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Abstract
Physiology is the science of the mechanical, physical, bioelectrical, and bio-
chemical functions of living systems. All physiological processes are based on 
physical and biochemical principles. Quantitative medical imaging exploits 
these principles to measure parameters of those processes noninvasively in vivo. 
Parameters measured by quantitative medical imaging have to be in agreement 
with values that would be obtained from standardized measurements from phys-
ics or material sciences, if these were applicable for living tissues. Technical 
advancements have led to the emergence of various methods for quantifying bio-
physical and constitutive tissue parameters. This chapter focuses on quantitative 
medical imaging of physiological processes that are related to different types of 
physical transport mechanisms. More specifically, we will show that continuity 
of mass and energy can be interpreted as overarching principles that govern 
seemingly unrelated modes of energy or mass transport. For this, the derived 
transport equations will be reviewed from the perspective of medical imaging 
modalities such as magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET), or ultrasound with a focus on water diffusion, blood perfusion, 
fluid flow, and mechanical wave propagation.
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Notation
Attention is paid to keep the mathematical notation as consistent and self-explanatory 
as possible. The following conventions were used:

•	 Matrices, tensors, and vectors are denoted by bold, upright Latin or Greek letters: 
a = C ⋅ b.

•	 The dot operator “⋅” is used exclusively to denote the scalar product of two vec-
tors or tensorial expressions leading always to a reduction: a b c

i
i i= ⋅ ≡ ∑b c .

•	 Matrix multiplication which preserves or increases the rank of a tensor is denoted 
by two adjacent tensorial symbols: a = bc.

•	 Where appropriate, temporal derivatives are marked by a dot and spatial deriva-

tives by an apostrophe: 
∂
∂
f
t

f=   and 
∂
∂
f
r

f= ′ .

•	 Summation over an index is always specified explicitly by the sum symbol.
•	 Only indices or exponents that take numerical values are printed in italics; super- 

or subscripts that serve as a specification are always printed upright: xi, ab, and 
ushear.

•	 The complex unit is always represented by an upright letter to make it distin-
guishable from an index: − = ↔ ∈1 i u ii , Ν .

•	 Fourier transform is denoted either by FT or a diacritic symbol: FT u( ) ≡ u .

List of Symbols
The following table lists commonly used mathematical symbols. Note that some 
symbols are reused in a local context to denote something else, but this will always 
be explained in the text.

Roman symbols
B, BF, b Magnetic field, blood flow, b-value
C, C, c Elasticity tensor, particle concentration, wave speed
D Diffusion constant
E Energy
G, g, G∗ Linear magnetic field gradient, gradient amplitude, 

complex shear modulus
i, (i) Imaginary unit, index of incident wave
K Compression modulus
m, m Magnetic moment, mass
N Gaussian distribution function
P Flux vector
R, (r), r, r Reflection coefficient, index of reflected wave, 

position vector, traveled distance
S MRI signal
T, t, (t) Transmission coefficient, time, index of transmitted 

waves
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u Particle deflection
v Deflection velocity
x, y, z Spatial coordinates
Greek symbols
α Springpot interpolation parameter
δ Dirac delta distribution, loss angle
ε Strain tensor
η Viscosity
φ Spin phase
γ Gyromagnetic ratio
κ Lumped springpot modulus
λ Perfusion partition coefficient
μ Shear modulus
Θ Heaviside function
ρ Mass density
σ Stress tensor
ς Compression viscosity
τ, (τΔ) Time delay, application time of MRI gradient (delay 

between MRI gradients)
ω Angular frequency
Mathematical operators
∇, ∇×, ∇⋅ Gradient operator (vector), curl, divergence

Δ Laplacian operator

FT Fourier transform
1 Identity operator

2.1	 �Introduction

This chapter pursues two objectives. Firstly, transport phenomena in the human 
body will be discussed from a physics point of view. Secondly, we will explain how 
medical imaging—especially magnetic resonance imaging (MRI)—can be used to 
assess and quantify these transport phenomena.

For the physics part, we follow a route that is different from most textbook dis-
cussions of waves, diffusion, and flow, which are based on Newton’s law. Instead, 
we will show that the continuity equation and the associated concept of conserva-
tion of mass and energy can be understood as the overarching principles applying to 
all these transport mechanisms.

Physiology is the science of the mechanical, physical, bioelectrical, and bio-
chemical functions of living systems. Physiology is closely related to anatomy, the 
study of form, and both are studied in tandem as part of a medical curriculum. 
Biomedical imaging allows noninvasive assessment of anatomy and physiology, 
i.e., form and function. Physiology can be assessed in more detail by quantitative 
imaging techniques when the underlying physical principles are known. In particu-
lar, the transport of particles, mass, or energy is fundamental to many living 
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processes. In fact, all vital functions depend on the transport of blood, oxygen, 
nutrients, metabolites, or electrical signals. All transport mechanisms have in com-
mon that they involve a local density (or concentration) of a substance (such as 
nutrients) or energy and flux, which describes the motion of the said quantity. The 
fundamental relationship between density and flux is defined by the continuity 
equation [1]:

	

∂
∂

= −∇ ⋅
ρ
t

P,
	

(2.1)

which states that any influx (P) of energy or mass into a volume has to be balanced 
by a change in energy or mass density (ρ) within that volume. ∇ ⋅ P denotes the 
divergence of the flux, which quantifies the local source or sink density of the flux 
field. ∇ is a vector operator whose components are first-order spatial derivative 
operators. Equation (2.1) means that mass or energy can neither be created nor 
destroyed. Furthermore, the continuity equation states that matter is conserved 
locally. This is a strong conservation statement and the foundation of many quanti-
tative imaging techniques, which account for mass and energy within a given vol-
ume. P is the flux vector whose components describe the flow of mass or energy 
with velocity v through a surface element of unit area perpendicular to v:

	 P v= ρ . 	 (2.2)

Equations (2.1) and (2.2) state that flow occurs along the negative density gradi-
ent, meaning that flow is induced from sources (∇ ⋅ P > 0) to sinks (∇ ⋅ P < 0). 
Furthermore, according to Eq. (2.1), wherever the divergence of flux (∇ ⋅ P) is dis-
tinct from zero, mass or energy density has to change.

Transport phenomena quantified by medical imaging technologies include many 
scales and various physical principles. Based on the continuity equation (2.1), we 
will derive the governing (equilibrium) equations and measured quantities for the 
following transport mechanisms:

•	 Diffusion
•	 Energy transport by mechanical waves
•	 Fluid flow
•	 Perfusion

The complexity of biological structures naturally leads to overlapping physical 
representations of these mechanisms. This motivates our intention to review the 
underlying principles from the perspective of medical imaging, which, however, 
often means that we must make assumptions and introduce simplifications in order 
to treat the basic equations in a straightforward manner. The following sections 
therefore briefly compile the basic equations starting with Eq. (2.1) to facilitate the 
comparison of the physical concepts of quantitative medical imaging with a focus 
on mass and energy transport.

S. Hirsch et al.
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2.2	 �Diffusion

Diffusion is ubiquitous in nature and related to any type of stochastic motion of 
molecules and particles driven by Brownian motion. Diffusion is temperature 
dependent, since the average kinetic energy per particle increases with temperature, 
so that particles can travel farther within a given time span when the temperature is 
higher [2, 3].

In tissues, many vital transport mechanisms are governed by diffusion; and 
detecting changes in diffusion can indicate diseases with high sensitivity (see Chap. 
17). Therefore, measurement of diffusion of water or tracers by medical imaging 
modalities has been part of clinical routine for a long time. In our generalized treat-
ment of transport physics, we derive the equilibrium equation for diffusion from the 
continuity equation using Fick’s first law. Fick’s law states that, in equilibrium, the 
steady-state flux of particles occurs along the negative density gradient (or concen-
tration gradient), i.e., from high to low densities, and with a velocity that is propor-
tional to the density gradient:

	 P = − ∇D ρ. 	 (2.3)

D is called the diffusion coefficient and is expressed in the unit of area per unit 
time, typically mm2/s in diffusion-weighted MRI. D quantifies how easily a particle 
can move in the direction of flux vector P according to Fick’s law. Combining Eqs. 
(2.1) and (2.3) yields

	

∂
∂

=
ρ

ρ
t

D∆ ,
	

(2.4)

which constitutes the diffusion equation in three dimensions. Δ is the 3D Laplace oper-

ator as obtained by the product of gradient vectors: ∆ ∇ ∇= ⋅ = + +
∂
∂

∂
∂

∂
∂

2

2

2

2

2

2x y z
. 

The 3D diffusion equation is satisfied by a normal Gaussian distribution of probability 
N of the particles having traveled a distance r [4]:

	

ρ
π

r t N r t
Dt

r
Dt, , e( ) ∝ ( ) =

( )

−1

4
3
2

4

2

.
	

(2.5)

This Gaussian distribution has standard deviation 2Dt  and variance 2Dt = 
⟨r2⟩. The relationship t ∝ ⟨r2⟩ applies to regular diffusion. Equation (2.5) highlights 
the probabilistic nature of diffusion: at any time t, particle density ρ is distributed 
over a continuum of radii r. This means that particle velocities and thus kinetic ener-
gies are within the whole range of values from zero to infinity (in a nonrelativistic 
model for the relationship between speed and kinetic energy). Consequently, already 
at the beginning of the diffusion process, the probability of finding diffusing parti-
cles at arbitrarily large distances is larger than zero. As the diffusion process contin-
ues, the particle cloud spreads out, and the probability of finding particles at large 
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distances increases, while the concentration at the source decreases. This process is 
thermodynamically driven by an increase in entropy due to the increasing disorder 
in the system. Thus, passive diffusion is a spontaneous process and does not require 
input of energy. Section 7.3 explains how diffusion can be measured by MRI along 
with classifications of nonregular diffusion processes as detected by MRI in biologi-
cal tissues.

It is important to note that the term “density” or “concentration,” as used in 
the context of Eqs. (2.3)–(2.5), does not have to be an actual mass density but 
can rather refer to the “density of specifically labeled particles.” The meaning of 
this statement becomes clearer when analyzing diffusion in a glass of pure 
water. Ignoring gravitational effects, the density of water is equal everywhere, 
so that the density gradient in Eq. (2.3) vanishes and thus the flux becomes zero. 
However, this is not physically correct. The underlying process is called “self-
diffusion.” It can be understood by assuming that the water molecules in each 
small volume element are assigned a specific label and that the label is unique 
for each volume element. In that case, “density” refers to the concentration of 
water molecules carrying one specific label. All volume elements act as the 
sources of many separate diffusion processes running in parallel. Initially, all 
molecules with a specific label are contained in the same volume element. As 
time passes, through random motion, molecules leave their original volume ele-
ment and diffuse into other volume elements. Thus, the concentration of mole-
cules with a specific label broadens over time, with the concentration being 
represented by a Gaussian function as described above (Fig. 2.1). In the long-
time limit, all volume elements contain water molecules from all other volume 
elements, i.e., a uniform mixture of labels. However, since the whole process 
consists of water molecules moving around, the bulk density remains constant. 
In the context of diffusion MRI, the labeling of water molecules is achieved by 
imposing a position-dependent spin phase onto every spin ensemble, as shall be 
described in Sect. 2.7.3.

Time

Fig. 2.1  Illustration of one-dimensional self-diffusion. Each dot represents a particle (e.g., a water 
molecule). Initially, particles in three volume elements are labeled, indicated red, green, and blue. 
Over time, the particles diffuse along the horizontal axis, as can be seen from the broadening of the 
corresponding probability distributions. Nevertheless, the bulk density remains unchanged, since 
unlabeled particles compensate the motion of the labeled particles. The dashed lines indicate the 
positions of the original labeling

S. Hirsch et al.
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2.3	 �Wave Transport

A number of imaging modalities including ultrasound, elastography, and photo-
acoustic tomography exploit the propagation of classical waves for generating 
image contrast. Mechanical waves can be understood as the propagation of a distor-
tion of the mechanical equilibrium state through time and space [2]. Wave propaga-
tion is associated with transport of energy by local particle deflections, i.e., by local 
mass displacements around equilibrium position in a static reference coordinate 
system (see Fig. 2.2). The deformation of an object can be described in terms of the 

r
(r,t)

u(r0,t)

u(r0+r(t),t)

r(t)

Particle deflection

(Wave transport)

L

Diffusion

Particle deflection

(Directed flow)

Perfusion
(Blood pool tracers    )

Perfusion
(Freely diffusible tracers   )

Artery Vein

Capillaries

t

Fig. 2.2  Notation of transport phenomena addressed in this chapter
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displacement field u in the sense that every point r is shifted to a different position 
r + u(r, t). This displacement field u is the dynamic parameter behind ultrasound-
based medical imaging or elastography. Before we begin the discussion of mechani-
cal wave propagation and how it is related to the continuity equation, we will first 
introduce elementary terminology, namely, stress and strain. More details can be 
found in standard textbooks of elasticity theory and continuum mechanics such as 
[5] and [6].

2.3.1	 �Strain, Stress, and Linear Elasticity Coefficients

Strain describes the elastic deformation a body has undergone upon exertion of a 
force [6]. Strain is usually measured as displacement u relative to the size Δr of the 
deformed body. A compact tensor notation of u over Δr is given by the infinitesimal 
linear strain tensor ε with components

	

ε ij
i

j

j

i

Tu
r

u
r

=
∂
∂

+
∂

∂









 = ∇ + ∇( )( )1

2
1
2

u u .
	

(2.6)

∇u is the Jacobian of the displacement field, i.e., the matrix that includes all spatial 

derivatives, ∇u( ) =ij
i

j

u
r

∂
∂

. ε is a symmetric (i.e., εij = εji) tensor of rank 2 which can 

be expressed as a 3 × 3 matrix. Due to its symmetry, only six of its nine entries are 
independent. Any strain in a material is caused by a force F acting on a surface ele-
ment Aj. j ∈ {1, 2, 3} denotes the direction of surface normal vectors along the 
Cartesian coordinates (see Fig. 2.3). Force per area defines stress, i.e.,

ê3

ê2

ê1

33σ
32σ

31σ

13σ
12σ

11σ

A3

A1

Fig. 2.3  Notation of the stress tensor elements which are defined by the directions of acting forces 
and surface normals Aj
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σ ij
i

j

F
A

= ,
	

(2.7)

which is a tensor of rank 2, analogous to strain. The diagonal components of the 
stress tensor σ, σii, act orthogonally on the three surfaces Ai. The sum ∑i σii is pro-
portional to the negative pressure acting against volumetric changes, i.e., compres-
sion or dilatation. The off-diagonal entries σij, i ≠ j, characterize stresses tangential 
to their respective surfaces. Tangential stresses exert a torque on the volume ele-
ment, causing shear deformation while preserving volume. If the resultant torque of 
all stresses does not vanish, the cube will rotate. Therefore, the necessary and suf-
ficient condition for a static (equilibrium) configuration is that all tangential (shear) 
stress components cancel each other, which is fulfilled if σij = σji. Thus, the stress 
tensor possesses the same symmetry as the strain tensor.

The relationship between stress and strain is, in linear approximation, character-
ized by a constant rank-four tensor C which contains all the elastic coefficients 
necessary to describe the stress throughout a material that causes or is caused by a 
given strain:

	
σσ εε= ⋅ ( )C tensor notation , 	 (2.8)

	
σ εij

k l
ijkl klC= ( )

= =
∑∑

1

3

1

3

component notation .
	

(2.9)

This is Hooke’s law—the most fundamental constitutive law in material science, 
which accounts for a spring-like elastic response of a solid in the limit of small 
deformations. Since C is a fourth-order tensor, it formally has 34 = 81 elements, of 
which only 21 are independent because of symmetry in the case of the most general 
anisotropic solid. Applications of Hooke’s law to biological materials usually 
require far fewer coefficients. In a transversely isotropic elastic material (featuring 
a single plane of isotropy and a principal axis orthogonal to that plane), C has only 
five independent coefficients, whereas under perfect isotropy, only two independent 
coefficients exist [6]. There are several ways to parameterize an isotropic material in 
terms of pairs of elastic moduli such as shear modulus μ and compression modulus 
K, Young’s modulus E and Poisson’s ratio ν or both Lamé coefficients (the second 
of which again being the shear modulus μ). All combinations are equivalent and can 
be converted to any other combination. As an example, Hooke’s law of an isotropic 
material expressed in terms of compression modulus K and shear modulus μ is

	
s e= −






 ∇ ⋅( ) +K 2

3
µ µu I ,

	
(2.10)

where I is the 3 × 3 unit matrix and (∇ ⋅ u) signifies volumetric strain. Due to the 
high water content, soft biological tissues normally have much higher compression 
moduli than shear moduli, since water has a very high compression modulus of 
approximately 2.2 GPa but can undergo shear deformation with no resistive response 
at all (see Table 12.1 in Chap. 12).
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2.3.2	 �Mechanical Waves

The equilibrium equation of classical wave fields u is obtained from the continuity 
of dynamic strain energy. Hence, we need to account for kinetic energy density Ekin 
and potential energy density Epot of the displacement field u in order to assess total 
energy density E = Ekin + Epot. Similar to the kinetic energy of a mass point with 

velocity u  ( E mukin =
1
2

2
 ), the kinetic energy density of a coherent wave field u can 

be expressed as

	
E u

i
ikin = ⋅ =

=
∑1

2
1
2 1

3
2ρ ρ  u u .

	
(2.11)

To proceed with potential energy, we need the stress-strain relation that we intro-
duced in the previous section.

2.3.2.1	 �From the Continuity of Dynamic Strain Energy 
to the Navier Equation

Hooke’s law is directly linked to the internal strain energy (potential energy) density 
of an elastically deformed body by [5]

	
E C

i j k l
ijkl ij klpot = ⋅ =

= = = =
∑∑∑∑1

2
1
2 1

3

1

3

1

3

1

3

σσ εε ε ε .
	

(2.12)

The total energy density, E = Ekin + Epot, is the preserved quantity of interest for 
wave propagation. We therefore formulate the continuity equation (2.1) in terms of 
energy density:

	

∂
∂

=
∂ +( )

∂
= −∇ ⋅

E
t

E E
t

kin pot P.
	

(2.13)

The left-hand side of Eq. (2.13) can be expanded by inserting Ekin from Eq. (2.11) 
and Epot from Eq. (2.12):

	

∂
∂

=
∂
∂

∂
∂

⋅
∂
∂









⋅

+
∂
∂

⋅ ⋅( )
⋅

E
t t t t t

ρ

ρ

1
2

1
2

u u

uu

C

��
� ��� ���

�
�

�

εε εε

σσ εε
���� ���

.

	

(2.14)

The right-hand side of Eq. (2.13) denotes the flux of strain energy into a volume 
element. The flux of strain energy is stress multiplied by deflection velocity as given 
in [7]

	

P u
P u u

= − ⋅
⇒ ∇⋅ = ∇ ⋅( ) ⋅ + ⋅∇

s
s s


 . 	
(2.15)

Combining Eq. (2.14) with Eq. (2.15) leads to
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ρ

ρ

   

  

u

u

⋅ + ⋅ = ∇ ⋅( ) ⋅ + ⋅∇

⇒ ⋅ = ∇ ⋅( ) ⋅

u u u

u u

σσ εε σσ σσ

σσ . 	

(2.16)

In the above equation, we exploited the fact that s e⋅ −( ) =∇  u 0  due to the ten-
sorial symmetries of σ and ε. Equation (2.16) agrees with Newton’s second law, 
which can be expressed as

	 ρ u = ∇ ⋅s 	 (2.17)

and which also constitutes the equilibrium equation for elastic waves. Equation 
(2.17) can be expanded for isotropic materials in terms of compression modulus K 
and shear modulus μ as defined in Eq. (2.10):

	
ρ µ µu u u= +






∇ ∇ ⋅( ) − ∇× ∇×( )K 4

3
.
	

(2.18)

In the literature, Eq. (2.18) is often referred to as Navier equation for isotropic, 
homogeneous solids. It has the characteristic form of a wave equation, relating a 
second-order temporal derivative with second-order spatial derivatives. For simplic-
ity we neglected all spatial variations of coefficients K and μ, leading us to the 
assumption of zero spatial derivatives of the elastic coefficients. This assumption of 
local homogeneity is applied in many treatments of the wave equation in wave-
inversion-based imaging modalities. Equation (2.18) illustrates that the full dis-
placement field is a superposition of two separate fields: a compression field (∇ ⋅ u) 
and a shear field (∇ × u). Each term represents decoupled and independent types of 
motion, which can be separated into two independent wave equations by virtue of 
Helmholtz decomposition (see Chap. 4, Eqs. (4.8)–(4.10).) [5]. Applying the diver-
gence operator or curl operator to Eq. (2.18) yields two separate equations for com-
pression waves and shear waves, respectively:

	
ρ µ∇ ⋅( ) = +






 ∇ ⋅( )u uK 4

3
∆ ,

	
(2.19)

	
ρ µ∇×( ) = ∇×( )u u∆ . 	

(2.20)

Equation (2.19) is the compression wave equation, which is a scalar equation for 
waves polarized parallel to the propagation direction. Equation (2.20) is the shear 
wave equation for waves with polarization perpendicular to the direction of travel. 
Both equations are satisfied by a plane wave

	
u r u

n r
, e

i
t c

t
( ) =

⋅ −







0

1ω

	 (2.21)

with n being the wave normal vector. c denotes the wave speed, which is
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c
K

=
+

4
3
µ

ρ
for compression waves and

	
(2.22)

	
c = µ

ρ
for shear waves.

	
(2.23)

Elastography measures the shear modulus of soft tissues by stimulating shear 
waves and using medical imaging such as ultrasound [8] or MRI [9]: to detect them. 
The investigated tissues are often considered incompressible, since compression 
modulus K is several orders of magnitude larger than shear modulus μ. However, 
true incompressibility implies both vanishing volumetric strain (∇ ⋅ u → 0) and infi-
nitely high compression modulus (K → ∞). Even though in incompressible media 
neither of the two parameters alone can be measured with sufficient precision, their 
product is finite and is identified as isotropic pressure:

	
p K= − ∇ ⋅( ) = − + +( )u 1

3 11 22 33σ σ σ .
	

(2.24)

Note that, due to the high content of water in biological soft tissues (>75%), the 
compression modulus does not vary much when the material behaves monophasi-
cally. Monophasic properties imply that all constituents of the tissue, including 
solid and fluid compartments, move in synchrony as one field. Biological soft tis-
sues normally behave monophasically at high stimulation frequencies as in sono-
graphy (on the order of MHz). For this reason, the compression modulus measured 
by ultrasound can be approximated by the speed of sound in water (~1500 m/s), 
which corresponds to a compression wavelength of 1.5 mm at 1 MHz frequency. On 
the other hand, the frequency range of elastography, which is between 10 and 
100 Hz in clinical applications, results in compression wavelengths on the order of 
15–150 m, entailing a pressure gradient which does not vary in space, that is, ∇p = 
(K + 4/3μ)∇(∇ ⋅ u) = const. Hence, Eq. (2.18) can be simplified for incompressible 
media to

	
ρ µu u= +∆ const 	 (2.25)

by using the vector calculus identity Δu = ∇(∇ ⋅ u) − ∇ × (∇ × u). Time-harmonic 
elastography usually solves Eq. (2.25) for shear modulus μ by direct inversion, 
phase gradient methods, or local frequency estimation [10] after suppressing the 
offset pressure term using spatial filters or the curl operator as in Eq. (2.20) [11]. In 
contrast, without assuming a constant pressure gradient, multiparameter recovery 
can yield both Lamé coefficients by either variational approaches [12–14] or direct 
inversion [15, 16].

Poroelastography explicitly aims at quantifying tissue pressure based on the 
hypothesis that the compression modulus in multiphasic media at low stimulation 
frequencies is much lower than predicted by ultrasound. A good example is the 
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brain: the speed of sound (compression waves) in ultrasound imaging of brain mat-
ter is, as in any other soft tissues, on the order of 1500 m/s, corresponding to a 
compression modulus of 2.2 GPa. In contrast, arterial pulsation causes cyclic brain 
expansion to an order of tens of milliliters, which can be observed by MRI as move-
ment of tissue boundaries. The estimated compression modulus of the brain in this 
quasi-static dynamic range is on the order of only 26 kPa [17] highlighting the rel-
evance of multiphasic models for understanding tissue compression in the static and 
quasi-static limit. Further details and applications are discussed in Chaps. 4 and 20.

2.4	 �Wave Scattering and Diffusive Waves

So far we have considered only unscattered plane waves which propagate along a 
straight line between two points. However, in heterogeneous media such as biologi-
cal tissues, waves are typically scattered at elastic discontinuities, giving rise to a 
“smeared” wave intensity within the region through which the wave has passed. 
When traversing a scattering medium, the propagating wave front continuously 
loses amplitude since, at each single scattering event, wave intensity is split between 
the transmitted and reflected waves. Moreover, wave coherence in a global ensem-
ble of stochastically scattered small wave packages is lost, causing a decrease in 
average wave amplitude. The most fundamental principle of wave scattering is that 
a wave changes direction when it hits an interface. This means that part of the wave 
is reflected while another part is transmitted through the interface. The two parts of 
the wave travel with different amplitudes into different directions. The change in 
amplitudes of scattered waves in 1D is derived in the following.

2.4.1	 �Wave Scattering at Planar Interfaces

The most basic wave scattering scenario is a plane incident wave orthogonally hit-
ting an interface between two media with different elastic properties. In this sce-
nario, the normal vector of the interface is parallel to the wave normal vector n, and 
the polarization of the incident wave is preserved for the reflected and transmitted 
waves. We will therefore ignore the polarization vector in Eq. (2.21) and instead 
discuss a scalar 1D plane wave of amplitude u0. Coordinate r identifies the position 
along the propagation direction of the wave. The elastic discontinuity is located at 
r = 0, dividing the medium into two compartments, compartment 1 for r < 0 and 
compartment 2 for r > 0. Incident and reflected waves traverse 1, while the transmit-
ted wave propagates through 2 (Fig. 2.4). We first define the transmission and reflec-
tion coefficients, T and R, as the amplitude of the transmitted (u0(t)) and reflected 
(u0(r)) wave at the boundary, normalized to the incident wave amplitude (u0(i)):

	

T
u

u
t

i

= ( )

( )

0

0

,
	

(2.26)
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= ( )
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0
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(2.27)

We assume nonslip conditions, i.e., 1 and 2 are in close contact, so that wave 
amplitudes in both compartments are equal at r = 0, which yields

	

u u u

T R
i r t0 0 0

1
( ) ( ) ( )+ =

− = . 	
(2.28)

stiff (c1,r < 0) soft (c2, r > 0)

incident wave u(i)

reflected wave u(r)

in c1:u(i) + u(r)

in c2: transmitted wave u(t)

ϕ  = 45°

ϕ  = 90°

ϕ  = 0°

Fig. 2.4  1D wave scattering at an elastic interface at r = 0. The wave amplitudes on both sides of 
the interface are considered to be equal as implied by the boundary condition of Eq. (2.28) (nonslip 
condition). Shown are three different phases ϕ of the waves with respect to r = 0
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Furthermore, conservation of energy requires a continuous flux of wave energy 
through the interface in the steady state. Therefore, energy inflow equals energy 
outflow or

	
P P Pi r t( ) ( ) ( )= + .

	 (2.29)

〈P(i)〉, 〈P(r)〉, and 〈P(t)〉 denote the time average of harmonic steady-state 
energy fluxes through the interface of incident, reflected, and transmitted waves, 
respectively. The flux vectors are obtained by combining Eqs. (2.15) and (2.21), 
such that

	

P =
∂
∂
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(2.30)

Since energy is a scalar, real-valued quantity, we accounted for the real part of 
the complex wave (Re) hitting the interface at r = 0 (thus 〈P〉 denotes here the scalar 
flux amplitude). From the above equation, one obtains, for the average energy of 
each wave component,

	
Pi ic u( ) ( )=

1
2 1 1 0

2ρ , 	 (2.31)

	
Pr rc u( ) ( )=

1
2 1 1 0

2ρ , 	 (2.32)

	
Pt tc u( ) ( )=

1
2 2 2 0

2ρ , 	 (2.33)

with indices 1 and 2 for the respective compartments. Combining Eqs. (2.28)–(2.33) 
and solving for T and R results in the well-known scattering amplitude coefficients 
in 1D for perpendicular incidence:

	

T c
c c

=
+

( )2 1 1

1 1 2 2

ρ
ρ ρ

transmitted wave amplitude ,
	

(2.34)

	
R c c

c c
=

−
+

( )1 1 2 2

1 1 2 2

ρ ρ
ρ ρ

reflected wave amplitude .
	

(2.35)

When multiple interfaces (scatterers) are present and R ≠ 0, wave amplitudes 
behind the wave front become speckled through constructive and destructive 
interferences of incident and reflected waves. In 2D and 3D, T and R depend on 
the direction cosines of incident and transmitted waves relative to the interface, 
rendering the amplitudes of the transmitted and reflected wave front direction 
dependent [18].
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2.4.2	 �Stochastic Wave Scattering

Turning back to biological tissues characterized by a stochastic distribution of elas-
tic discontinuities, we will further consider the superposition of many wave pack-
ages with individual effective propagation path lengths r. In this model, we assume 
a stochastic distribution of small scattering inclusions. If scatterer density is high 
enough, every voxel will contain a superposition of multiply scattered and transmit-
ted partial waves with no well-defined phase relation between them. In other words, 
the wave amplitude in every voxel is defined by the interference of several waves 
with random amplitudes and phases.

Similar to diffusion, r would then represent the effective distance a wave 
package has reached. Hence, we find a distribution of effective wave speeds c 
defined by the effective distance r divided by waiting time t. However, contrary 
to diffusion, there is a maximum c-value which corresponds to the wave speed 
of the unscattered wave [11]. A wave front is defined by the most advanced wave 
components, since—as previously said—any scattering event is a deflection 
from a straight line of propagation and hence the effective distance the wave has 
traveled from the source is reduced, corresponding to a reduced effective wave 
speed. In other words, the wave front contains only the components that were 
transmitted at each single scattering event with relative amplitudes T. Assuming 
a uniform distribution of solid scatterers throughout the sample and thus a con-
stant time interval τs between two scattering events, we can define the decrease 
in amplitude u0(t) by

	
u t T u ts0 0+( ) = ( )τ . 	 (2.36)

For sufficiently small intervals τs, one can represent u0(t + τs) by the first order of 
the Taylor series around t:

	
u t u t u ts s0 0 0+( ) ≈ ( ) + ( )τ τ . 	 (2.37)

Combining the right-hand sides of these two equations yields

	

u t T u t

u t u t

s
T t
s

0 0

0 0

1

1

0

( ) = − ( )

⇒ ( ) = =( )
−

−

τ

τe . 	

(2.38)

The unscattered wave front therefore decays exponentially with time at a rate of 
−(1 − T)/τs = R/τs and, since propagation velocity is constant, exponentially with the 
distance from the source. u0(t = 0) is the wave amplitude at the source, which is 
switched on at t = 0. Note that the wave amplitude of a wave front decreases even in 
nonabsorbing materials. However, the intensity of scattered waves is not lost but 
concentrated in the area “behind” the wave front. In this region, superposition of 
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multiply scattered waves occurs, giving rise to constructive and destructive interfer-
ences, which appear in ultrasound images as speckles. Overall wave intensity 
(energy) in our object is not affected by elastic scattering as long as no viscous 
damping occurs. Viscous damping, similar to diffusion, is a spontaneous irrevers-
ible process characterized by an increase in entropy. In contrast, elastic wave trans-
port is reversible, which is reflected by the symmetry of the wave equation 
(second-order derivatives in time and space). As a consequence, time reversal of 
propagating waves is feasible and has already been used in medical imaging and 
therapeutic applications of ultrasound [19]. In contrast, photoacoustic tomography 
as detailed in Chap. 13 basically relies on optical energy absorption but is influ-
enced by optical scattering processes. Despite the principal differences between 
diffusion equation and wave equation, both can be mathematically combined to 
obtain a very compact and elegant description of dispersive wave transport as out-
lined in the following section.

2.4.3	 �Wave Diffusion and Scale-Free Viscoelastic Properties

The diffusion equation (2.4) and the wave equation as given in Eq. (2.19) or Eq. 
(2.20) can be regarded as just two special cases of a more general description of 
wave diffusion. An equilibrium equation which fulfills the two limits of diffusion 
and unattenuated waves is obtained utilizing a fractional derivative operator α:

	
ρ κ α

α

α

∂
∂

= < ≤
−

−

2

2 0 1u u
t

∆ , .with
	

(2.39)

α = 1 and κ = ρD apply for pure diffusive particle motion, while α = 0 and κ = ρc2 
for unattenuated waves. A general treatment of fractional derivative operators is 
beyond the scope of this review. We instead refer to the literature of fractional 
calculus for general problems in diffusion and viscoelasticity such as [20]. For 
harmonic functions, the Weyl definition of the fractional derivative operator 
yields the following linear relationship between the Fourier transform (FT) and 
derivatives [21]:
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(2.40)

Thus, for time-harmonic waves in the frequency domain u ω( ) , Eq. (2.39), the 
following wave equation is obtained:
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(2.41)

Correspondingly, the Laplacian of a time-harmonic wave as defined in Eq. (2.21) 
gives
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κ κ
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ωFT t

c
∆u u( )  ⇒ − ( )

2

2
 .

	
(2.42)

Combining Eqs. (2.41) and (2.42) yields

	
ρ κ ω ωαc G2 = ( ) ≡ ( )∗i . 	 (2.43)

We here defined the complex-valued modulus G∗(ω), the real part of which is the 
storage modulus that governs the elastic properties of a material, while the imagi-
nary part is the loss modulus that quantifies viscous properties. Equation (2.43) 
illustrates that transition from non-damped waves to diffusive waves is associated 
with loss of wave energy due to loss of phase coherence, which is equivalent to 
viscous attenuation as usually described in viscoelastic theory by viscoelastic mod-
els based on springs and dashpots. The combination of the two as defined in Eq. 
(2.43) is the springpot. Notably, the springpot is a power law with the same expo-
nent α for both the real and imaginary parts of G∗(ω), meaning that the ratio between 
loss and storage properties is constant over frequency. If a material shows a constant 
ratio between viscous and elastic properties over a wide range of frequencies, the 
material is considered to be scale-free, meaning that viscoelastic properties mea-
sured at the macroscopic scale of typical medical imaging resolutions can be directly 
translated into much smaller dimensions, such as the cellular scale, by means of a 
hierarchical network with only two parameters κ and α [22]. The springpot predicts 
a constant loss angle δ, which quantifies the ratio between viscous and elastic 
properties:

	

δ
ω

ω
α
π

=
( ) 
( ) 












=

∗

∗
arctan

Re
.

Im G

G 2
	

(2.44)

Note that κ in Eq. (2.43) has a cumbersome dimension, which depends on the 
value of α. Therefore, in the literature, κ is usually converted to an elastic modulus 
by κ = μ1 − αηα comprising a shear modulus μ and shear viscosity η. To derive μ from 
κ requires assumptions on η. In the literature, η is often set to unity, to 3.7 Pa⋅s for 
brain tissue, or 7.3 Pa⋅s for liver tissue [23]. Springpot-based viscoelastic dispersion 
functions are shown in comparison to other two-parameter models of viscoelasticity 
in Fig. 2.5. Experimental data demonstrate that the springpot is widely applicable to 
describe viscoelastic properties of biological soft matter [22, 23]. It is an intriguing 
observation that we arrived at the springpot-related properties of biological tissues 
starting with the diffusion-wave equation (Eq. (2.39)). This further highlights that a 
mixed description of coherent and incoherent wave transport phenomena applies to 
biological soft tissues.
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2.5	 �Flow-Related Transport

Flow comprises many length scales in living tissue, ranging from large-distance-
directed blood flow to microperfusion through stochastically distributed capillaries, 
where flow is similar to diffusive motion. The mathematical description of flow 
phenomena is similar to that of waves; however, since flow involves transport of 

Kelvin-
Voigt
(K-V)

Maxwell
eV-K

K-V Model Schematic Modulus *G e(t)( ) eR ( )*Gw

m

h hiw

m

m

m + hiw

mhiw

m, h, a
m1-a ha (iw)a

(0 ≤ a ≤ 1)

m + hiw

h

h

m

w
w
w

Springpot

a = 0.5
log

log

spring
(Hookean)

dashpot
(Newtonian)

( ) mI ( )*G

a = 0.25

G'
G"

Fig. 2.5  Basic elements, spring and dashpot, which model the elastic and viscous response of a 
material and are used to assemble two-parameter viscoelastic models as sketched in the second 
column. Complex modulus G∗ for the shown models is analytically given in the third column and 
schematically plotted in the fourth column over angular frequency (G′and G″ denote the storage 
and loss modulus, respectively). “log” refers to double logarithmic plots to better illustrate the 
power law behavior of the springpot. The rightmost column shows strain ε(t) on a time axis in 
response to a boxcar stress spanning the first half of the time axis
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mass rather than energy, convection has to be taken into account. Most fluids cannot 
store shear strain energy due to their property of moving along an acting stress with-
out generating a resistive force. Therefore, shear stress in fluids exists only in its 
viscous form, which is proportional to strain rate. In the previous section, we already 
introduced viscoelasticity based on the two-parameter springpot model. The two 
other models with only two independent parameters are the Voigt and Maxwell 
models, which represent parallel and serial arrangements of a spring- and a dashpot, 
respectively [11]. In the Voigt model, total stress is the sum of two partial stresses 
corresponding to spring and dashpot, whereas in the Maxwell model, total strain is 
the sum of the two partial strains. A simple extension of Hooke’s law given in Eq. 
(2.8) to include a viscosity tensor is

	
σσ εε= ⋅ + ⋅C Celastic viscouse . 	 (2.45)

e  is the strain-rate tensor. As stated before, since fluids do not respond elastically 
to shear deformation, all shear-related entries of Celastic are zero. However, it is 
important to note that even purely viscous materials with respect to shear can still 
respond elastically to compression, resulting in an isotropic pressure p. Furthermore, 
viscosity induces a rate-dependent resistance to shear deformation, even if there is 
no elastic response. We therefore reduce the elastic stress to its compression ele-
ments (∇ ⋅ u), while the full viscous stress tensor is retained [24]:
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(2.46)

ς denotes compression viscosity, whereas η is shear viscosity (both in units Pa⋅s). 
By addressing motion of incompressible fluids such as blood, we can collapse both 
divergence terms in Eq. (2.46) into a single pressure parameter similar to pressure 
in incompressible elastic solids:

	
σσ εε= − +pI η . 	 (2.47)

Here, p is a lumped pressure parameter that combines volumetric strain and volu-
metric strain rate. Both volumetric strain terms are evanescent in the limit of incom-
pressibility, while compression modulus K and compression viscosity ς become 
infinitely large, resulting in p as a nonkinetic stress quantity which depends neither 
explicitly on strain nor strain rate. However, since p can vary in space, this param-
eter remains part of the equilibrium equation as shown below.

So far, we have accounted for viscous damping and have eliminated the shear 
strain from σ. A further distinction between solid and fluid motion is the coordinate 
system relative to which displacements are measured. In a solid medium, each par-
ticle is very much restricted in its range of motion and can only undergo very small 
deflections from its equilibrium position. The strain field is therefore a measure of 
the deflection of each mass point, as seen from the static coordinate system that 
defines the equilibrium state. This point of view is also referred to as the Eulerian 
description. In fluids, on the other hand, mass can be deflected by an arbitrary 
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amplitude from its original position due to the lack of a restoring force. Particle 
deflections are therefore not small but can accumulate in an unconstrained fashion 
over time. It is therefore more common to use the Lagrangian description, which 
moves along the trajectory r(t) of the flowing medium [25]. Consequently, a fluid 
displacement field u can be parameterized by u(r(t), t), which is the motion around 
equilibrium position plus motion of the coordinate system. In this case, the temporal 
derivative has to be calculated as an absolute derivative (also called material deriva-
tive) [1]:

	

d
d
u u r u v u
t t t t
=
∂
∂

+
∂
∂

⋅∇ =
∂
∂

+ ⋅∇





 .

	
(2.48)

v r
=
∂
∂ t

 denotes the velocity of the material’s coordinate system in which any local 

property change occurs. In contrast to the Eulerian description that only quantifies 
displacement from a reference position, as caused by propagating (pressure) waves, 
Eq. (2.48) incorporates the flow-related aspect of convection, which comprises the 
trajectory of the flow as well as boundary effects, such as the acceleration of flow in 
a funnel. The parameter measured in flow imaging is flow velocity v. The equilib-
rium equation of a flow field v is obtained from the continuity equation (2.1) similar 
to Newton’s second law, which, above, led us to Navier equation (2.16). Combining 
the material derivative from Eq. (2.48) with Eq. (2.16) leads to

	
ρ v v v+ ⋅∇( ) = ∇ ⋅σσ. 	 (2.49)

The Navier-Stokes equation for incompressible fluids is readily obtained by 
inserting fluid stress tensor σ of Eq. (2.47) into Eq. (2.49):

	
ρ ηv v v v+ ⋅∇( ) = −∇ +p ∆ . 	 (2.50)

The Navier-Stokes equation plays a central role in medical imaging of fluid 
dynamics since it fully describes the evolution of flow stream lines depending on the 
geometry and elasticity of the vessel pipelines as well as the distribution of pressure 
within the cardiovascular system. Flow imaging by Doppler ultrasound is of utmost 
importance for the clinical diagnosis of vascular dysfunctions in many organs [26]. 
Phase-contrast (PC) MRI has extended the knowledge of blood flow in the cardio-
vascular system in health and disease [27]. The strength of flow PC-MRI is to pro-
vide three-dimensional vector fields of v (and acceleration terms v ) with good 
spatiotemporal resolution, enabling researchers to model flow by implementing dif-
ferent boundary conditions into the Navier-Stokes equation and to solve it by 
numerical methods. There is no general solution to the Navier-Stokes equation due 
to the convective term (v ⋅ ∇v) on the left-hand side of Eq. (2.50), which makes it 
nonlinear and difficult to handle without a priori assumptions on boundary values. 
As an example, if an incompressible fluid flowing through a thick pipe is funneled 
into a pipe of smaller diameter, this can only be achieved if the fluid is accelerated. 
Hence, there is an acceleration term that is caused by the geometric properties of the 
boundaries, which cannot be derived from the acting forces alone. In contrast, waves 
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can be focused or defocused (e.g., by the source geometry) without affecting their 
propagation velocity but only their amplitudes. Further details on the numerical 
treatment of the Navier-Stokes equation for cardiovascular MRI as well as PC-MRI 
experiments are provided in Chaps. 3 and 9.

2.6	 �Perfusion

Perfusion is blood flow at the capillary level and is closely related to the delivery of 
oxygen and other nutrients to the tissue [28]. Hence, perfusion is linked to the 
metabolism of the tissue, which can change tremendously in the presence of dis-
eases such as tumors or ischemia. For this reason, perfusion has been used as a clini-
cal imaging marker in CT, MRI, sonography, PET, and SPECT for a long time. 
Perfusion can be measured using either exogenously administrated tracers or intrin-
sically labeled particles based on their change in concentration within the targeted 
tissue. This means that perfusion measurement can be seen as the measurement of 
the concentration C(t, r) of any kind of labeled particles over time. Common label-
ing methods include radioactive tracers (PET, SPECT), magnetically labeled proton 
spins (arterial spin labeling MRI, ASL-MRI), paramagnetic contrast agents 
(dynamic susceptibility contrast MRI), radiation-absorbing agents (CT), or contrast 
agents based on gas bubbles (sonography). During the first phase of particle inflow, 
the tracer concentration rises with arrival in the arteries, which is followed by a 
second phase during which the tracer concentration decreases due to washout. 
Mechanisms for tracer washout include diffusion from the vascular bed into the tis-
sue, venous drainage, and a combination of both. Perfusion falls into the range 
between flow and diffusion: on the one hand, tracers are delivered by the instream-
ing blood, which is a coherent transport mechanism. On the other hand, random 
distribution of the transport pipelines or diffusion of the tracers from the blood into 
the tissue can result in a diffusive decay of the measured signals. Hence, we have to 
account for both tracer density ρ and blood velocity v variation in space and time, 
resulting in the perfusion flux vector

	
P r r v r, , ,t t t( ) = ( ) ( )ρ . 	 (2.51)

The divergence of the flux in the continuity equation (2.1) readily follows as

	

∂
∂

= − ∇( ) ⋅ − ∇ ⋅
ρ

ρ ρ
t

v v.
	

(2.52)

We note that the divergence of the flow field in the blood is nearly zero (∇ ⋅ v = 0) 
due to incompressibility as discussed above.

For the following discussion, we assume that uptake of nutrients and tracers 
occurs only at the smallest scale of vascular hierarchy, marking the transition from 
the arterial to the venous tree. We denote the “thickness” of this zone by L (see 
Fig. 2.2) and approximate the concentration gradient with a finite difference. We 
also substitute density ρ in Eq. (2.52) with a concentration C(t, r) [29]:
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Here, the spatial gradient of C(t, r) is approximated by the difference between 
local concentration of tracers in arteries and veins, Ca(t) and Cv(t), respectively; 
hence C(t, r) ⇒ C(t). This implicitly assumes that the concentration predominantly 
changes along the direction of the path from arteries to veins. Δt is the time that the 
tracer requires to transit the exchange zone. Unlike flow imaging, which quantifies 
blood flow velocities, perfusion usually measures blood flow (BF) as a scalar param-
eter, which is blood volume (ml) per transport time (minutes) normalized to tissue 
mass (100 g). However, while the decay rate (1/τ) of the tracer signal is the actual 
measure of perfusion, the blood volume per tissue mass is normally not known. 
Instead, assumptions have to be made to calibrate the initial rate of perfusion to BF 
[30]. τ is identified as the mean transit time, which is the time a certain volume of 
blood (BV) spends in the capillary circulation, i.e., τ = BV/BF. Using τ we can 
rewrite Eq. (2.53) to obtain the equilibrium equation of perfusion:

	

dC t
dt

C t C ta v
( )

= ( ) − ( )( )1
τ

.
	

(2.54)

C t( )  is the tracer concentration averaged over the exchange region. A common 
assumption is C t C tv ( ) = ( )λ , with λ < 1 [29]. Partition coefficient λ quantifies the 
retention of a tracer by the tissue. Delay of washout can be effected by various 
mechanisms including diffusion of the tracers from the blood into the tissue (diffus-
ible tracers) or by circulation inside the blood pool (blood pool agent). The differ-
ential equation

	

dC t
dt

C t C t
( )

= ( ) − ( )( )1
τ

λa 	
(2.55)

is solved with
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Further assumptions about the arterial input function Ca(t) are necessary to solve 
the integral and to specify A. The scenario of a transient tracer bolus that arrives at 
t = t0 with concentration C0 can be modeled by a Dirac function

	
C t C t ta ( ) = −( )0 0δ . 	 (2.57)

This, combined with the initial condition of C t =( ) =0 0 , yields an exponential 
decay of tracer particle concentration over time with the perfusion rate 1/(τ λ),
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where Θ(t − t0) denotes the Heaviside function. A more detailed analysis needs to 
account for specific input functions Ca(t) which can simulate the experimentally 
observable finite increase in arterial concentrations over time.

In perfusion MRI, the blood is magnetically labeled (arterial spin labeling, ASL) 
right before entering the imaging volume. After a delay time, an image is acquired, 
in which the presence of labeled blood reduces image intensity relative to an unla-
beled reference image. The delay between labeling and image acquisition corre-
sponds to the delay time t0 in Eq. (2.58) (see Sect. 2.7.4 and Chap. 22 for a more 
detailed description of perfusion MRI).

Due to the hierarchy of the vascular architecture, delay time t0 determines the 
range of sensitivity of the perfusion technique. During the delay between labeling 
and image acquisition, the labeled blood is allowed to reach the capillaries, where it 
gives rise to the measured perfusion signal. Consequently, shorter waiting times 

Table 2.1  Diffusion—perfusion—flow—waves: mass and energy transport quantified by medical 
imaging modalities
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mechanism
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shift the sensitivity of perfusion measurements toward arteriole perfusion when the 
blood has not yet entered the capillary bed.

A summary of the equations governing mechanical and transport-related param-
eters as quantified by medical imaging is given in Table 2.1.

2.7	 �Motion Encoding by Medical Imaging

Measurement of motion by medical imaging modalities requires encoding of tissue 
deflection or particle velocity into the image contrast or labeling part of the tissue 
(e.g., blood or water) in a series of time-resolved images. The latter approach was 
the initial way of motion measurement by medical imaging and is referred to as 
bolus tracking. Bolus tracking is used in almost all medical imaging methods 
including CT, MRI, PET, and ultrasound. For example, CT angiography uses an 
injection of iodine-based contrast agents to help diagnose and evaluate blood vessel 
disease or related conditions, such as aneurysms or steno-occlusive disease. 
Similarly, in MRI, either gadolinium-based contrast agents or manipulation of the 
proton spin magnetization are used to enhance image contrast. For instance, in arte-
rial spin labeling, the transverse spin magnetization of instreaming blood is changed 
by radiofrequency pulses, allowing the measurement of signal intensity variations 
related to flow and perfusion without employing a contrast agent [30].

2.7.1	 �Motion Encoding in Medical Ultrasound

An important principle of motion encoding in ultrasound relies on the Doppler 
effect. If an ultrasound wave with a given frequency f scatters at moving tissue 
boundaries or blood particles, it undergoes a frequency shift twice: first when the 
moving particle acts as a receiver of an incident wave and a second time when the 
particle emits the wave as a moving source. The overall frequency shift is

	

∆ f
c v
c v

f
v
c

fa

a

a=
+
−

≈ +





1

2
.
	

(2.59)

va is the velocity of the signal-emitting particle in the direction of the ultrasound 
beam (axial direction, with positive values indicating motion toward the ultrasound 
probe), and c is the ultrasound wave speed in the tissue [26]. Thus, measuring the 
frequency shift Δf allows the calculation of va, which, however, is not the true par-
ticle velocity but its projection onto the ultrasound beam axis. Therefore, va is usu-
ally corrected for the projection angle enclosed by the vessel (flow direction) and 
the ultrasound beam. Δf is easy to measure from a continuous wave source but 
extremely difficult to determine from a pulsed source. Normal ultrasound mode is 
pulsed since short wave packages offer higher spatial resolution. However, the 
lower the number of ultrasonic wave cycles in a pulse, the higher the uncertainty of 
Doppler frequency estimation due to decreased frequency resolution. Therefore, 
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Doppler methods rely on a trade-off between continuous and pulsed waves, which 
inherently limits both spatial resolution and the accuracy of frequency estimation. 
Additional limitations of measuring Δf arise from physical processes including vis-
cous damping and frequency-dependent scattering, which can also modulate the 
frequency of the received signal.

Therefore, many motion-encoding modes in ultrasound rely on correlation tech-
niques termed color mode [26]. In the color mode, the ultrasound signals of two 
lines acquired at different times are correlated with each other. Axial resolution is 
achieved by successively shifting the correlation window along the signal line. 
Typical cross-correlation methods analyze the time shift or the phase shift of the 
ultrasound waves. Axial displacement u can be obtained from the maximum of the 
correlation function between two ultrasound wave signals y1(x, t) and 
y2(x, t + Δt) ≈ y1(x − u, t), i.e.,

	
max .u y x t y x u t t x∫ ( ) + +( )1 2, , d∆ 	 (2.60)

The displacement then is the value of u which corresponds to the maximum of 
correlation. Since time Δt has passed between the acquisition of the two ultrasound 
lines, the measured quantity is velocity u/Δt. An alternative approach to motion 
estimation by ultrasound is the phase-shift method which exploits the phase shift 
Δϕ(u) of the ultrasound wave due to displacement. If the axial distance between a 
particle and the ultrasound probe changes by an amount u between two acquisitions, 
the propagation path of the ultrasonic pulse from the probe to the particle and back 
to the probe changes by 2u. The second pulse is thus detected with a phase offset 

∆φ π
λ

π= =2 2 4u uf
c

, where λ is the ultrasonic wavelength. The phase offset  

Δϕ(u) between two complex-valued signals y1(x, t) ∝ exp(i [k x + ϕ1]) and  

y2(x, t + Δt) ∝ exp(i[k x + ϕ2]) is obtained by the argument function [31]:

	

∆φ φ φ= − =








1 2

1

2

arg .
y
y

	

(2.61)

For velocity measurements within larger two-dimensional regions, 2D correla-
tion techniques such as speckle tracking can be used [32]. Despite their random 
nature, speckles in the ultrasound image display characteristic patterns of the tissue 
of interest and can thus be used to track motion. It has to be mentioned that, in gen-
eral, ultrasound is limited in measuring lateral motion as compared to its high-
resolution capabilities for motion tracking along the axial direction. Full 3D motion 
fields are still better acquired by MRI.

2.7.2	 �Motion Encoding in MRI

One of the most elaborate medical imaging technologies for motion quantification 
is MRI.
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Motion can be encoded in the phase information of the complex magnetization 
exploiting frequency differences due to displacements of moving spins during 
application of magnetic field gradients [33]. Motion-sensitive MRI methods have 
many applications in medical diagnosis and research. Therefore, we will briefly 
review the motion-encoding mechanism that is used in MRI to detect and quantify 
coherent and incoherent motion.

Most biological tissues contain water molecules and thus a high number of 
hydrogen protons. In the presence of a static magnetic field, B0, the magnetic 
moment associated with the spin of protons results in a macroscopic net magnetiza-
tion, which forms the basis of MRI. In particular, the signal in MRI is based on the 
excitation of transverse magnetization relative to B0 by means of resonant radiofre-
quency (RF) pulses. Directly after excitation of such magnetization, all spin ensem-
bles precess about the direction of the main magnetic field with precession frequency 
ω0. Spin ensembles or particles with the same precession frequency are called iso-
chromats. ω0 is also known as the Larmor frequency and depends on the magnetic 
field strength:

	 ω γ0 0= B , 	 (2.62)

where γ denotes the gyromagnetic ratio of protons (γ = 2π 42.58 MHz/T). In MRI, 
the local precession frequency is modulated by applying linear magnetic field varia-
tions in space, which are referred to as “gradients” G, introducing the dependence 
of the resonance frequency of magnetization on the position r0:

	
ω ω γMRI r G r0 0 0( ) = + ⋅ . 	 (2.63)

Quadrature detection implemented in the scanner hardware subtracts ω0 from the 
resonance frequency, leaving the MRI signal in the rotating frame, i.e., 

ω γ′MRI r G r0 0( ) = ⋅ . ω′MRI  is the basic signal exploited by spatial frequency encod-

ing in MRI. The phase of this signal accumulated during a time interval τ when a 
constant gradient G is deployed is

	
ϕ τ γ τr G r0 0,( ) = ⋅ . 	 (2.64)

This fundamental MRI phase equation is the basis for spatial encoding along the 
phase-encode axis (see Chap. 8), MRI motion encoding (see Chap. 9), as well as T2* 
mapping (see Chap. 15). We now assume the signal-emitting particles (e.g., blood 
or tissue) to move, so that their positions become time dependent. Furthermore, we 
account for time-varying gradients, e.g., a rectangular waveform of duration τ that 
changes polarity at τ/2, i.e., a balanced bipolar gradient. Equation (2.64) then 
becomes

	
ϕ τ γ

τ

r G r r0
0

0,( ) = ( ) ⋅ + ( ) ∫ t t dt.
	

(2.65)

r(t) is the trajectory of the isochromats around equilibrium position r0. This equa-
tion expresses the motion sensitivity of MRI conveyed by the phase of magnetiza-
tion. For coherent motion phenomena, such as flow or tissue oscillations, where all 
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isochromats move more or less in synchrony (i.e., coherent) with their neighbors, φ 
is a good estimate of the ensemble spin phase in a voxel (i.e., the phase of the com-
plex sum of all spins in that voxel). Therefore, coherent motion encoding by phase-
contrast MRI based on Eq. (2.65) is the method of choice for flow field or wave field 
detection. Expanding the trajectory r(t) to the first order ( r r rτ τ( )⇒ +0  ) and 
assuming a rectangular gradient of total duration τ that is switched on for 0 ≤ t ≤ τ 
yields for the accumulated spin phase

	
ϕ τ γ τ γ τt ≥( ) = ( ) ⋅ + ( ) ⋅m r m r0 0 1 1 , 	 (2.66)

with the zeroth- and first-order gradient moments m0 and m1. The n-th gradient 
moment is defined as

	

m Gn
nt t dtτ

τ

( ) = ( ) ⋅
−∞
∫ .

	
(2.67)

A unipolar rectangular gradient has m0(τ) = Gτ and m G1
1
2

2τ τ( ) = , whereas a 
balanced bipolar rectangular gradient has m0(τ) = 0 and m1(τ) = Gτ2 [33] (more 
details on gradient moments are provided in Chap. 9). The zeroth-order term in Eq. 
(2.66) vanishes when bipolar gradients are applied leading to spin phase 
φ = γ G ⋅ rτ = γ g r τ. g and r denote gradient amplitude and effective path length that 
the magnetization has traveled in the direction of gradient G during time τ, respec-
tively. For flow, the resulting phase is therefore a measure of how far the magnetiza-
tion has traveled between the application of the two gradient lobes and is thus 
proportional to the velocity.

2.7.3	 �Diffusion-Weighted MRI

In diffusion-weighted MRI, magnetization due to water molecules is labeled by 
imposing a phase that depends on the position of the magnetization along an axis 
that is defined by the direction of a magnetic diffusion gradient field [34].

The technique for motion encoding in MRI was explained in the previous sec-
tion. However, diffusion represents an incoherent type of motion, and isochromats 
with different initial positions and motion trajectories are mixed within a voxel. In 
particular, we can imagine that the first lobe of a bipolar gradient produces a certain 
concentration of phase-labeled spins in each voxel, where the phase value depends 
on the position of the voxel along the direction of the gradient. Then the isochromats 
are allowed to perform random walk motion over a given evolution time before the 
spin phases are rephased by the second part of the diffusion gradient with opposite 
polarity. Signal-emitting particles that have moved randomly between the applica-
tion of the two gradients result in phase dispersion, i.e., their magnetization vectors 
will partly cancel. This destructive interference is proportional to the distance that 
the particles have moved in the gradient direction (see Eq. (2.65)). The farther the 
particles in one voxel have traveled randomly, the more decorrelated their phases, 
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and thus the smaller the complex sum of all magnetization portions in the voxel, 
which constitutes the MRI signal. The relative strength of the signal in one voxel, 
compared to the signal obtained from an identical scan but without diffusion gradi-
ents, represents a measure of the apparent diffusion coefficient (ADC), which is the 
main parameter measured in diffusion-weighted MRI. The ADC indicates that the 
diffusion process is not free in tissues, can involve multiple compartments, and may 
be superposed by intra-voxel incoherent motion such as blood flow in small vessels 
or cerebrospinal fluid in ventricles, which also contribute to MRI signal attenuation. 
For brevity, we restrict our further discussion to D and calculate the loss of signal 
due to spin phase decorrelation by diffusion based on the Gaussian distribution for 
diffusive spin motion, described by Gaussian distribution N(r, t), given in Eq. (2.5). 
As the simplest case, we analyze a bipolar pair of short diffusion gradients with 
amplitude g, duration τ, and temporal separation τΔ, as shown in Fig.  2.6a. We 
assume that the gradients are short enough that the spins can be assumed to be static 
while the gradients are applied. Under these conditions, Eq. (2.65) becomes 
φ(r) =  − γgτr, with r the distance by which the spin moves along the gradient axis 
between the application of the two gradient lobes. In a normal diffusion process, r 
is distributed according to a normal distribution N(r, t), evaluated at t = τΔ. The 
complex-valued macroscopic MRI signal S = S0eiφ (see Eq. (15.5), Chap. 15) of a 
voxel can then be expressed by integration over all spins within that voxel:

	

S S N r dr S N r dr Sr g r
g

= ( ) = ( ) =
−∞

∞
( )

−∞

∞
−

−

∫ ∫0 0 0

2 2 2

e , e , ei iϕ γ τ
γ τ τ

τ τ∆

∆

bb
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(2.68)

All MRI-specific parameters, such as gyromagnetic ratio γ and gradient ampli-
tude g, encoding time τ, or other timing variables, are usually collected in the 
“b-value.” Note that the above formula for the b-value is only valid for short gradi-
ents with τΔ ≫ τ. Typically, diffusion-encoding gradients comprise positive and 
negative gradient lobes as well as a delay between the two, so that more complicated 
b-values result as exemplified in Fig. 2.6 and in Eq. (17.1) of Chap. 17. The mono-
exponential signal decay of Eq. (2.68) S~e−bD is considered as “regular diffusion” 
characterized by 〈r2〉 ∝   t [4]. In the presence of two compartments (e.g., intra-and 
extracellular water) with different diffusion coefficients, one would observe a bi-
exponential decay. The bi-exponential model can be generalized to a multicompart-
ment model, which predicts a stretched exponential decay of the form S b D~ e−

α

 
with α < 1 for a complex static environment in which diffusion is constrained [35]. 
In that case of “anomalous diffusion,” the mean squared displacement is a power 
law in time, i.e., 〈r2〉 ∝  tα. Note the similarity of this power law to the springpot 
given in Eq. (2.43), which is due to conceptual similarities between hierarchic struc-
tures in water diffusion and viscoelastic networks. Equation (2.68) can be further 
generalized by accounting for direction-dependent diffusion constants which evoke 
a 3 × 3 diffusion tensor D, which is, similar to strain and stress, symmetric and has 
thus six independent entries. The eigenvalues of D represent three independent dif-
fusion coefficients along the three Cartesian axes of the diffusion eigensystem 
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corresponding to the spread of particles in 3D and implying that diffusion is not a 
vector such as coherent flow. The MRI signal decay for anisotropic diffusion 
depends on the direction vectors g of the motion-encoding gradient: S b T

~ e− ⋅ ⋅g D g . 
Further details and applications of diffusion tensor imaging (DTI) are given in 
Chap. 17. It is worthwhile to mention that DTI normally accounts for restricted dif-
fusion in the spatial-directional dimension. However, the restriction of water mole-
cules moving against spatial boundaries is different at different propagation times t. 

3
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Fig. 2.6  Three basic diffusion-weighted MRI sequences and corresponding b-values. (a,b) 
Gradient echo sequence, (c) spin echo sequence; all with rectangular motion-encoding gradients 
(gray rectangles)
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The longer the molecules travel, the higher the probability for them to hit a restrict-
ing boundary in the tissue. For that reason, the diffusion profile is in general not 
characterized by a Gaussian distribution but by some deviating probability function. 
The excess diffusion kurtosis, also called “diffusion kurtosis,” measures the devia-
tion of the probability distribution function from a Gaussian curve and can be used 
to quantify heterogeneity of the diffusion environment [36]. Table 2.2 summarizes 
the discussed cases of the diffusion MRI signal.

2.7.4	 �Arterial Spin Labeling

Like diffusion MRI, perfusion MRI based on arterial spin labeling (ASL, also 
called arterial spin tagging, AST) is a difference technique, where the change in 
image intensity between a motion-sensitized scan and a non-sensitized refer-
ence scan is quantified and correlated with an underlying transport process. In 
ASL, contrast is generated by manipulating the magnetization of inflowing 
blood in such a way that it reduces the MR signal [37]. The spins in the inflow-
ing blood are inverted by an 180° RF pulse prior to flowing into the volume of 
interest. Within that volume, they mix with the spins of the tissue. The inverted 
spins cause a reduction of the total magnetization since they cancel a part of the 
non-inverted tissue magnetization. As a consequence, the amplitude of the MR 
signal is reduced compared to the non-labeled reference image, leading to slight 
hypointensity in well-perfused regions. However, the contrast change is very 
subtle (on the order of 1–2%), requiring extensive signal averaging through 
repeated measurements. Furthermore, additional confounders have to be 
excluded as far as possible, leading to more refined and complex ASL MR 
sequences than explained above. In general, two types of ASL techniques exist: 
pulsed ASL (pASL), where a labeling pulse is deployed prior to every image 
acquisition, and continuous ASL (cASL), which aims to establish a steady state 
of labeled and unlabeled magnetization, necessitating a larger number of tag-
ging pulses. A more in-depth discussion of different ASL techniques can be 
found in [33], among others.

Table 2.2  Classification of diffusion as used in the literature of medical imaging

Mean path lengths MRI signal
Regular diffusion 〈r2〉 ∝ D t S~e−b D

Anomalous diffusion 〈r2〉 ∝ D tα

S b D~ e−
α

Anisotropic diffusion 〈ri rj〉 ∝ Dij t
S b T

~ e− ⋅ ⋅g D g

Restricted diffusion  
(kurtosis imaging)

r2 1∝ ⋅ +( )Dt K
a S

bD b D K
~ e

− +
1
6

2 2

aK is proportional to the excess kurtosis parameter used in the literature including all model-
dependent prefactors [36]
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2.8	 �Quantification of Other Structure-Related Parameters 
by Medical Imaging

Quantitative mapping of biophysical parameters other than those discussed above 
has a long tradition in medical imaging. One of the first quantitative and system-
independent parameters measured by medical imaging was volume (volumetry). 
Tissue volume is often related to physiological functions of organs or the progres-
sion of diseases. For example, brain volume segmentation based on 3D MRI is the 
current gold standard for quantification of atrophy in neurodegenerative diseases 
[38]. Another example is muscle volume measurement by cardiac MRI or echocar-
diography as a direct measure of cardiac hypertrophy, which has wide implications 
for heart function [39]. Furthermore, the ejection fraction of the heart is a measure 
of systolic function [40]. The ejection fraction is calculated by dividing the stroke 
volume by the end-diastolic volume of the left ventricle. Slow changes in soft tissue 
volumes are regularly measured in longitudinal imaging examinations for quantify-
ing tumor growth or the response to tumor treatment [41, 42].

Related to volume and mass is density, which, however, needs assumptions when 
estimated by medical imaging since tissue mass is normally not directly measur-
able. X-ray attenuation coefficients are highly dependent on tissue density and are 
thus exploited for quantifying bone density. Dual-energy X-ray absorptiometry 
(DXA) is the current gold standard for bone (mineral) density measurement as 
required for diagnosing and staging osteoporosis [43]. Quantification of minerals 
accumulated in soft tissues, such as calcifications in breast tumors, would be highly 
relevant for tumor staging [44, 45]. Morphology, location, and quantity of calcifica-
tions in the breast are established markers used in the BI-RADS atlas for breast 
tumor classification [46]. A further example is the quantification of iron in brain 
matter by MRI.  Iron is the most abundant trace element in the human brain and 
plays an important role in maturation of the central nervous system and brain 
metabolism. Deposits of iron in the brain could cause neurological diseases like 
Alzheimer and Parkinson [47]. Susceptibility mapping by MRI can be used to quan-
tify the spatial deposition of iron, e.g., in the human brain, but cannot quantify 
absolute iron content [48]. For the liver, iron content measurements based on relax-
ometry have been demonstrated [49]. Exogenous susceptibility sources such as 
gadolinium-based contrast agents induce magnetic susceptibility values which are 
theoretically linearly proportional to the concentration of the contrast agent. Thus, 
susceptibility mapping has the potential for in vivo quantification of contrast agent 
concentrations [50]. The ability of paramagnetic metal ions like iron or gadolinium 
to shorten magnetic relaxation is used in MRI contrast agents for the manipulation 
of image contrast in regions where water protons can interact with the contrast 
agent. Most clinically used MRI contrast agents reduce the T1 relaxation time of 
protons by interaction with the nearby contrast agent. However, quantification of the 
amount of contrast agent in tissue by relaxation times is difficult since magnetic 
relaxation depends on the MRI system. Nevertheless, relaxation times constitute the 
primary contrast in MRI and are useful for the quantification of tissue properties as 
detailed for the myocardium in Chap. 15. Measurement of different water proton 
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relaxation mechanisms such as T2 and effective T2 (T2*) allows estimation of vessel 
size and blood volume in the tissue [51, 52], which are both highly relevant bio-
physical parameters for characterizing tissue physiology and pathology [53]. Paired 
with perfusion measurements, vessel size and blood volume provide the input 
parameters for deriving hemodynamic constants such as hydraulic conductivity of 
the blood through the capillary bed of the tissue based on Darcy’s law (see Chap. 3) 
[54]. Further structure-related biophysical and medical imaging-based parameters 
include geometry of vessels or fibers as can be quantified by bifurcation indices, 
tortuosity, self-similarity, structural density, and fractal dimension [55].

�Conclusion

State-of-the-art medical imaging offers a wide range of sensitivities to motion in 
the human body. From incoherent motion of water molecules to coherent flow, 
medical imaging modalities can be used to depict physiologic and dysfunctional 
transport phenomena and to derive quantitative imaging markers for clinical 
diagnosis. This chapter summarized the physics of transport from an imaging 
point of view and reviewed the basic concepts of motion encoding in medical 
imaging. It was shown that very basic assumptions such as continuity of mass 
and energy at the position of the measurement can lead to a rich set of equations 
that explain multiple phenomena observed by motion-sensitive imaging modali-
ties including diffusion, perfusion, and flow imaging as well as elastography. 
Since transport-related parameters and mechanical constants are of huge impor-
tance for the quantification of constitution and function of biological tissues, this 
chapter presents a primer of quantitative biophysical medical imaging.
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