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Abstract Flows of people connect cities into complex systems. Urban systems
research focuses primarily on creating economic models that explain movement
between cities (whether people, telecommunications, goods or money), and more
recently, finding strongly and weakly-connected regions. However, geometrically
graphing the dependency between cities within a large network may reveal the roles
of small and peripheral city agents in the system to show which cities switch regions
from year to year, which medium-sized cities serve as collectors for large cities, and
how the network is configured when connected by wealthy or deprived agents.

We propose a network configuration method called ‘best friend’ networks, where
a node attaches to one preferential node, so that edges D nodes D n. Our case study
is 20 years of migrants, sourced from the U.S. Internal Revenue Service, traveling
between U.S. cities. In our networks, an edge is created to link a city to its most
popular migrant destination city for a given year. The resulting configurations reveal
closely connected “constellations” of cities comprised of chains, trees, and hub-
spoke structures that show how urban regions are configured. We also show routing
behavior within these networks to reveal that high-income migrants tend to flock to
hub cities, while low-income migrants form local city chains via nearby movements.

Keywords Migration • Urban hierarchy • Economic systems • Regional sci-
ence • Spatial interaction • Complex systems

1 Introduction

In an urban hierarchy, larger cities are connected to smaller cities with medium size
cities as intermediaries. Within this network, goods, information, capital, flights,
migrants, commuters, etc. flow through planar and non-planar veins, providing cities
with valuable resources. While cities are often studied in terms of demographics and

X. Liu • R. Hollister • C. Andris (�)
Department of Geography, The Pennsylvania State University, University Park, PA, 16802, USA
e-mail: xiliu@psu.edu; maskedchicken@gmail.com; clio@psu.edu

© Springer International Publishing AG 2018
L. Perez et al. (eds.), Agent-Based Models and Complexity Science in the Age
of Geospatial Big Data, Advances in Geographic Information Science,
DOI 10.1007/978-3-319-65993-0_6

73

mailto:xiliu@psu.edu
mailto:maskedchicken@gmail.com
mailto:clio@psu.edu


74 X. Liu et al.

production (a static representation), conceptualizing their position within an urban
system such as the hierarchy (using a dynamic representation of in and out flow)
allows researchers to examine the city within this larger corpus of transactions.

The urban hierarchy is comprised of groups of spatial regions where each is
anchored by one very large city. This large anchor city (e.g. Chicago) exerts
a gravitational pull on its surrounding cities unless another large city, perhaps
Minneapolis, MN or St Louis, MO claims what would usually be Chicago’s
surrounding cities as part of their own functional regions. Cities that lie on a region’s
periphery or circumference are more likely to switch regions than those closer to
the anchor city. In the past, regions were bound into geographically-cohesive areas
in order to minimize the costly movement of natural resources and commodities
[1]. When peripheral settlements send many flows to a city’s central business
district, this settlement is considered part of the larger city’s functional region. In
practice, flows such as migrants and commuters help the U.S. Office of Budget and
Management define the spatial boundaries for Business Economic Areas (BEAs)
and Metropolitan Statistical Areas (MSAs).

The traditional regional approach has been explained by the gravity model, which
estimates interaction (i.e. flows, connection strength) between two places as the
product of their respective populations divided by the square of the distance between
the places [2]. The resulting estimate simulates the economic pull strength of cities,
assuming that many people will choose to connect to a nearby place whose large
size signifies many opportunities [3]. A gravity model using just population and
distance has been shown to predict about 57% of U.S. inter-city migrant flows [4].

Regions are also delineated by areas of homogenous industry [5] or cohesive
economic activity [6]. More recently, creative methods like dollar bill circulation
[7], telephone calls [8], surname clustering [9] and maps of sports team popularity
from Facebook likes [10] have been used to delineate regions around functional
anchor cities.

Today, the regional hierarchy can be re-examined with a network approach.
The economic transition from manufacturing to digital services and information
technologies has allowed regions to form and function not just as a group of nearby
cities, but as a network of connected cities that may or may not be proximal.
This network is formed by “leapfrogging” (skipping over) nearby cities to create
connections with distant cities that have economic benefit [11, 12]. These networked
economies are not geometrically contiguous and thus, the connections are harder
to predict in theory, but larger and more comprehensive data sets allow for the
investigation of factors beyond traditional place-to-place connectivity (such as the
gravity model) [13].

Here, we focus on descriptive properties of migration in the U.S. urban system.
Migration choice has been explained by factors such as searching for the best job
possible [14] seeking out a certain lifestyle [15], or capitalizing on social networks
and interpersonal relationships [16]. Instead of building a model that attempts
to correlate high migration volume with demographic or economic variables of
different cities, we view the migration system as a network of cities connected



Wealthy Hubs and Poor Chains: Constellations in the U.S. Urban Migration System 75

by volumes of migrants, as per the topic of migration systems theory (MST) [17].
Similar studies partition city systems into communities that are closely connected
internally [18, 19], or search for network hub cities [20, 21]. These studies advance
the use of network science in studies of the urban hierarchy, but do not address the
extent to which migrants surpass near cities to connect with those further away—as
they may when interpersonal relationships and institutions are involved.

We use county-to-county migrant flows sourced from the U.S. Internal Revenue
Service (IRS) for 21 years (details in Sect. 2) to form a network of 917 cities (nodes)
that connect to each other (edges) weighted by the number of migrants exchanged
by cities (an undirected network). Because the complete network of migrants ties
many cities together and we are interested in uncovering the urban hierarchy, we
experiment with the following concepts:

1. Best Friend: Best friend networks are created by drawing an edge between an
origin and the destination to which it most frequently sends migrants.

2. Best High/Low Income Friends: These networks differentiate high-income flows
from low-income flows. The network is made from gathering each city’s highest
income outflow and connecting it with that destination. (i.e. an edge is made to
the destination that attracts migrants with the highest average income). The same
procedure is repeated for each city’s lowest income destination.

3. Constellations: This method produces a collection of graphs (i.e. disconnected
subgraphs of networks) of cities that due to the number of nodes involved in
each graph, their configuration and their spatial genesis, resemble constellations
which can be classified into motifs. We create a single ‘galaxy’ of constellations
for each of 21 years.

Our results show that migration networks exhibit significant structural temporal
persistence, and clear ensemble rules can be used to construct the networks. We
find that some cities switch preferences to alternative large city anchors over time,
and that some large city anchors become popular or decline in popularity. We also
determine that low-income flows create different networks than high-income flows.
We validate and contextualize these findings by comparing our model to the gravity
model and radiation model. Our proposed networks can respond to the following
questions: Which cities are popular for migrants? What regions (i.e. connected
graph structures) arise? Which cities feed into larger cities? Which cities bypass
closer and larger cities to connect directly to a more distant metropolis? Does a
population hierarchy emerge? Are systems of cities closed or do they connect in
larger chains? How do these patterns change for high- and low-income migrants?

In Sect. 2, we describe the migration dataset, network and analysis methods. In
Sect. 3, we explore re-occurring constellations in the networks, compare our model
to other prevailing models such as the gravity and radiation model, which reflect the
structure of urban hierarchy. We conclude in Sect. 4.
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2 Data and Methods

2.1 U.S. Migration Data and Population Data

We use data from the U.S. Internal Revenue Service (IRS) Statistics of Income
Migration Data for years from 1992–1993 through 2012–2013 for this study. These
data are free and available online. The original data were generated from the yearly
change in address reported on individual tax returns from one year to the next, and
aggregated at the county level to produce a network of county-to-county flows. Each
flow contains three attributes: the number of returns, the number of exemptions, and
the adjusted gross income (AGI), which is the sum of all income moving on the
flow. Flows must contain at least ten returns to be reported in the dataset. We use
number of exemptions to estimate the migrant population, as this value reflects the
size of families, including children and jointly-filing spouses. Alternatively, using
the number of filers would estimate the number of heads of households that migrate.

We aggregated the county-to-county flows into flows among Core Based Sta-
tistical Areas (CBSAs), formerly referred to as MSAs. CBSAs are defined as
urban cores and peripheries with a population of at least 10,000 residents. Since
CBSAs (henceforth, cities) follow county boundaries, aggregation required only
flow summation. The aggregated data contains 917 cities reporting migration flows
throughout the 21 years period. Each city is accompanied by a population count
defined by the U.S. Census Bureau at the county level, as aggregated to the city
level.

2.2 The Best Friend Configuration Model

The network is configured based on the single allocation [22] of edges to nodes
(i.e. cities). In this configuration, a single city is only permitted to attach to the city
to which it sends the highest proportion of its flows. For example, New York City
is only attached to Miami because it sends more migrants to Miami than to any
other city. In this model, each city is allowed only one outgoing connection (out-
degree D 1), but the in-degree can be as large as the number of other nodes in the
system (n�1). Thus, this network is referred to as the best friend network. Edges
are assigned a weight (w) calculated as the proportion of migrants (m) city i sends
to city j (Eq. 1):

w D
mij

Pk
1 mij

(1)

where k is the total number of cities to which city i is connected (i.e. its outgoing
degree).
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Over 21 years, the best friend model contains a total of 3.1% possible city-to-city
edges, but accounts for 20.7% of total system-wide migrants. The average yearly
migration flow magnitude ranges from 170–200 migrants and the average best friend
magnitude ranges from 1100–1500 migrants. Over time, the total number of system-
wide migrants grew from 5 million to 6.6 million and best friends accounted for 1 to
1.4 million migrants each year (hence, about 20% of total migration). Average AGI
incomes range from $120,000 to $9000 per flow.

We also derive two special types of best friend models where edges are
characterized by average income on the flow, calculated as the AGI of that flow
divided by the number of returns on the flow. High and low-income migration
networks are each created by selecting the best-high-income friend and best-low-
income friend of a city, defined as the largest migration streams amongst the
top 10% (high-income) and bottom 10% (low income) average income migration
connections leaving city i. The top 10% is used rather than single the highest/lowest
income flow to ensure a high number of migrants and thwart anomalies.

Temporally, each city in the income networks has an average of nine different
best-high/low-income friends over the time period. On average, cities are connected
to their best-high-income friends for 6.5 years and to their best-low-income friends
for 5.4 years. Generally, wealthy best friend pairs are more stable over time.

2.3 Constellations

Constellations, or motifs [23], are basic graph structures that repeatedly appear in
networks. In this study, constellation is a relaxed definition of motif that refers to
families of basic structures that are widely seen in best friend networks, as compared
to their probability of arising in a null models based on the gravity model. We
detected five types of motifs (Fig. 2) in the best friend networks: pairs, chains, hubs,
stars, and trees [24]. These graph structures are enumerated and analyzed using
community detection methods within the R statistical computing environment’s
igraph package [25, 26]. Their definitions are as follows:

Pairs: A pair is formed by two cities that are each other’s best friend. They are
isolated from population hubs and may have strong dependency on each other.

Chains: A chain is a series of single directional connected cities where for
i D 1 : : : n, city i points to city i C 1. Usually, city n connects to a local hub.
Chains can reveal how a series of many migrants connect to nearby non-hub cities,
possibly facilitated by a lack of social connections in large cities, poor mobility, or
high levels of local social capital.

Hubs: A hub is a node with an in-degree larger than one with ‘spoke’ cities
directly connected to it. The hub node may point to one of its spokes or to other
hubs, creating stars and trees. Hubs are popular destinations for both chain and non-
chain nodes.
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Stars: A star is defined by hubs that point to one of their spokes. Small local hubs
tend to form stars with proximal cities, and rely less on the influence of distant,
larger hubs.

Trees: A tree is hub that connects to other hub nodes, and is typically attracted
by higher-level hubs. Trees tend to connect small, medium and large cities.

2.4 Analytical Methods

Gravity model. The gravity model, as in [27], is a classical model for predicting
flows based on population and distance, so that the magnitude of migrants Tij

between city i and j is estimated as:

Tij D K
PiPj

dˇ
(2)

where Pi and Pj represents the population in city i and j, respectively, d is the
distance between the two cities and K is a constant. ˇ is a distance decay factor,
often referred to as the coefficient of friction, and most commonly estimated with
value of 2.

Radiation model. The radiation model [28] is used to predict flow volumes Tij

between city i (with population Pi) and j (with population Pj) as:

Tij D Ti �
PiPj

�
Pi C sij

� �
Pi C Pj C sij

� (3)

where Ti represents outflows from city i, and sij denotes the total population of
alternative population centers within a given radius of the destination city.

Distance between two cities is calculated as the using Euclidean distance between
each CBSA’s geometric centroid.

3 Results

3.1 Best Friend Network

A series of best friend networks was created for each year (ex. Fig. 1). Most cities
(60%) have no in-degree (degree D 1), 21% of cities have a degree of two (one
outgoing flow, one incoming flow), 9% have a degree of three and 5% of cities have
a degree of six or higher. These larger hubs include the U.S.’s ten largest cities, with
Dallas consistently having the highest degree at over 20 best friend connections.
The best friend network detects the regional importance of more geographically-
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Fig. 1 Best friend network constellations for year 2012. In the network, the size of nodes
corresponds to their degrees using Yifan-Hu’s proportional method in Gephi [29] and each
color represents a separate constellation. Some connected constellations are divided into different
components due to their relatively weak connections, as determined by the community detection
algorithm [25]

isolated cities such as Oklahoma City, Sioux Falls, Salt Lake City, Wichita, Des
Moines, Memphis, Jackson, Grand Rapids, and Little Rock (Fig. 1) in their local
hierarchical systems.

As migrant streams change each year, we can expect some fluctuation in the
network. The average time spent with a best friend is 13.8 years. 504 of 917
cities (55%) have only one best friend for the entire period and 877 (96%) have
at most three different best friends. On average, 110 cities change best friends
each year, a turnover rate of 12% per year. Because the number of different best
friends is low, this turnover rate does not compound at a high rate over longer time
periods (e.g. 15% of cities have a different best friend in 2000 than in 2012). The
strength of a best friendship, i.e. the percentage of migrants sent to a best friend
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city (Eq. 1), ranges from 3.6% (Chicago to Los Angeles in 1992) to 100% for
Mount Sterling, KY to Lexington, KY (1996–1999; 2001) and Big Stone Gap,
VA to Kingsport-Bristol, TN-VA (2006). In general, cities Chicago, Columbus,
OH and Atlanta have the smallest percentages of migrants sent to their best friend
cities.

Crucially, we do not see an increase in the diversity of places to which a
city sends its migrants. We had hypothesized that the rise of the Internet and
mobile technologies in the late 1990s would promote more swirling/churn in the
preferences of the migrants, given the new opportunities to research potential
destinations. With more diverse information, migrants may have experienced other
places, i.e. travelled more, and garnered friends in multiple locales. Yet, our analysis
does not reveal a diversification of movement over multiple destinations at any point
during this time. In fact, we see a steady increase in the average percentage of
migrants a city sends to its best friend, starting at 0.35 in the early 1990s and rising
to 0.37 in the 2010s.

The number of separate constellations and their size remains relatively sta-
ble over time. For each year, there was an average of 105 constellations, each
containing from 2 to 66 cities, with an average size of 8.8 cities. The majority
of constellations are small clusters, with 80% of the constellations comprised of
fewer than 13 cities and 49% comprised of fewer than 5 cities (Fig. 1). Most
constellations are geographically compact (averaging about 130 km), driven in part
by small constellations, especially mutual best friend pairs which limits the average
geographic spread. Notable exceptions include the strong New York City-Miami
connection and any constellation connecting Alaska or Hawaii to the mainland,
as well as some recurring connections between major cities. The New York City-
Miami connection is driven in part by retirees from New York City choosing to
move to a warmer climate (Fig. 1). These migrants are colloquially known as
“snowbirds”.

We next categorize individual nodes based on the following observed motifs:
pairs (both isolated pairs and those pairs within larger constellations), hubs (star
and non-star hubs), spokes (nodes directly connect to hubs and with 0 in-degree),
two categories of trees: ftree hubs (local hubs in a tree motif) and tree spokes (nodes
directly connect to tree hubs and with 0 in-degree)g, and chains (all members in a
chain category) (Fig. 2, Table 1). A node can only be placed into one category. The
categorization is implemented with an algorithm that uses in/out degree, the in/out
degree of their best friend, and the node type of their best friend as input parameters.
We find that most constellations, especially large constellations, have single central
nodes. Since large hubs have more resources, they may be less likely to rely on
other hubs.
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Fig. 2 Graph motifs with geographic examples. When cities are connected to their best friends,
different network motifs arise, including pairs, chains, hubs, stars, and trees. These schematics
illustrate differences between the roles of distinct cities within their regional systems, and what the
regional systems look like as a network of flows

Table 1 Proportions of different types of nodes throughout 21 years in best friend networks

Node types percentage (%) Hubs Spokes Pairs Tree hubs Tree spokes Chains

Best friend 12.1 30.2 8.3 7.3 19.3 22.8
High-income 4.4 20.2 0.9 12.4 26.9 35.2
Low-income 6.5 13.4 2.7 13.9 26.4 37.2

3.2 Comparison to Prevailing Methods

The best friend method highlights the backbone structure of urban hierarchy. Since
the structure is based on migration flows, we compare the best friend method
with related prevailing models, such as the gravity model and radiation model,
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to demonstrate that the urban hierarchy produces some patterns that are not well
explained by population and distance.

Using the most recent data, we find that a parameterized gravity model with a
pre-determined coefficient of friction (“) of 3 predicts about 60% of best friend
(n D 552). The closest city is a city’s best friend 28% of the time (n D 259). The
radiation model predicts the best friend with 39% accuracy (n D 357). We visualized
the best friend network in 2012 (Fig. 3a) based on a fitted gravity model for each
city and the corresponding constellations. Instead of showing various motifs, the
network is dominated by hub-spoke structure. If two cities do not connect in the
data, we do not consider them as candidates for best friend cities using the gravity
model. In other words, cities may have a clear choice given the gravity model, but
if the city did not send any migrants to this attractive choice (or choices), they
connected to their next best choices to which they actually sent migrants.

We also discover cities that “defy” gravity. We normalized the flow weight (w)
by the interaction measured by a fitted gravity model to isolate flows that are
large despite a small interaction estimate. These cities draw origin cities despite
high travel cost (distance) and relatively low population. These networks contain
more long-distance connections than best friend networks, a manifestation of
“leapfrogging” in the hierarchy, and illustrate how migration connects labor forces
to employment opportunities. For example, San Jose, in Silicon Valley, has an
agglomeration of leading technology companies, and connects to faraway college
towns throughout the years (Fig. 3b); Williston, North Dakota, becomes a hub in
the network after oil resources were found in the early 2010s, and spurred jobs and
economic growth.

3.3 High- and Low-Income Routing

The motifs of high and low income networks are collectively distinguished from
best-friend networks. First, there are fewer pairs in the income networks, pre-
sumably because smaller towns that depend on each other in general take more
preferential (and less mutual) routes when income is involved. Interestingly, there
are very few pairs that exchange high-income migrants (0.9%), but three times as
many will be best friends for low-income migrants (2.7%) (Table 1). There are more
chains in the income networks although these chains are shorter. There are more
hubs that are parts of trees in the income networks, indicating that hubs also connect
to other hubs in these networks (Table 1).

There are also differences between low-income and high-income networks. High
income networks have fewer hubs, but these hubs are quite large, as indicated
by in-degree, and draw more distant connections (Fig. 4a), while hubs of low-
income networks have fewer spokes. The high-income network has 39.38 unique
constellations and the low-income network has 51.14 constellations, indicating more
local regionalization and less overall connectivity in the low-income network. The
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Fig. 3 (a) Best friend network in 2012 with best friend cities selected based on a fitted gravity
model. The network is dominated by hub-spoke structure and real world motifs such as trees
and chains are rarely seen. However, our data reveal that best friends do not always choose the
destination predicted by the gravity model. For example, San Jose, California (b) is the hub for
many college towns (this example is derived from the 2010 annual dataset), while Williston, North
Dakota (c) starts attracting many cities after a boom in the energy industry (this example is derived
from the 2012 annual data)

average constellation size is 23.49 nodes for the high income network and 18 nodes
for the low-income network (Fig. 4b). The temporal change of constellation number
and size does not have significant trends; the average distance of best low-income
friends fluctuates while the average distance between high-income friends grows,
suggesting greater mobility (Fig. 4a).

When mapping the constellations onto the geographic boundaries of their
respective cities, we find that the low-income network depicts more local clustering,
i.e. cities within the same constellation tend to be nearby, and also tends to follow
state lines (Fig. 4c, d). Conversely, the high-income network constellations are not
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Fig. 4 High and low income network results. (a) Average edge distance in the high-income
network grows over time, while distances between low-income cities have no clear trend. (b) The
in-degree distribution of nodes in best-high/low-income-friend networks throughout the 21 years
show that the high-income network formed hubs with high degrees, and the low-income network is
marked with more cities with few incoming flows. The top 20 largest constellations using the 2012
data were identified and mapped to their corresponding city in high-income (c) and low-income
(d) networks. Cities with the same colors belong to the same constellations

as contained geographically; cities in many different states often belong to the same
cluster, indicating that neither boundaries nor distance appear to deter movement as
significantly as in the low-income network (Fig. 4c, d).

4 Conclusions

In this study, we proposed a series of methods to study the U.S. urban hierarchy
using 21 years of migration data from the U.S. IRS. We built a single allocation
(best friend) network from all migrant flows, and similar networks highlighting
only high- and low-income flows. Our results showed that the best friend network
did not align well with the gravity and radiation models of urban interaction, and
was distinguished by urban hubs, spokes and chains. Cities also tended to keep a
maximum of three best friends over the time period. The income networks were
marked with stronger hubs (with more spokes), that served in a system of connected
hubs. The high-income network encouraged longer flows, more leapfrogging, and
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exhibited more spokes that directly migrate to hubs that attract high earners
nationwide, such as Cape Coral and Naples, Florida. The low-income networks
contain a few more chains, which may represent that low-income migrants are more
likely to move to nearby cities first and ‘climb up’ to the hubs gradually, which may
result from limited mobility and limited social capital in hub cities.

The biggest limitation of our study is the variation in the meaning of a city’s “best
friend”. For some cities, the best friend is a significant dependent tie as a city may
send all of its migrants to this city, while for others (such as Chicago and Memphis),
the best friend only absorbs about 5% of migrants. The edge that results from both
of these scenarios is indistinguishable in the network. One potential remedy is to
use analytical methods that account for edge weights.

The larger, eventual goals of testing the best friends method is to use it to
(1) unearth ties that may not make sense economically, but may be the result
of interpersonal relationships, and (2) come closer to understanding how flows
affect the places to which they connect. When a city’s migrants are attracted to
a city, we consider these cities to be in a similar functional region—as they are
exchanging the same people between multiple cities. These functional regions
are increasingly geographically disconnected, which should be accounted for in
geographic partitioning exercises and in location-allocation models that use distance
as an input parameter.
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