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Chapter 3
Endophyte-Promoted Nutrient Acquisition: 
Phosphorus and Iron

Sagar Chhabra and David N. Dowling

3.1  �Introduction

Phosphorus (P) and iron (Fe) are essential nutrients required by plants; however the 
bio-availability of both these macro- and micronutrients is low in soil as both P and 
Fe form insoluble mineral complexes; for example, iron is generally present as a 
Fe3+ (ferric ion) complex with oxyhydroxide polymers in soil and is not bio-available 
under alkaline pH conditions [1], whereas phosphorus complexes with calcium, 
iron, or aluminum in soil under alkaline or acidic pH conditions and these are not 
directly available in the form of orthophosphate anions for plant uptake [2, 3]. Plants 
have adapted to low mineral nutrient environments by using several strategies to 
overcome nutrient deficiency and increase plant nutrient uptake. These include 
inducing morphological or physiological changes to the root-soil interface by 
changing plant root architecture such as extensive root branching [4–6]. Increase in 
length of root and root hairs and root angle can also increase the spatial access and 
availability of nutrients present in soil to plants [7–10]. The increase in physiologi-
cal or biochemical activities such as phytosiderophore production, organic anion 
production, and excretion of protons and increase in hydrolytic enzymes, e.g., phos-
phatase or phytase activity, are all associated with an increase in nutrient acquisition 
of either Fe or P by plants [4, 6, 11].

The improved availability of plant nutrients has long been associated with plant 
microbial interactions, in particular, arbuscular mycorrhizal fungi (AMF) associa-
tions that are involved in the transport or acquisition of P and also Fe in plants [12, 
13]. The presence of microorganisms other than AMF associated with plants such as 
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bacteria and fungi present in rhizosphere soil or bacterial and fungal endophytes 
that occur asymptomatically in plant organs and tissues has also been shown to 
provide benefits to plant health by nutrient acquisition [14–17]. In this chapter we 
focus on the importance of endophyte microorganisms with respect to their role in 
P and Fe nutrient acquisition in plants.

3.2  �Microorganism Functions Implicated in Nutrient Fe 
and P Uptake in Plants

Plant-associated microorganisms (the plant microbiome) are commonly attributed 
with a range of plant growth promotion functions such as biological nitrogen fixa-
tion, phosphate solubilization, production of siderophores, ACC deaminase activity, 
production of phytohormones, and biocontrol activity [18, 19]. The plant and its 
associated microbiome have been termed the holobiont [20] and the plant microbi-
ome is influenced by soil type and plant genome [21, 22]. Microorganisms can help 
increase nutrient Fe or P uptake and benefit plants directly due to microbial sidero-
phore production or phosphate mineralization or solubilization activity. Other plant 
growth promotion traits such as plant hormone production or increasing plant stress 
tolerance by reducing plant ethylene levels by ACC deaminase activity or bio-
control functions may also help increase plant growth by increasing the soil root 
interface, thus indirectly increasing Fe and P nutrient uptake in the plant [23–25]; 
see Fig. 3.1.

The early interaction of microorganisms with land plants in the form of mycor-
rhizal fungal associations (AMF) is hypothesized to have evolved from fungal 
endophytes that developed external hyphae to provide plant nutrient support to 
plants in exchange for enriched carbon sources available from the host plant [26]. 
The AMF association with plants is the oldest and most widely represented on land 
[26, 27]. AMFs function by scavenging of P and Zn nutrients from soil but are also 
known to enhance acquisition of nutrients such as Fe, Ca, K, and S in plants [12]. 
Besides the AMF interactions, the other widely recognized group of fungi associ-
ated with plants are the non-clavicipitaceous group of Class 4 endophytes also 
known as dark septate endophytes (DSEs) [28]. The DSEs are known to be present 
in over 600 different plant species and are found worldwide [29]. The DSEs can 
help improve phosphorous supply in plants and in certain conditions appear to 
replace AMFs and ectomycorrhizal fungi at sites with extreme environmental con-
ditions [28]. Among the other fungi, the basidiomycete fungus Piriformospora 
indica, a recently recognized endophyte, was shown to be distributed over a broad 
geographical area and interact with a number of angiosperms (around 145 or more) 
including the model plant Arabidopsis thaliana and with certain other members of 
the Brassicaceae family where AMF infections or associations are not detected. P. 
indica stimulates nutrient uptake in the roots [30, 31] and solubilizes insoluble 
phosphate in plants [32].
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The presence of large numbers of endophyte bacteria isolated from the plants’ 
microbiota, for example, Gluconacetobacter, Azospirillum, Azotobacter, Bacillus, 
Burkholderia, Herbaspirillum, Pseudomonas, Achromobacter, Klebsiella, 
Chryseobacterium, and Pantoea genera, has been observed to improve plant growth 
through stimulation of root development [33–35]. The microbial isolates such as 
Pantoea, Pseudomonas, Citrobacter, Azotobacter, Streptomyces, or other newly 
recognized groups of bacteria have also been identified as contributing to plant 
growth promotion by virtue of nutrient acquisition traits [33, 34, 36].

3.3  �P and Fe Transport in Plants and Plant-Associated 
Microorganisms

The plant transports both Fe and P in response to nutrient deficiency conditions and 
there are several P or Fe transporters characterized both in plants and microorgan-
isms [37–40]. Plant roots are the primary site for plant nutrient acquisition and 
under P- and Fe-depleted conditions undergo morphological changes in order to 
adapt to the changing nutrient condition or availability in soil [4, 11]. An increase 
in acidification of the rhizosphere environment such as by exudation of proton or 
carboxylate ions such as citrate, malate, or oxalate can greatly enhance mobiliza-
tion of P in plants such as by chelation or ligand exchange of P bound or complexed 
to Ca, Fe, or Al present in soil [13]. Secretion of phosphatases or phytases can 
mobilize organic P through hydrolysis and has been shown to increase P availabil-
ity in plants [6, 13].

Fig. 3.1  Microbial functional aspects in plants that impact nutrient P or Fe availability
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The presence of microorganisms associated with plants is known to increase P 
availability in plants. Microorganisms such as bacteria and fungal endophytes iso-
lated from plants have been shown under in vitro conditions to be involved in min-
eral phosphate solubilization activity by acidification of the extracellular 
environment, and by production of organic acid anions such as gluconic acid [41], 
malic acid [42], citric acid [43, 44], salicylic acid, and benzeneacetic acid [43]. 
Microorganisms are also hypothesized to be involved in other relevant activities 
such as proton extrusion and by ammonium ion assimilation that are linked with 
mineral phosphate solubilization activity [45]. The organic phosphate mineraliza-
tion by microorganisms involves phosphatase activity, e.g., acid or alkaline phos-
phatase activity or phytase activity, which may contribute to availability of inorganic 
phosphate for plant uptake [46, 47].

The transport of P in both plants and microorganisms is mainly associated with two 
transporters, the high-affinity Pi transport systems and low-affinity Pi transport sys-
tems [13, 38]. The high-affinity Pi transporter in plants is the major transporter family 
responsible for transport of P in roots or in cells with close contact to the soil matrix. 
The low-affinity Pi transporters are mainly active in vascular tissues and involved in 
the internal distribution and re-mobilization of P [48]. Phosphate transport in plants by 
the high-affinity transporter system is H+/ATP dependent and is activated or expressed 
when the external P level in plants or cells in close contact to the soil matrix is low. 
The high-affinity phosphate transporter system is grouped within the major Pht1 fam-
ily and has shared topology among fungi, yeast, plant, and animal Pht1 transporters 
[49, 50]. The high-affinity phosphate transporters have been characterized in a number 
of plant and fungal species; however, the role of phosphate transporters among certain 
AMFs has not been verified due to the lack of a stable transformation system [51]. A 
study on the P transporter of the fungal endophyte Piriformospora indica [51] identi-
fied a high-affinity phosphate transporter PiPT belonging to the major facilitator 
superfamily (MFS) found in bacteria which is also conserved in eukaryotes [52]. The 
study also recognized the structural/functional relationships of Pi/H+ symporters and 
the proton motive force driving the translocation of Pi in the host plant by the basidio-
mycete fungus under the Pi limitation condition [51, 52].

Iron transport or acquisition in plants involves two strategies and is dependent on 
the plant type under iron-deficient conditions. The acidification of the extracellular 
soil environment by proton extrusion and reduction of chelated Fe3+ by ferric che-
late reductase at the plant root surface enhance bio-availability of Fe as ferrous 
(Fe2+) ion in nongraminaceous monocotyledonous and in dicotyledonous plants. 
However, production of mugineic acid dependent phytosiderophores is an impor-
tant mechanism for Fe chelation and availability as ferrous iron (Fe2+) for transport 
or acquisition of Fe in monocotyledons, especially among grasses [53]. The uptake 
of Fe by microorganisms involves a similar strategy to that of plants and involves 
chelation of unavailable Fe by specific or a range of siderophores and/or the use of 
reductases which help to increase available extracellular Fe for uptake by the micro-
organism [54]. Iron uptake in both plants and microorganisms involves Fe trans-
porters and there is considerable similarity in certain cases between some 
microorganism and plant Fe transporters such as in the case of yeast and specific 
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plant Fe transporters [55, 56]. In conclusion there are a number of key plant growth 
promotion functional traits that are associated with microorganisms involved in P 
and Fe availability and these are summarized in Table 3.1.

3.4  �Functional Role of P and Fe Bacterial and Fungal 
Endophytes

3.4.1  �P Endophytes and their Role (Fungal and Bacterial)

The P endophytes or other associated P microorganisms increase Pi availability in 
soils by mineral phosphate solubilization or by organic phosphate mineralization 
activity. The mechanistic basis or direct involvement of the P endophyte to increase 
plant growth or biomass has been demonstrated in studies under P limitation that is 
discussed below and summarized in Table 3.2.

Mineral phosphate solubilization is an effective strategy for the provision of P to 
the plant. In a study by Crespo et al. [70] they identified that the ability to solubilize 
inorganic phosphate was associated with acidification of the plant root environment 
by plant root-associated bacteria. The root of wheat and tomato was colonized by 
the bacterial endophyte Gluconacetobacter diazotrophicus previously isolated from 
sugarcane [82] that efficiently enhanced acidification of the plant root by production 
of gluconic acid. In contrast, the gluconic acid biosynthesis gene mutant (PQQ-
GDH) of G. diazotrophicus lacked the ability to acidify in a test medium with plants, 
thus underlying the functional role of this trait.

The direct role of P endophytes in plant growth promotion have also been 
described in other studies, for example, Kumar et al. [74] in a study on maize colo-
nized by the fungal endophyte P. indica reported a higher increase in biomass of 
plants under P limiting conditions. The difference in biomass between colonized 
and non-colonized plants was a 2.5-fold increase at limiting P and 1.2-fold increase 
at non-limiting P conditions respectively, thus underlying the function of the endo-
phyte to be more effective under the P deficient condition. Li et al. [75, 76] in a 
study on perennial grass Achnatherum sibiricum infected by the fungal species 
Neotyphodium  sp. recognized a significant increase in acid phosphatase activity 
under P deficient and N non-limiting conditions. The biomass of the endophyte 
infected plant was not affected by P limitation and was similar to plants grown 
under non-limiting P or N conditions. Malinowski et al. [80] found that an infected 
Festuca arundinacea (tall fescue) with the endophyte Neotyphodium coenophialum 
under P limiting conditions expressed an increased root absorption area through 
reduced root diameter and increased root hair length compared with the endophyte 
free counterpart. Altered root diameter and root hair length in this study was associ-
ated with the functional role by the endophyte present in tall fescue.

The role of fungal P endophytes to increase plant growth and to enhance phospho-
rous efficiency was also demonstrated by studies involving dark septate fungi (DSEs) 
present in the plant. Barrow and Osuna [79] reported an increase in shoot and root 
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Table 3.1  Examples of plant-associated endophyte microorganisms implicated in nutrient 
acquisition and other plant functions

Isolation source plant Endophyte microorganism Functional traits Reference

Arachis hypogaea
Peanut

Pantoea agglomerans Mineral phosphate 
solubilization, 
siderophore production

[57]

Calophyllum 
brasiliense
Guanandi

Trichoderma sp. Mineral phosphate 
solubilization

[58]

Glycine max
Soybean

Enterobacter sakazakii, 
Pseudomonas straminae, 
Acinetobacter 
calcoaceticus, 
Pseudomonas sp.

Mineral phosphate 
solubilization, IAA, 
biological nitrogen 
fixation

[59]

Glycine max
Soybean

Rhizoctonia sp. Fusarium 
verticillioides

Phytase [60]

Lippia sidoides
Pepper-rosmarin

Lactococcus lactis Calcium phosphate, 
phosphate mineralization 
activity-calcium phytate, 
solubilize/mineralize 
phosphate from poultry 
litter

[61]

Mammillaria fraileana
Wild cactus

Pseudomonas putida 
M5TSA, Enterobacter 
sakazakii M2PFe, Bacillus 
megaterium M1PCa

Mineral phosphate 
solubilization

[62]

Manihot esculenta
Cassava

Pantoea dispersa Mineral phosphate 
solubilization, biological 
nitrogen fixation

[43]

Miscanthus giganteus
Miscanthus

Pseudomonas fluorescens Mineral phosphate 
solubilization

[41]

Moringa peregrine
Moringa

Sphingomonas sp. LK18, 
Methylobacterium 
radiotolerans LK17, 
Bacillus subtilis LK14, 
Bacillus subtilis LK15, 
Sphingomonas sp. LK16

Mineral phosphate 
solubilization, acid 
phosphatase,
IAA

[63]

Oryza sativa var. 
Japonica c.v.
Rice

Paenibacillus kribbensi, 
Bacillus aryabhattai, 
Klebsiella pneumoniae, 
Bacillus subtilis, 
Microbacterium 
trichotecenolyticum

Biological nitrogen 
fixation, mineral 
phosphate solubilization,
IAA

[64]

Pachycereus pringlei
Giant cardon cactus

Bacillus pumilus var.2, B. 
subtilis var.2, 
Actinomadura oligospora, 
Citrobacter sp.

Mineral phosphate 
solubilization

[65]

(continued)
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biomass, and phosphorus use efficiency in Atriplex canescens by the fungal endo-
phyte Aspergillus ustus. Jumpponen et al. [77] reported increased foliar P concentra-
tion and an increase in plant biomass of more than 50% following fungal inoculation 
and N amendment in endophyte-infected Pinus contorta by the fungal endophyte 
Phialocephala fortini. Newsham [78] recognized increased root, shoot, total P con-
tent, and total biomass and an increase in the number of tillers in endophyte-infected 
Vulpia ciliata by the fungal endophyte Phialophora graminicola.

Studies defining the mechanistic basis of P transport by endophytic microorgan-
isms present in plants under P-deficient conditions also demonstrate the essential role 
of the endophyte. Hiruma et al. [73] in a study on an ascomycete fungal endophyte 
Colletotrichum tofieldiae (Ct) in Arabidopsis identified the role of this endophyte in 

Table 3.1  (continued)

Isolation source plant Endophyte microorganism Functional traits Reference

Panax ginseng
Ginseng

Lysinibacillus fusiformis, 
Bacillus cereus, B. 
megaterium, Micrococcus 
luteus

Mineral phosphate 
solubilization IAA, 
siderophore production

[117]

Phaseolus 
vulgaris Common 
Bean/French bean

Rhizobium endophyticum 
sp. Nov

Phytate [66]

Phaseolus vulgarus 
Common bean/French 
bean

Pseudomonas sp. Mineral phosphate 
solubilization

[67]

Piper nigrum
Black pepper

Klebsiella sp., 
Enterobacter sp.

Mineral phosphate 
solubilization siderophore 
production, ACC 
deaminase,IAA 
production

[68]

Pseudotsuga menziesii
Douglas-fir

Rhodotorula graminis, 
Acinetobacter 
calcoaceticus, Rhizobium 
tropici bv populus, 
Sphingomonas 
yanoikuyae, Pseudomonas 
putida, Rahnella sp., 
Burkholderia sp., 
Sphingomonas sp.

Mineral phosphate 
solubilization,
Siderophores production, 
biological nitrogen 
fixation

[69]

Saccharum officinarun
Sugarcane

Gluconacetobacter 
diazotrophicus

Biological nitrogen 
fixation, mineral 
phosphate solubilization

[70]

Shorea leprosula and 
Shorea selanica
Meranti

Trichoderma spirale Mineral phosphate 
solubilization and 
inhibition of fungal 
pathogen (fusarium)

[71]

Triticum aestivum
Wheat

Streptomyces tricolor 
mhce0811

Mineral phosphate 
solubilization phytase, 
siderophores, IAA, 
chitinase

[42]
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transfer of phosphorus to Arabidopsis shoots. This study showed that the host’s phos-
phate starvation response (PSR) system controls Ct root colonization and is needed 
for plant growth promotion, and also the role of Ct-mediated plant growth promotion 
was recognized to be mediated by the plant innate immune system. This study 
hypothesized that the Ct association in the host root of A. thaliana and other 
Brassicaceae members has essential components important for developing these 
associations that are usually absent in mycorrhizal symbiosis. The importance of the 
P endophyte and P transport function in plants has also been demonstrated by P. 
indica in maize plants. Yadav et al. [51] reported that higher amounts of phosphate 
were found in plants colonized with wild-type P. indica than that of non-colonized 
plants or plants with a knockdown phosphate transporter (PiPT). It was suggested 
that PiPT of P. indica was actively involved in phosphate transfer in planta and can 
improve the nutritional status of the host plant.

3.4.2  �Fe Endophytes and their Role (Fungal and Bacterial)

The role of endophyte and other microorganisms in iron acquisition by plants is 
associated with siderophore production. There are over 500 different types of sid-
erophores produced by microorganisms [37] and purified bacterial siderophore has 
been recently shown to restore growth to iron-limited and stunted tomato plants 
[83]. Siderophores produced by microorganisms not only directly improve Fe avail-
ability to microorganisms and plants by direct chelation from soil but can also 
increase iron availability based on their competition for Fe with other microorgan-
isms and pathogens. Studies defining the Fe availability and plant growth or biocon-
trol function by Fe endophytes are summarized in Table 3.3.

The importance of the siderophore-producing trait by Fe endophytes is demon-
strated by its direct role in increasing plant growth or by improvement of host fit-
ness. Rungin et al. [89] in a study using a bacterial endophyte Streptomyces sp. 
previously isolated from jasmine rice (Oryza sativa L. cv. KDML105) and its sid-
erophore mutant (desD) showed an enhancement of plant growth with a significant 
increase in plant biomass in rice (Oryza sativa) and mungbean (Vigna radiata) by 
the siderophore-producing endophyte. The increase in plant growth or biomass was 
higher in Streptomyces-treated plants producing siderophore compared to a 
siderophore-deficient desD mutant and untreated control plants, thus underlying 
the functional importance of siderophore in enhancement of growth in plants. 
Rosconi et  al. [86] in a study on a serobactin-producing bacterial endophyte 
Herbaspirillum seropedicae responsible for Fe acquisition by the microorganism 
and with its uptake mutant (Hsero_2345 gene) in an experiment on rice (Oryza 
sativa) showed that serobactin-mediated iron acquisition contributes to competi-
tive fitness in the host plant.

The role of siderophore produced by endophytic bacteria has also been demon-
strated through its biocontrol function or synergistic role in plant growth promotion 
and colonization in certain studies. Verma et  al. [88] in a study on bacterial 
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Streptomyces endophytes recovered from Azadirachta indica reported signifi-
cant plant growth promotion in tomato and biocontrol against Alternaria alter-
nata, causal agent of early blight disease in tomato plants. A significant 
antagonistic activity by Streptomyces endophytes against the pathogen was 
linked to the high Fe complexing capacity of isolates (i.e., siderophore produc-
tion). All isolates of Streptomyces prolifically produced IAA and siderophores 
demonstrating that both IAA and siderophores play a vital role in promotion of 
plant growth and in suppression of the pathogen. Koulman et al. [84] in a study 
using the fungal endophyte Epichloë festucae isolated from Festuca trachy-
phylla and its siderophore sidN mutant in an experiment on Lolium perenne 
reported the role of siderophore in colonization in xylem sap of L. perenne. 
Further work by Johnson et al. [85] demonstrated that this gene (sidN) played 
a key role in maintaining the mutualistic interaction with its host plant, high-
lighting the importance of iron homeostasis for the symbiotic interaction.

3.5  �Perspectives on the Role of Endophytes in Fe and P 
Nutrient Acquisition: Potential Application 
for Agriculture and Future Prospects

The unavailability of both Fe and P in many soils had been recognized as a 
major growth-limiting factor in many agricultural systems [36, 90]. The inocu-
lation of crops with specific microorganisms has the potential to reduce appli-
cation rates of phosphate and can also improve iron uptake by plants [91–93]. 
Endophytes are able to enhance the growth of many plant species with or with-
out concomitant nutrient uptake both directly and indirectly (Table  3.1). 
However, the impact of endophyte colonization on nutrient uptake in planta 
can be variable among strains and is considered to be dependent on host spe-
cies/cultivars, endophyte taxa, and environmental conditions [94]. Although a 
broad range of endophytes are described with nutrient acquisition traits as 
reported in this study few endophytes have been studied in detail to conclu-
sively demonstrate the mechanism(s) of nutrient transfer/acquisition of nutri-
ent in planta. The basidiomycete fungal endophyte Piriformospora indica has 
gained substantial interest as a potential growth-promoting agent [95]. P. indica 
may serve as a model system to elucidate the mechanisms of host growth or 
fitness, as it has the capability in mobilizing plant unavailable P by production 
of extracellular phosphatases and in translocation of P in plants [95, 96]. P. 
indica stimulates plant growth as well as seed production of many plants and 
possesses a broad host range specificity [96, 97]. An increasing number of 
studies on this fungus provide a scientific basis for agricultural application, and 
also importantly that this fungal endophyte can easily be grown axenically 
[98–100]. The P acquisition potential of this endophyte was tested in maize, 
barley, and Arabidopsis [51, 101, 102]; further testing its P acquisition 

3  Endophyte-Promoted Nutrient Acquisition: Phosphorus and Iron



36

potential in a range of plant hosts will validate the mechanistic basis and may iden-
tify if P transport or acquisition is a generalized mechanism of nutrient transfer 
among crops.

Besides P. indica, a number of dark septate endophyte (DSE) fungi (the non-
clavicipitaceous group of fungi) have been recognized in plants from a range of 
ecosystems [103]. The DSEs can help increase plant growth by increasing acquisi-
tion of plant nutrients such as N and P in certain plants [77–79]. It has been pro-
posed that DSE symbioses, like mycorrhizas, are multifunctional and not limited to 
nutritional acquisition and host growth response [28]. However the overall func-
tional potential of this class of fungi or its inoculation potential in plants needs to be 
verified in order to utilize it for plant growth promotion [104]. The clavicipitaceous 
endophytes are another group of fungi whose role remains elusive, and work is 
mostly focused on two related genera Epichloë and their anamorphic Neotyphodium 
relatives [105]. These fungi are recognized as increasing P nutrients and in certain 
cases are also known to be involved in other functions such as abiotic stress toler-
ance [106], remediation of metal contamination [107], and biocontrol activity [105]. 
This group of fungi mostly inhabit grasses (family Poaceae) and may have potential 
in plant growth improvement [105].

Bacteria have also been shown to be important with respect to P and Fe acquisi-
tion in plants and are involved in P solubilization or mineralization activity and 
siderophore production as discussed in previous sections in this chapter. The com-
mercialization of endophyte bacteria such as Gluconacetobacter diazotrophicus 
has gained substantial attention, as N-Fix® (Azotic Technologies, UK) or 
NITROFIX™- AD (AgriLife, India) for biological nitrogen fixation in plants. G. 
diazotrophicus is also recognized for other traits such as phosphate solubilization 
activity and this function could be synergistic in plants [72]. Strains of G. diazotro-
phicus are isolated in many areas of world and are utilized commercially to enhance 
plant production [108].

The biofertilizer potential of siderophore-producing endophytes is also of 
importance in agriculture not only in terms of improving direct Fe availability in 
plants by siderophore production but also by biocontrol of pathogens indirectly by 
increasing Fe nutrient status of plant and depriving the pathogen of iron. The 
siderophore-producing endophyte may also have phytoremediation potential for 
remediation of contaminated soils [75, 76, 109] and may share functional similar-
ity with phosphate-solubilizing endophytes which have the ability to produce 
organic acids and similar to siderophore production may assist in the remediation 
of contaminated soils [75, 76, 110].

The successful manipulation of the plant microbiome has the potential to increase 
agricultural production [111, 112] and reduce chemical inputs [113–115] and green-
house gasses [116] which will result in more sustainable agricultural practices. 
However, this will require a more detailed exploration of the mechanisms involved 
in P- and Fe-facilitated mobilization by the plant microbiota.
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