
Alexander Romanovsky
Elena A. Troubitsyna (Eds.)

 123

LN
CS

 1
04

79

9th International Workshop, SERENE 2017
Geneva, Switzerland, September 4–5, 2017
Proceedings

Software Engineering
for Resilient Systems

Lecture Notes in Computer Science 10479

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alexander Romanovsky • Elena A. Troubitsyna (Eds.)

Software Engineering
for Resilient Systems
9th International Workshop, SERENE 2017
Geneva, Switzerland, September 4–5, 2017
Proceedings

123

Editors
Alexander Romanovsky
Newcastle University
Newcastle-upon-Tyne
UK

Elena A. Troubitsyna
Åbo Akademi University
Turku
Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-65947-3 ISBN 978-3-319-65948-0 (eBook)
DOI 10.1007/978-3-319-65948-0

Library of Congress Control Number: 2017948643

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 9th International Workshop on Software
Engineering for Resilient Systems (SERENE 2017). SERENE 2017 took place in
Geneva, Switzerland on September 4–5, 2017. The SERENE workshop is an annual
event that brings together researchers and practitioners working on the various aspects
of design, verification, and assessment of resilient systems. In particular it covers such
areas as:

• Development of resilient systems;
• Engineering processes for resilient systems;
• Requirements engineering and re-engineering for resilience;
• Frameworks, patterns, and software architectures for resilience;
• Engineering of self-healing autonomic systems;
• Design of trustworthy and intrusion-safe systems;
• Resilience at run-time (mechanisms, reasoning, and adaptation);
• Resilience and dependability (resilience vs. robustness, dependable vs. adaptive

systems);
• Verification, validation, and evaluation of resilience;
• Modelling and model-based analysis of resilience properties;
• Formal and semi-formal techniques for verification and validation;
• Experimental evaluations of resilient systems;
• Quantitative approaches to ensuring resilience;
• Resilience prediction;
• Case studies and applications;
• Empirical studies in the domain of resilient systems;
• Methodologies adopted in industrial contexts;
• Cloud computing and resilient service provisioning;
• Resilience for data-driven systems (e.g., big data-based adaption and resilience);
• Resilient cyber-physical systems and infrastructures;
• Global aspects of resilience engineering: education, training, and cooperation.

SERENE 2017 featured two invited speakers – Miroslaw Malek and Jorge Cardoso.
Miroslaw Malek is the Director of the Advanced Learning and Research Institute
(ALaRI), which is part of the Faculty of Informatics of the University of Lugano,
Switzerland. He is a well-known expert in the areas of dependability and fault toler-
ance. He has carried out pioneering work in the area of dependable, parallel network
design and proactive fault tolerance. Jorge Cardoso is a Chief Architect for Cloud
Operations and Analytics at Huawei’s German Research Center (GRC) in Munich. He
is also a Professor at the University of Coimbra, Portugal. In 2013 and 2014, he was a
Guest Professor at the Karlsruhe Institute of Technology (KIT) and a Fellow at the
Technical University of Dresden (TU Dresden). Previously, he worked for major
companies such as SAP Research (Germany) on the Internet of services and the Boeing

Company in Seattle (USA) on Enterprise Application Integration. His research interests
focus on dependable and secure cloud computing and service-oriented systems.

The workshop was established by the members of the ERCIM working group
SERENE. The group promotes the idea of the resilient-explicit development process. It
stresses the importance of extending the traditional software engineering practice with
the theories and tools supporting modelling and verification of various aspects of
resilience. We would like to thank the SERENE working group for their hard work on
publicizing the event and contributing to its technical program.

SERENE 2017 attracted 16 submissions, from which 11 papers were accepted.
Every paper received three rigorous reviews. All submissions were of a high quality,
which has allowed us to build a strong and technically enlightening program. We
would like to express our gratitude to the program committee members and the
additional reviewers who have actively participated in reviewing and discussing the
submissions.

Since 2015 SERENE has become part of a major European dependability forum –

the European Dependable Computing Conference (EDCC). We would like to thank the
Organizing Committee of EDCC 2017 for their help in organizing the workshop.

July 2017 Alexander Romanovsky
Elena A. Troubitsyna

VI Preface

Organization

Steering Committee

Didier Buchs University of Geneva, Switzerland
Henry Muccini University of L’Aquila, Italy
Patrizio Pelliccione Chalmers University of Technology

and University of Gothenburg, Sweden
Alexander Romanovsky Newcastle University, UK
Elena Troubitsyna Åbo Akademi University, Finland

Program Chairs

Alexander Romanovsky Newcastle University, UK
Elena Troubitsyna Åbo Akademi University, Finland

Program Committee

Rami Bahsoon Birmingham University, UK
Michael Butler Southampton University, UK
Nelio Cacho UFRN, Brazil
Andrea Ceccarelli University of Florence, Italy
Vincenzo De Florio VITO, Belgium
Nikolaos Georgantas Inria, France
Anatoliy Gorbenko Leeds Beckett University, UK
Felicita Di Giandomenico CNR-ISTI, Italy
Lars Grunske Humboldt University of Berlin, Germany
Jeremie Guiochet LAAS, France
Dubravka Ilic Space Systems Finland, Finland
Rolf Johansson SP, Sweden
Mohamed Kaaniche LAAS-CNRS, France
Linas Laibinis Vilnius University, Lithuania
Istvan Majzik BUTE, Hungary
Miroslaw Malek University of Lugano, Switzerland
Henry Muccini University of L’Aquila, Italy
Andras Pataricza BUTE, Hungary
Patrizio Pelliccione Chalmers University of Technology

and University of Gothenburg, Sweden
Andreas Roth SAP, Germany
Juan Carlos Ruiz Technical University of Valencia, Spain
Cristina Seceleanu MDH, Sweden

Jüri Vain Tallinn University of Technology, Estonia
Marco Vieira University of Coimbra, Portugal
Wilhelm Hasselbring Kiel University, Germany

Subreviewers

Simin Cai MDH, Sweden
Bryan Knowles Western Kentucky University, USA

VIII Organization

Cloud Reliability: Decreasing Outage
Frequency Using Fault Injection

(Invited Talk)

Jorge Cardoso

Huawei Germany Research Centre (GRC), Munich, Germany
Jorge.Cardoso@huawei.com

Abstract. In 2016, Google Cloud had 74 minutes of total downtime, Microsoft
Azure had 270 minutes, and 108 minutes of downtime for Amazon Web Ser-
vices (see cloudharmony.com). Reliability is one of the most important prop-
erties of a successful cloud platform. Several approaches can be explored to
increase reliability ranging from automated replication, to live migration, and to
formal system analysis. Another interesting approach is to use software fault
injection to test a platform during prototyping, implementation and operation.
Fault injection was popularized by Netflix and their Chaos Monkey
fault-injection tool to test cloud applications. The main idea behind this tech-
nique is to inject failures in a controlled manner to guarantee the ability of a
system to survive failures during operations. This talk will explain how fault
injection can also be applied to detect vulnerabilities of OpenStack cloud plat-
form and how to effectively and efficiently detect the damages caused by the
faults injected.

Keywords: Cloud computing • Software reliability • Failure diagnosis • Fault
injection • OpenStack

Summary

The reliability and resilience of cloud platforms (e.g., Amazon AWS, Microsoft Azure,
Open Telekom Cloud from T-Systems, Google GCP, and Huawei HWS) are acquiring
an increased relevance since society is relying more and more on complex software
systems. Cloud computing is becoming as important as the other established utilities
(e.g., water and electricity).

The new type of software systems supporting cloud platforms is extremely complex
and new approaches to resilience and reliability engineering are needed. In fact, Netflix
has developed Chaos Monkey, Google has implemented DiRT, and Amazon has
developed GameDay. The complexity and dynamicity of large-scale cloud platforms
requires automated solutions to reduce the risks of eventual failures and new intelligent
components for an automated recovery. Problems, which need to be handled, include
the transient unavailability of services, scalability difficulties, demand spikes (i.e., the
Slashdot Effect), correlated failures, hot upgrades, and interference between tenants.

These software platforms cannot be tested only during their software development;
they need to be tested during realistic operations. A data center with 40.000–80.000
physical servers supporting a public cloud platform cannot be only tested during the
development of the underlying software. Its reliability needs to be constantly tested in
near-real settings and during operations while hundreds or thousands of tenants are
connected.

As with most software, the validation of all the modules of a cloud platform is done
through a test suite containing a large number of unit tests. It is a part of the software
development process, where the smallest testable part of an application, called unit,
along with associated control data are individually and independently tested. Executing
unit tests is a very effective way to test code integration during the development of
software. They are often executed to validate changes made by developers and to
guarantee that the code is error free.

Although unit tests are extremely useful for the purpose of development and
integration, they are not meant to diagnose failures resulting from injecting faults. The
use of unit tests for failure diagnosis presents a set of challenges. First, unit tests do not
provide any information about the nonresponsive or failed services in cloud platforms.
The execution of unit tests generates a list of passed and failed tests. This list can help
to locate software errors or to find issues with individual modules of the code but
cannot diagnose failures as there are no relationships between unit tests and services
running on a cloud platform. Second, a cloud platform is a large system with a high
number of unit tests. With the increase in codebase of cloud platforms, the number of
unit tests also increases. Thus, it takes a considerable amount of time to execute them.

Because of these challenges, cloud operators often develop new sets of tests to
diagnose failures. But as mentioned before, cloud platforms are continuously evolving.
They undergo modification and frequent updates, and have periodic release cycles.
Hence, the tests developed become outdated and there is a constant need to modify
them when a new release is available. Therefore, this approach is costly for the cloud
operators.

In the experiments we conducted with OpenStack (openstack.org), we experienced
all the problems mentioned above. OpenStack is a cloud operating system for building
public and private clouds consisting of more than 1500 unit tests. Currently, these unit
tests are used for the purpose of development and integration and to test OpenStack
deployment. They perform all the operations that a user can perform. But they only
validate the functioning of OpenStack APIs and are not able to directly detect services
that are not functioning as expected. Moreover, many of the unit tests are time con-
suming. For example, unit tests involving creation of a virtual machine, uploading a
large operating system image, etc., need a few minutes to execute. Therefore, it can
take up to 3 to 4 h to execute all unit tests. Considering the reliability requirements of
99.95%, cloud platforms can have a downtime of only 21.6 minutes per month. Hence,
the time required to execute unit tests is considerably high. Lastly, OpenStack has a
very active open source community with a release cycle of 6 months. Therefore,
developing new tests for failure diagnosis is very costly since modification in the tests
would be required for every new release.

X J. Cardoso

A different approach is therefore needed to diagnose failures in cloud platforms
after injecting faults. The solution should be efficient (fast) and should be able to
establish relationships between unit tests and the services they are capable of testing.
The solution should also be able to cope up with the fast release cycle of cloud
platforms. Through our research, we found out that with the integration of several
techniques, the challenges associated with unit tests could be overcome to efficiently
diagnose failures. It has several benefits. First, unit tests are developed along with cloud
platforms. Hence, there is no additional cost of development required. Second, unit
tests can be executed with minimal effort as they are automated. This property of unit
tests can be utilized to diagnose failures automatically. Lastly, with every new release,
unit tests are also updated. Therefore, there is no need to modify the tests for a new
release.

Our approach uses existing unit tests and is composed of 3 phases. In the first
phase, it reduces the number of existing unit tests. Second, it establishes relationships
between the reduced unit tests and all the services responsible for the functioning of
cloud platforms. It then further reduces the unit tests based on these relationships. In the
last phase, it generates a decision tree to efficiently diagnose failures in cloud platforms.
Test results have shown that executing only 4–5 % of the original unit tests can
efficiently detect failed services.

Acknowledgments. This research was conducted in collaboration with Deutsche
Telekom/T-Systems and with Ankur Bhatia from the Technical University of Munich
to analyze the reliability and resilience of modern public cloud platforms.

Cloud Reliability: Decreasing Outage Frequency Using Fault Injection XI

Contents

Invited Talk

Predictive Analytics: A Shortcut to Dependable Computing 3
Miroslaw Malek

Modelling and Specification

Modeling and Monitoring of Hierarchical State Machines in Scala 21
Klaus Havelund and Rajeev Joshi

Stochastic Activity Networks for the Verification of Knowledge Bases 37
Luke Martin and Alexander Romanovsky

A Generated Property Specification Language for Resilient
Multirobot Missions . 45

Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

Safety and Security

Towards a Model-Driven Security Assurance
of Open Source Components . 65

Irum Rauf and Elena Troubitsyna

A Cyber-Physical Space Operational Approach for Crowd
Evacuation Handling . 81

Henry Muccini and Mahyar Tourchi Moghaddam

Co-engineering Safety and Security in Industrial Control Systems:
A Formal Outlook. 96

Inna Vistbakka, Elena Troubitsyna, Tuomas Kuismin,
and Timo Latvala

Software

Evaluation of Open Source Operating Systems for Safety-Critical
Applications . 117

Petter Sainio Berntsson, Lars Strandén, and Fredrik Warg

100 Years of Software - Adapting Cyber-Physical Systems
to the Changing World . 133

Hayley Borck, Paul Kline, Hazel Shackleton, John Gohde,
Steven Johnston, Perry Alexander, and Todd Carpenter

http://dx.doi.org/10.1007/978-3-319-65948-0_1
http://dx.doi.org/10.1007/978-3-319-65948-0_2
http://dx.doi.org/10.1007/978-3-319-65948-0_3
http://dx.doi.org/10.1007/978-3-319-65948-0_4
http://dx.doi.org/10.1007/978-3-319-65948-0_4
http://dx.doi.org/10.1007/978-3-319-65948-0_5
http://dx.doi.org/10.1007/978-3-319-65948-0_5
http://dx.doi.org/10.1007/978-3-319-65948-0_6
http://dx.doi.org/10.1007/978-3-319-65948-0_6
http://dx.doi.org/10.1007/978-3-319-65948-0_7
http://dx.doi.org/10.1007/978-3-319-65948-0_7
http://dx.doi.org/10.1007/978-3-319-65948-0_8
http://dx.doi.org/10.1007/978-3-319-65948-0_8
http://dx.doi.org/10.1007/978-3-319-65948-0_9
http://dx.doi.org/10.1007/978-3-319-65948-0_9

Fault Tolerance, Resilience and Robustness

Improving Robustness of AUTOSAR Software Components with Design
by Contract: A Study Within Volvo AB . 151

Yulai Zhou, Patrizio Pelliccione, Johan Haraldsson,
and Mafjiul Islam

Modelling for Systems with Holistic Fault Tolerance 169
Rem Gensh, Ashur Rafiev, Fei Xia, Alexander Romanovsky,
and Alex Yakovlev

Holistic Processing and Exploring Event Logs . 184
Marcin Kubacki and Janusz Sosnowski

Author Index . 201

XIV Contents

http://dx.doi.org/10.1007/978-3-319-65948-0_10
http://dx.doi.org/10.1007/978-3-319-65948-0_10
http://dx.doi.org/10.1007/978-3-319-65948-0_11
http://dx.doi.org/10.1007/978-3-319-65948-0_12

Invited Talk

Predictive Analytics: A Shortcut to Dependable
Computing

Miroslaw Malek(&)

Advanced Learning and Research Institute (ALaRI),
Università della Svizzera italiana, Lugano, Switzerland

malekm@usi.ch

Abstract. The paper lists three major issues: complexity, time and uncertainty,
and identifies dependability as the permanent challenge. In order to enhance
dependability, the paradigm shift is proposed where focus is on failure predic-
tion and early malware detection. Failure prediction methodology, including
modeling and failure mitigation, is presented and two case studies (failure
prediction for computer servers and early malware detection) are described in
detail. The proposed approach, using predictive analytics, may increase system
availability by an order of magnitude or so.

Keywords: Failure prediction � Feature selection � Malware detection �
Modelling � Predictive analytics � Proactive Fault Management

1 Introduction: Three Tyrants and the Permanent Challenge

With ever-growing system complexity, ever more stringent timeliness requirements
and the uncertainty on the rise due to failures and cyber-attacks one should consider
three tyrants1 that impact not only computer and communication systems operation but
also our lives. They are:

1.1 Complexity

The growth of complexity cannot be stopped in practice due to permanent strive for
new features and applications and continuously growing number of users and objects
(things). In fact, the Internet of Things (IoT) is turning into the Internet of Everything
where virtually trillions of devices will be connected ranging from self-driving vehicles
to coffee machines. The continuous strive for improved properties such as higher
performance, low power, better security, higher dependability and others will continue
with further requirements for system openness, fading cries for privacy and flow of
incredible volumes of data, yes, big data. This situation seems to be beyond control and
is simply part of our civilization.

1 Inspired by a quote from Johann Gottfried von Herder (1744-1803): “Die zwei größten Tyrannen der
Erde: der Zufall und die Zeit” (Two biggest tyrants on Earth are: the chance and the time).

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-65948-0_1

http://orcid.org/0000-0002-8963-6982

1.2 Time

Many individuals, especially our professional friends and colleagues, have an illusion
that the time can be controlled and manipulated. There are two major problems
destroying this illusion:

a. Time can neither be stopped nor regained
b. Disparity between physical and logical time is evident and in many applications

cannot be reconciled.

This creates an insurmountable challenge as creating a real-time IoT is simply
beyond our current capabilities.

1.3 Uncertainty

Since occurrence of faults is frequently unpredictable, we have to deal with uncertainty
which can be controlled to a limited extent but, all in all, we have “to cope” with it.
Furthermore, the new failure modes, new environmental conditions and new attacks
further increase uncertainty.

In view of ever-increasing complexity, ever more demanding timing constraints and
growing uncertainty due to new cyber-attacks and new failure modes, the dependability
is and will remain a permanent challenge. There is no hope that one day it will go
away. In fact, it will become ever more pervasive and significant as impact of faults or
attacks may range from minor inconvenience to loss of lives and economic disasters.

2 Failure Prediction and the Paradigm Shift

Knowing the future fascinated and employed millions throughout the centuries. From
fortune tellers and weather forecasters to stock analysts and medical doctors, the main
goal seems to be the same: learn from history, assess the current state and predict the
future.

Analysing the historical record on our ability to predict, we may admit that in long
term predictions we have miserably failed. Stellar examples include cars, phones,
mainframes, personal computers, radios. There are some notable exceptions such as
Moore’s Law on processor performance but, in principle, especially with respect to
breakthrough technologies we were more often wrong than right.

Since a long term future is so difficult to predict, we focus on short, 1–5 min
predictions which, as practice shows, have much higher probability of success. In fact,
a spirit of this paper can be succinctly summarized by a Greek poet, C. P. Cavafy
(1863–1933) who wrote: “Ordinary mortals know what’s happening now, the gods
know what the future holds because they alone are totally enlightened. Wise men are
aware of future things just about to happen.”

We have demonstrated that, in fact, such short term predictions may be very
effective in enhancing computer systems dependability regardless of the root cause of
failure, be it software or hardware.

4 M. Malek

Not surprisingly, a plethora of methods for short term prediction has been devel-
oped [1], and many of them perform very well. Take a method based on the Universal
Basis Function [3], for example. We have developed a data-driven, dynamic system
approach using modified radial basis function which is able to predict performance
failures for telecommunication applications in 83% of cases.

Knowing even a short term future may help us to avoid a disaster, better prepare for
an imminent failure or increase the system performance.

Predictive analytics, is the processing of algorithms and data which result in pre-
diction of user’s behaviour, system status or environmental change. Knowing the future
system state or user’s behaviour can significantly increase performance, availability
and security.

With predictive analytics a drastic paradigm change is in the making. While in the
past, we have mainly analysed a system behaviour, and currently, in most cases, we
observe the status and behaviour to react to changes in the system, the next big trend is
to predict the system behaviour and construct the future (see Fig. 1).

This leads us to Proactive Fault Management which uses algorithms and methods
of failure prediction in order to avoid a failure (e.g., by failover) or minimize its impact
[1, 2]. The area is maturing and has already entered the industrial practice, especially in
the area of preventive maintenance. It seems to be already evident that the Industry 4.0
will use it as a major design paradigm. The potential of such approach is immense as it
may improve a system availability by an order of magnitude or more.

This philosophy requires a change of the mindset: don’t wait for a failure, anticipate
and avoid it or at least minimize the potential damage. I call it a shortcut to dependable
computing as we do not wait for a failure, we act on it before its occurrence.

Fig. 1. The paradigm shift.

Predictive Analytics: A Shortcut to Dependable Computing 5

3 Modelling for Prediction in a Nutshell

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models.
By a model is meant a mathematical construct which, with the addition of certain verbal
interpretations, describes observed phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to work.“

John von Neumann (1903 - 1957)

The key to good predictive capabilities is a development of an appropriate model
and selection of the most indicative features (also called variables, events or parameters
by different research communities). Unfortunately, models are just an approximate
reflection of reality and their distance to reality varies. Since, obviously, it is a chal-
lenge to capture all properties of such a complex system as, for example, computer
cloud, the typical approach has been to focus on specific properties or functionalities of
a system. In Fig. 2 we show the methodology of model development and its appli-
cation. The interesting part is that the choice of model is not as important as selection of
the most indicative features which have decisive impact on the quality of prediction [3].

Fig. 2. Building blocks for modelling and failure prediction in complex systems either during
runtime or during off-line preparation and testing. System observations include numerical time
series data and/or categorical log files. The feature selection process is frequently handled
implicitly by system expert’s ad-hoc methods or gut feeling, rigorous procedures are applied
infrequently. In recent studies attention has been focused on the model estimation process.
Univariate and multivariate linear regression techniques have been used but currently nonlinear
regression techniques such as universal basis functions or support vector machines are applied as
well. While prediction has received a substantial amount of attention, sensitivity analysis of
system models has been largely marginalized. Closing the control loop is still a challenge.
Choosing the right mitigation/actuation scheme as a function of quality of service and cost is
nontrivial [2, 6].

6 M. Malek

4 Predictive Analytics and Its Applications

Predictive analytics applies a set of methods/algorithms or classifiers that use historical
and current data to forecast future activity, behaviour and trends.

Predictive analytics involves creating predictive models and applying statistical
analysis, function approximation, machine learning and other methods to determine the
likelihood of a particular event taking place.

In two case studies, we demonstrate the power of prediction or early detection to:

(1) Failure prediction in computer servers
(2) Early detection of malware under Android operating system.

The approaches are general and are applicable to other domains such as disturbance
prediction in smart grids [4] and predictive maintenance [5].

5 Dependability Economics

Dependability economics concerns the risk and cost/benefit analysis of IT infrastructure
investments in an enterprise caused by planned or unplanned downtime as a result of
scheduled maintenance, upgrades, updates, failures, disasters and cyber attacks.
Research community shied away from this question with only a few notable exceptions
(e.g. D. Patterson, UC-Berkeley), yet from industrial perspective the problem is fun-
damental. Providers and users want to know what will be the Return-On-Investment
(ROI) when they invest in dependability improvement.

Furthermore, we are able to assess what benefits, with respect to dependability, we
can get by improving the prediction quality measured in terms of precision and recall [6].

6 Failure Prediction Methodology

The goal of online failure prediction is to identify, at runtime, whether a failure will
occur in the near future based on an assessment of the monitored current system state
and the analysis of past events. The output of a failure predictor is the probability of a
failure imminence in the near future. A failure predictor should predict as many failures
as possible while minimizing the number of false alarms. Numerous prediction methods
are already successfully used for the enterprise computer systems for online, short-term
prediction of failures [1]. The prediction quality is identified as a critical part of the
entire predict-mitigate approach.

A design of a failure predictor should be conducted in three phases depicted in
Fig. 3 [4]. In the first phase a model of the system should be conceived. The model
should clearly identify parts of the system where, based on historical records, failures
are most frequent and establish a relation between system parts in terms of fault and
error propagation.

Predictive Analytics: A Shortcut to Dependable Computing 7

The main usage of the model is in preliminary selection of the most indicative
features. Historical data, that are necessary to train and evaluate a predictor, may be
obtained from measurement logs.

In the second phase, the obtained dataset should be analyzed. Data conditioning
includes extraction of the features and structuring the data in a form that may be used as
input for the prediction algorithm. In particular, each data set in the stream, that
describes one system state, should be associated with a failure type or marked as
failure-free. A preliminary feature selection should be conducted while taking into
account system model. Feature selection is the process of selecting the most relevant
features (and examples for algorithm training) and combining them in order to maxi-
mize predictors’ performance; discard redundant and noisy data; obtain faster and more
cost-effective algorithm training and online prediction; and better interpret the data
relations (data simplification for better human understanding). Feature selection
methods may be classified as filters, wrappers and embedded methods. A widely used
filter method is Principal Component Analysis (PCA). PCA converts a set of correlated
features into a set of linearly uncorrelated features (principal components) using
orthogonal transformation. The procedure is independent with respect to the type of the
prediction algorithm that will be used and thus very appropriate for preliminary
selection of features. Numerous software packages are available for feature selection,
including those that are a part of popular tools for statistical analysis (e.g.
Matlab/Octave, Python and R). A good overview of feature selection methods is given
in [7, 8].

In the final stage, the predictor is adapted and evaluated. In fact, an ensemble of
predictors may be used to improve quality of prediction. Having in mind a large
number of existing failure prediction algorithms, the most viable solution is to select
and to adopt one of them. A comprehensive survey of failure prediction algorithms is

Fig. 3. Failure predictor design stages.

8 M. Malek

given in [1]. Three main approaches used for prediction are: failure tracking, symptom
monitoring and detected error reporting. Failure tracking draws conclusions about
upcoming failures from the occurrence of the previous ones. These methods either aim
at predicting the time of the next occurrence of a failure or at estimating the probability
of failures co-occurrence. Symptoms are defined as side effects of looming faults that
not necessarily manifest themselves as errors. Symptom-monitoring based predictions
analyze the system features in order to identify those that indicate an upcoming failure.
Several methodologies for the estimation were proposed in the past, including function
approximation, machine-learning techniques, system models, graph models, and time
series analysis. Finally, the methods based on detected error reporting, such as the
rule-based, the co-concurrence-based and the pattern recognition methods, analyze the
error reports to predict if a new failure is about to happen.

In order to speed up the prediction, the set of selected features should be refined by
extracting the most indicative ones. To facilitate the process, heuristics (such as the
ones presented in [7, 8]) may be employed. After each iteration, the quality of pre-
diction has to be evaluated. The process terminates when a sufficient quality of pre-
diction is reached so that resilience and availability are improved.

7 Failure Mitigation

Once the prediction mechanisms anticipate a failure, corrective actions that will mitigate
it should be scheduled and activated. The mitigation is composed of three phases [4]:
diagnosis, decision on countermeasures and implementation of countermeasures. In the
diagnosis phase, the output of the prediction is analyzed. Additional algorithms may be
employed to better identify the location of the anticipated failure. In the second phase of
mitigation, a decision on a countermeasure is taken. This decision should take into
account the probability of a failure (provided by the predictor), the cost of the measure
(e.g. maintenance cost or the cost in terms of the number of customers affected), the
probability of a successful mitigation and the overall effect on resilience (for example
the effect on steady-state availability). Finally, the implementation of the countermea-
sure has to be performed.

The ultimate goal is to fully avoid the failure (e.g. by failing over an application to
another server). If that is not possible, then the effect of a failure should be minimized
or confined (e.g. by preventive load shedding) or a preparation of repair actions may be
triggered to minimize the repair time (e.g. by checkpointing or saving critical files).
Some of these techniques can lead to a system performance degradation. For example,
if a failure predictor was wrong, unnecessary preventive load shedding may be con-
ducted affecting a subset of customers. The entire process may be implemented as fully
automated or it may require the involvement of an operator for decision-making. This
may depend on the type of mitigation and its cost. When more than one failure is
anticipated, a coordinated management of mitigation is required.

Predictive Analytics: A Shortcut to Dependable Computing 9

8 Case Study 1: Telecommunication System

The system we consider is an industrial telecommunication platform which handles
mobile originated calls (MOC) and value adding services such as short message ser-
vices (SMS) and multimedia messaging services (MMS) [3]. It operates with the
Global System for Mobile Communication (GSM) and General Packet Radio Service
(GPRS). The system architecture follows strict design guidelines considering reliabil-
ity, fault tolerance, performance, efficiency and compatibility issues. We focus on one
specific system which, at the time we took our measurements, consisted of somewhat
more than 1.6 million lines of code, approximately 200 components2 and 2000 clas-
ses3. It is designed to be operated distributed over two to eight nodes for performance
and fault tolerance reasons. We focused on modeling and predicting system events (i.e.
calls) which take longer time to be processed than some guaranteed threshold value.
We call these events failures or target events (see Fig. 4).

The data we used to build and verify our models consists of

a. equidistant-time-triggered continuous features and
b. time-stamped, event-driven log file entries.

We gathered numeric values of 46 system features once per minute and per node.
This yields 92 features in a time series describing the evolution of the internal states of
the system. In a 24-hour period we collected a total of 132.480 readings. In total we
collected roughly 1.3 million system variable observations.

Please note that in special purpose systems such as telecommunication systems
probability of correctly predicting a failure is much higher than in a general purpose
system when an arbitrary application may be invoked at any time.

When making predictions about the system’s future state we must take into account
true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) classifications. Focusing on TP alone may substantially bias a model. A metric
which takes all four prediction outcomes into account is precision P and recall R.

P ¼ TP
TPþFN

ð1Þ

R ¼ FP
FPþFN

ð2Þ

Using a combination of forward selection and backward elimination we have
identified two most indicative features, namely the number of semaphores (exceptions)
per second and the growth rate in kernel memory. These two features were expressed as
a linear combination of nonlinear kernel functions (Gauss/sigmoid) supported by

2 A system element offering a predefined service and able to communicate with other components.
3 Classes are used to group related features and functions.

10 M. Malek

training with evolutionary algorithm formed, what we called, a Universal Basis
Function (UBF) which gave us excellent results of P = 0.83 and R = 0.78, outper-
forming all other methods.

An example of correlating the two features and devising the UBF is given in Fig. 5.
Failure prediction quality deteriorates with increase of a lead time of the prediction.

Figure 6 shows the prediction quality measure for the UBF Universal Basis Function,
the Area Under Curve (AUC), deteriorates over extended lead time in comparison to
methods based on Radial Basis Functions and Multivariate Linear models, including
non-linear variations of UBF and RBF.

Fig. 4. The target is the system’s interval call availability (A) of 0.9999. The dotted line
indicates a 0.9999 availability limit. Any drop below that threshold is defined as a failure. Our
objective is to model and predict the timely appearance of these failures. The system’s interval
call availability is reported in consecutive five minute intervals and is calculated as the number of
successful calls over the total number of calls in this interval.

Predictive Analytics: A Shortcut to Dependable Computing 11

9 Case Study 2: Early Malware Detection

With an ever-increasing and ever more aggressive proliferation of malware, its
detection is of utmost importance. However, due to the fact that IoT devices are
resource-constrained, it is difficult to provide effective solutions.

The main goal of this case study is to demonstrate how prediction methodology can
help in finding lightweight techniques for dynamic malware detection. For this purpose,
we identify an optimized set of features to be monitored at runtime on mobile devices
as well as detection algorithms that are suitable for battery-operated environments. We
propose to use a minimal set of most indicative memory and CPU features reflecting
malicious behavior.

To enable efficient dynamic detection of mobile malware, we propose the following
approach to identify the most indicative features related to memory and CPU to be
monitored on mobile devices and the most appropriate classification algorithms to be
used afterwards [9]:

1. Collection of malicious samples, representing different families, and of benign
samples

2. Execution of samples and collection of the execution traces
3. Extraction of features, from the execution traces, related to memory and CPU

t

t

t

sema/s

alloc

kernel

memory

UBF(t)

Fig. 5. Time series of the two features and the UBF

12 M. Malek

4. Selection of the most indicative features
5. Selection of the most appropriate classification algorithms
6. Quantitative evaluation of the selected features and algorithms

The first step defines the dataset to be used in the remaining parts of the
methodology. Namely, it is important to use malicious samples coming from different
malware families, so that the diverse behavior of malware is covered to as large extent
as possible.

Furthermore, it is needed to set up the execution environment to run malicious
samples, so that malicious behavior can be triggered. Additionally, such environment
should provide the possibility to execute large number of malicious samples, within
reasonable time, so that the obtained results have statistical significance. We have
achieved these requirements, first, by using a variety of malware families with broad
scope of behavior, second by triggering different events while executing malicious
applications and, third, by using an emulation environment that enabled us to execute
applications quickly. Since our goal is to discriminate between malicious and benign
execution records, we have taken into account also benign samples, and executed them in
same conditions used for malicious applications. While usage of an emulator enables us
to execute statistically significant number of applications on one hand, on the other hand it
is our belief that its usage instead of a real device has a limited or no effect on results, due
to the nature of features observed. However, we are aware of the fact that the use of an
emulator may prevent the activation of certain sophisticated malicious samples.

UBF
RBF
ML
UBF-NL
RBF-NL

0 5 10 15

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Lead time [min]

A
U
C

Fig. 6. Failure prediction results: the UBF model (AUC = 0.9024) outperforms the RBF
(AUC = 0.8257) and ML (AUC = 0.807) approach with respect to 1, 5, 10 and 15-minutes lead
time.

Predictive Analytics: A Shortcut to Dependable Computing 13

Before identification of the most indicative symptoms, feature extraction and
selection needs to be performed [7, 8].

We have performed feature selection as a separate step, in which we have evaluated
features usefulness based on the following techniques: Correlation Attribute Evaluator,
CFS Subset Evaluator, Gain Ratio Attribute Evaluator, Information Gain Attribute
Evaluator, and OneR Feature Evaluator.

We have chosen feature selection techniques due to their difference in observing
usefulness of features as they are based either on statistical importance or information
gain measure. Following, the list of feature selection algorithms that we have used:

– Correlation Attribute Evaluator calculates the worth of an attribute by measuring the
correlation between it and the class.

– CfsSubsetEval calculates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree of redundancy
between them. Subsets of features that are highly correlated with the class while
having low intercorrelation are preferred.

– Gain Ratio Attribute Evaluator calculates the worth of an attribute by measuring the
gain ratio with respect to the class.

– Information Gain Attribute Evaluator calculates the worth of an attribute by mea-
suring the information gain with respect to the class.

– OneR Feature Evaluation calculates the worth of an attribute by using the OneR
classifier, which uses the minimum-error attribute for prediction.

In order to validate the usefulness of selected features we have used the following
detection algorithms having different approach to detection: Naive Bayes, Logistic
Regression, and J48 Decision Tree. While most of the steps of the proposed approach are
executed offline (i.e., onmachines equippedwith extensive computational resources), the

Fig. 7. Frequency of occurrence of features among top 5 of the most indicative features.

14 M. Malek

classification algorithm will be executed on the mobile devices; thus, it needs to be
compatible with their limited resources. This is the reason why we also take into account
the complexity of algorithms, and use the ones with low complexity.

Feature selection results are illustrated in Figs. 7 and 8 where the number of
occurrences in top 5 or 15 of most indicative features is shown, respectively [10].

Based on these results, we have selected seven features out of 53 that practically
give equal or higher probability of malware detection in terms of precision, recall and
F-measure (harmonic mean of precision and recall) than the entire set of features (see
Table 1). Furthermore, effectiveness of three different classifiers has been compared

Fig. 8. Frequency of occurrence of features among top 15 of the most indicative features.

Table 1. Performance of the classifiers when different number of features are considered.

Predictive Analytics: A Shortcut to Dependable Computing 15

indicating that Logistic Regression yields best results. The approach was validated by
using the features related to memory and CPU during execution of 1080 mobile
malware samples belonging to 25 malware families.

10 Concluding Remarks

We have outlined an accelerated and more economical method of improving
dependability by an order of magnitude or so by using predictive analytics. The main
message of this paper is: Do not wait for a failure but predict it and then you have better
chance to avoid it or minimize its impact.

To tame three tyrants (complexity, time and uncertainty), we need radically new
approaches to keep systems running, simply because current modeling methods and
software are not able to handle ever-increasing complexity and ever-growing demand
for timeliness. We also need to learn how to cope with uncertainty.

The proposed methodology based on predictive analytics provides an effective,
efficient and economical approach to improve dependability, real time performance and
security, highly needed, especially in the IoT environments where massive redundancy
is usually too expensive and impractical.

With big data and machine learning, predictive analytics is charting a new para-
digm shift where application of prediction methods will turn out to be successful in all
aspects of computer and communication systems operation, be it performance, security,
dependability, real time and others.

In addition to failure prediction and mitigation methodology, we have also pre-
sented two case studies on: (1) failure prediction in computer servers and (2) early
malware detection where effectiveness of prediction methods has been demonstrated.

In the nutshell, applying the AMP principle: Analyze the past, Monitor and control
the present and Predict the future may significantly enhance dependability and other
system properties.

Acknowledgement. I would like to acknowledge valuable contributions of my students Günther
Hoffmann, Igor Kaitovic and Felix Salfner to the methodology and the case study on failure
prediction. Alberto Ferrante and Jelena Milosevic contributed to the malware detection
methodology and experiments.

References

1. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM
Comput. Surv. (CSUR) 42, 10:1–10:42 (2010)

2. Hoffmann, G.A., Trivedi, K.S., Malek, M.: The best practice guide to resource forecasting
for computing systems. IEEE Trans. Reliab. 56(4), 615–628 (2007)

3. Hoffmann, G.A., Malek, M.: Call availability prediction in a telecommunication system: a
data driven empirical approach, In: 25th IEEE Symposium on Reliable Distributed Systems
(SRDS 2006), Leeds, UK (2006)

16 M. Malek

4. Kaitovic, I., Lukovic, S.,Malek,M.: Proactive failure management in smart grids for improved
resilience: a methodology for failure prediction and mitigation. In: IEEE GLOBECOM
Workshops (SmartGrid Workshop), San Diego, USA, pp. 1–6 (2015)

5. Garcia, M.C., Sanz-Bobi, M.A., del Pico, J.: SIMAP: Intelligent System for Predictive
Maintenance: Application to the health condition monitoring of a windturbine gearbox.
Comput. Ind. 57, 552–568 (2006)

6. Kaitovic, I., Malek, M.: Optimizing failure prediction to maximize availability, In: 13th
International Conference on Autonomic Computing, Würzburg, Germany (2016)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. ACM J. Mach.
Learn. Res. 3, 1157–1182 (2003)

8. Liu, H., Yu, L.: Toward integrating feature selection algorithms. IEEE Trans. Knowl. Data
Eng. 17(4), 491–502 (2005)

9. Milosevic, J., Malek, M., Ferrante, A.: A friend or a foe? detecting malware using memory
and CPU features. In: 13th International Conference on Security and Cryptography
(SECRYPT 2016), Lisbon, Portugal, pp. 73–84 (2016)

10. Milosevic, J., Ferrante, A., Malek, M., What Does the Memory Say? Towards the most
indicative features for efficient malware detection, In: 13th Annual IEEE Consumer
Communications and Networking Conference (CCNC 2016), Las Vegas, NV, USA. IEEE
Communication Society (2016)

Predictive Analytics: A Shortcut to Dependable Computing 17

Modelling and Specification

Modeling and Monitoring of Hierarchical State
Machines in Scala

Klaus Havelund and Rajeev Joshi(B)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
{klaus.havelund,rajeev.joshi}@jpl.nasa.gov

Abstract. Hierarchical State Machines (HSMs) are widely used in the
design and implementation of spacecraft flight software. However, the
traditional approach to using HSMs involves graphical languages (such
as UML statecharts) from which implementation code is generated (e.g.
in C or C++). This is driven by the fact that state transitions in an
HSM can result in execution of action code, with associated side-effects,
which is implemented by code in the target implementation language.
Due to this indirection, early analysis of designs becomes difficult. We
propose an internal Scala DSL for writing HSMs, which makes them
short, readable and easy to work with during the design phase. Writing
the HSM models in Scala also allows us to use an expressive monitoring
framework (also in Scala) for checking temporal properties over the HSM
behaviors. We show how our approach admits writing reactive monitors
that send messages to the HSM when certain sequences of events have
been observed, e.g., to inject faults under certain conditions, in order to
check that the system continues to operate correctly. This work is part
of a larger project exploring the use of a modern high-level programming
language (Scala) for modeling and verification.

1 Introduction

Hierarchical State Machines (HSMs) [13] are used extensively in the flight soft-
ware that runs on spacecraft developed by NASA’s Jet Propulsion Laboratory
(JPL). The current practice is (depending on programmer taste) either to work
textually and directly write low-level implementation code in C (which is hard
to write and read), or work graphically and automatically synthesize C code
from graphical HSM diagrams. In both cases it becomes difficult to prototype
and execute (test) design choices during early development because the use of
C forces introduction of low-level implementation details, hampering compre-
hension and analysis. Graphical formalisms are specifically not well suited for
mixing control states and non-trivial code to be executed as part of transition
actions for example. In this paper, we propose a method that allows HSMs to be

The research performed was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and
Space Administration. Copyright 2017 California Institute of Technology. Govern-
ment sponsorship acknowledged. All rights reserved.

c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 21–36, 2017.
DOI: 10.1007/978-3-319-65948-0 2

22 K. Havelund and R. Joshi

implemented as an internal Domain-Specific Language (iDSL) in the high-level
Scala programming language. Using an internal DSL allows us to express the
HSM control state model and the code used in transitions all within the same
language, which makes it easier to explore different design choices. We use Scala
because it offers features that allow iDSLs to be implemented elegantly, includ-
ing implicit functions, partial functions, call-by-name arguments, and dot-free
method calls. We show how our iDSL for HSMs can be used with Daut (Data
automata) [14], a library for writing monitors, thus allowing us to check tem-
poral properties over the executions of an HSM. Daut offers a combination of
flat state machines and a form of temporal logic, and furthermore allows mon-
itoring of data parameterized events. An interesting feature of our approach is
the ability to write reactive monitors, which allow the injection of specific events
to the HSM when certain temporal properties are satisfied. This work is part
of a long-term project exploring the use of a modern high-level programming
language for writing models and properties, as well as programs.

The focus of this paper is the modeling and analysis of a single HSM, a
situation typically facing a programmer responsible for a single module in a
larger system. The modeling and analysis of multiple HSMs executing in parallel
and communicating asynchronously via message passing over prioritized queues
is described in [16]. Other topics not touched upon (and not used at JPL) are
orthogonal regions, history states, and do-activities. The contributions of the
paper are as follows. (1) We provide an elegant implementation of an internal
Scala DSL for HSMs. (2) We show how single HSMs can be tested with the
internal Daut monitoring DSL, which supports data parameterized monitors.
This illustrates two forms of state machine DSLs, useful for different purposes.
Each DSL is implemented in less than 200 lines of code. (3) We show how Daut
monitors can be used to write reactive monitors that allow test scenarios to be
described more conveniently. In [16], we extend the framework developed here
to model multi-threaded systems with multiple HSMs, define a DSL for writing
constraint-based test scenarios, and apply our approach to a real-life case study.

The paper is organized as follows. Section 2 describes related work. Section 3
introduces an example at an informal high level, and presents part of the imple-
mentation as an HSM in the Scala HSM iDSL. Section 4 outlines how the HSM is
tested through monitoring with the Daut iDSL. Section 5 outlines how the HSM
iDSL is implemented. Section 6 outlines how the Daut iDSL is implemented.
Finally, Sect. 7 concludes the paper.

2 Related Work

The state pattern [11] is commonly used for modeling state machines in object-
oriented programming languages. A state machine is implemented by defining
each individual state as a derived class of the state pattern interface, and imple-
menting state transitions as methods. The state pattern does not support hier-
archical state machines. A variant of the state pattern to cover HSMs for C and
C++ is described in [21]. This is a very comprehensive implementation com-
pared to our less than 200 lines of code. The Akka framework provides features

Modeling and Monitoring of Hierarchical State Machines in Scala 23

for concurrent programming and fault protection for the JVM, and in particular
it includes a library for writing non-hierarchical finite state machines (FSM) in
Scala [1]. The Daut iDSL for monitoring event sequences is related to numer-
ous runtime verification frameworks, including [3,4,6,7,12,15,19]. An approach
to use state charts for monitoring is described in [10]. The Umple framework
[2] advocates, as we do, an approach to unifying modeling and programming,
although it differs by having the modeling language being distinct from the pro-
gramming language. The system is interesting because it allows updates to the
model and the program in the same environment, while supporting visualization
of the textual models. In contrast our DSLs are internal, completely eliminating
the distinction between modeling language and programming language. Other
internal Scala monitoring DSLs have been developed [5,15]. Daut itself is a sim-
plification of the earlier TraceContract monitoring framework in Scala [5].

A standard way of formally verifying state machines is to encode them in the
input language for, say, a model checker. However, this creates a gap between
the modeling language and the implementation language. Model checkers have
been developed for programming languages, for example Java PathFinder [17].
P# [8] is an extension of C# with concurrently executing non-hierarchical state
machines, communicating asynchronously using message passing. It is inspired
by the P external DSL [9] for modeling and programming in the same language,
translated to C. P# supports specification of environment and monitors as state
machines. However, such monitors do not support the temporal logic notation
or data parameterized event monitoring that Daut does.

3 Hierarchical State Machines in Scala

Example. In this section, we illustrate our ideas with an example. The example
is based on a simple HSM for taking images with a camera. In our example, the
HSM can receive a TAKE IMAGE(d) request, where d denotes the exposure dura-
tion. It responds to this request by sending a command to power on the camera,
and waiting until the camera is ready. It then opens the shutter for the specified
exposure duration (using a timer service which generates a timeout event after
a specified period). Following this, it optionally takes a dark exposure1 with the
shutter closed (but only if the ambient temperature is above a specified thresh-
old). Finally, it saves the image data, and powers off the camera. Although this
is a toy example, it serves to illustrate the key ideas in our approach. In a related
paper [16], we describe the application of our approach to a real-life case study (a
module that manages communication between the Curiosity rover and Earth).

HSM as a Diagram. Figure 1 shows a graphical view of the HSM that imple-
ments our simple imaging example. Following standard HSM notation, the filled
out black circles indicate the initial substate that is entered whenever a parent

1 A dark exposure allows determination of the noise from camera electronics, so that
this can be subtracted from the acquired image.

24 K. Havelund and R. Joshi

Fig. 1. HSM for imaging example

state is entered. (Thus, for instance, a transition to the on state ends with the
HSM in the powering state.) Associated with each state are also two optional code
fragments, called the entry and exit actions. The entry action is executed when-
ever the HSM transitions into a state, whereas the exit action is executed when-
ever the HSM transitions out of a state. Finally, the labeled arrows between states
show the transitions that are caused in response to events received by the HSM.
A label has the form EVENT/code, which denotes that the transition is triggered
when the HSM receives the specified EVENT. In response, the HSM transitions to
the target state, and executes the specified code fragment (which is optional). As
an example, suppose the HSM is in state exposing dark, and it receives the event
SHUTDOWN (for which a transition is defined in the parent on state). This would
cause the HSM to perform the following actions (in order): (1) the exit action for
the state exposing light, (2) the exit action for the state on, (3) the actions asso-
ciated with the event handler evr(IMAGE ABORTED) ; Camera ! POWER OFF,
and the (4) the entry action for the state off.

For our imaging example, the HSM works as follows. As shown in the
figure, the HSM is associated with two variables: an integer-valued variable
duration, which denotes the duration of the exposure when an imaging request
is made, and the variable timer, of type Option[TimerTask]), which denotes
whether there is an outstanding timer for which the HSM is waiting. The system
starts off in the off state (marked initial). In the off state, the system responds
only to a TAKE IMAGE(d) event (where d is an integer). On receipt of this
event, the system saves the requested exposure duration d in the state variable

Modeling and Monitoring of Hierarchical State Machines in Scala 25

trait Event
case class TAKE IMAGE(duration: Int) extends Event
case object SAVE DATA extends Event
...
class ImagingHsm extends SimpleMslHsm {
var duration: Int = 0
var timer: Option[TimerTask] = None

initial(off)

object off extends state() {
when {
case TAKE IMAGE(d: Int) ⇒ on exec {
duration = d ; Camera ! POWER ON

}
}

}

object on extends state() {
when {
case SHUTDOWN ⇒ off exec {
evr(IMAGE ABORTED)
Camera ! POWER OFF

}
}

}

object powering extends state(on, true) {
when { case READY ⇒ exposing }

}

object exposing extends state(on) {}

object exposing light extends state(exposing, true) {
entry { Camera ! OPEN

timer = Timer ! START(duration) }
exit { Timer ! STOP(timer) ; Camera ! CLOSE }
when {
case TIMEOUT ⇒ {
if (getTemp() >= DARK THRESHOLD)

exposing dark
else saving

}
}

}

object exposing dark extends state(exposing) {
entry { timer = Timer ! START(duration) }
exit { Timer ! STOP(timer) }
when {
case TIMEOUT ⇒ saving

}
}

object saving extends state(on) {
entry { Camera ! SAVE DATA }
when {
case READY ⇒ off exec {

evr(IMAGE SAVED) ; Camera ! POWER OFF
}

}
}

}

Fig. 2. The HSM for the imaging example in our internal DSL

duration, sends a request to the camera to power on (indicated by the action
Camera!POWER ON), and then transitions to the on state, which is a super-
state, so the HSM ends up in the powering state. Here it waits until it gets a
READY event from the camera, upon which it enters the exposing superstate,
which in turn causes it to enter the initial exposing light substate. The entry
action for this state sends a request to the camera to OPEN the shutter, and
then starts a timer for the specified duration (which was saved on receipt of the
command). When the timer expires, the HSM receives a TIMEOUT event, which
causes it to either transition to the exposing dark state (if the ambient temper-
ature is at least the DARK THRESHOLD), or the saving state (if temperature is
below the DARK THRESHOLD). Whenever it is in a substate of the on state,
the HSM can respond to a SHUTDOWN request, which causes it to power off
the camera and transition back to the off state.

HSM in Scala. Figure 2 shows the formalization, in our internal Scala DSL,
of the HSM in Fig. 1. The model first defines the Event type, denoting the set of
events that trigger transitions in the HSM. The state machine itself is defined as
the class ImagingHsm extending SimpleMslHsm which in turn extends the HSM
trait defined by our iDSL, which is parameterized by the type of events sent to
the HSM. The local state variable duration records the duration when an imaging

26 K. Havelund and R. Joshi

request is received; this duration is used for both the light exposure (with shutter
open) and the (optional) dark exposure (with shutter closed). The variable timer
records the value of any timer for which the HSM is waiting (the value is None
if there is no timer currently in progress). In the off state, the event handler for
the TAKE IMAGE(d) event causes the HSM to execute the action code which
records the value d in variable duration and sends a POWER ON request to the
camera. The HSM then transitions to the on superstate, and in turn to its initial
substate, the powering state. (In our iDSL, initial substates are denoted by the
keyword true as the second argument to the extends state(..) declaration.) In the
powering state, receipt of the READY event causes a transition to the exposing
state, and in turn to the exposing light substate, where the entry actions result
in a request to OPEN the shutter and start a timer for the specified duration.
The rest of the example is similar. Since graphical formalisms are useful for
human comprehension, we have developed a tool based on Scalameta (see http://
scalameta.org) that generates a visual representation from the HSM description
in our Scala iDSL. This tool generated Fig. 1 directly from the code in Fig. 2.

During execution, the HSM generates a log that contains event reports, gen-
erated for monitoring purposes. Our HSM framework contains special calls of
the form evr(E) which generates the event E, which can be used in monitors. For
instance, as shown in Fig. 2, when a SHUTDOWN request is received in state
on, the HSM generates the IMAGE ABORTED log event. Similarly, the Timer
service generates events when a timer is started, is fired or is stopped. (These
timer events are used in the monitors described in the following section.) Fig. 3
shows a sample log of the HSM corresponding to a test scenario is which a
TAKE IMAGE(7) is requested at time 101, and completes normally, followed by
a TAKE IMAGE(10) requested at time 200, which is terminated by sending a
SHUTDOWN request at time 205. This log can be checked by the Daut monitor-
ing engine to verify that the HSM execution obeys given temporal properties.

101:RECEIVED REQUEST(TAKE IMAGE(7))
104:POWERING ON
104:SHUTTER IS OPENED
104:TIMER STARTED
111:TIMER FIRED
111:TIMER CANCELED
111:SHUTTER IS CLOSED
111:TIMER STARTED
118:TIMER FIRED
118:TIMER CANCELED
120:SAVING STARTED
120:IMAGE SAVED
120:POWERING OFF

200:RECEIVED REQUEST(TAKE IMAGE(10))
203:POWERING ON
203:SHUTTER IS OPENED
203:TIMER STARTED
205:SHUTDOWN REQUESTED
205:TIMER CANCELED
205:SHUTTER IS CLOSED
205:IMAGE ABORTED
205:POWERING OFF

Fig. 3. Sample event log for imaging example

HSM Execution. As mentioned in the introduction, the focus of this presen-
tation is the modeling and analysis of single HSMs. The modeling and analysis
of multiple HSMs executing in parallel is described in [16], where we model the

http://scalameta.org
http://scalameta.org

Modeling and Monitoring of Hierarchical State Machines in Scala 27

full complexity of the implementation, such as message priorities, queue enabling
and disabling, test scenario specifications, and analysis of timing properties. The
HSM is composed with an environment, which submits events to, and receives
requests from, the HSM as explained in the following. The environment con-
tains a mutable set of events, which are waiting to be submitted to the state
machine. This set can be augmented with new events from a test script and the
HSM. In each iteration, the environment picks a random event from the set and
submits it to the state machine. The state machine executes as far as it can,
possibly sending new requests back to the environment, simulating communica-
tion with other state machines. The environment in addition keeps a mapping
from requests it can receive to operations on the event set. For example, if the
environment receives a timer!START(d) request, it adds a TIMEOUT event to the
event set. This TIMEOUT event will then eventually be submitted back to the
state machine after d seconds have elapsed. The notation recv ! E in the HSM
denotes the sending of a request E to the receiver recv (via the environment).
In our example, the receiver Camera denotes the camera hardware, whereas the
receiver Timer denotes the timer service.

4 Monitoring with Daut

Daut (Data Automata) [14] is a simple internal Scala DSL for writing monitors
on event streams. Daut, like many runtime verification systems, offers two major
capabilities that HSMs do not: (i) the ability to track the state behavior for
multiple instances of some data (spawning automata), and (ii) a convenient
temporal logic formalism on top of a state machine formalism. In this section,
we show how to use the Daut monitoring library to specify and monitor that
certain temporal properties are satisfied by the executing HSM. We also show
how one can use the monitoring framework to build reactive monitors, which
allow us to inject events into the HSM when certain temporal patterns are met.

Figure 4 shows four temporal property monitors, representing requirements
that the imaging HSM must satisfy. Each property is modeled as a class extend-
ing the MSLMonitor class, which itself is defined as an extension of the Daut
Monitor class, which is parameterized with the type EventReport of event reports
being monitored. The Monitor class defines the features of Daut. The MSLMonitor
class defines additional functions that simplify writing monitors for our exam-
ple. The monitors receive event reports as they are generated by the HSM and
update their internal state accordingly, reporting any observed violations.

The first property, TimerUse, checks that once a timer is started, it should
either fire or be canceled before another timer is started. The body of the class
is an always-formula. The function always takes as argument a partial function
from events to monitor states. In this case, whenever a TIMER STARTED is
observed, the monitor moves to a watch state, in which it is waiting for either a
TIMER FIRED or TIMER CANCELED event – another TIMER STARTED event
is an error if observed before then.

The second property, TimerState, checks that if a timer is currently running
(has been started but has not yet fired or been canceled), then the HSM must be

28 K. Havelund and R. Joshi

class MSLMonitor extends Monitor[EventReport] {
def inState(name: String) = during(EnterState(name))(ExitState(name))
...

}

class TimerUse extends MSLMonitor {
always {
case TIMER STARTED ⇒ watch {
case TIMER FIRED | TIMER CANCELED ⇒ ok
case TIMER STARTED ⇒ error(”Timer started before previous cancelation”)

}
}

}

class TimerState extends MSLMonitor {
val timerOn = during(TIMER STARTED)(TIMER FIRED, TIMER CANCELED)
val inExposing = inState(”exposing”)

invariant(”TimerState”) {
timerOn =⇒ inExposing

}
}

class ImageRequest extends MSLMonitor {
always {
case RECEIVED REQUEST(TAKE IMAGE(d)) ⇒ hot {
case IMAGE SAVED | IMAGE ABORTED ⇒ ok
case RECEIVED REQUEST(TAKE IMAGE()) ⇒ error(”Image was not saved or aborted”)

}
}

}

class ImgReactiveMonitor extends MSLMonitor {
always {
case POWERING ON ⇒ watch {
case SHUTTER IS OPENED ⇒ perhaps { Env.delayEvent(2, SHUTDOWN) }

}
}

}

Fig. 4. Monitors for the imaging example

in the exposing state, meaning in any of its substates. The Boolean expression
occurring as argument to the invariant function gets evaluated in each new state
the HSM enters. The notation p ==> q denotes implication and is interpreted
as !p || q. The property uses the during construct to define the period during
which the timer is active, namely in between an observed TIMER STARTED, and
either a TIMER FIRED or TIMER CANCELED event report is observed. Also the
inState function defined in class MSLMonitor is defined using the during function,
here tracking the event reports indicating respectively entering and subsequently
exiting a state.

The third property, ImageRequest, is similar to the TimerUse property in
form, and checks that once an image request has been received, then eventually
the image must be saved or the imaging must be aborted. It is an error if another
image request is received before then. The hot operator causes Daut to check

Modeling and Monitoring of Hierarchical State Machines in Scala 29

that the image saving or image abortion is seen before the end of the execution
(Daut reports an error if there are any hot states active at the end of the trace).

We have just discussed how we can use Daut to specify and monitor tem-
poral properties. Since Daut is a Scala library, we can write Daut monitors to
also take actions during a run, such as causing new events to be sent to the
HSM, thus affecting the resulting behavior. We refer to such Daut monitors as
reactive monitors. The last monitor, ImgReactiveMonitor, in Fig. 4 is an exam-
ple of a reactive monitor, in this case randomly sending a SHUTDOWN event
to the HSM whenever the monitor sees a POWERING ON event followed by a
SHUTTER IS OPENED event report. The perhaps function takes a code fragment
(call-by-name) and randomly decides whether or not to execute it. In our exam-
ple, this monitor results in a SHUTDOWN event being sent to the HSM 2 s after
the SHUTTER IS OPENED event is seen. In the example execution trace shown
in Fig. 3, there are two occurrences where the monitor sees a POWERING ON fol-
lowed by an SHUTTER IS OPENED event report. The perhaps function decided
to execute the action after the second instance of the SHUTTER IS OPENED
event report (which occurs at time 203), issuing a SHUTDOWN at time 205.

5 HSM Implementation

The concept of a hierarchical state machine is implemented as the Scala trait
HSM (a trait is similar to an interface in Java), which a user-defined HSM must
extend, and which is parameterized with the type Event of events that can be
submitted to it:

trait HSM[Event] {...}
The HSM trait defines the following types and values used throughout:

type Code = Unit ⇒ Unit
type Target = (state, Code)
type Transitions = PartialFunction[Event, Target]
val noTransitions: Transitions = {case if false ⇒ null}
val skip: Code = (x: Unit) ⇒ {}

Code represents code fragments (with no arguments and returning no result),
that are to be executed on event transitions, and in entry and exit blocks.
A Target represents the target state and the code to be executed when a transi-
tion is taken. Transitions represents the transitions leading out of a state, encoded
as partial functions from events to targets. Applied to an event a transition func-
tion will either be undefined on that event (corresponding to the transition not
being enabled), or it will return a target. The default transition function from
a state is represented by noTransitions which is undefined for any event. Finally,
skip represents the code with no effect.

We can now present the state class encoding the states in a state machine.
The contents of this class can be divided into the DSL “syntax”, permitting a
user to create a state, and the DSL implementation. The DSL syntax, including
its update on internal variables, can be presented as follows:

30 K. Havelund and R. Joshi

case class state(parent: state = null, init: Boolean = false) {
var entryCode: Code = skip
var exitCode: Code = skip
var transitions: Transitions = noTransitions
...
def entry(code: ⇒ Unit): Unit = {entryCode = (x: Unit) ⇒ code}
def exit(code: ⇒ Unit): Unit = {exitCode = (x: Unit) ⇒ code}
def when(ts: Transitions): Unit = {transitions = ts}

implicit def state2Target(s: state): Target = (s, skip)
implicit def state2Exec(s: state) = new {
def exec(code: ⇒ Unit) = (s, (x: Unit) ⇒ code) }

}
The class is parameterized with the parent state (if it is a sub-state), and whether
it is an initial state of the parent state (false by default). The class declares three
variables, holding respectively the entry code (to be executed when entering the
state), the exit code (to be executed when leaving the state), and the transition
function, all initialized to default values. Three methods for updating these are
furthermore defined. The code parameters to the first two functions entry and exit
are declared as “call by name”, meaning that at call time a code argument will
not be evaluated, and will instead just be stored as functions in the appropriate
variables. Since a method application f(e) in Scala can be written using curly
brackets: f{e}, we achieve the convenient code-block syntax for writing calls of
these methods, making these methods appear as added syntax to Scala.

Finally two implicit functions are defined. An implicit function f will be
applied to any expression e by the compiler if e occurs in a context C[e] which
does not type check, but C[f(e)] does type check. Implicit functions are useful for
defining elegant DSLs. In this case, the implicit function state2Target lifts a state
to a target, allowing us to just write states as targets on transitions (and no code),
and the function state2Exec lifts a state to an anonymous object, defining an exec
method, allowing transition right-hand sides like: top exec {table.insert(w)}. The
above definitions show the HSM syntax and how it is used to define states and
transitions. In addition, the function initial is used for identifying the initial state
in the HSM:

def initial(s: state): Unit = {current = s.getInnerMostState}
The function getInnerMostState is defined in the class state as follows, along with
a method for finding the super states of a state (needed for executing HSMs):

var initialState: state = null
if (parent != null && init) {parent.initialState = this}

def getInnerMostState: state =
if (initialState == null) this else initialState.getInnerMostState

Modeling and Monitoring of Hierarchical State Machines in Scala 31

def getSuperStates: List[state] =
(if (parent == null) Nil else parent.getSuperStates) ++ List(this)

When a state is created, if it is an initial state, the initialState variable of the
parent is initialized with the just created state (this). When a state is the target
of execution, the innermost initial state of that state is the one becoming active.

An HSM is at any point in time in a current state, and will potentially change
state when an event is submitted to it from the environment. Current state and
the event submission method are defined as follows.

var current: state = null

def submit(event: Event): Unit = {
findTriggerHappyState(current, event) match {
case None ⇒
case Some(triggerState) ⇒
val (transitionState,transitionCode) = triggerState.transitions(event)
val targetState = transitionState.getInnerMostState
val (exitStates, enterStates) = getExitEnter(current, targetState)
for (s <− exitStates) s.exitCode()
transitionCode()
for (s <− enterStates) s.entryCode()
current = targetState

}}
When executed from the current state, and given the submitted event, the func-
tion call findTriggerHappyState(current, event) finds the innermost state contain-
ing (or being equal to) current, which is ready to transition on the event. The
result is Option[state], where None represents that no such state exists. In case
such a state exists, its transition function is applied to the event, obtaining a
target (target state, and code to execute), then the innermost initial state of
the target state is computed, and based on current and target state, we com-
pute the list of states to exit and the list of states to enter via the call getEx-
itEnter(current, targetState), whose implementation is straightforward and not
shown. It computes the super states (listed top down) for respectively the from-
state and the to-state, and then strips off the common prefix of the two lists. The
remaining lists are the lists of states to exit and enter respectively. Now we can
execute exit codes, the transition code itself, and entry codes. Note that requests
sent by the state machine in these code fragments will go back to the environ-
ment, which then in later iterations will submit corresponding events back to the
state machine, as explained earlier. For performance reasons, we want to avoid
repeated computation of innermost state for a state, and the list of exit and
entry states. Thus our implementation caches these so they are only computed
once (this is done with an additional 20 lines of code, not shown here due to
space limitations). We can now define the function for finding the innermost
enclosing state of the current state, containing a transition function enabled for
an event:

32 K. Havelund and R. Joshi

def findTriggerHappyState(s: state, event: Event): Option[state] =
if (s.transitions.isDefinedAt(event)) Some(s) else
if (s.parent == null) None else findTriggerHappyState(s.parent, event)

The function calls itself recursively up the parent chain until it finds a state
whose transition function is defined on the event. For verification purposes, a
function is defined for determining which state (by name, including super states)
an HSM is in, matching against a regular expression:

def inState(regexp: String): Boolean = {
current.getSuperStates.exists(.name.matches(regexp))

}
The presented code is the implementation in its entirety, except for the following
concepts (30 lines of code): (i) computing exit/enter state chains; (ii) caching of
computations of innermost states and exit/enter state chains; (iii) the ability for
the user to announce call-back functions to be called whenever a state is entered,
exited, or the monitor reaches a quiescent state.

6 Daut Implementation

The general idea behind the implementation of Daut is described in [14]
(although the version used in this work differs in minor ways), summarized
here with the addition of temporal invariants (during and invariant). The class
Monitor contains a variable holding at any point during monitoring the set (logic
conjunction) of active monitor states2:

class Monitor[E <: AnyRef] {
type Transitions = PartialFunction[E, Set[state]]
var states: Set[state] = Set()
...

}
A state is an instance of the following class, which contains a variable holding
the transitions out of the state, as well as a variable indicating whether it is an
acceptance state (acc = true) or not (by default a state is an acceptance state).

trait state {
var transitions: Transitions = noTransitions
var acc: Boolean = true
if (first) {states += this;first = false}

def apply(event:E): Option[Set[state]] =
if (transitions.isDefinedAt(event)) Some(transitions(event)) else None

2 Note that there is some terminology overlap between the HSM DSL and the Daut
DSL, e.g. the concepts of states and transitions, with similar meanings although not
necessarily in the details. This works out due to a clear separation of name spaces
in that HSMs and Daut monitors extend different classes (HSM and Monitor).

Modeling and Monitoring of Hierarchical State Machines in Scala 33

def watch(ts:Transitions) {transitions = ts}
def always(ts:Transitions) {transitions = ts andThen (+ this)}
def hot(ts:Transitions) {transitions = ts; acc = false}
def next(ts:Transitions) {transitions = ts orElse {case ⇒ error}; acc=false}

}
The first state created in a monitor becomes the initial state, e.g. the always-state
in our monitors. A state is applied (the apply method) to an event to return an
optional set of results, and None if the state does not contain transitions defined
for the event. In addition a collection of temporal methods are defined: watch,
always, hot, and next. Other methods are defined in the actual system, including
weaknext, until, and weakuntil, known from temporal logic. These methods take
as argument a transition function and store it or a modification of it in the
transitions variable of the state, and also set the acc variable for non-acceptance
states. The Monitor class in addition defines a method for each of the temporal
methods defined inside the state class for creating states of the corresponding
temporality. We show one of these, the rest follow the same pattern:

def always(ts: Transitions) = new state { always(ts) }
The during3 class is defined as a particular form of state. It contains a Boolean
variable on, true when one of the e1 events has been observed but an e2 event
has not yet been observed.

case class during(e1: E∗)(e2: E∗) extends state {
states += this
val begin = e1.toSet
val end = e2.toSet
var on: Boolean = false

def startsTrue: during = {on = true; this} // allows interval initially true

always {
case e ⇒ if (begin.contains(e)) {on = true} else

if (end.contains(e)) {on = false}
}

}
We have seen how an object of class during can be used as a Boolean (e.g. timerOn
in Fig. 4). This is made possible with the following implicit function:

implicit def liftInterval(iv: during): Boolean = iv.on

We finally illustrate how invariants are realized. A variable contains all declared
invariants (as pairs of an error message, and the predicate itself). An invariant is
declared with invariant(txt)(p) (where p is a call-by-name argument not evaluated
before invariant is called), checked initially and after each event processing.
3 The during(P)(Q) operator is inspired by the [P,Q) operator in MaC [18].

34 K. Havelund and R. Joshi

var invariants: List[(String, Unit ⇒ Boolean)] = Nil

def invariant(e: String)(inv: ⇒ Boolean): Unit = {
invariants \newcolon= (e, ((x: Unit) ⇒ inv))
check(inv, e)

}

def check(b: Boolean, e: String) : Unit = {if (!b) printErrorMessage(e)}
We finally show how event reports are issued with the verify method, and how
monitoring is ended (given a finite trace) with the end method. Note how invari-
ants are evaluated after each processed event.

def verify(event: E) {
for (sourceState <− states) {

sourceState(event) match {
case None ⇒
case Some(targetStates) ⇒

statesToRemove += sourceState
for (targetState <− targetStates) {

targetState match {
case ‘error‘ ⇒ printErrorMessage()
case ‘ok‘ ⇒
case ⇒ statesToAdd += targetState

}}}}
states −−= statesToRemove; states ++= statesToAdd
statesToRemove = Set(); statesToAdd = Set()
invariants foreach { case (e, inv) ⇒ check(inv(), e) }

}

def end() {
val hotStates = states filter (! .acc)
if (!hotStates.isEmpty) {printErrorMessage();...}

}

7 Conclusion and Future Work

We have shown how HSMs can be elegantly modeled in an internal DSL in
the Scala programming language. The iDSL has been illustrated with a simple
example of an HSM used for taking images with a camera. We have additionally
illustrated how an existing internal Scala DSL for monitoring was extended and
applied to testing the HSM. In particular, our approach allows the definition
of reactive monitors, which can send events to the HSM when certain temporal
properties are satisfied, which makes it easier to write complex test cases. The
code for each of these iDSLs is less than 200 lines, which makes it easier to
validate their semantics. A more comprehensive validation would be to model

Modeling and Monitoring of Hierarchical State Machines in Scala 35

an existing HSM (written in C) in our iDSL (as done in [16]), and compare
execution logs on the same inputs. We have also developed a capability for
generating graphical representations (used to generate Fig. 1) directly from the
HSM description in our iDSL. The work illustrates how a high-level programming
language can be used for modeling as well as programming, as part of a model-
based engineering approach. We plan to support refinement of high-level models
into low-level programs which can directly be translated into C code. We are
working on extending our approach to support automated test-case generation
(using an SMT solver) and formal verification of Scala programs using the Viper
framework [20].

References

1. Akka FSMs. http://doc.akka.io/docs/akka/current/scala/fsm.html
2. Umple - Model-Oriented Programming. http://cruise.site.uottawa.ca/umple.

Accessed 26 May 2017
3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified

event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0 5

5. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 7

6. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from EAGLE to RuleR. J. Logic Comput. 20(3), 675–706 (2010)

7. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015)

8. Deligiannis, P., Donaldson, A.F., Ketema, J., Lal, A., Thomson, P.: Asynchronous
programming, analysis and testing with state machines. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2015, pp. 154–164. ACM, New York (2015)

9. A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P:
Safe asynchronous event-driven programming. In Proceedings of PLDI ’13, pages
321–332, 2013

10. Drusinsky, D.: Modeling and Verification using UML Statecharts, p. 400. Elsevier,
Amsterdam (2006). ISBN-13: 978-0-7506-7949-7

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

12. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

13. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

14. Havelund, K.: Data automata in Scala. In: Proceeding of the 8th International
Symposium on Theoretical Aspects of Software Engineering (TASE 2014) (2014)

http://doc.akka.io/docs/akka/current/scala/fsm.html
http://cruise.site.uottawa.ca/umple
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-642-21437-0_7

36 K. Havelund and R. Joshi

15. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2015)

16. Havelund, K., Joshi, R.: Modeling rover communication using hierarchical state
machines with Scala. In: TIPS 2017, May 2017. Accepted for publication

17. Havelund, K., Visser, W.: Program model checking as a new trend. STTT 4(1),
8–20 (2002)

18. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-
time assurance approach for Java programs. Formal Methods Syst. Des. 24(2),
129–155 (2004)

19. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. STTT, pp. 1–41 (2011)

20. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

21. Samek, M.: Practical UML statecharts in C/C++. In: Event-Driven Programming
for Embedded Systems, 2nd edn. Newnes, MA, USA (2009)

http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2

Stochastic Activity Networks
for the Verification of Knowledge Bases

Luke Martin(&) and Alexander Romanovsky

Centre for Software Reliability, Newcastle University, Newcastle upon Tyne, UK
{luke.burton,alexander.romanovsky}@ncl.ac.uk

Abstract. There has been much focus on applying graphical techniques to
analyse various kinds of structural errors in knowledge bases as a method of
verification and reliability estimation. The most commonly applied technique
has been Petri nets, or variations thereof, in achieving this objective with much
success. However, although this approach has been considerably useful for
verifying rules in earlier generations of knowledge-based systems, it is unclear if
this approach can continue to be as useful, or indeed accessible, for verifying
current or later generations of KBS, which have significantly larger, more
complex, probabilistic rule sets. It has recently been argued that stochastic Petri
nets can be successfully applied to continue with knowledge base verification,
although, this method has required extensive and complex modifications that has
led into proposals for fuzzy Petri nets. It is the view of this paper that the
stochastic activity network formalism can provide a potentially useful alternative
for the verification of fuzzy rule sets and can be more efficient and effective than
complex derivatives of Petri nets. We present a high-level discussion of how this
approach could be applied and used to analyse knowledge bases in ensuring that
there are free of structural errors.

1 Introduction

Knowledge-based systems (KBSs) have been widely used in many real-world appli-
cations and are fast emerging as the latest generation of embedded and real-time
systems. A KBS is often defined as an expert system that emulates human reasoning
capabilities for making decisions for a range of complex problems within specific
domain areas [1]. The core component of a KBS is the knowledge base (or rule base),
which lists a range of domain specific knowledge as inference rules. Typically, these
rules are built into the knowledge base gradually over an extensive period of time
resulting in an incremental and evolutionary style of development for this component.
It is due, in part, to this construction process and also as a result of conflicting
information from experts and varying perspectives from knowledge engineers that a
knowledge base can contain several structural errors.

As addressed in [11, 13], structural errors can be classified as: redundancy (repeated
rules), inconsistency (rules which conflict), incompleteness (rules that are missing) and
circularity (infinite inference). Each of these clearly has adverse consequences for
reliability and a method for detecting these errors is required for ensuring integrity.
Researchers have been proposing the use of Petri nets and their extensions to model

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 37–44, 2017.
DOI: 10.1007/978-3-319-65948-0_3

non-fuzzy rule-based systems for earlier generations of KBSs [8, 10, 14]. While these
were useful at the time, knowledge bases have since become more probabilistic and
require formal representations that can capture this. This has in fact led to stochastic
variations of Petri-nets being applied [12] and while these provide various advantages,
it begs the question as to why stochastic activity networks (SANs), as stochastic
extensions of Petri nets, have not been considered when they could, in principle,
potentially provide a much more efficient and scalable alternative. This question has
motivated the work of this paper to explore the application of SANs for this purpose.
As the scope of this paper is limited to developing a an approach, a high level
description of the method is given with preliminary results, with future work focusing
on expanding the approach and deriving a more complete set of results.

The remainder of the paper is organized as follows: Sect. 2 discusses related work
of rule base verification and fuzzy rule reasoning with high-level Petri nets and pro-
vides a brief overview of the SANs formalism. Section 3 presents types of structural
errors in a rule base and the issues of rule base verification and reliability estimation.
Section 4 addresses our SANs-based approach and the phases of rule normalization,
rule transformation, and rule verification. We conclude the paper with our future
research in Sect. 5.

2 Related Work

As addressed in [11], structural errors in a KBS could be classified as redundancy,
conflict, and incompleteness. Each of these affects the reliability of a KBS and must be
addressed and repaired. In the case of redundancy, it includes redundancy in pairs of
rules, subsumed in pairs of rules, redundancy in chains of inference, and subsumed in
chains of inference. In the case of conflict, it includes conflict with initial facts, conflict
between the deduced facts, and circularity. In the case of incompleteness, it includes
unnecessary inputs, dead-ends, unreachable goals, and missing facts. Besides various
mechanisms of rule base verification, there are many researches targeted to using the
graphical and mathematical natures of Petri nets (PN) for fuzzy rule reasoning.
Researchers have been proposing the extension of Petri nets to fuzzy Petri nets
(FPN) and using FPN to model and reasoning fuzzy rule-based systems. We will briefly
summarise some of these mechanisms in this section.

2.1 Rule Verification

Nguyen et al. [13] describes potential problems about a knowledge base and introduces
their tool, CHECK, detecting errors on the Lockheed Expert System (LES). The LES is a
rule-based building tool, which represents factual data in its frame database and heuristic
and control knowledge in its production rule. The LES allows knowledge engineers to use
both data-driven and goal-driven rules. In the knowledge base, consistency and com-
pleteness must be insured. There are five steps to implement the rule checking. At the first

38 L. Martin and A. Romanovsky

three steps, CHECK finds the relationship of clauses and records the information in 2D
table of interclause relationship. The some problems can be detected by using the table to
deduce rule relationships, SAME (redundant), CONFLICT, SUBSET (subsumption),
SUPERSET (subsumption), UNNECESSARY CLAUSE, or DIFFERENT. Then, find
the properties of unreachable conclusions, dead-end goals, and dead-end IF conditions in
the 2D table. The 2D table also can generate the dependency chart for detecting the
circularity. At last, this paper figures out how certainty factors affect the checking. Zhang
and In [10], it was noted that Nazareth proposed an approach based on Petri nets to verify
a rule-based system. His approach adds new arcs backward to all the input places and a
new input place to ensure every transition will fire at most once and ensure the conditions
will hold even if the transition has fired. He compares the difference of marking before
and after firing any sequence of transitions. If a place has no token before firing any firing
sequence and the place has two tokens after firing two individual sequences of transitions,
then the system has redundancy or conflict. If a place has one token before firing a
sequence of transitions and has two tokens after firing a sequence of transitions, then the
system has circularity. If a place has no token before all transitions arefired and still has no
token after all transitions are fired, then it has a dead end or unreachable goal.

2.2 Stochastic Activity Networks

Stochastic activity networks (SANs) are stochastic extensions to Petri nets and to the
best of the author’s knowledge have not been applied for verifying rules of KBSs.
SANs have the modelling power of Petri nets and allow a compact representation of
systems. They consist of: places, activities, input gates and output gates. - Places can be
seen as a state of the modelled system. Each place of a SAN contains a certain number
of tokens which represents the marking of the place. Places are represented graphically
by circles. - Activities represent actions of the modelled system that could take some
specified amount of time to complete. They are similar to transitions in ordinary Petri
nets, and are of two types: timed and instantaneous. Timed activities have durations
that impact the performance of the modelled system such as a packet transmission time.
This duration can be stochastic. Instantaneous activities represent actions that complete
or fire immediately when enabled in the system. Activities are graphically represented
by thick lines for the timed ones, and thin lines for the instantaneous ones. Unlike
autonomous Petri nets, SANs allow the use of uncertainties associated with the com-
pletion of an activity. It is called Case probabilities, and is represented graphically by
small circles on the right side of an activity (see Fig. 2). Each case stands for a possible
outcome, such as a routing choice in a network, or a failure mode in a faulty system. So
each activity in the SAN can have a probability distribution associated with its cases.
Moreover, this distribution can depend on the marking of the network at the moment of
completion of an activity. This shows how SAN could be a high level modelling
formalism.

Stochastic Activity Networks for the Verification of Knowledge Bases 39

3 Structural Errors in Rule-Based Systems

In this paper, we are concerned in finding structural errors and the set of rules causing
these, which affects the reliability of the knowledge base. The reasons of structural
errors may be due to rule conflicting, missing/mismatched condition, and conclusion.
As pointed out in [7, 11–13], we have identified four kinds of rules, which may lead to
structural errors. They are redundancy, inconsistency, incompleteness, and circularity
rules. Inconsistency rules result in conflict, which is the direct source of incorrect rule
derivation. Redundancy rules increase the size of rule base and cause non-necessary
reasoning. Incompleteness rules prohibit rule bases from activating certain normal rule
derivation. Circularity rules will force the rule base to run into an infinite loop of
reasoning. Following, we describe those structural errors and give example to express.

Inconsistency. Inconsistency results in a conflict of facts and must be resolved for
correct functioning of a KBS. This means a set of rules are conflicting if contradictory
conclusions can be derived under a certain condition. An example of inconsistency
rules is as follows:

T3 : -> P1
T4 : P1 -> P2
T5 : P1 -> P3
T6" <"P2 -> P3

Incompleteness. Incompleteness occurs when there are missing rules in a rule base.
Except the rules for representing facts and queries, a rule is called as a useless rule if the
rule’s condition (conclusion) cannot match other rules’ conclusion (condition). The
unmatched conditions are called dangling conditions, while the unmatched conclusions
are called dead-end conclusions. Mostly, the reasons of useless rules are due to some
missing rules. An example of incompleteness rules is as follows:

T3 : -> P1
T4 : P1 AND P3 -> P2
T5 : P1 -> P4
T6" <"P4 -> .

Redundancy. Redundancy occurs when unnecessary rules exist in a rule base.
Redundancy rules not only increase the size of the rule based but also may cause
additional useless inferences. Redundancy is classified as being of two kinds:
forms-redundant rule and subsumed. A rule is forms-redundant with respect to a
conclusion if the conclusion can be reduced from other rules under the same conclu-
sions. A rule is subsumed with respect to a conclusion if the conclusion can be reduced
from both rules and the condition part of the former is included in the condition part of
the latter. An example of redundancy rules is as follows:

40 L. Martin and A. Romanovsky

Circularity. Circularity occurs when several inference rules have circular dependency.
Circularity rules can cause infinite reasoning and must be broken. If the cycle is formed
within a rule itself, then we called such circular rule as self-circular rule. An example of
circularity rules is as follows:

T3 : P1 -> P2
T4 : P2 -> P3
T5 : P3 -> P1
T6"<"P1 AND P4 -> P4
T7"<"P5 -> P5

4 Stochastic Activity Network Based Verification Approach

For the purpose of effective verification using SANs, it is essential that the KB be
formulated in order to precisely represent the reasoning status of the rule set. Moreover,
the errors must be detectable by means of this representation, i.e., the KB will be
examined for unreachable goals caused by structural errors, which would allow us to
identify these and correct them. Currently, the verification is limited to systems without
uncertainty, since it contains some scope of errors. The verification system also hires
definitional domain knowledge so as to improve the capability of error(s) detection.
The formulation of a KBS as a SAN involves the representation of each rule or fact as a
transition. Predicates are also relations among arguments. A predicate is applied to a
specific number of arguments and has a value of either true or false when transitions
fire. An arc label specifies a variable extension of a predicate to which the arc is
connected. An element t 2T defines a logical implication between its input places (i.e.,
input predicates) and its output place (i.e., output predicate). This can be understood in
the sense that the output predicate can produce some prescribed conclusion when the
input predicates satisfy certain conditions. Figure 1 shows a very basic example of a
predicate rule can be expressed using SAN formalism. Note that the place P1 and Pm
are antecedents and Q1 and Qm are conclusions, with R being the logical connector.
The input and output gates specify the conditions in which the rule is activated and
concluded respectively.

Tokens are used to indicate validity or establishment of facts. However, some
constraints are to be placed on the input and output functions for proper transformation.
In its most primitive form, each rule will have all the antecedents as input places and
the consequents as output places for the transition in question.

T5 : P1 -> P2
T6"<"P4 -> P5
T7"<"P4 -> P5 AND P6
T8"<"P2 -> P7
T9"<"P1 -> P7

T3 : P1 AND P3 -> P2
T4 : P1 AND P3 -> P2

Stochastic Activity Networks for the Verification of Knowledge Bases 41

This indicates that the firing of transition tl will add both Q to the set of known
clauses. However, in its current state, transition tl cannot be fired as there are no tokens
in its input places. However, information concerning the validity of P is lost as a result
of the firing. This can be rectified by including A in the set of output places when tl is
fired indicating A, B, and C as known facts. This represents an improvement, but is still
problematic in that transition tl can be fired again, more so, at will, thus increasing the
tokens in places A, B, and C ad infinitum. To counteract this, each transition will have
associated with it, a special place with a single token in it. Additionally, the transition
can be fired only once, indicating a persistent Petri net with no information loss. The
use of definitional knowledge in a domain does pose some problems. Most KBSs will
employ some such knowledge, since it is natural information as far as the experts are
concerned. This knowledge may take the form of data abstraction or mutual
exclusiveness.

Data abstraction rules cover qualitative abstraction, definitional abstraction and
generalization [SI. Qualitative abstraction involves the transformation of a value on one
dimension (usually quantitative) to an equivalent value on another dimension, as in “if
the patient’s temperature exceeds 104OF, then the patient’s temperature is high.”
Definitional abstraction involves the use of related concepts to describe the same
property of an object, as in “if the patient’s blood count is low, then that patient is
anaemic.” Generalizations, on the other hand tend to relate concepts through hierar-
chical structuring, e.g., ‘‘if the patient is male, then the patient cannot be pregnant.”
Mutually exclusive knowledge relates different classes of a concept, as in “if the patient
has infection X, then the patient cannot have infection Y.” Knowledge of this sort is
frequently employed by domain experts when reasoning, but may not be explicitly
incorporated into the system. Any verification strategy that excludes this knowledge
would be suspect in that it would ignore potential errors, and possibly indicate the
possibility of error when none is present. Incorporating knowledge about abstraction in
a verifier is relatively straightforward; the abstracted knowledge can be represented as
rules and added to the current rule set. Mutually exclusive knowledge can be handled
more elegantly through the use of a single place denoting inconsistency, as opposed to
the use of several rules denoting combinations of incompatible clauses. Adopting a
more formal notation, let the rule set R consist of k rules, with T; = R representing
individual rules. In order to produce greater efficiency, error-detection procedures can
be formulated as reachability or submarking reachability problems. For the purpose of

Fig. 1. Inference rule (clause) expressed as a simple stochastic activity network

42 L. Martin and A. Romanovsky

maintaining the readability of this paper and meeting the requirements of paper length,
the proofs for these propositions are described briefly. Proposition 1: Redundancy: In
incidence matrix A, for every element of any pair of rows, ri and rj, if [ri] = [rj], then
either ri or rj is redundant, where [ri] and [rj] denote the content of elements in ri and rj,
respectively. Proof: Based on incidence matrix A, a specification clause Ci is said to be
redundant if there exists another specification clause Cj such that Ci and Cj are the
same. Example 2: Add one more clause C21 into the logic program, as shown in
Example 1. C21 ancestor(x, y) ← ancestor(z, y), parent(x, z).

From Proposition 1, we can obviously understand that either t2 or t21 is redundant.
Similarly, assume that a set of specification clauses is of the form (C1) P0(y, z) ← P1
(y, z), P2(y, z), P3(y, z) (C2) P0(y, z) ← P1(y, z), P3(y, z), P2(y, z). Since both clauses
(C1) and (C2) are identical, either (C1) or (C2) is redundant. Proposition 2: Sub-
sumption: In incidence matrix A, for every element of any pair of rows, ri and rj, if
{[ri]} � {[rj]}, then rj is subsumed by ri, where {[ri]} and {[rj]} denote a set of
elements in ri and rj, respectively. Proof: Based on incidence matrix A, a specification
clause Ci is said to be subsumed by another clause Cj if Ci and Cj have the same
conclusion predicate and Ci has more useless condition predicates than Cj.

By using the propositions and error-detection algorithm described in the previous
section, the following errors can be detected. Redundancy: In A, by Proposition 1,
since the content of elements in rows t1 and t2 is identical, either clause C1 or clause
C2 is redundant.

5 Conclusion and Future Research

In the paper, we have briefly presented the preliminaries of normalizing and ordering
rules of a KBS and explained the reasoning for this. Once the rules have been trans-
formed into high-level SANs, the approach should (in theory) be able to answer queries
over the net structure and compute the degree of truth to answers, however, further
technical investigation is required for evaluating this. In future work, our focus will be
to apply the method presented to an example case study of a KBS, where an ongoing
PhD research project is focused on developing an advisory system for use in railway
traffic planning. The knowledge base of the advisory system has been designed and
developed, but not yet fully evaluated, where it is hoped that this presented mechanism
can evaluate and verify the knowledge base. We also plan to integrate the approach into
a reliability estimation method that can help in motivating and justifying design
decisions at each iterative stage of development. We also aim to concentrate on for-
malizing and automating the transformation between rules and SANs with certainty
factors. Furthermore, we have addressed types of structural errors in a KBS and pro-
posed a SANs formalism for verifying these structural errors. By following the four
phases as presented in this paper, we can automatically detect types and causes of error.
We will further integrate the modeling and reasoning strength of SANs and fuzzy set
theory to extend the usage of our approach to real-world applications such as multi-
media synchronization, telecommunication, reuse, and maintenance. We have applied
Mobius, which allows the drawing, execution, and reasoning of SANs.

Stochastic Activity Networks for the Verification of Knowledge Bases 43

Acknowledgements. The authors would like to thank Siemens and EPSRC for their support in
this PhD project and for the support of Newcastle University.

References

1. Agarwal, R., Tanniru, M.: A petri-net based approach for verifying the integrity of
production systems. Int. J. Man-Mach. Stud. 36(3), 447–468 (1992)

2. Ahson, S.: Petri net models of fuzzy neural networks. IEEE Trans. Syst. Man Cybern. 25(6),
926–932 (1995)

3. Bugarin, A.J., Barro, S.: Fuzzy reasoning supported by petri nets. IEEE Trans. Fuzzy Syst.
2(2), 135–149 (1994)

4. Cao, T., Sanderson, A.C.: Task sequence planning using fuzzy petri nets. IEEE Trans. Syst.
Man Cybern. 25(5), 755–768 (1995)

5. Chen, S.M., Ke, J.S., Chang, J.F.: Knowledge representation using fuzzy petri nets. IEEE
Trans. Knowl. Data Eng. 2(3), 311–319 (1990)

6. Hammer, P.L., Kogan, A.: Essential and redundant rules in horn knowledge bases. In: IEEE
Proceeding of 28th Hawaii International Conference System Sciences, pp. 209–218 (1995)

7. Wu, C.H., Lee, S.J.: A token-flow paradigm for verification of rule-based expert systems.
IEEE Trans. Knowl. Data Eng. 30(4), 616–624 (2000)

8. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Knowledge base verification. AI
Mag. 49, 69–75 (1987)

9. Jensen, K.: Coloured petri nets: a high level language for system design and analysis. In:
Jensen, K., Rozenberg, G. (eds.): High-Level Petri Nets, pp. 44–122 (1991)

10. Konar, A., Mandal, A.K.: Uncertainty management in expert systems using fuzzy petri nets.
IEEE Trans. Knowl. Data Eng. 8(1), 96–105 (1996)

11. Laffey, T.J., Perkins, W.A., Nguyen, T.A.: Reasoning about fault diagnosis with LES. Proc.
IEEE 1(1), 13–20 (1986)

12. Lin, C., Chaudhury, A., Whinston, A.B., Marinescu, D.C.: Logical inference of horn clauses
in petri net models. IEEE Trans. Knowl. Data Eng. 5(3), 416–425 (1993)

13. Liu, N.K., Dillon, T.: An approach towards the verification of expert systems using
numerical petri nets. Int. J. Intell. Syst. 6, 255–276 (1991)

14. Looney, C.G., Alfize, A.R.: Logical control via Boolean rule matrix transformation. IEEE
Trans Syst. Man Cybern. 17(6), 1077–1082 (1987)

15. Looney, C.G.: Fuzzy petri nets for rule-based decisionmarking. IEEE Trans. Syst. Man
Cybern. 18(1), 178–183 (1988)

44 L. Martin and A. Romanovsky

A Generated Property Specification Language
for Resilient Multirobot Missions

Swaib Dragule1,4, Bart Meyers2,3, and Patrizio Pelliccione1(B)

1 Department of Computer Science and Engineering,
Chalmers University of Technology, University of Gothenburg, Göteborg, Sweden

dragule@chalmers.se, patrizio.pelliccione@gu.se
2 Antwerp Systems and Software Modelling,
University of Antwerp, Antwerpen, Belgium

bart.meyers@uantwerpen.be
3 Flanders Make vzw, Lommel, Belgium
4 Makerere University, Kampala, Uganda

Abstract. The use of robots is gaining considerable traction in several
domains, since they are capable of assisting and replacing humans for
everyday tasks. To harvest the full potential of robots, it must be possible
to define missions for robots that are domain-specific, resilient, and col-
laborative. Currently, robot vendors provide low-level APIs to program
such missions, making mission definition a task-specific and error-prone
activity. There is a need for quick definition of new missions, by users that
lack programming expertise, such as farmers and emergency workers. In
this paper, we extend the existing FLYAQ platform to support the high-
level specification of adaptive and highly-resilient missions. We present
an extensible specification language that allows users to declaratively
specify domain-specific constraints as properties of missions, thus com-
plementing the existing FLYAQ mission language. This permits to move
at runtime, the actual generation of low-level operations to satisfy the
declaratively specified mission. We show how this specification language
can be automatically generated from a domain-specific FLYAQ mission
language by using the generative ProMoBox approach. Next, we show
how mission goals are achieved taking mission properties into account,
and how missions may change due to unexpected circumstances.

Keywords: Domain-specific languages · Robotics · Model-driven engi-
neering · Resilient systems · Cyber-physical systems

1 Introduction

The use of multirobot systems in civilian missions requires high variability due
to the diversity of domains [4,21]. Moreover, robotic systems are defined through
a craftsmanship instead of established engineering processes. Programming mis-
sions for robots requires high knowledge of robotic programming and robot
mechatronics. While domain users are experts in their domains (e.g., emergency,
c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 45–61, 2017.
DOI: 10.1007/978-3-319-65948-0 4

46 S. Dragule et al.

commercial and agriculture) they are not trained to program missions for mul-
tirobot execution in their domains using the low-level APIs provided by robot
vendors. Not much has been done to enable domain experts to easily use robots
to execute missions in the respective domains.

To address this problem, Di Ruscio et al. introduced FLYAQ [3,7]. FLYAQ is
a platform designed to enable non-expert domain users to program missions for a
team of multicopters. The platform has been then generalized to different types
of robots in [4,6]. The platform is extensible, so that domain-specific robots and
missions can be defined. Unfortunately, this platform can only define missions at
design time. This is unrealistic since most missions will be faced by unforeseeable
and emergent situations during mission execution, and, consequently, robots
should be resilient to these unforeseeable and emergent situations. For example,
one robot may malfunction calling for re-planning so that another robot can take
the roles this robot was executing. This need for run-time adaptation is clearly
described in the Robotics Multi-Annual Roadmap 2020 [21]. In this context, the
document describes the degree in which models can be used in robotics in three
steps ([21] Sect. 5.2). Step 1 assumes that models are used to define missions
by people at design time. Step 2 requires robots to use models at run-time to
interact and explain what they are doing. Step 3 means that robots adapt and
improve models to redefine what they are doing based on artificial intelligence.

The FLYAQ platform uses models according to step 1. In this line of research,
we intend to improve FLYAQ to support self-adaptive robots at the mission level,
thus achieving step 3. This means that robots can change their behaviour to suc-
cessfully carry out missions under unforeseen circumstances. We achieve this by
introducing a declarative language for describing mission goals and constraints.
In this research we exclusively focus on the high-level strategic, domain-specific,
collaborative aspects of self-adaptation. To this end, we specify mission objec-
tives in a declarative way, as properties, using a language we call the Mission
Specification Language (MSL). We present a technique that allows the generation
of such a MSL for a specific FLYAQ extension (e.g., emergency, commercial, agri-
culture). As MSL is declarative, it does not specify how the mission is planned
for a team of robots, but instead specifies what goals must be achieved and what
constraints cannot be violated. This way, missions become fully specified only
at run-time and they can be re-planned at run-time.

Paper structure: Sect. 2 discusses the background of this research. Section 3
introduces the property specification language. Section 4 evaluates the approach
by showing an implementation of the property specification language. Section 5
discusses related work. Section 6 concludes the paper with opportunities for
future works.

2 Background

In this section, we briefly explain domain-specific modelling, and the FLYAQ
platform, on which we build our research.

A Generated Property Specification Language 47

Domain Specific Modelling. In Domain-Specific Modelling (DSM) [14], a
methodology in model-driven software engineering, the general goal is to provide
means for domain users to model systems in their problem domain. Model-driven
techniques such as metamodelling and model transformation enable the creation
of Domain-Specific Modelling Languages (DSMLs). These DSMLs can be used
by domain experts, to specify, for example, missions for a team of robots. Current
DSM techniques allow domain users to model at the domain level and simulate,
optimise, and transform the model to other formalisms, synthesise code, generate
documentation, etc.

Fig. 1. The family of FLYAQ DSMLs (adapted from [6]).

FLYAQ Platform. The FLYAQ platform [3,4,7] employs domain-specific mod-
elling to take care of the various domains involved in mission definition and
specification. The approach proposes a family of DSMLs for the specification of
missions of multirobot systems (MMRSs), as shown in Fig. 1:

– Monitoring Mission Language (MML): this DSML consists of the context
layer and mission layer. This DSML is meant to be used by domain users,
to model missions. Missions are represented in the mission layer as sequences
of tasks on a map, as shown in Fig. 2. The context layer provides additional
constrains over the mission area, such as obstacles and no-fly zones;

– Robot Language (RL): using this DSML, types of robots or individual robots
can be defined by a robot engineer, mapping out their capabilities and char-
acteristics;

– Behaviour Language (BL): this language allows the definition of sequential
atomic movements and actions of each robot that are used to instruct the

48 S. Dragule et al.

Fig. 2. A screenshot of the FLYAQ tool (from [7]).

individual robots. The BL serves as the low-level language, to which high-
level missions defined in MML can be transformed automatically using the
MML2BL transformation. This transformation takes care of low-level plan-
ning, such as path finding, covering areas, etc. while achieving the high-level
goals. Code can be easily generated from the generated BL models, and then
it can be uploaded to the individual robots.

Mission goals, robot characteristics, and actions should be customised to the
application domains. Therefore, extensions can be defined on MML, RL and BL,
as shown in Fig. 1. In case of MML, extensions may define a task to “scan an
area by taking pictures”. Example extensions to RL may include domain-specific
notions like “number of propellers”, “launch type” (horizontal or vertical take-
off), “maximum altitude”, etc. BL may be extended with movements like “take
off” and “land”, and a “go to strategy” (move first over the horizontal or vertical
axis, or move diagonally?), “take a picture”, “start recording a video”, etc.

For example, it is possible to define extensions in FLYAQ to allow flying
robots to take pictures of areas. Using this extension, one can specify missions
to e.g., survey an area where a public event is being held. Another example is
in the domain of agriculture. One multicopter is able to detect pests by taking

A Generated Property Specification Language 49

pictures and using image recognition techniques. If a pest is detected, another
multicopter that is able to spray insecticide must spray the infected plants. It
should only spray plants that are infected. We use these examples throughout
the paper.

Despite its extension mechanism, FLYAQ does not support (a) advanced
temporal constraints (other than order, fork or join) over various tasks or robots
in MML, e.g., a certain task can only start if another robot is surveying the
task area (for safety reasons), or video recording can only start after clearance
(for privacy reasons); and (b) run-time adaptation of a mission due to some
information at run-time, e.g., taking pictures of areas where high temperature
was detected by another robot, or reacting to a loss of signal of a robot. The
research presented in this paper addresses these shortcomings.

3 Mission Specification Language

Our approach extends the FLYAQ platform as shown in Fig. 3. The mission layer
of MML is annotated, and as a consequence a Mission Specification Language
(MSL) can be generated automatically from MML and a Property Template to
better match the platform extensions of MML. MSL extends MML with lan-
guage constructs to define temporal properties for robot missions. Our approach
ensures that, when an extension is defined as done in FLYAQ, no additional
effort is required to generate MSL.

Fig. 3. Overview of the approach as an extension of the FLYAQ platform.

50 S. Dragule et al.

3.1 Mission Specification Language

The mission specification language (MSL) is intended to specify properties of
a mission that allows users to define temporal mission constraints in a highly
declarative way. This complements MML, where areas are selected, and specific
tasks, obstacles and no-fly zones are plotted on the map. MSL replaces the order,
fork and join of MML, supporting more expressive constraints. We use a number
of temporal patterns, taken from Dwyer et al. [8] and Autili et al. [1], as a basis
for the Property Template from which MSL is generated. According to this work,
properties consist of a temporal pattern in a scope, over some propositions P , Q,
R and S (i.e., occurrences of something, e.g., spraying, entering an area, etc.).
Temporal patterns can be absence (something should never occur), universality
(something should always occur), existence (something should eventually occur),
bounded existence (something should occur at most n times), precedence (an
occurrence of P must be preceded by an occurrence of Q), or response (an
occurrence of P must be followed by an occurrence of Q). Scopes can be globally,
after the occurrence of R, before the occurrence of S, between occurrences of R
and S, or after an occurrence of R until an occurrence of S (after until).

The declarative constraint specification shields the user from the actual plan-
ning. For example, if pests are detected, the corresponding areas are sprayed.
This is an example of a response pattern with global scope. The user may use a
precedence pattern to say that a pest needs to be detected at a location before
this point is sprayed. This constraint can be met in a number of equally valid
ways. A first option would be that one robot first detects all locations, then
returns to the base where its data is downloaded and locations of infected plants
are uploaded to a second robot, who goes out to spray the infected plants.
A second option would be that two robots perform the task in parallel: one
robot sends coordinates of detected pests to the other robot, which only sprays
infected points. The second robot may follow a preplanned path, or may plan its
path at run-time, according to the received coordinates. Collisions may occur,
or may be avoided by flying at different altitudes. A third option would be that
multiple robots detect pests, and multiple robots spray. If robots can adapt their
mission at run-time, this may involve advanced scheduling, employing run-time
monitors [5]. This shows that a declarative language can be supported by very
simple to very advanced algorithms. The goal of MSL is that the domain user is
shielded from such advanced planning algorithms.

To further illustrate MSL, we give some more examples of properties.

– Between entering and exiting an area, a robot can never exceed a given alti-
tude. According to Dwyer et al. [8], this is an absence pattern with between
scope. Note that this between scope may be more intuitively expressed as
“during” or “while”.

– Between receiving a “stop” message and a “start” message, pictures cannot
be taken.

– A robot can only start its activity if another robot is in a given position to
monitor this activity.

A Generated Property Specification Language 51

3.2 Run-Time Adaptation of Multirobot Missions

In its current state, the MML platform generates robot missions at design time.
This means that robot missions cannot be adapted at run-time. We intend to
support the run-time recalculation of BL models (i.e., robot commands) from
a declarative mission description; this is needed in case information at run-
time prompts the robots to change the mission. Our approach is applicable to
various implementation techniques: for example, the mission recalculation may
be achieved by the robot or by the ground station, and may be specified off-line
or at run-time, or a mix of these.

Fig. 4. The annotated class diagram of the MML mission layer (context layer remains
unchanged and is not shown).

In order to allow run-time information in a mission specification in MSL, we
altered the existing MML mission layer from [4], as shown in Fig. 4. We have
changed the metamodel in several ways:

– We have extracted a Shape class (and Polygon, Point, Line subclasses) from
the original PolygonTask, LineTask, and PointTask. In particular, the new
Polygon class serves now as superclass of Area in the context layer of MML
in [6]. This new Shape class will allow users to specify new shapes on the map
that may trigger rules like: do not record within a specific area.

– The meaning of Task has been extended. At mission specification time, a task
may be addressed by multiple robots. After mission generation, tasks are split
up into multiple concrete tasks, each for one robot.

52 S. Dragule et al.

– TaskDependency has been removed from MML and its functionality will be
subsumed by the specification language.

– We added run-time language constructs (annotated with rt), so that specifi-
cations can be defined in terms of the current state of the mission in terms
of tasks and position. We added the following run-time information in terms
of tasks:
• currentTask: the task a robot is currently working on;
• coveredTasks: the concrete tasks that are planned for a robot;
• todoTasks: the concrete tasks that a robot still needs to perform;
• finishedTasks: the concrete tasks that a robot has done;
• performingAction: the action (defined in the task) a robot is currently

performing. It may be none if e.g., the robot is moving and the action is
instantaneous (e.g., taking a picture).

We added the following run-time information in terms of position:
• currentPosition: the current position of a robot;
• coveredPoints: the points of a concrete task that are defined by the cover

function;
• todoPoints: the points of a concrete task that still need to be visited;
• finishedPoints: the points of a concrete task that have been visited;
• in: the shapes the robot is currently in.

As is usual in FLYAQ, extensions can be defined for specific application
domains, as shown in Fig. 3. Note that for brevity, we do not show the MML
context layer and RL (which can be extended in its own right).

3.3 Generation of the Property Specification Language

As shown in Fig. 3, a domain-specific MSL can be generated from the annotated
MML (as shown in Fig. 3), with defined extensions (e.g., to enable detection of
pests in an area, and spraying certain plants). This means that extensions have
to be defined only once, and can be used for specifying missions in the original
MML as well as in MSL. The metamodel of MSL, which results from the language
generation process without an extension, is shown in Fig. 5. It consists of three
parts:

– Mission layer: the upper part (unshaded) represents our variant to the original
MML mission layer, which allows the user to define missions at design-time
like in the original MML. For example, “pictures should be taken in an area,
with a distance of x from each other”. Additionally, shapes can be defined,
that can be used in MSL properties. In case of an MML extension, extensions
will also appear in this part.

– Temporal pattern layer: the middle part (shaded) represents the temporal
patterns, which allow the user to define temporal constraints based on the
patterns by Dwyer et al. [8]. For example, “after R happens, P must be
followed by Q”.

A Generated Property Specification Language 53

– Proposition layer: the bottom part (unshaded) represents the language frag-
ment to define propositions P , Q, R, and S of temporal patterns. More specif-
ically, it allows the user to specify a condition on the state of a mission (i.e.,
a structural pattern). For example, “a robot is in a specific area”, or “a task
is completed”. In case of an MML extension, pattern versions of extensions
will also appear in this part.

With MSL, a mission can be specified by plotting an area on the map, and defin-
ing a DetectPest and Spray task in this area, using the MSL mission layer, which
is extended with language concepts from agriculture. With the MSL temporal
pattern and MSL proposition layer, a property can be specified that states that
detecting a pest at a location must result in spraying that location.

The MSL metamodel of Fig. 5 is generated fully automatically from an anno-
tated (and possibly extended) MML metamodel (Fig. 4) and the generic property
template (shaded part of Fig. 5). Why do we need to automatically generate an
MSL metamodel? Please note that, if there was no generative approach, each of
the domain-specific language constructs (e.g., spraying a pest, maximum altitude
of a robot, etc.) would have had to be modelled a second time in MSL. With
our approach, the extension mechanisms of FLYAQ can be reused as described
in [4], and a domain-specific MSL is generated without any additional effort.

We use techniques from the ProMoBox framework [17,18] to achieve this.
First, the MSL mission layer is generated by taking the annotated MML meta-
model and removing all run-time language constructs, which are annotated with
rt, thus creating the unshaded upper part of Fig. 5. Next, the property template
is merged into this model by adding an association called specification from
Mission to Specification. Finally, the annotated MML metamodel is taken for a
second time, and the run-time language constructs are kept (by removing the
annotation). This time, the metamodel is converted into a structural pattern lan-
guage by using the RAMification process [16]: relaxing all lower multiplicities,
making all abstract classes concrete, and changing all attribute types to Condi-
tion, as can be seen in the proposition layer of Fig. 5. This RAMified metamodel
is merged into MSL by generating inheritance links from all top-level classes to
PropertyElement.

3.4 Transforming MSL to BL

Transforming MSL to BL (see MSL2BL in Fig. 3) can be done according to
several stategies. Given the tight relation between MSL and MML, the trans-
formation algorithms of MML2BL [7] (i.e., path finding, covering areas) can be
reused. Moreover, various implementation strategies as mentioned in Sect. 3.1
can be covered by MSL2BL: mission recalculation may be achieved by a mix of
the robot or the ground station, off-line or at run-time. These strategies may
requiring enhancement of BL to e.g., explicitly support data communication or
monitoring. As this paper focuses on the definition and generation of MSL, this
is left as future work.

54 S. Dragule et al.

StructuralPattern

name : String
condition : Condition = return True
dynamic : boolean

PropertyElement

id : String
label : String
condition : Condition = return True

OrderedTemporalPattern

Robot

type : Condition
returnHome : Condition

RelativeCoordinate

x : float
y : float
z : float

RelativeCoordinate

x : Condition
y : Condition
z : Condition

BoundedExistence

n : Integer

Robot

type : String
returnHome : boolean

TemporalPattern

Task

concrete : Condition

GeoCoordinate

latitude : Condition
longitude : Condition
altitude : Condition
depth : Condition

UpperBoundedLowerBounded

<<enumeration>>
Quantifier

exists
forAll

GeoCoordinate

latitude : float
longitude : float
altitude : float
depth : float

NamedElement

name : String

NamedElement

name : Condition

BinaryPattern

ImpliesPattern

AtomicPatternUnaryPattern

ControlTask SpatialTask

SpatialTask

Specification

name : String

ControlTask

Mission

crs : Condition

Coordinate

Coordinate

Precedence

Universality

AndPatternNotPattern

Response

OrPattern

Existence

Mission

crs : String

AfterUntil

Absence

Between

Polygon

Polygon

Globally

Shape

Scope

Before

Shape

Team

Team

Task

Fork

Line

Join

LinePoint

After

Fork

Join

Point

in

*

specification

0..1

1

performingAction

0..1

0..1

1

1
1

todoTasks*
finishedTasks*

currentTask0..1
coveredTasks*

initialPosition

1

initialPosition

0..1

1

1

shell

*

shell

3..*

todoPoints*
finishedPoints *

coveredPoints *

currentPosition

0..1
home

0..1

robots*

robots1..*

0..1

1

point

1

point

0..1

reference

1

0..1

1

team1

points

1..*

team0..1

points

*

home

1

initialPosition

0..1

initialPosition

1taskArea1

taskArea0..1

11..*

1

tasks

1..*

reference

1

0..1

2

tasks
*

Fig. 5. The generated metamodel of MSL without extensions.

A Generated Property Specification Language 55

4 Evaluation: Implementation of MSL as Textual DSL
In this section, we evaluate the MSL by introducing an implementation as a
textual language in Xtext [9], and show how missions can be expressed in this
language.

4.1 A Concrete Syntax for MSL

According to what described in [1], temporal properties (the shaded part of
Fig. 5) might be profitably described using a structured English grammar. For
instance, we can devise a textual syntax for the MSL proposition layer (the
bottom part of Fig. 5), where each of the associations can form a subsentence
with the two attached instances. For example, “a Robot currently on a GeoCo-
ordinate” denotes the presence of an instance of Robot and an instance of Geo-
Coordinate, with a currentPosition link in between. More intricate, “a Robot r
currently on a GeoCoordinate with latitude lower than 100” denotes additional
conditions on the robot, etc. A structured English grammar to represent a sub-
sentence for one association is defined as follows (id, Label, Value, Attribute,
Class, Association are terminals):

Proposition ::= Proposition (and also Proposition)+

| Proposition (or Proposition)+

| Proposition (implies Proposition)+ | AtomicProposition

AtomicProposition ::= Expression [Association Expression]

Expression ::= Instance [InstanceCondition]

InstanceCondition ::= with (ValueCondition | BooleanCondition (and ValueCondition | BooleanCondition)*)

ValueCondition ::= {Attribute} (as | less than | greater than) {Value}

BooleanCondition ::= [not] {Attribute}

Instance ::= {id} | {Label} | a {Class} [{Label}]

Association ::= (that is a task of | that is a team of | that is in | [currently] doing | that has scheduled |

that has planned in the future | that has finished | [currently] performing | in | [currently] on | with as

home | with task area | which visits | which will visit in the future | which has visited | with points |

with initial position | which references | {Association})

The above grammar is combined with the grammar for temporal properties
presented in [1] so that temporal properties can be described in standard LTL or
CTL. This might enable the use of model checking approaches, like UPPAAL1.
With this grammar, temporal patterns involving multiple links can be expressed
with AndPatterns. MML extensions can be used by instantiating classes defined
by the extension. This is illustrated below in the examples.

Our current implementation in Xtext includes variable name resolution, parse
error visualisation, auto-completion and syntax highlighting2. A screenshot of
the MSL editor is shown in Fig. 6. Since both the FLYAQ platform and MSL
are implemented on top of the Ecore platform, they can be easily merged at the
EMF layer [19].
1 http://www.uppaal.org/.
2 An implementation of this grammar can be found at http://msdl.cs.mcgill.ca/

people/bart/flyaq/flyaq.html.

http://www.uppaal.org/
http://msdl.cs.mcgill.ca/people/bart/flyaq/flyaq.html
http://msdl.cs.mcgill.ca/people/bart/flyaq/flyaq.html

56 S. Dragule et al.

Fig. 6. Screenshot of the MSL in Xtext.

4.2 Examples of MSL

This section presents examples of temporal properties defined in MSL, while
illustrating the relation between the grammar presented above and the MSL
metamodel presented in Fig. 5. For these examples, we define a MML extension
in the agricultural domain as shown in Fig. 7, with:

– DetectPest: scanning for a pest in an area and in case of detection, send some
coordinates;

– Spray: spraying pesticides at a point;
– ReceiveCoordinates: receiving coordinates where a pest has been detected,

with the “at” association referring to the received coordinates.

Note that, after generation of MSL, these additional language constructs will
occur twice in MSL, namely in the MSL mission layer and in the MSL proposition
layer.

ReceiveCoordinates

SpatialTask Coordinate

DetectPest Spray at

1

Fig. 7. The MML extension.

The example of Fig. 8 (top) shows the abstract syntax of the MSL property
“a robot only sprays at a location if it has received these coordinates to spray at
that location” as an object diagram. The Specification consists of a Precedence
pattern. The left AtomicPattern states the condition Q, saying that a Receive-
Coordinates task is executed at a coordinate p. Note how the “at” association

A Generated Property Specification Language 57

Fig. 8. Three examples of temporal specifications as instances of MSL.

is used. The right AtomicPattern P describes a robot r, spraying at aforemen-
tioned point p. Note that the coveredPoints link is superfluous, because if the
robot is currently performing an action of a task, it must be inside the task
area. In structured English grammar, the temporal specification is as follows
(leaving out the superfluous quantification and coveredPoints link): “Globally,
if a SprayRobot r performing a Spray and r on a Coordinate p, then it must
have been the case that a ReceiveCoordinates at p beforehand”. Note how “at”
is automatically resolved to an instance of the “at” association.

The example of Fig. 8 (bottom left) represents “in a certain area, a robot
can never exceed a given altitude”. Note that the Area class (now a subclass
of Polygon) is part of the MML context layer and is not shown in Fig. 5. In
structured English grammar, the temporal specification is as follows: “Globally,
it is never the case that a Robot r in an Area with name as “lowflyzone” and
also r on a GeoCoordinate with altitude more than 20”.

The example of Fig. 8 (bottom right) represents “a robot can only perform
a certain task if another robot is at a certain position”. In structured English

58 S. Dragule et al.

grammar, the temporal specification is as follows: “Globally, it is always the case
that a Robot performing a Task implies a Robot on a RelativeCoordinate with x
as 100 and y as 200 and z as 10”. Note that, since spatial constraints are at
the very core of FLYAQ, it is interesting to introduce syntactic sugar for a robot
being at a coordinate, e.g., by allowing syntax like “a robot on (100, 200, 10)”.

5 Related Work

In this section, we present related works on run-time adaptation of multirobot
missions. There are several works that focus on robotics and self-adaptation,
like [10,11,20]. For the sake of space in this section we focus on related works in
run-time adaptation of (robot) missions, with a focus on MDE approaches. While
most of the mission specification tools (e.g., [23]) and the FLYAQ platform [3,6]
provide for specification of multirobot missions at design time, there is need to
have specification and recalculation of missions at run-time for missions executed
under uncertain environments.

In an effort to leverage run-time adaptation for UAV based systems, the work
in [2] uses an ensemble concept to aggregate teams collaborating in a mission
at run-time. This platform focuses on the aggregation of agents but on not the
high-level expressiveness of the mission properties. Using run-time models for
automatic reorganization of multirobot system, the work in [24] focuses more
on techniques for task distribution based on the goals and organisation of the
teams, but not how goals are expressed so that adaptation at run-time is made
easy. In [12] robots adapt models at run time, but configurations are made
by an expert programmer, not domain experts declaratively. The work in [15]
focuses on the behavioural model and how it auto-validates at run-time, yet
we employ a generative approach. The work in [22] focuses on design-time to
run-time explication of models, however this work does not really deal with
adaptation triggered by run-time uncertainties. The work in [13] proposes an
approach that uses models at design-time and run-time for collaboration. The
proposed approach is specific to a particular domain without a clear path to
adapt it for working in other domains.

6 Conclusion and Future Work

In this paper, we extended the FLYAQ platform with MSL, a highly declarative
language that allows users to describe robot missions with temporal properties
as constraints. The declarative nature of MSL allows run-time adaptation of
these missions in case of unforeseen circumstances. We showed how MSL can be
automatically tailored with domain-specific extensions by a generative approach.
Additionally we presented a structured English grammar for MSL.

Future work will mainly focus on the mapping from MSL to BL (a language
for describing individual robot movements and actions), allowing run-time adap-
tation and exploring different execution strategies. We intend to model commu-
nication between robots and/or the ground station explicitly in BL to achieve

A Generated Property Specification Language 59

this. Furthermore, we are planning to incorporate real-time constraints in mis-
sions. Moreover, since our approach for enabling run-time adaptation of missions
is model-driven and relies on code generation, we intend to analyse the feasibility
of generating code in real-time.

Acknowledgement. This research is partially supported by Flanders Make vzw. This
research is also partially funded by the COST action IC1404 “MPM4CPS”. This work
has been carried out within the framework of the MBSE4Mechatronics project (grant
nr.130013) of the agency for Innovation by Science and Technology in Flanders (IWT-
Vlaanderen). More support for this work was from the SIDA Bright 317 project. Finally,
this work is partially supported from the EU H2020 Research and Innovation Pro-
gramme under GA No. 731869 (Co4Robots).

References

1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured eng-
lish grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015). http://dx.doi.org/
10.1109/TSE.2015.2398877

2. Bozhinoski, D., Bucchiarone, A., Malavolta, I., Marconi, A., Pelliccione, P.:
Leveraging collective run-time adaptation for UAV-based systems. In: 2016
42nd Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 214–221 (2016). http://ieeexplore.ieee.org/document/7592799/

3. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M.: FLYAQ:
enabling non-expert users to specify and generate missions of autonomous mul-
ticopters. In: Proceedings - 2015 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, pp. 801–806 (2015)

4. Ciccozzi, F., Di Ruscio, D., Malavolta, I., Pelliccione, P.: Adopting MDE for spec-
ifying and executing civilian missions of mobile multi-robot systems. IEEE Access
3536(c), 1 (2016). http://ieeexplore.ieee.org/document/7576686/

5. Cohen, D., Feather, M.S., Narayanaswamy, K., Fickas, S.: Automatic monitoring of
software requirements. In: Adrion, W.R., Fuggetta, A., Taylor, R.N., Wasserman,
A.I. (eds.) Pulling Together, Proceedings of the 19th International Conference on
Software Engineering, Boston, Massachusetts, USA, 17–23 May 1997, pp. 602–603.
ACM (1997). http://doi.acm.org/10.1145/253228.253493

6. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages
for specifying civilian missions of multi-robot systems. In: CEUR Workshop Pro-
ceedings, vol. 1319, pp. 16–29 (2014)

7. Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M.: Automatic generation of
detailed flight plans from high-level mission descriptions. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems - MODELS 2016, pp. 45–55. ACM Press, New York (2016).
http://dl.acm.org/citation.cfm?doid=2976767.2976794

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceed-
ings of the 1999 International Conference on Software Engineering, ICSE 1999,
Los Angeles, CA, USA, 16–22 May 1999, pp. 411–420. ACM (1999). http://portal.
acm.org/citation.cfm?id=302405.302672

http://dx.doi.org/10.1109/TSE.2015.2398877
http://dx.doi.org/10.1109/TSE.2015.2398877
http://ieeexplore.ieee.org/document/7592799/
http://ieeexplore.ieee.org/document/7576686/
http://doi.acm.org/10.1145/253228.253493
http://dl.acm.org/citation.cfm?doid=2976767.2976794
http://portal.acm.org/citation.cfm?id=302405.302672
http://portal.acm.org/citation.cfm?id=302405.302672

60 S. Dragule et al.

9. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Companion to the
25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SPLASH/OOPSLA 17–21, 2010, Reno/Tahoe,
Nevada, USA, pp. 307–309. ACM (2010). http://doi.acm.org/10.1145/1869542.
1869625

10. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

11. Franco, J.M., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., Garlan, D.:
Improving self-adaptation planning through software architecture-based stochas-
tic modeling. J. Syst. Softw. 115, 42–60 (2016). http://www.sciencedirect.com/
science/article/pii/S0164121216000212

12. Gherardi, L., Hochgeschwender, N.: RRA: Models and tools for robotics run-time
adaptation. In: IEEE International Conference on Intelligent Robots and Systems
2015, pp. 1777–1784, December 2015

13. Götz, S., Leuthäuser, M., Reimann, J., Schroeter, J., Wende, C., Wilke, C., Aßmann,
U.:A role-based language for collaborative robot applications. In:Hähnle,R.,Knoop,
J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 1–15.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34781-8 1

14. Gray, J., Neema, S., Tolvanen, J., Gokhale, A.S., Kelly, S., Sprinkle, J.: Domain-
specific modeling. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling.
Chapman and Hall/CRC (2007). http://dx.doi.org/10.1201/9781420010855.pt2

15. Kim, Y., Jung, J.W., Gallagher, J.C., Matson, E.T.: An adaptive goal-based model
for autonomous multi-robot using HARMS and NuSMV. Int. J. Fuzzy Logic Intell.
Syst. 16(2), 95–103 (2016). http://www.ijfis.org/journal/view.html?doi=10.5391/
IJFIS.2016.16.2.95

16. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit trans-
formation modeling. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp.
240–255. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12261-3 23

17. Meyers, B., Denil, J., Dávid, I., Vangheluwe, H.: Automated testing support for
reactive domain-specific modelling languages. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering - SLE
2016, pp. 181–194. ACM Press, New York (2016). http://dl.acm.org/citation.cfm?
doid=2997364.2997367

18. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., Wimmer, M.:
ProMoBox: a framework for generating domain-specific property languages. In:
Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol.
8706, pp. 1–20. Springer, Cham (2014). doi:10.1007/978-3-319-11245-9 1

19. Schätz, B.: Formalization and rule-based transformation of EMF ecore-based mod-
els. In: Gašević, D., Lämmel, R., Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp.
227–244. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00434-6 15

20. Shevtsov, S., Weyns, D.: Keep it simplex: Satisfying multiple goals with guaran-
tees in control-based self-adaptive systems. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, pp. 229–241. ACM, New York (2016). http://doi.acm.org/10.1145/2950290.
2950301

21. SPARC: Robotics 2020 Multi-Annual Roadmap. 2016, 325 (2015)

http://doi.acm.org/10.1145/1869542.1869625
http://doi.acm.org/10.1145/1869542.1869625
http://www.sciencedirect.com/science/article/pii/S0164121216000212
http://www.sciencedirect.com/science/article/pii/S0164121216000212
http://dx.doi.org/10.1007/978-3-642-34781-8_1
http://dx.doi.org/10.1201/9781420010855.pt2
http://www.ijfis.org/journal/view.html?doi=10.5391/IJFIS.2016.16.2.95
http://www.ijfis.org/journal/view.html?doi=10.5391/IJFIS.2016.16.2.95
http://dx.doi.org/10.1007/978-3-642-12261-3_23
http://dl.acm.org/citation.cfm?doid=2997364.2997367
http://dl.acm.org/citation.cfm?doid=2997364.2997367
http://dx.doi.org/10.1007/978-3-319-11245-9_1
http://dx.doi.org/10.1007/978-3-642-00434-6_15
http://doi.acm.org/10.1145/2950290.2950301
http://doi.acm.org/10.1145/2950290.2950301

A Generated Property Specification Language 61

22. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-usage
in service robotics. In: Proceedings of the 10th ACM International Conference on
Generative Programming and Component Engineering - GPCE 2011, p. 73 (2011).
http://dl.acm.org/citation.cfm?doid=2047862.2047875

23. Ulam, P., Endo, Y., Wagner, A., Arkin, R.: Integrated mission specification and
task allocation for robot teams - Design and implementation. In: Proceedings -
IEEE International Conference on Robotics and Automation, pp. 4428–4435 (2007)

24. Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-
robot systems. In: Proceeding of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems - SEAMS 2011, p. 20. ACM,
New York (2011). http://portal.acm.org/citation.cfm?doid=1988008.1988012

http://dl.acm.org/citation.cfm?doid=2047862.2047875
http://portal.acm.org/citation.cfm?doid=1988008.1988012

Safety and Security

Towards a Model-Driven Security Assurance
of Open Source Components

Irum Rauf(B) and Elena Troubitsyna

Åbo Akademi University, Turku, Finland
{irum.rauf,Elena.Troubitsyna}@abo.fi

Abstract. Open Source software is increasingly used in a wide spec-
trum of applications. While the benefits of the open source components
are unquestionable now, there is a great concern over security assur-
ance provided by such components. Often open source software is a
subject of frequent updates. The updates might introduce or remove
a diverse range of features and hence violate security properties of the
previous releases. Obviously, a manual inspection of security would be
prohibitively slow and inefficient. Therefore, there is a great demand for
the techniques that would allow the developers to automate the process
of security assurance in the presence of frequent releases. The problem
of security assurance is especially challenging because to ensure scala-
bility, such main open source initiatives, as OpenStack adopt RESTful
architecture. This requires new security assurance techniques to cater to
stateless nature of the system. In this paper, we propose a model-driven
framework that would allow the designers to model the security con-
cerns and facilitate verification and validation of them in an automated
manner. It enables a regular monitoring of the security features even in
the presence of frequent updates. We exemplify our approach with the
Keystone component of OpenStack.

1 Introduction

The adoption of open source technology has increased tremendously in the last
decade. Today most of the modern enterprises are centered around open source
technology. The source code of open source software is distributed publicly and
it is often developed in a collaborative manner.

The open source feature provides diverse design perspectives to the software.
However, the open source software are subject to frequent updates by unknown
users. This raises security concerns as the code can be used and manipulated in
ways that were not initially intended by the organization.

In this work we present model-driven methodology to handle the security
concerns of open-source software from design to implementation level. This work
becomes more challenging when open source software are combined with REST
architectural style. The adoption of REST architecture provides additional ben-
efits of scalability and extensibility to the software encouraging providers to offer
their services to a wider audience and add more features with more convenience.
c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 65–80, 2017.
DOI: 10.1007/978-3-319-65948-0 5

66 I. Rauf and E. Troubitsyna

The use of REST APIs require usage of design methodologies and security mech-
anisms that can handle stateless protocol for stateful applications.

Our approach to handle security concerns for REST compliant open-source
software builds upon the use of Design by Contract strategy [18]. Contracts use
preconditions and postconditions for the methods of a class to identify correct-
ness of the program. They are capable of detecting change in the state of the
program, identify when a certain piece of code violates the pre-defined condi-
tions and can be used for fault localization. We used contracts with models to
provide Security and Rest compliant UML Models (SecReUM). By using model-
based test generation approach, we can generate test cases from SecReUM that
can validate the behavior of the software. In addition, SecReUM can be used to
provide an online/offline monitoring mechanism for KeyStone.

We exemplify our approach with the Keystone component of OpenStack.
OpenStack is an open-source software platform for cloud computing that offers
REST interfaces to provide IaaS (Infrastructure as a Service). The main charac-
teristics of OpenStack include scalability, flexibility, compatibility, and openness
[27]. The open source nature of OpenStack and encouragement of its partners has
made it one of the most prominent cloud computing paradigm. It is deployed in
various companies worldwide that have data volumes measured in petabytes and
are scalable up to 60 million virtual machines and billions of stored objects [21].
Keystone offers identity service in OpenStack for authentication and authoriza-
tion. This makes it a critical component of OpenStack as it serves as a gateway to
all its assets.

The objective of our work is to provide an engineering solution to security
experts to periodically monitor their open-source software and identify any secu-
rity loopholes that may arise due to frequent updates to code in a collaborative
and open environment. The use of model-driven approach facilitates an auto-
mated approach to validate the open-source components.

The paper is organized as follow: Sect. 2 briefly explains Keystone and its inter-
face. Section 3 presents an overview of our overall approach. Section 4 presents our
overall approach and Sect. 5 shows generation of contracts with security features.
Section 6 presents the related work and Sect. 7 concludes the paper.

2 Keystone Open Stack

Keystone is the centralized identity service of OpenStack that offers authenti-
cation and authorization. KeyStone authenticates a user by generating a token.
Token can either be scoped or unscoped depending on client’s request and the
configured policy of KeyStone. An unscoped token identifies a user without iden-
tifying any project scope, roles etc., whereas a scoped token provides authoriza-
tion information of user for particular projects or domains. Figure 1 shows how
KeyStone authentication and authorization mechanism is used with OpenStack.
The client sends the authentication request to KeyStone and is sent back an
Identity Token. This token is used by the client to request services from other
OpenStack components. These services validate the identity of the client by
sending the message directly to KeyStone.

Towards a Model-Driven Security Assurance of Open Source Components 67

KeyStone
OpenStack

Services

Validate Identity

Authenticate

Identity
Token

Identity
Token

Fig. 1. KeyStone overview [4]

KeyStone offers REST API in compliance with OpenStack policy. An impor-
tant feature that distinguishes REST from its contemporary SOAP-based APIs
is the concept of resources. REST services expose their functionality as resources
and each resource has a unique URI that provides addressability. CRUD (cre-
ate, retrieve, update and delete) operations can be performed on resources using
standard HTTP methods. These HTTP methods are considered as application-
level constructs that the programs can use to interact with another program
over the network in a standard manner with well-defined semantics [29]. This
implies that only HTTP request methods (GET, PUT, POST, DELETE) can
be invoked on KeyStone resources. In order to offer scalability, the statelessness
feature of REST is ensured by treating every request independently. This means
that every request from the client should contain all the information that is
required to process it and the server is not responsible of keeping any context
information with it. Each resource, when invoked via a URI and standard HTTP
method, responses with response code and resource representation which con-
tains data about resource attributes and links to other resources. The HTTP
response code is a numeric code that tells the clients whether the request went
successful or not. HTTP has a list of status codes that reveal how the request
went [11], for example, 200 means the request was successful, 404 means the
resource was not found and 403 implies that it is forbidden to make this request
on this resource. The client machine interpret these response codes to know how
their request went. The links in resource representation connect resources to each
other and the service client gets an experience of connectivity between resources,
i.e., moving from one resource to another.

The features of connectivity and uniform interface allows use of existing tools
and infrastructure like web crawlers, curl, caches etc. The addressability require-
ment (specially when using hierarchical addresses) helps to provide extensibility
and the statelessness requirement simplify the development of systems that can
handle many service requests simultaneously facilitating scalability [25].

Listing 1.1 below shows an excerpt of POST method on tokens resource in
KeyStone using curl [2] for authentication. This method is called to authenti-
cate a user with his name and password. The payload contains JSON data that
provide the required information.

68 I. Rauf and E. Troubitsyna

cu r l − i \
−H ”Content−Type : app l i c a t i on / j son ” \
−d ’

{ ”auth ” : {
” i d en t i t y ” : {

”methods ” : [” password ”] ,
”password ” : {

” user ” : {
”name” : ”admin” ,
”domain ” : { ” id ” : ” d e f au l t ” } ,
”password ” : ”adminpwd”

}}}}
} ’ \

http :// l o c a l h o s t :5000/ v3/auth/ tokens ; echo

Listing 1.1. POST method for KeyStone [1]

The contemporary SOAP based services are operation centric and are based
on WS-* protocol stack (SOAP, WSDL, etc.). They use different specifications
built on top of each other to address different tasks. For example, WS-Resource
Framework [6] and WS-Transfer [12] are commonly used to model state and WS-
Security [10] is used for authentication. A common approach to invoke SOAP-
based service is to call a POST method with a SOAP envelope as shown in
Listing 1.2 where curl is used to invoke a POST method to an authentication
service. All the information about the request parameters and method call are
put inside the body of SOAP (request.xml). The server receives the request,
opens the SOAP envelope and understands the message request. This means the
SOAP messaging protocol is used to just transfer the messages and the semantics
of the method call are determined by the message contents.

cu r l −−header ”Content−Type : t ext /xml ; cha r s e t=UTF−8” −−header
”SOAPAction :
\” http :// api . . . / IAuthen t i c a t i onSe rv i c e /Cl i entLog in \”” \”−−data
@request . xml http : / /11 . 2 2 . 3 3 . 2 31 : 9 080/ Authent i ca t i onSe rv i c e . svc

// Contents o f r eques t . xml
<?xml ve r s i on=” 1 .0 ” encoding=”utf −8”?>

<soap : Envelope xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns : xsd=”http ://www.w3 . org /2001/XMLSchema”
xmlns : soap=”http :// schemas . xmlsoap . org / soap/ enve lope /”>

<soap : Header>
<Authent icat ion xmlns=”http :// tempuri . org /”>

<Password>s t r i ng </Password>
<UserName>s t r i ng </UserName>

</Authent icat ion>
</soap : Header>
<soap : Body>

<HelloWorld xmlns=”http :// tempuri . org /”/>
</soap : Body>

</soap : Envelope>

Listing 1.2. WS-Security Username Authentication [5]

Towards a Model-Driven Security Assurance of Open Source Components 69

Thus, the lightweight message handling mechanism and distinct features of
REST architectural style make it a popular choice for adoption.

3 Overall Approach

Open-source software are open to changes and are updated frequently by differ-
ent users. It becomes a challenge for in-house developers and service providers of
the open-source software to validate periodically that the software continues to
comply with its functional and security requirements. In a usual setting, the in-
house software/security team manually look for changes and run different type
of analysis techniques, ranging from manual code-inspections to running differ-
ent testing tools, to identify errors. Our work provides model-driven security
assurance framework for open-source software in an automatable manner. This
enables the providers of open-source software to periodically verify and validate
their software for the functional and security requirements it promises to deliver.

The framework is presented in Fig. 2. The framework consists of three main
steps: (1) Designing (2) Generating Contracts (3) Testing. The specifications
and implementation of the open source software, that are publicly available,
are taken as input. The security requirements for the system are provided by
security experts and also taken as an input. These three entities are marked as
grey boxes in Fig. 2 to indicate their availability beforehand.

In the first step, our Security and REST compliant UML Models (SecReUM)
are designed using our approach detailed in Sect. 4.

In the second step, we build upon the design by contract strategy and gener-
ate contracts from SecReUM that are implemented as code skeletons. These code
skeletons are enriched with method contracts using our model-to-code transfor-
mation tool [24] and are then manually updated with security contracts and
requirements, using information from SeCReUM, along with the method imple-
mentations. The code-skeletons are implemented as wrapper on top of the open-
source software. A wrapper program is capable of invoking another program,
perhaps with a larger body of code, by providing an interface to call. Implemen-
tation of a wrapper on top of the open-source software under test is an important
component of our model-driven security assurance framework. This wrapper is
maintained in-house and is updated as specifications of open source software are
updated or in case of new security specifications.

The third step of our framework is Testing in which test cases are generated
using different model-based test generation approaches from SecReUM. These
test case are run against the wrapper program, generated above, to validate
the implementation of open source software. Thus, by periodically running same
test suites (in case the specifications are unchanged) or updated one (in case the
specifications are changed), the implementation of open source software can be
validated and errors can be identified using pass/fail results of the test cases.

The traceability of security requirements is also an important part of our
approach. The security requirements are included as part of UML specifications
and are used during validation to identify coverage level of our test cases. These

70 I. Rauf and E. Troubitsyna

requirements can be traced back to errors in the models and implementations in
case of failure. This help the developers and security experts in better analysis of
the system. In addition, the unfulfilled pre- and post-conditions help in localizing
the faults in the implementation for both functional properties and the non-
functional properties, e.g., security.

In addition to testing, the models along with implemented wrapper can also
be used to provide verification of specifications and can also serve as a monitor to
identify when a certain piece of updated code violates the functional or security
requirements.

In this paper, we focus in detail on our designing and contract generation
approach, presented in Sects. 4 and 5, respectively. The model-based test gen-
eration from SecReUM is out of scope of this paper and hence not addressed.
However, for validation, we can not only benefit from our previous work for
validating behavioral REST interfaces [26] but can also take advantage of large
body of work done in generating test cases from behavioral contracts using UML
as a familiar notation.

Fig. 2. Model-driven framework for security assurance

4 Modeling Approach for SecReUM

REST APIs use stateless protocol but they can be used to provide applications
with complex behavior having stateful behavior. The stateful services require
that a certain sequence of method invocations must be followed in order to
fulfill the service goals. For example, in order to delete a user in KeyStone,
the user must first authenticate herself in admin role and get a scoped token.
The benefit of giving a stateful view to this behavior of KeyStone facilitates
the understanding of KeyStone behavior and helps in validating the functional
and non-functional behavior of KeyStone by defining conditions under which
different methods can be invoked.

The UML standard provides different types of diagrams that can model the
system from different viewpoints [28]. We model the static structure and behav-
ioral interface of a REST service with a UML class diagram and a UML state

Towards a Model-Driven Security Assurance of Open Source Components 71

machine, respectively. Both the diagrams are defined with additional constraints
to represent REST features as explained in Sects. 4.1 and 4.2. Our previous work
models stateful behavior of REST services [23]. In this work, we extend our mod-
eling approach with technique to integrate security concerns in models. Figures 3
and 4 give an example of how we model the REST interface of KeyStone. We
model the behavioral interface of KeyStone from the viewpoint of our wrapper
program that will invoke the KeyStone and can constrain the user to invoke
the service under right conditions and service provider to fulfill the functionality
expected from it.

4.1 Resource Model

The static structure of the REST service is represented with a resource model.
The resource model is a class diagram that describes the resources that constitute
the service and the relationships between them. The information about allowed
methods on the resources is inferred from the behavioral model. All the attributes
are public since they are available on public APIs. Figure 3 shows an excerpt
of the resource model for KeyStone with our wrapper program. It consists of
five resource namely, SecKS, Token, Project, User, Role. SecKS represents our
security KeyStone wrapper which is connected to KeyStone via Token resource.

Fig. 3. Resource model for KS security wrapper (SecKS)

4.2 Behavioral Model

The purpose of the behavioral model is to describe the dynamic structure of
behavioral interface of a REST service and is represented by a UML state-
machine. Figure 4 shows an excerpt of behavioral interface of KeyStone and
provides information on what methods a user can invoke on a resource and under
what circumstances. Any client can invoke the service to request the token but
only an admin user (shown as actor) can delete a user. If the client is valid, the
token is generated, otherwise not.

A UML state-machine has transitions that are triggered by method calls and
each state has a state invariant. State invariant is a boolean condition that is
true when service is in that state and otherwise false.

72 I. Rauf and E. Troubitsyna

In our work, we define invariant of a state as a boolean expression over
addressable resources. In this way, the stateless nature of REST remains uncom-
promised since no hidden information about the state of the service is being kept
between method calls. We have used OCL to define state invariants in behav-
ioral models of REST services [20]. The UML specification proposes the use of
OCL to define constraints in UML models, including state invariants. OCL is
well supported by many modeling tools [13,14].

In Fig. 4, an OCL expression of Token.token− > size() = 0 in state
Token Not Granted means that the response for invoking GET on token
resource was not 200, meaning either the resource does not exist or is
not reachable to infer anything about its state. Similarly, Token.token− >
size() = 1 implies the response for invoking GET on token resource was
200, meaning the resource exists. The state invariant [self.processing =
False and Token.token− > size() = 1] for Token Granted specify that when-
ever a token is requested, as a result KeyStone can generate a token and it
should not be processing the request (token generation is an asynchronous call).
Thus, in order to define state with stateless protocol REST, we define the state
invariant as a predicate over resources.

In addition, we constrain our behavioral model to have only side-effect meth-
ods, i.e., PUT, POST and DELETE methods as method calls for a transition.
This is because only these HTTP methods are capable of making any changes
to resources.

Fig. 4. Behavioral model for KS security wrapper (SecKS)

5 Generating Contracts from SecReUM

Stateful behavior of a software requires a certain order of method invocation or
the conditions under which the methods can be invoked. These condition, i.e.,
the pre- and post-conditions of a method are called contracts. This information
together with the expected effect of an operation become part of the behavioral
interface of a service. Our design approach preserves the sequence of method

Towards a Model-Driven Security Assurance of Open Source Components 73

invocations and contains behavioral information specifying the conditions under
which these methods can be invoked.

5.1 Method Contract with Functional Requirements

The method contracts can be generated from the behavioral model. The precon-
dition of a method should be true in order to fire the method in behavioral model
as it defines the conditions under which a method is allowed to be invoked by
the client. We say that if a method m triggers a transition t in a state machine,
then the precondition for method m is true if the invariant of the source state
of transition t and the guard on t is true. The post-condition constraints the
implementation to provide the functionality expected from it as specified in its
specification document. Thus, the post-condition states that if the precondition
for invoking a method is true then its post-condition should also be true. We say,
that the postcondition of method m is true if the conjunction of state invariant of
target state of t and the effect on transition t are true provided its pre-condition
is true. The implication principle encompasses the stateful behavior since same
method can be fired from different states of the system and have different results.
Thus, if the method is fired with certain pre-conditions then the corresponding
post-condition for that method should be true.

The re-evaluation of the precondition of a method for evaluating the post-
condition may not return the same values, i.e., before the method execution,
since after the method execution values of some of the resources may change.
This situation is kept safe by saving the resource values before method execution
in local values in the wrapper. The values of these variables are later used to
calculate the post-condition. We believe this is not computationally expensive as
we do not need to save the copy of the whole resource/s but only the values that
constitutes guards and invariants that are enabled. Usually, that only requires
few bits of storage per method.

The method contract for method POST on t2 can be written as under. This
listing does not contain information about security requirements for invoking
the method.

PreCondit ion (POST(. . / v3/auth/ tokens)) :
(s e l f . p r o c e s s i ng = True)

PostCondit ion (POST(. . / v3/auth/ tokens)) :
[(s e l f . p r o c e s s i ng = True)==>
(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1) or
(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=0)]

Here, the post-condition implies that whenever a POST method is invoked on
tokens resource from the SecKS(wrapper), SecKS is in processing state implying
an asynchronous behavior. SecKS should eventually get a reply (the wrapper
should not stay in processing state) and a token should either be created or
not. The security requirements for generating a token and their inclusion in the
contract of POST method on tokens are detailed in Sects. 5.2 and 5.3

74 I. Rauf and E. Troubitsyna

A DELETE method on User resource will delete the user from the system
and only an authorized user, i.e. an admin, can invoke this method. Sections 5.2
and 5.3 explain how authorization is handled in our approach. The method
contract for method on t3 can be written as under without any authorization
information.

PreCondit ion (DELETE(. . / v3/ us e r s /{ u s e r i d }})) :
(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1)

PostCondit ion (DELETE(. . / v3/ us e r s /{ u s e r i d }})) :
[(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1) and

user . id−>s i z e ()=1==>
(token . token−>s i z e ()=1 and user . id−>s i z e () =0]

For detailed description on how contracts are generated from state-machines
under different scenarios, readers are referred to [22].

5.2 Security Requirements in OCL

The security requirements are usually specified by security experts. We expect
these security requirements to be specified in tabular format for each method.
These specifications of security requirements in a tabular format are then trans-
lated to OCL manually. These OCL-based security requirements become part of
method contract during code transformation process as shown in Sect. 5.3.

The functional and security requirements for Keystone at the application
level are not clearly separable. This is because the KeyStone functionality is to
validate the identity of the user, his roles and access rights before generating
scope or unscope token. The security requirements on KeyStone also impose the
same semantics. We classify them under security requirements since the security
experts expect these behaviors from KeyStone at the application level to assure
its security. We explain our approach with two important security concerns,
authentication and authorization. Authentication is explained with transition t2
and authorization is explained with transition t3.

Authentication: Authentication is an important security concern that require
that only the user with right credentials is able to enter the system. It is also
considered as one of the top three security concerns addressed by existing model-
driven security engineering approaches [19]. In Fig. 4, an authentication request
to KeyStone triggers transition t2. The security requirements attached to t2 are
listed in Table 1.

These security requirements are written in OCL. For example, the security
requirement for scoped token is written as:

((user . c r ed en t i a l −>s i z e ()=1 or token . token−>s i z e ()=1) and
(r eques t . scope−>s i z e ()=1 and not r eques t . scope . o c l I s I n v a l i d ()))

==> (token . token−>s i z e ()=1) and token . cata log−>s i z e ()=1)

Towards a Model-Driven Security Assurance of Open Source Components 75

Table 1. Requirements for authentication in KeyStone (excerpt)

No. If Then

1.1 User is valid and has not given scope information An unscoped token
should be
generated

1.2 User is valid and has explicitly requested unscoped token

1.3 Token is valid and has not given scope information

1.4 Token is valid and has explicitly requested unscoped token

2.1 User is valid and has valid scope information A scoped token
should be
generated

2.2 Token is valid and has valid scope information

In Table 1, the security requirements specify different conditions under which
scoped and unscoped tokens are issued and are written in if-else format on
resources and resource attributes. The security requirements can also be in a
statement form enforcing some rule, for example, the authorization requirement
explained in the next section.

Authorization. Authorization defines access rights of users by defining per-
missions on user, user roles and user groups. KeyStone determines whether a
request from the user should be allowed or not based on policy rules defined in
Role Based Access Control (RBAC). In Fig. 4, t3 can only be fired by an admin
user and not other wise. In addition, the guard value show that initially the
user being deleted should exist in the system. The information of actors in the
behavioral model can be realized in three ways.

(1) Developer can use this information to implement the access rights on
resources and help users in understanding and writing correct authorization
headers. Different authentication mechanisms can be implemented to control
access to resources [3]. In case, Basic authentication mechanism is implemented,
client sends the user name and password to the server in authorization header.
The authentication information is in base-64 encoding. It should only be used
with HTTPS, as the password can be easily captured and reused over HTTP.

In a typical setting, the authorization header is constructed by first combining
username and password into a string “username:password” and then encoded in
based64. A typical authorization header in Basic authentication is shown below:

DELETE /v3/ use r s /22/ HTTP/1.1
Host : http :// l o c a l h o s t :5000/ v3/
Author i zat ion : Bas ic aHR0cHdhdGNoOmY=

In case an anonymous requests for a protected resource, HTTP can enforce
basic authentication by rejecting the request with a 401 (Access Denied) status
code.

76 I. Rauf and E. Troubitsyna

HTTP/1.1 401 Access Denied
WWW−Authent icate : Bas ic realm=”User”
Content−Length : 0

For KeyStone, authorization to resources is check with token. A typical call
from curl to access User resource using user’s token is given as:

cu r l −s \ −H”X−Auth−Token :
$OS TOKEN”\”http :// l o c a l h o s t :5000/ v3/ us e r s ”

(2) The security requirements can be attached as predicates of boolean vari-
ables to transitions and translated to code as such. All the boolean variables for
security requirements are initialized to be false, e.g. sreq1 = False. Whenever,
the postcondition of a requirement is true in the implementation, the boolean
variable is set as True, sreq1 = True. The boolean values of these security
requirements are displayed to the user after the system is tested with different
test cases. This added feature gives clear information to security experts as to
what security requirements are satisfied and in identifying the met and unmet
security requirements by the system without looking into the implementation
details.

(3) It becomes part of method contract. The security requirement for autho-
rization is: Only an admin user can delete a user. In OCL, it is written as:
user.role = ‘admin’.

This can be specified in UML as notes (not shown in Fig. 4 due to space
limitation). In the next section, we define rules on how they becomes part of the
method contract.

5.3 Method Contracts with Functional and Security Requirements

The security requirements are merged with functional requirements during the
translation process to code. In our example, the KeyStone service is invoked by
POST method on the token resource (POST (../v3/auth/tokens)). We populate
our definition of contracts with security requirements given above such that:

– The statement in if clause become part of the method pre-condition
– The statement in else clause become part of the method post-condition
– The statement/s that are not part of if-else clause become part of both

the pre- and post-condition. By checking the rule in pre-condition, the user
request is validated before processing the method and causing undesired
changed in the system. By placing in the post-condition, the system is vali-
dated that it behaves as expected and does not do what it is not required to
do. This serves as a double check on security requirements.

We, thus, require that in order for KeyStone to generate a token the following
method contract must be met:

Towards a Model-Driven Security Assurance of Open Source Components 77

PreCondit ion (POST(. . / v3/auth/ tokens)) :

[(s e l f . p r o c e s s i ng = True and (user . c r ed en t i a l −>s i z e ()=1 or
token . token−>s i z e ()=1)
and
((r eques t . scope−>s i z e ()=1 and r eques t . scope <> ’ unscope ’ and not

r eques t . scope . o c l I s I n v a l i d ())
or (r eques t . scope−>s i z e ()=0 or r eques t . scope . o c l I s I n v a l i d () or
r eques t . scope = ’ unscope ’))]

PostCondit ion (POST(. . / v3/auth/ tokens)) :
[((user . c r ed en t i a l −>s i z e ()=1 or
token . token−>s i z e ()=1) and
r eques t . scope−>s i z e ()=1 and r eques t . scope <> ’ unscope ’ and not

r eques t . scope . o c l I s I n v a l i d ())==>
(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1 and

token . cata log−>s i z e ()=1)
or (s e l f . p r o c e s s i ng = True and r eques t . scope−>s i z e ()=0 or

r eques t . scope . o c l I s I n v a l i d () or
r eques t . scope = ’ unscope ’) ==> (s e l f . p r o c e s s i ng = False and

token . token−>s i z e ()=1) and token . cata log−>s i z e ()=0)
]

The preconditions in the listing above shows the boolean expression that
should be true for invoking a POST on KeyStone for either scoped or unscoped
token. The postcondition circumscribes different scenarios for scoped and
unscoped token. In order to return an unscoped/scoped token, the previous val-
ues, i.e. the values before method invocation, are checked. If the previous values
require an unscoped/scoped token then the response of method calls are checked
to ensure if unscoped/scoped token is actually delivered. The previous values,
i.e., the values before the method invocation are stored as local variables in the
wrapper program.

Similarly, for authorization, the method contract for DELETE on user
resources is given as:

PreCondit ion (DELETE(. . / v3/ us e r s /{ u s e r i d }))) :

[s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1 and
user . id−>s i z e ()=1 and user . r o l e=’ admin ’]

PostCondit ion (DELETE(. . / v3/ us e r s /{ u s e r i d })) :
[(s e l f . p r o c e s s i ng = False and token . token−>s i z e ()=1 and
user . id−>s i z e ()=1 and user . r o l e=’ admin ’) ==>
(token . token−>s i z e ()=1 and user . r o l e=’ admin ’ and
user . id−>s i z e ()=0)]

In this listing, user.role = ‘admin’ is checked before invoking DELETE
method on User resource to ensure that user with the right credentials is mak-
ing the desired change in the system. Interestingly, user.role = ‘admin’ is also
a part of the post-condition, i.e., the credentials of the user are checked before
and after the method execution to ensure that the system change is made by
the right user. This double check of the security requirement for authorization
provides added security and guards the system against malicious user during the
communication.

78 I. Rauf and E. Troubitsyna

6 Related Work

Research in using models to develop and analyze secure systems has been an
active area of research for more than a decade. The work of Nguyen et al. [19]
provides a comprehensive review of efforts done in the area of model-driven devel-
opment of secure systems. Their work encompasses various modeling approaches
like UML-based approaches, UML profiles, DSLs and aspect oriented approaches
and analyzes them for their support for model-to-code and model-to-model trans-
formations, verification, validation and different types of security concerns.

UML has been used much to model security concerns. Some approaches use
only UML (e.g., [7], MDSE@R [9], AOMSec [15] etc.) and some use UML pro-
files(e.g., SECTET [8], UMLsec [16], etc.)

In [7], Abramov et al. present a model-driven approach to integrate access
control policies on database development.

SECTET [8] provides a model-driven security approach for web services.
They also use OCL to define constraints on UML to provide access control. The
approach generates XACML policy files that provide a platform independent
policy for enforcing the access control policy. The SECTET framework mainly
addresses authorization and provides state-dependent permissions that are not
applicable to REST interfaces. UMLsec [16,17] provides a comprehensive and
consistently progressing approach to formally analyze the security properties.
MDSE@R [9] provides a UML profile based approach that uses aspect-oriented
programming to integrate security concerns at the runtime. AOMSec [15] also
uses aspect-oriented approach to model security mechanism and attacks to the
system. A detailed analysis of existing literature is out of scope of this paper.
However, compared to previous work our work strongly relies on existing UML
without the need of any new profiles. This gives the benefit of using many well-
known and mature tools with a wide user base for our approach. Our work also
caters well with the stateless nature of REST APIs.

7 Conclusions

Security experts are often looking out for ways to assure that their security
expectations from a system are met. This becomes even more challenging in
an open-source environment that encourages collaborative environment between
developers that are working within a controlled environment and developers that
are outside a controlled boundary. Our approach provides a security assurance
framework that facilitates the security experts by providing a semi-automatable
approach for validating the system under study for its behavior. We show how the
security concerns can be integrated into the behavioral models of REST services
and how method contracts can be generated from them that can be used to
validate any security loopholes in the open source software in case of frequent
updates. We address authentication and authorization of open source software
using models and provide series of steps on how the security requirement can be
combined with functional contracts. The approach is applied on the KeyStone

Towards a Model-Driven Security Assurance of Open Source Components 79

component of OpenStack. In our future work, we plan to provide automation of
security concerns to code and extend our work with other security concerns.

References

1. API Examples using Curl. https://docs.openstack.org/developer/keystone/devref/
api curl examples.html. Accessed June 2017

2. cURL. http://curl.haxx.se/. Accessed 20 May 2017
3. HTTP Authentication. http://www.httpwatch.com/httpgallery/authentication/.

Accessed 20 Aug 2013
4. KeyStone Security and Architecture Review. https://www.openstack.

org/summit/openstack-summit-atlanta-2014/session-videos/presentation/
keystone-security-and-architecture-review. Accessed June 2017

5. SOAP Request and CURL. http://dasunhegoda.com/make-soap-request-command
-line-curl/596/. Accessed June 2017

6. Web services resources framework (wsrf 1.2). https://www.oasis-open.org/
committees/tc home.php?wg abbrev=wsrf. Accessed 01 Nov 2013

7. Abramov, J., Anson, O., Dahan, M., Shoval, P., Sturm, A.: A methodology for
integrating access control policies within database development. Comput. Secur.
31(3), 299–314 (2012)

8. Alam, M.M., Breu, R., Breu, M.: Model driven security for web services
(MDS4WS). In: Proceedings of INMIC 2004 - 8th International Multitopic Con-
ference, pp. 498–505. IEEE (2004)

9. Almorsy, M., Grundy, J., Ibrahim, A.S.: Adaptable, model-driven security engi-
neering for SaaS cloud-based applications. Autom. Softw. Eng. 21(2), 187–224
(2014)

10. Atkinson, B., Della-Libera, G., Hada, S., Hondo, M., Hallam-Baker, P., Klein,
J., LaMacchia, B., Leach, P., Manferdelli, J., Maruyama, H., et al.: Web services
security (WS-Security). Specification, Microsoft Corporation (2002)

11. Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext transfer protocol-HTTP/1.0
(1996)

12. Davis, D., Malhotra, A., Warr, O.K., Chou, W.: Web services transfer (WS-
Transfer). World Wide Web Consortium, Recommendation REC-ws-transfer-
20111213 (2011)

13. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, pp. 81–89 (2009)

14. Garcia, M., Shidqie, A.J.: OCL compiler for EMF. In: Eclipse Modeling Symposium
at Eclipse Summit Europe (2007)

15. Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toahchoodee, M., Houmb, S.H.:
An aspect-oriented methodology for designing secure applications. Inf. Softw. Tech-
nol. 51(5), 846–864 (2009)

16. Jürjens, J.: Towards development of secure systems using UMLsec. In: Hussmann,
H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 187–200. Springer, Heidelberg (2001).
doi:10.1007/3-540-45314-8 14

17. Jürjens, J., Shabalin, P.: Tools for secure systems development with UML. Int. J.
Softw. Tools Technol. Transf. 9(5–6), 527–544 (2007)

18. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)

https://docs.openstack.org/developer/keystone/devref/api_curl_examples.html
https://docs.openstack.org/developer/keystone/devref/api_curl_examples.html
http://curl.haxx.se/
http://www.httpwatch.com/httpgallery/authentication/
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/keystone-security-and-architecture-review
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/keystone-security-and-architecture-review
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/keystone-security-and-architecture-review
http://dasunhegoda.com/make-soap-request-command-line-curl/596/
http://dasunhegoda.com/make-soap-request-command-line-curl/596/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://dx.doi.org/10.1007/3-540-45314-8_14

80 I. Rauf and E. Troubitsyna

19. Nguyen, H.P., Kramer, M., Klein, J., Traon, Y.L.: An extensive systematic review
on the model-driven development of secure systems. Inf. Softw. Technol. 68, 62–81
(2015)

20. OMG: OCL, OMG Available Specification, Version 2.0 (2006)
21. Pepple, K.: Deploying OpenStack. O’Reilly Media Inc., Sebastopol (2011)
22. Porres, I., Rauf, I.: From nondeterministic UML protocol statemachines to class

contracts. In: 2010 Third International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 107–116. IEEE (2010)

23. Porres, I., Rauf, I.: Modeling behavioral restful web service interfaces in UML. In:
Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 1598–1605.
ACM (2011)

24. Rauf, I., Porres, I.: REST: from research to practice. In: Wilde, E., Pautasso, C.
(eds.) Beyond CRUD, vol. 2029, pp. 117–135. Springer, New York (2011). doi:10.
1007/978-1-4419-8303-9 5

25. Rauf, I., Ruokonen, A., Systa, T., Porres, I.: Modeling a composite restful web
service with UML. In: Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, pp. 253–260. ACM (2010)

26. Rauf, I., Siavashi, F., Truscan, D., Porres, I.: Scenario-based design and valida-
tion of REST web service compositions. In: Monfort, V., Krempels, K.-H. (eds.)
WEBIST 2014. LNBIP, vol. 226, pp. 145–160. Springer, Cham (2015). doi:10.1007/
978-3-319-27030-2 10

27. Sefraoui, O., Aissaoui, M., Eleuldj, M.: Openstack: toward an open-source solution
for cloud computing. Int. J. Comput. Appl. 55(3) (2012)

28. OMG Uml. 2.0 superstructure specification. OMG, Needham (2004)
29. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and

Systems Architecture. O’Reilly Media Inc., Sebastopol (2010)

http://dx.doi.org/10.1007/978-1-4419-8303-9_5
http://dx.doi.org/10.1007/978-1-4419-8303-9_5
http://dx.doi.org/10.1007/978-3-319-27030-2_10
http://dx.doi.org/10.1007/978-3-319-27030-2_10

A Cyber-Physical Space Operational Approach
for Crowd Evacuation Handling

Henry Muccini(&) and Mahyar Tourchi Moghaddam

DISIM Department, University of L’Aquila, Vetoio St. 1, L’Aquila, Italy
henry.muccini@univaq.it,

mahyar.tourchimoghaddam@graduate.univaq.it

Abstract. Crowded public venues are significantly under risks and uncertain-
ties caused by fire and overcrowding hazards. For this purpose, Situational
Awareness (SiA) -that is a mechanism to know what is going on around- can
facilitate the automatic (or human involved) critical decision making and exe-
cuting processes. Considering the dynamic and uncertain essence of crowd and
hazard behavior in an emergency, executing the optimum evacuation plan is
highly complex and needs strong models. In this paper, taking in input a model
of the Cyber-Physical Space under SiA monitoring, we define an
architectural-map-based Dynamic Bayesian Network (DBN) to describe and
predict crowd and hazard behavior. Then, in order to minimize the total evac-
uation time, the authors present a quickest flow model for consecutive time
intervals. Overall, the paper shows the importance of hazard quiddity, and
crowd behavior on the evacuation efficiency in emergency situations. The
approach is demonstrated through a small (but concrete) running example.

Keywords: Cyber-Physical Space (CPSpace) � CPSpace modeling
architecture � Emergency evacuation handling � Situational Awareness (SiA) �
IoT � Crowd monitoring � Dynamic Bayesian Network

1 Introduction

Situational Awareness (SiA) can be defined as what is going on around and the ability
of dynamic situation prediction. Literally, SiA deals with the perception of the elements
of environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future (Endsley 1995). Moreover,
Internet of Things (IoT) opens exquisite views on SiA. IoT is a “heterogeneous net-
work of objects that communicate with each other and their owners over the Internet”
(Gendreau 2015). With growing the IoT technologies, the SiA management and
monitoring will be a critical issue, qua according to an estimation, “by 2020, a trillion
IP addresses (objects) will be connected to the Internet” (Pretz 2014). IoT serves
Machine-to-Machine connectivity to provide a degree of automation in many fields like
crowd critical monitoring.

Indeed, an ideal SiA system is one that can put aside human factor from the loop,
but there is still a huge gap to achieve this point.

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 81–95, 2017.
DOI: 10.1007/978-3-319-65948-0_6

Therefore, human plays a key role in “Cyber Situational Awareness” (CSiA)
alongside of physical and virtual sensors. Mainly “Cyberspace” referred to the Internet
as a type of dimension in the space, however, in IoT it extended from Internet to the
physical spaces between the objects and their owners.

The role of CSiA becomes more highlighted in critical conditions like earthquakes,
fires or floods where the rapid situation understanding is essential for an optimal
decision making and agile executing by the emergency bodies. The problems are more
critical in the case of overcrowding in a closed area where people are severely
occluded.

Recently, the scientists are trying to deal with crowd monitoring problems vastly,
considering both related social and technical aspects. From social point of view, the
models study crowd behavior anthropologically and based on psychology and soci-
ology sciences. The technical view, instead, investigates on event detection and
especial aspects deriving from computer vision based algorithms.

In this paper, on the one hand, the authors define an architectural-map-based
Dynamic Bayesian Network (DBN) to describe and predict crowd and hazard behavior.
On the other hand, for minimizing the total evacuation time, the authors present a
quickest flow model. Overall, the paper shows the importance of hazard quiddity and
crowd behavior on the evacuation efficiency in emergency situations.

Based on our objective, this paper is organized as follow. Section 2 mentions some
related works. Section 3 focuses on backgrounds and deals with issues, controversies,
and problems. In this section, we briefly recall the theoretical foundations of SiA,
CSiA, processing loops, BN, DBN, CAPS, social-behavioral modeling and their cost
functions. Then we discuss social behavior modeling for evacuation in Sect. 4.
Section 5 explains the definition of quickest flow and its application to the problem.
A case study is presented in Sect. 6, to help better understanding the solving method.
Section 7 targeted on presenting conclusions and future work.

2 Related Works

Following a literature review, we studied some researches concerning the application of
Situational Awareness in crowd monitoring and decision making. In this regard, Tadda
et al. (2010) provided a chapter as an “overview of Cyber SiA”; the chapter defines the
basics of SiA, the models and some processes to performance measuring of a SiA system.
Gendreau (2015) investigated on SiA measurement enhanced for efficient monitoring in
the Internet of Things. Naderpour et al. (2013) used the fuzzy Dynamic Bayesian
Network-based SiA to support the operators in decision making process in hazardous
situations. Radianti et al. (2015) have proposed a spatio-temporal probabilistic model of
hazard and crowd dynamics in disasters (based on DBN), with the intent of supporting
real-time evacuation planning by means of situation tracking and forecasting. Tashakori
et al. (2015) have introduced an indoor/outdoor 3D spatial city model for indoor inci-
dents, using SiA concepts. Muccini et al. (2017) introduced CAPS modeling that is an
architecture-driven modeling framework for the development of Situational Aware
Cyber-Physical Systems. He et al. (2015) discussed K-shortest-path-based evacuation

82 H. Muccini and M. Tourchi Moghaddam

routing with police resource allocation in city transportation networks that can be
somehow related to our topic.

Taking advantage from all above mentioned literatures, this paper introduces a
combination of DBN and Quickest flow models for emergency evacuation problems,
taking into account a risk index that refers to each area’s crowd density. Thus, we
involved the real time crowd dynamic behavior in our model to choose the optimum
evacuation path in each time slice.

3 Background

3.1 Situational Awareness (SiA) and Cyber-Situational Awareness (CSiA)

SiA is a type of context aware behavior that refers to “knowing what is going on”
within an environment (Endsley 2000). SiA involves direct and indirect information
acquiring about the environment, about who is doing what and where, and then
interpreting this information for a particular goal. The formal definition of SiA breaks
down into three separate levels: (1) perception (recognition) of the elements in the
environment, (2) comprehension of the current situation, (3) projection of future status
(Endsley et al. 1995). Perception level involves the sensory detection of the system and
its environment. Comprehension phase includes data perceiving and situation under-
standing to achieve the specified goal. Projection means deducing information to see its
future effect on the operative environment.

Considering CSiA as a subset of SiA, it can be defined as a section of SiA that deals
with Cyber-Physical systems (CPSs). CPSs are a kind of system of system (SoS) that
define as a network of individual systems coordinating each other to benefit from the
joined operation as a whole. CPSs create the situational information, with formalizing
sensors values to situation parameters. Therefore, such situation parameters “can be fed
to a data fusion process or be interpreted directly by the decision maker” (Franke et al.
2014). Despite CSiA concept is using in various fields like Industrial Control Systems,
Military, and Information Fusion, we call it notably for its “emergency management”
application.

3.2 Processing Loops

To monitor large areas, a relatively large number of sensors are needed. In such a cases,
due to so-called large number of sensors, a quality loss of produced data could be
occurred, which makes the monitoring failed or inefficient. To solve the
above-mentioned problem, processing loops are introduced. Processing loops are some
feedback models that guide operators on the decision making process. A processing
loop is a module that can receive sensors’ data, process them, and find the dangerous or
odd events under interaction with environment and human operator. Among different
processing loops, OODA (observe, orient, decide, act), MAPE-K (monitoring, analysis,
plan, executing, knowledge), and cognitive cycle (sensing, analysis, decision, action)
are more often used in the related literature.

A Cyber-Physical Space Operational Approach 83

As it stands, despite there exist some differences between the processing loops,
their applications are somehow the same. We take advantage from the concept of
feedback loops to have a structured view on our monitoring and decision making steps.

3.3 CAPS

CAPS (an architecture-driven modeling framework for Situational Aware Cyber-
Physical Systems) is a modeling languages used to describe (1) software architecture,
(2) hardware configuration, and (3) physical space views for a situational aware CPS
(SiA-CPS) proposed with one of the authors in previous work (Muccini et al. 2017).
The framework is aimed at supporting the architecture description, reasoning, and
design decision process.

According to the objective of this paper, we take advantage from the Physical
Space View Modeling Language [SPML] CAPS viewpoint for our case. SPML
describes the physical space involved in situation awareness. The SPML modeling
language defines an area with its coordinates, as well as rooms with associated walls,
ceiling, and floor.

The SPML language is about the site in the real world where the SiA-CPS
equipment will be deployed. The central class in the SPML is the CyberPhysicalSpaces
class. The CyberPhysicalSpace represents the overall environment in the 3D space in
which the SiA-CPS nodes will be deployed. Any kind of SiA-CPS element (cyber
element or physical element) can be placed in the environment. Each element is
characterized by the name, the abscissa and the ordinate of the center of this element,
dimensions (width, depth, height), elevation, fixed or movable, door or window, the
angle, material type, and its attenuation coefficient of this material (Muccini et al.
2017). The attenuation coefficient is a decimal number ranging from zero to one.

In SPML an area identifies a portion of physical space in which element can be
distributed. The shape of this area is given by its shell: a sequence of coordinates
representing the perimeter of the area in the 2D space. A Wall is a class characterized

Fig. 1. SPML metamodel

84 H. Muccini and M. Tourchi Moghaddam

by name of the material, attenuation coefficient, thickness, and the abscissa and the
ordinate for the beginning and the end of this wall. To avoid unnecessary repetition of
effort, we used existing extensible 3D modeling environments (and specifically, Sweet
Home 3D) to represent the space model generated by CAPS. In other words, the model
is realized using a customization of Sweet Home (Fig. 4) according to the SPML
metamodel (Fig. 1). Sweet Home 3D supports the implementation of new plug-in files
to develop new features.

3.4 Bayesian Network (BN) and Dynamic Bayesian Network (DBN)

A BN is a directed acyclic graphical model in which nodes correspond to random
variables and arcs represent dependencies or causal relationships between these vari-
ables with conditional probabilities. The standard BN represents the static cause-effect
relations among different objects in a situation. Thus, the BN is a compact graphical
representation of the full joint probability distribution P(X) of discrete or continuous
random variables X = {X1, X2, …, Xn}, included in the distribution network as:

PðXÞ ¼
Yn

i¼1

PðXiwhere ParðXiÞÞj Par Xið Þ ¼ the parent set of Xi for any i ¼ 1; . . .; n ð1Þ

DBN is a BN by adding the temporal behavior to some system’s variables. The
dependency between random variables in a specific moment, capture their dynamic
behavior. The random variables of BN (nodes) that in presence of time become tem-
poral nodes, are assumed to have the first order Markov dependency on their values at
the previous moment and each temporal node has an additional parent (a copy of the
same node from the previous time slice) (Tolstikov et al. 2007). Thus, here Xi

t is ith

node at time frame t and random variables par(Xi
t) are its parents, which can include

variables from a preceding time step, repetitive.

PðXt Xt�1Þ ¼
Yn

i¼1

PðXi
t ParðXi

tÞÞ
��

����� ð2Þ

The joint probability distribution for a sequence of length T is therefore given by
unrolling the formula 2:

PðX1:TÞ ¼
YT

t¼1

Yn

i¼1

PðXi
t ParðXi

tÞÞ
�� ð3Þ

3.5 DBN-Based Hazard and Crowd Behavior Model

DBN can explain the dynamic behavior of a hazard. Let us consider occurring a hazard
in a closed area with some rooms linked together (like a museum), assume that we

A Cyber-Physical Space Operational Approach 85

realize a growing fire or overcrowded situation in time t = 1 in room 1. The hazard can
spread time by time to neighbor locations with different possible behaviors (Radianti
et al. 2015). In overcrowding hazard, we can consider each location’s crowdedness as
empty, some, full, or overcrowded. Although an empty location or a place in which
located some people, can host more people from neighbor locations, a full location
should be unloaded in order to accept more people. Whilst the overcrowded location
considers as presence of a hazard that crowd evacuation should be perform to lead the
flow to other places as fast as possible. The following figure is an example to illustrates
the links between location situation and crowd behavior for two neighbor rooms.

In both situations of overcrowding and other hazards (like fire and terrorist attacks),
we can study the crowd flow with DBN. The model assesses the crowd direction who
are leaving a hazardous area. Figure 2, models the crowd flow between two rooms in
an indoor venue according to DBN. If the hazard happens in room 1 (or near to room
1), people will move from room 1 to room 2 that supposedly is the optimum next
interval destination, and decreasing the number of persons located in area 1 impact
crowdedness of both rooms. Here, 1 is a parent for in-1 and out-1 and people can move
to 2 or stay in the same place.

Therefore, our following quickest flow model specifies what destination is selected
for next interval and DBN calculates the remained crowd in location X based on its
parents “in X” and “out X”. In other words, the situation of each location depends on
the neighbor locations that are directly linked to that. The structure of graff highly
depends on the number of neighbors and parental situation.

In the same way, the hazard status (like fire) can be modeled with DBN. The hazard
in time step t which can spread to neighbors considering the time delay. For the above
example, in the next time step, room1 hazard can spread to room 2 or can have another
state in the same room. Thus, the hazard1 can be a parent for hazard2 or hazard1 itself.

Fig. 2. DBN behavioral model

86 H. Muccini and M. Tourchi Moghaddam

4 Social Behavior Modeling in Evacuation

In the special situation that a space gets increasingly crowded and evacuation is needed,
flow of people cannot be smooth and they cannot follow a straight path. In this
situation, some variables such as crowd confusion and velocity are important.

4.1 Confusion

In a Crowded area, confusion due to stress, anxiety, low visibility, and etc. can neg-
atively impact the evacuation process (Radianti et al. 2015). When a person is con-
fused, he is not able to take the optimal decision in the critical moment. Confusion
depends on the number of human operators in evacuation procedure. It means that, in
the presence of operators, the possibility of optimum path selection would be high and
the confusion possibility would be trivial. The reason is that, the operators will have the
optimum evacuation path provided by the DBN and quickest flow models. However, in
our case, the confusion considered as a variable of Risk Index that is the number of
persons located in each area divided by the capacity of that area, which highly impact
on the crowd walking speed. In other words, a high density makes people more
confused and slow.

4.2 Velocity

In the walking speed issue, the age of each person can determines his default walking
speed. For example, the average walking speed of pedestrians age 65 or above is 0.889
to 1.083 m/s, while that of pedestrians aged below 65 is 1.042 to 1.508 m/s (Feng et al.
(2016); TranSafety Inc. (1997)). However, the pedestrians’ walking speed is highly
depending on crowdedness rate, which is specified by Risk Index.

5 Optimal Crowd Evacuation Using Quickest Flow Model

The model performs the crowd evacuation optimization in emergency cases, with
minimization of the total evacuation time. The idea has its roots in vehicle routing
optimization in transportation problems, however it fixed with the human factors and
crowded areas characteristics in a conceptual application. The indoor area that will be
used as case study, consists of a set of rooms linked by a set of paths, and a number of
entrances (as sources) and a number of emergency exits (as destinations). We assume
that in an emergency, crowd will be evacuated from source to destination through the
network taking into account the rooms and paths capacity and the crowd arrival rate in
each area.

Considering the above discussed social behavioral aspects, we assume that
more crowdedness situation leads to more confusion, less velocity, and obstacle.

A Cyber-Physical Space Operational Approach 87

The confusion is assumed to be dependent on the risk element calculated by the number
of persons that are located in an area divided by the area’s capacity for different time
intervals. In other words, we assume that the confusion has a positive linear relation to
the obstacle on the path. Indeed, the more crowd in the path, the more individual
confusion. The risk value will be considered as a cost for our quickest flow network
calculations. We also assume that the operators are located in the paths intersections in
a proper specific number, thus, their role is to lead crowd’s flow to the optimum path,
without any additional cost.

To illustrate the implementation of the proposed approach in a real environment,
the “Uffizi Gallery” is chosen as a running example. The museum is located in central
Florence, Italy, and is one of the world’s best known and most visited museums with
almost 2.1 M visitors per year. The museum is spread out over three floors and the visit
starts from second floor because of its grand staircase. To implement our model, we
consider the following section of the second floor 2D map that is consist of seven
different areas. Due to a non-disclosure agreement, the position of the emergency doors
is fictitious.

Our approach takes into account the following components:

• the OODA processing loop, as the reference control loop model;
• the CAPS modeling environment, to specify the area under monitoring;
• a risk index, to dynamically calculate the density of each area;
• the Dynamic Bayesian Network, to model the location network layout.

Based on those inputs, we then compute the quickest evacuation path. Section 6
provides a description of the steps above, whit their application to the running example.

Fig. 3. 2D map of UFFIZI second floor

88 H. Muccini and M. Tourchi Moghaddam

6 Application of the Optimal Crowd Evacuation Approach
to the Running Example

Considering our case as a situational aware IoT system, we apply our method to find
the optimal evacuation path in a dynamic real time system. In other words, we mainly
concentrate our investigations about situational aware IoT systems on indoor crowd
management in emergency situations. This would provide us with some concrete real
world experiences and a scenario to reason upon.

6.1 CSiA and Processing Loops

To monitor a large area such as the UFFIZI museum, a relatively large number of
sensors are needed. In such a cases, due to so-called large number of sensors, a quality
loss of produced data could be occurred, which makes the monitoring failed or inef-
ficient. Software Engineering scientists tried to adopt novel processing loops (such as
OODA loop, MAPE-K feedback loop, and cognitive cycle) to manage a process. Here
we recall the OODA loop for UFFIZI case.

The OODA loop guide operators on the decision making process, and on using
available information. This loop originally designed for military command and control
system, anyhow it is compatible by other civil systems like our CSiAModel. The OODA
process can be defined in four main steps: Observe (know what is happening), Orient
(understand the meaning of what was observed), Decide (weighing the options available
and picking one), and Act (carrying out the decision). The loop starts again from
beginning, after a decision has been made and the related action has been taken.
Observe: the sensors (cameras and people counters) monitor the crowd situation and
count the number of people in each area.
Orient: the data gathered refines in this phase to be ready for decision step. Information
should be classified in consecutive time slices.
Decide: predefined rules for each area are set, for instance, the count of persons inside
the room should be lower than the room capacity in normal situation, if not the
overcrowding emergency situation is detected. In emergency case, the quickest flow
should be chosen in accordance with the DBN risk element. If an emergency case is
detected, a message will be send to the involved operators to execute evacuation,
otherwise no action required by the system.
Act: The situation monitors by the human operators and in the emergency situation,
they lead the crowd flow to the optimum path for evacuation.

6.2 Caps

Figure 4 shows the SPML model representing the physical environment of our UFFIZI
scenario, the selected part of the second floor. It contains many kinds of obstacles that
are concrete walls dividing the whole building into rooms and corridors, connector

A Cyber-Physical Space Operational Approach 89

doors and an emergency door. The physical environment of our scenario contains many
deployment areas. From the figure, we can see a number of SiA-CPS elements
deployed in the environment (they are hypothetical because of an agreement). Here we
used existing extensible 3D modeling environments (Sweet Home 3D) to represent the
space model generated by CAPS. Sweet Home 3D supports the implementation of new
plug-in files to develop new features (SWEETHOME-SWEET 2015).

6.3 Risk Index

A simulation performed for 7 selected areas that are monitored by the virtual sensors
(counters) in accordance with the DBN model. The model (Chiappino et al. 2013)
analyzes the risk level of each selected area by introducing a performance indicator that
monitors each room’s crowd based on its maximum capacity.

Ri ¼ Ni

Nmax
i

ð5Þ

Where Ri is the risk index, Ni is the number of people located in an area in a
specific time interval, and Nmax

i is the maximum capacity of the related area. This index
can show the crowd flows in a dynamic mode and let the decision makers to take best
decision in overcrowding situations. As the index is a variable of confusion and
velocity, it will be used in the following quickest flow model as a cost function to
choose the optimum evacuation path at each time slice. The temporal window between
each surveillance considered 20 s and the number of intervals are 4.

6.4 DBN

According to above mentioned Risk Index and DBN definitions, the structure layout is
shown in Fig. 6. Nodes represent the different locations, node E represents the exit
door, and arcs show the paths the people should be evacuated through. For example, a

Fig. 4. 3D map of selected area

90 H. Muccini and M. Tourchi Moghaddam

person located in the area 14, may pass to the area 13 or 2 (according to above 2D and
3D maps), or can stay in the same room in timespan between t-1 to t. In case of
overcrowding (or any other emergency case), the system shows to the operators the
most efficient path for leading people toward emergency exit by considering the
quickest flow, behavioral aspects (like confusion), and structural constraints (e.g., size
of rooms and doors).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 0 4 0 6 0 8 0

R
IS

K
 IN

D
E

X

TIME

Room 14 Room 13 Room 12 Room 11

Room 9 Room 10 Cooridor 7

Fig. 5. Risk index

Fig. 6. Location network layout

A Cyber-Physical Space Operational Approach 91

6.5 Quickest Flow

In this section, a model is created to calculate the optimum path for dynamic evacuation
in four selected consecutive time intervals. The weight assigned to each path is equal to
the risk index for that location. Higher the risk index is, more the density, more the
confusion, less the velocity, and more the possibility of obstacles.

The risk index, considered as a cost function for each node, is shown in Fig. 5.
Based on it, the quickest flow for each time interval can be calculated according to the
assigned weights (risk indexes) shown in Table 1.

The table shows the density of each place in each monitored time slice. The crowd
is entering from the entrance and passing by room number 14 and so on. We suppose
an emergency situation happens and crowd should be evacuated from the quickest path.
According to Fig. 3, the emergency exit is located on the room 10, thus, all people
should pass by that room to be evacuated. Therefore, the density of the room 10
becomes higher than other areas.

The model applies a real time optimum path selection that leads crowd to the low
density neighbor location. According to our primary assumptions, human operators are
located on the intersections in a proper specific number to lead crowd to the optimum
path. Practically, the decision making system decides which neighbor node has lower
risk index, calculates the quickest flow, and shows the corresponding operator what
area people should go through. Accordingly, in the next timespans, the system cal-
culates new risk indexes and shows the quickest emergency evacuation flows.

In the following example, we consider room 14 as the origin and room E (exit door
that is located on room number 10) as the destination to perform a maneuver of
emergency evacuation. The crowd enters room 14, consequently the other areas will be
crowded and will have a non-zero risk index. Below we show graphically how the
system displays the quickest evacuation path dynamically with assigning related risk
index weights to each node:

Table 1. Risk indexes.

Location time Room 14 Room 13 Room 12 Room 11 Room 9 Room 10 Corridor 2

0 0.33 0.17 0 0 0 0 0
20 0.5 0.5 0.01 0 0 0 0.05
40 0.58 0.33 0.25 0.1 0.01 0 0.08
60 0.83 0.67 0.5 0.3 0.17 0.12 0.13
80 0.75 0.83 0.67 0.5 0.83 0.75 0.2

92 H. Muccini and M. Tourchi Moghaddam

T0:
14(0.33) ! 2 (0) ! 9 (0) or 11(0) ! 10 (0) ! E

T20:
14(0.5) ! 2 (0.05) ! 9 (0) or 11(0) ! 10 (0) ! E

T40:
14(0.58) ! 2 (0.08) ! 9 (0.01) ! 10 (0) ! E

T60:
14(0.83) ! 2 (0.13) ! 9 (0.17) ! 10 (0.12) ! E

A Cyber-Physical Space Operational Approach 93

T80:
14(0.75) ! 2 (0.2) ! 11(0.5) ! 10 (0.75) ! E

7 Conclusions and Future Work

This paper tries to take in input some Cyber-Physical Space models under SiA mon-
itoring, to define an architectural-map-based Dynamic Bayesian Network (DBN) and
predict crowd and hazard behavior. Quickest flow model for consecutive time intervals
to minimize the total evacuation time. As a conclusion, the importance of hazard
quiddity, and crowd behavior on the evacuation efficiency in emergency situations
realized to be strongly important.

As future work, we are developing a model for SiA-based outdoor crowd moni-
toring to calculate the waiting time for ticketing, security check and entering the
museum, using Two-Stage Stochastic Integer Programming Approach. As a similar
future work, we will use dynamic mathematical model on our case to have some
performance evaluation on, for instance, the shortest and quickest path calculation time.

In our future work, we will have a deep comparison between the traditional
emergency evacuation plans with our model, taking into account the traditional safety
emergency evacuation plan provided for the researcher’s night of the university of
L’Aquila.

Acknowledgment. We acknowledge that the work is a part of cyber-physical Situational
Awareness project with the UFFIZI galleries, Florence, Italy. In addition, we would like to thank
our colleagues Mohammad Sharaf and Fabrizio Rossi for their valuable comments and sug-
gestions to improve this paper

References

Chiappino, S., Marcenaro, L., Morerio, P., Regazzoni, C.: Run length encoded dynamic bayesian
networks for probabilistic interaction modeling. In: Signal Processing Conference
(EUSIPCO), 2013 Proceedings of the 21st European, pp. 1–5. IEEE (2013)

Ensdley, M.R.: Toward a theory of situation awareness in dynamic systems. J. Hum. Factors
Ergon. Soc. 37(1), 32–64 (1995)

94 H. Muccini and M. Tourchi Moghaddam

Endsely, M.R.: Theoretical underpinnings of situation awareness: a critical review. In: Endsley,
M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Measurement, pp. 3–32.
Lawrence Erlbaum Associates, Mahwah (2000)

Feng, T., Yu, L.-F., Yeung, S.-K., Yin, K., Zhou, K.: Crowd-driven mid-scale layout design.
ACM Trans. Graph. 35(4), 132:1–132:14 (2016)

Franke, U., Brynielsson, J.: Cyber situational awareness–a systematic review of the literature.
Comput. Secur. 46, 18–31 (2014)

Gendreau, A.A.: Situation awareness measurement enhanced for efficient monitoring in the
internet of things. IEEE (2015). doi:10.1109/TENSYMP

He, Y., Zhong, L., Jianmai, S., Yishan, W., Jiaming, Z., Jinyuan, L.: K-shortest-path-based
evacuation routing with police resource allocation in city transportation networks (2015)

http://www.sweethome3d.com/it/ H. SWEETHOME-SWEET, Sweet Home 3D. “3d (2015)”
Muccini, H., Sharaf, M.: CAPS: architecture description of situational aware cyber physical

systems. In: 2017 IEEE International Conference on Software Architecture (ICSA). IEEE
(2017)

Naderpour, M., Lu, J., Zhang, G.: A fuzzy dynamic bayesian network-based situation assessment
approach. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8. IEEE
(2013)

Pretz, K.: Smarter sensors. IEEE Inst. 38(2), 6–7 (2014)
Radianti, J., Granmo, O.-C., Sarshar, P., Goodwin, M., Dugdale, J., Gonzalez, J.J.: A

spatio-temporal probabilistic model of hazard-and crowd dynamics for evacuation planning in
disasters. Appl. Intell. 42(1), 3–23 (2015)

Tadda, G.P., Salerno, J.S.: Overview of Cyber Situation Awareness. Springer Science+Business
Media, pp. 15–35 (2010)

Tashakkori, H., Rajabifard, A., Kalantari, M.: A new 3D indoor/outdoor spatial model for indoor
emergency response facilitation. Build. Environ. 89, 170–182 (2015)

TranSafety, Inc.: Study compares older and younger pedestrian walking speeds. Road
Engineering Journal (1997)

Tolstikov, A., Xiao, W., Biswas, J., Zhang, S., Tham, C.-K.: Information quality management in
sensor networks based on the dynamic bayesian network model. In: 3rd International Conference
on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, pp. 751–756. IEEE
(2007)

A Cyber-Physical Space Operational Approach 95

http://dx.doi.org/10.1109/TENSYMP
http://www.sweethome3d.com/it/

Co-engineering Safety and Security in Industrial
Control Systems: A Formal Outlook

Inna Vistbakka1(B), Elena Troubitsyna1, Tuomas Kuismin2,
and Timo Latvala2

1 Åbo Akademi University, Turku, Finland
{inna.vistbakka,elena.troubitsyna}@abo.fi

2 Space Systems Finland, Espoo, Finland
{tuomas.kuismin,timo.latvala}@ssf.fi

Abstract. An increasing openness and interconnectedness of safety-
critical industrial control systems makes them vulnerable to security
attacks. Hence, we should establish the integrated approaches enabling
safety-security co-engineering. Such approaches should support an analy-
sis of interdependencies between the mechanisms required for safety and
security assurance. In this paper, we demonstrate how formal modelling
can facilitate reasoning about the impact of certain security solutions on
safety and vise versa. We rely on modelling and refinement in Event-B
to systematically uncover mutual interdependencies and the constraints
that should be imposed on the system to guarantee its safety even in the
presence of security attacks. The approach is illustrated by a case study
– a battery charging system of an electric car.

Keywords: Formal modelling · Event-B · Refinement · Safety-critical
systems · Security

1 Introduction

Modern industrial systems integrate novel information and communication tech-
nologies in controlling a wide range of systems. Increasing reliance on network-
ing not only offers a variety of benefits but also introduces security threats.
Exploiting security vulnerabilities might result in loss of control and situation
awareness directly threatening safety of human lives. Therefore, we need to cre-
ate the techniques that facilitate a systematic analysis of safety and security
interdependencies from the early development stages.

In this paper, we propose a formal approach to integrating security con-
sideration into a formal development of safety-critical systems in Event-B [1].
Event-B is a rigorous approach to correct-by-construction system development
by refinement. Development typically starts from an abstract specification that
models the most essential system functionality. In the refinement process, the
abstract model is transformed into a detailed specification. While refining the
system model, we can explicitly represent both nominal and failure behaviour of
c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 96–114, 2017.
DOI: 10.1007/978-3-319-65948-0 7

Co-engineering Safety and Security in Industrial Control Systems 97

the system components as well as define the mechanisms for error detection and
recovery. Moreover, we can also explicitly represent the effect of security vulner-
abilities such as tampering, spoofing and denial-of-service attacks and analyse
their impact on system safety.

The stepwise refinement process allows us to systematically derive the con-
straints and explicitly define the assumptions that should be fulfilled to guarantee
system safety even in presence of security attacks. In our formal development, we
adopt systems approach, i.e., specify controlling software together with the rel-
evant behaviour of its environment – sensors, actuators and controlled process.
The security failures are modelled by their effect on the system – altering or
blocking messages sent over the communication channels. The proposed app-
roach is illustrated by a case study – a battery charging system.

We believe that the proposed approach facilitates an integration of the secu-
rity consideration into the safety-driven design of control systems. It allows us
to capture the dynamic nature of safety and security interplay, i.e., analyse the
impact of deploying the security mechanisms on safety assurance and vice versa.

2 Systems View on Safety and Security Interdependencies

Nowadays safety-critical systems – the systems whose failures might cause loss of
human lives or environmental damage [16] – are increasingly rely on networked
technologies in their functioning. In this section, we analyse a generic architecture
of a networked control system and discuss the constraints and properties that
should be imposed on its design to guarantee safety.

The generic architecture of a control system is shown in Fig. 1. The goal of the
system is to control a certain physical process. The state of the process is defined
by some physical value p real. The value of p real is measured by the sensor. The
sensor can be a physical device, i.e., a hardware component that converts the
physical value p real into its digital representation p sen. However, it can be also
a logical sensor – a module of a controlling program that computes an estimate
of p real based on some other measurements of the controlled process.

In a general case, sensing is remote, i.e., the measured value p sen is trans-
mitted over the network to the input of the controller. Since the transmission

Fig. 1. Generic architecture of a control system

98 I. Vistbakka et al.

channel between the sensor and the controller s-c-chan might be untrusted, i.e.,
it might be a subject of security attack, the value that is received by the con-
troller – p est might be different from p sen. The controlling software should
check the reasonabless of the received p est and decide to use it as the current
estimate of p real, i.e., p:=p est or ignore it. The value p that the controller
adopts as its current estimate of the process state should pass the feasibility
check, i.e., should coincide with the predicted value and the freshness check, i.e.,
should be ignored if the transmission channel is blocked due to a DOS attack.
If the controller ignores the received value p est, it uses the last good value of
p est and the maximal variation of the process dynamics to compute p.

The value of p is then used to calculate the next state of the actuator – the
physical device that affects the controlled process, i.e., causes the changes in the
value of p real. The command from the controller to the actuator is transmitted
over a network. In the similar way, the transmission channel from the controller
to the actuator c−a− chan might be attacked. Hence, in general, the command
cmd trans received by the actuator might be different from the command cmd
computed by the controller.

In this paper, we focus on the failsafe systems, i.e., consider the control sys-
tems that can be put into a safe non-operational state to preclude an occurrence
of a safety failure [16]. Often system safety is defined over the parameters of the
controlled physical process. For example, in our generic control system, we can
define safety as the following predicate

Safety = p real ≤ safe threshold ∨ failsafe=TRUE

Essentially, it means that the controlled process should be kept within the
safety boundaries while the system is operational. Otherwise, a safe shutdown
should be executed.

Design of any system relies on certain assumptions and properties of the
domain. In case of a safety-critical software-intensive control system, the aim of
the design is to construct controlling software, which under the given assump-
tions and properties guarantees safety, i.e., allows us to proof the following

(ASM, DOM, SW) � Safety,

where ASM, DOM and SW stand for assumptions, domain and controlling
software properties, correspondingly. Below we define these three types of prop-
erties that suffice to proof Safety for our generic control system:
ASM

A1. p sen = p real ± Δ1

A2. p = p sen ± Δ2 ∧ Δ2 = kΔ3

A3. (failsafe=FALSE ∧ cmd trans = cmd) ∨ failsafe=TRUE

DOM

D1. cmd = incr ⇒ p real(t+1) > p real(t) for any t, while the system is operational
D2. cmd = decr ⇒ p real(t+1) ≤ p real(t) for any t, while the system is operational
D3. max|(p real (t+1) - p real(t))| = Δ3

Co-engineering Safety and Security in Industrial Control Systems 99

D4. failsafe=TRUE ⇒ p real(t + 1) ≤ p real(t) for any t, while the system is shut
down

SW

S1. p est + Σ3
i=1Δi ≥ safe threshold ∧ failsafe=FALSE ⇒ cmd = decr

Straightforward logical calculations allow us to prove

(A1,..., A3, D1, ..., D4, S1) � Safety.

Let us now discuss the introduced assumptions and properties and link them
with safety and security requirements. The assumption A1 means that the sen-
sor measurement are sufficiently precise and unprecision is bounded. It implies
a safety requirement: sensor should have high reliability.

The assumption A2 states that the controller adopts a measurement of the
value of the process parameter that either coincides with p sen, i.e., k = 0, or is
calculated on the basis of the last good value and the maximal possible increase
of the value p real per cycle, where k is the number of cycles. This assumption
implies both safety and security requirements. Firstly, we should guarantee that
the channel s− c− chan is tamper resistant and the sensor is spoofing resistant.
Secondly, we should ensure that the controlling software checks the validity of
the input parameter and ignores it, if the check fails. The assumption A2 also
implies that, in case of DOS attack on the channel s − c − chan, the system
continues to function for some time by relying of the last good value.

The assumption A3 implies that if a failure or an attack on the channel
c− a− chan is detected then the system is shut down. It means that the system
should have some (possibly non-programmable) way to execute a shutdown in
case the channel c − a − chan becomes unreliable.

The domain properties explicitly define certain axioms about the physical
environment of the system and their interdependencies. The property D1 states
that an execution of the command incr results in the increase of the value
p real. The property D2 is similar to D1. The domain property D3 states that
the maximal possible increase of p real per cycle is known and bounded. D4
stipulates that when the system is put in the failsafe state, the value of the
physical parameter does not increase.

Finally, the software property S1 corresponds to the safety invariant that
controller should maintain: the controller issues the command decr to the actu-
ator if at the next cycle the safe threshold can be exceeded.

Our system level analysis has demonstrated that both safety and security
aspects are critical for fulfilling the system-level goal of ensuring safety. Hence,
both these aspects should be explicitly addressed during the system development.

It is easy to observe, that we had to define a large number of require-
ments even for a generic high-level system architecture. To facilitate a systematic
requirements derivation, we propose to employ formal development framework
Event-B, which we overview next.

100 I. Vistbakka et al.

3 Modelling and Refinement in Event-B

Event-B [1] is a state-based framework that promotes the correct-by-construction
approach to system development and formal verification by theorem proving. In
Event-B, a system model is specified using the notion of an abstract state machine
[1]. An abstract state machine encapsulates the model state, represented as a
collection of variables, and defines operations on the state, i.e., it describes the
dynamic behaviour of a modelled system. A machine also has an accompanying
component, called context, which includes user-defined sets, constants and their
properties given as model axioms.

Machine M
Variables v
Invariants I
Events

Initialisation
evt1
· · ·
evtN

−→
Context C
Carrier Sets d
Constants c
Axioms A

Fig. 2. Event-B machine and context

A general form for Event-B models is given in Fig. 2. The machine is uniquely
identified by its name M . The state variables, v, are declared in the Variables
clause and initialised in the Initialisation event. The variables are strongly
typed by the constraining predicates I given in the Invariants clause. The
invariant clause might also contain other predicates defining essential properties
(e.g., safety invariants) that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a
predicate over the local variables of the event and the state variables of the sys-
tem. The body of an event is defined by a multiple (possibly nondeterministic)
assignment over the system variables. In Event-B, an assignment represents a
corresponding next-state relation Re. Later on, using the concrete syntax in our
Event-B models, we will rely on two kinds of assignment statements: determin-
istic ones, expressed in the standard form x := E(x, y), and non-deterministic
ones, represented as x :| some condition(x, y, x′). In the latter case, the state
variable x gets non-deterministically updated by the value x′ which may depend
on the initial values of the variables x and y.

The guard defines the conditions under which the event is enabled, i.e., its
body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Co-engineering Safety and Security in Industrial Control Systems 101

Event-B employs a top-down refinement-based approach to system develop-
ment. Development typically starts from an abstract specification that nonde-
terministically models the most essential functional requirements. In a sequence
of refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions. We can add new events, split events as well as replace abstract
variables by their concrete counterparts, i.e., perform data refinement.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demon-
strated by discharging a number of verification conditions – proof obligations.
For instance, to verify invariant preservation, we should prove the following
logical formula:

A(d, c), I(d, c, v), Ge(d, c, x, v), Re(d, c, x, v, v′) � I(d, c, v′), (INV)

where A are the model axioms, I are the model invariants, d and c are the model
constants and sets respectively, x are the event’s local variables and v, v′ are the
variable values before and after event execution. The full definitions of all the
proof obligations are given in [1].

The Rodin platform [23] provides an automated support for formal modelling
and verification in Event-B. In particular, it automatically generates the required
proof obligations and attempts to discharge them. The remaining unproven con-
ditions can be dealt with by using the provided interactive provers.

In the next section, we illustrate how to use Event-B framework to formally
develop a safety-critical control system and derive safety and security constraints
in a systematic manner.

4 Case Study: The Battery Charging System

We start by briefly describing our case study – a battery charging system. Then
we demonstrate how to develop a detailed specification of the system by refine-
ment and uncover the mutual interdependencies between safety and security
requirements through the process of formal development.

Case Study Description. Our case study is a battery charging system of an
electric car. Charging of the car battery is initiated when the vehicle gets con-
nected to an external charging unit [24]. Figure 3 shows the main components of
the system: the battery module, the battery management system, the CAN bus,
the charging station (with the associated charging interface and the external
charging unit). When the charging station detects that an electrical vehicle got
connected to its external charging unit, it starts the charging procedure. While
charging, the battery management system (BMS) – the controlling software of
the system, monitors the measurements received from the battery element and
issues the signal to the charging station to continue or stop charging. The com-
munication between the BMS and the charging station goes through the CAN
bus. The system behaviour is cyclic: at each cycle the charging station receives

102 I. Vistbakka et al.

Fig. 3. Architecture of battery charging system

the command from BMS to continue or stop charging. Correspondingly, it either
continues or stops to supply the energy to the battery of the car.

The main hazard associated with the system is overcharging of the car’s
battery, which might result in an explosion. Therefore, the safety goal of the
system is to avoid overcharging. In case the system cannot reliably assess the
current battery charge or stop charging using the programmable means, a safe
shutdown should be executed. Hence, the system architecture should have a reli-
able mechanism for controlling the charging procedure and, in case of hazardous
deviations, be able to abort charging, i.e., make a transition to failsafe state.

The top-level safety goal of the battery charging system is to keep a battery
level parameter within the predefined boundaries. Let bl real correspond to the
real physical value of such a parameter. Then the system safety property can be
formulated as follows: 0 ≤ bl real ≤ bl max crit, where 0 and bl max crit denote
the lowest and highest boundaries. The safety goal is achieved by changing the
state of the charging unit that supplies an electricity to the battery.

The battery charging system is a typical example of a control system dis-
cussed in Sect. 2. Indeed, the BMS acts as a controller, the charging station
(with its associated charger unit) – as an actuator and the battery unit as the
process that the system controls. The battery level parameter can be directly
measured by the sensor of BMS or computed on the basis of the alternative
measurements obtained from the battery. At each cycle, BMS assesses the value
of the battery level and sends the corresponding control command.

The charging station and in-car CAN bus are linked by the corresponding
communication channel that could be possibly vulnerable to the security attacks.
In particular, the attacker can use the in-car charging interface as an entry
point by compromising the external charger interface or tampering with the
communication between the interfaces to inject a malicious content into the
CAN bus. Therefore, while reasoning about the behaviour of such a system,
we should also reason about the impact of security threats on its safety. The

Co-engineering Safety and Security in Industrial Control Systems 103

analysis presented in Sect. 2 shows that safety cannot be guaranteed when the
controller-actuator channel is attacked. Therefore, the battery charging system
should include an additional hardware component that should be installed in the
car to break the charging circuit if the battery charge level becomes dangerously
high. Such a non-programmable switch can override the commands from the
controller and put the system in the failsafe state to guarantee safety.

Next we present an abstract Event-B specification of our case study.

Abstract specification. In the initial Event-B specification, we introduce the
abstract representation of the system architecture according to Fig. 3. The
abstract model BatteryCharging Abs represents the overall behaviour of the sys-
tem as an interleaving between the events modelling the phases of the control
cycle defined in Sect. 2.

First we introduce the variable phase, where phase ∈ PHASES. The enu-
merated set PHASES={BAT, EST, BMS, TRANSM, CHARGST} is defined in
the model context BatteryCharging c0. The variable phase is used to enforce the
pre-defined cyclic execution order of events:

Battery → BMS estimation → BMS act → CAN bus → ChargingStation → Battery → ...

Here the event Battery models the changes of the battery parameter bl real
while charging and the event BMS estimation models the BMS estimation of
this parameter (that is defined by bl variable). The event BMS act specifies
the BMS actions (i.e., sending the signal to continue or stop charging) and the
event CAN bus models transmission of the corresponding signal to the charging
station. Finally, the event ChargingStation models the required actions from the
charging station upon receiving the signal from the BMS. The some events of the
abstract model – the machine BatteryCharging Abs – is given in Fig. 4. In addition
to modelling the control cycle, we define the event Connect that represent the
beginning of the charging procedure (i.e., when a vehicle connects to the charging
station) and the event ChargingComplete representing its completion.

Let signal be a variable modelling the control commands issued by the BMS
to continue or abort the charging. The abstract constants CONT and STOP
correspond to the external charger being switched on and off correspondingly.
The initial value of the signal is designated by the constant S0. We also define
a variable status to denote the status of charging. It can obtain any of three
possible values from the set STATUSES={IDLE, CHARGING, CHARGED}.
When the external charger unit is not connected to the vehicle, status has the
value IDLE. The variable status obtains the value CHARGING if charging is in
progress and the value CHARGED when charging has been recently stopped.

Let us note that the BMS estimate of the battery level value bl is not neces-
sarily equal to the measurements produced by the battery sensor that monitors
bl real. In our model, bl is an abstraction representing the BMS’s “perception” of
the battery capacity. This perception is accumulative in a sense that it accounts
for any possible deviations (e.g., due to the sensor imprecision) from bl real, as

104 I. Vistbakka et al.

Machine BatteryCharging Abs
Sees BatteryCharging c0
Variables phase, signal, bl, bl real, status, failsafe
Invariants phase ∈ PHASES ∧ signal ∈ SIGNALS ∧ status ∈ STATUSES ∧ bl ∈ N∧

bl real ∈ N ∧ failsafe ∈ BOOL ∧ failsafe=TRUE ⇒ status=IDLE ∧ ...
Events
...
Battery =̂
where phase=BAT ∧ status=CHARGING ∧ failsafe=FALSE
then bl real :∈ N || phase:=EST
end

BMS estimation =̂
where phase=EST ∧ failsafe=FALSE
then bl :∈ N || phase:=BMS
end

BMS act =̂
where phase=BMS ∧ failsafe=FALSE
then signal :∈ {CONT, STOP} || phase:=TRANSM
end

ChargingComplete =̂
where status = CHARGED ∧ failsafe=FALSE
then bl := 0 || status:=IDLE || signal:=S0 || phase=BAT
end

...

Fig. 4. The machine BatteryCharging Abs

we explained in Sect. 2. The value bl real is updated in the event Battery, while
bl is estimated in the event BMS estimation.

Finally, the transition into a safe but non-operational state is modelled by
the event FailSafe. An execution of this event results in an immediate aborting
of charging, which is modelled by assigning the variable status the value IDLE.

Let us note that at this modelling step we have not formulated the safety
system property as a model invariant yet. Since the initial model defines only the
control flow at the component level, we do not have sufficiently detailed “knowl-
edge” to prove the desired safety property. In the next section, we demonstrate
how to refine the abstract model to achieve this goal.

5 Event-B Development of the Battery Charging System

The refinement process facilitates requirements structuring and allows us to
introduce their detailed representation in a systematic disciplined manner. In
the following sequence of model refinements, we will consider different cases of
the component behaviour and model the impact of the security attacks on system
behaviour. In the refinement process, more detailed assumptions and constraints
are defined in the form of abstract data structures and their properties. Once the
sufficient level of details is reached, we formulate and prove the desired system
safety invariant.

The First Refinement. Our first refinement step aims at introducing a detailed
specification of the BMS logic. We define the control algorithm, i.e., model the

Co-engineering Safety and Security in Industrial Control Systems 105

behavior of the controller. The controller calculates the control commands to
be send to the charging station using the current estimate of the battery level.
Moreover, at this refinement step, we also elaborate on the dynamics of the
controlled process, i.e., define the changes in the real battery level bl real and
model different cases of the behaviour of the charging station.

At each control cycle, the controller receives the current estimate of the bat-
tery level from the sensor. The controller checks whether the battery is still not
fully charged and it is safe to continue to charge it or charging should be stopped.
The decision to continue to charge can be made only if the controller verifies
that the battery level at the end of the next cycle will still be in the safe range
[0 ... bl max crit]. The event BMS estimation modelling estimation the current
value of battery parameter made by the BMS is refined. Consequently, the vari-
able bl gets any value from the range (bl real - bl delta .. bl real + bl delta), where
bl delta is the maximal imprecision value for the battery sensor introduced as a
constant in the model context.

We also specify our knowledge about the process of battery charging by
introducing the following abstract function into the model context: bl fnc ∈ N →
N. The function models the next predicted value for the battery level parameter
bl real. It takes the previous value of bl real and returns its predicted value
in the next cycle. Obviously, while the battery is charging, its battery level is
increasing. Hence we impose this restriction on bl fnc function and formulate it
as the following model axiom defined in the context BatteryCharging c1:

∀n·n ∈ N ⇒ n < bl fnc(n).

Moreover, the following constraint in the context component

∀n·n ∈ 0 .. bl max + bl delta ⇒ bl fnc(n) ≤ bl max crit

requires that, if the battery level is currently in the safe range, it cannot exceed
the critical range within the next cycle, i.e., the safety gap between bl max and
bl max crit is sufficiently large. The refined event Battery modelling the changes
of the battery level parameter is presented in Fig. 5.

We also refine the abstract event BMS act to represent different alternatives.
The first alternative defines a reaction to the monitored parameter exceeding
bl max. The second alternative models continuing the charge when the monitored
parameter is in the completely safe range [0..bl max). Note that the monitored
value bl that BMS relies on here is different from the actual value of the physical
process (bl real) updated by the event Battery.

We can formulate correctness of the BMS logic by the following invariants:

phase = TRANSM ∧ bl ≥ bl max ⇒ signal=STOP

phase = TRANSM ∧ bl < bl max ⇒ signal=CONT.

The invariants postulate that the BMS issues the signal to stop when the
parameter bl is approaching the critically high value (bl max crit), and vice

106 I. Vistbakka et al.

Machine BatteryCharging M1 refines BatteryCharging Abs
Sees BatteryCharging c1
Variables phase, signal, bl, bl real, status, failsafe
Invariants phase = TRANSM ∧ bl ≥ bl max ⇒ signal=STOP∧

phase = TRANSM ∧ bl < bl max ⇒ signal=CONT ∧ ...

Events...
Battery refines Battery
where phase=BAT ∧ status = CHARGING ∧ failsafe = FALSE
then bl real := bl fnc(bl real) || phase := EST
end

BMS estimation =̂ refines BMS estimation
where phase=EST ∧ failsafe = FALSE
then bl :∈ bl real − bl delta..bl real + bl delta || phase := BMS
end

BMS cont =̂ refines BMS act
where phase=BMS ∧ failsafe = FALSE ∧ bl < bl max
then signal:=CONT || phase := TRANSM
end

ChargingStation =̂ refines ChargingStation
any sg
where phase=CHARGST ∧ sg ∈ {CONT, STOP} ∧ failsafe = FALSE
then status : | (sg = CONT ⇒ status′ = CHARGING)∨

(sg = STOP ⇒ status′ = CHARGED)
phase := BAT

end
...

Fig. 5. The machine BatteryCharging M1

versa. To give the system a time to react, BMS sends the stopping command to
the station whenever the value bl breaches the predefined value bl max.

Moreover, in this refinement step, we elaborate on the behaviour of the charg-
ing station. Upon receiving the command from BMS, the charging station either
deactivates the charging unit or continues to supply an energy to the battery.
Such a behaviour is defined by the refined event ChargingStation (see Fig. 5).

In this refinement step, we have elaborated on the control algorithm and the
model of the controlled physical process. However, we have abstracted away from
modelling the fact that the charging station reads the signal from the CAN bus.
Such an abstraction allows us to further refine the communication model and
explicitly define the impact of the security attacks on the system behaviour, as
we demonstrate in the next refinement step.

The Second Refinement. In the architecture of battery charging system the
CAN bus represents the communication channel in the in-car system. This com-
ponent is used to transmit the signal issued by BMS to the charging station
(specifically, to the charging interface). However, such a channel could be pos-
sibly vulnerable to security attacks. Specifically, the attacker can use the in-car
charging interface as an entry point by compromising the external charger inter-
face or tampering with the communications between the interfaces to inject
malicious content into the CAN bus. Therefore, the goal of our second refine-
ment step is to incorporate into the model architecture a certain mechanism
that would allow the system to transmit the signal in a secure way. The possible

Co-engineering Safety and Security in Industrial Control Systems 107

solution here is to add a new component – security gateway – between the CAN
bus and the external charging unit. In general, such a security gateway could
control the network access according to predefined security policies and can
also inspect the packet content to detect the intruder attacks and anomalies.
However, while adding security protection to the system architecture, a security
gateway might introduce latency into communication between the CAN bus and
the charging station, and, in its turn, increase the reaction time of charging unit.

To address this new functionality, we add several new events and new vari-
ables into the refined system specification (see Fig. 6). Firstly, we introduce a
new event Attack to model a possible attack on the system. The attack can hap-
pen anytime while transmitting the signal to the charging interface. The variable
attack ∈ BOOL indicates whether the system is under attack. If the event Attack
is triggered, the value of attack becomes TRUE, otherwise it equals to FALSE.

Secondly, we introduce a new event SecurityGateway and a new variable
charg in that specifies the input buffer of the charging interface. It might obtain
values from the set of possible signals, i.e., charg in ∈ SIGNALS. If no attack
happens, then signal transmission results in copying the signal from one-place
output buffer of the CAN bus (represented by bus out variable) to the input
buffer charg in of the charging interface. If a security failure occurred (e.g., the
system has been under attack) then the output signal would differ from the sent
signal. The DOS attack (or in general channel unavailability) results in no values
being transmitted over the channel. For the sake of simplicity, we model it by
introducing the DOS constant that the input buffer of the charging interface will
get in this case. However, we also could have modelled it by defining a behaviour
of a watchdog process triggering the timeout signal. This behaviour is modelled
by the event SecurityGateway presented in Fig. 6.

The event ChargingStation is now refined by two events ChargingStation cont
and ChargingStation stop modelling the continuation of the charging procedure
or stopping it. In case of the DOS attack, the system will make a transition
to failsafe mode and the charging will be aborted (that modelled by the event
FailSafe DOS). We can formulate correctness of the charging station logic by the
following invariants:

phase = BAT ∧ charg in=STOP ⇒ status=CHARGED,

phase = BAT ∧ charg in=CONT ⇒ status=CHARGING.

The model invariants postulate that the charging station deactivates the charg-
ing unit when it receives the signal to stop the charging, and vice versa.

Let us note that adding a security gateway can introduce latency into com-
munication between the CAN bus and the charging station that might increase
the reaction time of charging unit. It can be crucial for ensuring that the signal
to abort charging STOP is issued in time. Thus, a careful analysis should be
performed while choosing a suitable value bl max to ensure:

bl max + bl delta +max increase ≤ bl max crit ,

108 I. Vistbakka et al.

Machine BatteryCharging M2 refines BatteryCharging M1
Sees BatteryCharging c2
Variables phase, signal, bl, bl real, status, failsafe, attack, bus out, charg in
Invariants charg in ∈ SIGNALS ∧ attack ∈ BOOL∧

phase = CHARG ∧ bl ≥ bl max ⇒ bus out=STOP∧
phase = CHARG ∧ bl < bl max ⇒ bus out=CONT∧
attack = FALSE ∧ phase = CHARG ∧ bus out=STOP ⇒ signal=STOP∧
attack = FALSE ∧ phase = CHARG ∧ bus out=CONT ⇒ signal=CONT∧
phase=BAT ∧ status=CHARGING ⇒ bl real ≤ bl max + bl delta∧
bl real ∈ 0 .. bl max crit ∧ ...

Events
...
SecurityGateway =̂

where phase=CHARG ∧ failsafe=FALSE ∧ charg in=S0
then charg in : |(attack = FALSE ⇒ charg in′ = bus out)∨

(attack = TRUE ⇒ charg in′ = DOS)
end

ChargingStation stop =̂ refines ChargingStation
where phase=CHARG ∧ charg in = STOP ∧ failsafe = FALSE
with sg=STOP
then status := CHARGED || phase := BAT || charg in := S0
end

...
end

Fig. 6. The machine BatteryCharging M2

where max increase is the maximal increase of the batter level value peer cycle
that can be introduced as a constant in the model context.

As a result of this refinement step, we arrive at a sufficiently detailed speci-
fication to define and prove the following safety invariant:

bl real ∈ 0 .. bl max crit .

Discussion. In our modelling, we adopt an implicit discrete model of time.
We define the abstract function representing the change in the dynamics of the
controlled process as well as the constraints relating the components behavior in
the successive iterations. Such an approach significantly improves the scalability
of formal modelling because it enables modular layered reasoning [13,14] which is
not well supported by the frameworks with the explicit representation of time. To
enable verification of real-time properties, we can rely on the approach proposed
by Iliasov et al. [6] allowing to map Event-B specification into UPPAAL.

To support reasoning about safety-security interplay, we have to explicitly
model the impact of accidental and malicious faults on the system behaviour,
i.e., introduce in our specification an explicit representation of failure modes of
system components and communication links. As a result, the complexity of the
specification is significantly increased. To addressed this issue, we can rely on
the modularisation approach [5], which supports compositional reasoning and
specification patterns [7]. FMEA into the formal models [17].

To cope with the complexity of a formal specification, which explicitly inte-
grates the failure behaviour, we can employ such an architectural mechanism as

Co-engineering Safety and Security in Industrial Control Systems 109

the mode-based reasoning, as proposed in [8,9]. We can distinguish between the
normal operational mode, the degraded mode caused by the accidental compo-
nent failures as well as the attacked and failsafe modes. By defining and verifying
such a high-level mode logic, we can facilitate a structured analysis of the com-
plex failure behaviour.

Construction of Evidence for a System Safety Case. To ensure safety,
we have to demonstrate satisfaction of the safety requirements imposed on the
system. Traditionally, to assure safety of critical systems in a structured way,
safety cases have been proposed. A safety case justifies why a system is safe and
whether the design adequately implements the imposed safety requirements. To
represent the safety case, a graphical notation called Goal Structured Notation
can be used [11]. It explicitly represents how goals are decomposed into subgoals
until claims can be supported by the direct evidences. Next we demonstrate how
formal modelling and refinement-based development can allow us to systemati-
cally construct the evidence justifying safety goals (and subgoals, consequently).
The results of formal modelling can be used to provide the required evidence for
a system safety. The guidelines for constructing the safety cases from the formal
specification in Event-B are described in [22].

The fragment of resulting safety case for our system is presented in Fig. 7.
Rectangles contain definitions of goals (if the rhombus is attached then the
goal needs to be further developed), parallelograms show the definitions of the
strategies, while circles represent solutions (will be presented on a figure later).

G1 The battery level parameter is
 within the safety boundaries

S1 Argument by satisfaction
 of each groups of subgoals

G3
The BMS logic

is correct

G2
Critical parameter
estimate is valid

G5
The charging station

logic is correct

G4
Control signal is not

altered during
transmission

Fig. 7. Decomposition of top-level safety goal

We introduce the main goal G1 : The battery level parameter is within the
safety boundaries. To provide evidence that this goal holds, strategy S1 is
applied. It leads to obtaining a number of sub-goals, i.e., G2 , G3 , G4 , G5 .
The decomposition of subgoals into even more detailed subgoals can be contin-
ued until we reach a statement that can be directly supported by some evidence,

110 I. Vistbakka et al.

e.g., formal verification results. On the Fig. 7 G2–G5 goals are left undeveloped
meaning that we further elaborate on it in order to support by direct evidence.
The Event-B system specification and the associated proofs allow us to justify
achieving the G2 , G3 , G4 , G5 .

Lets consider the goal G3 : “The BMS logic is correct”. It is considered in
the Context of formal modelling in Event-B with Rodin platform tool (C1). To
support that claim G3 holds, we state a strategy S2 to be used in solution of a
goal. Namely, we need to define constrains over constants as axioms. Moreover,
we have to model the BMS actions as well as define the safety invariant and prove
it preservation during system execution. Consequently, we further decompose the
goal G3 into three subgoals and define the solutions that support the claims.

Indeed, in our Event-B specification, presented in the Sect. 5.1-3, we intro-
duce constraints over the system constants as axioms in the model context (e.g.,
bl max ∈ N, bl max crit < bl max crit, etc.) and additionally prove noncontra-
dictiveness of axioms. We model the BMS actions as the corresponding events
(e.g., BMS cont and BMS stop.) and prove the preservation of the invariants
that described the correctness of the BMS actions. We also formulate the main
safety invariant and prove it preservation during system execution. Thereby,
the derived Event-B specification and the associated proofs allows us to justify
achieving the goal G3 (see Fig. 8).

G3
 The BMS logic is correct

S2 Define constrains over constants as
 axioms, model the BMS actions as
 events, define safety invariant and prove it

G3.1
Constrains over constants

representing thresholds and
safety boundaries defined as

axioms and constants

G3.3
The BMS actions modelled as

events preserve safety invariant

C1
Modelling in Event-B

with Rodin platform tool
support

Sn3.1 Non-
contradictive-

ness of axioms
proved as
theorem

Sn3.3 Invariant
preservations

proof obligation
discharged for

each event

G3.2
The BMS actions

actions modelled as
events compliant with

safety objects

Sn3.2
Discharged proof

obligations for
each event

Fig. 8. Decomposition of top-level safety goal

Co-engineering Safety and Security in Industrial Control Systems 111

6 Related Work and Conclusions

Related Work. Research investigating safety and security interaction has
recently received a significant attention. It has been recognised that there is
a clear need for the approaches facilitating an integrated analysis of safety and
security [19,33,34].

This problem has been addressed by several techniques demonstrating how
to adapt conventional techniques for analysing safety risks (e.g., FMECA, fault
trees, etc.) to perform a security-informed safety analysis [4,25]. The techniques
aim at providing the engineers with a structured way to discover and analyse
security vulnerabilities that have safety implications. Since the use of such tech-
niques facilitates a systematic analysis of failure modes and results in discovering
safety and security requirements, the proposed approaches can provide a valuable
input for our modelling. A large set of formal modelling approaches to reasoning
about the impact of failures on system dependability is presented in [2].

There are several works that address formal analysis of safety and security
requirements interactions [12,21]. Majority of these works demonstrate also how
to find conflicts between them. A typical scenario used to demonstrate this is
a contradiction between the access control rules and safety measure. In our
approach, we treat the problem of safety-security interplay at a more detailed
level, i.e., we analyse the system architecture, investigate the impact of security
failures on safe implementation of system functions. Such an approach allows us
to analyse the dynamic nature of safety-security interactions.

The MILS approach [3] employs a number of advanced modelling techniques
to create a platform for a formal architectural analysis of safety and security.
The approach supports an analysis of the properties of the data flow using
model checking and facilitates derivation of security contracts. Since our app-
roach enables incremental construction of complex distributed architectures, it
would be interesting to combine these techniques to support an integrated safety-
security analysis throughout the entire formal model-based system development.

An important aspect of demonstrating system safety is its quantitative eval-
uation. The foundations of the quantitative probabilistic reasoning about safety
using formal specifications was established in [10,18,30,31]. This work has been
further extended to enable probabilistic assessment of safety and reliability using
Event-B specifications [28,29]. It would be interesting to quantitatively assess
the impact of accidental and malicious faults on safety.

In this paper, we have assumed that the hazards associated with the system
has been already identified and correspondingly, focused on modelling system
behaviour guaranteeing hazard avoidance. Our work can be complemented with
the approaches proposed in [15,26,32], which address hazard identification and
elicitation of safety requirements.

Conclusions. In this paper, we have proposed a formal approach enabling
safety-security co-engineering. Our approach supports an analysis of interdepen-
dencies between the architectural patterns and mechanisms required for safety
and security assurance. We have demonstrated how the formal construction of

112 I. Vistbakka et al.

evidences required to substantiate system safety case results in derivation of both
safety and security requirements. Instead of contraposing safety and security, we
consider them as the interdependent constraints required for building robust sys-
tem. Relying on modelling and refinement in Event-B we systematically uncover
mutual interdependencies and the constraints that should be imposed on the
system to guarantee its safety even in the presence of security attacks.

The approach presented in this paper generalises the results of our experi-
ment with formal refinement-based development in the Event-B conducted in the
context of verification of safety-critical control system. The results have demon-
strated that the formal development significantly facilitates derivation of safety
and security requirements.

We have also observed that the integrated safety-security modelling in Event-
B could be facilitated by the use of external tools supporting constraint solving
and continuous behaviour simulation. Such an integration would be interesting
to investigate in our future work. Moreover, we are also planning to investigate
the problem of enhancing safety via the advanced reconfiguration mechanisms
similar to the once proposed in [20,27].

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, New York (2010)
2. Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.): Rigorous Devel-

opment of Complex Fault-Tolerant Systems. LNCS, vol. 4157. Springer, Heidelberg
(2006)

3. Cimatti, A., DeLong, R., Marcantonio, D., Tonetta, S.: Combining MILS with
contract-based design for safety and security requirements. In: Koornneef, F.,
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 264–276. Springer, Cham
(2015). doi:10.1007/978-3-319-24249-1 23

4. Fovino, I.N., Masera, M., Cian, A.D.: Integrating cyber attacks within fault trees.
Rel. Eng. Sys. Safety 94(9), 1394–1402 (2009)

5. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in Event-B development: modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ
2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11811-1 14

6. Iliasov, A., Romanovsky, A., Laibinis, L., Troubitsyna, E., Latvala, T.: Augmenting
Event-B modelling with real-time verification. In: Proceedings of the FormSERA
2012, pp. 51–57. IEEE (2012)

7. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.: Patterns for refinement
automation. In: Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 70–88. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17071-3 4

8. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic,
D., Latvala, T.: Developing mode-rich satellite software by refinement in event-B.
Sci. Comput. Program. 78(7), 884–905 (2013)

9. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K.,
Väisänen, P., Ilic, D., Latvala, T.: Verifying mode consistency for on-board satellite
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 126–141.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15651-9 10

http://dx.doi.org/10.1007/978-3-319-24249-1_23
http://dx.doi.org/10.1007/978-3-642-11811-1_14
http://dx.doi.org/10.1007/978-3-642-11811-1_14
http://dx.doi.org/10.1007/978-3-642-17071-3_4
http://dx.doi.org/10.1007/978-3-642-17071-3_4
http://dx.doi.org/10.1007/978-3-642-15651-9_10

Co-engineering Safety and Security in Industrial Control Systems 113

10. Sere, K., Troubitsyna, E.A.: Probabilities in action systems. In: Proceedings of the
8th Nordic Workshop on Programming Theory, pp. 373–387 (1996)

11. Kelly, T.P., Weaver, R.A.: The goal structuring notation - a safety argument nota-
tion. In: DSN 2004, Workshop on Assurance Cases (2004)

12. Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety and
security interactions modeling using the BDMP formalism: case study of a pipeline.
In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666,
pp. 326–341. Springer, Cham (2014). doi:10.1007/978-3-319-10506-2 22

13. Laibinis, L., Troubitsyna, E.: Fault tolerance in a layered architecture: a general
specification pattern in B. In: SEFM 2004, Beijing, China, pp. 346–355. IEEE
Computer Society (2004)

14. Laibinis, L., Troubitsyna, E.: Refinement of fault tolerant control systems in B. In:
Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol.
3219, pp. 254–268. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30138-7 22

15. Laibinis, L., Troubitsyna, E.: Fault tolerance in use-case modeling. In: Proceedings
of RHAS 2005 (2005)

16. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Boston
(1995)

17. Lopatkin, I., Iliasov, A., Romanovsky, A., Prokhorova, Y., Troubitsyna, E.: Pat-
terns for representing FMEA in formal specification of control systems. In: HASE
2011, Boca Raton, FL, USA, pp. 146–151. IEEE Computer Society (2011)

18. McIver, A., Morgan, C., Troubitsyna, E.: The probabilistic steam boiler: a case
study in probabilistic data refinement. In: Proceedings of the International Refine-
ment Workshop, Canberra, Australia, pp. 250–265. Springer (1998)

19. Paul, S., Rioux, L.: Over 20 years of research into cybersecurity and safety engi-
neering: a short bibliography. Saf. Secur. Eng. VI 151, 335 (2015)

20. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal development of critical multi-
agent systems: a refinement approach. In: EDCC 2012, pp. 156–161 (2012)

21. Ponsard, C., Dallons, G., Massonet, P.: Goal-oriented co-engineering of security
and safety requirements in cyber-physical systems. In: Skavhaug, A., Guiochet, J.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 334–345.
Springer, Cham (2016). doi:10.1007/978-3-319-45480-1 27

22. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Facilitating construction of safety
cases from formal models in Event-B. Inform. Softw. Technol. 60, 51–76 (2015)

23. Rodin: Event-B platform. http://www.event-b.org/
24. Schmittner, C., Ma, Z., Puschner, P.: Limitation and improvement of STPA-Sec

for safety and security co-analysis. In: Skavhaug, A., Guiochet, J., Schoitsch, E.,
Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 195–209. Springer, Cham
(2016). doi:10.1007/978-3-319-45480-1 16

25. Schmittner, C., Ma, Z., Smith, P.: FMVEA for safety and security analysis of
intelligent and cooperative vehicles. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 282–288. Springer, Cham (2014).
doi:10.1007/978-3-319-10557-4 31

26. Sere, K., Troubitsyna, E.: Hazard analysis in formal specification. In: Proceedings
of the 18th International Conference, SAFECOMP 1999, pp. 350–360 (1999)

27. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: For-
mal development and assessment of a reconfigurable on-board satellite system. In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 210–222.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33678-2 18

http://dx.doi.org/10.1007/978-3-319-10506-2_22
http://dx.doi.org/10.1007/978-3-540-30138-7_22
http://dx.doi.org/10.1007/978-3-319-45480-1_27
http://www.event-b.org/
http://dx.doi.org/10.1007/978-3-319-45480-1_16
http://dx.doi.org/10.1007/978-3-319-10557-4_31
http://dx.doi.org/10.1007/978-3-642-33678-2_18

114 I. Vistbakka et al.

28. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative verification of system
safety in Event-B. In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968,
pp. 24–39. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24124-6 3

29. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into
Event-B development. Formal Asp. Comput. 27(1), 53–77 (2015)

30. Troubitsyna, E.: Enhancing dependability via parameterized refinement. In: PRDC
1999, Hong Kong, p. 120. IEEE Computer Society (1999)

31. Troubitsyna, E.: Stepwise Development of Dependable Systems. Technical report
(2000)

32. Troubitsyna, E.: Elicitation and specification of safety requirements. In: ICONS
2008, Cancun, Mexico, pp. 202–207. IEEE Computer Society (2008)

33. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.:
Towards security-explicit formal modelling of safety-critical systems. In: Skavhaug,
A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 213–
225. Springer, Cham (2016). doi:10.1007/978-3-319-45477-1 17

34. Young, W., Leveson, N.G.: An integrated approach to safety and security based
on systems theory. Commun. ACM 57(2), 31–35 (2014)

http://dx.doi.org/10.1007/978-3-642-24124-6_3
http://dx.doi.org/10.1007/978-3-319-45477-1_17

Software

Evaluation of Open Source Operating Systems
for Safety-Critical Applications

Petter Sainio Berntsson1, Lars Strandén2, and Fredrik Warg2(&)

1 Chalmers University of Technology, Göteborg, Sweden
petter.berntsson@gmail.com

2 RISE Research Institutes of Sweden, Borås, Sweden
{lars.stranden,fredrik.warg}@ri.se

Abstract. There are many different open source real-time operating systems
(RTOS) available, and the use of open source software (OSS) for safety-critical
applications is considered highly interesting by industrial domains such as
medical, aerospace and automotive, as it potentially enables lower costs and
more flexibility. In order to use OSS in a safety-critical context, however,
evidence that the software fulfills the requirements put forth in a functional
safety standard for the relevant domain is necessary. However, the standards for
functional safety typically do not provide a clear method for how one would go
about certifying systems containing OSS. Therefore, in this paper we identify
some important RTOS characteristics and outline a methodology which can be
used to assess the suitability of an open source RTOS for use in a safety-critical
application. A case study is also carried out, comparing two open source
operating systems using the identified characteristics. The most suitable candi-
date is then assessed in order to see to what degree it can adhere with the
requirements put forth in the widely used functional safety standard IEC 61508.

Keywords: Functional safety � IEC 61508 � Open source software � Real-time
operating systems � Software quality

1 Introduction

The last few years have seen a remarkable rise in the use of embedded systems, for
instance in the automotive industry where modern cars are typically equipped with
dozens of embedded electronic systems. A real-time system is defined as a system in
which the correctness of the system does not only depend on the result of a computation
but whether or not the correct result is produced within the set time constraint [1]. The
use of a Real-Time Operating System (RTOS) is common in embedded systems due to
the multitasking requirement in many applications [2]. During the last two decades
RTOSs have undergone continuous evolution and there are many commercially avail-
able RTOSs.

For various reasons, including cost of commercial alternatives or lack of desired
features in existing products, people have developed their own versions of such soft-
ware and made it publicly available as Open Source Software (OSS). A common use of
OSS is in operating systems since they are normally application independent and can

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 117–132, 2017.
DOI: 10.1007/978-3-319-65948-0_8

therefore attract a large user base and be ported to different hardware platforms. The use
of OSS for safety-critical applications is considered highly interesting by industrial
domains such as medical, aerospace and automotive, as it potentially enables lower
costs and more flexibility. Open source projects that have well-established communities
(e.g. Linux and Apache) usually employ stringent development processes [3, 4] and
deliver high quality software. However, they do not fulfill the requirements of current
safety standards such as IEC 61508 [5] and ISO 26262 [6]. These standards impose
strict demands on e.g. project management, developer qualification, risk management,
requirements management, quality assurance and documentation. This becomes a
problem since many OSS projects do not follow a strict development process [7],
which makes the requirements impossible to achieve after the software has already
been developed. However, software that has been developed with a non-compliant
process can in some cases still be qualified if the software fulfills the requirements for
reuse. This can be done by providing enough evidence to support its suitability for
safety-critical applications.

In this paper we investigate criteria such as software metrics, support and main-
tainability issues, real-time and dependability properties that can be used to evaluate,
mainly from a software perspective, an open source RTOS with regards to its use in
safety-critical applications. We then propose a methodology for such evaluation; the
methodology is based on using the Capgemini Open Source Maturity Model [14]
together with a set of characteristics influence by earlier work in [12], but adapted to
better suit an RTOS. The aim of our proposed methodology is to collect information to
help determine if an RTOS is a potential candidate for use in a safety-critical appli-
cation, and also to be able to choose which candidate is the most promising when
several candidates exist. For use in an application that is to be certified against a
functional safety standard, however, an assessment of the RTOS against the relevant
requirements in the standard must also be conducted. We show a case study where the
two OSS RTOSs ChibiOS [16] and ContikiOS [17] are compared using the method-
ology, and where ChibiOS is subsequently evaluated against the requirements for use
of pre-existing software elements using non-compliant development according to the
functional safety standard IEC 61508.

2 Related Work

There are multiple different open source quality and maturity models available and a
comparative study [8] has been done. It showed two models that satisfied all eight
factors under product quality in the ISO/IEC 25010 standard [9]. However, most of the
models compared in the study seem to be abandoned, and the tools used for retrieval
and analysis of metrics are no longer available. One of these is the QualOSS [10]
model, which was one of the two models satisfying all eight factors under product
quality in ISO/IEC 25010. High test coverage is one of the most impacting activities in
order to qualify software for safety certification. The study in [11] investigates the
relationship between software complexity and the effort to achieve high test coverage
with the objective of figuring out to what extent it is possible to predict the effort
needed for certification. By looking at software complexity metrics this would enable a

118 P.S. Berntsson et al.

preliminary screening and benchmarking of OSS. A previous study [12] has been made
regarding the use of Linux in safety-related systems and it has been helpful for iden-
tifying important characteristics for comparing the suitability of open source RTOS for
safety-critical applications.

3 Evaluation of OSS RTOS

In this chapter, we discuss how existing software quality models can be leveraged to
evaluate the maturity and quality of OSS. The rationale behind using such models is
that they take into account organizational aspects that will give an indication of whether
the maturity of the project is acceptable, that the software it suitable for the intended
application, and that there is potential for fulfilling the process requirements of safety
standards. We also look at previous work for identifying characteristics and metrics of
the software which will give an indication of how well the product requirements of the
standards can be fulfilled.

3.1 Software Quality and ISO/IEC 25010

Quality is the level of which a product meets the mentioned requirements or fulfils
customer needs and expectations. OSS developers and organizations are facing many
challenges and questions regarding the quality when compared to proprietary software,
as there are worries about the level of satisfaction that can be achieved with respect to
robustness, support, maintenance and other quality attributes when the software is
written by volunteer developers. Software quality is an external software measurement
attribute. Therefore, it can be measured only indirectly with respect to how the soft-
ware, software development processes and resources involved in software develop-
ment, relate to software quality.

The ISO/IEC 25010 [9] standard defines a product quality model composed of eight
characteristics (which are further subdivided into sub-characteristics) that relate to static
properties of software and dynamic properties of the computer system:

1. Functional suitability: How well the product meets stated and implied needs.
2. Performance efficiency: The performance relative to the amount of resources used.
3. Compatibility: How well the product can exchange information with other products,

and if it can share hardware or software environment with other products.
4. Usability: If the product is useful in a specified context.
5. Reliability: How reliably the product performs its specified functions.
6. Security: The degree to which a product protects information and data.
7. Maintainability: Effectiveness and efficiency of product modifications.
8. Portability: Effectiveness and efficiency with which a product can be transferred

from one usage environment to another.

The product can either be a complete system or a component. The characteristics
are described in more detail in the standard. In addition to the product quality model
there is a quality in use model which we do not further discuss or make use of.

Evaluation of Open Source Operating Systems 119

The quality model proposed in ISO/IEC 25010 is well established. However, it
does not provide sufficient support for assessing the quality of OSS. This is due to the
particularities present in OSS development, specifically how to judge the impact of
community, collaboration, licensing, and support aspects. Several quality models have
been designed specifically for assessing the quality of OSS, but most of them predate
ISO/IEC 25010, and are therefore based on its now obsolete precursor ISO/IEC 9126
[13]. A comparative study [8] has been made between different OSS quality models
and the newer ISO/IEC 25010 model. The study showed that the Capgemini Open
Source Maturity Model (OSMM) [14] was the most comprehensive model satisfying
all eight factors under Product Quality. Therefore, we use the Capgemini OSMM in our
proposed evaluation methodology.

3.2 Capgemini Open Source Maturity Model

Capgemini OSMM is a model where software is graded against a set of product
indicators and application indicators. The product indicators are described as objective
and measurable facts that focus on the product and the model includes scoring criteria
for each indicator. The application indicators are used to assess how well the product
fits a specific context. That is, they take into account environmental aspects and the
present and (expected) future demands of the users. Therefore these indicators cannot
be assessed without an intended context, and they are evaluated in two dimensions: the
score (S) – how well the characteristic is fulfilled, and the priority (P) – how important
the indicator is relative to other indicators. The final weight is the product of these
(P*S). Both indicator scores and priority are judged on a scale 1–5 where 5 are the
highest.

The model points out the significance of information, both of the product itself and
the community that surrounds it, and thus it incorporates various criteria such as
product development, developer and user community, product stability, maintenance
and training. It was designed as a tool that can be used to compare and decide on the
most suitable open source product option for an organization based on the product’s
maturity.

The product indicators are categorized into four categories, namely:

1. Product: Focuses on the product’s inherent characteristics, age, selling points,
developer community, human hierarchies and licensing.

2. Integration: Measures the product’s modularity, adherence to standards as well as
options to link the product to other products or infrastructure.

3. Use: Informs on the ease of which the product can be deployed and the way in
which the user is supported in the everyday use of the product.

4. Acceptance: Tells about the market penetration of the product and the user base
formed around the product.

A brief overview of the defined application indicators:

• Usability: Taking into account the intended users.
• Interfacing: Required connectivity, applicable standards.

120 P.S. Berntsson et al.

• Performance: The performance demands that must be met.
• Reliability: Required level of service.
• Security: Required security measures.
• Proven technology: Is the technology proven in daily production?
• Vendor independence: Level of commitment between supplier and user.
• Platform independence: Is the product available for a wide range of platforms?
• Support: What level of support is required?
• Reporting: What kind of reporting is required?
• Administration: Use of existing maintenance tools, demands for management?
• Advice: Is validation by independent parties required?
• Training: Required training.
• Staffing: How is product expertise acquired?
• Implementation: Preferred implementation scenario.

For a more described description of the indicators see [14].

3.3 Dependability-Critical Aspects of an RTOS

Relevant parts of the international standards for functional safety IEC 61508 and ISO
26262 have been analyzed, and a literature survey made (see [18] for more details), in
order to find characteristics that can be used to assess and compare the suitability of an
open source RTOS for use in safety-critical applications. In particular, a study [12] has
been made regarding the use of Linux in safety-critical applications and three basic
criteria were set out in order to assess the suitability of an operating system and a
simplified version of these three criteria are the following:

1. The behavior of the operating system shall be sufficiently well defined.
2. The operating system shall be suitable for the characteristics of the application.
3. The operating system shall be of sufficient integrity to allow the system safety

integrity requirements to be met.

Considering the first criterion, it is important that the software developer of the
safety-critical application has full knowledge of the intended behavior of the operating
system. This is necessary so that hazards don’t arise due to misconceptions that the
application developer might have about the intended functionality of the operating
system. It shall also be clear that the second criterion is necessary, since no matter how
well specified an operating system might be, if it does not provide the desired func-
tionality to support the software design chosen for the safety-critical application, it
won’t be suitable for use. This can be most clearly seen in the timing domain: if the
application has hard real-time requirements and the operating system cannot support
deadlines then the operating system cannot be used with confidence. The third and final
criterion is fairly self-evident. However, it shall be noted that what is sufficient will
depend on the complete system design, including any system level measures that can
mitigate operating system failures and thus allow the operating system to have a lower
safety requirement than would be the case without system mitigation measures.

Evaluation of Open Source Operating Systems 121

An RTOS differs from a regular non-real-time operating system which is optimized
to reduce response time while an RTOS is optimized to complete tasks within the set
time constraint [1] often referred to as a deadline. However, in most RTOSs (soft
real-time) one is not guaranteed that the system will always meet its deadlines, just
generally. Only hard real-time systems can deterministically meet its deadlines.

An RTOS needs to satisfy a number of requirements. These are usually similar to
high-reliability systems requirements. The operating system features listed below were
identified in [12] as necessary to evaluate if the system is to be used in safety-critical
applications:

1. Executive and scheduling: The process switching time and the employed
scheduling algorithm of the operating system must meet all time-related application
requirements.

2 Resource management: The internal use of resources must be predictable and
bounded.

3 Internal communication: The task synchronization mechanisms must be robust and
the risk of a corrupt message affecting safety shall be adequately low.

4. External communication: The mechanisms used for communication with external
devices must be robust and the risk of a corrupt message shall be adequately low.

5. Internal liveness failure: The operating system shall allow the application to meet
its availability requirements.

6. Domain separation: If an operating system is used, functions shall be provided that
allow safety functions of lower integrity levels to not interfere with the correct
operation of higher integrity safety functions.

7. Real-Time: Timing facilities and interrupt handling features must be sufficiently
accurate to meet all application response time requirements.

8 Security: Risk of safety implications of security issues in connected systems.
9. User interface: When the operating system is used to provide a user interface, the

risk of interface corrupting the user input to the application or the output data of the
application must be sufficiently low.

10. Robustness: The operating system shall be able to detect and respond appropriately
to the failure of the application process and external interfaces.

11. Installation: Installation procedures must include measures to protect against a
faulty installation due to user error.

These features have been helpful for identifying the characteristics that are used for
comparison in this paper and these are described in Sect. 4.1, but we have modified
some characteristics and omitted some in order to better suit an embedded RTOS.

We will also look at the implementation and test coverage of the OSS. Embedded
software systems are often implemented in the C programming language and in order to
increase the quality of the implementation it is common to define a set of coding rules that
must be followed. The coding rules can include for example the conventions used to
format the source code, complexity limits for modules, hierarchical organization of the
modules and language subsets. For safe and reliable software written in C, a commonly
used subset is theMISRAC [15] which effectively defines a subset of the C programming
language, removing features which are usually responsible for implementation errors or

122 P.S. Berntsson et al.

compiler dependencies. The MISRA C 2012 subset is sometimes considered a strongly
typed subset of C.

As mentioned we will also take test coverage into account since high test coverage
is one of the most impacting activities in order to qualify software for safety certifi-
cation [11]. Test-driven development has become widespread both in proprietary
software and OSS projects, in particular, the possibility to perform automated tests. The
purpose of testing is to detect faults in the software component under test in order to
find discrepancies between the specification and the actual behavior of the software.
For example, running the automated test after every single commit to the code base
may facilitate the detection of bugs ensuring the intended functionality of the software.
Test coverage is one of the measures often required by standards to help make sure the
test suite is adequate, and it is commonly defined as a percentage of the software that is
covered by the tests. There are different ways in which this percentage can be defined;
some common metrics are the percentage of code lines or statements executed, or the
percentage of branch paths (edges) tested. These are often referred to as code (or line)
coverage, statement coverage, and branch coverage respectively. For complex software
components such as an RTOS the state space is potentially huge and it may be difficult
to achieve 100% coverage in a practical amount of time (depending on which metric is
used or prescribed in the standards). When this is the case, the test cases shall be chosen
in a manner such that they test the different aspects of the RTOS, and an argument
made for justifying why certain input combinations don’t require testing (based on e.g.
equivalence classes or other forms of analysis).

4 Selecting and Qualifying an OSS RTOS for Use
in Safety-Critical Applications

In this chapter we present an approach on how to select and qualify an OSS RTOS for
use in safety-critical applications.

4.1 Characteristics for Comparison

Based on the discussion in previous sections and common requirements in functional
safety standards we have put together a list of characteristics that are relevant for an
open source RTOS used in a safety-critical context. Although some characteristics in
the list partly overlap with Capgemini OSMM indicators, this list is more focused on
characteristics that will be relevant when trying to assess the RTOS suitability in
safety-critical applications and map it to the requirements in functional safety stan-
dards, whereas the main purpose of OSMM is to determine whether the software is
mature enough to consider in a wider perspective. It should be noted that this is a first
attempt at identifying such criteria, and thus the list of characteristics should not be
seen as exhaustive. In addition, we currently rate the characteristics only as ‘available’
or ‘not available’, while in reality some of them might be somewhere in between
non-existent and sufficient for the intended purpose (for instance ‘documentation’ and
‘test suite’). This may be refined in an improved version of these characteristics,

Evaluation of Open Source Operating Systems 123

e.g. using a scoring range with specified criteria for each level, or possibly more
detailed sub-characteristics. The current characteristics we use are:

• Coding rules: Is the RTOS implemented using coding conventions throughout the
entire code base?

• Language subset: Is the RTOS implemented using any defined language subset to
reduce the likelihood of faults?

• Version-control: Is version control being used to track changes in the code base?
• Documentation: Is documentation available?

– What functionality does it cover?
• Static resource allocation: Does the RTOS use static memory allocation? Dynamic

memory allocation is not recommended in the standards since it can give rise to
hazards.

• Priority-based preemptive scheduling: The scheduling policy needs to be
priority-based preemptive in order to be used with confidence.

• Real-time support: Does the RTOS support deadlines?
• Domain separation: Is there support for domain separation?
• Synchronization primitives: Are there synchronization primitives available (e.g.

semaphores, mutexes etc.) to allow safe inter-task communication.
• Verification: Are there any verification procedures to verify the functionality of the

RTOS?
– Test suite: Is there a test suite available?

• Does the test suite provide test coverage metrics? (e.g. code/branch coverage)
• Configuration options: Is there an option to turn off undesired functionality in the

RTOS so that the unused functionality won’t be compiled at all?
• Active community: Is the community behind the open source RTOS active?

– Quality assurance: Are measures made in order to keep out “bad” code from the
projects code base?

– Bug tracking: Is there a list of known bugs?
– Bug fixing: Are bugs being fixed at regular intervals?

If the open source RTOS fulfills all of the above characteristics it is a good can-
didate since it holds some of the functionality that is desirable for a safety-critical
RTOS and some attributes that are preferred from an open source perspective. If it does
not fulfill all of the above characteristics it could still be possible to adapt it, but the
effort to achieve compliance with a functional safety standard is likely considerably
higher.

4.2 Workflow

Based on the material from the previous sections, the process for choosing and
assessing a suitable open source RTOS candidate against a functional safety standard is
described below and a workflow can be seen in Fig. 1. The first step is identifying
promising open source RTOS candidates. When enough candidates have been iden-
tified the quality and maturity of the OSS project is evaluated. As mentioned, we are
using the Capgemini OSMM in order to see what support options there are for the

124 P.S. Berntsson et al.

project. If there are different licensing options available, does it have a stable and active
community with regular updates, bug tracking and bug fixing etc. These and other
criteria are then graded with a certain number of points based on the guidelines given in
[14]. When the quality and maturity assessment has been made, a comparison of the
characteristics presented in Sect. 4.1 is made. The best candidate is chosen based on the
results of these two assessments. In the end, determining if there is a suitable candidate
and which one to choose is not a mathematical exercise, the results must be judged
within the context of what one is trying to achieve and the main point of the exercise is
to gather the relevant information to make such a judgment.

When a candidate has been identified, one has to study the documentation and other
information available for the open source RTOS and compare it with the applicable
requirements in a functional safety standard. In our case study we have looked at the
requirements for reuse of software components with non-compliant development (i.e.
development has not been performed according to the standard) that are given in
sub-clause 7.4.2.13 of IEC 61508-3. If the documentation or other material is insuf-
ficient or unavailable, the missing pieces may be supplemented by the developer of the
safety-critical application, but in the case study we have only evaluated the RTOSs
based on existing artefacts. The methodology is not only applicable for IEC 61508
however; other functional safety standards could also be used.

5 Case Study: Comparing ChibiOS and ContikiOS

In this chapter, the two open source operating system ChibiOS [16] and ContikiOS [17]
are compared. ChibiOS is an OSS RTOS implemented compliant with MISRA C and
ContikiOS is a lightweight OSS operating system that is designed to run on Internet of
Things (IoT) devices with limited resources. These operating systems are compared in
order to find the most suitable candidate for use in a supposed safety-critical function.
The most suitable candidate is then assessed to see to what degree it can adhere to the
requirements of non-compliant development put forth in Part 3: Software Requirements
of the functional safety standard IEC 61508. In the case study we assume the function
shall be certified according to IEC 61508 with safety integrity level (SIL) 2. In a real
case, the required SIL is determined using a hazard analysis and risk assessment for the

Fig. 1. Proposed workflow for assessing an RTOS for safety-critical applications

Evaluation of Open Source Operating Systems 125

function being implemented. SIL is a measure of the level of risk reduction provided by
a safety function, and IEC 61508 specifies four levels 1–4, where higher levels require
more risk reduction and hence imply more stringent demands on the electrical/electronic
system (including the software). In the case study we have chosen to evaluate against
SIL 2 as the higher levels have requirements that will be much more difficult to achieve
for a component developed with a non-compliant development process.

Note that the evaluation has been made by one person for demonstration purposes,
and not by a team of experts as recommended in Capgemini OSSM, nor by a qualified
assessor as required for an actual assessment against IEC 61508. Therefore, the case
study should be seen as a working example of evaluating an OSS RTOS, and not as
reliable results for the two RTOSs used in the study.

5.1 Project Maturity

The quality and maturity of the two open source operating systems are evaluated with
the Capgemini OSMM described in Sect. 3.2 and with the help of the guidelines given
in [14]. First the product indicators form the basis of the model. Using these indicators,
the quality of the open source products can be determined. Product indicators receive a
score valued between one and five. One is poor, five is excellent and 3 is average. All
the scores are summed to produce a product score. A comparison of the two products
can be seen in Table 1. However, this data is only a comparison of the products
strengths and weaknesses. To properly assess the product, we must also take into
account the application indicators and a comparison of these can be seen in Table 2.
From the data presented in these tables, we can see that the most suitable candidate is
ChibiOS. However, it shall be noted that this comparison does not guarantee a certain
quality of the product, it is just an indication of which product has the highest quality of
development.

5.2 RTOS Characteristics

In this section, we will give a brief description of the two operating systems in this
study and compare them based on the characteristics that are described in Sect. 3.3 and
the result of this comparison can be seen in Table 3. The results have been obtained by
going through the documentation and test suites, running PC-Lint, and researching how
community activities are performed.

ChibiOS. This is an open source RTOS implemented in MISRA C. A code analysis
has been performed using the PC-Lint static analyzer, on the ChibiOS 16.1.7 release
and it reported no violations of the checked MISRA rules using the configuration
provided with the source code. Additionally, the coding standard in terms of naming
conventions and design patterns are explicit and consistently used on all the software.

The scheduler of ChibiOS is implemented as a priority-based preemptive scheduler
with round-robin scheduling for tasks at the same priority level and it is suited for real
time systems since it supports deadlines. A test suite is also used to verify the func-
tional correctness of the core mechanisms in the operating system like priority

126 P.S. Berntsson et al.

Table 1. Comparison of product indicators according to Capgemini OSMM.

Indicator ChibiOS ContikiOS

Product
Age 5 3
Licensing 5 3
Human hierarchies 5 5
Selling points 3 3
Developer community 3 3
Integration
Modularity 5 5
Collaboration with other products 3 3
Standards 5 3
Use
Support 3 3
Ease of deployment 3 3
Acceptance
User community 3 1
Market penetration 3 1
Total 46 38

Table 2. Comparison of application indicators according to Capgemini OSMM.

Indicator Priority (P) ChibiOS ContikiOS
Score (S) P*S Score (S) P*S

Usability 5 5 25 5 25
Interfacing 3 3 9 3 9
Performance 5 4 20 3 15
Reliability 5 5 25 4 20
Security 3 3 9 3 9
Proven technology 3 3 9 3 9
Vendor independence 4 4 16 4 16
Platform independence 2 4 8 4 8
Support 4 3 12 2 8
Reporting 2 4 8 2 4
Administration 2 3 6 3 6
Advice 1 1 1 1 1
Training 3 3 9 3 9
Staffing 3 2 6 2 6
Implementation 3 4 12 2 6
Total 175 151

Evaluation of Open Source Operating Systems 127

inversion, priority-based scheduling, timers and all the synchronization primitives that
are offered by the RTOS. The test suite can be executed both on a simulator and on real
hardware. By running the test suite on hardware, one can benchmark the given hard-
ware platform where the time overhead of operations like context-switch, interrupts and
synchronization primitives can be obtained.

Separation of different tasks can be done in the time domain by utilizing the
implemented scheduling policy. However, care must be taken while using critical
regions, since they can introduce unexpected latency. To avoid this, the tasks must be
developed coherently to avoid timing interference between the different tasks. The only
execution model available for ChibiOS is single process-multi thread. Some of the
supported architectures can provide memory separation by using a Memory Protection
Unit (MPU) or Memory Management Unit (MMU), while memory separation is not
available in other architectures. For the case study we have rated domain separation as
available, but keep in mind that this depends on the hardware to be used.

ContikiOS. This is a lightweight open source operating system that is designed to run
on IoT devices with limited resources. It provides three network mechanisms: the uIP
TCP/IP stack which provides IPv4 networking, the uIPv6 stack which provides IPv6
networking, and the Rime stack [19] which is a set of custom lightweight networking
protocols designed for low-power wireless sensor networks.

ContikiOS is mainly developed in standard C (ISO C) and is portable to various
platforms. The coding rules only cover the formatting style. A MISRA C compliance
check has been performed using PC-Lint static analyzer with the default configuration
for MISRA C checking. All the files under dev/, cpu/, platform/ and core/directories of
the ContikiOS 3.0 code base have been checked. In total over 70 000 messages were
generated, most of them relating to either styling issues or errors that are easily

Table 3. Comparison of characteristics. An “X” indicates availability and “–” non-availability.

Characteristic ChibiOS ContikiOS

Coding rules X X
Language subset X –

Version control X X
Documentation X X
Static resource allocation X X
Priority-based preemptive scheduling X –

Real-time support X –

Domain separation support X –

Synchronization primitives X –

Verification X X
Test suite X X
Configuration X X
Active community X X
Quality assurance X X
Bug tracking X X
Bug fixing X X

128 P.S. Berntsson et al.

correctable. However, there were also reports of more severe errors such as recursive
functions, discarding of volatile or constant qualifiers, variable shadowing, uninitial-
ized variables, buffer overrun, and unused return codes.

The scheduler in ContikiOS does not support priorities for tasks. However, they can
be either cooperative or preemptive and a number of timer modules exist and these can
be used to schedule preemptive tasks. There are also no well-defined mechanisms for
inter-task communication and concurrency issues must be handled manually. On every
new version of ContikiOS regression tests are performed. However, they seem to
mostly cover the communication protocols and not the functionality of the operating
system like scheduling, inter-task communication and synchronization primitives.
Also, memory separation is not used due to lack of support in most of the supported
architectures.

5.3 Compliance with IEC 61508

As we can see by the data presented in Sect. 5.2, the most suitable option for
assessment is ChibiOS. Therefore, we have assessed ChibiOS according to the
requirements for reuse of software components with non-compliant development in
IEC 61508. The RTOS is in this case regarded as a context free software component
and in order to assess ChibiOS we have gone through the available documentation and
compared it with the requirements given under sub-clause 7.4.2.13 in IEC 61508-3.
However, a detailed description of the requirements is not given here. For a detailed
description of the requirements, see [5]. Due to space restrictions, this is an abbreviated
version of our assessment; more details can be found in [18]. Note that we make no
claim that this assessment is exhaustive.

Under sub-clause 7.4.2.13 in IEC 61508-3 there is a requirement that a software
safety requirements specification shall exist for the software element. This specification
shall contain all system safety requirements, in terms of system safety function
requirements and the system safety integrity requirements, in order to achieve the
required functional safety. This specification must be valid in the specific system
context and it shall also cover the functional and safety behavior of the software
element in its new application. However, a pre-existing RTOS is unlikely to have any
specific safety requirements defined since it is not bound to a specific context, there-
fore, in this study we assume that the requirement of this specification can be fulfilled if
the behavior of the RTOS is precisely defined supplemented with its use in the target
application. This requirement can then be fulfilled by ChibiOS since there is a detailed
reference manual covering all the functionality of the kernel together with a supporting
book that describes the architecture of the RTOS and how all the submodules work.

According to IEC 61508, the use of semi-formal methods (e.g. finite state
machines) to express parts of a specification so that some types of mistakes such as
wrong behavior can be detected is recommended for safety functions considered to be
of SIL 1 or SIL 2 and highly recommended for SIL 3. These methods are used to
model, verify, specify or implement the control structure of a system, and the IEC
61508 standards states that state transition diagrams can apply to the whole system or
to some objects within it. The documentation available for ChibiOS shows that the

Evaluation of Open Source Operating Systems 129

behavior of the kernel and other submodules are specified in detail with the help of
UML and finite state machines.

The IEC 61508 standard provides recommended practices for verification and how
the architectural design of the software shall be structured. Some of these techniques
are not applicable to an operating system such as graceful degradation which is
something that needs to be implemented on the application level. However, high
integrity software shall be designed with a modular approach that is verifiable and
testable with measurements indicating the test coverage. It is also recommended to use
static resource allocation, time-triggered architecture with cyclic behavior etc. These
requirements can be fulfilled by ChibiOS since it has a modular design; it is internally
divided in several major independent components. It uses static resource allocation and
it has a time-triggered architecture with cyclic behavior. The test suite provided is used
in order to verify the proper working of the kernel and it can be used to test if a ported
version of the RTOS is working and all the test results are included as reports in the
RTOS distribution.

Another requirement is that when software elements are present which are not
required for achieving the functional safety, evidence shall be provided that this
functionality will not prevent the system from meeting its safety requirements. In
ChibiOS unwanted functions can be removed from the build by disabling them in the
ChibiOS configuration file so that they won’t be compiled at all. Functionality that can
be disabled/enabled or modified can vary from hardware peripheral drivers, software
subsystems, debugging options, speed optimization and system tick frequency. This
will make it easier to prove that unwanted functionality will not interfere.

There shall also be evidence that all credible failure mechanisms of the software
element have been identified and that mitigation measures exist. ChibiOS provides
support for domain separation of different tasks in the time domain, which is done by
using priority-based preemptive scheduling, but care must be taken while using critical
regions, since they can introduce unexpected latency. The only execution model
available for ChibiOS is the single process-multi thread execution model, which means
that all the tasks share the same addressing space unless an MMU is used. But memory
separation is not implemented on all architectures. Mitigation measures shall also be
used at the application level, if considered necessary in the context of use. This
requirement may therefore require significant work to fulfill.

There are requirements that coding rules are followed and each module is reviewed.
Also, a suitable strongly typed language and language subset is required. In the core
ChibiOS codebase, the code is thoroughly tested and maintained, bugs are tracked and
fixed, and the code is released in stable packages regularly. In order for code to be
added to the core codebase, the code has to follow strict coding guidelines and go
through extensive reviews and testing. ChibiOS also implements the C subset
MISRA C 2012 which is sometimes considered a strongly typed subset of C.
Although C was not specifically designed for this type of application, it is widely used
for embedded and safety-critical software for several reasons. Some advantages are
control over memory management are simple and well debugged core runtime libraries
and mature tool support. While manual memory management code must be carefully
checked to avoid errors, it allows a degree of control over application response times
that is not available with languages that depend on e.g. garbage collection. The core

130 P.S. Berntsson et al.

runtime libraries of the C language are relatively simple, mature and well understood,
so they are amongst the most suitable platforms available.

6 Conclusions and Future Work

ChibiOS holds many of the desirable characteristics that are required by an RTOS in
safety-critical applications and for the IEC 61508 standard. On the basis of the limited
evidence and analysis presented in this study, we have concluded that ChibiOS may be
acceptable for use in safety-critical application of SIL 1 and SIL 2. Of course, this
statement must be qualified by stating that the hardware must be of suitable SIL and the
fact that we may have stretched the definitions of the standard somewhat since
sub-clause 7.4.2.13 of IEC 61508-3, reuse of software components with non-compliant
development, is not really intended for assessing an operating system.

The assessment done in this thesis project is by no means complete and a real
assessment would require trained professionals from an accredited certification body to
perform the analysis of the available code and documentation. A follow up project
could therefore be to perform a real assessment of ChibiOS with regards to IEC 61508
to determine whether the requirements for SIL 1 or SIL 2 can be fulfilled. Other
relevant standards such as ISO 26262 could also be considered.

It should also be noted that the list of characteristics and evaluation methodology is
our first attempt for evaluating the use of an RTOS in safety-critical applications.
Future work is needed to refine the characteristics and methodology to match the
requirements in functional safety standards even better.

Acknowledgements. This work is from of a Master’s thesis project at RISE Electronics; and is
partly funded by the Swedish government agency for innovation systems (VINNOVA) in the
NGEA step 2 project (ref 2015-04881).

References

1. Hambarde, P., Varma, R., Jha, S.: The survey of real time operating system: RTOS. In: IEEE
International Conference on Computer and Communication Technologies (ICCCT), pp. 34–
39 (2014)

2. Tan, S., Nguyen Bao Anh, T.: Real-time operating system (RTOS) for small (16-bit)
microcontrollers. In: IEEE 13th International Symposium on Consumer Electronics (ISCE),
pp. 1007–1011 (2009)

3. Corber, J.: How the Development Process Works (The Linux Foundation) (2011)
4. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software

development: apache and Mozilla. ACM Trans. Softw. Eng. Methodol. (TOSEM) 11, 309–
346 (2002)

5. IEC 61508, International standard. Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related System (2010)

6. ISO 26262, International Standard. Road vehicles – Functional Safety (2011)
7. Zhao, L., Elbaum, S.: Quality assurance under the open source development model. J. Syst.

Softw. 66, 65–75 (2003)

Evaluation of Open Source Operating Systems 131

8. Adewumi, A., Misra, S., Omoregbe, N.: Evaluating open source software quality models
against ISO 25010. In: IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Automatic and
Secure Computing, Pervasive Intelligence and Computing, pp. 872–877 (2015)

9. ISO/IEC 25010, International Standard. Systems and Software Engineering – Systems and
Software Quality Requirements and Evaluation (2011)

10. Soto, M., Ciolkowski, M.: The QualOSS open source assessment model measuring the
performance of open source communities. In: Proceedings of the 3rd International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 498–501
(2009)

11. Cotroneo, D., Di Leo, D., Natella, R.: Prediction of the testing effort for the safety
certification of open-source software: a case study on a real-time operating system. In: IEEE
12th European Dependable Computing Conference (EDCC), pp. 141–152 (2016)

12. Pierce, R.H.: Preliminary Assessment of Linux for Safety Related Systems. In: HSE
Contract research report RR011/2002 (2002)

13. ISO/IEC 9126, International Standard. Information Technology – Software Engineering –

Product Quality (2001)
14. Dujinhouwer, F.W., Widdows, C.: Capgemini Expert Letter Open Source Maturity Model,

Capgemini, pp. 1–18 (2003)
15. Motor Industry Software Reliability Association, MISRA-C Guidelines for the Use of the C

Language in Critical Systems, UK (2004)
16. ChibiOS. https://www.chibios.org. Accessed 29 May 2017
17. ContikiOS. https://www.contiki-os.org. Accessed 29 May 2017
18. Berntsson, P.S.: Evaluation of open source operating systems for safety-critical applications.

Master’s thesis, Chalmers University of Technology (2017)
19. Dunkels, A., Österlind, F., He, Z.: An adaptive communication architecture for wireless

sensor networks. In: Proceedings of the Fifth ACM Conference on Networked Embedded
Sensor Systems (SenSys 2007), Sydney, Australia, November 2007

132 P.S. Berntsson et al.

https://www.chibios.org
https://www.contiki-os.org

100 Years of Software - Adapting
Cyber-Physical Systems to the Changing World

Hayley Borck1(B), Paul Kline2, Hazel Shackleton1, John Gohde1,
Steven Johnston1, Perry Alexander2, and Todd Carpenter1

1 Adventium Labs, 111 3rd Ave S, Minneapolis, MN 55401, USA
{hayley.borck,hazel.shackleton,john.gohde,

steven.johnston,todd.carpenter}@adventiumlabs.com
2 Information and Telecommunication Technology Center, The University of Kansas,

2335 Irving Hill Road, Lawrence, KS 66045, USA
{paulkline,palexand}@ittc.ku.edu

Abstract. Cyber-Physical Systems (CPS) are software and hardware
systems that interact with the physical environment. Many CPSs have
useful lifetimes measured in decades. This leads to unique concerns
regarding security and longevity of software designed for CPSs which
are exacerbated by the need for CPSs to adapt to ecosystem changes if
they are to remain functional over extended periods. In particular, the
software in long-lifetime CPSs must adapt to unanticipated trends in
environmental conditions, aging effects on mechanical systems, and com-
ponent upgrades and modifications. This paper presents the Toolkit for
Evolving Ecosystem Envelopes (TEEE) system created to help address
these challenges in CPSs. TEEE is able to detect environmental changes
which have caused errors within the CPS without directly sensing the
environmental change. TEEE uses dynamic profiling to detect the errors
within the CPS, determine the root cause of the error, alert the user,
and suggest a possible adaption.

Keywords: Cyber-Physical systems · Resilient systems · Requirements-
based testing

1 Introduction

Cyber-Physical Systems can interact with the physical environment by sensing
external state, transferring kinetic and potential energy, computing solutions to
affect desired outcomes, and driving electrical, optical, and mechanical actuators
to achieve those outcomes. Unlike software applications, CPSs sense, depend
upon, and actuate physical phenomena. The software in long-lifetime CPS must
adapt to unanticipated changes in environments, mechanical, or use. The CPS,
however, might not directly sense all aspects of its environment, especially those
aspects of the environment which were not considered significant during original
development. For example our System Under Test (SUT) is a specific patient
controlled analgesia (PCA) pump which requires medical tubing with an inner
c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 133–148, 2017.
DOI: 10.1007/978-3-319-65948-0 9

134 H. Borck et al.

diameter of 0.054′′. However, residents of less developed countries are often forced
to use whatever equipment is available to them, often without standard safety
procedures or support resources. These users may have access to tubing with a
smaller 0.0033′′ inner diameter which will affect the rate of flow of medication.

This paper presents the Toolkit for Evolving Ecosystem Envelops (TEEE)
system to detect changes in the environment that are not directly sensible and
semiautomatically adapt to them. Neches et al. [18] described resilient systems
as: “trusted and effective out of the box in a wide range of contexts, easily
adapted to many others through reconfiguration or replacement, with grace-
ful and detectable degradation of function.” TEEE aims to add this sort of
resiliency to CPSs. Further, TEEE adds root cause analysis and adaption to
errors, whether they are expected (i.e., degradation due to longevity in the field)
or unexpected. TEEE uses dynamic profiling tools and techniques to explore CPS
performance envelopes, subject to its evolving environment, that will ultimately
allow software to adapt as internal and external conditions change. TEEE lever-
ages model-based development techniques for requirements, design, architecture,
configuration, and automated measurement and stimulus to identify root causes
of anomalies. In contrast, the state of the practice development processes still
largely use trial-and-error test-based software coding.

The remainder of this paper is structured as follows. Section 2 presents the
TEEE system design and architecture. Section 3 describes the background and
related research. Section 4 describes how TEEE models the CPS system. Sec-
tions 5 and 6 go into detail on the Synthesis of Stimulus and Measurements
algorithms respectively. Section 7 presents a real world use case and the results
of running it through TEEE. Finally, Sect. 8 concludes the paper.

2 TEEE Overview

When an error in the system is detected, currently by the user, the TEEE system
uses CPS models and design to create and inject profiling code to identify the
root cause of the error. The aim of the Synthesize Stimulus Algorithm (SSA)
and Dynamic Measurements component is to infer the root cause of the error,
especially in cases which the error is not directly sensible by the CPS. When a
root cause is determined alternative system hardware or software components
(i.e., motor or motor controller software) are suggested to the user.

The primary components of the TEEE architecture are AADL models of the
SUT and dynamic profiling components to synthesize measurements and stimu-
lus of the SUT. The current prototype, developed in JAVA and Coq [4], has all
of the components built with manual data transfers. TEEE interfaces with the
developer (or trained user) before the SUT is deployed. During this step (shown
by the circled 1, in Fig. 1) the developer indicates which AADL model will be
deployed as the SUT. For example the user would indicate the specific imple-
mentation of the system motor controller. The SUT is constantly monitored by
the user for errors, a process we intend to automate in the future. If a variable in
the system has different values than the requirements specify (for example flow

TEEE 135

Fig. 1. The TEEE system architecture.

rate on the medical tubing does not fall within a specified range in the require-
ment) the user indicates to TEEE that an error occurred. Dynamic profiling
code is injected into the system using the TEEE CPS Synthesized Stimulus and
Dynamic Measurement synthesis tools (circled 2). TEEE generates synthesized
stimuli, driven by requirements in the model of the SUT, using the Synthesize
Stimulus component. The stimuli drives exploration of the overall operational
envelopes of the SUT. Operational envelopes are regions in which the CPS is
intended to correctly operate as per its requirements. For the PCA pump SUT,
an example envelope might include a space defined by flow rate, environmental
temperature, and fluid viscosity. The stimuli can also be used to focus on specific
cyberphysical characteristics to evaluate, with input from the user. For exam-
ple, the user may specify prioritization of stimuli on a certain component (i.e.,
tubing, motor, sensors etc.). The Synthesize Stimulus component explores oper-
ational envelopes by creating a test case suite from requirements. A potential
drawback of the current TEEE implementation is the manual process of creating
requirements for the SUT; If a requirement is missing in the model there will
be no test case created. The user of the SUT is tasked to test the SUT accord-
ing to the test cases within the suite. Information on the operational envelopes
is sent to the Dynamic Measurement component. The Dynamic Measurement
component synthesizes measurements, consists of properties about the SUT, and
reasons with the architecture models to infer system behaviors. The results of
the Dynamic Measurement system is a set of components from which the error
may have originated. In Sect. 7 we will dive into an example of TEEE doing
exactly this in a real world scenario.

3 Related Work

Typical design-for-test and unit-test approaches evaluate the SUT against require-
ments, but these methods only address a small fraction of issues, with the majority

136 H. Borck et al.

of defects actually arising from requirements [16]. As such, several approaches use
a SUT model and/or requirements to detect errors and prioritize test cases.

Rodriguez et al. [22], model the security and specifically the resilience of
systems in Unified Modeling Language (UML) models. Their analysis and mod-
eling of security requirements exposes the underlying relationship between secu-
rity and dependability. Similarly, TEEE uses the dynamic profiling components
(Sects. 5 and 6) to uncover constraints in the system including security require-
ments. Rugina et al. [23], present a framework for modeling dependability using
the Architecture Analysis and Design Language (AADL) [7,8] and Generalized
Stochastic Petri Nets (GSPNs). In their framework an error model is added to
the AADL architecture model to present a full picture of the dependability for
the user. Their framework is used to determine the reliability, availability, and
safety prior to system deployment. TEEE focuses on determining if the require-
ments, including these dependability properties, are satisfied in the event of an
environment change or off-specification use when the system has been deployed.

Arafeen and Do [2] use requirements to prioritize test cases and more quickly
determine faults. Their prioritization scheme clusters the requirements and pri-
oritizes the cluster based on the priority of the requirements within. TEEE’s
test case prioritization scheme (Sect. 5) also takes uses system requirements to
create and prioritize test cases. However, TEEE also takes into account whether
the test case (and subsequently requirement) has previously exposed an error.
The merging of these prioritization techniques may prove interesting and will
be explored in further work. Dreossi et al. [6] detect errors in machine learning
components of CPS systems, such as in Lane Keeping Assist Systems in cars, by
formulating it as a falsification problem for the model. TEEE similarly uses the
model requirements to create test cases and determine errors within the CPS.

Adaption in systems (CPS or software) research is focused primarily on
automatically creating patches for software. The GenProg system, Le Goues
et al. [14], uses genetic programming to automatically repair software defects
given a set of test cases. The ClearView system [19] automatically patches errors
in deployed software without access to source code or debugging info. ClearView
learns normal execution, detects failures while monitoring execution, and gen-
erates a patch. While ClearView works on deployed systems, as TEEE does, it
discovers errors by learning ‘normal’ execution and would be unable to discover
error if the ‘normal’ execution changes (such as a system use case change). Con-
verse to these software only approaches TEEE is able to find and repair issues
stemming from the underlying architecture (with a human in the loop) as well
as software errors. TEEE models alternate components in the CPS architec-
ture and, when an issue arises, is able to suggest possible alternate architecture
configurations.

The TEEE project is a seedling effort to augment the DARPA Building
Resource Adaptive Software Systems (BRASS) program [10], which is tasked
with creating resilient systems that have robust and functional 100+ year soft-
ware. This program has roots in autonomic computing [12] in which systems
manage themselves given high-level objectives. TEEE only tries to monitor the

TEEE 137

system for errors in order to determine error causes and possible adaptations
however, rather than the larger task of managing goals and objectives of the
system administrator. Part of ensuring resilient long lifetime software includes
accounting for unanticipated uses of systems as well as unintended environmental
changes. The TEEE approach uses dynamic profiling components to determine
whether environmental changes and/or changes to the SUT use cases are the
cause of current errors. Stoicescu et al. [24] expanded upon Neches description
of resilient systems to be “expected to continuously provide trustworthy services
despite changes in the environment or in the requirements they must comply
with.” The authors outlined an overall approach to defining fault tolerant appli-
cations that automatically adapt during the systems lifetime. Their approach
monitors the system and analyzes the observations to determine if adaptation is
necessary. Stoicescu et al. and TEEE share the goal of adapting to changes in
requirements and/or the environment. Adjepon-Yamoah [1] modeled fault tol-
erant methods via petri nets in systems interfacing with unpredictable environ-
ments (i.e., the cloud). Similarly, TEEE interfaces with the highly unpredictable
physical world to evaluate the cause of errors in the SUT.

4 Modeling Cyber-Physical Systems

The SUT used with the TEEE prototype is a PCA pump. The PCA pump’s
components and requirements are modeled in AADL. While our current SUT is
a PCA pump there is no reason TEEE cannot be generalized to other CPSs, as
long as the models are given to the system.AADL was chosen due to it’s focus on
architecture rather than the functional/behavior emphasis that underlies other
modeling languages. In particular, it better enables modeling and trading-off
what components comprise a system and the relationships between the compo-
nents, rather than how the system works. AADL has been shown beneficial to
risk management activities using medical devices [13]. One of the salient features
of AADL is the ability to model design alternatives coherently within a single
AADL model. AADL defines component types that include all externally visible
features, separately from implementations, which model component internals.
Component implementations, an instantiation of a component, may have sub-
components which themselves may be component types or implementations. A
component type may have any number of implementations, all of which look
identical from outside. By having multiple implementations for a component,
different design alternatives can be modeled. This allows many alternatives for
fault management to be captured in a single model so they may be evaluated
and compared. We anticipate over the lifetime of the CPS additional alterna-
tive implementations and components will be added to the model as technology
advances. Lastly AADL is a rich enough language and does not require exten-
sions to model CPSs. Requirements are scraped from the AADL model of the
CPS system by a custom OSATE [11] plugin. The requirements are consumed
(via XML) by the Stimulus Synthesis Algorithm (SSA) (Sect. 5) and Dynamic
Measurement algorithm (Sect. 6). Listing 1.1 shows a snippet of one implemen-
tation of the motor component in the PCA pump. In this snippet the specific

138 H. Borck et al.

motor modeled is called ‘motor’, its parents are defined under the <Parents>
tag. The criticality of the component is defined by the user and annotated with
the <Criticality> tag. Lastly the requirements of the component are defined
using the <Variable> tag. Each variable may define an allowable and test range
as well as the actual value. Often the actual functioning range of a variable will
be larger than the allowed range indicates, which is why we include the option
of a test range. The requirement on the motor component in Listing 1.1 defines
the variable Operating Temperature as having an allowed range of −10 to 40 ◦C.

Listing 1.1. A XML requirement on the motor component of the PCA pump that has
been extracted from the AADL model.

<Component type=”device” implementation=”motor”>
<Parents>
<SystemRef type=”system” implementation=”motorSystem”/>
<SystemRef type=”system” implementation=”pump”/>
<SystemRef type=”system” implementation=”Full sys inst”/>

</Parents>
<Criticality>0</Criticality>
<Variable name=”OperatingTemperature” units=”c”>

<allowed>
<real min=”−10.0” max=”40.0”/>

</allowed>
</Variable>

</Component>

5 Stimulus Synthesis Algorithm

The Stimulus Synthesis Algorithm (SSA) probes the SUT operating envelope by
creating a set of test cases from the model requirements. The SSA is a combi-
nation of state of the art approaches which are described further in this section.
The SSA consists of two sub-algorithms (1) Create all test cases from the system
specifications and requirements, (2) Reduce test cases to N -wise subsets where
possible, and prioritize the test cases. The results are sent to the Dynamic Mea-
surements component.

5.1 Create Test Cases from Requirements

For each component in the model, the SSA creates a test case that corresponds to
each variable’s allowable range and test range. Our algorithm to create test cases
from requirements is derived from Ranganathan’s [21] work using the Rosetta
modeling language. A test case is defined in our work as a test scenario, a boolean
condition to be applied to a variable; and a test vector, a set of inputs to be
substituted for the variable in the boolean condition. The system requirements
for the motor component (Listing 1.1) only define one variable with an allowable
range, therefore, one test case will be created. The test scenario is the boolean
condition: −10 ≤ temp ∧ temp ≤ 40. This example test case will test if a

TEEE 139

particular component in the CPSs, the motor, is operating under the temperature
range it for which it was designed. The test vector for each test case is created
using the step value in the requirement. If there is no step value present in
the model, a step value of the nearest 1 at the lowest non-zero decimal place
is used (i.e., 200 has a step = 100, 0.34 has a step = 0.01). We expect the
AADL model to be hand created by system designers and therefore, have all of
the necessary information such as step value. However, in the case of a legacy
model or if a designer does not know the step value we have implemented a rest
step creation algorithm. A test vector is created by the SSA for the operating
temperature variable by enumerating each value between −10 and 40 with a step
of 10 (−10, 0...30, 40). Boundary values have been implicated in faults within the
SUT [17], therefore an additional n, where n = 2 in the current prototype, vector
values are added on each boundary. The SSA also adds test vector values for
the actual variable value, if available. The resulting test case suite has sufficient
coverage over the specified requirements.

5.2 Combine and Prioritize

To reduce the number of test cases and subsequently the time it takes to test
the SUT, the SSA combines test cases using the method by Lott et al. [15]. As
previously mentioned a test case is created for each variables allowable range and
test range. The large number of test cases is not scalable to large CPSs which
is why we combine the test cases. The combination algorithm is a simple greedy
algorithm described by Cohen et al. [5], which combines test cases into pairwise
randomly until there are none (or only one) left to combine. The SSA does
not pair test cases which test the same variable (i.e., temperature) in the test
scenario. We found, as Lott et al. did, that a higher order combination yields
greater test pattern savings. Though currently the SSA algorithm uses pair-
wise combination to reduce the risk of combining differently named variables
which are actually the same (i.e., operating temperature vs temperature). With
pairwise combination, assuming independence, growth of the test space increases
log2(x) where x is the number of independent requirements. Increasing the order
of combination of test cases, changes it to logn(x).

The test suite is prioritized to find failure quickly using a the fault-recorded
test prioritization (FRTP) technique [20]. At this stage the user may request pri-
oritization on a specific component. Each time a test case is marked as failed, its
Failure Detection Number (FDN) is incremented. This indicates a fault has been
found at the component(s) being tested within the test case. The FRTP method
iteratively extracts information from the testing process and does not need to be
bootstrapped with information from prior test executions. The FRTP method
prioritizes test cases based on previously found faults (FDN). Some components
are necessarily ‘more important’ than others. For example, if the motor in the
PCA pump fails then the PCA pump will not work. If instead a sensor on the
motor fails then the PCA pump will error but may continue to work. To encode
this we added the criticality of the component to the prioritization algorithm

140 H. Borck et al.

by using an equation derived from the Risk Exposure metric [3] to prioritize the
test suite.

RiskExposure(TS) =
∑

tc∈TC P (f) ∗ C(f)
|f | (1)

Chen et al., defines the risk exposure metric (Eq. 1) as the probability of
failure (P (f)) of a component in the current test case tc multiplied by the cost
of failure of the components in the current test case (C(f)) and then divided by
the total number of components in the current test case. In place of determining
the probability of failure for each component in the test case we redefined P (f) in
TEEE to represent the number of times the components in the current test case
previously failed any test case. Equation 2 shows the TEEE definition of P (f)
which is a novel extension of the Chen Risk Exposure metric. In TEEE the P (f)
is defined by the sum of the FDN for each component in the current test case over
the entire test suite (denoted by TS). The cost of failure (C(f)), or criticality of a
component, is annotated by the user in the AADL model (<Criticality> tag).
The default criticality is to zero, which means not critical. In future iterations
we plan to explore ways of automatically inferring criticality to give the SSA
more meaningful and complete information to reason on.

P (f) =
∑

tc∈TS

(
∑

c∈tc

FDN(c)

)

(2)

Finally Grindal et al. [9] looked at the effectiveness of test case combination
and found better results when pair-wise test cases are combined with a single
variable test strategy. The SSA’s final step is to randomly add k one-wise test
cases to the test suite from the pre-combined list of one-wise test cases for the
SUT. We choose a random k between 25% and 75% of the test suite size to test
the prototype.

Figure 2 shows the prototype GUI for the SSA algorithm. The requirements
file for the PCA pump has been loaded and the SSA algorithm has been run in
the figure. The left side of the GUI shows statistics on the number of test cases
created and the number of test patterns (the test scenarios from the test case
and one test vector value from each test case) before and after combination. It
is worth noting that combining the test cases into pair-wise test cases creates a
test pattern savings of 24% for the PCA pump. The right side of the GUI shows
a pairwise test case. The test scenarios test the tube component (top) and power
system component (bottom). The user is requested to test the test vector values
highlighted in red by substituting the vector values for their respective variable.
In this example the variables are length for the tube component and power for
the power system. The user is expected to record the results using the ‘passed’
or ‘did not pass’ buttons.

TEEE 141

Fig. 2. A GUI of the SSA algorithm showing a combined test case testing a tube and
motor sensor

6 Dynamic Measurements

Some of the properties in CPSs necessary for engineering design decisions or
operational decisions are not directly sensed by the SUT. To calculate the mea-
surements of these properties TEEE uses dynamic measurements of properties
which can be sensed. By synthesizing these measurements TEEE alleviates the
need to measure properties directly in the environment (i.e., the user may not
need to buy new sensors for the SUT in order to determine newly encountered
errors). For example, flow rate is a critical property both the user and designer
need for their respective tasks. The most obvious way to determine flow rate is
to sense it. However, in our working example (PCA pump) flow rate sensors are
not usually built into the system. This forces us to calculate flow rate from other
known quantities. Currently the PCA pump calculates flow rate from system
parameters input by the user. While this has some utility, it is an indication of
what the flow rate should be and not what it actually is. For both engineering
and use case scenarios determining the actual delivered flow rate is critical.

TEEE constructs measurements which are not directly sensible by the SUT
using dynamic, physical measurements from other properties. The measurement
calculation is performed much as it currently is, but using physical measurements
rather than exclusively user input. For example, flow rate can be calculated
by taking the following measurements: motor speed, distance (meters) plunger
traveled per motor rotation, and vial diameter and then calculating a flow rate
value:

142 H. Borck et al.

flowRate := metersPerRevolution ∗ motorSpeed ∗ (π ∗ (tubeDiameter/2)2)

Additionally, we would like mathematical evidence to provide further confi-
dence in the calculated value. While flow rate is a simple calculation, when we
begin to explore more complex properties mathematical assurance is essential.
To achieve these goals we construct and verify a formal model of the calculation
and measurements and synthesize a protocol from the calculation. Verification
assures correctness properties hold and synthesis assures resulting code faith-
fully implements the calculation. We have chosen the proof assistant Coq [4] for
our modeling, verification and synthesis tasks. Coq’s design as a verification and
synthesis language for software and its proof programming capabilities make it
ideal for our purposes.

Coq provides a dependent type checking capability that can establish a
diverse set of properties well beyond what is traditionally viewed as type check-
ing. To provide a degree of assurance in our high-level property specifications
we used Coq’s dependent type system to implement units analysis. Similar to
techniques taught in basic math and science classes, this technique ensures that
units involved in calculations are compatible. When they are not, expressions
will not type check and thus cannot be used in any computation. Thus, units
analysis provides a simple static analysis that predicts errors prior to processing.

Every measurable quantity in our engineering domain is expressible by some
combination of the seven base units (Ampere, Candela, Kelvin, Kilogram, Meter,
Mole, and Second). For example, a Newton is Kgm

s2 , and a Volt is Kgm2

s3A . To our sur-
prise, we could find no existing Coq library for keeping track of units. Therefore,
we created a Units library and a dependently typed expression language imple-
menting Units. With these libraries, we can create a typed expression where the
simplification of the subterms are guaranteed to evaluate to the stated units of the
expression itself. If the units do not match, the statement cannot be constructed.

We know that the end result of our flow rate calculation has units or type
m3

s . Thus, any calculation of flow rate must result in that type. The following
Coq pseudo-code calculates flow rate using the previous equation with units:

var flowrate :: mˆ3
s := (metersPerRevolution :: m

V oid)

* (motorSpeed :: V oid
s)

* (3.14 * (tubeDiameter :: m / 2)^2)

During type checking Coq examines the types of various quantities with
associated units and determines compatibility. The type of the tube cross section
area is m2 and is calculated by squaring the tubeDiameter variable of type m.
The Meters Per Revolution (MPR) type is m

V oid , meters divided by a unit-less
number. When multiplying the MPR by motor speed of type V oid

s the V oid
values cancel giving m

s . Finally when multiplying the result by tube cross section
results in m3

s , the unit associated with flow rate. One cannot make a correctness
assertion of the tube diameter based on this result, but it is evidence that the
formula is correct.

In addition to properties which are not directly sensible, but may be calculated
using other properties measurements, some properties may not be calculated using

TEEE 143

properties, or may not be directly measurable from the operational environment.
For example, the distance traveled by the plunger per motor revolution is not easily
measurable in our SUT because the gear train is sealed preventing counting teeth
or relying on them all being the same. The value is also not likely to change without
severe modification and abnormal use of the system. However, the value may be
derivable if we are able to determine flow rate from more than one method. The
differing values are detected, and we can deduce what environmental factors may
have changed to explain the discrepancy. Therefore it may be possible to adjust
predefined assumption values as needed. The assumed or given value for distance
traveled is identified in the SUT AADL model.

To reason about the measurement process we must have a model of the pump’s
operational Environment. To model this environment in Coq we create a class con-
taining measurable quantities. The instance of this class must have every possible
measurement enumerated and defined as either an assumption or a measurable
value. Assumptions and their assumed values are provided in the AADL model.
Measurable values must define how the value is measured. Additionally, a proof
must be provided to confirm every measurement is present in exactly one of these
two categories. When the measurement code is synthesized from the Coq model,
the environment model falls away and is replaced by the actual environment.

7 Scenario Walkthrough

CPSs developed for first world countries are retired to developing countries
after their service life expires in the first world countries. In these situations
resources are not always available to run these systems in the environment they
are designed for. We will validate two scenarios which came from real world
observations of PCA pumps being used in developing countries. Then we will
walk through one of the scenarios, showing the output of each of the TEEE
components, and demonstrate TEEE is able to determine possible root causes
and suggestion an adaption. As this is a unique system a full system evaluation
was not able to be run, however, we show through the scenario walkthrough the
validity of the system. First we will look at the viscosity of the material being
pumped. Untrained or overworked users may put the wrong medication into the
pump. While there is a bar code reader on the PCA pump, it is easily bypassed.
Additionally, temperature has an affect on the viscosity of liquids. Egg whites are
similar in viscosity to blood plasma, which is commonly used to treat patients
with shock. If, for example, the PCA pump is used in an area which is very hot
and without air conditioning the medication could be more viscous. In the walk
through we will show that TEEE is able to determine the root cause of this error
is the viscosity of the medication in the pump. A second common issue found is
how a brown out may affect the SUT. Brown outs can cause the motor to run
slower and subsequently the amount of medication expelled is less. To continue
regular functionality, many medical devices contain a battery. However, very few
working batteries last or even arrive in the developing world, and black/brown
outs can have a significant effect on the device that the programmers thought

144 H. Borck et al.

would never occur1. The motor, in this particular PCA pump, does not have a
sensor to determine the motor rate nor does it have a sensor to determine the
flow of the material being pumped. If a brown out occurs there could be no way
for the CPS software to determine the cause of the problem.

We ran experiments to confirm the validity of these scenarios. Water and egg
whites were run through the PCA pump for 5 min and varied the speed of the
motor (100 Hz, 50 Hz, and 25 Hz). We ran 5 experiments for each variant. The
experiments showed a significant difference, using a paired t Test with p < .005,
between uL expelled per tick of the motor between 100 Hz and 25 Hz as well as
50 Hz and 25 Hz when using egg whites. Water showed a significant difference
between 100 Hz and 50 Hz as well as 100 Hz and 25 Hz. The t Test resulted in a
value of p = 0.007 when comparing 50 Hz and 25 Hz using water. The results of
this experiment can be seen in Fig. 3. The test results also indicated a significant
difference in uL expelled per tick of water versus egg whites at 100 Hz and 25 Hz
(p < .005). These experiments confirm the validity of the brownout scenario by
showing the rate of the motor affects the amount of material dispensed. They
also confirm the validity of the viscosity scenario showing materials at different
viscosities affect the amount of material dispensed.

0.147

0.140

0.150 0.149

0.166

0.153

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

egg whites water

uL
 p

er
 M

ot
or

 T
ic

k

Material pumped through PCA

100Hz 50Hz 25Hz

Fig. 3. Comparison of the uL of material (egg whites or water) expelled from the PCA
pump when the motor was running at 100 Hz, 50Hz, and 25Hz.

1 In one of the authors person experience, we once came across some donated defib-
rillators none of which had batteries. While the defibrillators are designed to still
function without a battery (slightly slower charge build up), they were clearly never
intended to be used this way as one of steps in the daily self test required the pres-
ence of a battery despite the battery itself not being present in the test. Luckily, we
were able to find an alternate method of ensuring proper functionality.

TEEE 145

Confirmation of Adaptation Within TEEE. The data from the PCA pump
experiments shows that there is a difference in amount of material expelled when
using materials of difference viscosities. Viscosity of the medication in the PCA
pump, however, is a change within the environment that cannot be known via
it’s sensors. To confirm that TEEE is able to determine the root cause of this
scenario (material is of a different viscosity than is expected) and adapt to such
changes we will dive into the output of each component. The first step is to
model the PCA pump in AADL.

Listing 1.2. A snippet showing requirements in the viscosity scenario.

<Component type=”device” implementation=”tube”>
<Variable name=”FlowRate” units=”ulps” varType=”real”>

<allowed> <real min=”0.141” max=”0.147”/> </allowed>
</Variable>
<\Component>

<Component type=”device” implementation=”medication”>
<Variable name=”DynamicViscosity” units=”cP” varType=”real”>
<allowed> <real min=”1” max=”1.5”/> </allowed>

</Variable>
<\Component>

A requirement is put on the tube component of the model that the flow
rate of the medication must be between 0.141 and 0.147 and viscosity of the
medication must be between 1 and 1.5. (Listing 1.2). The SSA algorithm created
20 test cases from the requirements within the model which enumerated 3529
test patterns (the test scenarios of the test case and one value from each of
the test vectors). After the SSA pair-wise combination step is run the test case
suite size is reduced to 10 cases and 2674 test patterns, yielding a test pattern
savings of 24% (results shown in the SSA GUI in Fig. 2. The test cases in Table 1
corresponds to the requirements.

Table 1. Test cases created for requirements on tube flow rate and medication viscosity

Component Test scenario Test vector Actual value

Tube 0.141 < FlowRate < 0.147 0.139, 0.140, 0.141, 0.142,
0.143, 0.144, 0.145, 0.146,
0.147, 0.148, 0.149, 0.166

0.166

Medication 1.0 < V iscosity < 1.5 0.8, 0.9, 0.94, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7

0.94

A randomized user was simulated testing the PCA pump, i.e., running
through the test cases and marking them passed or failed. Each test pattern
had a 50% chance to mark its parent test case as failed, except the test case for

146 H. Borck et al.

the Tube component, shown in Table 1, which was marked failed each time. The
test case suite was then prioritized on the tube component. The resulting prior-
itization along with failure detection number and risk exposure score is found in
Table 2.

Table 2. The prioritization of test cases for the tube component based on randomized
user data.

Case Id Component A Component B FDN Risk exposure

C5 Tube Medication 2070 .60

C2 Tube Power system 144 .35

C8 Interface logic system Tube 44 .17

C1 Motor Power system 114 .09

C7 Pump Power system 120 .08

C9 Environment Power system 110 .06

C4 Pump Pump 12 .04

C0 Pump Interface logic system 46 .02

C3 Motor sensor Motor controller 18 .01

C6 Motor controller Motor sensor 30 .01

The information on the test case failures was sent to the Dynamic Measure-
ment component to provide more information concerning the cause of the error.
The Dynamic Measurement component models the calculation of mass flow rate
as described previously. Working from measured values back to flow rate provides
an alternative perspective on the failure. The mass flow rate equation is defined
using Coq and verified using units analysis and using an execution semantics for
the protocol description. Using information from testing and measurement, the
user is able to determine the failure is likely that the medication is the incorrect
viscosity rather than the alternative of improper tube diameter. With the root
cause of the failure found a recommendation is presented to the user to change
the viscosity of the medication based on evidence from the SSA and Dynamic
Measurement system. A new test suite is set up and tested to confirm the issue
was solved.

8 Conclusion

In this paper we presented the Toolkit for Evolving Ecosystem (TEEE) system,
to address challenges in CPSs due to changing environment or use over time.
We presented a real world example of environmental changes affecting the use
of a PCA pump. The scenario was verified valid by a series of experiments using
a Hospira PCA pump. We showed the TEEE prototype is able to determine
the root cause of the issue in the scenario using the Stimulus Synthesis and

TEEE 147

Dynamic Measurements algorithms. Further work will focus on automating the
components of TEEE. The SSA creates a bottleneck by requiring a human in
the loop to manually mark test cases as passed/failed. In the future we plan to
create tools using OSATE-based analysis to determine if a test case will pass/fail.
Future work on the Dynamic Measurement algorithm will focus on deducing
more complex or obscured environmental changes, such as vial diameter or faulty
sensors. To do this we will create a number of verified measuring programs
for each property within the AADL model. This will allow the algorithm to
dynamically answer requests like “measure flow rate every possible way and
compare the results”. We are also aiming to create a Dynamic Measurement
algorithm which is able to determine the property measurement without using
assumptions in the current environment.

Acknowledgments. This material is based upon work supported by the United
States Air Force and DARPA under Contract No. FA8750-16-C-0273. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air Force
or DARPA.

References

1. Adjepon-Yamoah, D.E.: cloud-ATAM : method for analysing resilient attributes
of cloud-based architectures. In: Crnkovic, I., Troubitsyna, E. (eds.) SERENE
2016. LNCS, vol. 9823, pp. 105–114. Springer, Cham (2016). doi:10.1007/
978-3-319-45892-2 8

2. Arafeen, M.J., Do, H.: Test case prioritization using requirements-based clustering.
In: 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation (ICST), pp. 312–321. IEEE (2013)

3. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selec-
tion with risk analysis. In: Proceedings of the 2002 Conference of the Centre for
Advanced Studies on Collaborative Research, p. 1. IBM Press (2002)

4. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997)

6. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). doi:10.
1007/978-3-319-57288-8 26

7. Feiler, P., Lewis, B., Vestal, S.: The SAE avionics architecture description language
(AADL) standard: a basis for model-based architecture-driven embedded systems.
In: Real-Time Applications Symposium Workshop on Model-Driven Embedded
Systems (2003)

8. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): an introduction. Technical report, DTIC Document (2006)

9. Grindal, M., Lindström, B., Offutt, J., Andler, S.F.: An evaluation of combination
strategies for test case selection. Empir. Softw. Eng. 11(4), 583–611 (2006)

http://dx.doi.org/10.1007/978-3-319-45892-2_8
http://dx.doi.org/10.1007/978-3-319-45892-2_8
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26

148 H. Borck et al.

10. Hughes, J., Sparks, C., Stoughton, A., Parikh, R., Reuther, A., Jagannathan, S.:
Building resource adaptive software systems (brass): objectives and system evalu-
ation. ACM SIGSOFT Softw. Eng. Notes 41(1), 1–2 (2016)

11. Software Engineering Institute. Open source AADL tool environment (osate).
http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html

12. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

13. Larson, B., Hatcliff, J., Fowler, K., Delange, J.: Illustrating the AADL error mod-
eling annex (v. 2) using a simple safety-critical medical device. ACM SIGAda Ada
Lett. 33(3), 65–84 (2013)

14. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

15. Lott, C., Jain, A., Dalal, S.: Modeling requirements for combinatorial software
testing. ACM SIGSOFT Softw. Eng. Notes 30, 1–7 (2005). ACM

16. Mogyorodi, G.: What is requirements-based testing? Technical report, Crosstalk
(2003)

17. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, New
York (2011)

18. Neches, R.: Engineered resilient systems (ers) s&t priority description and roadmap
(2011)

19. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M.,
Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., et al.: Automatically patch-
ing errors in deployed software. In: Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, pp. 87–102. ACM (2009)

20. Qi, Y., Mao, X., Lei, Y.: Efficient automated program repair through fault-recorded
testing prioritization. In: 2013 29th IEEE International Conference on Software
Maintenance (ICSM), pp. 180–189. IEEE (2013)

21. Ranganathan, K., Rangarajan, M., Alexander, P., Regan, T.: Automated test vec-
tor generation from rosetta requirements. In: VHDL International Users Forum
Fall Workshop, Proceedings, pp. 51–58. IEEE (2000)

22. Rodŕıguez, R.J., Merseguer, J., Bernardi, S.: Modelling and analysing resilience as
a security issue within UML. In: Proceedings of the 2nd International Workshop
on Software Engineering for Resilient Systems, pp. 42–51. ACM (2010)

23. Rugina, A.-E., Kanoun, K., Kaâniche, M.: A system dependability modeling frame-
work using AADL and GSPNs. In: Lemos, R., Gacek, C., Romanovsky, A. (eds.)
WADS 2006. LNCS, vol. 4615, pp. 14–38. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74035-3 2

24. Stoicescu, M., Fabre, J.-C., Roy, M.: Architecting resilient computing sys-
tems: overall approach and open issues. In: Troubitsyna, E.A. (ed.) SERENE
2011. LNCS, vol. 6968, pp. 48–62. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24124-6 5

http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html
http://dx.doi.org/10.1007/978-3-540-74035-3_2
http://dx.doi.org/10.1007/978-3-540-74035-3_2
http://dx.doi.org/10.1007/978-3-642-24124-6_5
http://dx.doi.org/10.1007/978-3-642-24124-6_5

Fault Tolerance, Resilience
and Robustness

Improving Robustness of AUTOSAR Software
Components with Design by Contract: A Study

Within Volvo AB

Yulai Zhou1, Patrizio Pelliccione1(B), Johan Haraldsson2, and Mafjiul Islam2

1 Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
patrizio.pelliccione@gu.se

2 Volvo AB, Gothenburg, Sweden
{johan.haraldsson,mafijul.islam}@volvo.com

Abstract. The increasing volume of software in vehicles makes robust-
ness a significant quality attribute. In this paper, we investigate the use
of Design by Contract to improve the robustness of existing AUTOSAR
software components. The main idea of DbC is to view the relationship
between two components as a formal contract that expresses compo-
nent’s rights and obligations.

The proposed solution is validated by testing both the original and
modified components and by comparing the results. The results prove
that Design by Contract greatly increases the robustness of AUTOSAR
software components: none of the tests for the modified software com-
ponents failed. We also identified some weaknesses of the proposed app-
roach, such as (i) potential additional errors brought by the newly-built
components, and (ii) difficulty in modifying components that are auto-
matically generated through some model-to-code generation tools.

1 Introduction

Software volume in vehicles has been keeping increasing for years; it is expected
to increase by 50% by 2020 [1]. 80% to 90% of the innovation within the automo-
tive industry is based on electronics, and a big part of electronics is software [2,3].
The increasing complexity of software causes an increasing request for robust-
ness. According to some reports, software errors led to almost 60–70% of all the
recalls of vehicles in Europe and North America [1]. These errors might endanger
people’s life, affect manufacturers’ reputation and lead to economic losses.

To increase the quality and the efficiency of the embedded system of the
vehicle, many large manufacturers and suppliers in the automotive industry in
Europe have been joined up to establish a shared standard for vehicle system
architecture since 2003. The output for this effort is AUTOSAR (Automotive
Open System Architecture - https://www.autosar.org/). Its goal is to get a de-
facto open industry standard for automotive E/E architectures [4], by which
automotive systems can get better modularity, scalability, transferability and
re-usability. Since then, AUTOSAR has been a popular open standard in the

c© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 151–168, 2017.
DOI: 10.1007/978-3-319-65948-0 10

https://www.autosar.org/

152 Y. Zhou et al.

automotive industry. However, AUTOSAR just defines the architecture of the
vehicle software system, while the implementation of the functionality is done by
the manufacturers and suppliers themselves. Moreover, it is in general quite diffi-
cult to ensure that the quality expectations are met. This includes the robustness
of the developed AUTOSAR software components.

In this paper we describe an industrial investigation made within Volvo AB in
Gothenburg about using Design by Contract (DbC) as a means for improving the
robustness of AUTOSAR software components. In DbC, the relationship between
a class and its clients is viewed as a formal agreement in which each party’s right
and obligations are described [5]. In practice, it sets precise conditions to both the
input and output of the components. Since the output of one component is often
the input of another component, this enables to check that the communication
among components is correct. DbC helps both checking the correctness of input
and output of one software component, and the preservation of invariants inside
the software component.

The proposed approach is implemented and applied to the components of
two AUTOSAR applications. The output of our approach is a set of components
enhanced with contracts. These components are then tested by black-box testing
with ARUnit testing tool. By comparing the test results of the original and
modified components, we can conclude saying that DbC greatly increases the
robustness of AUTOSAR software components. In the paper we also identify
and discuss limitations and weaknesses of the proposed approach.

The paper is structured as follows: Sect. 2 provides background information.
Related works are discussed in Sect. 3. Section 4 presents the approach and Sect. 5
describes its implementation. The validation of the approach is discussed in
Sect. 6. The paper concludes with final remarks and future research directions
in Sect. 7.

2 AUTOSAR and ARUnit

AUTOSAR (AUTomotive Open System ARchitecture) [4] is a collaborative
project initiated by several large manufactures and suppliers in automotive
industry to establish a shared standard for automotive E/E architectures. It
is driven by the intention of getting better flexibility, scalability, reliability, and
quality when the complexity of E/E system is greatly increasing. This kind
of increased complexity is mainly concerned with the growth of the functional
scope. Besides the goal of making the developers concentrate on the realization
of the functionality rather than the design of the architectures, the standard
of AUTOSAR also makes components developed by different manufacturers or
software companies be able to be integrated with well-defined interfaces.

AUTOSAR is a standard architecture to make vehicle software applications
independent of the hardware. AUTOSAR also makes components developed by
different manufacturers or software companies able to be integrated through well-
defined interfaces. Every AUTOSAR application is distributed to one or more
Electronic Control Units (ECUs). An AUTOSAR software component is defined

Improving Robustness of AUTOSAR Software Components 153

as the encapsulation of part of the functionality of the AUTOSAR application [4].
An AUTOSAR application is composed of one or several software components
(SW-Cs). How to describe the interfaces of these AUTOSAR SW-Cs is defined
and standardized within AUTOSAR. Each component can only be distributed
to one AUTOSAR ECU. This is the reason why a AUTOSAR SW-C is called
as “Atomic Software Component” [4]. In order to be able to integrate several
AUTOSAR SW-Cs correctly, one formal and complete description for one SW-C
is needed when it is implemented.

Communication between AUTOSAR software components are conducted by
well-defined ports. A port is defined by an AUTOSAR interface. It can either be
a Provided Port, which provides data, or a Required Port, which receives data.
There are two main types of communication patterns supported by AUTOSAR.
One is Client-Server and another one is Sender-Receiver. An AUTOSAR software
component (SW-C) can be both a client and a server. The Sender-Receiver
pattern realizes asynchronous communication. A sender sends information to
one or several receivers without receiving back an answer. The time and way to
send back information are decided by the receivers.

Communication between different ECUs is performed via a shared virtual
bus, which consists of hardware interfaces provided by the basic software in
AUTOSAR infrastructure. The Runtime Environment (RTE) is an implementa-
tion of the Virtual Functional Bus (VFB). It provides a uniform environment for
communication between components [4]; when moving a component to another
ECU, developers do not need to change any code of the component. This work
focuses on the application layer.

Robustness of software refers to the capability of the system or component to
(i) handle data correctly even when the input volume is very large, and (ii) handle
invalid inputs to ensure the successful running of the system or component. In the
vehicle embedded system most applications run repeatedly over a time period,
i.e., 5 ms, 10 ms or 20 ms according to the requirements of the application.

In order to test AUTOSAR software components we make use of ARUnit1,
which is a lightweight unit testing environment based on Eclipse. After import-
ing the components that need to be tested, it can compile the components and
generate the run-time environment for each single AUTOSAR software compo-
nent. Test cases can be defined directly within the tool and moreover it provides
an API to stimulate and query the state of the RTE from the outside. It is a
quite convenient tool for operating unit testing effectively and efficiently.

3 Related Works

Design by Contract, also known as programming by contract, is an approach
for designing software, by which software can get better robustness. The key
concept is “viewing the relationship between a class and its clients as a formal
agreement, expressing each party’s right and obligations” [5]. The agreements are

1 https://www.artop.org/arunit.

https://www.artop.org/arunit

154 Y. Zhou et al.

similar to the contracts in business. These contracts set conditions for input and
output of software components. The conditions have three types: pre-condition,
post-condition and invariant. When a client component calls an operation on a
server component, the client component needs to meet the pre-condition which
is specific for that operation. For the return of that operation, the requirements
of the post-condition need to be meet, which are an obligation for the server
component. Invariant is a certain property that holds for both client and server
components. In this way, different components of a software system can collab-
orate with each other with high robustness.

Design by Contract was popularized by Bertrand Meyer [6] and included in
his Eiffel programming language [7]. The work in [7] shows that building software
components on the basis of carefully designed contracts might reduce bugs and
then improve software reliability. In the last two decades DbC started to be
popular in several programming languages, either through native support or with
third-party solutions. The work in [8] exploits DbC to concurrent programs. Java
Modeling Language (JML) is extended with constructs to specify contracts and
to verify assertions of concurrent Java programs. The same authors apply then
the approach to a case study in the telecommunications domain to assess the
effectiveness of contracts as test oracles in detecting and diagnosing functional
faults in concurrent software [9]. The work shows that DbC can be a valuable
tool to improve the economics of software engineering.

The work in [10] shows how to specify the functionality of software compo-
nents with the theory and methods of the DbC approach. The conclusion of the
author is that the reliability and reusability of components can be enhanced by
encapsulating operations within the components and by managing communica-
tions through the interfaces. The work in [11] introduces an approach to check
DbC assertions without referring to the program states; this makes the assertions
more readable and maintainable.

The work in [12] introduced an approach for integrating DbC with feature-
oriented programming. In the C programming language, the application of DbC
is not obvious. The subjects of the conditions are the functions: the caller func-
tion must meet all the preconditions of the callee function, and the callee function
must meet its own post-conditions. The failure of either parts of the contract is
a bug in the software [5]. Invariants in C are the conditions that must be hold
for a structure or type2.

The work in [13] presents a methodology for contract-based system design.
The authors identify also AUTOSAR software components as an interesting
direction to be investigated. However, to the best of our knowledge, the use
of DbC for AUTOSAR software components still need to be investigated and
experimented deeply. Our paper contributes exactly in this direction.

As Design by Contract is used for objected-oriented languages in most situ-
ations and AUTOSAR SW-Cs are developed by C without any existing third-
party tools that support Design by Contract, we need to explore a new way for

2 www.onlamp.com/pub/a/onlamp/2004/10/28/design by contract in c.html.

www.onlamp.com/pub/a/onlamp/2004/10/28/design_by_contract_in_c.html

Improving Robustness of AUTOSAR Software Components 155

applying Design by Contract in AUTOSAR SW-Cs and evaluate the effect of
improvement of robustness.

4 DbC for AUTOSAR SW-Cs

This work has been organized in three iterations, each of them including the
following phases: (i) problem identification, (ii) discussion and suggestion, (iii)
design and development, (iv) evaluation, and (v) conclusion and report. The
first two attempts were abandoned for their weaknesses as it is described in
the following. Finally, in the third iteration we identified the method that we
implemented and used.

4.1 First Iteration and Attempt

This first attempt focuses on the direct use of assert() to add input and output
checks into the code. For example, there are two types of input and one type of
output for one component. And the requirements for them are input 1 > 0,
input 2 < 0 and output > 0. Then we need to add assert(input 1 > 0 &
input 2 <0) at the beginning of the code and assert(output > 0) at the end
of the code. And also, if there are C-style structures or types in any places of
the code, assertions are needed at these places as well. These assertions are used
as the pre-conditions, post-conditions, and invariants for this component.
Problems and Limitations: A C-style assertion is not suitable for error han-
dling especially in embedded software. In most situations, there are no screens
available to show the information of the errors. What such software needs is an
approach to detect and handle the errors. Moreover, there are many weaknesses
of using assertions:

– Assertions lack robustness, there is a high intermix between application code
and contracts, and there is a high code redundancy;

– The use of assert() requires to add extra code into the original compo-
nent and this may also bring errors that might show up when running the
preconditions, post-conditions and invariants checks;

– Assert statements tend to intermix with application code and this is not good
for readability, understandability, and reusability of the code;

– Duplicate code is needed when invariants for a common structure or type
exist in many different places in the code.

Summarizing, assert() in C programming language does not make DbC
reach desired effects to improve software components’ robustness in AUTOSAR.

4.2 Second Iteration and Attempt

As second attempt, we tried to set independent components for every type of
input, output and structures in the original AUTOSAR software components.
More precisely, there should be 3 components around the original component for

156 Y. Zhou et al.

every type of input, output and structures in the original component. In each
of these components, there is a function which is used to check the value. These
functions are invoked when needed by the original component.
Problems and Limitations: This solution suffers of some limitations:

– Typically, there is a huge number of types of input, output, and structures for
one AUTOSAR software component. This will cause the creation of a large
number of components and it will be hard to manage so many components;

– In most conditions the requirements for one type of input, output or structure
are not complex. It is not worth the effort of building so many new components
just for one original component;

– Other problems, such as redundancy of invoking these functions in the code
of the original component and bad readability of the code, also exist.

Summarizing, this second solution is not exactly the best solution to improve
software components’ robustness in AUTOSAR.

4.3 Third Iteration and Successful Attempt

In this final attempt, we tried to build a pre-condition component, a post-
condition component and an invariant component for one original component.
The pre-condition component contains a function to check all types of input. The
post-condition component contains a function to check all the types of output.
Also, the invariant component has functions to check all the structures or types
in the original AUTOSAR software components. This method effectively limits
the number of newly-built components and functions. It is also the method that
we finally implemented and experimented.

As mentioned in Sect. 2, the DbC approach considers the two sides of the
contract as the caller and the callee (or the client and the server). For this
reason, the traditional client-server pattern in the software architecture design
is a very good reference pattern.

We got inspiration also from the Proxy pattern for what concerns the han-
dling of the invoked service. When a client component invokes a service from a
server component, the proxy component will make pre-processing for the input
and post-processing for the output. The idea is to exploit the pattern for input
and output checking and to combine it with the widely approach.

When combining the DbC approach with the two reference patterns, the
most significant point is where to define the pre-conditions, post-conditions, and
invariants. Figure 1 shows the design for the new components enhanced with
DbC and how the components work together. The main processing component
is almost unchanged. It is responsible for calculating or handling the input data
and generating the output data. The newly-built pre-condition, post-condition
and invariant components around it are responsible for data check.

In the Pre-condition component, there is a function that works for checking
all the input data. If the input is invalid or erroneous, it can be throw away
or, if possible, it can be changed in a default and valid value. How to deal

Improving Robustness of AUTOSAR Software Components 157

Fig. 1. Design for AUTOSAR SW-Cs with DoC

with it depends on the specific requirements. The Pre-condition component will
then give the checked input data to the main processing component for further
calculation. In the Invariant component one or more functions are defined. Each
function is used for checking one structure or type in the code of the main
processing component. When there is a structure or type in the code, it will
invoke the corresponding function to check this structure before using it. In the
Post-condition component there is a function that works for checking all the
output data. It will make sure that the output is in the reasonable range.

Considering how Proxy pattern handles input and output data, the newly-
built pre-condition, post-condition and invariant components can be viewed as
proxy components. Figure 2 shows how the input data are handled and exchanged
between the components.

5 Implementation

This section introduces the process of setting up the development environment
including exporting the Brake-Pedal-Input-Handler component and Brake-Light-

158 Y. Zhou et al.

Fig. 2. Data handled and exchanged between components

Control component from the Arctic Studio, and importing them into ARUnit.
Then, the implementation includes the identification of pre-conditions and post-
conditions3, and the design, modification and testing of the two software compo-
nents. The PC used for the implementation and experimentation uses Windows 7
as the operating system and the two main development tools, Arctic Studio and
ARUnit (introduced in Sect. 2), are installed correctly on it. Arctic Studio pro-
vides a complete embedded software development environment for automotive
embedded software based on AUTOSAR4.

Arctic Studio is the original development tool for the existing AUTOSAR
SW-Cs. It makes the architecture easy to understand and the components easy to
recognize and read. Driven by the industrial co-authors, and by reading through
the code of the components and the available documentation, we selected the
Brake-Pedal-Input-Handler Component and the Brake-Light-Control Compo-
nent from the applications in this package as the components to be considered
for the experiment. These two components are described in Sect. 5.1.

Arctic Studio and ARUnit are built for different purposes. ARUnit is more
efficient for running and testing one single component or certain components.
In order to modify and test the two selected components independently from
the relevant components in the applications, the ECU, and the real running
environment, we exported them from the whole package in Arctic Studio and
imported them into ARUnit. The files that we imported into ARUint are the

3 In the considered components there was no need for invariant checks. As the func-
tioning of the invariant component is similar to the functioning of the functions in
the pre-condition and post-condition components, this will not affect the evaluation
of our solution. In the AUTOSAR software components of other projects or appli-
cations, there are structures or types. Therefore, invariant component can be used
in those software components though it is not used here.

4 http://www.arccore.com/products/arctic-studio.

http://www.arccore.com/products/arctic-studio

Improving Robustness of AUTOSAR Software Components 159

source files of the components and the software component description files of
them. ARUnit is then used to generate the run-time environment for them.
Finally, code files used for testing are built in ARUnit as well.

Fig. 3. Brake lighting SW-Cs distribution on ECUs [14]

5.1 Selected AUTOSAR Software Components

An AUTOSAR software component is defined as the encapsulation of part of
the functionality of the AUTOSAR application [4]. An AUTOSAR application
is composed of one or several SW-Cs. How to describe the interfaces of these
AUTOSAR SW-Cs is defined and standardized within AUTOSAR. Each compo-
nent can only be distributed to one AUTOSAR ECU. This is the reason why the
AUTOSAR SW-C is called as “Atomic Software Component” [4]. AUTOSAR
does not prescribe the size of the SW-Cs and how the SW-Cs are implemented.
But in order to be able to integrate several AUTOSAR SW-Cs correctly, one
formal and complete description for one SW-C is needed when it is implemented.
The description introduces how to configure the infrastructure for the component
when building the system. In this section we describe the AUTOSAR software
components we selected for the evaluation. These two components have been
selected with the support of experts within Volvo AB and they are representa-
tive of the set of the existing AUTOSAR software components for the purpose
of studying robustness. These components are used in many research projects
within Volvo AB. To better understand the functionality of these components
we first introduce the software application that includes them, i.e. the Brake-
By-Wire application (BWB).

160 Y. Zhou et al.

The Brake-By-Wire is an application that is used in several research projects
within Volvo AB. It implements a brake-by-wire function distributed over five
ECUs. It is not the real system that is used in the real trucks. It is proposed
to give an example of distributed safety-critical system for validating research
projects. The BBW application also includes an environment model of the vehicle
in order to simulate the behaviour of the entire vehicle for what concerns accel-
eration and braking [14]. When using this application, the Brake Pedal ECU
gets the signal of braking, does the calculation and then sends a corresponding
brake force request to each wheel.

Brake-Pedal-Input-Handler component: The function of this component is
to convert the hardware pedal input into a pedal position (0–100%). The input
of this component is an integer with 12 bits and the output is a percentage from
0% to 100%. It provides input for the Brake-Torque-Calculation component and
the Brake-Light-Control component.

Brake-Light-Control component: The distribution of the SW-Cs in the
Brake-Lighting application is shown in Fig. 3. The Brake-Light-Control com-
ponent is located on the BrakePedalECU. It inputs vehicle speed and brake
pedal position (0–100%) and outputs ON or OFF for the brake lights according
to some rules. The basic rules [14] are:

1. The brake light is always OFF when the pedal input is 0%;
2. The brake light is always fixed ON whenever the pedal input >0% and the

vehicle speed is <10 km/h;
3. From 10 km/h and above the brake light will blink ON/OFF if emergency

braking is active otherwise it is fixed ON.

5.2 Process of Modifying the Brake-Pedal-Input-Handler
Component

In this section, we describe the analysis of the original component, the process
of design, the modification and testing of the Brake-Pedal-Input-Handler com-
ponent according to the Design by Contract approach.

Issues of the Current Component: Several issues were raised when reviewing
the original component that may threaten the realization of the expected func-
tionality and the robustness of the whole component. One issue is that there are
no complete input checks for the component. The component does not handle
the input in all the possible ranges of values that are mentioned in the documen-
tation. In other words, the input check is too simple to deal with all the possible
conditions.

Another issue is that there is no output check to ensure that the data gotten
from the component is completely correct for the next component that uses
the data. Although the calculation in this component is not complex, the errors
cannot be completely avoided at runtime. That is why output check is necessary.

Finally, other issues concern the internal logic and the readability of the
component code. In the original component, the simple and incomplete input

Improving Robustness of AUTOSAR Software Components 161

checks are mixed with the code that is responsible for the calculation. This makes
the code hard to read and understand for developers. This may also threaten
the robustness when modifying the code.

Identification of Pre-conditions and Post-conditions: According to the
documentation and the package of all the program code, the Brake-Pedal-Input-
Handler component is used to convert the analogue input from the pedal into
a pedal position which is from 0% to 100%. The pedal provides an analogue
input with the range from 10% to 90% of supply voltage (5 V direct current),
which means the voltage is about from 0.5 V to 4.5 V. If the analogue input is
0–0.5 V, it means that it is an open circuit or short to ground. If the analogue
input is 4.5–5 V, it means that the battery level is too low. Both of them are
errors. For the reason that the AD (Analog-to-Digital) converter of the micro-
controller has not been calibrated, this inaccuracy has to be considered when
building the software. The output from the AD converter is the input for the
software component we considered. The input is a 12 bit value, which uses 0 to
represent 0 V and uses 4095 to represent 5 V. Of course, if considering that the
input values of the test cases for this component can come also from the ARUnit,
the input can possibly be less than 0 or greater than 4095. Thus, input values
in these ranges are seen as invalid.

All the possible inputs of the Brake-Pedal-Input-Handler component are:

– value < 0;
– 500 <= value <= 3500;
– 0 <= value <= 400;
– 3501 <= value <= 3700;
– 401 <= value <= 499;
– 3701 <= value <= 4095;
– value > 4095.

What we need to do next is to set contracts for the component. In the con-
sidered components there was no need for invariant checks. As the functioning
of the invariant component is similar to the functioning of the functions in the
pre-condition and post-condition components, this will not affect the evaluation
of our solution. In the AUTOSAR software components of other projects or
applications, there are structures or types. Therefore invariant component can
be used in those software components though it is not used here.

When setting pre-condition part of the contracts, the information from
requirements specification should be carefully considered to cover all the pos-
sible inputs. In this specific example the precondition considers as a valid input
only an input value in the range 401–3700. When the input value is less than 0 or
greater than 4095, it is an invalid input. Input value in this range just appears in
the testing environment in ARUnit5. When the input value is in the range of 0–
400 and 3701–4095, it is erroneous. Input values in this range represents 0–0.5 V
or 4.5–5 V. They can be generated by the errors of hardware in the vehicles.

5 These values should not really come in real environments.

162 Y. Zhou et al.

For the post-condition, it should meet two requirements. Firstly, the output of
the software component should be an integer from 0 to 100 to represent values
from 0% to 100%. Then, the correctness check for the calculation within the
component is needed. There are not structures or types used in this component.
Hence, we do not need to set invariant checks for them.

Design and Modification: In the pre-condition component, there is a func-
tion that gets the pedal signal as input and verifies it for the main processing
component. Only the valid and faultless data, which are greater than 401 and
less than 3700, can enter into the main processing component. The invalid and
erroneous data are detected and handled. In order to see the testing results intu-
itively, in our design it directly shows in the console of ARUnit that it is invalid
or erroneous. For example, if the input is −100, the console shows it is an invalid
input. But when running in the real ECU, other approaches should be used to
handle an invalid or erroneous input because of lack of a screen. The possible
approaches may be the correction of the data or getting the next input data
after some time. The main processing component works for calculation of the
data and giving the results to the post-condition component for checks. The code
for data processing in the main processing component is the same of the original
component. In the post-condition component, a function used for checking the
calculation results of the main processing component is defined. It checks if the
calculation is correct and the output is in the range of 0%–100%.

Test: In order to check whether the modified component improves the robustness
of the component, we test both the original and the modified components in
ARUnit. When running the testing program, the input data are sent into the
component and the output data are shown on the console in ARUnit through the
testing program. Table 1 shows some examples of input data in all possible ranges
of the Brake-Pedal-Input-Handler Component. According to the documentation,
the expected outputs of the software component are also included to help readers
better understanding the testing.

Table 1. Examples of input and the expected output

Range of input value Input example Expected output

Value < 0 −100 Invalid input

0 <= value <= 400 200 Erroneous input

401 <= value <= 499 450 0, Successful

500 <= value <= 3500 2100 53, Successful

3501 <= value <= 3700 3600 100, Successful

3701 <= value <= 4095 3900 Erroneous input

Value > 4095 6000 Invalid input

Improving Robustness of AUTOSAR Software Components 163

In the testing period, 70 different input data are tested for both the original
component and the modified component. If the output received from the com-
ponent matches the expected output, we are in the case of a successful running.
Referring to the Table 1, the tests that get valid output data such as 0, 53 and
100 are considered as successful tests that can be used by other components.
Moreover, also the tests that successfully detect invalid or erroneous inputs are
seen as successful tests. The results of the testing are described in Sect. 6. The
robustness of the tested software component can be measured in terms of number
or percentage of test cases that are successful.

5.3 Process of Modifying the Brake-Light-Control Component

In this section, we describe the process of modifying the Brake-Light-Control
component with the Design by Contract approach. This section emphasizes on
the collaboration between the Brake-Light-Control component and the Brake-
Pedal-Input-Handler component.

Analysis and Identification of Pre-conditions and Post-conditions: The
existing issues for the Brake-Light-Control component are similar to the Brake-
Pedal-Input-Handler component. It does not have complete input checks for the
input data to cover all the possible input data. Some simple input data checks are
mixed with the program code. Also, it lacks output checks. The modification for
the original component is expected to solve these issues. The Brake-Pedal-Input-
Handler component is used to control the brake lights by the rules described in
Sect. 5.1. Its input should be the pedal position and the vehicle speed. The pedal
position is an output of the Brake-Pedal-Input-Handler component. The pedal
position should be in the range 0%–100%. The range of the vehicle speed depends
on different situations. Here, we set the highest vehicle speed as 300 km/h, which
is obviously out of the range. Another factor that affects the output of the
component is the status of emergency braking. The status of emergency braking
can be active or inactive. In order to concentrate on the collaboration of the
two modified components, the status of emergency braking is directly sent into
the Brake-Light-Control component as another input without being included in
the pre-condition. Thus, the pre-condition for this component is that the pedal
position should be in the range 0%–100% and the vehicle speed should be in the
range 0 km/h–300 km/h. For the post-condition, it should check if the calculation
in the component is correct.

Design and Modification: The design of the new Brake-Light-Control com-
ponent is similar to the new Brake-Pedal-Input-Handler component. The pre-
condition and post-condition are separated from the main processing component
as the pre-condition component and the post-condition component.

A function in the pre-condition component of the Brake-Light-Control com-
ponent gets as input data from the Brake-Pedal-Input-Handler component and
other sources, and then verifies the data for the main processing component.
Only the input data with pedal position from 0% to 100% and vehicle speed from

164 Y. Zhou et al.

0 km/h to 300 km/h are valid. The code for data processing in the main process-
ing component is the same of the original component. In the post-condition
component, a function used for checking the calculation results of the main
processing component is defined. It checks if the status of braking light is cor-
rect.

Test: In order to know if the two modified components can collaborate with
each other and improve the robustness, a testing program is created for the
original components and for the modified components in ARUnit. When running
the testing program, the input data are sent into both the two components.
Data similar to those in Table 1 are passed to the Brake-Pedal-Input-Handler
component. Its output data are used as the input data for the Brake-Light-
Control component with the vehicle speed and the emergency braking status.
The output is the status of the brake lights. It can be ON/OFF/BLINK. Some
comments are attached to the output to know which input is detected as invalid
or erroneous.

Table 2 shows some examples of input data. According to the documentation,
the expected outputs of the software component are also included to help readers
better understanding the testing.

Table 2. Examples of input for the two selected components and the expected output

Brake Pedal Input Vehicle speed Emergency braking status Expected output

2000 5 Active ON

450 35 Inactive OFF

3000 35 Active BLINK

200 35 Inactive Erroneous brake pedal input

500 400 Inactive Erroneous vehicle speed

In the testing period, 30 different sets of input data are tested for both the
original components and the modified components. If the output received from
the components matches the expected output, it means that it is a successful
testing. If it successfully detects the invalid or erroneous input, it is still seen as
a successful testing. The results of the performed tests are described in the next
section. The robustness of the tested software component can be measured in
terms of number and percentage of successful test cases.

6 Evaluation

In the evaluation stage, black-box testing is performed with the ARUnit test tool.
The code of the software components is also in ARUnit. The steps of robustness
evaluation are: (i) Perform robustness testing in ARUnit of the original version of
the software component; (ii) Input a list of valid and invalid data, and calculate
the percentage of test cases that are successful - this percentage is stored in

Improving Robustness of AUTOSAR Software Components 165

the D1 variable; (iii) In Eclipse, replace the original version of the software
component with the software component which has been enhanced with Design
by Contract; (iv) Input the same list of valid and invalid data of step 2, and
calculate the percentage of test cases that are successful - this percentage is
stored in the D2 variable; (v) Compare D1 and D2 - if D2 is greater than D1, it
means that the software component that is enhanced with Design by Contract
has better robustness.

The testing results for the Brake-Pedal-Input-Handler component are shown
in Table 3. For the original component, it failed 15 times in the 70 test cases.
The modified component failed 0 time in the 70 test cases. The success rates
of them are 78.6% and 100.0% respectively. Obviously, the modified component
has better robustness and can handle more input data successfully.

Table 3. Results of tests for Brake-Pedal-Input-Handler

Successful tests Total tests Success rates

Original component 55 70 78.6%

Modified component 70 70 100.0%

The testing results for the Brake-Pedal-Input-Handler component are shown
in Table 4. The original components failed 9 times in the 30 test cases. The
modified component failed 0 time in the 30 test cases. The success rates of them
are 70% and 100%, respectively. Obviously, the modified component has better
robustness and can handle more input data successfully.

Table 4. Results of tests for the two modified components

Successful tests Total tests Success rates

Original component 21 30 70%

Modified component 30 30 100%

Analysis of results: There are two main reasons that make the modified com-
ponents get better results. The first one is that all possible input data have been
considered by carefully analysing the documented specification. The invalid input
data and erroneous input data have been handled in the pre-condition compo-
nent and do not have the chance to get into the main processing component.
The second reason is that the data from the main processing component are
checked again in the post-condition component to ensure its correctness. The
pre-condition and post-condition components are like two guards that check all
the input and output data of the main processing component.

166 Y. Zhou et al.

Table 5. Strengths and weaknesses of the Design by Contract approach in AUTOSAR

Strengths

• Better robustness of the components and applications
• Increase readability and understandability of the code
• Convenient to refactor manually coded software components
• Low redundancy

Weaknesses

• Add more components which may also bring errors to the components
• Strict data checks may slow the components and applications down
• Hard to modify the components of which the code is automatically generated
from some models

The prerequisite of setting such pre-condition and post-condition components
that can accurately cover all the possible input and output data, is that we need
to have complete requirements for the components. According to experts within
the company, the two software components used in this work are representative
for the entire set of the existing components for the purpose of studying robust-
ness. It is important to highlight that, when developing AUTOSAR software
components in the company, the bottom line for the requirements of the compo-
nents is that the whole range of every input and output must be specified. And
if they are not, someone will revise or update the requirements. It means that
almost for every component the requirements specify the ranges of the input
and output; this information can be used to set accurate pre-conditions and
post-conditions for the components.

Components’ code produced via code generators: The code of some com-
ponents is generated from TargetLink, which is a modeling and development tool.
Generated code is hard to read, import into ARUnit, and modify manually. Com-
ponents with automatically generated code should follow a different approach.
Contracts including pre-conditions and post-conditions should be embedded in
code generation instead of trying to modify the code a-posteriori, as done in this
paper. In the source base, nearly 50% of the AUTOSAR software components
are generated from TargetLink. Thus, at least 50% of the components, i.e. those
that have manually written code, can be easily enhanced with DbC through the
use of our approach.

Performance of the approach: For the components we considered perfor-
mance is acceptable. However, we should better investigate how deployment of
DbC scales while considering various attributes/properties of components, such
as memory footprint, execution time, etc. This is part of future work.

Summary of strengths and weaknesses: Table 5 shows a summary of
strengths and weaknesses of using DbC in AUTOSAR software components.

Improving Robustness of AUTOSAR Software Components 167

7 Conclusions and Future Works

This work testifies that DbC can be used for improving the robustness of
AUTOSAR software components. In order to apply the approach developers
should analyse the documented specification or the stakeholders’ requirements
carefully to know all the possible values of the input, output and invariant.

However, even though DbC has high potential for industrial deployment, we
need further investigations and evaluation results with more complex and real-
life applications, e.g. by considering one complete feature such as cruise control.
For example, we need to better understand the impact that deploying DbC might
have on real-time requirements, memory footprint, computational load, etc. Such
investigations will be part of our future work.

Acknowledgements. The work is partially supported by Software Center (http://
www.software-center.se).

References

1. Fleming, B.: An overview of advances in automotive electronics [automotive elec-
tronics]. IEEE Veh. Technol. Mag. 9(1), 4–9 (2014)

2. Knauss, E., Pelliccione, P., Heldal, R., Ågren, M., Hellman, S., Maniette, D.: Con-
tinuous integration beyond the team: a tooling perspective on challenges in the
automotive industry. In: Proceedings of ESEM 2016. ACM (2016)

3. Pelliccione, P., Knauss, E., Heldal, R., Ågren, S.M., Mallozzi, P., Alminger, A.,
Borgentun, D.: Automotive architecture framework: the experience of volvo cars.
J. Syst. Architect. 77, 83–100 (2017). http://www.sciencedirect.com/science/
article/pii/S1383762117300954

4. AUTOSAR, Autosar technical overview v2.2.2 (2012)
5. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc.,

Upper Saddle River (1988)
6. Meyer, B.: Design by contract, Technical report TR-EI-12/CO, Interactive Soft-

ware Engineering Inc. (1986)
7. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
8. Araujo, W., Briand, L.C., Labiche, Y.: Enabling the runtime assertion checking of

concurrent contracts for the java modeling language. In: Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, pp. 786–795. ACM,
New York (2011)

9. Araujo, W., Briand, L.C., Labiche, Y.: On the effectiveness of contracts as test
oracles in the detection and diagnosis of functional faults in concurrent object-
oriented software. IEEE Trans. Software Eng. 40(10), 971–992 (2014)

10. Liu, Y., Cunningham, H.C.: Software component specification using design by con-
tract. In: Proceeding of the South-East Software Engineering Conference. Ten-
nessee Valley Chapter. National Defense Industry Association (2002)

11. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly sup-
porting abstraction in design by contract. Softw. Pract. Experience 35(6), 583–599
(2005)

http://www.software-center.se
http://www.software-center.se
http://www.sciencedirect.com/science/article/pii/S1383762117300954
http://www.sciencedirect.com/science/article/pii/S1383762117300954

168 Y. Zhou et al.

12. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S., Saake, G.: Applying design by
contract to feature-oriented programming. In: Lara, J., Zisman, A. (eds.) FASE
2012. LNCS, vol. 7212, pp. 255–269. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28872-2 18

13. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinke-
meier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Con-
tracts for systems design, Research Report N.8147, Inria (2012)

14. Jones, M., Haraldsson, J.: D2.4 Dedicate Framework Description (2012)

http://dx.doi.org/10.1007/978-3-642-28872-2_18
http://dx.doi.org/10.1007/978-3-642-28872-2_18

Modelling for Systems with Holistic Fault
Tolerance

Rem Gensh(&), Ashur Rafiev, Fei Xia, Alexander Romanovsky,
and Alex Yakovlev

Newcastle University, Newcastle upon Tyne, UK
{r.gensh,ashur.rafiev,fei.xia,alexander.romanovsky,

alex.yakovlev}@newcastle.ac.uk

Abstract. Trade-offs between extra-functional properties, such as performance,
reliability and resource utilisation, have been recognised as crucial in system
design. The concept of Holistic Fault Tolerance (HFT) is aimed at targeting these
trade-offs in run-time system control. Previous work has shown that HFT systems
can have significant complexity, which may require sophisticated modelling at
the design stage. This paper presents a novel HFT design methodology based on
hierarchical modelling and stochastic simulations. The former caters to system
complexity and the latter estimates extra-functional properties in the trade-offs.
The method is demonstrated with an application example of number plate
recognition software.

Keywords: Modelling � Holistic Fault Tolerance � Order Graphs � Stochastic
Activity Networks � Extra-functional Properties

1 Introduction

System modelling aims to create an abstract representation of a designed system. This
process assists in better understanding of the system and gives a possibility to find and
eliminate potential problems at early stages of system development. However, for
complex systems, the system model can also be complex and difficult to use. Therefore,
it is necessary to ensure that only important parts of the system are studied during the
modelling to reduce comprehension complexity.

A well-accepted method of controlling model complexity is the use of hierarchical
models. Different models may be constructed for the same system or subsystem at
different levels of abstraction. High-level models of high degrees of abstraction tend to
be small and easy to analyse, but also include few details and may provide low
representative resolution or precision for the quantities or parameters being studied [1].
On the other hand, low-level models of less abstraction may offer finer grain repre-
sentation of system details and provide higher resolution for studied parameters.
However, they may have high degrees of complexity and difficult to work with.
Hierarchical modelling provides designers with a means of trading off modelling
quality with model usability.

Another popular method of dealing with the model complexity issue and at the
same time handling run-time unpredictability is stochastic modelling. Quantities and

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 169–183, 2017.
DOI: 10.1007/978-3-319-65948-0_11

parameters under study are assumed to be stochastic and models of manageable size
can be used to estimate such quantities without precise knowledge of all the con-
tributing factors such as run-time eventualities [2].

Aspects of study during system design and analysis include functional behaviour and
extra-functional parameters. Functional correctness is important, but extra-functional
parameters can also be significant contributors of the success or failure of a design. The
most interesting extra-functional parameters attracting the attention of system designers
include performance, energy consumption and reliability.

In previous studies, we introduced the notion of Holistic Fault Tolerance (HFT) [3]
and showed that the HFT architecture can be applied to implement the system, taking
into account extra-functional properties, such as reliability, performance and resource
utilisation [4]. And finally, maintainability evaluation of the HFT architecture was
provided in [5].

In these investigations, it was demonstrated that the HFT approach provides better
maintainability of fault tolerance mechanisms. The HFT architecture includes system
components, an HFT controller and a number of agents which supports interactions
between the components and the HFT controller. The HFT run-time is implemented
through control loops that manage the extra-functional parameters through component
configuration. However, there remain challenges faced by the HFT developer during
the design stage. It is not always clear how to choose the system components, which
will be involved in the interaction with the elements of the HFT architecture (essen-
tially the number of control loops). If the designer chooses to involve all system
components in the interaction with the HFT elements, i.e. have the maximum number
of all possible control loops included, the system would be extremely complex for
modelling, implementation and maintenance. On the other hand, unguided control loop
reduction would rarely result in optimal system designs.

This study focuses on modelling that supports design-time and run-time system
optimisation through the (re)configuration of system components and the efficient use
of control loops. At the same time the model should not be very complex for under-
standing. Iterative top-down design and stochastic representation of extra-functional
parameters offer promising solutions.

In this paper we propose a general design method supporting HFT systems. This
method makes use of a hierarchical model language, known as order graphs (OGs) [6],
which has good representations of horizontality and verticality issues and good support
for having different levels of abstraction for different parts of a system model. Also
included is an established stochastic model language, known as stochastic activity
networks (SANs) [2], which provides facilities such as state-space analysis and sim-
ulation engines.

The proposed design workflow is based on the following key points:

• The characterisation of system components leading to SANs models. These SANs
models can be used to provide estimates of the extra-functional parameters under
study (usually reliability, system utilisation and/or performance) and generate
importance costs for potential control loops in the HFT control.

• The concept of controllability is applied to minimise the number of control loops.

170 R. Gensh et al.

• The development of a hierarchical model of the HFT system based on OGs. This
model can be used to validate the existence of control loop paths at all levels of
model abstraction.

This paper is organised as follows. Section 2 provides the background describing
SANs, OGs and HFT. Section 3 explains our modelling methodology. Section 4
describes an HFT case study. Section 5 concludes the paper with discussions.

2 Background

2.1 SANs and Stochastic Modelling

SANs is an extension to general stochastic Petri nets (GSPNs) which are based on Petri
nets (PNs) [7]. It inherits the general attributes of PNs including a distributed repre-
sentation of system states, making it easy to represent parts of a system directly as local
subsystems, and more straightforward representations of such important issues as
concurrency and synchronisation. A well-established method, it is supported by the
mature software tool-kit: Möbius [8].

SANs are capable of representing both deterministic and stochastic events, and
event durations in time. The elements used in this work include (a) transitions whose
firing speeds (rates) are specified as stochastic, following given distributions, (b) tran-
sitions with multiple firing cases with specific probabilities for each case, and (c) input
and output gates with predicates and implications specified through logic functions.

The Möbius tool, used in this paper, incorporates a set of solvers including both
Monte-Carlo simulation and statespace related solvers. Numerical Markovian solutions
can be done for steady-state or time averaged interval rewards, but limited to models
with exponentially distributed firing rates. The tool’s concept of “rewards” can be
easily extended to physical parameters, such as power. In this work we use rewards to
evaluate system’s extra-functional properties including performance, reliability (de-
fined as success rate), and resource utilisation.

2.2 Order Graphs and Resource Modelling

Hierarchical representations have been used for modelling complex systems for a long
time. The idea of separating the “vertical” relation between the layers of abstraction
from the “horizontal” knowledge of the system at each particular layer of abstraction
has been hinted in [9] and then formally defined in Zoom structures [10] as the
concepts of verticality and horizontality. Zoom structures are based on partial orders
and are very permissive. In contrast, OGs put a number of constraints on the modelling,
which guarantee consistency between the abstraction layers.

An OG is a graph with nodes representing various system resources arranged in tree
hierarchies. The hierarchies can be built from the knowledge of the system structure
and by similarities of its constituents. The distance from the root relates to the level of
abstraction. The formal definition and properties can be found in [6].

Modelling for Systems with Holistic Fault Tolerance 171

The modelling using OGs is an iterative top-down process, starting from the most
abstract representation of the system and gradually adding more details, when moving
to lower levels. The dependencies between the system’s components at the same level
of abstraction are represented with “horizontal” arcs in the graph, hence the horizontal
paths represent transitive dependencies between the elements in the system. The rig-
orous definition of OGs provides a built-in capability of consistency checking by
preserving the resource dependency paths at each level of abstraction.

OG contains the static knowledge of the system and needs to be paired with a
dynamic model to capture the system behaviour (in our case: SANs). The nodes in OG
that are included in this model relation form a cut. If the cut goes through different
depths in the hierarchy (layers of abstraction), it is called a cross-layer cut. The cut
containing all leaves relates to the most concrete (detail) model of the system. Moving
up in the abstraction hierarchy, thus grouping multiple nodes into one, represents
grouping the corresponding elements in SANs into a single entity by averaging/totalling
their parameters (known as black-boxing). This reduces the size of a model, but also
introduces inaccuracy. The trade-off between the model complexity and accuracy can be
achieved from manipulating cross-layer cuts. This method, called selective abstraction,
has been explored in details in [1].

2.3 Holistic Fault Tolerance

The idea of Holistic Fault Tolerance was introduced and developed in [3, 4]. There are
two goals of the HFT architecture. The first goal is to provide a method that allows the
developer to design and implement computer systems that are efficient in terms of
performance and resource utilisation. The second goal is to improve the software
maintainability of fault tolerance mechanisms in the system.

A computer system implemented in accordance with the HFT architecture includes
functional components that are responsible for main system tasks and the HFT
part. The HFT part controls the functional components and ensures reliable and effi-
cient system operation. This part is built around the HFT controller, which is
responsible for distribution of computation resources in the application and provides an
overarching control over the extra-functional properties, such as system performance.
HFT controller also performs a task of re-configuring the system in run-time in case it
finds a better operating point.

The HFT controller interacts with the system components through a set of public
interfaces. Additionally, the controller is assisted with the HFT agents – auxiliary
objects aimed at decreasing the complexity of the HFT architecture. Each HFT agent is
responsible for certain extra-functional property of the system. The HFT agents monitor
and, when it is required, intervene in the control flow of the critical components. The
typical HFT agent can be responsible for one of the following activities: performance
monitoring, error handling and gathering of diagnostics information. The structure of an
agent can depend on the components it works with, the idea is that the agent incorporates
component-dependent code in order to keep HFT as flexible as possible. The data
gathered by the HFT agents are translated into a component-independent format and

172 R. Gensh et al.

transferred to the HFT controller for dynamic analysis. In case of error handling, the
HFT agent requests the HFT controller for a suitable handling action.

It is advised to implement the link between an HFT agent and a functional com-
ponent implicitly for the component. This approach significantly reduces the depen-
dence of the component on the HFT agent, thus the component would focus on
implementing only its functional task without tangling with non-functional activities. In
our previous works [4, 5], we used Aspect Oriented Programming [11] in order to
improve the development cycle and reduce maintainability effort. In general, the
decisions on the structure of HFT agent heavily depend on the software design and the
tasks of the system, however the aim of this work is to address the design decisions in a
methodological way.

3 Modelling Methodology

In this section, we consider the goal of the modelling, define extra-functional properties
of the system, and the context in which these properties are analysed. We also intro-
duce the workflow of the modelling approach.

The goal of the modelling is to provide a method that allows the developer to
design and implement the system based on the HFT architecture. It is necessary to
guarantee that the system will be efficient with regards to extra-functional properties,
such as reliability, performance and resource utilisation. The modelling assists in
defining efficient points of the interplay between these extra-functional properties. An
efficient design allows the developer to implement such a system, which will be effi-
cient in terms of this interplay.

Performance is considered as the amount of work completed per unit time. Faster
operation typically requires more resources or can be achieved by reducing the quality
of computation. The work performed by the system is measured in work units. The
processing of each work unit can be finished successfully or unsuccessfully.

Reliability is represented with the success rate, which is defined as the ratio of
successfully finished work units to the total amount of work units.

Resource utilisation is the amount of computer resources required to process a
certain number of work units. In this context, we define a resource as any facility that
enables computation, which may include CPU cores, application threads, memory,
energy, etc.

As mentioned in Sect. 2, the system contains functional components that imple-
ment the computation. The HFT control for the extra-functional properties is realised
using knobs and monitors. The knobs are provided by system components as config-
uration points, and the monitors are instrumentation that provides readings of
extra-functional properties at the component level. The system-wide set of knob states
is called a system configuration. During the system operation, the HFT controller
dynamically choses the most suitable system configuration, depending on the history of
monitor data.

An instance of such interaction between the HFT elements and the functional
system components is defined as a control loop. It can be considered as a special

Modelling for Systems with Holistic Fault Tolerance 173

interface between the components and the HFT part. The control loop is managed only
by the HFT part and is implicit to the system components.

3.1 Workflow of the Modelling Approach

The workflow of the HFT system modelling approach is described in Fig. 1. Each of
the steps is described in a subsequent subsection. Note that order graph modelling
happens in parallel to the right hand main branch of the workflow.

3.2 Characterisation of the System’s Extra-Functional Components

The designer should characterise the extra-functional properties of each individual
component. If the component supports multiple configurations or algorithms of pro-
cessing, the characterisation should be done for each individual configuration. The full
result of a characterisation pertaining to some component and some extra-functional
property describes the value of that property when executing that component. Char-
acterisation is not done beyond component level.

Order Graph
Modelling

Characterisation
experiments

SANs
modelling

Stochastic
simulations

Control loop
pruning

Validation

System-only model Component
characteristics

Estimated extra-functional
properties

List of
control loops

Model of the system
with the HFT

Fig. 1. Workflow diagram

174 R. Gensh et al.

3.3 Building and Simulating the SANs Model of the System

In this step the SAN model of the system is built using component characterisations
from the previous step and the system-only OG model. The granularity of the SAN
model for any part of the system is determined by the OG modelling step (Fig. 1) and
the parameter values are obtained from the characterisation step. The characterisation
step usually pertains to the SAN model of the finest detail, because there is no point of
developing a SAN model at a finer level of detail than the existing characterisation
data. If the OG step suggests a higher level of abstraction, it is possible to derive SAN
models of less detail than the characterisation data, for instance by running simulations
at the characterisation level of detail then abstracting from the results.

From characterisation to the final SAN model for simulations the approach is
bottom-up, but the OG step is usually top-down. There is no conflict because in order
to determine the granularity of the final SAN model the entire OG model covering all
levels of abstraction needs to have been established. In a way discovering the SAN
model is a process of raising the level of abstraction from the bottom traversing the OG
until a satisfactory SAN has been found.

The preferred tool for working with SANs is Möbius [8]. The main point of this
step is that the SAN system model, assembled from component models, supports
system-wide analysis of the modelled extra-functional properties from component-level
characterisation data. The most practical analysis method for SAN models of HFT is
simulation, as other forms of analysis such as state space studies tend to be restricted to
very small models. However, Möbius does provide non-simulation solvers if and when
they can and need to be used.

3.4 Control Loop Pruning

The estimated values of system-wide extra-functional properties, obtained from the
previous step, can be used to reduce the complexity of the HFT controller, by elimi-
nating unnecessary control loops.

The method is based on the problem of preserving controllability [16] while
reducing the number of knobs. It assumes that the number of monitors is both sufficient
and necessary to represent the extra-functional properties under study. The monitor
values are considered state variables.

We use simulations to build system transfer function [16] relating knobs to mon-
itors. This is achieved by analysing differentials in the estimated monitor values from
simulations. Ideally, this requires an exhaustive set of simulation covering all combi-
nations of knob values. However, it is possible to apply known optimisation methods,
such as Monte-Carlo [17], to improve the usability of the method.

From this database of state relations, it is possible to determine the smallest set of
knobs that maintains controllability.

Although in this paper we deal only with deciding what control loops to include in
an HFT system, the off-line design flow described here can yield valuable quantitative
data that may be helpful for the detailed design of run-time control. For instance, the

Modelling for Systems with Holistic Fault Tolerance 175

SAN models may provide a set of reference points which may be used in the designs of
individual control loops.

3.5 Validation Using OG Hierarchy

As mentioned in Sect. 2, OG modelling provides a top-down workflow that helps the
developer to incrementally add the details in the system design. In the proposed
workload, the dependencies in the graph represent interactions between the element of
the system and provides paths for the control loops. A rigorous path consistency
checking between the layers of abstraction guarantees that the designed HFT controller
is consistent with the control loops established in the previous steps of the workflow.

Figure 2 illustrates the hierarchical model of the system with the HFT architecture in
three levels of detail. At the top level, there is only the system with the HFT architecture.
The second level contains graphic user interface, backend or functional part of the system
and HFT part. Information flow between the backend and the HFT is shown in both
directions. The next level represents the backend is decomposed to the system compo-
nents and the HFT part decomposed to the HFT controller and HFT agents. For sim-
plicity, the figure shows only one component and only one agent. At this level, the control
loops between the system components and the HFT elements should start to appear.

HFT
controller

Decision
maker

HFT
policies

System
state

history

HFT agent
System

component

3rd party
sub-

components

Critical
part

Public
interface

Settings

Monitoring
logic

Local
decision
maker

Intervention
logic

System
with the

HFT

Level 2

Level 3

Level 4

GUI
Back
end

HFT

Level 1

Fig. 2. A general template for HFT Order Graph model

176 R. Gensh et al.

The most detailed level of the hierarchical model considers the inner structure of
the system components and the HFT elements. The system component may include
third-party subcomponents, public interfaces, component settings and critical parts.
A possible internal structure of an HFT agent consists of monitoring logic, intervention
logic and local decision maker. The HFT controller includes the decision maker, the
system state history (or dynamic HFT data) and the HFT policies (or static HFT data).

Connections represented by the dashed lines assume that for better maintainability
it is preferable to implement this link in such a way that the system component was not
aware of implementation details of monitoring and intervention logic in the HFT agent.
HFT agents do not directly provide performance of reliability benefits. They were
introduced to simplify the developing and improve understanding of the systems with
the HFT. It was shown [5] that such configuration supports maintainability of the
system. This is the reason why we consider decomposition of the HFT architecture to
the HFT controller and the HFT agents.

4 Use Case

4.1 Case Study Application

As a use case, we have chosen the application for the recognition of the UK number
plates [4, 5]. The input of the application is a set of images. As an output, the appli-
cation links each image with recognition results that include the contour of the number
plate, recognised string and the probability of correct recognition.

The functional part of the application consists of several components. The
Graphical User Interface (GUI) component is the frontend of the application, which
allows the user to upload the images. These images are sent to the Initial Image
Processing (IIP) component. At this stage, every image undergoes an initial processing,
which includes various filters, searching of the number plate on the image, cropping of
the number plate from the image and elimination of the perspective skews of the
number plate cutout. Two algorithms for number plate search can be applied:
OpenCV-based rectangle detection and HAAR cascade [12] trained to recognise the
area with the UK number plate. If the number plate is found and cropped it is put to
Number Plates Queue (NPQ). When the NPQ is not empty, the Optical Character
Recognition (OCR) component takes available number plate cutout and performs the
text recognition on the cutout. There are two OCR algorithms in the OCR component:
Tesseract [13] and number plate recognition algorithm described in [14]. If the OCR
recognises the text on the cutout, this text is checked by the Result Checker
(RC) component to ensure compliance of the car number with a national format. These
additional algorithms are introduced to provide redundancy and increase reliability of
the application.

The UML diagram of the application is shown in Fig. 3. GUI does not participate in
the HFT scheme and it should not be considered in details in the model. Interfaces
between the functional components (IIP and OCR) and the HFT controller are omitted
to make the diagram clearer.

Modelling for Systems with Holistic Fault Tolerance 177

In both IIP and OCR components the images are processed concurrently. The HFT
controller specifies the most suitable number of working threads for each component.
The Performance agent monitors the execution time of the IIP and OCR components.
The Error Handling agent is responsible for handling the errors in the IIP and OCR
component. An error implies a deviation from the correct service [15] and it is not
necessarily exception only. Impossibility to find the number plate or low probability of
the recognition is considered as an error as well. At the same time, not all exceptions
are regarded as errors. If the error is detected by Error Handling agent, it requests the
HFT controller for a suitable error recovery action, which could vary depending on
current system operation.

4.2 Characterisation of the Components

For the characterisation, we have chosen the IIP and the OCR components, since they
are the most critical components of the application. Characterisation data is presented
in Tables 1 and 2. The input data varies significantly for the given application, hence
we have chosen three groups of images distinguished by size: small, medium and large.
Time and reliability of the image processing significantly depends on the image size.

HFT Controller

Performance AgentError Handling Agent

IIP OCRNPQ RCGUI

Fig. 3. UML diagram of the use case application

Table 1. Characterisation of the IIP component

Original image size Number plate detection algorithm

Rectangle detection HAAR cascade
Average
time

Average
reliability

Average
time

Average
reliability

Small <200 KB 20 ms 85% 9.3 ms 77%
Medium 200 KB –

1 MB
85 ms 80% 76 ms 85%

Large 1 MB –

7 MB
143 ms 72% 328 ms 86%

178 R. Gensh et al.

4.3 SAN Modelling and Simulations of the System

With this characterisation data, we can build the SAN models in Möbius. A detailed
SAN model for the two components IIP and OCR, each in three versions small,
medium and large is shown in Fig. 4. The fundamental states for each component
version are working and idle. Working means that this component version is in exe-
cution and idle means that it is not in execution. The model is simplified to put all idles
together. This means that for, e.g. IIP, the IIP_idle place is initialised with the with the
number of threads given to the IIP component. This may be known as the IIP capacity
of the system. Each completion of an IIP component version puts a token back to this
idle place. Each IIP component version has a probability of success Ps and a probability
of failure 1−Ps and this is represented by the stochastic timed transitions IIP_finish.
The OCR component models have the same structure. Between the IIP and OCR
blocks, three queues are modelled with the standard SAN representation for queues or
buffers. The IIP_start transition on the left generates input images stochastically
according to probability functions and rates that can be set in the model.

The occurrences of failure are tracked by the markings of the failure places and the
overall number of successful recognitions is recorded in the final done place at the right
end of the net. Running simulations with this model produces success and failure rates,
resource utilisation (e.g. the average number of threads being active) and overall
performance.

Table 2. Characterisation of the OCR component

Original image size Optical Character Recognition algorithm

OpenCV implementation Tesseract
Average
time

Average
reliability

Average
time

Average
reliability

Small <200 KB 23 ms 70% 33 ms 75%
Medium 200 KB – 1 MB 29 ms 73% 37 ms 78%
Large 1 MB – 7 MB 45 ms 48% 50 ms 62%

Fig. 4. Detailed SANs model of the use case application in Möbius

Modelling for Systems with Holistic Fault Tolerance 179

This model turns out to require somewhat significant time (more than a few min-
utes) to simulate. As a result, by making OG analysis and studying the characterisation
data, we decided to derive a reduced model, which is shown in Fig. 5.

The reduced model only has a single OCR component version by combining the
three different versions in the detailed model into one using the average behaviour. The
reason behind this is that the version pertaining to large size is significantly slower than
the others, which are very similar. Intuitively, component capacities are used more on
the faster processing versions as they tend to grab the token from the idle place more
frequently.

The reduced model required simulation times that are an order of magnitude shorter
than the detailed model, and they produced very close results with differences within
5% on all the extra-functional properties being studied. Some simulation results are
shown in Table 3.

Fig. 5. Reduced SANs model of the use case application in Möbius

Table 3. Simulation results

Configuration Estimates

IIP
algorithm

IIP
threads

OCR
algorithm

OCR
threads

Core
allocation

Success
rate

Image
time

Rectangle 4 OpenCV 4 4.55 0.543 44.89
Rectangle 2 OpenCV 6 2.40 0.550 55.91

Rectangle 6 OpenCV 2 6.63 0.548 40.77
Rectangle 1 OpenCV 7 1.24 0.528 87.11
Rectangle 7 OpenCV 1 7.49 0.559 40.68

Rectangle 1 OpenCV 1 1.22 0.529 88.26
Rectangle 3 OpenCV 1 3.40 0.553 48.86

HAAR 4 Tesseract 4 4.53 0.574 90.54
HAAR 2 Tesseract 6 2.36 0.577 116.89
HAAR 6 Tesseract 2 6.57 0.568 77.46

Rectangle 4 Tesseract 4 5.42 0.561 46.23
Rectangle 2 Tesseract 6 2.86 0.564 56.53

Rectangle 6 Tesseract 2 7.27 0.551 41.91
HAAR 4 OpenCV 4 4.26 0.561 90.01
HAAR 2 OpenCV 6 2.20 0.589 117.79

HAAR 6 OpenCV 2 6.31 0.557 76.98

180 R. Gensh et al.

In these particular simulations, we wanted to find out if the relative numbers of IIP
and OCR components executed affect the execution time, resource utilisation and
reliability. It was found that the reliability stays about the same, but running more IIP
components than OCR components improved the overall execution time and resource
utilisation (more components get executed simultaneously, pressing more cores and
reducing idle time and queue length).

In case if the observed change in reliability is considered insignificant, the reduc-
tion of control loops leads to removal of all knobs except the number of IIP threads.
This remaining knob provides the control over resource utilisation and performance.
On the other hand, if the reliability difference is considered significant, all knobs
contribute to controlling the system properties.

4.4 Hierarchical Model of the System

A hierarchical model of the system is built following the general template (Fig. 2) and
is shown in Fig. 6.

At Level 1 of the system Order Graph there is only one node “Car Number Plate
Recognition Application”. Level 2 distinguishes between the HFT part of the system
and functional part, which is comprised of the GUI and system backend. At Level 3 all
crucial components of the system and the HFT part are illustrated. We do not model
GUI behaviour, therefore we stop at Level 2 for GUI. We have chosen to decompose
the backend to IIP, NPQ and OCR components because it follows the UML structure of

HFT
controller

Performance
agent

GUI Back
end

HFT

Error
handling

agent

IIP NPQ OCR

Level 1

Level 2

Level 3

CNPR
App

Fig. 6. Hierarchical model of the system

Modelling for Systems with Holistic Fault Tolerance 181

the application. The HFT part is decomposed to the HFT controller, Performance Agent
and Error Handling Agent. At Level 4 there is further decomposition to the inner
structure of the functional components and the HFT elements. Level 4 is not illustrated
here due to the number of elements at this level.

There is uni-directional information flow from the IIP, the NPQ and the OCR
components to the Performance agent, because this agent only monitors the compo-
nents, but it does not affect the control flow of the components. In contrast, the Error
Handling agent has bi-directional information flow, since it intervenes in the control
flow of IIP and OCR components in order to handle the errors. The interfaces between
the agents and components are represented by dashed lines because they are implicit for
the components. The HFT controller, in turn, utilises public interfaces of the IIP and
OCR components to reconfigure the components and performs fault handling of the
application. In addition, there are information flows between the HFT controller and the
HFT agents. It can be seen that all control loops mentioned in Sect. 4.4 exist in this
Order Graph, which validates the correctness of the selected HFT architecture.

5 Conclusion

In this study, we elaborated the general method for modelling computer systems with
the HFT at the early stages of the system design. The given method simplifies the
modelling process and allows the developer to adjust the system at the early stage to
achieve efficient operation after the implementation.

As a part of the workflow, we build the SANs model of the system using Möbius
tool. After that we obtain the list of interfaces for the HFT control representing the
control loops between system components and extra-functional properties of the sys-
tem. At the same time, we create a hierarchical model of the system with the HFT using
Order Graphs. The method has been demonstrated with a use case application of UK
number plate recognition.

Currently we are working on the evaluation of the efficiency of the HFT archi-
tecture in terms of performance and resource utilisation. The evaluation is based on the
comparison of these properties in two functionally identical systems. One system is
implemented with the HFT architecture and another system uses the standard approach
to fault tolerance. The presented modelling method is expected to significantly assist in
adjusting the system to prepare it for the evaluation.

As a future work we are planning to ensure scalability of the HFT approach, and
show that the HFT architecture can be applied for large-scale systems. We propose to
introduce the idea of adaptive holistic fault tolerance, that will be able to control the
HFT agents in run-time depending on the current system state. To do this the presented
modelling approach should be extended to include the reconfiguration of the HFT
architecture elements.

182 R. Gensh et al.

References

1. Rafiev, A., Xia, F., Iliasov, A., Gensh, R., Aalsaud, A., Romanovsky, A., Yakovlev, A.:
Selective abstraction and stochastic methods for scalable power modelling of heterogeneous
systems. In: 2016 Forum on Specification and Design Languages (FDL), pp. 1–7. (2016)

2. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts.
In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000. LNCS, vol. 2090,
pp. 315–343. Springer, Heidelberg (2001). doi:10.1007/3-540-44667-2_9

3. Gensh, R., Romanovsky, A., Yakovlev, A.: On structuring Holistic Fault Tolerance. In:
Proceedings of the 15th International Conference on Modularity (MODULARITY 2016).
ACM, Málaga, Spain (2016)

4. Gensh, R., Rafiev, A., Garcia, A., Xia, F., Romanovsky, A., Yakovlev, A.: Architecting
Holistic Fault Tolerance. In: 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE), pp. 5–8 (2017)

5. Gensh, R., Garcia, A., Romanovsky, A.: Experience report: evaluation of Holistic Fault
Tolerance. School of Computing Science Technical report Series. School of Computing
Science, Newcastle University (2017)

6. Rafiev, A., Xia, F., Iliasov, A., Gensh, R., Aalsaud, A., Romanovsky, A., Yakovlev, A.: Order
Graphs and cross-layer parametric significance-driven modelling. In: 2015 15th International
Conference on Application of Concurrency to System Design, pp. 110–119. (2015)

7. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Englewood Cliffs (1981)

8. The Möbius modelling tool. https://www.mobius.illinois.edu
9. Zurcher, F.W., Randell, B.: Iterative multi-level modelling - a methodology for computer

system design. In: Proceedings IFIP Congress 1968, pp. 138–142 (1968). http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.2.4270

10. Ehrenfeucht, A., Rozenberg, G.: Zoom structures and reaction systems yield exploration
systems. Int. J. Found. Comput. Sci. 25, 275–305 (2014)

11. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publi-
cations Co., Greenwich (2003)

12. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools 25(11), 120–123 (2000).
https://scholar.google.com/citations?view_op=view_citation%20hl=en%20user=
yeDFJgoAAAAJ%20citation_for_view=yeDFJgoAAAAJ:9yKSN-GCB0IC

13. Smith, R.: An overview of the Tesseract OCR engine. In: Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007), pp. 629–633 (2007)

14. Baggio, D.L., Emami, S., Escrivá, D.M., Ievgen, K., Mahmood, N., Saragih, J., Shilkrot, R.:
Mastering OpenCV with Practical Computer Vision Projects. Packt Publishing Ltd.,
Birmingham (2012)

15. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. Trans. Dependable Secure Comput. 1, 11–33 (2004)

16. Bubnicki, Z.: Modern Control Theory. Springer-Verlag, Heidelberg (2005). doi:10.1007/3-
540-28087-1

17. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341
(1949)

Modelling for Systems with Holistic Fault Tolerance 183

http://dx.doi.org/10.1007/3-540-44667-2_9
https://www.mobius.illinois.edu
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.4270
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.4270
https://scholar.google.com/citations?view_op=view_citation%20hl=en%20user=yeDFJgoAAAAJ%20citation_for_view=yeDFJgoAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation%20hl=en%20user=yeDFJgoAAAAJ%20citation_for_view=yeDFJgoAAAAJ:9yKSN-GCB0IC
http://dx.doi.org/10.1007/3-540-28087-1
http://dx.doi.org/10.1007/3-540-28087-1

Holistic Processing and Exploring Event Logs

Marcin Kubacki and Janusz Sosnowski(&)

Institute of Computer Science,
Warsaw University of Technology, Warsaw, Poland

j.sosnowski@ii.pw.edu.pl

Abstract. Computer systems generate large amounts of event logs related to
various operational aspects (positive and negative). Extracting from them useful
information (e.g. targeted at dependability and resilience issues) is a challenging
problem widely discussed in the literature and still needing deeper studies. We
have developed a new holistic approach using enhanced event classification
(based on original text mining algorithms) combined with multidimensional
statistical analysis of various properties in vocabulary (words, phrases), time,
spatial, local and global correlations. It has been incorporated in the developed
tools and verified on event data sets collected from different computers.

Keywords: Event logs � Anomaly detection � System profiling � Text mining

1 Introduction

Most computer systems provide diverse event logs which are useful traces to detect,
diagnose and predict anomalies [2]. Moreover, they characterize on-going processes
[15], system workloads and environment interactions. Hence, event log analysis is an
important issue in studies of various system dependability and resilience aspects [5].

Publications on event logs are mostly targeted at specific logs and problems, quite
often limited to particular systems or a single research issue. Most of them provide
methods of detecting system anomalies or security threats basing on searching char-
acteristic classes and patterns of events, etc. ([2–4, 6] and references therein). The
presented results neglect the specificity of logs. Identification of event log features is
the bases for developing efficient analysis algorithms as well as identifying deficiencies
to improve the quality of logs.

Having analyzed event logs from laptops, workstations, and servers we have found
the need of deeper studies in relevance to syntactic and semantic features of log reports in
order to perform better event classification. In theses studies an important issue is
adapting text mining schemes to study lexicological properties of event reports (ne-
glected in the literature). Improving event classification we have introduced word classes
and developed some algorithms identifying variable terms which are supported with
regular expression specifications. Beyond the data comprised in event reports an
important issue is tracing spatial (relevance to software or hardware modules) and time
properties (frequency, time distribution and correlations). Time analysis should take into
account different observation perspectives (e.g. diurnal, monthly). This can be further
extended by correlating event logs with workload and environment characteristics.

© Springer International Publishing AG 2017
A. Romanovsky and E.A. Troubitsyna (Eds.): SERENE 2017, LNCS 10479, pp. 184–200, 2017.
DOI: 10.1007/978-3-319-65948-0_12

We are interested in tracing anomalies and finding characteristics of operational profiles
(resource utilization, workload, user behavior), their changes in time, impact of system
upgrades, reconfigurations, external environment, etc. To support these processes we
have developed special tools with incorporated original algorithms and visualization
capabilities. All this results in a holistic approach to log analysis not encountered in the
literature. The efficiency of the proposed methodology has been verified using event
repositories of many systems.

Basic features of event logs and the related works are presented in Sect. 2. Section 3
describes original lexicological analysis. New event classification algorithms are
introduced in Sect. 4. Spatial and temporal properties are discussed in Sect. 5, final
conclusions are summarized in Sect. 6.

2 Event Log Features and Related Work

Event logs depend upon system architecture and software. Windows systems provide
four kinds of logs: setup, system, application and security logs. Setup logs comprise
information on actions that occur during installation (small number of different and
short messages, less than 100 words). System logs register events describing system
operation, services, states, erroneous situations. These events are categorized as critical
(the highest severity problem), error, warning and information. Application logs deliver
information (up to several hundreds of words) on application execution (severity levels:
error, warning and information). Security logs relate to log on attempts (success and
failure categories). In Unix systems events are provided by syslog daemon (started and
stopped at boot and shut down). Syslog receives event records from applications,
kernel or other units (e.g. printing system, mail agent) and writes to one or more output
files or forwards the logs via UDP to a collection host. Here, seven severity levels can
be distinguished (increasing order of severity): debug, info, notice, warning, error,
critical, alert, emergency. In practice, the specified severity level can be misleading or
not meaningful, so deeper analysis is needed.

Depending upon the system we may have event reports in more or less structured
form. Windows logs are based on XML structure and can refer to various templates
which specify divers elements (fields), e.g.: time stamp, event provider (name or
source), event identifier, severity level, keywords, user ID, event ID, operation which
raised the event, textual description of the event (message). Hence, an important issue
is extracting meaningful information [14]. Log reports can be treated as a plain text
comprising constant and variable parts (terms). Usually, constant parts are predefined
by the event generator. Variable parts appear in correlation with the constant parts as
some differing character strings generated dynamically. Variable parts refer to time
stamps, port numbers, IP addresses, file paths, memory addresses, etc.

Event log analysis can be targeted at characterization of system/application
behavior (operational profile and external interactions), detection of anomalies [9] or
predictions [7, 16] of their potential occurrences. In general, such analysis bases on
extracting characteristic log features. Here, we can distinguish three steps: log parsing,
feature extraction and evaluation (e.g. anomaly detection). Log parsing (clustering or
heuristic approaches [2, 8, 12, 14]) produces event templates describing their structure

Holistic Processing and Exploring Event Logs 185

and information contents (constant and variable parts, message signature). Feature
extraction is targeted at finding characteristic properties related to semantical contents
of reports (occurrence time, source and destination IP, user information, etc.), event
classification, their spatial and time distribution, etc. In particular, we can generate
event count vector [9] which describes the occurrence number of each event (or event
class) and define these vectors for subsequent groups (chunks) of event sequences
obtained by dividing the log set into time windows (fixed, sliding, session).

Log analysis depends upon the goal. The simplest techniques base on searching
events with specific known keywords (e.g. error, fail, crash, denied access, overflow,
congestion) or patterns defined by experts. Further we can look at some baseline
features [3]. They can relate to exceeding specified thresholds, e.g. success and failures
of log in (or log off), restarts, recovery, transmission retries, log message type per
source or day [16]. In practice, more sophisticated techniques are needed. Here we can
distinguish supervised and unsupervised anomaly detection. Supervised methods base
on labeled training data with specified normal and abnormal cases [9]. They use logistic
regression (statistic model), decision trees or SVM (Supervised Vector Machine)
learning method. Non supervised methods detect outlier cases within the observed
events. Typically, they use log clustering [12], methods with big dimension data
reduction (Principal Component Analysis [20]), invariant mining [13], frequent
sequence and rare events mining [3, 14]. A comparative study is given in [8, 9].

In [2] log clustering is performed basing on combining similar messages. Log
reports are compared using Levenstein ratio defined as the Levenstein distance between
two compared strings (minimum number of edits needed to transform one string into
another) divided by the length of the longer one. The modified ratio attributes different
weights to subsequent words (decreasing from the message beginning). Other metric is
introduced in [19]. It takes into account the number of matched and non matched terms
(words) between two compared reports. Measuring and understanding log features is
also an important issue in system resilience evaluation [5, 7, 18].

Most papers on event logs are targeted at detection of specific anomalies (e.g. cyber
attacks, program problems) or specific log datasets (e.g. from telephony [2]). They base
usually on single aspect features, describe at some general level the used methodology
and present summarized results on accuracy and precision in relevance to specific
systems. Quite often they are hard to interpret and do not provide intuitive insights. In
our practice we observed the need of looking not only at anomalies but also deriving
system properties, their changes in time, workload and environment interaction. We are
interested in finding known and unknown features. We have noted that there is a lack of
deeper text mining and lexicological analysis of event logs as well as unsatisfactory
event classification. Moreover, the analysis should take into account multiple aspects of
logs (holistic approach). To deal with these problems we have developed new event
classification algorithms and implemented tools which are integrated with specially
adapted event log data base. They assure log collection, parsing, filtering, reformatting,
statistical and other analyses. This approach has been verified on real data log sets. It
provides a better knowledge on system operation and possible logging improvements.

186 M. Kubacki and J. Sosnowski

3 Textual Log Analysis

Event reports can be treated as textual documents and submitted to classical text mining
processes. They can be targeted at various aspects characterizing the contents of the
reports. The text mining problem is widely discussed in the literature in the context of
classical documents comprising a big amount of natural language text, e.g. publica-
tions, web page contents [1]. This approach is neglected in event log analysis. We
analyzed event message texts using classical mining techniques such as: identifying
keywords [1], novelty mining, word statistics, sentimental analysis (positive or nega-
tive notion of text - [11] and references therein), etc. In most cases the results were not
satisfactory due to specificity of short event massage texts comprising many terms
(words) beyond natural language. Hence, we decided to analyze in detail text properties
using the developed LogMiner tool.

Event reports comprise relatively short texts with natural language words and many
other words expressing various numerical and specific technical terms. Moreover,
grammatical rules of composing the text are vague and many informal specifications
are encountered. Textual descriptions can comprise scanty or imprecise phrases,
technical acronyms, text shortcuts, etc. Hence, an important issue is statistical char-
acterization of event texts. We have performed such analysis for a representative
sample of event logs related to Unix and Windows oriented systems.

Analyzing texts comprised in event logs we base on appropriate dictionaries, e.g.
WordNet base (http://wornet.princton.edu) comprises a set of English words dic-
tionaries specified in XML format. Here, we have separate dictionaries for nouns,
verbs, adjectives, adverbs, etc. Words are grouped according to their meanings. Having
performed a manual preliminary analysis of event log records we have found the need
of specifying some additional dictionaries to facilitate text mining. In particular, we
have introduced the following dictionaries: negative nouns (13), negative verbs (49),
negative adjectives (2118), negative adverbs (437). These words have been verified and
supplemented with others selected manually (by referring to negative word dictionar-
ies, e.g. [11]). Moreover, we have added dictionaries of technical terms related to
hardware, software, internet, file formats or others related to the analysis goals.

Basing on classical dictionaries we deal with words comprising only letters. In
event logs we have also more complex words, e.g. comprising numerical or special
characters (file paths, process names, etc.). Hence, developing a special tool for text
mining (LogMiner) we have admitted two options of word analysis: (i) related to
standard lexical words, (ii) enhanced with partitioning complex words into elementary
words. In the last case we deal with complex words comprising elementary words
concatenated by numerical or special characters (e.g. /). Despite a significant extension
of word definition LogMiner does not classify all words, hence the word class “un-
known” is usually large. This group comprises various acronyms, words comprising
numbers, etc. Classification of such words needs more complex algorithms and can be
combined with the developed process of deriving variables and classifying event logs
(Sect. 4). The semantics of event logs on one hand bases on natural language phrases or
word meaning and on the other hand it comprises some technical terms both of general
widely used meaning (e.g. task termination) or a very narrow meaning close to the

Holistic Processing and Exploring Event Logs 187

http://wornet.princton.edu

specificity of the considered system (e.g. cron.daily, cron.weekly, USER=root; error
(grandchild #6367 failed with exit status 1), COMMAND=/bin/ps]). Moreover, some
information can be presented in an encoded form (e.g. COMMAND=/bin/kill -9 21657,
TTY=pts/2). Application logs usually show high diversity in formats.

The developed LogMiner facilitates text mining. Using this tool we have derived
some interesting properties within the collected event logs. For an illustration we give
statistics of word classification within logs (message fields) collected from Neptun
server covering 6 months – over 100 000 events. These statistics include words selected
from complex words (option (ii) of LogMiner). Cancelling this extension (option (i))
we have got much smaller number of identified words, i.e. only 12 600 nouns as
opposed to 472 519 in the first case. This confirms that log messages comprise much
more specialized complex words than regular English words. Such words can be
analyzed with regular expressions and referring to various dictionaries. We use clas-
sical dictionaries and predefined dictionaries of specialized terms, acronyms, words of
negative meaning, etc. For an illustration we give distribution of words in the con-
sidered Neptun server (with introduced acronyms):

adjectives (AD - 460), negative adjectives (NAD - 129), adverbs (ADV - 129433),
computer acronyms (ACR - 38467), hardware (HW - 1984), internet (INT - 1013),
nouns (N - 422519), negative nouns (NN - 142), software (SW 144050), verbs
(V 327682), negative verbs (NV - 77).

All words not included in considered dictionaries are classified as unknown words
(UW - 199664). More interesting is the distribution of different (unique) used words
(cardinality of used dictionaries). For an illustration we give word cardinalities for logs
of two Unix servers: Neptun and Catalina:

– Neptun: UW - 548, AD - 219, NAD - 14, ADV - 71, ACR - 51, HW - 48, INT - 20,
N - 606, NN - 4, SW - 47, V - 301, NV - 9

– Catalina: UW - 125, AD - 40, NAD - 3, ADV - 14, ACR - 7, HW - 6, INT - 9, N -
130, NN - 1, SW - 15, V - 55, NV - 1

Similarly, we analyzed logs from laptops and workstations (Windows systems). These
logs (collected within 1–4 years from 8 systems) comprised in total 621118 events, 14
747 358 words (57 642 unique words). We have identified only 1335 and 1083 unique
English and Polish words, and 48 IT words. Total numbers of these words in the logs
were 10329591, 3432139 and 2724503, respectively. Within other unique word cate-
gories dominated hex values (17280), path specifications (12216), integer numbers
8861, globally unique identifiers (8861), other categorized words (web addresses, files
with exe, dll, etc.) ranged from 45 to 700, uncategorized (12216).

Typically, the used English vocabulary in event logs is relatively poor (several
hundreds or thousands of words) as compared with classical documents analyzed with
text mining. Nevertheless, we should comment here that this analysis does not take into
account so called non regular words, i.e. words comprising numbers, concatenated
words (with special characters). In particular, in this group we can have file paths, port
numbers or such specifications as: error1, user5, server#11. These words as well as
words classified in dictionary of unknown words (e.g. specific acronyms, user names)
can be analyzed with the available classification algorithms and regular expressions
(Sect. 4).

188 M. Kubacki and J. Sosnowski

Different event logs have different text properties, word statistics, vocabularies, etc.
For an illustration the access log of Catalina server and syslog of Neptun server used
about 280 and 1200 unique English words, respectively. However, Catalina event
records comprised more words than Neptun (many of them non regular or not clas-
sified). The semantical diversity here was also much lower. Having identified log
properties we have to adapt appropriately the analysis.

Using more advanced text mining we have studied so called Inverse Document
Frequency (IDF(t)) which measures importance of the considered word t [1]:

IDFðtÞ ¼ log Dj j= ½d �D: t � d�j jf g

where D is the set of documents (event reports in our case). This function assumes
lower values for less significant words, in particular those which appear frequently (e.g.
stop words). For natural languages the plot of IDF values in deceasing order has the
shape of a logarithmic curve.

For the considered Neptun server and analyzed 1184 words we got a logarithmic
shape of IDF parameter (values 1–5). The x-axis covered unique words from 11
dictionaries, however we should notice that some words appeared in different dic-
tionaries (e.g. adjectives and negative adjectives, noun and verb, etc.). In classical text
mining IDF parameter is helpful in identifying interesting words (e.g. keywords), as
those with high IDF value. In our case we had many words with high IDF, so it was not
sufficient criteria for selecting interesting event records. So some other criteria should
be added. In particular, we have decided to check IDF for negative words and here we
have received interesting results. From the 219 used adjectives 13 have been defined as
negative, for 11 of them IDF was in the range 2.62–5.01, similarly 3 negative nouns:
fault, warning, error achieved IDF 2.96, 3.58 and 4.53, respectively. Event records
comprising such words (e.g. recovery, retry, backup, unavailable, permission, cancel)
are interesting for the users. Distribution of IDF for access logs of Catalina server
(Fig. 1) was quite different (close to linear decrease) with only 40 words with IDF
exceeding 2.8 (as opposed to over 1000 in the case of Neptun server).

Fig. 1. Distribution of IDF for Catalina server (x-axis: 286 unique words, y-axis: 0–3.8)

Holistic Processing and Exploring Event Logs 189

We have extended this analysis for word phrases (treating them as generalized
words). LogMiner has several options dedicated for this purpose. In particular, we can
select phrase length (2–6 words), various filtering (e.g. phrases comprising words
belonging to specified dictionaries). This allowed us to select interesting log entries.
Dealing with IDF we should be prepared for situations with bursts of replicated events
within some time window. In the case of anomalous situations this may happen quite
frequently. This effect decreases IDF of words appearing in bursts, so it is reasonable to
filter them out appropriately in calculations.

For an illustration we give interesting phrases (for Neptun syslog) composed of 4
words with relatively high values of IDF: [link is not ready] – IDF = 4.71, [file could
not be] – IDF = 4.71, [not provided by any] – IDF = 4.41. In Catalina access log
usually event messages were relatively long, so we searched even for longer phrases.
For example, the phrase [non clean shutdown detected on] attained IDF = 2.5 and it
related to interesting events, e.g.:

2012-09-27 16:11:45 INFO: Non clean shutdown detected on log [/opt/apache-
tomcat-7.0.16/data/passim-entity/nioneo_logical.log.1]. Recovery started …

This event related to incorrect closing of a library by an application.
Looking for logs related to critical or dangerous situations we have defined dic-

tionaries of critical words (based on statistical analysis discussed above). They included
such words as no, not, error, fail, unavailable, false, kill, exception, panic, failover,
recovery, heartbeat, shutdown, timeout, missing, etc. In fact more interesting were
phrases comprising these words. So we analyzed k-word phrases (k-grams) comprising
negative words (typically k in the range 2–6). For illustration we give some statistics
(occurrence numbers) of such phrases for the considered Windows logs presented
above: i) two word phrases (bigrams) comprising “failed”: failed to (3830), failed for
(656), driver failed (794), service failed (555), reason failed (419), login failed (419);
ii) 4 word phrases with failed: failed to be changed (1802), failed to load for (794),
service failed to start (553), failed to open the (419). Phrases comprising word “not”
were more populated. Here are some examples of 3 word phrases (trigrams): not
always available (31267), not available key (1767), name not available (1766), re-
sponse not available (1079), did not start (601), not start because (593). Please note
that the occurrence numbers of these phrases constitute very low percentage of all
events (about 700 000). In a similar way we deal with complex words, e.g. un-
able_to_retest, unexpected_job_state, job_stuck, node_dead, packet_drop.

Relatively limited numbers of used regular words in logs makes effective
lexical/linguistic analysis, e.g. n-grams (phrase) analysis. Hence, we can create and
validate “smoke” word list comprising words and phrases specific to the analysis goals
targeted at performance, safety, configuration, resilience, anomaly issues, etc. This list
can be systematically updated. It is helpful in deeper studies of event logs involving
event classification and characteristic feature extractions, discussed in the sequel. In the
analysis we have to take into account misspelling words as well as mixing words from
other languages (e.g. Polish in our case).

190 M. Kubacki and J. Sosnowski

4 Event Classification

While analyzing event logs an important issue is to identify their classes (clustering).
This process can be simplified by identifying events comprising the same fixed terms
and differing on variable terms (parameters). Here, we outline two developed heuristic
algorithms. Algorithm A1 uses preliminary operations which calculate the number of
occurrences of each word W on position P in event log records, this results in a list LC
of counters with elements count [W][P]. The sorted list LC provides its median ele-
ment. In the case the word W occurs on position P more or equally frequently (con-
dition >=) than the median it is qualified as a constant term. Another variant takes into
account sharp condition (>).

More complex is algorithm A2 (Fig. 2), because it takes into account the word
context. Here, we check word successions. In the preliminary phase for every word W1
on position P1we count the occurrence of word W2 on position P2 (P2 > P1). In this
way we create a list L of subsequent words (pairs) with elements count[W] comprising
the number of these occurrences, where W is the concatenation of W1 and W2
(W1 * W2). Between W1 and W2 other words can occur. In the first phase algorithm
A2 finds a threshold of occurrences for the further discrimination. For each pair of
words we take the number of succession occurrences. Taking into account summing N
(N – 1) operations (where N is the number of words in the event report – length L) we
have to divide the obtained sum_gobal by this value. Event lines with no more than one
word are skipped. In the second phase we check whether the average number of word
pair occurrences, exceeds the calculated threshold, i.e. sum divided by N – 1 (variable

for every line (record) LE in the log do
{create a list L of subsequent words in LE
if length(L) <= 1 then continue
sum_global = 0

for every word W1 on position P1 in L do
{for every word W2 on position P2 != P1 in L do

{if P2 > P1 then W = W1 ~ W2 else W = W2 ~ W1

threshold = sum_global / (length(L) * (length(L)-1))
for every word W1 on position P1 in L do
{sum = 0

for every word W2 on position P2 != P1 in L do
{if P2 > P1 then W = W1 ~ W2 else W = W2 ~ W1

avg = sum / (length(L)-1)
if avg >= threshold then W1 is a fixed element in the line LE
else W1 is parameter (variable)

Fig. 2. Identification of variable terms – algorithm A2

Holistic Processing and Exploring Event Logs 191

avg in Fig. 2). In the positive case W1 is qualified as a fixed term and stored in result
record R with this specification.

The developed algorithms have been verified for different log data sets. They pro-
vided reasonable results. Taking into account over 100 000 event logs of Neptun server
and rejecting fields with time stamp and process ID (they are replaced by symbol (*)) we
received 3036 event classes which have been submitted to processing by algorithms
A1 and A2. The number of obtained event classes were 694, 332 and 473 for algorithm
A1 with conditions >, >= and algorithm A2, respectively. Identified variables in the
events have been replaced by symbols (…). Examples and quality of this classification
will be discussed later.

The derived event classes may comprise variables denoted with non informative
symbols (…), however related to a set of words. Quite often different events comprise
variables of the same type (e.g. IP addresses). To improve event class visibility we have
developed algorithm A3 (Fig. 3) which identifies word classes correlated with variable
terms (not encountered in literature). It finds word classes describing a set of words
related to variable terms. It bases on initially defined or found word classes and tries to
add to the known class words from a new class by checking their similarity. Initially
variable mostSimilarWC is empty, variable wcSim is used to calculate class similarity in
relevance to considered set of words (initially set to 0). For every word within the list
words of analyzed words we calculate similarity between every word pattern wp and
string word using matchDegree method (maxPatternSim stores the found maximal
similarity of this word), wp covers string word to some degree, e.g. 60% of characters.
Asymmetric function matchDegree(p1, p2) gives the length of the longest match in p1

findMostSimilarWordClass(words: list of string)
returns WordClass
{maxWCSim = 0
mostSimilarWC = EMPTY

for each WordClass wc in wordClasses (list of WordClass) do
{ wcSim = 0
for each string word in words do
{maxPatternsSim = 0

for each WordPattern wp in wc.wordPatterns
{ patternsSim = matchDegree(word, wp)

if patternsSim > maxPatternsSim
maxPatternsSim

wcSim = wcSim / length(words)
if wcSim > maxWCSim and wcSim >= similarityThreshold

{ maxWCSim = wcSim

Fig. 3. Word class identification – algorithm A3

192 M. Kubacki and J. Sosnowski

divided by its length and multiplied by the number of used characters of p2 in the
longest match divided by the length of p2. Word patterns p1 and p2 can be both plain
words or regular expressions. For example p2 = abcd([0-9]+) contains a regular
expression that matches all characters of p1 = d1234, but since only 9 out of 12 of its
characters are used, the result is 9/12 = ¾. Average value of the maximal similarities
(wcSim/length(words)) is compared with predefined similarityThreshold to add the
words satisfying this condition to the created class of words mostSimilrWC. Many
experiments confirmed the selected 75% threshold as some optimum. Other similarity
metrics can also be used.

Each class is labeled in a general way as ${WordClass_<no>} with subsequent
numbers <no> or can be renamed according to the semantical meaning, e.g.
${USERS_NAME} and can be attributed to identified variable terms in events. Ana-
lyzing event data set of Neptun server with algorithm A2 we have got 473 event
classes, 323 of them comprised at least one variable term. Analyzing the set of these
terms we have identified 568 word classes. Unfortunately, some of the identified terms
in fact are constant (imperfection of algorithm A2). Eliminating them we have got 375
word classes. Further reduction of word classes is possible by consolidation algorithm
A4 (Fig. 4) which generalizes smaller classes in bigger ones.

consolidate(wordPatterns: set of string)
{ resultSet = wordPatterns
tmpResultSet = resultSet
hasChanged = true

while hasChanged == true do
{hasChanged = false

for each p1 in resultSet do
{for each p2 in resultSet do

{if p1 == p2 then continue
sim12 = matchDegree(p1, p2)
sim21 = matchDegree(p2, p1)
if sim12 == sim21 then

{ if length(p1) < length(p2) then merged = merge(p1, p2)
else

else if sim12 > sim21 then merged = merge(p1, p2)
else merged = merge(p2, p1)

if merged is not NULL then
{remove(tmpResultSet, p1)
remove(tmpResultSet, p2)

if tmpResultSet doesn’t contain merged then
{insert(tmpResultSet, merged)

Fig. 4. Word class consolidation – algorithm A4

Holistic Processing and Exploring Event Logs 193

The basic algorithm A3 may be not sufficiently effective and a new word may not be
matched with a set of words. Moreover, in event processing it may be more convenient
to deal with regular expressions describing identified variables instead of explicit set of
the word class. For this purpose we have developed consolidation algorithm A4. It
generates regular expressions and allows us to eliminate redundant word classes. Word
classes can be also specified partially by regular expression and partially explicitly.
Generalization of word classes enables matching them to more variables (e.g. different
sets of IP addresses). Algorithm A4 transforms word classes into WordPatterns defined
by a set of regular expressions. It consolidates word patterns, e.g. a set of timestamps can
be presented as a small set of regular expressions. Hence, a variable covering log files:
/var/log/messages-2012-08-14; /var/log/messages-2012-12-13; /var/log/messages-
2012-10-22 may be replaced with the expression /var/log/messages-<date>, where
<date> is defined by expression 2012-([0-9]+)-([0-9]+). Merging word patterns (p1, p2)
we have to check their similarity (matchDegree). In the merging process of word
patterns it is possible to replace an expression specifying a narrow class of words by a
wider expression (pattern promotion). This extension is realized by successive attempts
using wider regular expressions, e.g. according to the following order: ([0-9]+), ([a-f]+),
([A-F]+), ([a-z]+) ([A-Z]+), ([a-f0-9]+), ([A-F0-9]+), ([a-zA-Z]+), ([a-z0-9]+),
([A-Z0-9]+), ([a-fA-F0-9]+), ([a-zA-Z0-9]+), i.e. starting from digits, small letters, etc.
We can also take into account sequences of expressions, e.g. a([0-9]+) ([a-f]+) which
can be promoted to ([a-f0-9]+) or more sophisticated ones with special or non
alphanumeric characters.

The main consolidating function (A4) is given in Fig. 4. It runs till no possibilities
of merging any pattern. At the beginning each pair of patterns p1 and p2 (within the set
of all wordPatterns) is checked for matching possibility, in the positive case a new
pattern is generated and replaces patterns p1 and p2. In the case when p1 matches p2
and reciprocally we chose the shorter pattern. It is important to note that the introduced
matching function allows to analyze similarity of character strings comprising also
regular expressions (this is not assured by Levenstein based similarity metrics). For an
illustration let us consider the following events:

MKub executed command from host: 1.2.3.4 at 2016-04-14 02:15
JSos executed command from host: 2.68.2.2 at 2015-12-12 01:03
RPod executed command from host: 123.1.5.1 at 2014-17-14 11:17

Algorithms A1–2 identify 4 fields with variables (denoted by (…)) and create a
generalized message with word classes (labelled with $) which can be defined by
regular expressions generated by algorithm A4 (notation as in Qt) related to user name,
host IP, date and time:

(…) executed command from host: (…) at (…) (…)
${USER_NAME} executed command from host: ${HOST_IP} at ${DATE}
${TIME}
${USER_ NAME}=([a-z]+); ${HOST_IP}=([0-9]+).([0-9]+).([0-9]+).([0-9]+)
${DATE}=201([0-9]+)-([0-9]+)-([0-9]+); ${TIME}=([0-9]+):([0-9]+)

194 M. Kubacki and J. Sosnowski

The developed EventAnalyser tool is correlated with a database comprising the
considered event logs. It allows us to visualize registered raw events as well as the
derived classes of events. We can select events related to specified time period,
matching specified keywords, smoke words or phrases (Sect. 3), specified character
strings (e.g. using regular expressions), events of specified priority (severity), IDs, etc.
Complex selections with multiple conditions are also possible. Moreover, we can
perform event selection in a hierarchical way and submit to classifications only selected
subsets, etc. This gives high flexibility in drilling down event properties. Especially, in
the case of logs with predefined templates we can select events according to event
providers, opcodes (e.g. installation, service start, reboot, state change), assigned tasks
(e.g. log on, audit, logging, recovery), keywords (e.g. failure, helper audit success,
exhaustion of system limit). Dealing with event classes we can display (or extract) all
events within such classes. Similarly, we can display all values of used variables (word
classes) within event classes. This is quite useful to identify all user names which had
problems with log in attempt, names of hosts for which this occurred, memory
addresses for which errors have been notified, etc.

Event classification and consolidation processes can be performed iteratively and
validated. In particular, we can verify the word class cardinality and compatibility
within identified variables, as well as their context. Word classes with low cardinality
are suspicious and can be easily verified or rejected. Too many variables not separated
with constant phrases or words need also verification. Analyzing Neptun event logs
with algorithms A2 and A4 we have got 54% of event classes without variables (except
dates and time), 26.4% with a single variable, 5% with double separated variables, and
14.6% of classes comprising many variables with no separation words. Further analysis
iterations of the last group resulted in splitting them into real classes with variables and
classes with no variables. For most variables regular expressions have been derived
automatically. Event classes with variables cover most events of the log. Event clas-
sification can be combined with textual analysis. In particular, we can classify subsets
of events comprising interesting words or n-grams. Moreover, we can also use partial
results of log analysis obtained with other tools.

Having analyzed many logs we have created a knowledge database comprising
disclosed or well-known event patterns related to cyber-attacks, failures, system ini-
tialization, software updates, etc. This database is systematically updated. Most dis-
covered anomalies related to configuration, HW/SW compatibility inconsistencies or
not allowed user activities for the specified laboratory. Most events are not interesting
so we can identify such neutral classes and skip them in further analysis. These classes
relate only to normal system and application activities (suspected situations may appear
if related event frequencies deviate in some aspect). Identified event classes can sim-
plify calculations within algorithms. In the case of big logs we can optimize the
analysis taking into account log subsets and then merging the results (parallel and
distributed processing). Typically, analyzing a sample of logs (e.g. related to a few
weeks or months) we identify most event classes (then we can look for new ones).

Holistic Processing and Exploring Event Logs 195

5 Temporal and Correlational Analysis

Semantical and syntactical event log analysis allows us to derive characteristic events
specifying critical situations, characterize system operation trends, etc. This analysis
has to be enhanced with temporal, spatial and correlation analysis of logs. Within the
temporal analysis we can distinguish:

1. Distribution in time of the number of registered events (summarized view), this can
be further drilled down by taking into account specified event classes (individual
view), distribution of events depending upon their severity level. Some results for a
cluster system we give in [17].

2. Distribution of times between subsequent events summarized or local view (all or
specified classes)

3. Aggregated distribution profiles – monthly, weekly, daily perspectives: for each
time interval (e.g. 24 h intervals) of the selected perspective (e.g. daily) we sum up
events from the considered observation period (e.g. one year)

4. Event density plots: x axis shows event frequencies, y-axis gives the number of time
intervals related to the specified event frequency (density spikes are suspicious and
can be verified)

5. Trend analysis based on identifying distribution properties within subsequent
periods (e.g. months, weeks), percentage of events of different severity levels.

Analyzing trends of specific events or their classes we can preview critical situa-
tions, e.g. in a laptop we observed increased frequency of event 8219 (crossing time
limit of disc service), it appeared sporadically for 10 weeks and than stabilized at the
level 35–72 events/week in 3 subsequent weeks and resulted in disc crash (normal
situation can be assumed 0–7 events per month).

In Table 1 we give monthly distribution of registered events comprising “negative
smells”. Excessive number of events with “error” appeared in 3 months (Neptun
server), events with “stopped” word (Catalina server) showed some visible increase in
time. Words error, warning and fault related to some minor deficiencies in SNMP
demon generated by applications running in GUI (configuration inconsistencies) –

found by correlating events with application usage log. Other negative words warn and
fail correlated with Bluetooth problem and system restarting. In Catalina server events
with stopped word related to the problem of removing threads which lead to memory

Table 1. Monthly distribution of negative words in event logs for two servers

Server Word 1 2 3 4 5 6
Neptun Error

Warning
Fault

34
3
0

0
0
0

0
1
3

40
20
0

2
2
0

37
1
0

Catalina Exhausted
Stopped
Unregistered

0
51
33

0
101
25

0
132
50

2
147
174

0
521
29

2
192
46

196 M. Kubacki and J. Sosnowski

leakage. Very high level of these events on the 5-th month related to high activity of
performed tests and imports of data (in this period we have also observed higher rate of
other negative words). Similar analysis has been performed for other negative and
“smoke” words/phrases. Some trend of increasing the frequency of events with neg-
ative words resulted from system operational changes crossing its resilience capabili-
ties. These problems disappeared after system reconfiguration. Hence, getting
knowledge on normal level of these events is useful to predict various problems
(preventive actions).

Another issue is studying various internal and external correlations. Internal cor-
relations relate to events within the same log, external correlations relate to different
logs (e.g. system and application, system and performance logs [10]) or event logs with
workload and environment characteristic (profiles), seasonal parameters, etc. Spatial
distribution of events is correlated with specified event sources, e.g. computer node or
module, application, storage or network usage.

We can track normal and deviation patterns of some activities, e.g. user logins
taking into account frequency per day or week, login times (working hours) correlated
with holidays, sick days, instances where users log outside of their typical sites or
beyond normal hours. Monitoring our laboratory systems we take into account labo-
ratory schedules, used applications, course attendees, etc. We have observed different
event profiles and sometimes some outlying patterns, e.g. references to not previewed
web pages, so we detect not allowed student activities. Too frequent warning events
produced on some stations showed lack of programming skills of some students, etc.

Analyzing various correlations we should take into account their support and
confidence:

Supp(E: COR) = |E: COR|
Conf (E: COR) = Supp(E: COR)/Supp (E)

where Supp(…) is the number of occurrences of the specified rule in brackets, E: COR
denotes a set of registered events E satisfying condition COR (e.g. appearing before
some other event), Supp(E) denotes the number of all occurrences of event E in a
specified observation time period TCOR. E can stand also for an event class.

Quite valuable is tracking occurrence of event sequences (double, three, etc.) and
select those with high confidence. Events with high support usually related to normal
activities (e.g. system restart). More interesting are low support and high confidence
events mostly related to some anomalies. For event pairs with high support and con-
fidence <e1, e2> it is reasonable searching complimentary pairs <e1, ei> with ei
different from e2 (or vice versa) which can relate to abnormal situations, e.g. in one
Windows computer we have identified within its application log (about 500000 events)
event pairs <MI: 11707, MI: 1033> with support 148 and confidence 1, and other
complimentary pairs were <MI: 11708, MI: 1033> and <MI: 11722, MI; 1033> with
support 19 and 1, respectively (confidence 1), MI is the source of the event (Msin-
staller). The latter pairs related to unsuccessful and faulty installation (installation is
specified by event 1033). Similar situation related to program updates, product con-
figurations, automatic virus scanning, etc. Further we can derive ordered (e.g. by
confidence) pairs comprising initial event ei and create event adjacency matrices or
profile graphs. Disturbances in dominating pairs or other event sequences (e.g. lack or

Holistic Processing and Exploring Event Logs 197

replacement of previewed event) can be drilled down. Some events show seasonal
behavior, e.g. intensive disc writes in a specified time interval every day. This peri-
odicity can be attributed to daily backups, etc. Lack of some seasonal operations can be
a signature of some problems, similarly excessive duration of such activities, etc.

Identified critical events can be further classified to correlate them with problem
sources by searching additional keywords in messages, e.g. hardware, software, node,
storage, blade, network, I/O, partition. Diverse software and hardware dependability
mechanisms can be triggered by the same fault source and generate various events.
Hence, an important issue is to correlate (in time, space and context) theses events with
fault sources. This can be combined with semantic merging different logs. Correlating
events within a specified time window we should be conscious of possible overlapping
of two or more faults.

Text mining of identified critical event messages facilitates diagnosing fault types,
e.g. related to processors, peripheral devices, memory, network, data base, operating
system, file system, application. In most cases fault types can be pointed out by
referring to the appropriate word or phrase categories (e.g. defined in a specially
constructed technical dictionary). This enhances evaluation of system and application
level resilience including measuring mean time between detected problems, duration of
system outages, application hangouts, etc. Identifying (based on event logs) failover
operations we can drill down their effectiveness. In practice, failure tolerance at the
system level may impact applications or disrupt workload. Deriving characteristic
features and various statistics of event logs (e.g. related to dropped packets, missing
modules or files, wrong permissions, timeouts) we can track the impact of workload
and environment changes.

The identified problems (event classes, event sequences, their statistical and timing
features) can be correlated with resiliency attributes: robustness (security and sensi-
tivity to stressful external situations), recoverability (time, scope and effectiveness of
system or application recovery) and resourcefulness (availability of resources). Sys-
tematic system monitoring and log analysis can contribute to collecting event traces
(signatures) characterizing resiliency (confirmation or disapproval). This process can be
supported by interactions with system administrators and users to explain discovered
anomalies or suspicious situations.

6 Conclusion

Deriving system operation features from event logs needs holistic analysis targeted at
structural, contextual, time, spatial and semantic issues. This has been assured by the
developed algorithms and tools (LogMiner, LogAnalyser). The identified properties
should be submitted to correlation studies taking into account context of the envi-
ronment, workload, executed applications, etc. Such approach enables finding sources
of anomalies and detecting occurring or imminent resilience/dependability problems.

The presented lexicological analysis facilitates event message interpretation and
classification. Nevertheless, ambiguous and not precise event reports occur. Hence, it is
reasonable to support system logging with administrator and user logs. Designing logs
(especially for newly developed applications) we should take into account requirements

198 M. Kubacki and J. Sosnowski

to facilitate automatic text mining. An important issue is to update the analytical
methods taking into account the gained experience with detected anomalies or other
interesting event features (e.g. derived critical patterns, regular expressions, word
classes, statistical properties of different aspects). For this purpose we create thesaurus
of interesting keywords and phrases (in relevance to the analysis goals).

Future research is targeted at checking the impact of fault injections (focused on
system, application and user activities) on log contents [4]. This can be followed by
developing recommendations to improve logging infrastructure and event description
(compare [21]).

References

1. Berry, M.W., Kogan, J.: Text Mining Applications and Theory. Wiley, Chichester (2010)
2. Chen, C., Singh, N., Yajnik, D.: Log analytics for dependable enterprise telephony. In:

Proceedings of 9th European Dependable Computing Conference, pp. 94–101 (2012)
3. Chuvakin, A., Schmid, K., Phillips, C., Moulder, P.: Logging and log management, the

authoritative guide to understanding the concepts surrounding logging and log management.
Elsevier (2013). http://dx.doi.org/10.1016/B978-1-59-749635-3.00024-5

4. Cinque, M., Cotroneo, D, Della, Corte, R., Pecchia, A.: Assessing direct monitoring
techniques to analyze failures of critical industrial systems. In: Proceedings of IEEE 25th
International Symposium on Software Reliability Engineering, pp. 212–222 (2014)

5. Di Martino, C., Kalbarczyk, Z., Kramer, W., Iyer, R.: Measuring and understanding
extreme-scale application resilience: a field study of 5,000,000 HPC application runs. In:
IEEEE/IFIP International Conference on Dependable Systems and Networks, pp. 25–36
(2015)

6. Fu, X., Ren, R., Zhan, J., Zhou, W., Jia, Z., Lu, G.: Logmaster: mining event correlations in
logs of large-scale cluster systems. In: Proceedings of the 31st IEEE Symposium on Reliable
Distributed Systems, pp. 71–80 (2012)

7. Gainaru, A., Cappelo, F., Snir, M., Kramer, W.: Fault prediction under the microscope: a
closer look into HPC systems. In: Proceedings of the International Conference for High
Performance Computing, pp 1–12 (2012)

8. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: An evaluation study on log parsing and its use in
log mining. In: Proceedings of the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 654–661 (2016)

9. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly
detection. In: Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE), pp 207–218 (2016)

10. Kubacki, M., Sosnowski, J.: Multidimensional log analysis. In: Proceedings of European
Dependable Computing Conference, pp. 193–196 (2016)

11. Law, D., Gruss, R., Abrahams, A.S.: Automated defect discovery for dishwasher appliances
from online consumer reviews. Expert Syst. Appl. 67, 84–94 (2017)

12. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: Proceedings of the 38th International
Conference on Software Engineering (2016)

13. Lou, J., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system
problem detection. In: Proceedings of the USENIX Annual Technical Conference (2010)

Holistic Processing and Exploring Event Logs 199

http://dx.doi.org/10.1016/B978-1-59-749635-3.00024-5

14. Makanju, A., Zincir-Heywoodet, A.N., Milios, E.E.: A lightweight algorithm for message
type extraction in system application logs. IEEE Trans. Knowl. Data Eng. 24(11), 1921–
1936 (2012)

15. Nagappan, M., Robinson, B.: Creating operational profiles of software systems by
transforming their log files to directed cyclic graphs. In: Proceedings of the 6th International
Workshop on Traceability in Emerging Forms of Software Engineering, pp. 54–57. ACM
(2011)

16. Peccia, A., Cinque, M., Carrozza, G., Cotroneo, D.: Industry practices and event logging:
assessment of a critical software development process. In: Proceedings of the IEEE/ACM
37th IEEE International Conference on Software Engineering, pp. 169–178 (2015)

17. Sosnowski, J., Kubacki, M., Krawczyk, H.: Monitoring event logs within a cluster system.
In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Complex
Systems and Dependability. AINSC, vol. 170, pp. 259–271. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-30662-4_17

18. Stearley, J., Oliner, A.: Bad words: finding faults in spirit’s syslogs. In: Proceedings of
International Conference on Cluster Computing and the Grid (2008)

19. Tang, L., Li, T., Perng, C.-S.: LogSig: generating system events from raw textual logs. In:
Proceedings of the 20th ACM International Conference on Information and Knowledge
Management, pp. 785–794 (2011)

20. Xu, W., Huang, L., Fox, A., Patterson, D., Jordon, M.I.: Detecting large-scale system
problems by mining console logs. In: Proceedings of the ACM Symposium on Operating
Systems Principles, pp. 117–132 (2009)

21. Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, R., Zhang, D.: Learning to log: helping developers
make informed logging decisions. In: Proceedings of the 37th International Conference on
Software Engineering, pp. 415–424 (2015)

200 M. Kubacki and J. Sosnowski

http://dx.doi.org/10.1007/978-3-642-30662-4_17

Author Index

Alexander, Perry 133

Berntsson, Petter Sainio 117
Borck, Hayley 133

Carpenter, Todd 133

Dragule, Swaib 45

Gensh, Rem 169
Gohde, John 133

Haraldsson, Johan 151
Havelund, Klaus 21

Islam, Mafjiul 151

Johnston, Steven 133
Joshi, Rajeev 21

Kline, Paul 133
Kubacki, Marcin 184
Kuismin, Tuomas 96

Latvala, Timo 96

Malek, Miroslaw 3
Martin, Luke 37
Meyers, Bart 45
Muccini, Henry 81

Pelliccione, Patrizio 45, 151

Rafiev, Ashur 169
Rauf, Irum 65
Romanovsky, Alexander 37, 169

Shackleton, Hazel 133
Sosnowski, Janusz 184
Strandén, Lars 117

Tourchi Moghaddam, Mahyar 81
Troubitsyna, Elena 65, 96

Vistbakka, Inna 96

Warg, Fredrik 117

Xia, Fei 169

Yakovlev, Alex 169

Zhou, Yulai 151

	Preface
	Organization
	Cloud Reliability: Decreasing Outage Frequency Using Fault Injection (Invited Talk)
	Contents
	Invited Talk
	Predictive Analytics: A Shortcut to Dependable Computing
	Abstract
	1 Introduction: Three Tyrants and the Permanent Challenge
	1.1 Complexity
	1.2 Time
	1.3 Uncertainty

	2 Failure Prediction and the Paradigm Shift
	3 Modelling for Prediction in a Nutshell
	4 Predictive Analytics and Its Applications
	5 Dependability Economics
	6 Failure Prediction Methodology
	7 Failure Mitigation
	8 Case Study 1: Telecommunication System
	9 Case Study 2: Early Malware Detection
	10 Concluding Remarks
	Acknowledgement
	References

	Modelling and Specification
	Modeling and Monitoring of Hierarchical State Machines in Scala
	1 Introduction
	2 Related Work
	3 Hierarchical State Machines in Scala
	4 Monitoring with Daut
	5 HSM Implementation
	6 Daut Implementation
	7 Conclusion and Future Work
	References

	Stochastic Activity Networks for the Verification of Knowledge Bases
	Abstract
	1 Introduction
	2 Related Work
	2.1 Rule Verification
	2.2 Stochastic Activity Networks

	3 Structural Errors in Rule-Based Systems
	4 Stochastic Activity Network Based Verification Approach
	5 Conclusion and Future Research
	Acknowledgements
	References

	A Generated Property Specification Language for Resilient Multirobot Missions
	1 Introduction
	2 Background
	3 Mission Specification Language
	3.1 Mission Specification Language
	3.2 Run-Time Adaptation of Multirobot Missions
	3.3 Generation of the Property Specification Language
	3.4 Transforming MSL to BL

	4 Evaluation: Implementation of MSL as Textual DSL
	4.1 A Concrete Syntax for MSL
	4.2 Examples of MSL

	5 Related Work
	6 Conclusion and Future Work
	References

	Safety and Security
	Towards a Model-Driven Security Assurance of Open Source Components
	1 Introduction
	2 Keystone Open Stack
	3 Overall Approach
	4 Modeling Approach for SecReUM
	4.1 Resource Model
	4.2 Behavioral Model

	5 Generating Contracts from SecReUM
	5.1 Method Contract with Functional Requirements
	5.2 Security Requirements in OCL
	5.3 Method Contracts with Functional and Security Requirements

	6 Related Work
	7 Conclusions
	References

	A Cyber-Physical Space Operational Approach for Crowd Evacuation Handling
	Abstract
	1 Introduction
	2 Related Works
	3 Background
	3.1 Situational Awareness (SiA) and Cyber-Situational Awareness (CSiA)
	3.2 Processing Loops
	3.3 CAPS
	3.4 Bayesian Network (BN) and Dynamic Bayesian Network (DBN)
	3.5 DBN-Based Hazard and Crowd Behavior Model

	4 Social Behavior Modeling in Evacuation
	4.1 Confusion
	4.2 Velocity

	5 Optimal Crowd Evacuation Using Quickest Flow Model
	6 Application of the Optimal Crowd Evacuation Approach to the Running Example
	6.1 CSiA and Processing Loops
	6.2 Caps
	6.3 Risk Index
	6.4 DBN
	6.5 Quickest Flow

	7 Conclusions and Future Work
	Acknowledgment
	References

	Co-engineering Safety and Security in Industrial Control Systems: A Formal Outlook
	1 Introduction
	2 Systems View on Safety and Security Interdependencies
	3 Modelling and Refinement in Event-B
	4 Case Study: The Battery Charging System
	5 Event-B Development of the Battery Charging System
	6 Related Work and Conclusions
	References

	Software
	Evaluation of Open Source Operating Systems for Safety-Critical Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Evaluation of OSS RTOS
	3.1 Software Quality and ISO/IEC 25010
	3.2 Capgemini Open Source Maturity Model
	3.3 Dependability-Critical Aspects of an RTOS

	4 Selecting and Qualifying an OSS RTOS for Use in Safety-Critical Applications
	4.1 Characteristics for Comparison
	4.2 Workflow

	5 Case Study: Comparing ChibiOS and ContikiOS
	5.1 Project Maturity
	5.2 RTOS Characteristics
	5.3 Compliance with IEC 61508

	6 Conclusions and Future Work
	Acknowledgements
	References

	100 Years of Software - Adapting Cyber-Physical Systems to the Changing World
	1 Introduction
	2 TEEE Overview
	3 Related Work
	4 Modeling Cyber-Physical Systems
	5 Stimulus Synthesis Algorithm
	5.1 Create Test Cases from Requirements
	5.2 Combine and Prioritize

	6 Dynamic Measurements
	7 Scenario Walkthrough
	8 Conclusion
	References

	Fault Tolerance, Resilience and Robustness
	Improving Robustness of AUTOSAR Software Components with Design by Contract: A Study Within Volvo AB
	1 Introduction
	2 AUTOSAR and ARUnit
	3 Related Works
	4 DbC for AUTOSAR SW-Cs
	4.1 First Iteration and Attempt
	4.2 Second Iteration and Attempt
	4.3 Third Iteration and Successful Attempt

	5 Implementation
	5.1 Selected AUTOSAR Software Components
	5.2 Process of Modifying the Brake-Pedal-Input-Handler Component
	5.3 Process of Modifying the Brake-Light-Control Component

	6 Evaluation
	7 Conclusions and Future Works
	References

	Modelling for Systems with Holistic Fault Tolerance
	Abstract
	1 Introduction
	2 Background
	2.1 SANs and Stochastic Modelling
	2.2 Order Graphs and Resource Modelling
	2.3 Holistic Fault Tolerance

	3 Modelling Methodology
	3.1 Workflow of the Modelling Approach
	3.2 Characterisation of the System’s Extra-Functional Components
	3.3 Building and Simulating the SANs Model of the System
	3.4 Control Loop Pruning
	3.5 Validation Using OG Hierarchy

	4 Use Case
	4.1 Case Study Application
	4.2 Characterisation of the Components
	4.3 SAN Modelling and Simulations of the System
	4.4 Hierarchical Model of the System

	5 Conclusion
	References

	Holistic Processing and Exploring Event Logs
	Abstract
	1 Introduction
	2 Event Log Features and Related Work
	3 Textual Log Analysis
	4 Event Classification
	5 Temporal and Correlational Analysis
	6 Conclusion
	References

	Author Index

