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Abstract. In this paper, based on the Taylor series, we present a method of
undetermined coefficients to solve a class of ordinary differential equation with
initial values. Theoretical analysis and examples show this method can achieve
accuracy O hmþ 1ð Þ where m is the order of Taylor series of the right function
f(x). Furthermore, compared with traditional methods such as the finite differ-
ence method and the finite element method, this method can avoid solving
complicated and large linear systems.
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1 Introduction

For numerically solving ordinary differential equations (ODEs) and partial differential
equations (PDEs) in various engineering problems, some typical and traditional
methods have been presented so far, including the finite difference method (FDM), the
boundary element method (BEM) and so on, too many results about their develop-
ments, accuracy, convergence, stability have arisen since they were presented. These
can be partly seen in [1–11] and references therein.

In this paper, based on the Taylor series, we present a new numerical method for
the ordinary differential equation

Xn
k¼0

an�kþ 1x
ky kð Þ ¼ xnf xð Þ; x 2 0; 1ð Þ;

y kð Þ 0ð Þ ¼ 0; k ¼ 0; 1; � � � ; n� 1;

ð1Þ

where ak, k = 1, 2,���, n + 1 are all constants, y(x) is the function to be determined. This
method is quite different from such the existed methods as the FDM, FEM and BEM.

In the next sections, by some theoretical analyses and experimental demonstrations,
we find this method has some evident characteristics:

• It can provide the unique numerical solution of (1);
• It can achieve accuracy O hmþ 1ð Þ when f xð Þ 2 Cmþ 1 0; 1½ �;
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• It does not lead to complicated and large linear systems.

The remainder of the paper is organized as follows. In Sect. 2, we describe our
method in details, including the construction of this method, the existence, uniqueness,
the accuracy of the numerical solution and the computational complexity of this
method. In Sect. 3, some examples are given to check this presented method in Sect. 2.
Finally, we draw some conclusions about our method, point out some shortages which
are expected to be overcome.

2 The Method of Undetermined Coefficients

Supposing the equation

y 2ð Þ xð Þþ y0 xð Þþ y xð Þ ¼ d xð Þ; x ¼ 0; 1½ � ð2Þ

has a unique solution y xð Þ 2 C2 0; 1½ �.
Case 1: If the function d(x) is a given 2 order polynomial, namely,

d xð Þ ¼ d0 þ d1xþ d2x
2; ð3Þ

we can guess that y(x) is also a 2 order polynomial of the form

y xð Þ ¼ t0 þ t1xþ t2x
2: ð4Þ

Substituting (4), (3) into (2), we get the equality

t0 þ t1 þ 2t2ð Þþ t1 þ 2t2ð Þxþ t2x
2 ¼ d0 þ d1xþ d2x

2

for all x ¼ 0; 1½ �. Consequently, by comparing the coefficients, one immediately gets

t2 ¼ d2; t1 ¼ d1 � 2t2; t0 ¼ d0 � t1 � 2t2; ð5Þ

and thus the solution y(x) is exactly found.

Case 2: When the d(x) is not a polynomial, we can subdivide the domain (0, 1) into
[ N

i¼1Xi. On each sub-domain Xi, (i = 1,2,⋯, N), we replace d(x) with its 2 order
Taylor series, and the remaining work is repeating the above course from (3) to (5) for
seeking an approximate solution of (2) in Xi.

For convenience, we assume that y xð Þ 2 Cmþ 1 �X
� �

; f xð Þ 2 Cmþ 1 �X
� �

; m� 1. For
�X ¼ 0; 1½ �, let Dx ¼ 0 ¼ x0\x1\ � � �\xM ¼ 1f g be uniform partitions of X with
mesh sizes hx ¼ h. Throughout this paper, we denote by si; i ¼ 1; 2; . . .;M the mid-
points of Dx, and by Xi ¼ xi�1; xið Þ.

According to the conditions y kð Þ 0ð Þ ¼ 0; k ¼ 0; 1; . . .; n� 1, the solution y(x) can
be expressed as y ¼ xnu xð Þ with u xð Þ the new unknown function. Substituting this into
(1), by some computations, we obtain the equivalent system
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Xn
k¼0

bkþ 1x
ku kð Þ ¼ f xð Þ; x 2 0; 1ð Þ; ð6Þ

where

bkþ 1 ¼
Xn�kþ 1

t¼1

atC
k
n�tþ 1n!

�
tþ k � 1ð Þ!; k ¼ 0; 1; . . .; n:

In every sub-interval Xi, let

f̂ xð Þ ¼
Xm
k¼0

f kð Þ sið Þ x� sið Þk
.
k! ð7Þ

after expanding all the polynomials x� sið Þk, k ¼ 0; 1; . . .;m and combining like
terms, (7) reads

f̂ xð Þ ¼
Xm
k¼0

gkþ 1x
k; ð8Þ

where

gkþ 1 ¼
Xm
t¼k

f tð Þ sið ÞCt�k
t �sið Þt�k

.
t!:

Then, for the right function f(x) in (6), we can easily write its m order Taylor series
on the point si in sub-domain Ωi (i = 1,2,…, M) as

f xð Þ ¼ f̂ xð Þþ x� sið Þmþ 1f mþ 1ð Þ hið Þ
.

mþ 1ð Þ! ð9Þ

With hi 2 �Xi.
By using the idea similar to (4), taking approximate solution uh as

uh ¼
Xm
t¼0

ctx
t; ð10Þ

with ct, t = 0, 1,…, m undetermined coefficients, we get

Xn
k¼0

bkþ 1x
ku kð Þ

h ¼
Xn
k¼0

skx
k; ð11Þ
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where

sk ¼
Pk

t¼0 k!btþ 1ck= k � tð Þ!; if k ¼ 0; 1; . . .; n;Pn
t¼0 k!btþ 1ck= k � tð Þ!; if k ¼ nþ 1; . . .;m:

(
ð12Þ

Substituting (8)–(12) into (6), and dropping the remainder term

x� sið Þmþ 1f hið Þ mþ 1ð Þ
.

mþ 1ð Þ!

in sub-domain Ωi, we obtain the approximate system

Xn
k¼0

bkþ 1x
ku kð Þ

h ¼ f̂ xð Þ; x 2 0; 1ð Þ; ð13Þ

namely

Xm
k¼0

skx
k ¼

Xm
k¼0

gkþ 1x
k

in Ωi. Let the corresponding coefficients be equal to each other in this equality, then the
coefficients ck , k = 0,…, m can be expressed as:

ck ¼
gkþ 1

.Pk
t¼0 k!btþ 1= k � tð Þ!; if k ¼ 0; 1; . . .; n;

gkþ 1
�Pn

t¼0 k!btþ 1= k � tð Þ!; if k ¼ nþ 1; . . .;m:

8<
: ð14Þ

From (14), we immediately have the following result about existence and
uniqueness for approximate system (13).

Theorem 1. Supposing
Pk

t¼0 k!btþ 1= k � tð Þ! 6¼ 0 when k� n;
Pn

t¼0 k!btþ 1= k � tð Þ!
6¼ 0 when nþ 1� k�m; and f xð Þ 2 Cmþ 1 �X

� �
; then the approximate solution uh

defined by (10) can be uniquely solved by the Eq. (13).
Now, we analyze the convergence of this method, we denote by

Lu ¼
Xn
k¼0

bkþ 1x
ku kð Þ; u 2 X; ð15Þ

then the following theorem is true.

Theorem 2. Assuming that Eq. (1) has unique solution y(x), and y xð Þ; f xð Þ 2
Cmþ 1 �X

� �
: Let e � y� yh with yh ¼ xnuh: Then

ej j �C1C2 h=2ð Þmþ 1; ð16Þ
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where h is the step length, C1 is a constant corresponding to the operator L−1, and

C2 ¼ max
M

i¼1
f hið Þ mþ 1ð Þ

.
mþ 1ð Þ!; hi 2 �Xi; i ¼ 1; 2; . . .;M:

Furthermore, this error satisfies

lim
an þ 1j j!þ1

ej j ¼ 0: ð17Þ

Proof. In fact, by (6), (13), we can get

L u� uhð Þ ¼ f � f̂ ;

on each sub-domain �Xi, i = 1, 2,…, M.
Because Eq. (1) has unique solution y xð Þ 2 Cmþ 1 �X

� �
, by the relation

y xð Þ ¼ xnu xð Þ, we know (1) is equivalent to (6), and the operator L is an invertible
bounded linear operator on Cmþ 1 �Xi

� �
, i = 1, 2,…, M, which shows that (16) is true.

Furthermore, by bkþ 1 ¼
Pn�kþ 1

t¼1 atCk
n�tþ 1n!

�
tþ k � 1ð Þ!; k ¼ 0; 1; . . .; n; we

know liman þ 1!þ1 b1 ¼ 1. Combining with (13), (6), we have u� uh ¼
f � f̂
� ��

b1 �
Pn

k¼1 bkþ 1xku kð Þ�b1 in �Xi, i = 1, 2,…, M, which leads to (17), and the
proof of Theorem 2 is completed.

3 Numerical Examples

In this section, we give some numerical examples to show the performance of our
method. In these examples, we mainly check the result (16) and (17) in Theorem 2: the
relation of accuracy with the order of Taylor series of the function f(x) and an+1. We
always take the step length h ¼ 0:1, and in each sub-domain Ωi, i = 1, 2,…, N, we
compute Taylor series of f(x) in the center point si of this sub-domain.

In the following tables, for convenience, the notation x:y1y2 � p means
x:y1y2 � 10�p. We test errors in the center and all endpoints of all sub-domains:

• En – the maximum absolute errors at the centers sif gNi¼1;
• Ev – the maximum absolute errors at the endpoints xif gNi¼0.

The tested equations have respectively the following information:

Example 1.

a1 ¼ a2 ¼ 1; n ¼ 2; y ¼ x2ex;
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Example 2.

a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5 ¼ 1; n ¼ 5; y ¼ x5 sin 0:2xþ 1ð Þ:

From Tables 1 and 2, we can clearly see that the results are in accordance with the
theoretical analysis in Sect. 2: the method basically achieves accuracy of O hmþ 1ð Þ, in
the same time, just as we expected, the errors of u and uh is inversely proportional to
anþ 1j j.

4 Conclusions

In this paper, we introduced a new numerical method for solving a class of ordinary
differential equation. By giving direct formulas of the undetermined coefficients, we
showed this method can avoid solving complicated and large linear systems. Theo-
retically analysis and numerical experiments demonstrated this method can achieve
accuracy O hmþ 1ð Þ when f xð Þ 2 Cmþ 1 �X

� �
.

Table 1. Results of Example 1

a3 m = 2 m = 3 m = 4 m = 5
En Ev En Ev En Ev En Ev

50 5.41−3 5.69−3 5.69−4 4.06−4 1.56−5 1.09−5 3.74e−6 5.82−6
100 2.00−3 1.58−3 6.52−5 2.58−5 8.66−6 1.38−5 1.25−6 1.14−6
500 1.10−4 8.07−5 4.56−6 7.38−6 2.95−7 2.37−8 6.40−11 1.18−8
1000 2.87−5 5.14−5 1.50−6 1.13−6 4.31−8 3.87−8 7.23−10 1.45−9
5000 1.18−6 2.68−5 7.26−8 1.66−7 3.91−10 1.61−9 1.19−11 2.47−11

Table 2. Results of Example 2

a6 m = 2 m = 3 m = 4 m = 5
En Ev En Ev En Ev En Ev

0 2.61−3 3.22−3 8.35−4 1.02−3 1.42−5 1.73−5 2.32−6 2.82−6
10 2.46−3 3.04−3 7.82−4 9.58−4 1.31−5 1.60−5 2.41−6 2.59−6
100 1.51−3 1.82−3 4.41−4 5.25−4 6.44−6 7.47−6 9.73−7 1.10−6
1000 1.37−8 2.25−4 7.35−5 1.05−4 1.87−6 2.48−6 4.74−7 6.12−7
5000 5.73−5 6.97−5 5.24−6 3.32−6 1.87−7 3.26−7 1.04−7 1.74−7
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