1]. In other words, B[e] is secure if e has j + 1 siblings colored with the
same color. Note that if B[e] is secure, then the number of distinctly colored siblings
of e is at most

|B(e) \ {e1, e2, . . . , ej}| ≤ Δ− j − 2.

As |X(e)| ≥ Δ− j − 1, there is always a legal eligible color for an uncolored edge
e when B[e] is secure.

We will now define the strategy that Alice will use for this game with trees. This
strategy is a modification of the activation strategy developed in [13]. In response to
Bob’s moves, Alice designates certain edges active, as above in the second proof of
Theorem 7; precisely how she chooses these edges will be explained below. When
an edge e becomes active, we say that e has been activated. In addition, all colored
edges are active. We denote the set of active edges by A, and note that C ⊆ A. This
set has the property that once an edge e is in A, e will remain active for the remainder
of the game.

Tree Strategy for Edges
Alice begins the game by coloring e0 with any color. Suppose now that Bob has
just colored edge b = xp(x) in T for some x ∈ V \ { r } and some i ∈ [n]. Alice’s
response has two stages: a Search Stage and a Coloring Stage. In the Search Stage,
Alice finds an edge e to color. In the Coloring Stage, Alice chooses a color for e.
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Search Stage

• If p(b) ∈ U, then activate each edge along the (x, r)-path until reaching an edge g
with p(g) ∈ A. [Note that this includes Alice activating the edge b.] If p(g) ∈ C,
set e := g. Otherwise, set e := p(g).

• If p(b) ∈ C with c(p(b)) = c(b) and p2(b) ∈ U, then set e := p2(b).
• If p(b) ∈ C with c(p(b)) = c(b), p2(b) ∈ C, and B(p(b)) ∩ U �= ∅, then set e to

be any uncolored sibling of p(b).
• Otherwise, set e to be any uncolored edge whose parent is colored.

Coloring Stage

• If B[e] is secure, then color e with an eligible color for e that does not appear
among the siblings of e.

• Otherwise, B[e] is not secure. Let f be the last edge to be colored with a color
eligible for e such that c(f ) = c(p(f )) and p(f ) ∈ B(e). If such an edge exists,
then color e with c(f ). If no such edge exists, then color e with any eligible color
for e that minimizes def(e).

We now present the theorem and proof from [19] for trees.

Theorem 11 (Dunn et al. [19]). Let T be a tree and Δ(T) = Δ for some positive
integer Δ. Let j be an integer with 0 ≤ j ≤ Δ − 1, and define h(j) = 2j + 2. Then
defg

′(T, Δ− j) ≤ h(j). Moreover, if d ≥ h(j) then dχg
′(T) ≤ Δ− j.

Proof. Suppose that Alice and Bob are playing the (Δ− j, d)-relaxed edge coloring
game on T for some d ≥ h(j). Note that when either j = Δ − 1 or j = Δ − 2, the
result is immediate. Hence, it will suffice to consider the game with color set X with
|X| ≥ 3. We will assume that Alice uses the Tree Strategy for Edges.

Claim. If e ∈ U, then e has at most two active children. Furthermore, when e has
two active children, Alice colors e.

Proof. Let f be the first active child of e. When Alice activates f , she also activates
e. Note that while e is uncolored, Alice never colors an edge in G(e) \ G(f ) before
Bob. If Bob colors an edge b ∈ G(e) \ G(f ), Alice activates p(b), p2(b), . . ., and so
on, until she reaches e. Since e is active, Alice colors e.

Claim. Suppose that Alice has chosen to color edge e with α ∈ X. Then at the end
of Alice’s turn, def(e) ≤ j + 2.

Proof. Since α ∈ X(e), then p(e) does not contribute to the defect of e. By Claim 5,
e has at most two active children; hence, e has at most two children colored α. If
B[e] is secure, then Alice would have chosen a color that does not appear among the
siblings of e. In this case, def(e) ≤ 2. Otherwise, when B[e] is not secure, there are
at most j siblings of e colored α. Thus, def(e) ≤ j + 2.
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Claim. Suppose that e is about to be colored α and p(e) ∈ U. Then e has at most
one child colored α. Furthermore, if e has a child colored α, then Bob colors e and
Alice colors p(e).

Proof. If some sibling f ∈ B(e) is the first active child of p(e), then Alice colors
p(e) when the first edge in G(p(e)) \ G(f ) is activated. Since p(e) is uncolored and
e is to be colored, we conclude that e has no active children and hence no children
colored. So assume that e is the first active child of p(e). Note that p(e) ∈ A. If
an edge in G(p(e)) \ G(e) is then activated, Alice colors p(e). Otherwise, we may
assume that e has no colored siblings at the time when e is colored. Before e is
colored, it is incident with at most two colored edges, which are children of e. Since
|X| ≥ 3, there is a color that does not appear on any child of e. Then, because Alice
will choose a color to minimize def(e), Alice never chooses to color e with α if a
child of e has already been colored α. So, if e has two active children before e is
colored, then Alice colors e with α only when neither child is colored α. Thus, if
e has a child colored α, then Bob must be coloring e with α, and since p(e) ∈ A,
Alice responds by coloring p(e).

Suppose f ∈ S(e)∩Cα. By Claim 5, if f has a child colored α before f is colored,
then Bob must have colored f and Alice responds by coloring e. Thus def(f ) = 2
once e is colored. Otherwise, f has no children colored α before f is colored. Since e
has at most two active children before e is colored, f has at most one sibling colored
α before e is colored. Then def(f ) ≤ 2 once e is colored.

Now consider the siblings of e. If B[e] is secure, since Alice is choosing to color
e with α, then α does not appear among the siblings of e. Hence, coloring e with α
does not affect the defect of any edge in B(e).

Finally, we consider the case where B[e] is not secure.

Claim. Suppose Alice has chosen to color edge e with α ∈ X and B[e] is not secure.
If there exists an edge f ∈ B(e) ∩ Cα, then def(f ) ≤ 2j + 2 once e is colored.

Proof. Let E′ = B(e) ∩ Cα. Since B[e] is not secure, we have that |E′| ≤ j. Let
f ∈ E′ such that |S(f ) ∩ Cα| is maximal, and let

S(f ) ∩ Cα = {s1, s2, . . . , sm},
where i < j implies that si is colored before sj. We show that m ≤ |E′| + 2. By
Claim 5, f has at most two active children before it is colored. Hence, f has at most
two children colored α before f is colored. So only the following cases need be
considered:

Case 1 The edge f is colored before s1.
Since p(si) = f for each i ∈ [n] and c(f ) = α, Alice does not color any si. For

each si that Bob colors, Alice then colors p(e) if p(e) ∈ U, an edge in E′ \ {f} if
p(e) ∈ C, or e if E′ ∩ U = ∅. Then at most |E′| + 1 children of f are colored α
before Alice colors e. Hence, m ≤ |E′|+ 1.
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Case 2 The edge f is colored after s1 and before s2.
Alice does not color si for any i ≥ 2. As in the previous case, when Bob colors

si with i ≥ 2, Alice then colors p(e), an edge in E′ \ {f}, or e. Thus, once f ∈ C, at
most |E′|+ 1 children of f are colored α. Including s1, we have that m ≤ |E′|+ 2.

Case 3 The edge f is colored after s2.
If p(e) ∈ U, then Claim 5 implies that f has at most one child colored α before

f is colored. Since f has two children colored α before f is colored, p(e) must be
colored before f . Furthermore, Alice colors f immediately after s2 is colored, as
s1 and s2 must be the first two active children of f . Once f is colored, each time
Bob colors a child of f with α, Alice colors an edge in E′ \ {f}. Therefore, once f
is colored, Bob can color at most |E′| children of f with α before e is colored. So
m ≤ |E′|+ 2.

Thus, in all cases, we have that

m = |S(f ) ∩ Cα| ≤ |E′|+ 2 ≤ j + 2

once e is colored. Since f was chosen to maximize |S(f ) ∩ Cα| and each f ′ ∈ E′ has
at most j siblings colored α before e is colored, we have that

def(f ′) ≤ |S(f ) ∩ Cα|+ j ≤ 2j + 2

for all f ′ ∈ E′.
Note now that if Alice is coloring edge e with α, according to the Tree Strategy

for Edges, Claim 5 guarantees that def(e) ≤ h(j). We have also shown that for any
edge f ∈ N(e) ∩ Cα, immediately after e is colored, def(f ) ≤ h(j). As Bob may
adopt Alice’s strategy at any point in the game, every edge is eventually colored,
and Alice wins the game. Thus

defg
′(T, Δ− j) ≤ 2j + 2 = h(j).

Moreover, if the game is being playing with some defect d > 2j + 2, and an edge e
eventually has defect at least d, then it must be through the actions of Bob that this
occurs. At the time that e is uncolored, the above arguments show that it is possible
to color e with an eligible color α such that coloring e does not increase the defect
of any edge e′ with def(e′) > 2j + 2. Thus, for any d ≥ h(j), we have that

dχg
′(T) ≤ Δ− j,

as desired.
In addition to possible improvements to the above bounds, there are many

properties of χg
′(G) and dχg

′(G) that remain to be studied. This variation of
the coloring game would be ideal for asking additional questions and examining
additional classes of graphs. While the above result is generalized in [19] to a larger
class of graphs (k-degenerate), no other classes have yet been considered.
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6 Total Coloring

The total coloring game is a variation of the original coloring game in which Alice
and Bob are free to color vertices or edges on their turns. For the remainder of this
section, we will refer to vertices and edges as elements of the graph. The components
of the game are a finite graph G and a finite set of colors X with |X| = r. At any
point in the game, a color α ∈ X is legal for an uncolored vertex u if u has no
neighbors colored α and is incident with no edges colored α. Similarly, α is legal
for an uncolored edge e if e is not incident with any edges colored α and neither
endpoint of e is colored α. Alice wins the game if all of the elements of G are
colored. Bob wins otherwise. In other words, Bob wins if there comes a time in the
game when there is an uncolored element for which no legal color exists. The least
r such that Alice has a winning strategy is called the total game chromatic number
of G and is denoted χg

′′(G).
The following work is currently in preparation [20]. To prove the following

theorem, we will again have Alice employ an activation strategy, which we will
refer to as the Total Activation Strategy. Let G = (V,E) be a graph and fix a linear
ordering L of V . Note that L lexicographically induces a linear ordering L of E. For
any element a we use L and L to separate N(a) into two sets, N+(a) and N−(a);
an element b ∈ N(a) is only in N+(a) if b < a. Let N+[a] := N+(a) ∪ {a}
and N−[a] := N−(a) ∪ {a}. At any time in the game, let Uv and Ue be the sets of
uncolored vertices and edges of G, respectively. Alice will maintain two sets, Av and
Ae of active vertices and edges, respectively. Once an element has become active, it
will remain active for the remainder of the game. For a given vertex v, at any given
time in the game let m(v) = minL (N+[v] ∩ Uv) be the mother of v. Similarly, for
a given edge e, we define m(e) = minL (N+[e] ∩ Ue) to be the mother of e. We
note that the mother of any uncolored element must exist, as the element itself is a
candidate.

Total Activation Strategy
On Alice’s first turn, she activates and colors the first vertex in L. Now suppose that
Bob has just colored element b of type t, where t ∈ { v, e } and { t, t } = { v, e }.
(We again assume that Bob also activates b if it is not already active.) Alice must
now search for the element she will color and choose a color for this element.

Search Stage

• Initial Step
– If m(b) exists, then set x := m(b) and move to the recursive step.
– If m(b) does not exist and Ut �= ∅, let u be the least element of Ut and move

to the coloring stage.
– Otherwise, let u be the least element of Ut and move to the coloring stage.

• Recursive Step
– If x is active, set u := x and move to the coloring stage.
– Otherwise, activate x, set x := m(x), and repeat the recursive step.
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Coloring Stage

• Color u with any color legal for u.

Theorem 12 (Dunn et al. [20]). If F is a forest with Δ(F) = Δ, then χg
′′(F) ≤

Δ+ 4.

Proof. Suppose Alice and Bob are playing the total coloring game on F with color
set X where |X| = Δ+ 4. We will assume that Alice will use the activation strategy
outlined above. We will now show that for any uncolored element, there is always a
legal color available at any point in the game.

Suppose v is an uncolored vertex. At any time in the game, v is incident with at
most Δ edges, possibly all distinctly colored before v is activated. Additionally, at
most one vertex in N+(v) can be colored before v becomes active. Finally, at most
two vertices in N−(v) can be activated (or colored) before v is colored: one which
activates v, and one which forces Alice to immediately color v. Thus, v is incident
or adjacent to at most Δ+ 3 uniquely colored elements before v is colored.

Now suppose that e = xy is an uncolored edge and x > y in L. At any point
in the game, e can be incident with at most two distinctly colored vertices before e
becomes active. In addition, at most Δ − 1 edges in P(e) ∪ B(e) can be distinctly
colored before e becomes active. Finally, two children of e can be activated (or
colored) before e is colored: one to activate e and one to trigger the coloring of e.
Thus, e is incident with at most Δ+ 3 colored elements before it is colored.

Since Δ+4 colors are available, and given that Bob may utilize Alice’s strategy,
Alice will win. Thus, χg

′′(F) ≤ Δ+ 4.
A chordal graph is a graph in which every cycle subgraph with 4 or more vertices

has a chord; in other words, a chordal graph does not have Cn as an induced subgraph
for any n ≥ 4.

Theorem 13 (Dunn et al. [20]). If G is a chordal graph with Δ(G) = Δ and
ω(G) = k + 1, then χg

′′(G) ≤ Δ+ 3k + 2.

Proof. Let X be a set of colors with |X| = Δ + 3k + 2 and suppose that Alice and
Bob are playing the total coloring game on G with X. We will assume that Alice
employs the Total Activation Strategy defined above. We will show that at any time
in the game, any uncolored element has an eligible legal color available.

Suppose that v is an uncolored vertex. First, it is clear that there are at most Δ
edges incident with v that could be colored before v is activated (or colored). Also,
every vertex in N+(v) may be colored before v is colored. Let S ⊆ N−(v) be the
set of all children of v that are activated before v is colored. Note that for any vertex
w ∈ S, it must be the case that m(w) ∈ N+[v] since G is a chordal graph. Thus, every
time a vertex in S is activated, Alice will respond by either activating or coloring a
vertex in N+[v]. So initially, this yields |S| ≤ 2 |N+[v]| ≤ 2(k + 1) = 2k + 2.
However, we can improve this bound slightly by considering the turn on which
Alice activates v. Suppose that Alice activates v in response to an action taken at
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w ∈ S. Alice will then take another action in N+[v]. So Alice has responded with
two actions in N+[v] due to the action taken at w. Thus, |S| ≤ 2k + 1. So we have
that before v is colored, the number of distinctly colored elements to which v may
be adjacent or incident is at most

Δ+
∣∣N+(v)

∣∣+ |S| ≤ Δ+ 3k + 1.

Now suppose that e = xy is an uncolored edge with x < y in L. At any
point in the game e can be incident to at most two colored vertices before e is
activated. Additionally, at most Δ − 1 edges in P(e) ∪ B(e) can be colored before
e becomes active. Similar to the argument above for vertices, let S ⊆ S(e) be the
set of children of e that are activated before e is colored. Note that each time an
edge in S is activated or colored, Alice will take action at an edge in H[e]. Thus,
S ≤ 2 |H[e]| ≤ 2k. Thus, before e is colored, the number of distinctly colored
elements to which e may be incident is at most

Δ− 1 + |{ x, y }|+ |H(e)|+ |S| ≤ Δ− 1 + 2 + (k − 1) + 2k

= Δ+ 3k.

We note that there are multiple avenues for creating “defect” versions of this
game, depending on whether you allow for adjacent vertices to receive the same
color (or not), and similarly for edges. Each of these variations can lead to different
results for different classes of graphs.

7 Conclusions and Problems to Consider

The area of competitive graph coloring is rich with open problems. We have
presented the standard vertex coloring game along with variations in the definition
of a legal color. Additionally, we have presented variations in which the players
color edges. Each of these variations still have problems to consider, but we have
also given a framework which invites researchers to consider their own variations of
a legal color.

Questions in competitive graph coloring are ideally suited to undergraduate
research. Not only are there many interesting open questions, but students can
begin exploring these questions with very little background. For many questions,
students need only to be introduced to basic definitions in graph theory, the rules
of the game and the relevant parameters, along with strategies for Alice and Bob.
Experimentation with game variations and specific classes of graphs can lead
students to ask their own questions. We would note that the work in each of papers
in [17–20] was done with undergraduates and each paper has undergraduates listed
as coauthors.
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We summarize some open questions stemming from the games presented above,
but we also expect this paper to provide a model for asking and answering additional
questions in the area of competitive graph coloring.

Regarding the standard vertex coloring game, a number of problems still remain
open.

Research Project 1. Find criteria which differentiates between forests with
game chromatic numbers 3 and 4.

Research Project 2. Does there exists a forest F of odd order with Δ(F) = 3
where χg(F) = 4?

The game chromatic number has also been studied on other common classes of
graphs, and there are many open questions coming from this.

Research Project 3. For planar graphs G, the best known upper [32] and
lower [28] bounds show that 8 ≤ χg(G) ≤ 17. For outerplanar graphs G, the
current bounds are 6 ≤ χg(G) ≤ 7 [25]. Progress for either class would be of
interest.

Research Project 4. Another interesting question, asked by Zhu [30], is
whether χg(G) = k implies that Alice has a winning strategy for the (k + 1)-
coloring game on G.

Regarding the d-relaxed chromatic number dχg(G), Theorem 7 has been shown
to be sharp, and it was shown in [26] that if d ≥ 2 then for any tree T , dχg(T) ≤ 2.
However, similar to the classification problem discussed in Section 2, we do not
know criteria to distinguish those trees T for which 1χg(T) = 3 and those for which
1χg(T) = 2.
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Research Project 5. Find criteria to distinguish trees where 1χg(T) = 3
from those where 1χg(T) = 2.

Chou et al. [6] also showed that, where G is an outerplanar graph and d ≥ 1,
dχg(G) ≤ 6.

Research Project 6. Improve this bound, or provide an example which
shows that it is sharp. This has not been done for any d.

Clique-relaxed game chromatic number has not been as widely studied. In
particular, there are no current results for planar graphs. For outerplanar graphs G,
Theorems 9 and 10 show that 3 ≤ χg

(2)(G) ≤ 4.

Research Project 7. Determine bounds for the clique-relaxed game chro-
matic number for planar graphs. Once a sharp upper bound is known, the
question of classifying graphs with particular clique-relaxed game chromatic
number arises.

The edge coloring game also has many open questions. For forests F with
maximum degree Δ, it has been shown in [1, 22] that χg

′(F) ≤ Δ + 1 except
when Δ = 4, where the best result shows χg

′(F) ≤ 6. Lam et al. [29], who showed
that χg

′(F) ≤ Δ + 2 for forests, also asked if there could be a constant c such that
χg

′(G) ≤ Δ+ c for all graphs.

Research Project 8. Is there a constant c such that χg
′(G) ≤ Δ + c for all

graphs? A similar question can be asked of the d-relaxed edge coloring game,
or for the total coloring game.

Finally, in [12] it is shown that for every m ∈ N, there exists a graph G such that
m ≤ χg(G) < 1χg(G), which seems counterintuitive.
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Research Project 9. Is it true that for every nonnegative integer d, there
exists a graph G such that dχg(G) < d+1χg(G)? This question was first
proposed by Kierstead and would seem an interesting one to settle.
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