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Abstract In this paper we outline the complete flux scheme for an advection-
diffusion-reaction model problem. The scheme is based on the integral represen-
tation of the flux, which we derive from a local boundary value problem for
the entire equation, including the source term. Consequently, the flux consists of
a homogeneous part, corresponding to the advection-diffusion operator, and an
inhomogeneous part, taking into account the effect of the source term. We apply
(weighted) Gauss quadrature rules to derive the standard complete flux scheme,
as well as a compact high order variant. We demonstrate the performance of both
schemes.

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines
like fluid dynamics, combustion theory, plasma physics, semiconductor theory etc.
These conservation laws are often of advection-diffusion-reaction type, describing
the interplay between different processes such as advection or drift, diffusion or
conduction and (chemical) reaction or recombination/generation.

In this paper we address (high order) space discretisation methods for these
equations. We consider the model problem

d

dx

�
u' � "

d'

dx

�
D s; (1)

where u is the advection velocity, " � "min > 0 a diffusion/conduction coefficient
and s a source term. The unknown ' could be for example the mass fraction of a
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species in a reacting flow. Associated with (1) we introduce the flux f defined by

f D u' � "
d'

dx
; (2)

thus the conservation law can be concisely written as df=dx D s.
For space discretisation we apply the finite volumemethod (FVM), thus we cover

the domain with a finite set of control volumes (cells) Ij of size h D �x. We adopt
the vertex-centred approach [6], i.e., we choose Ij D Œxj�1=2; xjC1=2� where xj˙1=2 D
1
2

�
xj C xj˙1

�
and xj are the grid points where ' has to be approximated. Integrating

(1) over the control volume Ij, we obtain the integral conservation law

f .xjC1=2/ � f .xj�1=2/ D
Z xjC1=2

xj�1=2

s.x/ dx: (3)

To derive the discrete conservation law, we have to approximate the flux f .xjC1=2/

by a numerical flux FjC1=2 and we have to approximate the integral in the right hand
side. Thus, a generic form of the discrete conservation law reads

FjC1=2 � Fj�1=2 D QŒsI xj�1=2; xjC1=2�; (4)

where FjC1=2 is the numerical flux at the cell interface x D xjC1=2 and where
Q

�
sI xj�1=2; xjC1=2

�
denotes a (high order) quadrature rule approximation for the

integral in the right hand side of (3). A possible choice for the numerical flux is
the standard complete flux scheme, which can be written in the form

FjC1=2 D ˛jC1=2'j � ˇjC1=2'jC1 C h
�
�jC1=2sj C ıjC1=2sjC1

�
; (5)

for some coefficients ˛jC1=2 etc., and where 'j � '.xj/ denotes the numerical
solution at grid point xj and sj D s.xj/. The standard complete flux approximation
results in a compact three-point scheme and is uniformly second order accurate [4].
The purpose of this paper is to derive a compact, high order variant of the complete
flux scheme. The numerical flux may only depend on the two neighbouring grid
point values of ' and s, and necessarily some values of s at intermediate points.
This way we avoid cumbersome (W)ENO reconstruction of interface values for '.
Combined with a high order quadrature rule for s, this gives rise to a compact high
order scheme. Consequently, the resulting algebraic system is straightforward to
solve and the numerical solution much more accurate than the standard complete
flux numerical solution.

We have organised our paper as follows. In Sect. 2 we present the integral
representation of the flux, fromwhich we derive the standard complete flux scheme.
We combine the standard scheme with the midpoint rule for the source s. Next,
in Sect. 3 we present a high order variant of the complete flux scheme. For the
corresponding quadrature rule for s we choose the two-point Gauss-Legendre
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quadrature rule. We demonstrate the performance of both schemes in Sect. 4 and
we end with a summary and conclusions in Sect. 5.

2 Standard Complete Flux Scheme

In this section we outline the standard complete flux scheme for Eq. (1), which is
based on the integral representation of the flux; for a detailed derivation see [4].

The integral representation of the flux f .xjC1=2/ at the cell interface x D xjC1=2 is
based on the following model boundary value problem (BVP) for ':

df

dx
D d

dx

�
u' � "

d'

dx

�
D s; xj < x < xjC1; (6a)

'.xj/ D 'j; '.xjC1/ D 'jC1: (6b)

We like to emphasize that f .xjC1=2/ corresponds to the solution of the entire
equation, implying that f .xjC1=2/ not only depends on u and ", but also on the source
term s. We define the following variables:

a D u

"
; A.x/ D

Z x

xjC1=2

a.�/ d�; S.x/ D
Z x

xjC1=2

s.�/ d�: (7)

Integrating Eq. (6a) from xjC1=2 to x 2 Œxj; xjC1� we obtain the relation

f .x/ � f .xjC1=2/ D S.x/: (8)

Next, using the definition of A in (7), we rewrite the expression for the flux in its
integrating factor formulation, i.e.,

f D �"
d

dx

�
' e�A

�
eA: (9)

Finally, substituting (9) in (8), integrating the resulting equation from xj to xjC1 and
applying the boundary conditions (6b), we obtain the following expressions for the
flux

f .xjC1=2/ D f h.xjC1=2/ C f i.xjC1=2/; (10a)

f h.xjC1=2/ D �
e�A.xj/'j � e�A.xjC1/'jC1

�
=

Z xjC1

xj

"�1e�A dx; (10b)

f i.xjC1=2/ D �
Z xjC1

xj

"�1e�AS dx=
Z xjC1

xj

"�1e�A dx; (10c)
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where f h.xjC1=2/ and f i.xjC1=2/ are the homogeneous and inhomogeneous part of
the flux, corresponding to the advection-diffusion operator and the source term,
respectively.

For the inhomogeneous flux, we can derive an alternative expression. Indeed,
substituting the expression for S in (7) in (10c) and changing the order of integration
we obtain the relation

f i.xjC1=2/ D h
Z 1

0

G.�/s.xj C h�/ d�; (11)

where � D .x � xj/=h is the normalised coordinate on Œxj; xjC1� and where the
function G is defined by

G.�/ D

8̂
<
:̂
h

R �

0
"�1e�A d�=

R xjC1

xj
"�1e�A dx for 0 � � � 1

2
;

�h
R 1

� "�1e�A d�=
R xjC1

xj
"�1e�A dx for 1

2
< � � 1:

(12)

Note that G relates the flux to the source term, and therefore we refer to it as the
Green’s function for the flux, similar to the Green’s function which relates the
solution of (6) to the source. Summarizing, the flux is completely determined by
the expressions (10a), (10b), (11) and (12).

Next, let us consider the special case of constant u and ", the source term s is
assumed to be an arbitrary function of x. We introduce the (grid) Péclet number
P D uh=". In this case, the expression for the homogeneous flux reduces to

f h.xjC1=2/ D "

h

�
B.�P/'j � B.P/'jC1

�
: (13)

In (13) we have used the Bernoulli function B.z/ WD z=
�
ez � 1

�
. We can evaluate all

integrals involved in the expressions for G and find

G.� IP/ D

8̂
<
:̂

1�e�P�

1�e�P for 0 � � � 1
2
;

� 1�eP.1��/

1�eP for 1
2

< � � 1I
(14)

see Fig. 1. Note that G explicitly depends on P as a parameter. Moreover, G is
discontinuous at � D 1

2
and satisfies the symmetry condition G.� IP/ D �G.1 �

� I �P/. The flux is in this case completely determined by the expressions (10a),
(13), (11) and (14).

To derive expressions for the numerical flux FjC1=2, we have to apply quadrature
rules to all integrals involved. For the general case of variable u and " expressions
for the standard complete flux scheme have been derived in [4], whereas a higher
order complete flux scheme based on the 2-point Gauss-Legendre quadrature rule is
presented in [1].
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Fig. 1 Green’s function for the flux for P > 0 (left) and P < 0 (right)

In the remainder of this paper we restrict ourselves to constant u and ". It is our
purpose to derive a new high order flux approximation based on weighted Gauss
quadrature rules. As weight function we will use the functionG.� IP/ given in (14).

We start with the standard complete flux scheme. For the homogeneous numer-
ical flux Fh

jC1=2 we simply take the homogeneous part of the flux, i.e., Fh
jC1=2 D

f h
�
xjC1=2

�
, which is exact; see (13). This approximation corresponds to the well-

known exponentially fitted scheme; see for example [3] and the many references
therein. To evaluate the expression (11) for the inhomogeneous flux, we need
to approximate the source term on Œxj; xjC1�. An obvious choice is the piecewise
constant representation, corresponding to the midpoint rule in (4), given by

s.xj C h�/ D
8<
:
sj if 0 � � � 1

2
;

sjC1 if 1
2

< � � 1:
(15)

Inserting this expression in (11) and evaluating the resulting integrals, we obtain

Fi
jC1=2 D h

�
C2.�P/sj � C2.P/sjC1

�
; (16)

where C2.z/ WD �
ez=2 � 1 � z=2

�
=
�
z
�
ez � 1

��
. The total numerical flux FjC1=2 is

obviously given by FjC1=2 D Fh
jC1=2 CFi

jC1=2 and is referred to as the complete flux
scheme (CFS).

Substituting the numerical flux in the discrete conservation law (4) and applying
the midpoint rule M

�
sI xj�1=2; xjC1=2

� D hsj, we obtain

Fh
jC1=2 � Fh

j�1=2 D h
�
C�

2 sj�1 C �
1 � C�

2 � CC
2

�
sj C CC

2 sjC1

�
; (17)

where we introduced the short hand notation C2̇ D C2.˙P/. The left hand side of
this equation is the discretised advection-diffusion operator, which can be written
as a weighted average of the central difference and upwind discretisations, whereas
the right hand side contains a weighted average of the source term values.
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3 High Order Complete Flux Scheme: The Constant
Coefficient Case

In this section we derive a high order approximation for the numerical flux.
Consequently, we also need a high order quadrature rule QŒsI xj�1=2; xjC1=2� in (4).

Note that the homogeneous numerical flux Fh
jC1=2 is exact for constant u and

", thus we only have to consider the inhomogeneous numerical flux Fi
jC1=2. Since

G.� IP/ is discontinuous at � D 1
2
, corresponding to the interface position x D

xjC1=2, we have to split the integral in (10c) in two parts as follows

f i.xjC1=2/ D h .I1 C I2/; (18a)

I1 D
Z 1=2

0

G.� IP/Qs.�/ d�; I2 D
Z 1

1=2

G.� IP/Qs.�/ d�; (18b)

where Qs.�/ D s.xj C h�/. We propose the weighted Gauss (WG) quadrature rule

I1 � WG
�QsI 0; 1

2

� D w1G.�1IP/Qs.�1/; I2 � WG
�QsI 1

2
; 1

� D w2G.�2IP/Qs.�2/;

(19)

with weights w1;w2 > 0 and nodes �1 2 �
0; 1

2

�
and �2 2 �

1
2
; 1

�
. We require that

I1 D WG
�QsI 0; 1

2

�
and I2 D WG

�QsI 1
2
; 1

�
for Qs.�/ D 1 and Qs.�/ D � . For the first

integral this gives rise to the equations

C2.�P/ D w1G.�1IP/; 1
2
C2.�P/ � C3.P/ D w1G.�1IP/�1; (20)

where C3.z/ WD �
C2.z/ � 1

8
B.z/

�
=z. From the equations in (20) we find the

quadrature rule

I1 � WG
�QsI 0; 1

2

� D !1Qs.�1/; !1 D C2.�P/; �1 D 1
2

� C3.�P/

C2.�P/
: (21a)

In a similar fashion we find

I2 � WG
�QsI 1

2
; 1

� D !2Qs.�2/; !2 D �C2.P/; �2 D 1
2

C C3.P/

C2.P/
: (21b)

Alternatively, using the symmetry property of G, we can show that

I2 D �
Z 1=2

0

G.� I �P/Qs.1 � �/ d�:

If we now apply the quadrature rule (21a) to this integral and replace P by �P,
we recover (21b). The modified weights !1 D w1G.�1IP/, !2 D w2G.�2IP/ and
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Fig. 2 The weights !k (left) and nodes �k (right) (k D 1; 2/
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Fig. 3 Coefficient in the error term in (23) as a function of P

the corresponding nodes �1, �2 as functions of P are shown in Fig. 2. Note that
0 < �1 < 1

2
and 1

2
< �2 < 1, as anticipated.

To investigate the error of the quadrature rules (21), we have to substitute Qs.�/ D
�2, since this is the lowest order monomial for which the quadrature rules are no
longer exact. We restrict ourselves to (21a), thus we have

I1 D !1Qs.�1/ C E1; (22)

where the error E1 is of the form E1 D CQs00.�/ for some � 2 .0; 1
2
/, with the prime

.0/ denoting differentiation with respect to � . Substituting Qs.�/ D �2 we obtain
E1 D 2C4.�P/ � C2

3.�P/=C2.�P/, where C4.z/ D .C3.z/ � 1
48
B.z//=z. Therefore,

for arbitrary Qs.�/, we have the error term

E1 D h2
h
C4.�P/ � C2

3.�P/

2C2.�P/

id2s

dx2
.�/; � 2 .xj; xjC1=2/; (23)

implying the approximation is second order accurate. The error coefficient in
brackets as a function of P is shown in Fig. 3. From this figure, it is obvious that
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the error is negligible for P < 0, and small for P > 0. A similar result holds for the
quadrature rule (21b).

Applying the quadrature rules in (21), we find the following expression for the
inhomogeneous numerical flux

Fi
jC1=2 D h

�
C2.�P/s.xj C h�1/ � C2.P/s.xj C h�2/

�
; (24)

which is (at least) third order accurate in view of the error term in (23). Note that this
approximation is similar to (16), except for the nodes where s has to be evaluated.
It is instructive to consider some limiting cases. First, for P D 0, i.e. no advection,
the expression in (24) reduces to

Fi
jC1=2 D 1

8
h
�
s.xj C 1

3
h/ � s.xj C 2

3
h/

�
; (25a)

corresponding to the piecewise linear limit function G.�/ D � for 0 � � � 1
2
and

G.�/ D � � 1 for 1
2

< � � 1. Alternatively, for P ! C1, i.e. u > 0 and no
diffusion, we obtain

Fi
jC1=2 D 1

2
hs.xj C 1

4
h/; (25b)

which is the midpoint approximation of the integral in (11) for the piecewise
constant limit function G.�/ D 1 for 0 < � < 1

2
and G.�/ D 0 for 1

2
< � < 1. A

similar expression holds when P ! �1.
To complete the discretisation, we apply the two-point Gauss-Legendre quadra-

ture rule GL2
�
sI xj�1=2; xjC1=2

�
to the integral of s in (3) to obtain

Fh
jC1=2 � Fh

j�1=2 D h
�
C�

2 s.xj�1 C h�1/ � CC
2 s.xj�1 C h�2/�

C�
2 s.xj C h�1/ C CC

2 s.xj C h�2/
� C GL2

�
sI xj�1=2; xjC1=2

�I
(26)

cf. (17).

4 Numerical Example

In this section we apply the standard and high order CF schemes to a model problem
to assess their (order of) accuracy.

Consider Eq. (1) defined for 0 < x < 1. Boundary conditions and source term
are chosen, such that the exact solution is given by

'.x/ D �
1 � 1

5
sin.�!/

�eu.x�1/=" � e�u="

1 � e�u="
C 1

5
sin.�!x/: (27)
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Fig. 4 1-norm of the error for " D 10�2 (left) and " D 10�3 (right)

We take the following parameter values: ! D 1, u D 1, " D 10�2 or " D 10�3.
In both cases the solution has a boundary layer at the outflow. To determine the
accuracy of a numerical solution, we compute eh D hjj' � '�jj1, with ' the
numerical solution vector and '� the exact solution restricted to the grid, as a
function of the grid size h, see Fig. 4. From this figure we conclude that the standard
CF-scheme is second order convergent, uniformly in the Péclet number, whereas the
high order CF-scheme exhibits fourth order convergence for " D 10�2 and roughly
third order for " D 10�3. In both cases the high order scheme has a significant
smaller error eh than the standard scheme.

5 Concluding Remarks and Discussion

We have derived the integral representation of the flux for a model advection-
diffusion-reaction equation. Applying quadrature rules to this representation, we
could derive two flux approximation schemes, i.e., the standard complete flux
scheme and a high order variant. The first scheme is second order accurate and the
latter even fourth order, uniformly in the Péclet number. Moreover, both schemes
only have a three-point coupling, albeit at the cost of a few source term evaluations at
intermediate points. The compact stencil makes the discrete schemes easy to solve.
A drawback is that quadrature rules for the inhomogeneous flux involving more than
two weights and nodes are hard to derive.

Modifications to more complicated problems is not straightforward. This paper is
a first attempt in designing high order complete flux schemes, and more research is
certainly needed. A few possible modifications are the following. First, for nonlinear
conservation laws the weighted Gauss quadrature rule is not feasible, and we first
have to formulate a linearized BVP, analogous to (6), to derive a high order flux
approximation scheme. However, this linearization is tricky and should use (the
structure of) the solution of the corresponding nonlinear BVP. In [2] we have
used this idea to derive a nonlinear (low order) flux approximation scheme for the
Burgers’ equation. Second, also for two-dimensional equations the scheme doesn’t
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hold. A possible remedy is to formulate the conservation law in local flow adapted
coordinates. This way we have to compute an advection-diffusion flux component
aligned with the flow, for which we can use the high order scheme, and a diffusion
flux component perpendicular to the flow, for which we can use a compact scheme.
In [5] we have carried out this procedure for the standard complete flux scheme.
Finally, extension to time-dependent problems is probably the most troublesome.
We need a high order approximation for integral of the time derivative and we have
to include the time derivative in the inhomogeneous flux; see [4] for details. In
both cases we introduce the time derivative at intermediate points, which need to be
eliminated. Moreover, we need a high order time integration method.
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