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Preface

A broad range of concepts and methodologies from complexity science—including
agent-based models (ABMs), cellular automata (CA), and network theory, among
others—have contributed to a better understanding of spatiotemporal dynamics
of complex geographic patterns and processes. Particularly, ABMs have become
ubiquitous in GIScience and a number of related application domains, prompting
some ABM researchers to propose the YAAWN syndrome. Along with ABMs,
much more scaling relations have been found through geospatial big data analytics.
However, such convergence is not unidirectional. Many statistical (social) physicists
have done research on human mobility, urban dynamics, and landscape dynamics,
which have traditionally been the domain of geographers and environmental
scientists. Recent advances in computational technologies such as big data, cloud
computing and CyberGIS platforms, and sensor networks (i.e., the Internet of
things) provide new opportunities and raise new challenges for ABM and com-
plexity theory research within GIScience. With growing accessibility to rich, big
data sources and increased computing power, geographers can simulate dynamic
geographic phenomena in a more realistic fashion and test theories and models
using empirical data. Despite of the utility of complexity theories, adopting those
methodologies properly to the geographic domain is an ongoing research issue.
Challenges include parameterizing the complex models with volumes of georef-
erenced data being generated, scaling the model applications to realistic simulations
over broader geographic extents, exploring the problems in their deployment across
large networks to take advantage of increased computational power, and validating
their output using real-time data, as well as measuring the impact of the simulation
on knowledge, information, and decision-making both locally and globally via the
World Wide Web.

In September of 2016, the Ninth International Conference on Geographic Infor-
mation Science (GIScience) was held in Montreal, Canada, and brought together
approximately 300 participants from around the world from academia, industry, and
government organizations to discuss and advance the state of the art in geographic
information science. Within the context of GIScience, we held a workshop named
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vi Preface

“Rethinking the ABCs: Agent-Based Models and Complexity Science in the Age
of Big Data, CyberGIS, and Sensor Networks.” The scope of this workshop was
to explore novel complexity science approaches to dynamic geographic phenomena
and their applications, addressing challenges and enriching research methodologies
in geography in a big data era. The 1-day workshop brought together experts on
complexity science and social networks in order to discuss novel complexity science
approaches to dynamic geographic phenomena and their applications, addressing
challenges and enriching research methodologies in geography in a big data era.
We had nine lightning talks and nine presentations, corresponding to four short and
five full peer-reviewed papers. We wrapped up the workshop with a very interesting
discussion about the future of agent-based models. As a result of a very productive
workshop, it was decided to publish the major findings as a book within the Springer
GIScience series. Seven selected papers from the workshop, which reflect the
advances on ABM development and implementation, as well as the opportunities
that big data and network theory could bring for a better understanding of complex
systems, have been included in this book.

The research covered by the collection of papers in this volume offers the reader
a possibility to encounter diverse applications of ABMs fully implemented and
tested, through the first three chapters, followed by a fourth chapter that presents an
ABM to identify human migration pathways. Finally, the last three chapters explore
the possibilities of using big data and social networks to parameterize ABMs and
discover the complexities of movement, migration, and urban patterns.

Chapter 1 by Cenek and Franklin describes an ABM system for the management
of stocks and stakeholders of Alaska’s Salmon Fisheries. It uses 35 years of sonar
data to parameterize and calibrate the stock information, combined with interviews
of fishermen, in order to validate the model. Chapter 2 by Bitterman and Bennett
presents and discusses the potential of using ABMs to explore resilience concepts
in an agricultural land use system. The authors suggest a novel approach in terms of
exploring the concept of resilience as an adaptive behavior within a complex system.
Chapter 3 by Taylor and Dragicevic presents a very interesting work applying the
invariant-variant approach for validating an insect dispersal ABM. As evaluating
the performance of agent-based models is notoriously difficult, the presented work
makes an interesting and valuable contribution. Chapter 4 by Arnoux et al. offers a
novel approach to identify migration pathways due to armed conflicts by proposing
an ABM to simulate human decision-making to migrate from conflict areas. Chapter
5 by Sengupta et al. offers a novel perspective about the use of big data in order to
extract movement rules to parameterize an ABM of animal mobility. Chapter 6 by
Liu et al. presents a very interesting work using spatial network visualizations and
IRA database to understand migrations across the United States, revealing the urban
hierarchy by investigating the directional network structure of US cities created
based on the US migration patterns. Last but not least, Chapter 7 by Koylu presents
some innovative ideas related to the leveraging of social media to understand
human interactions at a level that was difficult or impossible to do using traditional
interaction data.

http://dx.doi.org/10.1007/978-3-319-65993-0_1
http://dx.doi.org/10.1007/978-3-319-65993-0_2
http://dx.doi.org/10.1007/978-3-319-65993-0_3
http://dx.doi.org/10.1007/978-3-319-65993-0_4
http://dx.doi.org/10.1007/978-3-319-65993-0_5
http://dx.doi.org/10.1007/978-3-319-65993-0_6
http://dx.doi.org/10.1007/978-3-319-65993-0_7
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Developing High Fidelity, Data Driven, Verified
Agent Based Models of Coupled
Socio-Ecological Systems of Alaska Fisheries

Martin Cenek and Maxwell Franklin

Abstract Alaska salmon fisheries are a source of commercial revenue, renewable
subsistence resource, cultural identity, and recreational destination for Alaskans,
native populations, and out of state eco-tourists alike. We constructed a high fidelity,
adaptable, data-driven agent based model that generalizes the socio-ecological
dynamics of Kenai River, Alaska. Interactions among the model’s agents can be
altered to study the impact of fishing regulation changes or salmon run-timing
dynamics. Agents are driven by stochastic principles derived from 35 years of
integrated data including salmon runs, municipality management reports, and
Alaska Department of Fish and Game management reports. Longitudinal and
seasonal correlations between the model’s simulation outputs and the reported
system measurements are used to validate the model.

Keywords Socio-ecological dynamics • Fisheries • Agent-based model • Data
driven

1 Introduction

Alaska salmon are a source of commercial revenue, renewable subsistence resource,
and cultural identity for the Alaska Native populations as well as a source of
recreation for Alaskan residents and out of state visitors. The commercial salmon
harvest alone exceeds 400 million a year in economic revenue [2]. Building a
high-fidelity, verified model of the coupled social and ecological systems, salmon
and society, is necessary to understand the dynamics of individual systems and the
mutual interplay between the fisheries and society. The model is intended to be
used as a decision support tool for effective governance and resource management.
Fishery managers can test the outcomes of a proposed policy using scenario-
based testing and simulations, or study the impact of changes to the social and
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2 M. Cenek and M. Franklin

ecological drivers on the coupled systems dynamics. We constructed an ABM that
accurately generalizes both the salmon runs and the annual harvest by all major
stakeholder groups. The model design includes fusion of biophysical and social data
sources, translating the measured system dynamics into agents and environments,
measuring the outputs of the constructed model across multiple inter- and intra-
system dynamics, and finally calculating correlations between the reported system
dynamics and the measured model outcomes.

The coupled socio-ecological systems do not have clearly defined geo-physical
or social boundaries, nor are they defined by a set of descriptive inter- and intra-
system interaction dynamics or common units of dynamics measurements. First,
we collected, fused, interpolated and inferred system dynamics from multiple data
sources. The resulting data-sets establish biophysical and behavioral observations
that were used to model individual agent behaviors and interactions with other
agents and the environment. The scope of data-collection was limited to support
investigation of multiple hypotheses. Next, we defined both longitudinal and sea-
sonal correlation metrics to measure the model’s performance against the collected
data-sets. Finally, we developed a statistically based computational framework that
uses the recorded agent behaviors as input and analyzes them to produce a state-
space transition network that captures the agents’ prototypical behaviors exhibited
during the model execution. Currently, we are adapting the Geometry of Behavioral
Spaces Framework to measure the model’s sensitivity to the parameter changes that
drive the ABM. Since the analysis only concerns the agent behaviors, the scenario
based experimentation can be implemented as changes to multiple model parameters
that drive the agent behavior.

We built the ABM to support the analysis of several hypotheses that include
understanding of how altered salmon runs may affect personal-use fisheries,
how effective the various fishermen groups are to manage the seasonal salmon
escapement goal, and how a policy change for commercial fisheries may affect sport
fisheries. Although the model currently uses data-sets that describe the Kenai River
fisheries, the ABM is parametrized and data driven so it can be easily altered to
model most of the fisheries given the availability of data. To support the model’s
primary goal to study the nature of coupled socio-ecological system behaviors, the
model’s simulation area is not spatially explicit, but instead the watershed of interest
is generated at random according to the overall watershed characteristics. This
cardinal notion of space is used to simply limit the agent interaction opportunities
without spatially over-fitting model behavior.

The model’s agents represent two species of salmon and four types of fishermen.
An average of approximately 3:7 million Sockeye salmon have been returning to the
Kenai River in recent years to spawn, requiring the maximum sustainable harvest
of approximately 3:0 million salmon, and allowing for approximately 700; 000

salmon to escape for spawning. Chinook salmon on the other hand are coveted
trophy fish with returning numbers in tens of thousands. The fishermen groups
represented in the model include the personal-use sport fishermen in the upper
reaches of the watershed and the dipnetters limited to netting the fish from the
river mouth up to approximately river mile 4 [2]. The commercial fishery agents
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represent the drift gillnet fleet operating in the ocean waters of the Upper Cook
Inlet (UCI) and the set gillnet fleet that are permitted to anchor nets from the North
and South beaches adjacent to the Kenai River mouth. The local interactions of
stakeholder agents with each other and the landscape give rise to system wide
complex dynamics. These patterns include the total number of salmon allowed to
‘escape’ and successfully spawn (also called the escapement goal) [10], the annual
harvest counts for various fishermen groups, and more complex metrics such as
catch per unit of effort (CPUE). Fishery managers use escapement goals for the
chinook and sockeye salmon in choosing whether to issue an emergency opening
or closure [2]. The different run sizes and timing dynamics of the chinook and
sockeye salmon and their combined escapement goals represent a complex goal that
the Alaska Department of Fish and Game (ADFG) managers attempt to meet every
season.

Building an accurate model of the coupled systems dynamics has to integrate
measured data sources from (1) bio-physical measurements of the salmon runs, (2)
the harvest data from all stakeholders involved in the fisheries, and (3) the spatial-
temporal coupling between the bio-physical and social dynamics. The ABM design
illustrates how we de-coupled highly interconnected systems, disambiguated the
collected longitudinal measured dynamics, and inferred the information about the
fishermen behavior that is not known, but is included in the reported coupled system
dynamics.

2 Determining Socio-Ecological Dynamics

2.1 Reconstructing Salmon Run-Timing Dynamics

Calculating the returning salmon counts and the run-timing dynamics is a mosaic
process of compiling, dis-aggregating, and adjusting data from multiple data-
sources. The biophysical salmon data is measured from in-river sonar and the
genetic sampling of randomly selected harvested salmon in UCI [8]. The mea-
surement of the social system’s interaction with the fisheries is reported as the daily
Sockeye harvest and Chinook by-catch counts from all stakeholder groups.

The Sockeye salmon run-timing dynamics at Kenai River are measured at a single
point by Dual Frequency Identification Sonar (DIDSON); currently, the Sockeye
salmon sonar is located at river mile 19 and the Chinook salmon sonar at river
mile 14 [13]. The species counts are calculated by processing the sonar video
feeds from both river banks using Adaptive Resolution Imaging Sonar method.
Additional information about the in-river salmon populations are collected from
random sampling by netting [2]. Published sonar counts are not adjusted for the
salmon harvested downstream at the mouth of the river and in Upper Cook Inlet.
To appropriately seed the returning salmon agents in the model, the run-timing
dynamics from the sonar data must be adjusted for the harvested salmon in the
ocean and the Kenai River prior to the sonar counter.



4 M. Cenek and M. Franklin

To model accurate salmon agents counts, we reconstructed the temporal distribu-
tion of the salmon run by taking 35 years of reported sonar counts as the baseline,
adding the dipnet harvest, and adding the salmon harvest of the set and drift gillnet
fleets. The genetic sampling of randomly selected salmon caught by the drift gillnet,
set gillnet, as well as test fisheries at the mouth of Upper Cook Inlet is used to
determine how much salmon caught by the off-shore fishermen were returning to
the Kenai River watershed instead of the rest of the inlet tributaries [4]. Time frames
of these harvests are reported alongside estimated harvest from genetic sampling by
gear type.

Salmon runs were grouped into four categories by their overall characteristics
of run-timing dynamics. We used the sonar records to categorize the run-timing
patterns using feature-scaling to filter daily sockeye counts with values x0 � 0:5

(Eq. 1). The temporally aligned and weekly binned series of filtered sonar data for 35

years were mutually compared. The distributions with high similarity were grouped
into the four resulting prototype categories. Averaging the series in each prototype
category produced the generalized baseline time-series distribution of the salmon
runs with variance margins (Fig. 1).

x0 D .x � min.x//=.max.x/ � min.x// (1)

Using estimates of Kenai salmon commercial harvest from genetic sampling, we
calculated the adjustments to the baseline sonar counts for each week of the season
from July 1 to August 15 for reported years 2005–2011 [4]. The same proportional
adjustments were inferred for the years without genetic sampling conducted. Similar
to the commercial fisheries, the seasonal dipnet harvests for the fishing season from
July 10 to July 31 were added to the generalized sonar distributions without using
genetic stock identification since all salmon harvested were slotted for spawning in
the Kenai River watershed.

The reconstructed run-timing dynamics combined the sonar baseline counts,
Kenai River proportions of the commercial salmon harvests, and the dipnet harvests
(and all dynamics were aligned for temporal lag before addition) to generate the
salmon agents entering the simulation. The resulting distribution is scaled up and
down to reflect the variance in the overall salmon run size. Each ABM simulation
first selects the prototype category, after which the number of salmon agents are
randomly generated using the generalized distribution within the variance margins.
The in-river salmon escapement is measured by the sonar, where as the salmon
escapement is measured in the streams of the upper watershed. Therefore the
effective escapement is calculated as the difference of the sonar counts and the
salmon harvested by the personal and commercial sport fishermen. By adjusting the
run-timing dynamics of the model based on harvest timing, reliance upon explicit
spatial parameters of the system is reduced since the stakeholders in the simulation
are ensured an opportunity to harvest correctly timed and seeded salmon abundance
regardless of spatial attributes in the model relative to the system. This allows for
the generalized watershed setting used to simulate the fishery dynamics upon in our
model.
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Fig. 1 The feature scaling with x0 � 0:5 classification of each sockeye salmon run-timing
dynamics for 35 years of reported sonar data into one of four characteristic classes. Each plot shows
the averaged run distribution and the standard error. The run types III, IV and III-IV are named after
the peak location in the returning salmon run in week 3, 4, 3–4 of the season respectively. The type
III-IV-V has multiple peaks in weeks 3, 4, and 5 of the season
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Fig. 1 (continued)
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2.2 Coupled Socio-Ecological Systems Dynamics

Salmon harvest represents the coupling between the fishermen effort to catch fish
and the salmon run, in addition to other factors such as gear choice, fishing location,
and fishing efficiency. The harvest reports are the aggregate socio-ecological metrics
used to express the interaction dynamics between the social and ecological systems.
Catch Per Unit of Effort (CPUE) is one such measure. CPUE can be used as an
index of both stock abundance [10, 11] and stakeholder effort [9]. We decoupled
the temporal CPUE distributions into the constituent system dynamics and using
the previously reconstructed salmon run-timing distributions, we were able to infer
the social behavior that was not previously measured or reported. Building the
interaction dynamics of the model’s fishermen agents is a reverse inference process.
The agents have to have the same behavior as the social behavior inferred from
CPUE and when the model’s fishermen agents interact with salmon agents, the
correlation between the model’s CPUE output and the measured CPUE must be
high.

The units of CPUE measurements are different for each stakeholder group due
to harvests reported at different frequency and fidelity. Dipnet CPUE is reported
for each day fished and recorded on household level personal-use dipnet permits.
The permits reflect the household size and household seasonal salmon quota. After
decoupling dipnet CPUE, designing the dipnet agents’ behaviors, and collecting
the CPUE data from the model, we calculated the correlation between the reported
CPUE by ADFG and the output CPUE from the model simulations. An R2 D 93%
correlation value for dipnet effort and an R2 D 84% correlation for dipnet harvest
indicates the model accurately captures the fundamentals of the coupled socio-
ecological system dynamics of the dipnet stakeholders.

The CPUE for the drift gillnet fisheries is reported as a cumulative delivery or
harvest per fishing season day. Dis-aggregating the cumulative CPUE dynamics is
needed so the model can create the correct number of unique drift gillnet agents for
each day of the commercial fishing season with appropriate variance of each vessel’s
probability to catch salmon. Weekly binned, feature scaled and averaged drift-gillnet
delivery dynamics in Fig. 2a. were extracted from drift-gillnet CPUE delivery data
to generate the number of drift gillnet fishermen agents in the model, while the
CPUE harvest was used to calibrate the baseline probability of drift-gillnet agents
harvesting the salmon agents. The variance in the CPUE deliveries distributions
were used for stochastic generation of the model’s drift gillnet agents. We used two
different CPUE measures because they reflect unique characteristics of stakeholders
that are translated to the agent parameters and they cannot be used synonymously.

Dis-aggregating drift gillnet CPUE delivery data allowed for inference of social
behavior of drift gillnet agents from delivery dynamics. Disambiguating and
inferring the social system dynamics of set gillnet commercial fishermen used the
same analysis principles for the drift gillnet fleet. The set gillnet stakeholders report
harvest CPUE and have similar run-timing dynamics.
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Fig. 2 Historical data on drift gillnet catch-per-season-day were decoupled and binned by week
into constituent delivery and harvest by date dynamics. Sockeye deliveries for drift gillnet CPUE
with error bars representing standard error are in (a). Harvest and deliveries are not synonymous
as witnessed in (b)
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2.3 Reconstructing the Social System’s Dynamics

Similar to reconstructing run-timing, social system dynamics have to be assembled
from a variety of different data sources. Timing of stakeholder effort is determined
by factors including daily deliveries, salmon harvest, annual permits fished, number
of days open for fishing, and other services utilized such as parking permits or total
revenue generated from the day use permits for dipnet fishing in the Kenai county.

Drift gillnet effort and associated variance is inferred from the feature-scaled,
weekly binned, mean delivery data (Fig. 2a). Effort as a function of delivery timing
was inferred from the exponential correlation of mean daily drift gillnet deliveries
with mean daily drift gillnet harvest across 2005–2014 (Fig. 2b). The exponential
regression suggests that deliveries and harvest may be decoupled and the variance
in delivery data may capture drift gillnet effort. Due to the run-timing dynamics and
effort dynamics for the set gillnet fleet being similar to the drift gillnet fleet, set
gillnet effort was modelled with a similar method.

Modelling of commercial fishery stakeholder behavior has previously been con-
ducted with both profit and utility maximization models as well as foraging theory
models [14]. The behavior of dipnetters at the Kenai River cannot be modeled by
profit and utility models since they participate in personal-use subsistence fisheries
of no-profit value. We propose a happiness function to drive dipnet effort and
behavior. The Kenai county management reports publish the boat launch counts and
revenue, the number of day use permits sold, and the overall daily dipnet revenue
[1]. The ADFG published the management reports with the annual dipnet harvests
from self-reported harvest counts for 1996–2014 with daily harvests for 2011–2014
[12]. We cross-correlated the daily harvests with the county revenue reports and the
annual number of permits fished to model the number of agents fishing for a given
period of the season. We found the dipnet effort temporal distribution parallels the
observed historical pattern of sockeye run-timing. In particular, the effort increases
until approximately mid July, then effort starts to slowly decline. We used this
reported behavior to model the temporal behavior of dipnet agents. The dipnet
agents fish for a number of days determined by the happiness function (Eq. 2).
Happiness is affected by h D current daily harvest, hh D historical or expected
harvest for a day, hp D previous daily harvest, hl D mean daily harvest of local
stakeholders, m D a motivation factor unique for each agent, Hl D mean happiness
of local stakeholders, Hp D previous happiness, and the final term is a decreasing
factor with d D number of days fished by the stakeholder. The motivation factor is a
constant determined for each agent using a random-normal distribution with a mean
of 0:30 and a standard deviation of 0:10.

H D ....h=hh/ C .h=hp/ C .h=hl//=3/ C m/HlHp.7=d C 7:75/ (2)

The agents in our model follow a fusion of Cartesian and stochastic fishing
strategies similar to the theoretical fishing strategies proposed by Cabral et al.
[6]. These fishing strategies are representative of either risk-averse or risk-loving
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fishermen [3, 5, 6]. Agents are required to pass a Cartesian threshold before moving
to a new random location during the simulation. This balance of risk-averse and risk-
loving behavior avoids the bias of stakeholders in the simulation towards entirely
risk-averse or risk-loving behavior. The ABM’s Cartesian threshold is determined
by an agent decision tree that compares the agent’s daily current harvest to the
mean daily harvest of local agents, historical or expected daily harvest, and previous
daily harvest parameters. If an agent’s current daily harvest is below any two of
the aforementioned parameters, agents randomly change location to a new fishing
ground.

3 The Model

A data driven model must strike a balance between generalization of trends in
recorded data and over-fitting the model to describe the recorded data instance. To
achieve this balance, the model’s behavior uses stochastic sampling with variance of
generalized system behaviors to capture the trends in recorded data. To ensure the
model did not over-fit the data, the model was constructed using a subset of available
data for training while the model validation tested how well the model predicted
all recorded data. To validate the model’s predictive ability, we intend to compare
how well the model predicts dynamics of individual or coupled system dynamics
that were not used during the model construction and the dynamics reported by the
management agencies.

3.1 Model Validation Using the Coupled Socio-Ecological
Systems Dynamics

Model validation primarily uses the coupled system dynamics since they reflect
the accuracy of model construction in both systems. For example, the fishermen
effort and harvest comparisons by season include both the social behavior of
fishermen and the ecological behavior of salmon run-timing dynamics. The model
uses the reconstructed salmon run-timing seasonal distributions to generate the
salmon schools entering the simulation. The fishermen agents are generated using
the recorded and the inferred counts. The interactions between the salmon and
fishermen agents are measured in the model as seasonal harvest distributions using
several measurements that include: cumulative harvest counts per stakeholder, catch
per unit of effort of the stakeholders, and harvest by stakeholder groups relative to
season run-size.

The model is validated by calculating the mutual correlations between the
reported data by the management agencies (ADFG, Kenai Borough) and the
measured distributions from the model’s output. The sonar instrumented salmon
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counts are used to verify the cumulative impact of commercial set and drift gillnet
fleet combined with the dipnet harvest. Figure 3a and b shows the validation of
the individual stakeholder group behaviors and salmon behaviors in the context of
dipnet effort and harvest by correlating measured data and the model’s output within
each system of the coupled systems dynamics. For each year, the model was seeded
with the appropriate number of stakeholders and returning run dynamics to assess
the model’s accuracy at capturing observed social system dynamics and ecological
dynamics. Figure 3a, b shows both intra-system dynamics metrics with correlation
values R2 � 0:83.

Coupled socio-ecological dynamics are tested by comparing the seasonal CPUE
distributions of the stakeholder groups from the simulations with CPUE from the
ADFG reports. Annual CPUE is a measurement of stakeholder effort and may be
partially reflective of salmon abundance and other social and ecological factors
affecting salmon harvest amounts (stakeholder or fleet efficiency, gear used, fishing
location, run-timing dynamics, etc.). Figure 3 illustrates an example of social and
ecological dynamics by comparing the recorded (c) ADFG dipnet CPUE with the
recorded (d) model dipnet CPU for 2002–2014. The respective correlations of
R2 D 0:77 and R2 D 0:73 for harvest and effort dynamics measure the model’s
ability to accurately capture the timing of salmon abundance and timing of dipnet
effort, in addition to other factors that affect harvest mentioned above. In addition to
assessing socio-ecological dynamics, CPUE validates the inference of the missing
social system dynamics from the coupled-system dynamics. With data available to
reconstruct run-timing dynamics, deviations of model CPUE from reported CPUE
are due to run-timing error and/or social dynamics being our best heuristic effort.
Large deviation from reported CPUE is then likely due to the inferred social
dynamics. This allows for experimentation with different drivers to re-assert the
social dynamics until model CPUE variation lies within the bounds of variability
introduced by run-timing dynamics. Set gillnet dynamics in the model are also being
constructed using human developed heuristics.

To test the model’s ability to generalize the system behavior of both social
and ecological systems, we executed the model independently with a new random
seed each time generating the salmon run-timing dynamics by randomly sampling
the biased roulette wheel of four run-timing prototypes of the past 35 years.
Overall salmon abundance was randomly determined from the range of values
typically observed since 2002 for purposes of comparing generalized run results
with previous validation-based runs from 2002 to 2014 (2–6.5 million sockeye
salmon returning, results not shown).

4 Behavioral Sensitivity Analysis

We conducted a series of stakeholder engagement meetings to solicit input from the
resource managers, scientists, policy-makers, and economists to formalize plausible
future scenarios. These scenarios are then translated to a range of possible values to
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Fig. 3 Validating Social System Dynamics of (a) dipnet effort and (b) dipnet harvest. Seasonal
effort and harvest data from the model output and historical records were cross-correlated to
validate the social dynamics of the model. Ecological System Dynamics are also reflected in dipnet
harvest (b). Sub-figures (c) and (d) show validation of the coupled system dynamics using (c)
dipnet CPUE from data and (d) the model’s output. The seasonal data of CPUE used permit days
fished versus harvest
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Fig. 3 (continued)

the model’s variables. The model is then executed for all possible value permutations
while the ABM’s agent behaviors are recorded. The model executions are evaluated
by statistical analysis of the model’s executions and by comparing the behaviors of
the model’s agents.
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Measuring model outcomes with simple metrics loses the information about how
the goal was met, or how the nature of interactions between the model’s agents
changed to produce the system-wide (outcomes) dynamics. Visually inspecting each
model behavior is infeasible for the combinatorial parameter space. We developed a
statistical based toolbox called Geometry of Behavioral Spaces (GOBS) that records
agents’ behaviors independent of the knowledge of the parameter space that drives
the model and produces a state-space transition network that characterizes the agent
behaviors [7].

A model simulation area is tessellated into regular orthogonal or irregular
Voronoi cells to compress space. Next, each agent logs its movement when crossing
a cell boundary. The statistically based framework analyzes the recorded agent
trajectories and detects common behaviour patterns (behavioral primitives) in the
recorded trajectories. The final step is to construct a probabilistic state-space
behavioral network that captures how likely an agent in a given behavioral primitive
is to stay in the same pattern of behavior or to transition to a different behavioral
primitive. Analyzing a model execution using the GOBS framework provides a
tunable multi-scale view of agent behaviors, quantitative and qualitative comparison
of multiple models, and a behaviour based (rather than a parameter or a simple
metric) analysis. The GOBS computational framework is used to understand the
adaptive capacity and conduct the sensitivity analysis of the model’s coupled system
dynamics. The framework analyzes how the agents behavior changed with the
alteration of parameter values.

5 Conclusions and Future Work

We described a construction of a high fidelity ABM from data sources with high
diversity, unknown accuracy, and various reporting frequencies. We constructed
collections of temporal distributions that described the individual social and eco-
logical system dynamics as well as the coupled system dynamics. The regressions
between the data collections representing instrumented measurements and the
model’s outputs measure the accuracy of the model’s construction in generalizing
the socio-ecological systems. The data collections from instrumented measurements
often contained multiple distributions describing the same observed phenomena. By
cross-correlating these equivalency distributions, we performed manual ensemble
learning to establish trustworthiness of each source distribution.

Data collection initiatives at Kenai Peninsula are crucial to understand the
fisheries dynamics. The biophysical data collection sites generate data that is being
reported on a daily to annual basis, and as new algorithms are developed the
historical data are continuously recomputed and adjusted. Multiple data sources
report the same phenomena, which allowed us to isolate the individual system
dynamics, infer the non-existent system dynamics, validate the trustworthiness of
data-sets, and define the socio- and bio-spatial boundary of the model study area.
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The ABM construction generalized the longitudinal coupled social and ecological
trends for further studies of system sensitivity or impact of individual drivers of
change on the fisheries.

The ABM is an adaptable, data-driven platform that can be instantiated with data
from another fishery for scenario based studies. The ecological changes observed at
different locations will be used to alter existing dynamics to study systems’ adaptive
capacity and sensitivity. The utility of the ABM as a decision support tool will allow
fishery managers to test plausible future scenarios by using observed changes to
spatial-temporal dynamics from a different fishery to Kenai.

Future research includes implementing plausible future scenarios identified in
a series of participatory stakeholder engagement meetings to understand how the
coupled system dynamics will change in each scenario. The social scenarios include
using dipnetters as a means for managing escapement, alteration of commercial
gillnet fishing gear for reducing non-target species by-catch, and using sports
fishermen as a means for controlling escapement. The ecological scenarios include
compressing the salmon run duration by 2 weeks while maintaining the abundance
and inversely keeping the overall dynamics while reducing the overall salmon
abundance. Finally, we will use the statistical toolbox (Geometry of Behavioral
Spaces Framework) to analyze agent behavior to understand system outcomes and
model changes in terms of agent behaviors.
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Leveraging Coupled Agent-Based Models
to Explore the Resilience of Tightly-Coupled
Land Use Systems

Patrick Bitterman and David A. Bennett

Abstract This chapter argues that agent-based models (ABMs) possess an inherent
advantage for modeling and exploring the general and specified resilience of social-
ecological systems. Coupled systems are often complex adaptive systems, and
the ability of ABMs to integrate heterogeneous actors, dynamic couplings, and
processes across spatiotemporal scales is vital to understanding resilience in the
context of complexity theory. To that end, we present the results of a preliminary
stylized model designed to explore resilience concepts in an agricultural land use
system. We then identify strengths and opportunities for further ABM development,
and outline future work to integrate empirically-parameterized agent behavioral
rules with robust biophysical models to explore resilience and complexity.

Keywords Resilience • Agent-based modeling • Complexity • Adaptive
capacity

1 Introduction

Change in social-ecological systems is inevitable. These changes may be a result of
new or increasing environmental pressures (e.g., increased precipitation variability),
or a response to technological, political, or economic developments. Whether
gradual or abrupt, purposeful or unintended, shifts among alternative system states
can lead to new configurations of social and physical landscapes, accompanied
by changes in key properties (e.g., stability, sustainability, environmental quality,
productivity) that describe a system’s function, its relationships with other systems,
and its desirability to humans. The social-ecological resilience paradigm provides a
useful framework to conceptualize the breadth of potential system states, transitions
among them, and their impact on environmental outcomes and human well-being.
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However, in complex, adaptive, and tightly-coupled systems with strong linkages
between environmental function and social well-being, this view of resilience has
proven difficult to operationalize due to the complicated and uncertain nature
of human decision-making. Agent-based modeling techniques, and more broadly
coupled modeling and GIScience, are well-positioned for operationalizing this
complex view of resilience due to their ability to handle heterogeneous actors,
adaptation, dynamic couplings, and processes that reach across time and space and
spatiotemporal scales. CHANS-oriented agent-based models (ABMs) have been
shown useeful in modeling non-linear processes, feedbacks, lags, heterogenity, and
general resilience in complex, coupled systems [1]. The objective of this chapter
is to demonstrate how agent-based models, when coupled with social-ecological
resilience theory, can efficiently and effectively explore alternative system states and
guide policymaking. In this chapter, we describe initial work designed to explore
some central concepts from resilience theory using a simplified ABM of agricultural
land use in shifting policy and climatic contexts. We then discuss hurdles to fully
implementing such models in the search for resilient and sustainable states, and
identify opportunities for future work to address those obstacles.

2 Resilience and Complexity

Systems in which human activity and ecological function are tightly linked, whether
termed social ecological systems (SES) [2], coupled human and natural systems
(CHANS) [3], or otherwise [4], exhibit complexity resulting from the linkages and
feedback processes among systems. Traditional models of resilience in ecosystems
have typically employed differential equations and isoclines to determine alternative
stable states created by environmental and anthropogenic perturbations [5, 6].
Geographic applications generally focus on environmental hazards [7], metrics of
exposure and response [8, 9], and adaptive management [10, 11]. However, most of
the current geographic methods provide only snapshots in time of a system defined,
for example, by US Census variables and enumeration units, and do not incorporate
underlying key processes. Although these different epistemological perspectives and
disciplinary traditions vary in their approaches to addressing overlapping questions
of resilience, sustainability, and vulnerability, there remains general agreement that
their central challenges lie in the analysis of the linkages among systems [2].

Resilience has taken on many meanings depending on application or field,
and has been capably and thoroughly reviewed in many contexts [8, 12–14].
More recent work has acknowledged a multiplicity of resilience definitions, and
effectively argued for a more open and holistic, though structured, paradigm for
the purposes of resilience assessment and measurement [15, 16]. For example,
resilience thinking can be applied in qualitative assessments of high-level policy
and governance in rural social, economic, and environmental changes [17]. More
narrowly, ecological resilience generally addresses the ability of a system to absorb
a disturbance and maintain its structure, function, and identity [18], meaning that
if a new state is reached and maintained, the resilience of the previous system state
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was exceeded. While termed “ecological” due to disciplinary roots, this resilience
paradigm integrates the bidirectional feedbacks linking human wellbeing and
environmental function. There are essentially two broad methodological approaches
to measuring this form of resilience: (1) the amount of disturbance to which a
system can be subjected, and (2) the length of post-perturbation recovery time before
dynamic equilibrium is restored [13]. To operationalize resilience in a broader,
integrative social-ecological perspective, we must place the system’s current and
potential states, as well as relevant perturbations, in a specified context. Such
a view of resilience sets SES within a complex hierarchy of nested, connected,
adaptive, and constantly changing systems, termed panarchy [19]. In this panarchy,
connected systems pass materials, energy, or information across scales and at
different stages of the adaptive process, influencing their resilience. These are
aspects that a specified view of resilience focused on “of what to what” questions
attempts to address [20]. In contrast to a specified approach, the general view
of resilience considers the unknown disturbance, and emphasizes the complex
interactions, uncertain outcomes, and the potential for surprise [21]. Connections
between general and specified views are found in the adaptive capacity of SES,
also termed as adaptability [22, 23]. Adaptability refers to the ability of actors (e.g.,
individuals, groups, institutions) within the system to manage resilience and shape
outcomes at various scales within the nested systems. It should be emphasized,
however, that resilience is not necessarily a desirable property, as efforts to increase
it may inadvertently lead to “lock in traps” and maladaptive states [24, 25]. Further,
whether resilience is considered desirable is an inherently subjective judgement,
and should consider the many complex ways human well-being is connected to
ecological function and socio-political structures and dynamics.

A social-ecological perspective of resilience acknowledges that SES are complex
adaptive systems (CAS) [26, 27]. CAS possess an evolving structure, aggregate
behavior, and actors with the ability to anticipate consequences of their actions [28].
The resilience of SES may stem from the aggregate behavior of individuals, the
effects of top-down policy instruments, or the transfer of materials or capital from
one location or scale to another. Therefore, resilience is inherently a geographic
problem and complexity problem, as the spatial structure of both the system and
the disturbance can greatly influence the impact, response, and recovery to a
perturbation [29]. Similarly, the network topology of connected system components
at finer scales, and of whole systems at broader scales, can affect the flow of
coping capacity and recovery functions, directly resulting in shifts in resilience [30].
Along these connections collective behavior, information processing, and adaptation
strategies form, generating non-linear processes from the resultant legacy effects,
path dependency, and spatial and temporal lags in the SES [31–34]. Accordingly,
we argue that ABMs are particularly appropriate for exploring the resilience of
coupled systems. ABMs can represent heterogeneous actors on a landscape and at
different scales [35], can integrate context into decision-making [36], and through
repeated simulations, can produce metrics identifying expected outcomes and
unlikely shifts in state [37, 38]. More importantly, ABMs can facilitate simultaneous
examination of the specified resilience of individuals and groups to spatially-explicit
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perturbations, and of general resilience emerging from agent-agent and agent-
environment interactions [39, 40]. What follows is a description of a stylized model
designed to explore the resilience and outcome spaces of a small watershed in
Eastern Iowa, with the intent to expand the model in spatial scale and complexity
based on lessons learned from the exploratory process and survey data.

3 Preliminary Modeling Methods

Our area of interest is the Iowa-Cedar River Basin (ICRB), which covers approxi-
mately 33,000 km2 of Eastern Iowa and a small portion of southern Minnesota in the
Midwest U.S. Land use in the basin is dominated by intensive agriculture, with 70%
of land use devoted to either corn or soybean production (Fig. 1). The ICRB has
recently experienced multiple extreme flood and drought events [41], and is at the
center of regional and national issues concerning the economic and environmental
costs of nutrient run-off, soil loss, and water pollution. To limit computational
overhead, our preliminary study focuses on the Clear Creek Watershed (CCW), a
highly-studied and heavily instrumented [42–44] sub-watershed in the ICRB.

To explore resilience within the SES, we constructed a stylized ABM of farmer
land use, economic and environmental drivers, and outcomes coupled with relatively
simple biophysical models of crop growth, run-off [45] and soil loss [46]. The
model is custom software written in the Java programming language (JDK 1.8.0),
and all analysis and visualization is performed in the R 3.2.3 software [47]. The

Fig. 1 Location of the Iowa-Cedar River Basin within the state of Iowa. Land use in the ICRB is
dominated by corn and soybean agriculture, covering approximately 70% of all land in the basin.
Location of the Clear Creek Watershed shown in the southern portion of the ICRB
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purpose of the model was to better understand how broad-scale shifts in climate and
policy might affect the performance and resilience of individual farmers, potentially
affecting environmental outcomes and resilience at the watershed or basin scales.
While a complete model description, documentation, and OpenABM.org link can
be found elsewhere [48], we present here a brief sketch of the model’s structure and
function. Farm fields are the basic spatial unit of analysis in the model, and multiple
fields comprise a farm, which is managed by a farmer. Each field is instantiated
from common land unit data provided by the National Agricultural Survey Service
(NASS). The primary class of agents in the model represents these farmers, each
of whom is assigned a set of fields to manage using prescribed decision rules. In
the absence of disturbance, the model proceeds in a straightforward manner. At
an annual time step, farmer agents attempt to make profit-maximizing land use
decisions by integrating information from past performance, market prices, and field
characteristics. Crop prices are based on information from April 2015 [49], while
switchgrass prices are instantiated at zero but are modified according to scenarios
described later. Transition costs are estimated from Iowa State University extension
data [50], and crop suitability ratings are used to provide yield estimates (USDA
2013). Farmer agents then implement their decisions, modifying field-level land
use, and incurring costs. Fields then differentially accrue biomass according to land
use and land suitability. Finally, farmer agents harvest biomass at the end of the
season, sell at market prices, and balance their accounting ledgers, amassing profits
(or losses) for their operation and collecting insurance indemnities on a portion of
crop losses. If the profitability of a farmer agent is negative for three consecutive
years, they are removed from the simulation. The model includes minor stochastic
variability for crop yield [51], prices, and costs to approximate system uncertainty
and variability.

The model, while parameterized with empirical land use data and realistic
parameters, is not intended to be prescriptive, but rather to explore connections
between the specified resilience of individual agents and general resilience concepts
(e.g., diversity, coping capacity) at the system scale. The execution of the model
as briefly described above and more fully in [48] provides basic estimates of
system stability and sensitivity to initial conditions, as shown in Fig. 2. Here, we
performed a grid search through an input space of commodity prices and subsidies
to plot the distribution of the model’s outcomes in a state space defined by mean
net profitability per agent and landscape diversity, as measured by the Modified
Simpson Diversity Index (MSIDI) [52]. MSIDI is one measure of landscape
diversity (e.g., Shannon Diversity [53]), but we use MSIDI as its interpretation is
more straightforward. The value of the MSIDI is defined as the negative natural
logarithm of the probability two randomly selected patches belong to the same
land cover type. Each point in the state space corresponds to a simulation outcome,
and thus to one realization of the CCW landscape. The Fig. 2 state space is not a
measure of resilience however, as the model at this point lacks any perturbations
or functional coping mechanisms. The model is expanded by introducing scenarios
that modify policy, economics, and climate by creating: (1) two levels of simulated
drought perturbations, (2) the presence/absence of an artificial market for the

http://openabm.org
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Fig. 2 A stability landscape of simulation outcomes and corresponding land use in the CCW. Two
attractors are found in the state space. Higher MSIDI values indicate a more diverse landscape

cellulosic biofuel switchgrass, and (3) three levels of income reimbursement for
losses via the federal crop insurance program. In combination, these modifications
to the model produce 12 distinct scenarios, and simulations were performed 1000
times for each scenario, resulting in 12,000 total model runs. Once a model run
reaches dynamic equilibrium, it is perturbed with a simulated drought, reducing
the amount of biomass in each farm field. The spatiotemporal distribution of
drought intensity is stochastically varied between runs of the model to produce a
distribution of possible outcomes. We present the simulation results of one such
scenario in the state space in Fig. 3, which is parameterized using the lowest
level of insurance reimbursement, the presence of an artificial land use market
for switchgrass, and relatively severe droughts. These simulation results provide
preliminary insight into possible alternative states, and to the resilience of both
farmer agents and landscape configuration within a given policy, economic, and
climatic context.

4 Preliminary Results and Discussion

The state space of simulation outcomes in Fig. 2 shows the results of the 12,000
model runs along two dimension described in the previous section. Clusters of
outcomes correspond to attractors within a stability landscape (i.e., regions in
state space where the system is more likely to remain) [18]. Absent perturbation,
and within the bounds of model design and our grid search through input space,
these are the range of likely model outcomes. Two primary attractors are found,
largely differentiated by the amount of corn and switchgrass on the landscape,
a function of relative commodity prices and indicative of market thresholds.
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Fig. 3 State space locations for 1000 model runs of one scenario (low coping capacity, artificial
switchgrass market, more severe droughts), classified by the pre-perturbation states (orange
crosses) and end states (purple circles). The model generally occupies one area in state space
prior to the application of the artificial droughts, indicative of a local dynamic equilibrium. Post-
perturbation, system state is much more variable, indicating a loss of profitability and a more
heterogeneous landscape

Within-group clustering is an artifact of both the steps through parameter space
and the discretization of the landscape into parcels. If a finer grained search of input
space were conducted, or if the size and shape of management units (i.e., fields)
were more flexible, we would expect the state space within attractors to be nearly
continuous.

In this space, each point corresponds to a realization of the actual landscape
at the completion of a simulation. For example, one simulation with a set of
initial conditions favoring switchgrass production results in the landscape in Fig.
2A, and is found in the left attractor in the state space. Conversely, alternative
economic and climate configurations may be realized as landscape configurations
in Fig. 2B and C, found in the right attractor. Though the landscapes in 2A and
2B have similar diversity (MSIDI) values, the configuration in 2B is much more
profitable on a per-agent basis due to relative differences in crop costs and prices.
In the case of 2C, market prices for corn and soybeans were substantially lower,
shifting the market in favor of soybean production, reducing landscape diversity
and profitability. The morphology of the state space is dependent on variable
selection. While farmer profitability is desirable and more diverse landscapes
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are generally more resilient to climate variability due to increased functional
redundancy [54], Fig. 2 excludes dimensions directly related to run-off, soil loss,
or general ecosystem health and does not comprehensively capture the state of the
system. While we set out to explore the specified resilience “of what, to what”
questions in the context of agricultural land use and selected variables accordingly,
we must also acknowledge the many unrepresented dimensions in the state space
(e.g., environmental conditions). What appears to be an attractor in two-dimensions
may in fact be multiple distinct basins in a higher dimensional space. Further, as
SES move through time and are repeatedly perturbed, we must also consider the
effects of path dependency in limiting the movement of SES among attractors,
and its effects on the multifinality or equifinality of eventual end state(s). For
example, two farmers affected by different types of perturbations (e.g., flood vs.
drought) may make different adaptive decisions, thereby differentially affecting the
economic costs of subsequent adaptations, resulting in a bifurcation point between
these farmers. Conversely, we can imagine a case where changes in economic or
environmental conditions result in a later convergence of these same farmers. The
ability of ABMs to model SES structure (e.g., spatial, hierarchical, economic) in
specific spatiotemporal contexts is a clear methodological advantage for the study
of resilience.

The state space in Fig. 3 examines one of the scenarios described above to
illustrate how the model reacts when subjected to artificial drought perturbations. In
the figure, the orange crosses indicate the model locations at dynamic equilibrium
and at the time step immediately preceding the perturbation. For this scenario
parametrization, these locations are generally found in a single attractor in the
bottom-right portion of the state space, though a second, smaller attractor is present
as well. Once the model is perturbed, farmer agents react by consuming coping
capacity in the form of crop insurance when losses exceed a given threshold. Some
farmers go out of business, while those remaining update their profit expectations,
thereby affecting their land use decisions in subsequent time steps, and moving the
SES towards a new dynamic equilibrium (purple circles in Fig. 3). The heterogeneity
in farmer response is seen in the distribution of post-perturbation end states in Fig. 3,
which are more spread across the state space than pre-perturbation states. The new
dynamic equilibria reached indicate alternative potential states, within the particular
policy, economic, and disturbance context of this scenario.

While these state spaces identify potential states, the pre-and-post-perturbation
outcomes are path dependent, and the state space is likely discontinuous between
attractors. Further, “windows of opportunity” may open (and close), creating
pathways to alternative states available only at particular moments or places.
Finally, and in addition to numerical differences, these alternative states should be
qualitatively evaluated with respect to stakeholder values and preferences. Despite
its limitations, state space morphology can provide an initial guide to understanding
under which scenarios the system may be more resilient. A more heterogeneous
post-perturbation state space, for example, indicates a larger variance in model
response to perturbation, and potentially lower resilience of the pre-perturbation
attractors.
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5 Future Work and the Promise of ABMs for Resilience

Our preliminary model was designed to explore the feasibility of utilizing a coupled
ABM to understand the resilience and adaptive capacity in the ICRB agricultural
SES. The model was successful in plotting individual and aggregate farmer response
to perturbations in particular policy, economic, and climatic contexts, and generated
outcome state spaces analogous to theoretical stability landscapes. However, by
design the model did not leverage the full strength of intelligent agents, which
would include changing adaptive strategies, agent communication, and cooperative
behavior. Priorities for quantifying and operationalizing resilience in a spatial
context have recently been proposed [55], and in this section we identify strengths
and opportunities for ABMs, and geographic modeling techniques more broadly, to
address questions of specified and spatial resilience.

The management of resilience necessarily requires adaptive capacity, which can
be manifested at individual, group, or system scales. For example, individual farmer
agents might adapt their land use, practices, or goals within particular constraints.
Similarly, government agencies might adapt their policies and offer (dis)incentives
for particular system level outcomes (e.g., water quality standards). Our stylized
model demonstrated that when these decisions or policies are relatively static,
the determination of alternative states is straightforward, if subject to simplifying
assumptions. However, to more fully understand SES resilience, models must incor-
porate those key linkages and feedbacks within and among social and ecological
systems. Those same institutional policies, for example, might generate collective
behavior in farmers to self-organize to meet regulatory requirements, or they might
fracture a community and promote further competition for common pool resources.
However, the adaptive capacity of actors or groups is constrained in various ways
that limit agents’ ability to adapt. For example, a knowledge of system function
and its potential for future change is required for purposeful adaptation, and the
ability of actors to learn is necessary to increasing system-scale adaptive capacity
[56, 57]. Access to resources and capital (social and natural) is required to plan,
implement, and manage an adaptation. This access is often unequally distributed,
and is shaped by the social and institutional context [10] in which agents are placed.
While our stylized model did not include direct agent interactions, these dynamics
can be at least partially captured by modeling social networks among agents or
agent typologies, which can affect land management strategies and model outcomes
[58]. Finally, adaptive capacity is limited by individual and group willingness to
implement and accept an adaption. These impediments might be based on values
and beliefs [59] or cognitive biases and risk perception [60], among others. ABMs
for resilience must incorporate these constraints and provide mechanisms within the
model for adaptive strategies to change if the constraints are altered.

There exist, of course, many examples of ABMs for land use modeling and
environmental management [61–63]. There are methods for agents to learn from
their experiences, other agents, or their environment [64], and the abstraction of
decision algorithms within an object-oriented framework simplifies the modeling
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process. We simply argue that ABMs, GIScience, and geography more broadly,
possess an inherent advantage to operationalizing resilience in a way that integrates
spatially-explicit human and environmental dynamics in a multi-scale context
and across space and time. Modeling allows for experimentation, and excepting
natural experiments, provides the sole method for exploring potential effects of,
for example, new climatic regimes or policy instruments. Further, although the
ecological resilience literature has identified methods for identifying thresholds and
critical transitions in ecosystems [65, 66], coupled ABMs can help assess linked
social and environmental outcomes, and perhaps determine bifurcation points that
leads to alternative system states [58].

Future work will build on the stylized model presented above, and integrate data
on farmer constrains on adaptation to perturbations. From a mailed survey of 1200
farmers, we collected data on farmer risk perception, experiences, and potential
adaptions for each of three potential perturbations (excess rain, drought, and
agricultural policy). We also collected data on seven constraints for each potential
adaptation. From these data and demographics (e.g., farm size, income, climate
change views), we have generated farmer profiles and corresponding distributions of
likely responses to disturbances, and have identified potential constraints on farmer
decisions. For example, Fig. 4 shows the results of a survey question that asked
“After implementing practices to improve water quality : : : how many years would
you expect to wait before water quality improvements are noticeable?” The majority
of farmers expect improvements in water quality to occur in fewer than 4 years,
which is far shorter than models have estimated in similar watersheds [67]. This and
similar misconceptions about ecological dynamics can limit willingness to adapt, or

0.0

0.1

0.2

0.3

< 1 1−2 3−4 5−8 9−16 unsure
Years

P
ro

po
rt

io
n 

of
 r

es
po

nd
en

ts

How many years would you expect to wait
before water quality improvements are noticable?

Fig. 4 The distribution of farmer responses (N D 258) to the question: “After implementing
practices to improve water quality (for example, reducing nitrogen application rates, installing
filter strips), how many years would you expect to wait before water quality improvements are
noticeable?” The majority (67%) of respondents expect to see water quality improvements in time
scales that are unlikely given the nitrogen legacy on the landscape
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create lock-in traps where farmers revert to past management practices when they
fail to see environmental benefits on expected or acceptable timescales.

Work is ongoing to extend our model to integrate these survey data with
more robust climate and biophysical models to more tightly model the feedback
mechanisms that drive land use and adaptation. Using these survey data, we will
empirically parameterize agent behavior rules that integrate: (1) a suite of climate
models reaching to the year 2070, (2) shifts in crop insurance policy introduced in
the 2014 US Farm Bill, and (3) recent price fluctuations affecting farmer profitability
and use of marginal lands. Further, through novel couplings between the ABM and
the Soil Water and Assessment Tool (SWAT), we will generate artificial, spatially-
explicit perturbations to search for “levers” that force the model across thresholds
and to new states. Through experimentation on the virtual landscape, we will utilize
the specified resilience framework to plot system responses over time and over
many repeated simulations, identify the relevant structures and processes that create
bifurcation points in system trajectory.

6 Conclusion

Resilience emerges from interactions that span the panarchy of components, both
connected to, and nested within, a complex adaptive system [19]. A specified view
of resilience requires the consideration of the spatial structure of both system
panarchy and perturbation, necessitating a spatially-explicit approach rooted in
Geography. However, an ability to model transformational change in adaptive
strategies and to generate novel couplings within and among social and ecological
systems, remains elusive yet necessary to understanding SES resilience. Our
stylized model of agricultural land use in the CCW demonstrates how a relatively
simple ABM can couple social and environmental models to plot the range of
likely system responses to perturbation. Though the model situates farmer land use
decisions in the context of a given scenario, it does not fully leverage the strengths
of multi-scale agent-based model. For example, if agents are to change adaptive
strategies, rather than simply modify equation coefficients, then the constraints
on adaptation must be considered in model design, and the feedback mechanisms
that modify those constraints must be explicit. Further, the spatial heterogeneity
of agent capacity, and spatial structure of sources of coping capacity must be
included. Stakeholder engagement can incorporate local knowledge not only to
better understand system processes and produce improved models, but can also help
identify those SES states desirable to system actors [68]. While models of specified
resilience should recognize the diversity of agents, opinions, and motivations,
and address power dynamics underpinning the “resilience of what, to what, and
who decides” questions [69], preferred states may exist near thresholds, require
significant inputs to maintain, or reduce sustainability in unexpected ways. ABMs
can be an important tool to weigh the resilience, performance, and equity of
potential outcomes for all parties, domains, and scales.
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Deconstructing Geospatial Agent-Based Model:
Sensitivity Analysis of Forest Insect Infestation
Model

Taylor Anderson and Suzana Dragićević

Abstract Agent-based models (ABM) can be used to represent the spatio-temporal
dynamics of real world geospatial phenomena, however because of their complexity,
they can be difficult to implement and validate. This study uses the invariant-variant
validation approach to further model testing of a developed ABM of forest insect
infestation representing spatio-temporal dynamics of the emerald ash borer (EAB).
The invariant-variant method deconstructs model results to facilitate an improved
understanding of the model’s sensitivity to changes in input parameters and focuses
on EAB agents’ access to information. Obtained results indicate that the developed
EAB agent-based model represents and maintains both process accuracy and spatial
similarity.

Keywords Complex systems • Agent-based models • Model testing • Invariant-
variant method • Emerald ash borer

1 Introduction

Ecological phenomena such as insect infestations can be modelled using a complex
systems approach such as cellular automata and agent-based models to better
understand how interactions between individuals and their local environment
generate spatial patterns at much larger scales [1]. This approach acknowledges that
local variation has a significant impact on emergent system behavior. Traditional
equation-based ecological models tend to ignore local heterogeneity and model
ecological processes from the top-down, limiting their ability to capture system
complexity [2]. As an alternative, geospatial agent-based models (ABM) represent
the system from the bottom-up, overcoming these limitations. ABMs implement
discrete, heterogeneous “agents” to represent real world entities (i.e. an insect) and
capture system processes at the local scale. As agents interact with one another
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and their virtual environment over time, complex system level behavior and spatial
patterns emerge. Furthermore, ABMs can be integrated with geographic information
systems (GIS), facilitating the representation of the environment in which the agents
interact using real geospatial data.

It has been demonstrated that geospatial ABMs can capture the complexity of the
real-world systems and have been used to accurately represent ecological phenom-
ena such as fish [3], birds [4], and forest insect infestations such as the mountain pine
beetle [5, 6] and the emerald ash borer [7, 8]. ABMs provide a useful methodology
for the evaluation of future policy decisions and actions, sometimes referred to as
scenario planning [9]. For example, using an ABM as a virtual laboratory, Anderson
& Dragicevic [8] develop scenarios to explore and optimize the biological control of
the EAB forest insect infestation i.e. determine how many biological control agents
need to be released and where they need to be released to be effective.

To use an ABM in the decision-making process, the level of confidence of the
model to represent the phenomena realistically must be demonstrated. However,
building and implementing an ABM capable of capturing the complexity of real
world geospatial phenomena presents unique challenges in both understanding and
communicating their validity. Particularly, as ABMs represent behavior of various
agents, they rely on stochasticity, and thus may produce a variety of results,
even when using the same input parameters [10]. This can make testing using
traditional map comparison techniques and accuracy assessments that measure
spatial similarity between model outputs and reference data difficult, as these
measures may hide or ignore these important variations [11].

For example, the variation in results may be a function of path dependence, where
positive and negative feedback processes have driven the model produce two or
more distinct spatial patterns across model runs. The patterns that emerge from
these processes may fluctuate between matching the patterns found in reference
data and vice versa. However, as a bottom-up modelling methodology, ABMs
seek to represent the underlying dynamics and processes in producing complex
system level behavior and thus their usefulness may not be fully measured through
aggregate pattern matching. Thus, it may be valuable to also explore the model’s
process accuracy and increase confidence that the model can represent the processes
driving the spatial patterns of the phenomena. Additionally, small changes in ABM
input parameters may generate disproportionally large variations in output spatial
patterns. Understanding how model input parameters affect model outputs is an
important step in developing functional and useful ABMs [12].

The invariant-variant method developed by Brown et al. [13] makes the distinc-
tion between model results that remain consistent across model runs (invariant) and
model results that change across model runs (variant). The deconstruction of model
results into these two classes is useful in the identification of the underlying model
processes that give rise to emergent spatial patterns. Furthermore, the invariant-
variant method and can aid in sensitivity analysis to clearly understand how changes
in input parameters change model results. These methods have been advanced to
account for not only spatial variation, but also temporal variation across model runs
[14], where Bone et al. develop a temporal invariant-variant approach to account for
transition between land use classes over time.
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The purpose of this study is to further the model testing of a forest insect
infestation geospatial ABM developed by Anderson & Dragicevic [7, 8] using the
invariant-variant method. The developed ABM simulates emerald ash borer (EAB)
forest insect infestation dynamics and spread in Oakville, Ontario, Canada for
2 years (2008–2009). Geospatial data delineating real EAB extent in 2009 obtained
from Oakville facilitates model testing using this approach. The main objective of
this study is to deconstruct and better understand model results using the invariant-
variant method and to test the sensitivity of the model parameters. The following
sections will provide a brief outline of the developed EAB ABM and present the
model testing method and results, finishing with a discussion and conclusions.

2 Background

2.1 Emerald Ash Borer (EAB)

The emerald ash borer (EAB) is an invasive bark beetle, native to countries in Asia
[15]. The beetle was thought to be introduced into North America in the late 1990s
and was discovered in 2002 in Detroit, Michigan, USA. Since its introduction into
the region, the pest has been responsible for the decline of the North American ash
tree population, creating devastating ecological and economic impacts. Eradication
has been unsuccessful due to challenges in infestation detection, a lack of native
predators, and long-distance dispersal patterns that are difficult to predict [16].

EAB complete their lifecycle in one (sometimes two) years and consists of the
stages: active larvae, inactive larvae, pupae, and adulthood [17]. The EAB eggs
mature into larvae and then into adulthood while under the bark of ash trees, a
process that takes almost 1 year, before emerging in early June through August,
with peak emergence in mid-July [18]. The beetle uses olfactory and visual cues to
determine the most suitable hosts and prefer to lay their eggs in ash trees that are
stressed [19], have a lower natural resistance to insect infestations such as green,
black, and white ash [20], and are larger in size and capable of supporting the
larval galleries [21]. EAB find their hosts through local dispersal, travelling on
average 2.8 km/day [22]. The beetles spread can be exacerbated by long-distance
dispersal, facilitated by the movement of infested saplings or firewood. These two
dispersal mechanisms generate a pattern called stratified dispersal, where eventually
the natural front of infestation and satellite populations coalesce [23].

2.2 EAB ABM

It is important to understand the spatial patterns and processes of insects’ dispersal,
interactions, and dynamics, but this information can be difficult to obtain from field
measurements. Existing EAB models use differential equations [24] and diffusion
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Table 1 State variables and parameters of EAB adult and EAB larvae

State variables and parameters of EAB

Variable Description
ID The agent’s unique identifier
Age The agent’s age
Geography The location (decimal degrees) of the agent
EAB adult agent parameters

Parameter Description EAB value
Maximum flight
distance/day

Flight mill tethering distance that
females can travel/day

2.8 km/day [22]

Chance of fertility Average fertility rate of females 82% [27]
Maximum number
of offspring

Average threshold for maximum
offspring

Randomly selected value between
60 and 90 offspring/individual [28]

Survival rate of
eggs

Survival rate as a function of
chance

Randomly selected between and
53–65% survive [28]

EAB larvae agent parameters

Sex ratio Female: Male 1:1, 50% [18]
Survival rate of
larvae

Survival rate as a function of tree
resistance, disease, and predation
via other species i.e. woodpecker

Host tree defense: max 21.5%
Disease: 3%

Woodpecker: max 17% [29]

models [25], however are limited in their representation of complexity inherent to
insect infestation processes and behavior of the beetles [26]. Alternatively, ABMs
can be used to simulate these processes and better understand complexity of the
infestation dynamics and use scenarios to aid in management and decision making.

Anderson and Dragicevic [7] have proposed an EAB ABM to simulate spatio-
temporal dynamics of EAB in Oakville, Ontario, Canada for 2 years (2008–2009),
and was further enhanced [8] to explicitly represent EAB population dynamics.
The model is composed of agents that represent individual EAB in larvae and
adult stages. Agents are programmed with state variables and parameters that are
unique to each individual (Table 1). State variables track the state of an agent
at each iteration such as age and location. Parameters characterize an individual
agent’s biological properties such as the chance of fertility and the maximum
number of offspring an individual may produce. These parameters are determined
using biological information documented in EAB literature. Agent behavior is
driven using several subroutines that execute stages in the life cycle including local
dispersal, long-distance dispersal, mating and fertility, maturity, infestation of ash
trees, and death (Table 2).

The model simulates EAB spatio-temporal dynamics over a period of two
seasons of EAB infestation from June 1st, 2008 (T1) when the EAB was first
introduced to the region, to the end of August 2009 (T460) [8]. Each iteration in the
model (Ti) represents 1 day i D (1, 460) in the real world. Due to random processes
in the model, no two simulation outputs are the same. Therefore, the model is
executed 50 times to generate a statistically significant distribution of results, where
each run generates a variation of the emergent patterns of EAB infestation in 2009.



Deconstructing Geospatial Agent-Based Model: Sensitivity Analysis of Forest. . . 35

Table 2 Subroutines that generate agent behavior

Agent processes

EAB adult agent

Process Description
Aging The age of each agent is increased by 1 day at each new iteration. The age (in

days) of an agent triggers the execution of life cycle processes
Short-distance
dispersal

Short distance dispersal is the process whereby agents change their location.
Short distance dispersal begins after EAB adults emerge at the age of 1 day
and continues throughout the rest of the agent’s lifetime. The distance in
which an individual EAB agent will move at each model iteration is a
function of: (1) the average distance EAB travel per day (2.8 km) [22] and
(2) host suitability [30]
The flight distance of 2.8 km per day bounds the EAB agents’ access to
information about their environment (i.e. what trees are available). Each EAB
may search within a radius of their average daily flight distance for host trees
and compare them with one another based on their suitability. The
comparison between trees by EAB is controlled by a host selection
algorithm, developed by Anderson & Dragicevic [7] that allows EAB agents
to optimize their decision of which tree to infest based on their preferences.
EAB host selection preferences have been studied extensively and are a
function of (1) tree distance, (2) tree type, (3) tree stress, and (4) tree size.
Specifically, EAB prefer trees which are closer in distance, tree types of
lower resistance to infestation such as the green ash, trees which are under
stress perhaps due to existing infestation or age, and trees larger in size

Mate EAB agents may become fertile based on their chance of fertility. Those that
become fertile, mate at the age of 7 days. EAB are randomly assigned a
maximum number of offspring between 60 and 90 individuals [31]

Oviposit EAB agents become fully mature and begin seeking suitable ash trees using
the host selection algorithm to host their larval galleries at age 10 days. At
each iteration, EAB oviposit a random number of eggs onto their choice of
tree. This process continues until the maximum number of offspring have
been produced. The number of eggs may be reduced based on their chance of
survival

Death EAB agents die once they have produced their maximum number of offspring
Long-distance
dispersal

Long distance dispersal is a random process in the model where satellite
populations (sometimes 1% of the original population) becomes established
in regions of high susceptibility to this process i.e. along major transportation
networks or near campgrounds. The environment in which the EAB interact
is representative of Oakville’s urban forest and is based on Oakville’s tree
inventory geospatial data sets

EAB larvae agent

Death Larvae may die as a result of tree resistance, disease, and native predators
[29]. This process uses a random number generator to determine how
susceptible the larvae is to these factors

Emergence EAB larvae emerge when they reach the age of 340 days and if it is female.
A random number generator is used to determine the sex of the larvae
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3 Methods

Initial model testing of the EAB ABM has been performed. The model has been
calibrated to simulate the real-world rate of spread, determined by using real world
data delineating the extent of EAB infestation from 2002–2010 [7, 8]. Specifically,
the model has a simulated rate of spread from the epicenter of infestation in 2008
to the delineation of EAB infestation in 2009 of 2.119 km/year in comparison to
the observed rate of spread in reality of 2.098 km/year. Additionally, the model
simulates spread with an average distance of 4238.77 m and a maximum distance
of 11049.50 m in comparison to the observed average distance of 4196.17 m with a
maximum distance of 11186.3 m [7].

Although research has shown tree type, tree size, tree stress, and tree distance are
the driving factors in host selection and are included in the host selection algorithm,
the order in which EAB prioritize these factors is unknown. Therefore, Anderson
& Dragicevic [8] performed the sensitivity analysis to determine the sensitivity to
the order in which these factors are preferred i.e. whether EAB prefer trees that
are closer or are more stressed. Initial model validation used traditional methods
of map comparison between model outputs and real-world data and included the
following metrics: (1) the spatial agreement between the model output and the real-
world data in location of infestation in 2009 and (2) the spatial agreement between
the model output and the real-world data in severity of infestation. The level of
agreement of the state of the trees between model outputs and real-world data was
determined. The overall accuracy of the model calculated by using these methods
was found to be 72% in simulating the location of EAB infestation [7, 8] and 64%
overall accuracy in forecasting location of severity of infestation [7]. Although a
useful starting point for evaluating the overall performance of the model, simple
accuracy assessments using map comparison techniques may not allow for in depth
exploration of the model processes that may be contributing to the distribution of
model results. Therefore, the invariant-variant method is used to further the EAB
ABM model testing and sensitivity analysis.

3.1 Invariant-Variant Method for Analysis of EAB ABM

In the case of the EAB ABM, the invariant region can be defined as the trees that are
always or almost always infested or always or almost always not infested and the
variant region can be defined as the trees that are sometimes infested and sometimes
not infested. To determine which trees are invariant or variant across model runs,
the EAB ABM was run 50 times, producing a statistically significant distribution of
results. Each run of the EAB ABM outputs a geospatial dataset containing all trees
and their corresponding attributes (i.e. tree height, tree DBH) and infestation status
(i.e. whether the tree has been simulated as infested or not). The infestation status
of a tree across all model runs is used to calculate the proportion of runs in which
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the tree is infested, denoted as txy at location x,y. For example, if tree t is infested in
46 of a possible 50 runs, txy D 0.92, meaning that the tree is infested in 92% of the
model runs.

The invariant and variant trees are partitioned using a threshold � . For example,
trees that are invariant and infested ID are defined by a threshold � D 0.9, as used
by Brown et al. (2005), and as such must be infested in at least 90% of model runs.
Therefore, ID is the number of trees txy > � . The ID region is compared with the
real-world data delineating EAB infestation in 2009 and sub-classified into invariant
correct IC and invariant incorrect II. IC are trees that are infested in 90% of model
runs and infested in reality. Conversely, II are trees that are infested in 90% of model
runs and are not infested in reality. Because these trees are invariant, every model
run will have nearly the same value for IC and II. In contrast to ID, trees that are
rarely infested, txy < 1–� , are denoted as IU, meaning they are infested in less than
10% of model runs.

Trees that are variant are sometimes simulated as being infested (11–89% of
model runs). In addition to trees that are correctly simulated as infested in the
invariant region IC, trees may be correctly simulated as infested in the variant
region. The number of variant correct VC is a function of a particular run k. If Ck is
used to denote the number of infested locations that are predicted by a single run k,
then Ck D IC C VCk. VC can be plotted using a histogram to show model behavior
across all of the runs. A histogram that has a set of runs with extremely high VC and
a set of runs with low VC may indicate multiple paths.

Decomposing model results into its invariant and variant regions allows for
the identification of patterns that may not be obvious when looking at the overall
generated spatial patterns of infestation. A small IC and a large VC may indicate
that the model is path dependent, where complex dynamics of the phenomena
represented by the ABM causes the generation of multiple spatial patterns. For
example, in some runs infestation spreads to unexpected locations and in others,
infestation coincides with the reference data. This is important, because when
calculating a simple accuracy assessment, a model that produces this variation in
results may not be within acceptable limits of accuracy, however the model may
be path dependent, evidence of the model’s ability to capture system processes
accurately. In contrast, if IC is large and VC is small on average, it can be concluded
that the accuracy of the developed EAB ABM model primarily originates from
getting the large invariant region correct.

3.2 Bounded Rationality Sensitivity Tests

The sensitivity of the model to the EAB agent’s access to information was tested.
To test the impact that an increase in EAB access to information would have on the
model simulation outcomes, the model was run 50 times with an increased flight
distance of 5.6 km per day, double that of the original distance. Furthermore, the
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impact that a decrease in the EAB agents’ access to information on the model
simulation outcomes was tested using a flight distance of 1.4 km/day, half of the
original distance, and was run 50 times.

4 Results

4.1 Invariant-Variant Method for Analysis of EAB ABM

The simulation results obtained by the invariant-variant analysis for the EAB ABM
are presented in Table 3A and Fig. 1a. The EAB ABM model generates a high
IC (invariant infested correct) at 1419 trees and a high IUC (invariant uninfested
correct) at 2089 trees versus a low VC (variant correct) at 926 trees, meaning that
the models map comparison accuracy primarily comes from getting the invariant
region correct.

The invariant region, where infestation occurs in over 90% of model runs, is
located near the center of the study area, the core zone, where EAB first were
identified in this region in the real-world (Fig. 1a). The simulated invariant region

Table 3 Invariant-variant analysis results for sensitivity of EAB agents’ (A) access to information
using a flight distance of 2.8 km/day, (B) reduced access to information using a distance of
1.4 km/day, and (C) increased access to information using a distance of 5.6 km/day

Distance
parameter

Description (A)
2.8 km/day

(B)
1.4 km/day

(C)
5.6 km/day

Invariant
infested (ID)

Simulated as infested in 90% or more
of model runs

1619 727 1912

Invariant
correct (IC)

Simulated as infested in 90% or more
of model runs and is in agreement with
the reference data

1464 724 1643

Invariant
incorrect (II)

Simulated as infested in 90% or more
of model runs and is not in agreement
with the reference data

155 3 269

Invariant
uninfested (IU)

Simulated as uninfested in 90% or
more of model runs

3355 4829 1904

Invariant
ucorrect (IUC)

Simulated as uninfested in 90% or
more of model runs and is in
agreement with the reference data

2089 2445 1242

Invariant
uincorrect
(IUI)

Simulated as uninfested in 90% or
more of model runs and is not in
agreement with the reference data

1266 2384 662

Variant (V) Sometimes simulated as infested 1208 626 2336
Variant correct
(VC)

Sometimes simulated as infested and is
infested in reality

926 548 1351

Variant
incorrect (VI)

Sometimes simulated as infested and is
not infested in reality

282 78 1015
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Fig. 1 Locations of variant and invariant trees based on simulations incorporating EAB agents’
with (a) access to information using a flight distance of 2.8 km/day, (b) reduced access to
information using a distance of 1.4 km/day, and (c) increased access to information using a distance
of 5.6 km/day

mostly falls within the delineation of EAB infestation obtained from real-world
data. The variant region, where infestation occurs in some runs and not in others, is
located on the perimeter of this core invariant zone and in satellite population zones.
In addition, there are a few variant infested trees that fall between the core zone and
the satellite population zones.

As presented in Fig. 1a, the model underestimates the number of infested trees,
meaning that 1266 invariant uninfested trees are infested in the real world. The
model does well at predicting the number of invariant infested trees and rarely does
the model predict a tree is infested when it is not infested in reality. The distribution
of model runs k and the number of trees accurately simulated as infested is presented
in Fig. 2. The histogram depicts the variance across model runs.

4.2 Bounded Rationality Sensitivity Tests

The results indicate that the EAB ABM is sensitive to the EAB agents’ access
to information. Specifically, as presented in Fig. 1b, reducing the EAB agents’
access to information affects the simulated outcomes in the following ways: (1) the
invariant infested region is smaller, but more accurate; (2) the invariant uninfested
region becomes much larger, but becomes much less accurate; and (3) the variant
region becomes smaller, but more accurate. In general, reducing the EAB agents’
access to information underestimates the number of trees that are infested in the
real-world by almost double of that of the original model at 2384 trees (Table 3B).
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Fig. 2 Variability of number of trees correctly simulated as infested across 50 model runs
including invariant correct and variant correct

Reducing the EAB agents’ access to information maintains the emergence of
the invariant region located in the core zone. Variant regions emerge around the
perimeter of this core zone and in satellite population zones. All trees infested in
the simulation in this scenario fall within the real-world delineation of the EAB
infestation (Fig. 1b). Reducing the EAB agents’ access to information eliminates
the variant region between the two zones.

In contrast, as presented in Fig. 1c, increasing the EAB agents’ access to
information affects the simulated outcomes as such: (1) the invariant infested region
is slightly larger, with similar accuracy to the original model; (2) the invariant
uninfested region is much smaller, but does not overestimate uninfested trees; (3)
the variant region becomes much larger, larger than the invariant infested region,
but overestimates infestation in trees that are not infested in reality at 1015 trees
(Table 3C).

Increasing the EAB agents’ access to information maintains the generation of
the invariant region located in the core zone and the invariant region around the
perimeter of the core zone and in satellite zones and increases the variant region
that falls between these two zones (Fig. 1c).

5 Discussion and Conclusions

The variable distribution of the frequency of trees correctly predicted as infested
across model runs (Fig. 2) may indicate that EAB ABM generates multiple paths. A
primary assumption would be that the stochastic long-distance dispersal processes
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are generating the variation in accuracy from model run to model run. In the
simulation outputs, small satellite populations sometimes appear in the south-west
part of the study site due to the location’s proximity to the highway and the Bronte
Creek Provincial Park and because long distance dispersal is a random process
in the model, simulated satellite populations are always variant. There is a slight
positive relationship (R2 D 0.38) between the model’s overall accuracy and the
accuracy in forecasting satellite populations, meaning that model runs that predict
satellite populations are sometimes more accurate and thus may explain some of
the variability in model runs. Long distance dispersal is not often spatially similar
to the locations of reference data, which would reduce the accuracy of the model
when using traditional map comparison and accuracy assessments. However, long
distance dispersal may be variant correct, indicating process accuracy.

The invariant-variant analysis demonstrates that the model is sensitive to
reducing the EAB agents’ access to information. Reducing the flight distance
to 1.4 km/day results in a severe underestimation of the number of trees infested
in reality. This is evident by the decrease in the invariant infested region and the
increase in the invariant uninfested region (Table 2; Fig. 1b). In contrast, the results
suggest that the model is less sensitive to an increase in the EAB agents’ access to
information with a flight distance of 5.6 km/day. Specifically, the invariant infested
region and the invariant uninfested region are similar, if not more accurate than
the original model parameter of 2.8 km/day (Table 2). This can be attributed to
the host selection algorithm which acts as a negative feedback mechanism by
prioritizing the infestation of trees that are closer in distance and thus accurately
simulates infestation processes. However, with an increase in access to information,
the variant region increases substantially (Fig. 1c) which means that in some model
runs, EAB infestation is overestimated.

Real-world EAB infestation at regional scales undergo the process of stratified
dispersal, where the core zone and satellite population zones merge, advancing
the front of EAB spread at increased rates. Evidence of the stratified dispersal
process can be identified in the simulations, where the core zone and satellite zones
begin to merge in some simulation runs, thus developing a variant infested region
between the two. Specifically, the early stages of a merge between infestation in
the core zone and satellite population zones occurs in some runs of the original
model and is even more pronounced when the EAB agents’ access to information
is increased. In the reference data, however, the two zones including the core zone
and the satellite population zones are entirely separate. Thus, traditional accuracy
assessments and map comparisons would deem model runs that simulate stratified
dispersal as inaccurate and ignore the value in the model’s ability to simulate this
important process.

In summary, ABM testing can be a challenging process. Common spatial model
evaluation measures such as map comparison or other simple accuracy assessments
are difficult to apply since ABMs produce a variable distribution of outputs across
model runs in response to agents’ individual behavior and interactions in combina-
tion with stochasticity, local heterogeneity, feedbacks, and evolution in the model
[6]. Using these conventional measures may provide an understanding of the spatial
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similarity between aggregate spatial patterns in the reference data and aggregate
spatial patterns generated as model outputs. This can provide initial confidence
in model performance. The invariant-variant analysis breaks down the aggregate
measure of spatial similarly and provides insight as to what may be influencing these
measures, thus improving the understanding of the model processes that generate
model results and help the modeler gain confidence that the real-world phenomena
is represented realistically.

EAB infestation poses significant threats to forest ecosystems across Canada and
in the US. The developed EAB ABM can be used to aid in meeting management
goals by evaluating how various management actions impact infestation dynamics.
However, naturally, before the results can be used to make decisions, sufficient data
demonstrating that the model’s results are valid must be attained. The invariant-
variant analysis demonstrates the proposed agent-based model possesses the ability
to represent underlying processes driving emergent patterns of EAB spread to assist
and give confidence to decision makers such as stakeholders or policy makers in
model outputs and reduce the possibility of making unsuitable decisions and risk
time and money. In particular, the variant and more unpredictable nature of satellite
populations may require a focus of resources by decision makers in order to slow
the infestation front and reduce large scale negative impacts of EAB infestations.
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An Agent-Based Model to Identify Migration
Pathways of Refugees: The Case of Syria

Guillaume Arnoux Hébert, Liliana Perez, and Saeed Harati

Abstract The Syrian civil war has generated a refugee crisis in the Middle East and
Europe. This study draws on complex systems theory and the agent-based modelling
method to simulate the movement of refugees in order to identify pathways of forced
migration under the present crisis. The model generates refugees as agents and lets
them leave conflict areas for a destination that they choose based on their respective
characteristics and desires. The simulation outputs are compared with existing data
regarding the state of forced migrations of Syrians to assess the performance of the
model.

Keywords Conflict induced migration • Syrian refugees • Agent-based model-
ing • GIS • Migration pathways

1 Introduction

Survival and wellbeing are two important characteristics of human nature. As
witnessed through history with the repeated population displacements [1, 2],
people who find their social conditions dissatisfactory will often migrate to places
that promise better possibilities for improvement; for example, peace and wealth
compared to the violence and despair that characterize their home countries. The
reasons for migration vary from economic, political and security causes, to natural
or anthropogenic disasters. Nevertheless the hope is always the same, to find a safe
and better place to live and prosper [1]. This is also the case for many Syrians who
have faced insecurity and despair brought on by a civil war that been going on for
several years now [3–6].
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A multitude of armed groups, which form an intricate web of alliances charac-
terised by varied sets of commonalities and contradictions, add a layer of complexity
to the situation. In addition, global and regional powers are involved in the conflict
sometimes fighting among themselves to pursue opposite objectives [6]. In that
context, it is understandable that much of the population would like to flee the
region, triggering the beginning of a great migration. To better understand the
dynamics behind migration, this paper presents a model that simulates the pathways
the migrants use to flee their home country.

This study uses a dynamic approach to model the decision steps of the migrants,
namely, the decision to leave, choices of destination and pathway as well as the
decision to stay at the destination. The methodology presented here is rooted in
the science of complexity and uses the agent-based modelling (ABM) approach to
simulate the dynamics of migration.

The present chapter is organized in five sections. Section 2 provides, an overview
on forced migration, complex systems modeling approaches and how these methods
have been used to study population migration processes. Input data and the model
are detailed in Sect. 3. Section 4 addresses the results, and Sect. 5 concludes the
chapter.

2 Review of Literature

2.1 Conflict-Induced Displacement: Contextualizing Refugee
Migration

As stated by Zetter [7], terminology is essential when addressing population dis-
placement, and the use of incorrect terminology could have dreadful consequences
on the reception and the treatment of a displaced population when reaching a safer
or more desirable destination. Language misuse can be used by some countries to
hide the reality of conflict-induced displacement and therefore deny the population
counts of those forced to flee and find refuge [7]. By definition all refugees are
migrants, however, Schmeild [8] stated that until 1990 the study of migration
phenomenon was a distinct field from the study of refugee migration, which was
considered to be a political phenomenon and as a consequence, was ignored by
most migration literature and studies. Since then, the approach to study refugee
displacement has changed and refugees’ behaviour has been studied as part of
migration phenomenon [9]. In general, migration refers to the permanent movement
of people to a new area or country [8], while population displacement makes
reference to people’s movement but only within a specific time frame and generally
inside a country [10, 11]. For this study, we have defined refugee migration as the
event that occurs when people are forced to flee their homes as a result of a civil
war. Likewise, we have adopted the legal definition of a refugee provided in 1951 by
the United Nations Convention Relating to the Status of Refugees. The Convention
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defines a refugee as a person residing outside his or her country of nationality, who
is unable or unwilling to return because of a well-founded fear of persecution on
account of race, religion, nationality, membership in a political social group, or
political opinion [12].

Within the literature, the study of migration is generally classified into distinct
areas based on the reasons for population migration. Amongst the most studied
causes for migration are economic reasons [13], climatic reasons [14–17], and
conflict induced reasons [9, 11, 17]. Another important aspect considered when
studying migration is the scale at which the process of migration is examined. Such
as scale of examination and analysis could be national, regional or continental scale.

2.2 Complex Systems Theory

The conceptual framework of complex systems theory focuses on the many
characteristic behaviours of dynamic systems such as self-organization, emergence,
non-linearity, path dependence, bifurcation and sensitivity to initial conditions,
amongst others [18, 19]. The modelling approaches that draw on complex systems
theory, can be used to investigate how the interactions between parts can create
collective behaviour within a dynamic system [20, 21] such as human migration.
With the objective of modelling and examining the laws governing the behaviour of
complex geographic phenomena such as forced migration, agent-based modelling
(ABM) approach can be used to study the spatial patterns resulting from the
complexities of human migration.

As it is the case with all complex system models, when studying human
forced migration, it is important to understand the elements that characterise this
phenomenon. In the case of forced migration in Syria, the movement of the
population as well as the uniqueness of each individual, in addition to every aspect
of the conflict creating the forced migration, are important considerations. Some
research has been done in with these considerations [22, 23], but at a very local
scale. The decision-making process with autonomous individuals in a bounded-
rational environment, such as that of a refugee migration, is in nature heterogeneous
and lends itself well to ABM as a tool for analysis [24]. Individuals represented by
agents are dynamically interacting with other agents based on simple rules that will
give rise to complex behaviours and patterns of displacement.

2.3 ABM and Forced Migration

The study of forced migration using ABM is still in its early stages, with statistical
modelling still dominating the field [8, 17, 25, 26]. To understand the migration
of Syrian refugees, most researchers have used static and statistical approaches to
count the number of migrants leaving, those in transit and others arriving in each



48 G. Arnoux Hébert et al.

country [5, 27–29]; however, most of the studies done on forced migration have
been linked to climate change [10, 16, 17, 30]. In addition, there are a few studies on
conflict induced migration which have been conducted by people with an expertise
in political science or sociology [11, 31], and not in geography (i.e. spatial dynamic
modelling). The lack of research on migration patterns modelling can be associated
with two main challenges related to the choice of decision rules and the use of
empirical data [32]. Decision rules comprise the part of the model used to replicate
the decision making process of a human being. Defining realistic decision rules
can be difficult and that is one of the reasons why there are not many dynamic
models on conflict induced migration. In this study we use a Psycho-Social and
Cognitive approach [32], that is based on the planned behaviour theory [33]. Planned
behaviour theory states that an individual that processes information, mediates the
effects of biological and environmental factors on one’s behavior. Thus, whether a
behavior, for example migration, occurs or not is the result of the probability that
the influence factors are compelling enough for each individual. The advantage of
the Psycho-Social and Cognitive model is that it allows the inclusion of an infinite
number of features to model decision making process as well as takes into account
social influence and the uncertainty of life [33]. Empirical data constitutes one very
important part of model development; without it, it is very difficult to parameterize
and calibrate a realistic model [32]. Due to strategic reasons, valid empirical data
within a conflict zone are hard to obtain, and this is why there are not many models
on conflict induced migration.

When creating a migration model there are three major aspects to think about.
The first is to know the moment the populations decide to leave (When). The second
is to know the destination of the migrants (Where) and finally to know whether they
want to stay or not at their destination. These aspects identify migration pathways.

The first aspect or the moment people decide to leave is the one that is the most
studied and conceptualised [11, 14]. The choice to leave is, according to Oliver-
Smith [30], not a reaction to an event, but it is due to an accumulation of factors that
make people leave. Sokolowski and Banks [11] agree and add that people in risk
zones choose the best options based on an analysis of circumstances, risks, and cost
and benefit. That is what Klabunde and Willekens [32] present as part of planned
behavior theory.

The second aspect or the choice of destination is a complex problem with
multiple components; Moore and Shellman [34] investigate if refugees are more
likely to relocate themselves inside or outside their country, while Schmeild [8]
affirm that refugees usually go to neighboring countries with the same ethnic group
and religion. In the case of Syria, refugees do not want to stay in the neighboring
countries, instead they prefer to go to a country with different culture and religion
(mostly in Europe) because they perceive that life in these countries is better than
the ones in the Middle East [4]. Although refugees do not see all European countries
on the same scale, some of them may try to enter one of the Schengen nations with
the perspective to move to another if the standard of living is better [35]. In general,
literature states that migrants/refugees prefer cities or countries that are politically
stable, richer and safer than their departing location. It is also reported that another
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important aspect within the decision-making process is the capacity of absorption of
migrants at each destination and the reception attitude of the host population [3–5].
Likewise, refugees will been keen to move to a rich or a more prosperous country
but they will also want to move to a country in which they have family ties [36].

The third aspect is related to the degree of satisfaction with the chosen desti-
nation, and it can be divided into two different situations. The first one reports
on migrant’s happiness in terms of the selected place, while the second is related
to the level of tolerance or rejection of refugees by the hosting community. Even
though there are parts of the society that will always reject refugees [37, 38], Philips
[37] argues that integration is successful when the refugees are given access to
good quality accommodation available in their place of arrival. Strang and Ager
[35] also suggest refugees’ integration does not necessarily depend on relocating
to an area with people from the same ethnic group. The three discussed aspects
can be integrated into a model to mimic spatial decision making and movement of
individuals forced to migrate due to conflicts such as the ongoing in Syria.

3 Data and Methods

3.1 Data

Data used in this model were acquired from various sources (Table 1). Monthly
death toll data with location information was acquired via the Syrian Observatory
for Human Rights [39], one of the most used data sources for the war in Syria. The
extent of the datasets encompass the area of the refugee camps (Fig. 2a). From the
road dataset only the primary roads and the highways were kept. From the 2004
Syrian census only those cities with more than 3000 people were considered. The
model also includes indicators about destination countries [40, 41].

Table 1 Data classes and sources

Data Source Format

Population Syrian census 2004, UN website, CIA world
factbook

Excel

Roads, railways, cities Open street map Shp (point)
Airports Open flight Shp (point)
Political map Thematic mapping Shp (polygon)
Elevation USGS global multi-resolution terrain elevation

data 2010 (GMTED 2010)
Raster

Ethnic groups GREG Shp (polygon)
Death toll Syrian observatory for human rights Shp (point)
Recipient countries
information

World economic forum, reporters without
borders

Excel
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3.2 The Model

We developed an ABM to simulate the migration of Syrian refugees, using death
toll as an indicator of the severity of the conflict at each location and time. The
model is comprised of human population agents who actively adapt and compare
their tolerance with perceived severity of conflict and decide whether to leave their
homes or not. Once they decide to depart, the agents consider a variety of conditions
including their wealth, and choose a destination as well as a means of transportation.
Upon arrival at destinations, the agents consider factors such as the capacity and
existing population in the case of a refugee camp and decide whether to seek refuge
therein. The model is iterated with 1 month time steps beginning in March 2011 and
ending in December 2015.

The hybrid model allows cells to store data that is used to create, modify or
influence agents [42, 43]. Other studies [16] used a ratio of agents to run the model.
In our model Syrian cities create population agents at a ratio of 1 agent per 1000
people. If they decide to leave their city, population agents become migrant agents,
and on arrival and settlement at their destination, the model transforms them to
refugee agents. Destination options (countries, cities, and refugee camps) are given a
series of indicators of attractiveness. These include: ethics, press freedom, organised
crime, security, life expectancy, higher education, quality of education, quality of
infrastructure, trustworthiness, public institutions and efficiency of government [49,
50]. The model also includes Syrian cities, other country cities, countries, refugee
camps, airports, roads, and railways. The model implementation was made using
Netlogo [44]; Fig. 1 depicts the flowchart.

3.2.1 Conflict Zones

To avoid problems (notably, lack of reliable data) of modeling the entire Syrian
conflict we defined conflict zones in our model as monthly-updated, 20 km-wide
areas around cities where deaths have been registered by the Syrian Observatory for
Human Rights (SOHR). The higher the death toll at a zone, the more dangerous it
is perceived by population agents. The deadliest recorded attack in SOHR data is
assigned a danger score of 100 as reference, and danger scores of other records are
calculated based on the proportion of their respective death toll to the reference. At
each time step, conflict score of each conflict zone is calculated using the following
formula:

C.t/ D
1

2
ŒC .t � 1/ C D.t/�

C.t/ D D.t/ for t D 1

where C(t) is the perceived conflict score of a zone at month t, and D(t) is the danger
score of that zone at month t.
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The inclusion of the perceived conflict score of the previous month (which in turn
involves the effect of the month before, and so on) in the above formula enables
the agents to have memory. The behaviour of the model will therefore be path-
dependent. An implication of the above is that an agent may decide to leave even
with a reduction in the danger score compared to previous time-step [45, 46].

3.2.2 Tolerance and the Decision to Leave

To assess populations’ tolerance to conflict, a series of variables are associated to
each agent [14]. Those include religion, ethnicity, wealth, age, sex, and familial
status, the combination of which serves to determine the likelihood of an agent to
leave [10, 47, 48]. In this study, due to unavailability of data, these parameters were
randomly assigned. The model also considers a cumulative stress factor that reduces
tolerance levels as the conflict continues. The decision rule for the first part of the
model is based on a simple comparison: if the perceived severity of conflict exceeds
tolerance, the population agent decides to leave, and becomes a migrant agent.

3.2.3 Destination Choice

Upon creation, migrant agents choose their destinations based on comparisons of
their preferences with qualities of options available given their conditions. For
example, a family member abroad could provide shelter and as such influences the
choice of the migrant agent [36, 47, 49]. Moreover, wealthier migrants, can choose
better means of transportation [49] and consider longer ranges. If no destinations
exists for the expected criteria, the migrant agent chooses the nearest refugee camp.

3.2.4 Migration

Migrant agents choose a means of transportation depending on their wealth. On their
journey, agents avoid cells with high danger scores and—especially for walking
agents of very young and very old ages—cells with high slopes. Each migrant has
a health score, which deteriorates with time and also in danger zones. Agents who
lose all their health score, die. These features are to simulate the hardship of the
migrants’ journey [5, 6].

3.2.5 Arrival

Upon arrival at its destination, a migrant agent chooses whether to stay there and
become a refugee agent. Overcrowding is a factor influencing such choice. Other
important factors include infrastructure, sanitation and security [50, 51].
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3.3 Model Parametrization

A challenge in the development of the model was the unavailability of data to set
values of numerous influential parameters. We addressed this challenge by using
information from relevant literature, particularly to identify parameters of highest
importance, extract ranges of variation, and obtain an ordinal basis for categorizing
and prioritizing levels of parameters for which a value is not available.

We acknowledge that the decision to leave is not a sudden event but the result
of accumulation of pertinent factors [30, 32]. In this case, religion and ethnicity
parameters were adjusted so as to make agents more tolerant when they are in
regions of their own ethnicity [8]. Moreover, literature highlights that older people
have more difficulty in the journey, and that they are more likely to stay in their
home town longer [47, 52]. Accordingly, values of age parameters in the model
were adjusted such that agents of higher age, choose departure later than others.
Also, males generally have a better experience during the journey [53], therefore,
the gender weight parameter is adjusted to generate more male migrants. Finally,
literature notes that a single agent will be better suited to move as it is easier to travel
alone than with a group [54], and that has been used as the basis for adjustment of
age parameter of the model.

4 Results

4.1 Model Output

Figure 2b shows snapshots of migrant agent concentration at five temporal points.
It is noticeable that the concentration of refugees in Jordan is greater than the in
Turkey. Moreover, populations of Homs and Hama have fled the most. Refugee
agents prefer camps far from danger zones. If we look at the Latakia region which
is a regime stronghold we see a surge in migrants in that region between March and
December 2015 which corresponds to the time where Russia first intervened [55].

Figure 3 shows migration pathways. We can see that a large number of migrants
have fled the regions of Homs and Damascus. However this is not the case for the
region of Aleppo. This can be explained by the danger level. Since Aleppo was near
constant state of siege from the beginning of the conflict the danger level across
this area is always high, which can refrain the migrant agents from moving. This
represents the reality of many Syrians being trapped in their city or village, unable
to flee due to the surrounding battle.

We can note many movements from Syria to Iraq. These could correspond to
Kurd migrants and refugees fleeing northern Syria to safer zones in Iraq’s Kurdistan.
It is also observed that a lot of agents choose to move toward Jordan. We can also
see some migrant movement from the Der-el-Zor region towards the Ambar Camp.
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Fig. 2 (a) Study area and refugee camps; (b) Simulated migration heat map

Fig. 3 Simulated pathways of Syrian migrants

4.2 Model Testing and Validation

Our model uses data on location, month, and number of deaths to simulate the
consequent refugee flows. Due to unavailability of much of other data, the model
cannot exactly replicate the real world. However, assuming that the death toll is a
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Table 2 Quantity change and allocation tests

Quantity Allocation

Proportion change-2015 Iraq Jordan Lebanon Turkey Sum
UNHCR data 0.2661 0.0099 0.0442 0.0514 0.8946 1
Model output 0.3731 0.0927 0.2244 0.0003 0.6826 1
Minimum allocation agreement 0.0099 0.0442 0.0003 0.6826 0.7370

pertinent variable contributing to the situation, we expect our model to be able to
show effects and dynamics comparable to those of the real world in terms of flows
of refugees in response to the same spatiotemporal changes in the pertinent variable.

The UNHCR provides data on the number of refugees in its camps and
neighboring countries [51]. We use these data to test the model, by comparing
model outputs and real data in terms of quantity and allocation of change [56]
between two time frames—December 2014 and December 2015. The variables that
we used for model validation and testing are the rate of change in refugees arriving
at neighboring countries (for quantity accuracy measurement), and the division
proportions of new refugees among neighboring countries (for allocation accuracy
measurement). In other words, we argue that the model generates new refugees
each year and distributes them in the neighboring countries, and we perform tests
to compare such generation rate and distribution shares with reference data from
UNHCR [57, 58]. Table 2 shows the results of the tests.

The model shows a higher proportion of new refugees in 2015 compared to
UNHCR data. This may be due in part to lack of detailed model design data, and to
some extent to underestimation of the number of refugees in UNHCR records. As
for allocations, the model shows lower proportions in Iraq and Lebanon, and higher
in Jordan. These differences may be due to lack of data on spatial distribution of
ethnicities. We used the sum of minimum agreements as a measure of allocation
accuracy, ranging from 0 to 1. It must be noted that the above are results of 46th
to 57th iterations (months) of the model, with death toll as the only input being
updated. Moreover, while the model simulates one cause for migration of refugees,
the observed data—which is the reference for testing the model—is aggregated and
includes consequences of other possible causes as well.

5 Conclusion

We developed an agent-based model of violence induced migration. By using
a simple variable—death toll—to simulate conflict zones, we built a model to
generate migration patterns of refugees despite lack of reliable information on the
details of the political and humanitarian conflict. Visual inspection of model outputs
and comparison with observed data enabled us to better understand the model’s
capabilities and limits.
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The model presented in this chapter is based on the idea that occurrence of
violence at a location can cause refugee migration. Census data was used as
input for spatial distribution of population. A highlight of the model design is the
definition of conflict zones around locations of violence. Model testing was based on
aggregate reported sums of refugees in neighbouring countries. The above aspects
could also be considered for improvement and extension of future work. Regarding
theory, violence-induced migration literature could suggest additional causes and
mechanisms. As an example of improvement of inputs, socio-economic data with
spatial distribution could, if available, replace some model assumptions. To improve
the design, new models could be developed with different sizes of conflict zones,
and compared to find the most realistic and reasonable amongst them. The outputs
of our model could serve as information tool for humanitarian agencies in order to
quickly prepare to receive refugees in cases of forced migrations, specifically in the
case of the Syrian civil war. Future efforts could be made into finding reference data
and developing tests that are more closely related to the model and that will help in
its validation.
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27. Yıldırım S, Yurtdaş GT (2016) Social construction of Syrian refugees in daily speech in
Turkey: interpretative repertoires and social media. Middle East Journal Refugee Studies 1:
103–122

28. Taylor JE, Filipski MJ, Alloush M, Gupta A, Irvin R, Valdes R (2016) Economic impact of
refugees. PNAS 113(27):1–5

29. Elizabeth B, Dunn C (2016) Refugee protection and resettlement problems. Science
352(6287):772–773

30. Oliver-Smith A (2012) Debating environmental migration: society, nature and population
displacement in climate change. J Int Dev 24:1058–1070

31. Milner J (2014) Can global refugee policy leverage durable solutions? Lessons from Tanzania’s
naturalization of Burundian refugees. J Refug Stud 27:553–573

32. Klabunde A, Willekens F (2016) Decision-making in agent-based models of migration: state
of the art and challenges. Eur J Popul 32:73–97

33. Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50:179–211
34. Moore WH, Shellman SM (2006) Refugee or internally displaced person?: to where should

one flee? Comp Polit Stud 39:599–622
35. Strang A, Ager A (2010) Refugee integration: emerging trends and remaining agendas. J Refug

Stud 23:589–607
36. Charteland G (2008) A quest for family protection: the fragmented social organisation of

transnational Iraqi migration. In: Academy B (ed) Displacement and dispossession: force
migration in africa and the Middle East, p 16

37. Phillips D (2010) Minority ethnic segregation, integration and citizenship: a european perspec-
tive. J Ethn Migr Stud 36:209–225

38. Awad I (2014) Population movements in the aftermath of the Arab awakening: the Syrian
refugee crisis between regional factors and state interest, pp 24–39

39. Syrian Observatory for Human Rights. http://www.syriahr.com/en/
40. Schwab K (2012) World E.F.: the global competitiveness report 2012–2013, Geneva

http://www.syriahr.com/en/


58 G. Arnoux Hébert et al.

41. World press freedom index (2016) Reporters Without Borders. https://rsf.org/en/ranking/2016
42. Gulden T, Harrison J, Crooks A (2011) Modeling cities and displacement through an agent-

based spatial interaction model. In: The Computational Social Science Society of America
Conference

43. Chen SH, Jakeman AJ, Norton JP (2008) Artificial intelligence techniques: an introduction to
their use for modelling environmental systems. Math Comput Simul 78:379–400

44. Wilensky U (1999) NetLogo. https://ccl.northwestern.edu/netlogo/
45. Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation

of agent-based spatial models of land use. Int J Geogr Inf Sci 19:153–174
46. O’Sullivan D (2004) Complexity science and human geography. Trans Inst Br Geogr 29:

282–295
47. Stefanovic D, Loizides N, Parsons S (2014) Home is where the heart is? Forced migration and

voluntary return in Turkey’s Kurdish regions. J Refug Stud 28:feu029
48. Melander E, Öberg M (2007) The threat of violence and forced migration: geographical scope

trumps intensity of fighting. Civ Wars 9:156–173
49. Adhikari P (2012) The plight of the forgotten ones: civil war and forced migration. Int Stud Q

56:590–606
50. Melander E, Öberg M (2006) Time to go? Duration dependence in forced migration. Int Interact

32:129–152
51. Willekens F (2013) Agent-based modeling of international migration. In: Research plan

for independent research group. Max Planck Institute for Demographic Research, Rostock,
pp 1–19

52. Webber SC, Porter MM, Menec VH (2010) Mobility in older adults: a comprehensive
framework. Gerontologist 50:443–450

53. de Haas H, van Rooij A (2010) Migration as emancipation? The impact of internal and
international migration on the position of women left behind in rural Morocco. Oxf Dev Stud
38:43–62

54. Willekens F, Massey D, Raymer J, Beauchemin C (2016) International migration under the
microscope. Science 352(80):897–899

55. Quinn B (2016) Russia’s military action in Syria–timeline. The Guardian. https://
www.theguardian.com/world/2016/mar/14/russias-military-action-in-syria-timeline

56. Pontius RG, Millones M, Gilmore R (2011) Death to kappa: birth of quantity disagreement and
allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429

57. United Nations High Commissioner for Refugees (2016) Global Trends: Forced displacement
in 2015. http://www.unhcr.org/576408cd7.pdf

58. United Nations High Commissioner for Refugees (2017) UNHCR Syria regional refugee
response. http://data.unhcr.org/syrianrefugees/regional.php

https://rsf.org/en/ranking/2016
https://ccl.northwestern.edu/netlogo
https://www.theguardian.com/world/2016/mar/14/russias-military-action-in-syria-timeline
http://www.unhcr.org/576408cd7.pdf
http://data.unhcr.org/syrianrefugees/regional.php


Automated Extraction of Movement Rationales
for Building Agent-Based Models: Example
of a Red Colobus Monkey Group
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Abstract The study of animal movement has gained impetus in recent years with
improvements in telemetric technologies which enable high resolution tracking,
providing researchers with a wealth of animal “big-data”. Coupling such movement
data with information about the environments in which the animal moves provides
a rich data source that can be exploited to understand an animal’s rationale for
movement, which in turn can be used to extract “rules” that govern movement.
The extraction of rules can be done using spatial, statistical and machine learning
techniques. Once the rules replicating patterns and predictors of movement have
been “discovered”, they can be subsequently used to build simulation models
(ABMs) to mimic in-silico the behaviours of both individuals and groups of animals.
We use field data collected by tracking Red Colobus (Procolobus rufomitratus)
monkey groups from Kibale National Park, combined with land cover and terrain
information, to show how this might be achieved.
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1 Introduction

Agent-Based Models (ABMs) have been used extensively to explore the impact of
animal movement patterns across space-time and predict environmental outcomes.
As an example, ABM simulations of red colobus (Procolobus rufomitratus) monkey
groups in Kibale National Park, Uganda, suggested that fragmentation of landscapes
combined with animal movement strategies allow for the emergence of hotspots for
zoonotic diseases [1]. However, the movement rationale expressed in such ABMs
have thus far been based on expert knowledge about the behaviour of the Red
Colobus monkeys, which were subsequently converted to rules.

With the advent of tracking technologies such as GPS tags, there has been a
concomitant rapid rise of animal movement studies generating an enormous volume
of valuable tracking data [2]—an example of “big data”. This provides a significant
opportunity to utilize this widespread availability of movement data and extract the
rationale behind the movements, and to convert these into agent-rules. Here, we
propose that the availability of such large datasets with high spatial and temporal
granularity (both animal and human) can be combined with other GIS data and
methods for automated extractions of movement rules. Tested rationales could
be preferred habitats, avoidance of high risk predator or disease areas, territorial
defense, and social behaviour. This augments the expert’s interpretation, which was
traditionally based on field observations. Additionally, success in identifying the
rationales for movement can be used for parameterization and for calibration of
ABM model output [3–5].

2 Extracting Movement Rationales from Data

Over two decades ago, Rodgers & Anson [6] had prophetically suggested that
“GPS-based animal-location systems will set a new standard for habitat-resource
utilization studies of large animals over the next five to 10 years”. This availability of
high resolution movement data, particularly those collected via GPS telemetry (i.e.,
sequence of GPS locations), has given rise to the field of “movement ecology” [7].
Additionally, the Max Planck Institute of Ornithology has developed a free online
database, Movebank (movebank.org) that allows researchers interested in animal
movement to “manage, share, protect, analyze, and archive their data”. Current
studies range from estimating the home ranges of animals to understanding the
space use and detailed movements of animals [8]. Furthermore, new methods have
been developed to analyze the data to understand the unknown rules followed by the
study animals [9, 10]. The broad goal of movement ecology is to study the processes
that cause and influence movement in animals [11]. These processes are diverse,
with suggestions that individual mechanisms such as spatial memory, internal time
measures, communication, and reliance on co-specifics are all factors that underlie
movement behaviour [12–15]. Additionally, to coordinate the nature and timing of

http://movebank.org
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their activities (including movement), interactions amongst individuals is necessary
for most animals living in groups [16]. Since social hierarchies and predation risk
vary among species and individuals and resulting in individual-specific strategies,
this further complicates our understanding of movement dynamics.

In its most elementary stage, Nathan et al. [7] suggest that the movement of an
individual organism occurs due to the interplay of four mechanistic components:
its internal state, its motion capacity, its navigation capacity and external factors.
Internal states are difficult to capture solely from “big data” at present. However,
we propose that attempts can be made to extract rules about motion, navigation
and external (environmental) factors. Motion and navigation, for example, manifest
themselves as the direction, magnitude and periodicity of movement, all of which
can be extracted from time-series location information [11, 17–19]. Recently, it has
been suggested that there are common movement strategies across taxa (although
such generalizations can be quickly disputed) [20, 21], further bolstering the
argument that motion by itself can be quantified and extracted as rules. Moreover,
information about navigation can be gleaned by studying external factors (e.g., land
use-land cover, topography) to identify environmental reasons that drive movements
(e.g. navigation is controlled by availability of food sources but limited to specific
areas due to slope).

New spatial methods have focused on analyzing the relative periodicity and
directionality of movement as an important and integral part of a broader framework
of movement-related studies in GIScience [11, 17, 18]. Specifically, pattern and
cluster methods can help identify similarity of movement behavior or locate places
of repeat interaction or use [22]. Understanding these “episodal movements” are
critical to capture repeat patterns in the behaviour of a moving point object [17, 23].
When integrated with distance, it can also provide information about similarity of
movement patterns for a pair of moving objects.

Additionally, several applications have been coupled with spatial analysis meth-
ods to provide a better understanding of animal behaviours from an ecological
perspective [24–26]. Very useful software packages have been built to exploit
information from telemetry-based movement data combined with spatial (GIS-
based) datasets (e.g., datasets on percent canopy cover, elevation, water bodies
etc.). For example, Geospatial Modelling Environment [27] analyses animal move-
ments considering the surrounding ecosystem, and allows these movements to
be decomposed into component localized movements that can be correlated with
environmental or habitat information. Such specialized open source software aug-
ment the analysis provided by traditional GIS methods. Importantly, they allow
researchers to understand the movements in the context in which they are occurring
(e.g., fragmented landscapes with or without corridors). The Environmental Data
Automated Track Annotation System (EnvDATA) within Movebank is one such
software that allows environmental data obtained from remotely sensed satellite
information to be attached onto Movebank’s data locations [11, 28]. This then
facilitates a greater understanding by allowing the movement to be contextualized
with respect to the environment in which it occurred.
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3 An Example of Red Colobus (Procolobus rufomitratus)
Monkey Group Movements in Kibale National Park,
Uganda

To simplify movement rationale, we seek to consider three main drivers of
movement patterns: (1) availability of food resources, (2) social factors (e.g.,
territoriality, mating opportunities), and (3) predation risk. Additionally, several
external and observable factors (e.g., percent canopy cover, elevation, water bodies)
can be considered while determining movement behavior. This allows predicting
the percentage of the variation in movement patterns explained by each driver. Such
variation can then be used to derive rules that may be pertinent to deciphering
movements in a variety of contexts.

In order to demonstrate how automated rule extraction for ABM development
could proceed, we analyze a 1.5 year snapshot (30 March, 2011–15 Sept, 2012) of
a red colobus monkey group movement in Kibale National Park (KNP), Uganda
(Fig. 1). The dataset includes sighting location co-ordinates by continuously
following one group of red colobus monkeys living inside KNP on a daily basis.
The GPS points were collected every 15 min by a research assistant located amidst

Fig. 1 Location of study area: Kibale National Park, Uganda
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Fig. 2 Distribution of Red Colobus observations (girded by a Minimum Bounding Rectangle)

members of this group. A total of 743 observations were collected in this time
period (Fig. 2), and all observations fall within an approximately 600 m � 1500 m
bounding rectangle highlighted in red. Also red colobus are not territorial, they are
relatively small size mammals and live in social groups that do not move in search
of mates [29]. Further, this set of points were selected for analysis because of their
relative continuity (i.e., lack of gaps in data collection), and because of the fact that
no predation was observed during this period. This is important because predation
can significantly alter movement characteristics in red colobus [30, 31]. Thus, all
movement seen during this period is likely solely because of foraging strategies
employed by the group.

To direct this work, movement rationales were broken down into two categories,
one related to the movement itself, and the other to underlying environmental factors
controlling movement. For the first category of “movement rules”, characteristics
of movement such as initiation, distance, and direction can be extracted from the
analysis of big movement data and used to suggest an agent’s probable motion. The
second, “constraining rules” analyze if the new location proposed by “movement
rules” is viable based on environmental factors. Hence, questions relating to the two
categories can be specified as (Fig. 3):

Movement rules: How frequently does the group move? And once the group is in motion,
how far and in which direction does it move?

Constraining Rules: What is the most common environmental factor (e.g., percent canopy
cover, elevation, water bodies) that puts spatial bounds on the groups’ observed location?
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Fig. 3 Decision-making steps taking by an agent based on “movement” and “constraint” rules

3.1 Movement Rules

How frequently and which way (distance, direction) does the group move?

During the period of observation (taken every 15 minutes), the group moved 76.03%
of the time, and was consequently stationary the rest (23.97%) of the time. Overall,
the group’s movement was normally distributed (Fig. 4) with a mean of 29.5 m and
a standard deviation of 27.86 m. However, there were longer transects up to 303 m
during the observation period. These infrequent yet important longer movements
show up in a detailed time series analysis of movement data [32], particularly via a
spectral analysis where the periodogram shows a prominent seasonal trends every
ten readings (Fig. 5). There was no observed correlation between frequency and
distance of movement.

To convert these analyses into “movement rules” governing motion of agents
(where the agent is the group), three components of any movement can be
considered: initiation, distance and direction. Initiation, which is the start of a
movement following a sedentary period, should be proportional to the time where
movement was observed (76.03%). For this study, this can be controlled via a
rule that depends on a random function, e.g., pick an integer between 0–100, and
initiate movement if the random number exceeds 24 (Fig. 3). An additional rule can
then randomly select the distance to move as a function of the mean and standard
deviation of observed data (i.e., the normally distributed observations as seen in Fig.
4). It should also allow for longer transects to be included cyclically every ten time
steps (and with some randomness of ˙1–2 time steps, as evidenced by the spectral
analysis in Fig. 5). An analysis of the direction of movement did not yield any
prominent trend for this dataset, i.e., there seems to be no specific preferences (Fig.
4). The direction of movement can therefore be randomly selected to be from 0 to
359

ı

. Together, these rules specify the initiation, distance and direction of movement
as a function of observed parameters.
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3.2 Constraining Rules

What are the most common environmental factors (e.g., percent canopy cover, elevation,
water bodies) that puts bounds on the groups’ motion?

The “movement rules” derived by analyzing the data on when, how far, and in
what direction the animals moved can readily be used to inform agents in an ABM.
However, there is no check to see whether the move itself would be possible in a
real-world setting. For example, movement rules may suggest a location far away
from a forest edge as they do not consider land cover, but in the real-world the
group may never move there due to safety concerns and other factors. Environmental
factors such as availability of food and water resources, and other constraints
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Fig. 5 Seasonality detected in the periodogram indicating pattern in movement trends [32]

such as elevation, often limit the exact movement strategies of most species,
including the red colobus. We therefore propose a set of additional “constraining
rules” that evaluate the appropriateness of the new location for the agent based on
environmental characteristics (Fig. 3). These rules act as a check on the directional
rules generated above, i.e., if the suggested “new” location for an agent group does
not meet the criteria generated from analysis of environmental characteristics, then
the agent is not allowed to move, but a new movement rule is generated. The agent
is only allowed to move IF the new location proposed by movement rule meets the
criteria of environmental factors, as specified below.

To evaluate the controls exerted by environmental factors, we selected a group of
GIS-based layers guided by expert knowledge about common ecological constraints
[33, 34] on the red colobus groups. These were analyzed using ArcGIS 10’s
Spatial Analyst functions [35]. Specifically, we utilized a land cover (LC) map
(obtained from supervised classification of SPOT imagery; classified as Forest,
Grass/Swamp and Built up areas) as well as a Digital Elevation Model (DEM of
90 m resolution, obtained from the SRTM Shuttle Radar mission) of the study area.
Following analyses were conducted using the base information: (1) extract a raster
layer indicating distance (in meters) away from open areas (i.e., Grass/Swamp and
Built-up; as specified in the reclassified SPOT image); (2) derive slope in degrees
from DEM using the “Slope” function; and (3) associate the values from these four
raster layers (LC, DEM, distance raster, and slope) with the 743 point observation
locations. The last stepstores the extracted values of the four raster layers in four
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corresponding attribute fields for each of the 743 observation locations: LULCVAL
with values 0-forest 1-grass/swamps, 2-built-up areas; DEMVAL; DISTVAL; and
SLOPEVAL.

To test if there are indeed environmental controls on movements, a data mining
software Weka 3.8 [36], and its M5 pruned model tree with default values, was
utilized. The M5 is a decision tree classifier with linear regression functions at the
leaves [37, 38]. If a presence/absence dataset is provided to it, it can generate a deci-
sion tree that “classifies” the presence/absence (dependent variable) as a function of
the independent variables—which in turn are selected using linear regression at the
leaf level. To run the classifier, an additional 743 random points were generated
as “absence points” (using a “create random points” function) that serve as the
null hypothesis. As with the 743 observation locations (now denoting “presence”),
values from the four environmental layers (LC, DEM, distance and slope) were also
associated with these newly generated random points. The dependent variable is
now denoted by a 0 for random/absence and 1 for presence.

Initially, the “absence” points were randomly generated within the red bounding
box, as this was assumed to be the region of occurrence for the Red Colobus group
(Fig. 2). The resulting decision tree (shown in Fig. 6a) suggests that a distance of
less than 58.125 meters from open areas (grass/swamps and built up; DISTVAL
<58.125) is the only deciding factor in the location of the monkey group. The
“constraining rule” therefore is that an agent (representing the Red Colobus group)
is allowed to move to a new location only within 58.125 m of open areas. Else
another movement rule has to be fired, specifying a new distance and direction of
movement. However, this single constraint of within 58.125 m produced by Weka
3.8 may be a result of constraining the random points to within the bounding box,
where most of the land cover is forest (87.3% of observed locations, and 83.9%
of the randomly generated points fell on forested areas). Given the fact that the
Red Colobus group is not really territorial [29], a larger area was subsequently
considered.

The consideration of a larger area (Figs. 6b and 7) suggested a more complex
picture, with a distance of <100.12 m from open areas being considered the
threshold for locations visited by the monkey group (the randomly generated points,
on the other hand, were located at distances >100.12 m). Additionally, the actual
Red Colobus observations were located inside forested areas (an LULCVAL of 0
indicates forests; with the decision tree suggesting that LULCVAL <0.5 indicates
observed Red Colobus locations). This analysis indicates that any movement by
the Red Colobus group must occur in forested areas that are within 100.12 m of
grass and built-up areas, which are basically the forest edges (Fig. 7). The related
constraining rules are therefore: allow the move (as specified by the highest value
of 0.6 in Class 5; Fig. 6b) if the new location is less than 100.12 m from forest edge
(DISTVAL <100.12) and is located on a land cover value of 0 (LULCVAL <0.5).
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Fig. 6 (a, b) If the random points generated are restricted to the bounding rectangle in Fig. 2,
distance from open areas (DISTVAL) <58.125 is the only variable controlling the location of
observations. Comparing to a larger set of random points, the observed Red Colobus locations
are <100.12 m from open areas, and always located in forested areas (LULCVAL of 0; LULCVAL
<0.5)

Fig. 7 The observed Red Colobus (Procolobus rufomitratus) (yellow dots) and random (red dots)
locations superimposed on grass/built-up areas (light green), and areas <100 m (light blue) from
them
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4 Future Possibilities

As the availability of “big data” collected at a high spatial and temporal resolution
grows, it opens up options for its analysis with spatial, statistical, and data mining
and learning techniques to develop and refine the rules governing movement in
ABMs. Movebank, for example, included data from 2484 studies across 548 taxa,
and from 303 million locations. This represents an enormous wealth of data
on animal movement patterns across species, spatial and temporal scales, and
landscapes. It also opens the door for detailed analysis of the patterns and rationale
for movement across numerous species, functional groups, habitat, landscapes,
disturbance regimes, etc. Specifically, it becomes possible to derive rules that
control the initiation, motion and navigation of individual agents, as well as to
place constraints on the plausibility of certain movements. The attempts herein to
develop standard methodologies using statistics and machine learning to extract
rules from observational data meshes well with concurrent work elsewhere to
automatically extract movement rules, as well as calibrate motion in ABMs [3–
5]. In the future, such automated extractions are expected to replace or augment
the heuristic knowledge of experts regarding animal movement, which had hitherto
been the standard method for deriving rules [1, 26, 39, 40]. As a consequence, the
future of ABM model development and calibration may increasingly depend on the
extracting of meaningful patterns from a significant source of movement data. We
provide one way forward towards achieving this objective by developing automated
methods of extracting movement behaviors as “movement” and “constraining”
rules, and representing the agents movement as an interplay of these two sets of
rules.
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Wealthy Hubs and Poor Chains: Constellations
in the U.S. Urban Migration System

Xi Liu, Ransom Hollister, and Clio Andris

Abstract Flows of people connect cities into complex systems. Urban systems
research focuses primarily on creating economic models that explain movement
between cities (whether people, telecommunications, goods or money), and more
recently, finding strongly and weakly-connected regions. However, geometrically
graphing the dependency between cities within a large network may reveal the roles
of small and peripheral city agents in the system to show which cities switch regions
from year to year, which medium-sized cities serve as collectors for large cities, and
how the network is configured when connected by wealthy or deprived agents.

We propose a network configuration method called ‘best friend’ networks, where
a node attaches to one preferential node, so that edges D nodes D n. Our case study
is 20 years of migrants, sourced from the U.S. Internal Revenue Service, traveling
between U.S. cities. In our networks, an edge is created to link a city to its most
popular migrant destination city for a given year. The resulting configurations reveal
closely connected “constellations” of cities comprised of chains, trees, and hub-
spoke structures that show how urban regions are configured. We also show routing
behavior within these networks to reveal that high-income migrants tend to flock to
hub cities, while low-income migrants form local city chains via nearby movements.

Keywords Migration • Urban hierarchy • Economic systems • Regional sci-
ence • Spatial interaction • Complex systems

1 Introduction

In an urban hierarchy, larger cities are connected to smaller cities with medium size
cities as intermediaries. Within this network, goods, information, capital, flights,
migrants, commuters, etc. flow through planar and non-planar veins, providing cities
with valuable resources. While cities are often studied in terms of demographics and
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production (a static representation), conceptualizing their position within an urban
system such as the hierarchy (using a dynamic representation of in and out flow)
allows researchers to examine the city within this larger corpus of transactions.

The urban hierarchy is comprised of groups of spatial regions where each is
anchored by one very large city. This large anchor city (e.g. Chicago) exerts
a gravitational pull on its surrounding cities unless another large city, perhaps
Minneapolis, MN or St Louis, MO claims what would usually be Chicago’s
surrounding cities as part of their own functional regions. Cities that lie on a region’s
periphery or circumference are more likely to switch regions than those closer to
the anchor city. In the past, regions were bound into geographically-cohesive areas
in order to minimize the costly movement of natural resources and commodities
[1]. When peripheral settlements send many flows to a city’s central business
district, this settlement is considered part of the larger city’s functional region. In
practice, flows such as migrants and commuters help the U.S. Office of Budget and
Management define the spatial boundaries for Business Economic Areas (BEAs)
and Metropolitan Statistical Areas (MSAs).

The traditional regional approach has been explained by the gravity model, which
estimates interaction (i.e. flows, connection strength) between two places as the
product of their respective populations divided by the square of the distance between
the places [2]. The resulting estimate simulates the economic pull strength of cities,
assuming that many people will choose to connect to a nearby place whose large
size signifies many opportunities [3]. A gravity model using just population and
distance has been shown to predict about 57% of U.S. inter-city migrant flows [4].

Regions are also delineated by areas of homogenous industry [5] or cohesive
economic activity [6]. More recently, creative methods like dollar bill circulation
[7], telephone calls [8], surname clustering [9] and maps of sports team popularity
from Facebook likes [10] have been used to delineate regions around functional
anchor cities.

Today, the regional hierarchy can be re-examined with a network approach.
The economic transition from manufacturing to digital services and information
technologies has allowed regions to form and function not just as a group of nearby
cities, but as a network of connected cities that may or may not be proximal.
This network is formed by “leapfrogging” (skipping over) nearby cities to create
connections with distant cities that have economic benefit [11, 12]. These networked
economies are not geometrically contiguous and thus, the connections are harder
to predict in theory, but larger and more comprehensive data sets allow for the
investigation of factors beyond traditional place-to-place connectivity (such as the
gravity model) [13].

Here, we focus on descriptive properties of migration in the U.S. urban system.
Migration choice has been explained by factors such as searching for the best job
possible [14] seeking out a certain lifestyle [15], or capitalizing on social networks
and interpersonal relationships [16]. Instead of building a model that attempts
to correlate high migration volume with demographic or economic variables of
different cities, we view the migration system as a network of cities connected
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by volumes of migrants, as per the topic of migration systems theory (MST) [17].
Similar studies partition city systems into communities that are closely connected
internally [18, 19], or search for network hub cities [20, 21]. These studies advance
the use of network science in studies of the urban hierarchy, but do not address the
extent to which migrants surpass near cities to connect with those further away—as
they may when interpersonal relationships and institutions are involved.

We use county-to-county migrant flows sourced from the U.S. Internal Revenue
Service (IRS) for 21 years (details in Sect. 2) to form a network of 917 cities (nodes)
that connect to each other (edges) weighted by the number of migrants exchanged
by cities (an undirected network). Because the complete network of migrants ties
many cities together and we are interested in uncovering the urban hierarchy, we
experiment with the following concepts:

1. Best Friend: Best friend networks are created by drawing an edge between an
origin and the destination to which it most frequently sends migrants.

2. Best High/Low Income Friends: These networks differentiate high-income flows
from low-income flows. The network is made from gathering each city’s highest
income outflow and connecting it with that destination. (i.e. an edge is made to
the destination that attracts migrants with the highest average income). The same
procedure is repeated for each city’s lowest income destination.

3. Constellations: This method produces a collection of graphs (i.e. disconnected
subgraphs of networks) of cities that due to the number of nodes involved in
each graph, their configuration and their spatial genesis, resemble constellations
which can be classified into motifs. We create a single ‘galaxy’ of constellations
for each of 21 years.

Our results show that migration networks exhibit significant structural temporal
persistence, and clear ensemble rules can be used to construct the networks. We
find that some cities switch preferences to alternative large city anchors over time,
and that some large city anchors become popular or decline in popularity. We also
determine that low-income flows create different networks than high-income flows.
We validate and contextualize these findings by comparing our model to the gravity
model and radiation model. Our proposed networks can respond to the following
questions: Which cities are popular for migrants? What regions (i.e. connected
graph structures) arise? Which cities feed into larger cities? Which cities bypass
closer and larger cities to connect directly to a more distant metropolis? Does a
population hierarchy emerge? Are systems of cities closed or do they connect in
larger chains? How do these patterns change for high- and low-income migrants?

In Sect. 2, we describe the migration dataset, network and analysis methods. In
Sect. 3, we explore re-occurring constellations in the networks, compare our model
to other prevailing models such as the gravity and radiation model, which reflect the
structure of urban hierarchy. We conclude in Sect. 4.
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2 Data and Methods

2.1 U.S. Migration Data and Population Data

We use data from the U.S. Internal Revenue Service (IRS) Statistics of Income
Migration Data for years from 1992–1993 through 2012–2013 for this study. These
data are free and available online. The original data were generated from the yearly
change in address reported on individual tax returns from one year to the next, and
aggregated at the county level to produce a network of county-to-county flows. Each
flow contains three attributes: the number of returns, the number of exemptions, and
the adjusted gross income (AGI), which is the sum of all income moving on the
flow. Flows must contain at least ten returns to be reported in the dataset. We use
number of exemptions to estimate the migrant population, as this value reflects the
size of families, including children and jointly-filing spouses. Alternatively, using
the number of filers would estimate the number of heads of households that migrate.

We aggregated the county-to-county flows into flows among Core Based Sta-
tistical Areas (CBSAs), formerly referred to as MSAs. CBSAs are defined as
urban cores and peripheries with a population of at least 10,000 residents. Since
CBSAs (henceforth, cities) follow county boundaries, aggregation required only
flow summation. The aggregated data contains 917 cities reporting migration flows
throughout the 21 years period. Each city is accompanied by a population count
defined by the U.S. Census Bureau at the county level, as aggregated to the city
level.

2.2 The Best Friend Configuration Model

The network is configured based on the single allocation [22] of edges to nodes
(i.e. cities). In this configuration, a single city is only permitted to attach to the city
to which it sends the highest proportion of its flows. For example, New York City
is only attached to Miami because it sends more migrants to Miami than to any
other city. In this model, each city is allowed only one outgoing connection (out-
degree D 1), but the in-degree can be as large as the number of other nodes in the
system (n�1). Thus, this network is referred to as the best friend network. Edges
are assigned a weight (w) calculated as the proportion of migrants (m) city i sends
to city j (Eq. 1):

w D
mij

Pk
1 mij

(1)

where k is the total number of cities to which city i is connected (i.e. its outgoing
degree).
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Over 21 years, the best friend model contains a total of 3.1% possible city-to-city
edges, but accounts for 20.7% of total system-wide migrants. The average yearly
migration flow magnitude ranges from 170–200 migrants and the average best friend
magnitude ranges from 1100–1500 migrants. Over time, the total number of system-
wide migrants grew from 5 million to 6.6 million and best friends accounted for 1 to
1.4 million migrants each year (hence, about 20% of total migration). Average AGI
incomes range from $120,000 to $9000 per flow.

We also derive two special types of best friend models where edges are
characterized by average income on the flow, calculated as the AGI of that flow
divided by the number of returns on the flow. High and low-income migration
networks are each created by selecting the best-high-income friend and best-low-
income friend of a city, defined as the largest migration streams amongst the
top 10% (high-income) and bottom 10% (low income) average income migration
connections leaving city i. The top 10% is used rather than single the highest/lowest
income flow to ensure a high number of migrants and thwart anomalies.

Temporally, each city in the income networks has an average of nine different
best-high/low-income friends over the time period. On average, cities are connected
to their best-high-income friends for 6.5 years and to their best-low-income friends
for 5.4 years. Generally, wealthy best friend pairs are more stable over time.

2.3 Constellations

Constellations, or motifs [23], are basic graph structures that repeatedly appear in
networks. In this study, constellation is a relaxed definition of motif that refers to
families of basic structures that are widely seen in best friend networks, as compared
to their probability of arising in a null models based on the gravity model. We
detected five types of motifs (Fig. 2) in the best friend networks: pairs, chains, hubs,
stars, and trees [24]. These graph structures are enumerated and analyzed using
community detection methods within the R statistical computing environment’s
igraph package [25, 26]. Their definitions are as follows:

Pairs: A pair is formed by two cities that are each other’s best friend. They are
isolated from population hubs and may have strong dependency on each other.

Chains: A chain is a series of single directional connected cities where for
i D 1 : : : n, city i points to city i C 1. Usually, city n connects to a local hub.
Chains can reveal how a series of many migrants connect to nearby non-hub cities,
possibly facilitated by a lack of social connections in large cities, poor mobility, or
high levels of local social capital.

Hubs: A hub is a node with an in-degree larger than one with ‘spoke’ cities
directly connected to it. The hub node may point to one of its spokes or to other
hubs, creating stars and trees. Hubs are popular destinations for both chain and non-
chain nodes.
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Stars: A star is defined by hubs that point to one of their spokes. Small local hubs
tend to form stars with proximal cities, and rely less on the influence of distant,
larger hubs.

Trees: A tree is hub that connects to other hub nodes, and is typically attracted
by higher-level hubs. Trees tend to connect small, medium and large cities.

2.4 Analytical Methods

Gravity model. The gravity model, as in [27], is a classical model for predicting
flows based on population and distance, so that the magnitude of migrants Tij

between city i and j is estimated as:

Tij D K
PiPj

dˇ
(2)

where Pi and Pj represents the population in city i and j, respectively, d is the
distance between the two cities and K is a constant. ˇ is a distance decay factor,
often referred to as the coefficient of friction, and most commonly estimated with
value of 2.

Radiation model. The radiation model [28] is used to predict flow volumes Tij

between city i (with population Pi) and j (with population Pj) as:

Tij D Ti �
PiPj

�
Pi C sij

� �
Pi C Pj C sij

� (3)

where Ti represents outflows from city i, and sij denotes the total population of
alternative population centers within a given radius of the destination city.

Distance between two cities is calculated as the using Euclidean distance between
each CBSA’s geometric centroid.

3 Results

3.1 Best Friend Network

A series of best friend networks was created for each year (ex. Fig. 1). Most cities
(60%) have no in-degree (degree D 1), 21% of cities have a degree of two (one
outgoing flow, one incoming flow), 9% have a degree of three and 5% of cities have
a degree of six or higher. These larger hubs include the U.S.’s ten largest cities, with
Dallas consistently having the highest degree at over 20 best friend connections.
The best friend network detects the regional importance of more geographically-
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Fig. 1 Best friend network constellations for year 2012. In the network, the size of nodes
corresponds to their degrees using Yifan-Hu’s proportional method in Gephi [29] and each
color represents a separate constellation. Some connected constellations are divided into different
components due to their relatively weak connections, as determined by the community detection
algorithm [25]

isolated cities such as Oklahoma City, Sioux Falls, Salt Lake City, Wichita, Des
Moines, Memphis, Jackson, Grand Rapids, and Little Rock (Fig. 1) in their local
hierarchical systems.

As migrant streams change each year, we can expect some fluctuation in the
network. The average time spent with a best friend is 13.8 years. 504 of 917
cities (55%) have only one best friend for the entire period and 877 (96%) have
at most three different best friends. On average, 110 cities change best friends
each year, a turnover rate of 12% per year. Because the number of different best
friends is low, this turnover rate does not compound at a high rate over longer time
periods (e.g. 15% of cities have a different best friend in 2000 than in 2012). The
strength of a best friendship, i.e. the percentage of migrants sent to a best friend
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city (Eq. 1), ranges from 3.6% (Chicago to Los Angeles in 1992) to 100% for
Mount Sterling, KY to Lexington, KY (1996–1999; 2001) and Big Stone Gap,
VA to Kingsport-Bristol, TN-VA (2006). In general, cities Chicago, Columbus,
OH and Atlanta have the smallest percentages of migrants sent to their best friend
cities.

Crucially, we do not see an increase in the diversity of places to which a
city sends its migrants. We had hypothesized that the rise of the Internet and
mobile technologies in the late 1990s would promote more swirling/churn in the
preferences of the migrants, given the new opportunities to research potential
destinations. With more diverse information, migrants may have experienced other
places, i.e. travelled more, and garnered friends in multiple locales. Yet, our analysis
does not reveal a diversification of movement over multiple destinations at any point
during this time. In fact, we see a steady increase in the average percentage of
migrants a city sends to its best friend, starting at 0.35 in the early 1990s and rising
to 0.37 in the 2010s.

The number of separate constellations and their size remains relatively sta-
ble over time. For each year, there was an average of 105 constellations, each
containing from 2 to 66 cities, with an average size of 8.8 cities. The majority
of constellations are small clusters, with 80% of the constellations comprised of
fewer than 13 cities and 49% comprised of fewer than 5 cities (Fig. 1). Most
constellations are geographically compact (averaging about 130 km), driven in part
by small constellations, especially mutual best friend pairs which limits the average
geographic spread. Notable exceptions include the strong New York City-Miami
connection and any constellation connecting Alaska or Hawaii to the mainland,
as well as some recurring connections between major cities. The New York City-
Miami connection is driven in part by retirees from New York City choosing to
move to a warmer climate (Fig. 1). These migrants are colloquially known as
“snowbirds”.

We next categorize individual nodes based on the following observed motifs:
pairs (both isolated pairs and those pairs within larger constellations), hubs (star
and non-star hubs), spokes (nodes directly connect to hubs and with 0 in-degree),
two categories of trees: ftree hubs (local hubs in a tree motif) and tree spokes (nodes
directly connect to tree hubs and with 0 in-degree)g, and chains (all members in a
chain category) (Fig. 2, Table 1). A node can only be placed into one category. The
categorization is implemented with an algorithm that uses in/out degree, the in/out
degree of their best friend, and the node type of their best friend as input parameters.
We find that most constellations, especially large constellations, have single central
nodes. Since large hubs have more resources, they may be less likely to rely on
other hubs.



Wealthy Hubs and Poor Chains: Constellations in the U.S. Urban Migration System 81

Fig. 2 Graph motifs with geographic examples. When cities are connected to their best friends,
different network motifs arise, including pairs, chains, hubs, stars, and trees. These schematics
illustrate differences between the roles of distinct cities within their regional systems, and what the
regional systems look like as a network of flows

Table 1 Proportions of different types of nodes throughout 21 years in best friend networks

Node types percentage (%) Hubs Spokes Pairs Tree hubs Tree spokes Chains

Best friend 12.1 30.2 8.3 7.3 19.3 22.8
High-income 4.4 20.2 0.9 12.4 26.9 35.2
Low-income 6.5 13.4 2.7 13.9 26.4 37.2

3.2 Comparison to Prevailing Methods

The best friend method highlights the backbone structure of urban hierarchy. Since
the structure is based on migration flows, we compare the best friend method
with related prevailing models, such as the gravity model and radiation model,
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to demonstrate that the urban hierarchy produces some patterns that are not well
explained by population and distance.

Using the most recent data, we find that a parameterized gravity model with a
pre-determined coefficient of friction (“) of 3 predicts about 60% of best friend
(n D 552). The closest city is a city’s best friend 28% of the time (n D 259). The
radiation model predicts the best friend with 39% accuracy (n D 357). We visualized
the best friend network in 2012 (Fig. 3a) based on a fitted gravity model for each
city and the corresponding constellations. Instead of showing various motifs, the
network is dominated by hub-spoke structure. If two cities do not connect in the
data, we do not consider them as candidates for best friend cities using the gravity
model. In other words, cities may have a clear choice given the gravity model, but
if the city did not send any migrants to this attractive choice (or choices), they
connected to their next best choices to which they actually sent migrants.

We also discover cities that “defy” gravity. We normalized the flow weight (w)
by the interaction measured by a fitted gravity model to isolate flows that are
large despite a small interaction estimate. These cities draw origin cities despite
high travel cost (distance) and relatively low population. These networks contain
more long-distance connections than best friend networks, a manifestation of
“leapfrogging” in the hierarchy, and illustrate how migration connects labor forces
to employment opportunities. For example, San Jose, in Silicon Valley, has an
agglomeration of leading technology companies, and connects to faraway college
towns throughout the years (Fig. 3b); Williston, North Dakota, becomes a hub in
the network after oil resources were found in the early 2010s, and spurred jobs and
economic growth.

3.3 High- and Low-Income Routing

The motifs of high and low income networks are collectively distinguished from
best-friend networks. First, there are fewer pairs in the income networks, pre-
sumably because smaller towns that depend on each other in general take more
preferential (and less mutual) routes when income is involved. Interestingly, there
are very few pairs that exchange high-income migrants (0.9%), but three times as
many will be best friends for low-income migrants (2.7%) (Table 1). There are more
chains in the income networks although these chains are shorter. There are more
hubs that are parts of trees in the income networks, indicating that hubs also connect
to other hubs in these networks (Table 1).

There are also differences between low-income and high-income networks. High
income networks have fewer hubs, but these hubs are quite large, as indicated
by in-degree, and draw more distant connections (Fig. 4a), while hubs of low-
income networks have fewer spokes. The high-income network has 39.38 unique
constellations and the low-income network has 51.14 constellations, indicating more
local regionalization and less overall connectivity in the low-income network. The
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Fig. 3 (a) Best friend network in 2012 with best friend cities selected based on a fitted gravity
model. The network is dominated by hub-spoke structure and real world motifs such as trees
and chains are rarely seen. However, our data reveal that best friends do not always choose the
destination predicted by the gravity model. For example, San Jose, California (b) is the hub for
many college towns (this example is derived from the 2010 annual dataset), while Williston, North
Dakota (c) starts attracting many cities after a boom in the energy industry (this example is derived
from the 2012 annual data)

average constellation size is 23.49 nodes for the high income network and 18 nodes
for the low-income network (Fig. 4b). The temporal change of constellation number
and size does not have significant trends; the average distance of best low-income
friends fluctuates while the average distance between high-income friends grows,
suggesting greater mobility (Fig. 4a).

When mapping the constellations onto the geographic boundaries of their
respective cities, we find that the low-income network depicts more local clustering,
i.e. cities within the same constellation tend to be nearby, and also tends to follow
state lines (Fig. 4c, d). Conversely, the high-income network constellations are not
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Fig. 4 High and low income network results. (a) Average edge distance in the high-income
network grows over time, while distances between low-income cities have no clear trend. (b) The
in-degree distribution of nodes in best-high/low-income-friend networks throughout the 21 years
show that the high-income network formed hubs with high degrees, and the low-income network is
marked with more cities with few incoming flows. The top 20 largest constellations using the 2012
data were identified and mapped to their corresponding city in high-income (c) and low-income
(d) networks. Cities with the same colors belong to the same constellations

as contained geographically; cities in many different states often belong to the same
cluster, indicating that neither boundaries nor distance appear to deter movement as
significantly as in the low-income network (Fig. 4c, d).

4 Conclusions

In this study, we proposed a series of methods to study the U.S. urban hierarchy
using 21 years of migration data from the U.S. IRS. We built a single allocation
(best friend) network from all migrant flows, and similar networks highlighting
only high- and low-income flows. Our results showed that the best friend network
did not align well with the gravity and radiation models of urban interaction, and
was distinguished by urban hubs, spokes and chains. Cities also tended to keep a
maximum of three best friends over the time period. The income networks were
marked with stronger hubs (with more spokes), that served in a system of connected
hubs. The high-income network encouraged longer flows, more leapfrogging, and
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exhibited more spokes that directly migrate to hubs that attract high earners
nationwide, such as Cape Coral and Naples, Florida. The low-income networks
contain a few more chains, which may represent that low-income migrants are more
likely to move to nearby cities first and ‘climb up’ to the hubs gradually, which may
result from limited mobility and limited social capital in hub cities.

The biggest limitation of our study is the variation in the meaning of a city’s “best
friend”. For some cities, the best friend is a significant dependent tie as a city may
send all of its migrants to this city, while for others (such as Chicago and Memphis),
the best friend only absorbs about 5% of migrants. The edge that results from both
of these scenarios is indistinguishable in the network. One potential remedy is to
use analytical methods that account for edge weights.

The larger, eventual goals of testing the best friends method is to use it to
(1) unearth ties that may not make sense economically, but may be the result
of interpersonal relationships, and (2) come closer to understanding how flows
affect the places to which they connect. When a city’s migrants are attracted to
a city, we consider these cities to be in a similar functional region—as they are
exchanging the same people between multiple cities. These functional regions
are increasingly geographically disconnected, which should be accounted for in
geographic partitioning exercises and in location-allocation models that use distance
as an input parameter.
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Discovering Multi-Scale Community Structures
from the Interpersonal Communication
Network on Twitter

Caglar Koylu

Abstract Despite the controversies of privacy and ethics, spatially-embedded com-
munication data from widespread and emerging online social networks provide an
unprecedented opportunity to study human interactions at the global scale. Detect-
ing communities of individuals who live close by and have strong communication
among each other is critical for a variety of application areas such as managing
disaster response, controlling disease spread, and developing sustainable urban
spaces and infrastructure. The ease of long-distance travel and communication have
generated a highly complex network of human interactions, in which long-distance
and short-distance ties coexist in multiple scales. Also, there is a hierarchical spatial
organization in human interaction networks which reflect historic and socio-political
borders. Patterns of human connectivity cross these historic and socio-political
borders at multiple geographic scales. Therefore, a comprehensive understanding of
human interactions necessitates analysis methods to take into account the complex-
ity introduced by the multi-scale nature of human connectivity. This paper employs
a spatially-constrained hierarchical regionalization algorithm to reveal multi-scale
community structures in the interpersonal communication network on Twitter. The
interpersonal communication network was constructed using a year of reciprocal
and geo-located mention tweets in the U.S. between August 2015 and 2016. The
results strikingly showed nested borders of cohesive regions at multiple scales,
which are inherent to human communication patterns in the regional hierarchy of
the U.S. Unsurprisingly, people communicated with others that live nearby, and
multi-scale regions overlap with administrative boundaries of the states, cultural
and dialectal regions, and topographical features. Furthermore, visualization of
interregional communication patterns revealed a variety of spatial connectivity
patterns such as poly-centricity, hierarchies, and spanning trees. Discovery of
such patterns is essential for understanding of the complex social system that is
influenced by long-distance ties.
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1 Introduction

Despite the controversies of privacy and ethics, in recent years, publicly available
data from location-based social networks (LBSN) such as Twitter, Foursquare,
Gowalla, and BrightKite have made it possible, for the first time in human history,
to examine human interactions at the global scale. One can infer human interactions
through various forms of geo-tagged communication data such as text, photo, video,
and check-in locations provided by online platforms. Understanding of human
communication and social ties is crucial for addressing societal challenges such as
managing disaster response, controlling disease spread, and developing sustainable
urban spaces and infrastructure.

Previous studies in LBSN have utilized various forms of communication data
to analyze the effect of geographic proximity on social interactions [1–3]; and the
structural and geographic characteristics of communication networks at the global
scale [4–8]. In addition to understanding global characteristics of communication
networks, there has been a growing interest in identifying community structures
in human mobility and communication networks [9–11]. Findings of these studies
across various themes highlight strong resemblance of human communication
and mobility patterns, and the constraining effect of administrative boundaries,
topographical features, cultural and linguistic variations on human mobility and
communication [12]. However, the ease of long-distance travel and communica-
tion have generated a highly complex network of human interactions, in which
long-distance and short-distance ties coexist in multiple scales. Also, there is
a hierarchical spatial organization in human interaction networks which reflect
historic, and socio-political borders. Patterns of human connectivity cross these
historic and socio-political borders at multiple geographic scales [9, 10, 13–
15]. Therefore, a comprehensive understanding of human interactions necessitates
methods that take into account the complexity introduced by the multi-scale nature
of human connectivity.

This paper employs a spatially-constrained hierarchical regionalization algorithm
to reveal multi-scale community structures in the interpersonal communication
network on Twitter. The interpersonal communication network was constructed
using a year of reciprocal and geo-located mention tweets in the U.S. between Aug.
2015 and 2016. The results strikingly showed nested borders of cohesive regions
at multiple scales, which are inherent to human communication patterns in the
regional hierarchy of the U.S. Unsurprisingly, people communicated with others
that live nearby, and multi-scale regions overlap with administrative boundaries of
the states, cultural and dialectal regions, and topographical features. Furthermore,
visualization of interregional communication patterns revealed a variety of spatial
connectivity patterns such as poly-centricity, hierarchies, and spanning trees.
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2 Related Work

2.1 Distance and Social Interactions

Social ties and communication are constrained by distance, and most of them
are geographically local [4]. Deville et al. [16] have shown a great similarity
between communication and mobility patterns, and explain the spatial dependencies
by a scaling relationship using power laws. Similarly, Emmerich et al. [17]
analyzed a variety of spatially-embedded networks such as the Internet, power
grid, transportation and communication networks, and found that spatial constraints
are relevant, and the relationship between topological and geographic distance
varies by dimension and scaling factors. Von Landesberger et al. [18] introduced
a flow clustering and visualization approach to identify spatiotemporal variation
in the mobility and communication patterns from tweets and phone call records.
Von Landesberger et al. [18] found similarities in spatiotemporal patterns such as
movements and communication directed from/to central locations given a particular
cycle (e.g., daily, weekly). McGee et al. [19] analyzed the effect of distance on
the strength of ties, and classified Twitter’s utility both as a social network of
geographically nearby friends, and as a news distribution network of individuals
that live far apart. Higher intensity of communication has also been found to be
associated with external factors such as gender, demographics, and socio-economic
status. By analyzing 30 billion online conversations, Leskovec and Horvitz [6] found
that people tend to communicate more with each other when they have similar age,
language, and location; and cross-gender conversations are both more frequent and
of longer duration than conversations with the same gender.

Different forms of communication data have been analyzed to examine geo-
graphic and structural characteristics of human communication. Krings et al. [20]
and Lambiotte et al. [21] revealed that the communication intensity between two
cities can be estimated as a function of population, distance, and predominant
language using phone call records. Barnett et al. [22] also analyzed phone call
records and found that the relationship between homophilly and spatial autocor-
relation is amplified in places with high density of individuals. Garcia-Gavilanes
et al. [23] studied Twitter user mention network, and found that the probability
of two user mentioning each other correlates with power distance. Several studies
[24–26] have shown similar findings, and revealed that user mentions on Twitter
occur between users that are in close geographic proximity. In addition to distance,
Garcia-Gavilanes et al. [23] incorporated economic, cultural and social variables
to predict the volume of communication flows between countries. Herdagdelen et
al. [27] analyzed social, political and geographic characteristics of news-sharing
communities on Twitter, and defined social groups based on local, national and
global level. By analyzing a large Twitter dataset, Groh et al. [28] found that (1)
the social tie strength decreases as expected with increasing spatial distance among
users (2) the information value decreases when the tie strength increases; and (3)
the value of information is independent from the distance.
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2.2 Community Structures in Spatial Networks

In a network, a community is defined as a set of nodes (individuals) in which
the density of connections is stronger internally within the community than it
is externally with the individuals from different communities [29]. Community
detection algorithms without explicit spatial constraints [30] can be applied to
identify communities in spatial networks, which may be multi-part (split) in geog-
raphy. Various modularity-based community detection algorithms have been used
to discover community structures in networks of human mobility [31], commuting
[32], telephone call records [10], friendship networks [11], twitter [33, 34], and
credit card transactions [35]. Communities discovered by these studies are often
geographically confined to nearby regions, however, some of them are multi-part in
geographic space. To bridge the geographical and network aspects of communities,
Croitoru et al. [36] integrated Louvain and density clustering methods to identify
and link community structures in the network (cyber) space and geographic space.
Similarly, gravity models have been applied in non-spatial and modularity-based
community detection algorithms [37] to estimate expected flows as a function
of geographic distance, and derive geographically cohesive community structures.
Alternatively, one can embed spatial constraints in community detection to partition
a spatial network into smaller sets of contiguous nodes or functional regions that
are densely connected internally. In this paper, a spatially-constrained hierarchical
regionalization algorithm [9] is used to reveal multi-scale community structures in
the spatially-embedded reciprocal mention network.

3 Data and Network Extraction

Geo-located tweets in the Contiguous U.S. between Aug. 1, 2015 and Aug. 1, 2016
were collected using the Twitter Streaming API. Location of tweets are available in
two different levels of granularity: exact geographic coordinates, or in a descriptive
manner by listing of a place name such as a city. Stefanidis [38] reported that 0.5 and
3% of the tweets had precise coordinates over a period of two years prior to 2013,
and also highlighted that the use of precise coordinates increased to 16% during
events such as Fukushima disaster in Japan. The dataset used in this paper included
14% of the tweets with precise geographic coordinates, which could potentially be
attributed to increasing adoption of mobile technology. In this paper, tweets with
both exact geographic coordinates and place names that corresponded to an area at
least at city scale were used. Therefore, place names that were at the state or country
level, which corresponded to 18% of the tweets with place names, were excluded.
As a result, the dataset of tweets with exact coordinates and place names that are at
least at city level, consisted of 700 million tweets, and 6.6 million users.

Communication between Twitter users is handled through a set of functions.
Follower, favorite and retweet functions are useful for modeling information
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diffusion, whereas mentions and replies allow users to join conversations on Twitter,
wherein direct personal communication could be extracted [36]. A reply is a
response to another user’s tweet that begins with the @username of the original
poster, a mention is a tweet that contains another user’s @username anywhere in
the body of the message. In a user mention, the tweet includes only the location
of the sender who mentions another user (recipient), and a representative location
of the recipient in a mention can be derived only if the recipient has at least one
geo-located tweet in the sample. Also, since individuals are mobile, locations of
tweets from each user are variable across space. In this paper, tweet locations were
overlaid with census data (e.g., county boundaries) to identify a home area for each
user based on the most frequent tweet location. Another commonly used strategy
could be to determine the home location based on tweets posted at night time where
individuals are assumed to be home. In this paper, only the reciprocal mention pairs,
or in other words, back-and-forth conversations [37] were used while the tweets that
were not replied were disregarded.

A data cleaning procedure was performed prior to constructing the geo-located
user mention network on Twitter. Using the metadata provided by the Twitter
Streaming API, the following tweets and users were filtered out: (1) the tweets
authored by non-personal user accounts such as news feeds, weather and emergency
reports, and external applications such as Foursquare and Instagram (2) users with
more than 3000 followers to prevent any bias caused by a large number of user
mentions attracted by a few users, i.e., celebrities [39]. After the cleaning process,
the number of tweets decreased to 290 million (42%). Of these 290 million tweets,
221 million (76%) included a user mention. There were 4.7 million users who were
mentioned in a tweet at least once.

After the initial data cleaning, the following steps were performed to extract the
reciprocal mention network. First, a spatially embedded individual-to-individual
reciprocal mention network was constructed by taking into account the tweets of
users who both send and receive messages between each other. Of the 221 million
mention tweets, 71 million tweets (32%) corresponded to tweets exchanged between
users that both users’ home county can be located. After further filtering to obtain
reciprocal mentions, the number of tweets was reduced to 33 million (46% of
geo-located mentions). The individual reciprocal pairs were then aggregated into a
county-to-county network by using the most frequent county location for each user.
In the county-to-county network, a link illustrates the total number of reciprocal
pairs between two counties.

4 Methodology

A spatially-constrained hierarchical regionalization algorithm [9] was employed
to reveal multi-scale community structures in the spatially-embedded reciprocal
mention network. The regionalization method produces a hierarchy of spatially
contiguous regions, where there are more flows within regions than across regions.



92 C. Koylu

First, a modularity measure of connection strength was computed rather than using
the raw flow counts (reciprocal pairs) between each pair of locations. This step is
necessary to remove the effect of population by calculating the difference between
the actual flow and the expected volume of flow for each pair of locations (counties).
While a variety of statistical measures can be used to calculate the expected volume
of reciprocal pairs, the following formula that is based on an adjusted flow volume
was employed.
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where EP (O, D) is the expected number of reciprocal pairs between origin O
and destination D, FO is the number of reciprocal pairs between county O and
its connections, FD is the number of reciprocal pairs between county D and its
connections, f (O, D) is the number of reciprocal pairs between county O and
county D, FS is the number of reciprocal pairs between all counties, and
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is used to remove within-county expectations. Finally, modularity of a link O-D is
calculated as:

MOD .O; D/ D AP � EP

where AP is actual number of pairs, and EP is expected number of pairs on link O–
D. Using this formula, the raw counts of reciprocal pairs were transformed into
a county-to-county modularity graph, in which the weight of a link represents
the modularity between two counties. If modularity value is positive the link is
considered to be above expectation, if the value is negative the link is below
expectation. Next, a full-order average linkage algorithm (ALK) [40] was employed
to construct a set of spatially contiguous regions. One can find the algorithmic
details of the clustering method in [40]. The average linkage algorithm is a
clustering method which is used to build a hierarchy of spatially contiguous clusters
by iteratively merging the most connected adjacent clusters. The method outputs
a spatially contiguous tree, where each edge connects two geographic neighbors
and the entire tree is consistent with the cluster hierarchy. Next, each region in the
spatially contiguous tree was partitioned into two regions based on an objective
function. Partitioning starts downward from the top of the clustering tree by
removing edges. To obtain k regions, (k�1) edges must be removed. For example,
four edges must be removed from the initial spatially contiguous tree to derive a
five-region partition. To derive k regions, a hierarch of k sets of region partitions
are obtained. Each of these sets corresponds to a hierarchical level and is embedded
in the next higher level of region partition. Given two regions generated at each
level of the hierarchy, a fine-tuning procedure [9] was performed to modify the
boundaries by moving locations from one region to other to further optimize the
objectives. In this paper, two objectives were used: (1) maximizing within-region
modularity (2) maximizing compactness for each region. The modularity is the
sum of flow-expectation difference for each pair of units inside a region and for all
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regions. Different from the original algorithm [9], we used hierarchical expectation
by recalculating the marginal flows for the new region division after each edge
removal. For example, if an edge removal partitions ten spatial objects into two
regions, region A with three and region B with seven; the marginal flows of the
three locations in A is recalculated as the marginal flows within A, and the same
applies to region B. Therefore, the marginal flows and flow totals of locations in
both regions are dynamically updated according to which region they belong to [41].
The compactness of a region was calculated using the Relative Distance Variance
[42, 43], which was found to outperform the other measures of compactness [44]:

Compactness D
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2�
�
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y
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where Area is the area of the shape, and �2
x and �2

y represent the variance of the
distances between the centroid of the shape, and the x and y coordinate pairs that
define the boundary of the shape.

5 Results

5.1 Network Characteristics and the Distance Effect

Individual-to-individual reciprocal mention network consisted of 1,539,396 users
(nodes) who participated in at least one conversation. There were 2,621,831
undirected edges, where each edge illustrates a reciprocal pair of users who
communicated with each other at least once. Despite the extensive filtering process,
the reciprocal communication network is still well connected [45]. The largest
connected component consisted of 1,271,530 users (83%) and 2,424,224 edges
(92%). This means that 83% of the individuals are connected with each other by a
varying number of steps, and an individual has 1.9 connections on average. Figure 1
illustrates the cumulative density of reciprocal pairs by geographic distance. While
50% of the reciprocal communication happened within the same county, 77%
happened within the same state. This finding agrees with the previous work in that
individuals who engage in conversations are strongly constrained by geographic
space.

5.2 Multi-scale Community Structures

The individual-to-individual network was aggregated into to county-to-county
network of reciprocal communication, and the regionalization algorithm was per-
formed to derive a hierarchy of regions from 1 to 48. The partition with 48 regions
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Fig. 1 Frequency of
geographical distances among
reciprocal pairs. While 50%
of the reciprocal pairs were
within the same county, 77%
were within the same state

Fig. 2 Total within-region modularity for partitions from 1 to 48 regions in the hierarchy

was selected as the maximum number of regions in the hierarchy in order to compare
the data-driven regions to the boundaries of the lower 48 states. The total within-
region modularity for region levels from 1 region to 48 regions highlights patterns of
communication at multiple scales (Fig. 2). The three-region partition (Fig. 3a) splits
the country into East, Central South and Midwest-West divisions. The existence of
the eastern region is likely to be influenced by different time zones, which enforce a
significant constraint in human communication. The partition with eight regions
maximizes the total within-region modularity, and suggests a stable partitioning
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Fig. 3 Hierarchy of interpersonal communication at (a) three regions (b) eight regions. Partition
with eight regions achieves the maximum within-region modularity, and suggests a stable
partitioning of the network for the discovery of community structures
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of the network for the discovery of community structures (Fig. 3b). Eight-region
partition highlights known boundaries as well as unexpected splits that can be
explained by socio-economic, cultural and dialectal, and topographical structure of
the country. The Northeast region almost exactly matches the designated region by
the Census Bureau. This is not surprising as the cultural and political make-up of
the Northeast was established long before other regions, and over several centuries.
The region was formed by various ethnic groups that were spatially clustered, and
tightly connected with each other. On the other hand, the neighboring regions of the
Northeast are largely influenced by the natural boundaries such as the Appalachian
Mountains and Ohio Valley which act like a physical barrier, and catalyst for human
connectivity. Regions in the south were split by the state boundaries of Texas,
Tennessee, Louisiana, Alabama, Mississippi and Georgia. The Northwestern region
was merged with Midwest, which formed the largest region with a minimal effect of
state boundaries. California, Arizona, Nevada, Utah and South of Idaho formed the
Western region. Regardless of the diversity in landscape and climate, the Western
region contains various racial and ethnic groups that are connected with each other
across longer distances.

Figure 4 illustrates 27 regions which were selected based on the most significant
drop (slope) in total within-region modularity around the mid-level regions (Fig. 2).
This partition highlights previously known splits in regional geography of the
U.S. and patches created by metropolitan areas such as Dallas, Los Angeles,

Fig. 4 Interpersonal communication at 27 regions. This partition highlights previously known
splits in regional geography of the U.S. such as the division between northern and southern
California; Carolinas; Great Lakes region including Minnesota, Wisconsin and Michigan; and
patches created by metropolitan areas such as Dallas, Los Angeles, and Washington D.C
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and Washington D.C. There are many known splits in this partition such as the
division between northern and southern California; Carolinas; Great Lakes region
including Minnesota, Wisconsin and Michigan; the combined Kansas-Missouri
region centered on the two Kansas Cities and Springfield, Missouri; and the
separation of New York City from the rest of New York.

Figure 5a illustrates the partition with 48 regions in order to compare with the
boundaries of the lower 48 states of the U.S. While the regions in the east are
partitioned into smaller regions, regions in the west are still very large due to lower
population, thus, communication sparsity. Figure 5b illustrates the overlap between
the state borders and the boundaries of the 48 data-driven regions. The overlap
between the state boundaries and 48 data-driven regions was found to be 45%. The
states with the most overlap with the region boundaries are Pennsylvania (83%),
New Jersey (80%), South Carolina (80%) and Arizona (78%) (Fig. 5b). While some
states were split into smaller regions, some were merged to form larger regions that
contain multiple states. For example, Texas was split into three regions influenced
by the metropolitan cores of Houston, San Antonio, and Dallas. California was
split into San Francisco, Central Valley and the rest of California that is pulled by
Los Angeles. Florida was split into two regions as a result of the pull effect of the
metropolitan areas of Miami, and Northern Florida (i.e., Orlando, and Jacksonville).
Small deviations from state borders are caused by the swapping of counties as a
result of the pull-effect of a metropolitan core in an adjacent state. Some states were
merged to form larger regions that include multiple states. Most of these examples
are from the Great Plains. A common characteristic of these regions is the low
population density, and thus, less volume of communication.

5.3 Spatial Connectivity Between Regions

Figure 6 illustrates the patterns of spatial connectivity between 48 regions. A
modularity threshold of 500 was used to reduce the cluttering and visualize flows
that are above expectation (i.e., observed—expected >500). A circle symbol is
placed at the population-weighted centroid of a region and the size of the circle is
proportional to the within-region modularity. Modularity flows between the regions
are represented by flow lines with varying width proportional to the modularity
value. Background choropleth map illustrates the region boundaries, and the color
value is used to symbolize the density of reciprocal pairs within each region
using quantile classification. The structure of flows follow a variety of forms.
For example, the Texas Triangle portrays a polycentric pattern, where there are
approximately equal strength of connections (flows) between the three metropolitan
regions of Houston, San Antonio, and Dallas. On the other hand, connections in
California follow a more hierarchical structure, where the hinterland of Los Angeles
is tightly connected with the hubs of Central Valley, San Francisco, and Arizona; the
connections between these hubs are not as strong. The regions in the East Coast, on
the other hand, follow a linear pattern similar to a spanning tree, where each of the
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Fig. 5 Comparison of state borders with the boundaries of the 48 data-driven regions of user
mention tweets. (a) Color-coded areas correspond to the boundary of the states, black lines
correspond to the boundaries of data-driven regions discovered by the regionalization algorithm.
(b) Red lines illustrate the overlap between the state boundaries and the 48 regions, and the color
value symbolizes the percentage of overlap for each state. The overlap between the state boundaries
and 48 data-driven regions was found to be 45%
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Fig. 6 Reciprocal mentions between 48 regions. A circle symbol is placed at the population-
weighted centroid based on the number of users within each region, and the size of the circle
is proportional to within-region modularity. Modularity flows between the regions are represented
by flow lines with varying width proportional to the modularity value. Background choropleth map
illustrates the region boundaries, and the color value is used to symbolize the density of reciprocal
pairs within each region using quantile classification

regions are strongly connected to one of its close-by neighbors along the east coast.
The only exception to this pattern are the big hubs of New York City and New Jersey,
which follow a hierarchical pattern. Chicago also follows a hierarchical pattern of
connectivity, whereas Cleveland, Columbus and West Virginia follow a polycentric
one with strong connections among each other.

6 Discussion and Conclusion

A hierarchical regionalization algorithm was used to identify multi-scale com-
munity structures within the interpersonal communication network on Twitter.
The results strikingly showed cohesive regions in different scales, which overlap
with administrative boundaries of the states, cultural and dialectal regions, and
topographical features. Although the regionalization process did not involve state
level information, 45% of the state borders overlapped with the data-driven regions,
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which is similar to the findings of the previous studies that analyzed a variety of
human mobility and communication datasets [9, 13]. Also, the patterns of spatial
connectivity between the 48 regions revealed a variety of structural patterns such
as poly-centricity, hierarchies, and spanning trees. Discovery of such patterns is
essential for understanding of the complex social system that is influenced by long-
distance ties.

There are a number of limitations in this study. The first limitation is well-known:
demographics of twitter users are not reflective of the general population [46].
Twitter is only a small portion of interpersonal communication which mostly happen
in person, through phone calls, text messaging, and video conferencing. However,
one can analyze any form of communication data with spatial information in a
similar manner without revealing privacy of individuals, and discover community
structures in a spatial hierarchy. Although a large volume of geo-located tweets
were used, these tweets represent only a sample of all tweets (approximately 1%).
Moreover, constrained by opt-in behavior of users for geographic location, a large
portion of user mentions was not represented in the datasets used in this study due
to the inability to locate all mention pairs. For future work, there is a need to take
into account the changing frequency of communication over time. In addition to
studying the temporal aspect of the network, there is also a need to examine the
semantics of the communication using the content of the tweets. By analyzing the
content of the conversations using text mining methods one can understand how
online conversations vary based on pairs of users in different locations, and different
time periods. Such information can help identify both linguistic and topical variation
across regions, and improve our understanding of complex semantics in human
communication.
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27. HerdaĞdelen A, Zuo W, Gard-Murray A, Bar-Yam Y (2013) An exploration of social identity:
the geography and politics of news-sharing communities in twitter. Complexity 19:10–20

28. Groh G, Straub F, Eicher J, Grob D (2014) Geographic aspects of tie strength and value of
information in social networking. p. 1–10. ACM

29. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc
Natl Acad Sci 99:7821–7826



102 C. Koylu

30. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large
networks. Phys Rev. E 70:066111

31. Hawelka B, Sitko I, Beinat E, Sobolevsky S, Kazakopoulos P, Ratti C (2014) Geo-located
Twitter as proxy for global mobility patterns. Cartogr Geogr Inf Sci 41:260–271

32. Nelson GD, Rae A (2016) An economic geography of the United States: from commutes to
megaregions. PLoS One 11:e0166083

33. Kallus Z, Barankai N, Szule J, Vattay G (2015) Spatial fingerprints of community structure in
human interaction network for an extensive set of large-scale regions. PLoS One 10:e0126713

34. Wang F, Mack EA, Maciewjewski R (2017) Analyzing entrepreneurial social networks with
big data. Ann Am Assoc Geog 107:130–150

35. Sobolevsky S, Sitko I, des Combes RT, Hawelka B, Arias JM, Ratti C (2014) Money on
the move: big data of bank card transactions as the new proxy for human mobility patterns
and regional delineation. In: The case of residents and foreign visitors in Spain. 2014 IEEE
international congress on big data (bigdata congress), pp. 136–143

36. Croitoru A, Wayant N, Crooks A, Radzikowski J, Stefanidis A (2015) Linking cyber and
physical spaces through community detection and clustering in social media feeds. Comput
Environ Urban Syst 53:47–64

37. Gao S, Liu Y, Wang Y, Ma X (2013) Discovering spatial interaction communities from mobile
phone data. Trans GIS 17:463–481

38. Stefanidis A, Cotnoir A, Croitoru A, Crooks A, Rice M, Radzikowski J (2013) Demarcating
new boundaries: mapping virtual polycentric communities through social media content.
Cartogr Geogr Inf Sci 40:116–129

39. Lansley G, Longley PA (2016) The geography of Twitter topics in London. Comput Environ
Urban Syst 58:85–96

40. Guo D (2008) Regionalization with dynamically constrained agglomerative clustering and
partitioning (REDCAP). Int J Geogr Inf Sci 22:801–823

41. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys
Rev. E 69:026113

42. Bachi R (1973) Geostatistical analysis of territories. Bull Int Stat Ins 45:121–133
43. Blair D, Biss T (1967) The measurement of shape in geography: an appraisal of methods and

techniques. Bulletin of Quantitative Data for Geographers. p 45
44. MacEachren AM (1985) Compactness of geographic shape: comparison and evaluation of

measures. Geografiska Ann Ser B Human Geogr 67:53
45. Cogan P, Andrews M, Bradonjic M, Kennedy WS, Sala A, Tucci G Reconstruction and analysis

of twitter conversation graphs. In: Proceedings of the First ACM international workshop on hot
topics on interdisciplinary social networks research, pp. 25–31. ACM

46. Pavalanathan, U., Eisenstein, J. (2015) Confounds and consequences in geotagged twitter data.
arXiv:1506.02275


	Preface
	Program Committee
	Lighting Talks

	Contents
	About the Editors
	Developing High Fidelity, Data Driven, Verified Agent Based Models of Coupled Socio-Ecological Systems of Alaska Fisheries
	1 Introduction
	2 Determining Socio-Ecological Dynamics
	2.1 Reconstructing Salmon Run-Timing Dynamics
	2.2 Coupled Socio-Ecological Systems Dynamics
	2.3 Reconstructing the Social System's Dynamics

	3 The Model
	3.1 Model Validation Using the Coupled Socio-Ecological Systems Dynamics

	4 Behavioral Sensitivity Analysis
	5 Conclusions and Future Work
	References

	Leveraging Coupled Agent-Based Models to Explore the Resilience of Tightly-Coupled Land Use Systems
	1 Introduction
	2 Resilience and Complexity
	3 Preliminary Modeling Methods
	4 Preliminary Results and Discussion
	5 Future Work and the Promise of ABMs for Resilience
	6 Conclusion
	References

	Deconstructing Geospatial Agent-Based Model: Sensitivity Analysis of Forest Insect Infestation Model
	1 Introduction
	2 Background
	2.1 Emerald Ash Borer (EAB)
	2.2 EAB ABM

	3 Methods
	3.1 Invariant-Variant Method for Analysis of EAB ABM
	3.2 Bounded Rationality Sensitivity Tests

	4 Results
	4.1 Invariant-Variant Method for Analysis of EAB ABM
	4.2 Bounded Rationality Sensitivity Tests

	5 Discussion and Conclusions
	References

	An Agent-Based Model to Identify Migration Pathways of Refugees: The Case of Syria
	1 Introduction
	2 Review of Literature
	2.1 Conflict-Induced Displacement: Contextualizing Refugee Migration
	2.2 Complex Systems Theory
	2.3 ABM and Forced Migration

	3 Data and Methods
	3.1 Data
	3.2 The Model
	3.2.1 Conflict Zones
	3.2.2 Tolerance and the Decision to Leave
	3.2.3 Destination Choice
	3.2.4 Migration
	3.2.5 Arrival

	3.3 Model Parametrization

	4 Results
	4.1 Model Output
	4.2 Model Testing and Validation

	5 Conclusion
	References

	Automated Extraction of Movement Rationales for Building Agent-Based Models: Example of a Red Colobus Monkey Group
	1 Introduction
	2 Extracting Movement Rationales from Data
	3 An Example of Red Colobus (Procolobus rufomitratus) Monkey Group Movements in Kibale National Park, Uganda
	3.1 Movement Rules
	3.2 Constraining Rules

	4 Future Possibilities
	References

	Wealthy Hubs and Poor Chains: Constellations in the U.S. Urban Migration System
	1 Introduction
	2 Data and Methods
	2.1 U.S. Migration Data and Population Data
	2.2 The Best Friend Configuration Model
	2.3 Constellations
	2.4 Analytical Methods

	3 Results
	3.1 Best Friend Network
	3.2 Comparison to Prevailing Methods
	3.3 High- and Low-Income Routing

	4 Conclusions
	References

	Discovering Multi-Scale Community Structures from the Interpersonal Communication Network on Twitter
	1 Introduction
	2 Related Work
	2.1 Distance and Social Interactions
	2.2 Community Structures in Spatial Networks

	3 Data and Network Extraction
	4 Methodology
	5 Results
	5.1 Network Characteristics and the Distance Effect
	5.2 Multi-scale Community Structures
	5.3 Spatial Connectivity Between Regions

	6 Discussion and Conclusion
	References


