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Preface

This volume is the outcome of two conferences: “Recent Advances in Commutative
Ring and Module Theory” held in Bressanone/Brixen, Italy, June 13–17, 2016; and
“Conference on Rings and Polynomials” held in Graz, Austria, July 3–8, 2016.
The volume contains contributed as well as invited papers by the speakers at these
conferences, and a small collection of invited papers by some of the leading experts
in the area, carefully selected for the impact of their research on the major themes
of the conferences.

The aim of the meetings was to present recent progress and new trends in the area
of commutative algebra, with emphasis on commutative ring theory, module theory,
and integer-valued polynomials along with connections to algebraic number theory,
algebraic geometry, topology, and homological algebra. The wide range of topics is
reflected in the table of contents of this volume.

The two conferences brought together over one hundred mathematicians from
over 20 countries—renowned researchers as well as promising young new-
comers—in a pleasant and peaceful atmosphere that engendered many fruitful
collaborations.

In addition to the conference participants and authors of papers, a number
of other people helped make these conferences and this volume of proceedings
possible. Among those we count the organizing and scientific committees of both
conferences. The organizing committee of the Bressanone conference consisted
of Florida Girolami, Francesca Tartarone, and Paolo Zanardo, while the scientific
committee included Valentina Barucci, Dikran Dikranjan, Brendan Goldsmith, Evan
Houston, Bruce Olberding, Francesca Tartarone, and Paolo Zanardo. The organizing
committee of the Graz conference consisted of Sophie Frisch, Carmelo Finocchiaro,
and Roswitha Rissner, while the scientific committee included Karin Baur, Jean-Luc
Chabert, Marco Fontana, Alfred Geroldinger, Sarah Glaz, and Irena Swanson. We
wish to thank them all for their efforts, without which these conferences would
not have taken place and this volume would not have seen the light of day. In
addition, the Graz conference editors wish to thank the departmental secretary
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vi Preface

Hermine Panzenböck for administrative support and many students for technical
support. The Bressanone conference editors wish to extend special thanks to Marco
Fontana, Stefania Gabelli, and Luigi Salce for useful suggestion.

We also thank the many organizations who sponsored these conferences and,
most importantly, made it possible to provide support for graduate students and
mathematicians not supported by their institutions. The Bressanone conference was
sponsored by Istituto Nazionale di Alta Matematica (INdAM), the departments
of mathematics of Università degli Studi di Padova and Sapienza Università di
Roma, and the department of mathematics and physics of Università degli Studi
Roma Tre. The Graz conference was sponsored by the Austrian Science Fund
(FWF), the Austrian Mathematical Society, the province of Styria, and the faculty
of mathematics and physics of Technische Universität Graz.

Last, but not least, we thank the editorial staff of Springer, in particular Elizabeth
Loew, for their cooperation, hard work, and assistance with this volume.

Rome, Italy Marco Fontana
Graz, Austria Sophie Frisch
Storrs, CT, USA Sarah Glaz
Rome, Italy Francesca Tartarone
Padova, Italy Paolo Zanardo
July 2017
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Reducing Fractions to Lowest Terms

Daniel D. Anderson and Erik Hasse

Abstract The purpose of this paper is to investigate putting or reducing a fraction
to lowest terms in a general integral domain. We investigate the integral domains in
which every fraction can be (uniquely) put in or reduced to lowest terms.

Keywords ACCP • Atomic domain • GCD domain • Lowest terms • gcd •
Weak gcd

Subject Classifications Primary 13G05, Secondary 13A05, 13F15

We are all familiar with reducing fractions to lowest terms over the integers or
polynomials over a field. The purpose of this paper is to study this in the context of
general integral domains. We investigate when a fraction a=b can be put in lowest
terms c=d (i.e., a=b D c=d where c and d are relatively prime) or reduced to lowest
terms . a

d /=.
b
d / (i.e., . a

d /=.
b
d / is in lowest terms for some common divisor d of a

and b) and when the lowest terms representation for a=b is “unique”. Of particular
interest are the integral domains in which every fraction can be reduced to lowest
terms.

Throughout D will be an integral domain with quotient field K. Let a; b 2 D�:D
D � f0g. We denote the gcd of a and b by Œa; b�, if it exists. Of course, Œa; b� is
only unique up to a unit factor. We write Œa; b� D 1 .Œa; b� ¤ 1) if a and b are
(not) relatively prime. A common divisor d of a and b is a weak gcd for a and
b if

�
a
d ;

b
d

� D 1. And D is a (weak) GCD domain if every pair a; b 2 D� has a
(weak) gcd. For a nonzero fractional ideal I of D, I�1:D fx 2 KjxI � Dg and
Iv:D .I�1/�1 D \fDxjx 2 K with I � Dxg. If .a; b/v D .d/ (or equivalently
lcm.a; b/ D ab

d ), then Œa; b� D d, but not necessarily conversely (see Example 2).
However, if D is a GCD domain with Œa; b� D d, then .a; b/v D .d/. We remark that
the following three conditions are equivalent: (1) lcm.a; b/ exists, (2) .a/ \ .b/ is
principal, and (3) .a; b/v is principal. And in this case ..a/ \ .b// .a; b/v D .a/.b/.
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2 D.D. Anderson and E. Hasse

If .a; b/ D .d/, then .a; b/v D .d/, but not conversely. A nonzero nonunit a of D
is irreducible or an atom if a D bc implies b or c is a unit and D is atomic if each
nonzero nonunit of D is a finite product of atoms. An integral domain D satisfies
the ascending chain condition on principal ideals (ACCP) if every ascending chain
.a1/ � .a2/ � � � � of principal ideals of D stabilizes. And D is a Bezout domain
if every finitely generated ideal, equivalently, every two-generated ideal of D, is
principal. Thus a Bezout domain is a GCD domain in which the gcd for each pair
a; b is a linear combination of a and b.

We begin with the following definitions.

Definition 1 Let D be an integral domain and let a; b; c; d; e; f 2 D�. We say that
a=b can be put in the form c=d if a=b D c=d and that a=b can be reduced to the form
c=d if there is a common divisor e of a and b with c D a

e and d D b
e . The fraction

a=b is in (strong, resp., absolute) lowest terms if Œa; b� D 1 (.a; b/v D D, resp.,
.a; b/ D D). Thus a=b can be put in lowest terms if a=b D c=d where Œc; d� D 1

and a=b can be reduced to lowest terms if a=b D c=d where c D a
e and d D b

e
for some common divisor e of a and b and Œc; d� D 1. We will then sometimes
say that c=d is a (reduced) lowest terms for a=b. Similar statements hold for strong
and absolute lowest terms. The fraction a=b has essentially unique (strong, resp.,
absolute, reduced) lowest terms if there exists at least one c=d in (strong, resp.,
absolute, reduced) lowest terms with a=b D c=d and if a=b D e=f where e=f is in
(strong, resp., absolute, reduced) lowest terms, then e D uc and f D ud for some
unit u of D.

Remark 1 Let a; b 2 D with b nonzero. There is some ambiguity in the notation
a=b as to whether a=b just denotes an element of K or the particular representation
of that element. Indeed, an element x 2 K has many representations in the form
a=b with a=b D c=d , ad D bc (a; b; c; d 2 D, b; d nonzero). However, when we
write a=b we will usually mean the particular representation, even though we write
a=b D c=d to mean they are equal as an element of K, i.e., ad D bc.

Definition 2 The integral domain D is a lowest terms (LT) domain (resp., reduced
lowest terms (RLT) domain) if each nonzero fraction a=b (a; b 2 D�) can be put in
(resp., reduced to) lowest terms. And D is a unique lowest terms (ULT) domain if
each nonzero fraction a=b (a; b 2 D�) has essentially unique lowest terms.

Remark 2 In an obvious way we could have defined the following integral domains:
unique reduced lowest terms domain, strong (resp., absolute) lowest terms domain,
unique strong (resp., absolute) lowest terms domain, reduced strong (resp., absolute)
lowest terms domain, and unique reduced strong (resp., absolute) lowest terms
domain. The reason we have not is because by Theorem 1 (5, resp., 6) they (resp.,
the last four) are all equivalent to the integral domain being a GCD domain (resp.,
Bezout).

Remark 3 So far we have only considered nonzero fractions a=b (a; b 2 D�).
Suppose that a D 0 and consider 0=b where b 2 D�. Since Œ0; b� D b,
.0; b/v D .b/ and .0; b/ D .b/, we see (with the obvious extension of the definitions
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in Definition 1) that 0=b can be reduced to 0=1 and 0=b has essentially unique
(strong resp., absolute) lowest terms 0=1. Thus there is no loss in generality in only
considering nonzero fractions.

We next determine when a fraction can be put in or reduced to (strong, absolute)
lowest terms.

Theorem 1 Let D be an integral domain and let a; b; c; d; e; f 2 D�.

1. a=b can be put in lowest terms if and only if there exists an s 2 D� so that sa and
sb have a weak gcd. If d is a weak gcd for sa and sb, then a=b D � sa

d

�
=
�

sb
d

�
and

the last fraction is in lowest terms. So D is an LT domain if and only if for each
a; b 2 D�, there exists s 2 D� so that sa and sb have a weak gcd.

2. a=b can be reduced to lowest terms if and only if a and b have a weak gcd. If a
and b have a weak gcd d, then a=b D � a

d

�
=
�

b
d

�
and the last fraction is in lowest

terms. So D is an RLT domain if and only if D is a weak GCD domain.
3. The following are equivalent:

a. Œa; b� exists, and
b. i. If c is a common divisor of a and b, then

�
a
c

�
=
�

b
c

�
can be reduced to lowest

terms and
ii. a=b has essentially unique reduced lowest terms.

4. a=b is in strong lowest terms if and only if a=b D c=d implies there exists e 2 D�
with c D ea and d D eb.

5. a. The following are equivalent:

i. .a; b/v is principal (or equivalently, .a/ \ .b/ is principal or
lcm.a; b/ exists),

ii. a=b can be reduced to strong lowest terms, and
iii. a=b can be put in strong lowest terms.

If .a; b/v D .d/, then a=b D �
a
d

�
=
�

b
d

�
where the last fraction is in strong

lowest terms. Moreover, this strong lowest terms representation is unique in
the following sense. If a=b D e=f where Œe; f � D 1, then e D u

�
a
d

�
and

f D u
�

b
d

�
where u is a unit of D. Hence e=f is actually a strong lowest terms

representation for a=b.

b. For the integral domain D, the following are equivalent:

i. G is a GCD domain,
ii. Every nonzero fraction of D can be reduced to strong lowest terms,

iii. Every nonzero fraction of D can be put in strong lowest terms,
iv. Every nonzero fraction of D has a essentially unique reduced lowest terms.
v. D is an RLT domain and a ULT domain.

6. a. The following are equivalent:

i. .a; b/ is principal,
ii. a=b can be reduced to absolute lowest terms, and

iii. a=b can be put in absolute lowest terms.
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If .a; b/ D .d/, then a=b D . a
d /=.

b
d / where the last fraction is in absolute

lowest terms. Moreover, this absolute lowest terms representation is unique
in the following sense. If a=b D e=f where Œe; f � D 1, then e D u. a

d / and
f D u. b

d / where u is a unit of D. Hence e=f is actually an absolute lowest
terms representation for a=b.

b. For an integral domain D, the following are equivalent:

i. D is a Bezout domain,
ii. Every nonzero fraction of D can be reduced to absolute lowest terms,

iii. Every nonzero fraction of D can be put in absolute lowest terms.

Proof (1) Suppose there exists an s 2 D� with sa and sb having weak gcd d. Then�
sa
d ;

sb
d

� D 1 and a=b D sa=sb D �
sa
d

�
=
�

sb
d

�
. So a=b can be put in lowest terms.

Conversely, suppose that a=b can be put in lowest terms c=d. Now a=b D c=d
implies ad D bc and so ajbc. Thus a is a common divisor of ac and bc and

�
ac
a ;

bc
a

� D
Œc; d� D 1, i.e., a is weak gcd of ac and bc. The last statement is now immediate.

(2) Note that d is a weak gcd for a and b if and only if d is a common divisor of
a and b with

�
a
d ;

b
d

� D 1. This just says that a=b D � a
d

�
=
�

b
d

�
where the last fraction

is in lowest terms. This proves the first statement and the second statement is now
immediate.

(3) .a/ ) .b/ If Œa; b� exists and c is a common divisor of a and b, then
�

a
c ;

b
c

�

exists and hence is the unique weak gcd for a
c and b

c . Then apply (2).
.b/ ) .a/ Let a; b 2 D�. Since a=b can be reduced to lowest terms, by (2),

a and b have a weak gcd d. We show that Œa; b� D d. Certainly d is a common
divisor of a and b. Suppose e is a common divisor of a and b. Then

�
a
e

�
=
�

b
e

�
can be

reduced to lowest terms, so again by (2) there is an f 2 D� with
h

a
ef ;

b
ef

i
D 1. Now

�
a
d

�
=
�

b
d

� D a=b D
�

a
ef

�
=
�

b
ef

�
where the first and third fractions are in lowest

terms. By uniqueness a
d D u a

ef for some unit u. Hence d D u�1ef , so ejd. Thus
Œa; b� D d. (We have shown that for a; b 2 D�, Œa; b� exists if and only if a and b
have a unique (up to associates) weak gcd and for every cja; b, a

c and b
c have a weak

gcd.)
(4) ())a=b D c=d implies ad D bc, so ajbc. Since .a; b/v D D, ajc (see

Remark 4). So c D ea for some e 2 D� and hence d D bc
a D eb. (() Suppose

that .a; b/ � .˛=ˇ/ for ˛; ˇ 2 D�. Then ˇ.a; b/ � .˛/, so aˇ D c˛ and bˇ D d˛
for some c; d 2 D�. So a=b D aˇ=bˇ D c˛=d˛ D c=d. Hence c D ax, and d D bx
for some x 2 D�. Then aˇ D ax˛ ) ˇ D x˛ ) ˛=ˇ D 1=x. So D � .˛=ˇ/.
Hence .a; b/v D D.

(5) (a) (i))(ii) Suppose .a; b/v D .d/. Then dja and djb and
�

a
d ;

b
d

�
v
D 1

d .d/ D
D; so a=b D �

a
d

�
=
�

b
d

�
where the last fraction is in strong lowest terms. (ii))(iii)

Clear. (iii))(i) Suppose a=b D c=d where .c; d/v D D. Now ad D bc and
.c; d/v D D implies .a/ D .ac; ad/v D .ac; bc/v D .a; b/vc ; so .a; b/v D

�
a
c

�

is principal. This proves the equivalence of (i)–(iii) and the second statement. Next
suppose .a; b/v D .d/ and a=b D e=f where Œe; f � D 1. Now e=f D a=b D � a

d

�
=
�

b
d

�
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where Œe; f � D 1 and
�

a
d ;

b
d

�
v
D D. By (4) e D a

d g and f D b
d g for some g 2 D� So

1 D Œe; f � D � a
d g; b

d g
�
. Hence g must be a unit.

(b) The equivalence of (i)–(iii) and (i))(iv),(v) follow from (a). (iv),(v))(i)
follows from (3).

(6) (a) This is similar to the proof of 5(a). Indeed, we can just delete the
“subscript” v wherever it occurs.

(b) This follows from 6(a).

Remark 4 The proof of Theorem 1 (4) used the well-known fact that for a; b; c 2 D�
with .a; b/v D D, then ajbc ) ajc. For suppose ar D bc for some r 2 D�. Then
.c/ D c.a; b/v D .ac; bc/v D .ac; ar/v � .a/; so ajc. It is interesting to note that
the converse is also true: If ajbc) ajc for all c 2 D�, then .a; b/v D D. As we will
not need this result, the proof is left to the reader.

Thus it is not true in general that ajbc with Œa; b� D 1 implies bjc. The “proof"
breaks down because Œa; b� D 1 does not imply that Œac; bc� D c. If fact, for a; b 2
D�, Œac; bc� exists for all c 2 D� if and only if .a; b/v exists [1, Theorem 2.1]. It is
easy to check that if Œac; bc� exists, then Œa; b� exists and Œac; bc� D Œa; b�c. If d is a
(weak) gcd for a and b and cjd, then d

c is a (weak) gcd for a
c and b

c .
The above paragraphs explain why a=b having a strong lowest terms represen-

tation forces .a; b/v to be principal while a=b having a lowest terms representation
does not force Œa; b� to exist.

Remark 5 An integral domain R is said to satisfy Property D if whenever a; b; c 2
R� with Œa; b� D 1 and ajbc, then ajc. Property D is equivalent to a number of
other properties slightly weaker than being a GCD domain such as PSP2: a; b 2 R�
with Œa; b� D 1 implies .a; b/v D R (also called Property � in [5]). Property D
implies that atoms are prime, so an atomic domain satisfying Property D is a UFD,
and conversely. See [2] for a thorough investigation of these related properties. Via
Theorem 1 (3)(a) the following are equivalent: (1) R satisfies PSP2, (2) if a fraction
a=b (a; b 2 R�) can be put in lowest terms, it can be put in strong lowest terms, and
(3) any lowest terms representation of a fraction a=b (a; b 2 R�) is actually a strong
lowest terms representation.

Remark 6 R. Gilmer briefly considers fractions in (strong) lowest terms in [4,
Exercise 5, p.183]. Let D be an integral domain and a; b 2 D�. There he defines a
fraction a=b to be irreducible if Œa; b� D 1 and to be in canonical form if a=b D c=d
for c; d 2 D� implies there is a x 2 D� with c D ax and d D bx. The exercise
asks to show that a=b is in canonical form if and only if .a; b/v D D which is our
Theorem 1 (4) and that every fraction can be put in canonical form if and only if D
is a GCD domain which is .i/, .iii/ of our Theorem 1 (5)(b).

Remark 7 We can give a star-operation version of Theorem 1 (5,6). Recall that a
star-operation ? on D is a closure operation ? on the set F.D/ of nonzero fractional
ideals of D that satisfies .aA/? D aA? and .a/? D .a/ for a 2 K� and A 2 F.D/.
Examples of star-operations include the v-operation A ! Av and the d-operation
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A! Ad D A. For an introduction to star-operations, see [4, Section 32]. For a; b 2
D�, we say that a=b is in ?-lowest terms if .a; b/? D D. Then a=b can be put in
(equivalently, reduced to) ?-lowest terms if and only if .a; b/? is principal. Thus
every fraction a=b can be put in (equivalently, reduced to) ?-lowest terms if and
only if every nonzero doubly generated (equivalently, finitely generated) ideal A has
A? principal. Here Theorem 1 (5, resp., 6) is just the case where ? D v (resp., d).

We next show the ubiquity of RLT domains.

Theorem 2 Let D be an integral domain. If D is a GCD domain or satisfies ACCP,
then D is a weak GCD domain and hence is an RLT domain.

Proof The case where D is a GCD domain is immediate, so assume that D satisfies
ACCP. Suppose there exists a0; b0 2 D�, so that a0; b0 do not have a weak gcd. Then
the set S D{.a/ja 2 D�; there exists a b 2 D� so that a; b do not have a weak gcd}
is a nonempty set of proper principal ideals. Let .a/ be a maximal element of S. So
there exists a b 2 D� so that a; b do not have a weak gcd. In particular, Œa; b� ¤ 1.
So there is a nonunit e 2 D� with eja and ejb. But then a

e 2 D� with
�

a
e

�
© .a/. So

either a
e is a unit or

�
a
e

�
is a proper principal ideal of D. Thus a

e and b
e have a weak

gcd d, so
�

a
ed ;

b
ed

� D 1. So ed is a weak gcd for a and b, a contradiction.

Corollary 1 An integral domain D is a UFD if and only if D satisfies ACCP and D
is a ULT domain.

Proof ()) Suppose D is a UFD. It is well known that D satisfies ACCP and since
a UFD is a GCD domain, D is a ULT domain by Theorem 1 (4). (() Since D
satisfies ACCP, D is an RLT domain by Theorem 2. So D is an RLT domain and a
ULT domain. By Theorem 1 (4), D is a GCD domain. But a GCD domain satisfying
ACCP is a UFD.

We next give an example of an integral domain that is not an LT domain. We
later use this example to give an example (Example 4) of an integrally closed atomic
domain that is not an LT domain.

Example 1 (An Integral Domain That is Not an LT Domain) Let D be the integral
domain kŒX;Y;Z�Œ

˚
X
Zn ;

Y
Zn

�
n�1�where k is a field and X;Y;Z are indeterminates over

k. Then we cannot write X=Y D a=b where a; b 2 D� with Œa; b� D 1. For suppose
X=Y D a=b for a; b 2 D�. We can write a D f=Zm and b D g=Zn where f ; g 2
kŒX;Y;Z�� and m; n � 0. Then XgZm D YfZn. Then Xjf and Yjg in kŒX;Y;Z� and
hence X

Zm ja and Y
Zn jb in D. But Zj X

Zm and Zj Y
Zn in D, so Zja and Zjb in D. Hence

Œa; b� ¤ 1.
By Corollary 1, any integral domain satisfying ACCP that is not a UFD is an

RLT domain that is not a ULT domain. We next examine a concrete example.

Example 2 (An RLT Domain That is Not a ULT Domain) Let D D kŒX2;X3� where
k is a field and X is an indeterminate over k. Then D is Noetherian and hence satisfies
ACCP and thus is an RLT domain. Here X2 and X3 are irreducible, with X2 �X2 �X2 D
X3 � X3, so R is not a UFD and hence not a ULT domain. Indeed X4=X3 D X3=X2
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where ŒX3;X4� D ŒX2;X3� D 1. Now ŒX4;X5� D X2, but ŒX5;X6� does not exist. In

fact, both X2 and X3 are weak gcds for X5 and X6 since
h

X5

X2
; X6

X2

i
D �

X3;X4
� D 1

and
h

X5

X3
; X6

X3

i
D ŒX2;X3� D 1. Moreover, X6=X5 can be reduced to both X4=X3 and

X3=X2, each of which is in lowest terms, but there does not exist a unit u 2 D with
X3 D uX4 and X2 D uX3. Here X4=X3 can be put in lowest terms form X3=X2,
but cannot be reduced to the lowest terms form X3=X2. Note that ŒX2;X3� D 1, but
.X2;X3/v D .X2;X3/ ¤ D and .X2/ \ .X3/ D .X5;X6/ is not principal. In fact, by
Theorem 1 (5)(a) we cannot write X3=X2 D f=g where f ; g 2 D� with .f ; g/v D D.

We have made a distinction between putting a fraction in lowest terms and
reducing a fraction to lowest terms. We now give an example of a fraction that
can be put in lowest terms but cannot be reduced to lowest terms.

Example 3 (A Fraction That Can Be Put in, But Not Reduced to, Lowest Terms)
Let D D kŒX;Y;Z;T�ŒX

T ;
Y
T ;
˚

X
Zn ;

Y
Zn

�
n�1� where k is a field and X;Y;Z; and T

are indeterminates over k. Then T is a weak gcd for X and Y , so X=Y can be
reduced to lowest terms

�
X
T

�
=
�

Y
T

�
. Now the set of divisors of X

Z (resp., Y
Z ) isn

uZn; uX
ZnC1 j u 2 k�; n � 0

o
(resp.,

n
uZn; uY

ZnC1 j u 2 k�; n � 0
o
). So any common

divisor of X
Z and Y

Z is of the form uZn where n � 0 and u 2 k�. It follows that
X
Z and Y

Z do not have a weak gcd in D and hence
�

X
Z

�
=
�

Y
Z

�
cannot be reduced to

lowest terms in D. However,
�

X
Z

�
=
�

Y
Z

�
can be put in lowest terms

�
X
T

�
=
�

Y
T

�
. It is

interesting to note that in the localization DŒT�1� of D, X=Y cannot be put in lowest
terms.

Now LT domains and weak GCD domains were introduced in [3] in the context of
atomic factorization. Let D be an integral domain. Then a nonzero nonunit element
a of D is irreducible, or an atom, if a D bc for b; c 2 D implies b or c is a unit.
And D is atomic if every nonzero nonunit of D is a finite product of atoms. It is
well known that if D satisfies ACCP, then D is atomic, but the converse is false. It
is easily shown that if D satisfies ACCP, then so does DŒX�. This raised the question
of whether D atomic implies DŒX� is atomic which was answered in the negative in
[6]. (It is easy to see that if DŒX� satisfies ACCP (resp., is atomic), then D satisfies
ACCP (resp., is atomic)). Recall that an integral domain D is strongly atomic if for
a; b 2 D�, there exist atoms a1; : : : ; as.s � 0/ and c; d 2 D� with Œc; d� D 1 and
a D a1 � � � asc and b D a1 � � � asd. Note that D satisfies ACCP ) DŒX� is atomic
) D is strongly atomic. The following result links these various concepts.

Theorem 3 For an integral domain D the following are equivalent.

1. D is an atomic RLT domain.
2. D is an atomic weak GCD domain.
3. D is strongly atomic.
4. Every linear polynomial in DŒX� is a product of atoms.
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Proof (1),(2) Theorem 1 (2). (2))(3) Let a; b 2 D�. So D a weak GCD domain
gives a D a0c; b D b0c where Œa0; b0� D 1. Since D is atomic, either c is a unit or c is
a product of atoms.

(3))(4) Let aX C b 2 DŒX� be a linear polynomial, so a 2 D�. Suppose b ¤ 0.
Then a D a1 � � � asc and b D a1 � � � asd where the ai’s are atoms (s � 0) and Œc; d� D
1, c; d 2 D�. Then aX C b D a1 � � � as.cX C d/ is a product of atoms. So suppose
b D 0. Then aX is a product of atoms if and only if a is, so it suffices to show that
D is atomic, i.e., strongly atomic) atomic. Let a 2 D� be a nonunit. Write a D
a1 � � � asc and a2 D a1 � � � asd where Œc; d� D 1. Then a21 � � � a2s c2 D a2 D a1 � � � asd.
So canceling gives d D a1 � � � asc2. Thus cjd and hence c is a unit. So a is a product
of atoms.

(4))(2) For a nonunit a 2 D�, aX a product of atoms implies a is a product of
atoms, so D is atomic. For a; b 2 D�, aX C b is a product of atoms, so aX C b D
a1 � � � as.cX C d/ where each ai is an atom and Œc; d� D 1. Put e D a1 � � � as. So�

a
e ;

b
e

� D Œc; d� D 1 and hence e is a weak gcd for a and b. (We note that the
equivalence of (2) and (3) is given in [3, Theorem 1.3]).

While an integral domain satisfying ACCP is an RLT domain, we next give an
example of an atomic domain that is not even an LT domain.

Example 4 (An Integrally Closed Atomic Domain That is Not an LT Domain) Let
D be the integral domain kŒX;Y;Z�Œf X

Zn ;
Y
Zn gn�1� where k is a field. From Example

1 we have Zja and Zjb whenever X=Y D a=b for a; b 2 D�. Let A D A1.D/ as
in [6, Example 5.1]. There it is noted that A is integrally closed and atomic, in fact
every reducible element of A is a product of two atoms. It is shown that X and Y do
not have a weak gcd, so A is not a weak GCD domain, or equivalently, not an RLT
domain. We prove the stronger result that if X=Y D a=b where a; b 2 A, then Zja
and Zjb; so X=Y cannot be put in lowest terms in A. Thus A is not an LT domain.
To prove this it suffices to prove the following. Let S be a subring of A containing D
with the property that wherever X=Y D a=b for a; b 2 S�, then Zja and Zjb. Then for
s 2 S� and indeterminate Xs, if X=Y D a=b where a; b 2 S ŒXs; s=Xs�

�, then Zja and
Zjb. With a change of notation, it suffices to prove the following. Let R be an integral
domain and let a; b 2 R�. Suppose that t 2 R� has the property that whenever
a=b D c=d for c; d 2 R�, then tjc and tjd. Let s 2 R� and X be an indeterminate
over R. Suppose that a=b D f=g for f ; g 2 RŒX; s=X��. Then tjf and tjg. Let f D
r0
nsn

Xn C� � �C r0
1s
X Cr0Cr1XC� � �CrmXm and g D t0nsn

Xn C� � �C t01s
X Ct0Ct1XC� � �CtmXm.

Then a=b D f=g gives ag D bf . So equating coefficients gives at0isi D br0
is

i and
ati D bri. If t0i ¤ 0 (equivalently r0

i ¤ 0), then a=b D r0
i=t0i ; so tjr0

i and tjt0i . If t0i D 0
(equivalently r0

i D 0), then certainly tjr0
i and tjt0i . Likewise, tjri and tjti. Hence tjf

and tjg.
We next consider the stability of the various types of “lowest terms” domains

with respect to certain ring constructions. First, none of the “lowest term” domains
except Bezout domains are preserved by homomorphic image. Indeed, for any set of
indeterminates fXag;ZŒfXag� is a UFD, but any integral domain is a homomorphic
image of a suitable ZŒfXag�. Also, as a field satisfies all the lowest term properties,
none of the various “lowest term” domains are preserved by subrings. Example 4
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shows that none of the “lowest term” domains except Bezout domains are preserved
by overrings. For kŒX;Y;Z� is a UFD while its overring KŒX;Y;Z�Œf X

Zn ;
Y
Zn gn�1� is not

even an LT-domain. We next show that the LT and RLT properties are not preserved
by polynomial extensions. In fact, we give an example of an atomic RLT domain A
with AŒX� neither atomic nor even an LT domain.

Example 5 (An Atomic RLT Domain A So That AŒX� is Neither Atomic Nor an
LT Domain) Let D be the integral domain kŒX1;X2;X3;Z�ŒfX1

Zn ;
X2
Zn ;

X3
Zn gn�1� where

X1;X2;X3; and Z are indeterminates over the field k. Let A D A!;2.D/ as in [6,
Example 5.2]. There it is shown that A is an atomic domain, in fact, every nonzero
nonunit of A is either irreducible or a product of two irreducibles, and that A is a
weak GCD (= RLT) domain. But it is also shown that the polynomial ring AŒX�
is not atomic and is not a weak GCD domain. Indeed, X1X C X2; and X3 do not
have a weak GCD in AŒX� since X1;X2; and X3 do not have an MCD in A (i.e., an
element d with ŒX1

d ;
X2
d ;

X3
d � D 1). Thus AŒX� is not an RLT domain. We prove the

stronger result that if .X1X C X2/=X3 D a=b for a; b 2 AŒX�, then Zja and Zjb; so
.X1X C X2/=X3 cannot be put in lowest terms. Thus AŒX� is not an LT domain. To
prove this it suffices to prove the following. Let S be a subring of A containing D with
the property that whenever .X1XCX2/=X3 D a=b for a; b 2 SŒX��; then Zja and Zjb.
Then for any ideal I of S and indeterminate Y over SŒX�, if .X1XCX2/=X3 D a=b for
a; b 2 SŒY; IY�1�ŒX��, then Zja and Zjb. Since SŒY; IY�1�ŒX� D SŒX�ŒY; ISŒX�Y�1�,
it suffices to prove the following. Let R be an integral domain and let a; b 2 R�.
Suppose that t 2 R� has the property that whenever a=b D c=d for c; d 2 R�, then
tjc and tjd. Let I be a nonzero ideal of R and X an indeterminate over R. Suppose
that a=b D f=g for f ; g 2 RŒX; IX�1��. Then tjf and tjg. The proof of this follows
mutatis mutandis from the proof given for f ; g 2 RŒX; s=X�� in Example 4.

Suppose a; b 2 D�. We can consider a; b 2 DŒX��. As such it is possible to put
a=b in lowest terms f .X/=g.X/ where f .X/; g.X/ are positive degree polynomials
of DŒX�; see the paragraph after Theorem 4. However, if a=b is reduced to lowest
terms f .X/=g.X/ in DŒX�, then f .X/; g.X/ 2 D�. Thus, if DŒX� is an RLT domain
so is D. Now DŒX� is an “absolute LT domain” if and only if DŒX� is Bezout, or
equivalently, D is a field. And DŒX� is a “strong LT domain”, equivalently a GCD
domain, if and only if D is a GCD domain, equivalently, a “strong LT domain”. We
have been unable to determine if DŒX� an LT domain implies that D is an LT domain.
However, if DŒX� is a ULT domain, so is D; in fact, D must be a GCD domain. This
is our next theorem.

Theorem 4 For an integral domain, the following are equivalent: (1) DŒX� is a ULT
domain, (2) DŒX� is a GCD domain, and (3) D is a GCD domain.

Proof It is well known that (2),(3) and (2))(1) by Theorem 1 (5)(b); so it suffices
to show that (1))(3). We first show that D is a ULT domain. Suppose a; b 2 D�, so
a=b D f .X/=g.X/ where f .X/; g.X/ 2 DŒX�� with Œf .X/; g.X/� D 1. Suppose that
deg f .X/ > 0. Then for each r 2 D, f .X/=g.X/ D a=b D f .X � r/=g.X � r/ and
Œf .X�r/; g.X�r/� D 1. We may assume that D is infinite, so there exists an r0 2 D�
with f .X/ and f .X � r0/ not associate. But then f .X/=g.X/ and f .X � r0/=g.X � r0/
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are two lowest term representations for a=b, contradicting our assumption that DŒX�
is a ULT domain. Hence 0 D deg f .X/ D deg g.X/. So D is an LT domain and hence
a ULT domain. By Theorem 1 (5)(b), to show that D is a GCD domain it suffices to
show that D is an RLT domain. Let a; b 2 D�; so a=b D c=d where c; d 2 D� with
Œc; d� D 1. Now a=b D c=d D .c C aX/=.d C bX/. Since DŒX� is a ULT domain,
we must have Œc C aX; d C bX� ¤ 1. Let f .X/ 2 DŒX�� be a nonunit divisor of
c C aX and d C bX. If deg f .X/ D 0, then f .X/ is a nonunit of D dividing both c
and d, a contradiction. So deg f .X/ D 1 say f .X/ D ˛ C ˇX. So ˛ j c and ˛ j d;
hence ˛ must be a unit of D, so we can take ˛ D 1. Then cC aX D c.1C ˇX/ and
d C bX D d.1C ˇX/. Thus a D cˇ and b D dˇ. So a=b D c=d D . a

ˇ
/=. b

ˇ
/. Thus

D is an RLT domain.
Now it is quite possible for a; b 2 D�, to have a=b D f .X/=g.X/ where

f .X/; g.X/ 2 DŒX�� with Œf .X/; g.x/� D 1 and deg f .X/ D deg g.X/ > 0. Indeed,
suppose that a=b D c=d D e=f where c; d; e; f 2 D� with Œc; d� D 1 D Œe; f � and c
and e are not associates. Then a=b D .cCeX/=.dC fX/ where ŒcCeX; dC fX� D 1.
Suppose that we take D D kŒX2;X3� as in Example 2. Let T be an indeterminate over
D. Then X3=X2 D .X3 C X4T/=.X2 C X3T/ where ŒX3 C X4T; X2 C X3T� D 1.

The following diagram shows the relationships among the various integral
domains we have discussed. None of the implications can be reversed with the
possible exceptions of RLT)LT and GCD)ULT.

UFD Bezout
⇐ ⇓ ⇐

⇓ ⇐ ⇓
strongly atomic ⇒ RLT ULT

⇓ ⇓  ⇐
atomic LT

ACCP GCD

We end with the following two questions.

Question 1 Must an LT domain be an RLT domain?

Question 2 Must a ULT domain be a GCD domain?

References

1. Anderson, D.D.: GCD domains, Gauss’ Lemma, and content of polynomials. In: Chapman, S.
Glaz, S. (eds.) Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications,
vol. 520, pp. 1–31. Kluwer Academic Publishers, Dordrecht, Boston, London (2000)

2. Anderson, D.D., Quintero, R.: Some generalizations of GCD domains. In: Anderson, D.D. (ed.)
Factorization in Integral Domains, pp. 189–195. Marcel Dekker, New York (1997)

3. Anderson, D.D., Anderson, D.F., Zafrullah, M.: Factorization in integral domains. J. Pure Appl.
Algebra 69, 1–19 (1990)



Reducing Fractions to Lowest Terms 11

4. Gilmer, R.: Multiplicative Ideal Theory. In: Queen’s Papers in Pure and Applied Mathematics,
vol. 90. Queen’s University, Kingston, ON (1992)

5. Mott, J.L., Zafrullah, M.: On Prüfer v-multiplication domains. Manuscripta Math. 35, 1–26
(1981)

6. Roitman, M.: Polynomial extensions of atomic domains. J. Pure Appl. Algebra 87, 187–199
(1993)



Unique Factorization in Torsion-Free Modules

Gerhard Angermüller

Abstract A generalization of unique factorization in integral domains to torsion-
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1 Introduction

Unique factorization in integral domains plays a prominent role in algebra. It is
explained in many books on basic algebra; moreover, the last decades have seen
generalizations of this concept in several directions, see, e.g., [1] and the literature
cited there. One of these directions is to introduce various types of factorizations of
elements in domains (cf. also [2]); another one is the generalization to commutative
rings with zero-divisors (cf. also [3, 4]). Further, in [17], a generalization to torsion-
free modules over (factorial) domains has been proposed by A.-M. Nicholas and
subsequently refined in [18–20] as well as by Costa [8], by Lu [16], and by Anderson
and Valdes-Leon [4].

In this note it is proven that locally projective modules, flat Mittag-Leffler
modules, and torsion-free content modules are factorial modules in the sense of
Nicholas [17, 18]. Moreover, factorially closed extensions of factorial domains are
characterized with the help of factorial modules.
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The content of this paper is organized as follows: In Sect. 2, preliminaries
are proven to be used in the following sections; possibly, some of them are of
independent interest, e.g. Proposition 1. The basic definitions and properties of
factorable modules over commutative domains are contained in Sect. 3. The core
of this paper is Sect. 4, where the theory is further developed in the special case of
factorial base domains; moreover, in this section it is proven that locally projective
modules, flat Mittag-Leffler modules or torsion-free content modules are factorial
modules. In Sect. 5 ring extensions are considered which are factorable as modules;
in particular, factorially closed extensions of factorial domains are characterized
with factorial modules. The last section contains some hints to related literature.

Notation
The basics on (unique) factorization in domains can be found, e.g., in [13, 2.14 and
2.15]; basic concepts of Commutative Algebra used in this note are contained in
[5], as well as our standard notation. For more advanced subjects we give detailed
references to [6, 7, 11, 12, 14].

In the following sections R denotes a commutative domain with 1, K D
Q.R/ the field of quotients of R and M a torsion-free R-module. M is identified
with its image in KM WD K �R M under the map 1 � idM; further, bM WDT fMPjP 2 Spec.R/; ht.P/ D 1g � KM. Moreover, R� denotes the group of units
of R.

2 Preliminaries

In this section we recall some definitions and prove some results to be used in the
subsequent sections.

If R is a commutative ring and M an R-module, an element x of R is called a zero-
divisor on M, if x annihilates some non-zero element of M; M is called torsion-free,
if 0 2 R is the only zero-divisor on M. r; s is called a (two-element) M-sequence, if
r; s 2 R, r is not a zero-divisor on M and s is not a zero-divisor on M=rM. M is said
to satisfy accc, if M satisfies the ascending chain condition on cyclic submodules
(or equivalently: any non-empty family of cyclic submodules of M has a maximal
element). R is said to satisfy accp, if R satisfies the ascending chain condition on
principal ideals. A submodule N of M is called torsion-closed in M if M=N is
torsion-free; N is called pure in M, if for all finite families .xi/i2I , .yj/j2J , .rij/i2I;j2J

of elements of N, M and R respectively such that for all i 2 I, xi D P

j2J
rijyj, there is

a family .zj/j2J of elements of N such that for all i 2 I, xi D P

j2J
rijzj. Clearly, any

pure submodule of M is torsion-closed in M. M� denotes the R-module of R-linear
forms on M. M is called torsionless, if for each x 2 M there is a f 2 M� such that
f .x/ ¤ 0; M is called reflexive, if the canonical homomorphism m 7! .f .m//f 2M�

is a bijection from M onto M��. M is called locally projective, if for each surjective
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homomorphism f W P ! Q of R-modules, each R-homomorphism g W M ! Q and
each finitely generated submodule N of M there is an R-homomorphism h W M ! P
such that f ı h.x/ D g.x/ for all x 2 N; obviously, any projective module is locally
projective. M is called a content module, if for every family .I�/�2ƒ of ideals I�
of R:

T

�2ƒ
.I�M/ D .

T

�2ƒ
I�/M; if x 2 M and .I�/�2ƒ is the family of all ideals I� of

R such that x 2 I�M, then c.x/ �
T

�2ƒ
I� is called the content of x. M is called a

Mittag-Leffler-module, if for every family .Qi/i2I of R-modules, the canonical map
M �R

Q
i2I Qi !Q

i2I M �R Qi is injective.
An element q of a commutative ring R is called an atom, if it is non-zero, not a

unit and for all r; s 2 R such that q D rs, either r or s is a unit of R; q is called
prime, if qR is a non-zero prime ideal of R. A domain R is called atomic, if any
non-zero non-unit element of R can be expressed as a finite product of atoms. R is
called a factorial domain (or a UFD), if any non-zero non-unit element of R can be
expressed uniquely as a finite product of atoms up to units of R; as is well-known,
e.g., by [13, Theorem 2.21], a domain R is factorial if and only if it satisfies accp
(resp. is atomic) and every atom of R is prime. R is called a GCD-domain, if any two
elements of R have a greatest common divisor. By [13, Theorem 2.22], a domain is
factorial iff it is a GCD-domain satisfying accp. Concerning Krull domains, we refer
to [7, Chapter VII].

The following technical argument is used in the proof of [4, Theorem 2.8].

Lemma 1 Let M ¤ 0 be such that for each x 2 M, x ¤ 0, there is a natural number
j.x/ so that if x D r1 � � � rky, where ri .i D 1; : : : ; k/ is a non-unit of R, and y 2 M,
then k � j.x/. Then R is atomic.

Proof Choose m 2 M, m ¤ 0. Let r be a non-zero non-unit of R. If r D r1 � � � rk is a
factorization of r into non-units ri of R .i D 1; : : : ; k/, then k � j.rm/ by assumption
on M; in particular, there are such factorizations of r with maximal k. By definition
of an atom, any factorization r D r1 � � � rk of r into non-units ri of R .i D 1; : : : ; k/
with maximal k is in fact a factorization into atoms. ut

The following lemma is easily proved and probably known, but we could not find
a reference.

Lemma 2 Let R � S be a ring extension.

a) If S is a torsion-free R-module such that S \ Q.R/ D R, then S� \ R D R�.
b) If S is a domain satisfying accp and S� \ R D R�, then S satisfies accc as

R-module.

Proof a) Let r 2 S�\R, i.e. rs D 1 for some s 2 S. Then s D 1=r 2 S\Q.R/ D R,
whence r 2 R�. b) Let .Rxi/i2I be any non-empty family of cyclic R-submodules
of S. Then .Sxi/i2I is a non-empty family of principal ideals of S, whence has a
maximal element Sx for some x D xj, j 2 I. Rx is a maximal element of .Rxi/i2I : Let
i 2 I and Rx � Rxi. Then x D rxi for some r 2 R; by choice of x, Sx D Sxi. If x D 0,
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the assertion is obvious; otherwise, rs D 1 for some s 2 S. Then r 2 S� \ R D R�
and in particular, Rx D Rxi. ut

The following assertion is more generally true for arbitrary (weakly) regular
sequences, but for the sake of this note, the special case is sufficient.

Lemma 3 If M is a flat M-module, then any two-element R-sequence is an M-
sequence.

Proof Let r; s be an R-sequence. As M is torsion-free, r is not a zero-divisor on M.
Further, multiplication by s on R=rR is injective; as M is flat, multiplication by s on
M=rM Š R=rR �R M is injective too. ut

The following lemma is shown in the proof of [9, Proposition 1.5].

Lemma 4 If R is a Krull domain, M D bM if and only if every two-element R-
sequence is an M-sequence.

Proof First, assume M D bM. Let r; s be an R-sequence and x; y 2 M such that
rx D sy. Then for any prime ideal P of R of height 1, .r; s/ ª P (see, e.g., [14,
Theorem 132]), i.e. r … P or s … P. In the first case, y 2 MP D rMP; in the second
case, y D r.x=s/ 2 rMP. Thus y 2 T frMPjP 2 Spec.R/; ht.P/ D 1g D rbM D rM.
Secondly, assume that every two-element R-sequence is an M-sequence and let x 2
bM. Then for every prime ideal P of R of height 1, .M W x/P D .MP W x/ D RP,
whence .M W x/ ª P. Choose r 2 .M W x/, r ¤ 0, and denote by P1; : : : ;Pn the
prime ideals of R of height 1 containing r. If n D 0, r 2 R� and thus x 2 M;
so, let us assume n > 0. R being a Krull domain, Rr is a decomposable ideal of
R [11, Corollary 43.10], whence

S
iD1;:::;n Pi is the set Z of zero-divisors of R on

R=Rr [5, Proposition 4.7]. By the above, .M W x/ is not contained in any Pi for
i D 1; : : : ; n, and hence .M W x/ ª Z by [5, Proposition 1.11 i)]. Thus we can
choose s 2 .M W x/ n Z. Then r; s is an R-sequence, whence an M-sequence by
assumption. By choice of r; s: rx; sx 2 M and thus r.sx/ D s.rx/ implies rx 2 rM,
i.e. x 2 M. ut

An extension R � S of Krull domains is said to satisfy PDE, if for every prime
ideal P of S of height 1, the prime ideal P\R of R is zero or of height 1 (cf. [7, VII,
§1.10]). The following lemma is proven in [9, Proposition 1.5].

Lemma 5 If R and S are Krull domains, R � S satisfies PDE if and only if every
two-element R-sequence is an S-sequence.

Proof Observe that in any Krull domain T , any principal ideal I, 0 ¤ I ¤ T , has
a primary decomposition, whose primary ideals belong to prime ideals of height 1
[11, Corollary 43.10 a)]; in particular, the set of zero-divisors on T=I is a finite union
of prime ideals of T of height 1 [5, Proposition 4.7]. Assume first that R � S satisfies
PDE and let r; s be an R-sequence. Further, denote by Z the set of zero-divisors on
S=rS; by the above, Z D P1 [ : : : [ Pn for some height 1 prime ideals Pi of S. If s
would be an element of Z, then r; s 2 Pi \ R for some i by [5, Proposition 1.11 i)],
whence Pi \ R would be of height > 1 [14, Theorem 132], contradicting PDE. Thus
s is not a zero-divisor on S=rS, that is, r; s is an S-sequence. Assume now that any
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two-element R-sequence is an S-sequence and let P be a prime ideal of S of height
1; it has to be shown that the height of P \ R is 0 or 1 . Assuming the contrary,
we can choose r 2 P \ R, r ¤ 0 and, by the above, s 2 P \ R such that s is not
a zero-divisor on R=rR. Then r; s would be an R-sequence, whence an S-sequence
contained in the height 1 prime ideal P, a contradiction [14, Theorem 132]. ut

The conditions (3) and (4) of the following proposition are considered in [16,
Theorem 2.1].

Proposition 1 Let R be a factorial domain. The following conditions are equiva-
lent:

(1) M D bM
(2) Every two-element R-sequence is an M-sequence
(3) For every prime element p of R, rx 2 pM for r 2 R; x 2 M implies r 2 Rp or

x 2 pM.
(4) For all r 2 R, x 2 M, the submodule rM \ Rx is cyclic.

Proof (1),(2) follows by Lemma 4, any factorial domain being a Krull domain.
(2))(3): Let p be a prime element of R, r 2 R and x; y 2 M such that rx D py.
If p does not divide r, then p; r is an R-sequence, whence an M-sequence and thus
x 2 pM. (3))(2): Let r; s be an R-sequence and x; y 2 M such that rx D sy. As R
is factorial, r and s are relatively prime. We prove by induction on the number n of
primes dividing r that y 2 rM. If n D 0, r is a unit in R and the assertion is clear. Let
now n > 0 and assume the assertion to be true for n � 1. Choose a prime element
p of R dividing r, i.e. r D pt for some t 2 R. Then sy D rx D ptx, whence y D pz
for some z 2 M by assumption (3). Thus psz D sy D ptx, whence sz D tx and thus
z D tw for some w 2 M by induction hypothesis. Putting all together, one obtains
y D pz D ptw D rw 2 rM. (3))(4): Let r 2 R, x 2 M. We prove by induction
on the number n of primes dividing r that rM \ Rx is cyclic. If n D 0, r is a unit
in R and rM \ Rx D M \ Rx D Rx. Let now n > 0 and assume the assertion to
be true for n � 1. Choose a prime element p of R dividing r, i.e. r D ps for some
s 2 R. If x D py for some y 2 M, then sM \ Ry D Rz for some z 2 M by induction
hypothesis, and thus rM \ Rx D psM \ Rpy D p.sM \ Ry/ D Rpz. If x … pM, we
first observe that pM \ Rx D Rpx: in fact, if t 2 R, w 2 M are such that pw D tx,
then (by assumption (3)) t D up for some u 2 R, whence pw D tx D upx 2 Rpx.
Moreover, by induction hypothesis, sM\Rx D Rv for some v 2 M. Then rM\Rx D
.rM\pM/\Rx D rM\ .pM\Rx/ D psM\Rpx D p.sM\Rx/ D Rpv. (4))(3):
Let p be a prime element of R, r 2 R and x; y 2 M such that rx D py. By assumption
(4), pM \ Rx D Rz for some z 2 M; in particular, rx D py D sz for some s 2 R as
well as px D tz for some t 2 R. Furthermore, z D ux D pw for some u 2 R, w 2 M.
If x D 0, the assertion is trivially true. If x ¤ 0, then px D tz D tux, whence p D tu;
as p is prime, either t 2 R� or u 2 R�. If t 2 R�, then rx D sz D st�1px, whence
r D st�1p 2 Rp; if u 2 R�, then x D u�1z D u�1pw 2 pM. ut
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3 Atomic and Factorable Modules

The following definitions are basic for this note.

Definition 1 Let x 2 M.
An element r 2 R (resp. m 2 M) is called an R-divisor of x (resp. an M-divisor

of x), if x D ry for some y 2 M (resp. x D sm for some s 2 R); r (resp. m) is called
a greatest R-divisor (resp. a smallest M-divisor) of x, if any R-divisor of x divides r
(resp. m is an M-divisor of any M-divisor of x).

x is called irreducible if any R-divisor of x is a unit of R.
x is called primitive if x ¤ 0 and x is a smallest M-divisor of any non-zero

element of Rx.
M is called atomic, if any non-zero element of M has an irreducible M-divisor.
M is called factorable, if any non-zero element of M has a smallest M-divisor.
M has the finite divisor property (or has fdp) if each non-zero element of M has,

up to units, only a finite number of proper R-divisors.
A prime element p of R is called prime for M if rx 2 pM for r 2 R, x 2 M implies

r 2 Rp or x 2 pM.

Remark 1

a) The irreducible elements of R—considered as an R-module—are the units of
R. To avoid conflicts, we use the term “atom” for “irreducible elements of a
domain” in the sense of [13, Section 2.14].

b) R—considered as an R-module—is atomic and factorable; the primitive elements
are the units of R.

c) It is easily checked that the R-module K D Q.R/ has irreducible elements if and
only if K D R; in particular, K is neither atomic nor factorable, if K ¤ R.

d) If R is a factorial domain, then R has fdp when considered as an R-module; in
this case, any prime element of R is prime for R.

e) If R is a field and x is any non-zero element of M, then x is a smallest M-divisor
of x: in fact, if x D ry, where r 2 R and y 2 M, then r ¤ 0 and y D r�1x. In
particular, every vector space is factorable.

f) Let R � kŒX;Y� be a polynomial ring in two variables X, Y over a field k and
M � RX C RY . The irreducible elements of M are the prime elements of the
factorial domain R which are contained in M, thus showing, e.g., that the sets of
irreducible elements of a module and that of a factorable module containing it
can be disjoint (cf. a)). Moreover, M does not have primitive elements: otherwise
there would exist an element x of M, x ¤ 0, such that x is a smallest M-divisor
of xX as well as of xY , i.e. a divisor of X and of Y , a contradiction to M ¤ R.
A similar argument shows that the element XY of M does not have a smallest
divisor in M, thus proving that the submodule M of the factorable module R is
not factorable. As M is a submodule of R, it has fdp too (cf. d); in Remark 3 there
is an example of a module having fdp which is not a submodule of a factorable
module.
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More elementary facts related to Definition 1 are contained in the following lemma:

Lemma 6

a) Greatest R-divisors (resp. smallest M-divisors) of any non-zero element of M
are uniquely determined up to units of R.

b) Let m; x 2 M, r 2 R, x ¤ 0 such that x D rm. Then r is a greatest R-divisor of
x if and only if m is a smallest M-divisor of x.

c) A smallest M-divisor of any non-zero element of M is irreducible.
d) Every primitive element of M is irreducible.
e) If m; n 2 M are primitive and r; s 2 R, r; s ¤ 0 are such that rm D sn, then

m D un and s D ur for some u 2 R�.
f) For every x 2 M the following assertions are equivalent:

(1) x is primitive
(2) x ¤ 0 and Kx \M D Rx
(3) Rx is a maximal rank 1 submodule of M
(4) x ¤ 0 and Rx is torsion-closed in M
(5) x ¤ 0 and for every y 2 M either Rx \ Ry D 0 or Ry � Rx
(6) x ¤ 0 and for every r 2 R, r ¤ 0, r is a greatest R-divisor of rx.

Proof a): Let x 2 M, x ¤ 0. If r; s 2 R (resp. m; n 2 M) are greatest R-divisors
(resp. smallest M-divisors) of x, then r divides s (resp. m is an M-divisor of n) and
vice versa. In any case, by the assumption on R and M, r and s (resp. m and n) differ
by units of R. b) follows immediately from the definitions. c): Let x 2 M, x ¤ 0. Let
m 2 M be a smallest M-divisor of x and let r 2 R and n 2 M be such that m D rn. By
assumption on m, m is an M-divisor of n , whence r is a unit of R. d) follows from c).
e) follows from the definition of primitive elements and a). f): Let x 2 M. (1))(2):
If x is primitive and .r=s/x D y for some y 2 M and some r; s 2 R, s ¤ 0, then
rx D sy, whence y D tx for some t 2 R and thus r D st and y D .r=s/x D tx 2 Rx.
(2))(3): Let N be a rank 1 submodule of M such that Rx � N. As x ¤ 0 by
assumption (2), one has KN D Kx and thus N � KN \ M D Kx \ M D Rx.
(3))(4): Let r; s 2 R, r ¤ 0 and y 2 M be such that ry D sx. Then y D 0 2 Rx
or Ky D Kx and thus Rx � Ky \ M, whence Ky \ M D Rx by assumption (3); in
particular, y 2 Rx. (4))(5): Let y 2 M and assume that there are r; s 2 R such that
rx D sy ¤ 0. By assumption (4), y 2 Rx and thus Ry � Rx. (5))(1): Let r; s 2 R,
r ¤ 0 and y 2 M be such that rx D sy. Then Rx \ Ry ¤ 0 and by assumption,
Ry � Rx, whence x is an M-divisor of y. (1),(6) follows from b). ut
Lemma 7

a) If M is factorable, then M is atomic.
b) If M satisfies accc, then any submodule of M is atomic.
c) If M is atomic (resp. factorable), then any torsion-closed submodule of M is

atomic (resp. factorable); in particular, if M is atomic (resp. factorable), then
any pure submodule of M is atomic (resp. factorable).

d) If M D Rm is free of rank 1, then M is factorable; more precisely, m is a smallest
M-divisor of any element of M and R�m is the set of irreducible (resp. primitive)
elements of M.
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Proof a) follows from Lemma 6 c). b): Assuming the contrary, a strictly ascending
infinite chain of cyclic submodules of M can be easily constructed. c): Clearly, any
irreducible (resp. smallest) M-divisor of any non-zero element of a torsion-closed
submodule N of M is an N-divisor and is obviously irreducible in N too (resp. a
smallest N-divisor). d) follows from the definitions (and Lemma 6 d)). ut

The following proposition and its corollaries give some indication of the
usefulness of factorable modules.

Proposition 2 The following conditions are equivalent:

(1) M is factorable
(2) Every non-zero element of M has a greatest R-divisor
(3) Every non-zero element x 2 M has a representation x D ry with r 2 R, y an

irreducible element of M and this representation is unique up to a unit of R
(4) M is atomic and every irreducible element of M is primitive
(5) Every non-zero element of M has a primitive M-divisor
(6) Every non-zero element x 2 M has a representation x D ry with r a greatest

R-divisor of x and y a primitive M-divisor
(7) Every maximal rank 1 submodule of M is free.

Proof (1),(2) follows from Lemma 6 b). (1))(3): The first part of (3) follows
from Lemma 6 c). Let x 2 M, x ¤ 0 be such that x D ry D sz with r; s 2 R and
irreducible elements y; z of M. Choose a smallest M-divisor w of x; then y D ew
and z D fw with e; f 2 R�. Further, u WD e�1f 2 R� and r D us; z D uy. (3))(4):
By the first part of (3), M is atomic. To prove the second part of (4), let x 2 M
be irreducible and r; s 2 R; y 2 M be such that rx D sy. Let y D tz with t 2 R
and z 2 M irreducible. By assumption, r D ust; z D ux for some u 2 R�, whence
y D tux showing x primitive. (4))(5) is clear from the definition. (5))(6): by
assumption, x has a representation x D ry with r 2 R and y a primitive M-divisor. By
definition, y is a smallest M-divisor of x, whence the assertion follows by Lemma 6
b). (6))(7): let N be a maximal rank 1 submodule of M. Choose n 2 N; n ¤ 0 and
r 2 R; x 2 M primitive such that n D rx. Maximality of N implies N D KN \ M.
In particular, x D r�1n 2 N, whence Rx � N and thus Rx D N by Lemma 6 f)
(1))(3). (7))(1): let x 2 M; x ¤ 0. Then Kx \M is a maximal rank 1 submodule
of M; by assumption, Kx\M D Ry for some y 2 Kx\M. By Lemma 6 f) (3))(1),
y is primitive in M, whence a smallest divisor of x. ut

Proposition 2 (7))(1) yields another proof that any vector space is factorable
(cf. Remark 1, e)). The next two corollaries shed some light upon modules of rank
1 and factorability:

Corollary 1 If M has rank 1, then M is factorable if and only if M is free.

Proof One direction by Proposition 2, (1))(7), and the other by Lemma 7 d). ut
Remark 2 An immediate consequence of Corollary 1 is that every non-principal
ideal of any domain R is not factorable, although R is so (cf. Remark 1 b), f)).

Corollary 2 If M is factorable, every non-zero cyclic submodule N of M is
contained in a unique maximal rank 1 submodule of M, and this submodule is free.
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Proof Let N D Rx for some x 2 M; x ¤ 0. By Proposition 2 (1))(5), x has a
primitive M-divisor y, i.e. Rx � Ry and Ry is a maximal rank 1 submodule of M
by Lemma 6 f) (1))(3). If N is contained in a maximal rank 1 submodule N0 of
M, then N0 D Rz for some z 2 M by Proposition 2 (1))(7) and z is primitive by
Lemma 6 f) (3))(1). As x 2 Ry\Rz, one has Ry D Rz by Lemma 6 f) (1))(5). ut
Corollary 3 If M is factorable, then every R-sequence r; s is an M-sequence.

Proof Let x; y 2 M be such that rx D sy. Then x D r0u; y D s0v for some r0; s0 2
R and some primitive elements u; v of M by Proposition 2 (1))(6). This implies
rr0u D ss0v, whence rr0t D ss0 for some t 2 R� by Lemma 6 e). As r; s is an R-
sequence, this yields s0 2 Rr and thus y 2 rM. ut
Corollary 4 Let R be a Noetherian integrally closed domain and M a finitely
generated factorable R-module. Then M is reflexive.

Proof If M is factorable, then M D bM by Corollary 3 and Lemma 4. As M is finitely
generated and R a Noetherian integrally closed domain, M is reflexive by [7, VII,
§4.2, Theorem 2]. ut
Corollary 5 If M is factorable and M ¤ 0, then:

a) For all r; s 2 R: rM � sM if and only if s divides r.
b) For all r 2 R: rM D M if and only if r 2 R�.
c) For every greatest divisor r of a non-zero element x of M and for every s 2 R, sr

is a greatest divisor of sx.

Proof a): Let r; s 2 R be such that rM � sM. By Proposition 2, (1))(5), there is
a primitive element x of M; in particular, rx D sy for some y 2 M. By Lemma 6
b), r is a greatest R-divisor of sy, whence s divides r. b) follows immediately from
a). c): Let y 2 M be such that x D ry. By Lemma 6 b),c), y is irreducible, whence
a primitive element of M by Proposition 2, (1))(4). Thus y is a smallest divisor of
sx D sry and the assertion follows by Lemma 6 b). ut

The next result shows that in general, factorable modules are far away from
containing divisible modules. If R is not a field, it shows in particular that any
torsion-free R-module containing K D Q.R/ as a submodule is not factorable.

Corollary 6 If M is a factorable module containing an element x ¤ 0 which has
every non-zero element of R as R-divisor, then R is a field.

Proof By Proposition 2 (1))(2), x has a greatest R-divisor t. By assumption, t2

divides t, whence t 2 R�. As by assumption, any non-zero element of R divides t,
R n 0 � R�, i.e. R is a field. ut

Factorability of modules have consequences for the base ring:

Corollary 7 R2 is factorable if and only if R is a GCD-domain. In particular, if R
satisfies accp, R2 is factorable if and only if R is factorial.

Proof Let r; s; t 2 R. It is easily seen that t is a greatest R-divisor of .r; s/ 2 R2 if
and only if t is a greatest common divisor of r and s. Thus the first assertion follows
from Proposition 2 (1),(2), the second from [13, Thm. 2.22]. ut
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Corollary 8 If M is factorable and R satisfies accp, then M satisfies accc.

Proof Let .Rxi/i2I be any non-empty family of cyclic submodules of M. By
Proposition 2 (1))(5), for each i 2 I, xi D siyi for some si 2 R and primitive
yi 2 M. Then .Rsi/i2I is a non-empty family of principal ideals of R, whence has
a maximal element Rsj for some j 2 I. Then Rxj D Rsjyj is a maximal element of
.Rxi/i2I : let i 2 I and Rxj � Rxi. Then xj D rxi for some r 2 R; whence sjyj D rsiyi.
If sj D 0, the assertion is clear; otherwise, sj D trsi, yi D tyj for some t 2 R� by
Lemma 6 e). By choice of j, Rsj D Rsi, whence r 2 R� and thus Rxj D Rxi. ut
Corollary 9 If M is factorable and R satisfies accp, then any submodule of M is
atomic.

Proof Immediate by Corollary 8 and Lemma 7 b). ut
If M is factorable, then M is atomic (by Proposition 2) and every two-element

R-sequence is an M-sequence (by Corollary 3). In case of GCD-domains there is a
converse:

Corollary 10 Let R be a GCD-domain. If M is atomic and every two-element R-
sequence is an M-sequence, then M is factorable.

Proof By Proposition 2 (4))(1), it is sufficient to prove that every irreducible
element of M is primitive. Let x 2 M be irreducible and y 2 M, r; s 2 R n 0 be
such that rx D sy. Let d be a greatest common divisor of r; s; then r D r0d, s D s0d
for some relatively prime elements r0; s0 2 R. Moreover, r0x D s0y and s0; r0 is an
R-sequence; by assumption, s0; r0 is an M-sequence, whence s0 is an R-divisor of x.
As x is irreducible, s0 2 R� and x is an M-divisor of y. ut

4 Factorable Modules over Factorial Domains

The next definition reflects a straightforward approach to the generalization of UFDs
to modules, cf. [17–20]. The subsequent propositions and its corollaries explain the
role of factorial domains in this context.

Definition 2 M is called factorial, if M ¤ 0 and every non-zero element x of
M has a representation x D r1 � � � rny with atoms ri .i D 1; : : : ; n/ of R, y an
irreducible element of M and this representation is unique up to units of R; that
is, if x D s1 � � � smz is another representation with atoms si .i D 1; : : : ;m/ of R
and an irreducible element z of M, then n D m, there are units ui; u 2 R� and a
permutation � of f1; : : : ; ng such that ri D uis�.i/ .i D 1; : : : ; n/ and y D uz.

Proposition 3 The following conditions are equivalent:

(1) M is factorial
(2) R is atomic and M is factorial
(3) R is a factorial domain, M ¤ 0 and M is factorable
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(4) M ¤ 0 and every non-zero element x of M has a representation x D r1 � � � riy
with atoms r1; : : : ; ri of R and an irreducible element y of M; moreover, every
atom of R is a prime element of R and every irreducible element of M is primitive

(5) M ¤ 0 and every non-zero element x of M has a representation x D r1 � � � riy
with atoms r1; : : : ; ri of R, y a primitive element of M and this representation is
unique up to units of R.

Proof (1))(2): To prove that R is atomic, it suffices to show that M satisfies the
assumptions of Lemma 1. Let x 2 M, x ¤ 0, and x D r1 : : : rky with non-units
r1; : : : ; rk of R and y 2 M. Further, by (1), write x D s1 � � � smz with atoms si

.i D 1; : : : ;m/ of R and an irreducible element z of M; j.x/ � m is independent of
the choice of atoms si .i D 1; : : : ;m/ of R and irreducible element z of M. We prove
now: k � j.x/. By (1), rky D rk;1 � � � rk;mk yk�1 with atoms rk;1; : : : ; rk;mk of R and an
irreducible element yk�1of M. It follows mk � 1; otherwise, rky D yk�1 would be
irreducible, i.e. rk a unit of R, a contradiction. Continuing similarly with rk�1yk�1
etc., we obtain a representation of x D r1 � � � rky D r1 � � � rk�1rk;1 � � � rk;mk yk�1 D
r1;1 � � � r1;m1 � � � rk�1;1 � � � rk�1;mk�1rk;1 � � � rk;mk y1 with atoms r1;1; : : : ; rk;mk of R, an

irreducible element y1 of M and mj � 1 for j D 1; : : : ; k. Thus k �
kP

jD1
mj D j.x/ by

assumption (1). (2))(3): As M ¤ 0, M contains an irreducible element m. R is a
factorial domain: by assumption (2), any non-zero element r of R has a factorization
into atoms and this factorization is unique up to units of R, because that is the case
for the element rm of M. M is factorable by Proposition 2 (3))(1). (3))(4) follows
from basic properties of factorial domains and Proposition 2 (1))(3), (4). (4))(5)
is clear. (5))(1) follows by Lemma 6 d). ut
Proposition 4 Let R be a factorial domain. The following conditions are equiva-
lent:

(1) M is factorable
(2) M is a submodule of a factorable R-module and every two-element R-sequence

is an M-sequence
(3) M has fdp and every two-element R-sequence is an M-sequence
(4) M satisfies accc and every two-element R-sequence is an M-sequence
(5) M is atomic and every two-element R-sequence is an M-sequence.

Proof (1))(2) follows by Corollary 3. (2))(3) by Proposition 2 (1))(2) and the
fact that R is factorial. (3))(4) by definition of accc. (4))(5) by Lemma 7 b).
(5))(1) by Corollary 10. ut

The condition “every two-element R-sequence is an M-sequence” has some
remarkable equivalencies, cf. Proposition 1.

Corollary 11 Let R be a factorial domain and M be a flat R-module. Then the
following conditions are equivalent:

(1) M is factorable
(2) M is a submodule of a factorable R-module
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(3) M has fdp
(4) M satisfies accc
(5) M is atomic.

Proof If M is flat, every two-element R-sequence is an M-sequence by Lemma 3,
whence Proposition 4 implies the assertion. ut

The next two corollaries describe in some aspects submodules of factorable
modules.

Corollary 12 If R is a factorial domain and .Ni/i2I a non-empty family of
factorable submodules of M, then N �

T
i2I Ni is factorable. In particular,

any submodule of a factorable R-module is contained in a smallest factorable
submodule.

Proof By Proposition 4 (2))(1), it is sufficient to show that any R-sequence r; s is
an N-sequence. Let r; s be an R-sequence and x; y 2 N such that rx D sy. Then, by
Proposition 4 (1))(2), for each i 2 I, y D rzi for some zi 2 Ni. M being torsion-free
implies zi D zj for each j 2 I, i.e. r is an N-divisor of y. ut
Corollary 13 If R is a factorial domain, the following conditions are equivalent:

(1) M is a submodule of a factorable R-module
(2) For each non-zero x 2 M there is a non-zero r 2 R such that for any s 2 R the

R-divisors of sx divide sr
(3) For each prime ideal P of height 1 of R, MP is a factorable RP-module and each

non-zero x 2 bM is irreducible in all but a finite number of the MP’s
(4) bM is factorable
(5) bM has fdp
(6) bM satisfies accc
(7) bM is atomic.

Moreover, if any of these conditions hold, then bM is isomorphic to the
smallest factorable submodule of any factorable R-module containing M.

Proof (1))(2): Let N be a factorable R-module containing M and x 2 M, x ¤ 0.
Then x has a greatest R-divisor r in N, and for every s 2 R the greatest R-divisor of sx
in N is sr by Corollary 5 c), whence the assertion follows. (2))(3): Let P be a prime
ideal of R of height 1, i.e. P D Rp for some prime element p of R. To show that MP is
a factorable RP-module, let x 2 M, x ¤ 0 and t 2 RnP; moreover, choose r 2 R, r ¤
0 fulfilling the condition in (2) for x. If x=t D .u=t0/.y=t00/ for some u 2 R, y 2 M
and t0; t00 2 RnP , then u is an R-divisor of xt0t00. Writing u D vpn for some v 2 RnP
and n = 0, that implies that pn divides t0t00r, whence pn divides r, thus proving that
any non-zero element of MP has a greatest RP-divisor, and the first assertion follows
by Proposition 2 (2))(1). By the above, if x is not irreducible in MP, then p divides
r. In other words, any non-zero element of M is irreducible in all but a finite number
of the MP’s, whence this is true for any non-zero element of bM too. (3))(4): Let
x 2 bM, x ¤ 0 and .pi/i2I be a representative family of non-associate prime elements
pi of R and put Pi � Rpi for i 2 I. Then for each i 2 I, a greatest RPi -divisor of
x in MPi is pni

i for some non-negative integer ni; by assumption (3), ni D 0 for all
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but finitely many i 2 I. It is easily checked that r �
Q

i2I
pni

i is a greatest R-divisor

of x in bM, and the proof is finished by Proposition 2 (2))(1). (4))(1) is obvious.
(4),(5),(6),(7) follows by Propositions 4 and 1, observing that .bM/P D MP

for each prime ideal P of height 1 of R, i.e. bbM D bM. To prove the last assertion, let
N be a factorable R-module containing M and denote by Q the smallest factorable
submodule of N containing M (see Corollary 12). Then for every prime ideal P of
R of height 1, MP can be identified with a submodule of QP, whence M � bM DT fMPjP 2 Spec.R/; ht.P/ D 1g � T fQPjP 2 Spec.R/; ht.P/ D 1g D bQ D Q by
Propositions 4 and 1. By (1))(4) above, bM is factorable, whence bM D Q. ut
Remark 3 Corollary 13 shows in particular that all submodules of factorial modules
have fdp. The following example shows that not every module having fdp is a
submodule of a factorial module (cf. [8, 2.3 Example]). Put R � kŒX;Y�, a
polynomial ring in two variables X;Y over a field k, and M � RŒX=Y� � K D Q.R/.
To prove that M is not a submodule of a factorable R-module, observe that for
any m > 0, 1=Ym D .X=Y/m.1=Xm/ 2 T fMPjP 2 Spec.R/; ht.P/ D 1g D bM,
whence the element 1=Y D Ym.1=YmC1/ of bM does not have a greatest R-divisor; in
particular, bM is not factorable and the assertion follows by Corollary 13. To prove
that M has fdp, let x 2 M, x ¤ 0. Then Ymx 2 R for some m � 0 and x has
only finitely many R-divisors up to units if Ymx has so; in other words, we can
assume x 2 R. Let p be a prime element of R such that p is not associated to Y .
If m � 0 and pm is an R-divisor of x, then x D pm.a=Yn/ for some n � 0 and
some a 2 R, i.e. pm divides Ynx. By assumption on p, pm divides x in R. Thus
we have shown that the only prime powers of an R-divisor of x are the prime
powers occurring in a factorization of x in prime elements of R and—possibly—
prime powers of Y . To finish the proof, we have to show that not arbitrarily large
powers of Y are R-divisors of x. Write x D Ynz with n � 0 and z 2 R such that
Y does not divide z. Let m > n and assume that Ym is an R-divisor of x in M.

Then x=Ym D z=Ym�n D
jP

iD0
ri.X=Y/i D

jP

iD0
riXiYj�i=Yj for some j > 0 and some

ri 2 R for i D 0; : : : ; j such that Y does not divide rj. This implies m � n D j and

z D
jP

iD0
riXiYj�i 2 Ij, where I � RX C RY , and thus x D Ynz 2 InIj D Im. Now,

if arbitrarily large powers of Y would be R-divisors of x, that implies x 2 T

m�0
Im; by

Krull’s Intersection Theorem [5, Corollary 10.18] then x D 0, a contradiction.
Factorial modules behave well with respect to direct products or sums:

Proposition 5 Let R be a factorial domain and .Mi/i2I be any family of R-modules.
Then the following assertions are equivalent:

(1) Mi is factorable for each i 2 I.
(2) The direct product

Q

i2I
Mi is factorable.

(3) The direct sum
L

i2I
Mi is factorable.
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Proof The assertion is obvious, as far as the torsion-freeness of the modules in
question is concerned. (1))(2): Let x D .xi/i2I be an element of the direct product
of the Mi. By Proposition 2 (1))(2), for each i 2 I there is a greatest R-divisor ri

of xi. Let d be a greatest common divisor of friji 2 Ig. Then d is a greatest R-divisor
of x: obviously, d is an R-divisor of x and if x D sy for some s 2 R and an element y
of
Q

i2I
Mi, then s divides ri for each i 2 I, whence s divides d. (2))(3): As the direct

sum is torsion-closed in the direct product, the assertion follows by Lemma 7 c).
(3))(1): Lemma 7 c) applies again: each Mi is torsion-closed in

L

i2I
Mi. ut

An immediate consequence is the following corollary:

Corollary 14 If R is a factorial domain, for any set I, RI and R.I/ are factorable;
moreover, any projective R-module is factorable.
Even more is true:

Corollary 15 If R is a factorial domain, any locally projective R-module is
factorable.

Proof As any locally projective R-module is isomorphic to a pure submodule
of some RI [12, Proposition 3.39], the assertion follows from Corollary 14 and
Lemma 7 c). ut
Proposition 6 Let R be a factorial domain. The R-module M� D HomR.M;R/ is
factorable. More precisely, if f 2 M� then:

a) Any greatest common divisor of f .M/ is a greatest R-divisor of f .
b) f is irreducible in M� if and only if the greatest common divisor of f .M/ is 1.

Proof Clearly, M� is torsion-free. Let f 2 M�. To prove a), let r be a greatest
common divisor of f .M/. Then for every x 2 M there is a unique g.x/ 2 R such
that f .x/ D rg.x/; obviously, g 2 M�, whence r is an R-divisor of f . Moreover, if
f D sh for some s 2 R and h 2 M�, s divides r. b) follows from a), as well as the
first assertion, taking Proposition 2 (2))(1) into account. ut
Corollary 16 If R is a factorial domain, any reflexive R-module is factorable.

Proof If M is reflexive, M is isomorphic to M��, whence factorable by Proposi-
tion 6. ut
Corollary 17 Let R be a Noetherian factorial domain and M a finitely generated
R-module. Then M is factorable if and only if it is reflexive.

Proof If M is factorable, then M is reflexive by Corollary 4. The other direction is
clear by Corollary 16. ut
Proposition 7 If R is a factorial domain, any torsion-free content R-module is
factorable.

Proof Let M be a torsion-free content module; denote for every x 2 M by c.x/ the
content of x, i.e. c.x/ is the smallest ideal I of R such that x 2 IM. We show that
for each non-zero element x of M, a greatest common divisor r of c.x/ is a greatest
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R-divisor of x: From x 2 c.x/M, we conclude x 2 rM; moreover, if x D sy for some
s 2 R, y 2 M, then c.x/ � sc.y/ by definition of the content ideal, whence s divides
r. The proof is finished by applying Proposition 2. ut
Remark 4 If R is a factorial Hilbert domain, any content R-module is torsion-
free [10, (2.17)]. Further, every locally projective module is torsion-free and a
content module by [12, Proposition 3.38], whence Corollary 15 is a consequence
of Proposition 7 too.

The next corollary is a generalization of Corollary 14:

Corollary 18 If R is a factorial domain, any flat Mittag-Leffler R-module is
factorable.

Proof By Proposition 7, it is sufficient to show that any flat Mittag-Leffler-module
is a content module. Let M be a flat Mittag-Leffler-module and .I�/�2ƒ a family of
ideals I� of R. As M is flat, the canonical exact sequence

T

�2ƒ
I� ! R ! Q

�2ƒ
R=I�

yields the exact sequence
T

�2ƒ
I� �R M ! M ! .

Q

�2ƒ
R=I�/ �R M; as M is a Mittag-

Leffler-module, the canonical morphism .
Q

�2ƒ
R=I�/ �R M ! Q

�2ƒ
..R=I�/ �R M/

is injective. Thus the kernels of the canonical maps M ! .
Q

�2ƒ
R=I�/ �R M and

M ! Q

�2ƒ
..R=I�/�R M/ coincide, whence .

T

�2ƒ
I�/M D T

�2ƒ
.I�M/. ut

5 Factorable Ring Extensions

In this section the results of the preceding sections are specialized to the case of an
extension ring which is simultaneously a factorable module.

Definition 3 A factorable extension is any ring extension R � S such that R is a
domain and S is a torsion-free factorable R-module.

Proposition 8 Let R � S be an extension of domains. Consider the following
conditions:

(1) R � S is a factorable extension
(2) S \ Q.R/ D R and any two-element R-sequence is an S-sequence
(3) S� \ R D R� and any two-element R-sequence is an S-sequence.

Then:

a) (1) implies (2) and (2) implies (3).
b) If R is a GCD-domain and S satisfies accp, then (3) implies (1).

Proof a) (1))(2): Let x 2 S \ Q.R/, i.e. x D r=s for some r; s 2 R, s ¤ 0.
Then rS D sxS � sS, whence s divides r by Corollary 5 a), i.e. x 2 R. The
second assertion follows by Corollary 3. (2))(3) by Lemma 2 a). b) follows by
Lemma 2 b), Lemma 7 b) and Corollary 10. ut
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The following corollaries are easily derived from the results of the subsequent
sections.

Corollary 19 Let R � S be an extension of domains, R a GCD-domain, and S
satisfying accp. If S is a flat R-module, the following conditions are equivalent:

(1) R � S is a factorable extension
(2) S \ Q.R/ D R
(3) S� \ R D R�.

Proof As S is flat, any two-element R-sequence is an S-sequence by Lemma 3; thus
Proposition 8 gives the result. ut
Corollary 20 Let R � S be an extension of domains, R a GCD-domain, and
S satisfying accp. If S is a faithfully flat R-module, then R � S is a factorable
extension.

Proof By Corollary 19, only S� \ R D R� has to be shown. Let r 2 S� \ R, i.e.
rs D 1 for some s 2 S. Then s 2 R by the linear extension property [7, I, §3.7,
Proposition 13]. ut
Corollary 21 Let R � S be an extension of Krull domains such that R is factorial.
If R � S satisfies PDE, the following conditions are equivalent:

(1) R � S is a factorable extension
(2) S \ Q.R/ D R
(3) S� \ R D R�.

Proof Immediate by Proposition 8 and Lemma 5. ut
Corollary 22 Let R � S be an extension of Krull domains such that R is factorial.
If S is integral over R, then R � S is a factorable extension.

Proof R � S satisfies PDE by [7, VII, §1.10] and by Corollary 21 (2))(1), the
proof is finished. ut

Recall that a subring R of a ring S is called factorially closed in S, if for all
non-zero x; y 2 S, the condition xy 2 R implies x 2 R and y 2 R.

Lemma 8 Let R � S be an extension of domains such that S is factorial.

a) The following conditions are equivalent:

(1) R is factorially closed in S
(2) R is factorial, S� D R� and every prime element of R is a prime element

of S.

b) If R is factorially closed in S, then R � S is a factorable extension.

Proof a) (1))(2): The first and the second assertion is clear. To prove the third one,
observe that any prime element of R is by assumption (1) an atom in the factorial
domain S, whence a prime element of S. (2))(1): Let x; y 2 S be such that xy 2 R.
We prove by induction on the number n of the prime divisors of xy in R: x 2 R and
y 2 R. In case n D 0, the assertion follows from S� D R�. Assume now n > 0
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and choose a prime element p of R dividing xy. By assumption (2), p divides x or y
in S. Assume, e.g., x D px0 for some x0 2 S. Then xy D px0y and thus x0y 2 R by
assumption on the factoriality of R. Applying the induction hypothesis yields x0 2 R
and y 2 R, whence x D px0 2 R too. b): By a), every prime element of R is a prime
element of S, in particular, prime to the R-module S; by Proposition 1 (3))(2), any
two-element R-sequence is an S-sequence. Moreover, by a), R is factorial, S� D R�
and the assertion follows by [7, VII, §1.3, Theorem 2] and Proposition 8 b). ut

The next proposition is an analogue to weak content algebras [22, Theorem 1.2]:

Proposition 9 Let R be a factorial domain and R � S a factorable extension. The
following conditions are equivalent:

(1) Every prime element of R is a prime element of S or is a unit of S
(2) The product of greatest R-divisors of any two elements x; y of S has the same

prime divisors as any greatest R-divisor of xy
(3) The product of any two irreducible elements of the R-module S is irreducible.

Proof (1))(2): Let x; y 2 S have greatest R-divisors r; s respectively; further, let t
be a greatest R-divisor of xy. Clearly, rs is an R-divisor of xy, i.e. rs divides t; thus, it
has only to be shown that any prime divisor p of t divides r or s, i.e. p divides x or y in
S. But this is clear from assumption (1), either p being a prime element of S dividing
xy in S or p being a unit in S. (2))(3): Clearly, an element is irreducible if and only
if it has 1 as greatest R-divisor. (3))(1): Let p be a prime element of R, which is
not a unit in S; further, let x; y 2 S be such that xy 2 pS. Choose a greatest R-divisor
r (resp. s) of x (resp. y). Then x D ru, y D sv for some irreducible elements u; v of
the R-module S by Proposition 2. By assumption (3), uv is irreducible, whence rs is
a greatest R-divisor of xy by Proposition 2. Thus p divides rs, i.e. p divides r or s,
whence x 2 pS or y 2 pS. ut
Corollary 23 Let R � S be an extension of domains such that S is factorial.

The following conditions are equivalent:

(1) R is factorially closed in S
(2) S� D R� and S is a factorial R-module such that the product of any two

irreducible elements of the R-module S is irreducible.

Proof Immediate by Proposition 3, Lemma 8, and Proposition 9. ut

6 Notes

Historically, Nicolas in [17–20] first defined factorial modules and afterwards
factorable ones. To clarify and to generalize ideas, we show in Sect. 3 that the
assumption on the factoriality of the base domain is not always needed. Basically,
the results proven in Sect. 3 seem to be known to Nicolas, Costa [8], and Lu
[16] (at least for factorial domains). Their work was substantially complemented
by Anderson and Valdes-Leon [4, Theorem 4.4], cf. Proposition 3. In Sect. 4, we
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follow Costas ideas and results [8] concerning fdp, and Lu [16] concerning prime
elements prime for a module. Our applications of the theory developed so far to
content modules, flat Mittag-Leffler modules or locally projective modules seem to
be new. The basic results of Sect. 5 are due to Nicolas [19, 20]. Using that, Costa
investigated symmetric algebras [8] and defined and analyzed Krull modules [9]
(with J. L. Johnson). Other types of ring extensions, namely MŒX� or MŒŒX�� are
investigated by Lu [16]. For connections with faithful multiplication modules, cf.
Kim, H. and Kim, M.O. [15]. The characterization of factorially closed extensions
of factorial domains (Proposition 9, Corollary 23) seems to be new.

The topic of this note are torsion-free modules over domains; similarly to
generalizations of UFDs, generalizations to arbitrary modules over arbitrary com-
mutative rings have been considered by Anderson and Valdes-Leon [4, Theorem
2.8, Theorem 2.9]. This attempt has been continued by Nikseresht and Azizi [21].

Acknowledgements I thank the referee for detailed suggestions improving substantially the
clearness of the paper.
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n-Absorbing Ideals of Commutative Rings and
Recent Progress on Three Conjectures: A Survey

Ayman Badawi

Abstract Let R be a commutative ring with 1 ¤ 0. Recall that a proper ideal I
of R is called a 2-absorbing ideal of R if a; b; c 2 R and abc 2 I, then ab 2 I or
ac 2 I or bc 2 I . A more general concept than 2-absorbing ideals is the concept
of n-absorbing ideals. Let n � 1 be a positive integer. A proper ideal I of R is
called an n-absorbing ideal of R if a1; a2; : : : ; anC1 2 R and a1a2 � � � anC1 2 I,
then there are n of the ai’s whose product is in I. The concept of n-absorbing ideals
is a generalization of the concept of prime ideals (note that a prime ideal of R is a
1-absorbing ideal of R). In this survey article, we collect some old and recent results
on n-absorbing ideals of commutative rings.
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1 Introduction

We assume throughout that all rings are commutative with 1 ¤ 0. Over the past
several years, there has been considerable attention in the literature to n-absorbing
ideals of commutative rings and their generalizations, for example see [1–62]. We
recall from [6] that a proper ideal I of R is called a 2-absorbing ideal of R if
a; b; c 2 R and abc 2 I, then ab 2 I or ac 2 I or bc 2 I . A more general
concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let n � 1 be
a positive integer. A proper ideal I of R is called an n-absorbing ideal of R as
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in [3] if a1; a2; : : : ; anC1 2 R and a1a2 � � � anC1 2 I, then there are n of the ai’s
whose product is in I. The concept of n-absorbing ideals is a generalization of the
concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R).

Let R be a (commutative) ring. Then dim.R/ denotes the Krull dimension of R,
Spec.R/ denotes the set of prime ideals of R, Max.R/ denotes the set of maximal
ideals of R, T.R/ denotes the total quotient ring of R, qf .R/ denotes the quotient
field of R when R is an integral domain, and Nil.R/ denotes the ideal of nilpotent
elements of R. If I is a proper ideal of R, then Rad.I/ and MinR.I/ denote the radical
ideal of I and the set of prime ideals of R minimal over I, respectively. We will often
let 0 denote the zero ideal.

The purpose of this survey article is to collect some properties of n-absorbing
ideals in commutative rings. In particular, we state some recent progresses on three
outstanding conjectures (see Sect. 5). Our aim is to give the flavor of the subject, but
not be exhaustive.

We recall some background material. A prime ideal P of a ring R is said to be a
divided prime ideal if P � xR for every x 2 R n P; thus, a divided prime ideal is
comparable to every ideal of R. An integral domain R is said to be a divided domain
if every prime ideal of R is a divided prime ideal.

An integral domain R is said to be a valuation domain if either xjy or yjx (in R)
for all 0 ¤ x; y 2 R (a valuation domain is a divided domain). If I is a nonzero
fractional ideal of a ring R, then I�1 D f x 2 T.R/ j xI � R g. An integral domain R
is called a Dedekind (resp., Prüfer) domain if II�1 D R for every nonzero fractional
ideal (resp., finitely generated fractional ideal) I of R. Moreover, an integral domain
R is a Prüfer domain if and only if RM is a valuation domain for every maximal ideal
M of R.

Some of our examples use the R.C/M construction. Let R be a ring and M an R-
module. Then R.C/M D R�M is a ring with identity .1; 0/ under addition defined
by .r;m/ C .s; n/ D .r C s;m C n/ and multiplication defined by .r;m/.s; n/ D
.rs; rnC sm/.

2 Basic Properties of n-Absorbing Ideals

Let I be a proper ideal of R. If I be an n-absorbing ideal of R for some positive
integer n, then recall from [3] that !R.I/ D minf n j I is an n-absorbing ideal of
R g; otherwise, set !R.I/ D 1. It is convenient to define !R.R/ D 0. We start by
recalling some basic properties of n-absorbing ideals.

Theorem 2.1

1. ([6, Theorem 2.3]). Let I be a 2-absorbing ideal of a ring R. Then there are at
most two prime ideals of R that are minimal over I (i.e., jMinR.I/j D 1 or 2).

2. ([6, Theorems 2.1 and 2.4]). Let I be a 2-absorbing ideal of a ring R. Then
Rad.I/ is a 2-absorbing ideal of R and .Rad.I//2 � I.

3. ([3, Theorem 2.5]). Let I be an n-absorbing ideal of a ring R. Then there are at
most n prime ideals of R minimal over I. Moreover, jMinR.I/j � !R.I/.
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4. ([3, Theorem 2.9]). Let M1; : : : ;Mn be maximal ideals of a ring R (not
necessarily distinct). Then I D M1 � � �Mn is an n-absorbing ideal of R.
Moreover, !R.I/ � n.

5. ([6, Theorem 2.4]). Let I be an 2-absorbing ideal of a ring R with exactly two
minimal prime ideals P1;P2 over I. Then P1P2 � I.

6. ([3, Theorem 2.14]). Let I be an n-absorbing ideal of a ring R such that I has
exactly n minimal prime ideals, say P1; : : : ;Pn. Then P1 � � �Pn � I. Moreover,
!R.I/ D n.

7. ([6, Theorem 2.5]). Let I be a 2-absorbing ideal of R such that Rad.I/ D P
is a prime ideal of R and suppose that I ¤ P. For each x 2 P n I let
Bx D .I WR x/ D .I WR x/ D fy 2 R j yx 2 Ig. Then Bx is a prime ideal of R
containing P. Furthermore, either By � Bx or Bx � By for every x; y 2 Pn I.

8. ([6, Theorem 2.6]). Let I be a 2-absorbing ideal of R such that I ¤ Rad.I/ D
P1\P2, where P1 and P2 are the only nonzero distinct prime ideals of R that
are minimal over I. Then for each x 2 Rad.I/ n I, Bx D .I WR x/ D fy 2 R j
xy 2 Ig is a prime ideal of R containing P1 and P2. Furthermore, either
By � Bx or Bx � By for every x; y 2 Rad.I/ n I.

9. ([3, Theorem 3.4]). Let I be an n-absorbing ideal of a ring R. Then .I WR x/ D
fy 2 R j yx 2 Ig is an n-absorbing ideal of R containing I for all x 2 R n I.
Moreover, !R.Ix/ � !R.I/ for all x 2 R.

10. ([3, Theorem 3.5]). Let n � 2 and I � Rad.I/ be an n-absorbing ideal of a ring
R. Suppose that x 2 Rad.I/n I, and let m.� 2/ be the least positive integer such
that xm 2 I. Then .I WR xm�1/ D fy 2 R j yxm�1 2 Ig is an .n�mC1/-absorbing
ideal of R containing I.

11. ([3, Corollary 2.6]). Let n � 2 and I � Rad.I/ be an n-absorbing ideal of a
ring R. Suppose that x 2 Rad.I/n I and xn 2 I, but xn�1 … I. Then .I WR xn�1/ D
fy 2 R j yxn�1 2 Ig is a prime ideal of R containing Rad.I/.

12. ([3, Corollary 2.7]). Let n � 2 and I be an n-absorbing P-primary ideal of a
ring R for some prime ideal P of R. If x 2 Rad.I/ n I and n is the least positive
integer such that xn 2 I, then .I WR xn�1/ D fy 2 R j yxn�1 2 Ig D P.

13. ([3, Theorem 3.8]). Let n � 2 and I � Rad.I/ be an n-absorbing ideal of a ring
R such that I has exactly n minimal prime ideals, say P1; : : : ;Pn. Suppose that
x 2 Rad.I/ n I, and let m.� 2/ be the least positive integer such that xm 2 I.
Then every product of n � mC 1 of the Pi’s is contained in .I WR xm�1/ D fy 2
R j yxm�1 2 Ig.

14. ([3, Theorem 3.9]). Let I be a P-primary ideal of a ring R such that Pn � I for
some positive integer n (for example, if R is a Noetherian ring), and let x 2 PnI.
If xm … I for some positive integer m, then .I WR xm/ D fy 2 R j yxm 2 Ig is an
.n � m/-absorbing ideal of R.

Assume that I is a proper ideal of R such that I ¤ Rad.I/. The following two
results give a characterization of 2-absorbing ideals in terms of .I WR x/ D fy 2 R j
yx 2 Ig, where x 2 Rad.I/ n I.

Theorem 2.2 ([6, Theorem 2.8]) Let I be an ideal of R such that I ¤ Rad.I/
and Rad.I/ is a prime ideal of R. Then the following statements are equivalent:
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1. I is a 2-absorbing ideal of R;
2. Bx D fy 2 R j yx 2 Ig is a prime ideal of R for each x 2 Rad.I/ n I.

Theorem 2.3 ([6, Theorem 2.9]) Let I be an ideal of R such that I ¤ Rad.I/ D
P1\P2, where P1 and P2 are nonzero distinct prime ideals of R that are minimal
over I. Then the following statement are equivalent:

1. I is a 2-absorbing ideal of R;
2. P1P2 � I and Bx D fy 2 R j yx 2 Ig is a prime ideal of R for each

x 2 Rad.I/ n I.
3. Bx D fy 2 R j yx 2 Ig is a prime ideal of R for each x 2 .P1 [ P2/ n I.

In view of Theorem 2.2, the following is an example of a prime ideal P of an
integral domain R such that P2 is not a 2-absorbing ideal of R.

Example 2.4 ([6, Example 3.9]) Let R D ZC 6XZŒX� and P D 6XZŒX�. Then
P is a prime ideal of R. Since 6X2 2 P n P2 and B6X2 D fy 2 R j 6X2y 2 P2g D
6Z C 6XZŒX� is not a prime ideal of R, P2 is not a 2-absorbing ideal of R by
Theorem 2.2.
The following result characterizes all P-primary ideals that are 2-absorbing ideals.

Theorem 2.5 ([6, Theorem 3.1]) Let I be a P-primary ideal of a ring R for some
prime ideal P of R. Then I is a 2-absorbing ideal of R if and only if P2 � I. In
particular, M2 is a 2-absorbing ideal of R for each maximal ideal M of R.

The following is an example of a prime ideal P of an integral domain R such
that P2 is a 2-absorbing ideal of R, but P2 is not a P-primary ideal of R.

Example 2.6 ([6, Example 3.11]) Let R D ZC 3xZŒX� and let P D 3XZŒX� be a
prime ideal of R. Since 3.3X2/ 2 P2, we conclude that P2 is not a P-primary ideal
of R. It is easy to verify that if d 2 P n P2, then either Bd D fy 2 R j yd 2 Ig D P
or Bd D 3ZC 3XZŒX� is a prime ideal of R. Hence P2 is a 2-absorbing ideal by
Theorem 2.2.

Let I be an ideal of R such that Rad.I/ D P is a nonzero divided prime ideal of
R. The following result characterizes all such ideals that are 2-absorbing ideals.

Theorem 2.7 ([6, Theorem 3.6]) Suppose that P is a nonzero divided prime ideal
of R and I is an ideal of R such that Rad.I/ D P. Then the following statements
are equivalent:

1. I is a 2-absorbing ideal of R;
2. I is a P-primary ideal of R such that P2 � I.

Theorem 2.8 ([6, Theorem 3.7] and [3, Theorem 3.3]) Let n � 1 be a positive
integer. Suppose that Nil.R/ and P are divided prime ideals of a ring R such
that P ¤ Nil.R/. Then Pn is a P-primary ideal of R, and thus Pn is an n-absorbing
ideal of R with !R.Pn/ � n. Moreover, !R.Pn/ D n if PnC1 � Pn.

In view of Theorems 2.5, 2.7, and 2.8, for n � 3, we have the following two
results.
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Theorem 2.9 ([3, Theorem 3.1]) Let P be a prime ideal of a ring R, and let I be a
P-primary ideal of R such that Pn � I for some positive integer n (for example, if R
is a Noetherian ring). Then I is an n-absorbing ideal of R. Moreover, !R.I/ � n. In
particular, if Pn is a P-primary ideal of R, then Pn is an n-absorbing ideal of R with
!R.Pn/ � n, and !R.Pn/ D n if PnC1 � Pn.

Theorem 2.10 ([3, Theorem 3.2]) Let P be a divided prime ideal of a ring R, and
let I be an n-absorbing ideal of R with Rad.I/ D P. Then I is a P-primary ideal
of R.

Mostafanasab and Darani in [50] proved the following result.

Theorem 2.11 ([50, Theorem 2.15]) (n-absorbing avoidance theorem). Let
I1; I2; : : : ; Im .m � 2/ be ideals of R such that Ii is an ni-absorbing ideal of R
for every 3 � i � m. Suppose that Ii ª .Ij WR xnj�1/ � R for every x 2 Rad.Ij/ n Ij

with i ¤ j. If I is an ideal of R such that I � I1 [ I2 [ � � � [ Im, then I � Ii for some
1 � i � m.

3 Extensions of n-Absorbing Ideals

The following results show the stability of n-absorbing ideals in various ring-
theoretic constructions. These results generalize well-known results about prime
ideals.

Theorem 3.1

1. ([3, Theorem 4.1]). Let I be an n-absorbing ideal of a ring R, and let S be a
multiplicatively closed subset of R with I \ S D ;. Then IS is an n-absorbing
ideal of RS. Moreover, !RS.IS/ � !R.I/.

2. Let f W R �! T be a homomorphism of rings.

a. ([3, Theorem 4.1]). Let J be an n-absorbing ideal of T. Then f �1.J/ is an
n-absorbing ideal of R. Moreover, !R.f �1.J// � !T.J/.

b. Let f be surjective and I be an n-absorbing ideal of R containing ker.f /. Then
f .I/ is an n-absorbing ideal of T if and only if I is an n-absorbing ideal of R.
Moreover, !T.f .I// D !R.I/. In particular, this holds if f is an isomorphism.

In the following result, we determine the n-absorbing ideals in the product of any
two rings.

Theorem 3.2 ([3, Theorem 4.7]) Let I1 be an m-absorbing ideal of a ring R1 and
I2 an n-absorbing ideal of a ring R2. Then I1 � I2 is an .mC n/-absorbing ideal of
the ring R1 � R2. Moreover, !R1�R2 .I1 � I2/ D !R1 .I1/C !R2 .I2/.
Let R be a ring, M be an R-module, and T D R.C/M. If I is an n-absorbing ideal
of R, then it is easy to show that I.C/M is an n-absorbing ideal of T . In fact,
!T.I.C/M/ D !R.I/. We have the following result for the special case T D R.C/R,
where R is an integral domain.
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Theorem 3.3 ([3, Theorem 4.10]) Let D be an integral domain, R D D.C/D, and
I be an n-absorbing ideal of D that is not an .n � 1/-absorbing ideal of D. Then
0.C/I is an .nC 1/-absorbing ideal of R that is not an n-absorbing ideal of R; so
!R.0.C/I/ D !D.I/C 1. In particular, if P is a prime ideal of D, then 0.C/P is a
2-absorbing ideal of R.

Let T be a ring extension of an integral domain D and P a prime ideal of D. Then
0.C/P need not be a 2-absorbing ideal of the ring R D D.C/T; so Theorem 3.3
does not extend to general R. We have the following example.

Example 3.4 ([3, Example 4.12]) Let R D Z.C/Q. Then I D 0.C/2Z is an ideal
of R with Rad.I/ D 0.C/Q. Let x D .0; 1

2
/ 2 Rad.I/ n I. Then Bx D .I WR x/ D

.4Z/.C/Q is not a prime ideal of R (!R.Bx/ D 2), and hence I is not a 2-absorbing
ideal of R by Theorem 2.2. In fact, one can easily show that I is not an n-absorbing
ideal of R for any positive integer n. For each positive integer n, let xi D .2; 0/

for 1 � i � n and xnC1 D .0; 1
2n�1 /. Then x1 � � � xnC1 D .0; 2/ 2 I, but no proper

subproduct of the xi’s is in I. Thus !R.I/ D1.
We next consider extensions of n-absorbing ideals of R in the polynomial ring

RŒX� and the power series ring RŒŒX��.

Theorem 3.5 Let I be a proper ideal of a ring R. Then

1. ([3, Theorem 4.13]). .I;X/ is an n-absorbing ideal of RŒX� if and only if I is an
n-absorbing ideal of R. Moreover, !RŒX�..I;X// D !R.I/.

2. ([3, Theorem 4.15]). IŒX� is a 2-absorbing ideal of RŒX� if and only if I is a 2-
absorbing ideal of R. (If n � 3 and I is an n-absorbing ideal of R, does it follow
that IŒX� is an n-absorbing ideal of RŒX�? (See Sect. 5.)

3. ([44, Proposition 2.13]) IŒŒX�� is a 2-absorbing ideal of RŒŒX�� if and only if I is
a 2-absorbing ideal of R (and therefore IŒX� is a 2-absorbing ideal of RŒX� if and
only if I is a 2-absorbing ideal of R).

Let K be a field. For rings of the form DC XKŒŒX��, where D is a subring of K,
we have the following result.

Theorem 3.6 ([3, Theorem 4.17]) Let D be a subring of a field K and R D D C
XKŒŒX��.

(a) If D is a field, then every proper ideal of R is an n-absorbing ideal of R for some
positive integer n.

(b) If D is a proper subring of K with qf .D/ D K, then the nonzero n-absorbing
ideals of R have the form I C XKŒŒX��, where I is an n-absorbing ideal of D, or
XmKŒŒX�� for m an integer with 1 � m � n. Moreover, !R.ICXKŒŒX��/ D !D.I/
and !R.XmKŒŒX��/ D m.

4 n-Absorbing Ideals in Specific Rings

If R is a Noetherian ring, then we have the following result.
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Theorem 4.1 ([3, Theorem 5.3]) Let R be a Noetherian ring. Then every proper
ideal of R is an n-absorbing ideal of R for some positive integer n.

A characterization of Dedekind domains in terms of 2-absorbing ideals is first
given in [6, Theorem 3.15] and a similar characterization of Dedekind domains in
terms of n-absorbing ideals (n � 2) is given in [3, Theorem 5.1].

Theorem 4.2 ([6, Theorem 3.15] and [3, Theorem 5.1]) If R be a Noetherian
integral domain. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. If I is an n-absorbing ideal of R, then I D M1 � � �Mm for maximal ideals

M1; : : : ;Mm of R with 1 � m � n.
Moreover, if I D M1 � � �Mn for maximal ideals M1; : : : ;Mn of a Dedekind

domain R which is not a field, then !R.I/ D n.

All 2-absorbing ideals of a valuation domain are determined in [6, Theorem 3.10].
If n � 3, then a similar result [3, Theorem 5.5] determines all n-absorbing ideals of
a valuation domain.

Theorem 4.3 ([6, Theorem 3.10] and [3, Theorem 5.5]) Let R be a valuation
domain and n a positive integer. Then the following statements are equivalent for
an ideal I of R.

(1) I is an n-absorbing ideal of R.
(2) I is a P-primary ideal of R for some prime ideal P of R and Pn � I.
(3) I D Pm for some prime ideal P.D Rad.I// of R and integer m with 1 � m � n.

Moreover, !R.Pn/ D n for P a nonidempotent prime ideal of R.

Theorem 4.4 ([50, Proposition 2.10]) Let V be a valuation domain with quotient
field K, and let I be a proper ideal of V. Then I is an n-absorbing ideal of V if and
only if whenever x1x2 � � � xnC1 2 I with x1; x2; : : : ; xnC1 2 K, then there are n of
x1; x2; : : : ; xnC1 whose product is in I.

All 2-absorbing ideals of a Prüfer domain are determined in [6, Theorem 3.14].

Theorem 4.5 ([3, Theorem 3.14]) Let R be a Prüfer domain and I be a nonzero
ideal of R. Then the following statements are equivalent:

1. I is a 2-absorbing ideal of R;
2. I is a prime ideal of R or I D P2 is a P-primary ideal of R or I D P1 \ P2,

where P1 and P2 are nonzero prime ideals of R.

If n is a positive integer and R is a Prüfer domain, then we have the following result.

Theorem 4.6 ([6, Theorem 5.7]) Let R be a Prüfer domain. Then an ideal I of
R is an n-absorbing ideal of R for some positive integer n if and only if I is a
product of prime ideals of R. Moreover, if P1; : : : ;Pk are incomparable prime ideals
of R and n1; : : : ; nk are positive integers with ni D 1 if Pi is idempotent, then
!R.P

n1
1 � � �Pnk

k / D n1 C � � � C nk.
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5 Strongly n-Absorbing Ideals and Recent Progresses on
Three Conjectures

It is well known that a proper ideal I of a ring R is a prime ideal of R if and only
if whenever I1I2 � I for ideals I1; I2 of R, then either I1 � I or I2 � I. Let n be
a positive integer. We recall from [3] that a proper ideal I of a ring R is a strongly
n-absorbing ideal if whenever I1 � � � InC1 � I for ideals I1; : : : ; InC1 of R, then the
product of some n of the Ij’s is in I. Thus a strongly 1-absorbing ideal is just a prime
ideal, and the intersection of n prime ideals is a strongly n-absorbing ideal. It is clear
that a strongly n-absorbing ideal of R is also an n-absorbing ideal of R, and in [6,
Theorem 2.13], it was shown that these two concepts agree when n D 2.

Theorem 5.1 ([6, Theorem 2.13]) Let I be a proper ideal of R. Then I is a 2-
strongly absorbing ideal of R if and only if I is a 2-absorbing ideal of R.

If R is a Prüfer domain and I is a proper ideal of R, it was shown in [3, Corollary
6.9] that I is an n-strongly absorbing ideal of R if and only if I is an n-absorbing
ideal of R..

Theorem 5.2 ([3, Corollary 6.9]) Let R be a Prüfer domain and n a positive
integer. Then an ideal I of R is a strongly n-absorbing ideal of R if and only if I
is an n-absorbing ideal of R.

In view of Theorem 5.1, the following result is a generalization of Theorem 2.5
[6, Theorem 3.1].

Theorem 5.3 ([3, Theorem 6.6]) Let I be a P-primary ideal of a ring R and n a
positive integer. Then the following statements are equivalent.

(1) I is an n-absorbing ideal of R and Pn � I.
(2) I is a strongly n-absorbing ideal of R.

In particular, if Pn is P-primary, then Pn is a strongly n-absorbing ideal of R.
For a Notherian ring R, we have the following result.

Theorem 5.4 ([3, Corollary 6.8]) Let R be a Noetherian ring. Then every proper
ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 5.5 ([3, Corollary 6.7]) Let M1; : : : ;Mn be maximal ideals of a ring R.
Then I D M1 � � �Mn is a strongly n-absorbing ideal of R.

In view of Theorem 5.1, the following result is a generalization of [6, Theorem
2.4].

Theorem 5.6 ([3, Theorem 6.2]) Let n be a positive integer and I a strongly n-
absorbing ideal of a ring R such that I has exactly m.� n/ minimal prime ideals
P1; : : : ;Pm. Then Pn1

1 � � �Pnm
m � I for positive integers n1; : : : ; nm with n D n1 C

� � � C nm. In particular, if Rad.I/ D P is a prime ideal of R, then Pn � I.

Theorem 5.7 ([50, Corollary 2.14]) Let Ii be a strongly ni-absorbing ideal of a
ring R for every 1 � i � m (m � 2/. If I is an ideal of R such that I � I1[ I2 � � �[ Im,
then Ini � Ii for some 1 � i � m.
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Three outstanding conjectures on n-absorbing ideals are the following (see
Anderson and Badawi [3] and also Cahen et al. [14, Problem 30]) :

1. Conjecture one. If an ideal of R is n-absorbing, then it is strongly n-absorbing.
2. Conjecture two. If an ideal I of R is n-absorbing, then IŒX� is an n-absorbing

ideal of RŒX�.
3. Conjecture three. If an ideal I of R is n-absorbing, then .Rad.I//n � I.

Laradji in [44] gave an affirmative answer for Conjecture three when n D 3. Note
that an affirmative answer for Conjecture three was given in Theorem 2.1(2) when
n D 2.

Theorem 5.8 ([44, Proposition 2.7]) Let I be a 3-absorbing ideal of R. Then
.Rad.I//3 � I.

Recently, Choi and Walker in [21, Theorem 1] gave an affirmative answer for
Conjecture three for any positive integer n.

Theorem 5.9 ([21, Theorem 1]) Let n be a positive integer and I be an n-
absorbing ideal of R. Then .Rad.I//n � I.

It was shown [3, Theorem 6.1] that Conjecture one implies Conjecture three.

Theorem 5.10 ([3, Theorem 6.1]) Let n be a positive integer and I be a strongly
n-absorbing ideal of R. Then .Rad.I//n � I.

Laradji in [44] showed that Conjecture two implies Conjecture one.

Theorem 5.11 ([44, Proposition 2.9(i)]) Let I be a proper ideal of R and n be
a positive integer. If IŒX� is an n-absorbing ideal of RŒX�, then I is a strongly n-
absorbing ideal of R.

Let f .X/ D amxm C � � � C a0 2 RŒX�, for some positive integer m and for
some am; : : : ; a0 2 R. Then c.f / D .am; : : : ; a0/R is an ideal of R and it is called
the content of f .X/. We recall that a ring R is called Armandariz if whenever
f .X/g.X/ D 0 2 RŒX� for some f .X/; g.X/ 2 RŒX�, then c.f /c.g/ D 0 2 R.

Let I be a strongly n-absorbing ideal of R. The author in [44] showed that if R=I
is Armandariz, then Conjecture one implies Conjecture two.

Theorem 5.12 ([44, Proposition 2.9(ii)]) Let I be a strongly n-absorbing ideal of
R for some positive integer n. If R=I is Armandariz, then IŒX� is an n-absorbing ideal
of RŒX�.

Note that Theorem 5.2 gives an affirmative answer for Conjecture one when R is
a Prüfer domain.

Let I be an n-absorbing ideal of R. Darani and Puczylowski in [27] proved that
Conjecture one holds if the additive group of R=I is torsion-free.

Theorem 5.13 ([27, Theorem 4.2]) Let I be a proper ideal of R and n be a positive
integer. If I is an n-absorbing ideal of R such that the additive group of R=I is
torsion-free, then I is a strongly n-absorbing ideal of R.

Donadze in [31] proved that Conjecture one holds in the following case.
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Theorem 5.14 ([31, Proposition 2.2]) Let R be a ring and n � 2 be an integer.
Suppose that R contains n � 1 distinct invertible elements u1; : : : ; un�1 such that
ui � uj is also invertible for all i ¤ j, 1 � i; j � n� 1. Then every n-absorbing ideal
of R is strongly n-absorbing.

Laradji in [44] proved that Conjecture two holds in the following cases.

Theorem 5.15 ([44, Proposition 2.10]) Let n be a positive integer, I be an n-
absorbing ideal of R, and let S D R=I. Then IŒX� is an n-absorbing ideal of RŒX� in
each of the following cases.

1. S is Armendariz and jR=Mj � n for each maximal ideal M of R containing I.
2. S is Armendariz and is .n � 1/Š-torsion free as an additive group.
3. S is torsion-free as an additive group.

Donadze in [31] proved the following result.

Theorem 5.16 ([31, Corollary 2.10]) If Conjecture two holds for ZŒX1; : : : ;Xm�

for all m � 1, then Conjecture one holds for any commutative ring R.
Recall that R is called arithmetical ring if the set of ideals of every localization

of R by a prime ideal of R is totally ordered by inclusion.
Laradji in [44] proved that Conjecture two holds if R is arithmetical.

Theorem 5.17 ([44, Corollary 2.11]) Let n be a positive integer and I be an n-
absorbing ideal of an arithmetical ring R. Then IŒX� is an n-absorbing ideal of RŒX�.

In light of Theorems 5.17, 5.11, and 5.10, we conclude that all three Conjectures
hold if R is arithmetical.

Theorem 5.18 Let R be an arithmetical ring (for example, if R is a Prüfer domain).
If I is an n-absorbing ideal of R for some positive integer n, then the following
statements are true:

1. I is a strongly n-absorbing ideal of R;
2. IŒX� is an n-absorbing ideal of RŒX�;
3. .Rad.I//n � I.

Laradji in [44] showed that when attempting to prove either Conjecture one,
Conjecture two, or Conjecture three, it is enough to restrict our attention to the zero
ideal of some total quotient rings.

Theorem 5.19 ([44, Proposition 2.15]) Let I be a proper ideal of R and T.R=I/
be the total quotient ring of R=I. If Conjecture one, Conjecture two, or Conjecture
three holds for the zero ideal of T.R=I/, then it holds for I.

Let I be a proper ideal of R. Badawi and Anderson in [3] conjectured that
!RŒX�.IŒX�/ D !R.I/.

In view of Theorem 5.18, we have the following result.

Theorem 5.20 Let R be an arithmatical ring (for example, if R is a Prüfer domain).
Then !RŒX�.IŒX�/ D !R.I/ for every proper ideal I of R.

Nesehpour in [52, Corollary 10], independently, proved that !RŒX�.IŒX�/ D !R.I/
for every proper ideal I of a Prüfer domain R.
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6 n-Krull Dimension of Commutative Rings

From [46], we recall the following definitions.

Definition ([46])

1. Let R be a ring and n a positive integer. A chain of ideals: I0 � I1 � � � � Im, where
I0; I1; : : : ; Im are distinct n-absorbing ideals of R, is called a chain of n-absorbing
ideals of length m. The n-Krull dimension of R, denoted by dimn.R/, is defined
to be the supremum of the lengths of these chains. Thus dim1.R/ is just the usual
Krull dimension, dim(R), of R.

2. An n-absorbing ideal I of R is called a minimal n-absorbing ideal of the ideal
J if J � I and there is no n-absorbing ideal L such that J � L � I. An n-
absorbing ideal I of R is called a minimal n-absorbing ideal of R if I is a minimal
n-absorbing ideal of 0.

3. If I is an n-absorbing ideal of R, the n-height of I, denoted by htn.I/, is defined
to be the supremum of lengths of chains I0 � I1 � � � � Im of n-absorbing ideals of
R for which Im D I if this supremum exists, and1 otherwise.

4. If I is a proper ideal of R (not necessarily an n-absorbing ideal) and n a positive
integer, the n-height of I, denoted by htn.I/, is defined to be minfhtn.J/ j J is an
n-absorbing ideal and I � Jg.

Remark 6.1 Although every prime ideal of R is an n-absorbing ideal for each n � 1,
there exists a minimal prime ideal which is not a minimal n-absorbing ideal for each
n � 2. For example, if R D KŒX� is the polynomial ring in one variable X over a
field K, the minimal prime ideal P D RX of (0) is not a minimal 2-absorbing ideal
of 0, since by [3, Lemma 2.8], RX2 is a 2-absorbing ideal of R.

Let l.R/ denote the length of a composition series for a ring R which is of finite
length. We recall the following results.

Theorem 6.2 Let R be a ring. Then

1. ([46, Theorem 2.1]). For each positive integer n, there is an n-absorbing ideal of
R which is minimal among all n-absorbing ideals of R.

2. ([46, Theorem 2.1]. If I a proper ideal of R, then for each positive integer n, there
is an n-absorbing ideal of R which is minimal among all n-absorbing ideals of R
containing I.

3. ([46, Theorem 2.7]). Let n be a positive integer. If dimn.R/ is finite, then
dimn.R/ D supfhtn.M/ j M is a maximal ideal of Rg.

4. ([46, Theorem 2.8]). If R is an Artinian ring, then dimn.R/ is finite for each
positive integer n.

5. ([46, Theorem 2.9]). If .R;M/ is a quasilocal Noetherian domain with maximal
ideal M such that dim1.R/ D 1, then dim2.R/ is finite.

6. ([46, Theorem 2.12]). If .R;M/ is a quasilocal Artinian ring and n is the smallest
positive integer such that Mn D 0, then dimkR D l.R/ � 1 for each k � n.

7. ([46, Theorem 2.13]). If R is an Artinian ring with k maximal ideals, then there
exists a positive integer n such that dimn.R/ D l.R/ � k.
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It was shown [46, Theorem 2.10] that if Conjecture three holds (see Sect. 5),
then Theorem 6.2(5) can be extended to any positive integer n. Hence in view of
Theorem 5.9, we have the following result.

Theorem 6.3 ([21, Theorem 1] and [46, Theorem 2.10]) If .R;M/ is a quasilocal
Noetherian domain with maximal ideal M such that dim1.R/ D 1, then dimn.R/ is
finite for every positive integer n.

In light of Theorem 4.2, the following result provides a characterization of
Dedekind domains in terms of n-Krull dimension.

Theorem 6.4 ([46, Theorem 2.13]) Let R be a Noetherian integral domain which
is not a field. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. dimn.R/ D n for every positive integer n.
3. dim2.R/ D 2.

Theorem 6.5 ([46, Theorem 2.21]) Let .R;M/ be a discrete valuation ring and I
an ideal of R. Then

1. I is an n-absorbing ideal for some positive integer n and !R.I/ D lR.R=I/.
2. For every positive integer n, dimn.R/ D lR.R=Mn/ D n.

7 .m; n/-Closed Ideals and Quasi-n-Absorbing Ideals

We start by recalling some definitions.

Definition Let I be a proper ideal I of R. Then

1. ([2]). I is called a semi-n-absorbing ideal of R if xnC1 2 I for x 2 R implies xn 2
I. More generally, for positive integers m and n, I is said to be an .m; n/-closed
ideal of R if xm 2 I for x 2 R implies xn 2 I (observe that I is a semi-n-absorbing
ideal of R if and only if I is a .nC 1; n/-closed ideal of R).

2. ([2]). For positive integers m and n, I is said to be an strongly .m; n/-closed ideal
of R if Jm � I for some ideal J of R implies Jn � I.

3. ([50]). I is called a quasi-n-absorbing ideal if whenever anb 2 I for some a; b 2
R, then an 2 I or a.n�1/b 2 I.

4. [50]. I is called a strongly quasi-n-absorbing ideal if whenever In
1 I2 � I for some

ideals I1; I2 of R, then In
1 � I or I.n�1/

1 I2 � I.

Remark 7.1 Note that Mostafanasab and Darani in [50] called a proper ideal I of R
to be a semi-.m; n/-absorbing ideal if I is an .m; n/-closed ideal.

The following examples show that for every integer n � 2, there is a semi-n-
absorbing ideal (i.e., .n C 1; n/-closed ideal) that is neither a radical ideal nor an
n-absorbing ideal, and that there is an ideal that is not a semi-n-absorbing ideal (i.e.,
.nC 1; n/-closed ideal) for any positive integer n.
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Example 7.2 ([2, Example 2.2])

1. Let R D Z, n � 2 an integer, and I D 2 �3n
Z. Then I is a semi-n-absorbing ideal

(i.e., .nC 1; n/-closed ideal) of R. In fact, I is a semi-m-absorbing ideal for every
integer m � n. However, .2 �3n�1/2 2 I and 2 �3n�1 … I; so I is not a radical ideal
of R. Moreover, 2 �3n 2 I, 3n … I, and 2 �3n�1 … I; so I is not an n-absorbing ideal
of R (but, I is an .nC 1/-absorbing ideal of R). Note that for n D 1, I D 6Z is a
semi-1-absorbing ideal (i.e., radical ideal) of R, but not a 1-absorbing ideal (i.e.,
prime ideal) of R.

2. Let R D QŒfXngn2N� and I D .fXn
ngn2N/. Then XnC1

nC1 2 I and Xn
nC1 … I for every

positive integer n; so I is not a semi-n-absorbing ideal (i.e., .n C 1; n/-closed
ideal) for any positive integer n. Thus I is .m; n/-closed if and only if 1 � m � n.

3. Let R be a commutative Noetherian ring. Then every proper ideal of R is an n-
absorbing ideal of R, and hence a semi-n-absorbing ideal of R, for some positive
integer n (Theorem 4.1). Thus, for every proper ideal I of R, there is a positive
integer n such that I is .m; n/-closed for every positive integer m. Note that the
ring in (2) is not Noetherian.

4. Clearly, an n-absorbing ideal of R is also an .n C 1/-absorbing ideal of R.
However, this need not be true for semi-n-absorbing ideals. For example, it is
easily seen that I D 16Z is a semi-2-absorbing ideal (i.e., .3; 2/-closed ideal) of
Z, but not a semi-3-absorbing ideal (i.e., .4; 3/-closed ideal) of Z.

5. Let R be a valuation domain. Then it is known that a radical ideal of R is also a
prime ideal of R, i.e., a semi-1-absorbing ideal of R is a 1-absorbing ideal of R.
However, a semi-n-absorbing ideal of R need not be an n-absorbing ideal of R
for n � 2. For example, let R D Z.2/ and I D 16Z.2/. Then R is a DVR, and it
is easily verified that I is a semi-2-absorbing ideal (i.e., .3; 2/-closed ideal) of R,
but not a 2-absorbing ideal of R.

It was conjectured (see Conjecture one in Sect. 5) that a proper ideal I of R is an
n-absorbing ideal of R if and only if I is a strongly n-absorbing ideal of R. However,
an .m; n/-closed ideal of R need not be a strongly .m; n/-closed ideal of R; we have
the following example.

Example 7.3 ([2, Example 2.5]) Let R D ZŒX;Y�, I D .X2; 2XY;Y2/, and J Dp
I D .X;Y/. Suppose that am 2 I for a 2 R and m a positive integer. Then a 2 pI,

and thus a D bXCcY for some b; c 2 R. Hence a2 D .bXCcY/2 D b2X2C2bcXYC
c2Y2 2 I, and thus I is an .m; 2/-closed ideal of R for every positive integer m. It is
easily checked that Jm � I for every integer m � 3. However, J2 › I since XY … I;
so I is not a strongly .m; 2/-closed ideal of R for any integer m � 3.
In view of Example 7.3, we have the following result.

Theorem 7.4 ([2, Theorem 2.6]) Let R be a commutative ring, m a positive integer,
I an .m; 2/-closed ideal of R, and J an ideal of R.

1. If Jm � I, then 2J2 � I.
2. Suppose that 2 2 U.R/. Then I is a strongly .m; 2/-closed ideal of R.

In view of Theorem 7.4(2), we have the following result.
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Theorem 7.5 ([50, Corollary 4.11]) Let R be a ring and n be a positive integer
such that nŠ is a unit in R. Then every semi-n-absorbing ideal of R is strongly semi-
n-absorbing.

We have the following result.

Theorem 7.6 ([50, Proposition 4.6]) Let I be an ideal of a ring R and n be a
positive integer. If for every ideal J of R, we have JnC1 � I � J implies Jn � I, then
I is a strongly semi-n-absorbing ideal of R.

The following result is a characterization of zero-dimensional rings in terms of
.m; n/-closed ideals.

Theorem 7.7 ([2, Theorem 2.15]) Let R be a commutative ring and n a positive
integer. Then the following statements are equivalent.

1. Every proper ideal of R is .m; n/-closed for every positive integer m.
2. There is an integer m > n such that every proper ideal of R is .m; n/-closed.
3. For every proper ideal I of R, there is an integer mI > n such that I is .mI ; n/-

closed.
4. Every proper ideal of R is a semi-n-absorbing ideal (i.e., .nC 1; n/-closed ideal)

of R.
5. dim.R/ D 0 and wn D 0 for every w 2 nil.R/.

Let R be an integral domain and m; k be fixed positive integers. The next result
determines the smallest positive integer n such that I D pkR is .m; n/-closed. As
usual, bxc is the greatest integer, or floor function.

Theorem 7.8 ([2, Theorem 3.10]) Let R be an integral domain and I D pkR, where
p is a prime element of R and k is a positive integer. Let m be a positive integer and
n be the smallest positive integer such that I is .m; n/-closed.

1. If m � k, then n D k.
2. Let m < k and write k D maC r, where a is a positive integer and 0 � r < m.

a. If r D 0, then n D m.
b. If r ¤ 0 and a � m, then n D m.
c. If r ¤ 0, a < m, and .aC 1/jk, then n D k=.aC 1/.
d. If r ¤ 0, a < m, and .aC 1/ − k, then n D bk=.aC 1/c C 1.

Let R be an integral domain and n; k be fixed positive integers. The next result
determines the largest positive integer m such that I D pkR is .m; n/-closed.

Theorem 7.9 ([2, Theorem 3.11]) Let R be an integral domain, n a positive
integer, and I D pkR, where p is a prime element of R and k is a positive integer.

1. If n � k, then I is .m; n/-closed for every positive integer m.
2. Let n < k and write k D naC r, where a is a positive integer and 0 � r < n. Let

m be the largest positive integer such that I is .m; n/-closed.

a. If a > n, then m D n.
b. If a D n and r D 0, then m D nC 1.
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c. If a D n and r ¤ 0, then m D n.
d. If a < n, r D 0, and .a � 1/jk, then m D k=.a � 1/ � 1.
e. If a < n, r D 0, and .a � 1/ − k, then m D bk=.a � 1/c.
f. If a < n, r ¤ 0, and ajk, then m D k=a � 1.
g. If a < n, r ¤ 0, and a − k, then m D bk=ac.
In view of Theorems 7.8 and 7.9, let I be a proper ideal of a commutative ring R

and m and n positive integers. Anderson and Badawi in [2] defined fI.m/ Dminf n j
I is .m; n/ � closedg 2 f1; : : : ;mg and gI.n/ D supfm j I is .m; n/ � closedg 2
fn; nC 1; : : : g [ f1g. We have the following example.

Example 7.10 Let R be an integral domain and I D p30R for p a prime element
of R. By Theorem 7.8, one may easily calculate that fI.m/ D m for 1 � m � 6,
fI.7/ D 6; fI.8/ D fI.9/ D 8; fI.m/ D 10 for 10 � m � 14; fI.m/ D 15 for 15 �
m � 29, and fI.m/ D 30 for m � 30. Using Theorem 7.9, one may easily calculate
that gI.n/ D n for 1 � n � 5; gI.6/ D gI.7/ D 7; gI.8/ D gI.9/ D 9; gI.n/ D 14

for 10 � n � 14; gI.n/ D 29 for 15 � n � 29, and gI.n/ D1 for n � 30.
If R is a Prüfer domain, we have the following result.

Theorem 7.11 ([50, Corollary 3.26]) Let R be a Prüfer domain, n be a positive
integer, and I be an ideal of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal of R,
then IŒX� is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of RŒX�.

2. If IŒX� is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of RŒX�, then I is a
quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

The following result determines the quasi-n-absorbing ideals in the product of
any two rings.

Theorem 7.12 ([50, Proposition 4.20]) Let n � 2 be an integer, R1;R2 be rings,
R D R1 � R2, and L be a quasi-n-absorbing ideal of R. Then either L D I1 � R2,
where I1 is a quasi-n-absorbing ideal of R1 or L D R1 � I2, where I2 is a quasi-n-
absorbing ideal of R2 or L D I1 � I2, where I1 is a semi-.n � 1/-absorbing ideal of
R1 and I2 is a semi-.n � 1/-absorbing ideal of R2.

8 2-Absorbing Primary Ideals of Commutative Rings

We recall the following definition from [9] which is a generalization of primary
ideal. A proper ideal I of R is said to be a 2-absorbing primary ideal of R if whenever
a; b; c 2 R with abc 2 I, then ab 2 I or ac 2 Rad.I/ or bc 2 Rad.I/.

In the following result, we collect some basic properties of 2-absorbing primary
ideals of commutative rings.
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Theorem 8.1

1. ([9, Theorem 2.2]). If I is a 2-absorbing primary ideal of R, then Rad.I/ is a
2-absorbing ideal of R:

2. ([9, Theorem 2.3]). Suppose that I is a 2-absorbing primary ideal of R. Then one
of the following statements must hold.

a. Rad.I/ D P is a prime ideal,
b. Rad.I/ D P1 \ P2, where P1 and P2 are the only distinct prime ideals of R

that are minimal over I:

3. ([9, Corollary 2.5]). Let R be a commutative ring with 1 ¤ 0, and let P1;P2
be prime ideals of R. If Pn

1 is a P1-primary ideal of R for some positive integer
n � 1 and Pm

2 is a P2-primary ideal of R for some positive integer m � 1, then
Pn
1P

m
2 and Pn

1 \ Pm
2 are 2-absorbing primary ideals of R. In particular, P1P2 is a

2-absorbing primary ideal of R.
4. ([9, Theorem 2.8]). Let I be an ideal of R. If Rad.I/ is a prime ideal of R, then I

is a 2-absorbing primary ideal of R: In particular, if P is a prime ideal of R, then
Pn is a 2-absorbing primary ideal of R for every positive integer n � 1:

5. ([9, Theorem 2.10]). Let R be a commutative divided ring with 1 ¤ 0 (for
example, if R is a valuation domain). Then every proper ideal of R is a 2-
absorbing primary ideal of R.

6. ([9, Theorem 2.20]). Let f W R ! R0 be a homomorphism of commutative rings.
Then the following statements hold.

a. If I0 is a 2-absorbing primary ideal of R0; then f �1.I0/ is a 2-absorbing primary
ideal of R:

b. If f is an epimorphism and I is a 2-absorbing primary ideal of R containing
Ker.f /, then f .I/ is a 2-absorbing primary ideal of R0.

7. ([9, Theorem 2.22]). Let R be a commutative ring with 1 ¤ 0, S be a
multiplicatively closed subset of R, and I be a proper ideal of R. Then the
following statements hold.

a. If I is a 2-absorbing primary ideal of R such that I \ S D ¿; then S�1I is a
2-absorbing primary ideal of S�1R:

b. If S�1I is a 2-absorbing primary ideal of S�1R and S \ ZI.R/ D ¿; then I is
a 2-absorbing primary ideal of R:

The following result is a characterization of Dedekind domains in terms of 2-
absorbing primary ideals.

Theorem 8.2 ([9, Theorem 2.11]) Let R be a Noetherian integral domain with 1 ¤
0 that is not a field. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if

either I D Mn for some maximal ideal M of R and some positive integer n � 1
or I D Mn

1Mm
2 for some maximal ideals M1;M2 of R and some positive integers

n;m � 1.
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3. If I is a nonzero proper 2-absorbing primary ideal of R, then either I D Mn for
some maximal ideal M of R and some positive integer n � 1 or I D Mn

1Mm
2 for

some maximal ideals M1;M2 of R and some positive integers n;m � 1.
4. A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only

if either I D Pn for some prime ideal P of R and some positive integer n �
1 or I D Pn

1P
m
2 for some prime ideals P1;P2 of R and some positive integers

n;m � 1.
5. If I is a nonzero proper 2-absorbing primary ideal of R, then either I D Pn for

some prime ideal P of R and some positive integer n � 1 or I D Pn
1P

m
2 for some

prime ideals P1;P2 of R and some positive integers n;m � 1.

The following result determines the 2-absorbing primary ideals in the product of
any finite number of rings.

Theorem 8.3 ([9, Theorem 2.24]) Let R D R1 � R2 � � � � � Rn, where 2 � n <1,
and R1; R2, . . . , Rn are commutative rings with 1 ¤ 0. Let J be a proper ideal of R.
Then the following statements are equivalent.

1. J is a 2-absorbing primary ideal of R.
2. Either J D �n

tD1It such that for some k 2 f1; 2; : : : ; ng, Ik is a 2-absorbing
primary ideal of Rk, and It D Rt for every t 2 f1; 2; : : : ; ng n fkg or J D �n

tD1It

such that for some k;m 2 f1; 2; : : : ; ng, Ik is a primary ideal of Rk, Im is a primary
ideal of Rm, and It D Rt for every t 2 f1; 2; : : : ; ng n fk;mg.
A proper ideal I of R is said to be a strongly 2-absorbing primary ideal of R

if whenever I1; I2; I3 are ideals of R with I1I2I3 � I, then I1I2 � I or I1I3 � I or
I2I3 � I. We have the following result.

Theorem 8.4 ([9, Theorem 2.19]) Let I be a proper ideal of R: Then I is a 2-
absorbing primary ideal of R if and only if I is a strongly 2-absorbing primary ideal
of R.

Remark 8.5 Many topics related to the concept of n-absorbing ideals have been left
untouched; the interested reader may consult the many articles mentioned in the
references and MathSciNet. In the following, we will outline some of the related
topics.

1. For topics on 2-absorbing preradicals, see [24–26]
2. For topics related to 2-absorbing commutative semigroups, see [27].
3. For topics related to (weakly) n-absorbing ideals of commutative rings, see [4, 5,

7–9, 11, 12], [15–17], [20, 30], and [36–38].
4. For topics related to n-absorbing ideals in semirings, see [18, 22, 32, 42, 43, 57,

58], and [61].
5. For topics related to (weakly) n-absorbing submodules, see [19], [25, 28, 29],

[32–35], [47, 48, 51], [53, 55, 59], and [62].

Acknowledgements I would like to thank the referee for the great effort in proofreading the
manuscript.
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Abstract Let k be a field. This paper investigates the embedding dimension and
codimension of Noetherian local rings arising as localizations of tensor products
of k-algebras. We use results and techniques from prime spectra and dimension
theory to establish an analogue of the “special chain theorem” for the embedding
dimension of tensor products, with effective consequence on the transfer or defect
of regularity as exhibited by the (embedding) codimension given by codim.R/ WD
embdim.R/ � dim.R/.
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1 Introduction

Throughout, all rings are commutative with identity elements, ring homomorphisms
are unital, and k stands for a field. The embedding dimension of a Noetherian
local ring .R;m/, denoted by embdim.R/, is the least number of generators of
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m or, equivalently, the dimension of m =m2 as an R=m-vector space. The ring
R is regular if its Krull dimension and embedding dimensions coincide. The
(embedding) codimension of R measures the defect of regularity of R and is given
by the formula codim.R/ WD embdim.R/ � dim.R/. The concept of regularity was
initially introduced by Krull and became prominent when Zariski showed that a
local regular ring corresponds to a smooth point on an algebraic variety. Later,
Serre proved that a ring is regular if and only if it has finite global dimension. This
allowed to see that regularity is stable under localization and then the definition
got globalized as follows: a Noetherian ring is regular if its localizations with
respect to all prime ideals are regular. The ring R is a complete intersection if its
m-completion is the quotient ring of a local regular ring modulo an ideal generated
by a regular sequence; R is Gorenstein if its injective dimension is finite; and R is
Cohen–Macaulay if the grade and height of m coincide. All these algebro-geometric
notions are globalized by carrying over to localizations.

These concepts transfer to tensor products of algebras over a field under suitable
assumptions. It has been proved that a Noetherian tensor product of algebras (over
a field) inherits the notions of (locally) complete intersection ring, Gorenstein ring,
and Cohen–Macaulay ring [3, 19, 31, 34]. In particular, a Noetherian tensor product
of any two extension fields is a complete intersection ring. As to regularity and
unlike the above notions, a Noetherian tensor product of two extension fields of k
is not regular in general. In 1965, Grothendieck proved a positive result in case
one of the two extension fields is a finitely generated separable extension [18].
Recently, we have investigated the possible transfer of regularity to tensor products
of algebras over a field k. If A and B are two k-algebras such that A is geometrically
regular; i.e., A˝k F is regular for every finite extension F of k (e.g., A is a separable
extension field over k), we proved that A˝k B is regular if and only if B is regular and
A˝k B is Noetherian [4, Lemma 2.1]. As a consequence, we established necessary
and sufficient conditions for a Noetherian tensor product of two extension fields
of k to inherit regularity under (pure in)separability conditions [4, Theorem 2.4].
Also, Majadas’ relatively recent paper tackled questions of regularity and complete
intersection of tensor products of commutative algebras via the homology theory
of André and Quillen [24]. Finally, it is worthwhile recalling that tensor products
of rings subject to the above concepts were recently used to broaden or delimit the
context of validity of some homological conjectures; see, for instance, [20, 22].
Suitable background on regular, complete intersection, Gorenstein, and Cohen–
Macaulay rings is [14, 18, 23, 25]. For a geometric treatment of these properties,
we refer the reader to the excellent book of Eisenbud [15].

Throughout, given a ring R, I an ideal of R and p a prime ideal of R, when
no confusion is likely, we will denote by Ip the ideal IRp of the local ring Rp and
by �R.p/ the residue field of Rp. One of the cornerstones of dimension theory of
polynomial rings in several variables is the special chain theorem, which essentially
asserts that the height of any prime ideal of the polynomial ring can always be
realized via a special chain of prime ideals passing by the extension of its contraction
over the basic ring; namely, if R is a Noetherian ring and P is a prime ideal of
RŒX1; : : : ;Xn� with p WD P \ R, then
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dim.RŒX1; : : : ;Xn�P/ D dim.Rp/C dim

	
�R.p/ŒX1; : : : ;Xn� Pp

pRp ŒX1;:::;Xn �




An analogue of this result for Noetherian tensor products, established in [3], states
that, for any prime ideal P of A˝k B with p WD P \ A and q WD P \ B, we have

dim.A˝k B/P D dim.Ap/ C dim

 �
�A.p/˝k B

�
Pp

pAp˝kB

!

which also comes in the following extended form

dim.A˝k B/P D dim.Ap/C dim.Bq/C dim

	�
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq



:

This paper investigates the embedding dimension of Noetherian local rings arising
as localizations of tensor products of k-algebras. We use results and techniques
from prime spectra and dimension theory to establish satisfactory analogues of
the “special chain theorem” for the embedding dimension in various contexts of
tensor products, with effective consequences on the transfer or defect of regularity
as exhibited by the (embedding) codimension. The paper traverses four sections
along with an introduction.

In Sect. 2, we introduce and study a new invariant which allows to correlate the
embedding dimension of a Noetherian local ring B with the fiber ring B=mB of
a local homomorphism f W A �! B of Noetherian local rings. This enables us to
provide an analogue of the special chain theorem for the embedding dimension as
well as to generalize the known result that “if f is flat and A and B=mB are regular
rings, then B is regular.”

Section 3 is devoted to the special case of polynomial rings which will be used
in the investigation of tensor products. The main result (Theorem 3.1) states that,
for a Noetherian ring R and X1; : : : ;Xn indeterminates over R, for any prime ideal P
of RŒX1; : : : ;Xn� with p WD P \ R, we have:

embdim.RŒX1; : : : ;Xn�P/ D embdim.Rp/C ht

	
P

pŒX1; : : : ;Xn�




D embdim.Rp/C embdim

	
�R.p/ŒX1; : : : ;Xn� Pp

pRp ŒX1;:::;Xn �




Then, Corollary 3.2 asserts that

codim.RŒX1; : : : ;Xn�P/ D codim.Rp/

and recovers a well-known result on the transfer of regularity to polynomial rings;
i.e., RŒX1; : : : ;Xn� is regular if and only if so is R (this result was initially proved
via Serre’s result on finite global dimension and Hilbert Theorem on syzygies).
Then Corollary 3.3 characterizes regularity in general settings of localizations of
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polynomial rings and, in the particular cases of Nagata rings and Serre conjecture
rings, it states that R.X1; : : : ;Xn/ is regular if and only if RhX1; : : : ;Xni is regular if
and only if R is regular.

Let A and B be two k-algebras such that A ˝k B is Noetherian and let P be
a prime ideal of A ˝k B with p WD P \ A and q WD P \ B. Due to known
behavior of tensor products of k-algebras subject to regularity (cf. [4, 18, 19, 31, 34]),
Sect. 4 investigates the case when A (or B) is a separable (not necessarily algebraic)
extension field of k. The main result (Theorem 4.2) asserts that, if K is a separable
extension field of k, then

embdim.K ˝k A/P D embdim.Ap/ C embdim

 �
K ˝k �A.p/

�
Pp

K˝kpAp

!

:

In particular, if K is separable algebraic over k, then

embdim.K ˝k A/P D embdim.Ap/:

Then, Corollary 4.5 asserts that

codim.K ˝k A/P D codim.Ap/

and hence K ˝k A is regular if and only if so is A. This recovers Grothendieck’s
result on the transfer of regularity to tensor products issued from finite extension
fields [18, Lemma 6.7.4.1].

Section 5 examines the more general case of tensor products of k-algebras with
separable residue fields. The main theorem (Theorem 5.1) states that if �B.q/ is a
separable extension field of k, then

embdim.A˝k B/P D embdim.Ap/ C embdim.Bq/

C embdim

 �
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

!

Then, Corollary 5.2 contends that

codim.A˝k B/P D codim.Ap/C codim.Bq/

recovering known results on the transfer of regularity to tensor products over perfect
fields [31, Theorem 6(c)] and, more generally, to tensor products issued from
residually separable extension fields [4, Theorem 2.11].
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The four aforementioned main results are connected as follows:

Of relevance to this study is Bouchiba, Conde-Lago, and Majadas’ recent preprint
[8] where the authors prove some of our results via the homology theory of
André and Quillen. In the current paper, we offer direct and self-contained proofs
using techniques and basic results from commutative ring theory. Early and recent
developments on prime spectra and dimension theory are to be found in [3, 5–
7, 28–30, 32, 33] for the special case of tensor products of k-algebras, and in
[1, 11, 17, 22, 23, 25, 26] for the general case. Any unreferenced material is standard,
as in [23, 25].

2 Embedding Dimension of Noetherian Local Rings

In this section, we discuss the relationship between the embedding dimensions of
Noetherian local rings connected by a local ring homomorphism. To this purpose,
we introduce a new invariant � which allows to relate the embedding dimension of
a local ring to that of its fiber ring.

Throughout, let .A;m;K/ and .B; n;L/ be local Noetherian rings, f W A �! B a
local homomorphism (i.e., mB WD f .m/B � n), and I a proper ideal of A. Let

�A.I/ WD dimK

	
I Cm2

m2



:

Note that �A.I/ equals the maximal number of elements of I which are part of a
minimal basis of m; so that 0 � �A.I/ � embdim.A/ and �A.m/ D embdim.A/.
Next, let �f

B.I/ denote the maximal number of elements of IB WD f .I/B which are
part of a minimal basis of n; that is,

�
f
B.I/ WD �B.IB/ D dimL

	
IBC n2

n2



:

It is easily seen that if x1; : : : ; xr are elements of m such that f .x1/; : : : ; f .xr/ are
part of a minimal basis of n, then x1; : : : ; xr are part of a minimal basis of m as well.

That is, 0 � �f
B.I/ � �A.I/. Moreover, if J is a proper ideal of B and � W B � B

J
is

the canonical surjection, then the natural linear map of L-vector spaces
IBC n2

n2
�

IBC n2CJ

n2CJ
yields ��ıf

B=J .I/ � �f
B.I/.
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Proposition 2.1 Under the above notation, we have:

embdim.B/ D �f
B.I/C embdim

� B

IB

�
:

In particular,

embdim.A/ D �A.I/C embdim
�A

I

�
:

Proof The first statement follows easily from the following exact sequence of L-
vector spaces

0 �! IBC n2

n2
�! n

n2
�! n

IBC n2
D n=IB

.n=IB/2
�! 0:

The second statement holds since �A.I/ D �idA
A .I/. ut

Recall that, under the above notation, the following inequality always holds:

dim.B/ � dim.A/ C dim
� B

mB

�
. The first corollary provides an analogue for the

embedding dimension.

Corollary 2.2 Under the above notation, we have:

embdim.B/ � embdim.A/ � embdim.A=I/C embdim
� B

IB

�
:

In particular,

embdim.B/ � embdim.A/C embdim
� B

mB

�
:

It is well known that if f is flat and both A and
B

mB
are regular, then B is

regular. The second corollary generalizes this result to homomorphisms subject to
going-down. Recall that a ring homomorphism h W R �! S satisfies going-down
(henceforth abbreviated GD) if for any pair p � q in Spec.R/ such that there exists
Q 2 Spec.S/ lying over q, then there exists P 2 Spec.S/ lying over p with P � Q.
Any flat ring homomorphism satisfies GD.

Corollary 2.3 Under the above notation, assume that f satisfies GD. Then:

(a) codim.B/ D
�
�

f
B.m/ � dim.A/

�
C codim

� B

mB

�
.

(b) codim.B/C
�

embdim.A/ � �f
B.m/

�
D codim.A/C codim

� B

mB

�
.

(c) B is regular and �f
B.m/ D embdim.A/” A and

B

mB
are regular.

Proof The proof is straightforward via a combination of Proposition 2.1 and [25,
Theorem 15.1]. ut
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Corollary 2.4 Under the above notation, assume that f satisfies GD. Then:

(a) codim.B/ � codim.A/C codim
� B

mB

�
.

(b) If
B

mB
is regular, then codim.B/ � codim.A/.

Proof The proof is direct via a combination of Corollary 2.2 and the known fact

that dim.B/ D dim.A/C dim
� B

mB

�
. ut

3 Embedding Dimension and Codimension of Polynomial
Rings

This section is devoted to the special case of polynomial rings which will be
used, later, for the investigation of tensor products. The main result of this section
(Theorem 3.1) settles a formula for the embedding dimension for the localizations
of polynomial rings over Noetherian rings. It recovers (via Corollary 3.2) a well-
known result on the transfer of regularity to polynomial rings; that is, RŒX1; : : : :;Xn�

is regular if and only if so is R. Moreover, Theorem 3.1 leads to investigate the regu-
larity of two famous localizations of polynomial rings in several variables; namely,
the Nagata ring R.X1;X2; : : : ;Xn/ and Serre conjecture ring RhX1;X2; : : : ;Xni. We
show that the regularity of these two constructions is entirely characterized by
the regularity of R (Corollary 3.3).

Recall that one of the cornerstones of dimension theory of polynomial rings in
several variables is the special chain theorem, which essentially asserts that the
height of any prime ideal P of RŒX1; : : : ;Xn� can always be realized via a special
chain of prime ideals passing by the extension .P \ R/ŒX1; : : : ;Xn�. This result
was first proved by Jaffard in [22] and, later, Brewer, Heinzer, Montgomery, and
Rutter reformulated it in the following simple way [12, Theorem 1]: Let P be a
prime ideal of RŒX1; : : : ;Xn� with p WD P \ R. Then ht.P/ D ht.pŒX1; : : : ;Xn�/ C
ht

	
P

pŒX1; : : : ;Xn�



: In a Noetherian setting, this formula becomes:

dim.RŒX1; : : : ;Xn�P/ D dim.Rp/C ht

	
P

pŒX1; : : : ;Xn�




D dim.Rp/C dim

	
�R.p/ŒX1; : : : ;Xn� Pp

pRp ŒX1;:::;Xn �


 (1)

where the second equality holds on account of the basic fact P
pŒX1;:::;Xn�

\ R
p D 0. The

main result of this section (Theorem 3.1) features a “special chain theorem” for the
embedding dimension with effective consequence on the codimension.

Theorem 3.1 Let R be a Noetherian ring and X1; : : : ;Xn be indeterminates over R.
Let P be a prime ideal of RŒX1; : : : ;Xn� with p WD P \ R. Then:
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embdim.RŒX1; : : : ;Xn�P/ D embdim.Rp/C ht

	
P

pŒX1; : : : ;Xn�




D embdim.Rp/C embdim

	
�R.p/ŒX1; : : : ;Xn� Pp

pRp ŒX1;:::;Xn �




Proof We use induction on n. Assume n D 1 and let P be a prime ideal of RŒX� with
p WD P \ R and r WD embdim.Rp/. Then pp D .a1; : : : ; ar/Rp for some a1; : : : ; ar 2
p. We envisage two cases; namely, either P is an extension of p or an upper to p. For
both cases, we will use induction on r.

Case 1 P is an extension of p (i.e., P D pRŒX�). We prove that embdim.RŒX�P/D r.
Indeed, we have PP D pRpŒX�pRpŒX� D .a1; : : : ; ar/RpŒX�pRpŒX� D .a1; : : : ; ar/RŒX�P:
So, obviously, if pp D .0/, then PP D 0. Next, we may assume r � 1. One can easily
check that the canonical ring homomorphism ' W Rp �! RŒX�P is injective with
'.pp/ � PP. This forces embdim.RŒX�P/ � 1. Hence, there exists j 2 f1; : : : ; ng,
say j D 1, such that a WD a1 2 p with a

1
2 PP n P2P and, a fortiori, a

1
2 pp n p2p. By

[23, Theorem 159], we get

8
ˆ̂<

ˆ̂:

embdim.RŒX�P/ D 1C embdim

	
R

.a/
ŒX� P

aRŒX�




embdim.Rp/ D 1C embdim

	
.

R

.a/

�
p
.a/


 (2)

Therefore embdim

	� R

.a/

�
p
.a/



D r � 1 and then, by induction on r, we obtain

embdim

	
R

.a/
ŒX� P

aRŒX�



D embdim

	� R

.a/

�
p
.a/



: (3)

A combination of (2) and (3) leads to embdim.RŒX�P/ D r, as desired.

Case 2 P is an upper to p (i.e., P ¤ pRŒX�). We prove that embdim.RŒX�P/ D rC1.
Note that PRpŒX� is also an upper to pp and then there exists a (monic) polynomial

f 2 RŒX� such that f
1

is irreducible in �R.p/ŒX� and PRpŒX� D pRpŒX� C fRpŒX�.
Notice that pRŒX�C fRŒX� � P and we have

PP D PRpŒX�PRpŒX� D .pRpŒX�C fRpŒX�/PRpŒX�

D .pŒX�C fRŒX�/RpŒX�PRpŒX� D .pŒX�C fRŒX�/P
D pŒX�P C fRŒX�P D .a1; : : : ; ar; f /RŒX�P:

Assume r D 0. Then P is an upper to zero with PP D fRŒX�P. So that
embdim.RŒX�P/ � 1. Further, by the principal ideal theorem [23, Theorem 152],
we have

embdim.RŒX�P/ � dim.RŒX�P/ D ht.P/ D 1:
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It follows that embdim.RŒX�P/ D 1, as desired.
Next, assume r � 1. We claim that pRŒX�P ¢ P2P. Deny and suppose that

pRŒX�P � P2P. This assumption combined with the fact PP D pŒX�P C fRŒX�P

yields
PP

P2P
D f RŒX�P as RŒX�P-modules and hence PP D fRŒX�P by [23, Theorem

158]. Next, let a 2 p. Then, as a
1
2 PP D fRŒX�P, there exist g 2 RŒX� and

s; t 2 RŒX� n P such that t.sa � fg/ D 0. So that tfg 2 pŒX�, whence tg 2 pŒX� � P
as f … pŒX�. It follows that tsa D tfg 2 P2 and thus a

1
2 P2P D f 2RŒX�P. We iterate

the same process to get a
1
2 Pn

P D f nRŒX�P for each integer n � 1. Since RŒX�P is
a Noetherian local ring,

T
Pn

P D .0/ and thus a
1
D 0 in RŒX�P. By the canonical

injective homomorphism Rp ,! RŒX�P, a
1
D 0 in Rp. Thus pp D .0/, the desired

contradiction.
Consequently, pRŒX�P D .a1; : : : ; ar/RŒX�P ¢ P2P: So, there exists j 2 f1; : : : ; ng,

say j D 1, such that a WD a1 2 PP n P2P and, a fortiori, a 2 pp n p2p. Similar
arguments as in Case 1 lead to the same two formulas displayed in (2). Therefore

embdim

	� R

.a/

�
p
.a/



D r � 1 and then, by induction on r, we obtain

embdim

	
R

.a/
ŒX� P

aRŒX�



D 1C embdim

	� R

.a/

�
p
.a/



: (4)

A combination of (2) and (4) leads to embdim.RŒX�P/ D rC 1, as desired.
Now, assume that n � 2 and set RŒk� WD RŒX1; : : : ;Xk� and pŒk� D pŒX1; : : : ;Xk�

for k WD 1; : : : ; n. Let P0 WD P \ RŒn � 1�. We prove that embdim.RŒn�P/ D r C
ht

	
P

pŒn�



: Indeed, by virtue of the case n D 1, we have

embdim.RŒn�P/ D embdim.RŒn � 1�P0/C ht

	
P

P0ŒXn�



: (5)

Moreover, by induction hypothesis, we get

embdim.RŒn � 1�P0/ D rC ht

	
P0

pŒn � 1�


: (6)

Note that the prime ideals
P0ŒXn�

pŒn�
and

P

pŒn�
both survive in �R.p/Œn�, respectively.

Hence, as �R.p/Œn� is catenarian and .R=p/Œn � 1� is Noetherian, we obtain

ht

	
P

pŒn�



D ht

	
P0ŒXn�

pŒn�



C ht

	
P

P0ŒXn�



D ht

	
P0

pŒn � 1�


C ht

	
P

P0ŒXn�



:

(7)
Further, the fact that �R.p/ŒX1; : : : ;Xn� is regular yield
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ht

	
P

pŒX1; : : : ;Xn�



D embdim

	
�R.p/ŒX1; : : : ;Xn� Pp

pRp ŒX1;:::;Xn �



: (8)

So (5)–(8) lead to the conclusion, completing the proof of the theorem. ut
As a first application of Theorem 3.1, we get the next corollary on the (embed-

ding) codimension. In particular, it recovers a well-known result on the transfer of
regularity to polynomial rings (initially proved via Serre’s result on finite global
dimension and Hilbert Theorem on syzygies [27, Theorem 8.37]. See also [23,
Theorem 171]).

Corollary 3.2 Let R be a Noetherian ring and X1; : : : ;Xn be indeterminates over
R. Let P be a prime ideal of RŒX1; : : : ;Xn� with p WD P \ R. Then:

codim.RŒX1; : : : ;Xn�P/ D codim.Rp/:

In particular, RŒX1; : : : ;Xn� is regular if and only if R is regular.
Theorem 3.1 allows us to characterize the regularity for two famous

localizations of polynomial rings; namely, Nagata rings and Serre conjecture
rings. Let R be a ring and X;X1; : : : ;Xn indeterminates over R. Recall that
R.X1; : : : ;Xn/ D S�1RŒX1; : : : ;Xn� is the Nagata ring, where S is the multiplicative
set of RŒX1; : : : ;Xn� consisting of the polynomials whose coefficients generate R.
Let RhXi WD U�1RŒX�, where U is the multiplicative set of monic polynomials in
RŒX�, and RhX1; � � � ;Xni WD RhX1; : : : ;Xn�1ihXni. Then RhX1; : : : ;Xni is called the
Serre conjecture ring and is a localization of RŒX1; : : : ;Xn�.

Corollary 3.3 Let R be a Noetherian ring and X1; : : : ;Xn indeterminates over R.
Let S be a multiplicative subset of RŒX1; : : : ;Xn�. Then:

(a) S�1RŒX1; : : : ;Xn� is regular if and only if Rp is regular for each prime ideal p of
R such that pŒX1; : : : ;Xn� \ S D ;.

(b) In particular, R.X1; : : : ;Xn/ is regular if and only if RhX1; : : : ;Xni is regular if
and only if RŒX1; : : : ;Xn� is regular if and only if R is regular.

Proof (a) Let Q D S�1P be a prime ideal of S�1RŒX1; : : : ;Xn�, where P is the inverse
image of Q by the canonical homomorphism RŒX1; : : : ;Xn�! S�1RŒX1; : : : ;Xn� and
let p WD P \ R. Notice that S�1RŒX1; : : : ;Xn�Q Š RŒX1; : : : ;Xn�P and

Q

S�1pŒX1; : : : ;Xn�
Š S

�1 P

pŒX1; : : : ;Xn�
where S denotes the image of S via the

natural homomorphism RŒX1; : : : ;Xn� ! R
p ŒX1; : : : ;Xn�: Therefore, by (1), we

obtain

dim.S�1RŒX1; : : : ;Xn�Q/ D dim.RŒX1; : : : ;Xn�P/ D dim.Rp/C ht
� Q

S�1pŒX1; : : : ;Xn�

�

(9)
and, by Theorem 3.1, we have
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embdim.S�1RŒX1; : : : ;Xn�Q/ D embdim.RŒX1; : : : ;Xn�P/

D embdim.Rp/C ht
� Q

S�1pŒX1; : : : ;Xn�

�
:

(10)

Now, observe that the set fQ\R j Q is a prime ideal of S�1RŒX1; : : : ;Xn�g is equal
to the set fp j p is a prime ideal of R such that pŒX1; : : : ;Xn� \ S D ;g. Therefore,
(9) and (10) lead to the conclusion.

(b) Combine (a) with the fact that the extension of any prime ideal of R to
RŒX1; : : : ;Xn� does not meet the multiplicative sets related to the rings R.X1; : : : ;Xn/

and RhX1; : : : ;Xni. ut

4 Embedding Dimension and Codimension of Tensor
Products Issued from Separable Extension Fields

This section establishes an analogue of the “special chain theorem” for the embed-
ding dimension of Noetherian tensor products issued from separable extension
fields, with effective consequences on the transfer or defect of regularity. Namely,
due to known behavior of a tensor product A ˝k B of two k-algebras subject to
regularity (cf. [4, 18, 19, 25, 31, 34]), we will investigate the case where A or B is a
separable (not necessarily algebraic) extension field of k.

Throughout, let A and B be two k-algebras such that A ˝k B is Noetherian and
let P be a prime ideal of A ˝k B with p WD P \ A and q WD P \ B. Recall that A
and B are Noetherian too; and the converse is not true, in general, even if A D B
is an extension field of k (cf. [16, Corollary 3.6] or [32, Theorem 11]). We assume
familiarity with the natural isomorphisms for tensor products and their localizations
as in [9, 10, 27]. In particular, we identify A and B with their respective images in

A ˝k B and we have
A˝k B

p˝k BC A˝k q
Š A

p
˝k

B

q
and Ap ˝k Bq Š S�1.A ˝k B/

where S WD fs ˝ t j s 2 A n p; t 2 B n qg. Throughout this and next sections, we
adopt the following simplified notation for the invariant �:

�P.pAp/ WD �i
.A˝kB/P

.pAp/ and �P.qAq/ WD �j
.A˝kB/P

.qBq/

where i W Ap �! .A˝k B/P and j W Bq �! .A˝k B/P are the canonical (local flat)
ring homomorphisms.

Recall that A ˝k B is Cohen–Macaulay (resp., Gorenstein, locally complete
intersection) if and only if so are A and the fiber rings �A.p/ ˝k B (for each prime
ideal p of A) [3, 31]. Also if A and the fiber rings �A.p/ ˝k B are regular then so
is A ˝k B [25, Theorem 23.7(ii)]. However, the converse does not hold in general;
precisely, if A˝k B is regular then so is A [25, Theorem 23.7(i)] but the fiber rings
are not necessarily regular (see [4, Example 2.12(iii)]).
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From [3, Proposition 2.3] and its proof, recall an analogue of the special chain
theorem (recorded in (1)) for the tensor products which correlates the dimension of
.A˝k B/P to the dimension of its fiber rings; namely,

dim.A˝k B/P D dim.Ap/ C ht

	
P

p˝k B




D dim.Ap/ C dim

 �
�A.p/˝k B

�
Pp

pAp˝kB

! (11)

Our first result reformulates Proposition 2.1 and thus gives an analogue of the
special chain theorem for the embedding dimension in the context of tensor products
of algebras over a field.

Proposition 4.1 Let A and B be two k-algebras such that A˝k B is Noetherian and
let P be a prime ideal of A˝k B with p WD P \ A and q WD P \ B. Then:

(a) embdim.A˝k B/P D �P.pAp/C embdim

 �
�A.p/˝k B

�
Pp

pAp˝kB

!

.

(b) codim.A˝k B/P C
�
embdim.Ap/ � �P.pAp/

� D
codim.Ap/C codim

	�
�A.p/˝k B

�
Pp

pAp˝kB



.

(c) .A ˝k B/P is regular and �P.pAp/ D embdim.Ap/ if and only if both Ap and�
�A.p/˝k B

�
Pp

pAp˝kB

are regular.

Recall that an extended form of the special chain theorem [3] states that

dim.A˝k B/P D dim.Ap/C dim.Bq/C dim

 �
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

!

:

In this vein, notice that, via Proposition 4.1(a), we always have the following
inequalities:

embdim.A˝k B/P � embdim.Ap/ C embdim

 �
�A.p/˝k B

�
Pp

pAp˝kB

!

� embdim.Ap/ C embdim.Bq/

C embdim

 �
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

!

:

Let us state the main theorem of this section.

Theorem 4.2 Let K be a separable extension field of k and A a k-algebra such that
K ˝k A is Noetherian. Let P be a prime ideal of K ˝k A with p WD P \ A. Then:
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embdim.K ˝k A/P D embdim.Ap/ C ht

	
P

K ˝k p




D embdim.Ap/ C embdim

 
�

K ˝k �A.p/
�

Pp
K˝kpAp

!

If, in addition, K is algebraic over k, then embdim.K ˝k A/P D embdim.Ap/:

The proof of this theorem requires the following two preparatory lemmas; the
first of which determines a formula for the embedding dimension of the tensor
product of two k-algebras A and B localized at a special prime ideal P with no
restrictive conditions on A or B.

Lemma 4.3 Let A and B be two k-algebras such that A ˝k B is Noetherian and
let P be a prime ideal of A ˝k B with p WD P \ A and q WD P \ B. Assume that
PP D .p˝k BC A˝k q/P. Then:

(a) �P.pAp/ D embdim.Ap/ and �P.qBq/ D embdim.Bq/.
(b) embdim.A˝k B/P D embdim.Ap/C embdim.Bq/:

Proof We proceed through two steps.

Step 1. Assume that K WD B is an extension field of k. Then q D .0/ and PP D
pp.Ap ˝k K/Pp . Let n WD embdim.Ap/ and let a1; : : : ; an be elements of p such
that pp D

� a1
1
; : : : ; an

1

�
Ap: Our argument uses induction on n. If n D 0, then Ap is

a field and pp D .0/; hence PP D .0/, whence embdim.A˝k K/P D 0, as desired.
Next, suppose n � 1. We have PP D

� a1
1
; : : : ; an

1

�
.A ˝k K/P: If embdim.A ˝k

K/P D 0, .A ˝k K/P is regular and so is Ap by [25, Theorem 23.7(i)]. Hence,
n D dim.Ap/ D 0 by (11). Absurd. So, necessarily, embdim.A ˝k K/P � 1.
Without loss of generality, we may assume that a1

1
2 PPnP2P. Note that we already

have a1
1
2 ppnp2p. Now,

P

.a1/˝k K
is a prime ideal of

A

.a1/
˝kK with

P

.a1/˝k K
\

A

.a1/
D p

.a1/
: By [23, Theorem 159], we obtain embdim

 	
A

.a1/




p
.a1/

!

D n�1:
By induction, we get

embdim

 	
A

.a1/
˝k K




P
.a1/˝kK

!

D embdim

 	
A

.a1/




p
.a1/

!

:

We conclude, via [23, Theorem 159], to get

embdim.A˝k K/P D 1C embdim

 	
A

.a1/
˝k K




P
.a1/˝kK

!

D n:
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Moreover, observe that
�
�A.p/ ˝k K

�
Pp

pp˝kK

is a field as PP D .p ˝k K/P. By

Proposition 4.1, we have

�P.pAp/ D embdim.A˝k K/P D embdim.Ap/: (12)

Step 2. Assume that B is an arbitrary k-algebra. Since PP D .p˝k BCA˝k q/P, then

P.Ap ˝k Bq/ D pAp ˝k Bq C Ap ˝k qBq, hence
�
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

is an extension field of k. So, apply Proposition 4.1 twice to get

embdim.A˝k B/P D �P.qBq/C � Pq
A˝kqBq

.pAp/: (13)

Further, notice that

� Pq

A˝k qBq

�
Pq

A˝kqBq

D .Pq/Pq

.A˝k qBq/Pq

D PP

.A˝k q/P
D .p˝k BC A˝k q/P

.A˝k q/P

D
�p˝k BC A˝k q

A˝k q

�

P
A˝kq

Š
�

p˝k
B

q

�

P
A˝kq

D
�

p˝k �B.q/
�

Pq
A˝kqBq

:

Therefore, by (12), we get

� Pq
A˝kqBq

.pAp/ D embdim

 �
A˝k �B.q/

�
Pq

A˝kqBq

!

D embdim.Ap/:

Similar arguments yield

� Pp
pAp˝kB

.qBq/ D embdim

	
.�A.p/˝k B/ Pp

pAp˝kB



D embdim.Bq/

and, by the facts 0 � �P.pAp/ � embdim.Ap/ and � Pp
pAp˝kB

.qBq/ � �P.qBq/, we

obtain

�P.pAp/ D embdim.Ap/ and �P.qBq/ D embdim.Bq/

completing the proof of the lemma via (13). ut
The second lemma will allow us to reduce our investigation to tensor products

issued from finite extension fields.

Lemma 4.4 Let K be an extension field of k and A a k-algebra such that K ˝k A is
Noetherian. Let P be a prime ideal of K ˝k A. Then, there exists a finite extension
field E of k contained in K such that
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embdim.K ˝k A/P D embdim.F ˝k A/Q

for each intermediate field F between E and K and Q WD P \ .F ˝k A/.

Proof Let z1; : : : ; zt 2 K ˝k A such that P D .z1; : : : ; zt/K ˝k A; and for each

i D 1; : : : ; t, let zi WD
niP

jD1
˛ij ˝k aj with ˛ij 2 K and aj 2 A. Let E WD

k
�˚
˛ij j i D 1; : : : ; t I j D 1; : : : ; ni

��
and Q WD P\.E˝k A/. Clearly, z1; : : : ; zt 2 Q

and hence P D Q.K˝k A/ D K˝E Q:Apply Lemma 4.3 to K˝k A Š K˝E .E˝k A/
to obtain embdim.K ˝k A/P D embdim.E ˝k A/Q: Now, let F be an intermediate
field between E and K and Q0 WD P \ .F ˝k A/. Then

P D Q0.K ˝k A/ D K ˝E Q0 (14)

since Q0 \ .E˝k A/ D Q. As above, Lemma 4.3 leads to the conclusion. ut
Next, we give the proof of the main theorem.

Proof of Theorem 4.2 We proceed through three steps.

Step 1. Assume that K is an algebraic separable extension field of k. We claim that

PP D .K ˝k p/P : (15)

Indeed, set Sp WD A

p
n f0g. The basic fact

P

K ˝k p
\ A

p
D .0/ yields

.K ˝k A/P

.K ˝k p/P
Š
	

K ˝k
A

p




P
K˝kp

D
�

K ˝k �A.p/
�

S�1
p . P

K˝kp /

where K ˝k �A.p/ is a zero-dimensional ring [30, Theorem 3.1], reduced [35,
Chap. III, §15, Theorem 39], and hence von Neumann regular [23, Ex. 22, p. 64].

It follows that
�

K˝k�A.p/
�

S�1
p . P

K˝kp /
is a field. Consequently, .K˝kp/P D PP, the

unique maximal ideal of .K ˝k A/P, proving our claim. By (15) and Lemma 4.3,
we get embdim.K ˝k A/P D embdim.Ap/:

Step 2. Assume that K is a finitely generated separable extension field of k. Let
T D fx1; : : : ; xtg be a finite separating transcendence base of K over k; that is, K
is algebraic separable over k.T/ WD k.x1; : : : ; xt/. Let S WD kŒT� n f0g and notice
that

K ˝k A Š K ˝k.T/ .k.T/˝k A/ Š K ˝k.T/ S�1AŒT�:

Let P\ S�1AŒT� D S�1P0 for some prime ideal P0 of AŒT�. Note that P0 \A D p.
Then, we have
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embdim.K ˝k A/P D embdim
�
K ˝k.T/ S�1AŒT�

�
P

D embdim
�
S�1AŒT�S�1P0

�
; by Step 1

D embdim .AŒT�P0/

D embdim.Ap/C ht

	
P0

pŒT�



; by Theorem 3.1.

Moreover, note that

K ˝k
A

p
Š K ˝k.T/

	
k.T/˝k

A

p




Š K ˝k.T/
S�1AŒT�
S�1pŒT�

and

P

K ˝k p
\ S�1AŒT�

S�1pŒT�
D S�1P0

S�1pŒT�

as K ˝k p Š K ˝k.T/ S�1pŒT� so that .K ˝k p/ \ S�1AŒT� D S�1pŒT�. Therefore

the integral extension
S�1AŒT�
S�1pŒT�

,! K ˝k
A

p
is flat and hence satisfies the Going-

down property; that is, ht

	
P0

pŒT�



D ht

	
S�1P0

S�1pŒT�



D ht

	
P

K ˝k p



: It follows

that embdim.K ˝k A/P D embdim.Ap/ C ht

	
P

K ˝k p



:

Step 3. Assume that K is an arbitrary separable extension field of k. Then, by
Lemma 4.4, there exists a finite extension field E of k contained in K such that

embdim.K ˝k A/P D embdim.E˝k A/Q

where Q WD P\ .E˝k A/. Let˝ denote the set of all intermediate fields between
E and K. For each F 2 ˝, note that P D Q0.K˝k A/, where Q0 WD P\ .F˝k A/,
as seen in (14); and by Lemma 4.4 and Step 2, we obtain

embdim.K ˝k A/P D embdim.F ˝k A/Q0 D embdim.Ap/C ht

	
Q0

F ˝k p



:

(16)

Further, as the ring extension F ˝k
A

p
,! K ˝k

A

p
satisfies the Going-down

property, we get

ht

	
Q0

F ˝k p



� ht

	
P

K ˝k p



: (17)

Next let K ˝k p � P0 ¨ P1 ¨ : : : ¨ Pn D P be a chain of distinct prime ideals

of K ˝k A such that n WD ht

	
P

K ˝k p



. Let ti 2 Pi n Pi�1 for each i D 1; : : : ; n.

One readily checks that there exists a finite extension field G of k contained in
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K such that, for each i D 1; : : : ; n, ti 2 G ˝k A and thus ti 2 Q0
i n Q0

i�1, where
Q0

i WD Pi \ .G˝k A/. Let H WD k.E;G/ 2 ˝ and Qi WD Pi \ .H ˝k A/ for each
i D 1; : : : ; n. Then ti 2 Qi n Qi�1 for each i D 1; : : : ; n. Therefore, we get the
following chain of distinct prime ideals in H ˝k A

H ˝k p � Q0 ¨ Q1 ¨ : : : ¨ Qn D Q0 WD P \ .H ˝k A/:

It follows that ht
�

Q0

H˝kp

�
� n and then (17) yields ht

�
Q0

F˝kp

�
D ht

�
P

K˝kp

�
:

Further, K ˝k �A.p/ is regular since K is separable over K [18, Lemma 6.7.4.1].
Consequently, by (16), we get

embdim.K ˝k A/P D embdim.Ap/ C ht

	
P

K ˝k p




D embdim.Ap/ C embdim

 �
K ˝k �A.p/

�
Pp

K˝kpAp

!

completing the proof of the theorem.

As a direct application of Theorem 4.2, we obtain the next corollary on the
(embedding) codimension which extends Grothendieck’s result on the transfer of
regularity to tensor products issued from finite extension fields [18, Lemma 6.7.4.1].
See also [4].

Corollary 4.5 Let K be a separable extension field of k and A a k-algebra such that
K ˝k A is Noetherian. Let P be a prime ideal of K ˝k A with p WD P \ A. Then:

codim.K ˝k A/P D codim.Ap/:

In particular, K ˝k A is regular if and only if A is regular.

Proof Combine Theorem 4.2 and (11). ut

5 Embedding Dimension and Codimension of Tensor
Products of Algebras with Separable Residue Fields

This section deals with a more general setting (than in Sect. 4); namely, we compute
the embedding dimension of localizations of the tensor product of two k-algebras A
and B at prime ideals P such that the residue field �B.P\B/ is a separable extension
of k. The main result establishes an analogue for an extended form of the “special
chain theorem” for the Krull dimension which asserts that
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dim.A˝k B/P D dim.Ap/C dim.Bq/C ht

	
P

p˝k BC A˝k q




D dim.Ap/C dim.Bq/C dim

	�
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq



:

(18)
As an application, we formulate the (embedding) codimension of these construc-
tions with direct consequence on the transfer or defect of regularity.

Here is the main result of this section.

Theorem 5.1 Let A and B be two k-algebras such that A ˝k B is Noetherian and
let P be a prime ideal of A˝k B with p WD P \ A and q WD P \ B. Assume �B.q/ is
separable over k. Then:

embdim.A˝k B/P D embdim.Ap/ C embdim.Bq/ C ht

	
P

p˝k BC A˝k q




D embdim.Ap/ C embdim.Bq/

C embdim

 �
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

!

Proof Notice first that, as �B.q/ is separable over k, �A.p/˝k �B.q/ is a regular ring
and hence

embdim

 �
�A.p/˝k �B.q/

�
P.Ap˝kBq/

pAp˝kBqCAp˝kqBq

!

D ht

	
P.Ap ˝k Bq/

pAp ˝k Bq C Ap ˝k qBq




D ht

	
P

p˝k BC A˝k q



:

So, we only need to prove the first equality in the theorem and, without loss of
generality, we may assume that .A; n/ and .B;m/ are local k-algebras such that

A˝k B is Noetherian,
B

m
is a separable extension field of k, and P is a prime ideal

of A ˝k B with P \ A D n and P \ B D m. Similar arguments used in the proof

of Lemma 4.4 show that there exists a finite extension field K of k contained in
B

m
such that

P

A˝k m
D Q

	
A˝k

B

m



Š Q˝K

B

m

where Q WD P

A˝k m
\ .A ˝k K/. Since

B

m
is separable over k and K is a finitely

generated intermediate field, then K is separably generated over k (cf. [21, Chap. VI,
Theorem 2.10 & Definition 2.11]). Let t denote the transcendence degree of K over
k and let c1; : : : ; ct 2 B such that fc1; : : : ; ctg is a separating transcendence base of
K over k; i.e., K is separable algebraic over ˝ WD k .c1; : : : ; ct/. Also c1; : : : ; ct are
algebraically independent over k with

m \ kŒc1; : : : ; ct� D .0/: (19)
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So one may view A ˝k kŒc1; : : : ; ct� Š AŒc1; : : : ; ct� as a polynomial ring in t
indeterminates over A. Set S WD kŒc1; : : : ; ct� n f0g I k.t/ WD k.c1; : : : ; ct/ I AŒt� WD
AŒc1; : : : ; ct�: Then, we have

P \ S D m\S D ; and A˝k S�1B Š S�1AŒt�˝k.t/ S�1B: (20)

Next, let T WD P
A˝km

\ .A ˝k ˝/ D Q \ .A ˝k ˝/ and consider the following

canonical isomorphisms of k-algebras 	1 W A˝k
S�1B
S�1m

�! �
A˝k k.t/

�˝k.t/
S�1B
S�1m

and 	2 W A˝k
B

m
�! .A˝k ˝/˝˝ B

m
: As A˝k K Š .A˝k ˝/˝˝ K, by (15) we

obtain QQ D .T ˝˝ K/Q D T.A˝k K/Q and hence

	
P

A˝k m




P
A˝km

D Q

	
A˝k

B

m




P
A˝km

D QQ

	
A˝k

B

m



�

P
A˝km

�

Q

D T.A˝k K/Q

	
A˝k

B

m



�

P
A˝km

�

Q

D T.A˝k K/

	
A˝k

B

m




P
A˝km

D T

	
A˝k

B

m




P
A˝km

D
	
	�1
2

	
	2

	
T

	
A˝k

B

m







P
A˝km

D
	
	�1
2

	
T ˝˝ B

m





P
A˝km

:

(21)

Moreover, on account of (19) and by considering the natural surjective homomor-

phism of k-algebras kŒc1; : : : ; ct�
'�! kŒc1; : : : ; ct� defined by '.ci/ D ci for each

i D 1; : : : ; t, we get kŒc1; : : : ; ct�
'Š kŒc1; : : : ; ct� inducing the following natural

isomorphism of extension fields � WD S�1' W k.t/ �! k.c1; : : : ; ct/ D ˝:

Then, � induces a structure of k.t/-algebras on ˝ and thus on
B

m
. We adopt

a second structure of k.t/-algebras on
B

m
, inherited from the canonical injection

k.t/
i
,! S�1B. Indeed, consider the following k-algebra homomorphisms k.t/

i�!
S�1B
S�1m


�! B
m

defined by i.˛/ D ˛ for each ˛ 2 k.t/, and where 
 is the isomorphism

of k-algebras defined by 

�

b
s

�
D b

s for each b 2 B and each s 2 S. It is easy

to see that these two structures of k.t/-algebras coincide on
B

m
. This is due to the

commutativity of the following diagram of homomorphisms of k-algebras

k.t/
i�! S�1B

S�1m

� & # 


B

m
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since, for each ˛ WD f
s 2 k.t/ with f 2 kŒc1; : : : ; ct� and s 2 S, we have

.
 ı i/.˛/ D 
.˛/ D f

s
D '.f /

'.s/
D �.˛/:

Now, consider the following isomorphism of k-algebras

 WD 	2 ı .1A ˝k 
/ ı 	�1
1 W

�
A˝k k.t/

�˝k.t/
S�1B
S�1m

�! .A˝k ˝/˝˝ B

m

where, for each a 2 A, ˛ 2 k.t/, b 2 B, and s 2 S, we have

 
�
.a˝k ˛/˝k.t/

b
s

�
D 	2

�
.1A ˝k 
/

�
a˝k ˛

b
s

��
D 	2

�
a˝k 


�
˛ b

s

��

D 	2
�

a˝k

�
.
 ı i/.˛/


�
b
s

��� D 	2
�

a˝k

�
�.˛/


�
b
s

���

D .a˝k 1/˝˝ �.˛/

�

b
s

�
D .a˝k �.˛//˝˝ 


�
b
s

�

D .1A ˝k �/.a˝k ˛/˝˝ 

�

b
s

�
:

Next, let ı W A˝k S�1B �! S�1AŒt�˝k.t/ S�1B denote the canonical isomorphism
of k-algebras mentioned in (20) and let S�1H WD S�1P\S�1AŒt� where H is a prime
ideal of AŒt� with H \ S D ;. Therefore

 

	
S�1H ˝k.t/

S�1B
S�1m



D .1A ˝k �/.S�1H/˝˝ 


� S�1B
S�1m

�

D .1A ˝k �/.S�1H/˝˝ B

m
:

(22)

Claim ı.S�1P/ı.S�1P/ D
�

S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m
�

ı.S�1P/
.

Indeed, consider the following commutative diagram (as � D 
 ı i)

S�1.A˝k B/ D A˝k S�1B
1A˝k.
ı�/�! A˝k

B

m

1A ˝k i " "

A˝k k.t/
1A˝k��! A˝k ˝

where � W S�1B �! S�1B
S�1m

denotes the canonical surjection (with � ı i D i) and the
vertical maps are the canonical injections. Also, it is worth noting that 1A˝k � is an
isomorphism of k-algebras. Hence



Embedding Dimension and Codimension of Tensor Products of k-Algebras 73

T D P

A˝k m
\ .A˝k ˝/

D .1A ˝k �/

		�
1A ˝k .
 ı �/

��1� P

A˝k m

�

\ �A˝k k.t/

�


D .1A ˝k �/
�

S�1P \ �A˝k k.t/
�� D .1A ˝k �/.S�1P \ S�1AŒt�/

D .1A ˝k �/.S�1H/:

(23)

It follows, via (21), (23), and (22), that

	
P

A˝k m




P
A˝km

D 	�1
2

	
T ˝˝ B

m




P
A˝km

D 	�1
2

	
.1A ˝k �/.S�1H/˝˝ B

m




P
A˝km

D 	�1
2

	
 
�

S�1H ˝k.t/
S�1B
S�1m

�


P
A˝km

D .1A ˝k 
/

	
	�1
1

�
S�1H ˝k.t/

S�1B
S�1m

�


P
A˝km

:

Further, notice that
P

A˝k m
D .1A ˝k 
/

	
S�1P

A˝k S�1m



: Then the isomorphism

1A ˝k 
 yields the canonical isomorphism of local k-algebras

.1A ˝k 
/P W
	

A˝k
S�1B
S�1m




S�1P
A˝kS�1m

�!
	

A˝k
B

m




P
A˝km

with

.1A ˝k 
/P

0

@
	

S�1P
A˝k S�1m




S�1P
A˝kS�1m

1

A D
	

P

A˝k m




P
A˝km

D .1A ˝k 
/P

0

@	�1
1

	
S�1H ˝k.t/

S�1B
S�1m




S�1P
A˝kS�1m

1

A :

Therefore

	�1
1

	
S�1H ˝k.t/

S�1B
S�1m




S�1P
A˝kS�1m

D
	

S�1P
A˝k S�1m




S�1P
A˝kS�1m

: (24)
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Moreover, consider the following commutative diagram

A˝k S�1B ı�! S�1AŒt�˝k.t/ S�1B
�1 # # �2

A˝k
S�1B
S�1m

	1�! S�1AŒt�˝k.t/
S�1B
S�1m

where �1 D 1A ˝k � and �2 D 1S�1AŒt� ˝k � are the canonical surjective
homomorphisms of k-algebras. Hence

��1
1

	
	�1
1

�
S�1H ˝k.t/

S�1B
S�1m

�

D .	1 ı �1/�1

	
S�1H ˝k.t/

S�1B
S�1m




D .�2 ı ı/�1
	

S�1H ˝k.t/
S�1B
S�1m




D ı�1
	
��1
2

�
S�1H ˝k.t/

S�1B
S�1m

�


D ı�1 �S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m
�

so that

	�1
1

	
S�1H ˝k.t/

S�1B
S�1m



D �1

�
ı�1

�
S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m

��

D ı�1 �S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m
�

A˝k S�1m
:

It follows, via (24), that

S�1PS�1P

.A˝k S�1m/S�1P
D
	

S�1P
A˝k S�1m




S�1P
A˝kS�1m

D 	�1
1

	
S�1H ˝k.t/

S�1B
S�1m




S�1P
A˝kS�1m

D
0

@
ı�1

�
S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m

�

A˝k S�1m

1

A

S�1P
A˝kS�1m

D ı�1 �S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m
�

S�1P

.A˝k S�1m/S�1P

and thus S�1PS�1P D ı�1
�

S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m
�

S�1P
: Also, note

that the isomorphism of k-algebras ı induces the isomorphism of local k-algebras
ıP W .A˝k S�1B/S�1P �! .S�1AŒt�˝k.t/ S�1B/ı.S�1P/: Hence

ı�1
P

�
ı.S�1P/ı.S�1P/

� D S�1PS�1P

D ı�1
P

	�
S�1H ˝k.t/ S�1BC S�1AŒt�˝k.t/ S�1m

�

ı.S�1P/
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so that ı.S�1P/ı.S�1P/ D
�

S�1H ˝k.t/ S�1B C S�1AŒt� ˝k.t/ S�1m
�

ı.S�1P/
proving

the claim.
It follows, by Lemma 4.3 applied to S�1AŒt�˝k.t/ S�1B, that

�ı.S�1P/.S
�1mS�1BS�1m/ D embdim.S�1BS�1m/ D embdim.B/

so that, by Proposition 4.1, we have

embdim.A˝k B/P D embdim
�
.A˝k S�1B/S�1P

�

D embdim
�
.S�1AŒt�˝k.t/ S�1B/ı.S�1P/

�

D �ı.S�1P/.S
�1mS�1BS�1m/

C embdim

 
�

S�1AŒt�˝k.t/
S�1B

S�1m

�
ı.S�1P/

S�1AŒt�˝k.t/S
�1m

!

D embdim.B/C embdim

 
�

S�1AŒt�˝k.t/
S�1B

S�1m

�
ı.S�1P/

S�1AŒt�˝k.t/S
�1m

!

D embdim.B/C embdim

 �
A˝k

S�1B

S�1m

�

S�1P
A˝kS�1m

!

:

Finally, as
S�1B
S�1m

Š B

m
is a separable extension field of k, we get, by Theo-

rem 4.2, that

embdim.A˝k B/P D embdim.A/C embdim.B/C ht

	
S�1P=.A˝k S�1m/
n˝k.S�1B=S�1m/




D embdim.A/C embdim.B/C ht

	
S�1P

n˝kS�1BC A˝k S�1m




D embdim.A/C embdim.B/C ht

	
P

n˝kBC A˝k m




completing the proof of the theorem. ut
As a direct application of Theorem 5.1, we obtain the next corollary on the

(embedding) codimension which recovers known results on the transfer of regularity
to tensor products over perfect fields [31, Theorem 6(c)] and, more generally, to
tensor products issued from residually separable extension fields [4, Theorem 2.11].
Recall that a k-algebra R is said to be residually separable, if �R.p/ is separable over
k for each prime ideal p of R.

Corollary 5.2 Let A and B be two k-algebras such that A˝k B is Noetherian and
let P be a prime ideal of A˝k B with p WD P \ A and q WD P \ B. Assume �B.q/ is
separable over k. Then:

codim.A˝k B/P D codim.Ap/C codim.Bq/:
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Proof Combine Theorem 5.1 and (18). ut
Note that if k is perfect, then every k-algebra is residually separable. Now, if k is

an arbitrary field, one can easily provide original examples of residually separable k-
algebras through localizations of polynomial rings or pullbacks [2, 13]. For instance,
let X be an indeterminate over k and K � L two separable extensions of k. Then, the
one-dimensional local k-algebras R WD K C XLŒX�.X/ � S WD LŒX�.X/ are residually
separable since the extensions k � �R

�
XLŒX�.X/

� D K � �S
�
XLŒX�.X/

� D L �
�R.0/ D �S.0/ D L.X/ are separable over k by Mac Lane’s Criterion and transitivity
of separability. Also, similar arguments show that the two-dimensional local k-
algebra R0 WD RC YL.X/ŒY�.Y/ is residually separable, where Y is an indeterminate
over k. Therefore, one may reiterate the same process to build residually separable
k-algebras of arbitrary Krull dimension.

Corollary 5.3 Let A be a finitely generated k-algebra and B a residually separable
k-algebra. Let P be a prime ideal of A˝k B with p WD P\ A and q WD P\ B. Then:

codim.A˝k B/P D codim.Ap/C codim.Bq/:

In particular, A˝k B is regular if and only if so are A and B.

Corollary 5.4 Let k be an algebraically closed field, A a finitely generated k-
algebra, p a maximal ideal of A, and B an arbitrary k-algebra. Let P be a prime
ideal of A˝k B such that P \ A D p and set q WD P \ B. Then:

codim.A˝k B/P D codim.Ap/C codim.Bq/:
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Minimal Generating Sets for the D-Algebra
Int.S; D/

Jacques Boulanger and Jean-Luc Chabert

Abstract We are looking for minimal generating sets for the D-algebra Int.S;D/
of integer-valued polynomials on any infinite subset S of a Dedekind domain D.
For instance, the binomial polynomials

�X
pr

�
; where p is a prime number and r is

any nonnegative integer, form a minimal generating set for the classical Z-algebra
Int.Z/ D ff 2 QŒX� j f .Z/ � Zg: In the local case, when D is a valuation
domain and S is a regular subset of D, we are able to construct minimal generating
sets, but we are not always able to extract from a generating set a minimal one.
In particular, we prove that, in local fields, the generating set of integer-valued
polynomials obtained by de Shalit and Iceland by means of Lubin-Tate formal group
laws is minimal. In our proofs we make an extensive use of Bhargava’s notion of
p-ordering.

Keywords Integer-valued polynomials • Bhargava’s factorials • Minimal gener-
ating sets • Lubin-Tate formal group laws • Dirichlet series

Subject Classifications Codes: Primary: 13F20, Secondary: 11S31, 11B65, 11R42

1 Introduction

When studying the ring Int.D/ of integer-valued polynomials on a domain D, one
of the first things we are looking for is the existence of bases of Int(D/ as a D-
module. Here, we consider Int.D/where D is a Dedekind domain, or more generally
Int.S;D/ where S is an infinite subset of D, as a D-algebra.

The origin of our study comes from a statement of de Shalit and Iceland [11]
that we recall now. Let K be a local field and V be the corresponding valuation
domain. De Shalit and Iceland obtained by a very interesting and surprising way,
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namely by means of Lubin-Tate formal groups, a generating set of the V-algebra of
integer-valued polynomials on V; that is,

Int.V/ D ff 2 KŒX� j f .V/ � Vg :

More precisely, if F.t1; t2/ denotes a Lubin-Tate formal group law on V; one knows
that, for every x 2 V , there is a unique power series

Œx�.t/ D
1X

nD1
cn.x/t

n

such that c1.x/ D x and F.Œx�.t1/; Œx�.t2// D Œx�.F.t1; t2// : It turns out that the
cn.x/’s are polynomials of Int.V/ of degree � n: Denoting by q the cardinality of
the residue field of V , the authors proved [11, Thm 3.1] that the set fcqm.x/ j m � 0g
is a generating set for the V-algebra Int.V/. They also state that this set is a minimal
generating set, but they did not give really a proof. Thus, the aim of this paper is
to give a proof of this statement (Theorem 3 below). By the way, we study the
question of the existence of minimal generating sets for the D-algebra of integer-
valued polynomials Int.S;D/ in a more general framework, namely, when D is a
Dedekind domain and S is an infinite subset of D.

For instance, in the particular case where K D Qp and V D Zp, following [8,
§5.1], we know a minimal generating set of the Zp-algebra Int.Zp/ obtained by a
more direct way, namely the set formed by the polynomials Fpm.X/ .m � 0/ defined
inductively by F1.X/ D X, Fp.X/ D Xp�X

p and, for m � 1, Fpm.X/ D Fp.Fpm�1 .X//.
In fact, the author gives no proof of minimality (which is true however, see
Proposition 3 below). Let us consider another example, the classical ring of integer-
valued polynomials:

Int.Z/ D ff .X/ 2 QŒX� j f .Z/ � Zg :

It is well known that the binomial polynomials

 
X

n

!

D X.X � 1/ : : : .X � nC 1/
nŠ

.n � 0/

form a basis of the Z-module Int.Z/. The set f�X
n

�gn�0 is then a generating set, and
in fact a minimal generating set, for the Z-module Int.Z/. If we try to extract from
this set a minimal generating set for the Z-algebra Int.Z/, we see that there exists

one and only one such subset, namely (see Proposition 12):
n�X

pk

� ˇ̌
ˇ p 2 P; k 2N

o
:

We will prove below analogous results when replacing Z by an integral domain.

Notation Let D denote an integral domain with quotient field K, and consider the
D-algebra of integer-valued polynomials on D, that is,
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Int.D/ D ff .X/ 2 KŒX� j f .D/ � Dg :

More generally, for every infinite subset S of D, consider the D-algebra of integer-
valued polynomials on S with respect to D, that is,

Int.S;D/ D ff .X/ 2 KŒX� j f .S/ � Dg :

Recall that, for every n 2N, the leading coefficients of the polynomials of Int.S;D/
with degree� n form a nonzero fractional ideal of D denoted by In.S;D/ and called
the n-th characteristic ideal of S (cf. [5, §II.1]). We also know:

Proposition 1 ([5, II.1.5]) Let G � Int.S;D/: If, for every n � 0, the leading
coefficients of the polynomials of G with degree n generate the fractional ideal
In.S;D/; then G is a generating set for the D-module Int.S;D/:

In the sequel, we will look for generating sets of the D-algebra Int.S;D/
which are extracted from sets G obtained by this way. In particular, when the
characteristic ideals are principal, there exists bases of Int.S;D/ having one and
only one polynomial of each degree. Following Pólya [16], such a basis is called a
regular basis. Proposition 1 shows that there exists regular bases for the D-module
Int.S;D/ if and only if all the characteristic ideals In.S;D/ are principal.

We begin our study with the local case: in the next section, we consider first
the easiest case, namely, the Zp-algebra Int.Zp/: Then, in Sect. 3, we consider
generating sets for the V-algebra extracted from regular bases of the V-module
Int.S;V/ where V is any rank-one valuation domain and S any infinite subset of
V: To obtain minimal generating sets with Theorem 2 we need to assume that the
subset S is regular (we recall there the notion of regular subset). Finally, in Sect. 5,
we globalize the previous results to Dedekind domains.

2 Minimal Generating Sets for the Z-Algebra Int.Zp/

Let p be a fixed prime number. We denote by Qp the field of p-adic numbers, by Zp

the ring of p-adic integers, and by vp the p-adic valuation on Qp.

2.1 Extracted from the Regular Basis Formed by the
�X

n

�

Lemma 1 The Zp-algebra Int.Zp/ admits the generating set:
n�X

pr

� ˇ̌
ˇr � 0

o
:

Proof Assume that n � 2 is not of the form pr with r � 0. Then, n D mpr with

m � 2; and p 6 jm: By Legendre formula [15]: vp.nŠ/ DPk�1
h

n
pk

i
; we have
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vp.nŠ/ D
rX

kD1
m

�
pr

pk

�
C
X

k�1

�
m

pk

�

D
rX

kD1

�
pr

pk

�
C

rX

kD1
.m � 1/

�
pr

pk

�
C
X

k�1

�
m � 1

pk

�
D vp.p

rŠ/C vp..m � 1/prŠ/ :

Consequently, nŠ D u � prŠ � ..m � 1/pr/Š where u is invertible in Zp: Thus,
the degree of the polynomial

�X
n

� � 1
u

�X
pr

�� X
.m�1/pr

�
is strictly less than n. Since the

polynomial
�X

n

�
is generated by the binomials

�X
m

�
where m < n, it may be deleted

from the generating set.

Remark 1 If n is of the form pr for some r � 1, the previous reasoning does not
hold since

8j 2 f1; : : : ; pr � 1g vp.jŠ/C vp..p
r � j/Š/ < vp.p

rŠ/ :

This is a consequence of Legendre formula written in the following way:

vp.nŠ/ D n � �p.n/

p � 1 [15]

where �p.n/ denotes the sum of the digits of n in base p: Indeed,

vp

  
pr

j

!!

D vp.p
rŠ/ � vp.jŠ/ � vp..p

r � j/Š/ D �p.j/C �p.pr � j/ � �p.pr/

p � 1 :

Since each carry in the addition of j and pr � j decreases the sum of the digits by
p � 1, p divides

�pr

j

�
.

We show now that the generating set given in Lemma 1 is minimal.

Proposition 2 The set
n�X

pr

� ˇ̌
ˇ r � 0

o
is a minimal generating set for the Zp-algebra

Int.Zp/. Moreover, it is the only minimal generating set that one may extract fromn�X
n

� ˇ̌
ˇ n 2N

o
.

Proof First, the polynomial X D �X
p0
�

cannot be deleted since if we have a relation
of the form

X D c0 C
X

˛¤0
c˛

 
X

k1

!˛1
: : :

 
X

ks

!˛s

where c˛ 2 Zp and ki ¤ 0; 1 ; (1)

the substitution of 0 and 1 for X would lead to a contradiction.
Now assume that there exists some r � 1 such that

�X
pr

�
could be deleted, that is,

that there exists a relation of the form
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X

pr

!

D c0 C
X

˛¤0
c˛

 
X

k1

!˛1
: : :

 
X

ks

!˛s

where c˛ 2 Zp and ki ¤ 0; pr : (2)

The classical formula (see, for instance, [10, T. 1, Ch. 1, Ex. 23]):

 
X

m

! 
X

n

!

D
mCnX

lDmax .m;n/

lŠ

.l � m/Š.l � n/Š.mC n � l/Š

 
X

l

!

(3)

shows that the coefficient of
�X

pr

�
in the development of the product

�X
m

��X
n

�
where

m; n ¤ pr is always divisible by p since if m > pr; or n > pr; or mC n < pr,
�X

pr

�

does not appear, and if 0 < m; n < pr and mC n � pr,

prŠ

.pr � m/Š.pr � n/Š.mC n � pr/Š
D
 

pr

m

! 
m

pr � n

!

;

we may conclude with Remark 1.
Thus, if in the right side of Eq. (2), we replace successively all the products

�X
m

��X
n

�

by means of Eq. (3) until we obtain a sum which is linear with respect to the
�X

l

�
’s

then, if
�X

pr

�
appears, its coefficient is divisible by p, and this property remains until

the end of the process. So that, we will obtain an equality of the form:

 
X

pr

!

D
X

l

bl

 
X

l

!

with pjbpr :

Since, the
�X

l

�
’s form a basis of the Zp-module Int.Zp/, we have a contradiction.

Moreover, this is the only minimal generating subset that can be extracted from
f�X

n

� j n 2Ng since
�X

pr

�
cannot be obtained from all of the others.

2.2 Extracted from the Basis Formed by the Fermat
Polynomials

As previously said in the introduction, we know another natural basis of the Zp-
module Int.Zp/ constructed from the Fermat binomial

Fp.X/ D Xp � X

p
: (4)

Consider the sequence formed by the iterates of Fp:
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Fp0 .X/ D F1.X/ D X and, for k � 2;Fpk.X/ D Fp.Fpk�1 .X// : (5)

Now, if n may be written n D nknk�1 � � � n1n0 in base p, one let

Fn.X/ D
kY

jD0
.Fpj/nj : (6)

One knows [5, §II.2] that the set fFn.X/gn�0 is a regular basis of the Zp-module
Int.Zp/. It follows from Eq.(6) that the polynomials Fpk .k 2N/ form a generating
set of the Zp-algebra Int.Zp/: In fact, this generating set is minimal:

Proposition 3 [8, §5.1] The polynomials Fpk .k 2N/ defined by Formulas (4) and
(5) form a minimal generating set for the Zp-algebra Int.Zp/:

Proof In order to prove that we cannot delete any Fpk from this generating set, we
consider their images fpk in Int.Zp/=pInt.Zp/. Clearly, the fpk ’s generate the Fp-
algebra Int.Zp/=pInt.Zp/ and satisfy the relations f p

pk � fpk D 0 since .Fpk/p�Fpk D
p FpkC1 . We prove now that all the relations between the fpk ’s are generated by the
previous ones. Let

 W FpŒY0;Y1; : : : ;Yk; : : :�! Int.S;Zp/=pInt.S;Zp/

be the homomorphism of Fp-algebra defined by  .Yk/ D fpk . Clearly,  is onto and
ker. / contains the ideal I generated by the elements Yp

k � Yk (k � 0). Then, every
q 2 FpŒY0; : : : ;Yk; : : :� is congruent modulo I to a polynomial:

q0 D
X

˛

d˛Y˛00 Y˛11 � � � Y˛r
r where d˛ 2 Fp and 0 � ˛k < p :

Let

Q0 D
X

˛

c˛Y˛00 Y˛11 � � � Y˛r
r where c˛ 2 Z is a representative of d˛ :

Then,

Q0.F1;Fp; : : : ;Fpk ; : : :/ D
X

˛

c˛F˛01 F˛1p � � �F˛r
pr D

X

˛

c˛Fj˛j

where j˛j D ˛0 C ˛1pC � � � C ˛rpr:

If  .q/ D 0, then  .q0/ D 0 and Q0.F1;Fp; : : : ;Fpk ; : : :/ 2 p Int.Zp/.
Consequently, p divides all the c˛ since the Fn’s form a basis of the Zp-module
Int.Zp/. Thus, q0 D 0 and q 2 I. We then may conclude that the fpk ’s form an
irredundant set of generators of Int.Zp/=pInt.Zp/, and hence, the same assertion
holds for the polynomials Fpk ’s in Int.Zp/.
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3 Generating Sets in the Local Case

Hypotheses and Notation for the Section
Let K be a valued field. We denote by v the valuation of K and by V the

corresponding valuation domain. By definition, v is a rank-one valuation, that is,
v W K� ! R.

Let S be an infinite subset of V which is assumed to be precompact, that is, such
that its completion with respect to the topology defined by v is compact.

3.1 Gaps and Generating Sets

Let wS denote the ‘characteristic function’ of S which is associated to the sequence
of characteristic ideals of S W

wS W n 2N 7! �v.In.S;V// 2 R :

The function wS is super-additive, that is,

wS.iC j/ � wS.i/C wS.j/ for all i; j � 0

since clearly Ii.S;V/ � Ij.S;V/ � IiCj.S;V/. We are led to consider the indices
for which the function is strictly super-additive.

Definition 1 The set of indices of gaps of wS is defined by

gV.S/ D fn > 0 j 8i 2 f1; : : : ; n � 1g wS.i/C wS.n � i/ < wS.n/ g :

By definition, we always have 1 2 gV.S/. It follows from the previous section
(see, for example, Remark 1) that, for every prime number p

g.Zp/ D gZp.Zp/ D fpr j r � 0g : (7)

Recall that the inverse of the characteristic ideals In.S;V/ is the n-th factorial
ideal .nŠ/VS of S as defined by Bhargava [2]. Consequently, wS.n/ D v..nŠ/VS /.

The following proposition is a slight generalization of [14, Prop. 4.3].

Proposition 4 If fgngn�0 is a regular basis of Int.S;V/; then the following set is a
generating set for the V-algebra Int.S;V/ W

f gn j n 2 gV.S/ g :

Proof It follows from Proposition 1 that the set f gn j n � 0 g is a generating set
of the module. We may forget g0 D 1 for the generating set of the algebra. Let
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n > 0 and assume that n … gV.S/ W there exist i > 0 and j > 0 such that iC j D n
and wS.i/ C wS.j/ D wS.n/. Denoting by lc.g/ the leading coefficient of every
polynomial g, we have v.lc.gk// D wS.k/ for all k. Thus, in the valuation domain V
we have the relation:

lc.gn/ D u � lc.gi/ � lc.gj/ where v.u/ D 0 :

Consequently,

deg
�
gn.X/ � ugi.X/gj.X/

�
< n;

and hence, gn.X/ � ugi.X/gj.X/ is a linear combination of the gm’s where m < n.
Thus, we may delete gn from the generating set.

In other words, every polynomial f 2 Int.S;V/ of degree n may be written:

f .X/ D P.gi1 .X/; : : : ; gik.X// where i1; : : : ; ik 2 gV.S/ \ f1; : : : ; ng

and P.T1; : : : ;Tk/ 2 VŒT1; : : : ;Tk�. Moreover, the previous proof shows that we may
add: the total degree of P is � 2:

We will prove next that some of these generating sets are minimal generating sets
for the V-algebra Int.S;V/ if the subset S itself is sufficiently regular.

Remark 2 Take care that there are generating sets extracted from regular bases
which do not necessarily contain all the gn’s where n 2 gV.S/. Indeed, consider
the Z3-algebra Int.Z3/ and the regular basis fgngn�0 where gn.X/ D

�X
n

�
for n ¤ 5

and g5.X/ D
�X
5

� C �X
3

�
. The Z3-algebra Int.Z3/ is generated by the gn’s where

n 2 f1; 4; 5g [ f3r j r � 2g since
�X
3

� D g5.X/ � 1
5
.g1.X/ � 4/ � g4.X/ ; although

3 2 g.Z3/:

3.2 Structural Constants

As said in the introduction, the V-module Int.S;V/ is free. Thus, if ffngn�0 denotes
a basis, we may consider the corresponding structural constants ck.n;m/ of the V-
algebra Int.S;V/ defined by the relations:

fn.X/fm.X/ D
X

k�0
ck.n;m/fk.X/ .m; n; k 2N/: (8)

The ck.n;m/ are unique and belong to V since the fk’s form a basis of the V-module
Int.S;V/. Recall the following result due to Elliott [12, Prop. 2.2] in the case where
the basis is a regular basis associated to a v-ordering (see Sect. 3.3):
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Proposition 5 Let ffngn�0 be a basis and consider the ck.n;m/ defined by (8). Then,
all the relations between the generators fn are generated by relations (8).

Proof Let ' W VŒT1; : : : ;Tn; : : :� ! Int.S;V/ be the homomorphism of V-algebra
defined by '.Tn/ D fn. Clearly, ' is onto and ker.'/ contains the ideal I
generated by the elements TnTm �Pk�0 ck.n;m/Tk. It is easy to see that every P 2
VŒT1; : : : ;Tn; : : :� is congruent modulo I to a linear form

P
0�k�n �kTk, and then,

'.P/ D Pn
kD0 �kfk. Moreover, this linear form is unique because of the fact that

the fk’s form a basis. Consequently, the morphism ' W VŒ: : : ;Tn; : : :�=I! Int.S;V/
deduced from ' is a bijection.

In order to generalize the previous results obtained for Int.Zp/, we need a
formula analogous to Eq. (3) which allowed us to say that the coefficient of

�X
pr

�

is divisible by p. This is the hypothesis of the next lemma.

Lemma 2 Fix some l 2N
�. If for all n;m ¤ l, either cl.n;m/ D 0 or v.cl.n;m// >

0, then fl does not belong to the V-algebra generated by the fn’s where n 2N n flg.
Proof Assume that there exists a relation of the form:

fl.X/ D
X

˛

d˛f ˛1k1
.X/ : : : f ˛s

ks
.X/ where d˛ 2 V and ki ¤ l :

Replacing successively every product of two polynomials fki and fkj ; by means of
relations (8), until we obtain a linear combination of the fk.X/’s, we see that, if fl.X/
appears at some step, then this is always with a coefficient whose valuation is > 0,
and this property is preserved at the following steps. Thus, we obtain an equality of
the form:

fl.X/ D
X

k

bkfk.X/ with v.bl/ > 0 :

We have a contradiction since the fk.X/’s form a basis of the V-module Int.S;V/.
The following proposition is an obvious consequence of Proposition 4 and

Lemma 2.

Proposition 6 Let ffngn�0 be a regular basis of Int.S;V/. If for every l 2 gV.S/ and
for every n;m ¤ l, either cl.n;m/ D 0 or v.cl.n;m// > 0, then the set ffl j l 2
GV.S/g is a minimal generating set for the V-algebra Int.S;V/. Moreover, it is the
only minimal generating set that one may extract from ffn j n � 0g.

3.3 Regular Bases Associated to v-Orderings

Let us recall the notion of v-ordering introduced by Manjul Bhargava [2]. A v-
ordering of the subset S is a sequence fangn�0 of elements of S such that, for every
n � 1, an satisfies
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v

 
n�1Y

kD0
.an � ak/

!

D inf
x2S
v

 
n�1Y

kD0
.x � ak/

!

:

Such sequences exist thanks to the precompactness of S [6].
Clearly, if fangn�0 is a v-ordering of S, then the following sequence of polyno-

mials is a regular basis of Int.S;V/ (see [4]):

f0.X/ D 1 and, for n � 1; fn.X/ D
n�1Y

kD0

X � ak

an � ak
: (9)

Lemma 3 Let B D ffn j n � 0g be a regular basis of Int.S;V/ constructed by
means of a v-ordering fangn�0 of S. Any subset G of B which is a generating set for
the V-algebra Int.S;V/ contains f1.X/ D X�a0

a1�a0
.

Proof Otherwise, analogously to the beginning of the proof of Proposition 2, we
would obtain a contradiction by substituting a0 and a1 to X.

Lemma 4 [12, Prop. 2.2] Let ffngn�0 be a regular basis associated to a v-ordering
fangn�0 of S and consider the structural constants ck.n;m/ associated to this basis.
Then, for k < maxfn;mg or k > nC m; ck.n;m/ D 0: Moreover, cm.0;m/ D 1 and
cm.m;m/ D 1.

Proof By considering the degree, we see that ck.n;m/ D 0 for k > nC m. We may
prove by induction on k that ck.n;m/ D 0 for k < max.n;m/ since fk.ah/ D 0 for
0 � h � k � 1 and fk.ak/ D 1. In particular,

fm.X/fm.X/ D cm.m;m/fm.X/C : : :C ck.m;m/fk.X/C : : :C c2m.m;m/f2m.X/ :

By substituting am to X, we obtain cm.m;m/ D 1. The equality cm.0;m/ D 1 is
obvious.

Despite Elliott’s work [12] on the structural constants of the V-algebra Int.S;V/
with respect to regular bases associated to v-orderings, we need to add a hypothesis
on the subset S W we assume that S is regular in a sense which generalizes the regular
compact subsets of local fields considered by Amice [1].

4 Minimal Generating Sets in the case of a Regular Subset

Hypotheses and Notation for the Section
Let K be a valued field, let V be the corresponding valuation domain, and let S

be an infinite precompact subset of V .
For every 
 2 R and every x 2 S; consider the class in S of x modulo 
 , that is,

the S-ball
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S.x; 
/ D fy 2 S j v.x � y/ � 
g :

Denote by q
 the number of classes of S modulo 
 , that is, the number of distinct
nonempty S-balls S.x; 
/.

The fact that S is precompact is equivalent to the fact that all the q
 ’s are finite
(see, for instance, [6, Lemma 3.1]). Moreover, there is a strictly increasing sequence
of non-negative numbers f
kgk�0; the critical valuations of S, which tends to C1
such that


0 D min
x;y2S ; x¤y

v.x � y/

and

q
k < q
 � q
kC1
, 
k < 
 � 
kC1 [7, Prop. 5.1]: (10)

Note that q
0 D 1.

4.1 Regular Subsets, Gaps, and Strong v-Orderings

Definition 2 The precompact subset S of the valued field K is said to be regular
if, whatever 
 < ı, all nonempty S-balls S.x; 
/ contain the same number of S-ball
S.y; ı/.

Consequently, with notation (10), if S is regular there exist a sequence of positive
integers f˛kgk�0 such that each nonempty S-ball S.x; 
k/ contains ˛k non-empty
distinct S-balls S.y; 
kC1/. In particular, for every k � 0, we have:

q
kC1
D ˛kq
k :

When S is regular, the characteristic function wS satisfies the following generaliza-
tion of Legendre formula:

wS.n/ D n
0 C
X

k�1

�
n

q
k

�
.
k � 
k�1/ [9, Thm 1.5]: (11)

Lemma 5 If S is regular, then the indices of gaps of S are the cardinalities q
 W

gV.S/ D fq
k j k � 0g :

Proof Fix some n ¤ 0; 1 which is not of the form q
k and let r be the largest integer
such that q
r divides n. Then, n D mq
r where m � 2 and ˛r − m. It follows
from (11) that
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wS.n/ D mq
r
0 C
rX

kD1

m

�
q
r

q
k

�
.
k � 
k�1/C

X

k�rC1

�
mq
r

q
k

�
.
k � 
k�1/

D .m � 1/q
r
0 C
rX

kD1

.m � 1/
�

q
r

q
k

�
.
k � 
k�1/C

X

k�rC1

�
.m � 1/q
r

q
k

�
.
k � 
k�1/

Cq
r
0 C
rX

kD1

�
q
r

q
k

�
.
k � 
k�1/ D wS.n � q
r /C wS.q
r / :

On the other hand, consider some n of the form q
r with r � 1. Then, for every
j 2 f1; : : : ; n � 1g, we have:

wS.j/C wS.n � j/ D j
0 C
r�1X

kD1

�
j

q
k

�
.
k � 
k�1/C .n � j/
0 C

r�1X

kD1

�
n � j

q
k

�
.
k � 
k�1/

� n
0 C
r�1X

kD1

�
n

q
k

�
.
k � 
k�1/ < wS.n/ :

The strict inequality follows from the fact that
h

n
q
r

i
.
k � 
k�1/ D 
k � 
k�1 is

missing.
We also know that:

Proposition 7 [9, Theorem 1.5] Any regular subset S admits strong v-orderings,
that is, sequences fangn�0 of elements of S such that, for every k � 0, fangn�k is a
v-ordering of S:

For instance, the sequence f0; 1; 2; : : :g is a strong p-ordering of Zp.

4.2 Minimal Generating Sets Associated to Strong v-Orderings

Both following lemmas show clearly why regular subsets allow a generalization of
what happens for Zp.

Lemma 6 Assume that fangn�0 is a strong v-ordering of S and let ffngn�0 be the
regular basis of Int.S;V/ associated to this strong v-ordering. Then, for every l 2
gV.S/ and every k 2 f1; : : : ; l � 1g, one has v.fk.al// > 0:

Proof

fk.al/ D
k�1Y

jD0

al � aj

ak � aj
D

Ql�1
jD0.al � aj/

Qk�1
jD0.ak � aj/

Ql�1
jDk.al � aj/

:
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Since, the sequence fang is a strong v-ordering, we have

v

0

@
l�1Y

jDk

.al � aj/

1

A D v
0

@
l�k�1Y

jD0
.al�k � aj/

1

A D wS.l � k/ :

Finally, l 2 gV.S/ implies:

v.fk.al// D wS.l/ � wS.k/ � wS.l � k/ > 0 :

Lemma 4 may be completed by the following:

Lemma 7 Let ffngn�0 be a regular basis associated to a strong v-ordering fangn�0
of the regular subset S and let ck.n;m/ be the corresponding structural constants.
Then, for every l 2 gV.S/ W

Œ n � m ¤ 0 and .n;m/ ¤ .l; l/ � ) Œ cl.n;m/ D 0 or v.cl.n;m// > 0 � :

Proof By Lemma 4, we may assume that 1 � n � m � l � nC m. Thus we have:

fn.X/fm.X/ D cmfm.X/C : : :C clfl.X/C : : :C cnCmfnCm.X/ :

Consequently,

fn.al/fm.al/ D cmfm.al/C : : :C cl�1fl�1.al/C cl :

If n < l, it follows from Lemma 6 that v.cl/ > 0.
Lemma 7 allows us to apply Proposition 6 and we obtain:

Theorem 1 Let K be a valued field, V be its valuation domain, and S be a
precompact and regular subset of V. Let gV.S/ denote the set of indices of gaps,
that is, the set formed by the cardinalities q
 of the subsets S mod 
 . Let fangn�0
be a strong v-ordering of S and let B D ffngn�0 be the regular basis of the V-
module Int.S;V/ associated to this strong v-ordering, that is, defined by fn.X/ DQn�1

kD0
X�ak
an�ak

. Then, there is one and only one subset G of B which is a minimal
generating set of Int.S;V/ as a V-algebra, namely

G D ffn j n 2 gV.S/g :

4.3 Other Minimal Generating Sets when S is a Regular Subset

To extend Theorem 1 to other regular bases, we are looking for conditions which
will allow us to use Lemma 7:
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Proposition 8 Let fangn�0 be a strong v-ordering of the regular subset S, let
fgngn�0 be a regular basis of Int.S;V/, and let l 2 gV.S/. If v.gn.al/ � gn.a0// > 0

for all n > l then, gl.X/ does not belong to the V-algebra generated by the gn’s
where n 2N n flg.
Proof If ffngn�0 denotes the regular basis associated to the strong v-ordering
fangn�0, for every g.X/ DPn

kD0 dkfk.X/ 2 Int.S;V/; we have

g.al/ D g.a0/C
l�1X

kD1
dkfk.al/C dl;

and hence, by Lemma 6, v.dl � .g.al/ � g.a0// > 0.
Consequently, by hypothesis, for every n > l, if gn.X/ D Pn

kD0 dn;kfk.X/, then
v.dn;l/ > 0. Assume now that we have

gl.X/ D
X

˛

c˛g˛1k1
.X/ : : : g˛s

ks
.X/ where c˛ 2 V and ki ¤ l :

Replacing the gki ’s by the fk’s in the right-hand side by means of the equality
gki D

P
k dki;kfk, we note that if fl appears in a monomial the valuation of the

corresponding coefficient is > 0. Then, we compute all the products of the fk’s by
means of Lemma 7 and we obtain in the right-hand side a sum of the form

P
k bkfk

where v.bl/ > 0, that is, we obtain an equality of the form:

gl.X/ D
X

k

bkfk.X/ with v.bl/ > 0 :

We have a contradiction since the fk’s and the gh’s form regular bases of the
V-module Int.S;V/.

Now, we are able to state and prove our main theorem in the local case.

Theorem 2 Let K be a valued field, V be its valuation domain, and S be a
precompact and regular subset of V. Let gV.S/ denote the set of indices of gaps
and let fangn�0 denote a strong v-ordering of S. Let B D fgn j n � 0g be a regular
basis of the V-module Int.S;V/ such that

8l 2 gV.S/ 8n > l v.gn.al/ � gn.a0// > 0 : (12)

Then, there is one and only one subset G of B which is a minimal generating set of
Int.S;V/ as a V-algebra, namely G D fgn j n 2 gV.S/g:
Proof By Proposition 4, G is a generating set. The fact that this is a minimal
generating set and that this is the only minimal generating set that can be extracted
from B is an obvious consequence of Proposition 8.
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Remark 3 Condition (12) for all n > l is not necessary to be able to extract a
minimal generating set, as shown by the following corollary, but it is useful for
us to be sure that this is the unique extracted minimal set as shown by the example
of Remark 2.

Theorem 2 may be formulated in a slightly different way when starting with a
generating set which is not a regular basis.

Corollary 1 Let K be a valued field, V be its valuation domain, and S be a
precompact and regular subset of V. Let fangn�0 denote a strong v-ordering of S.
For each k 2 gV.S/, let gk be a polynomial of Int.S;V/ of degree k such that the
valuation of its leading coefficient is equal to �wS.k/. If

8 k; l 2 gV.S/ Œ l < k ) v.gk.al/ � gk.a0// > 0 � ; (13)

then f gn j n 2 gV.S/ g is a minimal generating set of Int.S;V/ as a V-algebra.

Proof Let ffngn�0 be the regular basis associated to the strong v-ordering fangn�0.
For every n � 0, let hn D gn if n 2 gV.S/ and hn D fn if n … gV.S/. Then, fhngn�0 is
a regular basis which satisfies Eq. (12) of Theorem 2.

The following lemma is a complement to Corollary 1 that will be useful to obtain
minimality in Sect. 5 concerning globalization (cf. Proposition 16).

Lemma 8 With the hypotheses and notation of Corollary 1, let fhjgj2J be a set of
polynomials of Int.S;V/ such that, for every j 2 J and every l 2 gV.S/ W

either deg.hj/ < l or v.hj.al/ � hj.a0// > 0 : (14)

Then, there is one and only one subset of fgn j n 2 gV.S/g [ fhj j j 2 Jg which is a
minimal generating set of Int.S;V/ as a V-algebra, namely fgn j n 2 gV.S/g:
Proof The first argument of the proof of Proposition 8 shows that:

8l 2 gV.S/ 8h 2 Int.S;V/ Œ deg.h/ < l) v.h.al/ � h.a0// > 0 �:

Fix some l 2 gV.S/. Then, for every j 2 J, one has v.hj.al/ � hj.a0// > 0 :
Let us prove now that v.gl.al/ � gl.a0// D 0. Let ffng be the regular basis

associated to the sequence fangn�0. Then, gl.X/ D Pl
mD0 cmfm.X/ where cm 2 V

and v.cl/ D 0. In particular, gl.al/ � gl.a0/ D cl CPl�1
mD1 cmfm.al/. By Lemma 6,

v.gl.al/ � gl.a0// D v.cl/ D 0 :
Lemma 8 is then a straightforward consequence of the following obvious lemma:

Lemma 9 Without any hypotheses on S, let fgg [ fhj j j 2 Jg � Int.S;V/. If there
exist a and b in S such that v.g.a/�g.b// D 0 and, for every j 2 J, v.hj.a/�hj.b// >
0, then g does not belong to the V-algebra generated by the hj’s.
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Remark 4 Condition (13) is not necessary to have a minimal generating set: for
instance, by Proposition 3, fFpk j k 2 Ng is a minimal generating set of Int.Zp/

while g.Z3/ D f3k j k � 0g, fngn�0 is a strong p-ordering of Zp, and 3 6 jF33.3/.
This remark leads us to suppose that the following conjecture could be true.

Conjecture For every regular subset S of V and every regular basis ffngn�0 of
Int.S;V/, the generating set ffn j n 2 g.S/g is minimal.

4.4 The Generating Set Associated to a Lubin-Tate Formal
Group Law

In the particular case where S D V is a discrete valuation domain, Corollary 1
becomes:

Proposition 9 Let V be the ring of a discrete valuation v with uniformizer � and
finite residue field of cardinality q. Let ffqm.X/ j m � 0g be a set of polynomials of
Int.V/ such that deg.fqm/ D qm and the valuation of the leading coefficient of fqm is
equal to � qm�1

q�1 . If for every m > l � 1 v.fqm.� l/ � fqm.0// > 0, then the fqm ’s form
a minimal generating set of the V-algebra Int.V/.

Proof Recall first how we can construct a strong v-ordering fangn�0 of V (cf. [5,
§II.2]): let fa0 D 0; a1; : : : ; aq�1g be a system of representatives of the residue field
of V then, for n D nrqrC: : :Cn1qCn0 where 0 � nj < q, let an D anr�

rC: : : an1�C
an0 . We then have wV.n/ DPk>0

h
n
qk

i
, and hence, g.V/ D fqm j m � 0g:

Assume now that the discrete valuation domain V is the ring of integers of a local
field K; that is, K is complete with respect to the topology defined by the valuation
v and the residue field of V is finite with cardinality q. Recall that a commutative
formal group law over V is a formal power series F.X;Y/ 2 VŒŒX;Y�� with the
following properties:

F.X;Y/ 	 X C Y .mod deg 2/;

F.X;F.Y;Z// D F.F.X;Y/;Z/;

F.X;Y/ D F.Y;X/:

The formal group law F is said to be a Lubin-Tate formal group law if it admits an
endomorphism f , that is a power series f .T/ 2 VŒŒT�� such that

f .F.X;Y// D F.f .X/; f .Y//;

which satisfies

f .T/ 	 �T .mod deg 2/;

f .T/ 	 Tq .mod �/;
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Theorem 3 Let V be the valuation domain of a local field K; whose residue field
has cardinality q, and let F be a Lubin-Tate formal group law on V associated to
a power series f . For each x 2 V, let Œx�.T/ D P

n�1 cn.x/Tn be the unique power
series such that c1.x/ D x and f ı Œx� D Œx� ı f . Then, for each n � 1, cn.x/ is
an integer-valued polynomial of degree � n. Moreover, for m � 0, the cqm.x/’s
are integer-valued polynomials on V with degree exactly qm which form a minimal
generating set of Int.V/.

Proof Recall that logF.T/ is the unique isomorphism between F.X;Y/ and the
formal group law Ga D X C Y (see, for example, [13, I.5.4]). Consequently, for
every x 2 V , the multiplication by x with respect to F, that is, Œx�F.T/ clearly satisfies
the following formula

Œx�.T/ D expF.x logF.T// : (15)

Since logF.T/ and expF.T/ are power series belonging to TVŒŒT��, Formula (15)
shows that the cn.x/’s are polynomials of degree � n. That the cn.x/’s are integer-
valued follows clearly from the well-known fact that Œx�.T/ 2 VŒŒT��. That the cqm ’s
are of degree qm and form a generating set for the V-algebra Int.V/ is already proved
by de Shalit and Iceland [11, Theorem 3.1]. That this is a minimal generating set
follows easily from Proposition 9: we just have to verify that, denoting by � a
uniformizer such that f .T/ 	 �T .mod deg 2/, we have:

8 m > l � 1 cqm.� l/ 	 cqm.0/ .mod �/:

First, it follows from (15) and expF.T/ 	 T .mod deg 2/ that Œ0�.T/ D 0 and
cn.0/ D 0 for every n. Moreover, it is known that Œx� ı Œy� D Œxy� for all x; y 2 V ,
and that Œ�� D f : Finally, since by definition f 	 Tq .mod �/, we have Œ� l�.T/ D
f .T/ ı � � � ı f .T/ 	 Tql

.mod �/, and hence, cqm.� l/ 	 0 .mod �/.

5 Globalization when D is a Dedekind Domain

In this section, we assume that D is a Dedekind domain and S is an infinite subset
of D. Recall that, in a Dedekind domain, every ideal I is generated by two elements,
moreover the first generator may be any nonzero element of I. Noticing that, for
every n, Xn 2 Int.S;D/, we then have:

Proposition 10 If, for every n � 0, the polynomial gn 2 Int.S;D/ of degree n is
chosen in such a way that its leading coefficient generates with 1 the fractional
ideal In.S;D/, then the set fXn j n 2 Ng [ fgn j n 2 N

�g is a generating set for
the D-module Int.S;D/; and the set fXg [ fgn j n 2 N

�g is a generating set for the
D-algebra Int.S;D/.

To obtain minimal generating subsets, we begin by deleting some generators that
are useless. To do this we have to consider the ‘gaps’ of the factorial ideals of S.
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5.1 The Factorial Ideals and Their Gaps

Bhargava [2–4] associate to the subset S of the Dedekind domain D a sequence of
ideals called factorial ideals of S, denoted by nŠDS (or nŠS) which could be defined by:

nŠDS D In.S;D/
�1 .n � 0/:

The ideals nŠDS are entire ideals (for instance, nŠZ D nŠZ). They form a decreasing
sequence for the inclusion and satisfy:

0ŠS D D and nŠS � mŠS divides .nC m/ŠS :

Remark 5 One could think that, analogously to Definition 1, the gaps of the factorial
ideals of S with respect to D should correspond to integers n such that, for every
j 2 f1; : : : ; n � 1g, jŠS � .n � j/ŠS ¤ nŠS. With such a definition, the gaps of the
factorials of Z would correspond to all nonnegative integers since j.n � j/ ¤ 0

implies nŠ
jŠ.n�j/Š D

�n
j

� ¤ 1. The following equality shows that this definition would
be too extensive in view of a global statement of Theorem 2:

 
X

6

!

D X

 
X

5

!

C
 

X

2

! 
X

4

!

�
 

X

3

!2
C
 

X

3

!

� 6
 

X

4

!

C 5
 

X

5

!

:

Thus, the set
n�X

n

�o

n�0 is not a minimal generating set for the Z-algebra Int.Z/.

We are then led to consider the following definition which in fact extends also
Definition 1.

Definition 3 The set of indices of gaps of the factorial ideals nŠDS is

gD.S/ D fn � 1 j nŠDS ¤ \1�j�n�1
�
jŠDS � .n � j/ŠDS

�g :

In other words, the index n corresponds to a gap if the ideal nŠDS is not the least
common multiple of the ideals jŠDS .n � j/ŠDS for 1 � j � n � 1. Equivalently,

n 2 gD.S/ , 9m 2 Max.D/ 8j 2 f1; : : : ; n � 1g Œwm.n/ > wm.j/C wm.n � j/ � ;

where wm.n/ D wm;S.n/ D �vm.In.S;D// (denoting by vm the m-adic valuation
associated to the maximal ideal m of D). Consequently,

gD.S/ D [m2Max.D/ gDm.S/ :
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5.2 Localization and Globalization

Recall that, since D is Noetherian, for each maximal ideal m of D [5, §I.2] :

Int.S;D/m D Int.S;Dm/ : (16)

These equalities allow us to globalize the previous results obtained in the local
case. In view of this globalization the following proposition will be useful.

Proposition 11 Let fhjgj2J be a set of elements of Int.S;D/. The set fhj j j 2 Jg is
a generating set for the D-algebra Int.S;D/ if and only if, for every m 2 Max.D/,
this set is a generating set for the Dm-algebra Int.S;Dm/.

Proof Clearly, it follows from Formula (16) that the condition is necessary.
Conversely, assume that fhjgj2J is a generating set for all the localizations and
consider some g.X/ 2 Int.S;D/. By hypothesis, for every maximal ideal m of D,
there exists a polynomial Pm 2 DmŒTj j j 2 J� such that g D Pm..hj/j2J/. Let
sm 2 D n m be such that smPm 2 DŒTj j j 2 J�. As the sm’s generate the ideal
D, there exist finitely many maximal ideals m1; : : : ;ml and elements t1; : : : ; tl 2 D
such that t1sm1 C : : :C tlsml D 1. Consequently,

g.X/ D
lX

iD1
ti smi g.X/ D

lX

iD1
ti
�
smi Pmi..hj/j2J/

�
:

Let

Q.Tj1 ; : : : ;Tjr / D
lX

iD1
ti
�
smi Pmi..Tj/j2J/

�
:

Then,

g.X/ D Q.hj1 .X/; : : : ; hjr .X// where Q 2 DŒTj1 ; : : : ;Tjr � :

Corollary 2 If the factorial ideals nŠS are principal, that is, if Int.S;D/ admits a
regular basis fgngn�0, then f gn j n 2 gD.S/ g is a generating set for the D-algebra
Int.S;D/.

This is an obvious consequence of Propositions 4 and 11.

Remark 6 If fgj j j 2 Jg is a generating set for the D-algebra Int.S;D/, then
the characteristic ideal I1.S;D/ is generated as a fractional ideal by the leading
coefficients of the polynomials gj of degree 1. Thus, if I1.S;D/ is not principal, a
generating set of Int.S;D/ necessarily contains two polynomials of degree 1 (as in
the following example).
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Example 1 Let K D Q.
p�5/, D D OK D ZŒ

p�5�. Then, 3OK D pq where
p D .3; 1 C p�5/ and q D .3; 1 � p�5/. We consider Int.p;ZŒ

p�5�/.
The characteristic ideal I1.p;ZŒ

p�5�/ is equal to p�1 D .1; 1�
p�5
3

/ and is
not principal. Consequently, any generating set of Int.p;ZŒ

p�5/ contains two

polynomials of degree 1, for instance X and 1� p�5
3

X.

Remark 7 Why do we assume that S is infinite? Because, if S is finite, there does
no exist in general any minimal generating set for the D-algebra Int.S;D/.

Let us look, for instance, to the Z-algebra Int.f0g;Z/ D ZCXQŒX�. Let fhjgj2J

be the elements of degree one of a generating set, we may assume that hj.0/ D 0 for
each j. By Remark 6, there exist j1; : : : ; jr 2 J such that X 2 Pr

iD1Zhji . Noticing
that, if h D a

b X with .a; b/ D 1, then there exist u; v 2 Z such that 1b X D uhCvX, it
is then easy to see that every hj0 where j0 2 J n fj1; : : : ; jrg belongs to the Z-module
generated by the hj’s where j 2 J n fj0g, and hence, that no generating set can be
minimal.

On the other hand, if S is empty, there may exist minimal generating sets for
the D-algebra Int.;;D/ D KŒX� as shown by the set f 1p j p 2 Pg [ fXg for the
Z-algebra QŒX�.

5.3 Classical Examples

Proposition 12 The set f�X
pr

� j p 2 P; r � 0 g is a generating set for the Z-

algebra Int.Z/: Moreover, it is the only subset of
n�X

n

� j n 2 N
o

which is a minimal

generating set.
This is a consequence of Propositions 2 and 11. We may also note that the�X

n

�
’s are constructed by means of the sequence fngn�0 which is a strong p-ordering

for every p. With respect to Fermat polynomials, the next theorem follows from
Propositions 3 and 11, and also from the fact that, if p ¤ p0, the polynomials Fp0k

belong to Z.p0/ŒX� and then are useless to generate Int.Z.p//.

Proposition 13 The set fFpk j p 2 P; k 2 Ng where F1 D X, Fp D Xp�X
p and, for

k � 2, Fpk D Fp.Fpk�1 / is a minimal generating set for the Z-algebra Int.Z/.
With respect to subsets, the following result shows that a generating set for the

Z-module Int.S;Z/ can be, just by deleting 1, a minimal generating set for the
Z-algebra Int.S;Z).

Proposition 14 Let q be an integer � 2 and let S D fqn j n � 0g. The set

( �
X
n

�

q

D
n�1Y

kD0

X � qk

qn � qk
j n � 1

)

is a minimal generating set of the Z-algebra Int.S;Z/.
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Proof It is well known that the polynomials

�
X
n

�

q

.n � 1/ form with 1 a regular

basis of the Z-module Int.S;Z/ (cf. [5, Exercise II.15]) since the sequence fqngn�0
is a simultaneous ordering of S. In particular, In.S;Z/�1 D Qn�1

kD0.qn � qk/Z D
q

n.n�1/
2
Qn

hD1.qh � 1/Z, and hence, G .S/ DN
� since, for every prime p dividing q,

wp;S.n/ D �vp.In.S;Z// D n.n�1/
2
vp.q/. The proposition is then a consequence of

Proposition 6 thanks to the following result due to Elliott, Adams, DeMoss, Freaney
and Mostowa:

Proposition 15 [12, Theorem 1.5] For all m; n 2N

�
X
m

�

q

�
X
n

�

q

D
mCnX

lDmax.m;n/

q.l�m/.l�n/

 
l

l � m; l � n;mC n � l

!�
X
l

�

q

5.4 Globalization of the Sets Given by Lubin-Tate Formal
Group Laws

At the end of their paper [11, § 4.2], de Shalit and Iceland described a globalization
to number fields of their results in local fields. This globalization works in particular
for number fields of class number one. We recall here this globalization with some
slight changes so that it works in a more general framework, namely for Pólya fields.

Recall that a number field K is called a Pólya field [17] if Int.OK/ admits a regular
basis. It is known [5, II.3.9] that this is equivalent to the fact that the Pólya group of
OK is trivial where the Pólya group Po.D/ of a Dedekind domain D is the subgroup
of the class group generated by the classes of the ideals˘q.D/where˘q.D/ denotes
the product of all the prime ideals p of D with the same norm q W

˘q.D/ D
Y

p2Max.D/; jD=pjDq

p :

Now, let K be a number field with ring of integers OK . Let T be a finite (possibly
empty) set of primes such that the Pólya group of R D OK;T D \p…TOK;p is trivial.
Denote by Q the set of integers fq j q D NK=Q.p/; p … Tg and, for each q 2 Q, let
�q be a generator of the principal ideal ˘q.R/. Now, consider the formal Dirichlet
series

L.s/ D
Y

q2Q

1

1 � 1
�q qs

D
1X

nD1

an

ns
; (17)
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Clearly, a1 D 1, an 2 K, and, for every p … T with norm q, the Dirichlet series
.1���1

q q�s/L.s/ has p-integral coefficients. [This is exactly de Shalit and Iceland’s
proof where the set fp j p … Tg is replaced by the set Q.]

Consider the formal power series

f .X/ D
1X

nD1
anXn (18)

and the group law

F.X;Y/ D f �1.f .X/C f .Y// (19)

for which f is a logarithm. A priori F is defined over K, let us show that it is defined
over R. Let p … T with norm q. One has:

.1 � ��1
q q�s/L.s/ D

X

n�1

	
an � 1

�q
a n

q



1

ns
(20)

where a n
q
D 0 when q 6 jn. From the fact that the Dirichlet series (20) has p-

integral coefficients, it follows that the corresponding power series has p-integral
coefficients:

g.X/ D f .X/ � 1

�q
f .Xq/ 2 OK;pŒŒX�� : (21)

Now Hazewinkel’s functional equation lemma [13, I.2.2 (i)] implies that the
coefficients of the formal group law F defined by (19) are also in OK;p, and hence,
in R D \p…TOK;p.

Furthermore, by [13, I.8.3.6], F is a Lubin-Tate formal group law associated
with the prime �q and the corresponding power series Œ��F D f �1.� f .X//. Then,
for every x 2 OK;p, Œx�F.t/ D f �1.xf .t// 2 OK;pŒŒt��. Finally,

8x 2 R Œx�F.t/ D
1X

nD1
cn.x/t

n 2 RŒŒt�� ; (22)

and the cn.x/’s belongs to Int.R/. In the particular case where K is a Pólya field, we
may state the following:

Proposition 16 Let K be a Pólya field. Consider the Dirichlet series (17) where Q
denotes the set formed by the norms of all the primes of K and the formal group law
on OK defined by means of equations (18) and (19). Then the functions cn.x/ defined
by (22) belong to Int.OK/ and the subset fcn.x/ j n 2 g.R/g where g.R/ D fqm j
q 2 Q;m 2Ng is a minimal generating set for the OK-algebra Int.OK/.
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Proof That fcn.x/ j n 2 g.R/g is a generating set follows from Theorem 3 in the
local case. That it is minimal follows from Lemma 8: we just have to verify that, for
every qm and every n > qm, �q divides cn.�

m
q /. In fact, cn.�

m
q / is the coefficient of

Tn in Œ�m
q �.T/ 	 Tqm

.mod �q/.
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Abstract We introduce algebraic entropy for continuous endomorphisms of locally
linearly compact vector spaces over a discrete field, as a natural extension of the
algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano
Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties
continue to hold in the general context of locally linearly compact vector spaces, in
particular we extend the Addition Theorem.
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1 Introduction

In [1] Adler, Konheim, and McAndrew introduced the notion of topological entropy
htop for continuous self-maps of compact spaces, and they concluded the paper by
sketching a definition of the algebraic entropy halg for endomorphisms of abelian
groups. This notion of algebraic entropy, which is appropriate for torsion abelian
groups and vanishes on torsion-free abelian groups, was later reconsidered by Weiss
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in [26], who proved all the basic properties of halg. Recently, halg was deeply
investigated by Dikranjan, Goldsmith, Salce and Zanardo for torsion abelian groups
in [10], where they proved in particular the Addition Theorem and the Uniqueness
Theorem.

Later on, Peters suggested another definition of algebraic entropy for automor-
phisms of abelian groups in [19]; here, we denote Peters’ entropy still by halg, since
it coincides with Weiss’ notion on torsion abelian groups; on the other hand, Peters’
entropy is not vanishing on torsion-free abelian groups. In [9] halg was extended
to all endomorphisms and deeply investigated, in particular the Addition Theorem
and the Uniqueness Theorem were proved in full generality. In [20] Peters gave
a further generalization of his notion of entropy for continuous automorphisms of
locally compact abelian groups, which was recently extended by Virili in [25] to
continuous endomorphisms.

Weiss in [26] connected the algebraic entropy halg for endomorphisms of torsion
abelian groups with the topological entropy htop for continuous endomorphisms
of totally disconnected compact abelian groups by means of Pontryagin duality.
Moreover, the same connection was shown by Peters in [19] between halg for
topological automorphisms of countable abelian groups and htop for topological
automorphisms of metrizable compact abelian groups. These results, known as
Bridge Theorems, were recently extended to endomorphisms of abelian groups in
[6], to continuous endomorphisms of locally compact abelian groups with totally
disconnected Pontryagin dual in [8], and to topological automorphisms of locally
compact abelian groups in [24] (in the latter two cases on the Potryagin dual one
considers an extension of htop to locally compact groups based on a notion of entropy
introduced by Hood in [15] as a generalization of Bowen’s entropy from [3]—see
also [14]).

A generalization of Weiss’ entropy in another direction was given in [22], where
Salce and Zanardo introduced the i-entropy enti for endomorphisms of modules
over a ring R and an invariant i of Mod.R/. For abelian groups (i.e., Z-modules)
and i D log j � j, enti coincides with Weiss’ entropy. Moreover, the theory of the
entropies entL where L is a length function was pushed further in [21, 23].

In [12] the easiest case of enti was studied, namely, the case of vector spaces
with the dimension as invariant, as an introduction to the algebraic entropy in the
most convenient and familiar setting. The dimension entropy entdim is defined for an
endomorphism � W V ! V of a vector space V as

entdim.�/ D supfHdim.�;F/ W F � V; dim F <1g;
where

Hdim.�;F/ D lim
n!1

1

n
dim.F C �F C : : :C �n�1F/:

All the basic properties of entdim were proved in [12], namely, Invariance under con-
jugation, Monotonicity for linear subspaces and quotient vector spaces, Logarithmic
Law, Continuity on direct limits, weak Addition Theorem (see Sect. 4 for the precise
meaning of these properties).
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Moreover, compared to the Addition Theorem for halg and other entropies, a
simpler proof was given in [12, Theorem 5.1] of the Addition Theorem for entdim,
which states that if V is a vector space, � W V ! V an endomorphism and W a
�-invariant (i.e., �W � W) linear subspace of V , then

entdim.�/ D entdim.� �W/C entdim.�/;

where � �W is the restriction of � to W and � W V=W ! V=W is the endomorphism
induced by �.

Also the Uniqueness Theorem was proved for the dimension entropy (see [12,
Theorem 5.3]). Namely, entdim is the unique collection of functions

entVdim W End.V/!N [ f1g; � 7! entdim.�/;

satisfying for every vector space V: Invariance under conjugation, Continuity on
direct limits, Addition Theorem and entdim.ˇF/ D dim F for any finite-dimensional
vector space F, where ˇF W LN

F ! L
N

F, .x0; x1; x2; : : :/ 7! .0; x0; x1; : : :/ is
the right Bernoulli shift.

Inspired by the extension of halg from the discrete case to the locally compact
one, and by the approach used in [11] to define the intrinsic algebraic entropy
(based on the concept of inert subgroup with respect to an endomorphism—see
[2, 5]), we extend the dimension entropy to continuous endomorphisms of locally
linearly compact vector spaces. Recall that a linearly topologized vector space V
over a discrete field K is locally linearly compact (briefly, l.l.c.) if it admits a
local basis at 0 consisting of linearly compact open linear subspaces; we denote by
B.V/ the family of all linearly compact open linear subspaces of V (see [16, 17]).
Clearly, linearly compact and discrete vector spaces are l.l.c.. (See Sect. 2 for some
background on linearly compact and locally linearly compact vector spaces.)

Let V be an l.l.c. vector space and �WV ! V a continuous endomorphism. The
algebraic entropy of � with respect to U 2 B.V/ is

H.�;U/ D lim
n!1

1

n
dim

U C �U C : : :C �n�1U
U

; (1)

and the algebraic entropy of � is

ent.�/ D supfH.�;U/ j U 2 B.V/g:

In Sect. 3 we show that the limit in (1) exists. Moreover, we see that ent is always
zero on linearly compact vector spaces (see Corollary 2). On the other hand, if
V is a discrete vector space, then ent.�/ turns out to coincide with entdim.�/ (see
Lemma 1). Moreover, if V is an l.l.c. vector space over a finite field F, then V is a
totally disconnected locally compact abelian group and halg.�/ D ent.�/ � log jFj
(see Lemma 5).
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In Sect. 4 we prove all of the general properties that the algebraic entropy is
expected to satisfy, namely, Invariance under conjugation, Monotonicity for linear
subspaces and quotient vector spaces, Logarithmic Law, Continuity on direct limits,
weak Addition Theorem. As a consequence of the computation of the algebraic
entropy for the Bernoulli shifts (see Example 2), we find in particular that the
algebraic entropy for continuous endomorphisms of l.l.c. vector spaces takes all
values in N [ f1g.

In Sect. 5 we prove the so-called Limit-free Formula for the computation of
the algebraic entropy, that permits to avoid the limit in the definition in (1) (see
Proposition 12). Indeed, taken V an l.l.c.vector space and � W V ! V a continuous
endomorphism, for every U 2 B.V/ we construct an open linear subspace U� of
V (see Definition 1) such that ��1U� is an open linear subspace of U� of finite
codimension and

H.�;U/ D dim
U�

��1U� :

A first Limit-free Formula for halg in the case of injective endomorphisms of
torsion abelian groups was sketched by Yuzvinski in [28] and was later proved in a
slightly more general setting in [7]; this result was extended in [13, Lemma 5.4] to a
Limit-free Formula for the intrinsic algebraic entropy of automorphisms of abelian
groups. In [7] one can find also a Limit-free Formula for the topological entropy
of surjective continuous endomorphisms of totally disconnected compact groups,
which was extended to continuous endomorphisms of totally disconnected locally
compact groups in [14, Proposition 3.9], using ideas by Willis in [27]. Our Limit-
free Formula is inspired by all these results, mainly by ideas from the latter one.

The Limit-free Formula is one of the main tools that we use in Sect. 6 to extend
the Addition Theorem from the discrete case (i.e., the Addition Theorem for entdim

[12, Theorem 5.1]) to the general case of l.l.c vector spaces (see Theorem 2). If V
is an l.l.c. vector space, � W V ! V a continuous endomorphism and W a closed
�-invariant linear subspace of V , consider the following commutative diagram

of continuous endomorphisms of l.l.c. vector spaces, where � �W is the restriction
of � to W and � is induced by �; we say that the Addition Theorem holds if

ent.�/ D ent.� �W/C ent.�/:

While it is known that halg satisfies the Addition Theorem for endomorphisms of
discrete abelian groups (see [9]), it is still an open problem to establish whether halg

satisfies the Addition Theorem in the general case of continuous endomorphisms
of locally compact abelian groups; from the Addition Theorem for the topological
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entropy in [14] and the Bridge Theorem in [8] one can only deduce that the Addition
Theorem holds for halg in the case of topological automorphisms of locally compact
abelian groups which are compactly covered (i.e., they have totally disconnected
Pontryagin dual). Here, Theorem 2 shows in particular that the Addition Theorem
holds for halg on the small subclass of compactly covered locally compact abelian
groups consisting of all locally linearly compact spaces over finite fields.

With respect to the Uniqueness Theorem for entdim mentioned above, we leave
open the following question.

Question 1 Does a Uniqueness Theorem hold also for the algebraic entropy ent on
locally linearly compact vector spaces?

In other words, we ask whether ent turns out to be the unique collection of
functions entV W End.V/ ! N [ f1g, � 7! ent.�/, satisfying for every l.l.c.
vector space V: Invariance under conjugation, Continuity on direct limits, Addition
Theorem and ent.ˇF/ D dim F for any finite-dimensional vector space F, where
V DL0

nD�1 F˚Q1
nD1 F is endowed with the topology inherited from the product

topology of
Q

n2Z F, and ˇF W V ! V , .xn/n2Z 7! .xn�1/n2Z is the right Bernoulli
shift (see Example 2).

We end by remarking that in [4] we introduce a topological entropy for l.l.c.
vector spaces and connect it to the algebraic entropy studied in this paper by means
of Lefschetz Duality, by proving a Bridge Theorem in analogy to the ones recalled
above for halg and htop in the case of locally compact abelian groups and their
continuous endomorphisms.

2 Background on Locally Linearly Compact Vector Spaces

Fix an arbitrary field K endowed always with the discrete topology. A topological
vector space V over K is said to be linearly topologized if it is Hausdorff and it
admits a neighborhood basis at 0 consisting of linear subspaces of V . Clearly, a
discrete vector space V is linearly topologized, and if V has finite dimension then
the vice-versa holds as well (see [17, p.76, (25.6)]).

If W is a linear subspace of a linearly topologized vector space V , then W with
the induced topology is a linearly topologized vector space; if W is also closed in V ,
then V=W with the quotient topology is a linearly topologized vector space as well.

Given a linearly topologized vector space V , a linear variety M of V is a coset
v CW, where v 2 V and W is a linear subspace of V . A linear variety M D v CW
is said to be open (respectively, closed) in V if W is open (respectively, closed) in V .

A linearly topologized vector space V is linearly compact if any collection of
closed linear varieties of V with the finite intersection property has non-empty
intersection (equivalently, any collection of open linear varieties of V with the finite
intersection property has non-empty intersection) (see [17]).

For reader’s convenience, we collect in the following proposition all those
properties concerning linearly compact vector spaces that we use further on.
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Proposition 1 Let V be a linearly topologized vector space.

(a) If W is a linearly compact subspace of V, then W is closed.
(b) If V is linearly compact and W is a closed linear subspace of V, then W is

linearly compact.
(c) If V is linearly compact, W a linearly topologized vector space, and � W V ! W

is a surjective continuous homomorphism, then W is linearly compact.
(d) If V is discrete, then V is linearly compact if and only if it has finite dimension

(hence, if V has finite dimension then V is linearly compact).
(e) If W is a closed linear subspace of V, then V is linearly compact if and only if

W and V=W are linearly compact.
(f) The direct product of linearly compact vector spaces is linearly compact.
(g) An inverse limit of linearly compact vector spaces is linearly compact.
(h) A linearly compact vector space is complete.

Proof A proof for (a), (b), (c), and (d) can be found in [17, page 78]. Properties (e)
and (f) are proved in [18, Propositions 2 and 9]. Finally, (g) follows from (b) and
(f). Let �WV ! QV be the topological dense embedding of V into its completion QV ,
thus (a) implies (h). ut

A linearly topologized vector space V is locally linearly compact (briefly, l.l.c.)
if there exists an open linear subspace of V that is linearly compact (see [17]). Thus
V is l.l.c. if and only if it admits a neighborhood basis at 0 consisting of linearly
compact linear subspaces of V . Clearly, linearly compact and discrete vector spaces
are l.l.c.. The structure of an l.l.c.vector space can be characterized as follows.

Theorem 1 ([17, (27.10), page 79]) If V is an l.l.c. vector space, then V is
topologically isomorphic to Vc ˚ Vd, where Vc is a linearly compact open linear
subspace of V and Vd is a discrete linear subspace of V.

By Proposition 1 and Theorem 1, one may prove that an l.l.c.vector space verifies
the following properties.

Proposition 2 Let V be a linearly topologized vector space.

(a) If V is l.l.c., then V is complete.
(b) If W is an l.l.c.linear subspace of V, then W is closed.
(c) If W is a closed linear subspace of V, then V is l.l.c. if and only if W and V=W

are l.l.c..

Given an l.l.c. vector space V , for the computation of the algebraic entropy we
are interested in the neighborhood basis B.V/ at 0 of V consisting of all linearly
compact open linear subspaces of V . We see now how the local bases B.W/
and B.V=W/ of a closed linear subspace W of V and the quotient V=W depend
on B.V/.

Proposition 3 Let V be an l.l.c.vector space and W a closed linear subspace of V.
Then:

(a) B.W/ D fU \W j U 2 B.V/g;
(b) B.V=W/ D f.U CW/=W j U 2 B.V/g.
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Proof (a) Clearly, fU \ W j U 2 B.V/g � B.W/. Conversely, let UW 2 B.W/.
Since UW is open in W, there exists an open subset A � V such that UW D A \W.
As A is a neighborhood of 0, there exists U0 2 B.V/ such that U0 � A. In particular,
U0 \ W � UW is an open linear subspace of the linearly compact space UW , and
so UW=.U0 \W/ has finite dimension by Proposition 1(d,e). Therefore, there exists
a finite-dimensional subspace F � UW such that UW D F C .U0 \ W/. Finally,
let U WD F C U0 2 B.V/. Hence, for F � W we have UW D F C .U0 \ W/ D
.F C U0/ \W D U \W.

(b) Since the canonical projection � W V ! V=W is continuous and open, the set
f�.U/ j U 2 B.V/g is contained in B.V=W/.

To prove that B.V=W/ � f.U CW/=W j U 2 B.V/g, let U 2 B.V=W/. Then
��1U is an open linear subspace of V , hence it contains some U 2 B.V/. Then
�U � U and �U has finite codimension in U by Proposition 1(d,e). Therefore,
there exists a finite-dimensional linear subspace F of V=W such that F � U and
U D �U C F. Let F be a finite-dimensional linear subspace of V such that F �
��1U and �F D F. Now �.U C F/ D U and U C F 2 B.V/ by Proposition 1(c).

ut
As consequence of Lefschetz Duality Theorem, every linearly compact vector

space is topologically isomorphic to a direct product of one-dimensional vector
spaces (see [17, Theorem 32.1]). From this result, we derive the known properties
that if a linearly topologized vector space V over a finite discrete field is linearly
compact then it is compact, and if V is l.l.c. then it is locally compact.

Proposition 4 Let V be a linearly compact vector space over a discrete field K.
Then V is compact if and only if K is finite.

Proof Write V D Q
i2I Ki with Ki D K for all i 2 I. If K is finite, then Ki is

compact for all i 2 I, and so V is compact. Conversely, if V is compact, then each
Ki is compact as well, hence K is a compact discrete field, so K is finite. ut
Corollary 1 An l.l.c. vector space V over a finite discrete field F is a totally
disconnected locally compact abelian group.

Proof By Proposition 4, B.V/ is a local basis at 0 of V consisting of compact open
subgroups of V , so V is a totally disconnected locally compact abelian group. ut

3 Existence of the Limit and Basic Properties

Let V be an l.l.c. vector space, � W V ! V a continuous endomorphism and U 2
B.V/. For n 2NC and a linear subspace F of V , the n-th �-trajectory of F is

Tn.�;F/ D F C �F C �2F C : : :C �n�1F:

If U 2 B.V/, notice that for every n 2 NC, Tn.�;U/ 2 B.V/ as well, since it
is open being the union of cosets of U, and linearly compact by Proposition 1(c,f).
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Moreover, Tn.�;U/ � TnC1.�;U/ for all n 2 NC, thus we obtain an increasing
chain of linearly compact open linear subspaces of V , namely

U D T1.�;U/ � T2.�;U/ � : : : � Tn.�;U/ � TnC1.�;U/ � : : : :

The �-trajectory of U is T.�;U/ D S
n2NC

Tn.�;U/; which is the smallest
�-invariant open linear subspace of V containing U.

Hence, the algebraic entropy of � with respect to U introduced in (1) can be
written as

H.�;U/ D lim
n!1

1

n
dim

Tn.�;U/

U
: (2)

Notice that since Tn.�;U/ is linearly compact and U is open, U has finite
codimension in Tn.�;U/, that is, Tn.�;U/

U has finite dimension by Proposition 1(d,e).
Moreover, the following result shows that the limit in (2) exists.

Proposition 5 Let V be an l.l.c. vector space and � W V ! V a continuous
endomorphism. For every n 2NC let

˛n D dim
TnC1.�;U/
Tn.�;U/

:

Then the sequence of non-negative integers f˛ngn is stationary and H.�;U/ D ˛

where ˛ is the value of the stationary sequence f˛ngn for n large enough.

Proof For every n > 1, TnC1.�;U/ D Tn.�;U/ C �nU and �Tn�1.�;U/ �
Tn.�;U/. Thus,

TnC1.�;U/
Tn.�;U/

Š �nU

Tn.�;U/ \ �nU

is a quotient of

Bn D �nU

�Tn�1.�;U/ \ �nU
:

Therefore, ˛n � dim Bn. Moreover, since �Tn.�;U/ D �Tn�1.�;U/C �nU,

Bn Š �Tn�1.�;U/C �nU

�Tn�1.�;U/
D �Tn.�;U/

�Tn�1.�;U/
Š Tn.�;U/

Tn�1.�;U/C .Tn.�;U/ \ ker�/
I

the latter vector space is a quotient of Tn.�;U/=Tn�1.�;U/, so dim Bn � ˛n�1.
Hence ˛n � ˛n�1. Thus f˛ngn is a decreasing sequence of non-negative integers,
therefore stationary. Since U � Tn.�;U/ � TnC1.�;U/,
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˛n D dim
TnC1.�;U/

U
� dim

Tn.�;U/

U
: (3)

As f˛ngn is stationary, there exist n0 > 0 and ˛ � 0 such that ˛n D ˛ for every
n � n0. If ˛ D 0, equivalently dim TnC1.�;U/

U D dim Tn.�;U/
U for every n � n0, and

hence H.�;U/ D 0. If ˛ > 0, by (3) we have that for every n 2N

dim
Tn0Cn.�;U/

U
D dim

Tn0 .�;U/

U
C n˛:

Thus,

H.�;U/ D lim
n!1

1

nC n0
dim

Tn0Cn.�;U/

U
D lim

n!1
dim

Tn0 .�;U/
U C n˛

nC n0
D ˛:

This concludes the proof. ut
Proposition 5 yields that the value of ent.�/ is either a non-negative integer or1.

Moreover, Example 2 below witnesses that ent takes all values in N [ f1g.
We see now that the algebraic entropy ent coincides with entdim on discrete vector

spaces.

Lemma 1 Let V be a discrete vector space and �WV ! V an endomorphism. Then

ent.�/ D entdim.�/:

Proof Note that B.V/ D fF � V W dim F <1g. Let now F 2 B.V/. Then

H.�;F/ D lim
n!1

1

n
dim

Tn.�;F/

F
D lim

n!1
1

n
.dim Tn.�;F/ � dim F/ D

D lim
n!1

1

n
dim Tn.�;F/ D Hdim.�;F/:

It follows from the definitions that ent.�/ D entdim.�/. ut
We compute now the algebraic entropy in the easiest case of the identity

automorphism.

Example 1

(a) Let �WV ! V be a continuous endomorphism of an l.l.c.vector space V . Then
H.�;U/ D 0 for every U 2 B.V/ which is �-invariant.

(b) Let � D idV . Since every element of B.V/ is �-invariant, (a) easily implies
ent.idV/ D 0.

Inspired by the above example we provide now the general case of when the
algebraic entropy is zero.



112 I. Castellano and A. Giordano Bruno

Proposition 6 Let V be an l.l.c. vector space, � W V ! V a continuous
endomorphism and U 2 B.V/. Then the following conditions are equivalent:

(a) H.�;U/ D 0;
(b) there exists n 2NC such that T.�;U/ D Tn.�;U/;
(c) T.�;U/ is linearly compact.

In particular, ent.�/ D 0 if and only if T.�;U/ is linearly compact for all
U 2 B.V/.

Proof (a))(b) If H.�;U/ D 0, then dim TnC1.�;U/
Tn.�;U/

D 0 eventually by Proposition 5.
Therefore, the chain of linearly compact open linear subspaces fTn.�;U/gn2N is
stationary.

(b))(c) is clear from the definition.
(c))(a) If T.�;U/ is linearly compact, by Proposition 1(d,e) we have that T.�;U/

U
is finite-dimensional. Since T.�;U/ DSn2NC

Tn.�;U/, it follows that

T.�;U/

U
D

[

n2NC

Tn.�;U/

U

and so the chain
n

Tn.�;U/
U

o

n2N is stationary. Therefore, H.�;U/ D 0. ut
As a consequence we see that ent always vanishes on linearly compact vector

spaces.

Corollary 2 If V is a linearly compact vector space and �WV ! V a continuous
endomorphism, then ent.�/ D 0. In particular, if V is a finite dimensional vector
space, then ent.�/ D 0.

The next result shows that when ent.�/ is finite, this value is realized on some
U 2 B.V/.

Lemma 2 Let V be an l.l.c. vector space and � W V ! V a continuous
endomorphism. If ent.�/ is finite, then there exists U 2 B.V/ such that ent.�/ D
H.�;U/.

Proof Since ent.�/ is finite and H.�;U/ 2 N for every U 2 B.V/ by
Proposition 5, the subset fH.�;U/ W U 2 B.V/g of N is bounded, hence finite.
Therefore,

ent.�/ D supfH.�;U/ j U 2 B.V/g D maxfH.�;U/ j U 2 B.V/gI

in other words, ent.�/ D H.�;U/ for some U 2 B.V/ as required. ut
We prove now the monotonicity of H.�;�/ on the family B.V/ ordered by

inclusion.

Lemma 3 Let V be an l.l.c. vector space and � W V ! V a continuous
endomorphism. If U;U0 2 B.V/ are such that U0 � U, then H.�;U0/ � H.�;U/.
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Proof For n 2NC, since Tn.�;U0/C U is a linear subspace of Tn.�;U/, we have

Tn.�;U0/=U0

.Tn.�;U0/ \ U/=U0 Š
Tn.�;U0/

Tn.�;U0/ \ U
Š Tn.�;U0/C U

U
� Tn.�;U/

U
:

Thus,

dim
Tn.�;U0/

U0 � dim
Tn.�;U/

U
C dim

Tn.�;U0/ \ U

U0 :

Finally, since dim Tn.�;U0/\U
U0 � dim U

U0 , which is constant, for n!1 we obtain the
thesis. ut

Let .I;�/ be a poset. A subset J � I is said to be cofinal in I if for every i 2 I
there exists j 2 J such that i � j. The following consequence of Lemma 3 permits
to compute the algebraic entropy on a cofinal subset of B.V/ ordered by inclusion.

Corollary 3 Let V be an l.l.c. vector space and � W V ! V a continuous
endomorphism.

(a) If B is a cofinal subset of B.V/, then ent.�/ D supfH.�;U/ j U 2 Bg.
(b) If U0 2 B.V/ and B D fU 2 B.V/ W U0 � Ug, then ent.�/ D supfH.�;U/ j

U 2 Bg.
Proof

(a) follows immediately from Lemma 3 and the definition.
(b) Since U0 C U 2 B for every U 2 B.V/, it follows that B is cofinal in B.V/,

so item (a) gives the thesis.
ut

The following result simplifies the computation of the algebraic entropy in
several cases.

Lemma 4 Let V be an l.l.c. vector space, �WV ! V a continuous endomorphism
and U 2 B.V/. Then there exists a finite-dimensional linear subspace F of U such
that, for every n 2NC,

Tn.�;U/ D U C Tn.�;F/:

Proof We proceed by induction on n 2 NC. For n D 1 it is obvious. Since U has
finite codimension in T2.�;U/ D U C �U, there exists a finite-dimensional linear
subspace F of V contained in U and such that T2.�;U/ D UC�F D UCT2.�;F/.
Assume now that Tn.�;U/ D U C Tn.�;F/ for some n 2NC, n � 2. Then

TnC1.�;U/ D U C �Tn.�;U/ D U C �.U/C �Tn.�;F/ D
D U C �F C �Tn.�;F/ D U C TnC1.�;F/:

This concludes the proof. ut
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We end this section by discussing the relation of ent with halg. Recall that
a topological abelian group G is compactly covered if each element of G is
contained in some compact subgroup of G (equivalently, the Pontryagin dual of
G is totally disconnected). If G is a compactly covered locally compact abelian
group, �WG ! G a continuous endomorphism and U 2 Bgr.V/ D fU � G j
compact open subgroupg, then (see [8, Theorem 2.3])

halg.�/ D supfHalg.�;U/ j U 2 Bgr.V/g

where

Halg.�;U/ D lim
n!1

1

n
log

ˇ̌
ˇ̌Tn.�;U/

U

ˇ̌
ˇ̌ :

If V is an l.l.c. vector space over a finite field F, by Corollary 1 it is a totally
disconnected locally compact abelian group. In particular V is compactly covered,
since V is a torsion abelian group for F is finite.

Lemma 5 Let V be an l.l.c.vector space over a finite field F and let � W V ! V be
a continuous endomorphism. Then

halg.�/ D ent.�/ � log jFj:

Proof Let F D ff1; : : : ; fjFjg. Since every U 2 B.V/ is compact by Proposition 4,
we have that U 2 Bgr.V/; hence, B.V/ � Bgr.V/.

We show that B.V/ is cofinal in Bgr.V/. Let U 2 Bgr.V/ and U0 D PjFj
iD1 fiU.

Since V is a topological vector space, fiU is compact for all i D 1; : : : ; jFj, so U0 is
compact as well. Clearly, U0 is contained in the linear subspace hUi of V generated
by U. We see that actually U0 D hUi. Indeed, let

x D fi1u1 C : : :C fik uk; u1; : : : ; uk 2 U; fi1 ; : : : ; fik 2 F;

be an arbitrary element in hUi. Rearranging the summands, that is, letting for every
j 2 f1; : : : ; jFjg, uj

l1:::lj
D ul1 C : : : C ulj 2 U for l1; : : : ; lj 2 f1; : : : ; kg such that

fil1 D : : : D filj D fj, we obtain that

x D
jFjX

jD1
fju

j
l1:::lj
2 U0:

Hence U0 D hUi. Therefore, U0 2 B.V/ and U0 contains U. This proves that B.V/
is cofinal in Bgr.V/ as claimed.
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Thus, by [25, Corollary 2.3], halg.�/ D supfHalg.�;U/ j U 2 B.V/g. Since for
every U 2 B.V/,

ˇ̌
ˇ̌Tn.�;U/

U

ˇ̌
ˇ̌ D jFjdim Tn.�;U/

U

for all n 2NC, we obtain

Halg.�;U/ D lim
n!1

1

n
log

ˇ
ˇ̌
ˇ
Tn.�;U/

U

ˇ
ˇ̌
ˇ D lim

n!1
1

n
dim

Tn.�;U/

U
log jFj D H.�;U/ log jFj;

and so the thesis follows. ut

4 General Properties and Examples

In this section we prove the general basic properties of the algebraic entropy. These
properties extend their counterparts for discrete vector spaces proved for entdim

in [12]. Moreover, our proofs follow those of the same properties for the intrinsic
algebraic entropy given in [11].

We start by proving the invariance of ent under conjugation by a topological
isomorphism.

Proposition 7 (Invariance Under Conjugation) Let V be an l.l.c. vector space
and � W V ! V a continuous endomorphism. If ˛WV ! W is a topological
isomorphism of l.l.c.vector spaces, then ent.�/ D ent.˛�˛�1/.

Proof Let U 2 B.W/; then ˛�1U 2 B.V/. For n 2NC we have ˛Tn.�; ˛
�1U/ D

Tn.˛�˛
�1;U/. As ˛ induces an isomorphism V

˛�1U
! W

U , and furthermore through

this isomorphism Tn.�;˛
�1U/

˛�1U
is isomorphic to Tn.˛�˛

�1;U/
U , by applying the definition

we have H.�; ˛�1U/ D H.˛�˛�1;U/. Now the thesis follows, since ˛ induces a
bijection between B.V/ and B.W/. ut

The next lemma is useful to prove the monotonicity of the algebraic entropy in
Proposition 8.

Lemma 6 Let V be an l.l.c.vector space, � W V ! V a continuous endomorphism
and W a closed �-invariant linear subspace of V. Then:

ent.� �W/ D supfH.� �W ;U \W/ j U 2 B.V/g and

ent.�/ D supfH.�; .U CW/=W/ j U 2 B.V/g;

where � W V=W ! V=W is the continuous endomorphism induced by �.
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Proof Apply Proposition 3. ut
Next we see that the algebraic entropy is monotone under taking invariant linear

subspaces and quotient vector spaces.

Proposition 8 (Monotonicity) Let V be an l.l.c.vector space, � W V ! V a conti-
nuous endomorphism, W a �-invariant closed linear subspace of V, and � is the
continuous endomorphism of V=W induced by �. Then:

(a) ent.�/ � ent.� �W/;
(b) ent.�/ � ent.�/.

Proof (a) Let U 2 B.V/ and n 2NC. Since

Tn.�;U/

U
� U C Tn.� �W ;U \W/

U
Š Tn.� �W ;U \W/

Tn.� �W ;U \W/ \ U
;

and Tn.� �W ;U \W/ \ U D U \W, it follows that

dim
Tn.� �W ;U \W/

U \W
� dim

Tn.�;U/

U
:

Hence, H.� �W ;U \W/ � H.�;U/ � ent.�/. Finally, Lemma 6 yields the thesis.
(b) For U 2 B.V/ and n 2NC, we have that

Tn
�
�; UCW

W

�

UCW
W

Š Tn.�;U CW/

U CW
D Tn.�;U/CW

U CW
Š Tn.�;U/

Tn.�;U/ \ .U CW/
;

(4)
where the latter vector space is clearly a quotient of Tn.�;U/

U . Therefore,

H

	
�;

U CW

W



� H.�;U/ � ent.�/:

Now Lemma 6 concludes the proof. ut
Note that equality holds in item (b) of the above proposition if W is also linearly

compact. In fact, in this case for every U 2 B.V/ we have U C W 2 B.V/
by Proposition 1(c), and hence Lemma 3 and the first isomorphism in (4) yield
H.�;U/ � H.�;U C W/ D H

�
�; UCW

W

�
; therefore, ent.�/ � ent.�/ and so

ent.�/ D ent.�/ by Lemma 8(b).

Proposition 9 (Logarithmic Law) Let V be an l.l.c.vector space and � W V ! V
a continuous endomorphism. Then ent.�k/ D k � ent.�/ for every k 2N.

Proof For k D 0, it is enough to note that ent.idV/ D 0 by Example 1. So let
k 2NC and U 2 B.V/. For every n 2NC,

Tnk.�;U/ D Tn.�
k;Tk.�;U// and Tn.�;Tk.�;U// D TnCk�1.�;U/:
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Let E D Tk.�;U/ 2 B.V/. By Lemma 3,

k � H.�;U/ � k � H.�;E/ D k � lim
n!1

1

nk
dim

Tnk.�;E/

E
D lim

n!1
1

n
dim

T.nC1/k�1.�;U/
E

� lim
n!1

1

n
dim

T.nC1/k.�;U/
E

D lim
n!1

1

n
dim

TnC1.�k;E/

E
D H.�k;E/I

consequently, k � ent.�/ � ent.�k/.
Conversely, as U � E � Tnk.�;U/,

ent.�/ � H.�;U/ D lim
n!1

1

nk
dim

Tnk.�;U/

U
D lim

n!1
1

nk
dim

Tn.�
k;E/

U

� lim
n!1

1

nk
dim

Tn.�
k;E//

E
D 1

k
� H.�k;E/:

By Lemma 3, it follows that H.�k;E/ � H.�k;U/, and so k � ent.�/ � ent.�k/. ut
The next property shows that the algebraic entropy behaves well with respect to

direct limits.

Proposition 10 (Continuity on Direct Limits) Let V be an l.l.c.vector space and
�WV ! V a continuous endomorphism. Assume that V is the direct limit of a family
fVi j i 2 Ig of closed �-invariant linear subspaces of V, and let �i D � �Vi for all
i 2 I. Then ent.�/ D supi2I ent.�i/:

Proof By Proposition 8(a), ent.�/ � ent.�i/ for every i 2 I. So ent.�/ �
supi2I ent.�i/.

Conversely, let U 2 B.V/. By Lemma 4, there exists a finite dimensional
subspace F of U such that for all n 2NC

Tn.�;U/ D U C Tn.�;F/: (5)

As F is finite dimensional, F � Vi for some i 2 I. In particular,

Tn.�i;U \ Vi/ D .U \ Vi/C Tn.�;F/: (6)

Indeed, since F � U\Vi, the inclusion .U\Vi/CTn.�;F/ � Tn.�i;U\Vi/ follows
easily. On the other hand, since Tn.�;F/ � Vi,

Tn.�i;U \ Vi/ � Tn.�;U/ \ Vi D .U C Tn.�;F// \ Vi D .U \ Vi/C Tn.�;F/:

Therefore, (6) yields

Tn.�i;U \ Vi/

U \ Vi
Š .U \ Vi/C Tn.�;F/

U \ Vi
Š Tn.�;F/

U \ Tn.�;F/
:
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At the same time, (5) implies

Tn.�;U/

U
Š U C Tn.�;F/

U
Š Tn.�;F/

U \ Tn.�;F/
:

Hence, H.�;U/ D H.�i;U \ Vi/ � supi2I ent.�i/, and so ent.�/ � supi2I ent.�i/.
ut

We end this list of properties of the algebraic entropy with the following simple
case of the Addition Theorem.

Proposition 11 (Weak Addition Theorem) For i D 1; 2, let Vi be an l.l.c. vector
space and �i W V1 ! V1 a continuous endomorphism. Let � D �1 � �2 W V ! V,
where V D V1 � V2 . Then ent.�/ D ent.�1/C ent.�2/.

Proof Notice that B D fU1 � U2 j Ui 2 B.Vi/; i D 1; 2g is cofinal in B.V/.
Indeed, let U 2 B.V/; for i D 1; 2, since the canonical projection �iWV ! Vi is an
open continuous map, Ui D �iU 2 B.Vi/, and U � U1 � U2.

Now, for U1 � U2 2 B and for every n 2NC,

Tn.�;U1 � U2/

U1 � U2

Š Tn.�1;U1/

U1

� Tn.�2;U2/

U2

I

hence,

H.�;U1 � U2/ D H.�1;U1/C H.�2;U2/: (7)

By Corollary 3(a) we conclude that ent.�/ � ent.�1/C ent.�2/.
If ent.�/ D1, the thesis holds true. So assume that ent.�/ is finite; then ent.�1/

and ent.�2/ are finite as well by Proposition 8(a). Hence, for i D 1; 2 by Lemma 2
there exists Ui 2 B.Vi/ such that ent.�i/ D H.�i;Ui/. By (7) we obtain

ent.�1/C ent.�2/ D H.�1;U1/C H.�2;U2/ D H.�;U1 � U2/ � ent.�/;

where the latter inequality holds because U1 � U2 2 B.V/. Therefore, ent.�1/ C
ent.�2/ � ent.�/ and this concludes the proof. ut

In the case of a discrete vector space V and an automorphism � W V ! V , we
have that entdim.�

�1/ D entdim.�/ (see [12]). This property does not extend to the
general case of an l.l.c.vector space V and a topological automorphism � W V ! V;
in fact, the next example shows that ent.�/ could not coincide with ent.��1/.

Let F be a finite dimensional vector space and let V D Vc ˚ Vd, with

Vc D
0Y

nD�1
F and Vd D

1M

nD1
F;
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be endowed with the topology inherited from the product topology of
Q

n2Z F, so
Vc is linearly compact and Vd is discrete.

The left (two-sided) Bernoulli shift is

FˇWV ! V; .xn/n2Z 7! .xnC1/n2Z;

while the right (two-sided) Bernoulli shift is

ˇFWV ! V; .xn/n2Z 7! .xn�1/n2Z:

Clearly, ˇF and Fˇ are topological automorphisms such that Fˇ
�1 D ˇF:

Let us compute their algebraic entropies.

Example 2

(a) Consider the case F D K, i.e., Vc D Q0
nD�1 K and Vd D L1

nD1K, and let
� 2 fKˇ; ˇKg. By Corollary 3(b),

ent.�/ D supfH.�;U/ j U 2 B.V/; Vc � Ug:

Let U 2 B.V/ such that Vc � U. Since Vc has finite codimension in U by
Proposition 1(d,e), there exists k 2NC such that

U � U0 WD
0Y

nD�1
K �

kM

nD1
K 2 B.V/;

hence H.�;U/ � H.�;U0/ by Lemma 3. Clearly,

: : : � Kˇ
n.U0/ � : : : � Kˇ.U

0/ � U0 � ˇK.U0/ � : : : � ˇn
K
.U0/ � : : : :

So, for all n 2NC, Tn.Kˇ;U0/ D U0, while

dim
TnC1.ˇK;U0/
Tn.ˇK;U0/

D dim
ˇnC1
K

.U0/
ˇn
K

U0 D dim
ˇK.U0/

U0 D 1:

By Corollary 3(a), we can conclude that

ent.Kˇ/ D 0 and ent.ˇK/ D 1:

In particular, ent.�/ ¤ ent.��1/ for � 2 fKˇ; ˇKg.
(b) It is possible, slightly modifying the computations in item (a), to find that, for F

a finite dimensional vector space,

ent.Fˇ/ D 0 and ent.ˇF/ D dim F:
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5 Limit-Free Formula

The aim of this subsection is to prove Proposition 12 that provides a formula for
the computation of the algebraic entropy avoiding the limit in the definition. This
formula is a fundamental ingredient in the proof of the Addition Theorem presented
in the last section.

Definition 1 Let V be an l.l.c.vector space, � W V ! V a continuous endomorphism
and U 2 B.V/. Let:

- U.0/ D U;
- U.nC1/ D U C ��1U.n/ for every n 2N;
- U� DSn2N U.n/.

It can be proved by induction that U.n/ � U.nC1/ for every n 2 N. Since U is
open, clearly every U.n/ is open as well, so also U� and ��1U� are open linear
subspaces of V .

We see now that U� is the smallest linear subspace of V containing U and
inversely �-invariant (i.e., ��1U� � U�). Note that U� coincides with T.��1;U/
when � is an automorphism, otherwise it could be strictly smaller.

Lemma 7 Let V be an l.l.c.vector space, � W V ! V a continuous endomorphism
and U 2 B.V/. Then:

(a) ��1U� � U�;
(b) if W is a linear subspace of V such that U � W and ��1W � W, then U� � W.

Proof (a) follows from the fact that ��1U.n/ � U.nC1/ for every n 2N.
(b) By the hypothesis, one can prove by induction that U.n/ � W for every n 2N;

hence, U� � W. ut
In the next lemma we collect some other properties that we use in the sequel.

Lemma 8 Let V be an l.l.c.vector space, � W V ! V a continuous endomorphism
and U 2 B.V/. Then:

(a) U� D U C ��1U�;
(b) U�

��1U� has finite dimension.

Proof (a) follows from the equalities

UC��1U� D UC��1 [

n2N
U.n/ D UC

[

n2N
��1U.n/ D

[

n2N
.UC��1U.n// D U�:

(b) By Proposition 1(d,e), the quotient U
U\��1U� has finite dimension, since the

linear subspace U\��1U� is open in the linearly compact space U. In view of item
(a) we have the isomorphism

U�

��1U� D
U C ��1U�

��1U� Š U

U \ ��1U� ;
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so we conclude that also U�

��1U� has finite dimension. ut
The next lemma is used in the proof of Proposition 12.

Lemma 9 Let V be an l.l.c.vector space, � W V ! V a continuous endomorphism
and U 2 B.V/. Then, for every n 2NC,

��nTn.�;U/ D ��1U.n�1/:

Proof We proceed by induction on n 2NC. We write simply Tn D Tn.�;U/.
If n D 1 we have ��1T1 D ��1U D ��1U.0/. Assume now that the property

holds for n 2NC, we prove it for nC 1, that is, we verify that

��.nC1/TnC1 D ��1U.n/: (8)

Let x 2 ��1U.n/. Then, by inductive hypothesis,

�.x/ 2 U.n/ D U C ��1U.n�1/ D U C ��nTn:

Consequently,

�nC1.x/ D �n.�.x// 2 �nU C Tn D TnC1I

this shows that x 2 ��.nC1/TnC1. Therefore, ��1U.n/ � ��.nC1/TnC1.
Conversely, let x 2 ��.nC1/TnC1. Then

�nC1.x/ 2 TnC1 D Tn C �nU;

and so �nC1.x/ D yC�n.u/, for some y 2 Tn and u 2 U. Therefore, �n.�.x/�u/ D
y 2 Tn, that is,

�.x/ � u 2 ��nTn D ��1U.n�1/

by inductive hypothesis. Hence, �.x/ 2 U C ��1U.n�1/ D U.n/, and we can
conclude that x 2 ��1U.n/. Thus, (8) is verified. So, the induction principle gives
the thesis. ut

We are now in position to prove the Limit-free Formula, where clearly we use
that dim U�

��1U� has finite dimension by Lemma 8(b).

Proposition 12 (Limit-Free Formula) Let V be an l.l.c.vector space, � W V ! V
a continuous endomorphism and U 2 B.V/. Then

H.�;U/ D dim
U�

��1U� :
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Proof We write simply Tn D Tn.�;U/ for every n 2 NC. By Proposition 5, there
exist n0 2 NC and ˛ 2 N, such that for every n � n0, H.�;U/ D ˛, where
˛ D dim TnC1

Tn
. So, our aim is to prove that ˛ D dim U�

��1U� .

For every n 2N, the quotient U \ ��1U.n/ � U is open in the linearly compact
space U, thus U

U\��1U.n/ has finite dimension, by Proposition 1(d,e); moreover, since

U\��1U.n/ � U\��1U.nC1/, the space U
U\��1U.nC1/ is a quotient of U

U\��1Un . The

decreasing sequence of finite-dimensional vector spaces
n

U
U\��1Un j n 2N

o
must

stabilize; this means that there exists n1 2N such that U\��1U.n/ D U\��1U.n1/

for every n � n1. Hence, for every m � n1,

U \ ��1U.m/ D
[

n2N
.U \ ��1U.n// D U \

[

n2N
��1U.n/ D

D U \ ��1 [

n2N
U.n/ D U \ ��1U�:

Fix now m � maxfn0; n1g; since U�

��1U� D UC��1U
��1U

Š U
U\��1U� by Lemma 8(a),

we have

dim
U�

��1U� D dim
U

U \ ��1U� D dim
U

U \ ��1U.m/

D dim
U C ��1U.m/

��1U.m/
D dim

U.mC1/

��1U.m/
:

We see now that

dim
U.m/

��1U.m�1/ D dim
TmC1
Tm
D ˛

and this concludes the proof. To this end, noting that

U.m/

��1U.m�1/ D
U C ��1U.m�1/

��1U.m�1/ and
TmC1
Tm
D �mC1U C Tm

Tm
;

define

˚ WU C �
�1U.m�1/

��1U.m�1/ �! �mC1U C Tm

Tm

xC ��1U.m�1/ 7! �m.x/C Tm:

Then ˚ is a surjective homomorphism by construction and it is well defined and
injective since ��mTm D ��1U.m�1/ by Lemma 9. ut
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6 Addition Theorem

This section is devoted to the proof of the Addition Theorem for the algebraic
entropy ent for l.l.c.vector spaces (see Theorem 2).

Let V be an l.l.c. vector space and � W V ! V a continuous endomorphism.
Theorem 1 allows us to decompose V into the direct sum of a linearly compact open
linear subspace Vc and a discrete linear subspace Vd of V , namely, V Š Vc ˚ Vd

topologically. So, assume that V D Vc ˚ Vd and let

��WV� ! V; p�WV ! V�; 
 2 fc; dg; (9)

be respectively the canonical embeddings and projections. Accordingly, we may
associate to � the following decomposition

� D
	
�cc �dc

�cd �dd



; (10)

where ��� W V� ! V� is the composition ��� D p� ı � ı �� for �;
 2 fc; dg. There-
fore, each ��� is continuous as it is composition of continuous homomorphisms.

Lemma 10 In the above notations, consider �cdWVc ! Vd. Then:

(a) Im.�cd/ 2 B.Vd/;
(b) ker.�cd/ 2 B.Vc/ � B.V/.

Proof (a) Since Vd is discrete, by Proposition 1(c,d) we have that Im.�cd/ � Vd has
finite dimension, hence Im.�cd/ 2 B.Vd/ D fF � Vd j dim F <1g.

(b) As ker.�cd/ is a closed linear subspace of Vc, which is linearly compact,
then ker.�cd/ is linearly compact as well by Proposition 1(b). Since Vc= ker.�cd/ Š
Im.�cd/ is finite dimensional by item (a), Vc= ker.�cd/ is discrete and so ker.�cd/ is
open in Vc; therefore, ker.�cd/ 2 B.Vc/. ut

We show now that the only positive contribution to the algebraic entropy of �
comes from its “discrete component” �dd.

Proposition 13 In the above notations, ent.�/ D ent.�dd/.

Proof By Lemma 10(a), Im.�cd/ 2 B.Vd/; hence, letting

Bd D fF � Vd j Im.�cd/ � F; dim F <1g � B.Vd/;

Corollary 3(b) implies

ent.�dd/ D supfH.�dd;F/ j F 2 Bdg: (11)

Let B D fU 2 B.V/ j Vc � Ug, which is cofinal in B.V/. For U 2 B, since Vc

has finite codimension in U by Proposition 1(d,e), there exists a finite dimensional
linear subspace F � Vd such that U D Vc ˚ F. Conversely, Vc ˚ F 2 B for every
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finite dimensional linear subspace F � Vd. Hence, B D fVc ˚ F j F 2 B.Vd/g.
Moreover, B0 D fVc ˚ F j F 2 Bdg is cofinal in B and so in B.V/. Thus,
Corollary 3(b) yields

ent.�/ D supfH.�;U/ j U 2 B0g: (12)

For U D Vc ˚ F 2 B0, as in Definition 1 let, for every n 2N,

U.0/ D U and F.0/ D F;

U.n/ D U C ��1U.n�1/ and F.n/ D F C ��1
dd F.n�1/;

U� D
[

n2N
U.n/ and F� D

[

n2N
F.n/:

Proposition 12, together with (12) and (11) respectively, implies that

ent.�/ D sup


dim

U�

��1U� j U 2 B0
�
; (13)

ent.�dd/ D sup


dim

F�

��1
dd F� j F 2 Bd

�
: (14)

Let U D Vc ˚ F 2 B0. We show by induction on n 2N that

U.n/ D Vc ˚ F.n/ for every n 2N: (15)

For n D 0, we have U.0/ D U D Vc ˚ F D Vc ˚ F.0/. Assume now that n 2N and
that U.n/ D Vc˚F.n/. First note that U.nC1/ D UC��1U.n/ D UC��1.Vc˚F.n//.
Moreover, since Im.�cd/ � F � F.n/,

��1.Vc ˚ F.n// D f.x; y/ 2 Vc ˚ Vd j �cd.x/C �dd.y/ 2 F.n/g
D f.x; y/ 2 Vc ˚ Vd j �dd.y/ 2 F.n/g
D Vc ˚ ��1

dd F.n/:

Thus, U.nC1/ D Vc ˚ F.nC1/ as required in (15).
Now (15) implies that U� D Vc ˚ F�; moreover, since Im.�cd/ � F � F�,

��1U� D f.x; y/ 2 Vc ˚ Vd j �dd.y/ 2 F�g D Vc ˚ ��1
dd F�:

Therefore, U�

��1U� D Vc˚F�

Vc˚��1
dd F�

D F�

��1
dd F�

, so the thesis follows from (13) and (14).
ut

We are now in position to prove the Addition Theorem.
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Theorem 2 (Addition Theorem) Let V be an l.l.c. vector space, �WV ! V a
continuous endomorphism and W a closed �-invariant linear subspace of V. Then

ent.�/ D ent.� �W/C ent.�/;

where � W V=W ! V=W is the continuous endomorphism induced by �.

Proof Let Vc 2 B.V/ and Wc D W \ Vc 2 B.W/. By Theorem 1, there exists
a discrete linear subspace Wd of W such that W D Wc ˚ Wd. Let Vd be a linear
subspace of V such that V D Vc˚Vd and Wd � Vd. Clearly, Vd is discrete, since Vc

is open and Vc \ Vd D 0. By construction, the diagram

commutes, where �Wd ; �
V
d ; p

W
d ; p

V
d are the canonical embeddings and projections of W

and V , respectively. This yields that Wd is a �dd-invariant linear subspace of Vd and
that

.� �W/dd D �dd �Wd :

Now, let � WV ! V=W be the canonical projection and let V D V=W. Let Vc D
�.Vc/ and Vd D �.Vd/; then Vc is linearly compact and open, while Vd is discrete.
Since Vc is open in V , we have V D Vc ˚ Vd.

Clearly, there exists a canonical isomorphism ˛WVd ! Vd=Wd of discrete vector
spaces making the following diagram

commute, where �dd is the endomorphism induced by �dd. Then, by Propositions 13
and 7,

ent.�/ D ent.�dd/; ent.� �W/ D ent.�dd �Wd / and ent.�/ D ent.�dd/:
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Since ent.�dd/ D ent.�dd �Wd / C ent.�dd/, in view of the Addition Theorem for
entdim (see [12, Theorem 5.1]) and Lemma 1, we can conclude that ent.�/ D
ent.� �W/C ent.�/. ut
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Commutative Rings Whose Finitely Generated
Ideals are Quasi-Flat

François Couchot

Abstract A definition of quasi-flat left module is proposed and it is shown that any
left module which is either quasi-projective or flat is quasi-flat. A characterization
of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective)
is given. It is also proven that each commutative ring R whose finitely generated
ideals are quasi-flat is of �-dimension � 3, and this dimension � 2 if R is local.
This extends a former result about the class of arithmetical rings. Moreover, if R has
a unique minimal prime ideal, then its finitely generated ideals are quasi-projective
if they are quasi-flat.

Keywords Quasi-flat module • Chain ring • Arithmetical ring • fqf-ring • fqp-
ring • �-Dimension

2010 Mathematics Subject Classification: 13F05, 13B05, 13C13, 16D40, 16B50,
16D90

1 Introduction

In [1] Abuhlail, Jarrar and Kabbaj studied the class of commutative fqp-rings
(finitely generated ideals are quasi-projective). They proved that this class of rings
strictly contains the one of the arithmetical rings and is strictly contained in the one
of the Gaussian rings. It is also shown that the property for a commutative ring to be
fqp is preserved by localization. It is known that a commutative ring R is arithmetical
(resp. Gaussian) if and only if RM is arithmetical (resp. Gaussian) for each maximal
ideal M of R. But an example given in [7] shows that a commutative ring which
is a locally fqp-ring is not necessarily a fqp-ring. So, in this cited paper the class
of fqf-rings is introduced. Each local commutative fqf-ring is a fqp-ring, and a
commutative ring is fqf if and only if it is locally fqf. These fqf-rings are defined in
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[7] without a definition of quasi-flat modules. Here we propose a definition of these
modules and another definition of fqf-ring which is equivalent to the one given in
[7]. We also introduce the module property of self-flatness. Each quasi-flat module
is self-flat but we do not know if the converse holds. On the other hand, each flat
module is quasi-flat and any finitely generated module is quasi-flat if and only if it
is flat modulo its annihilator.

In Sect. 3 we give a complete characterization of local commutative rings for
which each ideal is self-flat. These rings R are fqp and their nilradical N is the subset
of zerodivisors of R. In the case where R is not a chain ring for which N D N2 and
RN is not coherent every ideal is flat modulo its annihilator. Then in Sect. 4 we
deduce that any ideal of a chain ring (valuation ring) R is quasi-projective if and
only if it is almost maximal and each zerodivisor is nilpotent. This completes the
results obtained by Hermann in [12] on valuation domains.

In Sect. 5 we show that each commutative fqf-ring is of �-dimension � 3. This
extends the result about arithmetical rings obtained in [5]. Moreover it is shown that
this �-dimension is � 2 in the local case. But an example of a local Gaussian ring R
of �-dimension � 3 is given.

In this paper all rings are associative and commutative (except in the first section)
with unity and all modules are unital.

2 Quasi-Flat Modules: Generalities

Let R be a ring, M a left R-module. A left R-module V is M-projective if the natural
homomorphism HomR.V;M/! HomR.V;M=X/ is surjective for every submodule
X of M. We say that V is quasi-projective if V is V-projective. A ring R is said to
be a left fqp-ring if every finitely generated left ideal of R is quasi-projective.

We say that V is M-flat1 if for any epimorphism p W M ! M0, for any
homomorphism u W V ! M0 and for any homomorphism v W G ! V , where
M0 is a left R-module and G a finitely presented left R-module, there exists a
homomorphism q W G! M such that pq D uv. We call V quasi-flat (resp. self-flat)
if V is Vn-flat for each integer n > 0 (resp. n D 1). Clearly each quasi-flat module
is self-flat but we do not know if the converse holds.

An exact sequence S of left R-modules 0 ! F ! E ! G ! 0 is pure if it
remains exact when tensoring it with any right R-module. Then, we say that F is a
pure submodule of E. Recall that S is pure if and only if HomR.M;S / is exact for
each finitely presented left R-module M ([17, 34.5]). When E is flat, then G is flat if
and only if S is pure ([17, 36.5]).

1The module property M-flat is generally used to define flat module.
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Proposition 1 Let R be a ring. Then:

1. each quasi-projective left R-module is quasi-flat;
2. each flat left R-module is quasi-flat.

Proof 1. If V is a quasi-projective left R-module then, by Wisbauer [17, 18.2(2)], V
is Vn-projective for each integer n > 0.
2. By Wisbauer [17, 36.8.3] a left R-module is flat if and only if it is M-flat for

each left R-module M. ut
Proposition 2 Let R be a ring, 0 ! A

t�! B ! C ! 0 an exact sequence of left
R-modules and V a left module. If V is B-flat, then V is A-flat and C-flat.

Proof Clearly V is C-flat. Let p W A ! A0 be an epimorphism of left R-modules.
Consider the following pushout diagram of left R-modules:

0 0

# #
A

p�! A0 ! 0

t # t0 #
B

p0

�! B0 ! 0

Let G be a finitely presented R-module and V
u�! A0 and G

v�! V be homomorphisms.

Since V is B-flat there exists a linear map G
d�! B such that t0uv D p0d. By Wisbauer

[17, 10.7] the above diagram is also a pullback diagram of left R-modules, so there

exists a homomorphism G
q�! A such that pq D uv. Hence V is A-flat. ut

Corollary 1 Let R be a ring, V a finitely generated left module and I its annihilator.
Then V is flat over R=I if and only if V is quasi-flat.

Proof If V is flat over R=I, then from Proposition 1 we deduce that it is quasi-
flat. Conversely, if V is generated by n elements, then R=I is isomorphic to a
submodule of Vn. It follows that F D .R=I/n is isomorphic to a submodule of Vn2 .
By Proposition 2 V is F-flat. Since there exists an epimorphism p W F ! V , we get
that ker.p/ is a pure submodule of F. Hence V is flat over R=I. ut

In Sect. 3 (Corollary 3 and Example 1) an example of a quasi-flat module (over
a commutative ring) which is not flat modulo its annihilator is given.

We say that a ring R is a left fqf-ring if each finitely generated left ideal is quasi-
flat. By Corollary 1 this definition is equivalent to the one given in [7, section 3].
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3 Quasi-Flat Ideals Over Local fqp-Rings

In this section R is a commutative ring.
A module U is uniserial if its lattice of submodules is totally ordered by

inclusion. A ring R is a chain ring (or a valuation ring) if it is a uniserial R-module.
A chain ring which is an integral domain is a valuation domain. Recall that R is an
IF-ring if each injective R-module is flat. When R is a chain ring, we denote by P
its maximal ideal, by Z its subset of zerodivisors which is a prime ideal, by N its
nilradical and by Q its quotient ring RZ .

Lemma 1 Let R be a chain ring and U an R-module. If U is quasi-flat (resp. quasi-
projective) then aU is quasi-flat (resp. quasi-projective) too for each a 2 R.

Proof We consider the following homomorphisms: p W .aU/n ! U0, u W aU ! U0
and v W G! aU where U0 is an R-module, p is surjective, n an integer > 0 and G a
finitely presented R-module. By Warfield [16, Theorem 1] G is a direct sum of cyclic
submodules. It is easy to see that we may assume that G is cyclic. So G D R=bR
for some b 2 R. If x D v.1 C bR/, then bx D 0 and there exists y 2 U such that
x D ay. So, bay D 0. Let v0 W R=baR ! U, u0 W U ! U0 and p0 W Un ! U0 be
the homomorphisms defined by v0.rC baR/ D ry for each r 2 R, u0.z/ D u.az/ for
each z 2 U and p0.w/ D p.aw/ for each w 2 Un.

The quasi-flatness of U implies that there exists a morphism q0 W R=baR ! Un

such that p0q0 D u0v0. If we put q.r C bR/ D aq0.r C baR/ for each r 2 R, then
the equalities bq.1 C bR/ D baq0.1 C baR/ D 0 imply that q W G ! .aU/n is a
well-defined homomorphism, and we get pq D uv.

Now, suppose that n D 1 and U is quasi-projective. There exists t0 W U ! U such
that p0t0 D u0. Let t D t0jaU . Then pt D u. ut

Let I be a non-zero proper ideal of a chain ring R. Then I] D fr 2 R j rI � Ig
is a prime ideal which is called the top prime ideal associated with I. It is easy to
check that I] D fr 2 R j I � .I W r/g. It follows that I]=I is the inverse image of the
set of zerodivisors of R=I by the natural map R! R=I. So, Z D 0].
Proposition 3 Let R be a chain ring. Then each proper ideal I satisfying Z � I] is
flat modulo its annihilator.

Proof First assume that Z � I. In this case I is a direct limit of free modules of rank
one. So, it is flat. Now suppose that I � Z and let t 2 I] n Z and a 2 I n tI. Then
a D ts for some s 2 Z n I and t 2 .I W s/. So, Z � .I W s/. It is easy to check that
I D s.I W s/, I Š .I W s/=.0 W s/, .0 W I/ � .0 W s/ and .I W s/=.0 W s/ strictly contains
Z=.0 W s/ the subset of zerodivisors of R=.0 W s/ (see [4, Lemma 21]). ut
Remark 1 If P D Z, then by Gill [11, Lemma 3] and Klatt and Levy[13, Proposition
1.3] we have .0 W .0 W I// D I for each ideal I which is not of the form Pt for
some t 2 R. In this case R is self-FP-injective and the converse holds. So, if A is
a proper ideal such that A] D P, then R=A is self-FP-injective and it follows that
.A W .A W I// D I for each ideal I � A which is not of the form Pt for some t 2 R.
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Proposition 4 Let R be a chain ring. Then any proper ideal I satisfying I] � Z is
not self-flat.

Proof Let s 2 Z n I]. Since s … s2Q, by applying the above remark to Q we get
that there exists a 2 .0 W s2/ n .0 W s/. The multiplication by s in I induces an
isomorphism � W I=.0 W s/ ! I. Let u D ��1, p W I ! I=.0 W s/ be the natural
epimorphism and v W R=sR ! I the homomorphism defined by v.r C sR/ D rsa.
Then uv.1C sR/ D aC .0 W s/ and sb ¤ 0 for each b 2 aC .0 W s/. So, there is no
homomorphism q W R=sR! I such that pq D uv. ut
Lemma 2 Let R be a chain ring and I a non-zero proper ideal. Assume that P D Z
and I ¤ aP for each a 2 R. Then I is FP-injective over R=A where A D .0 W I/.
Proof By Remark 1 we have I D .0 W A/. Let x 2 I and c 2 R n A such that
.A W c/ � .0 W x/. Then .0 W c/ � .0 W x/. Since R is self-FP-injective there exists
y 2 R such that x D cy. We have .0 W y/ D c.0 W x/ � c.A W c/ D A (the first equality
holds by Couchot [4, Lemma 2]). Hence y 2 I. ut
Theorem 1 Let R be a chain ring. Assume that either Z ¤ Z2 or Q is not coherent.
Then the following conditions are equivalent:

1. Z D N;
2. each ideal I is flat over R=A where A D .0 W I/.
Proof By Proposition 4 .2) 1/.
.1 ) 2/. Let I be an ideal and A D .0 W I/. By Proposition 3 it remains to

examine the case where I] D Z. If Z ¤ Z2, then Z is principal over Q. It follows
that Q is Artinian. Since I is a principal ideal of Q, then I is flat over Q=A and R=A.
Now suppose that Z D Z2 and Q is not coherent. By Couchot [4, Theorem 10] Z is
flat, and we easily deduce that aZ is flat over R=.0 W a/ for each a 2 R. Now suppose
that I is neither principal over Q nor of the form aZ for each a 2 R. By Lemma 2 I
is FP-injective over R=A. From Q no coherent we deduce that .0 W r/ is not principal
over Q for each 0 ¤ r 2 I. By Couchot [8, Theorem 15(4)(c)] I is flat over R=A. ut
Remark 2 If R is a chain ring such that either Z is principal over Q or Q is not
coherent then each ideal I satisfying Z � I] is flat modulo its annihilator.

Lemma 3 Let R be a chain ring and M a finitely generated R-module. Then, for
each proper ideal A which is not of the form rP for any r 2 P, we have AM D
\s2PnAsM.

Proof By Fuchs and Salce[9, Theorem 15] there is a finite sequence of pure
submodules of M,

0 D M0 � M1 � � � � � Mn�1 � Mn D M:

such that Mk=Mk�1 is cyclic for each k D 1; : : : ; n. We proceed by induction on n.
When n D 1 M is cyclic and we use [4, Lemma 29] to conclude. Now suppose that
n > 1. Let x 2 \s2PnAsM. We may assume that x … Mn�1. Since M=Mn�1 is cyclic
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there exist y 2 M and a 2 A such that .x � ay/ 2 Mn�1. Moreover, by using the fact
that Mn�1 is a pure submodule of M we have that .x�ay/ 2 \s2PnAsMn�1. From the
induction hypothesis we deduce that x D ayCbz for some z 2 Mn�1 and b 2 A. ut
Proposition 5 Let R be a chain ring. Then, for each a 2 R, aZ is quasi-flat.

Proof We may assume that Z D Z2 ¤ 0. By Lemma 1 it is enough to study the
case a D 1. First suppose that Z D P. We consider the following homomorphisms:
p W Zn ! Z0, u W Z ! Z0 and v W G! Z where Z0 is an R-module, p is surjective, n
an integer > 0 and G D R=aR for some a 2 R. If r D v.1C aR/, then ar D 0. Let
s 2 Z n Rr. Then r D ss0 for some s0 2 P and u.r/ D su.s0/. So, u.r/ 2 \s2ZnRrsZ0.
Consider the following commutative pushout diagram:

0 0

# #
Zn p�! Z0 ! 0

t # t0 #
Rn p0

�! R0 ! 0

where t is the canonical inclusion. Clearly R0 is finitely generated. So, by Lemma 3
u.r/ D rx0 for some x0 2 R0. Let x 2 Rn such that p0.x/ D x0. Let q W G ! Zn be
the homomorphism defined by q.1 C aR/ D rx. Then q W G ! Zn is well defined
because ar D 0 and we have pq D uv. Hence P is quasi-flat.

Now assume that Z ¤ P and Z is faithful. Let a 2 P and t 2 Z n .0 W a/. Let
K D ker.p/ and G1 D R=Rta. Then G Š Rt=Rta � G1. Since Q is FP-injective
v extends to v1 W G1 ! Q. But v1.1 C Rta/ 2 Z because it is annihilated by ta.
There exists a homomorphism q0 W .G1/Z ! Zn such that pZq0 D uZ.v1/Z . Let q1
be the composition of the natural map G1 ! .G1/Z with q0, r D v1.1 C atR/ and
x D q1.1C atR/. Then u.r/� p.x/ 2 KZ=K. Let q D q1jG. We have v.tC taR/ D tr
and q.tC taR/ D tx. So, u.tr/ � p.tx/ D t.u.r/ � p.x// D 0. Hence uv D pq. ut
Proposition 6 Let R be a chain ring. Then each ideal I satisfying Z � I] is self-flat.

Proof By Remark 2 we may assume that 0 ¤ Z D Z2 and Q is coherent, and by
Proposition 3 that I] D Z. We may suppose that I is neither principal over Q nor of
the form aZ for any a 2 R. We consider the following homomorphisms: p W I ! I0,
u W I ! I0 and v W G ! I where I0 is an R-module, p is surjective and G D R=aR
for some a 2 P. By Lemma 2 I is FP-injective over R=A, where A D .0 W I/ and by
Couchot [8, Theorem 15(4)(c)] Z ˝R I is flat over R=A because .0 W r/ is principal
over Q for each r 2 I. Since I D ZI the canonical homomorphism � W Z ˝R I ! I
is surjective. Let r D v.1 C aR/. Then r D �.s ˝ b/ where s 2 Z and b 2 I.
Since ar D 0 then a.s ˝ b/ 2 ker.�/ Š TorQ

1 .Q=Z; I/. So, aZ � .0 W s ˝ b/. Let
v0 W R=taR! Z ˝R I be the homomorphism defined by v0.1C taR/ D s˝ b where
t 2 Z. From the flatness of Z ˝R I we deduce that there exists q0

t W R=taR! I such
that pq0

t D u�v0. Let xt D q0
t.1CtaR/. Then taxt D 0. Let t0 be another element of Z.

Thus p.xt/ D p.xt0/ D u.r/, whence .xt0 � xt/ 2 ker.p/ � Qxt since I is a uniserial
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Q-module. So, Qxt D Qxt0 and we can choose xt D xt0 D x. Hence aZ � .0 W x/.
But .0 W x/ is a principal ideal of Q, whence ax D 0. If we put q.cC aR/ D cx for
each c 2 R, then pq D uv. ut
Theorem 2 Let R be a chain ring. Then each ideal I is self-flat if and only if Z D N.

Theorem 3 [7, Theorem 4.1]. Let R be a local ring and N its nilradical. Then R is
a fqp-ring if and only if either R is a chain ring or R=N is a valuation domain and
N is a divisible torsionfree R=N-module.

Proof Assume that R is fqp. By Singh Mohammad [14, Theorem 2] either R is chain
ring or N2 D 0. If R is not a chain ring, then N is the subset Z of all zerodivisors
of R by Abuhlail et al. [1, Lemma 4.5]. Hence N is prime and it is a torsionfree
R=N-module. Let a 2 R n N and b 2 R. By Abuhlail et al.[1, Lemma 3.8] the ideals
Ra and Rb are comparable. So, if b 2 N, then b 2 Ra. We deduce that R=N is a
valuation domain and N is divisible over R=N.

It is easy to show the converse. ut
Corollary 2 Let R be a local fqf-ring which is not a chain ring and N its nilradical.
Then each ideal of R is flat modulo its annihilator.

Proof Let I be an ideal. If I � N, then I is a torsionfree module over the valuation
domain R=N. Hence it is a flat R=N-module. If I ª N, then each finitely subideal of
I is principal and free. So, I is flat. ut

The following corollary and example allow us to see that there exist quasi-flat
modules which are not flat modulo their annihilator.

Corollary 3 Let R a chain ring. Assume that P is not principal and R is an IF-ring.
Then, for each a 2 R, aP is quasi-flat but it is not flat over R=.0 W aP/.

Proof Since R is coherent and P is not finitely generated we get that P is faithful.
By Couchot [4, Theorem 10] P is not flat. Let 0 ¤ a 2 P. There exists b 2 P such
that .0 W a/ D Rb. So, aP Š P=Rb, and Rb D .0 W aP/ because P is faithful. By
Couchot [4, Theorem 11] R=Rb is an IF-ring and consequently R=Rb satisfies the
same conditions as R. Hence aP is quasi-flat but not flat over R=Rb. ut
Example 1 Let R D D=dD, where D is a valuation domain with a non-principal
maximal ideal and d a non-zero element of D which is not invertible. Then R satisfies
the assumptions of Corollary 3.

4 Quasi-Projective Ideals Over Local fqp-Rings

An R-module M is said to be linearly compact if every finitely solvable set of
congruences x 	 x˛ (mod M˛) (˛ 2 �, x˛ 2 M and M˛ is a submodule of M for
each ˛ 2 �) has a simultaneous solution in M. A chain ring R is maximal if it is
linearly compact over itself and R is almost maximal if R=A is maximal for each
non-zero ideal A.
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Theorem 4 Let R be a chain ring. The following conditions are equivalent:

1. R is almost maximal and Z D N;
2. each ideal is quasi-projective.

Proof .1) 2/. Let I be a non-zero proper ideal of R, p W I ! I0 an epimorphism,
K D ker.p/ and u W I ! I0 a homomorphism. First suppose that I � Z. By
Theorem 2 I is self-flat. So, for each r 2 I and b 2 .0 W r/ there exists yr;b 2 I
such that byr;b D 0 and u.r/ D p.yr;b/. Even if K ¤ 0 we can take yr;b D yr;c D yr

if c is another element of .0 W r/. So, .0 W r/ � .0 W yr/. Since Q is FP-injective then
yr D rxr where xr 2 Q. We put R0 D Q=K, p0 W Q! R0 the canonical epimorphism
and x0

r D p0.xr/ for each r 2 I. So, for each r 2 I, u.r/ D rx0
r. If s 2 I n Rr, then

we easily check that .x0
s � x0

r/ 2 R0Œr� D fy 2 R0 j ry D 0g. If R is almost maximal,
then the family of cosets .x0

r C R0Œr�/r2I has a non-empty intersection. Let x0 be an
element of this intersection. Then u.r/ D rx0 for each r 2 I. Let x 2 Q such that
p0.x/ D x0. For each r 2 I, rx 2 rxr C K � I. If q is the multiplication by x in I,
then pq D u. Hence I is quasi-projective. Now suppose that Z � I. Then for each
r 2 I n Z there exists yr 2 I such that u.r/ D p.yr/. But yr D r.r�1yr/ D rxr where
xr 2 Q. We do as above to show that I is quasi-projective. ut
Proposition 7 Let R a chain ring. Assume that P D N. Then R is almost maximal
if each ideal I is quasi-projective.

Proof If P is finitely generated, then R is Artinian. In this case R is maximal. Now
assume that P is not finitely generated. Let .a�C I�/�2� be a totally ordered family
of cosets such that I D \�2�I� ¤ 0. By Couchot [4, Lemma 29] I ¤ aP for each
a 2 R. Let A D P.0 W I/.

First we assume that I is different of the minimal non-zero ideal when it exists.
So, A � P. We have I D .0 W A/ D \r2A.0 W r/ (if .0 W I/ is not principal
then A D .0 W I//. If not, either I is not principal and from I D PI we deduce
that .0 W .0 W I// D .0 W A/, or I is principal which implies that P is faithful and
.0 W .0 W I// D .0 W A/). Let r 2 A. We may assume that I � I� for each � 2 �.
Hence there exists � 2 � such that I� � .0 W r/. We put a.r/ D a�r. If I� � I�, then
.a� � a�/ 2 I�, whence a�r D a�r. So, in this manner, we define an endomorphism
of A. Since P D N there exists c 2 P n A such that c2 2 A. Let B D .A W c/. Then
A D cB and c 2 B. Let p W B ! A be the homomorphism defined by p.r/ D cr
and u W B ! A be the homomorphism defined by u.r/ D a.cr/, for each r 2 B.
The quasi-projectivity of B implies there exists an endomorphism q of B such that
pq D u. Since .0 W c/ � .0 W q.c// and R is self-FP-injective we deduce that
q.c/ D ca0 for some a0 2 R and a.cr/ D cq.r/ D q.cr/ D rq.c/ D a0cr for each
r 2 B. Let � 2 �. We have I D \r2B.0 W rc/. Since I � I� then .0 W rc/ � I�
for some r 2 B. From I D \�2�I� we deduce that there exists � 2 � such that
I� � .0 W rc/. It follows that .a0�a�/ 2 .0 W rc/. But .a��a�/ 2 I�, so a0 2 .a�CI�/
for each � 2 �.

Now we assume that I is the minimal non-zero ideal of R. In this case A D P.
Let s; t 2 P such that I D Rst. There exists �0 2 � such that I�0 � Rt � P. Let
�0 D f� 2 � j I� � I�0g. Put J� D .I� W t/ and J D \�2�0J�. Since s 2 J n I then J
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is not minimal. From .a� � a�0/ 2 I�0 we deduce that there exists b� 2 R such that
.a� � a�0/ D tb� for all � 2 �0. If �; � 2 �0 are such that I� � I�, then we easily
check that b� 2 b� C J�. From above it follows that there exists b 2 \�2�0b� C J�
and it is easy to see that .a�0 C tb/ 2 \�2�a�C I�. Hence R is almost maximal. ut
Proof (Proof of .2 ) 1/ in Theorem 4.) Since each ideal I is self-flat we have
Z D N by Theorem 2. From the previous proposition we deduce that Q is almost
maximal and we may assume that P ¤ Z. When Z D 0 R is almost maximal
by Hermann [12, Theorem 3.3]. Now suppose Z ¤ 0. We shall prove that R=Z
is maximal and we will conclude that R is almost maximal by using [6, Theorem
22]. Let 0 ¤ x 2 Z and I a proper ideal of R such that Z � I. Since I is quasi-
projective then I is .Qx=Zx/-projective by Wisbauer [17, 18.2]. Let q W I ! Q=Z
be a homomorphism. If z 2 Z and t 2 I n Z, then z D z0t for some z0 2 Z. So,
q.z/ D z0q.t/ D 0, whence q factors through I=Z. It follows that I=Z is .Q=Z/-
projective for each ideal I containing Z. By Hermann [12, Theorem 3.3] R=Z is
almost maximal. Suppose that Z2 D Z. We have that Qx is .Qx=Zx/-projective. Let
q W Q ! Q=Z be a homomorphism and z 2 Z. There exist z0; t 2 Z such that
z D z0t. So, q.z/ D z0q.t/ D 0 whence q factors through Q=Z. It follows that Q=Z is
quasi-projective. If Z ¤ Z2, then Z is principal over Q and there exists x 2 Z such
that Z D .0 W x/. Hence Q=Z Š Qx is quasi-projective. From R=Z almost maximal
and [12, Theorem 3.4] we get that R=Z is maximal. ut
Theorem 5 Let R be a local fqp-ring which is not a chain ring and N its nilradical.
Consider the following conditions:

1. R is a linearly compact ring;
2. each ideal is quasi-projective;
3. N is of finite rank over R=N.

Then .1, ..2 and 3//.

Proof .1) (2 and 3)). Let R0 D R=N and Q0 its quotient field. Then R0 is a maximal
valuation domain. Since N is a direct sum of modules isomorphic to Q0 and a linearly
compact module then N is of finite rank by Wisbauer [17, 29.8]. Let I be an ideal
contained in N. By Hermann [12, Lemma 4.4] I is quasi-projective. Now suppose
that I ª N. In this case N � I and since I=N is uniserial, by a similar proof as the
one of Theorem 4 we show that I is quasi-projective.

((2 and 3)) 1/. Since Q0 is isomorphic to a direct summand of N, Q0 and its
submodules are quasi-projective. Hence, by Hermann [12, Theorems 3.3 and 3.4]
R0 is maximal. It follows that N is linearly compact, hence R is linearly compact by
Wisbauer [17, 29.8]. ut
Remark 3 In the previous theorem:

1. if N is the maximal ideal of R, then each ideal is quasi-projective even if N is not
of finite rank over R=N;

2. if N is not the maximal ideal and if Q=N is countably generated over R=N, then
.1, 2/ because .2) 3/ by Hermann [12, Lemma 4.3(b)].
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5 �-Dimension of Commutative fqf-Rings

In this section R is a commutative ring. We say that R is arithmetical if RP is a chain
ring for each maximal ideal P.

An R-module E is said to be of finite n-presentation if there exists an exact
sequence:

Fn ! Fn�1 ! � � �F1 ! F0 ! E! 0

with the Fi’s free R-modules of finite rank. We write

�R.E/ D supfn j there is a finite n-presentation of Eg:

If E is not finitely generated we also put �R.E/ D �1.
The �-dimension of a ring R (��dim.R// is the least integer n (or 1 if none

such exists) such that �R.E/ � n implies �R.E/ D 1. See [15, chapter 8]. Recall
that R is Noetherian if and only if �-dim.R/ D 0 and R is coherent if and only if
�-dim.R/ � 1. The rings of �-dimension � n are also called n-coherent by some
authors.

This notion of �-dimension of a ring was formulated in [15, chapter 8] to study
the rings of polynomials or power series over a coherent ring.

Theorem 6 Let R be a local fqp-ring. Then ��dim.R/ � 2.

Proof By Couchot [5, Theorem II.11] ��dim.R/ � 2 if R is a chain ring. Theorem 3
and the following proposition complete the proof. ut
Proposition 8 Let R be a local fqp-ring which is not a chain ring and N its
nilradical. Then:

1. either R is Artinian or ��dim.R/ D 2 if N is maximal;
2. ��dim.R/ D 2 if N is not maximal.

Moreover, if G is a finitely 2-presented module then:

3. G is free if N is maximal and not finitely generated;
4. G is of projective dimension � 1 if N is not maximal.

Proof .1 and 3/. If N is an R=N-vector space of finite dimension, then R is Artinian.
Assume that N is not of finite dimension over R=N. Let G be an R-module of finite
2-presentation. So, there exists an exact sequence

F2
u2�! F1

u1�! F0 ! G! 0;

where Fi is free of finite rank for i D 0; 1; 2. Let Gi be the image of ui for i D 1; 2.
Since R is local we may assume that Gi � NFi�1 for i D 1; 2 (see [2, p.222, 2. Local
Rings and Projective Modules]). Then Gi is a module of finite length for i D 1; 2.
It follows that F1 is of finite length too. This is possible only if F1 D 0. So, G is
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free. Hence �R.G/ D 1 and ��dim.R/ � 2. Let 0 ¤ r 2 N. Since .0 W r/ D N,
�R.R=rR/ D 1, whence ��dim.R/ D 2.
.2 and 4/. Let P be the maximal ideal of R. Each r 2 PnN is regular. So, Rr is free

and since each finitely generated ideal which is not contained in N is principal, P is
flat. Let G, G1 and G2 be as in 1. Since R is local we may assume that Gi � PFi�1
for i D 1; 2. Then TorR

1 .G1;R=P/ Š TorR
2 .G;R=P/ D 0. So, the following sequence

is exact:

0! G2=PG2 ! F1=PF1
v�! G1=PG1 ! 0;

where v is induced by u1. Since v is an isomorphism it follows that G2=PG2 D 0,
and by Nakayama Lemma G2 D 0. So, G1 is free. Now, we do as in .1 and 3/ to
conclude (N is not finitely generated because it is divisible over R=N). ut

Let A be a ring and E an A-module. The trivial ring extension of A by E (also
called the idealization of E over A) is the ring R WD A / E whose underlying group
is A�E with multiplication given by .a; e/.a0; e0/ D .aa0; ae0Ca0e/. Let R be a ring.
For a polynomial f 2 RŒX�, denote by c.f / (the content of f ) the ideal of R generated
by the coefficients of f . We say that R is Gaussian if c.fg/ D c.f /c.g/ for any two
polynomials f and g in RŒX�.

The following example shows that we cannot replace “fqp-ring” with “Gaussian
ring” in Theorem 6.

Example 2 Let D be a non-almost maximal valuation domain and M its maximal
ideal. Let 0 ¤ d 2 M such that D=Dd is not maximal and E the injective hull of
D=Dd. Consider R D D / E the trivial ring extension of D by E. Then R is a
Gaussian local ring and ��dim.R/ � 3.

Proof By Couchot [4, Theorem 17] E is not uniserial. By Couchot [7, Corollary
4.3] R is Gaussian but not a fqp-ring because E is neither uniserial nor torsionfree.
Let e 2 E such that .0 W e/ D Dd. We put a D .0; e/ and b D .d; 0/. Then
.0 W a/ D Rb and .0 W b/ D f.0; x/ j dx D 0g D 0 / EŒd�, where EŒd� D fx 2
E j dx D 0g. If D0 D D=Dd, then EŒd� is isomorphic to the injective hull of D0
over D0 and D0 ¤ EŒd� because D0 is not maximal. By Couchot [4, Theorem 11] D0
is an IF-ring and consequently EŒd� and EŒd�=D0 are flat over D0. Then EŒd� is not
finitely generated, else EŒd�=D0 is a free D0-module and this contradicts that EŒd� is
an essential extension of D0. So, .0 W b/ is not finitely generated, �R.R=Ra/ D 2 and
��dim.R/ � 3. ut
Proposition 9 Let R be a fqf-ring with a unique minimal prime ideal N. The
following assertions hold:

1. RP is not a chain ring for each maximal ideal P if R is not arithmetical;
2. R is a fqp-ring.

Proof 1. There exists a maximal ideal L such that RL is a local fqp-ring which is
not a chain ring. So, NL is torsionfree and divisible over RL=NL. Moreover, since
NL is not uniserial over RL, by Abuhlail et al. [1, Lemma 3.8] there exist a; b 2 NL
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such that aRL \ bRL D 0. It follows that NL D NN and it is a vector space over
RN=NN of dimension > 1. Let P be a maximal ideal. Then NN is a localization
of NP. Consequently NP is not uniserial. Hence, RP is not a chain ring.
2. It follows that N is a torsionfree divisible module over R=N. So, if I is a finitely

generated ideal contained in N, then I is a finitely generated flat module over the
Prüfer domain R=N. So, I is projective over R=N. Now, if I ª N, then IP is a free
RP-module of rank 1. We conclude by Bourbaki [3, Chap.2, §5, 3, Théorème 2] that
I is projective. ut
Corollary 4 Let R be a fqf-ring with a unique minimal prime ideal N. Assume that
R is not arithmetical. Then either R is Artinian or ��dim.R/ D 2.

Proof When N is maximal we use Proposition 8. Now assume that N is not
maximal. Let G be a R-module such that �R.E/ � 2. We use the same notations as
in the proof of Proposition 8. This proposition implies that G1 is locally free. Since
G1 is a finitely presented flat module, we successively deduce that G1 is projective,
G2 is projective and ker.u2/ is finitely generated. ut

An integral domain D is said to be is almost Dedekind is DP is a Noetherian
valuation domain for each maximal ideal P.

The following example shows that we cannot remove the assumption “R is not
arithmetical” in Corollary 4.

Example 3 Let D be an almost Dedekind domain which is not Noetherian (see [10,
Example III.5.5]), Q its quotient field, P0 a maximal ideal of D which is not finitely
generated and E D Q=DP0 . Let R D D / E and N D f.0; y/ j y 2 Eg. Then
R is an arithmetical ring, N is its unique minimal prime ideal and ��dim R D 3.
Moreover, RP is IF where P is the maximal ideal of R satisfying P0 D P=N, and RL

is a valuation domain for each maximal ideal L ¤ P.

Proof For each maximal ideal L of R let L0 D L=N. Let p 2 P0 such that P0DP0 D
pDP0 , x D 1=p C DP0 , a D .p; 0/ and b D .0; x/. Since 0 is the sole prime ideal
of D contained in P0 \ L0 for each maximal ideal L0 ¤ P0, then EL0 D 0. So,
RL D DL0 . Since E is uniserial and divisible over DP0 , RP is a chain ring by Couchot
[7, Proposition 1.1]. So, R is arithmetical. We have .0 WRP b/ D aRP D PRP.
By Couchot [4, Theorem 10] RP is IF. Clearly Dx is the minimal submodule of
E. So, P0 D .0 W x/ and DP0x D Dx. If q 2 Q n DP0 , then q D spn=t where
s; t 2 D n P0 and n an integer > 0. So, pq 2 DP0 if and only if n D 1. It follows
that Dx D fy 2 E j py D 0g. Let Oa and Ob be the respective multiplications in R
by a and b. Then ker.Oa/ D Rb and ker.Ob/ D P which is not finitely generated. So,
�R.R=Ra/ D 2 and ��dim.R/ D 3 by Couchot [5, Theorem II.1]. ut
Theorem 7 Let R be a fqf-ring. Then ��dim.R/ � 3.

Proof Let G be an R-module of finite 3-presentation. So, there exists an exact
sequence

F3
u3�! F2

u2�! F1
u1�! F0 ! G! 0;
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where Fi is free of finite rank for i D 0; 1; 2; 3. Let Gi be the image of ui for i D
1; 2; 3.

We do as in the proof of [5, Theorem II.1]. For each maximal ideal P we shall
prove that there exist tP 2 R n P such that �RtP

.GtP/ � 4. We end as in the proof
of [5, Theorem II.1] to show that ker.u3/ is finitely generated, by using the fact that
Max R is a quasi-compact topological space.

Let P be a maximal ideal. First assume that RP is a chain ring. As in the proof of
[5, Theorem II.1] we show there exists tP 2 R n P such that �RtP

.GtP/ � 4.
Now assume that RP is not a chain ring. We suppose that either P is not minimal

or P is minimal but PRP is not finitely generated over RP. In this case .G1/P is free
over RP by Proposition 8. Since G1 is finitely presented, there exists tP 2 R n P
such that .G1/tP is free over RtP by Bourbaki [3, Chapitre 2, §5, 1, Corollaire de
la proposition 2]. It follows that .G2/tP and .G3/tP are projective. So, ker..u3/tP/ is
finitely generated.

Finally assume that RP is not a chain ring, P is minimal and PRP is finitely
generated over RP. We have P2RP D 0. Since P2RL D RL for each maximal ideal
L ¤ P, P2 is a pure ideal of R. It follows that R=P2 is flat. Clearly R=P2 is local. So,
RP D R=P2. If P2 is finitely generated, then P2 D Re where e is an idempotent of R.
So, if tP D 1 � e, then D.tP/ D fPg, RtP D RP and ker..u3/tP/ is finitely generated.
If P2 is not finitely generated, then P D I C P2 where I is finitely generated but
not principal because so is P=P2. Since I2 is a finitely generated subideal of the
pure ideal P2 there exists a 2 P2 such that r D ar for each r 2 I2. It follows that
.1 � a/I2 D 0. Hence I2Rt D 0 where t D .1 � a/ and IRt ¤ 0 because for each
s 2 I nP2, s ¤ sa. Since Gt is finitely generated, after possibly multiplying t with an
element in RnP, we may assume that Gt has a generating system fg1; : : : ; gpgwhose
image in .Gt/P is a minimal generating system of .Gt/P containing p elements. Let
F0
0 be a free Rt-module with basis fe1; : : : ; epg, � W F0

0 ! Gt be the homomorphism
defined by �.ek/ D gk for k D 1; : : : ; p and G0

1 D ker.�/. We get the following
commutative diagram with exact rows and columns:

0 0 0

# # #
0! P2G0

1 ! P2F0
0

��! P2Gt ! 0

# # #
0! G0

1 ! F0
0

��! Gt ! 0

# # #
0! .G0

1/P ! .F0
0/P

�P�! .Gt/P ! 0

# # #
0 0 0

Since .G0
1/P � P.F0

0/P, we have that G0
1 � PF0

0. But, since G0
1 is finitely generated,

after possibly multiplying t with and element of RnP, we may assume that G0
1 � IF0

0

and that G0
1 has a generating system fg0

1; : : : ; g
0
qg whose image in .G0

1/P is a minimal
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generating system of .G0
1/P with q elements. Let F0

1 be a free Rt-module with basis
fe0
1; : : : ; e

0
qg, u0

1 W F0
1 ! F0

0 defined by u0
1.e

0
k/ D g0

k for k D 1; : : : ; q and G0
2 D

ker.u0
1/. Again, for a suitable t 2 R n P we may assume that G0

2 is contained in IF0
1

and has a generating system whose image in .G0
2/P is a minimal generating system

with the same cardinal. Since I2t D 0, it follows that G0
2 D IF0

1. Consequently, if It

is generated by fr1; : : : ; rng, then G0
2 is generated frie0

k j 1 � i � n; 1 � k � qg. Let
F0
2 be a free Rt-module with basis fi;k j 1 � i � n; 1 � k � qg, u0

2 W F0
2 ! F0

1 be
the homomorphism defined by u0

2.i;k/ D rie0
k for i D 1; : : : ; n and k D 1; : : : ; q and

G0
3 D ker.u0

2/. Since G0
3 is finitely generated, as above, for a suitable t 2 R n P, we

get G0
3 D ItF0

2. We easily deduce that It D .0 WRt ri/ for each i D 1; : : : ; n. Now, let
F0
3 be a free Rt-module of rank qn2 and u0

3 W F0
3 ! F0

2 be the homomorphism defined
like u0

2. Then we get ker.u0
3/ D IF0

3, hence it is finitely generated. So, for a suitable
tP 2 R n P we have �RtP

.GtP/ � 4. ut
With a similar proof as the one of [5, Corollary II.13], and by using Proposition 8

we get the following theorem.

Theorem 8 Let R be a fqf-ring. Assume that RP is either an integral domain or a
non-coherent ring for each maximal ideal P which is not an isolated point of Max R.
Then ��dim.R/ � 2.

Proof Let G be an R-module of finite 2-presentation. So, there exists an exact
sequence

F2
u2�! F1

u1�! F0 ! G! 0;

where Fi is free of finite rank for i D 0; 1; 2. Let Gi be the image of ui for i D 1; 2.
We do as in the proof of the previous theorem. First suppose that P is a non-

isolated point of Max R. In this case .G1/P is free over RP by Proposition 8. Since
G1 is finitely presented, there exists tP 2 R n P such that .G1/tP is free over RtP by
Bourbaki [3, Chapitre 2, §5, 1, Corollaire de la proposition 2]. It follows that .G2/tP
is projective. So, ker..u2/tP/ is finitely generated. Now assume that P is isolated.
There exists tP 2 R n P such that RP Š RtP . By Theorem 6 ker..u2/tP/ is finitely
generated. ut

Example 3 and the following show that the assumption “RP is a non-coherent
ring” cannot be removed in Theorem 8.

Example 4 Let A be a von Neumann regular ring which is not self-injective, H the
injective hull of A, x 2 H n A, E D AC Ax and R D A / E. Then:

1. R is a fqf-ring which is not a fqp-ring;
2. for each maximal ideal P, RP is Artinian;
3. ��dim.R/ D 3.

Proof Let N D f.0; y/ j y 2 Eg, a D .0; 1/ and b D .0; x/.
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1. See [7, Example 4.6].
2. If P is a maximal ideal of R, then RP is the trivial ring extension of the field AP0 by

the finite dimensional vector space EP0 where P0 D P=N. Hence RP is Artinian.
3. Consider the following free resolution of R=aR:

R2
u2�! R

u1�! R! R=Ra! 0

where u2..r; s// D raC sb for each .r; s/ 2 R2 and u1.r/ D ra for each r 2 R.
We easily check that this sequence of R-modules is exact. The A-module E is
not finitely presented, otherwise E=A is finitely presented and, since each exact
sequence of A-modules is pure, A is a direct summand of E which contradicts
that A is essential in E. Consequently, N, which is the image of u2, is not finitely
presented. So, �R.R=Ra/ D 2 and ��dim.R/ D 3. ut
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Commutative Rings with a Prescribed Number
of Isomorphism Classes of Minimal Ring
Extensions

David E. Dobbs

Abstract Let � be a cardinal number. If � � 2, then there exists a (commutative
unital) ring A such that the set of A-algebra isomorphism classes of minimal ring
extensions of A has cardinality �. The preceding statement fails for � D 1 and, if A
must be nonzero, it also fails for � D 0. If � � @0, then there exists a ring whose
set of maximal (unital) subrings has cardinality �. If an infinite cardinal number �
is of the form � D 2� for some (infinite) cardinal number �, then there exists a field
whose set of maximal subrings has cardinality �.

Keywords Commutative ring • Minimal ring extension • Cardinal number
• Polynomial ring • Prime ideal • Valuation domain • Maximal subring •
Idealization • Ordinal number

Subject Classifications [2010]: Primary: 13B99; Secondary: 13A15

1 Introduction

All rings and algebras considered in this note are commutative with identity; all
subrings, inclusions of rings, ring extensions, ring homomorphisms, and modules
are unital. As usual, we say (cf. [12]) that a ring extension A � B is a minimal ring
extension (or that B is a minimal ring extension of A) if there does not exist a ring
properly contained between A and B. Similarly, given a ring extension A � B, one
says that A is a maximal subring of B if A � B is a minimal ring extension. Given a
cardinal number �, our interests here are twofold: to determine if there exists a ring
A such that the cardinal number of the collection of A-algebra isomorphism classes
of minimal ring extensions of A is �; and to determine if there exists a ring B such
that the cardinal number of the set of maximal subrings of B is �. (For the first of
these issues, the focus on A-algebra isomorphism classes, rather than on A-algebras,
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is necessary in order to avoid set-theoretic paradoxes, as the class of minimal ring
extensions of a nonzero ring A is not a set.) Our results will answer the question
about isomorphism classes of minimal ring extensions for any �; we shall answer
the corresponding question about maximal subrings if � � @0 and also for certain
greater values of �. The next paragraph will give some background on minimal ring
extensions and then summarize our results concerning that concept. The subsequent
paragraph will do the analogue for the concept of a maximal subring.

Many of the minimal ring extensions considered below will be integral ring
extensions. Let A � B be an integral ring extension, with the conductor M WD .A W
B/. Then (cf. [12, Lemme 1.2 and Proposition 4.1], [11, Lemma II.3], [20, Theorem
3.3]), A � B is a (an integral) minimal ring extension if and only if M is a maximal
ideal of A and (exactly) one of the following three conditions holds: A � B is said to
be, respectively, inert, ramified, or decomposed if B=MB (D B=M) is isomorphic, as
an algebra over the field F WD A=M, to a minimal field extension of F, FŒX�=.X2/, or
F�F. (As usual, X denotes an indeterminate over the ambient base ring.) As above,
let � be a cardinal number. We show (see Lemma 1 and Theorem 1) that 1 is the only
cardinal number which cannot be realized for some ring A as the cardinal number
of the collection of A-algebra isomorphism classes of minimal ring extensions of A.
If one is interested only in nonzero rings, then 0 is the only other cardinal number
which cannot be realized in this manner. This observation is related to the fact that
a ring A is a/the zero ring if and only if A does not have any (unital) proper ring
extensions (in which case, A also does not have any proper subrings).

Recently, the dual concept of a “maximal subring" has been investigated by A.
Azarang, often in collaboration with O. A. S. Karamzadeh, in a series of papers (four
of which we discuss below in relation to our work). Suffice it to recall here that,
while many rings have maximal subrings (cf. [1, Corollary 2.8]), some (nonzero
non-prime) rings do not have maximal subrings [2, Example 2.6]. Our main results
on maximal subrings may be summarized as follows. If � is a cardinal number such
that either � � @0 or � D 2� for some infinite cardinal number �, then there exists a
ring whose set of maximal subrings has cardinality � (see Proposition 1 (b), (c) and
Corollary 1). Given the above mention of 2�, we wish to emphasize that we assume
only the usual logical foundation of ZFC (Zermelo–Fraenkel set theory, together
with the Axiom of Choice), as that foundation will allow us to use the well-known
rules for the arithmetic of infinite cardinal numbers (as in, for instance, [14, pages
94–99]).

Proofs in both parts of this work (i.e., on minimal ring extensions and on maximal
subrings) will need the definition of an idealization. (See the proofs of Lemma 1,
Theorem 1, and Proposition 1 (a).) Recall that if A is a ring and E is an A-module,
then the idealization A.C/E is the ring whose additive structure is given by the
group A˚ E and whose multiplication is given by the following: if a1; a2 2 A and
e1; e2 2 E, then .a1; e1/.a2; e2/ WD .a1a2; a1e2 C a2e1/. We recommend [15] as a
good reference for the basic facts about idealizations.
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If A is a ring, then Spec.A/ (resp., Max.A/) denotes the set of prime (resp.,
maximal) ideals of A. By the “dimension" of a ring, we mean its Krull dimension. If
F is a field, F denotes a/the algebraic closure of F. If S is a set, then jS j denotes
the cardinal number of S . Any unexplained material is standard, as in [13, 18].

2 Results

We begin by showing in Lemma 1 (a) that the minimal ring extensions of a ring A
fill up a number of A-algebra isomorphism classes. Parts (b) and (c) of Lemma 1
then determine when that (cardinal) number is 0 or 1.

Lemma 1

(a) Let A � B and A � C be rings such that B and C are isomorphic as A-algebras.
Then A � B is a minimal ring extension if and only if A � C is a minimal ring
extension.

(b) Let A be a ring. Then the cardinal number of the set of A-algebra isomorphism
classes of minimal ring extensions of A is 0 if and only if A is a/the zero ring.

(c) There does not exist a ring A such that the cardinal number of the set of
A-algebra isomorphism classes of minimal ring extensions of A is 1.

Proof (a) It suffices to prove that if A � B is a minimal ring extension, then A � C
is a minimal ring extension. We shall prove the contrapositive. Assume, then, that
there exists a ring D such that A � D � C. Let f W C ! B be an A-algebra
isomorphism. Then f .D/ is a ring such that A � f .D/ � B, as desired.

(b), (c): It was noted in the Introduction that if A is a/the zero ring, then A has no
proper ring extension, and so no such A can have a minimal ring extension. Next,
suppose that A is a nonzero ring. Then there exists M 2 Max.A/. It was proved
in [7] that A.C/A=M is (A-algebra isomorphic to) a minimal ring extension of A.
Moreover, it follows from case (b) of [12, Lemme 1.5] that A � A=M is (A-algebra
isomorphic to) a minimal ring extension of A. Therefore, it suffices to prove that
A.C/A=M is not A-algebra isomorphic to A�A=M. This was shown in [10, Corollary
2.5] for the special case of a reduced nonzero ring A, but we prove it next without
the “reduced" restriction.

It was shown in [21, Lemma 2.1] that the canonical ring extension A ,! E
is subintegral for each A-module E. Therefore, the minimal ring extension A ,!
A.C/A=M is ramified. In particular, only one prime ideal of A.C/A=M lies over
M (cf. [11, Corollary II.2], [20, Theorem 3.3]). (That prime ideal is M.C/A=M;
this fact can also be found in [15].) On the other hand, the minimal ring extension
A ,! A � A=M is decomposed, and so two distinct prime ideals of A � A=M lie
over M. They are, of course, Q1 WD M � A=M and Q2 WD A � f0g. Consequently,
there is no A-algebra isomorphism g from A � A=M onto A.C/A=M (for otherwise,
g.Q1/ and g.Q2/ would be distinct prime ideals of A.C/A=M which lie over M, a
contradiction).
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Theorem 1 presents our main realizability results concerning minimal ring
extensions.

Theorem 1 For each cardinal number � � 2, there exists a ring A such that
the cardinal number of the set of A-algebra isomorphism classes of minimal ring
extensions of A is �.

Before proving Theorem 1, we shall give two lemmas which will be used in its
proof.

The inert/ramified/decomposed trichotomy that was recalled in the Introduction
is ultimately derived from Ferrand and Olivier’s classification of the minimal ring
extensions of a field. The substance of that result is given next for reference
purposes. The statement of Lemma 2 replaces FŒX�=.X2/ from the statement of [12,
Lemme 1.2] with the idealization F.C/F for two reasons: F.C/F Š FŒX�=.X2/
as F-algebras; and we wish to avoid confusing the symbol X with any of the
indeterminates that will appear in the proof of Theorem 1.

Lemma 2 .Ferrand-Olivier [12, Lemme 1.2]/ Let F be a field. Then an F-algebra
B can be viewed as a minimal ring extension of F if and only if B is F-algebra
isomorphic to either a minimal field extension of F, the idealization F.C/F, or F�F.

The final lemma before the proof of Theorem 1 concerns real closed fields.
Relevant background on this concept can be found in, for instance, [17], which will
be cited as needed in the proof of Lemma 3.

Lemma 3 Let s and t be nonnegative integers, at least one of which is positive. Then
there exist real closed fields R1; : : : ;Rs and algebraically closed fields C1; : : : ;Ct

such that

jR1j < : : : < jRsj < jC1j < : : : < jCtj:

Proof We claim that there exist real closed fields of arbitrarily large cardinality. To
see this, let � be an infinite cardinal number and start with any real closed field, F
(for instance, R). Of course, F is infinite since it is of characteristic 0. By replacing
� with 2max.�;jFj/, we can assume that � > jFj. Next, let fXig be a set of algebraically
independent indeterminates over F such that jfXigj D �. Using the standard facts
about arithmetic for infinite cardinal numbers (cf. [14, pages 94–98]), one verifies
that the field L WD F.fXig/ has cardinality �. As L is a purely transcendental field
extension of F, it follows that L is a formally real field (cf. [17, Exercise 4, page
272]). It follows that L is an ordered field [17, Corollary 2, page 274]. Hence,
by Jacobson [17, Theorem 8, page 285], L has a real closure, say ˝. As ˝ is an
algebraic extension of the (infinite) field L, we have j˝j D jLj D � > jFj (cf. [17,
Lemma, page 143]). This proves the above claim.

By iterating what was just proved, we get the following consequence. For each
positive integer s, there exist s real closed fields R1 � : : : � Rs such that jR1j <
: : : < jRsj.

We next show that for each positive integer t, there exist algebraically closed
fields C1 � : : : � Ct such that jC1j < : : : < jCtj. To see this, start by taking
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C1 to be any algebraically closed field (for instance, C). For the inductive step,
given a suitable Ci with 1 � i < t, construct CiC1 as follows. Let @ be a cardinal
number exceeding jCij (for instance, 2jCij). Let E be the field obtained by adjoining
to Ci a set, with cardinality @, consisting of indeterminates which are algebraically
independent over Ci. Then it suffices to let CiC1 be a/the algebraic closure of E.

Suppose that we first construct the s real closed fields for some s > 0 and then
construct the t algebraically closed fields as above. To complete the proof, it suffices
to ensure that Rs � C1 and jRsj < jC1j. This, in turn, can be done by modifying the
above construction of C1, as follows. Let � be a cardinal number exceeding jRsj (for
instance, 2jRsj). Let N be the field obtained by adjoining to Rs a set, with cardinality
�, consisting of indeterminates which are algebraically independent over Rs. Then
it suffices to let C1 be a/the algebraic closure of N.

Proof of Theorem 1 Suppose first that � is an integer. As � � 2, there exist
nonnegative integers s and t such that � D 3s C 2t. Next, choose real closed
fields R1; : : : ;Rs and algebraically closed fields C1; : : : ;Ct as in the statement of
Lemma 3. By Lemma 2, if 1 � i � s, there are exactly three Ri-algebra isomorphism
classes of minimal ring extensions of Ri and a set of representatives for these classes
is fRi;Ri.C/Ri;Ri � Rig. (Indeed, Ri is, up to isomorphism, the only minimal field
extension of Ri because the algebraic closure of any real closed field R is a two-
dimensional field extension of R [17, Corollary, page 276].) It follows that all
the minimal ring extensions of Ri have the same cardinality as Ri. Similarly, by
Lemma 2, if 1 � j � t, there are exactly two Cj-algebra isomorphism classes
of minimal ring extensions of Cj and a set of representatives for these classes is
fCj.C/Cj;Cj � Cjg; it follows that all the minimal ring extensions of Cj have the
same cardinality as Cj.

Consider a direct product A D D1 � � � � � DsCt, where D1; : : : ;DsCt is a
(finite) list of nonzero rings. It is well known (cf. [11, Lemma III.3 (d)]) that a ring
extension, say E , of A can be expressed (up to isomorphism) as

QsCt
iD1 Ei where Ei is

a ring extension of Di for each i D 1; : : : ; s C t. Moreover, by (an easy inductive
application of) [8, Lemma 2.14], E is a minimal ring extension of A if and only if
there exists (a necessarily unique) j 2 f1; : : : ; sC tg such that Di D Ei if i ¤ j and
Dj � Ej is a minimal ring extension.

Apply the preceding paragraph, with Di WD Ri if 1 � i � s and DsCj WD Cj if
1 � j � t. In other words,

A D R1 � � � � � Rs � C1 � � � � � Ct:

The recipe in that paragraph allows us to build (A-algebra) isomorphic copies of all
the minimal ring extensions of A. When this is done by using the information from
the first paragraph, the number of minimal ring extensions of A that are built is

3C � � � C 3C 2C � � � C 2 D 3sC 2t D �:
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We need only to show that no two of those minimal ring extensions, say E1 and E2,
are isomorphic as A-algebras.

Suppose, on the contrary, that E1 Š E2 as A-algebras. It is well known that when
finitely many nonzero Artinian rings are used as factors to build a (finite) direct
product of rings, those factors are determined up to isomorphism by that direct
product (cf. [5, Theorem 8.7]). Thus, by the cardinality restrictions in Lemma 3
and the observations about cardinality in the first paragraph, either E1 and E2 were
each built using a minimal ring extension of the same Ri or E1 and E2 were each
built using a minimal ring extension of the same Cj. The arguments (leading to
a contradiction) are the same for each of these possibilities and so, to ease the
notation, we will assume that E1 and E2 were built, respectively, using the minimal
ring extensions E1 and E2 of R1. In other words,

E1 D E1 � R2 � � � � � Rs � C1 � � � � � Ct

and E2 D E2�R2� � � � �Rs�C1� � � � �Ct, where we ignore the factors R2; : : : ;Rs

if s D 1.
By hypothesis, there is an A-algebra isomorphism ' W E1 ! E2. To obtain the

desired contradiction, it suffices to know that ' can be built coordinate-wise by
using a suitable R1-algebra homomorphism E1 ! E2 (which would necessarily be
an isomorphism), along with the identity maps Ri ! Ri (if 2 � i � s) and Cj ! Cj

(if 1 � j � t). This is known: the more general piece of folklore describing A-
algebra homomorphisms when A is any finite direct product of rings can be proved
by reasoning as in [6, pages 7–8]. This completes the proof in case � is an integer.

Next, suppose that � D @0. Let p be a prime number. We shall prove that A WD
Fp has the asserted behavior. In view of Lemma 2 (and the fact that 2 C @0 D
@0), it suffices to show that the cardinality of the set of Fp-algebra isomorphism
classes of minimal field extensions of Fp is @0. We can find representatives of these
classes by working inside a fixed algebraic closure of Fp. There, using the classical
Galois theory of finite fields, we see that the minimal field extensions of Fp are the
fields Fpq , where q runs over the set of all prime numbers. Different values of q lead
to non-isomorphic minimal field extensions of Fp, since ŒFpq W Fp� D q. Thus, the
cardinal number of the set of A-algebra isomorphism classes of the minimal ring
extensions of A is the cardinal number of the set of prime numbers, namely @0 D �,
as desired.

Finally, suppose that � > @0. (Actually, the following argument also applies if
� D @0, but we thought it appropriate to include the direct proof for that case in the
preceding paragraph.) Let I be a set with cardinal number � and let fXi j i 2 Ig be
a set of algebraically independent indeterminates over Q, with Xi ¤ Xj if i ¤ j in
I. (One could replace Q here with any other countable field of characteristic 0.) Let
K WD Q.fX2i j i 2 Ig/, the quotient field of the polynomial ring QŒfX2i j i 2 Ig�. We
shall prove that A WD K has the asserted behavior.

In view of Lemma 2 (and the fact that 2 C � D �), it suffices to show that the
cardinality of the set Ç of K-algebra isomorphism classes of minimal field extensions
of K is �. We can find representatives of these classes by working inside K, a
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fixed algebraic closure of K. Since the usual rules of arithmetic for infinite cardinal
numbers ensure that jKj D �, we also have jKj D � (cf. [17, Lemma, page 143]).
Hence, there are at most � K-subalgebras of K of the form KŒu� (D K.u/) for some
u 2 K. As K has characteristic 0, every finite-dimensional algebraic field extension
of K is separable (cf. [17, page 39], [16, Remarks (i), page 261]) and hence, by the
Primitive Element Theorem (cf. [17, Theorem 14, page 54], [16, Proposition 6.15
(c), pages 287–288]) is of the form K.u/ for some u 2 K. Moreover every minimal
field extension of K is an (a finite-dimensional) algebraic field extension of K. The
upshot is that Ç � �. It therefore will suffice to find a set f�i 2 K j i 2 Ig such that
K � K.�i/ is a minimal field extension for each i 2 I and K.�i/ is not K-algebra
isomorphic to K.�j/ whenever i ¤ j in I.

Let i 2 I. Note that Xi is algebraic over K since X2i 2 K. Thus ŒK.Xi/ W K� � 2.
We claim that ŒK.Xi/ W K� D 2. This fact was essentially proved in [9, page 4497],
but for the sake of completeness, we include its proof. Suppose the claim is false.
Then there exist f ; g 2 QŒfX2j j j 2 Ig� such that Xi D f=g in K, and so Xig D f
in the polynomial ring QŒfXj j j 2 Ig�. Let ı1 (resp., ı2) denote the degree, as a
polynomial in Xi with coefficients in QŒfX2j j j 2 I n figg�, of g (resp., of f ). Both
ı1 and ı2 are even integers, since f and g are elements of QŒfX2j j j 2 Ig�. However,
calculating degrees in the variable Xi leads to

1C ı1 D degXi
.Xi/C degXi

.g/ D degXi
.Xig/ D degXi

.f / D ı2;
so that 1 D ı2 � ı1 is the difference of even integers, whence 1=2 2 Z, the desired
contradiction. This proves the above claim. It follows that K � K.Xi/ is a minimal
field extension. We can now revisit the above choice of the algebraic closure K and
arrange that fXi j i 2 Ig � K. It now makes sense, for each i 2 I, to put �i WD Xi.
The proof will be complete if we show that K.�i/ is not K-algebra isomorphic to
K.�j/ whenever i ¤ j in I.

Suppose, on the contrary, that there exists a K-algebra isomorphism  W K.�i/!
K.�j/ for some i ¤ j in I. As �i WD  .�i/ 2 K satisfies

�2i D  .�2i / D  .X2i / D X2i ;

we have �i D ˙Xi. Thus Xi D ˙�i 2 K.�j/ D K C K�j D K C KXj, and so
Xi D aC bXj for some a; b 2 K. Recall from the preceding paragraph that Xi … K
(and, similarly, Xj … K). Therefore b ¤ 0. Also, since X2i D a2 C 2abXj C b2X2j ,

2abXj D X2i � a2 � b2X2j 2 K C K C K D K:

Since Xj … K and 2b ¤ 0, it follows that a D 0, and so Xi D bXj.
Since T WD QŒfX2� j � 2 Ig� is a domain whose quotient field is K, we can write

b D f1=g1, where f1 and g1 are nonzero elements of T . Let ı3 WD degX2i
.f1/ and

ı4 WD degX2i
.g1/. We have Xi=Xj D b D f1=g1. Square the left- and right-hand sides

and cross-multiply. The result is X2i g21 D X2j f 21 . Then

1C 2ı4 D degX2i
.X2i g21/ D degX2i

.X2j f 21 / D 0C degX2i
.f 21 / D 2ı3;
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so that 1 D 2ı3 � 2ı4 is an even integer, the desired contradiction, thus completing
the proof. �

Remark 1 In view of the approach in Theorem 1 to the case of an integer � � 2,
one may expect a similar use of finite direct products when pursuing “dual”
considerations for maximal subrings. However, that study will not be “dual” to the
above work on minimal ring extensions. For instance, if B1;B2 are nonzero rings
and B WD B1�B2, then a subring A of B need not be of the form A1�A2 for suitable
rings A1 � B1 and A2 � B2. The simplest instance of this phenomenon was noted
by Werner [23, Remark 2.3]: if p is a prime number and B WD Fp�Fp, then the only
proper subring of B is � WD f.a; a/ 2 B j a 2 Fpg. In this example, � is not of the
form A1 �A2 for suitable rings A1;A2 � Fp. (Indeed, the only ring having that form
is B itself.) It is interesting that� is isomorphic to B1 (D Fp) and so, also isomorphic
to B2; cf. also Lemma 2. However, it would take us far afield if we were to pursue
an approach emphasizing such isomorphisms in studying maximal subrings, and so
that study below will mostly proceed via other means, with a notable exception in
Proposition 1 (d).

We next examine the extent to which the concept of “maximal subring” admits
analogues of the above results on the concept of “minimal ring extension.”
Proposition 1 will collect our initial results on maximal subrings. In case the cardinal
number � is uncountable, our results will not be as comprehensive as the conclusions
in Theorem 1. After stating Proposition 1, we will comment on how its various
assertions relate to the literature before proceeding with its proof.

Proposition 1

(a) There exists a ring B such that B has infinitely many subrings but B has no
maximal subring.

(b) Let n be a positive integer. Then there exists a ring B such that B has exactly n
maximal subrings.

(c) There exists a ring B such that the set of maximal subrings of B has cardinal-
ity @0.

(d) For each cardinal number � > @0, there exists a ring B such that the set of
maximal subrings of B has cardinality at least �.

Azarang and Karamzadeh have constructed a Noetherian ring that has no
maximal subring [2, Example 2.6]. For the sake of completeness, Proposition 1 (a)
also constructs such a ring. Note also that much of the recent literature has provided
several examples of rings that do have maximal subrings. For instance, it was shown
in [1, Corollary 2.8] that every finite-type algebra B over a ring � has a maximal
subring. (In reviewing [1] for Mathematical Reviews, we noted that one should make
explicit in the preceding statement that B and � are nonzero. We would like to add
here that one should also make explicit that B is a commutative unital�-algebra and
that B is not its own prime subring; i.e., B is not isomorphic to Z or Z=nZ for any
integer n � 2.) One could view the rings B in [1, Corollary 2.8] as being somewhat
“small.” However, some “large” (uncountable) rings B also have maximal subrings,
as Azarang and Karamzadeh have shown this to be the case whenever B is a ring
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such that jMax.B/j > 2@0 [3]. In light of these results, it is natural to ask exactly
how many maximal subrings a ring can have. In the spirit of Theorem 1, we show
in Proposition 1 (b), (c) that any positive integer, as well as @0, can be realized as
the cardinal number of the set of maximal subrings of a suitable ring.

It does not seem to be known whether every cardinal number � > @0 can
be realized as the cardinal number of the set of maximal subrings of some ring.
Somewhat along these lines, Azarang and Karamzadeh have shown in [4] that if
B is a Noetherian ring such that jBj > 2@0 , then the cardinal number of the set of
maximal subrings of B is at least jMax.R/j. If � > @0, we show in Proposition 1 (d)
that some ring has at least � maximal subrings. In addition, Corollary 1 establishes
that if � D 2� for some infinite cardinal number �, then there exists a field whose
set of maximal subrings has cardinality �. However, for other kinds of transfinite
cardinal numbers � (for instance, � D @˛ for a limit ordinal ˛), we leave open
the question whether there exists a ring having exactly � maximal subrings.

Proof of Proposition 1 (a) Of course, the zero ring has no proper subring; nor do Z

or Z=nZ for any integer n � 2. Thus f0g, Z and Z=nZ (for n � 2) are all examples
of (Noetherian) rings whose set of maximal subrings has cardinality 0. These are,
admittedly, somewhat trivial examples, as they each have no proper subrings. We
next give an example where B has infinitely many subrings, none of which is a
maximal subring.

Take E to be any nonzero abelian group that has infinitely many subgroups but
no maximal (proper) subgroup. (Perhaps the best-known such E is the group

Zp1 WD fv 2 Q=Z j pnv D 0 for some positive integer ng;

where p is any prime number: cf. [16, Example 7 (c), (d), page 37].) Put B WD
Z.C/E. View Z as a subring of B via the (unital) ring homomorphism Z ! B,
m 7! .m; 0/. By Dobbs [7, Remark 2.9], the set of rings T such that Z � T � B
(that is, the set of subrings of B) is the set of idealizations S WD fZ.C/G j G is a
subgroup of Eg. It follows, because of the conditions on E, that S is infinite; and,
for all Z.C/G 2 S with G a proper subgroup of E, there exists a proper subgroup
H of E which properly contains G, so that Z.C/G � Z.C/H � Z.C/E D B in
S . So B has no maximal subring, which completes the proof of (a).

(b) Since Z is a Bézout domain, it follows that each overring T of Z (that is,
each subring T of Q) is of the form T D ZS for some saturated multiplicatively
closed subset S of Z [13, Exercise 10 (b), page 250]. As is well known (cf. [5,
Exercises 7 and 8, page 44]), such S are the sets of the form Z n [i2IPi, where
fPi j i 2 Ig � Spec.Z/. (In this proof, we shall always assume that indexing
is “efficient”; in the present situation, “efficient” means that Pi1 ¤ Pi2 whenever
i1 ¤ i2 in I.) Now, let fQj j j 2 Jg and fPi j i 2 Ig be subsets of Spec.Z/. Put

A WD ZZn[j2JQj and B WD ZZn[i2I Pi :
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As Z is a (principal ideal domain and hence a) unique factorization domain, it is
easy to see that A � B if and only if [i2IPi � [j2JQj.

Next, let z1; : : : ; zn be n pairwise-distinct prime numbers, and write

Spec.Z/ n fz1Z; : : : ; znZg as fPi j i 2 Ig:

Take A � B as above. If possible, do not allow a Pi or a Qj to be f0g. Then it follows
from unique factorization that A D B if and only if there exists a bijection � W I ! J
so that Pi D Q�.i/ for all i 2 I. Suppose that A � B; that is,

Spec.Z/ n [j2JQj � Spec.Z/ n [i2IPi D fz1Z; : : : ; znZg:

Then jSpec.Z/ n [j2JQjj < n. Moreover, A is a maximal subring of B if and only if
jSpec.Z/ n [j2JQjj D n � 1; indeed, if

m WD jSpec.Z/ n [j2JQjj < n � 1;

then there exists J0 � J with jSpec.Z/ n [j2J0Qjj D mC 1, so that

A � ZZn[j2J0 Qj � B:

There are exactly n subsets of fz1Z; : : : ; znZg which have cardinality n � 1. Each
of those subsets takes the form Spec.Z/ n [j2JQj for a unique set fQj j j 2 Jg �
Spec.Z/ and hence determines a unique maximal subring A D ZZn[j2JQj of B. The
upshot is that B has exactly n maximal subrings, as asserted.

(c) Put B WD Q. Since B is a field, the maximal subrings of B are the one-
dimensional valuation domains having B as their quotient field (cf. [18, Exercise
29, page 43]), that is, the one-dimensional valuation overrings of Z. As Z is a
Prüfer domain, the valuation overrings of Z are (apart from Q) the domains of the
form ZpZ where p is any prime number (cf. [18, Theorems 64 and 65]). Each such
ZpZ is one-dimensional. Moreover, the assignment p 7! ZpZ is an injection, since
the maximal ideal of ZpZ meets Z in pZ. Therefore, the cardinality of the set of
maximal subrings of B is the same as the cardinality of the set of prime numbers,
namely @0.

(d) Let I be a set with cardinality �. Let B be the direct product, B WD Q
I F2,

of a family of copies of the finite field F2 D f0; 1g indexed by I. View elements
of B as tuples of the form .ai/ as i runs over I. Well-order I. There is no harm in
viewing I as the ordinal number �. It is well known that since � is a transfinite
cardinal number, � must be a limit ordinal (cf. [14, Exercise, page 100]). Thus, if
j 2 I, then j C 1 2 I. Hence, for each j 2 I, the following set is well-defined:
Tj WD f.ai/ 2 B j aj D ajC1g. It is clear that Tj is a proper subring of B, for each
j 2 I; and that Aj1 › Aj2 if j1 ¤ j2 in I. (The last assertion should be verified for
the two natural cases, namely when j1 < j2 and when j2 < j1.) Thus, the assignment
j 7! Tj gives an injection from I to the set of proper subrings of B. To complete
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the proof, it suffices to show that if j 2 I, then Tj is a maximal (proper) additive
subgroup (and hence a maximal subring) of B. This would, in turn, follow from
Lagrange’s Theorem if the index ŒB W Tj� is a prime number. In fact, ŒB W Tj� D 2. To
see this, define c WD .ci/ 2 B by cj WD 1 and ci WD 0 for all i 2 J n fjg, and note that
B D Tj [ .Tj C c/. The proof is complete. �

Remark 2 (a) The following is a more basic rendering of the proof of Proposition 1
(b), as it does not explicitly mention rings of fractions. Let z1; : : : ; zn be n pairwise-
distinct prime numbers. Let the set B consist of 0 and all the nonzero rational
numbers which, when written in “lowest terms,” have denominators divisible (in
Z) by no prime numbers other than z1; : : : ; zn. Using the usual rules for addition
and multiplication, we see that B is a subring of Q. Next, let j 2 f1; : : : ; ng, and
let Aj be the analogue of B where the above role of fz1; : : : ; zng is played by
fz1; : : : ; zng n fzjg. (If n D 1, this means that Aj D Z.) Note that 1=zj 2 B n Aj.
It follows that Aj is a proper subring of B. Similarly, Aj1 ¤ Aj2 if 1 � j1 < j2 � n.
Therefore, to show that B has exactly n maximal subrings (namely, the Aj), it suffices
to prove the following. If D is a subring of B such that, for all j 2 f1; : : : ; ng, there
exists a nonzero element �j 2 D whose expression in lowest terms has a denominator
divisible by zj, then D D B (cf. [13, Lemma 27.2]). We next prove this statement.

It suffices to prove that if j 2 f1; : : : ; ng, then 1=zj 2 D. By hypothesis, some
nonzero (integral) multiple of �j can be expressed as aj=zj for some integer aj which
is relatively prime to zj. There is no harm in replacing �j with aj=zj. As the greatest
common divisor of aj and zj (in Z) is 1, there exist �;� 2 Z such that

�aj C �zj D 1:

Dividing through by zj gives 1=zj D ��j C � 2 DCZ D D, as required.
The referee has kindly advised the inclusion of another way to express the

perspective on the proof of Proposition 1 (b) that was suggested in the preceding two
paragraphs. Let � WD fz1; : : : ; zng and B be as in the above proof of Proposition 1
(b). Since Z is a UFD, the elements of B are the rational numbers of the form
a=b where a; b 2 Z, b ¤ 0 and each prime number which divides b (in Z) must
belong to �. Next, observe as above that if a and b are relatively prime integers,
then ZŒa=b� D ZŒ1=b�. It follows easily that B D ZŒ1=z1; : : : ; 1=zn� and that B has
exactly n maximal subrings Ai D ZŒ�i�, where �i WD � n f1=zig, for i D 1; : : : ; n.

(b) From the point of view of multiplicative ideal theory, the following alternate
proof of Proposition 1 (d) may be of interest, as it produces a field with the asserted
behavior. Let � be an infinite cardinal number. Let I be a set with cardinal number
� and let F be a field. Let fXi j i 2 Ig be a set of algebraically independent
indeterminates over F (with Xi ¤ Xj if i ¤ j in I). Then the polynomial ring
R WD FŒfXi j i 2 Ig� is an infinite-dimensional unique factorization domain. Let
K denote the quotient field of R. Fix j 2 I. As Xj is irreducible in R (by a degree
argument) and R is a UFD, it follows that Xj is a prime element of R. Thus, since R
is a UFD, Pj WD XjR is a height one prime ideal of R (cf. [18, Theorem 5]). Next, by
Gilmer [13, Theorem 19.6], there exists a valuation overring Vj of R (contained in
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K) whose maximal ideal meets R at Pj. As we are working inside the quotient field
of R and htR.Pj/ D 1, it follows that each nonzero prime ideal P of Vj meets R in Pj

(cf. [13, Lemma 11.1]). Hence, Q WD \P (the so-called pseudo-radical of R) also
satisfies Q \ R D Pj. As the prime ideals of (the valuation domain) Vj are linearly
ordered by inclusion, Q 2 Spec.Vj/ and htVj.Q/ D 1. Therefore, Wj WD .Vj/Q is
a one-dimensional valuation overring of R whose maximal ideal, Q, lies over Pj.
By Kaplansky [18, Exercise 29, page 43], Wj is a maximal subring of K. As the
assignment j 7! Wj gives an injection from I into the set of maximal subrings of K,
the alternate proof of Proposition 1 (d) can be completed by taking B WD K.

(c) It should be noted that the proof in (b) actually produces a ring B that has
more than � maximal subrings, in fact, at least 2� maximal subrings. To see this,
note first the construction of Wj in (b) ensured that Xj is a nonunit of Wj and Xi is
a unit of Wj for all i 2 I n fjg. Next, with i 2 f1;�1g for each i 2 I, repeat the
argument in (b), replacing R with the unique factorization domain FŒfXi

i j i 2 Ig�.
For each j 2 I, we have that in the resulting maximal subring of K, X

j

j is a nonunit
and Xi

i is a unit for all i 2 I n fjg. Thus, as all of the 2� possible choices of the
list .i/i2I are considered, we end up constructing 2� � � D 2� (pairwise distinct)
maximal subrings of K, as asserted.

We next give what may be our deepest realizability result for infinite cardinal
numbers.

Corollary 1 Let � be an infinite cardinal number of the form � D 2� for some
.infinite/ cardinal number �. Then there exists a field K whose set of maximal
subrings has cardinality �.

Proof Rework parts (b) and (c) of Remark 2, with � playing the earlier role of �.
The upshot is that the cardinal number of the set of maximal subrings of K is at least
2� D �. Now, specialize the earlier construction by taking the field F in Remark 2
(b) to be finite. As it suffices to show that the cardinal number of the set of maximal
subrings of K is at most 2�, we need only prove that jKj � �. This, in turn, follows
from the usual rules of arithmetic for infinite cardinal numbers, since jFj < � leads
to jRj D �.

Remark 3 (a) Despite Remark 2 (c), it is possible to prove the following. For each
nonzero cardinal number �, there exists an integral domain D, with quotient field
K, such that the set of maximal overrings of D (inside K) has cardinal number �;
that is, such that � is the cardinal number of the set of maximal subrings of K which
contain D. We next prove this statement.

Let M be a set of cardinality � and let 	 be an element such that 	 … M .
Consider the set T WD M [ f	g. Give T the structure of a partially ordered set
by decreeing that (x � x for each x 2 T and) 	 � m for each m 2 M (with
no other instances where the relation � holds). Note that T is a tree. (Recall that
if x 2 T , then x# WD fy 2 T j y � xg. The conclusion that T is a tree holds
since x# is linearly ordered for each x 2 T . Indeed, if m 2M , then m# D f	;mg;
and 	# D f	g.) Moreover, 	 is the unique minimal element of T . In addition,
since the only nontrivial chains in T are of the form 	 � m (with m 2 M ), it
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is clear that T satisfies Kaplansky’s conditions (K1) and (K2). (In other words,
each chain in T has an infimum and a supremum; and whenever x < y in T ,
there exist “immediate neighbors” x1 < y1 in T such that x � x1 < y1 � y.)
Therefore, by Lewis [19, Theorem 3.1], there exists a Prüfer domain D such that
Spec.D/, as a partially ordered set under inclusion, is order-isomorphic to T . Under
any such order-isomorphism, 	 corresponds to the prime ideal f0g of D and each
m 2 M corresponds to a maximal ideal of D. Thus, R is one-dimensional and
jMax.D/j D jM j D �. As in the proof of Proposition 1 (c), it follows from [18,
Exercise 29, page 43 and Theorems 64 and 65] that the assignment P 7! DP defines
a bijection from Max.D/ to the set of maximal subrings of K which contain D.
Therefore, the cardinal number of this set is jMax.D/j D jM j D �, as asserted.

(b) In view of Corollary 1, it is natural to ask if the field K in (a) has exactly 2�

maximal subrings. We do not know the answer in general. But we shall next show
that if the field used in proving Jaffard’s Theorem is a finite field L, then K has at
most 2� maximal subrings. (Recall from (a) that K has at least � maximal subrings.
Of course, given the result that we just announced, the answer to the question of
exactly how many maximal subrings K has will then be one of the cardinal numbers
between � and 2� , and the nature of those cardinal numbers depends on the model
of set theory being used.)

Recall from the proof of (a) that K is the quotient field of a certain integral domain
D, and so it suffices to prove that jDj D � (for then jKj D �). In the proof of (a),
D was found using the proof of [19, Theorem 3.1]. That proof involved the lattice
ordered abelian group A WD ff W T ! Z j f .x/ D 0 for all but at most finitely many
x 2 T g. Since jT j D � is infinite, it follows from the usual rules for arithmetic of
infinite cardinal numbers that jAj D �. The proof of [19, Theorem 3.1] went on to
cite the proof of Jaffard’s Theorem in [13, Theorem 18.6]. In that last-mentioned
proof, the domain D is defined as the group ring LA. As L is finite and jAj D �, a
final appeal to the laws of arithmetic for infinite cardinal numbers gives jDj D �,
thus completing the proof.

(c) Suppose that the field L that was mentioned in (b) is finite. Then, combining
the results in (a) and (b), we see that the cardinal number Æ of the set of maximal
subrings of the field K satisfies � � Æ � 2� . If � is infinite, the nature of the cardinal
numbers between � and 2� can depend on the model of set theory being used.
Perhaps it would be prudent, in closing, to note that similar questions occasionally
do not admit simple answers. See, for instance, [22]: it is shown there that if R is a
countable ring and E is an R-module with jEj D @1, the answer to the question
of whether 2@1 is the cardinal number of the set of (not necessarily maximal)
submodules of E is independent of ZFC. Thus, by Dobbs [7, Remark 2.9], one
cannot use ZFC alone to determine the cardinal number of the set of (not necessarily
maximal) R-subalgebras of R.C/E.
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Applications of Multisymmetric Syzygies
in Invariant Theory

M. Domokos

Abstract A presentation by generators and relations of the nth symmetric power
B of a commutative algebra A over a field of characteristic zero or greater than n
is given. This is applied to get information on a minimal homogeneous generating
system of B (in the graded case). The known result that in characteristic zero the
algebra B is isomorphic to the coordinate ring of the scheme of n-dimensional
semisimple representations of A is also recovered. The special case when A is
the two-variable polynomial algebra and n D 3 is applied to find generators and
relations of an algebra of invariants of the symmetric group of degree four that was
studied in connection with the problem of classifying sets of four unit vectors in the
Euclidean space.

Keywords Symmetric product • Generators and relations • Multisymmetric poly-
nomials • Trace identities • Cayley–Hamilton theorem

MSC: 13A50, 16R30

1 Introduction

Let n be a positive integer and let A be a commutative K-algebra (with identity
1), where K is a field of characteristic zero or char.K/ > n. Denote by Tn.A/ the
nth tensor power of A. This is a commutative K-algebra in the standard way. The
symmetric group Sn acts on Tn.A/ by permuting the tensor factors. This is an action
via K-algebra automorphisms. Write Tn.A/Sn for the subalgebra of Sn-invariants.
First we give a presentation of this commutative K-algebra in terms of generators
and relations. Note that even if this algebra is finitely generated, we have to take a
redundant (typically infinite) generating system that allows a simple description of
the relations.
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The key step is to pay attention to a K-vector space basis of Tn.A/Sn which comes
together with a rule to rewrite products of the generators of Tn.A/Sn into normal
form. The rewriting algorithm is furnished by relations that come uniformly from
one master relation. This yields the desired presentation of Tn.A/Sn , see Theorem 1.
As an application we deduce information on a minimal generating system of Tn.A/Sn

in the case when A is graded, see Corollary 1 and Corollary 2. This has relevance,
for instance, for the study of polynomial invariants associated with representations
of wreath products, see Sect. 3.

Since the master relation mentioned above comes from the Cayley–Hamilton
identity of matrices, as a corollary of Theorem 1 we obtain Corollary 4 asserting that
Tn.A/Sn is isomorphic to the subalgebra O.rep.A; n//GL.n;K/ of GL.n;K/-invariants
in the coordinate ring of the scheme of n-dimensional representations of A (where
A is a finitely generated K-algebra and char.K/ D 0). This latter result is due to
Vaccarino [30, Theorem 4.1.3], who proved it by a different approach.

In Sect. 5 we turn to a very concrete application of Theorem 1. Its special case
when A D KŒx1; x2� is a two-variable polynomial ring was used in [10, 11] to derive
generators of the ideal of relations among a minimal generating system of T3.A/S3 .
This is applied here to give a minimal presentation of the ring of invariants RS4 of
the permutation representation of the symmetric group S4 associated with the action
of S4 on the set of two-element subsets of the set f1; 2; 3; 4g. This ring of invariants
was studied before by Aslaksen et al. [2] because of its relevance for classifying
sets of four unit vectors in an Euclidean space. A Hironaka decomposition and a
minimal generating system of RS4 was computed in [2]. Here we get simultaneously
the generators and relations essentially as a consequence of the minimal presentation
of T3.KŒx1; x2�/S3 mentioned above. We note that the ring of invariants RS4 fits into a
series that has relevance for the graph isomorphism problem, and has been studied,
for example, in [28].

2 Generators and Relations for Symmetric Tensor Powers
of a Commutative Algebra

Choose a subset M � A such that 1 … M and f1g [M is a K-vector space basis
in A. For w 2M set

Œw� WD w˝ 1˝ � � � ˝ 1C 1˝ w˝ 1˝ � � � ˝ 1C � � � C 1˝ � � � ˝ 1˝ w: (1)

Proposition 1 The products Œw1� � � � Œwr� with r � n, wi 2M constitute a K-vector
space basis of Tn.A/Sn .

Proof The elements w1˝� � �˝wn with wi 2 f1g[M constitute a basis in Tn.A/, and
Sn permutes these basis vectors. For a multiset fw1; : : : ;wrg with r � n, wi 2 M ,
denote by Ofw1;:::;wrg the Sn-orbit sum of w1 ˝ � � � ˝ wr ˝ 1 ˝ � � � ˝ 1, and call
r its height. Clearly these elements constitute a basis in Tn.A/Sn . Assume that the
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multiset fw1; : : : ;wrg contains d distinct elements with multiplicities r1; : : : ; rd (so
r1C � � � C rd D r), then expanding Œw1� � � � Œwr� as a linear combination of the above
basis elements, the coefficient of Ofw1;:::;wrg is r1Š � � � rdŠ, and all other basis elements
contributing have strictly smaller height. This clearly shows the claim. ut
Remark 1 The special case when A D KŒx1; : : : ; xm� is a polynomial ring and
M is the set of monomials appears in [3, 15, Proposition 2.5’] (see [4] for the
interpretation needed here), and [10]. A formally different but related statement is
Lemma 3.2 in [30].

Take commuting indeterminates Tw (w 2M ), and write F for the commutative
polynomial algebra F WD KŒTw j w 2M �. Write

' W F ! Tn.A/Sn (2)

for the K-algebra homomorphism given by Tw 7! Œw� for all w 2M .
To a multiset fw1; : : : ;wnC1g of nC1 elements from M we associate an element

�fw1:::;wnC1g 2 F as follows. Write PnC1 for the set of partitions � D �1S � � �S�h

of the set f1; : : : ; nC 1g into the disjoint union of non-empty subsets �i, and denote
h.�/ D h the number of parts of the partition �. Set

�fw1;:::;wnC1g D
X

�2PnC1

.�1/h.�/
h.�/Y

iD1

�
.j�ij � 1/Š � TQs2�i

ws

�
;

where for a general element a 2 A (say for a DQs2�i
ws) we write

Ta WD c0nC
X

w2M
cwTw

provided that a D c0 CPw2M cww, with c0; cw 2 K.

Theorem 1 The K-algebra homomorphism ' is surjective onto Tn.A/Sn , and its
kernel is the ideal generated by the �fw1;:::;wnC1g, where fw1; : : : ;wnC1g ranges over
all multisets of nC 1 elements in M .

Proof Surjectivity of ' follows from Proposition 1. The fact that �fw1;:::;wnC1g
belongs to ker.'/ follows from the Cayley–Hamilton identity. Let Y.1/; : : : ;Y.nC
1/ be n�n matrices over an arbitrary commutative ring. For a permutation � 2 SnC1
with cycle decomposition

� D .i1 � � � id/ � � � .j1 : : : je/
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set

Tr� D Tr.Y.i1/ � � � Y.id// � � �Tr.Y.j1/ � � � Y.je//:

Then we have the equality

X

�2SnC1

sign.�/Tr� D 0 (3)

called the fundamental trace identity of n � n matrices. This can be proved by
multilinearizing the Cayley–Hamilton identity to get an identity multilinear in the n
matrix variables Y.1/; : : : ;Y.n/, and then multiplying by Y.n C 1/ and taking the
trace; see, for example, [13, 21, 23] for details. For a 2 A denote by Qa the diagonal
n � n matrix whose ith diagonal entry is 1 ˝ � � � ˝ 1 ˝ a ˝ 1 ˝ � � � ˝ 1 (the ith
tensor factor is a). The substitution Y.i/ 7! Qwi (i D 1; : : : ; nC 1) in (3) yields that
'.�fw1;:::;wnC1g/ D 0.

The coefficient in �fw1;:::;wnC1g of the term Tw1 � � � TwnC1
is .�1/nC1, and

all other terms are products of at most n variables Tu. Therefore the relation
'.�fw1;:::;wnC1g/ D 0 can be used to rewrite Œw1� � � � ŒwnC1� as a linear combination of
products of at most n invariants of the form Œu� (where u 2 M ). So these relations
are sufficient to rewrite an arbitrary product of the generators Œw� in terms of the
basis given by Proposition 1. This implies our statement about the kernel of '. ut
Remark 2 (i) The ideal of relations among the generators of the algebra of multi-
symmetric polynomials (i.e. the special case Tn.A/Sn with A D KŒx1; : : : ; xm�) has
been studied by several authors, see [5–7, 16–18, 29]. The case of Theorem 1 when
A is the qth Veronese subalgebra of the m-variable polynomial algebra KŒx1; : : : ; xm�

was given in Theorem 2.5 of [10]. The approach of Theorem 2.5 in [10] is close to
an argument for Theorem 2.1 in [3]. The proof of Theorem 1 is a generalization to
arbitrary commutative A of the proof of Theorem 2.5 in [10].

(ii) Although the presentation of Tn.A/Sn given in Theorem 1 is infinite, in
certain cases an a priori upper bound for the degrees of relations in a minimal
presentation is available, and a finite presentation can be obtained from the
infinite presentation above (see, for instance, [10, Theorem 3.2], building on [8]).
Based on this procedure even a minimal presentation is worked out in [11] for
T3.KŒx1; : : : ; xm�/

S3 .
Suppose that A is generated as a K-algebra by the elements a1; : : : ; am. Take the

m-variable polynomial algebra KŒx1; : : : ; xm� and denote by � W KŒx1; : : : ; xm� ! A
the K-algebra surjection given by �.xi/ D ai for i D 1; : : : ;m. This induces a K-
algebra surjection Tn.�/ W Tn.KŒx1; : : : ; xm�/ ! Tn.A/ in the obvious way. Since
Tn.�/ is Sn-equivariant and char.K/ does not divide jSnj, we deduce that it restricts
to a K-algebra surjection Tn.�/ W Tn.KŒx1; : : : ; xm�/

Sn ! Tn.A/Sn . Since the algebra
Tn.KŒx1; : : : ; xm�/

Sn is classically known to be generated by Œxi1 : : : xid � where d � n,
1 � i1 � � � � � id � m (see [19, 20, 25, 27] or [31, Chapter II.3], and for a
characteristic free statement see [12, 24] or [30, Corollary 3.14]), we obtain the
following known fact:
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Proposition 2 The K-algebra Tn.A/Sn is generated by

fŒai1 : : : aid � j d � n; 1 � i1 � � � � � id � mg:

Remark 3 Proposition 2 follows also directly from Theorem 1, since the relation
'.�fw1;:::;wnC1g/ D 0 can be used to rewrite Œw1 � � �wnC1� as a linear combination of
products of invariants of the form Œu� where u is a proper subproduct of w1 � � �wnC1.

Moreover, when A D KŒx1; : : : ; xm� is a polynomial ring, the above generating
set is minimal. For a general commutative K-algebra A the generating set in
Proposition 2 may not be minimal:

Example 1 Let A D KŒx2; x3� be the K-subalgebra of the polynomial ring KŒx�
generated by s D x2 and t D x3. Then fsitj j i D 0; 1; 2I j D 0; 1; : : : g is
a K-vector space basis of A. The K-algebra generating system of T2.A/S2 given
by Proposition 2 is fŒs�; Œt�; Œs2�; Œst�; Œt2�g. However, this generating system is not
minimal, because t2 D s3 implies that

Œt2� D Œs3� D 3

2
Œs2�Œs� � 1

2
Œs�3;

thus the algebra T2.A/S2 is generated by fŒs�; Œt�; Œs2�; Œst�g.
As an application of Theorem 1 we shall derive some information on a minimal

homogeneous generating system of Tn.A/Sn when A is graded. We shall work with
graded algebras R DL1

dD0 Rd, where R0 D K. Set RC WDL
d>0 Rd. We say that a

homogeneous r 2 RC is indecomposable if r … .RC/2; that is, r is not contained in
the subalgebra generated by lower degree elements.

Corollary 1 Let A be a graded algebra whose minimal positive degree homoge-
neous component has degree q.

(i) Suppose that b is a non-zero homogeneous element in A with deg.b/ < .nC1/q.
Then Œb� is an indecomposable element in the graded algebra Tn.A/Sn (whose
grading is induced by the grading on A).

(ii) Suppose that B is a K-linearly independent subset of A consisting of homo-
geneous elements of positive degree strictly less than .n C 1/q. Then the set
fŒb� j b 2 Bg is part of a minimal homogeneous K-algebra generating system
of Tn.A/Sn .

Proof Obviously (i) is a special case of (ii), so we shall prove (ii). Extend the set B
to a subset M � A such that

1. M consists of homogeneous elements of positive degree;
2. f1g [M is a K-vector space basis of A.

This is possible by the assumptions. Consider the corresponding (infinite) presen-
tation of Tn.A/Sn by generators and relations given in Theorem 1. Endow F with
a grading such that deg.Tw/ D deg.w/ for all w 2 M . According to Theorem 1
the ideal ker.'/ is generated by �fw1;:::;wnC1g, where fw1; : : : ;wnC1g ranges over all
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multisets of n C 1 elements in M . Clearly �fw1;:::;wnC1g 2 F is homogeneous of
degree deg.w1/C � � � C deg.wnC1/. For each wi we have deg.wi/ � q, implying

deg.w1/C � � � C deg.wnC1/ � .nC 1/q > deg.b/ for all b 2 B:

Consequently ker.'/ is a homogeneous ideal generated by elements of degree
strictly greater than deg.b/ for any b 2 B. By the graded Nakayama Lemma (see,
for example, [9, Lemma 3.5.1]) it is sufficient to show that setting R D Tn.A/Sn ,
the cosets fŒb� C .RC/2 j b 2 Bg are K-linearly independent in the factor space
R=.RC/2. This is equivalent to the condition that if

h D
X

b2B
cbTb 2 ker.'/C .FC/2 for some cb 2 K; (4)

then all coefficients cb are zero, that is, h D 0. The ideals ker.'/ and .FC/2 are
homogeneous, and since all non-zero homogeneous components of ker.'/ have
degree strictly grater than deg.b/ for all b 2 B, we deduce from (4) that h 2 .FC/2.
Now h is a linear combination of the variables in the polynomial ring F (in possibly
infinitely many variables), so this leads to the conclusion h D 0. ut

Proposition 2 and Corollary 1 have the following immediate corollary:

Corollary 2 Suppose that A is a graded algebra generated by homogeneous
elements of the same positive degree q. Let B be the union of K-vector space
bases of the positive degree homogeneous components of A of degree at most nq
(for example, B can be chosen to be a set of products of length at most n of
the generators of A). Then fŒb� j b 2 Bg is a minimal homogeneous K-algebra
generating system of the algebra Tn.A/Sn .

3 Wreath Products

Corollary 1 and Corollary 2 can be applied in invariant theory, one of whose basic
targets is to find a minimal homogeneous K-algebra generating system in an algebra
of polynomial invariants S.V/G. Here G is a group acting on a finite dimensional
vector space V via linear transformations, and S.V/ is the symmetric tensor algebra
of V (i.e. a polynomial algebra with a basis of V as the variables) endowed with
the induced G-action via K-algebra automorphisms, and S.V/G is the subalgebra
consisting of the elements fixed by G.

For a group G and a positive integer n the wreath product G o Sn is defined as
the semidirect product H Ì Sn, where H D G � � � � � G is the direct product of n
copies of G, and conjugation by � 2 Sn yields the corresponding permutation of the
direct factors of H. Given a G-module V there is a natural G o Sn-module structure
on Vn D V ˚ � � � ˚ V (n direct summands) given by
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.g1; : : : ; gn; �/ � .v1; : : : ; vn/ D .g1 � v��1.1/; : : : ; gn � v��1.n//: (5)

Consider the corresponding algebra S.Vn/GoSn of polynomial invariants. Clearly we
have S.Vn/GoSn � S.Vn/H � S.Vn/. Since H is normal in G o Sn, the subalgebra
S.Vn/H � S.Vn/ is Sn-stable, and S.Vn/GoSn D .S.Vn/H/Sn . With the usual
identification S.Vn/ D Tn.S.V// we obtain

S.Vn/H D S.Vn/G�����G D Tn.S.V/G/;

and formula (5) shows that the action of Sn on S.Vn/ corresponds to the action on
Tn.S.V// via permutation of the tensor factors. We conclude the identification

S.Vn/GoSn D Tn.S.V/G/Sn :

Therefore Corollary 1 and Corollary 2 have the following consequence:

Corollary 3 Let q denote the minimal positive degree of a homogeneous element
in S.V/G, and let B be the union of K-vector space bases of the homogeneous
components of S.V/G of positive degree strictly less than .nC 1/q.

(i) Then fŒb� j b 2 Bg is part of a minimal homogeneous K-algebra generating
system of S.Vn/GoSn .

(ii) Assume in addition that S.V/G is generated by its homogeneous component of
degree q. Then fŒb� j b 2 Bg is a minimal homogeneous K-algebra generating
system of S.Vn/GoSn .

Example 2 (i) Let G be the special linear group SLq.K/ acting by left multiplica-
tion on the space V D Kq�r of q� r matrices. Then by classical invariant theory
(see [31]) we know that S.V/G is generated by the determinants of q�q minors,
all having degree q, so Corollary 3 (ii) applies for S.Vn/GoSn .

(ii) Let G be the cyclic group of order q acting by multiplication by a primitive
qth root of 1 on V D Km. In this case the ring S.Vn/GoSn can be interpreted
as the ring of vector invariants of some pseudo-reflection group. Note that [10,
Theorem 2.5 (ii)] is a special case of Corollary 3 (ii).

4 The Scheme of Semisimple Representations of A

In this section we assume that char.K/ D 0, and A is a finitely generated com-
mutative K-algebra. We shall use the following notation: given a homomorphism
� W C ! D of commutative K-algebras we write �n�n W Cn�n ! Dn�n for the
homomorphism induced in the obvious way between the corresponding algebras of
n � n matrices.

Now choose K-algebra generators a1; : : : ; am of A, and consider the K-algebra
surjection � W Khx1; : : : ; xmi ! A, xi 7! ai from the free associative K-algebra.
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Take m generic n� n matrices X.1/; : : : ;X.m/ (their mn2 entries are indeterminates
in an mn2-variable polynomial algebra KŒx.r/ij j 1 � i; j � n; r D 1; : : : ;m�).
Take the factor of this polynomial algebra by the ideal generated by all entries
of f .X.1/; : : : ;X.m//, where f ranges over ker.�/ (in particular, the entries of
X.r/X.s/ � X.s/X.r/ are among the generators of this ideal). This algebra is the
coordinate ring O.rep.A; n// of the scheme rep.A; n/ of n-dimensional representa-
tions of A (by definition of this scheme). We write � W KŒx.r/ij j 1 � i; j � n; r D
1; : : : ;m� ! O.rep.A; n// for the natural surjection. Denote by Y.1/; : : : ;Y.m/ 2
O.rep.A; n//n�n the images of the generic matrices X.1/; : : : ;X.m/ under �n�n.
Then the K-algebra homomorphism � W Khx1; : : : ; xmi ! O.rep.A; n//n�n given by
xi 7! Y.i/ factors through a K-algebra homomorphism � W A ! O.rep.A; n//n�n.
The conjugation action of the general linear group GL.n;K/ on n � n matrices
induces an action (via K-algebra automorphisms) on O.rep.A; n//. Namely g 2
GL.n;K/ maps the .i; j/-entry of Y.l/ to the .i; j/-entry of gY.l/g�1. Consider the
subalgebra O.rep.A; n//GL.n;K/ of GL.n;K/-invariants. Motivated by Artin [1] we
call it the coordinate ring of the scheme of semisimple n-dimensional representa-
tions of A.

Define the K-algebra homomorphism


 W F ! O.rep.A; n// given by Tw 7! Tr.�.w//

where F stands for the same polynomial algebra (possibly in infinitely many
variables) as in Sect. 2.

Corollary 4 The K-algebra homomorphism 
 factors through an isomorphism


 W Tn.A/Sn
Š�! O.rep.A; n//GL.n;K/

(so 
 D 
 ı ', where ' W F ! Tn.A/Sn , Tw 7! Œw� is defined in (2)).

Proof Since the fundamental trace identity holds for matrices over the commutative
ring O.rep.A; n//, we conclude that all the �fw1;:::;wnC1g belong to ker.
/. By
Theorem 1 these elements generate the ideal ker.'/, hence ker.
/ � ker.'/,
implying the existence of a (unique) K-algebra homomorphism 
 with 
 D 
 ı '.

The homomorphism 
 (and hence 
) is surjective onto O.rep.A; n//GL.n;K/

because the algebra of GL.n;K/-invariants is generated by traces of monomials in
the generic matrices Y.1/; : : : ;Y.m/ (this follows from [26] since the characteristic
of K is zero, hence GL.n;K/ is linearly reductive).

Define ˇ W KŒx.r/ij j 1 � i; j � n; r D 1; : : : ;m�! Tn.A/ by ˇn�n W X.r/ 7! Qar

where we use the notation of the proof of Theorem 1, so Qar is a diagonal n�n matrix
over Tn.A/ whose jth diagonal entry is 1˝ � � �˝ 1˝ ar˝ 1˝ � � �˝ 1 (the jth tensor
factor is ar). Since f . Qa1; : : : ; Qam/ D 0 for any f 2 ker.�/, we conclude that ˇ factors
through a homomorphism ˇ W O.rep.A; n// ! Tn.A/. We have ˇ

n�n W Y.i/ 7! Qai

and more generally, ˇ
n�n W �.w/ 7! Qw. It follows that
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ˇ.
.Œw�// D ˇ.
.Tw// D ˇ.Tr.�.w/// D Tr.ˇ
n�n
.�.w/// D Tr. Qw/ D Œw�;

hence ˇ ı 
 is the identity map on Tn.A/Sn . This shows that 
 is injective as well,
and hence it is an isomorphism. ut
Remark 4 The isomorphism Tn.A/Sn Š O.rep.A; n//GL.n;K/ is a result of Vaccarino
[30, Theorem 4.1.3]. The proof given above is different, and it is an adaptation of
the proof of [10, Theorem 4.1]. The special case when A is a polynomial ring is
discussed also in [14] and [22].

5 The Symmetric Group Acting on Pairs

Write
�
Œn�
2

�
for the set of two-element subsets of f1; : : : ; ng. The symmetric group Sn

acts on the
�n
2

�
-variable polynomial algebra

Rn D KŒxfi;jg j fi; jg 2
 
Œn�

2

!

�

as

� � xfi;jg D xf�.i/;�.j/g for � 2 Sn:

The subalgebra RSn
n was studied for two reasons, the first comes from graph theory.

Given a simple graph � with vertex set f1; : : : ; ng and a polynomial f 2 Rn denote
by f .� / the value of f under the substitution

xfi;jg 7!
(
1 if fi; jg is an edge in �

0 otherwise:

Suppose that f1; : : : ; fr generate the K-algebra RSn
n . The following statement is well

known (see, for example, [9, Lemma 5.5.1]):

Proposition 3 The graphs � and � 0 on the vertex set f1; : : : ; ng are isomorphic if
and only if fi.� / D fi.� 0/ for all i D 1; : : : ; r.
The second motivation to study RSn

n comes from the problem of classifying orbits
of n-element sets of unit vectors in the Euclidean space R

m under the action of the
orthogonal group O.Rm/. We refer to [2] for the details (see also [9, section 5.10.2]).

From now on we focus on the case n D 4 and set R WD R4. For our purposes a
more convenient generating system of R is x1; x2; x3; z1; z2; z3 where

x1 D xf1;2g C xf3;4g; x2 D xf1;3g C xf2;4g; x3 D xf1;4g C xf2;3g

z1 D xf1;2g � xf3;4g; z2 D xf1;3g � xf2;4g; z3 D xf1;4g � xf2;3g:
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We shall use the notation of Sect. 2. Identify R with the third tensor power
T3.KŒx; z�/ of the two-variable polynomial algebra KŒx; z� as follows:

x1 D x˝ 1˝ 1; x2 D 1˝ x˝ 1; x3 D 1˝ 1˝ x

z1 D z˝ 1˝ 1; z2 D 1˝ z˝ 1; z3 D 1˝ 1˝ z:

Consequently we have

x1 C x2 C x3 D Œx�; z21 C z22 C z23 D Œz2�; x1z
2
1 C x2z

2
2 C x3z

2
3 D Œxz2�;

and xi
1z

j
1 C xi

2z
j
2 C xi

3z
j
3 D Œxizj� in general.

The symmetric group S3 acts on T3.KŒx; z�/ by permutation of the tensor factors
(as in Sect. 2), and T3.KŒx; z2�/ is an S3-stable subalgebra of T3.KŒx; z�/.

Proposition 4 The algebra RS4 is a rank two free module over a subalgebra
isomorphic to the third symmetric power of the two-variable polynomial ring. More
concretely, under the identification R D T3.KŒx; z�/ we have

RS4 D T3.KŒx; z2�/S3 ˚ z1z2z3T
3.KŒx; z2�/S3 ; (6)

and

.z1z2z3/
2 D 1

3
Œz6� � 1

2
Œz4�Œz2�C 1

6
Œz2�3 2 T3.KŒx; z2�/S3 : (7)

Proof Relation (7) is just the Newton–Girard formula expressing the third elemen-
tary symmetric polynomial of z21; z

2
2; z

2
3 in terms of their power sum symmetric

functions. Denote by H the abelian normal subgroup of S4 consisting of the
three double transpositions and the identity. The variables x1; x2; x3 are H-invariant
whereas z1; z2; z3 span H-invariant subspaces on which H acts via its three non-
trivial characters. It follows that the subalgebra RH is generated by

x1; x2; x3; z
2
1; z

2
2; z

2
3; z1z2z3:

Denote by P the subalgebra of RH generated by the six algebraically independent
elements x1; x2; x3; z21; z

2
2; z

2
3. Thus under the identification R D T3.KŒx; z�/ we have

P D T3.KŒx; z2�/. The square of the remaining generator z1z2z3 belongs to P by (7),
hence

RH D P˚ Pz1z2z3 (8)

is a rank two free P-module. Since H is normal, RH is an S4-stable subalgebra of R,
and the action of S4 on RH factors through an action of S4=H Š S3. More concretely,
S4 permutes the elements x1; x2; x3 and it permutes the elements z1; z2; z3 up to sign.
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In fact z1z2z3 is S4-invariant (as one can easily check) and there exists a surjective
group homomorphism � W S4 ! S3 (with kernel H) such that for any g 2 S4 we
have

g � xi D x�.g/.i/; g � z2i D z2�.g/.i/ .i D 1; 2; 3/:

This shows in particular that P is an S3 D S4=H-stable subalgebra of RH , and under
the identification P D T3.KŒx; z2�/ the S3 D S4=H-action on P is identified with
the S3-action on T3.KŒx; z2�/ via permutation of the tensor factors. Since z1z2z3 is
S3-invariant, we deduce from (8) that RS4 D .RH/S3 D PS3 ˚PS3z1z2z3 is a rank two
free PS3 -module, and in fact (6) holds. ut
Theorem 2 Identify R and T3.KŒx; z�/ as above.

(i) The algebra RS4 is generated by the ten elements

Œx�; Œx2�; Œx3�; Œz2�; Œz4�; Œz6�; Œxz2�; Œx2z2�; Œxz4�; z1z2z3:

(ii) Consider the surjective K-algebra homomorphism � from the ten-variable
polynomial algebra

F D KŒTw; S j w 2 fx; x2; x3; y; y2; y3; xy; x2y; xy2g�

onto RS4 given by

�.S/ D z1z2z3 and �.Tw/ D Œ .w/�;

where  W KŒx; y� ! KŒx; z� is the K-algebra homomorphism mapping x 7! x
and y 7! z2. The kernel of � is minimally generated (as an ideal) by the element

S2 � 1
3

Ty3 C
1

2
Ty2Ty � 1

6
T3y (9)

and the five elements (given explicitly in the proof)

J3;2; J2;3; J4;2; J3;3; J2;4: (10)

Proof We know from Proposition 2 that the subalgebra T3.KŒx; z2�/S3 of RS4 is
generated by fŒx�; Œx2�; Œx3�; Œz2�; Œz4�; Œz6�; Œxz2�; Œx2z2�; Œxz4�g, hence statement (i)
follows from (6) in Proposition 4.

Next we turn to the proof of (ii). Denote by �0 the restriction of � to the nine-
variable polynomial algebra

F 0 D KŒTw j w 2 fx; x2; x3; y; y2; y3; xy; x2y; xy2g�:
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Then �0 W F 0 ! T3.KŒx; z2�/S3 is a surjective K-algebra homomorphism (as we
pointed out above). The element (9) belongs to ker.�/ by (7). In particular, relation
(9) allows to rewrite the square .z1z2z3/2 of the 10th generator of RS4 given in (i)
as a polynomial in the first 9 generators. It follows from (6) in Proposition 4 that
relation (9) together with ker.�0/ generates the ideal ker.�/. Moreover, since the
indeterminate S 2 F occurs only in the relation (9) and does not occur in ker.�0/,
a minimal generating system of the ideal ker.'0/ together with the element (9)
constitutes a minimal homogeneous generating system of ker.�/.

Therefore it is sufficient to prove that ker.�0/ is minimally generated by the
elements (10). The K-algebra homomorphism  W KŒx; y� ! KŒx; z� induces an
isomorphism

Q W T3.KŒx; y�/! T3.KŒx; z2�/; xi 7! xi; yi 7! z2i ; i D 1; 2; 3

(where we identify T3.KŒx; y�/ with KŒx1; x2; x3; y1; y2; y3� similarly to the identifi-
cation of T3.KŒx; z�/ and R). Thus we have

�0 D Q ı � (11)

where � stands for the K-algebra surjection

� W F 0 ! T3.KŒx; y�/S3 ; Tw 7! Œw� for w 2 fx; x2; x3; y; y2; y3; xy; x2y; xy2g

studied in detail in [10] and [11]. Moreover, by (11) we have

ker.�0/ D ker.�/;

since Q is injective. It was explained first in section 6.2 of [10] how a minimal
generating system of ker.�/ can be deduced from a special case of Theorem 1.
Later in [11] a natural action of the general linear group GL2.K/ was also taken into
account. Namely GL2.K/ acts on KŒx; y� via linear substitutions of the variables.

That is,

	
a b
c d



2 GL2.K/ maps f .x; y/ 2 KŒx; y� to f .ax C cy; bx C dy/. Take the

third tensor power of this GL2.K/-representation. We get an action of GL2.K/ on
T3.KŒx; y�/ which obviously commutes with the S3-action we considered. Therefore
T3.KŒx; y�/S3 is a GL2.K/-stable subalgebra. There is an obviously defined GL2.K/-
action on F 0 such that � is GL2.K/-equivariant, hence ker.�/ is a GL2.K/-stable
ideal. Theorem 3.1 in [11] asserts in this special case that ker.�/ is minimally
generated as a GL2.K/-stable ideal by the elements J3;2 and J4;2 given as follows:

J3;2 D 6Tx2yTxy � 3Txy2Tx2 � 2Tx2yTxTy C Txy2T
2
x � 4T2xyTx

C 2TxyT2x Ty � 3Tx3Ty2 C 4Tx2TxTy2 � T3x Ty2 C Tx3T
2
y � Tx2TxT2y
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J4;2 D 6T2x2y C T2xyTx2 � 3T2xyT2x � 6Tx3Txy2 C 2Tx2Txy2Tx

C 4Tx3TxyTy � 2Tx2TxyTxTy C 2TxyT3x Ty � 4Tx2yTx2Ty � T2x2Ty2

C T2x2T
2
y C 4Tx2T

2
x Ty2 � Tx2T

2
x T2y � T4x Ty2 � 2Tx3TxTy2

The GL2.K/-submodule of ker.�/ generated by J3;2 is two-dimensional with K-
basis J3;2; J2;3 where

J2;3 D 6Txy2Txy � 3Tx2yTy2 � 2Txy2TxTy C Tx2yT2y � 4T2xyTy

C 2TxyT2y Tx � 3Ty3Tx2 C 4Ty2TyTx2 � T3y Tx2 C Ty3T
2
x � Ty2TyT2x :

The GL2.K/-submodule of ker.�/ generated by J4;2 is three-dimensional with K-
basis J4;2; J3;3; J2;4 where

J3;3 D 3Tx2yTxy2 � TxyTx2Ty2 C T3xy C TxyT2x Ty2 � 5T2xyTxTy � 3Tx3Ty3

C 2TxyTxy2Tx C Tx2TxTy3 � 3Tx2Txy2Ty C 2Tx2yTxyTy C 3Tx2TxTy2Ty

C Tx3Ty2Ty C Tx2TxyT2y � T3x Ty2Ty C 2T2x TxyT2y � Tx2TxT3y � 3TxTx2yTy2

J2;4 D 6T2xy2 C T2xyTy2 � 3T2xyT2y � 6Ty3Tx2y C 2Ty2Tx2yTy

C 4Ty3TxyTx � 2Ty2TxyTxTy C 2TxyT3y Tx � 4Txy2Ty2Tx � T2y2Tx2

C T2y2T
2
x C 4Ty2T

2
y Tx2 � Ty2T

2
y T2x � T4y Tx2 � 2Ty3TyTx2 :

ut
Relation (9) shows that the generator �.Ty3 / D Œz6� of RS4 is redundant. Consider

the subalgebra

F1 D KŒTw; S j w 2 fx; x2; x3; y; y2; xy; x2y; xy2g�

of F in Theorem 2. A minimal presentation of RS4 in terms of generators and
relations is as follows:

Corollary 5

(i) The algebra RS4 is minimally generated by the nine elements

Œx�; Œx2�; Œx3�; Œz2�; Œz4�; Œxz2�; Œx2z2�; Œxz4�; z1z2z3:

(ii) The kernel of the surjective K-algebra homomorphism

�jF1 W F1 ! RS4
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is minimally generated (as an ideal) by the five elements

QJ3;2; QJ2;3; QJ4;2; QJ3;3; QJ2;4
obtained from the elements (10) via the substitution

Ty3 7! 3S2 C 3

2
Ty2Ty � 1

2
T3y :

Proof It is well known (and follows, for example, from Corollary 2) that
T3.KŒx; y�/S3 is minimally generated by Œx�; Œx2�; Œx3�; Œy�; Œy2�; Œy3�; Œxy�; Œx2y�; Œxy2�.
Consequently T3.KŒx; z2�/S3 is minimally generated by Œx�; Œx2�; Œx3�; Œz2�; Œz4�;
.z1z2z3/2; Œxz2�; Œx2z2�, Œxz4�. It is now easy to deduce from Proposition 4 that the
generating set of RS4 given in the statement is minimal. The statement about
ker.�jF1 / follows from Theorem 2 (ii). ut
Remark 5

(i) A minimal generating system of RS4 was given by Aslaksen et al. [2, Theorem
4] by different methods. The authors also mention that they found the basic
syzygies (relations) among the generators with the aid of computer, but the
relations turned out to be quiet complicated, and so they left it out from their
paper.

(ii) The approach of Aslaksen et al. in [2, Theorem 4] is based on finding a
Hironaka decomposition of RS4 (i.e. a presentation of RS4 as a finite rank
free module over a polynomial subalgebra). We note that a Hironaka decom-
position of RS4 can be derived also from Proposition 4 and the Hiron-
aka decomposition of T3.KŒx; y�/S3 given in [10, section 6.2]. Setting Q D
KŒŒx�; Œx2�; Œx3�; Œz2�; Œz4�; Œz6�� we have that Q is a 6-variable polynomial algebra
and

P D T3.KŒx; z2�/S3 D Q˚ Œxz2�Q˚ Œx2z2�Q˚ Œxz4�Q˚ Œxz2�2Q˚ Œx2z2�Œxz4�Q

(12)

is a free Q-module of rank 6. Note that

S D Q˚ z1z2z3Q D KŒŒx�; Œx2�; Œx3�; Œz2�; Œz4�; z1z2z3�

is a 6-variable polynomial algebra as well, and by (12) and by (6) we obtain

RS4 D S˚ Œxz2�S˚ Œx2z2�S˚ Œxz4�S˚ Œxz2�2S˚ Œx2z2�Œxz4�S

is a free S-module of rank 6. This is compatible with the result of
[2, Theorem 4].
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Functorial Properties of Star Operations:
New Developments

Jesse Elliott

Abstract We generalize the definition of a star operation and related notions to
rings with zerodivisors and investigate, for any universal star operation 
, various
generalizations of the 
-linked extensions that yield functoriality of 
-class groups.
These include a generalization of the PDE extensions of a Krull domain that also
yields functoriality of divisor class groups.

Keywords Commutative ring • Star operation • Krull domain • Class group
• t-class group • t-linked extension

Mathematics Subject Classification (2010) 13A15, 13F05, 13B02

1 Introduction

The divisor class group Cl.A/ of a Krull domain A is a measure of the extent to which
unique factorization fails in A. For flat extensions, or more generally for extensions
that satisfy a condition known as PDE [6, Section 6], it is known that the divisor
class group Cl.A/ is functorial in A: if an extension B � A of Krull domains satisfies
the particular condition PDE, then the function Cl.A/ �! Cl.B/ acting by ŒI� 7�!
Œ.IB/v� is a group homomorphism that is functorial in towers, where v W I 7�!
Iv D .I�1/�1 is the operation of divisorial closure on fractional ideals. This fact is
useful for relating the properties of a Krull domain with those of its PDE extensions.
However, the divisor class group is not functorial in A for all extensions of Krull
domains.

The notion of a star operation on an integral domain, introduced by Krull
in the guise of his 0-operations [7, 8], allows one to generalize the theories of
Dedekind domains and Krull domains to far more generally classes of domains.
The notion can be extended naturally to all commutative rings as follows. All rings
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and algebras are assumed commutative with identity. Let A be a ring with total
quotient ring K. An element a of A is said to be regular if it is a nonzerodivisor.
We let Areg denote the monoid of all regular elements of A. We let K.A/ denote the
lattice of all A-submodules of K. The lattice K.A/ is an ordered monoid under the
operation .I; J/ 7�! IJ, where IJ denotes the A-submodule of K generated by the
set fab W a 2 I; b 2 Jg. An A-submodule of K is said to be regular if it contains
a regular element of A. A fractional ideal of A is an A-submodule I of K such that
I�1 D .A WK I/ is regular, or equivalently such that aI � A for some regular a 2 A.
We let F.A/ denote the ordered monoid of all regular fractional ideals of A. A star
operation on A is a nucleus 
 on the ordered monoid F.A/ such that A� D A, that
is, it is a closure operation 
 W I 7�! I� on the lattice F.A/ such that I�J� � .IJ/�
for all I; J 2 F.A/ and A� D A [4, 5].

Among the most important star operations are the operation

v W I 7�! Iv D .I�1/�1

of divisorial closure, or v-closure, the operation

t W I 7�! It D
[
fJv W J 2 F.A/; J � I is fin.gen.g

of t-closure (equal to v if A is a Krull domain), the operation

w W I 7�! Iw D
[
f.I WK J/ W J 2 F.A/ is fin.gen.; Jt D Ag

of w-closure (equal to t if A is a PVMD), and the identity operation d W I 7�! I (equal
to v if A is a Dedekind domain). Using these star operations, one can generalize
many well-known results about Dedekind domains, UFDs, Krull domains, Prüfer
domains, and PVMDs to rings with zerodivisors [5].

The set of all star operations on A is a complete lattice, where 
 � 
0 if I� � I�0

for all I 2 F.A/. The divisorial closure star operation v is the largest star operation
on A, and the identity star operation d is the smallest. A star operation 
 on A is said
to be of finite type if I� D SfJ� W J 2 F.A/; J � I is fin.gen.g for all I 2 F.A/,
or equivalently if 
 is Scott continuous, that is, if 
 W F.A/ �! F.A/ is continuous
when F.A/ is endowed with the Scott topology. The star operation t is the largest
finite type star operation on A. More generally, if 
 is any star operation on A, then
the map 
t W I 7�! I�t D SfJ� W J 2 F.A/; J � I is fin.gen.g is the largest finite
type star operation on A that is less than or equal to 
.

Let 
 be a star operation on a ring A. The operation .I; J/ 7�! .IJ/� on F.A/
is called 
-multiplication. A regular fractional ideal I of A has an inverse J with
respect to 
-multiplication if and only if .II�1/� D A, in which case J� D I�1;
such a regular fractional ideal I is said to be 
-invertible. We let 
-Inv.A/ denote
the submonoid of F.A/ consisting of the 
-invertible fractional ideals of A under
multiplication. The 
-class semigroup S�.A/ of a ring A is the monoid of all 
-
closed regular fractional ideals of A under 
-multiplication modulo the subgroup of
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principal regular fractional ideals of A. The 
-class group Cl�.A/ of a ring A is the
group of invertible elements of the monoid S�.A/; equivalently, it is the group of

-invertible 
-closed fractional ideals under 
-multiplication modulo the subgroup
of principal fractional ideals.

The t-closure operation, above nearly all other star operations, is a powerful tool
well known among specialists in multiplicative ideal theory. It can be used, for
example, to uniquely characterize the UFDs, the Krull domains, the PVMDs, and
the integrally closed domains. For example, a domain A is a UFD if and only if the
t-closure of every nonzero ideal of A is principal. The t-closure operation also yields
a measure of the extent to which unique factorization fails in a given domain, since
the t-class semigroup St.A/ of A is trivial if and only if A is a UFD. A domain A is a
Krull domain if and only if St.A/ is a group, in which case it is the usual class group
of A, generated by the classes of the height one primes, which are equivalently the
t-maximal ideals of A. The t-class group Clt.A/ of a domain A contains the Picard
group Pic.A/ D Cld.A/ but typically carries far more information.

An A-algebra B is A-torsion-free (as an A-module) if and only if Areg � Breg

(or Areg1B � Breg, where 1B is the identity of B). If B is A-torsion-free, then the
homomorphism A �! B extends uniquely to a homomorphism K �! L of the
respective total quotient rings of A and B, and the map F.A/ �! F.B/ given by
I 7�! IB is a well-defined homomorphism of ordered monoids.

In [3], to study the functoriality of star operations and 
-class groups and
semigroups, or lack thereof, we defined a universal star operation to be an
association 
 W A 7�! 
A of a star operation 
 D 
A on A to every integral domain A
[3]. We expand this definition here as follows: we define a universal star operation
to be an association 
 W A 7�! 
A of a star operation 
 D 
A on A to every ring A. If

 is a universal star operation and A is a ring, then Cl�.A/ (resp., S�.A/, 
-Inv.A/)
denotes Cl�A.A/ (resp., S�A.A/, 
A-Inv.A/). We often use 
 to denote 
A when the
ring A is understood. The star operations v, t, and d are very natural examples of
universal star operations, yet v and t, Clv and Clt, etc., are not functorial in A.

Nevertheless, there are various conditions one can impose, such as flatness, that
guarantee functoriality. Let 
 be a universal star operation and A a ring. We say that
an A-torsion-free A-algebra B is 
-linked if .IB/�B D .I�A B/�B for all I 2 
-Inv.A/,
and the extension is said to be 
-compatible if the same equation holds for all I 2
F.A/. It is well known that flat H) t-compatible H) t-linked for integral domains,
and the same is true for arbitrary ring extensions. For extensions of Krull domains
the conditions of PDE, t-compatibility, and t-linkedness are equivalent [1, Theorem
3.2].

The following condition is more general than 
-linkedness. Following [3], we say
that an A-torsion-free A-algebra B is 
-ideal class linked, or 
ICL, if there is a group
homomorphism Cl�.A/ �! Cl�.B/ of 
-class groups induced by the (well defined)
map I 7�! .I�A B/�B from F.A/ to F.B/. Equivalently this means that for all I; J 2

-Inv.A/ one has a..IJ/�A B/�B D b.I�A J�A B/�B for some regular elements a and b
of B. Any 
-linked extension is 
ICL; thus any PDE (or t-linked) extension of Krull
domains is tICL. Theorem 1 provides an example of an extension of Krull domains
that is not tICL. This might seem to imply that the tICL condition is more useful
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than the t-linkedness condition, being more general and yet apparently sufficient
for functoriality of t-class groups. However, although the induced homomorphisms
of t-class groups are functorial for t-linked extensions, they are not functorial for
tICL extensions. In fact, perhaps surprisingly, the condition tICL is not stable under
towers: in Theorem 1 we construct a tower C � B � A of Krull domains such that
the extensions C � B and B � A are tICL but the extension C � A is not. This
provides in particular an example of an extension C � A of Krull domains such that
the (well-defined) map Cl.A/ �! Cl.C/ acting by ŒI� 7�! Œ.IC/v� is not a group
homomorphism.

Nevertheless, the following condition, which is in a precise sense “halfway”
between 
-linkedness and 
ICL, is stable under towers and yields functoriality of

-class groups: an A-torsion-free A-algebra B is 
-class linked, or 
CL, if for all
I 2 
-Inv.A/ one has a.IB/�B D b.I�A B/�B for some regular elements a and b of B.
All of this suggests that t-class linkedness is likely to be the most general condition
on torsion-free algebras that yields functoriality of t-class groups. Moreover, the
proof of Proposition 4 provides an example of an extension of Krull domains that
is t-class linked but not t-linked, i.e., not PDE. This shows that functoriality of
class groups for Krull domains holds for a larger class of extensions than the PDE
extensions.

2 Functorial Properties of Star Class Groups

Let 
 be a universal star operation and A a ring. Recall that F.A/ denotes the ordered
monoid of all regular fractional ideals of A and 
-Inv.A/ denotes the submonoid of
F.A/ consisting of the 
-invertible fractional ideals of A.

In [3] we defined eight classes of extensions B � A, namely, those that are

-compatible, 
-linked, 
-class compatible, 
-class linked, 
-ideal compatible,

-ideal linked, 
-ideal class compatible, and 
-ideal class linked, respectively.
Here will use the abbreviations 
C, 
L, 
CC, 
CL, 
IC, 
IL, 
ICC, and 
ICL,
respectively, for these properties. Their definitions, more generally, for any ring
A and any A-torsion-free A-algebra B are summarized in Table 1. In particular,
for example, we say that an A-torsion-free A-algebra B is 
-ideal class linked, or

ICL, if for all I; J 2 
-Inv.A/ one has a..IJ/�B/� D b.I�J�B/� for some regular
elements a and b of B. Equivalently this means that there is a group homomorphism
Cl�.A/ �! Cl�.B/ of 
-class groups induced by the map I 7�! .I�B/� from F.A/
to F.B/.

The eight properties are connected by the implications given in Figure 1. Notice
that there is a “duality” among the eight properties: 
C and 
ICL are dual, 
L and

ICC are dual, 
CC and 
IL are dual, and 
CL and 
IC are dual. Duality here just
means that the implications in Figure 1 holding among the various properties also
hold among the negations of their dual properties.
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Table 1 Definitions of eight classes of A-torsion-free A-algebras B

B=A is

�C 8I 2 F.A/ .IB/� D .I�B/�

�L 8I 2 �-Inv.A/ .IB/� D .I�B/�

�CC 8I 2 F.A/ 9a; b 2 Breg a.IB/� D b.I�B/�.

�CL 8I 2 �-Inv.A/ 9a; b 2 Breg a.IB/� D b.I�B/�.

�IC 8I; J 2 F.A/ ..IJ/�B/� D .I�J�B/�

�IL 8I; J 2 �-Inv.A/ ..IJ/�B/� D .I�J�B/�

�ICC 8I; J 2 F.A/ 9a; b 2 Breg a..IJ/�B/� D b.I�J�B/�

�ICL 8I; J 2 �-Inv.A/ 9a; b 2 Breg a..IJ/�B/� D b.I�J�B/�

Fig. 1 Implications among
eight classes of A-torsion-free
A-algebras

The following extension of [3, Proposition 5.9] shows in particular that the
properties 
C, 
L, 
CC, and 
CL are stable in towers and yield functoriality
of 
-class groups. In marked contrast, however, we will show in Sect. 6 that the
conditions tIC, tIL, tICC, and tICL are not stable under towers, even among towers
of Krull domains.

Proposition 1 Let 
 be a universal star operation, let A be a ring, B an A-torsion-
free A-algebra, and C a B-torsion-free B-algebra. One has the following:

1. If C=B is 
C and B=A is 
C, then C=A is 
C.
2. If C=B is 
C and B=A is 
IC, then C=A is 
IC.
3. If C=B is 
L and B=A is 
L, then C=A is 
L.
4. If C=B is 
L and B=A is 
IL, then C=A is 
IL.
5. If C=B is 
CC and B=A is 
CC, then C=A is 
CC.
6. If C=B is 
CC and B=A is 
ICC, then C=A is 
ICC.
7. If C=B is 
CL and B=A is 
CL, then C=A is 
CL.
8. If C=B is 
CL and B=A is 
ICL, then C=A is 
ICL.
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Moreover, in any of the above cases the diagram

of induced group homomorphisms is commutative.

Proof Statements 1 through 8 are [3, Proposition 5.9] generalized to rings with zero-
divisors. To prove the given diagram commutative we may assume the hypotheses
of statement 8. Let I 2 
-Inv.A/. Then under the composition in the given diagram
one has

ŒI�� 7�! Œ..I�B/�C/�� D Œ.I�BC/�� D Œ.I�C/��:

Commutativity follows.
As this paper is in a sense a sequel to the paper [3], we feel compelled to remark

the following.

Remark 1 (Corrigendum to [3]) We remark that [3, Proposition 3.11] is not correct
as it stands: conditions (5) and (7) of the proposition are implied by but are not
equivalent to the other eight conditions of the proposition.

3 Classifying Extensions via Commutative Diagrams

Let 
 be a universal star operation and A a ring. Let F�.A/ denote the monoid of 
-
closed fractional ideals of A under the operation .I; J/ 7�! .IJ/� of 
-multiplication.
Thus F.A/ D Fd.A/. The map I 7�! I� defines a surjective monoid homomorphism
F.A/ �! F�.A/. The group Inv�.A/ of 
-invertible 
-closed fractional ideals of
A is the group of units of the monoid F�.A/. The monoid 
-Inv.A/ of 
-invertible
fractional ideals of A under ordinary multiplication is the pullback of Inv�.A/ along
the monoid homomorphism F.A/ �! F�.A/. The 
-class semigroup S�.A/ of A is
defined to be the monoid F�.A/modulo the subgroup Prin.A/ of principal fractional
ideals of A. We let S.A/ D Sd.A/ denote the ideal class semigroup of A. The

-class group Cl�.A/ of A is the group of units of S�.A/; alternatively it is the
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group Inv�.A/=Prin.A/. We also let 
-Cl.A/ denote the monoid 
-Inv.A/=Prin.A/,
which is the pullback of Cl�.A/ along the monoid homomorphism S.A/ �! S�.A/.
Given these definitions, one has the following commutative diagram of monoid
homomorphisms, in which all rising arrows are injective and all falling arrows are
surjective.

As we have seen, of the eight classes of torsion-free extensions that we have
considered, four are stable in towers: 
C, 
L, 
CC, and 
CL. It is also useful to
note that an A-torsion-free A-algebra B is 
C (resp., 
L, 
CC, 
CL) if and only
if there is a commutative diagram (
C) (resp., (
L), (
CC), (
CL)) of monoid
homomorphisms as shown below. (The dotted arrows represent maps for which the
resulting diagram is commutative that exist if and only if the extension B=A has the
respective property.)
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These equivalences follow from [3, Theorem 1.1 and Propositions 5.3 and 5.4]
generalized to rings with zerodivisors.
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4 Classifying Extensions via Tables

The eight properties of extensions, related as in Figure 1, can be used to partition
all A-torsion-free A-algebras into twenty disjoint classes. Table 2 lists all twenty
classes, and Table 3 summarizes each class in a more succinct form. In particular,
we have the following proposition, the proof of which is a simple logic exercise.

Proposition 2 Let 
 be a universal star operation and A a ring. Any A-torsion-free
A-algebra B belongs to exactly one of the twenty classes characterized by Table 2
and by Table 3.

Notice that the classes IIIa, IIIb, and IIIc, for example, are together those
A-torsion-free A-algebras lacking exactly three of the eight properties. Also, as one
moves up in number within the same letter class, as in the sequence 0, I, IIb, IIIb,
IV (or IVb), Vb, VIb, VII, VIII, at each step one loses exactly one of the properties
holding in the previous class. Note also that there is a duality between any class
lacking exactly N properties and the corresponding class lacking exactly 8 � N
properties. Thus, for example, the classes IIb and VIb are dual to one another, while
the classes IV, IVa, IVb, and IVc are self-dual.

Table 2 Classifications of all possible extensions

Class �C �L �CC �CL �IC �IL �ICC �ICL

0 X X X X X X X X
I X X X X X X X
IIa X X X X X X
IIb X X X X X X
IIc X X X X X X
IIIa X X X X X
IIIb X X X X X
IIIc X X X X X
IV X X X X
IVa X X X X
IVb X X X X
IVc X X X X
Va X X X
Vb X X X
Vc X X X
VIa X X
VIb X X
VIc X X
VII X
VIII
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Table 3 Classification
summary

Class is is not Class is is not

0 �C VIII �ICL

I �L �C VII �ICL �ICC

�CC �IL

�IC �CL

IIa �L �IC VIa �CL �ICC

�CC �IL

IIb �L �CC VIb �IL �ICC

�IC �CL

IIc �CC �L VIc �ICC �IL

�IC �CL

IIIa �L �CC Va �IL �ICC

�ICC �IC �CL �L

IIIb �CC �L Vb �ICC �IL

�IL �IC �CL �CC

IIIc �CL �L Vc �ICC �IC

�IC �CC �IL �CL

IV �ICC �L IVa �L �ICC

�IL �CC IVb �CC �IL

�CL �IC IVc �IC �CL

5 t-Closure

If A or B is restricted to lie in a certain class of rings, then B=A may consequently
be restricted from lying in some of the twenty classes of extensions in Table 2. In
the extreme case, for example, if every ideal of A is a 
-ideal, then all extensions
of A lie in class 0. This happens for 
 D t, for example, if A is a Prüfer domain.
Similarly, as the following proposition shows, any extension of a Krull domain must
lie in exactly one of the classes 0, IIc, IVb, IVc, VIc, and VIII.

Proposition 3 Let A be a Krull domain and B any A-torsion-free A-algebra. Then
for B=A one has tC” tL” PDE, tCC” tCL, tIC” tIL, and tICC”
tICL. Moreover, B must lie in exactly one of the classes 0, IIc, IVb, IVc, VIc, and VIII.

Proof It is well known that a Krull domain is equivalently a domain A in which
every fractional ideal is t-invertible, that is, in which F.A/ D t-Inv.A/. The
proposition therefore follows immediately from the definitions in Table 1.

The following is a partial converse to the result above.

Proposition 4 For 
 D t, the classes of extensions 0, IIc, IVb, IVc, and VIII listed
in Table 2 each contain some extensions of the form B � A where both A and B are
Krull domains.
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Proof If B D A, then the extension is in class 0. If A and B are UFDs and B � A
is not t-linked, then the extension is in class IIc; thus, for example, the extension
ZŒX=2� � ZŒX� is in class IIc [3, Example 6.10]. If A is any Noetherian integrally
closed domain that is not locally factorial, then by [3, Proposition 6.6 and Example
6.7] there is a DVR overring B of A such that B � A is in class IVb. Finally,
Theorem 1 of the next section shows that the classes IVc and VIII also contain
extensions of Krull domains.

Conjecture 1 For 
 D t, the class VIc also contains some extensions of the form
B � A where both A and B are Krull domains. Equivalently, there exists an extension
B � A of Krull domains such that (1) the map

Ft.A/ �! Ft.B/

I 7�! .IB/t

is not a monoid homomorphism, (2) the induced map St.A/ �! St.B/ is a monoid
homomorphism, and (3) the square

is not commutative.
By Propositions 3 and 4, a proof or disproof of the above conjecture would

complete a characterization of the possible extensions of a Krull domain according
to the classification scheme of Table 2.

For a “random” universal star operation 
, the twenty classes of extensions
defined in Table 2 will almost certainly be nonempty. Regarding the t-operation,
however, the situation is not so clear.

Conjecture 2 For 
 D t, all twenty classes of extensions listed in Table 2 are
nonempty.

Conjecture 3 For 
 D t, all twenty classes of extensions listed in Table 2 contain
some extensions of the form B � A where both A and B are PVMDs.

It is known also that the class I for 
 D t contains some extensions of PVMDs
[3, Examples 4.12 and 6.9]. Together with Proposition 4, this verifies as nonempty
only six of the twenty classes. Assuming Conjecture 2 is true, Table 3 for 
 D t
yields the shortest possible path towards determining whether or not an A-algebra
lies in a given class. Note that class IV is the most difficult to verify. Constructing
such an example seems difficult since one has to control simultaneously for six of
the eight properties. Indeed, class IV is empty if and only if

tIL ^ tICC ^ tCL H) tIC _ tL _ tCC:
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It would be very surprising if the given conjunction implied the disjunction while not
implying any of its disjuncts. Thus, if class IV were empty but the given conjunction
did not imply any of the disjuncts, then an examination of Table 2 and the fact that
IIc is nonempty shows that at least three of the other classes would also have to be
empty, namely, IIIa and either IIa and IIIb or IIb and IIIc.

We end this section by proving that all flat algebras are t-compatible. This fact is
well known for integral domains. Recall that K.A/ denotes the ordered monoid of
all A-submodules of the total quotient ring of A.

Proposition 5 Let A be a ring with total quotient ring K and B a flat A-algebra
with total quotient ring L, so L is a K-algebra. Then IB \ JB D .I \ J/B in K.B/
for all I; J 2 K.A/.

Proof Tensoring the exact sequence

0 �! I \ J �! K �! K=I ˚ K=J

of A-modules with the flat A-module B, we get the exact sequence

0 �! .I \ J/˝A B �! K ˝A B �! .K=I ˚ K=J/˝A B;

which since K ˝A B is isomorphic to the compositum KB of K and B in L is
equivalent to the exact sequence

0 �! .I \ J/B �! KB �! .KB=IB/˚ .KB=JB/:

The desired equality follows.

Proposition 6 Let A be a ring with total quotient ring K and B a flat A-algebra
with total quotient ring L, so L is a K-algebra. One has the following:

1. .I WK J/B D .IB WKB JB/ for all I; J 2 K.A/ with J finitely generated.
2. .I WK J/B D .IB WL JB/ for all I; J 2 K.A/ with J finitely generated and regular.
3. .IB/�1 D I�1B in L for all finitely generated I 2 F.A/.

Proof Let I 2 K.A/ and a 2 K. Consider the multiplication by a map K �! K of
A-modules followed by the projection K �! K=I. The kernel of the composed map
K �! K=I is the A-module .I WK aA/, so we have an exact sequence

0 �! .I WK aA/ �! K �! K=I

of A-modules. Since B is flat over A, tensoring with B yields the exact sequence

0 �! .I WK aA/˝A B �! K ˝A B �! .K=I/˝A B;
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which is equivalent to the exact sequence

0 �! .I WK aA/B �! KB �! KB=IB:

Therefore the kernel .IB WKB aB/ of the multiplication by a map KB �! KB=IB
is equal to .I WK aA/B. This proves statement 1 when J D aA is principal. Now
suppose that J 2 K.A/ is finitely generated, say, J D .a1; : : : ; an/, where ai 2 K for
all i. Then, using also Proposition 5, we see that .I WK J/B D ..I WK a1/\ � � � \ .I WK
an//B D .I WK a1/B\� � �\ .I WK an/B D .IB WKB a1B/\� � �\ .IB WKB anB/ D .IB WKB

a1BC � � � C anB/ D .IB WKB JB/. This proves statement 1.
Now, suppose furthermore that J is regular, say, a 2 J is regular. Let x 2 .IB WL

JB/. Then ax 2 IB, so x D a�1.ax/ 2 K.IB/ D .KI/B � KB and therefore x 2 KB.
Thus we have .IB WL JB/ � .IB WKB JB/, so equality holds. This proves statement 2,
and then statement 3 follows immediately.

The following proposition generalizes [9, Proposition 2.6] and comments (a) and
(b) following it to rings with zerodivisors.

Proposition 7 Let A be ring, and let B be an A-torsion-free A-algebra. Each of the
following conditions implies the next:

1. B is flat as an A-module.
2. I�1B D .IB/�1 for all finitely generated I 2 F.A/.
3. .I�1B/v D .IB/�1 for all finitely generated I 2 F.A/.
4. B is a t-compatible A-algebra.
5. If I is a t-closed ideal of B and I \ A is regular, then I \ A is a t-closed ideal of

A, where I \ A D fa 2 A W a1B 2 Ig.
In fact, conditions 4 and 5 are equivalent.

Proof The implication 1) 2 follows immediately from Proposition 6, and 2) 3

is obvious. Suppose that condition 3 holds. Let J be a finitely generated regular
subideal of a regular ideal I of A. Then .J�1B/v D .JB/�1, so JvB D .J�1/�1B �
.J�1B/�1 D ..J�1B/v/�1 D ..JB/�1/�1 D .JB/v D .JB/t � .IB/t. Taking the
union over all such J, we see that ItB � .IB/t. Therefore 3) 4.

Next, suppose that condition 4 holds and I is a t-closed ideal of B such that I \A
is regular. Then .I\A/t � ..I\A/B/t\A � It\A D I\A, and therefore I\A is a t-
closed ideal of A. Therefore 4 implies 5. Conversely, suppose that condition 5 holds
and I is a regular ideal of A. Then .IB/t is t-closed ideal of B such that .IB/\ A � I
is regular, so .IB/t \ A is a t-closed ideal of A and therefore It � .IB/t \ A. Thus
5) 4, so conditions 4 and 5 are equivalent.

6 An Example of Non-Functoriality

The following proposition shows by example that the property of tICL is not stable
under extensions of Krull domains.
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Theorem 1 Let k be a field, and let

A D kŒX;Y;T;TY=X�;

B D kŒX;T;Y=X�;

C D kŒX;T;Y=X;V;TV=X�:

Then we have the following:

1. A, B, and C are Krull domains.
2. The extension B � A is a subintersection and is therefore in class 0.
3. The extension C � B is in class IVc.
4. The extension C � A is in class VIII.

It follows that the conditions tIC” tIL and tICC” tICL are not stable under
extensions of Krull domains.

Proof By [6, Proposition 14.5] the integral domains A and B are Krull domains.
Moreover, by the proof of that proposition, the extension B of A is a subinter-
section, equal to the intersection of all essential valuation rings of A excluding
AŒX;Y;T;TY=X�.X;Y/. It follows that the extension B of A is t-compatible and
therefore in class 0.

Now, B is isomorphic to kŒX;T;Z� and therefore St.B/ D 0. Therefore by [3,
Proposition 6.2] the extension C � B is tIC. Given statement 4, then, which we
prove below, the extension C � B must be in class IVc, because if C � B were tCL,
then C � A would also be tCL by [3, Proposition 5.9(7)], contradicting statement 4.

Finally, we show that the extension C � A is not tICL and is therefore in
class VIII. By [6, Proposition 14.8] one has Cl.A/ D Z and this group is freely
generated by Œ.X;Y/� D Œ.T;U/�. Let I D .X;Y/ and J D .X;T/. Note that
IJ D .X2;XY;XT;TY/ D X.X;Y;T;U/ and its v-closure is XA, which implies
ŒI� D ŒJ��1. In particular one has .IJ/t D XA and therefore ..IJ/tC/t D XC, so one
has Œ.IJ/tC�t D ŒC�.

Note that C is isomorphic to the integral domain kŒX;T;V;TV=X�ŒZ�, as can be
seen by mapping Y to ZX and mapping the other variables X;T;V to themselves.
Thus there is an isomorphism AŒZ� �! C sending X to X, Y to T , T to V , and Z
to Y=X.

In particular, C is a Krull domain. Moreover, since A is integrally closed, the
map A �! AŒZ� induces an isomorphism Cl.A/ �! Cl.AŒZ�/ Š Cl.C/. Under
this isomorphism of class groups, the ideal class Œ.X;Y/A� in Cl.A/ is sent to the
ideal class Œ.X;T/C� in Cl.C/. Therefore, since the ideal class Œ.X;Y/A� is of infinite
order and generates the whole class group Cl.A/ Š Z, it follows that the ideal class
Œ.X;T/C� is of infinite order and generates the whole class group Cl.C/ Š Z.
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Now we have IJC D X.X;Y;T;U/C D X.X;T/C since Y and U D TY=X are
multiples of X and T , respectively, in C. Therefore one has

Œ.IJC/t� D Œ.X.X;T/C/t� D Œ.X;T/C� ¤ ŒC� D Œ..IJ/tC/t�:

This proves that the extension C � A is not tICL.
In the above theorem, note that C is isomorphic to AŒZ� as a ring but not as an

A-algebra. The inclusion A � C does not induce a homomorphism of t-class groups,
even though the inclusion A � AŒZ� induces an isomorphism of t-class groups.
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morphism to a commutative Krull monoid, and hence the system of sets of lengths
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transfer Krull monoids over finite abelian groups G, and we provide a complete
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monoids and of weakly Krull monoids satisfy the Structure Theorem for Sets of
Lengths. In spite of this common feature we demonstrate that systems of sets of
lengths for a variety of classes of weakly Krull monoids are different from the
system of sets of lengths of any transfer Krull monoid.

Keywords Transfer Krull monoids • Weakly Krull monoids • Sets of lengths
• Zero-sum sequences

Mathematics Subject Classification (2010): 11B30, 11R27, 13A05, 13F05,
16H10, 16U30, 20M13

A. Geroldinger • Q. Zhong (�)
Institute for Mathematics, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
e-mail: alfred.geroldinger@uni-graz.at; qinghai.zhong@uni-graz.at

W.A. Schmid
Laboratoire Analyse, Géométrie et Applications (LAGA, UMR 7539, CNRS), COMUE
Université Paris Lumières, Université Paris 8, CNRS, 93526 Saint-Denis cedex, France

Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, Université Paris 8, F-93430
Villetaneuse, France
e-mail: schmid@math.univ-paris13.fr

© Springer International Publishing AG 2017
M. Fontana et al. (eds.), Rings, Polynomials, and Modules,
https://doi.org/10.1007/978-3-319-65874-2_11

191

mailto:alfred.geroldinger@uni-graz.at
mailto:qinghai.zhong@uni-graz.at
mailto:schmid@math.univ-paris13.fr
https://doi.org/10.1007/978-3-319-65874-2_11


192 A. Geroldinger et al.

1 Introduction

By an atomic monoid we mean a cancellative semigroup with unit element such that
every nonunit can be written as a finite product of irreducible elements. Let H be
an atomic monoid. If a 2 H is a nonunit and a D u1 � : : : � uk is a factorization
of a into k irreducible elements, then k is called a factorization length and the set
L.a/ � N of all possible factorization lengths is called the set of lengths of a.
Then L .H/ D fL.a/ j a 2 Hg is the system of sets of lengths of H. Under a
variety of noetherian conditions on H (e.g., H is the monoid of nonzero elements of
a commutative noetherian domain) all sets of lengths are finite. Furthermore, if there
is some element a 2 H with jL.a/j > 1, then jL.aN/j > N for all N 2 N. Sets of
lengths (together with invariants controlling their structure, such as elasticities and
sets of distances) are a well-studied means of describing the arithmetic structure of
monoids ([13, 18]).

Let H be a transfer Krull monoid. Then, by definition, there is a weak transfer
homomorphism 	 WH ! B.G0/, where B.G0/ denotes the monoid of zero-
sum sequences over a subset G0 of an abelian group, and hence L .H/ D
L
�
B.G0/

�
. A special emphasis has always been on the case where G0 is a finite

abelian group. Thus let G be a finite abelian group and we use the abbreviation
L .G/ D L

�
B.G/

�
. It is well known that sets of lengths in L .G/ are highly

structured (Proposition 3.2), and the standing conjecture is that the system L .G/ is
characteristic for the group G. More precisely, if G0 is a finite abelian group such
that L .G/ D L .G0/, then G and G0 are isomorphic (apart from two well-known
trivial pairings; see Conjecture 3.4). This conjecture holds true, among others, for
groups G having rank at most two, and its proof uses deep results from additive
combinatorics which are not available for general groups. Thus there is a need for
studying L .G/ with a new approach. In Sect. 3, we unveil a couple of properties of
the system L .G/ which are first steps on a new way towards Conjecture 3.4.

In spite of all abstract work on systems L .G/, they have been written down
explicitly only for groups G having Davenport constant D.G/ � 4, and this is not
difficult to do (recall that a group G has Davenport constant D.G/ � 4 if and only if
either jGj � 4 or G is an elementary 2-group of rank three). In Sect. 4 we determine
the systems L .G/ for all groups G having Davenport constant D.G/ D 5.

Commutative Krull monoids are the classic examples of transfer Krull monoids.
In recent years a wide range of monoids and domains has been found which are
transfer Krull but which are not commutative Krull monoids. Thus the question
arose which monoids H have systems L .H/ which are different from systems of
sets of lengths of transfer Krull monoids. Commutative v-noetherian weakly Krull
monoids and domains are the best investigated class of monoids beyond commu-
tative Krull monoids (numerical monoids as well as one-dimensional noetherian
domains are v-noetherian weakly Krull). Clearly, weakly Krull monoids can be
half-factorial and half-factorial monoids are transfer Krull monoids. Similarly, it can
happen both for weakly Krull monoids and for transfer Krull monoids that all sets
of lengths are arithmetical progressions with difference 1. Apart from such extremal
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cases, we show in Sect. 5 that systems of sets of lengths of a variety of classes of
weakly Krull monoids are different from the system of sets of lengths of any transfer
Krull monoid.

2 Background on Sets of Lengths

We denote by N the set of positive integers, and for real numbers a; b 2 R, we
denote by Œa; b� D fx 2 Z j a � x � bg the discrete interval between a and b, and
by an interval we always mean a finite discrete interval of integers.

Let A;B � Z be subsets of the integers. Then AC B D faC b j a 2 A; b 2 Bg
is the sumset of A and B. We set �A D f�a j a 2 Ag and for an integer m 2 Z,
mCA D fmgCA is the shift of A by m. For m 2N, we denote by mA D AC : : :CA
the m-fold subset of A and by m � A D fma j a 2 Ag the dilation of A by m. If
A � N, we denote by �.A/ D sup A=min A 2 Q�1 [ f1g the elasticity of A and
we set �.f0g/ D 1. A positive integer d 2 N is called a distance of A if there are
a; b 2 A with b� a D d and the interval Œa; b� contains no further elements of A. We
denote by �.A/ the set of distances of A. Clearly, �.A/ D ; if and only if jAj � 1,
and A is an arithmetical progression if and only if j�.A/j � 1.

Let G be an additive abelian group. An (ordered) family .ei/i2I of elements of G
is said to be independent if ei ¤ 0 for all i 2 I and, for every family .mi/i2I 2 Z

.I/,

X

i2I

miei D 0 implies miei D 0 for all i 2 I :

A family .ei/i2I is called a basis for G if ei ¤ 0 for all i 2 I and G D L
i2Iheii.

A subset G0 � G is said to be independent if the tuple .g/g2G0 is independent. For
every prime p 2 P, we denote by rp.G/ the p-rank of G.
Sets of Lengths We say that a semigroup S is cancellative if for all elements a; b; c 2
S, the equation ab D ac implies b D c and the equation ba D ca implies b D c.
Throughout this manuscript, a monoid means a cancellative semigroup with unit
element, and we will use multiplicative notation.

Let H be a monoid. An element a 2 H is said to be invertible if there exists an
element a0 2 H such that aa0 D a0a D 1. The set of invertible elements of H will
be denoted by H�, and we say that H is reduced if H� D f1g. For a set P, we denote
by F .P/ the free abelian monoid with basis P. Then every a 2 F .P/ has a unique
representation in the form

a D
Y

p2P

pvp.a/ ;

where vpWF .P/!N0 denotes the p-adic exponent.
An element a 2 H is called irreducible (or an atom) if a … H� and if, for all

u; v 2 H, a D uv implies that u 2 H� or v 2 H�. We denote by A .H/ the
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set of atoms of H. The monoid H is said to be atomic if every a 2 H n H� is a
product of finitely many atoms of H. If a 2 H and a D u1 � : : : � uk, where k 2 N

and u1; : : : ; uk 2 A .H/, then we say that k is the length of the factorization. For
a 2 H n H�, we call

LH.a/ D L.a/ D fk 2N j a has a factorization of length kg �N

the set of lengths of a. For convenience, we set L.a/ D f0g for all a 2 H�. By
definition, H is atomic if and only if L.a/ ¤ ; for all a 2 H. Furthermore, L.a/ D
f1g if and only if a 2 A .H/ if and only if 1 2 L.a/. If a; b 2 H, then L.a/CL.b/ �
L.ab/. We call

L .H/ D fL.a/ j a 2 Hg

the system of sets of lengths of H. We say that H is half-factorial if jLj D 1 for every
L 2 L .H/. If H is atomic, then H is either half-factorial or for every N 2 N there
is an element aN 2 H such that jL.aN/j > N ([17, Lemma 2.1]). We say that H is a
BF-monoid if it is atomic and all sets of lengths are finite. Let

�.H/ D
[

L2L .H/

�.L/ � N

denote the set of distances of H, and if�.H/ ¤ ;, then min�.H/ D gcd�.H/. We
denote by �1.H/ the set of all d 2N with the following property:

For every k 2N there exists an L 2 L .H/ of the form L D L0[fy; yCd; : : : ; yC
kdg [ L00 where y 2N and L0;L00 � Z with max L0 < y and yC kd < min L00.

By definition, �1.H/ is a subset of �.H/. For every k 2 N we define the kth
elasticity of H. If H D H�, then we set �k.H/ D k, and if H ¤ H�, then

�k.H/ D supfsup L j k 2 L 2 L .H/g 2N [ f1g :

The invariant

�.H/ D supf�.L/ j L 2 L .H/g D lim
k!1

�k.H/

k
2 R�1 [ f1g

is called the elasticity of H (see [17, Proposition 2.4]). Sets of lengths of all monoids,
which are in the focus of the present paper, are highly structured (see Proposition 3.2
and Theorems 5.5 – 5.8). To summarize the relevant concepts, let d 2 N, M 2
N0 and f0; dg � D � Œ0; d�. A subset L � Z is called an almost arithmetical
multiprogression (AAMP for short) with difference d, period D , and bound
M, if

L D yC .L0 [ L� [ L00/ � yCD C dZ
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where y 2 Z is a shift parameter,

• L� is finite nonempty with min L� D 0 and L� D .D C dZ/ \ Œ0;max L��, and
• L0 � Œ�M;�1� and L00 � max L� C Œ1;M�.
We say that the Structure Theorem for Sets of Lengths holds for a monoid H if H
is atomic and there exist some M 2 N0 and a finite nonempty set � � N such that
every L 2 L .H/ is an AAMP with some difference d 2 � and bound M.
Monoids of Zero-Sum Sequences We discuss a monoid having a combinatorial
flavor whose universal role in the study of sets of lengths will become evident at the
beginning of the next section. Let G be an additive abelian group and G0 � G a
subset. Then hG0i denotes the subgroup generated by G0, and we set G�

0 D G0 nf0g.
In additive combinatorics, a sequence (over G0) means a finite sequence of terms
from G0 where repetition is allowed and the order of the elements is disregarded,
and (as usual) we consider sequences as elements of the free abelian monoid with
basis G0. Let

S D g1 � : : : � g` D
Y

g2G0

gvg.S/ 2 F .G0/

be a sequence over G0. We set �S D .�g1/ � : : : � .�g`/, and we call

• supp.S/ D fg 2 G j vg.S/ > 0g � G the support of S ,
• jSj D ` DPg2G vg.S/ 2N0 the length of S ,

• �.S/ DPl
iD1 gi the sum of S ,

• ˙.S/ D
nP

i2I gi j ; ¤ I � Œ1; `�
o

the set of subsequence sums of S ,

• k.S/ DPl
iD1 1

ord.gi/
the cross number of S .

The sequence S is said to be

• zero-sum free if 0 … ˙.S/,
• a zero-sum sequence if �.S/ D 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every

proper subsequence is zero-sum free.

The set of zero-sum sequences B.G0/ D fS 2 F .G0/ j �.S/ D 0g � F .G0/

is a submonoid, and the set of minimal zero-sum sequences is the set of atoms of
B.G0/. For any arithmetical invariant 
.H/ defined for a monoid H, we write 
.G0/

instead of 
.B.G0//. In particular, A .G0/ D A .B.G0// is the set of atoms of
B.G0/, L .G0/ D L .B.G0// is the system of sets of lengths of B.G0/, and so on.
Furthermore, we say that G0 is half-factorial if the monoid B.G0/ is half-factorial.
We denote by

D.G0/ D supfjSj j S 2 A .G0/g 2N0 [ f1g

the Davenport constant of G0. If G0 is finite, then D.G0/ is finite. Suppose that G is
finite, say G Š Cn1 ˚ : : :˚ Cnr , with r 2N0, 1 < n1 j : : : j nr, then r D r.G/ is the
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rank of G, and we have

1C
rX

iD1
.ni � 1/ � D.G/ � jGj : (1)

If G is a p-group or r.G/ � 2, then 1 C Pr
iD1.ni � 1/ D D.G/. Suppose that

jGj � 3. We will use that �.G/ is an interval with min�.G/ D 1 ([22]), and that,
for all k 2N,

�2k.G/ D kD.G/;

kD.G/C 1 � �2kC1.G/ � kD.G/C bD.G/=2c; and

�.G/ D D.G/=2 ;

(2)

([18, Section 6.3]).

3 Sets of Lengths of Transfer Krull Monoids

Weak transfer homomorphisms play a critical role in factorization theory, in
particular in all studies of sets of lengths. We refer to [18] for a detailed presentation
of transfer homomorphisms in the commutative setting. Weak transfer homomor-
phisms (as defined below) were introduced in [5, Definition 2.1] and transfer Krull
monoids were introduced in [17].

Definition 3.1 Let H be a monoid.

1. A monoid homomorphism 	 WH ! B to an atomic monoid B is called a weak
transfer homomorphism if it has the following two properties:

(T1) B D B�	.H/B� and 	�1.B�/ D H�.
(WT2) If a 2 H, n 2 N, v1; : : : ; vn 2 A .B/ and 	.a/ D v1 � : : : � vn, then

there exist u1; : : : ; un 2 A .H/ and a permutation � 2 Sn such that
a D u1 � : : : � un and 	.ui/ 2 B�v�.i/B� for each i 2 Œ1; n�.

2. H is said to be a transfer Krull monoid (over G0) it there exists a weak transfer
homomorphism 	 WH ! B.G0/ for a subset G0 of an abelian group G. If G0 is
finite, then we say that H is a transfer Krull monoid of finite type.

If R is a domain and R� its monoid of cancellative elements, then we say that R
is a transfer Krull domain (of finite type) if R� is a transfer Krull monoid (of finite
type). Let 	 WH ! B be a weak transfer homomorphism between atomic monoids.
It is easy to show that for all a 2 H we have LH.a/ D LB.	.a// and hence L .H/ D
L .B/. Since monoids of zero-sum sequences are BF-monoids, the same is true for
transfer Krull monoids.

Let H� be a commutative Krull monoid (i.e., H� is commutative, completely
integrally closed, and v-noetherian). Then there is a weak transfer homomorphism



Systems of Sets of Lengths 197

ˇWH� ! B.G0/ where G0 is a subset of the class group of H�. Since monoids of
zero-sum sequences are commutative Krull monoids and since the composition of
weak transfer homomorphisms is a weak transfer homomorphism again, a monoid
is a transfer Krull monoid if and only if it allows a weak transfer homomorphism to
a commutative Krull monoid. In particular, commutative Krull monoids are transfer
Krull monoids. However, a transfer Krull monoid need neither be commutative nor
v-noetherian nor completely integrally closed. To give a noncommutative example,
consider a bounded HNP (hereditary noetherian prime) ring R. If every stably
free left R-ideal is free, then its multiplicative monoid of cancellative elements
is a transfer Krull monoid ([34]). A class of commutative weakly Krull domains
which are transfer Krull but not Krull will be given in Theorem 5.8. Extended
lists of commutative Krull monoids and of transfer Krull monoids, which are not
commutative Krull, are given in [17].

The next proposition summarizes some key results on the structure of sets of
lengths of transfer Krull monoids.

Proposition 3.2

1. Every transfer Krull monoid of finite type satisfies the Structure Theorem for Sets
of Lengths.

2. For every M 2N0 and every finite nonempty set� �N, there is a finite abelian
group G such that the following holds : for every AAMP L with difference d 2 �
and bound M there is some yL 2N such that

yC L 2 L .G/ for all y � yL :

3. If G is an infinite abelian group, then

L .G/ D fL �N�2 j L is finite and nonempty g [ ff0g; f1gg:

Proof 1. Let H be a transfer Krull monoid and 	 WH ! B.G0/ be a weak transfer
homomorphism where G0 is a finite subset of an abelian group. Then L .H/ D
L .G0/, and B.G0/ satisfies the Structure Theorem by [18, Theorem 4.4.11].

For 2. we refer to [33], and for 3. see [31] and [18, Section 7.4]. ut
The inequalities in (1) and the subsequent remarks show that a finite abelian

group G has Davenport constant D.G/ � 4 if and only if G is cyclic of order jGj � 4
or if it is isomorphic to C2 ˚ C2 or to C3

2. For these groups an explicit description
of their systems of sets of lengths has been given, and we gather this in the next
proposition (in Sect. 4 we will determine the systems L .G/ for all groups G with
D.G/ D 5).
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Proposition 3.3

1. If G is an abelian group, then L .G/ D fyC L j y 2N0; L 2 L .G�/g  ˚fyg ˇ̌
y 2N0

�
, and equality holds if and only if jGj � 2.

2. L .C3/ D L .C2 ˚ C2/ D
˚
yC 2kC Œ0; k� ˇ̌ y; k 2N0

�
.

3. L .C4/ D
˚
yC kC 1C Œ0; k� ˇ̌ y; k 2N0

� [ ˚yC 2kC 2 � Œ0; k� ˇ̌ y; k 2N0

�
.

4. L .C3
2/ D

˚
yC .kC 1/C Œ0; k� ˇˇ y 2N0; k 2 Œ0; 2��
[ ˚yC kC Œ0; k� ˇ̌ y 2N0; k � 3�[ ˚yC2kC2 � Œ0; k� ˇ̌ y; k 2N0

�
.

Proof See [18, Proposition 7.3.1 and Theorem 7.3.2]. ut
Let G and G0 be abelian groups. Then their monoids of zero-sum sequences

B.G/ and B.G0/ are isomorphic if and only if the groups G and G0 are isomorphic
([18, Corollary 2.5.7]). The standing conjecture states that the systems of sets of
lengths L .G/ and L .G0/ of finite groups coincide if and only if G and G0 are
isomorphic (apart from the trivial cases listed in Proposition 3.3). Here is the precise
formulation of the conjecture (it was first stated in [17]).

Conjecture 3.4 Let G be a finite abelian group with D.G/ � 4. If G0 is an abelian
group with L .G/ D L .G0/, then G and G0 are isomorphic.

The conjecture holds true for groups G having rank r.G/ � 2, for groups of the
form G D Cr

n (if r is small with respect to n), and others ([21, 23, 36]). But it is far
open in general, and the goal of this section is to develop new viewpoints of looking
at this conjecture.

Let G be a finite abelian group with D.G/ � 4. If G0 is a finite abelian group with
L .G/ D L .G0/, then (2) shows that

D.G/ D �2.G/ D supfsup L j 2 2 L 2 L .G/g
D supfsup L j 2 2 L 2 L .G0/g D �2.G0/ D D.G0/ :

We see from the inequalities in (1) that there are (up to isomorphism) only finitely
many finite abelian groups G0 with given Davenport constant, and hence there
are only finitely many finite abelian groups G0 with L .G/ D L .G0/. Thus
Conjecture 3.4 is equivalent to the statement that for each m � 4 and for each
two non-isomorphic finite abelian groups G and G0 having Davenport constant
D.G/ D D.G0/ D m the systems L .G/ and L .G0/ are distinct. Therefore we
have to study the set

˝m D fL .G/ j G is a finite abelian group with D.G/ D mg
of all systems of sets of lengths stemming from groups having Davenport constant
equal to m. If a group G0 is a proper subgroup of G, then D.G0/ < D.G/ ([18,
Proposition 5.1.11]) and hence L .G0/ ¨ L .G/. Thus if D.G/ D D.G0/ for
some group G0, then none of the groups is isomorphic to a proper subgroup of the
other one. Conversely, if G0 is a finite abelian group with L .G0/ � L .G/, then
D.G0/ D �2.G0/ � �2.G/ D D.G/. However, it may happen that L .G0/ ¨ L .G/
but D.G0/ D D.G/. Indeed, Proposition 3.3 shows that L .C4/ ¨ L .C3

2/, and we
will observe this phenomenon again in Sect. 4.
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Theorem 3.5 For m 2N, let

˝m D fL .G/ j G is a finite abelian group with D.G/ D mg:

Then L .Cm�1
2 / is a maximal element and L .Cm/ is a minimal element in˝m (with

respect to set-theoretical inclusion). Furthermore, if G is an abelian group with
D.G/ D m and L .G/ � L .Cm�1

2 /, then G Š Cm or G Š Cm�1
2 .

Proof If m 2 Œ1; 2�, then j˝mj D 1 and hence all assertions hold. Since C3 and
C2 ˚ C2 are the only groups (up to isomorphism) with Davenport constant three,
and since L .C3/ D L .C2

2/ by Proposition 3.3, the assertions follow. We suppose
that m � 4 and proceed in two steps.

1. To show that L .Cm�1
2 / is maximal, we study, for a finite abelian group G, the

set �1.G/. We define

��.G/ D fmin�.G0/ j G0 � G with �.G0/ ¤ ;g ;

and recall that (see [18, Corollary 4.3.16])

��.G/ � �1.G/ � fd1 2 �.G/ j d1 divides some d 2 ��.G/g :

Thus max�1.G/ D max��.G/, and [25, Theorem 1.1] implies that max��.G/ D
maxfexp.G/�2; r.G/�1g. Assume to the contrary that there is a finite abelian group
G with D.G/ D m � 4 that is not an elementary 2-group such that L .Cm�1

2 / �
L .G/. Then

m � 2 D max��.Cm�1
2 / D max�1.C

m�1
2 / � max�1.G/

D max��.G/ D maxfexp.G/ � 2; r.G/ � 1g :

If r.G/ � m � 1, then D.G/ D m implies that G Š Cm�1
2 , a contradiction. Thus

exp.G/ � m, and since D.G/ D m we infer that G Š Cm. If m D 4, then
Proposition 3.3.4 shows that L .C3

2/ š L .C4/, a contradiction. Suppose that m �
5. Then ��.Cm�1

2 / D �1.Cm�1
2 / D �.Cm�1

2 / D Œ1;m� 2� by [18, Corollary 6.8.3].
For cyclic groups we have max��.Cm/ D m � 2 and max.��.Cm/ n fm � 2g/ D
bm=2c � 1 by [18, Theorem 6.8.12]. Therefore L .Cm�1

2 / � L .Cm/ implies that

Œ1;m � 2� D �1.C
m�1
2 / � �1.Cm/ ;

a contradiction to m � 3 … �1.Cm/.
2. We recall some facts. Let G be a group with D.G/ D m. If U 2 A .G/ with

jUj D D.G/, then f2;D.G/g � L
�
U.�U/

�
. Cyclic groups and elementary 2-groups

are the only groups G with the following property: if L 2 L.G/ with f2;D.G/g � L,
then L D f2;D.G/g ([18, Theorem 6.6.3]).

Now assume to the contrary that there is a finite abelian group G with D.G/ D m
such that L .G/ � L .Cm/. Let L 2 L .G/ with f2;D.G/g � L. Then L 2 L .Cm/
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whence L D f2;D.G/g which implies that G is cyclic or an elementary 2-group. By
1., G is not an elementary 2-group whence G is cyclic which implies G Š Cm and
hence L .G/ D L .Cm/.

The furthermore assertion on groups G with D.G/ D m and L .G/ � L .Cm�1
2 /

follows as above by considering sets of lengths L with f2;D.G/g � L. ut
In Sect. 4 we will see that L .Cm�1

2 / need not be the largest element in ˝m, and
that indeed L .Cm/ � L .Cm�1

2 / for m 2 Œ2; 5�, where the inclusion is strict for
m � 4. On the other hand, it is shown in [24] that L .Cm/ š L .Cm�1

2 / for infinitely
many m 2N.

Theorem 3.6 We have

\
L .G/ D ˚yC 2kC Œ0; k� ˇ̌ y; k 2N0

�
;

where the intersection is taken over all finite abelian groups G with jGj � 3.

Proof By Proposition 3.3.2, the intersection on the left-hand side is contained in
the set on the right-hand side. Let G be a finite abelian group with jGj � 3. If
L 2 L .G/, then yC L 2 L .G/. Thus it is sufficient to show that Œ2k; 3k� 2 L .G/
for every k 2 N. If G contains two independent elements of order 2 or an element
of order 4, then the claim follows by Proposition 3.3. Thus, it remains to consider
the case when G contains an element g with ord.g/ D p for some odd prime p 2N.
Let k 2N and Bk D ..2g/pgp/k. We assert that L.Bk/ D Œ2k; 3k�.

We set U1 D gp, U2 D .2g/p, V1 D .2g/.p�1/=2g, and V2 D .2g/gp�2. Since
U1U2 D V2

1V2 and

Bk D .U1U2/
k D .U1U2/

k��.V2
1V2/

� for all � 2 Œ0; k� ;

it follows that Œ2k; 3k� � L.Bk/.
In order to show that there are no other factorization lengths, we recall the

concept of the g-norm of sequences. If S D .n1g/ � : : : .n`g/ 2 B.hgi/, where
` 2N0 and n1; : : : ; n` 2 Œ1; ord.g/�, then

jjSjjg D n1 C : : :C n`
ord.g/

2N

is the g-norm of S. Clearly, if S D S1 � : : : � Sm with S1; : : : ; Sm 2 A .G/, then
jjSjjg D jjS1jjg C : : :C jjSmjjg.

Note that U2 D .2g/p is the only atom in A .fg; 2gg/ with g-norm 2, and all other
atoms in A .fg; 2gg/ have g-norm 1. Let Bk D W1 � : : : �W` be a factorization of Bk,
and let `0 be the number of i 2 Œ1; `� such that Wi D .2g/p. We have kBkkg D 3k
and thus 3k D 2`0C .`�`0/ D `0C`. Since `0 2 Œ0; k�, it follows that ` D 3k�`0 2
Œ2k; 3k�. ut
Theorem 3.7 Let L �N�2 be a finite nonempty subset. Then there are only finitely
many pairwise non-isomorphic finite abelian groups G such that L … L .G/.
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Proof We start with the following two assertions:

A1. There is an integer nL 2N such that L 2 L .Cn/ for every n � nL.
A2. For every p 2 P there is an integer rp;L 2 N such that L 2 L .Cr

p/ for every
r � rp;L.

Proof of A1. By Proposition 3.2.3, there is some B D Qk
iD1 mk

Q`
jD1.�nj/ 2

B.Z/ such that L.B/ D L, where k; `;m1; : : : ;mk 2 N and n1; : : : ; n` 2 N0. We
set nL D n1C : : :Cn` and choose some n 2N with n � nL. If S 2 F .Z/ with S jB
and f WZ! Z=nZ denotes the canonical epimorphism, then S has sum zero if and
only if f .S/ has sum zero. This implies that LB.Z=nZ/.f .B// D LB.Z/.B/ D L. ut

[Proof of A1]

Proof of A2. Let p 2 P be a prime and let Gp be an infinite dimensional Fp-vector
space. By Proposition 3.2.3, there is some Bp 2 B.Gp/ such that L.Bp/ D L. If rp;L

is the rank of hsupp.Bp/i � Gp, then

L D L.Bp/ 2 L .hsupp.Bp/i/ � L .Cr
p/ for r � rp;L : �ŒProof ofA2�

Now let G be a finite abelian group such that L … L .G/. Then A1 implies that
exp.G/ < nL, and A2 implies that rp.G/ < rp;L for all primes p with p j exp.G/.
Thus the assertion follows. ut

4 Sets of Lengths of Transfer Krull Monoids Over Small
Groups

Since the very beginning of factorization theory, invariants controlling the structure
of sets of lengths (such as elasticities and sets of distances) have been in the center
of interest. Nevertheless, (apart from a couple of trivial cases) the full system of
sets of lengths has been written down explicitly only for the following classes of
monoids:

• Numerical monoids generated by arithmetical progressions: see [1].
• Self-idealizations of principal ideal domains: see [10, Corollary 4.16], [4,

Remark 4.6].
• The ring of integer-valued polynomials over Z: see [15].
• The systems L .G/ for infinite abelian groups G and for abelian groups G with

D.G/ � 4: see Propositions 3.2 and 3.3.

The goal of this section is to determine L .G/ for abelian groups G having
Davenport constant D.G/ D 5. By inequality (1) and the subsequent remarks, a
finite abelian group G has Davenport constant five if and only if it is isomorphic to
one of the following groups:

C3 ˚ C3; C5; C2 ˚ C4; C4
2 :
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Their systems of sets of lengths are given in Theorems 4.1, 4.3, 4.5, and 4.8. We
start with a brief analysis of these explicit descriptions (note that they will be needed
again in Sect. 5; confer the proof of Theorem 5.7).

By Theorem 3.5, we know that L .C4
2/ is maximal in ˝5 D fL .C5/;L .C2 ˚

C4/;L .C3 ˚ C3/;L .C4
2/g. Theorems 4.1, 4.3, 4.5, and 4.8 unveil that L .C3 ˚

C3/, L .C2 ˚ C4/, and L .C4
2/ are maximal in ˝5, and that L .C5/ is contained in

L .C4
2/, but it is neither contained in L .C3˚C3/ nor in L .C2˚C4/. Furthermore,

Theorems 3.5, 4.3, and 4.8 show that L .Cm/ � L .Cm�1
2 / for m 2 Œ2; 5�. It is well

known that, for all m � 4, L .Cm/ ¤ L .Cm�1
2 / ([16, Corollary 5.3.3]), and the

standing conjecture is that L .Cm/ š L .Cm�1
2 / holds true for almost all m 2 N�2

(see [24]).
The group C3 ˚ C3 has been handled in [21, Theorem 4.2].

Theorem 4.1 L .C2
3/ D fyC Œ2k; 5k� j y; k 2 N0g [ fyC Œ2kC 1; 5kC 2� j y 2

N0; k 2Ngg.
Remark An equivalent way to describe L .C2

3/ is fyC ˙ 2k
3

�C Œ0; k� j y 2 N0; k 2
N�2g [ ffyg; yC 2C Œ0; 1� j y 2N0g.

The fact that all sets of lengths are intervals is a consequence of the fact�.C2
3/ D

f1g. Of course, each set of lengths L has to fulfill �.L/ � 5=2 D �.C2
3/. We observe

that the description shows that this is the only condition, provided min L � 2. The
following lemma is frequently helpful in the remainder of this section.

Lemma 4.2 Let G be a finite abelian group, and let A 2 B.G/.

1. If supp.A/ [ f0g is a group, then L.A/ is an interval.

2. If A1 is an atom dividing A with jA1j D 2, then max L.A/ D 1Cmax L.AA�1
1 /.

3. If A is a product of atoms of length 2 and if every atom A1 dividing A has length
jA1j D 2 or jA1j D 4, then max L.A/ � 1 … L.A/.

Proof

1. See [18, Theorem 7.6.8].
2. Let ` D max L.A/ and A D U1 � : : : � U`, where U1; : : : ;U` 2 A .G/. Let

A1 D g1g2, where g1; g2 2 G. If there exists i 2 Œ1; `� such that A1 D Ui, then
max L.A/ D 1 C max L.AA�1

1 /. Otherwise there exist distinct i; j 2 Œ1; `� such
that g1 jUi and g2 jUj. Thus A1 divides UiUj and hence 1 C max L.AA�1

1 / � `

which implies that max L.A/ D 1Cmax L.AA�1
1 / by the maximality of `.

3. If max L.A/ � 1 2 L.A/, then A D V1 � : : : � Vmax L.A/�1 with jV1j D 4 and
jV2j D : : : D jVmax L.A/�1j D 2. Thus V1 can only be a product two atoms of
length 2, a contradiction.

ut
We now consider the groups C5, C2 ˚ C4, and C4

2, each one in its own
subsection. In the proofs of the forthcoming theorems we will use Proposition 3.3
and Theorem 3.6 without further mention.
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4.1 The System of Sets of Lengths of C5

The goal of this subsection is to prove the following result.

Theorem 4.3 L .C5/ D L1 [L2 [L3 [L4 [L5 [L6 ; where

L1 D ffyg j y 2N0g ;
L2 D fyC 2C f0; 2g j y 2N0g ;
L3 D fyC 3C f0; 1; 3g j y 2N0g ;
L4 D fyC 2kC 3 � Œ0; k� j y 2N0; k 2Ng ;

L5 D fyC 2
�

k

3

�
C Œ0; k� j y 2N0; k 2N n f3gg [ fyC Œ3; 6� j y 2N0g ; and

L6 D fyC 2kC 3C f0; 2; 3g C 3 � Œ0; k� j y; k 2N0g :

We observe that all sets of lengths with many elements are arithmetic multipro-
gressions with difference 1 or 3. Yet, there is none with difference 2. This is because
��.C5/ D f1; 3g. Moreover, we point out that the condition for an interval to be a
set of lengths is different from that of the other groups with Davenport constant 5.
This is related to the fact that �2kC1.C5/ D 5kC 1, while �2kC1.G/ D 5kC 2 for the
other groups with Davenport constant 5. Before we start the actual proof, we collect
some results on sets of lengths over C5.

Lemma 4.4 Let G be cyclic of order five, and let A 2 B.G/.

1. If g 2 G� and k 2N0, then

L
�
g5.kC1/.�g/5.kC1/.2g/g3

� D 2kC 3C f0; 2; 3g C 3 � Œ0; k� :

2. If 2 2 �.L.A// � Œ1; 2�, then L.A/ 2 ffy; yC2g j y � 2g[ffy; yC1; yC3g j y �
3g or L.A/ D 3Cf0; 2; 3gCL.A0/ where A0 2 B.G/ and L.A0/ is an arithmetical
progression of difference 3.

3. �.G/ D Œ1; 3�, and if 3 2 �.L.A//, then �.L.A// D f3g.
4. �2kC1.G/ D 5kC 1 for all k 2N.

Proof 1. and 2. follow from the proof of [21, Lemma 4.5].
3. See [18, Theorems 6.7.1 and 6.4.7] and [12, Theorem 3.3].
4. See [16, Theorem 5.3.1]. ut

Proof (Theorem 4.3) Let G be cyclic of order five and let g 2 G�. We first show that
all the specified sets occur as sets of lengths, and then we show that no other sets
occur.
Step 1. We prove that for every L 2 L2 [ L3 [ L4 [ L5 [ L6, there exists an
A 2 B.G/ such that L D L.A/. We distinguish five cases.
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If L D fy; y C 2g 2 L2 with y � 2, then we set A D 0y�2g5.�g/3.�2g/ and
obtain that L.A/ D y � 2C f2; 4g D L.

If L D fy; yC 1; yC 3g 2 L3 with y � 3, then we set A D 0y�3g5.�g/5g2.�2g/
and obtain that L.A/ D y � 3C f3; 4; 6g D fy; yC 1; yC 3g D L.

If L D y C 2k C 3 � Œ0; k� 2 L4 with k 2 N and y 2 N0, then we set A D
g5k.�g/5k0y 2 B.G/ and hence L.A/ D yC 2kC 3 � Œ0; k� D L.

If L D yC2kC3Cf0; 2; 3gC3�Œ0; k� 2 L6 with k 2N0 and y 2N0, then we set
A D 0yg5.kC1/.�g/5.kC1/.2g/g3 and hence L.A/ D yC2kC3Cf0; 2; 3gC3�Œ0; k� D L
by Lemma 4.4.1.

Now we suppose that L 2 L5, and we distinguish two subcases. First, if L D
y C Œ3; 6� with y 2 N0, then we set A D 0y.2g.�2g//g5.�g/5 and hence L.A/ D
y C Œ3; 6� D L. Second, we assume that L D y C 2d k

3
e C Œ0; k� with y 2 N0 and

k 2N n f3g.
If k 2N with k 	 0 .mod 3/, then k � 6 and by Lemma 4.2.1 we obtain that

L
�
0y.2g/5.�2g/5g5t.�g/5t

� D yC Œ2tC 2; 5tC 5� D yC 2d k

3
e C Œ0; k� D L ;

where k D 3tC 3.
If k 2N with k 	 1 .mod 3/, then by Lemma 4.2.1 we obtain that

L
�
0y.2g.�g/2/.g2.�2g//g5t.�g/5t

� D yC Œ2tC2; 5tC3� D yC2d k

3
eC Œ0; k� D L ;

where k D 3tC 1.
If k 2N with k 	 2 .mod 3/, then by Lemma 4.2.1 we obtain that

L
�
0y.g3.2g//..�g/3.�2g//g5t.�g/5t

� D yCŒ2tC2; 5tC4� D yC2d k

3
eCŒ0; k� D L ;

where k D 3tC 2.
Step 2. We prove that for every A 2 B.G�/, L.A/ 2 L2 [L3 [L4 [L5 [L6.

Let A 2 B.G�/. We may suppose that �.L.A// ¤ ;. By Lemma 4.4.3 we
distinguish three cases according to the form of the set of distances �.L.A//.
Case 1: �.L.A// D f1g.

Then L.A/ is an interval and hence we assume that L.A/ D Œy; yC k� D yC Œ0; k�
where y � 2 and k � 1. If k D 3 and y D 2, then L.A/ D Œ2; 5� and hence
L.A/ D L.g5.�g/5/ D f2; 5g, a contradiction. Thus k D 3 implies that y � 3 and
hence L.A/ 2 L5. If k � 2, then we obviously have that L.A/ 2 L5. Suppose that
k � 4. If y D 2t with t � 2, then y C k � 5t and hence y D 2t � 2d k

3
e which

implies that L.A/ 2 L5. If y D 2t C 1 with t � 1, then yC k � 5t C 1 and hence
y D 2tC 1 � 1C 2d k

3
e which implies that L.A/ 2 L5.

Case 2: �.L.A// D f3g.
Then L.A/ D yC3 � Œ0; k� where y � 2 and k � 1. If y D 2t � 2, then yC3k � 5t

and hence y D 2t � 2k which implies that L.A/ 2 L4. If y D 2t C 1 � 3, then
yC 3k � 5tC 1 and hence y D 2tC 1 � 1C 2k which implies that L.A/ 2 L4.
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Case 3: 2 2 �.L.A// � Œ1; 2�.
By Lemma 4.4.2, we infer that either L.A/ 2 L2 [ L3 or that L.A/ D 3 C

f0; 2; 3g C L.A0/, where A0 2 B.G/ and L.A0/ is an arithmetical progression of
difference 3. In the latter case we obtain that L.A0/ D yC2kC3 � Œ0; k�, with y 2N0

and k 2N0, and hence L.A/ D yC 2kC 3C f0; 2; 3g C 3 � Œ0; k� 2 L6. ut

4.2 The System of Sets of Lengths of C2 ˚ C4

We establish the following result, giving a complete description of the system of
sets of lengths of C2 ˚ C4.

Theorem 4.5 L .C2 ˚ C4/ D L1 [L2 [L3 [L4 [L5 ; where

L1 D ffyg j y 2N0g ;

L2 D fyC 2
�

k

3

�
C Œ0; k� j y 2N0; k 2N n f3gg[

fyC Œ3; 6� j y 2N0; g [ fŒ2tC 1; 5tC 2� j t 2Ng

D fyC
�
2k

3

�
C Œ0; k� j y 2N0; k 2N n f1; 3gg[

fyC 3C Œ0; 3�; yC 2C Œ0; 1� j y 2N0g ;
L3 D fyC 2kC 2 � Œ0; k� j y 2N0; k 2Ng ;
L4 D fyC kC 1C .f0g [ Œ2; kC 2�/ j y 2N0; k 2N oddg ; and

L5 D fyC kC 2C .Œ0; k� [ fkC 2g/ j y 2N0; k 2Ng :

We note that all sets of lengths are arithmetical progressions with difference 2 or
almost arithmetical progressions with difference 1 and bound 2. This is related to the
fact that �.C2˚C4/ D ��.C2˚C4/ D f1; 2g. We start with a lemma determining
all minimal zero-sum sequences over C2 ˚ C4.

Lemma 4.6 Let .e; g/ be a basis of G D C2˚C4 with ord.e/ D 2 and ord.g/ D 4.
Then the minimal zero-sum sequences over G� are given by the following list.

1. The minimal zero-sum sequences of length 2 are :

S12 D fe2; .eC 2g/2g;
S22 D f.2g/2g;
S32 D fg.�g/; .eC g/.e � g/g
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2. The minimal zero-sum sequences of length 3 are :

S13 D fe.2g/.eC 2g/g ;
S23 D fg2.2g/; .�g/2.2g/; .eC g/2.2g/; .e � g/2.2g/g ;
S33 D feg.e � g/; e.�g/.eC g/; .eC 2g/g.eC g/; .eC 2g/.�g/.e � g/g :

3. The minimal zero-sum sequences of length 4 are :

S14 D fg4; .�g/4; .e C g/4; .e � g/4g ;
S24 D fg2.e C g/2; .�g/2.e � g/2; g2.e � g/2; .�g/2.e C g/2g ;
S34 D feg2.e C 2g/; e.e C g/2.e C 2g/; e.�g/2.e C 2g/; e.e � g/2.e C 2g/g ;
S44 D feg.2g/.e C g/; e.�g/.2g/.e � g/; .e C 2g/g.2g/.e � g/; .e C 2g/.�g/.2g/.e C g/g :

4. The minimal zero-sum sequences of length 5 are :

S5 D feg3.eC g/; e.�g/3.e � g/; e.eC g/3g; e.e � g/3.�g/

.eC 2g/g3.e � g/; .eC 2g/.�g/3.eC g/;

.eC 2g/.eC g/3.�g/; .eC 2g/.e � g/3gg ;

Moreover, for each two atoms W1;W2 in any one of the above sets, there exists a
group isomorphism �WG! G such that �.W1/ D W2.

Proof We give a sketch of the proof.
Since a minimal zero-sum sequence of length two is of the form h.�h/ for some

nonzero element h 2 G, the list given in 1. follows.
A minimal zero-sum sequence of length three contains either two elements of

order four or no element of order four. If there are two elements of order four, we
can have one element of order four with multiplicity two (see S23) or two distinct
elements of order four that are not the inverse of each other (see S33). If there is no
element of order four, the sequence consists of three distinct elements of order two
(see S13).

A minimal zero-sum sequence of length four contains either four elements of
order four or two elements of order four. If there are two elements of order four, the
sequence can contain one element with multiplicity two (see S34) or any two distinct
elements that are not each other’s inverse with multiplicity one (see S44). If there are
four elements of order four, the sequence can contain one element with multiplicity
four (see S14) or two elements with multiplicity two (see S24).

Since every minimal zero-sum sequence of length five contains an element with
multiplicity three, the list given in 4. follows (for details, see [18, Theorem 6.6.5]).

The existence of the required isomorphism follows immediately from the given
description of the sequences. ut
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The next lemma collects some basic results on L .C2˚C4/ that will be essential
for the proof of Theorem 4.5.

Lemma 4.7 Let G D C2 ˚ C4, and let A 2 B.G/.

1. �.G/ D Œ1; 2�, and if f2; 5g � L.A/, then L.A/ D f2; 4; 5g.
2. �2kC1.G/ D 5kC 2 for all k 2N.

3. If .e; g/ is a basis of G with ord.e/ D 2 and ord.g/ D 4, then f0; g; 2g; eC g; eC
2gg and f0; g; 2g; e; e � gg are half-factorial sets. Furthermore, if supp.A/ �
fe; g; 2g; eC g; eC 2gg and ve.A/ D 1, then jL.A/j D 1.

Proof

1. The first assertion follows from [18, Theorem 6.7.1 and Corollary 6.4.8]. Let
A 2 B.G/ with f2; 5g � L.A/. Then there is an U 2 A .G/ of length jUj D 5

such that A D .�U/U. By Lemma 4.6 there is a basis .e; g/ of G with ord.e/ D 2
and ord.g/ D 4 such that U D eg3.eC g/. This implies that L.A/ D f2; 4; 5g.

2. See [28, Corollary 5.2].
3. See [18, Theorem 6.7.9.1] for the first statement. Suppose that supp.A/ �
fe; g; 2g; eC g; eC 2gg and ve.A/ D 1. Then for every atom W dividing A with
e jW, we have that k.W/ D 3

2
. Since supp.AW�1/ is half-factorial, we obtain

that L.AW�1/ D fk.A/ � 3=2g by [18, Proposition 6.7.3] which implies that
L.A/ D f1C k.A/ � 3=2g D fk.A/ � 1=2g. ut

Proof (Theorem 4.5) Let .e; g/ be a basis of G D C2 ˚ C4 with ord.e/ D 2 and
ord.g/ D 4. We start by collecting some basic constructions that will be useful.
Then, we show that all the sets in the result actually are sets of lengths. Finally, we
show that there are no other sets of lengths.
Step 0. Some elementary constructions.

Let U1 D eg3.e C g/, U2 D .e C 2g/.e C g/3.�g/, U3 D e.e � g/3.�g/,
U4 D .�g/2.eC g/2, and U5 D e.eC 2g/g2. Then it is not hard to check that

L.U1.�U1// D L.U2.�U2// D f2; 4; 5g;
L.U1U3// D Œ2; 4�; L.U1.�U4// D Œ2; 3� ;
L.U1U3U4/ D Œ3; 7�; L.U1.�U1/U2.�U2// D Œ4; 10� ;
L.U2

5.�g/4/ D f3; 4; 6g; L.U5.�U5/g
4.�g/4/ D f4; 5; 6; 8g ;

L.U1.�U1/.eC 2g/2/ D Œ3; 6� : (3)

Based on these results, we can obtain the sets of lengths of more complex zero-sum
sequences. Let k 2N.

Since Œ2kC2; 4kC5�  L.U1.�U1/g4k.�g/4k/  L.U1.�U1//CL.g4k.�g/4k/ D
2kC 2C .f0g [ Œ2; 2kC 3�/ and 2kC 3 … L.U1.�U1/g4k.�g/4k/, we obtain that

L.U1.�U1/g
4k.�g/4k/ D 2kC 2C .f0g [ Œ2; 2kC 3�/ : (4)
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Since Œ2.kC 1/; 5.kC 1/�  L.U1.�U1/Uk
2.�U2/

k/  L.U1.�U1/U2.�U2//C
L.Uk�1

2 .�U2/
k�1/ D Œ2.kC 1/; 5.kC 1/�, we obtain that

L.U1.�U1/U
k
2.�U2/

k/ D Œ2.kC 1/; 5.kC 1/� : (5)

Since Œ2.kC1/; 5.kC1/�1�  L.U1U3Uk
2.�U2/

k/  L.U1U3/CL.Uk
2.�U2/

k/ D
Œ2.kC 1/; 5.kC 1/ � 1�, we obtain that

L.U1U3U
k
2.�U2/

k/ D Œ2.kC 1/; 5.kC 1/ � 1� : (6)

Since Œ2.k C 1/; 5.k C 1/ � 2�  L.U1.�U4/Uk
2.�U2/

k/  L.U1.�U4// C
L.Uk

2.�U2/
k/ and L.U1.�U4// C L.Uk

2.�U2/
k/ D Œ2.k C 1/; 5.k C 1/ � 2�, we

obtain that

L.U1.�U4/U
k
2.�U2/

k/ D Œ2.kC 1/; 5.kC 1/ � 2� : (7)

Since

Œ2kC 1; 5kC 2�  L.U1U3U4U
k�1
2 .�U2/

k�1/  L.U1U3U4/C L.Uk�1
2 .�U2/

k�1/

and L.U1U3U4/C L.Uk�1
2 .�U2/

k�1/ D Œ2kC 1; 5kC 2�, we obtain that

L.U1U3U4U
k�1
2 .�U2/

k�1/ D Œ2kC 1; 5kC 2� : (8)

Since

Œ2kC 1; 4kC 2�  L.U2
5.�g/4g4k�4.�g/4k�4/  L.U2

5.�g/4/C L.g4k�4.�g/4k�4/;

L.U2
5.�g/4/C L.g4k�4.�g/4k�4/ D Œ2kC 1; 4k� [ f4kC 2g and

4kC 1 … L.U2
5.�g/4g4k�4.�g/4k�4/

by Lemma 4.2.3, we obtain that

L.U2
5.�g/4g4k�4.�g/4k�4/ D Œ2kC 1; 4k� [ f4kC 2g : (9)

Suppose that k � 2. Since

Œ2k; 4k�  L.U5.�U5/g
4k�4.�g/4k�4/  L.U5.�U5/g

4.�g/4/C L.g4k�8.�g/4k�8/ ;

L.U5.�U5/g4.�g/4/C L.g4k�8.�g/4k�8/ D Œ2k; 4k � 2� [ f4kg, and

4k � 1 … L.U5.�U5/g
4k�4.�g/4k�4/
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by Lemma 4.2.3, we obtain that

L.U5.�U5/g
4k�4.�g/4k�4/ D Œ2k; 4k � 2� [ f4kg : (10)

Step 1. We prove that for every L 2 L2 [L3 [L4 [L5 there exists an A 2 B.G/
such that L D L.A/.

We distinguish four cases.
First we suppose that L 2 L2, and we distinguish several subcases. If L D

y C Œ3; 6� with y 2 N0, then we set A D 0yU1.�U1/.e C 2g/2 and hence L.A/ D
y C Œ3; 6� D L by Equation (3). If L D Œ2k C 1; 5k C 2� with k 2 N, then we set
A D U1U3U4Uk�1

2 .�U2/
k�1 and hence L.A/ D L by Equation (8). Now we assume

that L D yC 2d k
3
e C Œ0; k� with y 2N0 and k 2N n f3g.

If k 	 0 .mod 3/, then k � 6 and by Equation (5) we infer that

L
�
0yU1.�U1/U

t
2.�U2/

t� D yC Œ2tC2; 5tC5� D yC2d k

3
eC Œ0; k� D L ; where k D 3tC3 :

If k 	 1 .mod 3/, then by Equation (7) we infer that

L
�
0yU1.�U4/U

t
2.�U2/

t� D yC Œ2tC2; 5tC3� D yC2d k

3
eC Œ0; k� D L ; where k D 3tC1 :

If k 	 2 .mod 3/, then by Equation (6) we infer that

L
�
0yU1U3U

t
2.�U2/

t� D yC Œ2tC 2; 5tC 4� D yC 2d k

3
e C Œ0; k� D L ; where k D 3tC 2 :

If L D y C 2k C 2 � Œ0; k� 2 L3 with y 2 N0 and k 2 N, then we set A D
0yg4k.�g/4k and hence L.A/ D L.

If L D y C 2t C 2 C .f0g [ Œ2; 2t C 3�/ 2 L4 with y; t 2 N0, then we set
A D 0yU1.�U1/g4t.�g/4t and obtain that L.A/ D yC2tC2C.f0g[Œ2; 2tC3�/ D L
by Equation (4).

Finally we suppose that L D y C k C .Œ0; k � 2� [ fkg/ 2 L5 with k � 3

and y 2 N0, and we distinguish two subcases. If k D 2t with t � 2, then we set
A D 0yU5.�U5/g4t�4.�g/4t�4 and hence L.A/ D yC kC .Œ0; k � 2�[ fkg/ D L by
Equation (10). If k D 2t C 1 with t � 1, then we set A D 0yU2

5.�g/4g4t�4.�g/4t�4
and hence L.A/ D yC kC .Œ0; k � 2� [ fkg/ D L by Equation (9).
Step 2. We prove that for every A 2 B.G�/, L.A/ 2 L2 [L3 [L4 [L5.

Let A 2 B.G�/. We may suppose that �.L.A// ¤ ;. By Lemma 4.7.1 we have
to distinguish two cases.
Case 1: �.L.A// D f1g.

Then L.A/ is an interval, say L.A/ D Œy; y C k� D y C Œ0; k� with y � 2 and
k � 1. If k D 3 and y D 2, then L.A/ D Œ2; 5�, a contradiction to Lemma 4.7.1.
Thus k D 3 implies that y � 3 and hence L.A/ 2 L2. If k � 2, then obviously
L.A/ 2 L2. Suppose that k � 4. If y D 2t with t � 2, then y C k � 5t and hence
y D 2t � 2d k

3
e which implies that L.A/ 2 L2. Suppose that y D 2tC 1 with t 2N.
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If y C k � 5t C 1, then y D 2t C 1 � 1 C 2d k
3
e which implies that L.A/ 2 L2.

Otherwise yC k D 5tC 2 and hence L.A/ D Œ2tC 1; 5tC 2� 2 L2.
Case 2: 2 2 �.L.A// � Œ1; 2�.

We freely use the classification of minimal zero-sum sequence given in
Lemma 4.6. Since 2 2 �.L.A//, there are k 2 N and U1; : : : ;Uk;V1; : : : ;VkC2 2
A .G/ with jU1j � jU2j � : : : � jUkj such that

A D U1 � : : : � Uk D V1 � : : : � VkC2 and kC 1 … L.A/ ;

and we may suppose that k is minimal with this property. Then Œmin L.A/; k� 2 L.A/
and there exists k0 2 Œ2; k� such that jUij � 3 for every i 2 Œ1; k0� and jUij D 2 for
every i 2 Œk0 C 1; k�. We continue with two simple assertions.

A1. For each two distinct i; j 2 Œ1; k0�, we have that 3 … L.UiUj/.
A2. jL.U1 � : : : � Uk0 /j � 2.

Proof of A1. Assume to the contrary that there exist distinct i; j 2 Œ1; k0� such that
3 2 L.UiUj/. This implies that kC 1 2 L.A/, a contradiction. ut

[Proof of A1]

Proof of A2. Assume to the contrary that jL.U1 � : : : �Uk0 /j D 1. Then Lemma 4.2.2
implies that max L.A/ D max L.U1 � : : : � Uk0 /C k � k0 D k, a contradiction. ut

[Proof of A2]
We use A1 and A2 without further mention and freely use Lemma 4.6 together

with all its notation. We distinguish six subcases.
Case 2.1: U1 2 S5.

Without loss of generality, we may assume that U1 D eg3.e C g/. We choose
j 2 Œ2; k0� and start with some preliminary observations. If jUjj D 5, then the
fact that 3 … L.U1Uj/ implies that Uj D �U1. If jUjj D 4, then 3 … L.U1Uj/

implies that Uj 2 fg2.eC g/2; g4; .�g/4; .eC g/4g. If jUjj D 3, then 3 … L.U1Uj/

implies that Uj 2 f.eC 2g/g.eC g/; g2.2g/; .eC g/2.2g/g.
Now we distinguish three cases.
Suppose that jU2j D 5. Then U2 D �U1 and by symmetry we obtain that Uj 2

fg4; .�g/4g for every j 2 Œ3; k0�. Let i 2 Œk0 C 1; k�. If Ui ¤ e2, then 4 2 U1U2Ui

and hence kC 1 2 L.A/, a contradiction. Therefore we obtain that

A D U1.�U1/.g
4/k1 ..�g/4/k2 .e2/k3 where k1; k2; k3 2N0 ;

and without loss of generality we may assume that k1 � k2. Then it follows that
L.A/ is equal to

k1�k2Ck3CL.U1.�U1/.g
4/k2 ..�g/4/k2 / D k3Ck1�k2C2k2C2C.f0g[Œ2; 2k2C3�/;

which is an element of L4.
Suppose that jU2j D 4 and there exists j 2 Œ2; k0� such that Uj D .�g/4, say

j D 2. Let i 2 Œ3; k0�. If Ui 2 fg2.e C g/2; g2.2g/g, then 3 2 L.U2Ui/ and hence
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kC1 2 L.A/, a contradiction. If Ui 2 f.eCg/4; .eCg/2.2g/; .eC2g/g.eCg/g, then
4 2 L.U1U2Ui/ and hence kC1 2 L.A/, a contradiction. Therefore Ui 2 fg4; .�g/4g.
Let � 2 Œk0C 1; k�. If U� 2 f.eC 2g/2; .2g/2; .eC g/.e� g/g, then 4 2 L.U1U2U� /

and hence kC 1 2 L.A/, a contradiction. Therefore U� 2 fe2; g.�g/g. Therefore we
obtain that

A D U1.g
4/k1 ..�g/4/k2 .g.�g//k3 .e2/k4 where k1; k3; k4 2N0 and k2 2N

and hence L.A/ is equal to

L..g4/k1C1..�g/4/k2 .g.�g//k3 .e2/k4 / D k4 C L.g4k1C4Ck3 .�g/4k2Ck3 /

which is in L3

Suppose that jU2j � 4 and for every j 2 Œ2; k0�, we have Uj ¤ .�g/4. Then
Uj 2 fg2.eCg/2; g4; .eCg/4; .eC2g/g.eCg/; g2.2g/; .eCg/2.2g/g. Since supp.U1 �
: : : �Uk0 / � fe; g; 2g; eC g; eC 2gg and ve.U1 � : : : �Uk0 / D 1, Lemma 4.7.3 implies
that jL.U1 � : : : � Uk0 /j D 1, a contradiction.
Case 2.2: U1 2 S44.

Without loss of generality, we may assume that U1 D eg.2g/.e C g/. Let j 2
Œ2; k0�.

Suppose that jUjj D 4. Since 3 … L.U1Uj/, we obtain that Uj 2 fg2.e C
g/2; g4; .e C g/4g. Thus U1Uj D W1W2 with jW1j D 5, where W1;W2 are atoms
and hence we are back to Case 2.1.

Suppose that jUjj D 3. Since 3 … L.U1Uj/, we obtain that Uj 2 f.eC 2g/g.eC
g/; g2.2g/; .eC g/2.2g/g. If Uj 2 fg2.2g/; .eC g/2.2g/g, then U1Uj D W1W2 with
jW1j D 5, where W1;W2 are atoms and hence we are back to Case 2.1. Thus it
remains to consider the case where Uj D .eC 2g/g.eC g/.

Therefore we have

U1 � : : : � Uk0 D U1

�
.eC 2g/g.eC g/

�k1 where k1 2N :

Since supp.U1 � : : : � Uk0 / � fe; g; 2g; e C g; e C 2gg and ve.U1 � : : : � Uk0 / D 1,
Lemma 4.7.3 implies that jL.U1 � : : : � Uk0 /j D 1, a contradiction.
Case 2.3: U1 2 S34 and for every i 2 Œ2; k0�, we have Ui … S44.

Without loss of generality, we may assume that U1 D eg2.eC2g/. Let j 2 Œ2; k0�.
Suppose that jUjj D 4. Since 3 … L.U1Uj/, we obtain that Uj 2 f�U1; g2.e C

g/2; g2.e�g/2; .eCg/4; .e�g/4; g4g. If Uj 2 fg2.eCg/2; g2.e�g/2; .eCg/4; .e�g/4g,
then U1Uj D W1W2 with jW1j D 5, where W1;W2 are atoms and hence we are back
to Case 2.1. Thus it remains to consider the cases where Uj D �U1 or Uj D g4.

Suppose that jUjj D 3. Since 3 … L.U1Uj/, we obtain that Uj 2 feg.e � g/; .eC
2g/g.eCg/; g2.2g/; .eCg/2.2g/; .e�g/2.2g/g. If Uj 2 feg.e�g/; .eC2g/g.eCg/g,
then U1Uj D W1W2 with jW1j D 5, where W1;W2 are atoms and hence we are back
to Case 2.1. If Uj 2 f.eC g/2.2g/; .e� g/2.2g/g, then U1Uj D W1W2 with W1 2 S44,
where W1;W2 are atoms and hence we are back to Case 2.2. Thus it remains to
consider the case where Uj D g2.2g/.
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If Ui ¤ �U1 for every i 2 Œ2; k0�, then U1 � : : : �Uk0 D U1.g4/k1 .g2.2g//k2 where
k1; k2 2N0. Since supp.U1 �: : :�Uk0 / � fe; g; 2g; eCg; eC2gg and ve.U1 �: : :�Uk0 / D
1, Lemma 4.7.3 implies that jL.U1 � : : : �Uk0 /j D 1, a contradiction. Thus there exists
some i 2 Œ2; k0�, say i D 2, such that U2 D �U1. By symmetry we obtain that
k0 D 2. Let � 2 Œ3; k�. If U� 2 f.2g/2; .eCg/.e�g/g, then 4 2 L.U1U2U� / and hence
kC1 2 L.A/, a contradiction. Therefore A D U1.�U1/.e2/k1 ..eC2g/2/k2 .g.�g//k3

where k1; k2; k3 2 N0. Since Œmin L.A/; 2 C k1 C k2 C k3� � L.A/, we obtain that
L.A/ D Œmin L.A/; 2C y�[f4C yg where y D k1C k2C k3 2N0. For every atom V
dividing A, we have that jVj D 2 or jVj D 4. Thus min L.A/ � 2C y

2
which implies

that L.A/ 2 L5.
Case 2.4: U1 2 S24 and for every i 2 Œ2; k0�, we have Ui … S44 [ S34.

Without loss of generality, we may assume that U1 D g2.eC g/2. Let j 2 Œ2; k0�.
Suppose that jUjj D 4. If Uj 2 fg2.e� g/2; .�g/2.eC g/2; .�g/4; .e� g/4g, then

3 2 L.U1Uj/, a contradiction. Thus Uj 2 fU1;�U1; g4; .eC g/4g.
Suppose that jUjj D 3. If Uj 2 f.eC 2g/.�g/.e � g/; .�g/2.2g/; .e � g/2.2g/g,

then 3 2 L.U1Uj/, a contradiction. If Uj 2 feg.e � g/; e.�g/.eC g/g, then U1Uj D
W1W2 with jW1j D 5, where W1;W2 are atoms and hence we are back to Case
2.1. If Uj D e.2g/.e C 2g/, then U1Uj D

�
e.e C g/g.2g/

��
g.e C g/.e C 2g/

�
and

e.eCg/g.eC2g/ 2 S44, going back to Case 2.2. Thus it remains to consider the case
where Uj D g2.2g/ or Uj D .eC g/2.2g/.

If Ui ¤ �U1 for every i 2 Œ2; k0�, then supp.U1 � : : : �Uk0 / � fg; 2g; eCg; eC2gg
is half-factorial by Lemma 4.7.3, a contradiction. Thus there exists some i 2 Œ2; k0�,
say i D 2, such that U2 D �U1. By symmetry we obtain that fU1; : : : ;Uk0g D
fU1;�U1g. Let � 2 Œk0 C 1; k�. If U� 2 fe2; .2g/2; .eC 2g/2g, then 4 2 L.U1U2U� /

and kC1 2 L.U1U2U� /, a contradiction. Therefore A D Uk1
1 .�U1/

k2 .g.�g//k3 ..eC
g/.e � g//k4 where k1; k2 2 N and k3; k4 2 N0. If k1 C k2 � 3, by symmetry we
assume that k1 � 2, then U2

1.�U1/ D g4.�g/2.eC g/2.eC g/.e� g/.eC g/.e� g/
and hence 4 2 L.U2

1.�U1// which implies that kC 1 2 L.A/, a contradiction. Thus
k1 D k2 D 1 and hence A D U1.�U1/.g.�g//k3 ..eCg/.e�g//k4 where k3; k4 2N0.
Since Œmin L.A/; 2Ck3Ck4� 2 L.A/, we obtain that L.A/ D Œmin L.A/; 2Cy�[f4Cyg
where y D k3 C k4 2 N0. For every atom V dividing A, we have that jVj D 2 or
jVj D 4. Thus min L.A/ � 2C y

2
which implies that L.A/ 2 L5.

Case 2.5: U1 2 S14 and for every i 2 Œ2; k0�, we have Ui … S44 [ S34 [ S24.
Without loss of generality, we may assume that U1 D g4. Let j 2 Œ2; k0�.
Suppose that jUjj D 4. If Uj 2 f.e C g/4; .e � g/4g, then U1Uj D W1W2 with

W1 2 S24, where W1;W2 are atoms and hence we are back to Case 2.4. Thus it
remains to consider the case where Uj D U1 or Uj D �U1.

Suppose that jUjj D 3. If Uj 2 f.�g/2.2g/g, then 3 2 L.U1Uj/, a contradiction. If
Uj 2 fe.�g/.eCg/; .eC2g/.�g/.e�g/g, then U1Uj D W1W2 with jW1j D 5, where
W1;W2 are atoms and hence we are back to Case 2.1. If Uj 2 f.e C g/2.2g/; .e �
g/2.2g/g, then U1Uj D W1W2 with W1 2 S24, where W1;W2 are atoms and hence we
are back to Case 2.4. If Uj D e.2g/.e C 2g/, then U1Uj D W1W2 with W1 2 S34,
where W1;W2 are atoms and hence we are back to Case 2.3. Thus it remains to
consider the case where Uj D g2.2g/, or Uj D eg.e� g/, or Uj D .eC 2g/g.eC g/.
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First, suppose that Ui ¤ �U1 for every i 2 Œ2; k0�. Then

U1 � : : : � Uk0 D Uk1
1 .eg.e � g//k2 ..eC 2g/g.eC g//k3 .g2.2g//k4 ;

where k1 2N and k2; k3; k4 2N0. If k2 � 1 and k3 � 1, then eg.e�g/.eC2g/g.eC
g/ D eg2.eC 2g/.eC g/.e � g/, eg2.eC 2g/ 2 S34 and hence we are back to Case
2.3. Thus we may assume that k2 D 0 or k3 D 0. Since fg; 2g; e C g; e C 2gg and
fg; 2g; e; e � gg are both half-factorial by Lemma 4.7.3, we obtain that jL.U1 � : : : �
Uk0 /j D 1, a contradiction.

Second, suppose that there exists some i 2 Œ2; k0�, say i D 2, such that U2 D
�U1. By symmetry we obtain that fU1; : : : ;Uk0g D fU1;�U1g. Since 4 2 L.U1 �
U2 � .2g/2/, 5 2 L.U1U2e2.e� g/.eC g//, and 5 2 L.U1U2.eC 2g/2.e� g/.eC g//,
we obtain that

fUk0C1; : : : ;Ukg � f.eC g/.e � g/; g.�g/g or

fUk0C1; : : : ;Ukg � fe2; .eC 2g/2; g.�g/g :

This implies that

A D .g4/k1 ..�g/4/k2 ..eC g/.e � g//k3 .g.�g//k4 or

A D .g4/k1 ..�g/4/k2 .e2/k3 ..eC 2g/2/k4 .g.�g//k5 ;

where k1; k2 2N and k3; k4; k5 2N0.
Suppose that A D .g4/k1 ..�g/4/k2 ..eC g/.e� g//k3 .g.�g//k4 , where k1; k2 2N

and k3; k4; k5 2N0. If k1 � 2 and k3 � 2, then g4 g4.�g/4.eC g/.e� g/.eC g/.e�
g/ D �g.�g/

�4
g2.eC g/2g2.e� g/2 and hence 6 2 L.g4g4.�g/4.eC g/.e� g/.eC

g/.e � g//. Thus k C 1 2 L.A/, a contradiction. Therefore by symmetry k3 D 1 or
k1 D k2 D 1. If k3 D 1, then L.A/ D 1 C L..g4/k1 ..�g/4/k2 .g.�g//k4 / 2 L3. If
k1 D k2 D 1, then L.A/ D Œmin L.A/; 2C y�[f4C yg where y D k3C k4 2N0. For
every atom V dividing A, we have that jVj D 2 or jVj D 4. Thus min L.A/ � 2C y

2

which implies that L.A/ 2 L5.
Suppose that A D .g4/k1 ..�g/4/k2 .e2/k3 ..eC2g/2/k4 .g.�g//k5 , where k1; k2 2N

and k3; k4; k5 2 N0. If k1 � 2, k3 � 1, and k4 � 1, then g4g4.�g/4e2.e C 2g/2 D�
g.�g/

�4�
e.eC2g/g2

�2
and hence 6 2 L.g4g4.�g/4e2.eC2g/2/. Thus kC1 2 L.A/,

a contradiction. Therefore by symmetry k3 D 0, or k4 D 0, or k1 D k2 D 1. If
k3 D 0 or k4 D 0, then L.A/ D k3 C k4 C L..g4/k1 ..�g/4/k2 .g.�g//k5 / 2 L3. If
k1 D k2 D 1, then L.A/ D Œmin L.A/; 2Cy�[f4Cyg where y D k3Ck4Ck5 2N0.
For every atom V dividing A, we have that jVj D 2 or 4. Thus min L.A/ � 2 C y

2

which implies that L.A/ 2 L5.
Case 2.6: jU1j D 3.

Let j 2 Œ2; k0�. We distinguish three subcases.
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First, we suppose that U1 2 S33, and without restriction we may assume that U1 D
eg.e�g/. If Uj D �U1, then 3 2 L.U1Uj/, a contradiction. If Uj 2 f.�g/2.2g/; .eC
g/2.2g/; e.2g/.eC 2g/g, then U1Uj D W1W2 with W1 2 S44 where W1;W2 are atoms
and hence we are back to Case 2.2. If Uj 2 f.eC2g/g.eCg/; .eC2g/.�g/.e�g/g,
then U1Uj D W1W2 with W1 2 S34 where W1;W2 are atoms and hence we are back
to Case 2.3. If Uj D U1, then U1Uj D W1W2 with W1 2 S24 where W1;W2 are atoms
and hence we are back to Case 2.4. Thus it remains to consider the case where
Uj D g2.2g/ or .e � g/2.2g/. Then U1 � : : : � Uk0 D U1.g2.2g//k1 ..e � g/2.2g//k2

where k1; k2 2N0. Since fe; g; 2g; e�gg is half-factorial by Lemma 4.7.3, we obtain
that jL.U1 � : : : � Uk0 /j D 1, a contradiction.

Second, we suppose that U1 2 S23, and without restriction we may assume that
U1 D g2.2g/ and Uj … S33. If Uj D �U1, then 3 2 L.U1Uj/. If Uj D U1, then
U1Uj D W1W2 with W1 2 S14 where W1;W2 are atoms and hence we are back to
Case 2.5. If Uj 2 f.e C g/2.2g/; .e � g/2.2g/g, then U1Uj D W1W2 with W1 2 S24
where W1;W2 are atoms and hence we are back to Case 2.4. If Uj D e.2g/.eC 2g/,
then U1Uj D W1W2 with W1 2 S34 where W1;W2 are atoms and hence we are back
to Case 2.3.

Third, we suppose that U1 2 S13, and without restriction we assume that Uj 2 S13.
Thus 3 2 L.U1Uj/, a contradiction. ut

4.3 The System of Sets of Lengths of C4
2

Now we give a complete description of the system of sets of lengths of C4
2.

Theorem 4.8 L .C4
2/ D L1 [L2 [L3 [L4 [L5 [L6 [L7 [L8, where

L1 D
˚fyg j y 2N0

�
;

L2 D
˚
yC 2kC 3 � Œ0; k� j y; k 2N0

�
;

L3 D
˚
yC Œ2; 3�; yC Œ2; 4�; yC Œ3; 6�; yC Œ3; 7�; yC Œ4; 9� j y 2N0

�[
˚
yC Œm;mC k� j y 2N0; k � 6;m minimal with mC k � 5m=2

�

D ˚yC
�
2k

3

�
C Œ0; k� j y 2N0; k 2N n f1; 3g�[

fyC 3C Œ0; 3�; yC 2C Œ0; 1� j y 2N0g;
L4 D

˚
yC 2kC 2 � Œ0; k� ˇ̌ y; k 2N0

�
;

L5 D fyC kC 2C .Œ0; k� [ fkC 2g/ j y 2N0; k 2Ng;

L6 D fyC 2
�

k

3

�
C 2C .f0g [ Œ2; kC 2�/ j y 2N0; k � 5 or k D 3g;

L7 D fyC 2kC 3C f0; 1; 3g C 3 � Œ0; k� j y; k 2N0g [
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fyC 2kC 4C f0; 1; 3g C 3 � Œ0; k� [ fyC 5kC 8g j y; k 2N0g; and

L8 D fyC 2kC 3C f0; 2; 3g C 3 � Œ0; k� j y; k 2N0g [
fyC 2kC 4C f0; 2; 3g C 3 � Œ0; k� [ fyC 5kC 9g j y; k 2N0g:

We note that the system of sets of lengths of C4
2 is richer than that of the other

groups we considered. A reason for this is that the set ��.C4
2/ is largest, namely

f1; 2; 3g (this fact was also crucial in the proof of Theorem 3.5). We recall some
useful facts in the lemma below.

Lemma 4.9 Let G D C4
2, and let A 2 B.G/.

1. �.G/ D Œ1; 3�, and if 3 2 �.L.A//, then �.L.A// D f3g and there is a basis
.e1; : : : ; e4/ of G such that supp.A/ n f0g D fe1; : : : ; e4; e1 C : : :C e4g.

2. �2kC1.G/ D 5kC 2 for all k 2N.

Proof

1. The first statement follows from [18, Theorem 6.8.3], and the second statement
from [20, Lemma 3.10].

2. See [18, Theorem 6.3.4].
ut

In the following result we characterize which intervals are sets of lengths for C4
2.

It turns out that, with a single exception, the sole restriction is the one implied by
elasticity.

Proposition 4.10 Let G D C4
2 and let 2 � l1 � l2 be integers. Then Œl1; l2� 2 L .G/

if and only if l2=l1 � 5=2 and .l1; l2/ ¤ .2; 5/.
Proof Suppose that Œl1; l2� 2 L .G/ with integers 2 � l1 � l2. Then (2) implies
that l2=l1 � �.G/ D 5=2. Moreover, Œ2; 5� D Œ2;D.G/� … L .G/ by [18, Theorem
6.6.3].

Conversely, we need to show that for integers 2 � l1 � l2 with .l1; l2/ ¤ .2; 5/

and l2=l1 � 5=2, we have Œl1; l2� 2 L .G/. We start with an observation that
reduces the problem to constructing these sets of intervals for extremal choices of
the endpoints.

Let k 2N. If m 2N such that Œm;mC k� 2 L .G/, then yC Œm;mC k� 2 L .G/
for all y 2 N0. Thus let mk D maxf2; d 2k

3
eg if k 2 N n f3g and m3 D 3. Therefore

we only need to prove that Œmk;mk C k� 2 L .G/.
For k 2 Œ1; 5� we are going to realize sets Œmk;mk C k� as sets of lengths. Then

we handle the case k � 6.
If k 2 f1; 3g, then the sets Œ2; 3�; Œ3; 6� 2 L .C3

2/ � L .G/. To handle the case
k D 2, we have to show that Œ2; 4� 2 L .G/. Let .e1; : : : ; e4/ be a basis of G and
e0 D e1 C : : :C e4. If

U1 D e0 � : : : � e4 and U2 D e1e2.e1 C e3/.e2 C e4/.e3 C e4/;
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then max L.U1U2/ < 5, and

U1U2 D
�

e0e1e2.e3 C e4/
��
.e1 C e3/e1e3

��
.e2 C e4/e2e4

�

D
�

e0.e1 C e3/.e2 C e4/
��

e21

��
e22

��
.e3 C e4/e3e4

�
;

shows that L.U1U2/ D Œ2; 4�. It remains to verify the following assertions:

A1. Œ3; 7� 2 L .G/ (this settles the case k D 4).
A2. Œ4; 9� 2 L .G/ (this settles the case k D 5).
A3. Let k � 6. Then Œd 2k

3
e; d 2k

3
e C k� 2 L .G/.

Proof of A1 Clearly,

U1 D e0 � : : : � e4; U2 D e1e2.e1 C e3/.e2 C e4/.e3 C e4/; and

U3 D .e1 C e3/.e2 C e4/e3e4.e1 C e2/

are minimal zero-sum sequences of lengths 5. Since

U1U2U3 D
�

e0.e1 C e2/.e3 C e4/
��

e21
��

e22
��

e23
��

e24
��
.e1 C e3/

2
��
.e2 C e4/

2
�

D
�

e0.e1 C e2/.e3 C e4/
��
.e1 C e3/e1e3

�2�
.e2 C e4/

2
��

e22
��

e24
�

D
�

e0.e1 C e2/.e3 C e4/
��
.e1 C e3/e1e3

�2�
.e2 C e4/e2e4

�2

D U2

�
e0.e1 C e2/.e1 C e3/e1e4

��
.e2 C e4/e2e4

��
e23
�
;

it follows that L.U1U2U3/ D Œ3; 7�.
Proof of A2 We use the same notation as in A1, set U4 D .e1 C e2/.e1 C e3/.e2 C
e4/.e3 C e4/, and assert that L.U2

1U2U4/ D Œ4; 9�. Clearly, 4 2 L.U2
1U2U4/ and

max L.U2
1U2U4/ < 10. Since

U2
1U2U4 D

�
e0e1e2.e3 C e4/

��
.e1 C e3/e1e3

��
.e2 C e4/e2e4

�
U1U4

D
�

e0.e1 C e3/.e2 C e4/
��

e21

��
e22

��
.e3 C e4/e3e4

�
U1U4

D
4Y

�D0

�
e2�
�
U2U4

D
�
.e1 C e3/

2
��
.e2 C e4/

2
��
.e3 C e4/e3e4

�2�
e20

��
e21

��
e22

��
.e1 C e2/e1e2

�

D
�
.e1 C e3/

2
��
.e2 C e4/

2
��
.e3 C e4/

2
��

e23

��
e24

��
e20

��
e21

��
e22

��
.e1 C e2/e1e2

�
;

the assertion follows.
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Proof of A3 We proceed by induction on k. For k D 6, we have to verify that
Œ4; 10� 2 L .G/. We use the same notation as in A1, and assert that L.U2

1U2
2/ D

Œ4; 10�. Clearly, f4; 10g � L.U2
1U2

2/ � Œ4; 10�. Since

U2
1U2

2 D
�

e0e1e2.e3 C e4/
��
.e1 C e3/e1e3

��
.e2 C e4/e2e4

�
U1U2

D
�

e0e1e2.e3 C e4/
�2�

.e1 C e3/e1e3
�2�

.e2 C e4/e2e4
�2

D
4Y

�D0

�
e2�
�
U2
2

D
�

e0.e1 C e3/.e2 C e4/
�2�

e21
�2�

e22
�2�

.e3 C e4/e3e4
�2

D
�
.e1 C e3/

2
��
.e2 C e4/

2
��
.e3 C e4/e3e4

�2�
e20
��

e21
�2�

e22
�2

it follows that Œ5; 9� � L.U2
1U2

2/, and hence L.U2
1U2

2/ D Œ4; 10�.
If k D 7, then Œ5; 12�  L.U3

1U2U3/  L.U1U2U3/C L.U2
1/ D Œ3; 7�C f2; 5g D

Œ5; 12� which implies that Œ5; 12� 2 L .G/. If k D 8, then Œ6; 14�  L.U4
1U2U4/ 

L.U2
1U2U4/CL.U2

1/ D Œ4; 9�Cf2; 5g D Œ6; 14� which implies that Œ6; 14� 2 L .G/.
Suppose that k � 9, and that the assertion holds for all k0 2 Œ6; k � 1�. Then the
set Œd 2.k�3/

3
e; d 2.k�3/

3
e C k � 3� 2 L .G/. This implies that Œd 2k

3
e; d 2k

3
e C k� D

Œd 2.k�3/
3
e; d 2.k�3/

3
e C k � 3�C f2; 5g 2 L .G/.

ut
We now proceed to prove Theorem 4.8.

Proof (Theorem 4.8) Let .e1; e2; e3; e4/ be a basis of G D C4
2. We set e0 D e1 C

e2 C e3 C e4, U D e0e1e2e3e4, and V D e1e2e3.e1 C e2 C e3/.
Step 0. Some elementary constructions.

Let t1 � 2, t2 � 2, t D t1 C t2, and

Lt1;t2 D
( ftg [ ŒtC 2; 5bt1=2c C 4.t=2 � bt1=2c/� if t is even ;

ftg [ ŒtC 2; 5bt1=2c C 4..t � 1/=2 � bt1=2c/C 1� if t is odd :

Since L.U2V2/ D f4g [ Œ6; 9�, we have that L.Ut1Vt2 /  L.U2V2/ C
L.Ut1�2Vt2�2/ D Lt1;t2 . Note that for every atom W dividing Ut1Vt2 , we have

W D

8
ˆ̂
<

ˆ̂:

U ifjWj D 5 ;
V ifjWj D 4 ;
e0e4.e1 C e2 C e3/ ifjWj D 3 :

Assume to the contrary that t C 1 2 L.Ut1Vt2 /. Then there exist t3; t4; t5 2 N0

and atoms W1; : : : ;Wt3Ct4C1 such that Ut3Vt4 D W1 : : :Wt3Ct4C1 with t3 C t4 � 2,
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t5 � minft3; t4g, jWij D 3 for i 2 Œ1; t5�, and jWij D 2 for i 2 Œt5 C 1; t3 C t4 C 1�.
It follows that 5t3 C 4t4 D 3t5 C 2.t3 C t4 C 1 � t5/ � 3t3 C 2t4 C 2 and hence
t3 C t4 � 1, a contradiction. Therefore tC 1 … L.Ut1Vt2 / and

L.Ut1Vt2 / D Lt1;t2 : (11)

Note that for every atom W dividing UrV with r � 2 and e1 C e2 C e3 jW, we
have W D V or W D e0e4.e1 C e2 C e3/. It follows that for all r � 2

L.UrV/

D�1C L.Ur/
� [ �1C L.e21e

2
2e
2
3U

r�1/
�

(12)

D
(

rC 1C f0; 2; 3g C 3 � Œ0; r=2 � 1�; if r is even ;

rC 1C f0; 2; 3g C 3 � Œ0; .r � 1/=2 � 1� [ frC 1C .3r � 3/=2C 2g; if r is odd :

Note that for every atom W dividing UrVe24e
2
0 with r � 2 and e1 C e2 C e3 jW,

we have W D V or W D e0e4.e1 C e2 C e3/. It follows that for all r � 2

L.UrVe24e
2
0/

D�1C L.Ure24e
2
0/
� [ �1C L.UrC1/

�
(13)

D
(

rC 2C f0; 1; 3g C 3 � Œ0; .rC 1/=2 � 1�; if r is odd ;

rC 2C f0; 1; 3g C 3 � Œ0; r=2 � 1� [ frC 2C 3r=2C 1g; if r is even :

.
Step 1. We prove that for every L 2 L2 [L3 [L4 [L5 [L6 [L7 [L8, there
exists an A 2 B.G/ such that L D L.A/. We distinguish seven cases.

If L D yC 2kC 3 � Œ0; k� 2 L2 with y; k 2N0, then L D L.0yU2k/ 2 L .G/.
If L 2 L3, then the claim follows from Proposition 4.10.
If L D y C 2k C 2 � Œ0; k� 2 L4 with y; k 2 N0, then Proposition 3.3.4 implies

that L 2 L .C3
2/ � L .G/.

Suppose that L D yC kC 2C .Œ0; k� [ fkC 2g/ 2 L5 with k 2N and y 2N0.
Note that L.V2.e1C e4/2.e2C e4/2.e3C e4/2.e1C e2C e3C e4/2/ D Œ4; 6�[f8g. If
k is even, then we set A D 0yV2.e1 C e4/k.e2 C e4/k.e3 C e4/k.e1 C e2 C e3 C e4/k

and obtain that L.A/ D L by Lemma 4.2.3. If k is odd, then we set A D 0yV2.e1 C
e4/kC1.e2 C e4/kC1.e3 C e4/k�1.e1 C e2 C e3 C e4/k�1 and obtain that L.A/ D L by
Lemma 4.2.3.

Suppose that L D yC 2d k
3
eC 2C .f0g [ Œ2; kC 2�/ 2 L6 with

�
k � 5 or k D 3�

and y 2 N0. If k 	 0 mod 3, then we set A D 0yU2k=3V2 and hence L.A/ D L by
Equation (11). If k 	 2 mod 3, then we set A D 0yU.2k�4/=3V4 and hence L.A/ D L
by (11). If k 	 1 mod 3, then we set A D 0yU.2k�8/=3V6 and obtain that L.A/ D L
by Equation (11).

Suppose that L 2 L7. If L D yC 2kC 3C f0; 1; 3g C 3 � Œ0; k� with y 2N0 and
k 2N0, then we set A D 0yU2kC1Ve24.e1C e2C e3C e4/2 and obtain that L.A/ D L
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by Equation (13). If L D y C 2k C 4 C f0; 1; 3g C 3 � Œ0; k� [ fy C 5k C 8g with
y 2 N0 and k 2 N0, then we set A D 0yU2kC2Ve24.e1 C e2 C e3 C e4/2 and obtain
that L.A/ D L by Equation (13).

Suppose that L 2 L8. If L D y C 2k C 3 C f0; 2; 3g C 3 � Œ0; k� with y 2 N0

and k 2 N0, then we set A D 0yU2kC2V and hence L.A/ D L by Equation (12). If
L D yC2kC4Cf0; 2; 3gC3 � Œ0; k�[fyC5kC9g with y 2N0 and k 2N0, then we
set A D 0yU2kC3Ve24.e1C e2C e3C e4/2 and obtain that L.A/ D L by Equation (12).
Step 2. We prove that for every A 2 B.G�/, L.A/ 2 L2 [L3 [L4 [L5 [L6 [
L7 [L8.

Let A 2 B.G�/. We may suppose that �.L.A// ¤ ;. By Lemma 4.9.1 we have
to distinguish four cases.
Case 1: �.L.A// D f3g.

By Lemma 4.9, there is a basis of G, say .e1; e2; e3; e4/, such that supp.A/ D
fe1; : : : ; e4; e0g. Let n 2N0 be maximal such that U2n jA. Then there exist a proper
subset I � Œ0; 4�, a tuple .mi/i2I 2N

.I/
0 , and  2 f0; 1g such that

A D UU2n
Y

i2I

.e2i /
mi :

Using [20, Lemma 3.6.1], we infer that

L.A/ D  C
X

i2I

mi C L.U2n/ D  C
X

i2I

mi C .2nC 3 � Œ0; n�/ 2 L2 :

Case 2: �.L.A// D f1g.
Then L.A/ is an interval, and it is a direct consequence of Proposition 4.10 that

L.A/ 2 L3.
Case 3: �.L.A// D f2g.

The following reformulation turns out to be convenient. Clearly, we have to show
that for every L 2 L .G/ with �.L/ D f2g there exist y0 2 N0 and k0 2 N

such that L D y0 C 2 � Œk0; 2k0�, which is equivalent to �.L/ D max L=min L � 2.
Assume to the contrary that there is an L 2 L .G/ with �.L/ D f2g such that
max L � 2min L C 1. We choose one such L 2 L .G/ with min L being minimal,
and we choose a B 2 B.G/ with L.B/ D L. Since min L is minimal, we obtain that
0 − B. Consequently, jBj � 2max L � 4min LC 2. Since D.G/ D 5, it follows that
a factorization of minimal length of B contains at least two (possibly equal) minimal
zero-sum sequences U1;U2 with jU1j D jU2j D 5, say U1 D e0 � : : : � e4.

If U1 D U2, then 5 2 L.U1U2/ and thus min L C 3 2 L, contradicting the fact
that�.L/ D f2g. Thus U1 ¤ U2. We assert that 3 2 L.U1U2/, and thus obtain again
a contradiction to the fact that �.L/ D f2g.

Let g 2 G with g jU2 but g − U1. Then g is the sum of two elements from U1,
say g D e1 C e2. Therefore g.e1e2/�1U1 is a minimal zero-sum sequence, whereas
the sequence .e1e2/g�1U2 cannot be a minimal zero-sum sequence because it has
length 6. Since g�1U2 is zero-sum free, every minimal zero-sum sequence dividing
.e1e2/g�1U2 must contain e1 or e2. This shows that L..e1e2/g�1U2/ D f2g and thus
3 2 L.U1U2/.
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Case 4: �.L.A// D f1; 2g.
Let k 2 L.A/ be minimal such that A has a factorization of the form A D U1 � : : : �

Uk D V1 � : : : � VkC2, where k C 1 … L.A/ and U1; : : : ;Uk;V1; : : : ;VkC2 2 A .G/
with jU1j � jU2j � : : : � jUkj. Without restriction we may suppose that the tuple

.jfi 2 Œ1; k� j jUijD5gj; jfi 2 Œ1; k� j jUijD4gj; jfi 2 Œ1; k� j jUijD3gj/ 2N
3
0 (14)

is maximal (with respect to the lexicographic order) among all factorizations of A of
length k. By definition of k, we have Œmin L.A/; k� 2 L.A/. Let k0 2 Œ2; k� such that
jUij � 3 for every i 2 Œ1; k0� and jUij D 2 for every i 2 Œk0C 1; k�. We start with the
following assertion.
A.

1. For each two distinct i; j 2 Œ1; k0�, we have 3 … L.UiUj/.
2. For each two distinct i; j 2 Œ1; k0� with jUij D jUjj D 5, we have Ui D Uj.
3. For each two distinct i; j 2 Œ1; k0� with jUij D 5 and jUjj D 4, we have
j gcd.Ui;Uj/j D 3.

4. Let i; j 2 Œ1; k0� be distinct with jUij D jUjj D 4, say Ui D f1f2f3.f1 C f2 C f3/
where .f1; f2; f3; f4/ a basis of G. Then Uj D Ui, or Uj D .f1 C f4/.f2 C f4/.f3 C
f4/.f1Cf2Cf3Cf4/, or Uj D f4.f1Cf2Cf4/.f2Cf3Cf4/.f1Cf3Cf4/. Furthermore,
if Ui ¤ Uj, then for all t 2 Œ1; k0� n fi; jg, we have jUtj ¤ 4.

5. Let i; j 2 Œ1; k0� be distinct with jUij D 5 and jUjj D 3. Then there exist
g1; g2; g3 2 G such that g1g2g3 jUi and Uj D .g1 C g2/.g2 C g3/.g3 C g1/.
Furthermore, for all t 2 Œ1; k0� n fi; jg, we have jUtj D 3.

6. Let i; j 2 Œ1; k0� be distinct with jUij D 4 and jUjj D 3. Then j gcd.Ui;Uj/j D
0, and there exist g; g1; g2 2 G such that g jUj, g1g2 jUi and g D g1 C g2.
Furthermore, for all t 2 Œ1; k0� n fi; jg, we have jUtj D 3.

7. For each two distinct i; j 2 Œ1; k0� with jUij D jUjj D 3, we have
j gcd.Ui;Uj/j D 0.

Proof of A.

1. If there exist distinct i; j 2 Œ1; k0� such that 3 2 L.UiUj/, then k C 1 2 L.A/, a
contradiction.

2. Since jUij D 5 and Uj ¤ Ui, there exist g; g1; g2 2 G with g jUj and g1g2 jUi

such that g D g1 C g2. Thus Ui.g1g2/�1g is an atom and Ujg�1g1g1 is a product
of two atoms which implies that 3 2 L.UiUj/, a contradiction.

3. Since jUij D 5 and Uj ¤ Ui, there exist g; g1; g2 2 G with g jUj and g1g2 jUi

such that g D g1Cg2. Thus gg1g2 is an atom and UiUj.gg1g2/�1 is a sequence of
length 6. By 1., 2 … L.UiUj.gg1g2/�1/ which implies that L.UiUj.gg1g2/�1/ D
f3g and hence j gcd.Ui;Uj/j D 3.

4. We set G1 D hf1; f2; f3i and distinguish three cases.
Case (i): Uj 2 B.G1/. Since 3 … L.UiUj/, we obtain that Uj D Ui.
Case (ii): Uj D .g1 C f4/.g2 C f4/g3g4 with g1g2g3g4 2 B.G1/.
If g3; g4 2 ff1; f2; f3; f1 C f2 C f3g, then 3 2 L.UiUj/, a contradiction. Thus,

without loss of generality, we may assume that g3 D f1C f2 … ff1; f2; f3; f1C f2C
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f3g. Thus g3f3.f1 C f2 C f3/ is an atom and .g1 C f4/.g2 C f4/f1f2g4 is a zero-sum
sequence of length 5. Since 3 … L.UiUj/, we have that .g1C f4/.g2C f4/f1f2g4 is
an atom of length 5, a contradiction to the maximality condition in Equation (14).

Case (iii): Uj D .g1C f4/.g2C f4/.g3C f4/.g4C f4/ with g1g2g3g4 2 B.G1/.
First, suppose that g1g2g3g4 is an atom. If g1g2g3g4 ¤ Ui, then there exist an

element h 2 ff1; f2; f3; f1 C f2 C f3g and distinct t1; t2 2 Œ1; 4�, say t1 D 1; t2 D 2,
such that h D g1C g2 D .g1C f4/C .g2C f4/. Thus Uih�1.g1C f4/.g2C f4/ is a
zero-sum sequence of length 5 and h.g3C f4/.g4C f4/ is an atom. It follows that
Uih�1.g1C f4/.g2f4/ is atom of length 5 since 3 … L.UiUj/, a contradiction to the
maximality condition in Equation (14). Therefore g1g2g3g4 D Ui which implies
that Uj D .f1 C f4/.f2 C f4/.f3 C f4/.f1 C f2 C f3 C f4/.

Second, suppose that g1g2g3g4 is not an atom. Without loss of generality, we
may assume that g1 D 0 and g2g3g4 is an atom. If fg2; g3; g4g \ ff1; f2; f3; f1 C
f2 C f3g ¤ ;, say g2 2 ff1; f2; f3; f1 C f2 C f3g, then g2.g3 C f4/.g4 C f4/ is an
atom and Uig�1

2 f4.g2 C f4/ is a zero-sum sequence of length 5. It follows that
Uig�1

2 f4.g2 C f4/ is atom of length 5 because 3 … L.UiUj/, a contradiction to the
maximality condition in Equation (14). Therefore fg2; g3; g4g \ ff1; f2; f3; f1 C
f2 C f3g D ; which implies that g2g3g4 D .f1 C f2/.f2 C f3/.f1 C f3/ and hence
Uj D f4.f1 C f2 C f4/.f2 C f3 C f4/.f1 C f3 C f4/.

Now suppose that Ui ¤ Uj, and assume to the contrary there exists a t 2
Œ1; k0� n fi; jg such that jUtj D 4. If Ut … fUi;Ujg, then UiUjUt D

�
f1f2f3.f1 C

f2 C f3/
��
.f1 C f4/.f2 C f4/.f3 C f4/.f1 C f2 C f3 C f4/

��
f4.f1 C f2 C f4/.f2 C f3 C

f4/.f1 C f3 C f4/
� D �

f1.f2 C f4/.f1 C f2 C f4/
��

f2.f3 C f4/.f2 C f3 C f4/
��

f3.f1 C
f4/.f1 C f3 C f4/

��
f4.f1 C f2 C f3/.f1 C f2 C f3 C f4/

�
. Thus 4 2 L.UiUjUt/ and

hence k C 1 2 L.A/, a contradiction. If Ut 2 fUi;Ujg, then we still have that
4 2 L.UiUjUt/ and hence kC 1 2 L.A/, a contradiction.

5. Since 3 … L.UiUj/, we obtain that j gcd.Ui;Uj/j D 0. Every h 2 supp.Uj/ is
the sum of two distinct elements from supp.Ui/. Thus there exist g1; g2; g3 2 G
with g1g2g3 jUi such that Uj D .g1 C g2/.g2 C g3/.g3 C g1/. Now we choose
an element t 2 Œ1; k0� n fi; jg, and have to show that jUtj D 3. If jUtj D 5,
then Ut D Ui by 2. and hence 4 2 L.UiUtUj/ which implies that k C 1 2
L.A/, a contradiction. Suppose that jUtj D 4 and let Ui D g1g2g3g4g5, where
g4; g5 2 G. Then j gcd.Ui;Ut/j D 3 by 3. and by symmetry we only need to
consider supp.Ut/ n supp.Ui/ � fg1 C g2; g1 C g4; g4 C g5g. All the three cases
imply that 4 2 L.UiUtUj/. It follows that kC 1 2 L.A/, a contradiction.

6. If j gcd.Ui;Uj/j D 2, then 3 2 L.UiUj/, a contradiction. If j gcd.Ui;Uj/j D 1,
then U1U2 D W1W2 with W1;W2 2 A .G/ and jW2j D 5, a contradiction to the
maximality condition in Equation (14). Thus we obtain that j gcd.Ui;Uj/j D 0.
Let .f1; f2; f3; f4/ be a basis and Ui D f1f2f3.f1 C f2 C f3/. Since jUjj D 3, there
exists a g 2 supp.Uj/ such that g 2 hf1; f2; f3i. Since j gcd.Ui;Uj/j D 0, there
exist g1; g2 2 G such that g1g2 jUi and g D g1 C g2.

Now we choose an element t 2 Œ1; k0� n fi; jg and have to show that jUtj D 3.
Note that 5. implies that jUtj ¤ 5, and we assume to the contrary that jUtj D 4.
Without restriction we may assume that g D f1 C f2, and by 4., we distinguish
three cases. If Ut D Ui, then f 21 ; f

2
2 ; gUi.f1f2/�1;Ut.f1f2/�1Ujg�1 are atoms and
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hence 4 2 L.UiUtUj/ which implies that k C 1 2 L.A/, a contradiction. If Ut D
.f1Cf4/.f2Cf4/.f3Cf4/.f1Cf2Cf3Cf4/, then g.f1Cf2Cf3/.f1Cf2Cf3Cf4/.f1Cf4/f2
is an atom of length 5 dividing UiUjUt and UiUjUt.g.f1C f2C f3/.f1C f2C f3C
f4/.f1 C f4/f2/�1 is a product of two atoms, a contradiction to the maximality
condition in Equation (14). If Ut D f4.f1C f2C f4/.f2C f3C f4/.f1C f3C f4/, then
gf2f3f4.f1Cf3Cf4/ is an atom of length 5 dividing UiUjUt and UiUjUt.gf2f3f4.f1C
f3C f4//�1 is a product of two atoms, a contradiction to the maximality condition
in Equation (14).

7. If j gcd.Ui;Uj/j � 2, then Ui D Uj and hence 3 2 L.UiUj/ which implies that
k C 1 2 L.A/, a contradiction. If j gcd.Ui;Uj/j D 1, then UiUj D W1W2 with
W1;W2 2 A .G/, jW1j D 2, and jW2j D 4, a contradiction to the maximality
condition in Equation (14). Therefore j gcd.Ui;Uj/j D 0. This completes the
proof of A. ut
Note that A.5 implies that fjUij j i 2 Œ1; k0�g ¤ f3; 4; 5g. Thus it remains to

discuss the following six subcases.
Case 4.1. fjUij j i 2 Œ1; k0�g D f3; 5g.

By A.5 and A.7, we obtain that jU1j D 5, jU2j D : : : D jUk0 j D 3, and that
U1 � : : : � Uk0 is square-free. This implies that max L.U1 � : : : � Uk0 / D k0, and hence
max L.A/ D max L.U0 � : : : � Uk0 /C k � k0 D k, a contradiction.
Case 4.2. fjUij j i 2 Œ1; k0�g D f3; 4g.

By A.6 and A.7, we obtain that jU1j D 4, jU2j D : : : D jUk0 j D 3, and that
U1 � : : : � Uk0 is square-free. This implies that max L.U1 � : : : � Uk0 / D k0, and hence
max L.A/ D max L.U0 � : : : � Uk0 /C k � k0 D k, a contradiction.
Case 4.3. fjUij j i 2 Œ1; k0�g D f3g.

By A.7, we obtain that U1 � : : : � Uk0 is square-free. This implies that max L.U1 �
: : : � Uk0 / D k0, and hence max L.A/ D max L.U0 � : : : � Uk0 / C k � k0 D k, a
contradiction.
Case 4.4. fjUij j i 2 Œ1; k0�g D f5g.

By A.2, it follows that A D Uk0
1 Uk0C1�: : :�Uk. If supp.Uk0C1�: : :�Uk/ � supp.U1/,

then �.L.A// D f3g, a contradiction. Thus there exists j 2 Œk0 C 1; k� such that
Uj D g2 for some g … supp.U1/. Then there exist g1; g2 2 G such that g1g2 jU1 and
g D g1Cg2. It follows that U2

1Uj D g21g
2
2.U1.g1g2/�1g/2, where g21; g

2
2;U1.g1g2/�1g

are atoms. Therefore 4 2 L.U2
1Uj/ and hence kC 1 2 L.A/, a contradiction.

Case 4.5. fjUij j i 2 Œ1; k0�g D f4g.
Assume to the contrary, that k0 � 3. Then A.4 implies that U1 � : : : � Uk0 D Uk0

1 ,
and we set G1 D hsupp.U1/i. If there exists g 2 supp.Uk0C1 � : : : � Uk/ such that
g 2 G1 n supp.U1/, then 4 2 L.U2

1g2/ and hence k C 1 2 L.A/, a contradiction. If
there exist distinct g1; g2 2 supp.Uk0C1 �: : :�Uk/ such that g1 … G1 and g2 … G1, then
g1 C g2 2 G1. Since g1 C g2 2 supp.U1/ implies that 5 2 L.U2

1g21g
2
2/ and k C 1 2

L.A/, we obtain that g1 C g2 2 G1 n supp.U1/. Then U2
1g21g

2
2 D W2

1W2W3 where
W1;W2;W3 2 A .G/ with jW1j D 4, W1 ¤ U1, and jW2j D jW3j D 2. Say Uk0C1 D
g21 and Uk0C2 D g22. Then W2

1U3 � : : : �Uk0W1W2Uk0C3 � : : : �Uk is a factorization of A
of length k satisfying the maximality condition of Equation (14) and hence applying
A.4 to this factorization, we obtain a contradiction. Therefore supp.Uk0C1 � : : : �
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Uk/ � supp.U1/[fgg where g is independent from supp.U1/ and hence supp.A/ �
supp.U1/ [ fgg which implies that �.L.A// D f2g, a contradiction.

Therefore it follows that k0 D 2. Then U1 D U2 (since otherwise we would have
max L.A/ D k by U1U2 is square-free), and we obtain that L.A/ D Œmin L.A/; k� [
fk C 2g. Assume to the contrary that there exists a W 2 A .G/ such that W jA and
jWj D 5. Then there exist g; g1; g2 2 G such that g jU1, g1g2 jW, and g D g1 C g2,
and hence jfg1; g2g \ supp.U1/j � 1. If fg1; g2g \ supp.U1/ D ;, then there exist
distinct t1; t2 2 Œk0C1; k� such that Ut1 D g21 and Ut2 D g22. Thus 5 2 L.U1U2Ut1Ut2 /

and hence k C 1 2 L.A/, a contradiction. Suppose that jfg1; g2g \ supp.U1/j D 1,
say g1 … supp.U1/ and g2 2 supp.U1/. Then there exists t 2 Œk0 C 1; k� such that
Ut D g21. Therefore 4 2 L.U1U2Ut/ and hence kC 1 2 L.A/, a contradiction.

Thus every atom W with W jA has length jWj < 5. It follows that min L.A/ �
d 2max L.A/

4
e D dmax L.A/

2
e and hence L.A/ 2 L5.

Case 4.6. fjUij j i 2 Œ1; k0�g D f4; 5g.
By A.2, A.3, and A.4, we obtain that jfU1; : : : ;Uk0gj D 2. Without restriction

we may assume that U1 � : : : �Uk0 D Uk1Vk2 where k1; k2 2N with k0 D k1C k2 and
V D e1e2e3.e1Ce2Ce3/ (recall that .e1; : : : ; e4/ is a basis of G, e0 D e1Ce2Ce3Ce4,
and U D e1e2e3e4e0). We claim that

• supp.Uk0C1 � : : : � Uk/ � supp.UV/.
• If k1 � 2, then supp.Uk0C1 � : : : � Uk/ � supp.U/, and
• if k2 � 2, then fe4; e0g š supp.Uk0C1 � : : : � Uk/.

Indeed, assume to the contrary that g 2 supp.Uk0C1 � : : : � Uk/ n supp.UV/. By
symmetry, we only need to consider g D e1 C e2 and g D e1 C e4 and both cases
imply that 4 2 L.UVg2/, a contradiction to k C 1 … L.A/. If k1 � 2 and g D
e1 C e2 C e3 2 supp.Uk0C1 � : : : � Uk/, then 4 2 L.U2g2/ and k C 1 2 L.A/, a
contradiction. Thus if k1 � 2, then supp.Uk0C1 � : : : � Uk/ � supp.U/. If k2 � 2 and
fe4; e0g � supp.Uk0C1 � : : : � Uk/, then 5 2 L.V2e24e

2
0/ and hence k C 1 2 L.A/, a

contradiction.
Thus all three claims are proved, and we distinguish three subcases.

Case 4.6.1. k1 D 1.
If fe4; e0g š supp.Uk0C1 �: : :�Uk/, then L.A/ D L.UVk2 /Ck�k0 D L.Vk0 /Ck�k0

and hence �.L.A// D f2g, a contradiction. If fe4; e0g � supp.Uk0C1 � : : : � Uk/,
then k2 D 1 and we may assume that Uk0C1 D e24 and that Uk0C2 D e20. Then
L.A/ D L.UVUk0C1Uk0C2/C k � k0 � 2 D fk � 1; k; kC 2g with k � 4, and hence
L.A/ 2 L5.
Case 4.6.2. k1 � 2 and k2 � 2.

Thus supp.Uk0C1 � : : : � Uk/ is independent and it follows that supp.Uk0C1 � : : : �
Uk/ � fe1; e2; e3; e4g or supp.Uk0C1 � : : : � Uk/ � fe1; e2; e3; e0g. Then we have
L.A/ D L.Uk1Vk2 /C k � k0. By Equation (11), L.Uk1Vk2 / is equal to

( fk0g [ Œk0 C 2; 5bk1=2c C 4.k0=2� bk1=2c/� if k0 D k1 C k2 is even ;

fk0g [ Œk0 C 2; 5bk1=2c C 4..k0 � 1/=2� bk1=2c/C 1� if k0 D k1 C k2 is odd :
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Let ` D max L.Uk1Vk2 / � k0 � 2 and hence

` D

8
ˆ̂
<

ˆ̂:

k0 C bk1
2
c � 2 if k0 � 4 is even ;

k0 C bk1
2
c � 3 if k0 � 5 is odd :

Since k1 � 2 and k2 � 2, we obtain that ` � 3 and ` ¤ 4. We also have that

` �

8
ˆ̂<

ˆ̂:

k0 C bk0 � 2
2
c � 2 D 3k0

2
� 3 if k0 is even ;

k0 C bk0 � 2
2
c � 3 D 3k0 � 9

2
if k0 is odd :

Therefore

k0 �

8
ˆ̂<

ˆ̂:

2`

3
C 2 if k0 is even ;

2`

3
C 3 if k0 is odd ;

and hence

k0 �

8
ˆ̂
<

ˆ̂:

2d`
3
e C 2 if k0 is even ;

2d`
3
e C 2 if k0 is odd :

It follows that L.Uk1Vk2 / 2 L6 which implies that L.A/ 2 L6.
Case 4.6.3. k1 � 2 and k2 D 1.

Then supp.Uk0C1 �: : :�Uk/ � fe1; e2; e3; e4; e0g. If fe4; e0g š supp.Uk0C1 �: : :�Uk/,
then L.A/ D L.Uk1V/C k � k0 is equal to

(
kC f0; 2; 3g C 3 � Œ0; k1=2 � 1�; if k1 is even ;

kC f0; 2; 3g C 3 � Œ0; .k1 � 1/=2 � 1� [ fkC .3k1 � 3/=2C 2g; if k1 is odd

by Equation (12). Therefore L.A/ 2 L8.
If fe4; e0g � supp.Uk0C1 � : : : � Uk/, then we may assume that Uk0C1 D e24 and

that Uk0C2 D e20. Thus

L.A/ D L.Uk1VUk0C1Uk0C2/C k � k0 � 2

D
(

k � 1C f0; 1; 3g C 3 � Œ0; .k1 C 1/=2 � 1�; if k1 is odd ;

k � 1C f0; 1; 3g C 3 � Œ0; k1=2 � 1� [ fkC 3k1=2C 1g; if k1 is even ;

by Equation (13) and hence L.A/ 2 L7. ut
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5 Sets of Lengths of Weakly Krull Monoids

It is well known that—under reasonable algebraic finiteness conditions—the Struc-
ture Theorem for Sets of Lengths holds for weakly Krull monoids (as it is true
for transfer Krull monoids of finite type, see Proposition 3.2). In spite of this
common feature we will demonstrate that systems of sets of lengths for a variety
of classes of weakly Krull monoids are different from the system of sets of lengths
of any transfer Krull monoid (apart from well-described exceptional cases; see
Theorems 5.5 to 5.8). Since half-factorial monoids are transfer Krull monoids, and
since there are half-factorial weakly Krull monoids, half-factoriality is such a natural
exceptional case.

So far there are only a couple of results in this direction. In [15], Frisch showed
that Int.Z/, the ring of integer-valued polynomials over Z, is not a transfer Krull
domain (nevertheless, the system of sets of lengths of Int.Z/� coincides with L .G/
for an infinite abelian group G). To mention a result by Smertnig, let O be the ring
of integers of an algebraic number field K, A a central simple algebra over K, and R
a classical maximal O-order of A. Then R is a noncommutative Dedekind domain
and in particular an HNP ring (see [32, Sections 5.2 and 5.3]). Furthermore, R is
a transfer Krull domain if and only if every stably free left R-ideal is free ([35,
Theorems 1.1 and 1.2]).

We gather basic concepts and properties of weakly Krull monoids and domains
(Propositions 5.1 and 5.2). In the remainder of this section, all monoids and domains
are supposed to be commutative.

Let H be a monoid (hence commutative, cancellative, and with unit element). We
denote by q.H/ the quotient group of H, by Hred D H=H� the associated reduced
monoid of H, by X.H/ the set of minimal nonempty prime s-ideals of H, and by
m D H n H� the maximal s-ideal. Let I �

v .H/ denote the monoid of v-invertible
v-ideals of H (with v-multiplication). Then Fv.H/� D q.I �

v .H// is the quotient
group of fractional v-invertible v-ideals, and Cv.H/ D Fv.H/�=fxH j x 2 q.H/g
is the v-class group of H (detailed presentations of ideal theory in commutative
monoids can be found in [18, 30]). We denote by bH � q.H/ the complete integral
closure of H, and by .HWbH/ D fx 2 q.H/ j xbH � Hg � H the conductor of H.
A submonoid S � H is said to be saturated if S D q.S/ \ H. For the definition
and discussion of the concepts of being faithfully saturated or being locally tame we
refer to [18, Sections 1.6 and 3.6].

To start with the local case, we recall that H is said to be

• primary if m ¤ ; and for all a; b 2 m there is an n 2N such that bn � aH.
• strongly primary if m ¤ ; and for every a 2 m there is an n 2 N such that

mn � aH. We denote by M .a/ the smallest n having this property.
• a discrete valuation monoid if it is primary and contains a prime element

(equivalently, Hred Š .N0;C/).
Furthermore, H is said to be
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• weakly Krull ([30, Corollary 22.5]) if

H D
\

p2X.H/
Hp and fp 2 X.H/ j a 2 pg is finite for all a 2 H :

• weakly factorial if one of the following equivalent conditions is satisfied ([30,
Exercise 22.5]) :

– Every nonunit is a finite product of primary elements.
– H is a weakly Krull monoid with trivial t-class group.

Clearly, every localization Hp of H at a minimal prime ideal p 2 X.H/ is primary,
and a weakly Krull monoid H is v-noetherian if and only if Hp is v-noetherian for
each p 2 X.H/. Every v-noetherian primary monoid H is strongly primary and v-
local, and if .HWbH/ ¤ ;, then H is locally tame ([26, Lemma 3.1 and Corollary
3.6]). Every strongly primary monoid is a primary BF-monoid ([18, Section 2.7]).
Therefore the coproduct of a family of strongly primary monoids is a BF-monoid,
and every coproduct of a family of primary monoids is weakly factorial. A v-
noetherian weakly Krull monoid H is weakly factorial if and only if Cv.H/ D 0

if and only if Hred Š I �
v .H/.

By a numerical monoid H we mean an additive submonoid of .N0;C/ such that
N0nH is finite. Clearly, every numerical monoid is v-noetherian primary, and hence
it is strongly primary. Note that a numerical monoid is half-factorial if and only if it
is equal to .N0;C/.

Let R be a domain. Then R� D R n f0g is a monoid, and all arithmetic and
ideal theoretic concepts introduced for monoids will be used for domains in the
obvious way. The domain R is weakly Krull (resp. weakly factorial) if and only if
its multiplicative monoid R� is weakly Krull (resp. weakly factorial). Weakly Krull
domains were introduced by Anderson, Anderson, Mott, and Zafrullah [2, 3]. We
recall some most basic facts and refer to an extended list of weakly Krull domains
and monoids in [29, Examples 5.7]. The monoid R� is primary if and only if R is
one-dimensional and local. If R is one-dimensional local Mori, then R� is strongly
primary and locally tame ([19]). Furthermore, every one-dimensional semilocal
Mori domain with nontrivial conductor is weakly factorial and the same holds true
for generalized Cohen-Kaplansky domains. It can be seen from the definition that
one-dimensional noetherian domains are v-noetherian weakly Krull domains.

Proposition 5.1 summarizes the main algebraic properties of v-noetherian weakly
Krull monoids and Proposition 5.2 recalls that their arithmetic can be studied via
weak transfer homomorphisms to weakly Krull monoids of very special form.

Proposition 5.1 Let H be a v-noetherian weakly Krull monoid.

1. The monoid I �
v .H/ is isomorphic to the coproduct of .Hp/red over all p 2 X.H/.

In particular, I �
v .H/ is weakly factorial and v-noetherian.

2. Suppose that f D .HWbH/ ¤ ;. We set P� D fp 2 X.H/ j p  fg, and P D
X.H/ nP�.
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a. Then bH is Krull, P� is finite, and Hp is a discrete valuation monoid for each
p 2P . In particular, I �

v .H/ is isomorphic to F .P/ �Qp2P�.Hp/red.
b. If H D faH j a 2 Hg is the monoid of principal ideals of H, then H �

I �
v .H/ is saturated. Moreover, if H is the multiplicative monoid of a domain,

then all monoids Hp are locally tame and H � I �
v .H/ is faithfully saturated.

Proof

1. See [29, Proposition 5.3].
2. For (a) we refer to [18, Theorem 2.6.5] and for (b) we refer to [18, Theorems

3.6.4 and 3.7.1]. ut
Proposition 5.2 Let D D F .P/�Qn

iD1 Di be a monoid, where P � D is a set of
primes, n 2 N0, and D1; : : : ;Dn are reduced primary monoids. Let H � D be a
saturated submonoid, G D q.D/=q.H/, and GP D f p q.H/ j p 2Pg � G the set
of classes containing primes.

1. There is a saturated submonoid B � F D F .GP/�Qn
iD1 Di and a weak transfer

homomorphism 	 WH ! B. Moreover, if G is a torsion group, then there is a
monomorphism q.F/=q.B/! G.

2. If G is a torsion group, then H is weakly Krull.

Proof

1. See [18, Propositions 3.4.7 and 3.4.8].
2. See [29, Lemma 5.2].

ut
Note that, under the assumption of 5.1.2, the embedding H ,! I �

v .H/ fulfills
the assumptions imposed on the embedding H ,! D in Proposition 5.2. Thus
Proposition 5.2 applies to v-noetherian weakly Krull monoids. For simplicity and in
order to avoid repetitions, we formulate the next results (including Theorem 5.7) in
the abstract setting of Proposition 5.2. However, v-noetherian weakly Krull domains
and their monoids of v-invertible v-ideals are in the center of our interest.

If (in the setting of Proposition 5.2) GP is finite, then F D F .GP/�Qn
iD1 Di

is a finite product of primary monoids and B � F is a saturated submonoid. We
formulate the main structural result for sets of lengths in v-noetherian weakly Krull
monoids in this abstract setting.

Proposition 5.3 Let D1; : : : ;Dn be locally tame strongly primary monoids and H �
D D D1�: : :� Dn a faithfully saturated submonoid such that q.D/=q.H/ is finite.

1. The monoid H satisfies the Structure Theorem for Sets of Lengths.
2. There is a finite abelian group G such that for every L 2 L .H/ there is a y 2N

such that yC L 2 L .G/.

Proof 1. follows from [18, Theorem 4.5.4], and 2. follows from 1. and from
Proposition 3.2.2. ut
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The next lemma on zero-sum sequences will be crucial in order to distinguish
between sets of lengths in weakly Krull monoids and sets of lengths in transfer
Krull monoids.

Lemma 5.4 Let G be an abelian group and G0 � G a non-half-factorial subset.

1. There exists a half-factorial subset G1 � G0 with B.G1/ ¤ f1g.
2. There are M 2 N and zero-sum sequences Bk 2 B.G0/ for every k 2 N such

that 2 � jL.Bk/j � M but min L.Bk/!1 as k!1.

Proof

1. Since G0 is not half-factorial, there is a B 2 B.G0/ such that jL.B/j > 1. Thus
supp.B/ is finite and not half-factorial, say supp.B/ D fg1; : : : ; g`g with ` � 2.
Without restriction we may suppose that every proper subset of fg1; : : : ; g`g is
half-factorial. Assume to the contrary that for every subset G1 ¨ fg1; : : : ; g`g
we have B.G1/ D f1g. Since fg1; : : : ; g`g is minimal non-half-factorial, there is
an atom A1 2 A .fg1; : : : ; g`g/ such that vgi.A1/ > 0 for every i 2 Œ1; `�. Since
fg1; : : : ; g`g is not half-factorial, there is an atom A2 2 A .fg1; : : : ; g`g/ distinct
from A1, say

A1 D gk1
1 � : : : � gk`

` and A2 D gt1
1 � : : : � gt`

`

where ki 2 N and ti 2 N0 for every i 2 Œ1; `�. Let � 2 Œ1; `� such that t�
k�
D

maxf tj
kj
j j 2 Œ1; `�g. Then kjt� � tjk� � 0 for every j 2 Œ1; `� whence

W D At�
2 A�k�

1 2 B.fg1; : : : ; g`g n fg�g/ ;

which implies that W D 1. Therefore t�
k�
D tj

kj
for every j 2 Œ1; `� and hence

A1 jA2 or A2 jA1, a contradiction.
2. Let B 2 B.G0/ with jL.B/j > 1. By 1., there exists a half-factorial subset G1 ¨

G0 such that B.G1/ ¤ f1g. Let A 2 A .G1/ and Bk D AkB for every k 2 N.
Obviously there exists k0 2 N such that L.Bk/ D L.Ak�k0 / C L.Bk0 / D k �
k0 C L.Bk0 / for every k � k0. Thus jL.Bk/j � max L.Bk0 / � min L.Bk0 / and
min L.Bk/ D k � k0 Cmin L.Bk0 /. ut
Now we consider strongly primary monoids and work out a feature of their

systems of sets of lengths which does not occur in the system of sets of lengths
of any transfer Krull monoid. To do so we study the set f�.L/ j L 2 L .H/g of
elasticities of all sets of lengths. This set was studied first by Chapman et al. in a
series of papers (see [6–8, 11]). Among others they showed that in an atomic monoid
H, which has a prime element and an element a 2 H with �.L.a// D �.H/, every
rational number q with 1 � q � �.H/ can be realized as the elasticity of some
L 2 L .H/ ([6, Corollary 2.2]). Primary monoids, which are not discrete valuation
monoids, have no prime elements and their set of elasticities is different, as we will
see in the next theorem. Statement 1. of Theorem 5.5 was proved for numerical
monoids in [11, Theorem 2.2].
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Theorem 5.5 Let H be a strongly primary monoid that is not half-factorial.

1. There is a ˇ 2 Q>1 such that �.L/ � ˇ for all L 2 L .H/ with �.L/ ¤ 1.
2. L .H/ ¤ L .G0/ for any subset G0 of any abelian group. In particular, H is not

a transfer Krull monoid.
3. If one of the following two conditions holds, then H is locally tame.

• supfmin L.c/ j c 2 Hg <1.
• There exists some u 2 H n H� such that �M .u/.H/ <1.

If H is locally tame, then �.H/ is finite, and there is an M 2N0 such that every
L 2 L .H/ is an AAMP with period f0;min�.H/g and bound M.

Remark If H is the multiplicative monoid of a one-dimensional local Mori domain R
with nonzero conductor .RWbR/ ¤ f0g, then one of the conditions in 3. is satisfied (see
[18, Proposition 2.10.7 and Theorem 3.1.5]). However, there are strongly primary
monoids for which none of the conditions holds and which are not locally tame ([26,
Proposition 3.7]).

Proof

1. Let b 2 H such that jL.b/j � 2 and let u 2 A .H/. Since H is a strongly primary
monoid, we have .H n H�/M .b/ 2 bH and .H n H�/M .u/ 2 uH. Thus b j uM .b/

and hence jL.uM .b//j � 2. We define

ˇ1 D M .b/CM .u/C 1
M .b/CM .u/

; ˇ2 D max L.uM .b//CM .b/CM .u/

min L.uM .b//CM .b/CM .u/
;

and observe that ˇ D minfˇ1; ˇ2g > 1. Let a 2 H with �.L.a// ¤ 1. We show
that �.L.a// � ˇ.

Let k 2 N0 be maximal such that uk j a, say a D uku0 with u0 2 H. Thus
u − u0 and thus max L.u0/ <M .u/. If k <M .b/, then min L.a/ � min L.uk/C
min L.u0/ �M .b/CM .u/, and hence

�.L.a// D max L.a/
min L.a/

� min L.a/C 1
min L.a/

� M .b/CM .u/C 1
M .b/CM .u/

D ˇ1 � ˇ :

If k � M .b/, then there exist t 2 N and t0 2 Œ0;M .b/ � 1� such that k D
tM .b/C t0, and hence

�.L.a// D max L.a/
min L.a/

� max L.uk/Cmax L.u0/
min L.uk/Cmin L.u0/

� t max L.uM .b//Cmax L.ut0 /Cmax L.u0/
t min L.uM .b//Cmin L.ut0 /Cmin L.u0/

� t max L.uM .b//C t0 Cmax L.u0/
t min L.uM .b//C t0 Cmax L.u0/
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� t max L.uM .b//CM .b/CM .u/

t min L.uM .b//CM .b/CM .u/
� ˇ2 � ˇ :

2. Assume to the contrary that there are an abelian group G and a subset G0 � G
such that L .H/ D L .G0/. Since H is not half-factorial, G0 is not half-factorial.
By 1., there exists ˇ 2 Q with ˇ > 1 such that �.L/ � ˇ for every L 2 L .H/.
Lemma 5.4.2 implies that there are zero-sum sequences Bk 2 B.G0/ such that
�.L.Bk//! 1 as k!1, a contradiction.

3. This follows from [18, 3.1.1, 3.1.2, and 4.3.6]. ut
Sets of lengths of numerical monoids have found wide attention in the literature

(see, among others, [1, 9, 14]). As can be seen from Theorem 5.5.3, the structure
of their sets of lengths is simpler than the structure of sets of lengths of transfer
Krull monoids over finite abelian groups. Thus it is no surprise that there are
infinitely many non-isomorphic numerical monoids whose systems of sets of lengths
coincide, and that an analog of Conjecture 3.4 for numerical monoids does not hold
true ([1]). It is open whether for every d 2N and every M 2N0 there is a strongly
primary monoid D such that every AAMP with period f0; dg and bound M can (up to
a shift) be realized as a set of lengths in D (this would be the analog to the realization
theorem given in Proposition 3.2.2). However, for every finite set L �N�2 there is
a v-noetherian primary monoid D and an element a 2 D such that L D L.a/ ([26,
Theorem 4.2]).

By Theorem 3.6 and Proposition 3.2.3, we know that fk; k C 1g 2 L .G/ for
every k � 2 and every abelian group G with jGj � 3. Furthermore, Theorem 3.7 is
in sharp contrast to Theorem 5.6.1.

Theorem 5.6 Let D D D1 � : : : � Dn be the direct product of strongly primary
monoids D1; : : : ;Dn, which are not half-factorial.

1. For every finite nonempty set L �N, there is a yL 2N0 such that yCL … L .D/
for any y � yL.

2. We have L .D/ ¤ L .G0/ for any subset G0 of any abelian group, and hence D
is not a transfer Krull monoid. If D1; : : : ;Dn are locally tame, then D satisfies
the Structure Theorem for Sets of Lengths.

Proof For every i 2 Œ1; n� we choose an element ai 2 Di such that jL.ai/j > 1.

1. Let L � N be a finite nonempty set and let yL D jLj.M .a1/ C : : : CM .an//.
Assume to the contrary that there are y � yL and an element b D b1 � : : : � bn 2
D such that L.b/ D y C L. Then there is an i 2 Œ1; n� such that min L.bi/ �
jLjM .ai/. Then bi 2 .Di n D�

i /
min L.bi/ � .Di n D�

i /
jLjM .ai/ � ajLj

i Di. Thus there

is a ci 2 Di such that ajLj
i ci D bi. This implies that jLjL.ai/ C L.ci/ � L.bi/.

Since jL.ai/j � 2, we infer that jL.bi/j � jLj C 1 and hence jLj D jy C Lj D
jL.b/j � jL.bi/j � jLj C 1, a contradiction.

2. By 1. and Lemma 5.4.2, the first conclusion follows.
If D1; : : : ;Dn are locally tame, then D satisfies the Structure Theorem by

Proposition 5.3.1. ut



Systems of Sets of Lengths 231

Theorem 5.7 Let D D F .P/ � D1 be the direct product of a free abelian monoid
with nonempty basis P and of a locally tame strongly primary monoid D1, and let
G be an abelian group. Then D satisfies the Structure Theorem for Sets of Lengths,
and the following statements are equivalent :

(a) L .D/ D L .G/.
(b) One of the following cases holds :

(b1) jGj � 2 and �.D/ D 1.
(b2) G is isomorphic either to C3 or to C2 ˚ C2, Œ2; 3� 2 L .D/, �.D/ D 3=2,

and �.D/ D f1g.
(b3) G is isomorphic to C3˚C3, Œ2; 5� 2 L .D/, �.D/ D 5=2, and�.D/ D f1g.

Remark Let H be a v-noetherian weakly Krull monoid. If the conductor .HWbH/ 2 v-
max.H/, then by Proposition 5.1, I �

v .H/ is isomorphic to a monoid D as given in
Theorem 5.7.

Proof Since P is nonempty, L .D/ D fy C L j y 2 N0;L 2 L .D1/g whence
�.D/ D �.D1/ and �.D/ D �.D1/. In particular, D is half-factorial if and only if
D1 is half-factorial. Since D1 satisfies the Structure Theorem of Sets of Lengths by
Theorem 5.5.3, the same is true for D.

If D is half-factorial and L .D/ D L .G/, then �.D/ D �.D1/ D 1 and G is half-
factorial whence jGj � 2 by Proposition 3.3. Conversely, if jGj � 2 and �.D/ D 1,
then G and D are half-factorial and L .G/ D L .D/.

Thus from now on we suppose that D1 is not half-factorial and that (b1) does not
hold. Then �.D/ ¤ ; and we set min�.D/ D d.

(a)) (b) Theorem 5.5.3 and Proposition 3.2.3 imply that G is finite. Since G is
not half-factorial, it follows that jGj � 3. Theorem 5.5.3 shows that �1.D/ D fdg,
and since 1 2 �1.G/ D �1.D/, we infer that d D 1. Corollary 4.3.16 in [18] and
[25, Theorem 1.1] imply that

maxfexp.G/ � 2; r.G/ � 1g D max�1.G/ D max�1.D/ D 1 :

Therefore G is isomorphic to one of the following groups: C2 ˚ C2, C3, C3 ˚ C3.
We distinguish two cases.
Case 1: G is isomorphic to C2 ˚ C2 or to C3.

By Proposition 3.3, we have

L .D/ D L .C2 ˚ C2/ D L .C3/ D fyC 2kC Œ0; k� j y; k 2N0g :

In particular, we have 3=2 D �.G/ D �.D/ and f1g D �.G/ D �.D/.
Case 2: G is isomorphic to C3 ˚ C3.

By Theorem 4.1, just using different notation, we have

L .D/ D L .C2
3/ D fŒ2k; `� j k 2N0; ` 2 Œ2k; 5k�g
[ fŒ2kC 1; `� j k 2N; ` 2 Œ2kC 1; 5kC 2�g [ ff1gg :
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In particular, we have 5=2 D �.G/ D �.D/ and f1g D �.G/ D �.D/.
(b)) (a) First suppose that Case (b2) holds. We show that

L .D/ D ˚yC 2kC Œ0; k� ˇ̌ y; k 2N0

�
:

Then L .D/ D L .G/ by Proposition 3.3. Since �.D/ D 3=2 and �.D/ D f1g, it
follows that L .D/ is contained in the above family of sets. Thus we have to verify
that for every y; k 2 N0, the set y C Œ2k; 3k� 2 L .D/. Since P is nonempty, D
contains a prime element and hence it suffices to show that Œ2k; 3k� 2 L .D/ for all
k 2 N. Let a 2 D with L.a/ D f2; 3g, and let k 2 N. Then min L.ak/ � 2k and
max L.ak/ � 3k. Since �.L.ak// � �.D/ D 3=2, it follows that min L.ak/ D 2k and
max L.ak/ D 3k. Since �.D/ D f1g, we finally obtain that L.ak/ D Œ2k; 3k�.

Now suppose that Case (b3) holds. We show that L .D/ is equal to

fŒ2k; `� j k 2N0; ` 2 Œ2k; 5k�g [ fŒ2kC1; `� j k 2N; ` 2 Œ2kC1; 5kC2�g[ff1gg :

Then L .D/ D L .G/ by Theorem 4.1. Since �.D/ D 5=2 and �.D/ D f1g, it
follows that L .D/ is contained in the above family of sets. Now the proof runs
along the same lines as the proof in Case (b2). ut

We show that the Cases (b2) and (b3) in Theorem 5.7 can actually occur. Recall
that numerical monoids are locally tame and strongly primary. Let D1 be a numerical
monoid distinct from .N0;C/, say A .D1/ D fn1; : : : ; ntg where t 2 N�2 and
1 < n1 < : : : < nt. Then, by [11, Theorem 2.1] and [9, Proposition 2.9],

�.D1/ D nt

n1
and min�.D1/ D gcd.n2 � n1; : : : ; nt � nt�1/ :

Suppose that �.D1/ D m=2 with m 2 f3; 5g and �.D1/ D f1g. Then there is an
a 2 D1 with L.a/ D Œ2;m� 2 L .D1/. Clearly, there are non-isomorphic numerical
monoids with elasticity m=2 and set of distances equal to f1g.
Theorem 5.8 Let R be a v-noetherian weakly Krull domain with conductor f0g ¨
f D .RWbR/ ¨ R, and let � WX.bR/ ! X.R/ be the natural map defined by �.P/ D
P \ R for all P 2 X.bR/.

1. a. I �
v .H/ is locally tame with finite set of distances, and it satisfies the Structure

Theorem for Sets of Lengths.
b. If � is not bijective, then L

�
I �
v .H/

� ¤ L .G0/ for any finite subset G0 of any
abelian group and for any subset G0 of an infinite cyclic group. In particular,
I �
v .H/ is not a transfer Krull monoid of finite type.

c. If R is seminormal, then the following statements are equivalent :

i. � is bijective.
ii. I �

v .H/ is a transfer Krull monoid of finite type.
iii. I �

v .H/ is half-factorial.
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2. Suppose that the class group Cv.R/ is finite.

a. The monoid R� of nonzero elements of R is locally tame with finite set of
distances, and it satisfies the Structure Theorem for Sets of Lengths.

b. If � is not bijective, then L .R�/ ¤ L .G0/ for any finite subset G0 of any
abelian group and for any subset G0 of an infinite cyclic group. In particular,
R is not a transfer Krull domain of finite type.

c. If � is bijective, R is seminormal, every class of Cv.R/ contains a p 2
X.R/ with p ¡ f, and the natural epimorphism ıWCv.R/ ! Cv.bR/ is
an isomorphism, then there is a weak transfer homomorphism 	 WR� !
B.Cv.R//. In particular, R is a transfer Krull domain of finite type.

Proof Since f ¤ R, it follows that R ¤ bR and that R is not a Krull domain. We use
the structural description of I �

v .H/ as given in Proposition 5.1.
1.(a) and 2.(a) Both monoids, R� and I �

v .H/, are locally tame with finite set
of distances by [18, Theorem 3.7.1]. Furthermore, they both satisfy the Structure
Theorem for Sets of Lengths by Proposition 5.3 (use Propositions 5.1 and 5.2).

1.(b) and 2.(b) Suppose that � is not bijective. Then �
�
I �
v .H/

� D �.R�/ D 1
by [18, Theorems 3.1.5 and 3.7.1]. Let G0 be a finite subset of an abelian group G.
Then B.G0/ is finitely generated, the Davenport constant D.G0/ is finite whence the
set of distances �.G0/ and the elasticity �.G0/ are both finite (see [18, Theorems
3.4.2 and 3.4.11]). Thus L

�
I �
v .H/

� ¤ L .G0/ and L .R�/ ¤ L .G0/. If G0 is a
subset of an infinite cyclic group, then the set of distances is finite if and only if the
elasticity is finite by [27, Theorem 4.2], and hence the assertion follows again.

1.(c) Suppose that R is seminormal. By 1.(b) and since half-factorial monoids
are transfer Krull monoids of finite type, it remains to show that � is bijective if
and only if I �

v .H/ is half-factorial. Since R is seminormal, all localizations Rp with
p 2 X.H/ are seminormal. Thus I �

v .H/ is isomorphic to a monoid of the form
F .P/�D1�: : :�Dn, where n 2 N and D1; : : : ;Dn are seminormal finitely primary
monoids, and this monoid is half-factorial if and only if each monoid D1; : : : ;Dn

is half-factorial. By [29, Lemma 3.6], Di is half-factorial if and only if it has rank
one for each i 2 Œ1; n�, and this is equivalent to � being bijective (see [18, Theorem
3.7.1]).

2.(c) This follows from [29, Theorem 5.8]. ut
Note that every order R in an algebraic number field is a v-noetherian weakly

Krull domain with finite class group Cv.R/ such that every class contains a p 2
X.R/ with p ¡ f. If R is a v-noetherian weakly Krull domain as above, then
Theorems 5.5, 5.6, and 5.7 provide further instances of when R is not a transfer
Krull domain, but a characterization of the general case remains open. We formulate
the following problem (see also [17, Problem 4.7]).

Problem 5.9 Let H be a v-noetherian weakly Krull monoid with nonempty
conductor .HWbH/ and finite class group Cv.H/. Characterize when H and when the
monoid I �

v .H/ are transfer Krull monoids, resp., transfer Krull monoids of finite
type.
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Corner’s Realization Theorems from the
Viewpoint of Algebraic Entropy

Brendan Goldsmith and Luigi Salce

In memoriam Rüdiger Göbel

Abstract The realization theorems for reduced torsion-free rings as endomorphism
rings of reduced torsion-free Abelian groups, proved by Corner in his celebrated
papers, are applied to the rings of integral polynomials ZŒX� and the power series
ring ZŒŒX��, and are compared with another realization theorem proved in Corner’s
paper on Hopficity in torsion-free groups, and with some variation of his results. The
ZŒX�-module structure of the groups obtained from these different constructions is
investigated looking at the cyclic trajectories of their endomorphisms, and at the
corresponding values of the intrinsic algebraic entropy fent.

Keywords Abelian groups • Endomorphism rings • Finite topology • Intrinsic
algebraic entropy
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1 Introduction

In the early 1960s, Corner proved in [2, 3] and [4] a number of realization
theorems for reduced torsion-free rings as endomorphism rings of reduced torsion-
free Abelian groups, which are among some of the most remarkable results obtained
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in the theory of torsion-free Abelian groups. We start recalling these results which
will then be re-examined from the viewpoint of the intrinsic algebraic entropy used
for torsion-free Abelian groups. It is worthwhile remarking that these theorems
provide explicit constructions of the groups with prescribed endomorphism ring.
Throughout we shall deal with additively written Abelian groups usually omitting
the adjective “Abelian.”

Theorem 1 (Theorem A in [2]) Every countable reduced torsion-free ring A is
isomorphic to the endomorphism ring of a countable reduced torsion-free group G.

The second result is specific for the ring of integral polynomials ZŒX�. To explain
its meaning, recall that a group G is Hopfian if every epic endomorphism of G is
an automorphism. A feature of Theorem 1, not explicitly mentioned in the original
work [2], but highlighted in Lemma 1 of [3], is that, when a countable reduced
torsion-free ring having no left zero divisors is realized as the endomorphism ring
of a countable reduced torsion-free group G, the group G is necessarily Hopfian.
This depends on the fact that every non-zero endomorphism of G is then injective.

In particular if R is a countable reduced torsion-free integral domain (such
as ZŒX�), then any group realizing R as an endomorphism ring via the Corner
construction is Hopfian. A similar phenomenon persists in more recent realizations
using Black Box techniques and also in the standard realization constructions
assuming the set-theoretic hypothesis (V D L) – see Theorem 2.11 in [18] for some
discussion of this.

Theorem 2 (Example 1 in [3]) There exists a torsion-free non-Hopfian group of
countable rank H such that the polynomial ring ZŒX� is isomorphic to End.H/.

We will extend Theorem 2 to a more general result in Theorem 5.
The next result is a characterization of the endomorphism rings of countable

reduced torsion-free groups (we note that, differently from Corner, we consider the
endomorphisms acting on the left).

Theorem 3 (Theorem 1.1 in [4]) A topological ring A is isomorphic to the
endomorphism ring End.G/ of a countable, reduced, torsion-free group G, endowed
with the finite topology finG, if and only if it is Hausdorff and complete, with
a basis of neighborhoods of zero consisting of a descending chain of left ideals
N1 � N2 � � � � such that, for each integer k � 1, A=Nk is a countable, reduced, and
torsion-free group.

We will give also a detailed proof of Theorem 4 below, whose key idea goes
back to Corner. The first author discovered an outline construction in a hand-written
manuscript which appears to be an early draft of the final work [4]; no comparable
result appeared in the printed edition. We have modified this outline to take full
advantage of the simplified proof of Theorem 3 which appeared in [4]. It is, of
course, true that more modern realization theorems can give similar, and indeed
considerably more general, results (see, for instance, [5] and [16]), but the simpler
approach of Corner has considerable advantages when applying the realization
result to problems concerning entropy.
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Theorem 4 Let A be a non-discrete topological ring satisfying the equivalent
conditions of Theorem 3. Then there exists a reduced torsion-free group H of
cardinality 2@0 such that End.H/ Š A and the finite topology finH on End.H/ is
the discrete one.

We remark that such a discrete realization requires the group H to be uncount-
able: it is an easy exercise to show that if jGj < jEnd.G/j then End.G/ cannot be
discrete in the finite topology (see Exercise 3, p. 223 in [13]).

The main goal of this paper is to apply the above theorems when the ring A
coincides either with the integral polynomial ring ZŒX� or with the power series
ring ZŒŒX��. We analyze the structure of the groups constructed by means of the
preceding theorems as ZŒX�-modules, and we focus on their differing behavior with
respect to the intrinsic algebraic entropy fent investigated in [10] and [17] (see next
section for its definition). Recall that the intrinsic algebraic entropy, when computed
for endomorphisms of torsion groups, coincides with the algebraic entropy ent, first
defined in [1] and investigated in depth in [9].

There exist two more entropies normally used for torsion-free groups, namely
the rank-entropy entrk introduced in [22] and investigated in [15], and the entropy
h introduced by Peters for automorphisms in [20] and recently extended to
endomorphisms by Dikranjan and Giordano Bruno in [8]. We will not consider
them, referring to [15] for results on entrk in the same vein as those obtained in this
paper, and leaving the behavior with respect to the entropy h to future investigation.

In Sect. 2 we provide the preliminary notions needed to deal with trajectories and
the intrinsic algebraic entropy; we also introduce the new notion of intrinsic Pinsker
subgroup of a group endowed with an endomorphism, in analogy with the notion of
Pinsker subgroup defined in [7] for the entropy h.

In Sect. 3 first we derive the properties satisfied by any group whose endo-
morphism ring is isomorphic to ZŒX�, showing that every endomorphism of these
groups different from multiplication by an integer has infinite intrinsic algebraic
entropy. Then, a close analysis of the group G obtained from Corner’s construction
of Theorem 1, and of the group H obtained from Theorem 2, will make evident the
differences between the two groups, with respect to their ZŒX�-module structure.
In fact, G turns out to be a torsion-free ZŒX�-module of countable rank, while H
is a mixed ZŒX�-module of finite rank, whose structure is investigated in detail.
The entropy fent will be computed for the endomorphism ! corresponding to the
multiplication by the indeterminate X for both of the groups G and H, and their
intrinsic Pinsker subgroups will be determined.

In Sect. 4, we compare the ZŒX�-module structure of a group G obtained from
Theorem 3, whose endomorphism ring, endowed with the finite topology, is isomor-
phic (algebraically and topologically) to ZŒŒX�� endowed with the X-adic topology,
and that of a group H obtained from Theorem 4, whose endomorphism ring,
endowed with the finite topology, is isomorphic (algebraically and topologically)
to ZŒŒX�� endowed with the discrete topology. The most remarkable difference is
that in the first case fent.�/ D 0 for every endomorphism � of G, while H has
endomorphisms  such that fent. / D 1, resembling what was proved for the
rank-entropy entrk in [15].
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Finally, in accord with what was proved in [15] and [21], we will show in Sect. 5
that, given two groups G and H with an isomorphism between End.G/ and End.H/
which is not only algebraic but also topological, then an endomorphism of G has
zero intrinsic algebraic entropy if and only if the same happens for the corresponding
endomorphism of H.

2 Preliminaries on Trajectories and Entropies

For basic concepts and facts relating to Abelian Group Theory we refer to [13].
We start by recalling the definition of the intrinsic entropy fent and some key facts
relating to this entropy; for more details we refer to [10] and [17].

The basic tool for any kind of algebraic entropy is the notion of trajectory.
Given an endomorphism �WG ! G of a group G and a subgroup H of G, the
�-trajectory T.�;H/ of H is the �-invariant subgroup generated by H, that is,
T.�;H/ D P

n�0 �nH. For an integer n � 1, the nth �-trajectory Tn.�;H/ of H
is the truncated sum Tn.�;H/ D HC �.H/C � � � C �n�1.H/. If H D gZ is a cyclic
group, we will denote T.�;H/ simply by T.�; g/ and we call it a cyclic trajectory.

In order to define fent, we need the notion of �-inert subgroup: a subgroup H of G
is �-inert if the factor group .HC �.H//=H is finite. Since .H C �.H//=H is finite
if and only if Tn.�;H/=H is finite for all n � 1 (as proved in Lemma 2.1 of [10]),
we can consider the limit

fent.�;H/ D lim
n!1

logjTn.�;H/=Hj
n

which exists and is finite, by Fekete’s lemma [12]. Taking the supremum of these
non-negative real numbers with H ranging over the set I�.G/ of �-inert subgroups
of G, we have the notion of the intrinsic algebraic entropy of �:

fent.�/ D sup
H2I�.G/

fent.�;H/:

Recall that the set I�.G/ of the �-inert subgroups of G contains all the finite
subgroups, the subgroups of finite index, and the �-invariant subgroups of G. For
more information on fent we refer to [10] and [17].

Following a classical approach in the investigation of endomorphisms of Abelian
groups, we consider the category whose objects are the pairs .G; �/, where �WG!
G is an endomorphism; a morphism ˛W .G; �/ ! .H;  / is a homomorphism of
Abelian groups ˛WG! H satisfying the condition ˛ ı � D  ı ˛. The pair .G; �/
is usually denoted by G� . This category is naturally equivalent to the category of
the ZŒX�-modules; in this equivalence a polynomial f .X/ 2 ZŒX� acts on G� as
the endomorphism f .�/. In particular, the �-invariant subgroups of G are the ZŒX�-
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submodules of G� , and the �-trajectory of a subgroup H of G is the ZŒX�-submodule
of G� generated by H. We refer to [23] for a more detailed description of this matter.

Then the intrinsic algebraic entropy can be viewed as a map

fentWMod.ZŒX�/! R
� D R�0 [ f1g

sending the ZŒX�-module G� to fent.�/.
A fundamental fact concerning the entropy fent is that, in order to compute

fent.G�/, it is enough to:

(1) realize G� as union of a continuous ascending chain of submodules with cyclic
factors, that is, G D [�<�G� , where � is an ordinal, the G� are �-invariant
subgroups of G with G� � G�C1 for all � C 1 < �, G� D [�<�G� for all limit
ordinals � < � and G�C1=G� is a cyclic ZŒX�-module;

(2) calculate fent on the cyclic ZŒX�-modules G�C1=G� .

This fact is a consequence of the two properties satisfied by fent as an invariant
on Mod.ZŒX�/ of being

• upper continuous, i.e., given a ZŒX�-module M, fent.M/ D supF fent.F/, ranging
F over the set of the finitely generated submodules of M, and

• additive, i.e., for an exact sequence of ZŒX�-modules 0 ! A ! B ! C ! 0,
fent.B/ D fent.A/Cfent.C/ (this property is called Addition Theorem, see [10]).

Since all groups under our consideration are torsion-free, for a cyclic �-trajectory
T.�; g/ we have two possible cases. In the first case, T.�; g/ is a torsion-free ZŒX�-
module (isomorphic to ZŒX�, hence a free group of countable rank), therefore, in
view of Example 3.7 in [10], fent.T.�; g/�/ D 1. In the latter case, T.�; g/ is a
torsion ZŒX�-module isomorphic to ZŒX�=I with I is a non-zero ideal of ZŒX� and
T.�; g/ is a torsion-free group of finite rank. The structure of this second type of
trajectories and their intrinsic algebraic entropy will be described in Proposition 1.

We give now two lemmas which show the connection between cyclic trajectories
and the finite topology of the endomorphism rings. Recall that for every finite subset
F of the group G, KF D f˛ 2 End.G/ j ˛.F/ D 0g denotes the left ideal of
End.G/ consisting of the endomorphisms annihilating F. These ideals form a basis
of neighborhoods of zero for the finite topology on End.G/, denoted by finG; the
topological ring .End.G/;finG/ is complete (see Theorem 107.1 in [13]). When F D
fgg is a singleton, we will write simply Kg.

It is well known (see p. 222 in [13]) that, for every g 2 G, End.G/=Kg is
isomorphic through the evaluation map at g to the orbit Og. The restriction of this
map to the subring ZŒ�� of End.G/ generated by � gives rise to the next.

Lemma 1 Let �WG ! G be an endomorphism of the group G. Then T.�; g/ Š
ZŒ��=.ZŒ�� \ Kg/ for all g 2 G.

Passing to finitely generated trajectories, we have the following:

Lemma 2 Let �WG ! G be an endomorphism of the group G, H D Pn
iD1 giZ

a finitely generated subgroup of G and F D fgi j 1 � i � ng. Then there is a
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monomorphism of ZŒX�-modules

WZŒ��=.ZŒ�� \ KF/!
M

1�i�n

T.�; gi/

Proof The injective homomorphism  is the diagonal map of the isomorphisms
iWZŒ��=.ZŒ��\ Kgi/! T.�; gi/ given by Lemma 1, noting that KF D \1�i�nKgi .
The fact that  is a ZŒX�-morphism with respect to the structure induced by � is
readily checked.

We can now describe the structure of the cyclic trajectories which are torsion
ZŒX�-modules.

Proposition 1 Let �WG ! G be an endomorphism of a torsion-free group and let
x 2 G be such that rkZ.T.�; x// D n, with n a positive integer. Then:

(1) Tn.�; x/ DL0�i�n�1 � ixZ;
(2) there exists a minimum integer s � 1 such that sk�nCk�1x 2 Tn.�; x/ for all

k � 1, so f .�/.x/ D 0 for a primitive polynomial f .X/ 2 ZŒX� of degree n with
leading coefficient s;

(3) ZŒX�=.f .X// Š T.�; x/;
(4) TkC1.�; x/=Tk.�; x/ Š Z=sZ for all k � n
(5) fent.T.�; x/�/ D log s.

Proof

(1) Let m be the minimum positive integer such that t�mx 2 Tm.�; x/ for some
0 ¤ t 2 Z; obviously Tm.�; x/ D L

1�i�m�1 � ixZ. A direct computation
shows that tk�mCk�1x 2 Tm.�; x/ for all k � 1, hence T.�; x/=Tm.�; x/ is a
torsion group, consequently rkZ.T.�; x// D rkZ.Tm.�; x// and m D n.

(2) The proof is as in point (1), taking s D t minimal positive. The primitivity of �
follows by the minimality of s.

(3) Let Vx D fg.X/ j g.�/.x/ D 0g, so T.�; x/ Š ZŒX�=Vx by Lemma 1. We must
show that Vx D .f .X//. Obviously Vx � .f .X//, and, if a non-zero polynomial
g.X/ 2 ZŒX� of degree k belongs to Vx, then k � n. In order to show that
g.X/ 2 .f .X//, we can assume g.X/ primitive. The division algorithm gives
sk�nC1g.X/ D f .X/h.X/ C r.X/ for polynomials h.X/; r.X/ 2 ZŒX� and r.X/
of degree � n � 1. So g.X/ 2 Vx implies that r.�/.x/ D 0, therefore r.X/ D 0

and consequently sk�nC1g.X/ D f .X/h.X/. As f .X/ is primitive, sk�nC1 equals
the content of h.X/; dividing the above equality by this content we deduce that
g.X/ 2 .f .X//.

(4) The claim is obvious for k D n, by (2). If k > n, let TkC1.�; x/=Tk.�; x/ Š
Z=tZ. Then there exists a polynomial g.X/ 2 ZŒX� of degree kC1 and leading
coefficient t such that g.�/.x/ D 0. By point (3), g.X/ is a multiple of f .X/,
hence t � s. On the other hand, since TkC1.�; x/=Tk.�; x/ is a quotient of
Tk.�; x/=Tk�1.�; x/ for all k, by [10, Lemma 1.1], t � s, so we are done.
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(5) From [10, Lemma 3.2] we get that fent.T.�; x/�/ D logjTkC1.�; x/=Tk.�; x/j
for all k large enough. Therefore the conclusion follows from point (4).

Point (5) of Proposition 1 can also be derived from the simplified Algebraic
Yuzvinski Formula for the intrinsic algebraic entropy proved in [10], and in a
simpler form in [14]. Actually, the proof in points (3) and (4) is similar to a central
argument in the proof of [14, Proposition 5.6].

Given an endomorphism �WG! G of a group G and its algebraic entropy h.�/,
the Pinsker subgroup of the ZŒX�-module G� is defined in [7] as the greatest �-
invariant subgroup H of G such that h.� � H/ D 0; this subgroup is denoted by
P.G�/. It is proved that such a subgroup does exist (Proposition 3.1 in [7]) and some
different characterizations of it are furnished.

Replacing the algebraic entropy h by the intrinsic entropy fent, we define the
intrinsic Pinsker subgroup of G� as

eP.G�/ D fx 2 G j fent.� � T.�; x// D 0g:

ClearlyeP.G�/ is the greatest �-invariant subgroup H of G such that fent.� � H/ D
0, andeP.G�/ D G precisely when fent.�/ D 0. Looking at Proposition 1 and using
basic properties of fent mentioned above, it is easy to check that:

eP.G�/ D fx 2 G j f .�/.x/ D 0 for some monic f .X/ 2 ZŒX�g
D fx 2 G j T.�; x/ D Tn.�; x/ for some n � 1g: (1)

Given a torsion group G, in [9] the subgroup

t�.G/ D fx 2 G j T.�; x/ D Tn.�; x/ for some n � 1g

was defined. It follows from the above characterization ofeP.G�/ and from [7] that
t�.G/ D t.G/ \ P.G�/ D t.G/ \ eP.G�/. From the inequality fent � h (see [10,
Proposition 3.6]), it follows that P.G�/ � eP.G�/. This inclusion may be strict, as
the next two examples show.

Example 1 Let G D Z and let �WG ! G be the endomorphism acting as the
multiplication by an integer a > 1. Then T.�; x/ D T1.�; x/ and so eP.G�/ D G.
On the other hand, � is injective, hence from the characterization in [7, Theorem
6.10] it easily follows that P.G�/ D 0. Note that from Example 3.1 in [8] we get
h.�/ D log a, and from the equalityeP.G�/ D G we get fent.�/ D 0.

Example 2 Let G D Ze0˚Ze1 be a free group of rank 2, and let �WG! G be the
endomorphism defined by setting:

�.e0/ D e1; �.e1/ D e0 C e1:
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The characteristic polynomial of � is p�.X/ D X2 � X � 1, so the eigenvalues
of � are .1 C p5/=2 and .1 � p5/=2. It follows that �2.x/ D �.x/ C x for all
x 2 G, consequently T.�; x/ D T2.�; x/ and so eP.G�/ D G. On the other hand,
� is injective, hence again from the characterization in [7, Theorem 6.10] it easily
follows that P.G�/ D 0. Note that from the Algebraic Yuzvinski Formula we get
that h.�/ D log..1C p5/=2/, and fromeP.G�/ D G we get that fent.�/ D 0.

3 Groups Whose Endomorphism Ring is Isomorphic to ZŒX�

We start investigating the groups G, however, constructed, such that End.G/ is
isomorphic to the integral polynomial ring ZŒX�.

Lemma 3 Let G be a group such that End.G/ Š ZŒX�. Then G is torsion-free,
indecomposable, and reduced.

Proof The fact that G is indecomposable is a consequence of the fact that ZŒX� is
an integral domain. If G is not torsion-free, then it has a non-zero direct summand
isomorphic to a cocyclic p-group for some prime p. As G is indecomposable, this
implies that G is cocyclic; but the endomorphism ring of a cocyclic p-group is either
cyclic or isomorphic to the ring of the p-adic integers Jp, absurd. If G is not reduced,
then G Š Q, which is again absurd, since End.Q/ D Q.

We identify End.G/ with ZŒX�. Note that, under this identification, ZŒX� D
ZŒ!�, where ! is the distinguished endomorphism acting as the multiplication by X
on G, and every endomorphism of G is of the form � D a0Ca1!Ca2!2C� � �Can!

n

(ai 2 Z; n 2N).

Proposition 2 Let G be a group such that End.G/ D ZŒX�. Then:

(1) the finite topology of End.G/ is discrete;
(2) there exist elements g 2 G such that T.!; g/! Š ZŒX�;
(3) fent.�/ D 1 for every endomorphism � of G different from the multiplication

by an integer.

Proof

(1) A linear topology on ZŒX� has a basis of ideals; as ZŒX� is a Noetherian ring,
its ideals are finitely generated, so there are countably many different ideals.
Consequently the finite topology finG is metrizable. Since the only metrizable
linear topology making ZŒX� a complete ring is the discrete one (see [6]), finG

is necessarily discrete.
(2) By point (1), there exists a finite subset F of G such that KF D 0. By Lemma 2,

there exists an embedding WZŒX� ! L
g2F T.!; g/. This shows that there

exists a g 2 F such that the subgroup T.!; g/ has infinite rank. As shown in the
discussion preceding Lemma 1, this implies that T.!; g/! Š ZŒX�.
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(3) From the same discussion we know that then fent.T.!; g/!/ D 1, therefore
fent.!/ D 1. A straightforward computation shows that, if f .X/ 2 ZŒX� n Z
and setting � D f .!/, from the equality T.!; g/ D L

n�0 !ngZ it follows
that T.�; g/ D L

n�0 �ngZ. Therefore fent.T.�; g/�/ D 1 and consequently
fent.�/ D1.

Proposition 2 shows that, when End.G/ D ZŒX�, the entropy fent takes infinite
values on an !-trajectory T.!; g/ of infinite rank for a suitable g 2 G. This does
not imply that the same happens for all other cyclic !-trajectories, since some of
them could have finite rank, as we will see in Proposition 4; the structure of these
trajectories was described in Proposition 1.

We pass now to investigate the structure as ZŒX�-modules of the torsion-free
group G with endomorphism ring isomorphic to ZŒX� obtained by means of the
construction of Theorem 1, that we briefly sketch below.

Let A D ZŒX� and let OA be its completion in the natural topology. The countable
reduced torsion-free group G constructed by Corner in Theorem 1, satisfying
End.G/ D A, is defined according to the following steps:

• Lemma 1.5 in [2] ensures the existence of a subring P of OZ of cardinality
2@0 , all whose non-zero elements are associated with an integer. This property
implies that P is an integral domain and it is easy to see that OA is a torsion-
free P-module, so one can apply to subsets of A the usual notions of linear or
algebraic independence over P. Using a maximal family of elements of A linearly
independent over P, one can define a countable pure subring ˘ of P, so that P
has transcendence degree 2@0 over ˘ ;

• for each element a 2 A choose elements ˛a; ˇa 2 P in such a way that the
countable set f1g [ f˛a; ˇa j a 2 Ag is algebraically independent over ˘ ;

• define G to be the pure subgroup of OA generated by A and by eaA (a 2 A), where
ea D ˛a � 1C ˇa � a, i.e., G D hA; eaA; .a 2 A/i� � OA.

Clearly A acts faithfully on G (i.e., AnnA.G/ D 0), so A is isomorphic to a subring
of End.G/. The main part of the proof of Theorem1 consists in showing that every
endomorphism of G coincides with the multiplication by an element of A. Now we
can easily prove the following:

Proposition 3 The group G such that End.G/ Š ZŒX�, constructed by means of
Theorem 1, is a torsion-free ZŒX�-module, and rkZŒX� G D @0. Furthermore, if � is
any endomorphism different by the multiplication by an integer, fent.T.�; g/�/ D1
for all 0 ¤ g 2 G, andeP.G�/ D 0.

Proof Assume that c01 C ea1c1 C � � � C ean cn D 0, where c0; : : : ; cn 2 A. Then
Lemma 2.1 in [2] ensures that c0 D � � � D cn D 0, therefore G contains F D
A˚La2A eaA, which is a torsion-free ZŒX�-module of countable rank. As G is the
pure subgroup of OA generated by F, the conclusion follows. Finally, fent.�; g/ D 1
for every 0 ¤ g 2 G, since T.�; g/ Š ZŒX� as proved in Proposition 2 (3), and, as
noted in Sect. 2, the torsion-freeness of G as a ZŒ��-module implies that the Pinsker
subgroupeP.G�/ is trivial.
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We pass now to consider Theorem 2; we shall show that the existence of a
non-Hopfian group H with End.H/ Š ZŒX� gives rise to a completely different
entropic behavior. In fact, Corner’s Example 1 in [3] of a non-Hopfian group with
automorphism group of order two provides such a realization for the polynomial
ring ZŒX� of Theorem 2. Our next objective is to generalize Corner’s idea in that
example.

Recall that Corner’s construction yielded a subgroup H of a Q-vector space V of
countable dimension, having basis elements ak; bk; cn.k 2 Z; n 2 N/ and utilized
five distinct primes p; q; r; s; t: specifically

H D hp�1ak; q
�1bk; r

�1ck; s
�1.ak C bk/; t

�1.ak�1 C bk C ck/; .k 2 Z/i
where ck D 0 for k < 0 and, as usual, p�1xk is an abbreviation for the set of
elements p�mxk (m D 0; 1; 2; : : : ).

In fact, Corner showed by direct calculation that every endomorphism of this
group H was a polynomial in the endomorphism !, where ! was the restriction to
H of the linear transformation N! of V defined by

N!.ak/ D ak�1; N!.bk/ D bk�1; N!.cn/ D cn�1 .k 2 Z; n � 1/; N!.c0/ D 0:
The notation used here agrees with that used before, since End.G/ D ZŒ!� is
identified with ZŒX� under the identification of ! with the multiplication induced by
X. Observe a fundamental difference in the subgroups of H: each of the subgroups

hp�1ak j k 2 Zi; hq�1bk j k 2 Zi
hs�1.ak C bk/ j k 2 Zi; ht�1.ak�1 C bk C ck/ j k 2 Zi

is a torsion-free ZŒ!�-module, while the subgroup hr�1ck j k 2 Ni is a torsion
ZŒ!�-module. In an obvious, but somewhat ad hoc, terminology, we say that the
group H is a .4; 1/ realization of ZŒX� since the five families of generators give
rise to 4 torsion-free ZŒX�-modules and 1 torsion ZŒX�-module. We continue to use
the notation of Example 1 in [3] for the remainder of this section.

Now let W be a Q-vector space containing V such that a basis for W extends
that of V by independent elements dk.k 2 Z/. Extend N! to a mapping N�WW ! W
with N� � V D N!, and N�.dk/ D dk�1. Since generators are preserved, N� induces an
endomorphism � on the subgroup K of W given by

K D hH; u�1dk; v
�1.ak C dk/.k 2 Z/i;

where u; v are distinct primes different from all of p; q; r; s; t. It is worthwhile noting
that the distinctness of the primes involved ensures that the subgroups H, hu�1dk j
k 2 Zi, hv�1.ak C dk/ j k 2 Zi are all fully invariant in K.

Let  be an arbitrary endomorphism of K. Since H is fully invariant in K,  
induces an endomorphism of H and so in Corner’s notation there are integers ˛0n.0 �
n � N/ (for some fixed integer N) such that
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 .ak/ D
NX

nD0
˛0n!

n.ak/ D
NX

nD0
˛0n�

n.ak/:

We claim that  D PN
nD0 ˛0n�n. By full invariance  .dk/ D P

h �
k
hdh for some

rationals �k
h; full invariance again yields that there are rationals �k

h such that  .akC
dk/ DPh �

k
h.ah C dh/. Substituting we get

.˛00ak C ˛01ak�1 C � � � C ˛0Nak�N/C
X

h

�k
hdh D

X

h

�k
h.ah C dh/;

and by linear independence we conclude that �k
h D �k

h and that �k
h D 0 unless

h D k; k � 1; : : : ; k � N, in which case �k
k D ˛00; �k

k�1 D ˛01; : : : ; �k
k�N D ˛0N .

Hence

 .dk/ D
X

h

�k
hdh D

X

h

�k
hdh D .˛00dk C ˛01dk�1 C � � � C ˛0Ndk�N/

D .˛00 C ˛01� C : : : ;C˛0N�N/.dk/:

So  agrees with ˛00 C ˛01� C � � � C ˛0N�N on all the generators of K and so  D
˛00 C ˛01� C � � � C ˛0N�N . Hence the claim is established. Since  was arbitrary,
End.K/ � ZŒ�� and since the reverse inequality is trivially true, we conclude that
End.K/ D ZŒ��.

Note that the above argument does not depend on dk being 0 for k < 0 and
consequently the new group K can be made into either a .5; 1/ (letting k range over
Z) or a .4; 2/ realization (setting dk D 0 for k < 0) of ZŒX�. A simple induction
argument now yields:

Theorem 5 For each pair .m; n/ of positive integers with m � 4, there is an .m; n/
realization of the ring ZŒX�.

The next proposition describes the structure as ZŒX�-module of the original
group H constructed in Theorem 2 recalled above, and the intrinsic entropies of the
relevant sections of H. We leave it to the interested reader to extend the description
as ZŒX�-modules of the general groups arising in Theorem 5.

Proposition 4 Let H be the non-Hopfian group constructed in Theorem 2, whose
endomorphism ring is isomorphic to ZŒX�. Then H contains a chain of ZŒX�-
submodules 0 < H1 < H2 < H3 < H such that:

(1) H1 is a maximal free ZŒX�-submodule of rank 2, hence rkZŒX� H D 2 and
fent.H1/ D1;

(2) H2 D H1 ˚ C0, where C0 is a cyclic torsion ZŒX�-submodule of H such that
fent.C0/ D 0;

(3) H3=H2 is the direct sum of three copies of a cocyclic torsion ZŒX�-module and
fent.H3=H2/ D 0;

(4) H=H3 is a divisible torsion group such that fent.H=H3/ D1;
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(5) fent.�/ D 1 for every endomorphism � of H different from the multiplication
by an integer;

(6) The intrinsic Pinsker subgroupeP.H!/ equals hr�1ck j k 2Ni.
Proof

(1) Denote by ZŒX˙1� the subring of the field Q.X/ generated by X and X�1. For a
fixed integer n, the !-trajectories of an and bn are

An D T.!; an/ D
M

k�n

Zak I Bn D T.!; bn/ D
M

k�n

Zbk

and are cyclic torsion-free ZŒX�-modules. Then H1 D A0 ˚ B0 is a maximal
free ZŒX�-submodule of H! , hence rkZŒX� H! D 2 and fent.H1/ D 1, by
Proposition 2.

(2) Fixed an integer n � 0, the !-trajectory of cn is

Cn D T.!; cn/ D
M

0�k�n

ZcnI

it is a cyclic torsion ZŒX�-module isomorphic to ZŒX�=.XnC1/; in particular,
C0 Š ZŒX�=.X/. By Proposition 1, the intrinsic algebraic entropy of every
ZŒX�-module ZŒX�=.XnC1/ is 0.

(3) Define A D [nAn, B D [nBn, C D [nCn. Evidently A Š ZŒX˙1� Š B,
and C Š ZŒX˙1�=.X/. Set H3 D A˚ B˚ C and note that H3=H2 is a torsion
ZŒX�-module, which is a direct sum of three copies of the cocyclic ZŒX�-module
ZŒX˙1�=.X/. As the cocyclic modules are unions of cyclic torsion modules with
intrinsic entropy 0, their intrinsic entropy is also 0, by the upper continuity
of fent.

(4) The group NH D H=H3 is a torsion group, with primary decomposition NH D
NHp ˚ NHq ˚ NHr ˚ NHs ˚ NHt. The equality fent.H=H3/ D 1 depends on the
fact, already recalled in the Introduction, that fent D ent for torsion groups by
[10, Proposition 3.6] and, as it is easy to see, NHp is isomorphic to

L
Z
Z.p1/

endowed with the Bernoulli shift (i.e., the map that shifts one place to the right
the coordinates of the direct sum), so, by [9, Proposition 1.17], ent. NHp/ D 1,
and similarly for the other primary components.

(5) fent.!/ D 1 since fent.H1/ D 1; the same argument used to prove
Proposition 2 (3) gives fent.�/ D1.

(6) The calculation of the intrinsic Pinsker subgroup follows from the observation
that each element x 2 hr1ck j k 2 Ni is annihilated by some power of !,
hence T.!; x/ D Tn.!; x/ for some n, while the other generators of H give rise
to torsion-free ZŒX�-modules.
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Remark 1 A comparison of Proposition 2 (3) and Proposition 4 (5) shows that, for
a fixed isomorphism ˚ WEnd.G/ ! End.H/ and an endomorphism � 2 End.G/ Š
ZŒX�, the following equivalences hold:

fent.�/ D 0, � D n � 1G .n 2 Z/, ˚.�/ D n � 1H , ent.˚.�// D 0:

This fact is generalized to arbitrary countable groups in Corollary 3.

4 Groups Whose Endomorphism Ring is Isomorphic
to ZŒŒX��

In this section we investigate the groups G such that End.G/ Š ZŒŒX��. The proof
of the next lemma follows verbatim that of Lemma 3.

Lemma 4 Let G be a group such that End.G/ Š ZŒŒX��. Then G is torsion-free,
indecomposable, and reduced.

Before investigating the structure as ZŒX�-modules of the torsion-free groups
G and H with endomorphism ring isomorphic to ZŒŒX��, obtained by means of
Theorem 3 and Theorem 4, respectively, we provide the proof of the latter theorem,
as promised.

Proof (Proof of Theorem 4) We follow the notation used by Corner in his proof of
Theorem 3 (Theorem 1.1 in [4]). For each k D 1; 2; : : : , let Ck D A=Nk and denote
by ek the element 1 C Nk 2 A=Nk; note that AnnA.ek/ D fa 2 A j aek D 0g, the
annihilator in A of ek, is precisely Nk. Set C DL

k ekA, so that C is a direct sum of
cyclic A-modules; note that C is countable, reduced, and torsion-free as an Abelian
group; let OC denote the completion of C in the natural topology, which is Hausdorff
since C is reduced. The elements of OC may be expressed uniquely as convergent
(with respect to the natural topology) countable sums

P
k ck, where ck 2 OCk. The set

fk j ck ¤ 0g is referred to as the support of the element
P

k ck.
Let P be the subring of OZ used in the proof of Theorem 1. Let P.C/ be a countable

subring of P such that P is linearly disjoint from C over P.C/ – the existence of such
follows from Section 2 in [2]. Since P has transcendence degree 2@0 over P.C/, we
may choose elements ˛c .c 2 C/, ˇ0

i (i D 1; 2; : : : ) of P algebraically independent
over P.C/; replacing the elements ˇ0

i by the elements ˇi D .iŠ/ˇ0
i we have that the

elements ˛c (c 2 C), ˇi (i D 1; 2; : : : ) of P remain algebraically independent and the
ˇi are now a convergent sequence of elements of OZ. Recall that in Corner’s notation
the group G D hC; ˛c.cA/ .c 2 C/i� � OC was the countable group whose finitely
topologized endomorphism ring was isomorphic to A with the topology � derived
from the neighborhoods Nk.

Now set

H D hC; ˛c.cA/ .c 2 C/; .
P

k ˇkek/Ai� � OC
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so that H D hG, .
P

k ˇkek/Ai� � OC. As in [4], one sees easily that G;H are both
faithful A-modules and so A may be embedded in End.G/, End.H/.

Since H is dense with respect to the natural topology on OC, we can extend an
arbitrary endomorphism � of H to a unique OZ-endomorphism of OC, continuing to
write � for this extended mapping. So we can find a positive integer q and elements
x; y 2 C, xd, yd (d 2 C), z;w 2 A, with almost all of the xd; yd zero, such that

q�.c/ D yC
X

d

˛d.dyd/C
X

k

.ˇkek/z (2)

q�.˛cc/ D xC
X

d

˛d.dxd/C
X

k

.ˇkek/w: (3)

We derive from equations (2) and (3)

xC
X

d

˛d.dxd/C
X

k

.ˇkek/w D ˛c.yC
X

d

˛d.dyd/C
X

k

.ˇkek/z/:

Re-arranging terms we deduce that

xC
X

d

˛d.dxd/ � ˛c.yC
X

d

˛d.dyd// D ˛c.
X

k

.ˇkek/z/ �
X

k

.ˇkek/w: (4)

Now the term on the left-hand side of equation (4) has finite support (as an
element of OC) and thus the term on the right- hand side must likewise have finite
support. Hence there exists an integer, n0 say, such that ˛cˇkekz�ˇkekw D 0 for all
k � n0. However, the ˛cˇk, ˇk are linearly independent over P.C/ and so, by linear
disjointness, ekz D 0 D ekw for all k � n0. Hence z;w 2Tk�n0

Nk D f0g.
It follows directly from equations (2) and (3) that for an arbitrary element g 2

G, there is an integer q such that q�.g/ 2 G \ qH D qG, since G is even pure
in OC. By torsion-freeness, we conclude that �.g/ 2 G and so G is fully invariant
in H. It follows from Theorem 1.1 in [4] that there is an element a 2 A such that
� � G coincides with scalar multiplication by a. Since scalar multiplication by a
is also an endomorphism of H which agrees on the dense (in the natural topology,
which is Hausdorff) subgroup G with �, the endomorphism � must agree with scalar
multiplication by a on the whole of H. Hence End.H/ � A and since the reverse
inequality is trivially true, we get the algebraic identity End.H/ D A.

Finally observe that the finite topology on End.H/ is discrete since the annihilator
in A of the element

P
k.ˇkek/ is equal to

T
k Nk D f0g.

We note the following straightforward corollary of Theorem 4, which largely
motivated our interest in the last result (see Proposition 5 below).

Corollary 1 There exists a reduced torsion-free group H of cardinality 2@0 such
that .End.H/;finH/ Š .ZŒŒX��; ı/, where ı denotes the discrete topology.
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We identify End.G/ with ZŒŒX��. As in Sect. 3, the multiplication by X on G acts
as a distinguished endomorphism !, and every endomorphism of G is of the form
� D a0 C a1! C a2!2 C � � � (ai 2 Z).

The next two results investigate the cases when the topological ring
.End.G/;finG/ Š .ZŒŒX��; �/ (where � denotes the X-adic topology on ZŒŒX��)
and when the topological ring .End.H/;finH/ Š .ZŒŒX��; ı/.

First we deal with the discrete topology; in this case the situation is partly similar
to that of Proposition 2. Recall that a group is @1-free if its countable subgroups are
free.

Proposition 5 Let H be a group such that .End.H/;finH/ Š .ZŒŒX��; ı/. Then the
following facts hold:

(1) the cardinality of H is at least 2@0;
(2) there exist elements g 2 H such that T.!; g/! Š ZŒX�, so fent.!/ D1;
(3) there exists elements g 2 H such that the orbit ZŒŒ!��g is an @1-free non-free

group of rank 2@0 ;
(4) if H is constructed by means of Theorem 4, then rkZŒX� H D 2@0 . Furthermore,

the intrinsic Pinsker subgroupeP.H!/ equals hC; ˛c.cZŒŒX��/i�.

Proof

(1) Since finH is the discrete topology, there exists an embedding of ZŒŒX�� into Hk

for some positive integer k, hence jHj � 2@0 .
(2) The proof is the same as that of point (2) of Proposition 2.
(3) There exists a finite set F in H such that KF D 0, hence ZŒŒ!�� embeds intoL

g2F ZŒŒ!��g, where ZŒŒ!��g is the orbit of g. Therefore at least one g 2 F

satisfies the property that ZŒŒ!��g has rank 2@0 . This orbit ZŒŒ!��g is a subgroup
of ZŒŒX��, which, as a group, is isomorphic to the Baer–Specker group

Q
N
Z.

Therefore ZŒŒ!��g is @1-free; it cannot be free, since it is a quotient of ZŒŒX��
and such quotients do not have free summands of infinite rank, by a result by
Nunke [19] (see also [13, Proposition 95.2]).

(4) Recall that H D hC; ˛c.cA/ .c 2 C/; .
P

k ˇkek/Ai� � OC, where A D ZŒŒX�� and
C D L

k ZŒŒX��=Xk
ZŒŒX��. Now C and ˛c.cA/ are torsion ZŒX�-modules, but

.
P

k ˇkek/A is isomorphic to A, since
P

k ˇkek has zero annihilator. We conclude
by remarking that A D ZŒŒX�� has rank 2@0 as ZŒX�-module. Finally, the
intrinsic Pinsker subgroup iseP.H!/ D hC; ˛c.cZŒŒX��/i�, since every element
x 2 hC; ˛c.cZŒŒX��/i� is annihilated by some power of !, hence T.!; x/ D
Tn.!; x/ for some n, while every y 2 .Pk ˇkek/A has T.!; y/ Š ZŒX�.

Now we consider the X-adic topology � on End.G/ D ZŒŒX��; a basis of
neighborhoods of zero is the countable family of ideals .Xn/ (n 2 N), satisfying
the condition that ZŒŒX��=.Xn/ is a free group of rank n for every n. Still denoting
by ! the multiplication by X on G, we will say that G is !-torsion if, for every
g 2 G, there exists a positive n 2 N such that !n.g/ D 0, and that G is !-bounded
if there exists a positive n 2N such that !n.G/ D 0.
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Proposition 6 Let G be a group such that .End.G/;finG/ Š .ZŒŒX��; �/. Then the
following facts hold:

(1) G is !-torsion and not !-bounded, hence it is a torsion ZŒX�-module.
(2) for every g 2 G, the orbit ZŒŒ!��g equals the trajectory T.!; g/, which is a free

group of finite rank.
(3) fent. / D 0 for every endomorphism  of G and the intrinsic Pinsker subgroup

eP.G / equals G.

Proof

(1) For an arbitrary fixed g 2 G, Kg is open in �, hence Kg � .Xn/ for some n;
therefore !n.g/ D 0 and G is !-torsion. However, G cannot be !-bounded:
suppose for a contradiction that !n.G/ D 0 for some n. From the topological
ring isomorphism we deduce that there is a finite subset F of G such that
AnnZŒŒX��.F/ D XnC1

ZŒŒX�� and since !n.G/ D 0, we must have that !n 2
AnnZŒŒX��.F/, which forces Xn 2 XnC1

ZŒŒX�� – impossible.
(2) By (1), there exists a positive integer n such that !n.g/ D 0; then, given � DP1

0 ai!
i 2 ZŒŒ!��, we have �.g/ D .a0Ca1!Ca2!2C� � �Can�1!n�1/.g/ 2

T.!; g/; therefore ZŒŒ!��g D T.!; g/. Since ZŒŒ!��g Š ZŒŒ!��=Kg is an
epimorphic image of ZŒŒ!��=.!n/ Š Z

n, T.!; g/ is a finitely generated torsion-
free group, hence it is free of finite rank.

(3) Let  WG ! G be an endomorphism of G; we must prove that fent. / D 0. As
mentioned in Sect. 2, in view of the upper continuity and the Addition Theorem,
which hold for fent (see [10]), it is enough to show that fent.T. ; g/ / D 0 for
all g 2 G. But T. ; g/ is a free group of finite rank, since T. ; g/ is a subgroup
of ZŒŒ!��g, so fent. / D 0 by Proposition 1. This also shows thateP.G / D G.

It is worthwhile remarking that there exist groups G satisfying the hypothesis of
Proposition 6 of any cardinality jGj D � such that � D �@0 (see [5]); Theorem 3
ensures that such a group G exists also of cardinality jGj D @0. Taking this into
account and summarizing the results obtained in this section, we obtain a result that
has clear similarities to that obtained in [15, Corollary 3.4].

Theorem 6 There exist reduced torsion-free groups G;H such that G is countable,
H has rank 2@0 as ZŒX�-module, End.G/ Š ZŒŒX�� Š End.H/, but fent. / D 0 for
every endomorphism  of G, while fent.!/ D 1, where ! is the endomorphism of
H corresponding to the multiplication by X.

5 Topological Isomorphisms Between Endomorphism Rings

The proof of Theorem 7 is partly similar to the proof of Proposition 3.3 in [21],
showing that a topological isomorphism between the endomorphism rings of two
groups endowed with the finite topology forces similar entropic behavior of the
endomorphisms of the two groups. However, in the present situation we must use
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different arguments from those used in Proposition 3.3 in [21], which make use of
the fact that fent is additive on Mod.ZŒX�/.

Theorem 7 Let G and H be two groups and ˚ W .End.G/;finG/ ! .End.H/;finH/

an isomorphism of topological rings. If � 2 End.G/, then fent.�/ D 0 if and only if
fent.˚.�// D 0.

Proof By symmetry, it is enough to prove that fent.�/ D 0 implies fent.˚.�// D 0.
Set  D ˚.�/. It is enough to show that fent. � Tx/ D 0 for all x 2 H, where Tx D
T. ; x/. As˚�1 is an homeomorphism,˚�1.Kx/ is open in finG, therefore˚�1.Kx/

contains KF for F a suitable finitely generated subgroup of G. Now we have, by
Lemma 1:

T. ; xZ/ Š ZŒ �=.ZŒ � \ Kx/ Š ZŒ��=.ZŒ�� \ ˚�1.Kx//:

But ZŒ��=.ZŒ�� \ ˚�1.Kx// is a quotient of ZŒ��=.ZŒ�� \ KF/, so the additivity
of fent ensures that

fent.ZŒ��=.ZŒ�� \ ˚�1.Kx/// � fent.ZŒ��=.ZŒ�� \ KF//:

Now Lemma 2 ensures that if F D P
1�i�n giZ, then ZŒ��=.ZŒ�� \ KF/ is

embedded into
L

1�i�n T.�; gi/. But fent.�/ D 0 implies that fent.T.�; gi/ D 0 for
all i � n, therefore we deduce that fent.ZŒ��=.ZŒ�� \ KF// D 0 and consequently
fent. � Tx/ D 0, as desired.

As an immediate application of Theorem 7 and Proposition 2 (1), we get a result
that we already pointed out in Remark 1.

Corollary 2 Let G and H be two torsion-free groups such that End.G/ Š ZŒX� Š
End.H/. Let ˚ WEnd.G/ ! End.H/ be an isomorphism. Then, given � 2 End.G/,
fent.�/ D 0 if and only if fent.˚.�// D 0.

We will apply Theorem 7 to arbitrary countable reduced torsion-free groups. First
we demonstrate a result that was only stated by Corner in his paper [4].

Theorem 8 If G;H are countable reduced torsion-free groups with End.G/ Š
End.H/, then .End.G/;finG/ Š .End.H/;finH/.

Proof Enumerate the elements of G and H as fg1; g2; : : : ; gn; : : : g and
fh1; h2; : : : ; hm; : : : g, respectively. For n;m 2 N, set Gn D fg1; g2; : : : ; gng
and Hm D fh1; h2; : : : ; hmg, so that the left ideals Nn D f� 2 End.G/ j �.Gn/ D 0g
and Mm D f 2 End.H/ j  .Hm/ D 0g form subbases of 0 in the respective
topologies finG;finH . Denote the (algebraic) isomorphism between End.G/ and
End.H/ by ˚ and its inverse by � .

Observe firstly that End.G/ contains a subgroup P isomorphic to the direct
product P Š Q1

iD1 Ni. To see this, note that for an arbitrary element g of G, there
is an integer n with g D gn and so if i � n, �i.gn/ D 0 since gn 2 Gi. Hence the
sum .

P1
iD1 �i/.gn/ reduces to .

Pn�1
iD1 �i/.gn/ and so the element

P1
iD1 �i is a well-
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defined endomorphism of G. Regarding elements of the direct product
Q1

iD1 Ni as
formal sums

P1
iD1 �i, we obtain the desired subgroup P ŠQ1

iD1 Ni.
Let �m be the canonical projection End.H/ ! End.H/=Mm, so that the

composition �m˚ � P maps the group P into the group End.H/=Mm. Since Mm

is the kernel of the homomorphism End.H/! Hm given by  7! . .x//x2Mm , the
group End.H/=Mm is a subgroup of a finite direct sum of countable reduced torsion-
free groups; in particular End.H/=Mm is slender (for the notion of slenderness we
refer to [11, Chapter III], [13, §94] or [19]).

So for each integer m, there exists an integer km such that �m˚.
Q1

iDkm
Ni/ D

0 – this is a standard property of slender groups, see, for example, Theorem 1.2 in
[11, Chapter III]. Thus ˚.

Q1
iDkm

Ni/ � ker.�m/ D Mm for each m. In particular
˚.Nkm/ � Mm and so Nkm � �.Mm/. Thus � is an open mapping with respect to
the finite topologies on End.H/ and End.G/.

An identical argument replacing P Š Q1
iD1 Ni with Q Š Q1

iD1 Mi, shows that ˚
is open with respect to the finite topologies on End.G/ and End.H/ and so ˚ and �
are inverse topological isomorphisms, as required.

Note that the proof of Theorem 8 actually shows that any algebraic isomorphism
between the endomorphism rings of two countable, reduced, and torsion-free groups
is in fact a homeomorphism with respect to the finite topologies.

Now an immediate application of Theorem 7 and Theorem 8 gives the following:

Corollary 3 Let G and H be two countable reduced torsion-free groups such that
End.G/ Š End.H/. Let ˚ WEnd.G/ ! End.H/ be an isomorphism. Then, given
� 2 End.G/, fent.�/ D 0 if and only if fent.˚.�// D 0.
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Abstract Let fRn;mngn�0 be an infinite sequence of regular local rings with RnC1
birationally dominating Rn and mnRnC1 a principal ideal of RnC1 for each n. We
examine properties of the integrally closed local domain S DSn�0 Rn.

Keywords Regular local ring • Local quadratic transform • Valuation ring
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1 Introduction

Let R be a regular local ring with maximal ideal m D .x1; : : : ; xn/R, where n D
dimR is the Krull dimension of R. Choose i 2 f1; : : : ; ng, and consider the overring
RŒ x1

xi
; : : : ; xn

xi
� of R. Choose any prime ideal P of RŒ x1

xi
; : : : ; xn

xi
� that contains m. Then

the ring R1 WD RŒ x1
xi
; : : : ; xn

xi
�P is a local quadratic transform of R, R1 is again a

regular local ring and dimR1 � n. Iterating the process we obtain a sequence R D
R0 � R1 � R2 � � � � of regular local overrings of R such that for each i, RiC1
is a local quadratic transform of Ri. The sequence of positive integers fdimRigi2N
stabilizes, and dimRi D dimRiC1 for all sufficiently large i. If dimRi D 1, then
necessarily Ri D RiC1, while if dimRi � 2, then Ri ¨ RiC1.
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The process of iterating local quadratic transforms of the same Krull dimension
is the algebraic expression of following a closed point through a sequence of blow-
ups of a nonsingular point of an algebraic variety, with each blow-up occurring at
a closed point in the fiber of the previous blow-up. This geometric process plays
a central role in embedded resolution of singularities for curves on surfaces (see,
for example, [2] and [6, Sections 3.4 and 3.5]), as well as factorization of birational
morphisms between nonsingular surfaces ([1, Theorem 3] and [33, Lemma, p. 538]).
These applications depend on properties of iterated sequences of local quadratic
transforms of a two-dimensional regular local ring. For a two-dimensional regular
local ring R, Abhyankar [1, Lemma 12] shows that the limit of this process of
iterating local quadratic transforms R D R0 � R1 � R2 � � � � results in a valuation
ring that birationally dominates R; i.e., V D S1

iD0 Ri is a valuation ring with the
same quotient field as R and the maximal ideal of V contains the maximal ideal
of R.

Moving beyond dimension two, examples due to David Shannon [30, Examples
4.7 and 4.17] show that the union S D S

i Ri of an iterated sequence of local
quadratic transforms of a regular local ring of Krull dimension > 2 need not be a
valuation ring. The recent articles [21, 22] address the structure of such rings S and
how this structure encodes asymptotic properties of the sequence fRig1iD0. We call S
a quadratic Shannon extension of R. In general, a quadratic Shannon extension need
not be a valuation ring nor a Noetherian ring, although it is always an intersection
of two such rings (see Theorem 2.2).

The class of quadratic Shannon extensions separates naturally into two cases, the
archimedean and non-archimedean cases. A quadratic Shannon extension S is non-
archimedean if there is an element x in the maximal ideal of S such that

T
i>0 xiS ¤

0. The class of non-archimedean quadratic Shannon extensions is analyzed in detail
in [21] and [22]. We carry this analysis further in the present article by using
techniques from multiplicative ideal theory to classify a non-archimedean quadratic
Shannon extension as the pullback of a valuation ring of rational rank one along a
homomorphism from a regular local ring onto its residue field. We present several
variations of this classification in Lemma 4.3 and Theorems 4.8 and 5.1.

The pullback description leads in Theorem 4.5 to existence results for both
archimedean and non-archimedean quadratic Shannon extensions contained in a
localization of the base ring at a nonmaximal prime ideal. As another application,
in Theorem 5.2 we use pullbacks to characterize the quadratic Shannon extensions
S of regular local rings R such that R is essentially finitely generated over a field of
characteristic 0 and S has a principal maximal ideal.

That non-archimedean quadratic Shannon extensions occur as pullbacks is also
useful because of the extensive literature on transfer properties between the rings
in a pullback square. In Sect. 6 we use the pullback classification along with
structural results for archimedean quadratic Shannon extensions from [21] to show
in Theorem 6.2 that a quadratic Shannon extension is coherent if and only if it is a
valuation domain.

Our methods sometimes involve local quadratic transforms of Noetherian local
domains that need not be regular local rings. To formalize these notions as well as
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those mentioned above, let .R;m/ be a Noetherian local domain and let .V;mV/ be
a valuation domain birationally dominating R. Then mV D xV for some x 2 m.
The ring R1 D RŒm=x�mV \RŒm=x� is called a local quadratic transform (LQT) of R
along V . The ring R1 is a Noetherian local domain that dominates R with maximal
ideal m1 D mV \R1. Since V birationally dominates R1, we may iterate this process
to obtain an infinite sequence fRngn�0 of LQTs of R0 D R along V . If Rn D V
for some n, then V is a DVR and the sequence stabilizes with Rm D V for all
m � n. Otherwise, fRng is an infinite strictly ascending sequence of Noetherian
local domains.

If R is a regular local ring (RLR), it is well known that R1 is an RLR; cf. [28,
Corollary 38.2]. Moreover, R D R1 if and only if dimR � 1. Assume that R is an
RLR with dimR � 2 and V is minimal as a valuation overring of R. Then dimR1 D
dimR, and the process may be continued by defining R2 to be the LQT of R1 along V .
Continuing the procedure yields an infinite strictly ascending sequence fRngn2N of
RLRs all dominated by V .

In general, our notation is as in Matsumura [26]. Thus a local ring need not be
Noetherian. An element x in the maximal ideal m of a regular local ring R is said to
be a regular parameter if x … m2. It then follows that the residue class ring R=xR is
again a regular local ring. We refer to an extension ring B of an integral domain A
as an overring of A if B is a subring of the quotient field of A. If, in addition, A and
B are local and the inclusion map A ,! B is a local homomorphism, we say that B
birationally dominates A. We use UFD as an abbreviation for unique factorization
domain, and DVR as an abbreviation for rank 1 discrete valuation ring. If P is a
prime ideal of a ring A, we denote by �.P/ the residue field AP=PAP of AP.

2 Quadratic Shannon Extensions

Let .R;m/ be a regular local ring with dimR � 2 and let F denote the quotient
field of R. David Shannon’s work in [30] on sequences of quadratic and monoidal
transforms of regular local rings motivates our terminology quadratic Shannon
extension in Definition 2.1.

Definition 2.1 Let .R;m/ be a regular local ring with dimR � 2. With R D R0, let
fRn;mng be an infinite sequence of RLRs, where dimRn � 2 for each n. If RnC1 is
an LQT of Rn for each n, then the ring S D S

n�0 Rn is called a quadratic Shannon
extension1 of R.

If dimR D 2, then the quadratic Shannon extensions of R are precisely the
valuation rings that birationally dominate R and are minimal as a valuation overring
of R [1, Lemma 12]. If dimR > 2, then, examples due to Shannon [30, Examples 4.7

1In [21] and [22], the authors call S a Shannon extension of R. We have made a distinction here
with monoidal transforms. Since dimRn � 2, we have Rn ¨ RnC1 for each positive integer n andS

n Rn is an infinite ascending union.
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and 4.17] show that there are quadratic Shannon extensions that are not valuation
rings. Similarly, if dimR > 2, then there are valuations rings V that birationally
dominate R with V minimal as a valuation overring of R, but V is not a Shannon
extension of R. Indeed, if V has rank > 2, then V is not a quadratic Shannon
extension of R; see [13, Proposition 7].

These observations raise the question of the ideal-theoretic structure of a
quadratic Shannon extension of a regular local ring R with dimR > 2, a question that
was taken up in [21] and [22]. In this section we recall some of the results from [21]
and [22] with special emphasis on non-archimedean quadratic Shannon extensions,
a class of Shannon extensions that we classify in Sects. 3 and 6.

To each quadratic Shannon extension there is an associated collection of rank
1 discrete valuation rings. Let S D S

i�0 Ri be a quadratic Shannon extension of
R D R0. For each i, let Vi be the DVR defined by the order function ordRi , where
for x 2 Ri, ordRi.x/ D supfn j x 2 mn

i g and ordRi is extended to the quotient field
of Ri by defining ordRi.x=y/ D ordRi.x/ � ordRi.y/ for all x; y 2 Ri with y ¤ 0. The
family fVig1iD0 determines a unique set

V D
[

n�0

\

i�n

Vi D fa 2 F j ordRi.a/ � 0 for i� 0g:

The set V consists of the elements in F that are in all but finitely many of the Vi. In
[21, Corollary 5.3], the authors prove that V is a valuation domain that birationally
dominates S, and call V the boundary valuation ring of the Shannon extension S.

Theorem 2.2 records properties of a quadratic Shannon extension.

Theorem 2.2 [21, Theorems 4.1, 5.4 and 8.1] Let .S;mS/ be a quadratic Shannon
extension of a regular local ring R. Let T be the intersection of all the DVR overrings
of R that properly contain S, and let V be the boundary valuation ring of S. Then:

(1) dim S D 1 if and only if S is a rank 1 valuation ring.
(2) S D V \ T.
(3) There exists x 2 mS such that xS is mS-primary, and T D SŒ1=x� for any such x.

It follows that the units of T are precisely the ratios of mS-primary elements of
S and dim T D dim S � 1.

(4) T is a localization of Ri for i � 0. In particular, T is a Noetherian regular
UFD.

(5) T is the unique minimal proper Noetherian overring of S.

In light of item 5 of Theorem 2.2, the ring T is called the Noetherian hull of S.



Directed Unions of Local Quadratic Transforms of Regular Local Rings and Pullbacks 261

The boundary valuation ring is given by a valuation from the nonzero elements
of the quotient field of R to a totally ordered abelian group of rank at most 2 [22,
Theorem 6.4 and Corollary 8.6]. In [22] the following two mappings on the quotient
field of R are introduced as invariants of a quadratic Shannon extension. The first, e,
takes values in Z [ f1g, while the second, w, takes values in R [ f�1;C1g.
Both e and w are used in [22] to decompose the boundary valuation v of the
quadratic Shannon extension into a function that takes its values in R˚R with the
lexicographic ordering. The function e is defined in terms of the transform .aRn/

RnCi

of a principal ideal aRn in RnCi for i > n; see [25] for the general definition of the
(weak) transform of an ideal and [21] for more on the properties of the transform in
our setting.

Definition 2.3 Let S DSi�0 Ri be a quadratic Shannon extension of a regular local
ring R.

(1) Let a 2 S be nonzero. Then a 2 Rn for some n � 0. Define

e.a/ D lim
i!1 ordnCi..aRn/

RnCi/:

For a; b nonzero elements in S, let n 2 N be such that a; b 2 Rn and define
e. a

b / D e.a/ � e.b/. That e is well defined is given by [22, Lemma 5.2].
(2) Fix x 2 S such that xS is primary for the maximal ideal of S, and define

w W F! R [ f�1; C1g
by defining w.0/ D C1, and for each q 2 F�,

w.q/ D lim
n!1

ordn.q/

ordn.x/
:

The structure of Shannon extensions naturally separate into those that are
archimedean and those that are non-archimedean as in the following definition.

Definition 2.4 An integral domain A is archimedean if
T

n>0 anA D 0 for each
nonunit a 2 A.

An integral domain A with dimA � 1 is archimedean. A valuation ring V with
dimV � 2 is non-archimedean.

Theorem 2.5, which characterizes quadratic Shannon extensions in several ways,
shows that there is a prime ideal Q of a non-archimedean quadratic Shannon
extension S such that S=Q is a rational rank one valuation ring and Q is a prime ideal
of the Noetherian hull T of S. In the next section this fact serves as the basis for the
classification of non-archimedean quadratic Shannon extensions via pullbacks.

Theorem 2.5 Let S D S
n�0 Rn be a quadratic Shannon extension of a regular

local ring R with quotient field F, and let x be an element of S that is primary for
the maximal ideal mS of S (see Theorem 2.2). Assume that dimS � 2. Let Q D
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T
n�1 xnS, and let T D SŒ1=x� be the Noetherian hull of S. Then the following are

equivalent:

(1) S is non-archimedean.
(2) T D .Q WF Q/.
(3) Q is a nonzero prime ideal of S.
(4) Every nonmaximal prime ideal of S is contained in Q.
(5) T is a (regular) local ring.
(6)

P1
nD0 w.mn/ D1, where w is as in Definition 2.3 and mn is the maximal ideal

of Rn for each n � 0.

Moreover if (1)–(6) hold for S and Q, then T D SQ, Q D QSQ is a common ideal
of S and T, and S=Q is a rational rank 1 valuation domain on the residue field T=Q
of T. In particular, Q is the unique maximal ideal of T.

Proof The equivalence of items 1–5 can be found in [22, Theorem 8.3]. That
statement 1 is equivalent to 6 follows from [22, Theorem 6.1]. To prove the
moreover statement, define Q1 D fa 2 S j w.a/ D C1g; where w is as in
Definition 2.3. By [22, Theorem 8.1], Q1 is a prime ideal of S and T , and by
[22, Remark 8.2], Q1 is the unique prime ideal of S of dimension 1. Since also
item 4 implies every nonmaximal prime ideal of S is contained in Q, it follows that
Q D Q1. By item 5, T D SŒ1=x� is a local ring. Since xS is mS-primary, we have
that T D SQ. Since Q is an ideal of T , we conclude that QSQ D Q and Q is the
unique maximal ideal of T . By [22, Corollary 8.4], S=Q is a valuation domain, and
by [22, Theorem 8.5], S=Q has rational rank 1. ut
Remark 2.6 If statements (1) – (6) hold for S, then Theorem 2.5 and [11, Theo-
rem 2.3] imply that any principal ideal of S that is primary for mS is comparable
to every other ideal of S with respect to set inclusion. Conversely, if a Shannon
extension S has a principal ideal that is primary for mS and is comparable to every
other ideal of S, then by [11, Theorem 2.3], S satisfies statement 3 of Theorem 2.5,
and hence S decomposes as in the statement of Theorem 2.5.

We can further separate the case where S is archimedean to whether or not S is
completely integrally closed. We recall the definition and result.

Definition 2.7 Let A be an integral domain. An element x in the field of fractions of
A is called almost integral over A if AŒx� is contained in a principal fractional ideal
of A. The ring A is called completely integrally closed if it contains all of the almost
integral elements over it.

For a Noetherian domain, an element of the field of fractions is almost integral if
and only if it is integral.

Theorem 2.8 [21, Theorems 6.1, 6.2] Let S be an archimedean quadratic Shannon
extension. Then the function w as in Definition 2.3 is a rank 1 nondiscrete valuation.
Its valuation ring W is the rank 1 valuation overring of V and W also dominates S.
The following are equivalent:

(1) S is completely integrally closed.
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(2) The boundary valuation V has rank 1; that is, V D W.

In Theorem 2.9 we recall from [22] the decomposition of the boundary valuation
of a non-archimedean quadratic Shannon extension in terms of the functions w and
e in Definition 2.3. For a decomposition of the boundary valuation in terms of w and
e in the archimedean case, see [22, Theorem 6.4].

Theorem 2.9 [22, Theorem 8.5 and Corollary 8.6] Assume that S is a non-
archimedean quadratic Shannon extension of a regular local ring R with quotient
field F. Let Q be as in Theorem 2.5, and let e and w be as in Definition 2.3. Then:

(1) e is a rank 1 discrete valuation on F whose valuation ring E contains V. If in
addition R=.Q \ R/ is a regular local ring, then E is the order valuation ring
of T.

(2) w induces a rational rank 1 valuation w0 on the residue field E=mE of E. The
valuation ring W 0 defined by w0 extends the valuation ring S=Q, and the value
group of W 0 is the same as the value group of S=Q.

(3) V is the valuation ring defined by the composite valuation of e and w0.
(4) Let z 2 E such that mE D zE. Then V is defined by the valuation v given by

v W F n f0g ! Z˚Q W a 7!
	

e.a/

e.z/
;

w.a/e.z/

w.z/e.a/



;

where the direct sum is ordered lexicographically.

3 The Relation of Shannon Extensions to Pullbacks

Let ˛ W A ! C be an extension of rings, and let B be a subring of C. The subring
D D ˛�1.B/ of A is the pullback of B along ˛ W A! C.

Alternatively, D is the fiber product A �C B of ˛ and the inclusion map � W B! C;
see, for example, [24, page 43].

The pullback construction has been extensively studied in multiplicative ideal
theory, where it serves as a source of examples and generalizes the classical “DCM”
construction. (For more on the latter construction, see [10].) We will be especially
interested in the case in which A;B;C;D are domains, ˛ is a surjection, and B has
quotient field C. In this case, following [9], we say the diagram above is of type ��.
For a diagram of type ��, the kernel of ˛ is a maximal ideal of A that is contained
in D. The quotient field C of B can be identified with the residue field of this maximal
ideal. If A is local with dimA � 1 and dimB � 1, then A D DM is a localization of
D and D is non-archimedean. These observations have a number of consequences
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for transfer properties between the ring D and the rings A and B; see, for example,
[7–9].

While pullback diagrams of type �� are often used to construct examples in non-
Noetherian commutative ring theory, there are also instances where the pullback
construction is used as a classification tool. A simple example is given by the
observation that a local domain D has a principal maximal ideal if and only if D
occurs in a pullback diagram of type ��, where B is a DVR [23, Exercise 1.5, p. 7].
A second example is given by the fact that for nonnegative integers k < n, a ring
D is a valuation domain of rank n if and only if D occurs in pullback diagram of
type ��, where A is a valuation ring of rank n � k and B is a valuation ring of rank
k; see [7, Theorem 2.4]. Theorem 2.5 provides an instance of this decomposition in
the present context. In the theorem, V is the pullback of E and W 0:

A third example of classification via pullbacks of the form �� is given by the
classification of local rings of global dimension 2 by Greenberg [16, Corollary 3.7]
and Vasoncelos [31]: A local ring D has global dimension 2 if and only if D satisfies
one of the following:

(a) D is a regular local ring of Krull dimension 2,
(b) D is a valuation ring of global dimension 2, or
(c) D has countably many principal prime ideals and D occurs in a pullback diagram

of type ��, where A is a valuation ring of global dimension 1 or 2 and B is a
regular local ring of global dimension 2.

Motivated by these examples, we use the pullback construction in this and the
next section to classify among the overrings of a regular local ring R those that are
non-archimedean quadratic Shannon extensions of R. We prove in Theorem 4.8 that
these are precisely the overrings of R that occur in pullback diagrams of type ��,
where A is a localization of an iterated quadratic transform Ri of R at a prime ideal
P and B is a rank 1 valuation overring of Ri=P having a divergent multiplicity
sequence. Thus a non-archimedean quadratic Shannon extension is determined by a
rank 1 valuation ring and a regular local ring.

As a step towards this classification, in Theorem 3.1 we restate part of Theo-
rem 2.5 as an assertion about how a non-archimedean quadratic Shannon extension
can be decomposed using pullbacks. Much of the rest of this section and the next is
devoted to a converse of this assertion, which is given in Theorems 4.8 and 5.1.

Theorem 3.1 Let S be a non-archimedean quadratic Shannon extension. Then
there is a prime ideal P of S and a rational rank 1 valuation ring V of �.P/ such
that SP is the Noetherian hull of S and S is the pullback of V along the residue map
˛ W SP ! �.P/, as in the following diagram:
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Proof Theorem 2.5 implies that there is a prime ideal P of S such that SP is
the Noetherian hull of S, P D PSP and S=P is a rational rank 1 valuation ring.
Theorem 3.1 follows from these observations. ut
Definition 3.2 Let R be a Noetherian local domain, let V be a rank 1 valuation ring
dominating R with corresponding valuation �, and let f.Ri;mi/g1iD0 be the infinite
sequence2 of LQTs along V . Then the sequence f�.mi/g1iD0 is the multiplicity
sequence of .R;V /; see [15, Section 5]. We say the multiplicity sequence is
divergent if

P
i�0 �.mi/ D1.

Remark 3.3 Let R be a regular local ring and let V be a rank 1 valuation ring
birationally dominating R. If the multiplicity sequence of .R;V / is divergent, then
V is a quadratic Shannon extension of R [15, Proposition 23] and V has rational
rank 1 [20, Proposition 7.3]. This is observed in [21, Corollary 3.9] in the case where
V is a DVR. In Proposition 3.4, we observe that V is the union of the rings in the
LQT sequence of R along V for every Noetherian local domain .R;m/ birationally
dominated by V .

Proposition 3.4 Let .R;m/ be a Noetherian local domain, let V be a rank 1
valuation ring that birationally dominates R, and let fRig1iD0 be the infinite sequence
of LQTs of R along V . If the multiplicity sequence of .R;V / is divergent, then
V DSn�0 Rn. Thus if V is a DVR, then V DSn�0 Rn.

Proof Let � be a valuation for V and let y be a nonzero element in V . Suppose we
have an expression y D an=bn, where an; bn 2 Rn. Since Rn � V , it follows that
�.bn/ � 0. If �.bn/ D 0, then since V dominates Rn, we have 1=bn 2 Rn and y 2 Rn.

Assume otherwise, that is, �.bn/ > 0. Then bn 2 mn, and since �.an/ � �.bn/,
also an 2 mn. Let xn 2 mn be such that xnRnC1 D mnRnC1. Then an; bn 2 xnRnC1,
so the elements anC1 D an=x and bnC1 D bn=x are in RnC1. Thus we have the
expression y D anC1=bnC1, where �.bnC1/ D �.bn/ � �.mn/.

Consider an expression y D a0=b0, where a0; b0 2 R0. Then we iterate this
process to obtain a sequence of expressions fan=bng of y, with an; bn 2 Rn, where
this process halts at some n � 0 if �.bn/ D 0, implying y 2 Rn. Assume by way
of contradiction that this sequence is infinite. For N � 0, it follows that �.b0/ D
�.bN/ C PN�1

nD0 �.mn/. Then �.b0/ � PN
nD0 �.mn/ for any N � 0, so �.b0/ �P1

nD0 �.mn/ D 1, which contradicts �.b0/ < 1. This shows that the sequence
fan=bng is finite and hence y 2Sn Rn. ut
Remark 3.5 Examples of .R;V / with divergent multiplicity sequence such that V
is not a DVR are given in [20, Examples 7.11 and 7.12].

2If Rn D RnC1 for some integer n, then Rn D V is a DVR and Rn D Rm for all m � n.
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Discussion 3.6 Let .R;m/ be a Noetherian local domain, let V be a rational rank 1
valuation ring that birationally dominates R, and let fRig1iD0 be the infinite sequence
of LQTs of R along V . The divergence of the multiplicity sequence in Proposi-
tion 3.4 is a sufficient condition for V DSn�0 Rn, but not a necessary condition; see
Example 3.7. It would be interesting to understand more about conditions in order
that the multiplicity sequence of .R;V / is divergent. Example 3.7 illustrates that an
archimedean Shannon extension S of a 3-dimensional regular local ring R may be
birationally dominated by a rational rank 1 valuation ring V , where S ¨ V . In this
case by Proposition 3.4, the multiplicity sequence of .R;V/ must be convergent.

Example 3.7 Let x; y; z be indeterminates over a field k. We first construct a
rational rank 1 valuation ring V 0 on the field k.x; y/. We do this by describing an
infinite sequence f.R0

n;m
0
n/gn�0 of local quadratic transforms of R0

0 D kŒx; y�.x;y/.
To indicate properties of the sequence, we define a rational valued function v on
specific generators of the m0

n. The function v is to be additive on products. We set
v.x/ D v.y/ D 1. This indicates that y=x is a unit in every valuation ring birationally
dominating R0

1.

Step 1. Let R0
1 have maximal ideal m0

1 D .x1; y1/R1, where x1 D x; y1 D .y=x/�
1. Define v.y1/ D 1=2.
Step 2. The local quadratic transform R0

2 of R0
1 has maximal ideal m0

2 generated
by x2 D x1=y1; y2 D y1. We have v.x2/ D 1=2, v.y2/ D 1=2.
Step 3. Define y3 D .y2=x2/� 1 and assign v.y3/ D 1=4. Then x3 D x2, v.x3/ D
1=2.
Step 4. The local quadratic transform R0

4 of R0
3 has maximal ideal m0

4 generated
by x4 D x3=y3; y4 D y3. Then v.x4/ D v.y4/ D 1=4.

Continuing this 2-step process yields an infinite directed union .R0
n;m

0
n/ of local

quadratic transforms of 2-dimensional RLRs. Let V 0 D S
n�0 R0

n. Then V 0 is a
valuation ring by [1, Lemma 12]. Let v0 be a valuation associated with V 0 such that
v0.x/ D 1. Then v0.y/ D 1 and v0 takes the same rational values on the generators
of m0

n as defined by v. Since there are infinitely many translations as described in
Steps 2nC 1 for each integer n � 0, it follows that V 0 has rational rank 1, e.g., see
[20, Remark 5.1(4)].

The multiplicity values of fR0
n;m

0
n/g are 1; 1

2
; 1
2
; 1
4
; 1
4
; 1
8
; 1
8
: : :, the sum of which

converges to 3.
Define V D V 0. z

x2y2
/, the localization of the polynomial ring V 0Œ z

x2y2
� at the prime

ideal mV0V 0Œ z
x2y2
�. One sometimes refers to V as a Gaussian or trivial or Nagata

extension of V 0 to a valuation ring on the simple transcendental field extension
generated by z

x2y2
over k.x; y/. It follows that V has the same value group as V 0

and the residue field of V is a simple transcendental extension of the residue field of
V 0 that is generated by the image of z

x2y2
in V=mV .

Let v denote the associated valuation to V such that v.x/ D 1. It follows that
v.y/ D 1 and v.z/ D v.x2y2/ D 4. Let R0 D kŒx; y; z�.x;y;z/. Then R0 is birationally
dominated by V . Let f.Rn;mn/gn�0 be the sequence of local quadratic transforms of
R0 along V .
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We describe the first few steps:

Step 1. R1 has maximal ideal m1 D .x1; y1; z1/R1, where x1 D x; y1 D .y=x/�1,
and z1 D z=x. Also v.y1/ D 1=2.
Step 2. The local quadratic transform R2 of R1 along V has maximal ideal m2

generated by x2 D x1=y1; y2 D y1 and z2 D z1=y1. We have v.x2/ D 1=2,
v.y2/ D 1=2 and v.z2/ D 4 � 3=2 > 3=2.
Step 3. The local quadratic transform R3 of R2 along V has y3 D .y2=x2/ � 1,
where v.y3/ D 1=4, and x3 D x2, v.x3/ D 1=2 and v.z3/ > 1=2.
Step 4. The local quadratic transform R4 of R3 along V has maximal ideal m4

generated by x4 D x3=y3; y4 D y3 and z4 D z3=y3.

The multiplicity values of the sequence f.Rn;mn/gn�0 along V are the same
as that for fR0

n;m
0
n/g, namely 1; 1

2
; 1
2
; 1
4
; 1
4
; 1
8
; 1
8
: : :. Let S D S

n�0 Rn. Since S
is birationally dominated by the rank 1 valuation ring V , it follows that S is an
archimedean Shannon extension. Since we never divide in the z-direction, we have
S � RzR, and S is not a valuation ring.

4 Quadratic Shannon Extensions Along a Prime Ideal

Let R be a Noetherian local domain and let fRngn�0 be an infinite sequence of LQTs
of R D R0. Using the terminology of Granja and Sanchez-Giralda [14, Definition 3
and Remark 4], for a prime ideal P of R, we say the quadratic sequence fRng is along
RP if

S
n�0 Rn � RP.

Let P be a nonzero, nonmaximal prime ideal of a Noetherian local domain .R;m/.
Proposition 4.1 establishes a one-to-one correspondence between sequences fRng of
LQTs of R D R0 along RP and sequences fRng of LQTs of R0 D R=P.

Proposition 4.1 Let R be a Noetherian local domain and let P be a nonzero
nonmaximal prime ideal of R. Then there is a one-to-one correspondence between:

(1) Infinite sequences fRngn�0 of LQTs of R0 D R along RP.
(2) Infinite sequences fRngn�0 of LQTs of R0 D R=P.

Given such a sequence fRngn�0, the corresponding sequence is fRn=.PRP \ Rn/g.
Denote S D S

n�0 Rn and S D S
n�0 Rn, and leteS be the pullback of S with respect

to the quotient map RP ! �.P/ as in the following diagram:

S̃= −1(S) S

RP κ(P)a

a

TheneS D SC PRP andeS is non-archimedean.

Proof The correspondence follows from [17, Corollary II.7.15, p. 165]. The fact
thateS D SC PRP is a consequence of the fact thateS is a pullback of S and RP. That
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eS is non-archimedean is a consequence of the observation that for each x 2 meSnPRP,
the fact that PRP �eS � RP implies PRP � xkeS for all k > 0.

Lemma 4.2 Assume notation as in Proposition 4.1. If S is a rank 1 valuation ring
and the multiplicity sequence of .R; S/ is divergent, then S D QS.

Proof Let � be a valuation for S and assume that � takes values in R. Let f 2 QS. We
claim that f 2 S. Since QS D SCPRP, we may assume f 2 PRP. Write f D g0

h0
, where

g0 2 P and h0 2 R n P.
Suppose we have an expression of the form f D gn

hn
, where gn 2 PRP \ Rn and

hn 2 Rn n PRP. Write mnRnC1 D xRnC1 for some x 2 mn. Since PRP \ Rn � mn,
it follows that gn D xgnC1 for gnC1 D gn

x 2 RnC1. Denote the image of h 2 Rn in
Rn by h. Since hn 2 Rn n PRP, we have that hn ¤ 0 and �.hn/ is a finite nonnegative
real number. If �.hn/ > 0, then hn 2 mn, so hn D xhnC1 for hnC1 D hn

x 2 RnC1.
Thus we have written f D gnC1

hnC1
, where gnC1 2 PRP \ RnC1 and hnC1 2 RnC1 n PRP,

such that �.hnC1/ D �.hn/ � �.mn/.
Since

P
n�0 �.mn/ D 1 and �.h0/ is finite, this process must halt with f D gn

hn

as before such that �.hn/ D 0. Since �.hn/ D 0, hn is a unit in Rn, so hn is a unit in
Rn, and thus f 2 Rn.

Lemma 4.3 Let P be a nonzero nonmaximal prime ideal of a regular local ring R.
Let fRngn�0 be a sequence of LQTs of R0 D R along RP and let fRng be the induced
sequence of LQTs of R0 D R=P as in Proposition 4.1. Denote S D S

n�0 Rn and

S DSn�0 Rn. Then the following are equivalent:

(1) S is the pullback of S along the surjective map RP ! �.P/.
(2) The Noetherian hull of S is RP.
(3) S is a rank 1 valuation ring and the multiplicity sequence of .R; S/ is divergent.

If these conditions hold, then S has rational rank 1.

Proof (1) H) (2): As a pullback, the quadratic Shannon extension S is non-
archimedean (see the proof of Proposition 4.1). Let x 2 S be such that xS is mS-
primary (see Theorem 2.2). By Theorem 2.5, the ideal Q D T

n�0 xnS is a nonzero
prime ideal of S, every nonmaximal prime ideal of S is contained in Q and T D SQ.
Assumption (1) implies that PRP is a nonzero ideal of both S and RP. Hence RP is
almost integral over S. We have S � SQ D T � RP, and SQ is an RLR and therefore
completely integrally closed. It follows that SQ D RP is the Noetherian hull of S.

(2) H) (3): Since the Noetherian hull RP of S is local, Theorem 2.5 implies
that S is non-archimedean and PRP � S. By Theorem 3.1, S D S=PRP is a rational
rank 1 valuation ring. The valuation � associated with S is equal to the valuation w0
of Theorem 2.9. By item 2 of Theorem 2.9 and item 6 of Theorem 2.5, we have

1X

nD0
�.mn/ D

1X

nD0
w.mn/ D1:
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(3) H) (1): This is proved in Lemma 4.2.

Remark 4.4 Let P be a nonzero nonmaximal prime ideal of R and let S be a non-
archimedean quadratic Shannon extension of R with Noetherian hull RP. The proof
of Lemma 4.3 shows that the multiplicity sequence of .R=P; S=PRP/ is given by
fw.mi/g, where w is as in Definition 2.3.

With notation as in Lemma 4.3, examples where S is a rank 1 valuation ring that
is not discrete are given in [20, Examples 7.11 and 7.12].

Theorem 4.5 (Existence of Shannon Extensions) Let P be a nonzero nonmaximal
prime ideal of a regular local ring R.

(1) There exists a non-archimedean quadratic Shannon extension of R with RP as
its Noetherian hull.

(2) If there exists an archimedean quadratic Shannon extension of R contained in
RP, then dimR=P � 2.

Proof To prove item 1, we use a result of Chevalley that every Noetherian local
domain is birationally dominated by a DVR [5]. Let V be a DVR birationally
dominating R=P. We apply Lemma 4.3 with this R and P. Let fRng be the sequence
of LQTs of R0 D R=P along V . Let S be the union of the corresponding sequence
of LQTs of R given by Proposition 4.1. Proposition 3.4 implies that S D V and
Lemma 4.3 implies that S DeS is a non-archimedean Shannon extension with RP as
its Noetherian hull.

For item 2, if dimR=P D 1, then dimRP D dimR � 1 since an RLR is catenary.
If S is an archimedean Shannon extension of R, then dimS � dimR � 1 by [21,
Lemma 3.4 and Corollary 3.6]. Therefore RP does not contain the Noetherian hull
of an archimedean Shannon extension of R if dimR=P D 1. ut
Discussion 4.6 Let P be a nonzero nonmaximal prime of a regular local ring R such
that dimR=P � 2. We ask:

Question Does there exists an archimedean quadratic Shannon extension of R
contained in RP?

The question reduces to the case where dimR=P D 2, for if Q is a prime ideal
of R with dimR=Q � 2, then there exists a prime ideal P of R such that Q � P and
dimR=P D 2. Then RP � RQ. Hence a quadratic Shannon extension of R contained
in RP is contained in RQ.

Assume that P is a nonzero prime ideal of R such that dimR=P D 2. It is
not difficult to see that the 2-dimensional Noetherian local domain R0 D R=P is
birationally dominated by a rank 1 valuation domain V of rational rank 2. Consider
the infinite sequence of LQTs fRngn�0 of R0 D R=P along V and let S D S

n�0 Rn.
Then S is birationally dominated by V . Each of the Rn is a 2-dimensional Noetherian
local domain and dimS is either 1 or 2.

Let fRng be the sequence of LQTs of R given by Proposition 4.1 that corresponds
to fRng, and let S D S

n Rn. Then dimRn > 2 for all n. Hence S is a quadratic
Shannon extension of R and S � RP. Let p D PRP \ S. Then S=p D S.
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If dimS D 1, then there are no prime ideals of S strictly between p and mS. Since
V has rational rank 2, the multiplicity sequence of .R; S/ is convergent. Lemma 4.3
implies that the Noetherian hull of S is not RP. Hence if dimS D 1, there exists an
archimedean quadratic Shannon extension S of R contained in RP.

Theorem 4.5 implies the following:

Corollary 4.7 (Lipman [25, Lemma 1.21.1]) Let P be a nonmaximal prime ideal
of a regular local ring R. Then there exists a quadratic Shannon extension of R
contained in RP.

In Theorem 4.8 we use Lemma 4.3 to characterize the overrings of a regular
local ring R that are Shannon extensions of R with Noetherian hull RP, where P is
a nonzero nonmaximal prime ideal of R. Note that by Theorem 2.5 such a Shannon
extension is necessarily non-archimedean.

Theorem 4.8 (Shannon Extensions with Specified Local Noetherian Hull) Let
P be a nonzero nonmaximal prime ideal of a regular local ring R. The quadratic
Shannon extensions of R with Noetherian hull RP are precisely the rings S such that
S is a pullback along the residue map ˛ W RP ! �.P/ of a rational rank 1 valuation
ring birationally dominating R=P whose multiplicity sequence is divergent.

Proof If S is a quadratic Shannon extension with Noetherian hull RP, then by
Lemma 4.3, S is a pullback along the map RP ! �.P/ of a rational rank 1 valuation
ring birationally dominating R=P whose multiplicity sequence is divergent.

Conversely, let S be such a pullback. Let fRngn�0 denote the sequence of LQTs
of R0 D R=P along V and let fRngn�0 denote the induced sequence of LQTs of
R0 D R as in Proposition 4.1. Then Lemma 4.3 implies that S D Sn�0 Rn, so S is a
quadratic Shannon extension.

Corollary 4.9 Let P be a prime ideal of the regular local ring R with dimR=P D
1.

(1) The quadratic Shannon extensions of R with Noetherian hull RP are precisely
the pullbacks along the residue map RP ! �.P/ of the finitely many DVR
overrings V of R=P.

(2) If R=P is a DVR, then RC PRP is the unique quadratic Shannon extension of R
with Noetherian hull RP.

Proof The Krull–Akizuki Theorem [26, Theorem 11.7] implies that R=P has finitely
many valuation overrings, each of which is a DVR. By Theorem 4.8 there is a
one-to-one correspondence between these DVRs and the Shannon extensions of R
with Noetherian hull RP. This proves item 1. If R=P is a DVR, then by item 1, the
pullback RCPRP of R=P along the map RP ! �.P/ is the unique quadratic Shannon
extension of R with Noetherian hull RP. This verifies item 2. ut
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5 Classification of Non-Archimedean Shannon Extensions

In Theorem 5.1 we classify the non-archimedean quadratic Shannon extensions
S that occur as overrings of a given regular local ring R. The classification is
extrinsic to S in the sense that a prime ideal of an iterated quadratic transform of
R is needed for the description of the overring S as a pullback. In Theorem 5.2
we give an intrinsic rather than extrinsic characterization of certain of the non-
archimedean quadratic Shannon extensions with principal maximal ideal that occur
in an algebraic function field of characteristic 0. In this case, we are able to
characterize such rings in terms of pullbacks without the explicit requirement of
a regular local “underring” of S. This allows us to give an additional source of
examples of non-archimedean quadratic Shannon extensions in Example 5.4.

Theorem 5.1 (Classification of non-archimedean Shannon extensions) Let R be
a regular local ring with dimR � 2, and let S be an overring of R. Then S is a non-
archimedean quadratic Shannon extension of R if and only if there is a ring V , a
nonnegative integer i, and a prime ideal P of Ri such that

(a) V is a rational rank 1 valuation ring of �.P/ that contains the image of Ri=P in
�.P/ and has divergent multiplicity sequence over this image, and

(b) S is a pullback of V along the residue map ˛ W .Ri/P ! �.P/.

Proof Suppose S is a non-archimedean quadratic Shannon extension, and let fRig be
the sequence of iterated QDTs such that S DSi Ri. By Theorem 2.5, the Noetherian
hull T of S is a local ring, and by Theorem 2.2 there is i > 0 and a prime ideal P of
Ri such that T D .Ri/P. Since S is a non-archimedean quadratic Shannon extension
of Ri, Theorem 4.8 implies there is a valuation ring V such that (a) and (b) hold for
i, P, S, and V .

Conversely, suppose there is a ring V , a nonnegative integer i and a prime ideal
P of Ri that satisfy (a) and (b). By Theorem 4.8, S is a quadratic Shannon extension
of Ri with Noetherian hull .Ri/P. Thus S is a quadratic Shannon extension of R that
is non-archimedean by Theorem 2.5. ut

In contrast to Theorem 5.1, the pullback description in Theorem 5.2 is without
reference to a specific regular local underring of S. Instead, the proof constructs one
using resolution of singularities. Because our use of this technique is elementary, we
frame our proof in terms of projective models rather than projective schemes. For
more background on projective models, see [3, Sections 1.6–1.8] and [34, Chapter
VI, §17]. Let F be a field and let k be a subfield of F. Let t0 D 1 and assume
that t1; : : : ; tn are nonzero elements of F such that F D k.t1; : : : ; tn/. For each
i 2 f0; 1; : : : ; ng, define Di D kŒt0=ti; : : : ; tn=ti�. The projective model of F=k with
respect to t0; : : : ; tn is the collection of local rings given by
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X D f.Di/P W i 2 f0; 1; : : : ; ng; P 2 Spec .Di/g:

If k has characteristic 0, then by resolution of singularities (see, for example, [6,
Theorem 6.38, p. 100]) there is a projective model Y of F=k such that every regular
local ring in X is in Y , every local ring in Y is a regular local ring, and every local
ring in X is dominated by a (necessarily regular) local ring in Y .

By a valuation ring of F=k we mean a valuation ring V with quotient field F such
that k is a subring of V .

Theorem 5.2 Let S be a local domain containing as a subring a field k of
characteristic 0. Assume that dimS � 2 and that the quotient field F of S is a finitely
generated extension of k. Then the following are equivalent:

(1) S has a principal maximal ideal and S is a quadratic Shannon extension of a
regular local ring R that is essentially finitely generated over k.

(2) There is a regular local overring A of S and a DVR V of .A=mA/=k such that

(a) tr.degk A=mA C dimA D tr.degk F, and
(b) S is the pullback of V along the residue map ˛ W A! A=mA.

Proof (1) H) (2): Let x 2 S be such that mS D xS. By Theorem 2.2, SŒ1=x� is
the Noetherian hull of S and SŒ1=x� is a regular ring. Since dimS > 1, the ideal
P D T

k>0 xkS is a nonzero prime ideal of S [23, Exercise 1.5, p. 7]. Hence S is
non-archimedean. By Theorem 2.5, SP is the Noetherian hull of S and hence SP D
SŒ1=x�. Let A D SP and V D S=P. By Theorem 3.1, S is a pullback of the DVR
V with respect to the map A ! A=mA. By assumption, S is a quadratic Shannon
extension of a regular local ring R that is essentially finitely generated over k. For
sufficiently large i, we have A D SP D .Ri/P\Ri by [21, Proposition 3.3]. Since Ri is
essentially finitely generated over R, and R is essentially finitely generated over k,
we have that A is essentially finitely generated over k. By the Dimension Formula
[26, Theorem 15.6, p. 118],

tr.degk A=mA C dimA D tr.degk F:

This completes the proof that statement 1 implies statement 2.
(2) H) (1): Let P D mA. By item 2b, P is a prime ideal of S, A D SP, P D PSP

and V D S=P. Let x 2 mS be such that the image of x in the DVR S=P generates
the maximal ideal. Since P D PSP, we have P � xS. Consequently, mS D xS, and
so S has a principal maximal ideal.

To prove that S is a quadratic Shannon extension of a regular local ring that is
essentially finitely generated over k, it suffices by Theorem 4.8 to prove:
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(i) There is a subring R of S that is a regular local ring essentially finitely generated
over k.

(ii) A is a localization of R at the prime ideal P \ R.
(iii) V is a valuation overring of .RC P/=P with divergent multiplicity sequence.

Since F is a finitely generated field extension of k and A (as a localization of S)
has quotient field F, there is a finitely generated k-subalgebra D of A such that the
quotient field of D is F. By item 2a, A=P has finite transcendence degree over k.
Let a1; : : : ; an be elements of A whose images in A=P form a transcendence basis
for A=P over k. Replacing D with DŒa1; : : : ; an�, and defining p D P \ D, we may
assume that A=P is algebraic over �.p/ D Dp=pDp. In fact, since the normalization
of an affine k-domain is again an affine k-domain, we may assume also that D is an
integrally closed finitely generated k-subalgebra of A with quotient field F. Since
D is a finitely generated k-algebra, D is universally catenary. By the Dimension
Formula [26, Theorem 15.6, p. 118], we have

dim Dp C tr:degk �.p/ D tr:degk F:

Therefore, item 2a implies

dim Dp C tr:degk �.p/ D dim AC tr:degk A=P:

Since A=P is algebraic over �.p/, we conclude that dimDp D dimA.
The normal ring A birationally dominates the excellent normal ring Dp, so A is

essentially finitely generated over Dp [19, Theorem 1]. Therefore A is essentially
finitely generated over k.

Since A is essentially finitely generated over k, the local ring A is in a projective
model X of F=k. As discussed before the theorem, resolution of singularities implies
that there exists a projective model Y of F=k such that every regular local ring in X
is in Y , every local ring in Y is a regular local ring, and every local ring in X is
dominated by a local ring in Y .

Since A is a regular local ring in X, A is a local ring in the projective model Y .
Let x0; : : : ; xn 2 F be nonzero elements such that with Di WD kŒx0=xi; : : : ; xn=xi� for
each i 2 f0; 1; : : : ; ng, we have

Y D
n[

iD0
f.Di/Q W Q 2 Spec .Di/g:

Since S has quotient field F, we may assume that x0; : : : ; xn 2 S. Since A is in Y ,
there is i 2 f0; 1; : : : ; ng such that A D .Di/P\Di .

By item 2b, V D S=P is a valuation ring with quotient field A=P. For a 2 A, let
a denote the image of a in the field A=P. Since S=P is a valuation ring of A=P, there
exists j 2 f0; 1; : : : ; ng such that

. fxk=xignkD0 /.S=P/ D .xj=xi/.S=P/: (1)



274 L. Guerrieri et al.

Notice that xi=xi D 1 … P. Hence at least one of the xk=xi … P, and Equation (1)
implies xj=xi … P. Since A D SP and P D PSP, every fractional ideal of S contained
in A is comparable to P with respect to set inclusion. Therefore P ¨ .xj=xi/S: This
and Equation (1) imply that

.x0=xi; : : : ; xn=xi/S D .xj=xi/S: (2)

Multiplying both sides of Equation (2) by xi=xj we obtain

Dj D kŒx0=xj; : : : ; xn=xj� � S:

Let R D .Dj/mS\Dj : Since Y is a nonsingular model, R is a regular local ring with
R � S � A.

We observe next that A D RP\R. Since R � A, we have that A dominates the
local ring A0 WD RP\R: The local ring A0 is a member of the projective model Y , and
every valuation ring dominating the local ring A in Y dominates also the local ring
A0 in Y . Since Y is a projective model of F=k, the Valuative Criterion for Properness
[17, Theorem II.4.7, p. 101] implies no two distinct local rings in Y are dominated
by the same valuation ring. Therefore, A D A0, so that A D RP\R.

Finally, observe that since V D S=P is a DVR overring of .R C P/=P, the
multiplicity sequence of S=P over .R C P/=P is divergent. By Theorem 4.8, S is a
quadratic Shannon extension of R with Noetherian hull A D RP\R. By Theorem 2.5,
S is non-archimedean, so the proof is complete. ut

As an application of Theorem 5.2, we describe for a finitely generated field
extension F=k of characteristic 0 the valuation rings with principal maximal ideal
that arise as quadratic Shannon extensions of regular local rings that are essentially
finitely generated over k, i.e., the valuation rings on the Zariski–Riemann surface
of F=k that arise from desingularization followed by infinitely many successive
quadratic transforms of projective models. Recall that a valuation ring V of F=k
is a divisorial valuation ring if

tr:degk V=mV D tr:degk F � 1:

Such a valuation ring is necessarily a DVR (apply, e.g., [1, Theorem 1]).

Corollary 5.3 Let F=k be a finitely generated field extension where k has charac-
teristic 0, and let S be a valuation ring of F=k with principal maximal.

(1) Suppose rank S D 1. Then there is a sequence fRig (possibly finite) of LQTs of
a regular local ring R essentially finitely type over k such that S D S

i Ri. This
sequence is finite if and only if S is a divisorial valuation ring.

(2) Suppose rank S > 1. Then S is a quadratic Shannon extension of a regular
local ring essentially finitely generated over k if and only if S has rank 2 and S
is contained in a divisorial valuation ring of F=k.
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Proof For item 1, assume rank S D 1. By resolution of singularities, there is a
nonsingular projective model X of F=k with function field F. Let R be the regular
local ring in X that is dominated by S. Let fRig be the sequence of LQTs of R along
S. If fRig is finite, then dimRi D 1 for some i, so that Ri is a DVR. Since S is a DVR
between Ri and its quotient field, we have Ri D S. Otherwise, if fRig is infinite, then
Proposition 3.4 implies S D S

i Ri since S is a DVR. That the sequence is finite if
and only if S is a divisorial valuation ring follows from [1, Proposition 4].

For item 2, suppose rank S > 1. Assume first that S is a Shannon extension
of a regular local ring essentially finitely generated over k. By [21, Theorem 8.1],
dimS D 2. By Theorem 5.2, S is a contained in a regular local ring A � F such that
A=mA is the quotient field of a proper homomorphic image of S and

tr:degk A=mA C dim A D trdegk F: (3)

We claim A is a divisorial valuation ring of F=k. Since A=mA is the quotient field
of a proper homomorphic image of S, it follows that

tr:degk A=mA < trdegkF: (4)

From Equations (3) and (4) we conclude that dimA � 1. As an overring of the
valuation ring S, A is also a valuation ring. Since A is a regular local ring that is not
a field, it follows that A is a DVR. Thus dimA D 1 and Equation (3) implies that

tr:degk A=mA D trdegk F � 1;

which proves that A is a divisorial valuation ring.
Conversely, suppose rank S D 2 and S is a quadratic Shannon extension of

a regular local ring that is essentially finitely generated over k. Theorem 5.2 and
rank S D 2 imply S is contained in a regular local ring A with dimA D 1 and

tr:degk A=mA C 1 D trdegk F:

Thus A is a divisorial valuation ring.
Finally, suppose rank S D 2 and S is contained in a divisorial valuation ring A

of F=k. Since S is a valuation ring of rank 2 with principal maximal ideal it follows
that mA � S and S=mA is DVR. Since A is a divisorial valuation ring, we have

tr:degk A=mA C dim A D trdegk F:

As a DVR, A is a regular local ring, so Theorem 5.2 implies S is a quadratic Shannon
extension of a regular local ring that is essentially finitely generated over k. ut
Example 5.4 Let k be a field of characteristic 0, let x1; : : : ; xn; y1; : : : ; ym be
algebraically independent over k, and let

A D k.x1; : : : ; xn/Œy1; : : : ; ym�.y1;:::;ym/:
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Let ˛ W A ! k.x1; : : : ; xn/ be the canonical residue map. For every DVR V of
k.x1; : : : ; xn/=k, the ring S D ˛�1.V/ is by Theorem 5.2 a quadratic Shannon
extension of a regular local ring that is essentially finitely generated over k. As in
the proof that statement 2 implies statement 1 of Theorem 5.2, the Noetherian hull
of S is A.

Conversely, suppose S is a k-subalgebra of F with principal maximal ideal such
that S is a quadratic Shannon extension of a regular local ring that is essentially
finitely generated over k and S has Noetherian hull A. As in the proof that statement 1
implies statement 2 of Theorem 5.2, there is a DVR V of k.x1; : : : ; xn/=k such that
S D ˛�1.V/.

It follows that there is a one-to-one correspondence between the DVRs of
k.x1; : : : ; xn/=k and the quadratic Shannon extensions S of regular local rings that
are essentially finitely generated over k, have Noetherian hull A, and have a principal
maximal ideal.

Theorem 5.2 concerns quadratic Shannon extensions of regular local rings that
are essentially finitely generated over k. Example 5.5 is a quadratic Shannon
extension of a regular local ring R in a function field for which R is not essentially
finitely generated over k.

Example 5.5 Let F D k.x; y; z/, where k is a field and x; y; z are algebraically
independent over k. Let � 2 xkŒŒx�� be a formal power series in x such that x and �
are algebraically independent over k. Set y D � and define V D kŒŒx��\k.x; y/. Then
V is a DVR on the field k.x; y/ with maximal ideal xV and residue field V=xV D k.
Let V.z/ D VŒz�xVŒz�. Then V.z/ is a DVR on the field F with residue field k.z/, and
V.z/ is not essentially finitely generated over k. Let R D VŒz�.x;z/VŒz�. Notice that R
is a 2-dim RLR. The pullback diagram of type ��

defines a rank 2 valuation domain S on F that is by Theorem 5.1 a quadratic Shannon
extension of R. For each positive integer n, define Rn D RŒ x

zn �.z; x
zn /RŒ x

zn �. Then S DS
n�1 Rn.

6 Quadratic Shannon Extensions and GCD Domains

As an application of the pullback description of non-archimedean quadratic Shan-
non extensions given in Sect. 6, we show in Theorem 6.2 that a quadratic Shannon
extension S is coherent, a GCD domain or a finite conductor domain if and
only if S is a valuation domain. We extend this fact to all quadratic Shannon
extensions S, regardless of whether S is archimedean, by applying structural results
for archimedean quadratic Shannon extensions from [21].
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Definition 6.1 Following McAdam in [27], an integral domain D is a finite
conductor domain if for elements a; b in the field of fractions of D, the D-module
aD\bD is finitely generated. A ring is said to be coherent if every finitely generated
ideal is finitely presented. Chase [4, Theorem 2.2] proves that an integral domain D
is coherent if and only if the intersection of two finitely generated ideals of D is
finitely generated. Thus a coherent domain is a finite conductor domain. An integral
domain D is a GCD domain if for all a; b 2 D, aD \ bD is a principal ideal of D
[10, page 76 and Theorem 16.2, p. 174]. It is clear from the definitions that a GCD
domain is a finite conductor domain.

Examples of GCD domains and finite conductor domains that are not coherent
are given by Glaz in [12, Example 4.4 and Example 5.2] and by Olberding and
Saydam in [29, Prop. 3.7]. Every Noetherian integral domain is coherent, and a
Noetherian domain D is a GCD domain if and only if it is a UFD. Noetherian
domains that are not UFDs are examples of coherent domains that are not GCD
domains.

Theorem 6.2 Let S be a quadratic Shannon extension of a regular local ring. The
following are equivalent:

(1) S is coherent.
(2) S is a GCD domain.
(3) S is a finite conductor domain.
(4) S is a valuation domain.

Proof 3 It is true in general that if S is a valuation domain, then S satisfies each
of the first three items. As noted above, if S is coherent or a GCD domain, then S
is a finite conductor domain. To complete the proof of Theorem 6.2, it suffices to
show that if S is not a valuation domain, then S is not a finite conductor domain.
Specifically, we assume S is not a valuation domain and we consider three cases. In
each case, we find a pair of principal fractional ideals of S whose intersection is not
finitely generated.

Case 1: S is non-archimedean. By Theorem 2.5, there is a unique dimension 1
prime ideal Q of S, QSQ D Q, and SQ is the Noetherian hull of S. If dimSQ D 1,
then, as a regular local ring, SQ is a DVR; this, along with the fact that Q D QSQ,
implies S is a DVR, contrary to the assumption that S is not a valuation domain.
Therefore dimSQ � 2, and there exist elements f ; g 2 Q that have no common
factors in the UFD SQ. Consider I D fS \ gS, let x 2 mS such that

p
xS D mS

3Muhammad Zafrullah has shown us a different proof of Theorem 6.2, an outline of which is as
follows. Observe that a Shannon extension S is a Schreier domain, i.e., S is an integrally closed
domain such that if rjxy, then r D st where sjx and tjy. A finite conductor Schreier domain is a
GCD domain by [32, Theorem 3.6]. By Theorem 2.2, mS is the radical of a principal ideal, and so
S is t-local [18, Proposition 1.1(5)]. In particular, ...x; y/S/�1/�1 	 mS for all x; y 2 S. If S is a
GCD domain that is not a valuation domain, then there exist x; y 2 mS such that xS \ yS D xyS.
However, this implies ...x; y/S/�1/�1 D S, a contradiction. Thus if S is a GCD domain, S is a
valuation domain. These observations imply the theorem.
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(see Theorem 2.2), and let a 2 I. Since a 2 fSQ \ gSQ D fgSQ, we can write
a D fgy for some y 2 SQ. Now gy 2 QSQ D Q and fy 2 QSQ D Q, so gy

x 2 S and
fy
x 2 S. Thus a

x D f gy
x D g fy

x 2 I. This shows that xI D I and so mSI D I. Since
I ¤ .0/, Nakayama’s Lemma implies that I is not finitely generated.
Case 2: S is archimedean, but not completely integrally closed. By Theorem 2.2,
dimS � 2. We claim that mS is not finitely generated as an ideal of S. Since
dimS > 1, if mS is a principal ideal, then

T
i m

i
S is a nonzero prime ideal of S, a

contradiction to the assumption that S is archimedean. Thus mS is not principal.
By [21, Proposition 3.5], this implies m2

S D mS. From Nakayama’s Lemma it
follows that mS is not finitely generated. Since S is not completely integrally
closed, there is an almost integral element 	 over S that is not in S. By [21,
Corollary 6.6], mS D 	�1S \ S.
Case 3: S is archimedean and completely integrally closed. By Theorem 2.2,
dimS � 2. By Theorems 2.2 and 2.8, S D T \ W, where W is the rank 1
nondiscrete valuation ring with associated valuation w.�/ as in Definition 2.3
and T is a UFD that is a localization of S. Since

P
n�0 w.mn/ < 1 by

Theorem 2.5, and since mnS is principal and generated by a unit of T for n� 0,
the w-values of units of T generate a nondiscrete subgroup of R.

Since S is archimedean, Theorem 2.5 implies T is a non-local UFD. Therefore
there exist elements f ; g 2 S that have no common factors in T . As in Case 1, we
consider I D fS \ gS. Since S D T \W, it follows that

I D .fT \ gT/ \ .fW \ gW/

D fT \ gT \ fa 2 W j w.a/ � maxfw.f /;w.g/gg:

Assume without loss of generality that w.f / � w.g/.
For a 2 I, write a D . a

f /f in S and consider w.a/. Since a
f is divisible by g in T ,

it is a non-unit in T , and thus it is a non-unit in S. Since W dominates S, it follows
that w. a

f / > 0 and thus w.a/ > w.f /.
We claim that mSI D I. Since the w-values of the units of T generate a

nondiscrete subgroup of R, for any  > 0, there exists a unit x in T with 0 <
w.x/ < . Then for a 2 I and for some x with 0 < w.x/ < w.a/ � w.f /, we have
a
x 2 I and thus a 2 mSI. Since mSI D I and I ¤ .0/, Nakayama’s Lemma implies
that I is not finitely generated.

In every case, we have constructed a pair of principal fractional ideals of S whose
intersection is not finitely generated. We conclude that if S is not a valuation domain,
then S is not a finite conductor domain. ut
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Divisorial Prime Ideals in Prüfer Domains

Thomas G. Lucas

Abstract For an integral domain R with quotient field K ¤ R, the inverse of a
nonzero fractional ideal I of R is the set .R W I/ D ft 2 K 2 tI � Rg. The divisorial
closure of I with respect to R is the fractional ideal .R W .R W I//. In addition I is
divisorial as an ideal of R if I D .R W .R W I//. Of concern here are divisorial prime
ideals in Prüfer domains. In some cases one can have a pair of comparable Prüfer
domains T ¨ R with a common nonzero prime ideal P such that P is divisorial as an
ideal of T but is not divisorial as an ideal of R. For example, if P D P2 is a nonzero
nonmaximal prime of a valuation domain V , then P is divisorial as an ideal of V but
P D PVP is not divisorial as an ideal of VP. We review several relevant results on
divisorial primes and present some new sufficient conditions on when P is divisorial
as an ideal of R, and if not when a T ¨ R exists such that P D P\ T is divisorial as
an ideal of T .

Keywords Prüfer domain • Divisorial ideal

Subject Classifications [MSC 2010] Primary 13F05, 13A15

1 Introduction

All the rings considered below are assumed to be integral domains, in most cases
Prüfer domains. For a domain R with quotient field K D qf .R/ and nonzero
fractional ideal J of R, .R W J/ D ft 2 K j tJ � Rg, and Jv D .R W .R W J// is
the divisorial closure of J with respect to R. The fractional ideal J is a divisorial
ideal of R if J D .R W .R W J//. As we will see, if I is a common ideal of comparable
Prüfer domains R ¨ S, it may be that I D .R W .R W I// ¨ .S W .S W I// so one must
be careful when using the “Iv" notation.
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We are primarily interested in the divisoriality behavior of nonzero prime ideals
in Prüfer domains. In Sect. 4, we look at various sufficient conditions for a prime to
be divisorial and provide a “new” characterization of when a nonzero nonmaximal
prime of a Prüfer domain is divisorial (for the latter, see Corollary 4.3). We begin
with a review of earlier related work and conclude with examples to illustrate
how erratic the divisoriality status of a “starting” prime can be in chains of Prüfer
domains. In particular, we give a pair of examples of strictly ascending chains of
Prüfer domains both starting with the same nondivisorial nonmaximal prime P of
a Prüfer domain R. Both chains fSng and fDng are indexed over the nonnegative
integers beginning with S0 D R D D0. For n odd, PSn and PDn are divisorial primes
of Sn and Dn, respectively. On the other hand for m even, .Sm W PSm/ D Sm and
.Dm W PDm/ D Dm, so neither PSm nor PDm is divisorial. The difference with the
chains is the behavior of PS and PD for S DS Sk.¨ RP/ and D DSDk.¨ RP/. In
S, .S W PS/ D S with PS not maximal. On the other hand, PD is both divisorial and
nonmaximal.

We make use of the usual notation of Max.R/ for the set of maximal ideals of
R and Spec.R/ for the set of prime ideals. Also, we let Spec�.R/ denote the set of
nonzero prime ideals of R.

2 Background

In 1966, Robert Gilmer introduced property .#/ for integral domains [7]. His
motivation was to find a property that could allow one to determine exactly when
an almost Dedekind domain was a Dedekind domain. An integral domain D is said
to be .#/ if for each pair of distinct nonempty sets of maximal ideals S ¤ T , the
domains

TfDM j M 2 S g and
TfDN j N 2 T g are also distinct. Later, he and

Bill Heinzer consider the property that each overring of D is (also) .#/ [9]. Such a
domain is now referred to as a .##/ domain.

Here are characterizations of these two properties for Prüfer domains.

Theorem 2.1 ([9, Theorem 1 and 3]) Let R be a Prüfer domain.

1. R is a .#/ domain if and only if each maximal ideal contains an invertible ideal
that is contained in no other maximal ideal.

2. R is a .##/ domain if and only if each nonzero prime ideal P contains an invertible
ideal I such that each maximal ideal that contains I also contains P.

For a domain R, we let Max.R/ denote the set of maximal ideals of R and for each
ideal I, we let Max.I;R/ denote the set of maximal ideals of R that contain I. In the
case Max.I;R/ is a proper subset of Max.R/, we have an overring �R.I/ DTfRN j
N 2 Max.R/nMax.I;R/g. In the case Max.I;R/ D Max.R/, we let �R.I/ D K, the
quotient field of R.
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With regard to the second statement in Theorem 2.1, Gilmer and Heinzer first
proved that for a given nonzero prime P of a Prüfer domain R, RP does not
contain �R.P/ if and only if P contains an invertible ideal I such that Max.I;R/ D
Max.P;R/ [9, Corollary 2]. They did not give this property a name. Current
terminology is that a nonzero prime P of a domain R (not necessarily Prüfer) is
a sharp prime of R if RP does not contain �R.P/.

The next three results are due to Jim Huckaba and Ira Papick. The first two
concern when .R W I/ is a ring. The first applies to any nonzero ideal in an integral
domain, the second is specific to nonzero prime ideals in a Prüfer domain. The third
result provides a few sufficient conditions for a nonzero nonmaximal prime (of a
Prüfer domain) to be divisorial.

Theorem 2.2 [13, Proposition 2.2] The following are equivalent for a nonzero ideal
I of a domain R:

1. .R W I/ is a ring.
2. .R W I/ D .Iv W Iv/.
3. .R W I/ D .I.R W I/ W I.R W I//.
Theorem 2.3 [13, Theorems 3.2 & 3.8, Proposition 3.9 & Corollary 3.4] Let P be
a nonzero nonmaximal prime of a Prüfer domain R and let M be a maximal ideal
of R.

1. .R W P/ D .P W P/ D �R.P/ \ RP.
2. The following are equivalent:

a. M is divisorial.
b. M is invertible.
c. .R W M/ © R.

Theorem 2.4 [13, Propositions 3.10 & 3.11] Let P be a nonzero nonmaximal prime
of a Prüfer domain R.

1. If R is a valuation domain, then P is divisorial.
2. If the set Max.R/nMax.P;R/ is finite, then P is divisorial.
3. If R is a .##/ domain, then P is divisorial.

In the mid 1980s, Huckaba and Papick wrote a pair of papers with Marco Fontana
on divisorial prime ideals in Prüfer domains. In [2], we find the following sufficient
condition for a nonzero nonmaximal prime to be divisorial. In statement (2), T.P/ DS
.R W Pn/, the Nagata ideal transform of P (with respect to R).

Theorem 2.5 [2, Lemma 2.2, Theorems 2.1 & 3.1] Let P be a nonzero nonmaximal
prime of a Prüfer domain R.

1. If .R W P/ ¨ �R.P/, then P is divisorial.
2. If .R W P/ ¨ T.P/, then P is divisorial.
3. .R W P/ ¨ �R.P/ if and only if there is an invertible ideal I ¨ P such that

Max.I;R/ D Max.P;R/ (in other words, P is sharp).
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In the second paper, they were able to establish a necessary and sufficient condi-
tion for a nonzero prime of a Prüfer domain to be divisorial. This characterization
involves the Nagata ideal transform, and it is valid for all nonzero primes including
maximal ideals.

Theorem 2.6 [3, Proposition 9] Let P be a nonzero prime ideal of a Prüfer domain
R. Then P is a divisorial ideal of R if and only if either .R W P/ ¨ T.P/ or P D .R W
T.P//.

For the special case that R is two-dimensional we have the following characteri-
zation.

Theorem 2.7 [3, Proposition 14] Let P be a nonzero prime of a two-dimensional
Prüfer domain R. Then P is a divisorial ideal of R if and only if .R W P/ © R.

We need to skip ahead many years to find other results about divisorial prime
ideals in Prüfer domains.

The notion of an antesharp prime was introduced in 2010 by Fontana, Evan
Houston, and the author of this article. A nonzero prime ideal P of a domain R
is said to be antesharp if each prime of .P W P/ that contains P contracts to P when
intersected with R. In the case R is a Prüfer domain, this simply means that P is
a maximal ideal of .P W P/. A maximal ideal is always antesharp. With regard to
nonzero nonmaximal primes we have the following.

Theorem 2.8 [5, Proposition 2.3, Corollary 2.4] Let P be a nonzero nonmaximal
prime of a domain R.

1. P is antesharp if and only if each prime that properly contains P contains an
invertible ideal that properly contains P.

2. If P is antesharp, then it is divisorial.
3. If R is a Prüfer domain and P is sharp, then it is antesharp (and thus divisorial).

For Prüfer domains, “sharp" and “antesharp" are stable in the following sense: if
P is sharp (antesharp) as an ideal of R, then PS is sharp (antesharp) in each overring
R � S � RP. As we will see, “divisorial" can be very unstable.

3 A Few Questions

Let M be a maximal ideal of a Prüfer domain R and let T ¨ R ¨ S � RM ¨ qf .T/.
From the Huckaba/Papick result mentioned above, we know that M is a divisorial
ideal of R if and only if it is an invertible ideal of R. So if M is a divisorial ideal of
R, then MS is a divisorial maximal ideal of S. Hence, if M is not a divisorial ideal of
R, then there is an R ¨ S � RM such that MS is a divisorial ideal of S if and only if
MRM is principal. Also in the case that M is not a divisorial ideal of R, it is possible
to determine when there is no T such that M \ T is a divisorial prime ideal of T .
Specifically, no such T exists if and only if R=M is algebraic over a finite field [14,
Theorem 2.3].
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Next consider the case of a nonzero nonmaximal prime P of R. For each maximal
ideal N that contains P, PRN is a nonmaximal prime of the valuation domain RN

and thus is a divisorial ideal of RN [13, Propositions 3.10]. So there is always an
R ¨ S ¨ RP such that PS is a divisorial ideal of S. Here are several results from
[14] related to when there is a Prüfer domain T ¨ R ¨ qf .T/ such that P \ T is a
divisorial ideal of T .

Theorem 3.1 [14, Theorem 3.1] Let P be a nonzero nonmaximal prime of a Prüfer
domain R such that P is not a divisorial ideal of R. Let T be the pullback of D over
P where D ¨ R=P is a Prüfer domain with quotient field RP=PRP.

1. T is a Prüfer domain and P is a nonmaximal prime of T.
2. P is a divisorial ideal of T if and only if D and .P W P/=P have no common

nonzero ideals.

Let Un.R/ be the set of Prüfer domains T � R ¨ qf .T/ and let Un.R;P/ D fT 2
Un.R/ j P \ T D Pg. Similarly let Ov.R;P/ D fS j R � S � qf .R/ such that
PS D Pg. By [14, Theorem 3.2], if P is a divisorial ideal of R, then it is divisorial
with respect to each T 2 Un.R;P/. On the other hand, if P is not a divisorial ideal
of R, then for each S 2 Ov.R;P/, P is not a divisorial ideal of S. As noted above, if
P is a nonzero nonmaximal prime of R, then PRN is a divisorial ideal of RN for each
maximal ideal N that contains P. So P not divisorial as an ideal of R is preserved for
those S 2 Ov.R;P/, but not for all PS0 where R ¨ S0 � RP. In contrast, underrings
exhibit the following behavior.

Theorem 3.2 [14, Theorem 3.7] The following are equivalent for a nonzero
nonmaximal prime ideal P of a Prüfer ring R.

1. There is no Prüfer domain T 0 � R ¨ qf .T 0/ where P D P \ T 0 is a divisorial
ideal of T 0.

2. There is no Prüfer domain T � R ¨ qf .T/ where P\T is a divisorial ideal of T.

From the proof provided for [14, Theorem 3.7], we have the following.

Theorem 3.3 Let P be a nonzero nonmaximal prime ideal of a Prüfer domain R
and let T 2 Un.R/. Then P \ T is a divisorial ideal of T if and only if P is a
divisorial ideal of T 0 D T C P.

The next result from [14] provides a sufficient condition for the existence of
T ¨ R such that P D P \ T is a divisorial ideal of T .

Theorem 3.4 [14, Theorem 3.12] Let P be a nonzero nonmaximal prime of a Prüfer
domain R such that R D .P W P/. Also let T 2 Un.R;P/ be a proper Prüfer underring
of R and let D D T=P.¨ R=P/. If there is a maximal (or prime) ideal N0 of domain
D such that each nonzero prime Q0 � N0 blows up in R=P, then P is a divisorial
ideal of T.

In the next section we consider two variations of this theorem.
The next result is for two very specific cases (with negative answers).
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Theorem 3.5 [14, Theorem 3.4] Let P be a nonzero prime of a Prüfer domain R.

1. If .P W P/=P is isomorphic to Z, then P is neither a maximal ideal nor a divisorial
ideal of R, .P W P/ D R D Pv and for each T 2 Un.R/, P \ T is such that
.P\ T W P\ T/ D T D .P\ T/v and P\ T is neither maximal nor divisorial as
an ideal of T.

2. If .P W P/=P is isomorphic to FŒX� where F is an algebraic extension of the finite
field Zp for some prime p, then P is neither a maximal ideal nor a divisorial
ideal of R, .P W P/ D R D Pv and for each T 2 Un.R/, P \ T is such that
.P\ T W P\ T/ D T D .P\ T/v and P\ T is neither maximal nor divisorial as
an ideal of T.

Corollary 3.6 [14, Corollary 3.5] Let P be a nonzero prime of a Prüfer domain
R.

1. If .P W P/=P is the integral closure of Z in some algebraic extension of Q, then
.P \ T W P \ T/ D .T W P \ T/ D T for each Prüfer underring T of R and so
there is no such T where P \ T is a divisorial ideal of T.

2. If .P W P/=P is isomorphic to the integral closure of ZpŒX� in some algebraic
extension of Zp.X/, then .P \ T W P \ T/ D .T W P \ T/ D T for each Prüfer
underring T of R and so there is no such T where P\T is a divisorial ideal of T.

Essentially this takes us up to the present time. In the next section, we provide
new results about divisorial prime ideals in Prüfer domains.

4 Divisorial Primes

For a nonzero ideal I of a domain R, we let Inv.I;R/ denote the set of invertible
integral ideals, including R, that contain I.

It is well known that for a nonzero ideal I of a domain R with quotient field
K, Iv D TftR j I � tR, t 2 Kg. In general, one cannot restrict to principal integral
ideals that contain I, it is not uncommon that the only such ideal is the domain R even
if I is divisorial. For example, the maximal ideal M of R D QCXRŒŒX�� is divisorial
(with inverse RŒX�) but R is the only principal integral ideal (of R) that contains
M. Also if R is a Dedekind domain that is not a PID, then there are (invertible)
maximal ideals that are not principal, and certainly none of these is the intersection
of principal integral ideals. However, it is the case that Iv is the intersection of the
invertible integral ideals in Inv.I;R/ when I is a nonzero (integral) ideal of a Prüfer
domain R.

Lemma 4.1 (cf. [4, Lemma 4.9]) Let R be a Prüfer domain. If tR is a principal
fractional ideal of R, then R \ tR is an invertible integral ideal of R.

Proof Simply use that a finite intersection of finitely generated fractional ideals is
finitely generated when R is a Prüfer domain [8, Proposition 25.4]. Also note that
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Lemmas 4.8 and 4.9 (together with the proof of Proposition 1.1) in [4] provide a
way to obtain an explicit pair of elements that generates the ideal R \ tR.

Please note that the fact that R\ tR is an invertible integral ideal of R (when R is
Prüfer) was also used in the proof of [11, Theorem 3.1].

The following result provides a characterization for the divisorial closure of a
nonzero ideal in a Prüfer domain. It is an easy consequence of the previous lemma.

Theorem 4.2 Let R be a Prüfer domain and let J be a nonzero ideal of R.

1. Jv DTfI 2 Inv.J;R/g.
2. J is divisorial if and only if J DTfI 2 Inv.J;R/g.
3. Jv D R if and only if Inv.J;R/ D fRg.
Proof The proof of (1) follows easily from Lemma 4.1 and the fact that Jv DTftR j
J � tR, t 2 Kg. The other two statements follow easily from (1).

Thus for a nonzero prime ideal we have the following (this result contains the
“new" characterization of when P D Pv mentioned above).

Corollary 4.3 Let R be a Prüfer domain and let P be a nonzero prime ideal of R.

1. Pv DTfI 2 Inv.P;R/g.
2. P is divisorial if and only if P DTfI 2 Inv.P;R/g.
3. Pv D R if and only if Inv.P;R/ D fRg.
Corollary 4.4 Let R be a Prüfer domain.

1. If P is a nonzero prime ideal of R, then .R W P/ © R if and only if some proper
invertible ideal contains P.

2. .R W P/ D R for each nonzero prime ideal P of R if and only if no proper invertible
ideal contains a nonzero prime.

For comparable distinct primes P ¨ Q of a domain R, let .P;Q� denote the set of
primes P0 such that P ¨ P0 � Q. If R is a Prüfer domain, then .P;Q� is a chain. In
the case there is a prime N © P such that each prime in .P;N� is sharp, then P is a
divisorial ideal of R [14, Lemma 3.10]. The next few results present a few variations
with regard to this sufficient condition.

Theorem 4.5 Let P ¨ Q be a pair of nonzero prime ideals of a Prüfer domain R.

1. Each prime in .P;Q� blows up in .P W P/ if and only if each prime in .P;Q�
contains an invertible ideal that contains P.

2. If each prime in .P;Q� blows up in .P W P/, then P is divisorial and equal to the
intersection fI 2 Inv.P;R/ j I � Qg.

Proof Let P0 2 .P;Q�.
First suppose P0 blows up in .P W P/. Then from the proof of Corollary 4.4, there

is an invertible ideal P ¨ I � P0.
Conversely, if P0 contains an invertible ideal J that contains P, then .R W J/ ¨ .R W

P/ D .P W P/ and thus J blows up in .P W P/. It follows that P0 blows up in .P W P/.



288 T.G. Lucas

Now assume that each prime in .P;Q� blows up in .P W P/ and consider the ideal
B D TfI 2 Inv.P;R/ j I � Qg. Clearly the ideal B is contained in each prime
in .P;Q�. Also B contains P and Pv . All we need to do to prove B D P is show
PRQ D BRQ.

By way of contradiction, suppose P ¨ B. Then there is a prime Q0 � Q that is
minimal over B. We have P ¨ B � Q0. Also there is an invertible ideal P ¨ I � Q0.
Since Q0 is minimal over B, there is a positive integer n such that InRQ0 ¨ BRQ0 . But
In also contains P and thus B � In, a contradiction. Hence B D P.

Let Inv�.P;R/ D fN 2 Spec.P;R/ j N minimal over some I 2 Inv.P;R/g.
Lemma 4.6 Let P be a nonzero nonmaximal prime in a Prüfer domain R.

1. If Q is a sharp prime of R that properly contains P, then Q contains a sharp
prime in the set Inv�.P;R/.

2. If Q is a sharp prime of R that properly contains P and Q is branched, then
Q 2 Inv�.P;R/ and P0 DTfI 2 Inv.P;R/ j pI D Qg is a divisorial prime such
that P � P0 ¨ Q and there are no primes properly between P0 and Q.

Proof Suppose Q is a sharp prime that contains P. Then there is an invertible ideal
J � Q such that Max.J;R/ D Max.Q;R/ [9, Corollary 2]. Hence checking locally
reveals that J © P and so J 2 Inv.P;R/. Let N be such that N is minimal over J and
contained in Q. As Max.Q;R/ D Max.J;R/ � Max.N;R/ � Max.Q;R/, another
local check shows that N D pJ and therefore N is a sharp and in the set Inv�.P;R/.

Note that if Q is both sharp and branched, we may assume Q is minimal over
J and thus Q 2 Inv�.P;R/. If I is an invertible ideal such that

p
I D Q and Q0 is

a prime that is properly contained in Q, then IRM © Q0RM for each maximal ideal
M 2 Max.Q;R/ D Max.I;R/. It follows that I contains Q0 and therefore Q0 � P0 DTfB 2 Inv.P;R/ j pB D Qg. We have P0RM ¨ IRM (since P0RM � I2RM ¨ IRM).
Thus P0 is a divisorial prime that is properly contained in Q and contains each prime
ideal that is properly contained in Q.

In the next result we consider the special case that Inv�.P;R/ is a finite
nonempty set.

Theorem 4.7 Let P be a nonzero nonmaximal prime in a Prüfer domain R. If the
set Inv�.P;R/ is finite and nonempty, then the following hold:

1. Each prime in Inv�.P;R/ is sharp and the radical of an invertible ideal that
contains P.

2. For each Q 2 Inv�.P;R/, each prime that contains Q is in Inv�.P;R/ so all are
sharp.

3. Each sharp prime that contains P is in the set Inv�.P;R/.
4. The following are equivalent:

a. P is divisorial.
b. At least one Q 2 Inv�.P;R/ is such that there are no primes properly between

P and Q.
c. There is a prime N 2 Inv�.P;R/ such that P DTfI 2 Inv.P;R/ j pI D Ng.
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Proof To start assume Inv�.P;R/ D fN1;N2; : : : ;Nmg.
For each Nj, let I0

j 2 Inv.P;R/ be such that Nj is minimal over I0
j . By prime

avoidance, we may select an element bj 2 Nj that is in no Ni that does not contain Nj.
The ideal Ij D bjRC I0

j is an invertible ideal that contains P. As Nj is the only prime

in Inv�.P;R/ that is minimal over Ij, Nj D
p

Ij and therefore Nj is a sharp prime
of R.

Continue with Nj and suppose Q is a prime that properly contains Nj. We are
done if Q is one of the Nis. By way of contradiction assume it is not. Then by prime
avoidance there is an element d 2 Q that is not in

S
Ni. The ideal J D dR C Ij

is invertible and contains P. We have a contradiction since no prime in Inv�.P;R/
contains J. Hence Q D Ni for some i.

By Lemma 4.6, each sharp prime of R that properly contains P contains a prime
in the set Inv�.P;R/, hence it is a prime in the set Inv�.P;R/.

Also by Lemma 4.6, for each Nj, P0
j D

TfI 2 Inv.P;R/ j pI D Njg is a
divisorial prime that contains P and all other primes that are properly contained in
Nj. The equivalence of the three statements in (4) now follow from Corollary 4.3.

Corollary 4.8 Let Q be a sharp prime of a Prüfer domain R. If Q is branched and
not height one, then J D TfI 2 Inv.R/ j pI D Qg ¨ Q is a divisorial prime ideal
of R that contains each prime that is properly contained in Q.

Proof Assume Q is branched and let I be the set of invertible ideals with radical
equal to Q. This set is nonempty. For I 2 I , we have IRM © PRM for each prime
P that is properly contained in Q and maximal ideal M 2 Max.Q;R/ D Max.I;R/.
For N 2 Max.R/nMax.Q;R/, we have IRN D RN . Hence I contains each prime that
is properly contained in Q.

It follows that J D TfI 2 I g contains each prime ideal that is properly
contained in Q. For M 2 Max.Q;R/, we have JRM � I2RM ¨ IRM for each
I 2 I . So it must be that JRM is a prime that is properly contained in Q. As J
is an intersection of invertible ideals, it is divisorial.

The next theorem is related to [14, Theorem 3.12]. One difference is instead of
assuming .P W P/ D R, we simply have that P is not a divisorial ideal of R (although
this is used only to emphasize that P becomes divisorial when viewed as an ideal
of T). Another is that here we are not starting with T ¨ R, instead T is built as the
pullback of D D V \R=P ¨ R=P for some valuation domain V which satisfies very
particular restrictions with respect to R=P.

Theorem 4.9 Let P be a nonzero nonmaximal prime of a Prüfer domain R that is
not a divisorial ideal of R. Also let L be the quotient field of R=P and let V be a
(proper) valuation domain of L such that (i) D D V \ R=P is a Prüfer domain with
quotient field L, and V.R=P/ D L. Then the following occur for T, the pullback of
V over P.

1. T is a Prüfer domain.
2. For each nonzero prime Q0 of V, Q D Q0 \R=P is a sharp prime of D that blows

up in R=P.
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3. For Q as in (2), the pullback of Q over P is a sharp prime of T.
4. P is a divisorial ideal of T.

Proof By [12, Proposition 1.3], T is a Prüfer domain. From basic properties of
pullbacks, each prime of T that properly contains P is the pullback of a nonzero
prime ideal of D. Let N0 be the maximal ideal of V and let N D N0 \ R=P.

Let Q D Q0 \ R=P where Q0 is a nonzero prime of V . Since V.R=P/ D L, VQ0 is
incomparable with R=P. As D is a Prüfer domain, DQ D VQ0 . It follows that Q blows
up in R=P. Hence there is a finitely generated ideal I � Q such that IR=P D R=P.
In particular, there is a finitely generated ideal B � N such that BR=P D R=P.

Let J be a finitely generated proper ideal of D that blows up in R=P. Since D is a
Prüfer domain, .D W J/ D .V W J/ \ .R=P W J/ D .V W J/ \ R=P properly contains
D and thus JV is a proper ideal of V . It follows that J � N and therefore N is a
maximal ideal of D.

Next consider a finitely generated proper ideal H of D that blows up in V . As with
J, D ¨ .D W H/ D .V W H/\ .R=P W H/ implies that HR=P is a proper ideal of R=P.
It follows that each maximal ideal of R=P contracts to a maximal ideal of D. We
also have that Max.D/ D fNg [ fM j M D M0 \D, M0 2 Max.R=P/g. Therefore N
and each Q above are sharp primes of D. In addition, Spec.D/nf.0/g is the disjoint
union of fQ j Q D Q0 \ R=P some nonzero Q0 2 Spec.V/g and fP00 j P00 D P0 \ V
some nonzero P0 2 Spec.R=P/g. For each Q˛ 2 fQ j Q D Q0 \ R=P some nonzero
Q0 2 Spec.V/g, we abuse notation and let Q˛T denote the pullback of Q˛ over P. In
particular, NT denotes the pullback of N over P.

For the domain T , each maximal ideal of R contracts to a maximal ideal of T .
Moreover for each such maximal ideal M0 of R, TM D RM0 where M D M0\T . The
only other maximal ideal of T is the pullback of N over P. Thus �T.NT/ D R © T
and therefore NT is a sharp prime of T . We also have Q˛T a sharp prime for each
Q˛ 2 fQ j Q D Q0 \ R=P some nonzero Q0 2 Spec.V/g.

By [14, Lemma 3.10], P is a divisorial prime of T .
Above, we saw that if .P W P/=P is isomorphic to Z, then R D .P W P/ and not

only is P not a divisorial ideal of R, but there is no Prüfer underring T ¨ R ¨ qf .T/
such that P \ T is a divisorial ideal of T . In the next result, we show that we can
make the opposite conclusion in the case Z ¨ R=P ¨ Q.

Theorem 4.10 Let P be a nonzero nonmaximal prime of a Prüfer domain R such
that Z ¨ R=P ¨ Q. Then the set B D fp 2 Z j p a prime that is a unit in R=Pg is
nonempty.

1. For each p 2 B, the pullback of Z.p/ \ R=P over P results in a Prüfer domain Tp

such that P is a divisorial prime ideal.
2. P is a divisorial ideal of the Prüfer domain T that is the pullback of Z over P.

Proof By [12, Theorem 1.3], T and each Tp are Prüfer domains. Since Z, Z.p/\R=P
and R=P are comparable Dedekind domains with Z � Z.p/ \ R=P ¨ R=P, neither
Z nor Z.p/\R=P have a nonzero ideal in common with R=P. Thus by [14, Theorem
3.1], P is a divisorial ideal of T and each Tp.
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Together with Theorem 3.5 and Corollary 3.6 above, the previous result suggests
a pair of problems to solve.

Problem 1 Let R be a one-dimensional Prüfer domain with quotient field K.
Characterize those R such that there is no proper one-dimensional Prüfer underring
with quotient field K.

An equivalent problem is the following.

Problem 2 Let R be a one-dimensional Prüfer domain with quotient field K.
Characterize those R such that there is no proper Prüfer underring S with quotient
field K which has a height one prime that blows up in R.

For both, we simply need that there is no one-dimensional valuation domain
V with quotient field K such that VR D K and V \ R is a Prüfer domain with
quotient field K. To establish the equivalence of Problems 1 and 2 with this statement
about the nonexistence of V , we first consider the “positive” versions of these three
problems, when there do exist these Prüfer underrings.

Theorem 4.11 Let R be a one-dimensional Prüfer domain with quotient field K.
Then the following are equivalent:

1. There is a proper one-dimensional Prüfer underring R0 ¨ R with quotient field K.
2. There is a proper Prüfer underring S with quotient field K which has a height

one prime that blows up in R.
3. There is a one-dimensional valuation domain V with quotient field K such that

VR D K and V \ R is a Prüfer domain with quotient field K.

Proof First note that if R0 ¨ R is a one-dimensional Prüfer domain with quotient
field K, then at least one nonzero, hence height one, prime of R0 must blow up in R.
Thus (1) implies (2).

Next we suppose there is a one-dimensional valuation domain V with quotient
field K such that VR D K and T D V \ R is a Prüfer domain with quotient field K.
We will show that in this case T is one-dimensional and for the maximal ideal M of
V , M \ T D M \ R is a height one prime of T that blows up in R.

For each nonzero ideal J of T , .T W I/ D .V W I/\.R W I/. If J is such that JV D V
and JR D R, there is a finitely generated ideal I � J such that IV D V and IR D R.
As T is a Prüfer domain, I is invertible and thus must be equal to T . Hence for each
proper ideal B of T , as least one of BV � V and BR � R is a proper containment.
As T is a Prüfer domain, if Q is a nonzero prime ideal of T such that QV ¤ V ,
then QV D M the maximal ideal of V and in this case TQ D V . On the other hand,
if P is a nonzero prime of T such that PR ¤ R, then PR is a prime ideal of R and
TP D RPR. Thus each nonzero prime of T survives in exactly one of V and R. [By
[6, Theorem 6.3.5 & Corollary 6.3.2], fV;Rg is a Jaffard family and so Spec�.T/ is
the disjoint union of fM \ Tg and fP \ T j P 2 Max.R/ D Spec�.R/g.] As both
V and R are one-dimensional, it must be that T is one-dimensional with a unique
height one maximal ideal N D M\ T D M\R which extends to M in V and blows
up in R. All other maximal ideals extend to maximal ideals of R and blow up in V .
Hence (3) implies (1).
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Finally, suppose there is a Prüfer domain S ¨ R with quotient field K and a
height one prime P such that PR D R. Then W D SP is a one-dimensional valuation
domain such that WR D K and W \ R is a Prüfer domain with quotient field K (as
it sits between S and R). In addition W \ R ¨ R and PSP \ R is a height one prime
of W \ R that blows up in R. Thus (2) implies (3).

With regard to the exact wording of the two problems we have the following
corollary.

Corollary 4.12 Let R be a one-dimensional Prüfer domain with quotient field K.
Then the following are equivalent:

1. There is no proper one-dimensional Prüfer underring R0 ¨ R with quotient
field K.

2. There is no proper Prüfer underring S with quotient field K which has a height
one prime that blows up in R.

3. There is no one-dimensional valuation domain V with quotient field K such that
VR D K and V \ R is a Prüfer domain with quotient field K.

The final result of this section looks at things a little differently, instead of
concentrating on a specific prime P, we look at a pair of comparable Prüfer domains
R ¨ S.¨ qf .R// and consider certain Prüfer domains T where R � T ¨ S.

Theorem 4.13 Suppose R ¨ S ¨ qf .R/ are Prüfer domains and Q is a prime ideal
of R that blows up in S. Then T D S \ RQ is a Prüfer domain such that QT is a
sharp maximal ideal of T. In addition,

1. if P � Q is such that PS D S, then PT is a sharp prime of T, and
2. Max.T/ D fQTg [ fN \ T j N 2 Max.S/ with N \ R ª Qg.
Proof Since R � T , T is a Prüfer domain. Also since QS D S, there are elements
a1; a2; : : : ; an 2 Q and s1; s2; : : : ; sn 2 S such that

P
siai D 1. Thus the ideal

I DP aiT is contained in QT and blows up in S.
Suppose J is a finitely generated proper ideal of T that contains I. Since T D

RQ \ S and IS D S, .T W J/ D .RQ W JRQ/ \ .S W JS/ D .RQ W JRQ/ \ S. As J is
invertible, it must be that .RQ W JRQ/ properly contains RQ and therefore J � QT . It
follows that QT is a maximal ideal of T .

Next, let B be a finitely generated ideal in T that is not contained in QT . Then
.T W BT/ D RQ \ .S W BS/ © T implies BS is a proper ideal of S. It follows
that no M 2 Max.T/nfQTg blows up in S. Hence each M 2 Max.T/nfQTg is the
contraction of a maximal ideal M0 2 Max.S/ such that M0\R is not contained in Q.

That QT and each prime P � QT such that PS D S are sharp primes of T .
In the previous theorem, QT is the unique maximal ideal of T if and only if S is

a valuation domain with maximal ideal N such that N \ R ¨ Q.
We close this section with a pair of related questions (conjectures).

Question 1 Let R be a Prüfer domain with dim.R/ � 2 and quotient field K. Is there
a valuation domain V with quotient field K such that V ¨ VR D K and V \ R is a
Prüfer domain with quotient field K? Conjecture 1: there is such a valuation domain.
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As we saw above, if P is a prime ideal of a Prüfer domain R such that R=P is one-
dimensional, then in certain situations there is no Prüfer underring T � R ¨ qf .T/
such that P \ T is a divisorial ideal of T . The obvious question is whether this can
occur in the case dim.R=P/ � 2.

Question 2 Let P be a nonzero nonmaximal prime of a Prüfer domain R such that
P is not a divisorial ideal of R and dim.R=P/ � 2. Is there a Prüfer domain T ¨ R ¨
qf .T/ such that T \ P is a divisorial ideal of T?
Conjecture 2: there is such a Prüfer domain T .

A consequence of Theorem 4.9 is that if the answer to Question 1 is “Yes," then
so is the answer to Question 2.

5 Examples

The domain Int.Z/ D ff .X/ 2 QŒX� j f .Z/ � Zg is referred to as the ring of
integer valued polynomials. It is well known to be a two-dimensional Prüfer domain.
In addition it is completely integrally closed [1, Proposition VI.1.2]. There are no
invertible maximal ideals and so for each nonzero prime ideal P, .Int.Z/ W P/ D
.P W P/ D Int.Z/.

The primes of Int.Z/ are of two types [1, Propositions V.2.7 and V.2.8]. For
an irreducible polynomial f .X/ 2 QŒX�, Pf D f .X/QŒX� \ Int.Z/ is a height
one nonmaximal prime. These are the only height one nonmaximal primes. Each
maximal ideal has the form Mp;˛ D ff .X/ 2 IntZ j f .˛/ 2 pcZpg for a prime p and
˛ 2 cZp (the p-adic completion of Z). If ˛ is transcendental over Z, then Mp;˛ has
height one. Otherwise, Mp;˛ is height two and contains Pf where f .˛/ D 0. For all
primes p and ˛ 2 cZp, Int.Z/=Mp;˛ D Zp. Note that since Int.Z/ is a Prüfer ring,
each height two maximal ideal contains a unique Pf .

For the prime Px D XQŒX� \ Int.Z/, Int.Z/=Px Š Z. Thus by Theorem 3.5
there is no Prüfer underring T ¨ Int.Z/ with quotient field Q.X/ such that Px \ T
is a divisorial ideal of T .

Our first two constructions involving Int.Z/ are to make Prüfer underrings of the
form R D V \ Int.Z/ where the maximal ideal of V contracts to a sharp maximal
ideal of R and the other maximal ideals of R are contracted from maximal ideals of
Int.Z/.

For both, we make use of the Prüfer domain D D Int..1=2/Z;Z/, the set of
polynomials f .X/ 2 QŒX� such that f ..1=2/Z/ � Z. That D is a Prüfer domain
follows from knowing that the map ' W Int.Z/ ! D given by '.f .X// D f .2X/) is
an isomorphism (see [1, Remark 1.11]). Clearly X is not in D so D ¨ Int.Z/. For
each maximal ideal M of Int.Z/, M \ D is also a maximal ideal of D. In addition,
M D .M \ D/Int.Z/.

As with Int.Z/, each maximal ideal of D has the form Np;ˇ D ff .X/ 2 D j
f .ˇ/ 2 pcZpg for some prime p and ˇ 2 .1=2/cZp (the p-adic closure of .1=2/Z in
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the quotient field of cZp). Note that for p odd, 1=2 is a unit of cZp and thus in this
case Np;ˇ D Mp;ˇ\D with ˇ 2 cZp. Also note that if ˇ 2 cZ2, then N2;ˇ D M2;ˇ\D.
Thus the maximal ideals of D that are not contracted from maximal ideals of Int.Z/
are those of the form N2;ˇ where ˇ 2 .1=2/cZ2ncZ2. As with the maximal ideals
of Int.Z/, the height of N2;ˇ is one if ˇ is transcendental over Z, and two if ˇ is

algebraic over Z. A simple way to obtain ˇ … cZ2 is to simply choose an ˛ 2 cZ2

and then set ˇ D ˛ C 1=2. For such a ˇ, it is transcendental if and only if ˛ is
transcendental.

Example 5.1 Let V D Int..1=2/Z;Z/N2;
 where 
 2 .1=2/cZ2ncZ2 is transcen-
dental over Z. Then S D V \ Int.Z/ is a two-dimensional Prüfer domain with
Max.S/ D fN2;
V \ SgSfMp;˛ \ S j Mp;˛ 2 Max.Int.Z//g. For N D N2;
 , SN D V
is a discrete rank one valuation domain such that VInt.Z/ D Q.X/. Also N is a
height one sharp maximal ideal of S. For all other nonzero primes Q of S we have
.S W Q/ D S.

Example 5.2 For the second construction, consider the polynomial g.X/ D 2X�1 2
D. The maximal ideal N2;1=2 properly contains the height one prime Pg \ D.
Hence W D Int..1=2/Z;Z/N1;1=2 is a two-dimensional valuation domain with
principal maximal ideal 2W and height one prime PgW D gQŒX�.g/. The domain
T D W \ Int.Z/ is a Prüfer domain with maximal ideal N2;1=2T D 2T C .2X � 1/T
that contains Pg. Moreover, by checking locally, one can show that N2;1=2T is an
invertible ideal of T . Thus N2;1=2 is sharp and from this we get that Pg is a divisorial
ideal of T .

An alternate way to construct T is to use the fact that Int.Z/=Pg D ZŒ1=2�, a
minimal ring extension of Z. Now simply define T as the pullback of Z.D Z.2/ \
ZŒ1=2�/ over Pg. With this view, we can see that Pg is a divisorial ideal of T by
Theorem 4.10.

For a multiplicative subset S of the integers, Int.ZS/ D Int.Z/S is completely
integrally closed. If p is a prime not contained in the saturation of S, Mp;˛Int.Z/S is
a maximal ideal of Int.Z/S for each ˛ 2 cZp. The ring Int.Z/S is contained in QŒX�,
thus Pf Int.Z/S is a height one prime of Int.Z/S for each irreducible polynomial
f .X/. Unlike what happens in Int.Z/, such a prime may be a maximal ideal of
Int.Z/S. In fact, for a given f .X/, Pf Int.Z/S is a maximal ideal of Int.Z/S if and
only if each prime q such that f .X/ has a zero in cZq is in the saturation of S. For
example, if f .X/ D X2C1, then Pf Int.Z/S is a maximal ideal of Int.Z/S if and only
if the saturation of S contains each prime of the form 4k C 1. No matter whether
Pf Int.Z/S is a maximal ideal of Int.Z/S or not, .Pf Int.Z/S W Pf Int.Z/S/ D Int.Z/S.

Our next two constructions using Int.Z/ involve making ascending chains R0 D
Int.Z/ ¨ R1 ¨ R2 ¨ � � � ¨ S

Rn ¨ Int.Z/Px such that PxRn is a divisorial prime
ideal of Rn when n is odd and is not divisorial (so has trivial inverse) when n is
even. For these two constructions we start with the set B D fpn j n 2Ng consisting
of the primes of the form 4k C 1. For each n � 1, we let Bn D fp1; p2; : : : ; png
and An D BnBn. Next let Bn be the multiplicative set generated by Bn and B be the
multiplicative set generated by B. We also define sets Cn D fh1; h2; : : : ; hng where
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hi D x.x � 1/.x2/ � � � .x � iC 1/
iŠ

for each positive integer i and let C0
n be the ideal

generated by Cn. Finally, to simplify notation, we let Qn D Mpn;0 for each n.

Example 5.3 Assume the notation in the previous paragraph. Next set S0 D Int.Z/
and then for n � 1, let S2n D Int.Z/Bn

and S2n�1 D S2n \ Int.Z/Qn . The resulting
chain is S0 D Int.Z/ ¨ S1 ¨ S2 ¨ � � � ¨ S D S

Sn D Int.Z/B. This is a specific
example of the chain created in [14, Example 4.2]. What occurs is that PxSm is a
divisorial prime ideal of Sm when m is odd, and PxSm is not a divisorial as an ideal
of Sm when m is even. It is also the case that PxS is not divisorial as an ideal of S.
For details see [14, Example 4.2].

Example 5.4 For the next chain, we make a slight variation in the sets Bn (and
B) and the domains Sn. First, we let B0 D B [ f2g and B0

n D Bn [ f2g, then let
S0

n D Int.Z/B0
n

(so no longer distinguishing odd indices from even ones). Also for

n � 1 we let Wn D TfInt.Z/M2;˛ j Cn ¨ M2;˛; ˛ 2 cZ2g. To create an ascending
chain D0 D Int.Z/ ¨ D1 ¨ D2 ¨ � � � ¨ D DSDm where PxDm is divisorial when
m is odd, not divisorial when m is even and PxD is divisorial and not maximal, we
let D2n D S0

n \Wn and D2n�1 D D2n \ Int.Z/Qn .

Proof To verify the divisorial behavior of Px in these extensions, first note that
S

Cn

generates Px. Thus the only maximal ideal of the form M2;ˇ that contains
S

Cn

is M2;0. For all other ˛ 2 cZ2, some hn is not contained in M2;˛ . By [5, Lemma
1.5.1], the only maximal ideals of Int.Z/ that survive in Wn are those that contain 2
and the set Cn. It follows that

S
Wn D Int.Z/M2;0 . Also note that 2 is a unit in S0

n for
each n � 1. Similarly, each odd prime is a unit in Wn for each n.

For each n, .S0
n W PxS0

n/ D S0
n since S0

n D Int.Z/Bn
D Int.ZBn

/ is completely
integrally closed and PxS0

n is not maximal.
Each maximal ideal of Wn contains 2 and the set Cn. In addition, M2;0Wn is the

only maximal ideal of Wn that contains PxWn. Hence to see that .Wn;PxWn/ D Wn

for each n we simply show that Wn D TfInt.Z/M2;˛ j ˛ ¤ 0g. For this, it suffices
to show that each finitely generated ideal contained in M2;0 is contained in infinitely
many other M2;ˇ . Suppose otherwise and let I be a finitely generated ideal that is
contained in M2;0 and no other M2;ˇ that survives in Wn. Then M2;0 is the radical
of the invertible ideal 2Int.Z/ C C0

n C I which would mean M2;0 is sharp (and Px

divisorial in Int.Z/), a contradiction. So for PxWn we have .Wn W PxWn/ D Wn.
Since D2n D S0

n \Wn, .D2n W PxD2n/ D .S0
n W PxS0

n/\ .Wn W PxWn/ D S0
n \Wn D

D2n. Thus PxD2n is not divisorial.
For odd indices, the prime pn is a unit in both S0

n and Wn, but it is not a unit in
Int.Z/Qn . As the intersection to get D2n�1 results in a Prüfer domain, QnD2n�1 is
a sharp maximal ideal of D2n�1 that contains PxD2n�1. It follows that PxD2n�1 is a
divisorial ideal of D2n�1. A similar analysis yields that PxD is a divisorial ideal of D
since M2;0D is the only maximal ideal of D that contains 2.

With regard to descending chains, [14, Example 4.3] starts with T0 D Int.Z/B
and uses the sets An defined above as An D BnBn (so a descending chain of cofinite
subsets of the set of primes of the form 4m C 1 (m � 1)). Specifically, T2m�1 D
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T2m�2 \ Int.Z/Qm and T2m D Int.Z/Am
for all positive m. The result is that PxTk is

divisorial when k is odd and not divisorial when k is even. In this case T DTTk D
Int.Z/ so that PxT D Px is not divisorial. More generally we have the following for
certain types of descending chains.

Theorem 5.5 Let T0 © T1 © T2 © � � � © T
Tn D T be a chain of Prüfer domains

where qf .T/ © T0. If P is a nonzero nonmaximal prime of T0 such that .Tn W P \
Tn/ D Tn for infinitely many n, then .T W P \ T/ D T even if P \ Tm is a divisorial
ideal for infinitely many m.

Proof Clearly we have .Tn\P W Tn\P/ D Tn for all n such that .Tn W P\Tn/ D Tn.
As T and each Tk have the same quotient field, .Ti W Tk \ P/ � .Tj W P \ Tj/ � .T W
P\T/ for all i � j. Hence if there are infinitely many n such that .Tn W P\Tn/ D Tn,
then T D T

.Ti W P \ Ti/ �D .T W P \ T/ � T . Therefore P \ T is not a divisorial
ideal of T .

In the specific examples above and the earlier theorems about the existence of
a Prüfer domain T ¨ R where P becomes divisorial when viewed as an ideal of
T , there has been a sharp prime Q © P of T where there are no primes properly
between Q and P. For our final example, we construct a pair of Prüfer domains
T ¨ R with a common nonzero prime P where P is divisorial as an ideal of T , but
is not divisorial as an ideal of R and, in addition, for each sharp prime Q © P in T
there is a prime properly between P and Q. We again use Px and Int.Z/ as a base,
but make a much larger Prüfer domain R.

Example 5.6 Start with a set X D fXpg of indeterminates over Q.X/ indexed
over the prime numbers and let Y be an indeterminate over Q.X;X /. Then R D
Int.Z/.X ;Y/ is a Bezout domain such that each ideal is extended from an ideal
of Int.Z/. Also, for each nonzero ideal I of Int.Z/, .Int.Z/ W I/R D .R W IR/. In
particular, .R W PxR/ D R.

Modding out by PxR yields the following isomorphism: R=PxR Š Z.X ;Y/. For
each prime number p, pZ.X ;Y/ is a principal maximal ideal.

For each prime p, let Wp D Z.p/.X / and let Xp D X nfXpg. Each Wp is a
rank one discrete valuation domain with maximal ideal pWp. The corresponding
residue field is Zp.X /. Consider the polynomial ring Zp.Xp/ŒXp� and let V 0

p be the
valuation overring Zp.Xp/ŒXp�.Xp/. The pullback of V 0

p over pWp is a discrete rank
two valuation domain Vp with principal maximal ideal XpVp.

Next let fVp.Y/g be the family of rank two valuation domains of Q.X ;Y/
obtained by using the trivial extension to the polynomial ring Q.X /ŒY�. Hence
each Vp.Y/ is a valuation domain with the same quotient field as R=PxR. For a
given prime p, the maximal ideal of Vp.Y/ is XpVp.Y/ and the height one prime
is pWp.Y/. By [8, Theorems 32.7 and 32.11], the intersection D D T

Vp.Y/ is a
Bezout domain. In addition, since Xp is a unit in Vq.Y/ for each prime q ¤ p,
the intersection is irredundant. Since Q.X ;Y/ is the quotient field of D, each
nonzero nonunit is the quotient of a pair of nonzero polynomials. From the definition
of the Vps, it is clear that such a quotient is a unit in all but at most finitely
many Vp.Y/s. Hence the intersection has finite character. In addition, for a nonzero
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ideal I of D, if IVp.Y/ is a proper ideal of Vp.Y/, then IVp.Y/ contains a positive
power of p. Hence IP D IVp.Y/ \ D contains this same power of p and therefore
IpVq.Y/ D Vq.Y/ for each prime q ¤ p. By [5, Theorem 6.3.5], the family fVp.Y/g
is a “Jaffard family" for D. Hence by [5, Theorem 6.31. and Corollary 6.3.2],
Max.D/ D fXpVp.Y/\D j p primeg and fpWp.Y/\D j p primeg is the complete set
of nonzero nonmaximal primes of D. Clearly, each nonzero prime ideal is contained
in a unique maximal ideal. Also it is clear that the intersection has finite character.
Hence D is two-dimensional and h-local. It follows that each nonzero prime ideal
of D is sharp. By checking locally, we also have that XpD.D XpVp.Y/ \ D/ is a
maximal ideal of D.

Finally, we let T be the pullback of D over PxR.
For each prime p, XpT is a maximal ideal of T . It contains the chain of primes

Mp;0R\T and PxR. Since
T

XpD D .0/,TXpT D PxR. Therefore PxR is a divisorial
ideal of T . Since .R W PxR/ D R, PxR is not an antesharp prime of T and thus it is not
sharp either. The primes Mp;0R\ T are not sharp as Mp;0R is not a sharp prime of R.
For ˛ ¤ 0 in cZp, Mp;˛R\T is a maximal ideal of T . The only other maximal ideals
are the XpT . Hence XpT is the only maximal ideal of T that contains Mp;0R \ R. It
follows that Mp;0R \ T is an antesharp (nonmaximal) prime of T , so it is divisorial
as an ideal of T .

In several of the results and proofs above involving pullback constructions, a
sharp prime in the residue ring pulls back to a sharp prime in its preimage/pullback.
This is not always the case. Consider the rings R and T from Example 5.6. The image
of Mp;0R\T in D is sharp, but since the maximal ideal Mp;0R is not sharp, Mp;0R\T
is not a sharp prime of T . However, it is antesharp as an ideal of T since XpT is the
only prime of T that properly contains Mp;0 \ T . Note that Mp;0R is antesharp in R
“for free" since it is a maximal ideal of R.
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A gg-Cancellative Semistar Operation on an
Integral Domain Need Not Be gh-Cancellative

Ryûki Matsuda

Abstract Let D be an integral domain with quotient field K, let h (resp., g, f) be the
non-zero D-submodules of K (resp., the non-zero fractional ideals of D, the finitely
generated non-zero fractional ideals of D), and let fx; yg be a subset of the set ff,
g, hg of symbols. For a semistar operation ? on D, if .EE1/? D .EE2/? implies
E?1 D E?2 for every E 2 x and every E1;E2 2 y, then ? is called xy-cancellative. We
prove that a gg-cancellative semistar operation on an integral domain need not be
gh-cancellative.

Keywords Star operation • Semistar operation

Mathematics Subject Classification (2010) 13A15

1 Introduction

The notions of a.b. and e.a.b. star operations and semistar operations are important
in the study of topics such as Kronecker function rings and generalized integral
closure. This has led to the study of various abstractions of the cancellative property.
Thus, an fh- (resp., ff-) cancellative semistar operation is the same thing as an a.b.
(resp., e.a.b.) semistar operation. We refer to Fontana and Loper [2] and Halter-Koch
[6] for star and semistar operations and their Kronecker function rings.

Let D be a domain with quotient field K. If a mapping E 7�! E? from NF.D/ to
NF.D/ satisfies the following conditions, ? is called a semistar operation on D: For
every 0 ¤ x 2 K and every E;H 2 NF.D/, we have .xE/? D xE?, E � E?, .E?/? D
E?, and E � H implies E? � H?. If a mapping E 7�! E? from F.D/ to F.D/
satisfies the following conditions, ? is called a star operation on D: For every 0 ¤
x 2 K and every E;H 2 F.D/, we have D? D D; .xE/? D xE?;E � E?; .E?/? D
E?, and E � H implies E? � H?. If we set Ee D K for every E 2 NF.D/, the mapping
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E 7�! Ee is a semistar operation on D, called the e-semistar operation. Also, a star
(resp., semistar) operation ? on D is called of finite type, if E? D SfF? j F 2 f.D/
with F � Eg for every E 2 F.D/ (resp., E 2 NF.D//.

Let fV� j � 2 �g be a non-empty set of valuation overrings of D. Then the
mapping E 7�!

\
fEV� j � 2 �g from NF.D/ to NF.D/ is a semistar operation on

D, called the semistar operation defined by the set fV� j � 2 �g. This semistar
operation is fh-cancellative (cf., [5, Theorem 32.5]).

Various implications hold among the cancellation properties of semistar opera-
tions:

Remark 1 1 [1]. We have the following diagram of implications:

hh D hg D hf �! gh �! gg �! gf
# # #
fh �! fg �! ff

A semistar operation is hh-cancellative if and only if it coincides with the e-
semistar operation.

A gh-cancellative semistar operation of finite type need not be hf-cancellative.
A gf-cancellative semistar operation of finite type need not be gg-cancellative.
An fh-cancellative semistar operation of finite type need not be gf-cancellative.
2 [4] and [7]. A gf-cancellative semistar operation need not be fg-cancellative.

Remark 2 (cf., [3, Lemma 3]) A finite type ff-cancellative semistar operation is fh-
cancellative. So we have a simplified diagram of implications in the case of finite
type semistar operations:

hh D hg D hf �! gh �! gg �! gf �! fh D fg D ff

It follows that every example for Remark 1, 2 is not of finite type.

2 A gg not gh Semistar Operation

Lemma 1 (cf., [5, Proposition 18.4]) Let v0 be a valuation on a field k0 with value
group � , let fX� j � 2 �g be a set of indeterminates over k0, and let f
� j 
� 2 �g be
a subset of � 0, a totally ordered abelian additive group containing � as a subgroup.
Then the mapping v: k0ŒX� j � 2 �� �! � 0 defined by
v.
P
˛i1���in Xi1

�1
� � �Xin

�n
/ D mini1���infv0.˛i1���in/C i1
�1 C � � � C in
�ng

gives a valuation on k0.X� j � 2 �/ which is an extension of v0, where
˛i1���in 2 k0.

The valuation v is called the canonical extension of v0, and is denoted by
< vjk0 D v0I v.X�/ D 
� for � 2 � >;
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where vjk0 is the restriction of v to k0.
Hereafter throughout the paper, let k be a field, let u1; u2; � � � be an infinite set of

indeterminates over k, and let
M WD ff .u1; u2; � � � / 2 kŒu1; u2; � � � � j f .0; 0; � � � / D 0g:
Let D WD kŒu1; u2; � � � �M, let M be the maximal ideal of D, and let K be the

quotient field of D.
Let Q be the additive group of rational numbers, let Q0 WD f
 j 0 � 
 2

Qg; and let Z0 WD fi j 0 � i 2 Zg.
Let v0 be the trivial valuation on k, that is, v0.˛/ D 1 (resp., v0.˛/ D 0) if

˛ D 0 (resp., ˛ ¤ 0), and let 
i 2 Q0 for every i D 1; 2; � � � . Then the valuation
< vjk D v0I v.ui/ D 
i for i D 1; 2; � � � >
is simply denoted by
< v.ui/ D 
i for i D 1; 2; � � � >
or
< v.u1/ D 
1; v.u2/ D 
2; � � � >;
and is called a q-valuation on K. The valuation ring belonging to a q-valuation

on K is a valuation overring of D.
The following Lemma 2 is obvious.

Lemma 2 1.Let v WD < v.ui/ D 
i for i D 1; 2; � � � > be a q-valuation on K. Let
0 ¤ x 2 kŒu1; u2; � � � �, and let

x DP˛i1i2���u
i1
1 ui2

2 � � � be the canonical expression of x;where ˛i1i2��� 2 k
Then we have

v.x/ = min i1i2��� fv.˛i1i2���/C
1X

jD1
ij
jg

= min i1i2��� fi1
1 C i2
2 C i3
3 C � � � j ij � 0 for every jg.
2. Let X WD f
ab j a 2 � and b 2 ˙g be a subset of Q0 [ f1g, where almost all


ab are1. Then minafminb 
abg D minbfmina 
abg D min.X/.
Lemma 2 is used in the following,

Lemma 3 Let v be a q-valuation on K, let 
i WD v.ui/ for every i, let n be a positive
integer, let v0 WD vjk.u1;��� ;un/, i.e. the restriction of v to k.u1; � � � ; un/, let 
 0

j 2 Q0

for every j � nC 1, and let w be the canonical extension of v0 to K with
w WD < wjk.u1;��� ;un/ D v0I w.unC1/ D 
 0

nC1;w.unC2/ D 
 0
nC2; � � � >

Then w is a q-valuation with
w D < w.u1/ D 
1; � � � ;w.un/ D 
n, w.unC1/ D 
 0

nC1,
w.unC2/ D 
 0

nC2; � � � >.

Proof Clearly,
w.u1/ D 
1; � � � ;w.un/ D 
n;w.unC1/ D 
 0

nC1; � � � ,
and the valuation wjk is of trivial. Let
0 ¤ x DP ainC1inC2���u

inC1

nC1u
inC2

nC2 � � � 2 kŒu1; u2; � � � �
and let
ainC1inC2��� D

P

i1���in
˛
.inC1inC2��� /
i1���in ui1

1 � � � uin
n

be canonical expressions, where ˛
.inC1inC2��� /
i1���in 2 k for every i1; � � � ; in; inC1; � � �
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Then
x D P

i1���ininC1���
˛
.inC1inC2��� /
i1���in ui1

1 � � � uin
n u

inC1

nC1 � � �
is the canonical expression of x. Since
w D< wjk.u1;��� ;un/ D v0Iw.unC1/ D 
 0

nC1;w.unC2/ D 
 0
nC2; � � � >

we have,
w.x/ D mininC1inC2���fv0.ainC1inC2���/C w.u

inC1

nC1u
inC2

nC2 � � � /g
Since v D < v.ui/ D 
i for i D 1; 2; � � � >, we have,
v0.ainC1inC2

� � � / D v.ainC1inC2���/ D mini1���in v.˛
.inC1inC2��� /
i1���in ui1

1 � � � uin
n / for every

inC1, inC2, � � � .
It follows that
w.x/ D mininC1inC2���fmini1���inv.˛

.inC1inC2��� /
i1���in ui1

1 � � � uin
n / C w.u

inC1

nC1u
inC2

nC2 � � � /g
D mininC1inC2���fmini1���infv.˛.inC1inC2��� /

i1���in ui1
1 � � � uin

n /C w.u
inC1

nC1u
inC2

nC2 � � � /gg
D mini1���ininC1���fv.˛.inC1inC2��� /

i1���in ui1
1 � � � uin

n /C w.u
inC1

nC1u
inC2

nC2 � � � /g
D mini1���ininC1���fw.˛.inC1inC2��� /

i1���in ui1
1 � � � uin

n u
inC1

nC1u
inC2

nC2 � � � /g:
The proof is complete.

Lemma 4 Let 
i 2 Q0 for 1 � i � n, and let S be a non-empty subset of
Pn

iD1 Z0
i.
Then the set S has a minimal element.

The proof is obvious. Because, any non-empty set of positive integers has a
minimal element.

Lemma 5 Let I be a non-zero ideal of D with I � M. Let v be a q-valuation on K
with valuation ring V. Set v.ui/ WD 
i 2 Q0 for every i. Set I0 WD kŒu1; u2; � � � � \ I,
and let n be a positive integer such that kŒu1; � � � ; un� \ I ¤ 0, let

kŒu1; � � � ; un� \ I0 DPm
iD1 gikŒu1; � � � ; un�

with 0 ¤ gi for every i. Let v0 be the restriction of v to k.u1; � � � ; un/, and let w
be the canonical extension of v0 to K with

w WD< wjk.u1;��� ;un/ D v0Iw.unC1/ D 
 0
nC1;w.unC2/ D 
 0

nC2; � � � >;
where max fv.g1/; � � � , v.gm/, 
lg < 
 0

l 2 Q0 for every l � nC 1. Then,

1. Every w.gi/ is of the form i1
1 C � � � C in
n, where ij 2 Z0 for every j.
2. Let I0 3 g ¤ 0. Then, w.g/ is either w.g/ � mini w.gi/, or of the form i1
1 C
� � � C in
n, where ij 2 Z0 for every j.

3. The set w.I/ has a minimal element.

Proof w is a q-valuation by Lemma 3. Also, every element in I is a non-unit of D.

1 follows from the fact that gi 2 kŒu1; � � � ; un� for every 1 � i � n.
2 Let g D P

˛i1i2���u
i1
1 ui2

2 � � � be the canonical expression. We have g … k, and
w.g/ D mini1i2��� w.˛i1i2���u

i1
1 ui2

2 � � � /.
There are the following two cases:

(2.1) g 2 kŒu1; � � � ; un�,
(2.2) g … kŒu1; � � � ; un�.

The case (2.1): Then g DPm
iD1 gihi for every hi 2 kŒu1; � � � ; un�. Hence

w.g/ � mini w.gi/.
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The case (2.2): There are the following two cases:

(2.2.1) w.g/ D w.ui1
1 � � � uin

n / for some i1; � � � ; in,
(2.2.2) w.g/ D w.ui1

1 � � � uin
n � � � uil

l � � � / for some i1; i2; � � � , where n < l and
1 � il.

The case (2.2.1): Then w.g/ D i1
1 C � � � C in
n.
The case (2.2.2): Then
w.g/ D i1
1 C � � � C in
n C � � � C il
 0

l C � � � � 
 0
l > maxi v.gi/ � mini v.gi/ =

mini w.gi/.
3 Set
S WD f
 2Pn

iD1 Z0
i j 
 D w.g/ for some g 2 Ig,
and set
S0 WD f
 2 Q0 j 
 D w.g/ for some g 2 Ig.

Then S � S0, and S has a minimal element by Lemma 4. By 2, every element of S0 is
greater than or equal to some element of S. It follows that S0 has a minimal element.

Let fv� j � 2 �g be the set of all q-valuations on K, and let V� be the valuation
overring of D belonging to v� for every �. Then we denote the semistar operation
on D defined by the set fV� j � 2 �g by b0.

Proposition 1 The semistar operation b0 is a gg-cancellative semistar operation
on D.

Proof Let If � .IJ/b0

, where I; J are non-zero ideals of D, and 0 ¤ f 2 D. We must
show that f 2 Jb0

. Suppose that f … Jb0

. We will derive a contradiction.
We may assume that f 2 kŒu1; u2; � � � �; I � M, and J � M. Since f … Jb0

, there is
a q-valuation overring V of D with f … JV . Let v be a q-valuation on K belonging
to V . Set v.ui/ WD 
i 2 Q0 for every i. We have v.f / < v.x/ for every x 2 J. We
have f 2 kŒu1; � � � ; ur� for some r.

Set I0 WD kŒu1; u2; � � � � \ I. There is a positive integer n > r such that
kŒu1; � � � ; un� \ I ¤ 0. Since kŒu1; � � � ; un� is a Noetherian ring, we have

kŒu1; � � � ; un� \ I0 DPm
iD1 gikŒu1; � � � ; un�

with gi ¤ 0 for every i. We may assume that 0 � v.g1/ � � � � � v.gm/. Let v0 be
the restriction of v to k.u1; � � � ; un/, and let w be the canonical extension of v0 to K
with

w WD < wjk.u1;��� ;un/ D v0Iw.unC1/ D 
 0
nC1;w.unC2/ D 
 0

nC2; � � � >;
where max fv.gm/; 
lg < 
 0

l 2 Q0 for every l � n C 1. We have w.ui/ D v.ui/

for every i � n, w.f / D v.f /, and w is a q-valuation on K by Lemma 3.
We have that w.f / < w.x/ for every x 2 J.
For, we may assume that 0 ¤ x 2 kŒu1; u2; � � � �. If x 2 kŒu1; � � � ; un�, then
w.f / D v.f / < v.x/ D w.x/:
Thus, assume that x … kŒu1; � � � ; un�. Let x D P

i1i2��� ˛i1i2���u
i1
1 ui2

2 � � � be the
canonical expression, where ˛i1i2��� 2 k. Then we have

w.f / D v.f / < v.x/
D mini1i2��� v.˛i1i2���u

i1
1 ui2

2 � � � /
D mini1i2��� fv.˛i1i2���/C i1
1 C � � � C in
n C inC1
nC1 C � � � g
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� mini1i2���fv.˛i1i2���/C i1
1 C � � � C in
n C inC1
 0
nC1 C � � � g

D mini1i2��� w.˛i1i2���u
i1
1 � � � uin

n u
inC1

nC1 � � � /
D w.x/:

On the other hand, by Lemma 5, 3, w.I/ has a minimal element. Let min w.I/ D
w.g0/ with g0 2 I. Since If � .IJ/b0

, we have If � IJW, where W is the valuation
ring belonging to w. Hence g0f D gxy for some g 2 I; x 2 J, and y 2 W. It follows
that w.f / � w.x/; a contradiction to the above assertion.

Proposition 2 The b0-semistar operation on D is not gh-cancellative.

Proof Let H be the D-submodule of K generated by the set f u1
u2
; u2

u3
; � � � g. Let

f
1; 
2; � � � g be a set of positive rational numbers with 
i < 
i�1 for every i, let v be
the q-valuation < v.ui/ D 
i for i D 1; 2; � � � > on K, and let V be the valuation
overring belonging to v. Since v. ui�1

ui
/ > 0 for every i, we have 1 … HV , hence

1 … Hb0

. Since ui D uiC1 � ui
uiC1
2 MH for every i, we have M � MH � .MH/b

0

. It

follows that the b0-semistar operation on D is not gh-cancellative.
Propositions 1 and 2 imply the following,

Proposition 3 A gg-cancellative semistar operation on a domain need not be gh-
cancellative.

Remark 3

1. We have that Db0 ¥ D, and that D › Mb0 ¥ M.
2. Mb0 DSfFb0 j F is a finitely generated ideal of D with F � Mg.

Proof
1. Let v WD < v.ui/ D 
i for i D 1; 2; � � � > be a q-valuation on K with

valuation ring V . Then
v. u1u2

u1Cu2
/ D v.u1u2/ � v.u1 C u2/ D 
1 C 
2 �minf
1; 
2g � 0

Hence we have u1u2
u1Cu2

2 V . Therefore u1u2
u1Cu2

2 Db0

. It follows that
u1u2u3
u1Cu2

2 u3Db0 D .u3D/b0 � Mb0

The proof is complete.
2. Let

0 ¤ z D ˙˛i1 ���in u
i1
1 ���uin

n

˙ˇj1 ���jn u
j1
1 ���ujn

n
2 Mb0

,

where every ˛i1���in 2 k and ˇj1���jn 2 k. We will prove that z 2 .u1; � � � ; un/
b0

.
Let v be a q-valuation on K with valuation ring V . Let
v WD < v.ui/ D 
i

for i D 1; 2; � � � >. We may assume that 
1 � � � � � 
n. Then .u1; � � � ; un/V D
u1V . It is sufficient to show that v.z/ � v.u1/.

Let
w WD < w.u1/ D 
1; � � � ;w.un/ D 
n;w.unC1/ D 
 0

nC1;w.unC2/ D

 0

nC2; � � � >,
where maxf
n; 
jg < 
 0

j for every j � n C 1. Let W be the valuation ring of w.
Since
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w.u1/ D v.u1/; � � � ;w.un/ D v.un/;

we have w.z/ D v.z/. Since z 2 Mb0

, we have z 2 MW. By the choice of 
 0
j , we

have MW D u1W, hence w.z/ � w.u1/, and hence v.z/ � v.u1/.
We do not know if a gg- (resp., fg-) cancellative semistar operation is fh-

cancellative.
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Quasi-Prüfer Extensions of Rings

Gabriel Picavet and Martine Picavet-L’Hermitte

Abstract We introduce quasi-Prüfer ring extensions, in order to relativize quasi-
Prüfer domains and to take also into account some contexts in recent papers. An
extension is quasi-Prüfer if and only if it is an INC pair. The class of these extensions
has nice stability properties. We also define almost-Prüfer extensions that are quasi-
Prüfer, the converse being not true. Quasi-Prüfer extensions are closely linked to
finiteness properties of fibers. Applications are given for FMC extensions, because
they are quasi-Prüfer.

Keywords Flat epimorphism • FIP • FCP Extension • Minimal extension
• Integral extension • Morita • Prüfer hull • Support of a module • Fiber
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1 Introduction and Notation

We consider the category of commutative and unital rings. An epimorphism is an
epimorphism of this category. Let R � S be a (ring) extension. The set of all
R-subalgebras of S is denoted by ŒR; S�. A chain of R-subalgebras of S is a set of
elements of ŒR; S� that are pairwise comparable with respect to inclusion. We say
that the extension R � S has FCP (for the “finite chain property”) if each chain
in ŒR; S� is finite. Dobbs and the authors characterized FCP extensions [13]. An
extension R � S is called FMC if there is a finite maximal chain of extensions from
R to S.
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We begin by explaining our motivations and aims. The reader who is not
familiar with the notions used will find some Scholia in the sequel, as well as
necessary definitions that exist in the literature. Knebusch and Zhang introduced
Prüfer extensions in their book [25]. Actually, these extensions are nothing but
normal pairs, that are intensively studied in the literature. We do not intend to give
an extensive list of recent papers, written by Ayache, Ben Nasr, Dobbs, Jaballah,
Jarboui, and some others. We are indebted to these authors because their papers
are a rich source of suggestions. We observed that some of them are dealing
with FCP (FMC) extensions, followed by a Prüfer extension, perhaps under a
hidden form. These extensions reminded us quasi-Prüfer domains (see [18] for a
comprehensive study). Therefore, we introduced in [38] quasi-Prüfer extensions
R � S as extensions that can be factored R � R0 � S, where the first extension is
integral and the second is Prüfer. Note that FMC extensions are quasi-Prüfer.

We give a systematic study of quasi-Prüfer extensions in Sects. 2 and 3. The
class of quasi-Prüfer extensions has a nice behavior with respect to the classi-
cal operations of commutative algebra. An important result is that quasi-Prüfer
extensions coincide with INC-pairs. Another one is that this class is stable under
forming subextensions and composition. A striking result is the stability of the class
of quasi-Prüfer extensions by absolutely flat base change, like localizations and
Henselizations. An arbitrary ring extension R � S admits a quasi-Prüfer closure,
contained in S. Examples are provided by Laskerian pairs, open pairs, and the
pseudo-Prüfer pairs of Dobbs-Shapiro [12].

Section 4 deals with almost-Prüfer extensions, a special kind of quasi-Prüfer
extensions. They are of the form R � T � S, where the first extension is Prüfer
and the second is integral. An arbitrary ring extension R � S admits an almost-
Prüfer closure, contained in S. The class of almost-Prüfer extensions seems to have
less properties than the class of quasi-Prüfer extensions but has the advantage that
almost-Prüfer closures commute with localizations at prime ideals. We examine the
transfer of the quasi (almost)-Prüfer properties to subextensions. It is noteworthy
that the class of FCP almost-Prüfer extensions is stable under the formation of
subextensions, although this does not hold for arbitrary almost-Prüfer extensions.

In Sect. 5, we complete and generalize the results of Ayache-Dobbs in [5], with
respect to the finiteness of fibers. These authors have evidently considered particular
cases of quasi-Prüfer extensions. A main result is that if R � S is quasi-Prüfer with
finite fibers, then so is R � T for T 2 ŒR; S�. In particular, we recover a result of [5]
about FMC extensions.

1.1 Recalls About Some Results and Definitions

The reader is warned that we will mostly use the definition of Prüfer extensions
by flat epimorphic subextensions investigated in [25]. The results needed may be
found in Scholium A for flat epimorphic extensions and some results of [25] are
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summarized in Scholium B. Their powers give quick proofs of results that are
generalizations of results of the literature.

As long as FCP or FMC extensions are concerned, we use minimal (ring)
extensions, a concept introduced by Ferrand-Olivier [17]. An extension R � S
is called minimal if ŒR; S� D fR; Sg. It is known that a minimal extension is
either module-finite or a flat epimorphism [17] and these conditions are mutually
exclusive. There are three types of integral minimal (module-finite) extensions:
ramified, decomposed, or inert [36, Theorem 3.3]. A minimal extension R � S
admits a crucial ideal C.R; S/ DW M which is maximal in R and such that RP D SP for
each P ¤ M;P 2 Spec.R/. Moreover, C.R; S/ D .R W S/ when R � S is an integral
minimal extension. The key connection between the above ideas is that if R � S
has FCP or FMC, then any maximal (necessarily finite) chain of R-subalgebras of
S, R D R0 � R1 � � � � � Rn�1 � Rn D S, with length n < 1, results from
juxtaposing n minimal extensions Ri � RiC1; 0 � i � n � 1.

We define the length `ŒR; S� of ŒR; S� as the supremum of the lengths of chains in
ŒR; S�. In particular, if `ŒR; S� D r, for some integer r, there exists a maximal chain
in ŒR; S� with length r.

As usual, Spec.R/, Max.R/, Min.R/, U.R/, Tot.R/ are, respectively, the set of
prime ideals, maximal ideals, minimal prime ideals, units, total ring of fractions of
a ring R and �.P/ D RP=PRP is the residual field of R at P 2 Spec.R/.

If R � S is an extension, then .R W S/ is its conductor and if P 2 Spec.R/, then

SP is the localization SRnP. We denote the integral closure of R in S by R
S

(or R).
A local ring is here what is called elsewhere a quasi-local ring. The support of

an R-module E is SuppR.E/ WD fP 2 Spec.R/ j EP ¤ 0g and MSuppR.E/ WD
SuppR.E/ \Max.R/. Finally, � denotes proper inclusion and jXj the cardinality of
a set X.

Scholium A We give some recalls about flat epimorphisms (see [26, Chapitre
IV], except (2) which is [30, Proposition 2]).

(1) R ! S is a flat epimorphism , for all P 2 Spec.R/, either RP ! SP

is an isomorphism or S D PS , RP � SP is a flat epimorphism for all
P 2 Spec.R/ , R.Q\R/ ! SQ is an isomorphism for all Q 2 Spec.S/ and
Spec.S/! Spec.R/ is injective.

(2) (S) A flat epimorphism, with a zero-dimensional domain, is surjective.
(3) If f W A! B and g W B! C are ring morphisms such that g ı f is injective and

f is a flat epimorphism, then g is injective.
(4) Let R � T � S be a tower of extensions, such that R � S is a flat epimorphism.

Then T � S is a flat epimorphism but R � T does not need. A Prüfer extension
remedies this defect.

(5) (L) A faithfully flat epimorphism is an isomorphism. Hence, R D S if R � S is
an integral flat epimorphism.

(6) If f W R! S is a flat epimorphism and J an ideal of S, then J D f �1.J/S.
(7) If f W R ! S is an epimorphism, then f is spectrally injective (i.e.,

af W Spec.S/ ! Spec.R/ is an injection) and its residual extensions are
isomorphisms.
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(8) Flat epimorphisms remain flat epimorphisms under base change (in particular,
after a localization with respect to a multiplicatively closed subset).

(9) Flat epimorphisms are descended by faithfully flat morphisms.

1.2 Recalls and Results on Prüfer Extensions

There are a lot of characterizations of Prüfer extensions. We keep only those that
are useful in this paper. Let R � S be an extension.

Scholium B

(1) [25] R � S is called Prüfer if R � T is a flat epimorphism for each T 2 ŒR; S�.
(2) R � S is called a normal pair if T � S is integrally closed for each T 2 ŒR; S�.
(3) R � S is Prüfer if and only if it is a normal pair [25, Theorem 5.2(4)].
(4) R is called Prüfer if its finitely generated regular ideals are invertible, or

equivalently, R � Tot.R/ is Prüfer [21, Theorem 13((5)(9))].

Hence Prüfer extensions are a relativization of Prüfer rings. Clearly, a minimal
extension is a flat epimorphism if and only if it is Prüfer. We will then use for such
extensions the terminology: Prüfer minimal extensions. The reader may find some
properties of Prüfer minimal extensions in [36, Proposition 3.2, Lemma 3.4 and
Proposition 3.5], where in addition R must be supposed local. The reason why is
that this word has disappeared during the printing process of [36].

We will need the two next results. Some of them do not explicitly appear in [25]
but deserve to be emphasized. We refer to [25, Definition 1, p.22] for a definition of
Manis extensions and remark that Proposition 1.1(1) was also noted in [12].

Proposition 1.1 Let R � S be a ring extension.

(1) R � S is Prüfer if and only if RP � SP is Prüfer for each P 2 Spec.R/
(respectively, P 2 Supp.S=R/).

(2) R � S is Prüfer if and only if RM � SM is Manis for each M 2 Max.R/.

Proof (1) The class of Prüfer extensions is stable under localization [25, Proposition
5.1(ii), p.46-47]. To get the converse, use Scholium A(1). (2) follows from [25,
Proposition 2.10, p.28, Definition 1, p.46]. ut
Proposition 1.2 Let R � S be a ring extension, where R is local.

(1) R � S is Manis if and only if S n R � U.S/ and x 2 S n R ) x�1 2 R. In that
case, R � S is integrally closed.

(2) R � S is Manis if and only if R � S is Prüfer.
(3) R � S is Prüfer if and only if there exists P 2 Spec.R/ such that S D RP,

P D SP and R=P is a valuation domain. Under these conditions, S=P is the
quotient field of R=P.

Proof (1) is [25, Theorem 2.5, p.24]. (2) is [25, Scholium 10.4, p. 147]. Then (3) is
[13, Theorem 6.8]. ut
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Next result shows that Prüfer FCP extensions can be described in a special
manner.

Proposition 1.3 Let R � S be a ring extension.

(1) If R � S has FCP, then R � S is integrally closed, R � S is Prüfer, R � S
is a composite of Prüfer minimal extensions.

(2) If R � S is integrally closed, then R � S has FCP , R � S is Prüfer and
Supp.S=R/ is finite.

Proof (1) Assume that R � S has FCP. If R � S is integrally closed, then, R � S
is composed of Prüfer minimal extensions by [13, Lemma 3.10]. We know that
a composite of Prüfer extensions is a Prüfer extension [25, Theorem 5.6]. Thus,
by [25], R � S is a normal pair. Conversely, if R � S is composed of Prüfer
minimal extensions, R � S is integrally closed, since so is each Prüfer minimal
extension. A Prüfer extension is obviously integrally closed, and an FCP integrally
closed extension is Prüfer by [13, Theorem 6.3].

(2) The logical equivalence is [13, Theorem 6.3]. ut
Definition 1.4 [25] A ring extension R � S has:

(1) a greatest flat epimorphic subextension R � bRS, called the Morita hull of R in
S.

(2) a greatest Prüfer subextension R �eRS, called the Prüfer hull of R in S.

We set bR WD bRS and eR WD eRS, if no confusion can occur. R � S is called Prüfer-
closed if R DeR.

Note that eRS is denoted by P.R; S/ in [25] and bRS is the weakly surjective hull
M.R; S/ of [25]. Our terminology is justified because Morita’s work is earlier [29,
Corollary 3.4]. The Morita hull can be computed by using a (transfinite) induction
[29]. Let S0 be the set of all s 2 S such that there is some ideal I of R, such that
IS D S and Is � R. Then R � S0 is a subextension of R � S. We set S1 WD S0 and
SiC1 WD .Si/

0 � Si. By [29, p. 36], if R � S is an FCP extension, then bR D Sn for
some integer n.

At this stage it is interesting to point out a result showing again that integral
closedness and Prüfer extensions are closely related.

Proposition 1.5 Olivier [32, Corollary, p. 56] An extension R � S is integrally
closed if and only if there is a pullback square:

R −−−→ S
⏐⏐�

⏐⏐�

V −−−→ K

where V is a semi-hereditary ring and K its total quotient ring.
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In that case V � K is a Prüfer extension, since V is a Prüfer ring, whose localizations
at prime ideals are valuation domains and K is an absolutely flat ring. As there exist
integrally closed extensions that are not Prüfer, we see in passing that the pullback
construction may not descend Prüfer extensions. The above result has a companion
for minimal extensions that are Prüfer [20, Proposition 3.2].

Proposition 1.6 Let R � S be an extension and T 2 ŒR; S�, then eRT D eR \ T.
Therefore, for T;U 2 ŒR; S� with T � U, theneRT �eRU.

Proof Obvious, since the Prüfer hull eRT is the greatest Prüfer extension R � V
contained in T . ut

We will show later that in some caseseT � eU if R � S has FCP.

2 Quasi-Prüfer Extensions

We introduced the following definition in [38, p. 10].

Definition 2.1 An extension of rings R � S is called quasi-Prüfer if one of the
following equivalent statements holds:

(1) R � S is a Prüfer extension;
(2) R � S can be factored R � T � S, where R � T is integral and T � S is Prüfer.

In that case R D T .

To see that (2) ) (1) observe that if (2) holds, then T � R is integral and a flat
injective epimorphism, so that R D T by (L) (Scholium A(5)).

We observe that quasi-Prüfer extensions are akin to quasi-finite extensions if we
refer to Zariski Main Theorem. This will be explored in Sect. 5, see, for example,
Theorem 5.2.

Hence integral or Prüfer extensions are quasi-Prüfer. An extension is clearly
Prüfer if and only if it is quasi-Prüfer and integrally closed. Quasi-Prüfer extensions
allow us to avoid FCP hypotheses.

We give some other definitions involved in ring extensions R � S. The fiber
at P 2 Spec.R/ of R � S is FibR;S.P/ WD fQ 2 Spec.S/ j Q \ R D Pg. The
subspace FibR;S.P/ of Spec.S/ is homeomorphic to the spectrum of the fiber ring
at P, FR;S.P/ WD �.P/ ˝R S. The homeomorphism is given by the spectral map of
S! �.P/˝R S and �.P/! �.P/˝R S is the fiber morphism at P.

Definition 2.2 A ring extension R � S is called:

(1) incomparable if for each pair Q � Q0 of prime ideals of S, then Q \ R D
Q0 \ R ) Q D Q0, or equivalently, �.P/ ˝R T is a zero-dimensional ring for
each T 2 ŒR; S� and P 2 Spec.R/, such that �.P/˝R T ¤ 0.

(2) an INC-pair if R � T is incomparable for each T 2 ŒR; S� , T � U is
incomparable for all T � U in ŒR; S�.

(3) residually algebraic if R=.Q \ R/ � S=Q is algebraic for each Q 2 Spec.S/.
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(4) a residually algebraic pair if the extension R � T is residually algebraic for
each T 2 ŒR; S�.

An extension R � S is an INC-pair if and only if R � S is a residually algebraic
pair. This fact is an easy consequence of [10, Theorem] (via a short proof that was
explicitly given in [9]). This fact was given for the particular case where S is an
integral domain in [4].

The following characterization was announced in [38]. We were unaware that this
result is also proved in [6, Corollary 1], when we presented it in ArXiv. However,
our proof is largely shorter because we use the powerful results of [25].

Theorem 2.3 An extension R � S is quasi-Prüfer if and only if R � S is an INC-
pair and, if and only if, R � S is a residually algebraic pair.

Proof Suppose that R � S is quasi-Prüfer and let T 2 ŒR; S�. We set U WD RT .
Then R � U is a flat epimorphism by definition of a Prüfer extension and hence is
incomparable as is R � R . It follows that R � U is incomparable. Since T � U
is integral, it has going-up. It follows that R � T is incomparable. Conversely, if
R � S is an INC-pair, then so is R � S. Since R � S is integrally closed, R � S is
Prüfer [25, Theorem 5.2,(9’), p. 48]. The second equivalence is given by the above
comments about [10] and [9]. ut
Corollary 2.4 An extension R � S is quasi-Prüfer if and only if R � T is Prüfer
for each T 2 ŒR; S�. In this case, R is the least T 2 ŒR; S� such that T � S is Prüfer.

It follows that most of the properties described in [4] for integrally closed INC-
pairs of domains are valid for arbitrary ring extensions. Moreover, a result of Dobbs
is easily gotten as a consequence of Corollary 2.4: an INC-pair R � S is an integral
extension if and only if R � S is spectrally surjective [11, Theorem 2.2]. This
follows from Corollary 2.4 and Scholium A, Property (L).

Example 2.5 Quasi-Prüfer domains R with quotient fields K can be characterized
by R � K is quasi-Prüfer. The reader may consult [7, Theorem 1.1] or [18].

We give here another example of quasi-Prüfer extension. An extension R � S is
called a going-down pair if each of its subextensions has the going-down property.
For such a pair, R � T has incomparability for each T 2 ŒR; S�, at each non-maximal
prime ideal of R [2, Lemma 5.8](ii). Now let M be a maximal ideal of R, whose
fiber is not void in T . Then R � T is a going-down pair, and so is R=M � T=MT
because MT \ R D M. By [2, Corollary 5.6], the dimension of T=MT is � 1.
Therefore, if R � S is a going-down pair, then R � S is quasi-Prüfer if and only if
dim.T=MT/ ¤ 1 for each T 2 ŒR; S� and M 2 Max.R/.

Also open-ring pairs R � S are quasi-Prüfer by [8, Proposition 2.13].
An i-pair is an extension R � S such that Spec.T/ ! Spec.R/ is injective for

each T 2 ŒR; S�, or equivalently if and only if R � S is quasi-Prüfer and R � R is
spectrally injective [38, Proposition 5.8]. These extensions appear frequently in the
integral domains context. Another examples are given by some extensions R � S,
such that Spec.S/ D Spec.R/ as sets, as we will see later.
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We proved that �-extensions R � S (such that U;V 2 ŒR; S�) U C V 2 ŒR; S�)
are quasi-Prüfer [38, Proposition 5.15].

3 Properties of quasi-Prüfer Extensions

We now develop the machinery of quasi-Prüfer extensions.

Proposition 3.1 An extension R � S is (quasi-)Prüfer if and only if RP � SP is
(quasi-)Prüfer for any P 2 Spec.R/ (P 2 MSupp.S=R/).

Proof The proof is easy if we use the INC-pair property definition of quasi-Prüfer
extension (see also [4, Proposition 2.4]). ut
Proposition 3.2 Let R � S be a quasi-Prüfer extension and ' W S! S0 an integral

ring morphism. Then '.R/ � S0 is quasi-Prüfer and S0 D '.S/'.R/, where '.R/ is
the integral closure of '.R/ in S0.

Proof It is enough to apply [25, Theorem 5.9] to the Prüfer extension R � S and to
use Definition 2.1. ut

This result applies with S0 WD S ˝R R0, where R ! R0 is an integral morphism.
Therefore integrality ascends the quasi-Prüfer property.

Recall that a composite of Prüfer extensions is Prüfer [25, Theorem 5.6, p. 51].
We next give a result that will be used frequently. The following Corollary 3.3
contains [6, Theorem 3].

Corollary 3.3 Let R � T � S be a tower of extensions. Then R � S is quasi-Prüfer
if and only if R � T and T � S are quasi-Prüfer. Hence, R � T is quasi-Prüfer if
and only if R � RT is quasi-Prüfer.

Proof Consider a tower (T ) of extensions R � R � S WD R0 � R0 � S0 (a composite
of two quasi-Prüfer extensions). By using Proposition 3.2 we see that R � S D R0 �
R0 is quasi-Prüfer. Then (T ) is obtained by writing on the left an integral extension
and on the right a Prüfer extension. Therefore, (T ) is quasi-Prüfer. We prove the
converse.

If R � T � S is a tower of extensions, then R � T and T � S are INC-pairs
whenever R � S is an INC-pair. The converse is then a consequence of Theorem 2.3.

The last statement is [6, Corollary 4]. ut
Using the above corollary, we can exhibit new examples of quasi-Prüfer exten-

sions. We recall that a ring R is called Laskerian if each of its ideals is a finite
intersection of primary ideals and a ring extension R � S a Laskerian pair if each
T 2 ŒR; S� is a Laskerian ring. Then [41, Proposition 2.1] shows that if R is an
integral domain with quotient field F ¤ R and F � K is a field extension, then
R � K is a Laskerian pair if and only if K is algebraic over R and R (in K) is a
Laskerian Prüfer domain. It follows easily that R � K is quasi-Prüfer under these
conditions.
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Next result generalizes [24, Proposition 1].

Corollary 3.4 An FMC extension R � S is quasi-Prüfer.

Proof Because R � S is a composite of finitely many minimal extensions, by
Corollary 3.3, it is enough to observe that a minimal extension is either Prüfer or
integral. ut
Corollary 3.5 Let R � S be a quasi-Prüfer extension and a tower R � T � S,
where R � T is integrally closed. Then R � T is Prüfer.

Proof Observe that R � T is quasi-Prüfer and then that R D R
T
. ut

Next result deals with the Dobbs-Shapiro pseudo-Prüfer extensions of integral
domains [12], that they called pseudo-normal pairs. Suppose that R is local, we
call here pseudo-Prüfer an extension R � S such that there exists T 2 ŒR; S� with
Spec.R/ D Spec.T/ and T � S is Prüfer [12, Corollary 2.5]. If R is arbitrary,
the extension R � S is called pseudo-Prüfer if RM � SM is pseudo-Prüfer for each
M 2 Max.R/. In view of the Corollary 3.3, it is enough, if one wishes to characterize
quasi-Prüfer extensions, to characterize quasi-Prüfer extensions of the type R � T
with Spec.R/ D Spec.T/.

Corollary 3.6 Let R � T be an extension with Spec.R/ D Spec.T/ and .R;M/
local. Then R � T is quasi-Prüfer if and only if Spec.R/ D Spec.U/ for all U 2
ŒR;T� and, if and only if R=M � T=M is an algebraic field extension. In such a case,
R � T is integral, hence Prüfer-closed.

Proof It follows from [1] that M 2 Max.T/. Part of the proof is gotten by observing
that R=M � T=M is an algebraic field extension ) Spec.R/ D Spec.U/ for all
U 2 ŒR;T� ) R � T is quasi-Prüfer) .R � T is integral and) R=M � T=M is
an algebraic field extension. Now R � eR is a spectrally surjective flat epimorphism
and then, by Scholium A, R DeR. ut

Let R � S be an extension and I an ideal shared by R and S. It is easy to show
that R � S is quasi-Prüfer if and only if R=I � S=I is quasi-Prüfer by using [25,
Proposition 5.8] in the Prüfer case. We are able to give a more general statement.

Lemma 3.7 Let R � S be a (quasi-)Prüfer extension and J an ideal of S with
I D J \ R. Then R=I � S=J is a (quasi-)Prüfer extension. If R � S is Prüfer and
N is a maximal ideal of S, then R=.N \ R/ is a valuation domain with quotient field
S=N.

Proof It follows from [25, Proposition 5.8] that if R � S is Prüfer, then R=I Š
.RC J/=J � S=J is Prüfer. Then the quasi-Prüfer case is an easy consequence. ut

With this lemma we generalize and complete [23, Proposition 1.1].

Proposition 3.8 Let R � S be an extension of rings. The following statements are
equivalent:

(1) R � S is quasi-Prüfer;
(2) R=.Q \ R/ � S=Q is quasi-Prüfer for each Q 2 Spec.S/;
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(3) .X � s/SŒX� \ RŒX� › MŒX� for each s 2 S and M 2 Max.R/;
(4) For each T 2 ŒR; S�, the fiber morphisms of R � T are integral.

Proof (1) ) (2) is entailed by Lemma 3.7. Assume that (2) holds and let M 2
Max.R/ that contains a minimal prime ideal P lain over by a minimal prime ideal Q
of S. Then (2)) (3) follows from [23, Proposition 1.1(1)], applied to R=.Q\R/ �
S=Q. If (3) holds, argue as in the paragraph before [23, Proposition 1.1] to get that
R � S is a P-extension, whence an INC-pair, cf. [11]. Then R � S is quasi-Prüfer by
Theorem 2.3, giving (3)) (1). Because integral extensions have incomparability,
we see that (4)) (1). Corollary 3.3 shows that the reverse implication holds, if any
quasi-Prüfer extension R � S has integral fiber morphisms. For P 2 Spec.R/, the
extension RP=PRP � SP=PSP is quasi-Prüfer by Lemma 3.7. The ring RP=PRP is
zero-dimensional and RP=PRP ! SP=PSP, being a flat epimorphism, is therefore
surjective by Scholium A (S). It follows that the fiber morphism at P is integral. ut
Remark 3.9 The logical equivalence (1) , (2) is still valid if we replace quasi-
Prüfer with integral in the above proposition. It is enough to show that an extension
R � S is integral when R=P � S=Q is integral for each Q 2 Spec.S/ and
P WD Q \ R. We can suppose that S D RŒs� Š RŒX�=I, where X is an indeterminate,
I an ideal of RŒX�, and Q varies in Min.S/, because for an extension A � B, any
element of Min(A) is lain over by some element of Min(B). If ˙ is the set of
unitary polynomials of RŒX�, the assumptions show that any element of Spec.RŒX�/,
containing I, meets˙ . As˙ is a multiplicatively closed subset, I\˙ ¤ ;, whence
s is integral over R.

But a similar result does not hold if we replace quasi-Prüfer with Prüfer, except if
we suppose that R � S is integrally closed. To see this, apply the above proposition
to get a quasi-Prüfer extension R � S if each R=P � S=Q is Prüfer. Actually, this
situation already occurs for Prüfer rings and their factor domains, as Lucas’s paper
[28] shows. More precisely, [28, Proposition 2.7] and the third paragraph of [28, p.
336] shows that if R is a ring with Tot.R/ absolutely flat, then R is a quasi-Prüfer
ring if R=P is a Prüfer domain for each P 2 Spec.R/. Now example [28, Example
2.4] shows that R is not necessarily Prüfer.

We observe that if R � S is quasi-Prüfer, then R=M is a quasi-Prüfer domain for
each N 2 Max.S/ and M WD N \ R (in case R � S is integral, R=M is a field). To
prove this, observe that R=M � S=N can be factored R=M � �.M/ � S=N. As we
will see, R=M � �.M/ is quasi-Prüfer because R=M � S=N is quasi-Prüfer.

The class of Prüfer extensions is not stable by (flat) base change. For example,
let V be a valuation domain with quotient field K. Then VŒX� � KŒX� is not Prüfer
[25, Example 5.12, p. 53].

Proposition 3.10 Let R � S be a (quasi)-Prüfer extension and R ! T a flat
epimorphism, then T � S ˝R T is (quasi)-Prüfer. If in addition S and T are both
subrings of some ring and R � T is an extension, then T � TS is (quasi)-Prüfer.

Proof For the first part, it is enough to consider the Prüfer case. It is well known
that the following diagram is a pushout if Q 2 Spec.T/ is lying over P in R:
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−−−→ SPRP⏐⏐�
⏐⏐�

TQ −−−→ (T ⊗RS)Q

As RP ! TQ is an isomorphism since R! T is a flat epimorphism by Scholium
A (1), it follows that RP � SP identifies to TQ ! .T ˝R S/Q. The first assertion
follows because Prüfer extensions localize and globalize.

The final assertion is then a special case because, under its hypotheses, TS Š
T ˝R S canonically. ut

The reader may find in [25, Corollary 5.11, p. 53] that if R � A � S and R �
B � S are extensions and R � A and R � B are both Prüfer, then R � AB is Prüfer.

Proposition 3.11 Let R � A and R � B be two extensions, where A and B are
subrings of a ring S. If they are both quasi-Prüfer, then R � AB is quasi-Prüfer.

Proof Let U and V be the integral closures of R in A and B. Then R � A � AV is
quasi-Prüfer because A � AV is integral and Corollary 3.3 applies. Using again
Corollary 3.3 with R � V � AV , we find that V � AV is quasi-Prüfer. Now
Proposition 3.10 entails that B � AB is quasi-Prüfer because V � B is a flat
epimorphism. Finally R � AB is quasi-Prüfer, since a composite of quasi-Prüfer
extensions. ut

It is known that an arbitrary direct product of extensions is Prüfer if and only if
each of its components is Prüfer [25, Proposition 5.20, p. 56]. The following result
is an easy consequence.

Proposition 3.12 Let fRi � Siji D 1; : : : ; ng be a finite family of quasi-Prüfer
extensions, then R1 � � � � � Rn � S1 � � � � � Sn is quasi-Prüfer. In particular, by
Corollary 3.3, if fR � Siji D 1; : : : ; ng is a finite family of quasi-Prüfer extensions,
then R � S1 � � � � � Sn is quasi-Prüfer.
In the same way we have the following result deduced from [25, Remark 5.14,
p. 54].

Proposition 3.13 Let R � S be an extension of rings and an upward directed family
fR˛j˛ 2 Ig of elements of ŒR; S� such that R � R˛ is quasi-Prüfer for each ˛ 2 I.
Then R � [ŒR˛j˛ 2 I� is quasi-Prüfer.

Proof It is enough to use [25, Proposition 5.13, p. 54] where A˛ is the integral
closure of R in R˛ . ut

Here are some descent results used later on.
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Proposition 3.14 Let R � S be a ring extension and R! R0 a spectrally surjective
ring morphism (for example, either faithfully flat or injective and integral). Then
R � S is quasi-Prüfer if R0 ! R0 ˝R S is injective (for example, if R ! R0 is
faithfully flat) and quasi-Prüfer.

Proof Let T 2 ŒR; S� and P 2 Spec.R/ and set T 0 WD T ˝R R0. There is some P0 2
Spec.R0/ lying over P, because R ! R0 is spectrally surjective. By [22, Corollaire
3.4.9], there is a faithfully flat morphism FR;T.P/ ! FR0;T0.P0/ Š FR;T.P/ ˝k.P/

�.P0/, inducing a surjective map FibR0;T0.P0/ ! FibR;T.P/ since it satisfies lying
over. By Theorem 2.3, the result follows from the faithful flatness of FR;T.P/ !
FR0;T˝RR0.P0/. ut
Corollary 3.15 Let R � S be an extension of rings, R ! R0 a faithfully flat ring
morphism and set S0 WD R0 ˝R S. If R0 � S0 is (quasi-) Prüfer (respectively, FCP),
then so is R � S.

Proof The Prüfer case is clear, because faithfully flat morphisms descend flat
epimorphisms (Scholium A (9)). For the quasi-Prüfer case, we use Proposition 3.14.
The FCP case is proved in [15, Theorem 2.2]. ut

The integral closure of a ring morphism f W R ! T is the integral closure of the
extension f .R/ � T . By definition, a ring morphism R ! T preserves the integral

closure of ring morphisms R ! S if T
T˝RS Š T ˝R R for every ring morphism

R! S. An absolutely flat morphism R! T (R! T and T˝R T ! T are both flat)
preserves integral closure [32, Theorem 5.1]. Flat epimorphisms, Henselizations,
and étale morphisms are absolutely flat. Another examples are morphisms R ! T
that are essentially of finite type and (absolutely) reduced [34, Proposition 5.19](2).
Such morphisms are flat if R is reduced [27, Proposition 3.2].

We will prove an ascent result for absolutely flat ring morphisms. This will be
proved by using base changes. For this we need to introduce some concepts. A ring
A is called an AIC ring if each monic polynomial of AŒX� has a zero in A. The first
author recalled in [35, p. 4662] that any ring A has a faithfully flat integral extension
A! A�, where A� is an AIC ring. Moreover, if A is an AIC ring, each localization
AP at a prime ideal P of A is a strict Henselian ring [35, Lemma II.2].

Theorem 3.16 Let R � S be a (quasi-) Prüfer extension and R! T an absolutely
flat ring morphism. Then T ! T ˝R S is a (quasi-) Prüfer extension.

Proof We can suppose that R is an AIC ring. To see this, it is enough to use the
base change R ! R�. We set T� WD T ˝R R�, S� WD S ˝R R�. We first observe
that R� � S� is quasi-Prüfer for the following reason: the composite extension
R � S � S� is quasi-Prüfer by Corollary 3.3 because the last extension is integral.
Moreover, R� ! T� is absolutely flat. In case T� � T� ˝R� S� is quasi-Prüfer, so
is T � T ˝R S, because T ! T� D T ˝R R� is faithfully flat and T� � T� ˝R� S�
is deduced from T � T ˝R S by the faithfully flat base change T ! T ˝R R�. It is
then enough to apply Proposition 3.14.

We thus assume from now on that R is an AIC ring.



Quasi-Prüfer Extensions of Rings 319

Let N 2 Spec.T/ be lying over M in R. Then RM ! TN is absolutely flat [31,
Proposition f] and RM � SM is quasi-Prüfer. Now observe that .T ˝R S/N Š
TN ˝RM SM . Therefore, we can suppose that R and T are local and R ! T is
local and injective. We deduce from [32, Theorem 5.2] that RM ! TN is an
isomorphism because RM is a strict Henselian ring. Therefore the proof is complete
in the quasi-Prüfer case. For the Prüfer case, we need only to observe that absolutely
flat morphisms preserve integral closure and a quasi-Prüfer extension is Prüfer if it
is integrally closed. ut
Lemma 3.17 Let R � S be an extension of rings and R! T a base change which
preserves integral closure. If T � T ˝R S has FCP and R � S is Prüfer, then
T � T ˝R S is Prüfer.

Proof The result holds because an FCP extension is Prüfer if and only if it is
integrally closed. ut

We observe that T ˝ReR � eT need not to be an isomorphism, since this property
may fail even for a localization R! RP, where P is a prime ideal of R.

Theorem 3.18 Let R � S be a ring extension.

(1) R � S has a greatest quasi-Prüfer subextension R � H)
R DeR.

(2) R � ReR DW ER is quasi-Prüfer and then ER � H)
R .

(3) R
H)

R D R andeR
H)

R DeR.

Proof To see (1), use Proposition 3.11 which tells us that the set of all quasi-
Prüfer subextensions is upward directed and then use Proposition 3.13 to prove the

existence of
H)
R . Then let R � T � H)

R be a tower with R � T integral and T � H)
R

Prüfer. From T � R �eR � H)
R , we deduce that T D R and then

H)
R DeR.

(2) Now R � ReR can be factored R � eR � ReR and is a tower of quasi-Prüfer
extensions, becauseeR!eRR is integral.

(3) Clearly, the integral closure and the Prüfer closure of R in
H)
R are the

respective intersections of R andeR with
H)
R , and R;eR � H)

R . ut
This last result means that, as far as properties of integral closures and Prüfer

closures of subsets of
H)
R are concerned, we can suppose that R � S is quasi-Prüfer.

4 Almost-Prüfer Extensions

We next give a definition “dual" of the definition of a quasi-Prüfer extension.
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4.1 Arbitrary Extensions

Definition 4.1 A ring extension R � S is called an almost-Prüfer extension if it can
be factored R � T � S, where R � T is Prüfer and T � S is integral.

Proposition 4.2 An extension R � S is almost-Prüfer if and only if eR � S is
integral. It follows that the subring T of the above definition iseR D bR when R � S
is almost-Prüfer.

Proof If R � S is almost-Prüfer, there is a factorization R � T � eR � bR � S,
where T �bR is both integral and a flat epimorphism by Scholium A (4). Therefore,
T DeR DbR by Scholium A (5) (L). ut
Corollary 4.3 Let R � S be a quasi-Prüfer extension, and let T 2 ŒR; S�. Then,

T \ R � TR is almost-Prüfer and T D AR \ T
TR

. Moreover, if T \ R D R, then,
T D TR \eR.

Proof T \ R � T is quasi-Prüfer by Corollary 3.3. Being integrally closed, it is
Prüfer by Corollary 3.5. Moreover, T � TR is an integral extension. Then, T \ R �
TR is almost-Prüfer and T D AR \ T

TR
. If T \ R D R, then T � TR \eR is both

Prüfer and integral, so that T D TR \eR. ut
We note that integral extensions and Prüfer extensions are almost-Prüfer and

hence minimal extensions are almost-Prüfer. There are quasi-Prüfer extensions that
are not almost-Prüfer. It is enough to consider [37, Example 3.5(1)]. Let R � T � S
be two minimal extensions, where R is local, R � T integral and T � S is Prüfer.
Then R � S is quasi-Prüfer but not almost-Prüfer, because S D bR and R D eR.
The same example shows that a composite of almost-Prüfer extensions may not be
almost-Prüfer.

But the reverse implication holds.

Theorem 4.4 Let R � S be an almost-Prüfer extension. Then R � S is quasi-
Prüfer. Moreover, eR D bR, .eR/P D fRP for each P 2 Spec.R/. In this case, any flat
epimorphic subextension R � T is Prüfer.

Proof Let R � eR � S be an almost-Prüfer extension, that iseR � S is integral. The
first assertion follows from Corollary 3.3 because R � eR is Prüfer. Now the Morita
hull and the Prüfer hull coincide by Proposition 4.2. In the same way, .eR/P !fRP is
a flat epimorphism and .eR/P ! SP is integral. ut

We could define almost-Prüfer rings as the rings R such that R � Tot.R/ is
almost-Prüfer. But in that case eR D Tot.R/ (by Theorem 4.4), so that R is a
Prüfer ring. The converse evidently holds. Therefore, this concept does not define
something new.

It was observed in [13, Remark 2.9(c)] that there is an almost-Prüfer FMC
extension R � S � T , where R � S is a Prüfer minimal extension and S � T
is minimal and integral, but R � T is not an FCP extension.



Quasi-Prüfer Extensions of Rings 321

Proposition 4.5 Let R � S be an extension verifying the hypotheses:

(i) R � S is quasi-Prüfer.
(ii) R � S can be factored R � T � S, where R � T is a flat epimorphism.

(1) Then the following commutative diagram (D) is a pushout,

R −−−→ R
⏐⏐�

⏐⏐�

T −−−→ TR

TR � S is Prüfer and R � TR is quasi-Prüfer. Moreover, FR;R.P/ Š FT;TR.Q/
for each Q 2 Spec.T/ and P WD Q \ R.

(2) If in addition R � T is integrally closed, .D/ is a pullback, T \ R D R, .R W
R/ D .T W TR/ \ R and .T W TR/ D .R W R/T.

Proof (1) Consider the injective composite map R ! R ˝R T ! TR. As R !
R˝R T is a flat epimorphism, because deduced by a base change of R! T , we get
that the surjective map R ˝R T ! TR is an isomorphism by Scholium A (3). By
fibers transitivity, we have FT;RT.Q/ Š �.Q/˝k.P/FR;R.P/ [22, Corollaire 3.4.9]. As
�.P/! �.Q/ is an isomorphism by Scholium A, we get that FR;R.P/ Š FT;RT.Q/.

(2) As in [5, Lemma 3.5], R D T \ R. The first statement on the conductors has
the same proof as in [5, Lemma 3.5]. The second holds because R � T is a flat
epimorphism (see Scholium A (6)). ut
Theorem 4.6 Let R � S be a quasi-Prüfer extension and the diagram (D’):

R −−−→ R
⏐⏐ ⏐⏐

R RR

(1) (D’) is a pushout and a pullback, such that R\eR D R and .R W R/ D .eR WeRR/\R
so that .eR WeRR/ D .R W R/eR.

(2) R � S can be factored R � eRR D eR D ER � H)
R D eR D S, where the first

extension is almost-Prüfer and the second is Prüfer.

(3) R � S is almost-Prüfer, S D ReR,eR DeR.

(4) R � eRR D eR D ER is the greatest almost-Prüfer subextension of R � S and
eR DeRER.

(5) Spec.ER/ is homeomorphic to Spec.R/ �Spec.R/ Spec.eR/.
(6) Supp.S=R/ D Supp.eR=R/ [ Supp.R=R/ if R � S is almost-Prüfer. (Supp can

be replaced with MSupp).
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Proof To show (1), (2), in view of Theorem 3.18, it is enough to apply Proposi-

tion 4.5 with T D eR and S D H)
R , because R � eRR is almost-Prüfer whence

quasi-Prüfer, keeping in mind that a Prüfer extension is integrally closed, whereas

an integral Prüfer extension is trivial. Moreover, eR D ReR because ReR � eR is both
integral and integrally closed.

(3) is obvious.
(4) Now consider an almost-Prüfer subextension R � T � U, where R � T is

Prüfer and T � U is integral. Applying (3), we see that U D R
UeRU � ReR in view

of Proposition 1.6.
(5) Recall from [33] that a ring morphism A ! A0 is called a subtrusion if for

each pair of prime ideals P � Q of A, there is a pair of prime ideals P0 � Q0
above P � Q. A subtrusion defines a submersion Spec.A0/! Spec.A/. We refer to
[33, First paragraph of p. 570] for the definition of the property P.�/ of a pushout
diagram .�/. Then [33, Lemme 2,(b), p. 570] shows that P.D0/ holds, because R!
eR is a flat epimorphism. Now [33, Proposition 2, p. 576] yields that Spec.ER/ !
Spec.R/�Spec.R/ Spec.eR/ is subtrusive. This map is also injective because R!eR is
spectrally injective. Observing that an injective submersion is an homeomorphism,
the proof is complete.

(6) Obviously, Supp.eR=R/ [ Supp.R=R/ � Supp.S=R/. Conversely, let M 2
Spec.R/ be such that RM ¤ SM , and RM D .eR/M D RM . Then (3) entails that
SM D .ReR/M D .R/M.eR/M D RM , which is absurd. ut
Corollary 4.7 Let R � S be an almost-Prüfer extension. The following conditions
are equivalent:

(1) Supp.S=R/ \ Supp.R=R/ D ;.
(2) Supp.S=eR/ \ Supp.eR=R/ D ;.
(3) Supp.eR=R/ \ Supp.R=R/ D ;.
Proof Since R � S is almost-Prüfer, we get .eR/P D fRP for each P 2 Spec.R/.
Moreover, Supp.S=R/ D Supp.eR=R/ [ Supp.R=R/ D Supp.S=R/ [ Supp.R=R/ D
Supp.S=eR/ [ Supp.eR=R/.

(1)) (2): Assume that there exists P 2 Supp.S=eR/\Supp.eR=R/. Then, .eR/P ¤
SP;RP, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.S=R/ [ Supp.R=R/. If P 2 Supp.S=R/, then P … Supp.R=R/, so that .R/P D
RP and RP � SP is Prüfer, a contradiction. If P 2 Supp.R=R/, then P … Supp.S=R/,
so that .R/P D SP and RP � SP is integral, a contradiction.

(2)) (3): Assume that there exists P 2 Supp.eR=R/ \ Supp.R=R/. Then, RP ¤
.eR/P; .R/P, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.S=eR/ [ Supp.eR=R/. If P 2 Supp.S=eR/, then P … Supp.eR=R/, so that .eR/P D
RP and RP � SP is integral, a contradiction. If P 2 Supp.eR=R/, then P … Supp.S=eR/,
so that .eR/P D SP and RP � SP is Prüfer, a contradiction.

(3)) (1): Assume that there exists P 2 Supp.S=R/\Supp.R=R/. Then, .R/P ¤
RP; SP, so that RP � SP is neither Prüfer nor integral. But, P 2 Supp.S=R/ D
Supp.R=R/ [ Supp.eR=R/. If P 2 Supp.eR=R/, then P … Supp.R=R/, so that .R/P D
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RP and RP � SP is Prüfer, a contradiction. If P 2 Supp.R=R/, then P … Supp.eR=R/,
so that .eR/P D RP and RP � SP is integral, a contradiction. ut

Proposition 4.5 has the following similar statement proved by Ayache and Dobbs.
It reduces to Theorem 4.6 in case R � S has FCP because of Proposition 1.3.

Proposition 4.8 Let R � T � S be a quasi-Prüfer extension, where T � S is an
integral minimal extension and R � T is integrally closed. Then the diagram (D) is
a pullback, S D TR and .T W S/ D .R W R/T.

Proof [5, Lemma 3.5]. ut
Proposition 4.9 Let R � U � S and R � V � S be two towers of extensions,
such that R � U and R � V are almost-Prüfer. Then R � UV is almost-Prüfer and
eUV D eUeV.

Proof Denote by U0, V 0, and W 0 the Prüfer hulls of R in U, V , and W D UV .
We deduce from [25, Corollary 5.11, p. 53], that R � U0V 0 is Prüfer. Moreover,
U0V 0 � UV is clearly integral and U0V 0 � W 0 because the Prüfer hull is the greatest
Prüfer subextension. We deduce that R � UV is almost-Prüfer and thateUV D eUeV .

ut
Proposition 4.10 Let R � U � S and R � V � S be two towers of extensions,
such that R � U is almost-Prüfer and R � V is a flat epimorphism. Then U � UV
is almost-Prüfer.

Proof Mimic the proof of Proposition 4.9, using [25, Theorem 5.10, p. 53]. ut
Proposition 4.11 Let R � S be an almost-Prüfer extension and R ! T a flat
epimorphism. Then T � T ˝R S is almost-Prüfer.

Proof It is enough to use Proposition 3.10 and Definition 4.1. ut
Proposition 4.12 An extension R � S is almost-Prüfer if and only if RP � SP is
almost-Prüfer and fRP D .eR/P for each P 2 Spec.R/.

Proof For an arbitrary extension R � S we have .eR/P � fRP. Suppose that R � S
is almost-Prüfer, then so is RP � SP and .eR/P D fRP by Theorem 4.4. Conversely,
if R � S is locally almost-Prüfer, whence locally quasi-Prüfer, then R � S is quasi-
Prüfer. If fRP D .eR/P holds for each P 2 Spec.R/, we have SP D .ReR/P so that
S D ReR and R � S is almost-Prüfer by Theorem 4.6. ut
Corollary 4.13 An FCP extension R � S is almost-Prüfer if and only if RP � SP is
almost-Prüfer for each P 2 Spec.R/.

Proof It is enough to show that R � S is almost-Prüfer if RP � SP is almost-Prüfer
for each P 2 Spec.R/ using Proposition 4.12. Any minimal extension eR � R1 is
integral by definition ofeR. Assume that .eR/P � e.RP/, so that there exists R0

2 2 ŒeR; S�
such that .eR/P � .R0

2/P is a Prüfer minimal extension with crucial maximal ideal
Q.eR/P, for some Q 2 Max.eR/ with Q\ R � P. In particular,eR � R0

2 is not integral.
We may assume that there exists R0

1 2 ŒeR;R0
2� such that R0

1 � R0
2 is a Prüfer minimal
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extension with P … Supp.R0
1=
eR/. Using [37, Lemma 1.10], there exists R2 2 ŒeR;R0

2�

such that eR � R2 is a Prüfer minimal extension with crucial maximal ideal Q, a
contradiction. Then, .eR/P � SP is integral for each P, whence .eR/P D e.RP/. ut

We now intend to demonstrate that our methods allow us to prove easily some
results. For instance, next statement generalizes [5, Corollary 4.5] and can be fruitful
in algebraic number theory.

Proposition 4.14 Let .R;M/ be a one-dimensional local ring and R � S a quasi-
Prüfer extension. Suppose that there is a tower R � T � S, where R � T is
integrally closed. Then R � S is almost-Prüfer, T DeR and S is zero-dimensional.

Proof Because R � T is quasi-Prüfer and integrally closed, it is Prüfer. If some
prime ideal of T is lying over M, R � T is a faithfully flat epimorphism, whence
an isomorphism by Scholium A, which is absurd. Now let N be a prime ideal of T
and P WD N \ R. Then RP is zero-dimensional and isomorphic to TN . Therefore, T
is zero-dimensional. It follows that TR is zero-dimensional. Since RT � S is Prüfer,
we deduce from Scholium A, that RT D S. The proof is now complete. ut
We also generalize [5, Proposition 5.2] as follows.

Proposition 4.15 Let R � S be a quasi-Prüfer extension, such that R is local with

maximal ideal N WD
q
.R W R/. Then R is local and ŒR; S� D ŒR;R� [ ŒR; S�. If in

addition R is one-dimensional, then either R � S is integral or there is some minimal
prime ideal P of R, such that S D .R/P, P D SP and R=P is a one-dimensional
valuation domain with quotient field S=P.

Proof R is obviously local. Let T 2 ŒR; S� n ŒR;R� and s 2 T nR. Then s 2 U.S/ and
s�1 2 R by Proposition 1.2 (1). But s�1 …U.R/, so that s�1 2 N. It follows that there
exists some integer n such that s�n 2 .R W R/, giving s�nR � R, or, equivalently,
R � Rsn � T . Then, T 2 ŒR; S� and we obtain ŒR; S� D ŒR;R� [ ŒR; S�.

Assume that R is one-dimensional. If R � S is not integral, then R � S is Prüfer
and R is one-dimensional. To complete the proof, use Proposition 1.2 (3). ut

4.2 FCP Extensions

In case we consider only FCP extensions, we obtain more results.

Proposition 4.16 Let R � S be an FCP extension. The following statements are
equivalent:

(1) R � S is almost-Prüfer.
(2) RP � SP is either integral or Prüfer for each P 2 Spec.R/.
(3) RP � SP is almost-Prüfer for each P 2 Spec.R/ and

Supp.S=eR/ \ Supp.eR=R/ D ;.
(4) Supp.R=R/ \ Supp.S=R/ D ;.
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Proof The equivalence of Proposition 4.12 shows that (2) , (1) holds because
bT D eT and over a local ring T , an almost-Prüfer FCP extension T � U is either
integral or Prüfer [37, Proposition 2.4] . Moreover when RP � SP is either integral
or Prüfer, it is easy to show that .eR/P DfRP

Next we show that (3) is equivalent to (2) of Proposition 4.12.
Let P 2 Supp.S=eR/ \ Supp.eR=R/ be such that RP � SP is almost-Prüfer. Then,

.eR/P ¤ RP; SP, so that RP � .eR/P � SP. Since R � eR is Prüfer, so is RP � .eR/P,
giving .eR/P � fRP and RP ¤ fRP. It follows that fRP D SP in view of the dichotomy
principle [37, Proposition 3.3] since RP is a local ring, and then fRP ¤ .eR/P.

Conversely, assume that fRP ¤ .eR/P, i.e. P 2 Supp.S=R/. Then, RP ¤fRP, so that
fRP D SP, as we have just seen. Hence RP � SP is integrally closed. It follows that
RP D RP D RP, so that P … Supp.R=R/ and P 2 Supp.eR=R/ by Theorem 4.6(5).
Moreover, eRP ¤ SP implies that P 2 Supp.S=eR/. To conclude, P 2 Supp.S=eR/ \
Supp.eR=R/.

(1), (4) An FCP extension is quasi-Prüfer by Corollary 3.4. Suppose that R � S
is almost-Prüfer. By Theorem 4.6, letting U WD eR, we get that U \ R D R and
S D RU. We deduce from [37, Proposition 3.6] that Supp.R=R/ \ Supp.S=R/ D ;.
Suppose that this last condition holds. Then by [37, Proposition 3.6] R � S can
be factored R � U � S, where R � U is integrally closed, whence Prüfer by
Proposition 1.3, and U � S is integral. Therefore, R � S is almost-Prüfer. ut
Proposition 4.17 Let R � S be an FCP almost-Prüfer extension. Then,eR DbR and
eR is the least T 2 ŒR; S� such that T � S is integral.

Proof Let T 2 ŒR; S� be such that T � S is integral. So is TM � SM for each
M 2 Max.R/. But RM � SM is either integral (1) or Prüfer (2). In case (1), we get
RM D eRM � TM and in case (2), we get eRM D SM D TM , so that eRM � TM . By
globalization,eR � T . ut

We will need a relative version of the support. Let f W R! T be a ring morphism
and E a T-module. The relative support of E over R is SR.E/ WD af .SuppT.E// and
MSR.E/ WD SR.E/ \Max.R/. In particular, for a ring extension R � S, we have
SR.S=R/ WD SuppR.S=R//.

Proposition 4.18 Let R � S be an FCP extension. The following statements hold:

(1) Supp.eR=R/ \ Supp.R=R/ D ;.
(2) Supp.eR=R/ \ Supp.R=R/ D Supp.eR=eR/ \ Supp.eR=R/ D ;.
(3) MSupp.S=R/ D MSupp.eR=R/ [MSupp.R=R/.

Proof (1) is a consequence of Proposition 4.16(4) because R �eR is almost-Prüfer.
We prove the first part of (2). If some M 2 Supp.eR=R/ \ Supp.R=R/, it can

be supposed in Max.R/ because supports are stable under specialization. Set R0 WD
RM;U WD .eR/M;T WD .R/M and M0 WD MRM . Then, R0 ¤ U;T , with R0 � U FCP
Prüfer and R0 � T FCP integral, an absurdity [37, Proposition 3.3].
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To show the second part, assume that some P 2 Supp.eR=eR/\ Supp.eR=R/. Then,

P … Supp.R=R/ by the first part of (2), so that RP D RP, giving .eR/P D RPeRP DeRP,
a contradiction.

(3) Obviously, MSupp.S=R/ D MS .S=R/ D MS .S=T
S
/ [MS .T

S
=T/

[MS .T=U
T
/ [ MS .U

T
=U/ [ MS .U=R/. By [37, Propositions 2.3 and

3.2], we have MS .S=T
S
/ � S .T

S
=T/ D S .R=R

T
/ D MS .R=R/ D

MSupp.R=R/; MS .T=U
T
/ D S .R

T
=R/ � S .R=R/ D Supp.R=R/ and

MS .U
T
=U/ D S .R

T
=R/ D Supp.R=R/. To conclude, MSupp.S=R/ D

MSupp.eR=R/ [MSupp.R=R/. ut
Proposition 4.19 Let R � S be an FCP extension and M 2 MSupp.S=R/, then
fRM D .eR/M if and only if M … MSupp.S=eR/ \MSupp.eR=R/.

Proof In fact, we are going to show that fRM ¤ .eR/M if and only if M 2
MSupp.S=eR/ \MSupp.eR=R/.

Let M 2 MSupp.S=eR/\MSupp.eR=R/. Then, fRM ¤ RM; SM and RM � fRM � SM .
Since R � eR is Prüfer, so is RM � fRM by Proposition 1.2, giving .eR/M � fRM and
RM ¤ fRM . Therefore, fRM D SM [37, Proposition 3.3] since RM is local, and then
fRM ¤ .eR/M .

Conversely, if fRM ¤ .eR/M , then, RM ¤ fRM , so that fRM D SM , as we have just
seen and then RM � SM is integrally closed. It follows that RM D RM D RM , so that
M … MSupp.R=R/. Hence, M 2 MSupp.eR=R/ by Proposition 4.18(3). Moreover,
eRM ¤ SM ) M 2 MSupp.S=eR/. To conclude, M 2 MSupp.S=eR/ \MSupp.eR=R/.

ut
If R � S is an extension, with dim.R/ D 0, fRM D .eR/M for any M 2 Max.R/.

Indeed by Scholium A (2), the flat epimorphisms R ! eR and RM ! .eR/M are
bijective. This conclusion holds in another context.

Corollary 4.20 Let R � S be an FCP extension. Assume that one of the following
conditions is satisfied:

(1) MSupp.S=eR/ \MSupp.eR=R/ D ;.
(2) S D ReR, or equivalently, R � S is almost-Prüfer.

Then, fRM D .eR/M for any M 2 Max.R/.

Proof (1) is Proposition 4.19. (2) is Proposition 4.12. ut
Proposition 4.21 Let R � S be an almost-Prüfer FCP extension. Then, any T 2
ŒR; S� is the integral closure of T\eR in TeR. Moreover, if T\eR D R, then T D TeR\R;
if TR D S, then T D .T \ R/eR; if TeR D S, then T D .T \eR/R.

Proof Set U WD T \eR and V WD TeR. Since R � S is almost-Prüfer, U �eR is Prüfer
and eR � V is integral and eR is also the Prüfer hull of U � V . Because R � S is
almost-Prüfer, for each M 2 MSuppR.S=R/, RM � SM is either integral or Prüfer by
Proposition 4.16, and so is UM � VM . But fRM D .eR/M by Corollary 4.20 is also the
Prüfer hull of UM � VM . Let T 0 be the integral closure of U in V . Then, T 0

M is the
integral closure of UM in VM .
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Assume that UM � VM is integral. Then VM D T 0
M and UM D .eR/M , so that

VM D TM.eR/M D TM , giving TM D T 0
M .

Assume that UM � VM is Prüfer. Then UM D T 0
M and VM D .eR/M , so that

UM D TM \ .eR/M D TM , giving TM D T 0
M .

To conclude, TM D T 0
M follows for each M 2 MSuppR.S=R/. Since RM D SM ,

with TM D T 0
M for each M 2 Max.R/ nMSuppR.S=R/, we get T D T 0, whence T is

the integral closure of U � V .
The last results are then obvious. ut
We build an example of an FCP extension R � S where fRM ¤ .eR/M for some

M 2 Max.R/. In particular, R � S is not almost-Prüfer.

Example 4.22 Let R be an integral domain with quotient field S and Spec.R/ WD
fM1;M2;P; 0g, where M1 ¤ M2 are two maximal ideals and P a prime ideal
satisfying P � M1 \ M2. Assume that there are R1; R2, and R3 such that R � R1
is Prüfer minimal, with C .R;R1/ D M1; R � R2 is integral minimal, with
C .R;R2/ D M2, and R2 � R3 is Prüfer minimal, with C .R2;R3/ D M3 2 Max.R2/
such that M3 \ R D M2 and M2R3 D R3. This last condition is satisfied when
R � R2 is either ramified or inert. Indeed, in both cases, M3R3 D R3; moreover, in
the ramified case, we have M2

3 � M2 and in the inert case, M3 D M2 [36, Theorem
3.3]. We apply [14, Proposition 7.10] and [13, Lemma 2.4] several times. Set
R0
2 WD R1R2. Then, R1 � R0

2 is integral minimal, with C .R1;R0
2/ DW M0

2 D M2R1 and
R2 � R0

2 is Prüfer minimal, with C .R2;R0
2/ DW M0

1 D M1R2 2 Max.R2/. Moreover,
M0
1 ¤ M3; Spec.R1/ D fM0

2;P1; 0g, where P1 is the only prime ideal of R1 lying
over P. But, P D .R W R1/ by [17, Proposition 3.3], so that P D P1. Set R0

3 WD R3R0
2.

Then, R0
2 � R0

3 is Prüfer minimal, with C .R0
2;R

0
3/ DW M0

3 D M3R0
2 2 Max.R0

2/ and
R3 � R0

3 is Prüfer minimal, with C .R3;R0
3/ D M00

1 D M1R3 2 Max.R3/. We have
therefore Spec.R0

3/ D fP0; 0g where P0 is the only prime ideal of R0
3 lying over P.

To end, assume that R0
3 � S is Prüfer minimal, with C .R0

3; S/ D P0. Hence, R2 is the
integral closure of R in S. In particular, R � S has FCP [13, Theorems 6.3 and 3.13]
and is quasi-Prüfer. Since R � R1 is integrally closed, we have R1 � eR. Assume
that R1 ¤ eR. Then, there exists T 2 ŒR1; S� such that R1 � T is Prüfer minimal and
C .R1;T/ D M0

2, a contradiction by Proposition 4.16 since M0
2 D C .R1;R0

2/, with
R1 � R0

2 integral minimal. Then, R1 D eR. It follows that M1 2 MSupp.eR=R/. But,
P D C .R0

3; S/ \ R 2 Supp.S=eR/ and P � M1 give M1 2 MSupp.S=eR/, so that
eRM1 ¤ .eR/M1 by Proposition 4.19 giving that R � S is not almost-Prüfer.

We now intend to refine Theorem 4.6, following the scheme used in [3,
Proposition 4] for extensions of integral domains.

Proposition 4.23 Let R � S and U;T 2 ŒR; S� be such that R � U is integral and
R � T is Prüfer. Then U � UT is Prüfer in the following cases and R � UT is
almost-Prüfer.

(1) Supp.R=R/ \ Supp.eR=R/ D ; (for example, if R � S has FCP).
(2) R � U preserves integral closure.



328 G. Picavet and M. Picavet-L’Hermitte

Proof (1) We have ; D MSupp.U=R/\MSupp.T=R/, since U � R and T �eR. Let
M 2 MSupp..UT/=R/. For M 2 MSupp.U=R/, we have RM D TM and .UT/M D
UM . If M … MSupp.U=R/, then UM D RM and .UT/M D TM , so that UM � .UT/M
identifies to RM � TM .

Let N 2 Max.U/ and set M WD N \ R 2 Max.R/ since R � U is integral. If
M … Supp.R=R/, then RM D RM D UM and N is the only maximal ideal of U
lying over M. It follows that UM D UN and .UT/M D .UT/N by [13, Lemma 2.4].
Then, UN � .UT/N identifies to RM � TM which is Prüfer. If M … Supp.eR=R/, then
RM D TM gives UM D .UT/M , so that UN D .UT/N by localizing the precedent
equality and UN � .UT/N is still Prüfer. Therefore, U � UT is locally Prüfer,
whence Prüfer by Proposition 1.1.

(2) The usual reasoning gives U ˝R T Š UT , whence U � UT is integrally

closed. From U � R
UT

, we deduce U D R
UT

. Because R � UT is almost-Prüfer,
whence quasi-Prüfer, U � UT is Prüfer. ut

Next propositions generalize Ayache’s results of [3, Proposition 11].

Proposition 4.24 Let R � S be a quasi-Prüfer extension, T;T 0 2 ŒR; S� and U WD
T \ T 0. The following statements hold:

(1) eT DB.T \ R/ for each T 2 ŒR; S�.
(2) eT \ eT 0 � AT \ T 0.
(3) If Supp.T=T/ \ Supp.eT=T/ D ; (this assumption holds if R � S has FCP),

then, T � T 0 ) eT � eT 0.
(4) If Supp.U=U/ \ Supp.eU=U/ D ;, theneT \ eT 0 D AT \ T 0.

Proof (1) We observe that R � T is quasi-Prüfer by Corollary 3.3. Since T \ R
is the integral closure of R in T , we get that T \ R � T is Prüfer. It follows that

T \ R � eT is Prüfer. We thus have eT �AT \ R. To prove the reverse inclusion, we
set V WD T\R and W WD eV\T . We have W\R D eV\R D V , because V � eV\R
is integral and Prüfer since we have a tower V � eV \ R � eV . Therefore, V � W is
Prüfer because W 2 ŒV;eV�. Moreover, T � eT � eV , since V � eT is Prüfer. Then,
T � W is integral because W 2 ŒT;T�, and we have V � T � W. This entails that
T D W D eV \ T , so that T � eV is Prüfer. It follows that eV � eT since T 2 ŒV;eV�.

(2) A quasi-Prüfer extension is Prüfer if and only if it is integrally closed. We
observe that T \ T 0 � eT \ eT 0 is integrally closed, whence Prüfer. It follows that
eT \ eT 0 � AT \ T 0.

(3) Set U D T \R and U0 D T 0\R, so that U;U0 2 ŒR;R� with U � U0. In view
of (1), we thus can suppose that T;T 0 2 ŒR;R�. It follows that T � T 0 is integral and
T � eT is Prüfer. We deduce from Proposition 4.23(1) that T 0 � T 0eT is Prüfer, so
that eTT 0 � eT 0, because Supp.T=T/ \ Supp.eT=T/ D ; and T D R. Therefore, we
haveeT � eT 0.

(4) Assume that Supp.U=U/ \ Supp.eU=U/ D ;. Then, T \ T 0 � T;T 0 gives
AT \ T 0 � eT \ eT 0 in view of (3), so that AT \ T 0 D eT \ eT 0 by (2). ut



Quasi-Prüfer Extensions of Rings 329

Proposition 4.25 Let R � S be a quasi-Prüfer extension and T � T 0 a subextension
of R � S. Set U WD T \ R; U0 WD T 0 \ R; V WD TR and V 0 WD T 0R. The following
statements hold:

(1) T � T 0 is integral if and only if V D V 0.
(2) T � T 0 is Prüfer if and only if U D U0.
(3) Assume that U � U0 is integral minimal and V D V 0. Then, T � T 0 is integral

minimal, of the same type as U � U0.
(4) Assume that V � V 0 is Prüfer minimal and U D U0. Then, T � T 0 is Prüfer

minimal.
(5) Assume that T � T 0 is minimal and set P WD C.T;T 0/.

(a) If T � T 0 is integral, then U � U0 is integral minimal if and only if P\U 2
Max.U/.

(b) If T � T 0 is Prüfer, then V � V 0 is Prüfer minimal if and only if there is
exactly one prime ideal in V lying over P.

Proof In ŒR; S�, the extensions U � U0; T � V; T 0 � V 0 are integral and V �
V 0; U � T; U0 � T 0 are Prüfer. Moreover, R is also the integral closure of U � V 0.

(1) is gotten by considering the extension T � V 0, which is both T � V � V 0
and T � T 0 � V 0.

(2) is gotten by considering the extension U � T 0, which is both U � T � T 0
and U � U0 � T 0.

(3) Assume that U � U0 is integral minimal and V D V 0. Then, T � T 0 is
integral by (1) and T ¤ T 0 because of (2). Set M WD .U W U0/ 2 SuppU.U

0=U/. For
any M0 2 Max.U/ such that M0 ¤ M, we have UM0 D U0

M0 , so that TM0 D T 0
M0

because UM0 � T 0
M0 is Prüfer. But, U � T 0 is almost-Prüfer, giving T 0 D TU0.

By Theorem 4.6, .T W T 0/ D .U W U0/T D MT ¤ T because T ¤ T 0. We get
that U � T Prüfer implies that M … SuppU.T=U/ and UM D TM . It follows that
T 0

M D TMU0
M D U0

M . Therefore, TM � T 0
M identifies to UM � U0

M , which is
minimal of the same type as U � U0 by [14, Proposition 4.6]. Then, T � T 0 is
integral minimal of the same type as U � U0.

(4) Assume that V � V 0 is Prüfer minimal and U D U0. Then, T � T 0 is Prüfer
by (2) and T ¤ T 0 because of (1). Set Q WD C.V;V 0/ and P WD Q \ T 2 Max.T/
since Q 2 Max.V/. For any P0 2 Max.T/ such that P0 ¤ P, and Q0 2 Max.V/ lying
over P0, we have VQ0 D V 0

Q0 , so that VP0 D V 0
P0 . Therefore, T 0

P0 � V 0
P0 is integral,

so that TP0 D T 0
P0 and P0 … SuppT.T

0=T/. Hence T � T 0 is Prüfer minimal [13,
Proposition 6.12].

(5) Assume that T � T 0 is a minimal extension and set P WD C.T;T 0/.
(a) Assume that T � T 0 is integral. Then, V D V 0 and U ¤ U0 by (1) and (2).

We can use Proposition 4.5 getting that P D .U W U0/T 2 Max.T/ and Q WD .U W
U0/ D P \ U 2 Spec.U/. It follows that Q … SuppU.T=U/, so that UQ D TQ and
U0

Q D T 0
Q. Then, UQ � U0

Q is integral minimal, with Q 2 SuppU.U
0=U/.

If Q … Max.U/, then U � U0 is not minimal by the properties of the crucial
maximal ideal.
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Assume that Q 2 Max.U/ and let M 2 Max.U/, with M ¤ Q. Then, UM D U0
M

because M C Q D U, so that U � U0 is a minimal extension and (a) is gotten.
(b) Assume that T � T 0 is Prüfer. Then, V ¤ V 0 and U D U0 by (1) and

(2). Moreover, PT 0 D T 0 gives PV 0 D V 0. Let Q 2 Max.V/ lying over P. Then,
QV 0 D V 0 gives that Q 2 SuppV.V

0=V/. Moreover, we have V 0 D VT 0. Let P0 2
Max.T/; P0 ¤ P. Then, TP0 D T 0

P0 gives VP0 D V 0
P0 . It follows that SuppT.V

0=V/ D
fPg and SuppV.V

0=V/ D fQ 2 Max.V/ j Q \ T D Pg. But, by [13, Proposition
6.12], V � V 0 is Prüfer minimal if and only if jSuppV.V

0=V/j D 1, and then if and
only if there is exactly one prime ideal in V lying over P. ut

This proposition has a simpler dual form in the FCP almost-Prüfer case.

Proposition 4.26 Let R � S be an FCP almost-Prüfer extension and T � T 0 a
subextension of R � S. Set U WD T \eR; U0 WD T 0 \eR; V WD TeR, and V 0 WD T 0eR.
The following statements hold:

(1) T � T 0 is integral (and minimal) if and only if U D U0 (and V � V 0 is minimal).
(2) T � T 0 is Prüfer (and minimal) if and only if V D V 0 (and U � U0 is minimal).

Proof In view of Proposition 4.21, T (resp. T 0) is the integral closure of U (resp. U0)
in V (resp. V 0). The result is gotten by localizing at the elements of MSuppU.V

0=U/
and using Proposition 4.16. ut
Lemma 4.27 Let R � S be an FCP almost-Prüfer extension and U 2 ŒR;R�, V 2
ŒR; S�. Then U � V has FCP and is almost-Prüfer. The same result holds when
U 2 ŒR;eR� and V 2 ŒeR; S�.
Proof Assume first that U 2 ŒR;R� and V 2 ŒR; S�. Obviously, U � V has FCP
and R is the integral closure of U in V . Proposition 4.16 entails that SuppR.R=R/ \
SuppR.S=R/ D ;. We claim that SuppU.R=U/ \ SuppU.V=R/ D ;. Deny and let
Q 2 SuppU.R=U/ \ SuppU.V=R/. Then, RQ ¤ UQ;VQ. If P WD Q \ R, we get that
RP ¤ UP;VP, giving RP ¤ RP; SP, a contradiction. Another use of Proposition 4.16
shows that U � V is almost-Prüfer. The second result is obvious. ut
Theorem 4.28 Let R � S be an FCP almost-Prüfer extension and T � T 0 a
subextension of R � S. Set U WD T \ R and V 0 WD T 0R. Let W be the Prüfer
hull of U � V 0. Then, W is also the Prüfer hull of T � T 0 and T � T 0 is an FCP
almost-Prüfer extension.

Proof By Lemma 4.27, we get that U � V 0 is an FCP almost-Prüfer extension. Let
eT be the Prüfer hull of T � T 0. Since U � T and T � eT are Prüfer, so is U � eT and
eT � V 0 gives thateT � W. Then, T � W is Prüfer as a subextension of U � W.

Moreover, in view of Proposition 4.17, W is the least U-subalgebra of V 0 over
which V 0 is integral. Since T 0 � V 0 is integral, we get that W � T 0, so that W 2
ŒT;T 0�, with W � T 0 integral as a subextension of W � V 0. It follows that W is also
the Prüfer hull of T � T 0 and T � T 0 is an FCP almost-Prüfer extension. ut
Remark 4.29 The result of this theorem may not hold if the FCP hypothesis is
lacking. Take the example of [13, Remark 2.9(c)], where R � S � T is almost-
Prüfer, R � S Prüfer, S � T integral and R � T has not FCP. Here, .R;M/ is a
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one-dimensional valuation domain with quotient field S and T D SŒX�=.X2/ D SŒx�.
Set R0 WD RŒx�. Then, R0 is local, with Spec.R0/ D fP0 WD Rx; M0 WD M C Rxg.
By the characterization of a Prüfer extension in Proposition 1.2 (3), R0 D eR0, but
R0 � T is not integral, so that R0 � T is not almost-Prüfer.

5 Fibers of Quasi-Prüfer Extensions

We intend to complete some results of Ayache-Dobbs [5]. We begin by recalling
some features about quasi-finite ring morphisms. A ring morphism R! S is called
quasi-finite by [39] if it is of finite type and �.P/! �.P/˝R S is finite (as a �.P/-
vector space), for each P 2 Spec.R/ [39, Proposition 3, p. 40].

Proposition 5.1 A ring morphism of finite type is incomparable if and only if it is
quasi-finite and, if and only if its fibers are finite.

Proof Use [40, Corollary 1.8] and the above definition. ut
Theorem 5.2 An extension R � S is quasi-Prüfer if and only if R � T is quasi-
finite (equivalently, has finite fibers) for each T 2 ŒR; S� such that T is of finite type
over R, if and only if R � T has integral fiber morphisms for each T 2 ŒR; S�.
Proof Clearly, R � S is an INC-pair implies the condition by Proposition 5.1. To
prove the converse, write T 2 ŒR; S� as the union of its finite type R-subalgebras
T˛ . Now let Q � Q0 be prime ideals of T , lying over a prime ideal P of R and set
Q˛ WD Q \ T˛ and Q0̨ WD Q0 \ T˛ . If R � T˛ is quasi-finite, then Q˛ D Q0̨ , so that
Q D Q0 and then R � T is incomparable. The last statement is Proposition 3.8. ut
Corollary 5.3 An integrally closed extension is Prüfer if and only if each of its
subextensions R � T of finite type has finite fibers.

Proof It is enough to observe that the fibers of a (flat) epimorphism have a cardinal
� 1, because an epimorphism is spectrally injective. ut

An extension R � S is called strongly affine if each of its subextensions R � T
is of finite type. The above considerations show that in this case R � S is quasi-
Prüfer if and only if each of its subextensions has finite fibers. For example, an FCP
extension is strongly affine and quasi-Prüfer. We are also interested in extensions
R � S that are not necessarily strongly affine, whose subextensions have finite
fibers.

Next lemma will be useful, its proof is obvious.

Lemma 5.4 Let R � S be an extension and T 2 ŒR; S�.
(1) If T � S is spectrally injective and R � T has finite fibers, then R � S has finite

fibers.
(2) If R � T is spectrally injective, then T � S has finite fibers if and only if R � S

has finite fibers.
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Remark 5.5 Let R � S be an almost-Prüfer extension, such that the integral
extension T WD eR � S has finite fibers and let P 2 Spec.R/. The study of the
finiteness of FibR;S.P/ can be reduced as follows. As R � S is an epimorphism,
because it is Prüfer, it is spectrally injective (see Scholium A). The hypotheses of
Proposition 4.5 hold. We examine three cases. In case .R W R/ › P, it is well known
that RP D .R/P so that jFibR;S.P/j D 1, because R ! S is spectrally injective.
Suppose now that .R W R/ D P. From .R W R/ D .T W S/ \ R, we deduce that P is
lain over by some Q 2 Spec.T/ and then FibR;R.P/ Š FibT;S.Q/. The conclusion
follows as above. Thus the remaining case is .R W R/ � P and we can assume that
PT D T for if not FibR;R.P/ Š FibT;S.Q/ for some Q 2 Spec.T/ by Scholium A (1).

Proposition 5.6 Let R � S be an almost-Prüfer extension. IfeR � S has finite fiber
morphisms and .eRP W SP/ is a maximal ideal ofeRP for each P 2 SuppR.S=eR/, then
R � R and R � S have finite fibers.

Proof The Prüfer closure commutes with the localization at prime ideals by
Proposition 4.12. We set T WD eR. Let P be a prime ideal of R and ' W R ! RP the
canonical morphism. We clearly have FibR;:.P/ D a'.FibRP;:P.PRP//. Therefore, we
can localize the data at P and we can assume that R is local.

In case .T W S/ D T , we get a factorization R! R! T . Since R! T is Prüfer
so is R ! R and it follows that R D R because a Prüfer extension is integrally
closed.

From Proposition 1.2 applied to R � T , we get that there is some P 2 Spec.R/
such that T D RP, R=P is a valuation ring with quotient field T=P and P D PT . It
follows that .T W S/ D PT D P � R, and hence .T W S/ D .T W S/ \ R D .R W R/.
We have therefore a pushout diagram by Theorem 4.6:

where R=P is a valuation domain, T=P is its quotient field, and R=P ! S=P is
Prüfer by [25, Proposition 5.8, p. 52].

Because R0 ! S0 is injective and a flat epimorphism, there is a bijective map
Min.S0/ ! Min.R0/. But T 0 ! S0 is the fiber at P of T ! S and is therefore
finite. Therefore, Min.S0/ is a finite set fN1; : : : ;Nng of maximal ideals lying over
the minimal prime ideals fM1; : : : ;Mng of R0 lying over 0 in R0. We infer from
Lemma 3.7 that R0=Mi ! S0=Ni is Prüfer, whence integrally closed. Therefore,
R0=Mi is an integral domain and the integral closure of R0 in S0=Ni. Any maximal
ideal M of R0 contains some Mi. To conclude it is enough to use a result of Gilmer
[19, Corollary 20.3] because the number of maximal ideals in R0=Mi is less than the
separable degree of the extension of fields T 0 � S0=Ni. ut
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Remark 5.7

(1) Suppose that .eR W S/ is a maximal ideal ofeR. We clearly have .eR W S/P � .eRP W
SP/ and the hypotheses on .eR W S/ of the above proposition hold.

(2) In caseeR � S is a tower of finitely many integral minimal extensions Ri�1 � Ri

with Mi D .Ri�1 W Ri/, then SuppeR.S=eR/ D fN1; : : : ;Nng � Max.eR/ where
Ni D Mi \eR. If the ideals Ni are different, each localization at Ni ofeR � S is
integral minimal and the above result may apply. This generalizes the Ayache-
Dobbs result [5, Lemma 3.6], whereeR � S is supposed to be integral minimal.

Theorem 5.8 Let R � S be a quasi-Prüfer ring extension. The following three
conditions are equivalent:

(1) R � S has finite fibers.
(2) R � R has finite fibers.
(3) Each extension R � T, where T 2 ŒR; S� has finite fibers.

Proof (1) , (2) Let P 2 Spec.R/ and the morphisms �.P/ ! �.P/ ˝R R !
�.P/ ˝R S. The first (second) morphism is integral (a flat epimorphism) because
deduced by base change from the integral morphism R ! R (the flat epimorphism
R ! S). Therefore, the ring �.P/ ˝R R is zero-dimensional, so that the second
morphism is surjective by Scholium A (2). Set A WD �.P/˝R R and B WD �.P/˝R S,
we thus have a module finite flat ring morphism A ! B. Hence, AQ ! BQ is free
for each Q 2 Spec.A/ [16, Proposition 9] and BQ ¤ 0 because it contains �.P/ ¤ 0.
Therefore, AQ ! BQ is injective and it follows that A Š B giving (1), (2).

(2)) (3) Suppose that R � R has finite fibers and let T 2 ŒR; S�, then R � RT
is a flat epimorphism by Proposition 4.5(1) and so is �.P/ ˝R R ! �.P/ ˝R RT .
Since Spec.�.P/˝R RT/! Spec.�.P/˝R R/ is injective, R � RT has finite fibers.
Now R � T has finite fibers because T � RT is integral and is therefore spectrally
surjective.

(3)) (1) is obvious. ut
Remark 5.9 Actually, the statement (1) , (2) is valid if we only suppose that
R � S is a flat epimorphism. But this equivalence fails in case R � S is not a flat
epimorphism as we can see in the following example. Let R be an integral domain
with quotient field K and integral closure R such that R � R is a minimal extension.
Then R � R has finite fibers. Consider the polynomial ring S WD KŒX�. It follows
that R is also the integral closure of R in S. Moreover, K � S and then R � S have
not finite fibers. Actually, K � S and R � S are not flat epimorphisms.

Next result contains [5, Lemma 3.6], gotten after a long proof.

Corollary 5.10 Let R � S be an almost-Prüfer extension. Then R � S has finite
fibers if and only if R � R has finite fibers, and if and only ifeR � S has finite fibers.

Proof By Theorem 5.8 the first equivalence is clear. The second is a consequence
of Lemma 5.4(2). ut

The following result is then clear and obviates any need to assume FCP or FMC.
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Theorem 5.11 Let R � S be a quasi-Prüfer extension with finite fibers, then R � T
has finite fibers for each T 2 ŒR; S�.
Corollary 5.12 If R � S is quasi-finite and quasi-Prüfer, then R � T has finite
fibers for each T 2 ŒR; S� andeR � S is module finite.

Proof By the Zariski Main Theorem, there is a factorization R � F � S where
R � F is module finite and F � S is a flat epimorphism [39, Corollaire 2, p. 42].
To conclude, we use Scholium A in the rest of the proof. The mapeR˝R F ! S is
injective because F ! eR ˝R F is a flat epimorphism and is surjective, since it is
integral and a flat epimorphism becauseeR˝R F! S is a flat epimorphism. ut
Corollary 5.13 An FMC extension R � S is such that R � T has finite fibers for
each T 2 ŒR; S�.
Proof Such an extension is quasi-finite and quasi-Prüfer. Then use Corollary 5.12.

ut
[5, Example 4.7] exhibits some FMC extension R � S, such that R � R has not

FCP. Actually, ŒR;R� is an infinite (maximal) chain.

Proposition 5.14 Let R � S be a quasi-Prüfer extension such that R � R has finite
fibers and R is semi-local. Then T is semi-local for each T 2 ŒR; S�.
Proof Obviously R is semi-local. From the tower R � TR � S we deduce that
R � TR is Prüfer. It follows that TR is semi-local [5, Lemma 2.5 (f)]. As T � TR is
integral, we get that T is semi-local. ut

The next proposition gives a kind of converse, but, before, we rewrite [4,
Theorem 3.10] proved in the integral domains context, which holds in a more
general context.

Theorem 5.15 Let R � S be an integrally closed extension with R semi-local. The
following three conditions are equivalent:

(1) R � S is a Prüfer extension.
(2) jMax.T/j � jMax.R/j for each T 2 ŒR; S�.
(3) Each T 2 ŒR; S� is a semi-local ring.

Proof It is enough to mimic the proof of [4, Theorem 3.10] which is still valid for
an arbitrary integrally closed extension of rings R � S. Indeed, R � S is a Prüfer
extension if and only if .R; S/ is a residually algebraic pair such that R � S is an
integrally closed extension by Theorem 2.3 and Definition 2.1 . ut
Proposition 5.16 Let R � S be an extension with R semi-local. Then R � S is
quasi-Prüfer if and only if T is semi-local for each T 2 ŒR; S�.
Proof If R � S is quasi-Prüfer, R � S is Prüfer. Let T 2 ŒR; S� and set T 0 WD TR,
so that T � T 0 is integral, and R � T 0 is Prüfer (and then a normal pair). It follows
from [5, Lemma 2.5 (f)] that T 0 is semi-local, and so is T .

If T is semi-local for each T 2 ŒR; S�, so is any T 2 ŒR; S�. Then, R � S is Prüfer
by Theorem 5.15 and R � S is quasi-Prüfer. ut
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A Note on Analytically Irreducible Domains

Roswitha Rissner

Abstract If D is a one-dimensional, Noetherian, local domain, it is well known
that D is analytically irreducible if and only if D is unibranched and the integral
closure D0 of D is finitely generated as D-module. However, the proof of this result
is split into pieces and spread over the literature. This paper collects the pieces and
assembles them to a complete proof. Next to several results on integral extensions
and completions of modules, we use Cohen’s structure theorem for complete,
Noetherian, local domains to prove the main result. The purpose of this survey is
to make this characterization of analytically irreducible domains more accessible.

Keywords Unibranched • Analytically irreducible • Noetherian • Local • One-
dimensional

MSC 2010: 13-02; 13B22, 13B35 13J05, 3J10, 13H05

1 Introduction

Let .D;m/ be a Noetherian, one-dimensional, local domain. It is well known that
the question of whether bD has zero-divisors or nilpotents is strongly connected to
certain properties of the integral closure D0 of D.

Definition 1.1 Let .D;m/ be a Noetherian, local domain with integral closure D0
and m-adic completion bD. We say D is

1. unibranched, if D0 is local,
2. analytically unramified, if bD is a reduced ring and
3. analytically irreducible, if bD is a domain.
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Fig. 1 Completions of D
with respect to m and m0 in
case D0 is local with maximal
ideal m0

The aim of this paper is to give a complete proof of the following well-known
theorem.

Theorem 1 Let .D;m/ be a one-dimensional, Noetherian, local domain with
integral closure D0. Then the following assertions are equivalent:

1. D is analytically irreducible.
2. D is unibranched and analytically unramified.
3. D is unibranched and D0 is finitely generated as D-module.
4. D is unibranched and if m0 denotes the maximal ideal of the integral closure,

then the m-adic topology on D coincides with subspace topology induced by m0.

Assume that D is unibranched and let m0 be the unique maximal ideal of the
integral closure D0. It follows from the Krull-Akizuki theorem that D0 is a discrete
valuation domain (see Corollary 2.5 below). In particular, D0 is Noetherian and can
be embedded into the m0-adic completion b.D0/ of D0. Moreover, the valuation on
D0 can be extended to a valuation on b.D0/ which implies that b.D0/ is a domain (see
Example 3.1). Since the completion D of D considered as a topological subspace of
D0 is the topological closure of D in b.D0/, it follows that D � b.D0/ is a domain too.

On the other hand, D can be embedded into the m-adic completion bD of D.
Figure 1 above demonstrates the relationship between D, D0 and the completions
with respect to the different topologies. As usual, the solid lines represent inclusions.
However, the dotted arrow deserves some additional explanation. Since mn �
m0n \ D it follows that the m-adic topology is finer than the m0-adic subspace
topology on D. This further implies that the inclusion D �! D is a uniformly
continuous homomorphism (where D is equipped with the m-adic topology). Since
D is complete, the inclusion can be uniquely extended to a uniformly continuous
map ' W bD �! D. Theorem 1 implies that D is analytically irreducible if and only
if ' is an isomorphism. However, if bD is not a domain ' is not even injective.

Theorem 1 is well known but its proof is split into pieces and has to be assembled
from several sources. This survey collects known results from different references
in order to present a complete proof. We follow the approach of Nagata’s textbook
[7, (32.2)] for the implication (2)) (3). For the remaining implications, we pursue
the suggestions of [3, Theorem III.5.2]. One can also refer to [8, Theorem 8] for
the implication (4)) (1).

In order to make this survey more self-contained, we give a short introduction
to integral ring extensions and completions in Sects. 2 and 3, respectively. Then,
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in Sect. 4 we discuss Cohen’s structure theorem which allows us to prove that
the integral closure of a complete, Noetherian, local, reduced ring R is a finitely
generated R-module in Sect. 5. Finally, we give a proof of Theorem 1 in Sect. 6. It is
worth mentioning that Sects. 4 and 5 are only needed for the implication (2)) (3)
whereas the remaining implications can be shown using the results in Sects. 2 and 3.

2 Integral Ring Extensions

In this section we recall some facts on integral ring extensions which we use
throughout this paper.

Fact 2.1 (cf. [1, Proposition 5.1, Corollaries 5.3, 5.4]) Let R � S be a ring
extension. We call s 2 S integral over R if the following equivalent assertions are
satisfied:

1. There exists a monic polynomial f 2 RŒX� such that f .s/ D 0.
2. RŒs� is finitely generated as R-module.
3. There exists a ring T containing RŒs� which is finitely generated as R-module.

Let R0
S D fs 2 S j s integral over Rg denote the set of elements of S which are

integral over R. Then R � R0
S is a ring extension.

We call R0
S the integral closure of R in S and if R D R0

S we say R is integrally
closed in S. If S D R0

S, we say R � S is an integral extension.
If R � T � S is an intermediate ring such that both R � T and T � S are

integral extensions, then R � S is an integral extension. In particular, R0
S D .R0

T/
0
S.

In case S is the total ring of quotients of R, we simplify and say R0 WD R0
S is the

integral closure of R and R is integrally closed if R D R0.

Fact 2.2 (Cohen-Seidenberg, cf. [1, Corollary 5.9, Theorem 5.11]) Let R � S be
an integral extension. Then the following assertions hold:

1. If Q1 � Q2 are prime ideals of S such that Q1 \ R D Q2 \ R, then Q1 D Q2.
2. If P1, P2 2 spec.R/ with P1 � P2 and Q1 2 spec.S/ with Q1 \ R D P1, then

there exists Q2 2 spec.S/ such that Q1 � Q2 and Q2 \ R D P2.
3. dim.R/ D dim.S/ and max.S/ D fP 2 spec.S/ j P \ R 2 max.R/g.

As a first result we prove the so-called Krull-Akizuki theorem which is central to
the remainder of this paper.

Proposition 2.3 (Krull-Akizuki, cf. [6, Theorem 11.7], [4, Theorem 4.9.2]) Let
D be a one-dimensional, Noetherian domain with quotient field K and L a finite field
extension of K.

Then the integral closure D0
L of D in L is a Dedekind domain. Moreover, if I is a

nonzero ideal of D0, then D0=I is a finitely generated D-module.

Proof We can reduce the proof to the case L D K with the following argument. Let
b1, . . . , bn form a K-basis of L. Without restriction we can assume that bi 2 D0

L.
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Then the domain R D DŒb1; : : : ; bn� is finitely generated as D-module and therefore
D � R is an integral extension according to Fact 2.1. Further, R is Noetherian and
since L D KŒb1; : : : ; bn� is the quotient field of R it follows that R0 D D0

L is the
integral closure of R. Moreover, if I is a nonzero ideal of R0 and R0=I is finitely
generated as R-module, then R0=I D D0

L=I is a finitely generated D-module.
Hence from this point on we assume that L D K and D D R. Since 1 D

dim.D/ D dim.D0/ by Fact 2.2 and D0 is integrally closed, we only need to prove
that D0 is Noetherian to conclude that D0 is a Dedekind domain.

Let I be a nonzero ideal of D0 and s D a
t 2 I be a nonzero element. Then

a D ts 2 I\D is a nonzero element which implies that D=aD is a zero-dimensional,
Noetherian ring and thus Artinian. Since In D .anD0/ \ DC aD for n 2 N form a
descending chain of ideals of D=aD, there exists an m 2N such that Im D In for all
n � m.

If amD0 � amC1D0 C D, then

D0=aD0 ' amD0=amC1D0 � .amC1D0 C D/=amC1D0 ' D=.D \ amC1D0/

holds. This further implies that D0=aD0 is a submodule of the Noetherian module
D=.D \ amC1D0/ and hence a finitely generated D-module. Hence D0=aD0 is
Noetherian and the submodule I=aD0 is finitely generated. Consequently I is a
finitely generated ideal of D0. In addition, D0=I ' .D0=aD0/=.I=aD0/ is a quotient
of the finitely generated D-module D0=aD0 and therefore finitely generated.

It remains to prove that amD0 � amC1D0 C D. We can localize at each maximal
ideal of D and prove the inclusion locally. So assume that D is local with maximal
ideal m.

If a … m, then a is a unit in D and therefore amD0 D D0 D amC1D0 C D. Now
assume a 2 m and let x D b

c 2 D0 n D where b 2 D and c 2 m. The radical of the
nonzero ideal cD is then m and therefore there exists n � m with mnC1 � cD. It
follows that

anC1x 2 .anC1D0/ \ D � InC1 D InC2 D .anC2D0/ \ DC aD

and hence anx 2 anC1D0 C D. If n > m, then

anx 2 .anC1D0 C D/ \ anD0 D anC1D0 C D \ anD0
„����ƒ‚����…
	InDInC1

� anC1D0 C aD

and therefore an�1x 2 anD0 C D. Repeating this argument completes the proof.

Corollary 2.4 Let D be a one-dimensional, Noetherian, local domain with quotient
field K and L a finite field extension of K.

If m is a maximal ideal of D and m0 a maximal ideal of the integral closure D0
L

of D in L with m0 \ D D m, then the field extension D=m � D0
L=m0 is finite.
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Proof It follows from Proposition 2.3, that D0
L=m0 is a finitely generated D-module.

Therefore D0
L=m0 is finitely generated as D=m-vector space as well.

Corollary 2.5 Let D be a one-dimensional, Noetherian, local domain.
If D is unibranched, then the integral closure D0 is a discrete valuation domain.

Remark If D is a local, one-dimensional, Noetherian domain with maximal ideal m,
then Fact 2.2 implies that the maximal ideals of D0 are the minimal primes of mD
and therefore D0 is always a semilocal Dedekind domain.

3 Completions

In this section we recall the necessary facts on topologies on rings and modules
which are induced by ideals. Let R be a Noetherian ring, I an ideal of R and M an
R-module. Then the submodules .InM/n2N form a filtration on M which induces a
linear topology on M, that is, the sets mC InM for m 2 M and n 2 N form a basis
of this topology. We call this the I-adic topology on M.

Addition, subtraction and scalar multiplication are continuous with respect to this
topology. If M is a ring extension of R, then multiplication in M is continuous too.

Moreover, M nmC InM DSy yC InM where the union runs over all y 2 M with
m � y … InM and hence each mC InM is both open and closed.

The completion bM of M is the inverse limit of the inverse system M=InM together
with the canonical projections M=InM �! M=ImM for n � m, that is,

bM D lim �M=InM D
(

.an C InM/n 2
Y

n2N
M=InM

ˇ̌
anC1 	 an .mod InM/

)

A sequence .xk/k in M is an I-adic Cauchy sequence, if for each n there exists kn

such that xkn � xknCm 2 InM for all m 2N. As usual, we say two Cauchy sequences
.xk/k, .yk/k are equivalent if .xk�yk/k converges to 0. In particular, .xk/ is equivalent
to .xkn/n. Hence each equivalence class of Cauchy sequences in M contains the so-
called coherent sequence .an/n which satisfies anC1 	 an .mod InM/ for all n. Thus
bM is isomorphic to the set of equivalence classes of Cauchy sequences.

If 0 D Tn2N InM D 0, then M is I-adically separated and we can embed M into
bM via m 7�! .m/n. We say that M is complete if M ' bM.

Example 3.1 Let V be a discrete valuation domain with maximal ideal .t/ and
valuation v. By bV we denote the .t/-adic completion of V .

Moreover, let .an/n be a .t/-adic Cauchy sequence with limit a 2 bV . If a D 0,
then for each k 2N there exists n0 2N such that an 2 .tk/ for all n � n0 and hence
lim v.an/ D1.

If a ¤ 0, then there exist k;m0 2 N such that an … .tk/ for n � m0. However,
the sequence .anC1 � an/n converges to 0 and hence there exists m1 2 N such that



342 R. Rissner

anC1 � an 2 .tk/ for all n � m1. If m D maxfm0;m1g, then for all n � m,

v.anC1/ D v.anC1 � an C an/ � minfv.anC1 � an/; v.an/g D v.an/ < k

holds and the sequence .v.an//n stabilizes at v.am/.
For a 2 bV , we set v.a/ D lim v.an/ D v.am/. This extends v to a discrete

valuation on bV .
Next, we present some basic results on the completion of finitely generated

modules over a Noetherian ring R.

Fact 3.2 (Artin-Rees, cf. [6, Theorem 8.5]) Let R be a Noetherian ring, I an ideal
of R and M a finitely generated R-module.

If N is an R-submodule of M, then there exists an integer r such that for all k � 0

IrCkM \ N D Ik.IrM \ N/:

Corollary 3.3 (cf. [6, Theorem 8.9, Theorem 8.10]) Let R be a Noetherian ring,
I an ideal of R and M a finitely generated R-module.

1. If N DTn2N InM, then there exists an a 2 R with aN D 0 and 1 � a 2 I.
2. If I � Jac.R/, then M is I-adically separated and every submodule of M is

I-adically closed.

Proof (1): According to Fact 3.2, there exists r 2 N such that .IrC1M/ \ N D
I.IrM \ N/ � IN and hence

IN � N D
\

n2N
InM � .IrC1M/ \ N � IN:

Consequently, N D IN and it follows from Nakayama’s lemma that there exists an
a 2 R with 1 � a 2 I and aN D 0. (2): Since I � Jac.R/, the element a from
(1) is a unit of R. Therefore

T
n2N InM D 0 and M is separated. Consequently, if

P is a submodule of M, it follows that
T

n2N In.M=P/ D 0 D PM=P and thereforeT
n2N.PC InM/ D P.

Fact 3.4 (cf. [6, Theorem 8.7]) Let R be a Noetherian ring, I an ideal and M a
finitely generated module. Further, letbR, bM be the I-adic completions of R and M,
respectively.

Then bR ˝R M ' bM via .lim rn;m/ 7! lim rnm. In particular, if R is I-adically
complete, then M is I-adically complete.

Proposition 3.5 (cf. [6, Theorem 8.4]) Let R be a complete ring with respect to an
ideal I of R and M an I-adically separated R-module.

If M=IM is a finitely generated R=I-module, then M is a finitely generated R-
module.

Proof Let m1, . . . , mt 2 M be elements such that their projections modulo IM
generate M=IM as R=I-module. Then M D Pt

iD1 Rmi C IM and for x 2 M, there
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exist r0;i 2 R, i1 2 I and x1 2 M such that x D Pt
iD1 r0;imi C i1x1. Then again, for

x1 2 M, there exist r1;i 2 R, i2 2 I and x2 2 M such that x1 D Pt
iD1 r1;imi C i2x2.

For j > 2, we successively choose rj�1;i 2 R, ij 2 I and xj 2 M such that

xj�1 D Pt
iD1 rj�1;imi C ijxj. Then

�Pn
jD0

�Qj
tD1 it

�
rj;i

�

n2N is a Cauchy sequence

in R which has a limit ri 2 R . Moreover,

x �
tX

iD1
rimi 2

\

n2N
InM D 0

and therefore M is generated by m1, . . . , mt.

Zero-Divisors in the Completion of R

Let V be a discrete valuation domain with valuation v and bV its completion. If
a; b 2 bV are nonzero elements, then v.a/; v.b/ < 1 according to Example 3.1.
Consequently, v.ab/ D v.a/C v.b/ <1 which implies that bV is a domain.

However, in general the completion of a domain may not be a domain.

Proposition 3.6 (cf. [3, Lemma III.3.4]) Let R be a Noetherian domain and I an
ideal of R.

If there exist ideals J1 and J2 of R such that I D J1 \ J2 and R D J1 C J2, then
the I-adic completionbR of R is not a domain.

Proof Since J1 and J2 are coprime it follows that Jk
1 and Jk

2 are coprime as well.
Hence there exist bk; ck 2 R such that

bk 	 0 mod Jk
1; bk 	 1 mod Jk

2

ck 	 1 mod Jk
1; ck 	 0 mod Jk

2

for all k 2 N. Since bkC1 � bk 	 ckC1 � ck 	 0 mod Jk
1 \ Jk

2 D Jk
1J

k
2 D Ik,

the sequences .bk/k and .ck/k converge I-adically. Let b D lim bk 2 bR and c D
lim ck 2 bR their I-adic limits. By construction, b ¤ 0 and c ¤ 0. However, since
bkck 	 0 mod Jk

1 \ Jk
2 D Ik for all k, it follows that bc D 0. Hence b and c are

nonzero zero-divisors.
It follows from Proposition 3.6 that the completion of a domain may contain

zero-divisors (see also Proposition 3.8). However, constant sequences behave well
as the next lemma states.

Lemma 3.7 Let R be a Noetherian ring, I a proper ideal of R and bR the I-adic
completion of R. If d 2 R is not a zero-divisor in R, then d is not a zero-divisor inbR.
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Proof By Fact 3.2, there exists r 2N such that for all n 2N

InCr \ dR D In.Ir \ dD/ � dIn (1)

Let x D limn xn 2 bR such that dx D 0. Then .dxn/n is an I-adic Cauchy sequence
with limit 0. Hence for each n 2 N there exists t0 2 N such that dxt 2 InCr for
all t � t0. Then dxt 2 dIn by Equation (1) and therefore xt 2 In which implies
0 D limn xn D x.

Proposition 3.8 Let .D;m/ be a Noetherian, local domain with quotient field K
and D � R � K be an intermediate ring such that R is finitely generated as D-
module.

Then the following assertions hold:

1. R is semilocal,
2. the m-adic topology on D coincides with subspace topology induced by the

Jac.R/-adic topology on R.
3. If R is not local, then the m-adic completion bD of D is not a domain.

Proof R is finitely generated as module over the Noetherian domain D and hence
a Noetherian domain. Moreover, the ring extension D � R is integral by Fact 2.1.
Therefore, according to Fact 2.2, all prime ideals of R which lie over m are maximal
and thus minimal prime ideals of mR. Hence there are only finitely many maximal
ideals N1; : : : ;Nn in R which proves (1).

(2): Since
p

mR D Tn
iD1 Ni D Jac.R/, there exists ` 2 N such that Jac.R/` �

mR. Then

Jac.R/`k � .mR/k � Jac.R/k

and hence the Jac.R/-adic and the mR-adic topology coincide on R. Thus it suffices
to prove that the m-adic topology on D coincides with subspace topology induced
by the mR-adic topology on R. Clearly, mk � mkR\D holds for all k. On the other
hand, Fact 3.2 implies that there exists an integer r such that

mkCrR \ D D mk.mrR \ D/ � mk

for all k � 0 and hence the topologies coincide.
(3): Let M1; : : : ;Mn be the maximal ideals of R with n > 1. We set J1 D

M1 � � �Mn�1 D M1\� � �\Mn�1 and J2 D Mn. Then J1\J2 D Jac.R/ and J1CJ2 D R.
By Proposition 3.6, the Jac.R/-adic completionbR of R is not a domain.

By (2), bD is a topological subspace of bR. Since bR is not a domain, there exist
nonzero b; c 2 bR with bc D 0. However, R is a finitely generated D-module and
therefore there exists a nonzero element d 2 D with dbR � bD. Hence .db/.dc/ D 0

with db; dc 2 bD. By Lemma 3.7, d is not a zero-divisor in bD and therefore db ¤ 0

is a zero-divisor in bD.
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4 Structure Theorem for One-Dimensional Complete Local
Domains

In this section we discuss the structure theorem for complete, Noetherian, local
domains. We restrict our study to the one-dimensional case, since this is what we
need later on. Nevertheless, it is worth mentioning that the results can be extended
to higher dimensions but the proofs become more technical.

As Proposition 4.3 states, a complete, Noetherian, one-dimensional local domain
.D;m/ contains a subring S such that D is finitely generated as S-module. Moreover,
S is a certain complete discrete valuation domain whose residue field is isomorphic
to D=m. This result allows us in the next section to reduce the investigation to
domains of this form.

Definition 4.1 Let .D;m/ be a complete, Noetherian, local domain. We say

1. D is of equal characteristic, if char.D/ D char.D=m/ and
2. D is of unequal characteristic, if char.D/ ¤ char.D=m/.

If char.D=m/ D 0, it follows that char.D/ D 0 and therefore Z � D. However,
Z \ m D 0 which implies that every integer is invertible in D and thus Q � D.
Similarly, if char.D/ D p > 0, then char.D=m/ D p and Z=pZ is contained
in D. Hence, a domain of equal characteristic contains a field. On the other hand,
if D contains a field k, then char.k/ D char.D/. Let � W D �! D=m denote
the canonical projection. Then �.k/ is a subfield of D=m and since char.�.k// D
char.k/ it follows that D is of equal characteristic. Indeed, it is possible to show that
a domain D of equal characteristic contains a field k with �.k/ D D=m, cf. Fact 4.2.

If D is a domain of unequal characteristic, then char.D/ D 0 and char.D=m/ D
p > 0. In this case it is possible to show that D contains a complete discrete
valuation domain .R; pR/ such that the residue fields of R and D are isomorphic.
We summarize these results in Fact 4.2. However, the proof goes beyond the scope
of this paper. We refer to Matsumura’s textbook [6] for details.

Fact 4.2 (cf. [6, Theorem 28.3, Theorem 29.3]) Let .D;m/ be a complete,
Noetherian, local domain.

1. If D is of equal characteristic, then D contains a field k which is isomorphic to
D=m via d 7�! dCm. We say k is a coefficient field of D.

2. If D is of unequal characteristic and char.D=m/ D p, then D contains a
complete discrete valuation domain .R; pR/ such that R=pR is isomorphic to
D=m via rC pR 7�! rCm. We say R is a coefficient ring of D.

The existence of a coefficient field or coefficient ring, respectively, is crucial for
the proof of the structure theorem which we state in the next proposition.

Proposition 4.3 (cf. [6, Theorem 29.4.(iii)]) Let .D;m/ be a complete, Noethe-
rian, one-dimensional, local domain.

Then D contains a complete discrete valuation domain S such that D is finitely
generated over S and
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1. in equal characteristic S ' k�X� where k is a coefficient field of D.
2. in unequal characteristic S is a coefficient ring of D.

Proof Let m be the maximal ideal of D. First, we consider the case where D is
of unequal characteristic and let p D char.D=m/ > 0. According to Fact 4.2, D
contains a coefficient ring S which is a complete discrete valuation domain with
maximal ideal pS such that S=pS ' D=m via � .

Further, D=pD is a zero-dimensional, Noetherian ring and hence Artinian.
Therefore D=pD has finite length as .D=pD/-module and hence as D-module.
However, this is equivalent to the existence of a composition series 0 D N0 ¨
N1 ¨ � � � ¨ Nr D D=pD of the D-module D=pD. Since NiC1=Ni is simple for all
0 � i � r�1 it follows that NiC1=Ni ' D=m ' S=pS which implies that .Ni/

r
iD0 is a

composition series of D=pD as S-module. Thus D=pD has finite length as S-module
and is therefore a finite dimensional .S=pS/-vector space. Further, D is p-adically
separated since D is Noetherian and we can conclude that D is a finitely generated
S-module by Proposition 3.5.

If D is of equal characteristic, then D contains a coefficient field k which is a
subfield of D such that k ' D=m via � according to Fact 4.2.

Let T D k�X� be the power series ring in the variable X and let y 2 D be a
nonzero non-unit. We define the k-homomorphism ' W T �! D by '.X/ D y and
set S D k�y� to be the image of T under '.

With the same argument as above we can conclude that D=yD is a finitely
generated .S=yS/-module. Moreover, S is complete and D is separated with respect
to the ideal yS. Hence D is finitely generated as S-module by Proposition 3.5.
Furthermore, this implies dim.S/ D dim.D/ D 1 by Fact 2.2. However, since
S ' k�X�= ker.'/ and dim.k�X�/ D 1 it follows that ker.'/ D 0 and S ' k�X�.

Remark The domain S is the so-called regular local ring, that is, a local, Noetherian
domain S such that its maximal ideal is generated by dim.S/ elements. Propo-
sition 4.3 is a special case of Cohen’s structure theorem which states that every
complete Noetherian local domain D contains a regular local subring S such that D
is finitely generated as S-module. Moreover, S D R�X1; : : : ;Xn� is a power series
ring where in equal characteristic R is a coefficient field and n D dim.D/ and in
unequal characteristic R is a coefficient ring and n D dim.D/ � 1. For details, we
refer Matsumura’s textbook [6, §28, §29].

5 Finiteness of the Integral Closure

Let D be a complete, one-dimensional, Noetherian, local domain with quotient
field K and let K � L be a finite field extension. The goal of this section is to
prove that the integral closure D0

L of D in L is finitely generated as D-module (see
Proposition 5.3). This allows us to conclude in Corollary 5.4 that the integral closure
R0 of a complete, one-dimensional, Noetherian, local, reduced ring R is finitely
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generated as R-module. The latter result is essential in the proof of Theorem 1 in the
next section.

Following Nagata’s textbook [7], we exploit the structure of complete, Noethe-
rian, local domains. According to Proposition 4.3, D contains a subring S such that
D is finitely generated as S-module (see Figure 2). If F is the quotient field of S,
then the extension F � L is finite. Moreover, by Fact 2.1, the extension S � D is
integral and hence D0

L D S0
L is the integral closure of S in L.

If we show that S0
L is finitely generated as S-module, then it follows that D0

L is
a finitely generated D-module. Therefore, Proposition 4.3 allows us to reduce the
investigation to the case where S is a certain complete discrete valuation domain.

To prove that the integral closure of S in L is finitely generated, we distinguish
between two cases, either the field extension F � L is separable or it is inseparable.

Proposition 5.1 (cf. [2, Ch. V, 1.6, Corollary 1 of Proposition 18]) Let S be an
integrally closed, Noetherian domain with quotient field F and F � L a finite field
extension.

If F � L is separable, then the integral closure S0
L of S in L is finitely generated

as S-module.

Proof Let w1, . . . , wn 2 L be a K-basis of L. Without restriction we can assume that
wj 2 S0

L for 1 � j � n. Further, let L? D HomK.L;K/ be the dual space of L and
w0

i 2 L? be the K-basis of L? which is defined by w0
i.wj/ D ıij (Kronecker-delta) for

1 � i; j � n.
Since L is a finite separable extension of K, L is isomorphic to its dual space L?

via the K-linear map

T W L �! L?

x 7�! .y 7! trL=K.xy//

where trL=K W L �! K is the field trace with respect to the extension K � L (cf. [5,
Theorem 5.2]).

For 1 � i � n, set w?i D T�1.w0
i/. Then w?1 , . . . , w?n form a K-basis of L and

trL=K.w?i wj/ D ıij holds for all 1 � i; j � n. Hence, for a 2 S0
L there exist ai 2 K

such that a DPn
iD1 aiw?i . Moreover,

Fig. 2 D contains a subring S
such that D is finitely
generated as S-module which
is either a complete discrete
valuation ring or isomorphic
to k�X� where k is a
coefficient field of D
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aj D
nX

iD1
ai trL=K.w

?
i wj/ D trL=K.awj/

holds for 1 � j � n.
If gj 2 KŒX� is the minimal polynomial of awj and z1, . . . , zm are all roots of gj in

some field extension QL of K, then trL=K.awj/ DPm
iD1 zi 2 K holds (cf. [5, p. 284]).

Moreover, since awj is integral over S it follows that gj 2 SŒX� and z1, . . . , zm 2 S0
QL

are integral over S as well. Therefore

aj D trL=K.awj/ 2 K \ S0
QL D S

where the last equality holds since S is integrally closed. It follows that S0
L is an

S-submodule of the Noetherian module
Pn

iD1 Sw?i and therefore finitely generated.

Proposition 5.2 (cf. [6, p. 263]) Let S D k�X� be a power series ring over a field k
with quotient field F and L a finite purely inseparable field extension of F.

Then the integral closure S0
L of S in L is finitely generated as S-module.

Proof Let p > 0 be the characteristic of the field F and q D pe D ŒL W F� < 1 be
the degree of the field extension F � L. Since the extension is purely inseparable,
every element a 2 L is a q-th root of an element in F.

Let F be an algebraically closed extension of F that contains L. Then F contains
an element Y such that X D Yq and QL D L.Y/ is a finite, purely inseparable field
extension of K. Moreover, S0

L is an S-submodule of S0
QL and it therefore suffices to

show that S0
QL is a finitely generated S-module. This allows us to assume that L D QL

and Y 2 L from this point on.
If a 2 S0

L is an integral element, then aq 2 S0
L \ F. However, S is a discrete

valuation domain, so it is integrally closed and therefore S0
L D fa 2 L j aq 2 Sg.

If M is a maximal ideal of S0
L, then M \ S D XS by Fact 2.2. Hence M D fa 2

L j aq 2 XSg which implies that M D YS0
L is the unique maximal ideal of S0

L. In
addition, it follows from Corollary 2.4 that the field extension k ' S=XS � S0

L=YS0
L

is finite. Further, Corollary 3.3 implies that S0
L is X-adically separated. Finally, S is

X-adically complete and we can conclude that S0
L is a finitely generated S-module

by Proposition 3.5.

Proposition 5.3 Let D be a complete, local, one-dimensional, Noetherian domain
with quotient field K and K � L a finite field extension.

Then the integral closure D0
L of D in L is finitely generated as D-module.

Proof According to Proposition 4.3, D contains a complete discrete valuation
domain S such that D is a finitely generated S-module. Let F denote the quotient
field of S. Hence F � L is a finite field extension, S � D is integral and S0

L D D0
L

(see Fact 2.1), cf. Figure 2. Therefore, it suffices to show that S0
L is a finitely

generated S-module. Moreover, S is a complete, discrete valuation domain and in
the equicharacteristic case S ' k�X� where k is a field by Proposition 4.3 and
dim.S/ D 1.
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Fig. 3 Integral closures of S
in the field extensions L, E
and LE where E is a finite
inseparable field extension of
F such that LE is a finite
separable extension of E

In particular, S is integrally closed. Consequently, if the field extension F � L is
separable, then the assertion follows from Proposition 5.1.

Let us assume that F � L is inseparable. Then char.F/ D p > 0 and hence
char.S/ D char.D/ D p which implies that D is of equal characteristic. Therefore
S ' k�X� where k is a field and k ' D=m.

Let N be the normal hull of L and E be the fixed field of the automorphism group
AutF.N/ of F � N. Then F � E is a purely inseparable extension and E � N is a
separable extension, cf. [5, Proposition V.6.11], see Figure 3.

Moreover, since F � L is a finite extension, it follows that F � N is finite which
in turn implies that F � E is a finite extension too.

Hence E � LE is a finite separable extension and it follows from Proposition 5.1
that S0

LE D .S0
E/

0
LE is finitely generated as S0

E-module. In addition, S0
E is finitely

generated as S-module according to Proposition 5.2.
Consequently, S0

LE is finitely generated as S-module and therefore a Noetherian
S-module. However, S0

L is an S-submodule of S0
LE and thus finitely generated.

We conclude this section with the analogous assertion for complete, Noetherian,
local, reduced rings.

Corollary 5.4 Let R be a complete, Noetherian, one-dimensional, local ring.
If R is reduced, then the integral closure R0 of R is finitely generated as R-module.

Proof Let P1, . . . , Pn be the minimal prime ideals of R. For 1 � i � n, let Qi

be the quotient field of the Noetherian, one-dimensional, local domain R=Pi. Then
Q D Q1 � � � � � Qn is the total ring of quotients of R=P1 � � � � � R=Pn. Moreover,

.R=P1 � � � � � R=Pn/
0
Q D .R=P1/

0
Q1 � � � � � .R=Pn/

0
Qn
: (2)

The Noetherian, local domain R=Pi is a finitely generated R-module and hence
m-adically complete by Fact 3.4. As the m-adic topology coincides with the m=Pi-
adic topology on R=Pi, it follows that .R=Pi/

0
Qi

is a finitely generated .R=Pi/-module
according to Proposition 5.3. Together with Equation (2), it now follows that
.
Qn

iD1 R=Pi/
0
Q is a finitely generated

�Qn
iD1 R=Pi

�
-module.
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Fig. 4 Embeddings via "

Since
Qn

iD1 R=Pi is a finitely generated R-module, it follows that .
Qn

iD1 R=Pi/
0
Q

is finitely generated as R-module too and therefore Noetherian. Let

" W R �! R=P1 � � � � � R=Pn

r 7�! .rC P1; : : : ; rC Pn/:

Then ker."/ D Tn
iD1 Pi D nil.R/ D 0 since R is reduced by hypothesis. Hence we

can embed R into
Qn

iD1 R=Pi via ". Similarly, we can embed R0 into .
Qn

iD1 R=Pi/
0
Q

since " can be canonically extended to the total ring of quotients T of R, see Figure 4.
Thus R0 is isomorphic to a submodule of the Noetherian R-module .

Qn
iD1 R=Pi/

0
Q

and hence finitely generated.

6 Proof of the Theorem

Finally, we are ready to give a proof of Theorem 1. For the reader’s convenience
we restate it here. Recall that a Noetherian, local domain .D;m/ with m-adic
completion bD and integral closure D0 is called

– unibranched, if D0 is local,
– analytically unramified, if bD is a reduced ring and
– analytically irreducible, if bD is a domain

(cf. Definition 1.1).

Theorem 1 Let .D;m/ be a one-dimensional, Noetherian, local domain with
integral closure D0. Then the following assertions are equivalent:

1. D is analytically irreducible.
2. D is unibranched and analytically unramified.
3. D is unibranched and D0 is finitely generated as D-module.
4. D is unibranched and if m0 denotes the maximal ideal of the integral closure,

then the m-adic topology on D coincides with subspace topology induced by m0.

Proof (1)) (2): By assumption, bD is a domain and therefore is a reduced ring.
Assume that D is not unibranched and let M1 ¤ M2 be two different maximal

ideals of the integral closure D0 of D. Let a1 2 M1 n M2 and a2 2 M2 n M1. Then
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R D DŒa1; a2� � D0 is an integral extension of D and therefore finitely generated
as D-module by Fact 2.1. Hence, according to Proposition 3.8, R is a semilocal
domain. However, the extension R � D0 is integral and therefore Ni D Mi \ R are
maximal ideals of R for i D 1; 2 according to Fact 2.2. Due to the choice of a1 and
a2, N1 ¤ N2 and R is semilocal but not local. It follows from Proposition 3.8 that bD
is not a domain.

(2)) (3): If D0 is not finitely generated as D-module, then there exists an infinite
strictly ascending chain of intermediate rings D � Di � D0 which are finitely
generated as D-modules.

Let K be the quotient field of D and Di for all i and bDi denote the m-adic
completion of Di. If a

b 2 bDi \ K, then a 2 bbDi \ K. However, by Corollary 3.3,

bbDi \ K D bDi and hence a
b 2 Di. Hence bDi \ K D Di ¨ DiC1 D bDiC1 \ K which

implies that bDi ¨ bDiC1 for all i.
Moreover, according to Fact 3.4, bDi ' Di˝DbD is a finitely generatedbD-module.

Hence bDi is contained in the integral closure .bD/0 of bD in its total ring of quotients.
Consequently, the extension bD � .bD/0 contains the infinite strictly ascending chain
of intermediate rings bDi. Thus .bD/0 is not finitely generated as bD-module which
implies that bD is not reduced by Corollary 5.4.

(3)) (4): The assertion immediately follows from Proposition 3.8.
(4)) (1): Let b.D0/ be the m0-adic completion of D0. Since the m0-adic topology

induces the m-adic topology on D, it follows that D is a topological subspace of
b.D0/ and bD is the topological closure of D in b.D0/.

By assumption D0 is local, so D0 is a discrete valuation domain according to
Corollary 2.5. As shown in Example 3.1, the m0-adic completion b.D0/ of D0 is also
a discrete valuation domain.

Hence bD is a subring of the domain b.D0/ and thus it is a domain itself.

Remark There are examples of one-dimensional, Noetherian, local domains which
are unibranched but not analytically irreducible, cf. [9].
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Abstract Given a commutative integral domain D with fraction field K, the ring
of integer-valued polynomials on D is Int.D/ D ff 2 KŒx� j f .D/ � Dg. In recent
years, attention has turned to generalizations of Int.D/ where the polynomials act
on D-algebras rather than on D itself. We survey the present activity on this topic
and propose questions for further research.
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1 Introduction

Let D be a commutative integral domain with fraction field K. The ring of integer-
valued polynomials on D is defined to be

Int.D/ D ff 2 KŒx� j f .D/ � Dg:

The use of polynomials in Int.Z/ dates back at least to the seventeenth century [7,
p. xiii]. The first systematic study of the algebraic properties of Int.D/ was done by
Pólya [47] and Ostrowski [39] in 1919. Both Pólya and Ostrowski were primarily
concerned with the module structure of Int.D/ when D is the ring of integers of
a number field, and were interested in determining whether Int.D/ had a regular
basis. Significant progress on understanding the ring structure of Int.D/ began in
the 1970s with the work of Chabert [10], Cahen [5], and Brizolis [4], among others.
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The book [7] is the standard reference on this topic, and includes a comprehensive
bibliography of articles published up to 1997.

More recently, attention has turned to generalization of Int.D/ where the
polynomials are evaluated at elements of a D-algebra A. For this construction—and
unless noted otherwise—we assume that A is an associative torsion-free D-algebra
such that A \ K D D, and we let B D K ˝D A, which is the extension of A to a
K-algebra. The maps k 7! k ˝ 1 and a 7! 1˝ a allow us to identify K and A with
their canonical images in B, and so we may evaluate polynomials in BŒx� or KŒx�
at elements of A. The formality of tensor products is useful in some results, but for
most purposes we may consider the elements of B to be fractions a=d with a 2 A
and d 2 D, d ¤ 0.

Definition 1 We define Int.A/ D ff 2 BŒx� j f .A/ � Ag and IntK.A/ D Int.A/ \
KŒx� D ff 2 KŒx� j f .A/ � Ag.

If B is noncommutative, then Int.A/ contains polynomials with non-commuting
coefficients. Following common conventions for dealing with polynomials over
noncommutative rings (as in [32, Sec. 16]), we assume that the indeterminate
x commutes with all elements of B and that polynomials in BŒx� satisfy right-
evaluation, that is polynomials are evaluated with the indeterminate to the right of
coefficients. With these conventions, any polynomial f 2 BŒx� can be written as
f .x/ D P

i bixi, and for any a 2 A we have f .a/ D P
i biai. Although we shall

not do so here, one may also consider integer-valued polynomials that satisfy left-
evaluation, i.e., f 2 BŒx� is written as f .x/ D P

i xibi and f .a/ D P
i aibi. This

approach is used in the work of Frisch [23].
Research articles devoted exclusively to Int.A/ and IntK.A/ began to appear

around 2010, but the prospect of studying integer-valued polynomials on algebras
was considered earlier, as can be seen in the 2006 survey [8] and the unpublished
preprint of Gerboud [24] from 1998. Polynomials in KŒx� that act on the ring Mn.D/
of n�n matrices with entries in D were discussed in [19]. In fact, particular examples
of polynomials in IntK.A/ can be found much earlier. As pointed out in [30], a 1931
paper by Littlewood and Richardson [34] contains a construction for polynomials in
QŒx� that are integer-valued on the ring of Hurwitz quaternions.

At the present time, numerous authors have contributed to the growing body of
work surrounding IntK.A/ and Int.A/. Some articles in this area approach the subject
broadly, and analyze IntK.A/ and Int.A/ for a general D-algebra A. These include
[20–22, 42–45, 56], and [57]. Other papers concern results for specific algebras or
classes of algebras A. For instance, Loper and the author [36] have studied IntQ.A/
when A is the ring of integers of a number field, as have Heidaryan, Longo, and
Peruginelli [27, 41]. Related ideas were used by Chabert and Peruginelli in [12] to
classify the overrings of Int.Z/ in terms of polynomials that are integer-valued on
subsets of the profinite completion of Z.

Particular attention has been paid to the examples where A is the Lipschitz
quaternions or the Hurwitz quaternions. Let i, j, and k be the imaginary quaternion
units, which satisfy i2 D j2 D �1 and ij D k D �ji. The Lipschitz quaternions L
are defined to be
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L D fa0 C a1iC a2jC a3k j ai 2 Z for all ig

and the Hurwitz quaternions H are defined to be

H D fa0 C a1iC a2jC a3k j ai 2 Z for all i or ai 2 ZC 1
2

for all ig:

Integer-valued polynomials on L, H, and the split quaternions (a variation on L

where j2 D k2 D 1 instead of j2 D k2 D �1) were examined in, respectively,
[30, 53], and [13].

A good deal of research has been devoted to understanding IntK.A/ and Int.A/
when A is a ring of matrices or triangular matrices. The author investigated the
noncommutative ring Int.Mn.D// in [55]. The corresponding commutative rings
IntK.Mn.D// (and in particular IntQ.Mn.Z/// are the subject of [17, 40], and [46].
Recently, Frisch [23] has examined the noncommutative ring Int.A/ where A is the
ring of upper triangular matrices with entries in D; previously, Evrard, Fares, and
Johnson [18] had considered the commutative ring IntK.A/ where A is the ring of
lower triangular matrices with entries in D.

While our focus in this survey will be on Int.A/ and IntK.A/, we point out that
Elliott [16] has begun studying integer-valued polynomials on general commutative
rings (possibly with zero divisors) and modules. In this formulation, one takes R to
be a commutative ring with unity and lets T.R/ denote the total quotient ring of R.
Then, one may define Int.R/ D ff 2 T.R/Œx� j f .R/ � Rg.

In Sect. 2, we will discuss some of the basic properties of Int.A/ and IntK.A/,
such as conditions under which Int.A/ has a noncommutative ring structure, or how
IntK.A/ compares to its subring DŒx� and its overring Int.D/. Section 3 examines
ways to produce polynomials in Int.A/ by exploiting the relationships among
integer-valued polynomials, P-orderings, and null ideals. In Sect. 4 we look at
module decompositions of Int.A/, which provide a way to determine the extent to
which the properties of Int.A/ follow from those of IntK.A/. Section 5 focuses on
IntK.A/ and its integral closure; a key question here is whether or not the integral
closure of IntK.A/ is a Prüfer domain. Lastly, in Sect. 6 we describe some open
problems that are largely untouched, but are good prospects for future research.
We remark that while do not have space to study them here, common commutative
objects of interest such as prime spectra and Krull dimension have been investigated
for both Int.A/ and IntK.A/. We refer the reader to the articles listed in this
introduction for more information.

2 Basic Properties and Non-triviality Conditions

Under the definitions given in Sect. 1, one may easily verify that IntK.A/ is subring
of KŒx� containing DŒx�; in fact, the condition A \ K D D is equivalent to having
IntK.A/ � Int.D/. Moreover, if A (and hence B) is commutative, then Int.A/ is
also a commutative ring. However, if A is noncommutative, then the evaluation of
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polynomials in BŒx� at a 2 A defines a multiplicative map BŒx� ! B if and only
if a is central in B. Symbolically, let f ; g 2 BŒx� and let fg denote their product in
BŒx�. Then, if A is noncommutative it may be that .fg/.a/ ¤ f .a/g.a/. For a simple
example let a; b 2 A be such that ab ¤ ba, let f .x/ D x � a and let g.x/ D x � b.
Then, f .a/g.a/ D 0, but .fg/.x/ D x2 � .aC b/xC ab, so .fg/.a/ D �baC ab ¤ 0.

One may check that Int.A/ is always a left IntK.A/-module, but because of the
above difficulty with evaluation, it is not clear at first glance whether Int.A/ is closed
under multiplication (and hence is a ring) when A is noncommutative. Nevertheless,
there are conditions under which multiplicative closure can be guaranteed.

Theorem 2 ([55, Thm. 1.2]) Assume that each a 2 A may be written as a finite
sum a D P

i ciui for some ci; ui 2 A such that each ui is a unit of A and each ci is
central in B. Then, Int.A/ is closed under multiplication and hence is a ring.

The condition in this theorem that each element of A be generated by units and
central elements is sufficient for Int.A/ to be a ring, but is not necessary. In [57,
Ex. 3.8], examples of generalized quaternion algebras A over Z are given such that
A� D f˙1g and Z.A/ D Z, but Int.A/ is still a ring. Additionally, it is shown in
[23] that Int.Tn.D// is a ring, where Tn.D/ is the ring of upper triangular matrices
with entries in D. Since Tn.D/ is not generated by its units and central elements, this
example also shows that the converse of Theorem 2 does not hold.

Question 3 What are necessary and sufficient conditions on A so that Int.A/ is a
ring? In particular, is Int.A/ always a ring when A is finitely generated as a D-
module?

To date, no examples have been found of an algebra A such that Int.A/ is
not a ring. However, as we shall see later in Sect. 6.3, if one considers the set
Int.S;A/ D ff 2 BŒx� j f .S/ � Ag of integer-valued polynomials on a subset S
of a noncommutative algebra A, then it is quite easy to produce examples where
Int.S;A/ is not a ring.

We turn now to the commutative ring IntK.A/. Because of the assumption that
A \ K D D, we always have the containments

DŒx� � IntK.A/ � Int.D/: (1)

We say that IntK.A/ is trivial if IntK.A/ D DŒx�. Recall that for an element q 2 K,
an ideal of the form .D WD q/ D fd 2 D j dq 2 Dg is called a conductor ideal. When
D is Noetherian, it is known [7, Thm. I.3.14] that Int.D/ is nontrivial if and only if
there exists a prime conductor ideal of D of finite index. It is shown in [20] that this
same condition ensures the non-triviality of IntK.A/.

Theorem 5 ([20, Thm. 4.3]) Let D be a Noetherian domain. Then, IntK.A/ is
nontrivial if and only if there exists a prime conductor ideal of D of finite index.

It is also possible to give non-triviality conditions that do not rely on the
assumption that D is Noetherian. In [51, Cor. 1.7], Rush exhibited a double-
boundedness condition that is necessary and sufficient for Int.D/ to be nontrivial,
and which holds for a general domain D. When A is finitely generated as a D-
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module, Rush’s result carries over to IntK.A/. In fact, we need only assume the
weaker condition that A is an integral algebra of bounded degree, meaning that there
exists a positive integer n such that each element of A satisfies a monic polynomial
in DŒx� of degree at most n. Finally, when D is Dedekind we can further weaken the
assumptions on A.

Theorem 6

(1) [45, Thm. 2.12] Let D be a domain and let A be an integral D-algebra of
bounded degree. Then, IntK.A/ is nontrivial if and only if Int.D/ is nontrivial.

(2) [45, Thm. 3.4] Let D be a Dedekind domain. Then, IntK.A/ is nontrivial if and
only if there exists a prime P of D such that A=PA is an integral D=P-algebra of
bounded degree.

Part (2) of Theorem 6 may apply to algebras that are not finitely generated. For
instance, when D D Z we can take A DQi2N Z, and IntQ.A/ is nontrivial (in fact,
IntQ.A/ D Int.Z/ [45, Ex. 3.1]). Similarly, with D D Z.p/, we can take A D Zp,
the p-adic integers, and then IntQ.A/ D Int.Z.p// [45, Lem. 3.6].

The containment IntK.A/ � Int.D/ in (1) is also of interest. In the case of a
Dedekind domain with finite residue rings, equality between IntK.A/ and Int.D/ can
be determined by examining the residue rings A=PA or the completionsbAP.

Theorem 7 ([43, Thms. 2.11, 3.10]) Let D be a Dedekind domain with finite
residue rings. Let A be a D-algebra that is finitely generated as a D-module. Then,
the following are equivalent:

1. IntK.A/ D Int.D/.
2. For each nonzero prime P of D, there exists a positive integer t such that A=PA ŠLt

iD1 D=P.
3. For each nonzero prime P of D, there exists a positive integer t such thatbAP ŠLt

iD1bDP (here,bAP andbDP are the P-adic completions of A and D, respectively).

When D D Z, the conditions on A so that IntQ.A/ D Int.Z/ become even more
restrictive.

Theorem 8 ([43, Cor. 4.12]) Let A be a Z-algebra that is finitely generated as a
Z-module. Then, IntQ.A/ D Int.Z/ if and only if there exists a positive integer t
such that A ŠLt

iD1Z.
We close this section by mentioning some results on localizations of IntK.A/ and

Int.A/. In the case of traditional integer-valued polynomials, a useful and frequently
used property of Int.D/ is that it is often well-behaved with respect to localization at
primes of D. If D is Noetherian, then [7, Thm. I.2.3] shows that Int.D/P D Int.DP/

for all primes P of D. In the case of algebras, we have the following analogous
results.

Proposition 9 Let D be a Noetherian domain and let P be a nonzero prime of D.

1. IntK.A/P � IntK.AP/ and Int.A/P � Int.AP/.
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2. If A is finitely generated as a D-module, then IntK.A/P D IntK.AP/ and Int.A/P D
Int.AP/.

3. If D is Dedekind, then IntK.A/P D IntK.AP/.

Proof (1) can be proved by using a method of Rush [51, Prop. 1.4] involving
induction on the degrees of the polynomials. The reverse containments in (2) and
(3) are demonstrated in [56, Prop. 3.2] and [45, Lem. 3.2].

Note that in part (3) of Proposition 9 there is no assumption that A is finitely
generated as a D-module.

3 P-Orderings, Regular Bases, and Null Ideals

A basis for Int.Z/ as a Z-module is given by the set of binomial polynomials

 
x

n

!

D x.x � 1/ � � � .x � .n � 1//
nŠ

:

In this basis, there is one polynomial of degree n for each n � 0; such a basis
is called a regular basis. The focus of the research done by Pólya and Ostrowski
[39, 47] was to determine when Int.D/ had a regular basis in the case where D is
the ring of integers of a number field. Such a characterization can be made for any
domain R such that DŒx� � R � KŒx� via the use of characteristic ideals [7, Sec.
II.1].

When D is a Dedekind domain and S � D, a regular basis for Int.S;D/ D
ff 2 KŒx� j f .S/ � Dg can be found (if it exists) by using P-orderings and P-
sequences, which were introduced by Bhargava in [2]. Given a nonzero prime ideal
P of D, let vP be the corresponding valuation. A P-ordering of S � D is a sequence
fa0; a1; : : :g � S such that for each k > 0, ak minimizes vP.

Qk�1
iD0.a � ai// as a

ranges over all elements of S. A P-ordering gives rise to a P-sequence, which is
a sequence of ideals f�0.S;P/; �1.S;P/; : : :g defined by taking �k.S;P/ to be the
highest power of P containing

Qk�1
iD0.a � ai/. Bhargava has shown [2, Thm. 1] that

the P-sequence for S is independent of the P-ordering chosen. The relation to regular
bases of Int.S;D/ is given by the next theorem.

Theorem 10 ([2, Thm. 14]) Let �k.S/ D Q
P prime �k.S;P/. Then, Int.S;D/ has a

regular basis if and only if �K.S/ is a nonzero principal ideal for all k � 0. In
particular, in the case where D is a discrete valuation ring, then a regular basis for
Int.S;D/ is given by

Qk�1
iD0.x � ai/=.ak � ai/, where k D 0; 1; : : :.

Johnson [29] has extended the notion of P-orderings to certain noncommutative
rings.

Definition 11 ([29, Def. 1.1]) Let K be a local field with valuation v, D a division
algebra over K to which the valuation v extends, R the maximal order in D , and
S a subset of R. Then, a v-ordering of S is a sequence fa0; a1; : : :g � S with the
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property that for each k > 0, ak minimizes the quantity v.fk.a0; : : : ; ak�1/.a// over
a 2 S, where f0 D 1 and, for k > 0, fk.a0; : : : ; ak�1/.x/ is the minimal polynomial
(in the sense of [33]) of the set fa0; a1; : : : ; ak�1g. The sequence of valuations
fv.fk.a0; : : : ; ak�1/.ak// j k D 0; 1; : : :g is called the v-sequence of S.

Theorem 12 ([29, Prop. 1.2]) With notation as in Definition 11, let � 2 R be a
uniformizing element. Then, the v-sequence f˛S.k/ D v.fk.a0; : : : ; ak�1/.ak// j k D
0; 1; : : :g depends only on the set S and not on the choice of v-ordering. Moreover,
the sequence of polynomials

f��˛S.k/fk.a0; : : : ; ak�1/.x/ j k D 0; 1; : : :g

forms a regular R-basis for Int.S;R/.
This approach has been used to good effect in [29] and [17]. In [29], a recursive

formula is given for the v-sequence of the Hurwitz quaternions H localized at the
maximal ideal generated by 1C i (since H is a noncommutative ring, “localization”
here means Ore localization, as discussed in [31]). Similar formulas and algorithms
are given in [17] for the maximal order in a division algebra D of degree 4 over the
field of p-adic numbers Qp. These formulas can be used to produce basis elements
for Int.H/ and the integral closure of IntQ.M2.Z//, respectively.

Even in cases where a regular basis for Int.A/ or IntK.A/ does not exist or
is computationally expensive to compute, it is possible to produce integer-valued
polynomials by exploiting the relationship between integer-valued polynomials and
elements of null ideals.

Definition 13 Let R be a ring. The null ideal N.R/ of R is defined to be N.R/ D
ff 2 RŒx� j f .R/ D 0g.

Under our convention that polynomials satisfy right-evaluation, one may easily
check that N.R/ is always a left ideal of RŒx�. When R is commutative, N.R/ is
clearly a two-sided ideal of RŒx�. When R is noncommutative, it is not known
whether N.R/ is always a two-sided ideal of RŒx�. Indeed, this question is closely
related to the problem of determining if Int.A/ is a ring when A is noncommutative.
More details on this topic (along with a proof that N.R/ is a two-sided ideal for
many classes of finite rings) can be found in [57].

The connection between Int.A/ and N.R/ is encapsulated in the following easily
verified correspondence lemma. Versions of this lemma are often used (sometimes
implicitly) when null ideals are employed to study integer-valued polynomials, e.g.,
in [19, Lem. 3.4] or [57, Sec. 2].

Lemma 14 With our standard notation, let f .x/ D g.x/=d 2 BŒx�, where g.x/ 2
AŒx� and d 2 D. Then, f 2 Int.A/ if and only if the residue of g mod A=dA is in
N.A=dA/.

Thus, to verify that .1C iC jC k/.x2 � x/=2 2 Int.L/, one need only check that
.1C iC jCk/.x2�x/ is in N.L=2L/. Similarly, .1C i/.x4�x/=2 2 Int.H/ because
.1C i/.x4 � x/ sends each element of the finite ring H=2H to 0. As noted by [30],
this correspondence between integer-valued polynomials and null ideals goes back
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at least to [34], where it is used (under different terminology) to show that for each
prime p the polynomial x2.xp3�p � 1/=p 2 IntQ.H/.

In the case of matrix rings, it is known [3, Thm. 3] that for each positive integer
n and prime power q, the polynomial

˚q;n.x/ D .xqn � x/.xqn�1 � x/ � � � .xq � x/

is an element of (in fact, it is the generator of) the null ideal N.Mn.Fq//, where Fq

is the field with q elements. Consequently, if � 2 D is such that D=�D Š Fq,
then ˚q;n.x/=� 2 IntK.Mn.D//. Moreover, for each odd prime p we have L=pL Š
H=pH Š M2.Fp/ (see [15, Sec. 2.5] or [26, Ex. 3A]), so the polynomial .xp2 �
x/.xp � x/=p is in both IntQ.L/ and IntQ.H/.

The study of null ideals is an active area of research in its own right. We direct the
reader toward the recent papers [28, 49], and [50] on this topic for more information
and further references.

4 Module Decomposition

Frisch was the first to notice the following property of Int.Mn.D//.

Theorem 15 ([21, Thm. 7.2]) Let D be a domain. Then, Int.Mn.D// Š
Mn.IntK.Mn.D///.

That is, Int.Mn.D// is itself a matrix ring, where the entries of the matrix
are polynomials in IntK.Mn.D//. The isomorphism in the theorem is obtained by
associating a polynomial with matrix coefficients to a matrix with polynomial
entries. For example, with M2.Z/,

	
1 0

0 0



.x4 � x/.x2 � x/

2
C
	
0 1

�1 0



x2 C 3x 2 Int.M2.Z//

corresponds to

 
.x4�x/.x2�x/

2
C 3x x2

�x2 3x

!

2 M2.IntQ.M2.Z///

This example led the author to search for other algebras with a similar property.
The key property of the matrix example can be generalized by considering how a
D-module basis of A corresponds to an IntK.A/-module basis for Int.A/.

Definition 16 ([56, Def. 1.2]) Let D be domain with fraction field K. Let A be a free
D-algebra of finite rank, and let f˛1; : : : ; ˛tg be a D-module basis for A, so that A DLt

iD1 D˛i. If Int.A/ DLt
iD1 IntK.A/˛i, then A is said to be IntK-decomposable.
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So, an IntK-decomposable algebra A is a free D-algebra whose D-basis extends
to an IntK-basis for Int.A/. There are equivalent ways to view the notion of IntK-
decomposability. For instance, given A D Lt

iD1 D˛i, for any f 2 BŒx� we may
write f D Pt

iD1 fi˛i for some fi 2 KŒx�. The algebra A is IntK-decomposable if
having f 2 Int.A/ implies that each fi 2 IntK.A/. We can also think of an IntK-
decomposable algebra A as one for which Int.A/ is generated (as a subring of BŒx�)
by IntK.A/ and A.

Aside from matrix rings, most of the common choices for A are not IntK-
decomposable. For instance, if A D ZŒi� is the Gaussian integers, then .1C i/.x2 �
x/=2 2 Int.A/, but .x2 � x/=2 … IntQ.A/ because .i2 � i/=2 … ZŒi�; hence, ZŒi� is
not IntK-decomposable. Similar noncommutative examples arise with the Lipschitz
and Hurwitz quaternions.

Example 17 The polynomial .1 C i C j C k/.x2 � x/=2 2 Int.L/ (this follows
from Lemma 14), but .x2 � x/=2 … IntQ.L/ because .i2 � i/=2 … L. Similarly,
.1C i/.x4 � x/=2 2 Int.H/ (this can be proved by Lemma 14 and is also shown in
[24]), but .x4 � x/=2 … IntQ.H/ because .i4 � i/=2 … H. Thus, neither L nor H is
IntQ-decomposable.

There do exist IntK-decomposable algebras other than matrix rings. The unifying
property turns out to be that for each prime P of D, the residue ring A=PA is a direct
sum of copies of a matrix ring.

Theorem 18 ([56, Thm. 6.1]) Let D be a Dedekind domain with finite residue
rings. Let A be a free D-algebra of finite rank. Then, A is IntK-decomposable if
and only if for each nonzero prime P of D, there exist positive integers n and t and
a finite field Fq such that A=PA ŠLt

iD1 Mn.Fq/. In particular, if A is commutative,
then A is IntK-decomposable if and only if for each P there exists a finite field Fq

such that A=PA ŠLt
iD1 Fq for some t.

Using this theorem, examples of IntK-decomposable algebras can be produced
that are not direct sums

Lt
iD1 Mn.D/. However, the work in [56] relied on the

assumption that A is free. Subsequent work by the author and Peruginelli resulted in
[43], where a more general definition of IntK-decomposability was established, and
alternate characterizations of such algebras were given.

Definition 19 ([43, Def. 2.3]) Let D be a domain and A a torsion-free D-algebra.
We say that A is IntK-decomposable if the tensor product IntK.A/˝D A is isomorphic
(as a D-algebra) to Int.A/ via the map IntK.A/˝D A! Int.A/ sending f .x/˝ a 7!
f .x/ � a.

Even without the assumption that A is free, Definition 19 formalizes the idea that
Int.A/ is generated by IntK.A/ and A. As shown in [43, Prop. 2.5], Definition 19
reduces to Definition 16 when A is a free D-algebra of finite rank. Theorem 18
carries over to the case where A is torsion-free and finitely generated as a D-module,
but the flexibility of the tensor product definition of IntK-decomposability allows for
other characterizations of these algebras. First, instead of focusing on the residue
rings of A, one can examine the completionsbAP of A at primes P of D.
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Theorem 20 ([43, Thm. 2.10, Thm. 3.6]) Let D be a Dedekind domain with
finite residue rings. Let A be a torsion-free D-algebra that is finitely generated as
D-module. Then, the following are equivalent:

1. A is IntK-decomposable.
2. For each nonzero prime P of D, there exist positive integers n and t and a finite

field Fq such that A=PA ŠLt
iD1 Mn.Fq/.

3. For each nonzero prime P of D, there exist positive integers n and t such that the
P-adic completionbAP of A satisfiesbAP ŠLt

iD1 Mn.bTP/, wherebTP is a complete
discrete valuation ring with finite residue field and fraction field that is a finite
unramified extension of bKP.

Second, there is also a global variant [43, Thm. 4.10] of this theorem, which
characterizes IntK-decomposable algebras in terms of the extended K-algebra B D
K ˝D A. The statement and proof of [43, Thm. 4.10] make extensive use of the
theory of maximal orders (as presented in [48]). The statement of the theorem is
quite technical and we omit it for the sake of space, but it does lead to some very
clean corollaries when either D D Z or A is the ring of integers of a number field.

Corollary 21 ([43, Cor. 4.12]) Let A be a torsion-free Z-algebra that is finitely
generated as a Z-module. Then, A is IntQ-decomposable if and only if there exist
positive integers n and t such that A ŠLt

iD1 Mn.Z/.

Corollary 22 ([43, Cor. 4.11]) Let K � L be number fields with rings of integers
OK and OL, respectively. Consider OL as an OK-algebra. Then

1. OL is IntK-decomposable if and only if L=K is an unramified Galois extension.
2. IntK.OL/ D Int.OK/ if and only if L D K.

In particular, Corollary 22 shows that rings of integers of number fields can
provide examples of IntK-decomposable algebras that are not direct sums of matrix
rings. For a noncommutative example, let p be an odd prime, D D Z.p/, and
A D D ˚ Di ˚ Dj ˚ Dk (which is the localization of L at p). Then, A=pA Š
L=pL Š M2.Fp/ (see [15, Sec. 2.5] or [26, Ex. 3A]), so A is IntQ-decomposable.
But, A cannot be isomorphic to a direct sum of matrix rings because it is contained
in the division algebra Q˚Qi˚Qj˚Qk.

We close this section by remarking that IntK-decomposability is not the only form
of decomposition possible with Int.A/. For each n > 0, let Tn.D/ denote the ring of
n � n upper triangular matrices with entries in D. Frisch studied Int.Tn.D// in [23]
and proved the following theorem.

Theorem 23 ([23, Cor. 5.3]) Let D be a domain. Let Tn.D/ be the ring of upper
triangular matrices with entries in D. Then,
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Int.Tn.D// Š

0

B
B
BB
B
B
@

IntK.Tn.D// IntK.Tn�1.D// � � � IntK.T2.D// IntK.T1.D//
0 IntK.Tn�1.D// � � � IntK.T2.D// IntK.T1.D//

: : :

0 0 � � � IntK.T2.D// IntK.T1.D//
0 0 � � � 0 IntK.T1.D//

1

C
C
CC
C
C
A

Question 24 Will other algebras admit decompositions similar to that of Theo-
rem 23?

5 Prüfer Conditions and Integral Closure

One of the long-standing questions regarding Int.D/was to determine necessary and
sufficient conditions on D so that Int.D/ is a Prüfer domain. For Noetherian D, this
is the case if and only if D is a Dedekind domain with finite residue fields [11, 37].
For general D, a necessary and sufficient double-boundedness condition was given
in [35].

It is natural to consider whether IntK.A/ can be a Prüfer domain. To date, both
examples and non-examples of this phenomenon have been found. When A is the
ring of integers of a number field, [36, Thm. 3.7] shows that IntQ.A/ is a Prüfer
domain. On the other hand, IntK.Mn.D// is never Prüfer.

Lemma 25 Let D be a domain. For all n � 2, IntK.Mn.D// is not Prüfer.

Proof This is an adaptation of an example given in [36, p. 2488]. Let d 2 D be a
nonzero non-unit. Let N 2 Mn.D/ be the nilpotent matrix with 1 in the .1; n/-entry
and 0 elsewhere. Then, N2 D 0 and N=d … Mn.D/. Now, it is well known [25,
Chap. IV] that any overring of a Prüfer domain is again a Prüfer domain, and that
Prüfer domains are integrally closed. Consider the ring R D IntK.fNg;Mn.D// D
ff 2 KŒx� j f .N/ 2 Mn.D/g. This is an overring of IntK.Mn.D// in K.x/, so
if IntK.Mn.D// were Prüfer, then R would be Prüfer, and hence integrally closed.
However, the polynomial x2=d2 2 R but x=d … R. Thus, R is not integrally closed,
and therefore IntK.Mn.D// is not a Prüfer domain.

If D is Dedekind, then it is known [46, Cor. 3.4] that IntK.Mn.D// is not even
integrally closed when n � 2. However, [36, Thm. 4.6] shows that the integral
closure of IntQ.Mn.Z// is a Prüfer domain. Determining when this holds for IntK.A/
in general is an open question.

For simplicity, let us assume that D is integrally closed, so that Int.D/ is also
integrally closed [7, Prop. IV.4.1]. Since one of our assumptions on A is that A\K D
D, we have the following containments:

DŒx� � IntK.A/ � Int.D/:
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Moreover, if A can be finitely generated as a D-module by n elements, then by [45,
Lem. 2.7] we have

DŒx� � IntK.Mn.D// � IntK.A/ � Int.D/:

Thus, when D is integrally closed, a necessary condition for the integral closure
of IntK.A/ to be Prüfer is that Int.D/ be Prüfer. Furthermore, if D is such that
the integral closure of IntK.Mn.D// is Prüfer for all n, then the integral closure of
IntK.A/ is Prüfer whenever A is finitely generated. This leads us to the following
version of the Prüfer question for IntK.A/.

Question 26 Let D be an integrally closed domain and let A be a finitely generated
D-algebra. When is the integral closure of IntK.A/ a Prüfer domain? In particular, is
the integral closure of IntK.Mn.D// a Prüfer domain?

The study of the integral closure of IntK.A/ is interesting in its own right, even
without the connection to Prüfer domains. Different descriptions of the integral
closure of IntK.A/ have been given, particularly for IntQ.Mn.Z//:

• [36, Thm. 4.6] and [41] Let n � 2 and let On be the set of algebraic integers of
degree n. Then, the integral closure of IntQ.Mn.Z// is equal to IntQ.On/ D ff 2
QŒx� j f .On/ � Ong.

• [17, Prop. 2.1] Let p be a prime and let Rn be the maximal order in a division
algebra of degree n2 over the field of p-adic numbers. Then, the integral closure
of IntQ.Mn.Z/.p// is IntQ.Rn/ D ff 2 QŒx� j f .Rn/ � Rng.

• [44, Thm. 13] Let D be an integrally closed domain with finite residue rings. Let
A0 � B be the set of elements of B that solve a monic polynomial in DŒx]. Then,
the integral closure of IntK.A/ is equal to IntK.A;A0/ D ff 2 KŒx� j f .A/ � A0g.
It is also possible to give constructions for polynomials that lie in the integral

closure of IntK.A/ but not in the ring itself. In [17], Evrard and Johnson derive
explicit formulas for the p-sequences and p-orderings of the integral closure
ofIntQ.M2.Z//. These are then used [17, Cor. 3.6] to prove that the degree 10
polynomial

x.x2 C 2xC 2/.x � 1/.x2 C 1/.x2 � xC 1/.x2 C xC 1/=4

is integral over IntQ.M2.Z// but is not in the ring itself. Furthermore, this is a
polynomial of minimal degree with that property. More generally, for any discrete
valuation ring V with fraction field K, [46, Construction 2.1] defines an explicit
polynomial that is integral over IntK.Mn.V// but not in the ring itself. In some
instances, the same construction can be applied to other D-algebras such as the
Lipschitz quaternions or the Hurwitz quaternions [46, Cor. 3.5, Ex. 3.6].

The questions considered in this section can also be asked of the ring
IntK.S;A/ D ff 2 KŒx� j f .S/ � Ag, where S � A. For a finite subset S � D,
McQuillan proved [38] that Int.S;D/ is Prüfer if and only if D is Prüfer (the
classification of all such subsets S � D is an open problem worthy of a survey of
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its own). Peruginelli has shown that the analogous theorem holds for the integral
closure of IntK.S;A/.

Theorem 27 ([42, Co. 1.1]) Let D be integrally closed and let S � A be finite.
Then, the integral closure of IntK.S;A/ is Prüfer if and only if D is Prüfer.

6 Further Questions

In this final section, we introduce three topics for further study: integer-valued poly-
nomials on nonassociative algebras, integer-valued rational functions on algebras,
and integer-valued polynomials on subsets of algebras. Some work has been done
on the last topic (as mentioned at the end of Sect. 5), but to date the first two areas
are completely untouched. The work in this section should be considered “proof of
concept” and will hopefully serve as motivation for further research.

6.1 Nonassociative Algebras

We know that it is possible to define and work with integer-valued polynomials on
noncommutative algebras. What if we relax our assumptions further and consider
polynomials that act on nonassociative algebras?

The following forms of “weak” associativity are discussed in standard references
on nonassociative algebras such as [52]. A D-algebra A is called an alternative
algebra if the relations a.ab/ D .aa/b and .ba/a D b.aa/ hold for all a; b 2 A.
It is a theorem of Artin [52, p. 18] that if A is an alternative algebra then KŒa; b� is
associative for all a; b 2 K. The algebra A is power associative if the usual addition
rules for exponents hold for powers of an element a 2 A; that is, if anCm D anam

for all a 2 A. This is equivalent to KŒa� being associative for each a 2 A. Every
alternative algebra is power associative, but the converse does not hold in general.

Power associativity is sufficient for the definition of IntK.A/ to make sense.

Lemma 28 Let A be a power associative D-algebra. Then, IntK.A/ is a well-defined
(associative) subring of KŒx�.

Proof The elements of K are unaffected by the lack of associativity in A and B.
Hence, for each b 2 B, the algebra KŒb� is associative, and we can define evaluation
of f 2 KŒx� at b 2 B in the usual way. Consequently, for all a 2 A, IntK.fag;A/ D
ff 2 KŒx� j f .a/ 2 Ag is a well-defined (associative) subring of KŒx�. Then,
IntK.A/ DTa2A IntK.fag;A/ is also an associative subring of KŒx�.

Question 29 Let A be a D-algebra that is power associative or alternative but not
associative. To what extent (if at all) does the lack of associativity in A affect the
algebraic properties of IntK.A/?
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So, if A is power associative, then IntK.A/ can be defined as usual. What about the
analogue of Int.A/? To preserve some semblance of sanity, we will not attempt to
work in any generality, but will instead confine ourselves to a particular alternative
algebra over Z: the integral octonions.

The octonions are a nonassociative extension of the quaternions.1 References
for this material include the book [14] and the survey article [1] by Baez.
When defined over the real numbers, the octonions comprise an 8-dimensional
(nonassociative) normed division algebra. We denote the basis for this algebra by
f1; e1; e2; e3; e4; e5; e6; e7g. Each of the ei satisfies e2i D �1, and eiej D �ejei for all
distinct i and j. Other multiplicative relations among the ei can be expressed with a
table, but it is more concise to express them via the Fano plane, as in [1, p. 152]:

Straight line paths “wrap around,” so that we imagine directed edges joining e5
to e6, e1 to e3, etc. Each pair of units fei; ejg appears as part of a straight line or
circular cycle fei; ej; ekg for some k. Traversing a cycle in the direction of the arrows
corresponds to the multiplication eiej D ek; traversing a cycle in the opposite
direction gives ejei D �ek. Thus, for example, e1e2 D e4; e6e1 D e5; e4e6 D e3; and
e2e5 D �e3.

With these rules, the nonassociativity of the octonions becomes evident, since for
distinct i, j, and k such that eiej ¤ ˙ek we have ei.ejek/ D �.eiej/ek. Nevertheless,
the octonions are an alternative algebra and exhibit a multiplicative norm. Given
˛ D c0 CP7

iD1 ciei with ci 2 R, the conjugate of ˛ is ˛ D c0 �P7
iD1 ciei, and the

norm of ˛ is jj˛jj D ˛˛ DP7
iD0 c2i . Then, for all ˛; ˇ, we have jj˛ˇjj D jj˛jj � jjˇjj.

For our purposes, we define

OZ D fc0 C c1e1 C � � � C c7e7 j ci 2 Zg

and

OQ D fc0 C c1e1 C � � � C c7e7 j ci 2 Qg:

1To quote Baez [1]: “The quaternions, being noncommutative, are the eccentric cousin who is
shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out
of the attic.”
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We are interested in polynomials with coefficients in OQ that map elements of OZ

back to OZ, and we define

Int.OZ/ D ff 2 OQŒx� j f .OZ/ � OZg:

Since we are allowing polynomials with coefficients from a nonassociative
ring, care must be taken when evaluating polynomials. We still insist that the
indeterminate x commutes with all elements and that polynomials satisfy right-
evaluation. To deal with the lack of associativity we adopt the following: given
f .x/ D P

i aixi 2 OQŒx� and b 2 OQ, we define f .b/ D P
i.ai/.bi/. Thus, the

powers bi are evaluated first, then multiplied with the coefficients ai, and finally
the resulting monomials are added. In particular, if f .x/ D P

i aixi 2 OQŒx�,
g 2 QŒx�, and b 2 OQ, then for each i all three of ai, g.b/, and bi lie in QŒai; b�,
which is associative because OQ is alternative. Hence, evaluation of fg is defined
without ambiguity as .fg/.b/ DPi aig.b/bi. With these conventions, we can derive
information about the algebraic structure of Int.OZ/.

Lemma 30 Int.OZ/ is a left IntQ.OZ/-module.

Proof It is clear that Int.OZ/ is an Abelian group under addition, and IntQ.OZ/ is a
commutative ring by Lemma 28. Let f .x/ DPi aixi 2 Int.OZ/, g 2 IntQ.OZ/, and
a 2 OZ. Then, keeping in mind the conventions of the last paragraph, we have

.gf /.a/ D .fg/.a/ D
X

i

aig.a/a
i D

X

i

aia
ig.a/ D f .a/g.a/:

Hence, gf 2 Int.OZ/ and so Int.OZ/ is a left IntQ.OZ/-module.
Thus, Int.OZ/ has—at the minimum—a module structure, and contains both

OZŒx� and IntQ.OZ/ as subrings. However, there exist polynomials in Int.OZ/ that
are in neither OZŒx� nor IntQ.OZ/.

Lemma 31 Let � D 1C e1 C � � � C e7. Then, �.x2 � x/=2 2 Int.OZ/.

Proof Let R D OZ=2OZ. It suffices to show that for each ˛ 2 R we have �.˛2 �
˛/ D 0 (i.e., that �.x2 � x/ is in the null ideal of R). Observe that since R has
characteristic 2, R is a commutative and associative ring with unity: for all i, j, and
k we have eiej D �ejei D ejei and ei.ejek/ D �.eiej/ek D .eiej/ek.

Now, for each ˛ D c0CP7
iD1 ciei 2 R, jj˛jj D 0 or 1, depending on whether the

number of nonzero ci (for 0 � i � 7) is even or odd. Moreover, the set of non-units
of R forms a maximal ideal M, and ˛ 2 M if and only if jj˛jj D 0. This ideal M is
generated by f1 C ei j 1 � i � 7g, because for each i ¤ j there exists k such that
ei C ej D ei.1C ek/. Then, we have �M D 0, because �.1C ei/ D �C � D 0 for
each i.

Next, given any ˛ 2 R, either ˛ or ˛ � 1 is in M. Thus, the polynomial x2 � x
moves R into M. Since �M D 0, we conclude that �.x2 � x/ sends all of R to 0, and
therefore �.x2 � x/=2 2 Int.OZ/.
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So, despite the inconvenience of losing associativity, Int.OZ/ contains nontrivial
elements and has some manner of algebraic structure.

Question 32 What algebraic structure does Int.OZ/ have? Is Int.OZ/ closed under
multiplication? Is it a nonassociative ring? Besides the polynomial of Lemma 31,
what are some other elements of Int.OZ/ that are not in OZŒx� or IntQ.OZ/?

6.2 Integer-Valued Rational Functions2

A natural extension of the idea of integer-valued polynomials is that of integer-
valued rational functions. Instead of considering Int.D/ D ff 2 KŒx� j f .D/ � Dg,
one may study IntR.D/ D f' 2 K.x/ j '.D/ � Dg, which is called the ring of
integer-valued rational functions on D. The rings IntR.D/ are not as well-studied as
Int.D/, but some research has been conducted [6, 9] and IntR.D/ is discussed in [7,
Chap. X].

Here, we consider what occurs with the analogous construction on a D-algebra.
Hence, we make the following definitions.

Definition 33 A polynomial g.x/ 2 KŒx� is said to be unit-valued on B if g.b/ 2 B�
for all b 2 B. The set of integer-valued rational functions IntRK.A/ is defined to be

IntRK.A/ D ff .x/=g.x/ 2 K.x/ j g is unit-valued on B and f .a/=g.a/ 2 A for all a 2 Ag:

We denote the set of polynomials in KŒx� that are unit-valued on B by U , and the
set of polynomials in DŒx� that are unit-valued on A by UD.

The stipulation that g be unit-valued on B is made so that the evaluation of
rational functions in K.x/ is well-defined at elements of B. While A and B may
be noncommutative, for all b 2 B the elements f .b/ and g.b/ lie in the commutative
algebra KŒb�. Hence, if g is unit-valued on B, the fraction f .b/=g.b/ is equal to both
g.b/�1f .b/ and f .b/g.b/�1, and so is well-defined. However, this requirement means
that IntRK.A/ is simply a localization of KŒx�: IntRK.A/ D U �1KŒx�.

Question 34 When A is noncommutative, can evaluation of a rational function
f .x/=g.x/ 2 K.x/ and the definition of IntRK.A/ be well-defined without the
assumption that g is unit-valued on B?

Even with the restriction that IntRK.A/ D U �1KŒx�, there are two interesting
questions we can ask about IntRK.A/. First, it is clear that IntRK.A/ is a subring of K.x/
containing IntK.A/. Is it possible to have a strict containment IntK.A/ ¤ IntRK.A/?
Second, we will always have U �1

D DŒx� � IntRK.A/. Is it possible to have a strict
containment U �1

D DŒx� ¤ IntRK.A/? The answer to both questions is yes, and can be
demonstrated with examples involving matrix algebras.

2The results of this subsection are joint work with Alan Loper.
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Lemma 35 Let n > 1. Then, g 2 KŒx� is unit-valued on the matrix ring Mn.K/ if
and only if each irreducible factor of g has degree greater than n.

Proof .(/ Let g 2 KŒx�. Since the set of polynomials in KŒx� that is unit-valued on
Mn.K/ is closed under multiplication, it suffices to consider the case where g itself
is irreducible and deg g > n.

Let b 2 Mn.K/. The matrix g.b/ is invertible if and only if g.b/ does not have
0 as an eigenvalue. It is well known that the eigenvalues of g.b/ are precisely g.�/,
where � is an eigenvalue of b. If g.�/ D 0 for some eigenvalue � of b, then � is
algebraic over K and the minimal polynomial of � divides g. Since g is irreducible,
this minimal polynomial must have degree equal to deg g. However, the eigenvalues
of b are the roots of the minimal polynomial of b, which has degree at most n. Thus,
g.�/ ¤ 0 for each �, and hence g.b/ is invertible. Since this holds for each b, g is
unit-valued on Mn.K/.
.)/ Suppose that g has an irreducible factor h of degree less than or equal to n.

Let d D deg h, and let C 2 Md.K/ be the companion matrix for h. Let b be the block
diagonal matrix b D � C 0

0 0

� 2 Mn.K/. Then, g.b/ D � 0 0
0 g.0/

�
, which has determinant

0 and hence is not invertible. Thus, g is not unit-valued on Mn.K/.
Now, we give an example of a domain D, an algebra A, and non-constant

polynomials f ; g 2 DŒx� such that g is not unit-valued on A, but ' D f=g 2 IntRK.A/.
The rational function ' provides a positive answer to both questions posed prior to
Lemma 35, since ' … IntK.A/ because g is non-constant, and ' … U �1

D DŒx� because
g … UD.

Example 36 Let F be a field, and let D be the valuation domain FŒt�.t/, which has
fraction field K D F.t/. Let A D M2.D/, and let g.x/ D x4 C t 2 DŒx�. Since the
matrix ˛ D � 0 t

1 0

�
squares to t, we have g.˛/ D t2C t, which has determinant in tD.

Since t … D�, g.˛/ is not a unit in A and so g is not unit-valued on A.
However, we claim that the rational function '.x/ D t=.x4C t/ 2 K.x/ is integer-

valued on A. To see this, let a 2 A. The polynomial x4 C t is irreducible over K
by Eisenstein’s Criterion, so a4 C t is a unit of Mn.F/ by Lemma 35. Let a4 C t D� a11 a12

a21 a22

�
. Then,

'.a/ D t.a4 C t/�1 D t

det.a4 C t/

	
a22 �a12
�a21 a11



:

Now, if det.a4C t/ … tD, then det.a4C t/ is a unit of D and '.a/ 2 A. So, assume
that det.a4C t/ 2 tD. We compute that det.a4C t/ D det.a4/C t.Tr.a4/C t/, so this
means that det.a4/ 2 tD. If Tr.a4/ … tD, then t=.det.a4/C t.Tr.a4/C t// 2 D and
once again we have '.a/ 2 A. So, assume that both det.a4/ and Tr.a4/ are in tD.

The characteristic polynomial of a4 is x2 � Tr.a4/x C det.a4/. It follows that
a8 D Tr.a4/a4 C det.a4/ 2 tA. Since A=tA Š M2.D=tD/ Š M2.F/, we have (up to
isomorphism) that a8 	 0 in M2.F/. The maximum nilpotency of a matrix in a 2�2
matrix ring over a field is 2, so we must have a2 	 0 in M2.F/. Thus, a2 2 tA and
a2 D tˇ for some ˇ 2 A. Hence,
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'.a/ D t=.a4 C t/ D t=.t2ˇ2 C t/ D 1=.tˇ C 1/:

Since det.tˇ C 1/ … tD, the matrix tˇ C 1 is invertible in A. Hence, '.a/ 2 A.
We have considered all the possible cases, so '.a/ 2 A for all a 2 A. Therefore,

the rational function t=.x4 C t/ is integer-valued on A even though the denominator
x4 C t is not unit-valued on A.

Question 37 For which domains D and D-algebras A do we have IntRK.A/ ¤
U �1

D DŒx�?

6.3 Integer-Valued Polynomials on Subsets of Algebras

We close this survey by considering integer-valued polynomials on subsets of
noncommutative algebras. Given a noncommutative D-algebra A and a subset
S � A, we define Int.S;A/ D ff 2 BŒx� j f .S/ � Ag. For any S � A, the
corresponding set IntK.S;A/ D ff 2 KŒx� j f .S/ � Ag is a commutative ring,
and as with Int.A/ one may easily verify that Int.S;A/ always has the structure of a
left IntK.S;A/-module. Our main question is whether or not Int.S;A/ is closed under
multiplication, and hence is a ring.

Definition 38 A subset S � A is called a ringset if Int.S;A/ is a ring.
If S consists of central elements, then one may easily check that S is a ringset,

but when S contains non-central elements it is nontrivial to determine whether or
not Int.S;A/ is a ring. In Sect. 2, we conjectured that Int.A/ D Int.A;A/ is always
a ring when A is finitely generated as a D-module. However, it is easy to construct
examples where S ¤ A and Int.S;A/ is not a ring.

Example 39 Let D be a Noetherian domain and assume that there exist a; b 2 A
such that ab ¤ ba. If ab � ba 2 dA for all d 2 D, then ab � ba D 0 contrary
to our assumption, so there exists a nonzero d 2 D such that ab � ba … dA. Let
f .x/ D .x � a/=d and g.x/ D x � b. Then, both f and g are elements of Int.fag;A/,
but their product is not, because .fg/.x/ D .x2 � .a C b/x C ab/=d and .fg/.a/ D
.�baC ab/=d … A. Thus, Int.fag;A/ is not a ring.

This example shows that a singleton set S D fag is a ringset if and only if a 2
Z.A/. As we shall see below, ringsets consisting of non-central elements do exist,
and they can have as few as two elements. Before giving examples of such sets, we
prove some general properties of ringsets.

Proposition 40 Let S;T � A.

1. If S and T are ringsets, then S [ T is a ringset.
2. S is a ringset if and only if fa 2 Int.S;A/ for all f 2 Int.S;A/ and all a 2 A.
3. If S is a ringset, then f .usu�1/ 2 A for all f 2 Int.S;A/, s 2 S, and u 2 A�.
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4. Assume that there exists a finite set U D fu1; : : : ; ung of units of A such that
each element of A can be written as a sum

Pn
jD1 cjuj, where each cj 2 Z.A/. If

uSu�1 � S for all u 2 U, then S is a ringset.

Proof (1) is true because (as sets) we have Int.S [ T;A/ D Int.S;A/ \ Int.T;A/.
For (2), if S is a ringset, then Int.S;A/ is closed under multiplication, so fa 2

Int.S;A/ because both f and a are in Int.S;A/. Conversely, assume that Int.S;A/
is closed under right multiplication by constants in A. Let f ; g 2 Int.S;A/ and let
s 2 S. Write f .x/ DP

i bixi for some bi 2 B and let a D g.s/ 2 A. Then, .fg/.x/ DP
i big.x/xi, so .fg/.s/ D P

i big.s/si D .fa/.s/ 2 A because fa 2 Int.S;A/. Thus,
Int.S;A/ is closed under multiplication, and hence is a ring.

For (3), when S is a ringset we have fu 2 Int.S;A/ for all f 2 Int.S;A/ and all
u 2 A�. Let f .x/ DPi bixi. Then, for all s 2 S, we have

.fu/.s/ D
X

i

biusi D
X

i

biusiu�1u D
X

i

bi.usu�1/iu D f .usu�1/u:

Since .fu/.s/ 2 A, so are f .usu�1/u and f .usu�1/.
Finally, for (4), assume that uSu�1 � S for all u 2 U. Let f .x/ D P

i bixi 2
Int.S;A/ and let a D c1u1 C � � � C cnun 2 A. Then, for all s 2 S, we have

.fa/.s/ D
X

i

bi.c1u1 C � � � C cnun/s
i

D c1
X

i

biu1s
i C � � � C cn

X

i

biunsi

D c1f .u1su�1
1 /u1 C � � � C cnf .unsu�1

n /un:

By part (3), each cif .uisu�1
i /ui 2 A, so .fa/.s/ 2 A. Thus, S is a ringset by part (2).

Proposition 40 implies the following useful corollary.

Corollary 41 Assume that A can be generated by central elements and a finite set
of units. If S is a union of conjugacy classes, then S is a ringset.

This corollary can be applied to many common choices of A such as matrix
algebras, group rings, or certain quaternion algebras. We will give several examples
involving subsets of the Lipschitz quaternions L. These examples come from an
unpublished portion of the author’s doctoral dissertation [54], which examined the
ringsets of L in greater detail.

Example 42 The unit group of the Lipschitz quaternions L is L
� D

f˙1;˙i;˙j;˙kg. It is easily verified that uiu�1 D ˙i for all u 2 L
�, and

similarly for j and k. By Corollary 41, S D fi;�ig is a ringset of L.
The converse of Corollary 41 is not true, as we demonstrate with another example

involving L.
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Example 43 Let S D fi; jg and T D f˙i;˙jg. Then, T is a ringset by Corollary 41.
We show that Int.S;A/ D Int.T;A/, which implies that S is also a ringset.

Since S � T , we certainly have Int.T;A/ � Int.S;A/. For the other inclusion,
let f 2 Int.S;A/. Each element of T satisfies the polynomial x2 C 1. Working over
BŒx� (where B D Q ˚ Qi ˚ Qj ˚ Qk), we may divide f by x2 C 1 to get f .x/ D
q.x/.x2C1/C˛xCˇ for some q.x/; ˛xCˇ 2 BŒx�. By assumption, f .i/ D ˛iCˇ 2 A
and f .j/ D ˛jC ˇ 2 A. So, A also contains f .i/ � f .j/ D ˛.i � j/ and

.f .i/ � f .j//.�iC j/ D ˛.i � j/.�iC j/ D 2˛:

So, 2˛ 2 A. This is relevant because

f .i/ � f .�i/ D .˛iC ˇ/ � .˛.�i/C ˇ/ D 2˛i

so f .�i/ 2 A. Similarly, f .�j/ 2 A. It follows that Int.S;A/ D Int.T;A/, and so S is
a ringset.

Part (1) of Proposition 40 shows that unions of ringsets are ringsets. Unfortu-
nately, the intersection of two ringsets need not be a ringset.

Example 44 By Examples 42 and 43, both fi;�ig and fi; jg are ringsets of L. But,
fi;�ig \ fi; jg D fig is not a ringset by Example 39.

The technique of Example 43 can be generalized to other subsets S � L, but first
we need to establish some basic properties of elements of L. Given a D a0 C a1iC
a2j C a3k 2 L, the conjugate of a is a D a0 � a1i � a2j � a3k and the norm of a
is jjajj D aa D a20 C a21 C a22 C a23. If a … Z, then the minimal polynomial of a is
x2 � 2a0x C jjajj, which has coefficients in Z. Finally, note that for each u 2 L

�,
conjugating a by u merely changes some of the signs on a1, a2, and a3. That is,
uau�1 D a0 ˙ a1i˙ a2j˙ a3k. This means that a � uau�1 2 2L for all a 2 L and
all u 2 L

�.

Proposition 45 Let S � L be such that S\Z D ¿, each element of S has the same
minimal polynomial, and gcd.fjja � bjj j a; b 2 Sg/ D 2. Then, S is a ringset.

Proof Let S� D fusu�1 j s 2 S; u 2 L
�g. Then, S� is a ringset and Int.S�;L/ �

Int.S;L/. As in Example 43, we will show that Int.S;L/ D Int.S�;L/.
Let f 2 Int.S;L/ and let m.x/ 2 ZŒx� be the common minimal polynomial

of the elements of S. Divide f by m to get f .x/ D q.x/m.x/ C ˛x C ˇ for some
q.x/; ˛x C ˇ 2 BŒx�. Then, for all a 2 S�, we have f .a/ D ˛a C ˇ 2 L, and if
a; b 2 S, then

f .a/ � f .b/ D ˛.a � b/ 2 L: (2)

Now, the condition gcd.fjja � bjj j a; b 2 Sg/ D 2 means that there exist
a1; : : : ; at; b1; : : : ; bt 2 S such that

gcd.jja1 � b1jj; : : : ; jjat � btjj/ D 2:
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Hence, there exist n1; : : : ; nt 2 Z such that

2 D n1jja1 � b1jj C � � � C ntjjat � btjj:

Thus,

2˛ D n1˛jja1 � b1jj C � � � C nt˛jjat � btjj
D n1˛.a1 � b1/.a1 � b1/C � � � C nt˛.at � bt/.at � bt/:

By (2), each ˛.ai � bi/ 2 L, so 2˛ 2 L.
Finally, given uau�1 2 S�, we have a�uau�1 2 2L and hence f .a/�f .uau�1/ D

˛.a�uau�1/ 2 L. Since f .a/ 2 L, we get f .uau�1/ 2 L. It follows that Int.S;L/ D
Int.S�;L/, and thus S is a ringset.

Clearly, the determination of ringsets in noncommutative algebras is a nontrivial
problem. More theorems regarding finite ringsets of L can be found in [54], but for
other algebras this question has not been explored.

Question 47 When A is noncommutative, which subsets of A are ringsets? In
particular, what are the finite ringsets of the Hurwitz quaternions H? What are the
finite ringsets of the matrix algebra Mn.D/?
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