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Abstract If D is a one-dimensional, Noetherian, local domain, it is well known
that D is analytically irreducible if and only if D is unibranched and the integral
closure D0 of D is finitely generated as D-module. However, the proof of this result
is split into pieces and spread over the literature. This paper collects the pieces and
assembles them to a complete proof. Next to several results on integral extensions
and completions of modules, we use Cohen’s structure theorem for complete,
Noetherian, local domains to prove the main result. The purpose of this survey is
to make this characterization of analytically irreducible domains more accessible.
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1 Introduction

Let .D; m/ be a Noetherian, one-dimensional, local domain. It is well known that
the question of whether bD has zero-divisors or nilpotents is strongly connected to
certain properties of the integral closure D0 of D.

Definition 1.1 Let .D; m/ be a Noetherian, local domain with integral closure D0
and m-adic completion bD. We say D is

1. unibranched, if D0 is local,
2. analytically unramified, if bD is a reduced ring and
3. analytically irreducible, if bD is a domain.

R. Rissner (�)
Institute of Analysis and Number Theory, Kopernikusgasse 24, 8010 Graz, Austria
e-mail: rissner@math.tugraz.at

© Springer International Publishing AG 2017
M. Fontana et al. (eds.), Rings, Polynomials, and Modules,
https://doi.org/10.1007/978-3-319-65874-2_17

337

mailto:rissner@math.tugraz.at
https://doi.org/10.1007/978-3-319-65874-2_17


338 R. Rissner

Fig. 1 Completions of D
with respect to m and m0 in
case D0 is local with maximal
ideal m0

The aim of this paper is to give a complete proof of the following well-known
theorem.

Theorem 1 Let .D; m/ be a one-dimensional, Noetherian, local domain with
integral closure D0. Then the following assertions are equivalent:

1. D is analytically irreducible.
2. D is unibranched and analytically unramified.
3. D is unibranched and D0 is finitely generated as D-module.
4. D is unibranched and if m0 denotes the maximal ideal of the integral closure,

then the m-adic topology on D coincides with subspace topology induced by m0.

Assume that D is unibranched and let m0 be the unique maximal ideal of the
integral closure D0. It follows from the Krull-Akizuki theorem that D0 is a discrete
valuation domain (see Corollary 2.5 below). In particular, D0 is Noetherian and can
be embedded into the m0-adic completion b.D0/ of D0. Moreover, the valuation on
D0 can be extended to a valuation on b.D0/ which implies that b.D0/ is a domain (see
Example 3.1). Since the completion D of D considered as a topological subspace of
D0 is the topological closure of D in b.D0/, it follows that D � b.D0/ is a domain too.

On the other hand, D can be embedded into the m-adic completion bD of D.
Figure 1 above demonstrates the relationship between D, D0 and the completions
with respect to the different topologies. As usual, the solid lines represent inclusions.
However, the dotted arrow deserves some additional explanation. Since mn �
m0n \ D it follows that the m-adic topology is finer than the m0-adic subspace
topology on D. This further implies that the inclusion D �! D is a uniformly
continuous homomorphism (where D is equipped with the m-adic topology). Since
D is complete, the inclusion can be uniquely extended to a uniformly continuous
map ' W bD �! D. Theorem 1 implies that D is analytically irreducible if and only
if ' is an isomorphism. However, if bD is not a domain ' is not even injective.

Theorem 1 is well known but its proof is split into pieces and has to be assembled
from several sources. This survey collects known results from different references
in order to present a complete proof. We follow the approach of Nagata’s textbook
[7, (32.2)] for the implication (2)) (3). For the remaining implications, we pursue
the suggestions of [3, Theorem III.5.2]. One can also refer to [8, Theorem 8] for
the implication (4)) (1).

In order to make this survey more self-contained, we give a short introduction
to integral ring extensions and completions in Sects. 2 and 3, respectively. Then,
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in Sect. 4 we discuss Cohen’s structure theorem which allows us to prove that
the integral closure of a complete, Noetherian, local, reduced ring R is a finitely
generated R-module in Sect. 5. Finally, we give a proof of Theorem 1 in Sect. 6. It is
worth mentioning that Sects. 4 and 5 are only needed for the implication (2)) (3)
whereas the remaining implications can be shown using the results in Sects. 2 and 3.

2 Integral Ring Extensions

In this section we recall some facts on integral ring extensions which we use
throughout this paper.

Fact 2.1 (cf. [1, Proposition 5.1, Corollaries 5.3, 5.4]) Let R � S be a ring
extension. We call s 2 S integral over R if the following equivalent assertions are
satisfied:

1. There exists a monic polynomial f 2 RŒX� such that f .s/ D 0.
2. RŒs� is finitely generated as R-module.
3. There exists a ring T containing RŒs� which is finitely generated as R-module.

Let R0
S D fs 2 S j s integral over Rg denote the set of elements of S which are

integral over R. Then R � R0
S is a ring extension.

We call R0
S the integral closure of R in S and if R D R0

S we say R is integrally
closed in S. If S D R0

S, we say R � S is an integral extension.
If R � T � S is an intermediate ring such that both R � T and T � S are

integral extensions, then R � S is an integral extension. In particular, R0
S D .R0

T/0
S.

In case S is the total ring of quotients of R, we simplify and say R0 WD R0
S is the

integral closure of R and R is integrally closed if R D R0.

Fact 2.2 (Cohen-Seidenberg, cf. [1, Corollary 5.9, Theorem 5.11]) Let R � S
be an integral extension. Then the following assertions hold:

1. If Q1 � Q2 are prime ideals of S such that Q1 \ R D Q2 \ R, then Q1 D Q2.
2. If P1, P2 2 spec.R/ with P1 � P2 and Q1 2 spec.S/ with Q1 \ R D P1, then

there exists Q2 2 spec.S/ such that Q1 � Q2 and Q2 \ R D P2.
3. dim.R/ D dim.S/ and max.S/ D fP 2 spec.S/ j P \ R 2 max.R/g.

As a first result we prove the so-called Krull-Akizuki theorem which is central to
the remainder of this paper.

Proposition 2.3 (Krull-Akizuki, cf. [6, Theorem 11.7], [4, Theorem 4.9.2]) Let
D be a one-dimensional, Noetherian domain with quotient field K and L a finite field
extension of K.

Then the integral closure D0
L of D in L is a Dedekind domain. Moreover, if I is a

nonzero ideal of D0, then D0=I is a finitely generated D-module.

Proof We can reduce the proof to the case L D K with the following argument. Let
b1, . . . , bn form a K-basis of L. Without restriction we can assume that bi 2 D0

L.
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Then the domain R D DŒb1; : : : ; bn� is finitely generated as D-module and therefore
D � R is an integral extension according to Fact 2.1. Further, R is Noetherian and
since L D KŒb1; : : : ; bn� is the quotient field of R it follows that R0 D D0

L is the
integral closure of R. Moreover, if I is a nonzero ideal of R0 and R0=I is finitely
generated as R-module, then R0=I D D0

L=I is a finitely generated D-module.
Hence from this point on we assume that L D K and D D R. Since 1 D

dim.D/ D dim.D0/ by Fact 2.2 and D0 is integrally closed, we only need to prove
that D0 is Noetherian to conclude that D0 is a Dedekind domain.

Let I be a nonzero ideal of D0 and s D a
t 2 I be a nonzero element. Then

a D ts 2 I\D is a nonzero element which implies that D=aD is a zero-dimensional,
Noetherian ring and thus Artinian. Since In D .anD0/ \ DC aD for n 2 N form a
descending chain of ideals of D=aD, there exists an m 2N such that Im D In for all
n � m.

If amD0 � amC1D0 C D, then

D0=aD0 ' amD0=amC1D0 � .amC1D0 C D/=amC1D0 ' D=.D \ amC1D0/

holds. This further implies that D0=aD0 is a submodule of the Noetherian module
D=.D \ amC1D0/ and hence a finitely generated D-module. Hence D0=aD0 is
Noetherian and the submodule I=aD0 is finitely generated. Consequently I is a
finitely generated ideal of D0. In addition, D0=I ' .D0=aD0/=.I=aD0/ is a quotient
of the finitely generated D-module D0=aD0 and therefore finitely generated.

It remains to prove that amD0 � amC1D0 C D. We can localize at each maximal
ideal of D and prove the inclusion locally. So assume that D is local with maximal
ideal m.

If a … m, then a is a unit in D and therefore amD0 D D0 D amC1D0 C D. Now
assume a 2 m and let x D b

c 2 D0 n D where b 2 D and c 2 m. The radical of the
nonzero ideal cD is then m and therefore there exists n � m with mnC1 � cD. It
follows that

anC1x 2 .anC1D0/ \ D � InC1 D InC2 D .anC2D0/ \ DC aD

and hence anx 2 anC1D0 C D. If n > m, then

anx 2 .anC1D0 C D/ \ anD0 D anC1D0 C D \ anD0
„����ƒ‚����…

�InDInC1

� anC1D0 C aD

and therefore an�1x 2 anD0 C D. Repeating this argument completes the proof.

Corollary 2.4 Let D be a one-dimensional, Noetherian, local domain with quotient
field K and L a finite field extension of K.

If m is a maximal ideal of D and m0 a maximal ideal of the integral closure D0
L

of D in L with m0 \ D D m, then the field extension D=m � D0
L=m0 is finite.
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Proof It follows from Proposition 2.3, that D0
L=m0 is a finitely generated D-module.

Therefore D0
L=m0 is finitely generated as D=m-vector space as well.

Corollary 2.5 Let D be a one-dimensional, Noetherian, local domain.
If D is unibranched, then the integral closure D0 is a discrete valuation domain.

Remark If D is a local, one-dimensional, Noetherian domain with maximal ideal m,
then Fact 2.2 implies that the maximal ideals of D0 are the minimal primes of mD
and therefore D0 is always a semilocal Dedekind domain.

3 Completions

In this section we recall the necessary facts on topologies on rings and modules
which are induced by ideals. Let R be a Noetherian ring, I an ideal of R and M an
R-module. Then the submodules .InM/n2N form a filtration on M which induces a
linear topology on M, that is, the sets mC InM for m 2 M and n 2 N form a basis
of this topology. We call this the I-adic topology on M.

Addition, subtraction and scalar multiplication are continuous with respect to this
topology. If M is a ring extension of R, then multiplication in M is continuous too.

Moreover, M nmC InM DS

y yC InM where the union runs over all y 2 M with
m � y … InM and hence each mC InM is both open and closed.

The completion bM of M is the inverse limit of the inverse system M=InM together
with the canonical projections M=InM �! M=ImM for n � m, that is,

bM D lim �M=InM D
(

.an C InM/n 2
Y

n2N
M=InM

ˇ

ˇ anC1 � an .mod InM/

)

A sequence .xk/k in M is an I-adic Cauchy sequence, if for each n there exists kn

such that xkn � xknCm 2 InM for all m 2N. As usual, we say two Cauchy sequences
.xk/k, .yk/k are equivalent if .xk�yk/k converges to 0. In particular, .xk/ is equivalent
to .xkn/n. Hence each equivalence class of Cauchy sequences in M contains the so-
called coherent sequence .an/n which satisfies anC1 � an .mod InM/ for all n. Thus
bM is isomorphic to the set of equivalence classes of Cauchy sequences.

If 0 D T

n2N InM D 0, then M is I-adically separated and we can embed M into
bM via m 7�! .m/n. We say that M is complete if M ' bM.

Example 3.1 Let V be a discrete valuation domain with maximal ideal .t/ and
valuation v. By bV we denote the .t/-adic completion of V .

Moreover, let .an/n be a .t/-adic Cauchy sequence with limit a 2 bV . If a D 0,
then for each k 2N there exists n0 2N such that an 2 .tk/ for all n � n0 and hence
lim v.an/ D1.

If a ¤ 0, then there exist k; m0 2 N such that an … .tk/ for n � m0. However,
the sequence .anC1 � an/n converges to 0 and hence there exists m1 2 N such that
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anC1 � an 2 .tk/ for all n � m1. If m D maxfm0; m1g, then for all n � m,

v.anC1/ D v.anC1 � an C an/ � minfv.anC1 � an/; v.an/g D v.an/ < k

holds and the sequence .v.an//n stabilizes at v.am/.
For a 2 bV , we set v.a/ D lim v.an/ D v.am/. This extends v to a discrete

valuation on bV .
Next, we present some basic results on the completion of finitely generated

modules over a Noetherian ring R.

Fact 3.2 (Artin-Rees, cf. [6, Theorem 8.5]) Let R be a Noetherian ring, I an ideal
of R and M a finitely generated R-module.

If N is an R-submodule of M, then there exists an integer r such that for all k � 0

IrCkM \ N D Ik.IrM \ N/:

Corollary 3.3 (cf. [6, Theorem 8.9, Theorem 8.10]) Let R be a Noetherian ring,
I an ideal of R and M a finitely generated R-module.

1. If N DT

n2N InM, then there exists an a 2 R with aN D 0 and 1 � a 2 I.
2. If I � Jac.R/, then M is I-adically separated and every submodule of M is

I-adically closed.

Proof (1): According to Fact 3.2, there exists r 2 N such that .IrC1M/ \ N D
I.IrM \ N/ � IN and hence

IN � N D
\

n2N
InM � .IrC1M/ \ N � IN:

Consequently, N D IN and it follows from Nakayama’s lemma that there exists an
a 2 R with 1 � a 2 I and aN D 0. (2): Since I � Jac.R/, the element a from
(1) is a unit of R. Therefore

T

n2N InM D 0 and M is separated. Consequently, if
P is a submodule of M, it follows that

T

n2N In.M=P/ D 0 D PM=P and therefore
T

n2N.PC InM/ D P.

Fact 3.4 (cf. [6, Theorem 8.7]) Let R be a Noetherian ring, I an ideal and M a
finitely generated module. Further, let bR, bM be the I-adic completions of R and M,
respectively.

Then bR ˝R M ' bM via .lim rn; m/ 7! lim rnm. In particular, if R is I-adically
complete, then M is I-adically complete.

Proposition 3.5 (cf. [6, Theorem 8.4]) Let R be a complete ring with respect to
an ideal I of R and M an I-adically separated R-module.

If M=IM is a finitely generated R=I-module, then M is a finitely generated R-
module.

Proof Let m1, . . . , mt 2 M be elements such that their projections modulo IM
generate M=IM as R=I-module. Then M D Pt

iD1 Rmi C IM and for x 2 M, there
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exist r0;i 2 R, i1 2 I and x1 2 M such that x D Pt
iD1 r0;imi C i1x1. Then again, for

x1 2 M, there exist r1;i 2 R, i2 2 I and x2 2 M such that x1 D Pt
iD1 r1;imi C i2x2.

For j > 2, we successively choose rj�1;i 2 R, ij 2 I and xj 2 M such that

xj�1 D Pt
iD1 rj�1;imi C ijxj. Then

�

Pn
jD0

�

Qj
tD1 it

�

rj;i

�

n2N is a Cauchy sequence

in R which has a limit ri 2 R . Moreover,

x �
t

X

iD1

rimi 2
\

n2N
InM D 0

and therefore M is generated by m1, . . . , mt.

Zero-Divisors in the Completion of R

Let V be a discrete valuation domain with valuation v and bV its completion. If
a; b 2 bV are nonzero elements, then v.a/; v.b/ < 1 according to Example 3.1.
Consequently, v.ab/ D v.a/C v.b/ <1 which implies that bV is a domain.

However, in general the completion of a domain may not be a domain.

Proposition 3.6 (cf. [3, Lemma III.3.4]) Let R be a Noetherian domain and I an
ideal of R.

If there exist ideals J1 and J2 of R such that I D J1 \ J2 and R D J1 C J2, then
the I-adic completion bR of R is not a domain.

Proof Since J1 and J2 are coprime it follows that Jk
1 and Jk

2 are coprime as well.
Hence there exist bk; ck 2 R such that

bk � 0 mod Jk
1; bk � 1 mod Jk

2

ck � 1 mod Jk
1; ck � 0 mod Jk

2

for all k 2 N. Since bkC1 � bk � ckC1 � ck � 0 mod Jk
1 \ Jk

2 D Jk
1Jk

2 D Ik,
the sequences .bk/k and .ck/k converge I-adically. Let b D lim bk 2 bR and c D
lim ck 2 bR their I-adic limits. By construction, b ¤ 0 and c ¤ 0. However, since
bkck � 0 mod Jk

1 \ Jk
2 D Ik for all k, it follows that bc D 0. Hence b and c are

nonzero zero-divisors.
It follows from Proposition 3.6 that the completion of a domain may contain

zero-divisors (see also Proposition 3.8). However, constant sequences behave well
as the next lemma states.

Lemma 3.7 Let R be a Noetherian ring, I a proper ideal of R and bR the I-adic
completion of R. If d 2 R is not a zero-divisor in R, then d is not a zero-divisor in bR.
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Proof By Fact 3.2, there exists r 2N such that for all n 2N

InCr \ dR D In.Ir \ dD/ � dIn (1)

Let x D limn xn 2 bR such that dx D 0. Then .dxn/n is an I-adic Cauchy sequence
with limit 0. Hence for each n 2 N there exists t0 2 N such that dxt 2 InCr for
all t � t0. Then dxt 2 dIn by Equation (1) and therefore xt 2 In which implies
0 D limn xn D x.

Proposition 3.8 Let .D; m/ be a Noetherian, local domain with quotient field K
and D � R � K be an intermediate ring such that R is finitely generated as D-
module.

Then the following assertions hold:

1. R is semilocal,
2. the m-adic topology on D coincides with subspace topology induced by the

Jac.R/-adic topology on R.
3. If R is not local, then the m-adic completion bD of D is not a domain.

Proof R is finitely generated as module over the Noetherian domain D and hence
a Noetherian domain. Moreover, the ring extension D � R is integral by Fact 2.1.
Therefore, according to Fact 2.2, all prime ideals of R which lie over m are maximal
and thus minimal prime ideals of mR. Hence there are only finitely many maximal
ideals N1; : : : ; Nn in R which proves (1).

(2): Since
p

mR D Tn
iD1 Ni D Jac.R/, there exists ` 2 N such that Jac.R/` �

mR. Then

Jac.R/`k � .mR/k � Jac.R/k

and hence the Jac.R/-adic and the mR-adic topology coincide on R. Thus it suffices
to prove that the m-adic topology on D coincides with subspace topology induced
by the mR-adic topology on R. Clearly, mk � mkR\D holds for all k. On the other
hand, Fact 3.2 implies that there exists an integer r such that

mkCrR \ D D mk.mrR \ D/ � mk

for all k � 0 and hence the topologies coincide.
(3): Let M1; : : : ; Mn be the maximal ideals of R with n > 1. We set J1 D

M1 � � �Mn�1 D M1\� � �\Mn�1 and J2 D Mn. Then J1\J2 D Jac.R/ and J1CJ2 D R.
By Proposition 3.6, the Jac.R/-adic completion bR of R is not a domain.

By (2), bD is a topological subspace of bR. Since bR is not a domain, there exist
nonzero b; c 2 bR with bc D 0. However, R is a finitely generated D-module and
therefore there exists a nonzero element d 2 D with dbR � bD. Hence .db/.dc/ D 0

with db; dc 2 bD. By Lemma 3.7, d is not a zero-divisor in bD and therefore db ¤ 0

is a zero-divisor in bD.
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4 Structure Theorem for One-Dimensional Complete Local
Domains

In this section we discuss the structure theorem for complete, Noetherian, local
domains. We restrict our study to the one-dimensional case, since this is what we
need later on. Nevertheless, it is worth mentioning that the results can be extended
to higher dimensions but the proofs become more technical.

As Proposition 4.3 states, a complete, Noetherian, one-dimensional local domain
.D; m/ contains a subring S such that D is finitely generated as S-module. Moreover,
S is a certain complete discrete valuation domain whose residue field is isomorphic
to D=m. This result allows us in the next section to reduce the investigation to
domains of this form.

Definition 4.1 Let .D; m/ be a complete, Noetherian, local domain. We say

1. D is of equal characteristic, if char.D/ D char.D=m/ and
2. D is of unequal characteristic, if char.D/ ¤ char.D=m/.

If char.D=m/ D 0, it follows that char.D/ D 0 and therefore Z � D. However,
Z \ m D 0 which implies that every integer is invertible in D and thus Q � D.
Similarly, if char.D/ D p > 0, then char.D=m/ D p and Z=pZ is contained
in D. Hence, a domain of equal characteristic contains a field. On the other hand,
if D contains a field k, then char.k/ D char.D/. Let � W D �! D=m denote
the canonical projection. Then �.k/ is a subfield of D=m and since char.�.k// D
char.k/ it follows that D is of equal characteristic. Indeed, it is possible to show that
a domain D of equal characteristic contains a field k with �.k/ D D=m, cf. Fact 4.2.

If D is a domain of unequal characteristic, then char.D/ D 0 and char.D=m/ D
p > 0. In this case it is possible to show that D contains a complete discrete
valuation domain .R; pR/ such that the residue fields of R and D are isomorphic.
We summarize these results in Fact 4.2. However, the proof goes beyond the scope
of this paper. We refer to Matsumura’s textbook [6] for details.

Fact 4.2 (cf. [6, Theorem 28.3, Theorem 29.3]) Let .D; m/ be a complete,
Noetherian, local domain.

1. If D is of equal characteristic, then D contains a field k which is isomorphic to
D=m via d 7�! dCm. We say k is a coefficient field of D.

2. If D is of unequal characteristic and char.D=m/ D p, then D contains a
complete discrete valuation domain .R; pR/ such that R=pR is isomorphic to
D=m via rC pR 7�! rCm. We say R is a coefficient ring of D.

The existence of a coefficient field or coefficient ring, respectively, is crucial for
the proof of the structure theorem which we state in the next proposition.

Proposition 4.3 (cf. [6, Theorem 29.4.(iii)]) Let .D; m/ be a complete, Noethe-
rian, one-dimensional, local domain.

Then D contains a complete discrete valuation domain S such that D is finitely
generated over S and
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1. in equal characteristic S ' k�X� where k is a coefficient field of D.
2. in unequal characteristic S is a coefficient ring of D.

Proof Let m be the maximal ideal of D. First, we consider the case where D is
of unequal characteristic and let p D char.D=m/ > 0. According to Fact 4.2, D
contains a coefficient ring S which is a complete discrete valuation domain with
maximal ideal pS such that S=pS ' D=m via � .

Further, D=pD is a zero-dimensional, Noetherian ring and hence Artinian.
Therefore D=pD has finite length as .D=pD/-module and hence as D-module.
However, this is equivalent to the existence of a composition series 0 D N0 ¨
N1 ¨ � � � ¨ Nr D D=pD of the D-module D=pD. Since NiC1=Ni is simple for all
0 � i � r�1 it follows that NiC1=Ni ' D=m ' S=pS which implies that .Ni/

r
iD0 is a

composition series of D=pD as S-module. Thus D=pD has finite length as S-module
and is therefore a finite dimensional .S=pS/-vector space. Further, D is p-adically
separated since D is Noetherian and we can conclude that D is a finitely generated
S-module by Proposition 3.5.

If D is of equal characteristic, then D contains a coefficient field k which is a
subfield of D such that k ' D=m via � according to Fact 4.2.

Let T D k�X� be the power series ring in the variable X and let y 2 D be a
nonzero non-unit. We define the k-homomorphism ' W T �! D by '.X/ D y and
set S D k�y� to be the image of T under '.

With the same argument as above we can conclude that D=yD is a finitely
generated .S=yS/-module. Moreover, S is complete and D is separated with respect
to the ideal yS. Hence D is finitely generated as S-module by Proposition 3.5.
Furthermore, this implies dim.S/ D dim.D/ D 1 by Fact 2.2. However, since
S ' k�X�= ker.'/ and dim.k�X�/ D 1 it follows that ker.'/ D 0 and S ' k�X�.

Remark The domain S is the so-called regular local ring, that is, a local, Noetherian
domain S such that its maximal ideal is generated by dim.S/ elements. Propo-
sition 4.3 is a special case of Cohen’s structure theorem which states that every
complete Noetherian local domain D contains a regular local subring S such that D
is finitely generated as S-module. Moreover, S D R�X1; : : : ; Xn� is a power series
ring where in equal characteristic R is a coefficient field and n D dim.D/ and in
unequal characteristic R is a coefficient ring and n D dim.D/ � 1. For details, we
refer Matsumura’s textbook [6, §28, §29].

5 Finiteness of the Integral Closure

Let D be a complete, one-dimensional, Noetherian, local domain with quotient
field K and let K � L be a finite field extension. The goal of this section is to
prove that the integral closure D0

L of D in L is finitely generated as D-module (see
Proposition 5.3). This allows us to conclude in Corollary 5.4 that the integral closure
R0 of a complete, one-dimensional, Noetherian, local, reduced ring R is finitely
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generated as R-module. The latter result is essential in the proof of Theorem 1 in the
next section.

Following Nagata’s textbook [7], we exploit the structure of complete, Noethe-
rian, local domains. According to Proposition 4.3, D contains a subring S such that
D is finitely generated as S-module (see Figure 2). If F is the quotient field of S,
then the extension F � L is finite. Moreover, by Fact 2.1, the extension S � D is
integral and hence D0

L D S0
L is the integral closure of S in L.

If we show that S0
L is finitely generated as S-module, then it follows that D0

L is
a finitely generated D-module. Therefore, Proposition 4.3 allows us to reduce the
investigation to the case where S is a certain complete discrete valuation domain.

To prove that the integral closure of S in L is finitely generated, we distinguish
between two cases, either the field extension F � L is separable or it is inseparable.

Proposition 5.1 (cf. [2, Ch. V, 1.6, Corollary 1 of Proposition 18]) Let S be an
integrally closed, Noetherian domain with quotient field F and F � L a finite field
extension.

If F � L is separable, then the integral closure S0
L of S in L is finitely generated

as S-module.

Proof Let w1, . . . , wn 2 L be a K-basis of L. Without restriction we can assume that
wj 2 S0

L for 1 � j � n. Further, let L? D HomK.L; K/ be the dual space of L and
w0

i 2 L? be the K-basis of L? which is defined by w0
i.wj/ D ıij (Kronecker-delta) for

1 � i; j � n.
Since L is a finite separable extension of K, L is isomorphic to its dual space L?

via the K-linear map

T W L �! L?

x 7�! .y 7! trL=K.xy//

where trL=K W L �! K is the field trace with respect to the extension K � L (cf. [5,
Theorem 5.2]).

For 1 � i � n, set w?
i D T�1.w0

i/. Then w?
1 , . . . , w?

n form a K-basis of L and
trL=K.w?

i wj/ D ıij holds for all 1 � i; j � n. Hence, for a 2 S0
L there exist ai 2 K

such that a DPn
iD1 aiw?

i . Moreover,

Fig. 2 D contains a subring S
such that D is finitely
generated as S-module which
is either a complete discrete
valuation ring or isomorphic
to k�X� where k is a
coefficient field of D
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aj D
n

X

iD1

ai trL=K.w?
i wj/ D trL=K.awj/

holds for 1 � j � n.
If gj 2 KŒX� is the minimal polynomial of awj and z1, . . . , zm are all roots of gj in

some field extension QL of K, then trL=K.awj/ DPm
iD1 zi 2 K holds (cf. [5, p. 284]).

Moreover, since awj is integral over S it follows that gj 2 SŒX� and z1, . . . , zm 2 S0
QL

are integral over S as well. Therefore

aj D trL=K.awj/ 2 K \ S0
QL D S

where the last equality holds since S is integrally closed. It follows that S0
L is an

S-submodule of the Noetherian module
Pn

iD1 Sw?
i and therefore finitely generated.

Proposition 5.2 (cf. [6, p. 263]) Let S D k�X� be a power series ring over a field
k with quotient field F and L a finite purely inseparable field extension of F.

Then the integral closure S0
L of S in L is finitely generated as S-module.

Proof Let p > 0 be the characteristic of the field F and q D pe D ŒL W F� < 1 be
the degree of the field extension F � L. Since the extension is purely inseparable,
every element a 2 L is a q-th root of an element in F.

Let F be an algebraically closed extension of F that contains L. Then F contains
an element Y such that X D Yq and QL D L.Y/ is a finite, purely inseparable field
extension of K. Moreover, S0

L is an S-submodule of S0
QL and it therefore suffices to

show that S0
QL is a finitely generated S-module. This allows us to assume that L D QL

and Y 2 L from this point on.
If a 2 S0

L is an integral element, then aq 2 S0
L \ F. However, S is a discrete

valuation domain, so it is integrally closed and therefore S0
L D fa 2 L j aq 2 Sg.

If M is a maximal ideal of S0
L, then M \ S D XS by Fact 2.2. Hence M D fa 2

L j aq 2 XSg which implies that M D YS0
L is the unique maximal ideal of S0

L. In
addition, it follows from Corollary 2.4 that the field extension k ' S=XS � S0

L=YS0
L

is finite. Further, Corollary 3.3 implies that S0
L is X-adically separated. Finally, S is

X-adically complete and we can conclude that S0
L is a finitely generated S-module

by Proposition 3.5.

Proposition 5.3 Let D be a complete, local, one-dimensional, Noetherian domain
with quotient field K and K � L a finite field extension.

Then the integral closure D0
L of D in L is finitely generated as D-module.

Proof According to Proposition 4.3, D contains a complete discrete valuation
domain S such that D is a finitely generated S-module. Let F denote the quotient
field of S. Hence F � L is a finite field extension, S � D is integral and S0

L D D0
L

(see Fact 2.1), cf. Figure 2. Therefore, it suffices to show that S0
L is a finitely

generated S-module. Moreover, S is a complete, discrete valuation domain and in
the equicharacteristic case S ' k�X� where k is a field by Proposition 4.3 and
dim.S/ D 1.
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Fig. 3 Integral closures of S
in the field extensions L, E
and LE where E is a finite
inseparable field extension of
F such that LE is a finite
separable extension of E

In particular, S is integrally closed. Consequently, if the field extension F � L is
separable, then the assertion follows from Proposition 5.1.

Let us assume that F � L is inseparable. Then char.F/ D p > 0 and hence
char.S/ D char.D/ D p which implies that D is of equal characteristic. Therefore
S ' k�X� where k is a field and k ' D=m.

Let N be the normal hull of L and E be the fixed field of the automorphism group
AutF.N/ of F � N. Then F � E is a purely inseparable extension and E � N is a
separable extension, cf. [5, Proposition V.6.11], see Figure 3.

Moreover, since F � L is a finite extension, it follows that F � N is finite which
in turn implies that F � E is a finite extension too.

Hence E � LE is a finite separable extension and it follows from Proposition 5.1
that S0

LE D .S0
E/0

LE is finitely generated as S0
E-module. In addition, S0

E is finitely
generated as S-module according to Proposition 5.2.

Consequently, S0
LE is finitely generated as S-module and therefore a Noetherian

S-module. However, S0
L is an S-submodule of S0

LE and thus finitely generated.
We conclude this section with the analogous assertion for complete, Noetherian,

local, reduced rings.

Corollary 5.4 Let R be a complete, Noetherian, one-dimensional, local ring.
If R is reduced, then the integral closure R0 of R is finitely generated as R-module.

Proof Let P1, . . . , Pn be the minimal prime ideals of R. For 1 � i � n, let Qi

be the quotient field of the Noetherian, one-dimensional, local domain R=Pi. Then
Q D Q1 	 � � � 	 Qn is the total ring of quotients of R=P1 	 � � � 	 R=Pn. Moreover,

.R=P1 	 � � � 	 R=Pn/0
Q D .R=P1/0

Q1
	 � � � 	 .R=Pn/0

Qn
: (2)

The Noetherian, local domain R=Pi is a finitely generated R-module and hence
m-adically complete by Fact 3.4. As the m-adic topology coincides with the m=Pi-
adic topology on R=Pi, it follows that .R=Pi/

0
Qi

is a finitely generated .R=Pi/-module
according to Proposition 5.3. Together with Equation (2), it now follows that
.
Qn

iD1 R=Pi/
0
Q is a finitely generated

�Qn
iD1 R=Pi

�

-module.
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Fig. 4 Embeddings via "

Since
Qn

iD1 R=Pi is a finitely generated R-module, it follows that .
Qn

iD1 R=Pi/
0
Q

is finitely generated as R-module too and therefore Noetherian. Let

" W R �! R=P1 	 � � � 	 R=Pn

r 7�! .rC P1; : : : ; rC Pn/:

Then ker."/ D Tn
iD1 Pi D nil.R/ D 0 since R is reduced by hypothesis. Hence we

can embed R into
Qn

iD1 R=Pi via ". Similarly, we can embed R0 into .
Qn

iD1 R=Pi/
0
Q

since " can be canonically extended to the total ring of quotients T of R, see Figure 4.
Thus R0 is isomorphic to a submodule of the Noetherian R-module .

Qn
iD1 R=Pi/

0
Q

and hence finitely generated.

6 Proof of the Theorem

Finally, we are ready to give a proof of Theorem 1. For the reader’s convenience
we restate it here. Recall that a Noetherian, local domain .D; m/ with m-adic
completion bD and integral closure D0 is called

– unibranched, if D0 is local,
– analytically unramified, if bD is a reduced ring and
– analytically irreducible, if bD is a domain

(cf. Definition 1.1).

Theorem 1 Let .D; m/ be a one-dimensional, Noetherian, local domain with
integral closure D0. Then the following assertions are equivalent:

1. D is analytically irreducible.
2. D is unibranched and analytically unramified.
3. D is unibranched and D0 is finitely generated as D-module.
4. D is unibranched and if m0 denotes the maximal ideal of the integral closure,

then the m-adic topology on D coincides with subspace topology induced by m0.

Proof (1)) (2): By assumption, bD is a domain and therefore is a reduced ring.
Assume that D is not unibranched and let M1 ¤ M2 be two different maximal

ideals of the integral closure D0 of D. Let a1 2 M1 n M2 and a2 2 M2 n M1. Then
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R D DŒa1; a2� � D0 is an integral extension of D and therefore finitely generated
as D-module by Fact 2.1. Hence, according to Proposition 3.8, R is a semilocal
domain. However, the extension R � D0 is integral and therefore Ni D Mi \ R are
maximal ideals of R for i D 1; 2 according to Fact 2.2. Due to the choice of a1 and
a2, N1 ¤ N2 and R is semilocal but not local. It follows from Proposition 3.8 that bD
is not a domain.

(2)) (3): If D0 is not finitely generated as D-module, then there exists an infinite
strictly ascending chain of intermediate rings D � Di � D0 which are finitely
generated as D-modules.

Let K be the quotient field of D and Di for all i and bDi denote the m-adic
completion of Di. If a

b 2 bDi \ K, then a 2 bbDi \ K. However, by Corollary 3.3,

bbDi \ K D bDi and hence a
b 2 Di. Hence bDi \ K D Di ¨ DiC1 D bDiC1 \ K which

implies that bDi ¨ bDiC1 for all i.
Moreover, according to Fact 3.4, bDi ' Di˝D bD is a finitely generated bD-module.

Hence bDi is contained in the integral closure .bD/0 of bD in its total ring of quotients.
Consequently, the extension bD � .bD/0 contains the infinite strictly ascending chain
of intermediate rings bDi. Thus .bD/0 is not finitely generated as bD-module which
implies that bD is not reduced by Corollary 5.4.

(3)) (4): The assertion immediately follows from Proposition 3.8.
(4)) (1): Let b.D0/ be the m0-adic completion of D0. Since the m0-adic topology

induces the m-adic topology on D, it follows that D is a topological subspace of
b.D0/ and bD is the topological closure of D in b.D0/.

By assumption D0 is local, so D0 is a discrete valuation domain according to
Corollary 2.5. As shown in Example 3.1, the m0-adic completion b.D0/ of D0 is also
a discrete valuation domain.

Hence bD is a subring of the domain b.D0/ and thus it is a domain itself.

Remark There are examples of one-dimensional, Noetherian, local domains which
are unibranched but not analytically irreducible, cf. [9].
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