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Abstract. The paper lists three major issues: complexity, time and uncertainty,
and identifies dependability as the permanent challenge. In order to enhance
dependability, the paradigm shift is proposed where focus is on failure predic-
tion and early malware detection. Failure prediction methodology, including
modeling and failure mitigation, is presented and two case studies (failure
prediction for computer servers and early malware detection) are described in
detail. The proposed approach, using predictive analytics, may increase system
availability by an order of magnitude or so.
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1 Introduction: Three Tyrants and the Permanent Challenge

With ever-growing system complexity, ever more stringent timeliness requirements
and the uncertainty on the rise due to failures and cyber-attacks one should consider
three tyrants1 that impact not only computer and communication systems operation but
also our lives. They are:

1.1 Complexity

The growth of complexity cannot be stopped in practice due to permanent strive for
new features and applications and continuously growing number of users and objects
(things). In fact, the Internet of Things (IoT) is turning into the Internet of Everything
where virtually trillions of devices will be connected ranging from self-driving vehicles
to coffee machines. The continuous strive for improved properties such as higher
performance, low power, better security, higher dependability and others will continue
with further requirements for system openness, fading cries for privacy and flow of
incredible volumes of data, yes, big data. This situation seems to be beyond control and
is simply part of our civilization.

1 Inspired by a quote from Johann Gottfried von Herder (1744-1803): “Die zwei größten Tyrannen der
Erde: der Zufall und die Zeit” (Two biggest tyrants on Earth are: the chance and the time).
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1.2 Time

Many individuals, especially our professional friends and colleagues, have an illusion
that the time can be controlled and manipulated. There are two major problems
destroying this illusion:

a. Time can neither be stopped nor regained
b. Disparity between physical and logical time is evident and in many applications

cannot be reconciled.

This creates an insurmountable challenge as creating a real-time IoT is simply
beyond our current capabilities.

1.3 Uncertainty

Since occurrence of faults is frequently unpredictable, we have to deal with uncertainty
which can be controlled to a limited extent but, all in all, we have “to cope” with it.
Furthermore, the new failure modes, new environmental conditions and new attacks
further increase uncertainty.

In view of ever-increasing complexity, ever more demanding timing constraints and
growing uncertainty due to new cyber-attacks and new failure modes, the dependability
is and will remain a permanent challenge. There is no hope that one day it will go
away. In fact, it will become ever more pervasive and significant as impact of faults or
attacks may range from minor inconvenience to loss of lives and economic disasters.

2 Failure Prediction and the Paradigm Shift

Knowing the future fascinated and employed millions throughout the centuries. From
fortune tellers and weather forecasters to stock analysts and medical doctors, the main
goal seems to be the same: learn from history, assess the current state and predict the
future.

Analysing the historical record on our ability to predict, we may admit that in long
term predictions we have miserably failed. Stellar examples include cars, phones,
mainframes, personal computers, radios. There are some notable exceptions such as
Moore’s Law on processor performance but, in principle, especially with respect to
breakthrough technologies we were more often wrong than right.

Since a long term future is so difficult to predict, we focus on short, 1–5 min
predictions which, as practice shows, have much higher probability of success. In fact,
a spirit of this paper can be succinctly summarized by a Greek poet, C. P. Cavafy
(1863–1933) who wrote: “Ordinary mortals know what’s happening now, the gods
know what the future holds because they alone are totally enlightened. Wise men are
aware of future things just about to happen.”

We have demonstrated that, in fact, such short term predictions may be very
effective in enhancing computer systems dependability regardless of the root cause of
failure, be it software or hardware.
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Not surprisingly, a plethora of methods for short term prediction has been devel-
oped [1], and many of them perform very well. Take a method based on the Universal
Basis Function [3], for example. We have developed a data-driven, dynamic system
approach using modified radial basis function which is able to predict performance
failures for telecommunication applications in 83% of cases.

Knowing even a short term future may help us to avoid a disaster, better prepare for
an imminent failure or increase the system performance.

Predictive analytics, is the processing of algorithms and data which result in pre-
diction of user’s behaviour, system status or environmental change. Knowing the future
system state or user’s behaviour can significantly increase performance, availability
and security.

With predictive analytics a drastic paradigm change is in the making. While in the
past, we have mainly analysed a system behaviour, and currently, in most cases, we
observe the status and behaviour to react to changes in the system, the next big trend is
to predict the system behaviour and construct the future (see Fig. 1).

This leads us to Proactive Fault Management which uses algorithms and methods
of failure prediction in order to avoid a failure (e.g., by failover) or minimize its impact
[1, 2]. The area is maturing and has already entered the industrial practice, especially in
the area of preventive maintenance. It seems to be already evident that the Industry 4.0
will use it as a major design paradigm. The potential of such approach is immense as it
may improve a system availability by an order of magnitude or more.

This philosophy requires a change of the mindset: don’t wait for a failure, anticipate
and avoid it or at least minimize the potential damage. I call it a shortcut to dependable
computing as we do not wait for a failure, we act on it before its occurrence.

Fig. 1. The paradigm shift.

Predictive Analytics: A Shortcut to Dependable Computing 5



3 Modelling for Prediction in a Nutshell

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models.
By a model is meant a mathematical construct which, with the addition of certain verbal
interpretations, describes observed phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to work.“

John von Neumann (1903 - 1957)

The key to good predictive capabilities is a development of an appropriate model
and selection of the most indicative features (also called variables, events or parameters
by different research communities). Unfortunately, models are just an approximate
reflection of reality and their distance to reality varies. Since, obviously, it is a chal-
lenge to capture all properties of such a complex system as, for example, computer
cloud, the typical approach has been to focus on specific properties or functionalities of
a system. In Fig. 2 we show the methodology of model development and its appli-
cation. The interesting part is that the choice of model is not as important as selection of
the most indicative features which have decisive impact on the quality of prediction [3].

Fig. 2. Building blocks for modelling and failure prediction in complex systems either during
runtime or during off-line preparation and testing. System observations include numerical time
series data and/or categorical log files. The feature selection process is frequently handled
implicitly by system expert’s ad-hoc methods or gut feeling, rigorous procedures are applied
infrequently. In recent studies attention has been focused on the model estimation process.
Univariate and multivariate linear regression techniques have been used but currently nonlinear
regression techniques such as universal basis functions or support vector machines are applied as
well. While prediction has received a substantial amount of attention, sensitivity analysis of
system models has been largely marginalized. Closing the control loop is still a challenge.
Choosing the right mitigation/actuation scheme as a function of quality of service and cost is
nontrivial [2, 6].
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4 Predictive Analytics and Its Applications

Predictive analytics applies a set of methods/algorithms or classifiers that use historical
and current data to forecast future activity, behaviour and trends.

Predictive analytics involves creating predictive models and applying statistical
analysis, function approximation, machine learning and other methods to determine the
likelihood of a particular event taking place.

In two case studies, we demonstrate the power of prediction or early detection to:

(1) Failure prediction in computer servers
(2) Early detection of malware under Android operating system.

The approaches are general and are applicable to other domains such as disturbance
prediction in smart grids [4] and predictive maintenance [5].

5 Dependability Economics

Dependability economics concerns the risk and cost/benefit analysis of IT infrastructure
investments in an enterprise caused by planned or unplanned downtime as a result of
scheduled maintenance, upgrades, updates, failures, disasters and cyber attacks.
Research community shied away from this question with only a few notable exceptions
(e.g. D. Patterson, UC-Berkeley), yet from industrial perspective the problem is fun-
damental. Providers and users want to know what will be the Return-On-Investment
(ROI) when they invest in dependability improvement.

Furthermore, we are able to assess what benefits, with respect to dependability, we
can get by improving the prediction quality measured in terms of precision and recall [6].

6 Failure Prediction Methodology

The goal of online failure prediction is to identify, at runtime, whether a failure will
occur in the near future based on an assessment of the monitored current system state
and the analysis of past events. The output of a failure predictor is the probability of a
failure imminence in the near future. A failure predictor should predict as many failures
as possible while minimizing the number of false alarms. Numerous prediction methods
are already successfully used for the enterprise computer systems for online, short-term
prediction of failures [1]. The prediction quality is identified as a critical part of the
entire predict-mitigate approach.

A design of a failure predictor should be conducted in three phases depicted in
Fig. 3 [4]. In the first phase a model of the system should be conceived. The model
should clearly identify parts of the system where, based on historical records, failures
are most frequent and establish a relation between system parts in terms of fault and
error propagation.
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The main usage of the model is in preliminary selection of the most indicative
features. Historical data, that are necessary to train and evaluate a predictor, may be
obtained from measurement logs.

In the second phase, the obtained dataset should be analyzed. Data conditioning
includes extraction of the features and structuring the data in a form that may be used as
input for the prediction algorithm. In particular, each data set in the stream, that
describes one system state, should be associated with a failure type or marked as
failure-free. A preliminary feature selection should be conducted while taking into
account system model. Feature selection is the process of selecting the most relevant
features (and examples for algorithm training) and combining them in order to maxi-
mize predictors’ performance; discard redundant and noisy data; obtain faster and more
cost-effective algorithm training and online prediction; and better interpret the data
relations (data simplification for better human understanding). Feature selection
methods may be classified as filters, wrappers and embedded methods. A widely used
filter method is Principal Component Analysis (PCA). PCA converts a set of correlated
features into a set of linearly uncorrelated features (principal components) using
orthogonal transformation. The procedure is independent with respect to the type of the
prediction algorithm that will be used and thus very appropriate for preliminary
selection of features. Numerous software packages are available for feature selection,
including those that are a part of popular tools for statistical analysis (e.g.
Matlab/Octave, Python and R). A good overview of feature selection methods is given
in [7, 8].

In the final stage, the predictor is adapted and evaluated. In fact, an ensemble of
predictors may be used to improve quality of prediction. Having in mind a large
number of existing failure prediction algorithms, the most viable solution is to select
and to adopt one of them. A comprehensive survey of failure prediction algorithms is

Fig. 3. Failure predictor design stages.
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given in [1]. Three main approaches used for prediction are: failure tracking, symptom
monitoring and detected error reporting. Failure tracking draws conclusions about
upcoming failures from the occurrence of the previous ones. These methods either aim
at predicting the time of the next occurrence of a failure or at estimating the probability
of failures co-occurrence. Symptoms are defined as side effects of looming faults that
not necessarily manifest themselves as errors. Symptom-monitoring based predictions
analyze the system features in order to identify those that indicate an upcoming failure.
Several methodologies for the estimation were proposed in the past, including function
approximation, machine-learning techniques, system models, graph models, and time
series analysis. Finally, the methods based on detected error reporting, such as the
rule-based, the co-concurrence-based and the pattern recognition methods, analyze the
error reports to predict if a new failure is about to happen.

In order to speed up the prediction, the set of selected features should be refined by
extracting the most indicative ones. To facilitate the process, heuristics (such as the
ones presented in [7, 8]) may be employed. After each iteration, the quality of pre-
diction has to be evaluated. The process terminates when a sufficient quality of pre-
diction is reached so that resilience and availability are improved.

7 Failure Mitigation

Once the prediction mechanisms anticipate a failure, corrective actions that will mitigate
it should be scheduled and activated. The mitigation is composed of three phases [4]:
diagnosis, decision on countermeasures and implementation of countermeasures. In the
diagnosis phase, the output of the prediction is analyzed. Additional algorithms may be
employed to better identify the location of the anticipated failure. In the second phase of
mitigation, a decision on a countermeasure is taken. This decision should take into
account the probability of a failure (provided by the predictor), the cost of the measure
(e.g. maintenance cost or the cost in terms of the number of customers affected), the
probability of a successful mitigation and the overall effect on resilience (for example
the effect on steady-state availability). Finally, the implementation of the countermea-
sure has to be performed.

The ultimate goal is to fully avoid the failure (e.g. by failing over an application to
another server). If that is not possible, then the effect of a failure should be minimized
or confined (e.g. by preventive load shedding) or a preparation of repair actions may be
triggered to minimize the repair time (e.g. by checkpointing or saving critical files).
Some of these techniques can lead to a system performance degradation. For example,
if a failure predictor was wrong, unnecessary preventive load shedding may be con-
ducted affecting a subset of customers. The entire process may be implemented as fully
automated or it may require the involvement of an operator for decision-making. This
may depend on the type of mitigation and its cost. When more than one failure is
anticipated, a coordinated management of mitigation is required.
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8 Case Study 1: Telecommunication System

The system we consider is an industrial telecommunication platform which handles
mobile originated calls (MOC) and value adding services such as short message ser-
vices (SMS) and multimedia messaging services (MMS) [3]. It operates with the
Global System for Mobile Communication (GSM) and General Packet Radio Service
(GPRS). The system architecture follows strict design guidelines considering reliabil-
ity, fault tolerance, performance, efficiency and compatibility issues. We focus on one
specific system which, at the time we took our measurements, consisted of somewhat
more than 1.6 million lines of code, approximately 200 components2 and 2000 clas-
ses3. It is designed to be operated distributed over two to eight nodes for performance
and fault tolerance reasons. We focused on modeling and predicting system events (i.e.
calls) which take longer time to be processed than some guaranteed threshold value.
We call these events failures or target events (see Fig. 4).

The data we used to build and verify our models consists of

a. equidistant-time-triggered continuous features and
b. time-stamped, event-driven log file entries.

We gathered numeric values of 46 system features once per minute and per node.
This yields 92 features in a time series describing the evolution of the internal states of
the system. In a 24-hour period we collected a total of 132.480 readings. In total we
collected roughly 1.3 million system variable observations.

Please note that in special purpose systems such as telecommunication systems
probability of correctly predicting a failure is much higher than in a general purpose
system when an arbitrary application may be invoked at any time.

When making predictions about the system’s future state we must take into account
true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) classifications. Focusing on TP alone may substantially bias a model. A metric
which takes all four prediction outcomes into account is precision P and recall R.

P ¼ TP
TPþFN

ð1Þ

R ¼ FP
FPþFN

ð2Þ

Using a combination of forward selection and backward elimination we have
identified two most indicative features, namely the number of semaphores (exceptions)
per second and the growth rate in kernel memory. These two features were expressed as
a linear combination of nonlinear kernel functions (Gauss/sigmoid) supported by

2 A system element offering a predefined service and able to communicate with other components.
3 Classes are used to group related features and functions.
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training with evolutionary algorithm formed, what we called, a Universal Basis
Function (UBF) which gave us excellent results of P = 0.83 and R = 0.78, outper-
forming all other methods.

An example of correlating the two features and devising the UBF is given in Fig. 5.
Failure prediction quality deteriorates with increase of a lead time of the prediction.

Figure 6 shows the prediction quality measure for the UBF Universal Basis Function,
the Area Under Curve (AUC), deteriorates over extended lead time in comparison to
methods based on Radial Basis Functions and Multivariate Linear models, including
non-linear variations of UBF and RBF.

Fig. 4. The target is the system’s interval call availability (A) of 0.9999. The dotted line
indicates a 0.9999 availability limit. Any drop below that threshold is defined as a failure. Our
objective is to model and predict the timely appearance of these failures. The system’s interval
call availability is reported in consecutive five minute intervals and is calculated as the number of
successful calls over the total number of calls in this interval.
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9 Case Study 2: Early Malware Detection

With an ever-increasing and ever more aggressive proliferation of malware, its
detection is of utmost importance. However, due to the fact that IoT devices are
resource-constrained, it is difficult to provide effective solutions.

The main goal of this case study is to demonstrate how prediction methodology can
help in finding lightweight techniques for dynamic malware detection. For this purpose,
we identify an optimized set of features to be monitored at runtime on mobile devices
as well as detection algorithms that are suitable for battery-operated environments. We
propose to use a minimal set of most indicative memory and CPU features reflecting
malicious behavior.

To enable efficient dynamic detection of mobile malware, we propose the following
approach to identify the most indicative features related to memory and CPU to be
monitored on mobile devices and the most appropriate classification algorithms to be
used afterwards [9]:

1. Collection of malicious samples, representing different families, and of benign
samples

2. Execution of samples and collection of the execution traces
3. Extraction of features, from the execution traces, related to memory and CPU
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Fig. 5. Time series of the two features and the UBF
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4. Selection of the most indicative features
5. Selection of the most appropriate classification algorithms
6. Quantitative evaluation of the selected features and algorithms

The first step defines the dataset to be used in the remaining parts of the
methodology. Namely, it is important to use malicious samples coming from different
malware families, so that the diverse behavior of malware is covered to as large extent
as possible.

Furthermore, it is needed to set up the execution environment to run malicious
samples, so that malicious behavior can be triggered. Additionally, such environment
should provide the possibility to execute large number of malicious samples, within
reasonable time, so that the obtained results have statistical significance. We have
achieved these requirements, first, by using a variety of malware families with broad
scope of behavior, second by triggering different events while executing malicious
applications and, third, by using an emulation environment that enabled us to execute
applications quickly. Since our goal is to discriminate between malicious and benign
execution records, we have taken into account also benign samples, and executed them in
same conditions used for malicious applications. While usage of an emulator enables us
to execute statistically significant number of applications on one hand, on the other hand it
is our belief that its usage instead of a real device has a limited or no effect on results, due
to the nature of features observed. However, we are aware of the fact that the use of an
emulator may prevent the activation of certain sophisticated malicious samples.

UBF
RBF 
ML 
UBF-NL
RBF-NL

0 5 10 15

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Lead time [min]

A
U
C

Fig. 6. Failure prediction results: the UBF model (AUC = 0.9024) outperforms the RBF
(AUC = 0.8257) and ML (AUC = 0.807) approach with respect to 1, 5, 10 and 15-minutes lead
time.
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Before identification of the most indicative symptoms, feature extraction and
selection needs to be performed [7, 8].

We have performed feature selection as a separate step, in which we have evaluated
features usefulness based on the following techniques: Correlation Attribute Evaluator,
CFS Subset Evaluator, Gain Ratio Attribute Evaluator, Information Gain Attribute
Evaluator, and OneR Feature Evaluator.

We have chosen feature selection techniques due to their difference in observing
usefulness of features as they are based either on statistical importance or information
gain measure. Following, the list of feature selection algorithms that we have used:

– Correlation Attribute Evaluator calculates the worth of an attribute by measuring the
correlation between it and the class.

– CfsSubsetEval calculates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree of redundancy
between them. Subsets of features that are highly correlated with the class while
having low intercorrelation are preferred.

– Gain Ratio Attribute Evaluator calculates the worth of an attribute by measuring the
gain ratio with respect to the class.

– Information Gain Attribute Evaluator calculates the worth of an attribute by mea-
suring the information gain with respect to the class.

– OneR Feature Evaluation calculates the worth of an attribute by using the OneR
classifier, which uses the minimum-error attribute for prediction.

In order to validate the usefulness of selected features we have used the following
detection algorithms having different approach to detection: Naive Bayes, Logistic
Regression, and J48 Decision Tree. While most of the steps of the proposed approach are
executed offline (i.e., onmachines equippedwith extensive computational resources), the

Fig. 7. Frequency of occurrence of features among top 5 of the most indicative features.
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classification algorithm will be executed on the mobile devices; thus, it needs to be
compatible with their limited resources. This is the reason why we also take into account
the complexity of algorithms, and use the ones with low complexity.

Feature selection results are illustrated in Figs. 7 and 8 where the number of
occurrences in top 5 or 15 of most indicative features is shown, respectively [10].

Based on these results, we have selected seven features out of 53 that practically
give equal or higher probability of malware detection in terms of precision, recall and
F-measure (harmonic mean of precision and recall) than the entire set of features (see
Table 1). Furthermore, effectiveness of three different classifiers has been compared

Fig. 8. Frequency of occurrence of features among top 15 of the most indicative features.

Table 1. Performance of the classifiers when different number of features are considered.

Predictive Analytics: A Shortcut to Dependable Computing 15



indicating that Logistic Regression yields best results. The approach was validated by
using the features related to memory and CPU during execution of 1080 mobile
malware samples belonging to 25 malware families.

10 Concluding Remarks

We have outlined an accelerated and more economical method of improving
dependability by an order of magnitude or so by using predictive analytics. The main
message of this paper is: Do not wait for a failure but predict it and then you have better
chance to avoid it or minimize its impact.

To tame three tyrants (complexity, time and uncertainty), we need radically new
approaches to keep systems running, simply because current modeling methods and
software are not able to handle ever-increasing complexity and ever-growing demand
for timeliness. We also need to learn how to cope with uncertainty.

The proposed methodology based on predictive analytics provides an effective,
efficient and economical approach to improve dependability, real time performance and
security, highly needed, especially in the IoT environments where massive redundancy
is usually too expensive and impractical.

With big data and machine learning, predictive analytics is charting a new para-
digm shift where application of prediction methods will turn out to be successful in all
aspects of computer and communication systems operation, be it performance, security,
dependability, real time and others.

In addition to failure prediction and mitigation methodology, we have also pre-
sented two case studies on: (1) failure prediction in computer servers and (2) early
malware detection where effectiveness of prediction methods has been demonstrated.

In the nutshell, applying the AMP principle: Analyze the past, Monitor and control
the present and Predict the future may significantly enhance dependability and other
system properties.
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