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Abstract. Cloud computing refers to an information technology infrastructure
where data and software are stored and processed in a remote data center,
accessible as a service through the Internet. Typical data centers within these fields
are large, complex and often noisy. Further-more, privacy preserving data mining
is an important challenge. It is required to protect the confidentiality of data
sources during the extraction of frequent closed patterns. In fact, no site should be
able to learn contents of a transaction at any other site. The work carried out in this
paper deals with this problem. In this context, we suggest an approach that
combines the extraction of frequent closed patterns in a distributed environment
such as the cloud. We aim at maintaining the privacy of the sites during the data
mining task in a cloud environment based on homomorphic encryption. The
Simulation results and performance analysis show that our mechanism requires
less communication and computation overheads. It can effectively preserve data
privacy, check data integrity, and ensures high data transmission efficiency.

Keywords: Cloud computing � Privacy � Data mining � Confidentiality �
Frequent closed patterns � Homomorphic encryption

1 Introduction

During the last decade, with the standardization of the Internet and the development of
broadband networks, the computer world has popularized a new paradigm: cloud
computing. Indeed, cloud computing brings a lot of benefits for businesses [1] such as:
(i) rationalization and cost reduction, (ii) increased flexibility to the end user, (iii) usage
billing, (iv) more efficient use of internet technology resource, and (v) data centers and
high-performance storage bases. Thanks to these added-values, the recourse to the
cloud is becoming more remarkable. In fact, billions of data are exchanged or stored in
virtual spaces. This large volume of collected data is characterized by thousands of
recording lines stored in a size of a few gigabytes. However, worsened with this huge
volume of data, the privacy issues of data mining techniques have become very painful.
In this context, preserving privacy is an important challenge. For example, consider a
scenario in which two or more sites owning confidential databases wish to run a data
mining algorithm on the union of their databases without revealing any unnecessary
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information. In this scenario, it is required to protect privileged information. Conse-
quently, it is also necessary to enable its use for research or for other purposes. In
particular, although the sites realize that combining their data has some mutual benefit,
none of them is willing to reveal their database to any other sites.

Hence, the challenge here is: How can we mine the data across distributed sources
securely or without disclosing data to others?

This challenge has actually interested a lot of researchers whose primary purpose is to
preserve the privacy of data sources during the extraction of frequent closed patterns from
a distributed environment by suggesting new protection techniques and approaches.

To tackle this issue, we introduce a novel approach preserving privacy mining
called Cloud-PPDM. In this respect, we take into account a main concern, namely
maintaining privacy during closed frequent patterns mining in a distributed environ-
ment such as the cloud. To do this, we introduce a novel data privacy mining scheme
based on homomorphic encryption. The scheme adopts a symmetric-key homomorphic
encryption to protect data privacy and combine it with a homomorphic signature to
check the integrity of data aggregation. In addition, during the decryption of aggregated
data, the master of these sites is able to classify the encrypted and aggregated data
based on encryption keys. Our experimental results reveal that the proposed approach
is efficient on both runtime performances and security criteria.

The remainder of the paper is organized as follows. In Sect. 2, we describe the related
work on privacy preserving data mining. In Sect. 3, we detail some notations that rely on
cryptography. Section 4 describes our approach, which can extract frequent closed pat-
terns in a cloud environmentwhile preserving the constraints of privacy by using designed
homomorphic encryption. Section 5 gives some tests to illustrate the performance of our
approach. Finally in Sect. 6, we summarize our work andwe sketch issues of future work.

2 Related Work

Data mining preserving privacy includes a variety of methods to extract useful
knowledge from data, without divulging sensitive information on involved individuals.
The challenge is to find effective models that meet these constraints. In the following,
we survey some work allowing to deal with this problem. Four main categories of
Privacy Preserving Data Mining (PPDM) methods have been identified [10–14]:

– Anonymization-based PPDM [15]: The anonymization technique implements
generalization and suppression methods to generate an individual record indistin-
guishable within a group of records.

– Perturbation-based PPDM [16]: In this way, the statistical information computed
from the perturbed data does not differ from the statistical information computed
from the original data to a larger extent.

– Randomization-based PPDM [17]: The randomization technique implements data
distortion techniques for adding little noise in the actual data.

– Cryptography-based PPDM [14]: Cryptographic algorithms are ideally meant for
scenarios where multiple parties collaborate to: (i) compute results, (ii) share non
sensitive mining results, (iii) and avoid disclosure of sensitive information.
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Table 1 summarizes the main advantages as well as the limitations of the (PPDM)
techniques.

In the following, we only put the focus on the work based on cryptography. The
cryptography-based PPDM technique usually guarantees a very high level of data
privacy. In [18], the authors addressed the problem of secure mining of association
rules over horizontally partitioned data, using cryptographic techniques to secure the
shared information. Their solution was based on the assumption that each party would
first encrypt its own patterns utilizing commutative encryption, then the already
encrypted patterns of every other party. Later on, an initiating party would transmit its
frequency count, plus a random value, to its neighbor. The latter would add its fre-
quency count and pass it to other parties. Finally, a secure comparison would take place
between the final and initiating parties to determine whether the final result was greater
than the threshold plus the random value.

In addition, the authors in [19] dealt with the problem of association rule mining in
vertically partitioned data. In other words, its aim was to determine the item frequency
when transactions were split across different sites, without revealing the contents of
individual transactions. The security of the protocol for computing the scalar product
was analyzed.

Furthermore, the authors in [32] put forward an encryption scheme based on sub-
stitution cipher techniques in order to preserve the privacy of the transactional data used
for outsourcing association rule mining. However, they considered that the association
rules mining would be centralized on a single provider, which had to receive the different
pattern frequency count and perform all the association rules mining tasks. In contrast, to
avoid such overhead imposed on a single provider, the master miner in this schemewould
mine the strong association rules on a global level by sending count queries to the data
providers while avoiding to store any part of the data locally.

Moreover, the writers in [33] suggested a privacy-preserving model that merged the
secure multiparty computation and differential privacy to preserve the privacy of the
statistical operations (i.e., count and aggregate count). However, it was not clear how
this approach could be applied to handle association rules mining given that the

Table 1. Advantages and limitations of PPDM techniques

Technique Advantages Limitations

Anonymization-based
PPDM [15]

Hidden identity or
sensitive data about record
owners

Heavy loss of information

Perturbation-based
PPDM [16]

Different independently
preserved attributes

Original data values cannot be
regenerated

Randomization-based
PPDM [17]

Simple and useful for
hiding information about
individuals

This method does not deal with
multiple attribute databases

Cryptography-based
PPDM [14]

Better privacy comparing
to randomized approach

Heavy calculations (in terms of
computation time and memory
consumption)
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division operations had to be performed between parties in a secure way in order to
validate the minimum support and confidence.

Otherwise, the authors in [34] proposed to tackle the problem of outsourcing the
association rule mining task within a corporate privacy-preserving framework by
suggesting an encryption scheme based on substitution ciphers called, RobFrugal.

In addition, the authors in [20] focused on the use of encryption techniques to build
a secure protocol (multi-party computation) to perform this task. The principle of this
approach was to use a communication protocol between sites based on asymmetric
cryptography arising protocols through solving the discrete logarithm problem. This
protocol would ensure anonymity by commutative cryptography, and therefore would
guarantee the preservation of the privacy of data owners. This method ensured secure
communication while respecting the privacy of sites. However, it did not ensure the
integrity of the exchanged data between the sites. In the case of a malicious site, false
information may be generated and subsequently sent to the next site. The latter could
not detect any modification, leaching the end, to a miscalculation.

Besides, the writers in [21] put forward an approach to transform original data
using an encryption function associated with a signature. The key ensured and verified
the authenticity of the message and its integrity. This approach was based on homo-
morphic encryption whose properties allowed performing various operations on
encrypted data without knowing the plaintext data.

Added to that, the authors in [22] suggested a method based on Secure Multiparty
Computation (SMC). The SMC was a set of cryptographic techniques that permitted
the calculation of any function on a set of data distributed among multiple entities.
Each entity had a portion of the data. Common calculation had to be done so that
neither party could guess, in any manner, the data of other entities from the results and
its own data. The limit of this method stood in the fact that communication complexity
would exponentially increase as far as the number of distributed sites rose.

In [23], the authors proposed a method based on public key cryptosystems (asym-
metric ciphers). A public-key (asymmetric key) based algorithm used two separate keys:
a public key and a private one. The public key was utilized to encrypt the data, and only
the private key could decrypt the data. A form of this type of encryption was called RSA
[24]. It was widely used for secured websites that carry sensitive data such as username,
passwords, and credit card numbers. A disadvantage of using public-key cryptography
for encryption is speed. There have been other popular secret-key encryption methods,
which are significantly faster than any currently available public-key encryption method.

In addition, the authors in [25] put forward an approach based on the Elliptic Curve
Cryptography (ECC) [6] and the ElGamal cryptosystem [26]. These approaches would
avoid multiple cipher operations on each site in order to ensure secure communication
between different sites.

In this respect, there are various advantages and disadvantages of using cryptog-
raphy techniques to ensure privacy preservation data mining [31]. These advantages
and disadvantages are [31]:

– Advantages:
• Robust
• Sender and recipient authentication
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• Anonymity
• Fairness
• Accountability
• Integrity in storage

– Disadvantages:
• Taking a long time to figure out the code
• Overall cryptography as a long process

Generally cryptographic techniques are ideally meant for such scenarios where
multiple parties collaborate to compute results or share non sensitive mining results and
thereby avoiding the disclosure of sensitive information. However, the major drawback
for using cryptography techniques to ensure privacy during the mining task is the
execution time. Owing to its usability and importance, preserving the privacy of data in
a cloud computing environment still presents a thriving and compelling issue. In this
respect, the main thrust of this paper is to propose a novel approach, called
Cloud-PPDM, to ensure privacy preserving data mining. Our approach is based on
cryptographic techniques in order to improve the performances in terms of execution
time. Moreover, the Cloud-PPDM approach relies on mining closed itemsets within a
cloud computing environment. The main idea behind our approach comes from the
conclusion drawn from the data mining community that focuses on the lossless
reduction of itemset mining over cloud computing data. In fact, the extraction of the
latter requires less memory and running time. Table 2 summarizes the surveyed
approaches dedicated to the cryptography based PPDM.

Table 2. Advantages and limitations of cryptography-based PPDM

Technique Advantages Limitations

Kantarcioglu
and Clifton
[18]

- Incorporating cryptographic
techniques to minimize information
shared, while adding little overhead
to mining task

- Very successfull false information
for malicious sites

Vaidya and
Clifton [19]

- Efficient method for computing
scalar product while preserving
privacy of individual values

- Boolean association rule mining
- Difficulty to compute scalar
product while preserving privacy

Moez et al.
[20]

- Anonymity by commutative
cryptography
- Increased security by asymmetric
cryptography

- No integrity of exchanged data
between sites
- Easily transmitted false information
in case of malicious site

Canard et al.
[21]

- Anonymity approach for security
of respondents identity and
decreasing linking attack

- No sufficient protection against
attribute disclosure by
homogeneous attack and
background knowledge attack

Chang et al.
[22]

- Safety
- Security
- Trust-worthiness

- Exponential rising communication
complexity with the number of sites

(continued)
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3 Cryptography Techniques

In this section, we provide the definition of some notations that rely on the cryptog-
raphy and secure communication used in our work.

3.1 Homomorphic Encryption

A homomorphic encryption system provides the ability to perform various treatments on
encrypted data without using the decryption operation [2]. Furthermore, homomorphic
encryption schemes ensure secure aggregation. In fact, they allow data aggregation to be
performed on encrypted data. In homomorphic encryption, certain aggregation functions
such as the sum and the average can be applied on the encrypted data, reducing,
significantly, the workload of the sites in the network. The data is encrypted and sent to

Table 2. (continued)

Technique Advantages Limitations

Approaches
proposed in
[23, 24]

- For public-key cryptosystems, no
need for exchanging keys, thus
eliminating key distribution
problem
- No need for private keys to be
transmitted or revealed to anyone
- Ability to provide repudiated
digital signatures

- High execution time public-key
cryptosystems

Approaches
proposed in
[6, 25, 26]

- Preserving privacy, taking
advantage of elliptic curve
Cryptography and ElGamal
cryptosystem

- Poor scalability in terms of dataset
size and number of sites

Wong et al.
[32]

- High security with low data
transformation cost
- Secure encryption scheme taking
advantage of substitution cipher
- Minimization of demands in
resources

- One-to-n item mapping cannot be
directly applied since it is
effectively a one-to-one item
mapping

Zhang et al.
[33]

- Stronger privacy than current
efficient secure multiparty
computation approaches
- Better accuracy than current
differential privacy approaches while
maintaining efficiency

- Weakness of direct use of
differential privacy in
privacy-preserving data mining
against collision attack

Giannotti
et al. [34]

- Adding weighted support in
original item support transactions to
reduce fake transaction table and
storage overhead
- Robustness against guessing attack
and man-in-the-middle attack

- This approach is proposed only for
information holders; however
individual record owners should
additionally have the rights and
obligations to ensure their own
particular private information
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the master site. The last site applies the aggregation function on the encrypted data. The
master site receives the encrypted aggregated result and decrypts it. A homomorphic
encryption scheme allows arithmetic operations on ciphertexts. These latter are the
result of encryption performed on a plaintext using an algorithm, called a cipher. One
example is a multiplicatively homomorphic scheme, where the decryption of the effi-
cient manipulation of two ciphertexts yields the multiplication of the two corresponding
plaintexts. Homomorphic encryption schemes are especially useful whenever some
parties do not have the decryption key(s), while the other parties need to perform
arithmetic operations on a set of ciphertexts. In the following, we present a description
of the elliptical curve cryptography (ECC) and the signature scheme.

3.2 Elliptic Curve Cryptography

Elliptical Curve Cryptography (ECC) is a public key encryption technique based on
elliptic curve theory that can be used to create faster, smaller and more efficient
cryptographic keys [6]. The ECC generates keys through the properties of the elliptic
curve equation instead of the traditional generation method as a product of very large
prime numbers. This technology can be used in conjunction with public key encryption
methods, such as the RSA [6] and the Diffie-Hellman [7]. According to some
researchers, the ECC can yield a level of security with a 164-bit key, while other
systems require a 1024-bit key to achieve the same security level [8]. Mainly, the ECC
helps to establish equivalent security with lower computing power and battery resource
usage. Consequently, it is becoming widely used for mobile applications.

3.3 Signature Scheme

A signature is a piece of information ensuring authenticity of messages between two
parties without any shared secret information in advance [9]. The sender creates the
signature by using their private key, while the receiver verifies a signature by using the
sender’s public key. An aggregate signature scheme is a method for combining n signa-
tures from n different signers on n various messages into a single signature. Indeed, the
latter will convince the verifier that the n signers have signed the n original messages. In
the next section, we discuss our proposed approach that takes advantage of these cryp-
tography techniques in order to preserve the privacy of data sources during the extraction
of frequent closed patterns from a distributed environment such as cloud computing.

4 Cloud-PPDM Approach to Ensure Privacy Preserving
Data Mining

In this section, we describe the problem statement. Then we present our Cloud-PPDM
approach that is based on two components:

1. The first component uses our proposed Dist-CLOSE algorithm to extract frequent
closed patterns with privacy preserving.
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2. The second provides a security scheme associated with Dist-CLOSE, in order to
ensure privacy concerns. In Algorithm 2, we show the details of this component.

4.1 Problem Statement

The need to ensure the confidentiality of data sources during the extraction of frequent
closed patterns from a distributed environment such as the cloud is a hot research topic
of data mining community. Each site in this environment has a private transaction
database DBi. The goal is to extract frequent closed itemsets in a distributed envi-
ronment. In the meanwhile, no sitei should be able to learn: contents of a transaction at
any other siten, what patterns are supported by any other site, or the specific value of
support for any items at any other site, unless that information is revealed by the
knowledge of one’s own data and the final result. Furthermore, we are interested in
using homomorphic encryption and aggregate signature scheme toolkits to construct a
secure multi-party computation protocol to perform this task.

4.2 Background

Along this sub-section, we introduce basic definitions for closed pattern mining, on
which our work relies.

Basic Definition 1. (Extraction context) An extraction context is a triplet
K ¼ ðO; I ;RÞ, where O represents a finite set of objects, I is a finite set of items and,
R is a binary (incidence) relation (i.e., R�O� I ). Each couple (o, i) 2 R expresses
that the object o 2 O contains the item i 2 I .
Definition 2. (Closure operator) Let K ¼ O; I ;Rð Þ be a data mining context, O a set
of transactions, I a set of items, and R a binary relation between transactions and
items. For O�O and I�I , we define:

f Oð Þ ¼ fi 2 I j 8 o 2 O; ðo; iÞ 2 Kg

g Ið Þ ¼ f o 2 O j 8 i 2 I; o; ið Þ 2 Kg:

f(O) associates with O the items common to all transactions o 2 O, and g(I) associates
with I the transactions related to all items i 2 I. The operators c ¼ f � g and c0 ¼ g � f
are the Galois closure operators.

The closure operator c induces an equivalence relation on the power set of items
portioning it into disjoint subsets called equivalence classes [3]. The largest element (w.
r.t. the number of items) in each equivalence class is called a closed itemset and is
defined as follows:

Definition 3. (Closed frequent itemset) An itemset I�I is said to be closed if and
only if c Ið Þ ¼ I [4]. The support of I, denoted by Supp(I), is equal to the number of
objects in K that contain I. I is said to be frequent if Supp(I) is greater than or equal to a
user-specified minimum support threshold, denoted Minsup. The frequency of I in K is

equal to Supp Ið Þ
Oj j .
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4.3 Global Architecture

The Cloud-PPDM allows extracting the frequent closed patterns in a cloud environ-
ment while preserving the constraints of privacy by using homomorphic encryption that
we have designed. In this respect, the Cloud-PPDM follows the general principle
presented in the algorithms that generate the frequent closed itemset such as the
CLOSE algorithm [5]. Generally, the steps of the Cloud-PPDM are detailed as follows:
Firstly, the initialization process of the communication protocol is invoked. Secondly,
the master site, i.e. the site which launches the mining task, distributes the list of
1-itemset candidates. Therefore, the different sites run, concurrently, a local algorithm
described in Fig. 1, which generates their closure and support. At this step, the
communication protocol is lunched in order to communicate the results to the master
site. Now, the master site has at a hand the set of local closures as well as local supports
of the candidate items. The master site can now generate the global support by making
the sum of local supports. The global closure is computed by making the intersection
of local closures. In this way, the master site can generate the candidates of higher size.
Then at this level, the master site repeats the above steps whenever it can generate
candidates of higher size. Algorithm 1 shows the details of the our proposed approach.
In Table 3, we present the definition of some notations used throughout Algorithm 1.

The Gen-Local procedure receives a Frequent Closed Candidates (FFCk) unit of
candidate k-groups containing the k-generator candidates of the iteration k in argument.
It computes the local support and closure of each generator. This procedure is run on
all sites. The Communication protocol procedure receives the set of candidates with
their closures and supports. Thus, the communication protocol is executed in order to
transfer the results to the master site while ensuring privacy preserving. The
Gen-Global procedure receives the set of FFCL

k obtained by executing the protocol of
communication, and generates the global support by making a sum of local supports
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and the global closure by making the intersection between the local closures received
previously. Then the master site can run the infrequent itemsets given minsupp. At this
step, the master site executes the Gen-Generator procedure to generate the candidates
of size k + 1 and it returns the set of this candidates. This process will be repeated until
the Gen-Generator procedure generates an empty set. As a final step, the master site
executes a procedure so as to generate a generic base of exact association rules.

4.4 Communication Protocol

The goal of our approach is to extract frequent closed itemsets while ensuring the
maintenance of privacy between the various sites. The communication protocol con-
sists of four procedures: (1) Setup, (2) Encrypt-Sign, (3) Aggregate, and (4) Verify. The
Setup procedure is to prepare and install necessary secrets for the master and each site.
When a site si decides to send sensed data to its site si+1, it performs the Encrypt-Sign
and sends the result to the site. Once the site sn receives all results from its sites, it
activates the Aggregate to the received data, and then sends the final results (aggre-
gated ciphertext and signature) to the master. The last procedure is Verify. First, the
master site extracts the individual sensed data by decrypting the aggregated ciphertext.
Afterwards, the master verifies the authenticity and integrity of the decrypted data
based on the corresponding aggregated signature. The details of our approach are
detailed as follows:

1. Setup phase: For each site si, the master generates (Svi, Sxi) by KeyGen procedure
1 based on the approach proposed in [9], where (Svi = vi) and Sxi = xi (MSpk,
MSsk). These keys are generated by KeyGen procedure 2. The latter is based on the
approach proposed in [27], where the Master Site public key (MSpk) = (n, g, k) and
the Master Site secret key (MSsk) = (p, pg). After that, the (MSpk) is loaded to si
for all sites i.

2. Encrypt-sign phase: This procedure is triggered when a site si decides to send its
sensed data to the site si+1. At the end, the site si sends the pair ciphertext and the
signature (ci, ∂i) to site si+1.

3. Aggregate phase: The Aggregate procedure is launched after the site Aggregator sn
has gathered all ciphertext signature pairs.

4. Verify phase: When receiving all the ciphertexts and signatures ðC0; @0Þ from the
aggregator site sn, the master can recover and verify each sensing data via the
following steps: First, the master decrypts the aggregate result using its private key.
Additionally, the master needs to reverse the mapping from the point on the elliptic
curve to the aggregate result. To verify the signature, the master computes a point

Table 3. Deftnition of some notations used throughout Algorithm 1

Notation Deftnition

FFK Set of frequent closed itemset of k-size
FFCK Set of frequent closed itemset candidates of k-size

FFCL
K Set of local frequent closed itemset candidates k-size

FFCG
K Set of global frequent closed itemset candidates k-size
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on the curve using the received signature, the decrypted aggregate result, and the
integer k. If the calculated x-coordinate of the point is the same as r(x), then the
signature is verified. The master makes sure that all data are generated by legitimate
sites and included in the aggregate. In Algorithm 2, we show the details of the
communication protocol.

5 Evaluation

In this section, we experiment the effectiveness and scalability of our proposed
approach. In Subsect. 5.1, we present the security analysis and performance evaluation
of our communication protocol. Subsection 5.2 describes the experimental environment
and the characteristics of the datasets used to evaluate the performance in this work.
Finally, in Sect. 5.3, we describe the experimental results and give analysis.
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5.1 Security Analysis

In this section, we illustrate the performances of our approach in terms of integrity,
freshness and confidentiality of the exchanged data between all sites. The exchanged
data can be exploited by a malicious adversary to violate the confidentiality of the
sensitive data. In our approach, we palliate these threats via the encryption phase. Also,
to ensure the integrity of all exchanged data, each data message is sent only once from
the original source. A signature is attached to each message. The signature is computed
using the private key that is only known to the source such that the report cannot be
forged when it is kept at other sites.

We use the Elliptic Curve to provide message and aggregate integrity in addition to
data confidentiality. Each site is pre-loaded with the appropriate elliptic curve
parameters, the master public key and a network wide random integer. The integer is
used to generate a new key (k) at set intervals. This ensures that the signatures are
additive and secure against attacks. At the start of each round, each site chooses a
private key and computes the appropriate public key. Choosing a private key is
straightforward and requires the site to pick an integer in the field of the elliptic curve.
A new public and private key pair is necessary during each round of processing,
because it will only take two signatures for a malicious site to determine another site
private key. Clearly, if another message is signed with the same private key, then that
signature will not be secure. We add another level of security by signing the message
and then encrypting it before sending it to the next level. If a site signs the same
message with the same key, then another site can determine the private key. The
signature scheme is designed such that all signatures can be combined via a simple
arithmetic operation. This makes the amount of work required from a master site very
small and thus well suited for Privacy Preserving Data Mining (PPDM). The
exchanged data are optimized to work with homomorphic encryption and aggregated
signatures. The aggregator site waits for a certain amount of time, and when the
aggregator has received data, they will add the ciphertexts, which are the digital sig-
nature and the public keys. At the end, the master receives only one exchanged data,
which consists of one ciphertext corresponding to the sum of the readings of all sites.
Besides, it receives one signature corresponding to the sum of data and the sum of the
public keys of all sites. Then the master can decrypt the message and verify its integrity
using the sum of signatures and the sum of public keys.

5.2 Test Environment and Datasets

In this paper, all simulation work is done in Java. Our simulation is run on the Amazon
EC2 cloud computing platform. To show the performance of our proposed approach,
we use High-CPU Medium Instances which have 1.7 GB of memory, 5 EC2 compute
units (2 virtual cores with 2.5 EC2 compute units each), 320 GB of local instance
storage, and 64-bit platforms. In addition, we select various types of datasets, dense and
sparse, from the UCI KDD machine learning repository such as: Mushroom [28],
Connect [29], C73D10K [30], and T40I10D100K [35] in our experimentation. Table 4
describes the dataset characteristics.
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5.3 Results and Analysis

To determine the efficiency of our approach, we measure the processing time con-
sumption of the Cloud-PPDM with regard to the approach proposed in [20] fitting in
the same trend and in the same data characteristics. We start with the approach pro-
posed in [20] in order to determine the consumed time, for dense and sparse datasets
with a various number of sites equal to three, four, and five.

In Figs. 1 and 2, the vertical axis represents the execution time of our Cloud-PPDM
approach vs the approach proposed in [20], respectively on the Mushroom and Connect
datasets, and the horizontal axis is exploited to present the variations in the execution
time according to the number of sites P for various minsup. We note that P represents
the number of sites. According to Fig. 1, we can analyze these results as follows: for
example, for the Mushroom dataset with a minsup equal to 60% and with a number of
sites equal to three sites, the Cloud-PPDM approach requires an execution time equal to
2,218 s to generate the result, while the other approach requires 3,494 s. Furthermore,
for the Connect dataset with a minsup equal to 90% and with a number of sites equal to
four sites, the execution time passed by the Cloud-PPDM approach to arrive at the
result is 324,216 s, whereas the vs. approach passes 453,415 s. We can interpret also
through Fig. 1, that the total processing runtime keeps increasing linearly as the
number of minsup decreases. This is mainly due to the fact that the calculation time to
generate the frequent closed itemsets will increase, when the value of the minsup
decreases. In this case, the communication and distribution management time becomes

Table 4. UCI dataset characteristics: nature, number of objects, average size of objects, and
number of items

Dataset Mushroom Connect C73D10 K T40I10D100K

Nature Dense Dense Dense Sparse
Number of objects 8124 67 557 10 000 100 000
Average size of objects 23 43 73 40
Number of items 127 129 2178 1000

Execution time for Mushroom dataset Execution time for Connect dataset

Fig. 1. Execution time of Cloud-PPDM vs approach proposed in [20]
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negligible with respect to this calculation time. Subsequently, this will remarkably
increase the execution time of the algorithm.

In Fig. 2, we show the execution time of the Cloud-PPDM vs the approach pro-
posed in [20], respectively on the C73D10K and T40I10D100K datasets. This figure
clearly demonstrates that our approach has the shortest execution time compared to the
adversarial approach for each of C73D10K and T40I10D100K datasets. For example,
in the case of three sites for the C73D10K dataset with a minsup equal to 80%, our
approach requires an execution time equal to 197.614 s, whereas the other approach
requires 327, 143 s. Moreover, in the case of five sites for the T40I10D100K dataset
with a minsup equal to 0.5%, our approach needs an execution time equal to 100.068 s,
while the other approach requires 127.583 s. Otherwise, in the case of the dataset
T40I10D100K we can observe a reconciliation between the curves. In this case the
execution time varies according to the number of sites. We can notice that if we
increase the number of sites for the same threshold, the execution time will decrease.

The total communication cost of the Cloud-PPDM depends on the number of sites.
The cost of each run based on the number of items n is as follows: s1 sends the sensed
data to its site si+1. This latter sends also the sensed data to the next site si+2. Once the
site sn receives all results from its sites, it will send the final results to the master. Then
the communication cost of the Cloud-PPDM is O(n), where n represents the number of
sites. Generally, the cost of maintaining privacy depends primarily on the number of
sites, the size of the exchanged messages, the number of calls to the communication
protocol, and the number of candidates in each iteration.

In this sub-section, we have presented an experimental study (Figs. 1 and 2) on the
Cloud-PPDM approache and the one proposed in [20] for the extraction of frequent
closed itemsets in a distributed environment while preserving the privacy of data
owners. We have performed different tests on the datasets of different types and sizes,
to evaluate the performance of our approach with respect to the approach proposed in
[20]. According to these experiments, we conclude that the Cloud-PPDM approach
mining has the shortest time to ensure privacy mining, compared to the approach
proposed in [20].

Execution time for C73D10K dataset Execution time for T40I10D100K dataset

Fig. 2. Execution time of Cloud-PPDM vs approach proposed in [20] respectively on C73D10K
and T40I10D100K datasets
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6 Conclusion

Through this paper, we have introduced a new secure scheme associated with the
Dist-CLOSE algorithm which takes advantage of homomorphic encryption. This
scheme offers the advantage of carrying out the mining task while guaranteeing
security and anonymity. In addition, this scheme protects the confidentiality of data
sources during the extraction of frequent closed patterns from a distributed environment
such as cloud computing, without revealing information that compromises the privacy
of individual sources. In summary, we show that it is possible to achieve good indi-
vidual security with a communication scheme.

Through extensive experiments carried out on benchmark datasets, we show the
effectiveness of our proposed scheme on both runtime performances and security
analysis.

Future work will include improving prospects of this approach by strengthening the
autonomy of the exchanged data between sites. We plan to give the data the ability to
protect itself during the exchange. Hence, the verification calculation by the master site
is no longer required in order to ensure safety.
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