
A New FDD-Based Method for Distributed
Firewall Misconfigurations Resolution

Amina Saâdaoui(B), Nihel Ben Youssef Ben Souayeh, and Adel Bouhoula

Digital Security Research Unit, Higher School of Communication (Sup’Com),
University of Carthage, Tunis, Tunisia

{amina.saadaoui,nihel.benyoussef,adel.bouhoula}@supcom.tn

Abstract. Firewall is one of the most commonly used techniques to
protect a network, it limits or provides access to specific network seg-
ments based on a set of filtering rules that should be configured with
respect to the global security policy. Nevertheless, the security policy
(SP) changes frequently due to business or application needs, and this
change often impact firewall configurations by generating new conflicts
between different rules. Therefore, discovering and removing automati-
cally the configuration errors is a serious and an unavoidable task. This
problem has been addressed through a variety of approaches from fire-
walls rules analysis to firewall configuration verification, but existent
solutions have, essentially, three drawbacks: First, most of them did not
analyze all relations between all rules in such a way, some classes of
configuration errors could be uncharted. Second, the distinction between
syntactic intentional anomalies and effective misconfigurations is not gen-
erally highlighted. Third, although anomalies resolution is a tedious and
error prone task, it is generally done manually by the network administra-
tor. In this paper, we address this problem using a data structure (FDD:
Firewall Decision Diagram). We propose a new approach to detect and
correct automatically misconfigurations in a distributed environment. We
demonstrate the applicability and scalability of our method by the use of
a Satisfiability Solver. The first results we obtained are very promising.

Keywords: Firewall · Security Policy (SP) · Misconfiguration · Anom-
alies · FDD · Distributed environment · Inference system · SAT solver

1 Introduction

The complexity of networks is constantly increasing, as it is the size and com-
plexity of firewall configurations. These Firewalls examine the traffic of network
against an ordered list of filtered rules, generally, defined by network admin-
istrator according to the global security policy (SP). Over time, the exponen-
tial growth in network traffic, services and applications has led to a growth in
rule-sets size and a growth in firewall complexity. Moreover, in multi-firewall
environment, with hundreds of firewalls, it is difficult to verify detect and cor-
rect manually misconfigurations that can arise between different rules. Therefore,
c© Springer International Publishing AG 2017
M. Themistocleous and V. Morabito (Eds.): EMCIS 2017, LNBIP 299, pp. 369–383, 2017.
DOI: 10.1007/978-3-319-65930-5 30



370 A. Saâdaoui et al.

after each SP change, automated misconfigurations management to keep firewalls
configured properly, without impacting network availability and IT productivity
is essential for any enterprise.

In this paper, we consider the following problem: In a multi-firewall envi-
ronment network, where each firewall can accumulate hundreds of changes over
the years, how can we analyze detect and fix firewalls misconfigurations? As an
example, consider the network topology shown in Fig. 1. We have three firewalls
that delimit three subdomains (configurations of firewalls 1, 2 and 3 are shown
in Fig. 2). The SP that should be implemented is described as follows: SP v1:
Deny access from net1 to net2 except http access from machine M1
to subnet21; Allow all traffic from net3 to net2. We can note here that for
traffic from net1 to net2, passing through FW2 and FW3 respectively, the SP is
properly implemented. However, if the SP is modified to: SP v2: Allow access
from net1 to net2 except http access from machine M1 to subnet21;
Deny all traffic from net3 to net2, then this change requires a complete eval-
uation of firewalls configurations and we can note that rules of FW1, FW2 and
FW3 are no longer implemented with respect to the SP. To deal with this prob-
lem, many solutions have been proposed but they have, essentially, the following
drawbacks:

Fig. 1. Network topology

– In a multi-firewall environment, mostly we consider anomalies between only
two firewalls in a given network path which cannot give a precise idea on real
conflicts that can arise between different rules of different firewalls and obvi-
ously will not help to fix them. In a distributed environment these anomalies
could exist between rules of different firewalls. For example, if we have traffic
from net3 to net2, the path followed by this traffic contains Fw1, Fw2 and
Fw3 so we should analyze relations between rules of these firewalls.

– Some Studies deal only with pairwise filtering rules. In such way, some other
classes of configuration anomalies could be uncharted. For instance, if we
consider the network path composed by firewalls Fw1 and Fw2, rule r1 from
Fw1 is overlapped with three other rules (r2 and r3 from Fw1 and r3 from
Fw2). Therefore any correction technique should take under consideration all
relations between all rules otherwise the correction process will not help to
obtain the required action.



A New FDD-Based Method 371

– Some Studies did not distinguish between intentional syntactic anomalies
and real configuration errors. For example, we can note that the filtering
rules of firewall Fw3 are conform to SP as filtering rules of firewalls are,
generally, processed from the top down, and the first match wins. Here, when
traffic from sub−net11 tries to access sub−net21, it will be blocked through
r33. Although no misconfiguration is identified, most related studies [3,7,8]
present the conflict between rules r33 and r43 as a purely syntactic anomaly,
since these two rules handle common packets with different actions.

In this paper, we propose a new approach to discover and fix misconfigu-
rations in a multi-firewall environment. Our approach takes advantages of the
sequential application of firewall rules modeling their relations in a firewall deci-
sion diagram (FDD). This data structure is presented by Gouda and Liu in
[12,17]. Given the structure of FDD and firewall rules, we can discover precisely
anomalies and by considering SP we can decide whether an anomaly is inten-
tional or if it is a real configuration error. In this line of research, our earlier
work deals with formal analysis of single firewall configuration. We proposed
a new approach to correct misconfigurations in a single firewall by modifying
some rules fields, modifying their order, removing some rules. The contributions
of this work can be summarized as follows: (1) We use a formal method using
inference systems and a SAT solver to deal with this problem. (2) We extract
and decide if an anomaly is a real misconfiguration or an intended anomaly in
distributed environment by using the FDD. (3) When the usual corrections of
configuration errors are the insertion of new filtering rules, which is a practice
not often optimal nor safe, we try to meet the challenge of first altering the
distributed firewall rules in place (deleting, modifying fields, or even swap rules)
to optimize configuration while preserving the behavior of firewalls intact (do
not generate other errors). This paper is organized as follows: Sect. 2 presents a
summary of related work. Section 3 overviews the formal representation of fire-
wall configurations and security policies and details FDD structure. In Sect. 4,
we articulate our approach to detect and correct firewall misconfigurations. In
Sect. 5.1, we present the implementation and evaluation of our method. Finally,
we present our conclusions and discuss our plans for future work.

2 Related Work

Intra and Inter-firewalls Anomalies Detection: Al-Shaer and Hamed [3]
introduce a framework for discovering anomalies in centralized and distributed
firewalls. They analyzed relations between rules using a state diagram that allows
to identify anomalies and couple of rules involved in these anomalies or couple
of firewalls (in case of inter-firewalls anomalies detection), this differs from our
method that considers all rules and not only pairwise ones. Hu et al. [14] propose
a new anomaly management framework (FAME) that facilitates the systematic
detection and resolution of firewall policy anomalies by considering the analysis
of relations between all rules in the firewall configuration. The proposed idea to



372 A. Saâdaoui et al.

Fig. 2. Firewalls configurations

resolve anomalies is based on calculating a risk level that permits, in some cases,
users to manually select the appropriate strategies for resolving the conflict. In
such a way, the administrator can make wrong choices. So, the administrator
decides manually if an anomaly is a misconfiguration. Unlike that, our method
incorporates SP which allows deciding, automatically, whether an anomaly is
intentional or a real configuration error. Authors in [7,19] introduced a method
of analyzing packets from the filtering rule list by using the concept of Relational
Algebra and a 2D box model to show a simulation of packets by rectangular boxes
and identify anomalies and relations between rules. Abbes et al. present in [1] a
method for firewall anomalies discovering. They represent filtering rules in a tree
data structure called FAT that allows identifying anomalies between rules two
by two. In opposition, in our work we also represent relations between rules in a
data structure, but additionally we identify anomalies by considering all rules.
Authors in [1,6,14] proposed methods to manage a single firewall rules. This
differs from our method that takes into account all firewalls in a given path in the
network because even if each firewall in the network is well configured, anomalies
could arise between rules of different Firewalls. Prior work on Inter-firewalls rules
analysis [11,13] focused on the analysis of relations between pairwise rules of two
firewalls in a given network path. However, in reality it is common that a network
path contains more than two firewalls and anomalies could happen between
more than two rules in these firewalls. The precise indication of all firewalls
and all rules involved in a misconfiguration will help to fix them easily without
creating new misconfigurations. FIREMAN [21] is a static analysis toolkit to
check anomalies in firewalls. The tool can handle large set of firewall rules since
it uses an efficient BDD. This tool can only show there are anomalies between
one filtering rule and preceding rules, and cannot identify all rules involved
in the anomaly. We note that most of existing studies [1,2,9] focused on the
anomaly discovery issue. However, they did not propose methods to resolve these
anomalies. In [20] authors proposed a new approach for correcting anomalies
within filtering rules. But the correction is not totally automatic it is assisted
by the administrator to yield a required precision in reflecting the adopted SP.



A New FDD-Based Method 373

Firewall Configuration Verification. Liu [16] proposes a firewall verifica-
tion method. The method takes as input a firewall configuration and a given
property, then outputs whether the firewall configuration satisfies the property.
Matsumoto and Bouhoula [18] propose a SAT based approach for verifying fire-
wall configurations with respect to the security policy requirements. This method
checks the correctness of the firewall configuration whether it contains anomalies
or not. FINSAT [4,5] incorporates ACL (Access Control List) conflict analysis
procedure for detecting various types of ACL rule conflicts in the model using
Boolean satisfiability (SAT) analysis. The conflicts are reported as “error(s)”
in case of SAT result with satisfiable instances. Then, the Network administra-
tor need to reconfigure by himself the ACL rules depending on the results. The
objectives of our work are different. We aim first to discover all misconfigurations
by considering the requirement of SP then to fix these misconfigurations auto-
matically with respect to SP. So, our work involves two aspects: Rule analysis
aspect and firewall verification aspect.

3 Preliminaries

Firewall Configuration. A single firewall configuration is a finite sequence of
filtering rules of the form FC = (ri ⇒ Ai)0<i<N+1. A filtering rule consists of
a precondition ri which is a region of the packet’s space, usually, consisting of
source address, destination address, protocol and destination port. Each right
member Ai of a rule of FC is an action defining the behavior of the firewall on
filtered packets: Ai ∈ {accept, deny}.

Security Policy. A security policy SP is presented as a finite unordered set
of directives defining whether packets are accepted or denied. For example, a
directive could be as follows: A network net1, except the machine A, has
the right to access to the FTP service provided by a server S located in
the network net2. We consider also two sets, SP accept and SP deny where
SP accept consists of packets accepted to pass through the set of directives SP
and SP deny is the subset of denied packets.

Firewall Decision Diagram (fdd) of a Single Firewall. The firewall deci-
sion diagram (fdd) as defined in [12,17] is an acyclic and directed graph that has
the following properties: There is exactly one node in fdd that has no incoming
edges. This node is called the root of fdd. The nodes in fdd that have no outgoing
edges are called terminal nodes. fdd is the union of direct paths dpi. So we have:

fdd =
⋃

i(i:1→m)dpi.
dpi = dpi.srce ∧ dpi.protocol ∧ dpi.dest ∧ dpi.port ∧ dpi.rules ∧ dpi.action.

– dpi.src is the range of source address represents by the direct path dpi.
– dpi.dst is the range of destination address represents by the direct path dpi.
– dpi.port is the range of port number represents by the direct path dpi.



374 A. Saâdaoui et al.

– dpi.protocol is the range of protocols represented by the direct path dpi.
– dpi.rules is the set of rules from the firewall configuration that match the

domain of packets represented by this direct path, dpi.rules = {rki}(k:1→l),
where r1i is the first rule in the firewall configuration applied on the domain
of dpi. The action of this direct path is the action applied by r1i.

– dpi.action= the action of this direct path dpi.

FDD of a Path in a Distributed Environment. A network path
pathi[src, dst] is composed by an ordered set of firewalls through which the traf-
fic flow from the source src to the destination dst. pathi = {fcj , n <= j <= m}.
Let Paths be the set of all possible paths in our network. Paths = {pathi, 1 <=
i <= k}.

A FDD of a path pathi is constructed using the collection of rules of dif-
ferent firewalls fcj belonging to this path. Therefore, The FDD of the set
Paths of our network could be represented as follows: FDD(Paths) = FDD =⋃

{0<i<N+1} fddi, where each fddi is the FDD of the path pathi, so FDD
is the union of fddi of each path in the network. The properties already
defined for a direct path in a single firewall remains the same, only for sets
dpi.rules and dpi.action. In fact, we have to specify for each rule the fire-
wall that belongs to it. Therefore, we define direct path dpj ∈ fddi as follows:
dpj = dpj .srce∧dpj .dest∧dpj .port∧dpj .protocol∧dpj .rules∧dpj .action where
dpj .rules = {rhkj } here k is the index of the each firewall through which the
traffic flow in the path pathi. The action of each direct path depends on the
actions of each first rule handled by this direct path from each firewall in this
path, so we have:

– dpj .action = accept if ∀r1kj ∈ dpj .rules, action(r1kj ) = accept.
– dpj .action = deny if ∃!r1kj ∈ dpj .rules, action(r1kj ) = deny.

Figures 3 and 4 show, respectively, fdds of two paths: P1 = Path[net3, net2] =
{Fw1, Fw2, Fw3} and P2 = Path[net1, net2] = {Fw2, Fw3} for the network
shown in Fig. 1. We consider the following functions:

– dom(dpi) is a function that maps each dpi into the subset of packets p ∈ P and
represents the set of packets handled by dpi. dom(dpi) = Packets{dpi.srce∧
dpi.protocol ∧ dpi.dest ∧ dpi.port}.

– idx(r) this function returns the index of the rule r.

4 Our Approach for Resolving Misconfigurations

In our previous work, we presented an Inference system that allows discover-
ing misconfigurations in distributed environment. In fact, in multi-firewalls an
anomaly could happen between different firewalls in a network path if they apply
different actions on the same traffic. Therefore, by using the data structure FDD
already defined for each path, we can determine if a direct path in a given



A New FDD-Based Method 375

Fig. 3. FDD-P1 (FW1,FW2,FW3)
(Color figure online)

Fig. 4. FDD-P2 (FW2,FW3)
(Color figure online)

fddn contains an anomaly and if this anomaly is a real misconfiguration. So
we define anomaly as follows: A direct path dpi ∈ FDD presents an anomaly
iff ∃rmk

i ∈ dpi.rules where act(rmk
i ) �= act(rmh

i ) where h �= k. So we have two
types of misconfigurations: Total and partial misconfigurations.

– TMC: A direct path dpi ∈ fddn is totally misconfigured iff it presents an
anomaly and all the packets mapped by this path apply a different action as
applied in SP on these packets.

– PMC: A direct path dpi ∈ fddn is partially misconfigured iff it presents an
anomaly and some packets mapped by this path apply a different action as
applied in SP on these packets.

After discovering misconfigurations, we will try to fix them using one of
five correction techniques detailed in the next five subsections. To facilitate this
process, we define a new set FRx, Faulty rules. For each direct path dpx, we
define the set of faulty rules correspondent to this direct path, we call it FRx.
The set of rules FRx of each direct path depends on its action, so we have:

– FRx =
⋃

i{ri, ri = r1
f
x∀f} if dpx.action = accept and dpx ∈ TMC.

– FRx =
⋃

i{ri, ri = r1
f
x ∧ action(ri) = deny∀f} if dpx.action = deny and

dpx ∈ TMC.

These two sets define rules that we should modify in order to correct the direct
path action. Therefore, for all fixed misconfigurations FRx = ∅. We define a new
set FR which represents the set of all faulty rules of all totally misconfigured
direct paths. FR =

⋃
x FRx where dpx ∈ TMC.

Remove-Rule Inference System. Once all misconfigurations have been dis-
covered, we start their correction process. First, we will try to correct Total
misconfigurations by removing misconfigured rules using the inference system
shown in Fig. 5. We should unsure that removing a given rule will not create
other misconfigurations. We can remove a rule only if this rule exists in a deci-
sion path as a first rule, then this path is totally misconfigured and the action



376 A. Saâdaoui et al.

of second rules in these paths are different from the actions of first rules. So if
we remove this rule we will correct all these misconfigurations. The action of
misconfigured direct path determines if we should correct one rule or all rules in
this direct path. For example, if the misconfigured direct path applies the action
accept to the set of packets mapped by this path, then we should fix at least
one rule to modify the decision to deny. However, if the applied action is deny,
then we should modify the action of all firewalls in the path to accept. Because
from a source we should always apply the action accept by each firewall in the
concerned path to reach a destination.

The rules of the system shown in Fig. 5 apply to triple (FR,FR∗, FRx) whose
first component FR is the set of faulty rules of each dpx in FDD as defined in the
previous section, whose second component FR∗ represents an updated version
of FR after removing all rules after verifying if the third inference rule remove is
applied or not. In fact, the second inference rule Parse allows to parse all faulty
rules FRx of each dpx, then if the precondition of the third inference rule remove
is applied we update the three components FR, FDD and TMC by using the
function \remove which allows to modify the three components as follows:

– FR: ∀x we remove ri from FRx if dpx.action = deny, else if dpx.action =
accept, FRx = ∅ because in this case, we should correct at least one rule to
obtain the action deny.

– TMC: if FRx = ∅ then we remove dpx from TMC, the direct path has the
action required by SP .

– FDD: we remove ri from each dpy.rules ∀y and if FRy = ∅ we modify the
direct path action.

The condition to apply this inference rule is shown in Fig. 6. In general, we
should verify before removing each rule if the misconfiguration will be fixed
and we should be sure that we will not generate new misconfigurations. The
inference rule Follow is applied when other inference rules could not be applied.
The Stop rule is applied when we parse the faulty rules correspondent to totally
misconfigured direct paths from the set TMC.

Fig. 5. Inference system for removing
rules

Fig. 6. Remove-condition



A New FDD-Based Method 377

Modify-Action Inference System. After changing the action of a rule we
should not generate new misconfigurations. So, we should verify first if all the
direct paths in all fddn ∈ FDD that have this rule as a first rule are totally
misconfigured. If it is the case, we can change the action of the rule under
consideration and using this one modification we will correct all misconfigured
direct paths that have this rule as a first one.

The rules of the system shown in Fig. 7 apply to triple (FR,FR∗, FRx) whose
first component FR is the set of faulty rules of each dpx in FDD, whose second
component FR∗ represents an updated version of FR after modifying actions of
rules after verifying if the third inference rule modify is applied or not. In fact,
the second inference rule Parse allows to parse all faulty rules FRx of each dpx,
then if the precondition of the third inference rule modify is applied we update
the three components FR, FDD and TMC by using the function \modify which
allows to modify the three components as follows:

– FR: ∀x we remove ri from FRx if dpx.action = deny, else if dpx.action =
accept, FRx = ∅.

– TMC: if FRx = ∅ then we remove dpx from TMC.
– FDD: we modify the action of ri from each dpy.rules ∀y and if FRy = ∅ we

modify the direct path action.

The condition to apply this inference rule is shown in Fig. 8. In general, we
check if the rule under consideration verifies two properties in all paths then we
can modify the action of the rule. These two properties are: ri is not the first
rule to be applied in direct paths that mapped this rule or it is the first rule and
the direct path is totally misconfigured.

Fig. 7. Inference system for modifyin
rules-actions

Fig. 8. Modify-condition

Swap-Rules Inference System. Before swapping two rules, we need to test
and to verify if this modification will generate new misconfigurations between
one of the swapped rules and other rules. To address this challenge, we use the
FDD as the core data structure. An FDD gives us a precise idea if the swap
of the rules will correct the misconfigurations or not. In Fig. 9 we propose an
inference system that presents necessary and sufficient steps to correct total
misconfigurations by swapping two rules.



378 A. Saâdaoui et al.

Fig. 9. Swap rules inference sys-
tem

Fig. 10. Swap condition

The rules of the system shown in Fig. 9 apply to triple (FR,FR∗, FRx) whose
first component FR is the set of faulty rules of each dpx in FDD, whose second
component FR∗ represents an updated version of FR after modifying actions of
rules after verifying if the third inference rule swap is applied or not. In fact, the
second inference rule Parse allows to parse all faulty rules FRx of each dpx, then
if the precondition of the third inference rule swap is applied we update the three
components FR, FDD and TMC by using the function \swap((rules, rc, ri) :)
which allows to modify the three components as follows:

– FR: ∀x we remove ri from FRx if dpx.action = deny, else if dpx.action =
accept, FRx = ∅.

– TMC: if FRx = ∅ then we remove dpx from TMC.
– FDD: we swap two rules rc and ri and if FRx = ∅ we modify the direct path

action.

The condition to apply this inference rule is shown in Fig. 10. We should
verify if we can swap rule ri and rules from the set the set CLy(ri) which is the
candidate-rules list, rules from this list can be used to correct misconfigurations.
In fact, for each dpy, CLy(ri) is composed by rules belonging to the same direct
paths as ri and having ri as a first rule in these paths also they should have
different action to this rule.

Field Modification Inference System. The rules of the inference system
shown in Fig. 11 apply to three components (PMC, TMC,FDD). The first com-
ponent is the set of partial misconfigurations discovered. The second component
TMC is the set of total misconfigurations not fixed using methods depicted in
previous subsections. The third component FDD is the set of fddn of all paths
of the network. Parse PMC is used to parse the set of partial misconfigura-
tions (i.e., dpi that have partially an action not exactly the same as defined by
SP ). This inference rule will divide dpi into two sets, the first one is the set of
paths that have the correct action as defined by SP (dpi \ SPdpi.act), this set
will replace the direct path dpi in FDD, and the second one is the path dp′

i

represents the subset of dpi that should be fixed and will be added to the set of
total misconfigurations, by this inference rule we transform the partial problem
in dpi into a total problem (misconfiguration) in dp′

i which will be added to the
set TMC. The inference rule Correct deals with each direct path from TMC
and according to the required action by SP we will add new rules in one or



A New FDD-Based Method 379

some firewalls in this path. The first case, when the required action is deny (i.e.,
dpi.act = accept), then we add only one rule in the first firewall of this direct
path, the rule r1j

1′
should have the action deny and will be added to the set

dpi.rules. The second case, when the required action is accept, in this case we
have to modify the action of each firewall that have the action deny to accept in
this direct path. Therefore, we insert new rules r1jk

′
in each firewall that applies

the action deny on packets handled by the direct path dpj .

Fig. 11. Field modification inference system

5 Implementation and Evaluation

5.1 Case Study

We have chosen to apply our approach on the case study shown in Sect. 1. The
SP is described as follows: Allow access from net1 to net2 except http access
from machine M1 to subnet21; Deny all traffic from net3 to net2.

As defined in Sect. 3, Path is the set of all possible paths from a source to a
destination by considering SP . In this case, we have: P1 = Path[net3, net2] =
{Fw1, Fw2, Fw3} and P2 = Path[net1, net2] = {Fw2, Fw3}. Figures 3 and 4
show, respectively, the FDD of two paths P1 and P2.

Discovering Distributed Firewalls Misconfigurations: We proceed to the
discovering of misconfigurations using the inference system previously described
in Sect. 4. We parse all paths of all FDDs, for each path we verify if we have
anomaly or not and if this anomaly is an effective misconfiguration:

– In path P1 = Path[net1, net2] = {Fw1, Fw2, Fw3}: In this path we have
four total misconfigurations (colored in red in Fig. 3), in direct paths dp1,
dp3, dp7 and dp9. Also we have a partial misconfiguration in direct path
dp12 (Colored in green), in fact, the traffic from machine M1 192.168.4.3 will
be accepted by direct path dp12 even if we precisely indicated in SP that
this traffic should be rejected, this misconfiguration is partial because other
traffic from net1 will be allowed which is conform to SP . The SP is partially
violated in this case.

– In path P2 = Path[net3, net2] = {Fw2, Fw3}: In this path we have two total
misconfigurations (colored in red in Fig. 4), in direct paths dp2 and dp4.



380 A. Saâdaoui et al.

Distributed Firewalls, Misconfigurations Resolution: After discovering
process has been established, we will proceed in this section to the resolution of
these misconfigurations automatically and in contrast with SP .

TMC in dp1 in P1: According to the process of correction explained in Sect. 4,
the set of faulty rules FR of this direct path contains rules r11, r32, the correct
action is deny, therefore we can fix at least one of these rules to fix this total
misconfiguration. So, we start by verifying if we can remove the rule r11, it is not
the case because r21 have the same action as r11, so removing r11 will not fix the
problem in this direct path and it is the same case for rule r32. Then, we verify
if we can modify the action of these rules, we note that rules r11 and r32 exist
in other direct paths and these paths does not present any anomaly. Therefore,
we try to apply the swap inference system, the set of candidate rules CL =
{r31}, according to the FDD swapping r11 and r31 will not only correct this
misconfiguration but also the second misconfiguration in dp3 in path P1 and will
not generate new misconfigurations. Therefore, for these two misconfigurations
we will use the swap-technique.

TMC in dp7 in P1 and dp2 in P2: r12 exists only in dp7 from P1 and dp2
from P2 and these two direct paths are totally misconfigured. The set of faulty
rules of these direct paths contains rule r12 only, also the second rule in these
direct paths is the rule r42 which have a different action from r12, so by removing
this rule (i.e., r12) we will correct these two misconfigurations and we will not
generate new misconfigurations.

TMC dp9 in P1 and dp4 in P2: The set of faulty rules of these two direct paths
contains rules r22 and r23. We should correct these two rules because they have
the action deny. According to the process of correction explained in Sect. 4, we
should start by verifying if we can remove these rules, it is the case for rule r22
but not for rule r23 because r33 have the action deny, so removing r23 will not
fix the problem. So, we remove r22. Then, for rule r23 we verify if we can modify
the action of this rule, we note that r23 exists only in these misconfigured direct
paths. So by changing the action of this rule (i.e., r23) we will correct these
misconfiguration and we will not generate new misconfigurations.

PMC in dp12 from Path P1: This misconfiguration is partial so we
use the method “field modification” to fix this problem. The intersection
between DP12 ad SPdeny can be represented as follow: BSP = DP12 ∩
SPdeny = branch represented by these values: [@srce, port,@dest, protocol] =
[192.168.4.3, 80, 172.13.14.0/24, TCP ] Therefore, DP12 could be represented as
follow: DP12 = (DP12\BSP ) ∪ (DP12 ∩ BSP ). Then using our inference sys-
tem shown in Fig. 11 we use first the inference rule Parse to divide this direct
path into two sub-FDDs where the first (DP12\BSP ) represents paths which
are conform to SP and the second one DP12 ∩ BSP is the totally misconfig-
ured path. Then to correct DP12 ∩ BSP we use Correct, this inference rule
will add new rules with new action at each direct path that contains the total
misconfiguration.



A New FDD-Based Method 381

5.2 Tool Evaluation

Complexity: For n rules in FC, there can be a maximum of 2n − 1 outgoing
edges for a node. Therefore, the maximum number of paths in a constructed FDD
is (2n− 1)d, where d is the number of fields in each rule. After the construction
of FDD, the process of misconfigurations discovering and removing, is done
on direct paths elements dpi.rules. Therefore, for our inference systems, the
complexity is equivalent to the complexity of operations in an ordered list. Thus,
in our case, the complexity of each inference system is equal to O(nd). Given
that d is typically small (generally we have 4 or 5 fields) our inference systems
have a reasonable response time in practice.

Implementation and Experimental Results: In order to better assess the
effectiveness of our approach, we implemented the techniques and inference sys-
tems described earlier in a software tool, using a Boolean satisfiability (SAT)
based approach. This approach reduces the verification problem into Boolean
formula and checks its satisfiability. We have chosen also the Java developing
language. On the other hand, the verification of the satisfiability of Boolean
expressions is performed using Limboole [15]. To evaluate a practical value of
our inference systems, we have implemented them based on the FDD approach
and we tested our developed tool using the rule collections of the open-source
rules available at emerging threats (ETOpen) rule sets [10]. Our tool demon-
strates the scalability of proposed inference systems, we have also conducted a
set of experiments to measure their performance, our tool has proved a stable
performance showing acceptable processing time (the average processing time is
some seconds) to the treatment of complex combination of thousands filtering
rules. We have also conducted a set of experiments to measure the performance
of our inference systems. The experiments were run on an Intel Dual core 1.6 GHz
with 2 Gbyte of RAM. It supposes that we have IPv4 addresses with net-masks
and port numbers of 16 bit unsigned integer with range support. Figure 12 sum-
marizes our results. We consider time treatment factor that we review by varying
the number of rules. In overall terms, we consider the average processing time,
of the main procedures of FDD construction, misconfigurations detection and

Fig. 12. Processing time



382 A. Saâdaoui et al.

correction. In the end, our tool has proved a stable performance showing accept-
able processing time to the treatment of complex combination of rules.

6 Conclusion

The prevalent use of firewalls in network security emphasizes the importance of
efficient and optimal configuration. This paper describes two problems. The first,
is firewall misconfiguration discovering. In fact, we propose a method to discover
and distinct real configuration errors. The second is misconfigurations resolution
by using a formal method and a data structure (FDD). Specifically, we presented
a classification of misconfigurations (total or partial) and propose a set of infer-
ence systems that allow optimal and safe correction of these conflicts, without
generating new misconfigurations, through the analysis of the rule relations bas-
ing on FDD structure. The efficacy and scalability of our approach has been
demonstrated and the first results we obtained are very promising. While the
current approach primarily focuses on the detection and correction of firewalls
configuration errors. As a future work, we are working on extending our app-
roach in order to handle other network security components misconfigurations
like IDS.

References

1. Abbes, T., Bouhoula, A., Rusinowitch, M.: Detection of firewall configuration
errors with updatable tree. Int. J. Inf. Secur. 15, 1–17 (2015)

2. Adiseshu, H., Suri, S., Parulkar, G.M.: Detecting and resolving packet filter con-
flicts. In: Proceedings IEEE INFOCOM 2000, Tel Aviv, Israel, 26–30 March 2000,
pp. 1203–1212 (2000)

3. Al-Shaer, E.S., Hamed, H.H.: Modeling and management of firewall policies. IEEE
Trans. Netw. Serv. Manag. 1(1), 2–10 (2004)

4. Bera, P., Ghosh, S.K., Dasgupta, P.: Policy based security analysis in enterprise
networks: a formal approach. IEEE Trans. Netw. Serv. Manag. 7(4), 231–243
(2010)

5. Bera, P., Ghosh, S.K., Dasgupta, P.: Integrated security analysis framework for an
enterprise network - a formal approach. IET Inf. Secur. 4(4), 283–300 (2010)

6. Bouhoula, A., Trabelsi, Z., Barka, E., Benelbahri, M.A.: Firewall filtering rules
analysis for anomalies detection. IJSN 3(3), 161–172 (2008)

7. Chomsiri, T., Pornavalai, C.: Firewall rules analysis. In: Security and Management,
pp. 213–219 (2006)

8. Cuppens, F., Cuppens-Boulahia, N., Alfaro, J.G.: Detection and removal of firewall
misconfiguration. In: CNIS IASTED, Phoenix, AZ, USA, November 2005

9. Eppstein, D., Muthukrishnan, S.: Internet packet filter management and rectangle
geometry. CoRR, cs.CG/0010018 (2000)

10. Etopen ruleset (2016)
11. Alfaro, J.G., Cuppens, F., Cuppens-Boulahia, N.: Analysis of policy anomalies

on distributed network security setups. In: Gollmann, D., Meier, J., Sabelfeld, A.
(eds.) ESORICS 2006. LNCS, vol. 4189, pp. 496–511. Springer, Heidelberg (2006).
doi:10.1007/11863908 30

http://dx.doi.org/10.1007/11863908_30


A New FDD-Based Method 383

12. Gouda, M.G., Liu, A.X.: Structured firewall design. Comput. Netw. J. (Elsevier)
51(4), 1106–1120 (2007)

13. Hall, S., Ngoup, L., Villemaire, R., Cherkaoui, O.: Distributed firewall anomaly
detection through LTL model checking. In: 2013 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2013), pp. 194–201, May 2013

14. Hu, H., Ahn, G.-J., Kulkarni, K.: Detecting and resolving firewall policy anomalies.
IEEE Trans. Dependable Secur. Comput. 9(3), 318–331 (2012)

15. Limboole sat solver (2016)
16. Liu, A.X.: Formal verification of firewall policies. In: ICC, pp. 1494–1498 (2008)
17. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.

Syst. (TPDS) 19(8), 1237–1251 (2008)
18. Matsumoto, S., Bouhoula, A.: Automatic verification of firewall configuration with

respect to security policy requirements. In: CISIS, pp. 123–130 (2008)
19. Mukkapati, N., Bhargavi, Ch.V.: Detecting policy anomalies in firewalls by rela-

tional algebra, raining 2D-box model. IJCSNS Int. J. Comput. Sci. Netw. Secur.
13(5), 94–99 (2013)

20. Yazidi, A., Bouhoula, A.: On assisted packet filter conflicts resolution: an iterative
relaxed approach. In: 41st IEEE Conference on Local Computer Networks, LCN
2016, Dubai, United Arab Emirates, 7–10 November 2016, pp. 35–42 (2016)

21. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.-N., Mohapatra, P.: Fireman: a toolkit
for firewall modeling and analysis. In: Proceedings of the 2006 IEEE Symposium
on Security and Privacy, Washington, DC, USA. IEEE Computer Society (2006)


	A New FDD-Based Method for Distributed Firewall Misconfigurations Resolution
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our Approach for Resolving Misconfigurations
	5 Implementation and Evaluation
	5.1 Case Study
	5.2 Tool Evaluation

	6 Conclusion
	References




