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Abstract We introduce quasi-Prüfer ring extensions, in order to relativize quasi-
Prüfer domains and to take also into account some contexts in recent papers. An
extension is quasi-Prüfer if and only if it is an INC pair. The class of these extensions
has nice stability properties. We also define almost-Prüfer extensions that are quasi-
Prüfer, the converse being not true. Quasi-Prüfer extensions are closely linked to
finiteness properties of fibers. Applications are given for FMC extensions, because
they are quasi-Prüfer.
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1 Introduction and Notation

We consider the category of commutative and unital rings. An epimorphism is an
epimorphism of this category. Let R � S be a (ring) extension. The set of all
R-subalgebras of S is denoted by ŒR; S�. A chain of R-subalgebras of S is a set of
elements of ŒR; S� that are pairwise comparable with respect to inclusion. We say
that the extension R � S has FCP (for the “finite chain property”) if each chain
in ŒR; S� is finite. Dobbs and the authors characterized FCP extensions [13]. An
extension R � S is called FMC if there is a finite maximal chain of extensions from
R to S.
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We begin by explaining our motivations and aims. The reader who is not
familiar with the notions used will find some Scholia in the sequel, as well as
necessary definitions that exist in the literature. Knebusch and Zhang introduced
Prüfer extensions in their book [25]. Actually, these extensions are nothing but
normal pairs, that are intensively studied in the literature. We do not intend to give
an extensive list of recent papers, written by Ayache, Ben Nasr, Dobbs, Jaballah,
Jarboui, and some others. We are indebted to these authors because their papers
are a rich source of suggestions. We observed that some of them are dealing
with FCP (FMC) extensions, followed by a Prüfer extension, perhaps under a
hidden form. These extensions reminded us quasi-Prüfer domains (see [18] for a
comprehensive study). Therefore, we introduced in [38] quasi-Prüfer extensions
R � S as extensions that can be factored R � R0 � S, where the first extension is
integral and the second is Prüfer. Note that FMC extensions are quasi-Prüfer.

We give a systematic study of quasi-Prüfer extensions in Sects. 2 and 3. The
class of quasi-Prüfer extensions has a nice behavior with respect to the classi-
cal operations of commutative algebra. An important result is that quasi-Prüfer
extensions coincide with INC-pairs. Another one is that this class is stable under
forming subextensions and composition. A striking result is the stability of the class
of quasi-Prüfer extensions by absolutely flat base change, like localizations and
Henselizations. An arbitrary ring extension R � S admits a quasi-Prüfer closure,
contained in S. Examples are provided by Laskerian pairs, open pairs, and the
pseudo-Prüfer pairs of Dobbs-Shapiro [12].

Section 4 deals with almost-Prüfer extensions, a special kind of quasi-Prüfer
extensions. They are of the form R � T � S, where the first extension is Prüfer
and the second is integral. An arbitrary ring extension R � S admits an almost-
Prüfer closure, contained in S. The class of almost-Prüfer extensions seems to have
less properties than the class of quasi-Prüfer extensions but has the advantage that
almost-Prüfer closures commute with localizations at prime ideals. We examine the
transfer of the quasi (almost)-Prüfer properties to subextensions. It is noteworthy
that the class of FCP almost-Prüfer extensions is stable under the formation of
subextensions, although this does not hold for arbitrary almost-Prüfer extensions.

In Sect. 5, we complete and generalize the results of Ayache-Dobbs in [5], with
respect to the finiteness of fibers. These authors have evidently considered particular
cases of quasi-Prüfer extensions. A main result is that if R � S is quasi-Prüfer with
finite fibers, then so is R � T for T 2 ŒR; S�. In particular, we recover a result of [5]
about FMC extensions.

1.1 Recalls About Some Results and Definitions

The reader is warned that we will mostly use the definition of Prüfer extensions
by flat epimorphic subextensions investigated in [25]. The results needed may be
found in Scholium A for flat epimorphic extensions and some results of [25] are
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summarized in Scholium B. Their powers give quick proofs of results that are
generalizations of results of the literature.

As long as FCP or FMC extensions are concerned, we use minimal (ring)
extensions, a concept introduced by Ferrand-Olivier [17]. An extension R � S
is called minimal if ŒR; S� D fR; Sg. It is known that a minimal extension is
either module-finite or a flat epimorphism [17] and these conditions are mutually
exclusive. There are three types of integral minimal (module-finite) extensions:
ramified, decomposed, or inert [36, Theorem 3.3]. A minimal extension R � S
admits a crucial ideal C.R; S/ DW M which is maximal in R and such that RP D SP for
each P ¤ M; P 2 Spec.R/. Moreover, C.R; S/ D .R W S/ when R � S is an integral
minimal extension. The key connection between the above ideas is that if R � S
has FCP or FMC, then any maximal (necessarily finite) chain of R-subalgebras of
S, R D R0 � R1 � � � � � Rn�1 � Rn D S, with length n < 1, results from
juxtaposing n minimal extensions Ri � RiC1; 0 � i � n � 1.

We define the length `ŒR; S� of ŒR; S� as the supremum of the lengths of chains in
ŒR; S�. In particular, if `ŒR; S� D r, for some integer r, there exists a maximal chain
in ŒR; S� with length r.

As usual, Spec.R/, Max.R/, Min.R/, U.R/, Tot.R/ are, respectively, the set of
prime ideals, maximal ideals, minimal prime ideals, units, total ring of fractions of
a ring R and �.P/ D RP=PRP is the residual field of R at P 2 Spec.R/.

If R � S is an extension, then .R W S/ is its conductor and if P 2 Spec.R/, then

SP is the localization SRnP. We denote the integral closure of R in S by R
S

(or R).
A local ring is here what is called elsewhere a quasi-local ring. The support of

an R-module E is SuppR.E/ WD fP 2 Spec.R/ j EP ¤ 0g and MSuppR.E/ WD
SuppR.E/ \ Max.R/. Finally, � denotes proper inclusion and jXj the cardinality of
a set X.

Scholium A We give some recalls about flat epimorphisms (see [26, Chapitre
IV], except (2) which is [30, Proposition 2]).

(1) R ! S is a flat epimorphism , for all P 2 Spec.R/, either RP ! SP

is an isomorphism or S D PS , RP � SP is a flat epimorphism for all
P 2 Spec.R/ , R.Q\R/ ! SQ is an isomorphism for all Q 2 Spec.S/ and
Spec.S/ ! Spec.R/ is injective.

(2) (S) A flat epimorphism, with a zero-dimensional domain, is surjective.
(3) If f W A ! B and g W B ! C are ring morphisms such that g ı f is injective and

f is a flat epimorphism, then g is injective.
(4) Let R � T � S be a tower of extensions, such that R � S is a flat epimorphism.

Then T � S is a flat epimorphism but R � T does not need. A Prüfer extension
remedies this defect.

(5) (L) A faithfully flat epimorphism is an isomorphism. Hence, R D S if R � S is
an integral flat epimorphism.

(6) If f W R ! S is a flat epimorphism and J an ideal of S, then J D f �1.J/S.
(7) If f W R ! S is an epimorphism, then f is spectrally injective (i.e.,

af W Spec.S/ ! Spec.R/ is an injection) and its residual extensions are
isomorphisms.



310 G. Picavet and M. Picavet-L’Hermitte

(8) Flat epimorphisms remain flat epimorphisms under base change (in particular,
after a localization with respect to a multiplicatively closed subset).

(9) Flat epimorphisms are descended by faithfully flat morphisms.

1.2 Recalls and Results on Prüfer Extensions

There are a lot of characterizations of Prüfer extensions. We keep only those that
are useful in this paper. Let R � S be an extension.

Scholium B

(1) [25] R � S is called Prüfer if R � T is a flat epimorphism for each T 2 ŒR; S�.
(2) R � S is called a normal pair if T � S is integrally closed for each T 2 ŒR; S�.
(3) R � S is Prüfer if and only if it is a normal pair [25, Theorem 5.2(4)].
(4) R is called Prüfer if its finitely generated regular ideals are invertible, or

equivalently, R � Tot.R/ is Prüfer [21, Theorem 13((5)(9))].

Hence Prüfer extensions are a relativization of Prüfer rings. Clearly, a minimal
extension is a flat epimorphism if and only if it is Prüfer. We will then use for such
extensions the terminology: Prüfer minimal extensions. The reader may find some
properties of Prüfer minimal extensions in [36, Proposition 3.2, Lemma 3.4 and
Proposition 3.5], where in addition R must be supposed local. The reason why is
that this word has disappeared during the printing process of [36].

We will need the two next results. Some of them do not explicitly appear in [25]
but deserve to be emphasized. We refer to [25, Definition 1, p.22] for a definition of
Manis extensions and remark that Proposition 1.1(1) was also noted in [12].

Proposition 1.1 Let R � S be a ring extension.

(1) R � S is Prüfer if and only if RP � SP is Prüfer for each P 2 Spec.R/

(respectively, P 2 Supp.S=R/).
(2) R � S is Prüfer if and only if RM � SM is Manis for each M 2 Max.R/.

Proof (1) The class of Prüfer extensions is stable under localization [25, Proposition
5.1(ii), p.46-47]. To get the converse, use Scholium A(1). (2) follows from [25,
Proposition 2.10, p.28, Definition 1, p.46]. ut
Proposition 1.2 Let R � S be a ring extension, where R is local.

(1) R � S is Manis if and only if S n R � U.S/ and x 2 S n R ) x�1 2 R. In that
case, R � S is integrally closed.

(2) R � S is Manis if and only if R � S is Prüfer.
(3) R � S is Prüfer if and only if there exists P 2 Spec.R/ such that S D RP,

P D SP and R=P is a valuation domain. Under these conditions, S=P is the
quotient field of R=P.

Proof (1) is [25, Theorem 2.5, p.24]. (2) is [25, Scholium 10.4, p. 147]. Then (3) is
[13, Theorem 6.8]. ut
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Next result shows that Prüfer FCP extensions can be described in a special
manner.

Proposition 1.3 Let R � S be a ring extension.

(1) If R � S has FCP, then R � S is integrally closed , R � S is Prüfer , R � S
is a composite of Prüfer minimal extensions.

(2) If R � S is integrally closed, then R � S has FCP , R � S is Prüfer and
Supp.S=R/ is finite.

Proof (1) Assume that R � S has FCP. If R � S is integrally closed, then, R � S
is composed of Prüfer minimal extensions by [13, Lemma 3.10]. We know that
a composite of Prüfer extensions is a Prüfer extension [25, Theorem 5.6]. Thus,
by [25], R � S is a normal pair. Conversely, if R � S is composed of Prüfer
minimal extensions, R � S is integrally closed, since so is each Prüfer minimal
extension. A Prüfer extension is obviously integrally closed, and an FCP integrally
closed extension is Prüfer by [13, Theorem 6.3].

(2) The logical equivalence is [13, Theorem 6.3]. ut
Definition 1.4 [25] A ring extension R � S has:

(1) a greatest flat epimorphic subextension R � bRS, called the Morita hull of R in
S.

(2) a greatest Prüfer subextension R � eRS, called the Prüfer hull of R in S.

We set bR WD bRS and eR WD eRS, if no confusion can occur. R � S is called Prüfer-
closed if R D eR.

Note that eRS is denoted by P.R; S/ in [25] and bRS is the weakly surjective hull
M.R; S/ of [25]. Our terminology is justified because Morita’s work is earlier [29,
Corollary 3.4]. The Morita hull can be computed by using a (transfinite) induction
[29]. Let S0 be the set of all s 2 S such that there is some ideal I of R, such that
IS D S and Is � R. Then R � S0 is a subextension of R � S. We set S1 WD S0 and
SiC1 WD .Si/

0 � Si. By [29, p. 36], if R � S is an FCP extension, then bR D Sn for
some integer n.

At this stage it is interesting to point out a result showing again that integral
closedness and Prüfer extensions are closely related.

Proposition 1.5 Olivier [32, Corollary, p. 56] An extension R � S is integrally
closed if and only if there is a pullback square:

R −−−→ S
⏐
⏐
�

⏐
⏐
�

V −−−→ K

where V is a semi-hereditary ring and K its total quotient ring.
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In that case V � K is a Prüfer extension, since V is a Prüfer ring, whose localizations
at prime ideals are valuation domains and K is an absolutely flat ring. As there exist
integrally closed extensions that are not Prüfer, we see in passing that the pullback
construction may not descend Prüfer extensions. The above result has a companion
for minimal extensions that are Prüfer [20, Proposition 3.2].

Proposition 1.6 Let R � S be an extension and T 2 ŒR; S�, then eRT D eR \ T.
Therefore, for T; U 2 ŒR; S� with T � U, theneRT � eRU.

Proof Obvious, since the Prüfer hull eRT is the greatest Prüfer extension R � V
contained in T . ut

We will show later that in some cases eT � eU if R � S has FCP.

2 Quasi-Prüfer Extensions

We introduced the following definition in [38, p. 10].

Definition 2.1 An extension of rings R � S is called quasi-Prüfer if one of the
following equivalent statements holds:

(1) R � S is a Prüfer extension;
(2) R � S can be factored R � T � S, where R � T is integral and T � S is Prüfer.

In that case R D T .

To see that (2) ) (1) observe that if (2) holds, then T � R is integral and a flat
injective epimorphism, so that R D T by (L) (Scholium A(5)).

We observe that quasi-Prüfer extensions are akin to quasi-finite extensions if we
refer to Zariski Main Theorem. This will be explored in Sect. 5, see, for example,
Theorem 5.2.

Hence integral or Prüfer extensions are quasi-Prüfer. An extension is clearly
Prüfer if and only if it is quasi-Prüfer and integrally closed. Quasi-Prüfer extensions
allow us to avoid FCP hypotheses.

We give some other definitions involved in ring extensions R � S. The fiber
at P 2 Spec.R/ of R � S is FibR;S.P/ WD fQ 2 Spec.S/ j Q \ R D Pg. The
subspace FibR;S.P/ of Spec.S/ is homeomorphic to the spectrum of the fiber ring
at P, FR;S.P/ WD �.P/ ˝R S. The homeomorphism is given by the spectral map of
S ! �.P/ ˝R S and �.P/ ! �.P/ ˝R S is the fiber morphism at P.

Definition 2.2 A ring extension R � S is called:

(1) incomparable if for each pair Q � Q0 of prime ideals of S, then Q \ R D
Q0 \ R ) Q D Q0, or equivalently, �.P/ ˝R T is a zero-dimensional ring for
each T 2 ŒR; S� and P 2 Spec.R/, such that �.P/ ˝R T ¤ 0.

(2) an INC-pair if R � T is incomparable for each T 2 ŒR; S� , T � U is
incomparable for all T � U in ŒR; S�.

(3) residually algebraic if R=.Q \ R/ � S=Q is algebraic for each Q 2 Spec.S/.
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(4) a residually algebraic pair if the extension R � T is residually algebraic for
each T 2 ŒR; S�.

An extension R � S is an INC-pair if and only if R � S is a residually algebraic
pair. This fact is an easy consequence of [10, Theorem] (via a short proof that was
explicitly given in [9]). This fact was given for the particular case where S is an
integral domain in [4].

The following characterization was announced in [38]. We were unaware that this
result is also proved in [6, Corollary 1], when we presented it in ArXiv. However,
our proof is largely shorter because we use the powerful results of [25].

Theorem 2.3 An extension R � S is quasi-Prüfer if and only if R � S is an INC-
pair and, if and only if, R � S is a residually algebraic pair.

Proof Suppose that R � S is quasi-Prüfer and let T 2 ŒR; S�. We set U WD RT .
Then R � U is a flat epimorphism by definition of a Prüfer extension and hence is
incomparable as is R � R . It follows that R � U is incomparable. Since T � U
is integral, it has going-up. It follows that R � T is incomparable. Conversely, if
R � S is an INC-pair, then so is R � S. Since R � S is integrally closed, R � S is
Prüfer [25, Theorem 5.2,(9’), p. 48]. The second equivalence is given by the above
comments about [10] and [9]. ut
Corollary 2.4 An extension R � S is quasi-Prüfer if and only if R � T is Prüfer
for each T 2 ŒR; S�. In this case, R is the least T 2 ŒR; S� such that T � S is Prüfer.

It follows that most of the properties described in [4] for integrally closed INC-
pairs of domains are valid for arbitrary ring extensions. Moreover, a result of Dobbs
is easily gotten as a consequence of Corollary 2.4: an INC-pair R � S is an integral
extension if and only if R � S is spectrally surjective [11, Theorem 2.2]. This
follows from Corollary 2.4 and Scholium A, Property (L).

Example 2.5 Quasi-Prüfer domains R with quotient fields K can be characterized
by R � K is quasi-Prüfer. The reader may consult [7, Theorem 1.1] or [18].

We give here another example of quasi-Prüfer extension. An extension R � S is
called a going-down pair if each of its subextensions has the going-down property.
For such a pair, R � T has incomparability for each T 2 ŒR; S�, at each non-maximal
prime ideal of R [2, Lemma 5.8](ii). Now let M be a maximal ideal of R, whose
fiber is not void in T . Then R � T is a going-down pair, and so is R=M � T=MT
because MT \ R D M. By [2, Corollary 5.6], the dimension of T=MT is � 1.
Therefore, if R � S is a going-down pair, then R � S is quasi-Prüfer if and only if
dim.T=MT/ ¤ 1 for each T 2 ŒR; S� and M 2 Max.R/.

Also open-ring pairs R � S are quasi-Prüfer by [8, Proposition 2.13].
An i-pair is an extension R � S such that Spec.T/ ! Spec.R/ is injective for

each T 2 ŒR; S�, or equivalently if and only if R � S is quasi-Prüfer and R � R is
spectrally injective [38, Proposition 5.8]. These extensions appear frequently in the
integral domains context. Another examples are given by some extensions R � S,
such that Spec.S/ D Spec.R/ as sets, as we will see later.
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We proved that �-extensions R � S (such that U; V 2 ŒR; S� ) U C V 2 ŒR; S�)
are quasi-Prüfer [38, Proposition 5.15].

3 Properties of quasi-Prüfer Extensions

We now develop the machinery of quasi-Prüfer extensions.

Proposition 3.1 An extension R � S is (quasi-)Prüfer if and only if RP � SP is
(quasi-)Prüfer for any P 2 Spec.R/ (P 2 MSupp.S=R/).

Proof The proof is easy if we use the INC-pair property definition of quasi-Prüfer
extension (see also [4, Proposition 2.4]). ut
Proposition 3.2 Let R � S be a quasi-Prüfer extension and ' W S ! S0 an integral

ring morphism. Then '.R/ � S0 is quasi-Prüfer and S0 D '.S/'.R/, where '.R/ is
the integral closure of '.R/ in S0.

Proof It is enough to apply [25, Theorem 5.9] to the Prüfer extension R � S and to
use Definition 2.1. ut

This result applies with S0 WD S ˝R R0, where R ! R0 is an integral morphism.
Therefore integrality ascends the quasi-Prüfer property.

Recall that a composite of Prüfer extensions is Prüfer [25, Theorem 5.6, p. 51].
We next give a result that will be used frequently. The following Corollary 3.3
contains [6, Theorem 3].

Corollary 3.3 Let R � T � S be a tower of extensions. Then R � S is quasi-Prüfer
if and only if R � T and T � S are quasi-Prüfer. Hence, R � T is quasi-Prüfer if
and only if R � RT is quasi-Prüfer.

Proof Consider a tower (T ) of extensions R � R � S WD R0 � R0 � S0 (a composite
of two quasi-Prüfer extensions). By using Proposition 3.2 we see that R � S D R0 �
R0 is quasi-Prüfer. Then (T ) is obtained by writing on the left an integral extension
and on the right a Prüfer extension. Therefore, (T ) is quasi-Prüfer. We prove the
converse.

If R � T � S is a tower of extensions, then R � T and T � S are INC-pairs
whenever R � S is an INC-pair. The converse is then a consequence of Theorem 2.3.

The last statement is [6, Corollary 4]. ut
Using the above corollary, we can exhibit new examples of quasi-Prüfer exten-

sions. We recall that a ring R is called Laskerian if each of its ideals is a finite
intersection of primary ideals and a ring extension R � S a Laskerian pair if each
T 2 ŒR; S� is a Laskerian ring. Then [41, Proposition 2.1] shows that if R is an
integral domain with quotient field F ¤ R and F � K is a field extension, then
R � K is a Laskerian pair if and only if K is algebraic over R and R (in K) is a
Laskerian Prüfer domain. It follows easily that R � K is quasi-Prüfer under these
conditions.
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Next result generalizes [24, Proposition 1].

Corollary 3.4 An FMC extension R � S is quasi-Prüfer.

Proof Because R � S is a composite of finitely many minimal extensions, by
Corollary 3.3, it is enough to observe that a minimal extension is either Prüfer or
integral. ut
Corollary 3.5 Let R � S be a quasi-Prüfer extension and a tower R � T � S,
where R � T is integrally closed. Then R � T is Prüfer.

Proof Observe that R � T is quasi-Prüfer and then that R D R
T
. ut

Next result deals with the Dobbs-Shapiro pseudo-Prüfer extensions of integral
domains [12], that they called pseudo-normal pairs. Suppose that R is local, we
call here pseudo-Prüfer an extension R � S such that there exists T 2 ŒR; S� with
Spec.R/ D Spec.T/ and T � S is Prüfer [12, Corollary 2.5]. If R is arbitrary,
the extension R � S is called pseudo-Prüfer if RM � SM is pseudo-Prüfer for each
M 2 Max.R/. In view of the Corollary 3.3, it is enough, if one wishes to characterize
quasi-Prüfer extensions, to characterize quasi-Prüfer extensions of the type R � T
with Spec.R/ D Spec.T/.

Corollary 3.6 Let R � T be an extension with Spec.R/ D Spec.T/ and .R; M/

local. Then R � T is quasi-Prüfer if and only if Spec.R/ D Spec.U/ for all U 2
ŒR; T� and, if and only if R=M � T=M is an algebraic field extension. In such a case,
R � T is integral, hence Prüfer-closed.

Proof It follows from [1] that M 2 Max.T/. Part of the proof is gotten by observing
that R=M � T=M is an algebraic field extension ) Spec.R/ D Spec.U/ for all
U 2 ŒR; T� ) R � T is quasi-Prüfer ) .R � T is integral and) R=M � T=M is
an algebraic field extension. Now R � eR is a spectrally surjective flat epimorphism
and then, by Scholium A, R D eR. ut

Let R � S be an extension and I an ideal shared by R and S. It is easy to show
that R � S is quasi-Prüfer if and only if R=I � S=I is quasi-Prüfer by using [25,
Proposition 5.8] in the Prüfer case. We are able to give a more general statement.

Lemma 3.7 Let R � S be a (quasi-)Prüfer extension and J an ideal of S with
I D J \ R. Then R=I � S=J is a (quasi-)Prüfer extension. If R � S is Prüfer and
N is a maximal ideal of S, then R=.N \ R/ is a valuation domain with quotient field
S=N.

Proof It follows from [25, Proposition 5.8] that if R � S is Prüfer, then R=I Š
.R C J/=J � S=J is Prüfer. Then the quasi-Prüfer case is an easy consequence. ut

With this lemma we generalize and complete [23, Proposition 1.1].

Proposition 3.8 Let R � S be an extension of rings. The following statements are
equivalent:

(1) R � S is quasi-Prüfer;
(2) R=.Q \ R/ � S=Q is quasi-Prüfer for each Q 2 Spec.S/;
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(3) .X � s/SŒX� \ RŒX� › MŒX� for each s 2 S and M 2 Max.R/;
(4) For each T 2 ŒR; S�, the fiber morphisms of R � T are integral.

Proof (1) ) (2) is entailed by Lemma 3.7. Assume that (2) holds and let M 2
Max.R/ that contains a minimal prime ideal P lain over by a minimal prime ideal Q
of S. Then (2) ) (3) follows from [23, Proposition 1.1(1)], applied to R=.Q \ R/ �
S=Q. If (3) holds, argue as in the paragraph before [23, Proposition 1.1] to get that
R � S is a P-extension, whence an INC-pair, cf. [11]. Then R � S is quasi-Prüfer by
Theorem 2.3, giving (3) ) (1). Because integral extensions have incomparability,
we see that (4) ) (1). Corollary 3.3 shows that the reverse implication holds, if any
quasi-Prüfer extension R � S has integral fiber morphisms. For P 2 Spec.R/, the
extension RP=PRP � SP=PSP is quasi-Prüfer by Lemma 3.7. The ring RP=PRP is
zero-dimensional and RP=PRP ! SP=PSP, being a flat epimorphism, is therefore
surjective by Scholium A (S). It follows that the fiber morphism at P is integral. ut
Remark 3.9 The logical equivalence (1) , (2) is still valid if we replace quasi-
Prüfer with integral in the above proposition. It is enough to show that an extension
R � S is integral when R=P � S=Q is integral for each Q 2 Spec.S/ and
P WD Q \ R. We can suppose that S D RŒs� Š RŒX�=I, where X is an indeterminate,
I an ideal of RŒX�, and Q varies in Min.S/, because for an extension A � B, any
element of Min(A) is lain over by some element of Min(B). If ˙ is the set of
unitary polynomials of RŒX�, the assumptions show that any element of Spec.RŒX�/,
containing I, meets ˙ . As ˙ is a multiplicatively closed subset, I \˙ ¤ ;, whence
s is integral over R.

But a similar result does not hold if we replace quasi-Prüfer with Prüfer, except if
we suppose that R � S is integrally closed. To see this, apply the above proposition
to get a quasi-Prüfer extension R � S if each R=P � S=Q is Prüfer. Actually, this
situation already occurs for Prüfer rings and their factor domains, as Lucas’s paper
[28] shows. More precisely, [28, Proposition 2.7] and the third paragraph of [28, p.
336] shows that if R is a ring with Tot.R/ absolutely flat, then R is a quasi-Prüfer
ring if R=P is a Prüfer domain for each P 2 Spec.R/. Now example [28, Example
2.4] shows that R is not necessarily Prüfer.

We observe that if R � S is quasi-Prüfer, then R=M is a quasi-Prüfer domain for
each N 2 Max.S/ and M WD N \ R (in case R � S is integral, R=M is a field). To
prove this, observe that R=M � S=N can be factored R=M � �.M/ � S=N. As we
will see, R=M � �.M/ is quasi-Prüfer because R=M � S=N is quasi-Prüfer.

The class of Prüfer extensions is not stable by (flat) base change. For example,
let V be a valuation domain with quotient field K. Then VŒX� � KŒX� is not Prüfer
[25, Example 5.12, p. 53].

Proposition 3.10 Let R � S be a (quasi)-Prüfer extension and R ! T a flat
epimorphism, then T � S ˝R T is (quasi)-Prüfer. If in addition S and T are both
subrings of some ring and R � T is an extension, then T � TS is (quasi)-Prüfer.

Proof For the first part, it is enough to consider the Prüfer case. It is well known
that the following diagram is a pushout if Q 2 Spec.T/ is lying over P in R:
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−−−→ SPRP
⏐
⏐
�

⏐
⏐
�

TQ −−−→ (T ⊗RS)Q

As RP ! TQ is an isomorphism since R ! T is a flat epimorphism by Scholium
A (1), it follows that RP � SP identifies to TQ ! .T ˝R S/Q. The first assertion
follows because Prüfer extensions localize and globalize.

The final assertion is then a special case because, under its hypotheses, TS Š
T ˝R S canonically. ut

The reader may find in [25, Corollary 5.11, p. 53] that if R � A � S and R �
B � S are extensions and R � A and R � B are both Prüfer, then R � AB is Prüfer.

Proposition 3.11 Let R � A and R � B be two extensions, where A and B are
subrings of a ring S. If they are both quasi-Prüfer, then R � AB is quasi-Prüfer.

Proof Let U and V be the integral closures of R in A and B. Then R � A � AV is
quasi-Prüfer because A � AV is integral and Corollary 3.3 applies. Using again
Corollary 3.3 with R � V � AV , we find that V � AV is quasi-Prüfer. Now
Proposition 3.10 entails that B � AB is quasi-Prüfer because V � B is a flat
epimorphism. Finally R � AB is quasi-Prüfer, since a composite of quasi-Prüfer
extensions. ut

It is known that an arbitrary direct product of extensions is Prüfer if and only if
each of its components is Prüfer [25, Proposition 5.20, p. 56]. The following result
is an easy consequence.

Proposition 3.12 Let fRi � Siji D 1; : : : ; ng be a finite family of quasi-Prüfer
extensions, then R1 � � � � � Rn � S1 � � � � � Sn is quasi-Prüfer. In particular, by
Corollary 3.3, if fR � Siji D 1; : : : ; ng is a finite family of quasi-Prüfer extensions,
then R � S1 � � � � � Sn is quasi-Prüfer.
In the same way we have the following result deduced from [25, Remark 5.14,
p. 54].

Proposition 3.13 Let R � S be an extension of rings and an upward directed family
fR˛j˛ 2 Ig of elements of ŒR; S� such that R � R˛ is quasi-Prüfer for each ˛ 2 I.
Then R � [ŒR˛j˛ 2 I� is quasi-Prüfer.

Proof It is enough to use [25, Proposition 5.13, p. 54] where A˛ is the integral
closure of R in R˛ . ut

Here are some descent results used later on.
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Proposition 3.14 Let R � S be a ring extension and R ! R0 a spectrally surjective
ring morphism (for example, either faithfully flat or injective and integral). Then
R � S is quasi-Prüfer if R0 ! R0 ˝R S is injective (for example, if R ! R0 is
faithfully flat) and quasi-Prüfer.

Proof Let T 2 ŒR; S� and P 2 Spec.R/ and set T 0 WD T ˝R R0. There is some P0 2
Spec.R0/ lying over P, because R ! R0 is spectrally surjective. By [22, Corollaire
3.4.9], there is a faithfully flat morphism FR;T.P/ ! FR0;T0.P0/ Š FR;T.P/ ˝k.P/

�.P0/, inducing a surjective map FibR0;T0.P0/ ! FibR;T.P/ since it satisfies lying
over. By Theorem 2.3, the result follows from the faithful flatness of FR;T.P/ !
FR0;T˝RR0.P0/. ut
Corollary 3.15 Let R � S be an extension of rings, R ! R0 a faithfully flat ring
morphism and set S0 WD R0 ˝R S. If R0 � S0 is (quasi-) Prüfer (respectively, FCP),
then so is R � S.

Proof The Prüfer case is clear, because faithfully flat morphisms descend flat
epimorphisms (Scholium A (9)). For the quasi-Prüfer case, we use Proposition 3.14.
The FCP case is proved in [15, Theorem 2.2]. ut

The integral closure of a ring morphism f W R ! T is the integral closure of the
extension f .R/ � T . By definition, a ring morphism R ! T preserves the integral

closure of ring morphisms R ! S if T
T˝RS Š T ˝R R for every ring morphism

R ! S. An absolutely flat morphism R ! T (R ! T and T ˝R T ! T are both flat)
preserves integral closure [32, Theorem 5.1]. Flat epimorphisms, Henselizations,
and étale morphisms are absolutely flat. Another examples are morphisms R ! T
that are essentially of finite type and (absolutely) reduced [34, Proposition 5.19](2).
Such morphisms are flat if R is reduced [27, Proposition 3.2].

We will prove an ascent result for absolutely flat ring morphisms. This will be
proved by using base changes. For this we need to introduce some concepts. A ring
A is called an AIC ring if each monic polynomial of AŒX� has a zero in A. The first
author recalled in [35, p. 4662] that any ring A has a faithfully flat integral extension
A ! A�, where A� is an AIC ring. Moreover, if A is an AIC ring, each localization
AP at a prime ideal P of A is a strict Henselian ring [35, Lemma II.2].

Theorem 3.16 Let R � S be a (quasi-) Prüfer extension and R ! T an absolutely
flat ring morphism. Then T ! T ˝R S is a (quasi-) Prüfer extension.

Proof We can suppose that R is an AIC ring. To see this, it is enough to use the
base change R ! R�. We set T� WD T ˝R R�, S� WD S ˝R R�. We first observe
that R� � S� is quasi-Prüfer for the following reason: the composite extension
R � S � S� is quasi-Prüfer by Corollary 3.3 because the last extension is integral.
Moreover, R� ! T� is absolutely flat. In case T� � T� ˝R� S� is quasi-Prüfer, so
is T � T ˝R S, because T ! T� D T ˝R R� is faithfully flat and T� � T� ˝R� S�
is deduced from T � T ˝R S by the faithfully flat base change T ! T ˝R R�. It is
then enough to apply Proposition 3.14.

We thus assume from now on that R is an AIC ring.
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Let N 2 Spec.T/ be lying over M in R. Then RM ! TN is absolutely flat [31,
Proposition f] and RM � SM is quasi-Prüfer. Now observe that .T ˝R S/N Š
TN ˝RM SM . Therefore, we can suppose that R and T are local and R ! T is
local and injective. We deduce from [32, Theorem 5.2] that RM ! TN is an
isomorphism because RM is a strict Henselian ring. Therefore the proof is complete
in the quasi-Prüfer case. For the Prüfer case, we need only to observe that absolutely
flat morphisms preserve integral closure and a quasi-Prüfer extension is Prüfer if it
is integrally closed. ut
Lemma 3.17 Let R � S be an extension of rings and R ! T a base change which
preserves integral closure. If T � T ˝R S has FCP and R � S is Prüfer, then
T � T ˝R S is Prüfer.

Proof The result holds because an FCP extension is Prüfer if and only if it is
integrally closed. ut

We observe that T ˝R eR � eT need not to be an isomorphism, since this property
may fail even for a localization R ! RP, where P is a prime ideal of R.

Theorem 3.18 Let R � S be a ring extension.

(1) R � S has a greatest quasi-Prüfer subextension R � H)
R D eR.

(2) R � ReR DW ER is quasi-Prüfer and then ER � H)
R .

(3) R
H)

R D R andeR
H)

R D eR.

Proof To see (1), use Proposition 3.11 which tells us that the set of all quasi-
Prüfer subextensions is upward directed and then use Proposition 3.13 to prove the

existence of
H)
R . Then let R � T � H)

R be a tower with R � T integral and T � H)
R

Prüfer. From T � R � eR � H)
R , we deduce that T D R and then

H)
R D eR.

(2) Now R � ReR can be factored R � eR � ReR and is a tower of quasi-Prüfer
extensions, becauseeR ! eRR is integral.

(3) Clearly, the integral closure and the Prüfer closure of R in
H)
R are the

respective intersections of R andeR with
H)
R , and R;eR � H)

R . ut
This last result means that, as far as properties of integral closures and Prüfer

closures of subsets of
H)
R are concerned, we can suppose that R � S is quasi-Prüfer.

4 Almost-Prüfer Extensions

We next give a definition “dual" of the definition of a quasi-Prüfer extension.
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4.1 Arbitrary Extensions

Definition 4.1 A ring extension R � S is called an almost-Prüfer extension if it can
be factored R � T � S, where R � T is Prüfer and T � S is integral.

Proposition 4.2 An extension R � S is almost-Prüfer if and only if eR � S is
integral. It follows that the subring T of the above definition is eR D bR when R � S
is almost-Prüfer.

Proof If R � S is almost-Prüfer, there is a factorization R � T � eR � bR � S,
where T � bR is both integral and a flat epimorphism by Scholium A (4). Therefore,
T D eR D bR by Scholium A (5) (L). ut
Corollary 4.3 Let R � S be a quasi-Prüfer extension, and let T 2 ŒR; S�. Then,

T \ R � TR is almost-Prüfer and T D AR \ T
TR

. Moreover, if T \ R D R, then,
T D TR \eR.

Proof T \ R � T is quasi-Prüfer by Corollary 3.3. Being integrally closed, it is
Prüfer by Corollary 3.5. Moreover, T � TR is an integral extension. Then, T \ R �
TR is almost-Prüfer and T D AR \ T

TR
. If T \ R D R, then T � TR \ eR is both

Prüfer and integral, so that T D TR \eR. ut
We note that integral extensions and Prüfer extensions are almost-Prüfer and

hence minimal extensions are almost-Prüfer. There are quasi-Prüfer extensions that
are not almost-Prüfer. It is enough to consider [37, Example 3.5(1)]. Let R � T � S
be two minimal extensions, where R is local, R � T integral and T � S is Prüfer.
Then R � S is quasi-Prüfer but not almost-Prüfer, because S D bR and R D eR.
The same example shows that a composite of almost-Prüfer extensions may not be
almost-Prüfer.

But the reverse implication holds.

Theorem 4.4 Let R � S be an almost-Prüfer extension. Then R � S is quasi-
Prüfer. Moreover, eR D bR, .eR/P D fRP for each P 2 Spec.R/. In this case, any flat
epimorphic subextension R � T is Prüfer.

Proof Let R � eR � S be an almost-Prüfer extension, that is eR � S is integral. The
first assertion follows from Corollary 3.3 because R � eR is Prüfer. Now the Morita
hull and the Prüfer hull coincide by Proposition 4.2. In the same way, .eR/P ! fRP is
a flat epimorphism and .eR/P ! SP is integral. ut

We could define almost-Prüfer rings as the rings R such that R � Tot.R/ is
almost-Prüfer. But in that case eR D Tot.R/ (by Theorem 4.4), so that R is a
Prüfer ring. The converse evidently holds. Therefore, this concept does not define
something new.

It was observed in [13, Remark 2.9(c)] that there is an almost-Prüfer FMC
extension R � S � T , where R � S is a Prüfer minimal extension and S � T
is minimal and integral, but R � T is not an FCP extension.
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Proposition 4.5 Let R � S be an extension verifying the hypotheses:

(i) R � S is quasi-Prüfer.
(ii) R � S can be factored R � T � S, where R � T is a flat epimorphism.

(1) Then the following commutative diagram (D) is a pushout,

R −−−→ R
⏐
⏐
�

⏐
⏐
�

T −−−→ TR

TR � S is Prüfer and R � TR is quasi-Prüfer. Moreover, FR;R.P/ Š FT;TR.Q/

for each Q 2 Spec.T/ and P WD Q \ R.
(2) If in addition R � T is integrally closed, .D/ is a pullback, T \ R D R, .R W

R/ D .T W TR/ \ R and .T W TR/ D .R W R/T.

Proof (1) Consider the injective composite map R ! R ˝R T ! TR. As R !
R ˝R T is a flat epimorphism, because deduced by a base change of R ! T , we get
that the surjective map R ˝R T ! TR is an isomorphism by Scholium A (3). By
fibers transitivity, we have FT;RT.Q/ Š �.Q/˝k.P/ FR;R.P/ [22, Corollaire 3.4.9]. As
�.P/ ! �.Q/ is an isomorphism by Scholium A, we get that FR;R.P/ Š FT;RT.Q/.

(2) As in [5, Lemma 3.5], R D T \ R. The first statement on the conductors has
the same proof as in [5, Lemma 3.5]. The second holds because R � T is a flat
epimorphism (see Scholium A (6)). ut
Theorem 4.6 Let R � S be a quasi-Prüfer extension and the diagram (D’):

R −−−→ R
⏐
⏐

⏐
⏐

R RR

(1) (D’) is a pushout and a pullback, such that R\eR D R and .R W R/ D .eR W eRR/\R
so that .eR W eRR/ D .R W R/eR.

(2) R � S can be factored R � eRR D eR D ER � H)
R D eR D S, where the first

extension is almost-Prüfer and the second is Prüfer.

(3) R � S is almost-Prüfer , S D ReR , eR D eR.

(4) R � eRR D eR D ER is the greatest almost-Prüfer subextension of R � S and
eR D eRER.

(5) Spec.ER/ is homeomorphic to Spec.R/ �Spec.R/ Spec.eR/.
(6) Supp.S=R/ D Supp.eR=R/ [ Supp.R=R/ if R � S is almost-Prüfer. (Supp can

be replaced with MSupp).
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Proof To show (1), (2), in view of Theorem 3.18, it is enough to apply Proposi-

tion 4.5 with T D eR and S D H)
R , because R � eRR is almost-Prüfer whence

quasi-Prüfer, keeping in mind that a Prüfer extension is integrally closed, whereas

an integral Prüfer extension is trivial. Moreover, eR D ReR because ReR � eR is both
integral and integrally closed.

(3) is obvious.
(4) Now consider an almost-Prüfer subextension R � T � U, where R � T is

Prüfer and T � U is integral. Applying (3), we see that U D R
U
eR

U � ReR in view
of Proposition 1.6.

(5) Recall from [33] that a ring morphism A ! A0 is called a subtrusion if for
each pair of prime ideals P � Q of A, there is a pair of prime ideals P0 � Q0
above P � Q. A subtrusion defines a submersion Spec.A0/ ! Spec.A/. We refer to
[33, First paragraph of p. 570] for the definition of the property P.�/ of a pushout
diagram .�/. Then [33, Lemme 2,(b), p. 570] shows that P.D0/ holds, because R !
eR is a flat epimorphism. Now [33, Proposition 2, p. 576] yields that Spec.ER/ !
Spec.R/ �Spec.R/ Spec.eR/ is subtrusive. This map is also injective because R ! eR is
spectrally injective. Observing that an injective submersion is an homeomorphism,
the proof is complete.

(6) Obviously, Supp.eR=R/ [ Supp.R=R/ � Supp.S=R/. Conversely, let M 2
Spec.R/ be such that RM ¤ SM , and RM D .eR/M D RM . Then (3) entails that
SM D .ReR/M D .R/M.eR/M D RM , which is absurd. ut
Corollary 4.7 Let R � S be an almost-Prüfer extension. The following conditions
are equivalent:

(1) Supp.S=R/ \ Supp.R=R/ D ;.
(2) Supp.S=eR/ \ Supp.eR=R/ D ;.
(3) Supp.eR=R/ \ Supp.R=R/ D ;.

Proof Since R � S is almost-Prüfer, we get .eR/P D fRP for each P 2 Spec.R/.
Moreover, Supp.S=R/ D Supp.eR=R/ [ Supp.R=R/ D Supp.S=R/ [ Supp.R=R/ D
Supp.S=eR/ [ Supp.eR=R/.

(1) ) (2): Assume that there exists P 2 Supp.S=eR/ \ Supp.eR=R/. Then, .eR/P ¤
SP; RP, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.S=R/ [ Supp.R=R/. If P 2 Supp.S=R/, then P … Supp.R=R/, so that .R/P D
RP and RP � SP is Prüfer, a contradiction. If P 2 Supp.R=R/, then P … Supp.S=R/,
so that .R/P D SP and RP � SP is integral, a contradiction.

(2) ) (3): Assume that there exists P 2 Supp.eR=R/ \ Supp.R=R/. Then, RP ¤
.eR/P; .R/P, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.S=eR/ [ Supp.eR=R/. If P 2 Supp.S=eR/, then P … Supp.eR=R/, so that .eR/P D
RP and RP � SP is integral, a contradiction. If P 2 Supp.eR=R/, then P … Supp.S=eR/,
so that .eR/P D SP and RP � SP is Prüfer, a contradiction.

(3) ) (1): Assume that there exists P 2 Supp.S=R/ \ Supp.R=R/. Then, .R/P ¤
RP; SP, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.R=R/ [ Supp.eR=R/. If P 2 Supp.eR=R/, then P … Supp.R=R/, so that .R/P D
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RP and RP � SP is Prüfer, a contradiction. If P 2 Supp.R=R/, then P … Supp.eR=R/,
so that .eR/P D RP and RP � SP is integral, a contradiction. ut

Proposition 4.5 has the following similar statement proved by Ayache and Dobbs.
It reduces to Theorem 4.6 in case R � S has FCP because of Proposition 1.3.

Proposition 4.8 Let R � T � S be a quasi-Prüfer extension, where T � S is an
integral minimal extension and R � T is integrally closed. Then the diagram (D) is
a pullback, S D TR and .T W S/ D .R W R/T.

Proof [5, Lemma 3.5]. ut
Proposition 4.9 Let R � U � S and R � V � S be two towers of extensions,
such that R � U and R � V are almost-Prüfer. Then R � UV is almost-Prüfer and
eUV D eUeV.

Proof Denote by U0, V 0, and W 0 the Prüfer hulls of R in U, V , and W D UV .
We deduce from [25, Corollary 5.11, p. 53], that R � U0V 0 is Prüfer. Moreover,
U0V 0 � UV is clearly integral and U0V 0 � W 0 because the Prüfer hull is the greatest
Prüfer subextension. We deduce that R � UV is almost-Prüfer and thateUV D eUeV .

ut
Proposition 4.10 Let R � U � S and R � V � S be two towers of extensions,
such that R � U is almost-Prüfer and R � V is a flat epimorphism. Then U � UV
is almost-Prüfer.

Proof Mimic the proof of Proposition 4.9, using [25, Theorem 5.10, p. 53]. ut
Proposition 4.11 Let R � S be an almost-Prüfer extension and R ! T a flat
epimorphism. Then T � T ˝R S is almost-Prüfer.

Proof It is enough to use Proposition 3.10 and Definition 4.1. ut
Proposition 4.12 An extension R � S is almost-Prüfer if and only if RP � SP is
almost-Prüfer and fRP D .eR/P for each P 2 Spec.R/.

Proof For an arbitrary extension R � S we have .eR/P � fRP. Suppose that R � S
is almost-Prüfer, then so is RP � SP and .eR/P D fRP by Theorem 4.4. Conversely,
if R � S is locally almost-Prüfer, whence locally quasi-Prüfer, then R � S is quasi-
Prüfer. If fRP D .eR/P holds for each P 2 Spec.R/, we have SP D .ReR/P so that
S D ReR and R � S is almost-Prüfer by Theorem 4.6. ut
Corollary 4.13 An FCP extension R � S is almost-Prüfer if and only if RP � SP is
almost-Prüfer for each P 2 Spec.R/.

Proof It is enough to show that R � S is almost-Prüfer if RP � SP is almost-Prüfer
for each P 2 Spec.R/ using Proposition 4.12. Any minimal extension eR � R1 is
integral by definition ofeR. Assume that .eR/P � e.RP/, so that there exists R0

2 2 ŒeR; S�

such that .eR/P � .R0
2/P is a Prüfer minimal extension with crucial maximal ideal

Q.eR/P, for some Q 2 Max.eR/ with Q \ R � P. In particular,eR � R0
2 is not integral.

We may assume that there exists R0
1 2 ŒeR; R0

2� such that R0
1 � R0

2 is a Prüfer minimal
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extension with P … Supp.R0
1=eR/. Using [37, Lemma 1.10], there exists R2 2 ŒeR; R0

2�

such that eR � R2 is a Prüfer minimal extension with crucial maximal ideal Q, a
contradiction. Then, .eR/P � SP is integral for each P, whence .eR/P D e.RP/. ut

We now intend to demonstrate that our methods allow us to prove easily some
results. For instance, next statement generalizes [5, Corollary 4.5] and can be fruitful
in algebraic number theory.

Proposition 4.14 Let .R; M/ be a one-dimensional local ring and R � S a quasi-
Prüfer extension. Suppose that there is a tower R � T � S, where R � T is
integrally closed. Then R � S is almost-Prüfer, T D eR and S is zero-dimensional.

Proof Because R � T is quasi-Prüfer and integrally closed, it is Prüfer. If some
prime ideal of T is lying over M, R � T is a faithfully flat epimorphism, whence
an isomorphism by Scholium A, which is absurd. Now let N be a prime ideal of T
and P WD N \ R. Then RP is zero-dimensional and isomorphic to TN . Therefore, T
is zero-dimensional. It follows that TR is zero-dimensional. Since RT � S is Prüfer,
we deduce from Scholium A, that RT D S. The proof is now complete. ut
We also generalize [5, Proposition 5.2] as follows.

Proposition 4.15 Let R � S be a quasi-Prüfer extension, such that R is local with

maximal ideal N WD
q

.R W R/. Then R is local and ŒR; S� D ŒR; R� [ ŒR; S�. If in
addition R is one-dimensional, then either R � S is integral or there is some minimal
prime ideal P of R, such that S D .R/P, P D SP and R=P is a one-dimensional
valuation domain with quotient field S=P.

Proof R is obviously local. Let T 2 ŒR; S� n ŒR; R� and s 2 T n R. Then s 2 U.S/ and
s�1 2 R by Proposition 1.2 (1). But s�1 … U.R/, so that s�1 2 N. It follows that there
exists some integer n such that s�n 2 .R W R/, giving s�nR � R, or, equivalently,
R � Rsn � T . Then, T 2 ŒR; S� and we obtain ŒR; S� D ŒR; R� [ ŒR; S�.

Assume that R is one-dimensional. If R � S is not integral, then R � S is Prüfer
and R is one-dimensional. To complete the proof, use Proposition 1.2 (3). ut

4.2 FCP Extensions

In case we consider only FCP extensions, we obtain more results.

Proposition 4.16 Let R � S be an FCP extension. The following statements are
equivalent:

(1) R � S is almost-Prüfer.
(2) RP � SP is either integral or Prüfer for each P 2 Spec.R/.
(3) RP � SP is almost-Prüfer for each P 2 Spec.R/ and

Supp.S=eR/ \ Supp.eR=R/ D ;.
(4) Supp.R=R/ \ Supp.S=R/ D ;.
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Proof The equivalence of Proposition 4.12 shows that (2) , (1) holds because
bT D eT and over a local ring T , an almost-Prüfer FCP extension T � U is either
integral or Prüfer [37, Proposition 2.4] . Moreover when RP � SP is either integral
or Prüfer, it is easy to show that .eR/P D fRP

Next we show that (3) is equivalent to (2) of Proposition 4.12.
Let P 2 Supp.S=eR/ \ Supp.eR=R/ be such that RP � SP is almost-Prüfer. Then,

.eR/P ¤ RP; SP, so that RP � .eR/P � SP. Since R � eR is Prüfer, so is RP � .eR/P,
giving .eR/P � fRP and RP ¤ fRP. It follows that fRP D SP in view of the dichotomy
principle [37, Proposition 3.3] since RP is a local ring, and then fRP ¤ .eR/P.

Conversely, assume that fRP ¤ .eR/P, i.e. P 2 Supp.S=R/. Then, RP ¤ fRP, so that
fRP D SP, as we have just seen. Hence RP � SP is integrally closed. It follows that
RP D RP D RP, so that P … Supp.R=R/ and P 2 Supp.eR=R/ by Theorem 4.6(5).
Moreover, eRP ¤ SP implies that P 2 Supp.S=eR/. To conclude, P 2 Supp.S=eR/ \
Supp.eR=R/.

(1) , (4) An FCP extension is quasi-Prüfer by Corollary 3.4. Suppose that R � S
is almost-Prüfer. By Theorem 4.6, letting U WD eR, we get that U \ R D R and
S D RU. We deduce from [37, Proposition 3.6] that Supp.R=R/ \ Supp.S=R/ D ;.
Suppose that this last condition holds. Then by [37, Proposition 3.6] R � S can
be factored R � U � S, where R � U is integrally closed, whence Prüfer by
Proposition 1.3, and U � S is integral. Therefore, R � S is almost-Prüfer. ut
Proposition 4.17 Let R � S be an FCP almost-Prüfer extension. Then,eR D bR and
eR is the least T 2 ŒR; S� such that T � S is integral.

Proof Let T 2 ŒR; S� be such that T � S is integral. So is TM � SM for each
M 2 Max.R/. But RM � SM is either integral (1) or Prüfer (2). In case (1), we get
RM D eRM � TM and in case (2), we get eRM D SM D TM , so that eRM � TM . By
globalization,eR � T . ut

We will need a relative version of the support. Let f W R ! T be a ring morphism
and E a T-module. The relative support of E over R is SR.E/ WD af .SuppT.E// and
MSR.E/ WD SR.E/ \ Max.R/. In particular, for a ring extension R � S, we have
SR.S=R/ WD SuppR.S=R//.

Proposition 4.18 Let R � S be an FCP extension. The following statements hold:

(1) Supp.eR=R/ \ Supp.R=R/ D ;.

(2) Supp.eR=R/ \ Supp.R=R/ D Supp.eR=eR/ \ Supp.eR=R/ D ;.
(3) MSupp.S=R/ D MSupp.eR=R/ [ MSupp.R=R/.

Proof (1) is a consequence of Proposition 4.16(4) because R � eR is almost-Prüfer.
We prove the first part of (2). If some M 2 Supp.eR=R/ \ Supp.R=R/, it can

be supposed in Max.R/ because supports are stable under specialization. Set R0 WD
RM; U WD .eR/M; T WD .R/M and M0 WD MRM . Then, R0 ¤ U; T , with R0 � U FCP
Prüfer and R0 � T FCP integral, an absurdity [37, Proposition 3.3].
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To show the second part, assume that some P 2 Supp.eR=eR/ \ Supp.eR=R/. Then,

P … Supp.R=R/ by the first part of (2), so that RP D RP, giving .eR/P D RPeRP D eRP,
a contradiction.

(3) Obviously, MSupp.S=R/ D MS .S=R/ D MS .S=T
S
/ [ MS .T

S
=T/

[MS .T=U
T
/ [ MS .U

T
=U/ [ MS .U=R/. By [37, Propositions 2.3 and

3.2], we have MS .S=T
S
/ � S .T

S
=T/ D S .R=R

T
/ D MS .R=R/ D

MSupp.R=R/; MS .T=U
T
/ D S .R

T
=R/ � S .R=R/ D Supp.R=R/ and

MS .U
T
=U/ D S .R

T
=R/ D Supp.R=R/. To conclude, MSupp.S=R/ D

MSupp.eR=R/ [ MSupp.R=R/. ut
Proposition 4.19 Let R � S be an FCP extension and M 2 MSupp.S=R/, then
fRM D .eR/M if and only if M … MSupp.S=eR/ \ MSupp.eR=R/.

Proof In fact, we are going to show that fRM ¤ .eR/M if and only if M 2
MSupp.S=eR/ \ MSupp.eR=R/.

Let M 2 MSupp.S=eR/\MSupp.eR=R/. Then, fRM ¤ RM; SM and RM � fRM � SM .
Since R � eR is Prüfer, so is RM � fRM by Proposition 1.2, giving .eR/M � fRM and
RM ¤ fRM . Therefore, fRM D SM [37, Proposition 3.3] since RM is local, and then
fRM ¤ .eR/M .

Conversely, if fRM ¤ .eR/M , then, RM ¤ fRM , so that fRM D SM , as we have just
seen and then RM � SM is integrally closed. It follows that RM D RM D RM , so that
M … MSupp.R=R/. Hence, M 2 MSupp.eR=R/ by Proposition 4.18(3). Moreover,
eRM ¤ SM ) M 2 MSupp.S=eR/. To conclude, M 2 MSupp.S=eR/ \ MSupp.eR=R/.

ut
If R � S is an extension, with dim.R/ D 0, fRM D .eR/M for any M 2 Max.R/.

Indeed by Scholium A (2), the flat epimorphisms R ! eR and RM ! .eR/M are
bijective. This conclusion holds in another context.

Corollary 4.20 Let R � S be an FCP extension. Assume that one of the following
conditions is satisfied:

(1) MSupp.S=eR/ \ MSupp.eR=R/ D ;.
(2) S D ReR, or equivalently, R � S is almost-Prüfer.

Then, fRM D .eR/M for any M 2 Max.R/.

Proof (1) is Proposition 4.19. (2) is Proposition 4.12. ut
Proposition 4.21 Let R � S be an almost-Prüfer FCP extension. Then, any T 2
ŒR; S� is the integral closure of T\eR in TeR. Moreover, if T\eR D R, then T D TeR\R;
if TR D S, then T D .T \ R/eR; if TeR D S, then T D .T \eR/R.

Proof Set U WD T \eR and V WD TeR. Since R � S is almost-Prüfer, U � eR is Prüfer
and eR � V is integral and eR is also the Prüfer hull of U � V . Because R � S is
almost-Prüfer, for each M 2 MSuppR.S=R/, RM � SM is either integral or Prüfer by
Proposition 4.16, and so is UM � VM . But fRM D .eR/M by Corollary 4.20 is also the
Prüfer hull of UM � VM . Let T 0 be the integral closure of U in V . Then, T 0

M is the
integral closure of UM in VM .
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Assume that UM � VM is integral. Then VM D T 0
M and UM D .eR/M , so that

VM D TM.eR/M D TM , giving TM D T 0
M .

Assume that UM � VM is Prüfer. Then UM D T 0
M and VM D .eR/M , so that

UM D TM \ .eR/M D TM , giving TM D T 0
M .

To conclude, TM D T 0
M follows for each M 2 MSuppR.S=R/. Since RM D SM ,

with TM D T 0
M for each M 2 Max.R/ n MSuppR.S=R/, we get T D T 0, whence T is

the integral closure of U � V .
The last results are then obvious. ut
We build an example of an FCP extension R � S where fRM ¤ .eR/M for some

M 2 Max.R/. In particular, R � S is not almost-Prüfer.

Example 4.22 Let R be an integral domain with quotient field S and Spec.R/ WD
fM1; M2; P; 0g, where M1 ¤ M2 are two maximal ideals and P a prime ideal
satisfying P � M1 \ M2. Assume that there are R1; R2, and R3 such that R � R1

is Prüfer minimal, with C .R; R1/ D M1; R � R2 is integral minimal, with
C .R; R2/ D M2, and R2 � R3 is Prüfer minimal, with C .R2; R3/ D M3 2 Max.R2/

such that M3 \ R D M2 and M2R3 D R3. This last condition is satisfied when
R � R2 is either ramified or inert. Indeed, in both cases, M3R3 D R3; moreover, in
the ramified case, we have M2

3 � M2 and in the inert case, M3 D M2 [36, Theorem
3.3]. We apply [14, Proposition 7.10] and [13, Lemma 2.4] several times. Set
R0

2 WD R1R2. Then, R1 � R0
2 is integral minimal, with C .R1; R0

2/ DW M0
2 D M2R1 and

R2 � R0
2 is Prüfer minimal, with C .R2; R0

2/ DW M0
1 D M1R2 2 Max.R2/. Moreover,

M0
1 ¤ M3; Spec.R1/ D fM0

2; P1; 0g, where P1 is the only prime ideal of R1 lying
over P. But, P D .R W R1/ by [17, Proposition 3.3], so that P D P1. Set R0

3 WD R3R0
2.

Then, R0
2 � R0

3 is Prüfer minimal, with C .R0
2; R0

3/ DW M0
3 D M3R0

2 2 Max.R0
2/ and

R3 � R0
3 is Prüfer minimal, with C .R3; R0

3/ D M00
1 D M1R3 2 Max.R3/. We have

therefore Spec.R0
3/ D fP0; 0g where P0 is the only prime ideal of R0

3 lying over P.
To end, assume that R0

3 � S is Prüfer minimal, with C .R0
3; S/ D P0. Hence, R2 is the

integral closure of R in S. In particular, R � S has FCP [13, Theorems 6.3 and 3.13]
and is quasi-Prüfer. Since R � R1 is integrally closed, we have R1 � eR. Assume
that R1 ¤ eR. Then, there exists T 2 ŒR1; S� such that R1 � T is Prüfer minimal and
C .R1; T/ D M0

2, a contradiction by Proposition 4.16 since M0
2 D C .R1; R0

2/, with
R1 � R0

2 integral minimal. Then, R1 D eR. It follows that M1 2 MSupp.eR=R/. But,
P D C .R0

3; S/ \ R 2 Supp.S=eR/ and P � M1 give M1 2 MSupp.S=eR/, so that
eRM1 ¤ .eR/M1 by Proposition 4.19 giving that R � S is not almost-Prüfer.

We now intend to refine Theorem 4.6, following the scheme used in [3,
Proposition 4] for extensions of integral domains.

Proposition 4.23 Let R � S and U; T 2 ŒR; S� be such that R � U is integral and
R � T is Prüfer. Then U � UT is Prüfer in the following cases and R � UT is
almost-Prüfer.

(1) Supp.R=R/ \ Supp.eR=R/ D ; (for example, if R � S has FCP).
(2) R � U preserves integral closure.
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Proof (1) We have ; D MSupp.U=R/\MSupp.T=R/, since U � R and T � eR. Let
M 2 MSupp..UT/=R/. For M 2 MSupp.U=R/, we have RM D TM and .UT/M D
UM . If M … MSupp.U=R/, then UM D RM and .UT/M D TM , so that UM � .UT/M

identifies to RM � TM .
Let N 2 Max.U/ and set M WD N \ R 2 Max.R/ since R � U is integral. If

M … Supp.R=R/, then RM D RM D UM and N is the only maximal ideal of U
lying over M. It follows that UM D UN and .UT/M D .UT/N by [13, Lemma 2.4].
Then, UN � .UT/N identifies to RM � TM which is Prüfer. If M … Supp.eR=R/, then
RM D TM gives UM D .UT/M , so that UN D .UT/N by localizing the precedent
equality and UN � .UT/N is still Prüfer. Therefore, U � UT is locally Prüfer,
whence Prüfer by Proposition 1.1.

(2) The usual reasoning gives U ˝R T Š UT , whence U � UT is integrally

closed. From U � R
UT

, we deduce U D R
UT

. Because R � UT is almost-Prüfer,
whence quasi-Prüfer, U � UT is Prüfer. ut

Next propositions generalize Ayache’s results of [3, Proposition 11].

Proposition 4.24 Let R � S be a quasi-Prüfer extension, T; T 0 2 ŒR; S� and U WD
T \ T 0. The following statements hold:

(1) eT D B.T \ R/ for each T 2 ŒR; S�.

(2) eT \ eT 0 � AT \ T 0.
(3) If Supp.T=T/ \ Supp.eT=T/ D ; (this assumption holds if R � S has FCP),

then, T � T 0 ) eT � eT 0.
(4) If Supp.U=U/ \ Supp.eU=U/ D ;, then eT \ eT 0 D AT \ T 0.

Proof (1) We observe that R � T is quasi-Prüfer by Corollary 3.3. Since T \ R
is the integral closure of R in T , we get that T \ R � T is Prüfer. It follows that

T \ R � eT is Prüfer. We thus have eT � AT \ R. To prove the reverse inclusion, we
set V WD T \ R and W WD eV \ T . We have W \ R D eV \ R D V , because V � eV \ R
is integral and Prüfer since we have a tower V � eV \ R � eV . Therefore, V � W is
Prüfer because W 2 ŒV;eV�. Moreover, T � eT � eV , since V � eT is Prüfer. Then,
T � W is integral because W 2 ŒT; T�, and we have V � T � W. This entails that
T D W D eV \ T , so that T � eV is Prüfer. It follows that eV � eT since T 2 ŒV;eV�.

(2) A quasi-Prüfer extension is Prüfer if and only if it is integrally closed. We
observe that T \ T 0 � eT \ eT 0 is integrally closed, whence Prüfer. It follows that
eT \ eT 0 � AT \ T 0.

(3) Set U D T \ R and U0 D T 0 \ R, so that U; U0 2 ŒR; R� with U � U0. In view
of (1), we thus can suppose that T; T 0 2 ŒR; R�. It follows that T � T 0 is integral and
T � eT is Prüfer. We deduce from Proposition 4.23(1) that T 0 � T 0

eT is Prüfer, so
that eTT 0 � eT 0, because Supp.T=T/ \ Supp.eT=T/ D ; and T D R. Therefore, we
have eT � eT 0.

(4) Assume that Supp.U=U/ \ Supp.eU=U/ D ;. Then, T \ T 0 � T; T 0 gives
AT \ T 0 � eT \ eT 0 in view of (3), so that AT \ T 0 D eT \ eT 0 by (2). ut
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Proposition 4.25 Let R � S be a quasi-Prüfer extension and T � T 0 a subextension
of R � S. Set U WD T \ R; U0 WD T 0 \ R; V WD TR and V 0 WD T 0R. The following
statements hold:

(1) T � T 0 is integral if and only if V D V 0.
(2) T � T 0 is Prüfer if and only if U D U0.
(3) Assume that U � U0 is integral minimal and V D V 0. Then, T � T 0 is integral

minimal, of the same type as U � U0.
(4) Assume that V � V 0 is Prüfer minimal and U D U0. Then, T � T 0 is Prüfer

minimal.
(5) Assume that T � T 0 is minimal and set P WD C.T; T 0/.

(a) If T � T 0 is integral, then U � U0 is integral minimal if and only if P\U 2
Max.U/.

(b) If T � T 0 is Prüfer, then V � V 0 is Prüfer minimal if and only if there is
exactly one prime ideal in V lying over P.

Proof In ŒR; S�, the extensions U � U0; T � V; T 0 � V 0 are integral and V �
V 0; U � T; U0 � T 0 are Prüfer. Moreover, R is also the integral closure of U � V 0.

(1) is gotten by considering the extension T � V 0, which is both T � V � V 0
and T � T 0 � V 0.

(2) is gotten by considering the extension U � T 0, which is both U � T � T 0
and U � U0 � T 0.

(3) Assume that U � U0 is integral minimal and V D V 0. Then, T � T 0 is
integral by (1) and T ¤ T 0 because of (2). Set M WD .U W U0/ 2 SuppU.U0=U/. For
any M0 2 Max.U/ such that M0 ¤ M, we have UM0 D U0

M0 , so that TM0 D T 0
M0

because UM0 � T 0
M0 is Prüfer. But, U � T 0 is almost-Prüfer, giving T 0 D TU0.

By Theorem 4.6, .T W T 0/ D .U W U0/T D MT ¤ T because T ¤ T 0. We get
that U � T Prüfer implies that M … SuppU.T=U/ and UM D TM . It follows that
T 0

M D TMU0
M D U0

M . Therefore, TM � T 0
M identifies to UM � U0

M , which is
minimal of the same type as U � U0 by [14, Proposition 4.6]. Then, T � T 0 is
integral minimal of the same type as U � U0.

(4) Assume that V � V 0 is Prüfer minimal and U D U0. Then, T � T 0 is Prüfer
by (2) and T ¤ T 0 because of (1). Set Q WD C.V; V 0/ and P WD Q \ T 2 Max.T/

since Q 2 Max.V/. For any P0 2 Max.T/ such that P0 ¤ P, and Q0 2 Max.V/ lying
over P0, we have VQ0 D V 0

Q0 , so that VP0 D V 0
P0 . Therefore, T 0

P0 � V 0
P0 is integral,

so that TP0 D T 0
P0 and P0 … SuppT.T 0=T/. Hence T � T 0 is Prüfer minimal [13,

Proposition 6.12].
(5) Assume that T � T 0 is a minimal extension and set P WD C.T; T 0/.
(a) Assume that T � T 0 is integral. Then, V D V 0 and U ¤ U0 by (1) and (2).

We can use Proposition 4.5 getting that P D .U W U0/T 2 Max.T/ and Q WD .U W
U0/ D P \ U 2 Spec.U/. It follows that Q … SuppU.T=U/, so that UQ D TQ and
U0

Q D T 0
Q. Then, UQ � U0

Q is integral minimal, with Q 2 SuppU.U0=U/.
If Q … Max.U/, then U � U0 is not minimal by the properties of the crucial

maximal ideal.
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Assume that Q 2 Max.U/ and let M 2 Max.U/, with M ¤ Q. Then, UM D U0
M

because M C Q D U, so that U � U0 is a minimal extension and (a) is gotten.
(b) Assume that T � T 0 is Prüfer. Then, V ¤ V 0 and U D U0 by (1) and

(2). Moreover, PT 0 D T 0 gives PV 0 D V 0. Let Q 2 Max.V/ lying over P. Then,
QV 0 D V 0 gives that Q 2 SuppV.V 0=V/. Moreover, we have V 0 D VT 0. Let P0 2
Max.T/; P0 ¤ P. Then, TP0 D T 0

P0 gives VP0 D V 0
P0 . It follows that SuppT.V 0=V/ D

fPg and SuppV.V 0=V/ D fQ 2 Max.V/ j Q \ T D Pg. But, by [13, Proposition
6.12], V � V 0 is Prüfer minimal if and only if jSuppV.V 0=V/j D 1, and then if and
only if there is exactly one prime ideal in V lying over P. ut

This proposition has a simpler dual form in the FCP almost-Prüfer case.

Proposition 4.26 Let R � S be an FCP almost-Prüfer extension and T � T 0 a
subextension of R � S. Set U WD T \eR; U0 WD T 0 \eR; V WD TeR, and V 0 WD T 0

eR.
The following statements hold:

(1) T � T 0 is integral (and minimal) if and only if U D U0 (and V � V 0 is minimal).
(2) T � T 0 is Prüfer (and minimal) if and only if V D V 0 (and U � U0 is minimal).

Proof In view of Proposition 4.21, T (resp. T 0) is the integral closure of U (resp. U0)
in V (resp. V 0). The result is gotten by localizing at the elements of MSuppU.V 0=U/

and using Proposition 4.16. ut
Lemma 4.27 Let R � S be an FCP almost-Prüfer extension and U 2 ŒR; R�, V 2
ŒR; S�. Then U � V has FCP and is almost-Prüfer. The same result holds when
U 2 ŒR;eR� and V 2 ŒeR; S�.

Proof Assume first that U 2 ŒR; R� and V 2 ŒR; S�. Obviously, U � V has FCP
and R is the integral closure of U in V . Proposition 4.16 entails that SuppR.R=R/ \
SuppR.S=R/ D ;. We claim that SuppU.R=U/ \ SuppU.V=R/ D ;. Deny and let
Q 2 SuppU.R=U/ \ SuppU.V=R/. Then, RQ ¤ UQ; VQ. If P WD Q \ R, we get that
RP ¤ UP; VP, giving RP ¤ RP; SP, a contradiction. Another use of Proposition 4.16
shows that U � V is almost-Prüfer. The second result is obvious. ut
Theorem 4.28 Let R � S be an FCP almost-Prüfer extension and T � T 0 a
subextension of R � S. Set U WD T \ R and V 0 WD T 0R. Let W be the Prüfer
hull of U � V 0. Then, W is also the Prüfer hull of T � T 0 and T � T 0 is an FCP
almost-Prüfer extension.

Proof By Lemma 4.27, we get that U � V 0 is an FCP almost-Prüfer extension. Let
eT be the Prüfer hull of T � T 0. Since U � T and T � eT are Prüfer, so is U � eT and
eT � V 0 gives that eT � W. Then, T � W is Prüfer as a subextension of U � W.

Moreover, in view of Proposition 4.17, W is the least U-subalgebra of V 0 over
which V 0 is integral. Since T 0 � V 0 is integral, we get that W � T 0, so that W 2
ŒT; T 0�, with W � T 0 integral as a subextension of W � V 0. It follows that W is also
the Prüfer hull of T � T 0 and T � T 0 is an FCP almost-Prüfer extension. ut
Remark 4.29 The result of this theorem may not hold if the FCP hypothesis is
lacking. Take the example of [13, Remark 2.9(c)], where R � S � T is almost-
Prüfer, R � S Prüfer, S � T integral and R � T has not FCP. Here, .R; M/ is a
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one-dimensional valuation domain with quotient field S and T D SŒX�=.X2/ D SŒx�.
Set R0 WD RŒx�. Then, R0 is local, with Spec.R0/ D fP0 WD Rx; M0 WD M C Rxg.
By the characterization of a Prüfer extension in Proposition 1.2 (3), R0 D eR0, but
R0 � T is not integral, so that R0 � T is not almost-Prüfer.

5 Fibers of Quasi-Prüfer Extensions

We intend to complete some results of Ayache-Dobbs [5]. We begin by recalling
some features about quasi-finite ring morphisms. A ring morphism R ! S is called
quasi-finite by [39] if it is of finite type and �.P/ ! �.P/ ˝R S is finite (as a �.P/-
vector space), for each P 2 Spec.R/ [39, Proposition 3, p. 40].

Proposition 5.1 A ring morphism of finite type is incomparable if and only if it is
quasi-finite and, if and only if its fibers are finite.

Proof Use [40, Corollary 1.8] and the above definition. ut
Theorem 5.2 An extension R � S is quasi-Prüfer if and only if R � T is quasi-
finite (equivalently, has finite fibers) for each T 2 ŒR; S� such that T is of finite type
over R, if and only if R � T has integral fiber morphisms for each T 2 ŒR; S�.

Proof Clearly, R � S is an INC-pair implies the condition by Proposition 5.1. To
prove the converse, write T 2 ŒR; S� as the union of its finite type R-subalgebras
T˛ . Now let Q � Q0 be prime ideals of T , lying over a prime ideal P of R and set
Q˛ WD Q \ T˛ and Q0̨ WD Q0 \ T˛ . If R � T˛ is quasi-finite, then Q˛ D Q0̨ , so that
Q D Q0 and then R � T is incomparable. The last statement is Proposition 3.8. ut
Corollary 5.3 An integrally closed extension is Prüfer if and only if each of its
subextensions R � T of finite type has finite fibers.

Proof It is enough to observe that the fibers of a (flat) epimorphism have a cardinal
� 1, because an epimorphism is spectrally injective. ut

An extension R � S is called strongly affine if each of its subextensions R � T
is of finite type. The above considerations show that in this case R � S is quasi-
Prüfer if and only if each of its subextensions has finite fibers. For example, an FCP
extension is strongly affine and quasi-Prüfer. We are also interested in extensions
R � S that are not necessarily strongly affine, whose subextensions have finite
fibers.

Next lemma will be useful, its proof is obvious.

Lemma 5.4 Let R � S be an extension and T 2 ŒR; S�.

(1) If T � S is spectrally injective and R � T has finite fibers, then R � S has finite
fibers.

(2) If R � T is spectrally injective, then T � S has finite fibers if and only if R � S
has finite fibers.
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Remark 5.5 Let R � S be an almost-Prüfer extension, such that the integral
extension T WD eR � S has finite fibers and let P 2 Spec.R/. The study of the
finiteness of FibR;S.P/ can be reduced as follows. As R � S is an epimorphism,
because it is Prüfer, it is spectrally injective (see Scholium A). The hypotheses of
Proposition 4.5 hold. We examine three cases. In case .R W R/ › P, it is well known
that RP D .R/P so that jFibR;S.P/j D 1, because R ! S is spectrally injective.
Suppose now that .R W R/ D P. From .R W R/ D .T W S/ \ R, we deduce that P is
lain over by some Q 2 Spec.T/ and then FibR;R.P/ Š FibT;S.Q/. The conclusion
follows as above. Thus the remaining case is .R W R/ � P and we can assume that
PT D T for if not FibR;R.P/ Š FibT;S.Q/ for some Q 2 Spec.T/ by Scholium A (1).

Proposition 5.6 Let R � S be an almost-Prüfer extension. If eR � S has finite fiber
morphisms and .eRP W SP/ is a maximal ideal of eRP for each P 2 SuppR.S=eR/, then
R � R and R � S have finite fibers.

Proof The Prüfer closure commutes with the localization at prime ideals by
Proposition 4.12. We set T WD eR. Let P be a prime ideal of R and ' W R ! RP the
canonical morphism. We clearly have FibR;:.P/ D a'.FibRP;:P.PRP//. Therefore, we
can localize the data at P and we can assume that R is local.

In case .T W S/ D T , we get a factorization R ! R ! T . Since R ! T is Prüfer
so is R ! R and it follows that R D R because a Prüfer extension is integrally
closed.

From Proposition 1.2 applied to R � T , we get that there is some P 2 Spec.R/

such that T D RP, R=P is a valuation ring with quotient field T=P and P D PT . It
follows that .T W S/ D PT D P � R, and hence .T W S/ D .T W S/ \ R D .R W R/.
We have therefore a pushout diagram by Theorem 4.6:

where R=P is a valuation domain, T=P is its quotient field, and R=P ! S=P is
Prüfer by [25, Proposition 5.8, p. 52].

Because R0 ! S0 is injective and a flat epimorphism, there is a bijective map
Min.S0/ ! Min.R0/. But T 0 ! S0 is the fiber at P of T ! S and is therefore
finite. Therefore, Min.S0/ is a finite set fN1; : : : ; Nng of maximal ideals lying over
the minimal prime ideals fM1; : : : ; Mng of R0 lying over 0 in R0. We infer from
Lemma 3.7 that R0=Mi ! S0=Ni is Prüfer, whence integrally closed. Therefore,
R0=Mi is an integral domain and the integral closure of R0 in S0=Ni. Any maximal
ideal M of R0 contains some Mi. To conclude it is enough to use a result of Gilmer
[19, Corollary 20.3] because the number of maximal ideals in R0=Mi is less than the
separable degree of the extension of fields T 0 � S0=Ni. ut
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Remark 5.7

(1) Suppose that .eR W S/ is a maximal ideal of eR. We clearly have .eR W S/P � .eRP W
SP/ and the hypotheses on .eR W S/ of the above proposition hold.

(2) In caseeR � S is a tower of finitely many integral minimal extensions Ri�1 � Ri

with Mi D .Ri�1 W Ri/, then Supp
eR.S=eR/ D fN1; : : : ; Nng � Max.eR/ where

Ni D Mi \eR. If the ideals Ni are different, each localization at Ni of eR � S is
integral minimal and the above result may apply. This generalizes the Ayache-
Dobbs result [5, Lemma 3.6], whereeR � S is supposed to be integral minimal.

Theorem 5.8 Let R � S be a quasi-Prüfer ring extension. The following three
conditions are equivalent:

(1) R � S has finite fibers.
(2) R � R has finite fibers.
(3) Each extension R � T, where T 2 ŒR; S� has finite fibers.

Proof (1) , (2) Let P 2 Spec.R/ and the morphisms �.P/ ! �.P/ ˝R R !
�.P/ ˝R S. The first (second) morphism is integral (a flat epimorphism) because
deduced by base change from the integral morphism R ! R (the flat epimorphism
R ! S). Therefore, the ring �.P/ ˝R R is zero-dimensional, so that the second
morphism is surjective by Scholium A (2). Set A WD �.P/˝R R and B WD �.P/˝R S,
we thus have a module finite flat ring morphism A ! B. Hence, AQ ! BQ is free
for each Q 2 Spec.A/ [16, Proposition 9] and BQ ¤ 0 because it contains �.P/ ¤ 0.
Therefore, AQ ! BQ is injective and it follows that A Š B giving (1) , (2).

(2) ) (3) Suppose that R � R has finite fibers and let T 2 ŒR; S�, then R � RT
is a flat epimorphism by Proposition 4.5(1) and so is �.P/ ˝R R ! �.P/ ˝R RT .
Since Spec.�.P/ ˝R RT/ ! Spec.�.P/ ˝R R/ is injective, R � RT has finite fibers.
Now R � T has finite fibers because T � RT is integral and is therefore spectrally
surjective.

(3) ) (1) is obvious. ut
Remark 5.9 Actually, the statement (1) , (2) is valid if we only suppose that
R � S is a flat epimorphism. But this equivalence fails in case R � S is not a flat
epimorphism as we can see in the following example. Let R be an integral domain
with quotient field K and integral closure R such that R � R is a minimal extension.
Then R � R has finite fibers. Consider the polynomial ring S WD KŒX�. It follows
that R is also the integral closure of R in S. Moreover, K � S and then R � S have
not finite fibers. Actually, K � S and R � S are not flat epimorphisms.

Next result contains [5, Lemma 3.6], gotten after a long proof.

Corollary 5.10 Let R � S be an almost-Prüfer extension. Then R � S has finite
fibers if and only if R � R has finite fibers, and if and only ifeR � S has finite fibers.

Proof By Theorem 5.8 the first equivalence is clear. The second is a consequence
of Lemma 5.4(2). ut

The following result is then clear and obviates any need to assume FCP or FMC.
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Theorem 5.11 Let R � S be a quasi-Prüfer extension with finite fibers, then R � T
has finite fibers for each T 2 ŒR; S�.

Corollary 5.12 If R � S is quasi-finite and quasi-Prüfer, then R � T has finite
fibers for each T 2 ŒR; S� andeR � S is module finite.

Proof By the Zariski Main Theorem, there is a factorization R � F � S where
R � F is module finite and F � S is a flat epimorphism [39, Corollaire 2, p. 42].
To conclude, we use Scholium A in the rest of the proof. The map eR ˝R F ! S is
injective because F ! eR ˝R F is a flat epimorphism and is surjective, since it is
integral and a flat epimorphism becauseeR ˝R F ! S is a flat epimorphism. ut
Corollary 5.13 An FMC extension R � S is such that R � T has finite fibers for
each T 2 ŒR; S�.

Proof Such an extension is quasi-finite and quasi-Prüfer. Then use Corollary 5.12.
ut

[5, Example 4.7] exhibits some FMC extension R � S, such that R � R has not
FCP. Actually, ŒR; R� is an infinite (maximal) chain.

Proposition 5.14 Let R � S be a quasi-Prüfer extension such that R � R has finite
fibers and R is semi-local. Then T is semi-local for each T 2 ŒR; S�.

Proof Obviously R is semi-local. From the tower R � TR � S we deduce that
R � TR is Prüfer. It follows that TR is semi-local [5, Lemma 2.5 (f)]. As T � TR is
integral, we get that T is semi-local. ut

The next proposition gives a kind of converse, but, before, we rewrite [4,
Theorem 3.10] proved in the integral domains context, which holds in a more
general context.

Theorem 5.15 Let R � S be an integrally closed extension with R semi-local. The
following three conditions are equivalent:

(1) R � S is a Prüfer extension.
(2) jMax.T/j � jMax.R/j for each T 2 ŒR; S�.
(3) Each T 2 ŒR; S� is a semi-local ring.

Proof It is enough to mimic the proof of [4, Theorem 3.10] which is still valid for
an arbitrary integrally closed extension of rings R � S. Indeed, R � S is a Prüfer
extension if and only if .R; S/ is a residually algebraic pair such that R � S is an
integrally closed extension by Theorem 2.3 and Definition 2.1 . ut
Proposition 5.16 Let R � S be an extension with R semi-local. Then R � S is
quasi-Prüfer if and only if T is semi-local for each T 2 ŒR; S�.

Proof If R � S is quasi-Prüfer, R � S is Prüfer. Let T 2 ŒR; S� and set T 0 WD TR,
so that T � T 0 is integral, and R � T 0 is Prüfer (and then a normal pair). It follows
from [5, Lemma 2.5 (f)] that T 0 is semi-local, and so is T .

If T is semi-local for each T 2 ŒR; S�, so is any T 2 ŒR; S�. Then, R � S is Prüfer
by Theorem 5.15 and R � S is quasi-Prüfer. ut
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