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Abstract We introduce a polynomial spectral calculus that follows from the
summation by parts property of the Legendre-Gauss-Lobatto quadrature.We use the
calculus to simplify the analysis of two multidimensional discontinuous Galerkin
spectral element approximations.

1 Introduction

The discontinuous Galerkin Spectral Element Method (DGSEM) introduced by
Black [4, 5] has the desired properties of spectral accuracy, geometric flexibility,
and excellent phase and dissipation properties [10, 21]. Spectral accuracy comes
from the use of high order polynomial approximations to the solutions and fluxes,
and high order Gauss quadratures for the inner products, e.g. [20]. Geometric
flexibility comes from the multi-element subdivision of the domain. The DGSEM
is now developed to the point of being efficient for large scale engineering level
computations, e.g. [1, 3, 8], among others.

Robustness, however, has been an issue with the DGSEM at high order. It
usually works, but it can go unstable even when the solutions are smooth. For
nonlinear problems, this is probably not surprising. Examples are demonstrated in
the computation of the Taylor-Green vortex problem,where instability at high orders
is seen [11]. But instability arises even in linear problems when the coefficients are
variable, which can come from inherent variability [2] or from variability introduced
by curved elements [16]. The instability, we will show, comes from aliasing errors
associated with the products of polynomials and insufficient Gauss quadrature
precision.

Robust (provably stable) versions of the DGSEM that start from a split form
of the partial differential equation (PDE) have recently been developed for linear
hyperbolic systems for static [16] and moving domains [19]. In addition to stability,
the approximations match the additional conservative and constant state preserving
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properties of the PDE [17]. The approach is applicable to nonlinear problems,
where, depending on the equations and split form, the methods are energy or entropy
stable [9, 12, 13].

In this paper, we introduce a polynomial spectral calculus that allows us to
mirror the continuous PDE analysis to show stability of Black’s and the split-form
approximations with a simple, compact notation applicable to any number of space
dimensions. For the split form method, we also show how to use the calculus to
demonstrate conservation and constant state preservation. The key starting point
of the calculus is the summation by parts property satisfied by the Gauss-Lobatto
quadrature [15], which allows us to write discrete versions of the Gauss law and
its variants. Those discrete Gauss laws, in turn, allow us to write algebraically
equivalent forms of the approximations, with which we can easily analyze their
properties.

2 Linear Hyperbolic Problems on Bounded Domains

As examples of the use of the discrete calculus, we will analyze two discontinuous
Galerkin spectral element approximations to the linear system of conservation laws

ut Cr � �!f D 0; (1)

where u
��!x ; t

�
D u .x1; x2; x3; t/ D Œu1 u2 : : : up�T is the state vector and

�!
f .u/ D

3X
mD1

A.m/
��!x

�
uOxm � �!Au (2)

is the linear flux space-state vector, where Oxm is the unit vector in the mth coordinate
direction. For simplicity we will assume that the system has been symmetrized and
is hyperbolic so that

A.m/ D
�
A.m/

�T
and

3X
mD1

˛mA.m/ D R
��!̨��

��!̨�R�1
��!̨� (3)

for any
����!̨

���
2

2
D

3P
mD1

˛2
m ¤ 0 and some real diagonal matrix �. We will also assume

that the matricesA.m/ have bounded derivatives in the sense that
����r �
�!A
����

2

<1; (4)
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where k�k2 is the matrix 2-norm. Additional constraints on the coefficient matrices
need to be added later to ensure that the derivatives of their interpolants converge
in the maximum norm. The product rule applied to (1) leads to the nonconservative
form of the system

ut C
�
r � �!A

�
uC�!A � ru D 0: (5)

With appropriate initial and characteristic boundary conditions on a bounded
domain ˝ 2 R

3 the problem is (i) well posed, (ii) conservative, and, under

conditions on
�!A , (iii) preserves a constant state. These properties are demonstrated

from a weak form of the average of the conservative, (1), and nonconservative, (5),
forms of the equation, the so-called “split-form”. To write the weak form, we define
the L2 inner product and norm

.u; v/ D
Z

˝

uTvdxdydz; kuk D
p

.u;u/: (6)

Then for any state vector � 2 L
2 .˝/,

.ut; �/C 1

2

�
r � �!f ; �

�
C 1

2

8<
:

 �
r � �!A

�
u; �

!
C
��!A � ru; �

�9=
; D 0: (7)

From vector calculus, we have the extended Gauss law,

Z

˝

uTr � �!f dxdydz D
Z

@˝

uT
�!
f � OndS �

Z

˝

.ru/T � �!f dxdydz; (8)

where On is the outward unit normal. We write (8) in inner product form as

�
u;r � �!f

�
D
Z

@˝

uT
�!
f � OndS �

�
ru;
�!
f
�

: (9)

We can apply the extended Gauss law to the inner products in the braces in (7)

and use the fact that
�!A is symmetric to get an equivalent form that separates the

boundary and volume contributions

.ut; �/C
Z

@˝

�!
f � On�dS � 1

2

��!
f ;r�

�
C 1

2

8
<
:

 �
r � �!A

�
u; �

!
�
 
u;r �

��!A�

�!9=
; D 0:

(10)

Constant state preservation, conservation and well-posedness are shown with
judicious choices of u and �. To find under what conditions a constant state is
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preserved, set u D c D constant in (7) to see that

�
ut; �

�C
 �
r � �!A

�
c; �

!
D 0; (11)

from which it follows that ut D 0 if r � �!A D 0.
Global conservation is shown by selectively choosing each component of the

state vector � in (10) to be unity and again noting that the coefficient matrices are
symmetric to see that the terms in the braces cancel to leave

d

dt

Z

˝

udxdydz D �
Z

@˝

�!
f � OndS: (12)

To find conditions under which the initial boundary value problem is well-posed,
we choose � D u in (7) and note that

�
r � �!f C�!A � ru;u

�
D
Z

˝

r �
�
uT
�!Au

�
d�!x : (13)

Replacing those terms in (7) and multiplying the equation by two gives

d

dt
kuk2 C

Z

˝

r �
�
uT
�!Au

�
d�!x C

 �
r � �!A

�
u;u

!
D 0: (14)

Gauss’ theorem allows us to replace the second term by a surface integral so

d

dt
kuk2 C

Z

@˝

uT
�!A � OnudS D �

 �
r � �!A

�
u;u

!
: (15)

We bound the right hand side by

�
 �
r � �!A

�
u;u

!
� max

˝

����r �
�!A
����

2

kuk2 � 2�kuk2 (16)

so

d

dt

�
e�2� t kuk2

�
� e�2� t

Z

@˝

uT
�!A � OnudS: (17)
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Integrating over the time interval Œ0;T� we write the energy in terms of the initial
value and a boundary integral

ku.T/k2 � e2�T ku.0/k2 C
Z T

0

Z

@˝

e2�.T�t/uT
�!A � OnudSdt: (18)

To properly pose the problem we must impose appropriate boundary conditions.
From (3), we separate the waves traveling to the left and right of the boundary
relative to On as

�!A � On D
3X

mD1

A.m/ Onm D R�R�1 D P�CR�1 CR��R�1 � AC CA�; (19)

where �˙ D �˙ j�j and we have left off the explicit dependence on On. When we
replace the values of u along the boundary associated with the incoming �� waves
with a boundary state, g, the solution can be bounded in terms of the initial and
boundary data,

ku.T/k2 C
Z T

0

Z

@˝

uTACudSdt � e2�T ku.0/k2 C
Z T

0

Z

@˝

e2�.T�t/gT jA�j gdSdt

� e2�T

(
ku.0/k2 C

Z T

0

Z

@˝

gT jA�j gdSdt
)

:

(20)

Furthermore, if r � �!A D 0, � D 0 and the energy does not grow in time except for
energy introduced at the boundaries,

ku.T/k2 C
Z T

0

Z

@˝

uTACudSdt � ku.0/k2 C
Z T

0

Z

@˝

gT jA�j gdSdt: (21)

3 A Polynomial Spectral Calculus

To follow the continuous problem analysis as closely as possible, we introduce a
discrete calculus that looks and behaves like the continuous one as much as possible.
We define the calculus for the reference domain E D Œ�1; 1�3 with coordinates
�!
� D �

�; �; �
� D � O� C � O� C � O� D

3P
mD1

�.m/ O�m. Corresponding forms hold for two

dimensional problems.
We represent functions of the reference domain coordinates by polynomials of

degree N or less, i.e. as elements of PN.E/ � L
2.E/. A basis for the polynomials

on E is the tensor product of the one dimensional Lagrange basis. Using that basis,
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we write a polynomial, U, in terms of nodal values Uijk D U
�
�i; �j; �k

�
as an upper

case letter, which for three space dimensions is

U D
NX

i;j;kD0

Uijk`i.�/`j.�/`k.�/; (22)

where

`l .s/ D
NY

iD0Ii¤l

s � si
sl � si

(23)

is the one-dimensional Lagrange interpolating polynomial with the property
`l .sm/ D ılm, l;m D 0; 1; 2; : : : ;N. The points si; i D 0; 1; 2; : : : ;N are
the interpolation points, whose locations are chosen below. We also write the
interpolation operator, IN W L2 ! P

N , which projects square integrable functions on
E onto polynomials, as

I
N .u/ D

NX
i;j;kD0

uijk`i.�/`j.�/`k.�/: (24)

The use of the tensor product means that one and two dimensions are special cases
of three dimensions, which is why we concentrate on three dimensional geometries
here.

Derivatives of polynomials on E evaluated at the nodes can be represented by
matrix-vector multiplication. For instance,

@U

@�

ˇ̌
ˇ̌
nml

D
NX

i;j;kD0

Uijk`
0
i.�n/`j.�m/`k.�l/ D

NX
iD0

Uiml`
0
i.�n/ �

NX
iD0

UimlDni; (25)

where D is the derivative matrix. The gradient and divergence of a polynomial in
three space dimensions evaluated at a point

�
�n; �m; �l

�
are therefore

rUjnml D
NX
iD0

UimlDni
O� C

NX
jD0

UnjlDmj O�C
NX

kD0

UnmkDlk
O�;

r � �!F
ˇ̌
ˇ
nml
D

NX
iD0

F.1/
imlDni C

NX
jD0

F.2/
njl Dmj C

NX
kD0

F.3/
nmkDlk:

(26)

The use of the calculus that we develop depends on the choice that the interpola-
tion nodes, si, are the nodes of the Legendre-Gauss-Lobatto (LGL) quadrature. We
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represent the one dimensional LGL quadrature of a function g.s/ using the notation

Z 1

�1

gds �
NX
iD0

g .si/!i �
Z

N
gds; (27)

where the !i are the LGL quadrature weights. The quadrature is exact if g 2
P

2N�1. By tensor product extension, we write three dimensional volume integral
approximations as

Z

E;N
gd�d�d� �

NX
i;j;kD0

gijk!ijk; (28)

where !ijk D !i!j!k. Two-dimensional surface integral approximations are

Z

@E;N

�!g � OndS D
NX

i;jD0

!ijg
.1/
�
�; �i; �j

�ˇ̌ˇ
1

�D�1
C

NX
i;jD0

!ijg
.2/
�
�i; �; �j

�ˇ̌ˇ
1

�D�1

C
NX

i;jD0

!ijg
.3/
�
�i; �j; �

�ˇ̌ˇ
1

�D�1

�
Z

N
g.1/d�d�

ˇ̌
ˇ
1

�D�1
C
Z

N
g.2/d�d�

ˇ̌
ˇ
1

�D�1
C
Z

N
g.3/d�d�

ˇ̌
ˇ
1

�D�1
:

(29)

Two space dimensional areas and edge integrals are defined similarly.
We define the discrete inner product of two functions f and g and the discrete

norm of f from the quadrature

. f ; g/E;N D
Z

E;N
fgd�d�d� �

NX
i;j;kD0

fijkgijk!ijk; kfkE;N D
q

. f ; f /E;N : (30)

The definition is extended for vector arguments like

�!
f D

3X
mD1

f.m/ O�m; (31)

for a state vector f.m/ D Œ f .m/
1 f .m/

2 : : : f .m/
p �T as

��!
f ;�!g

�

N

D
Z

E;N

3X
mD1

�
f.m/

�T
g.m/d�d�d� D

NX
i;j;kD0

!ijk

3X
mD1

�
f.m/
ijk

�T
g.m/
ijk ; (32)

and similarly for other arguments.
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The Lagrange basis functions are orthogonal with respect to the discrete inner
product defined in (30) [7]. In one space dimension, for instance,

�
`i; `j

�
E;N
D !jıij.

Also, from the definitions of the interpolation operator and the discrete inner
product,

. f ; g/E;N D
�
I
N .f / ; IN .g/

�
E;N

: (33)

Finally, the discrete norm is equivalent to the continuous norm [6] in that for
U 2 P

N ,

kUkE � kUkE;N � CkUkE; (34)

where C is a constant.
The crucial property for the analysis of the discrete approximation is the

summation by parts (SBP) property satisfied by the LGL quadrature. LetU;V 2 P
N .

Then the LGL quadrature, which is exact for polynomials of degree 2N�1, satisfies

Z

N
UV 0dx D UVj1�1 �

Z

N
U0Vdx .Summation By Parts/: (35)

The result extends to all space dimensions [15] with

�
U� ;V

�
N
D
Z

N
UVd�d�j1�D�1 �

�
U;V�

�
N

�
U�;V

�
N
D
Z

N
UVd�d�j1�D�1 �

�
U;V�

�
N

�
U� ;V

�
N
D
Z

N
UVd�d�j1�D�1 �

�
U;V�

�
N
:

(36)

We can use (35) and (36) to formulate a discrete integral calculus. If we replace

U in (36) by the components of a vector
�!
F , and sum, we get the Discrete Extended

Gauss Law (DXGL) originally derived in [15]: For any vector of polynomials
�!
F 2

P
N and any polynomial V 2 P

N ,

�
r � �!F ;V

�
N
D
Z

@E;N

�!
F � OnVdS �

��!
F ;rV

�
N

.Discrete Extended Gauss Law/;

(37)

where On is the unit outward normal at the faces of E. Carrying this further, if we set
V D 1 we get the Discrete Gauss Law (DGL)

�
r � �!F ; 1

�
N
D
Z

E;N
r � �!F d�d�d� D

Z

@E;N

�!
F � OndS .Discrete Gauss Law/:

(38)
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The DGL is exact for polynomial arguments of degree 2N � 1. By using the
appropriate definitions for the inner products, both discrete Gauss laws extend to

hold for state vectors
�!
F and V.

Next, we see that if we replace the vector flux
�!
F in (37) with r˚ 2 P

N , then we
get the discrete version of Green’s first identity,

�
r2˚;V

�
N
C .r˚;rV/N D

Z

@E;N
r˚ � OnVdS .Discrete Green0s First Identity/:

(39)

Swapping the variables ˚ and V and subtracting from the original gives Green’s
second identity

�
r2˚;V

�
N
�
�
r2V; ˚

�
N

D
Z

@E;N

�r˚ � OnV � rV � On˚
�
dS .Discrete Green0s Second Identity/ (40)

The discrete Green’s identities would be useful to prove stability of continuous
Galerkin spectral element methods of second order problems.

Other identities that do not involve quadratic products of polynomial arguments
hold discretely through exactness of the LGL quadrature. For instance,

Z

E;N
rVd�d�d� D

Z

@E;N
V OndS (41)

and
Z

E;N
r � �!F d�d�d� D

Z

@E;N
On � �!F dS: (42)

What we see, then, is that the well-known integral identities hold due to either
integration or summation by parts.

Whereas integration rules hold discretely, product differentiation rules do not
usually hold because differentiation and interpolation do not always commute. For
instance, the product rule does not generally hold. That is, for polynomialsU;V ,

r
�
I
N .UV/

�
¤ I

N .UrV/C I
N .VrU/ (43)

unless the product UV 2 P
N . [7].
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4 Discontinuous Galerkin Spectral Element Approximations

We now use the polynomial calculus introduced in section 3 to formulate and
analyze discontinuous Galerkin spectral element approximations in three space
dimensions. The steps to derive two dimensional approximations are identical. The
domain ˝ is subdivided into Nel nonoverlapping hexahedral elements, er; r D
1; 2; : : : ;Nel. We assume here that the subdivision is conforming. Each element is

mapped from the reference element E by a transformation�!x D �!X
��!

�

�
. From the

transformation, we define the three covariant basis vectors

�!a i D @
�!
X

@� i
i D 1; 2; 3; (44)

and (volume weighted) contravariant vectors, formally written as

J�!a i D �!a j � �!a j; .i; j; k/ cyclic; (45)

where

J D �!a 1 �
��!a 2 � �!a 3

�
(46)

is the Jacobian of the transformation.
Under the mapping, the divergence of a spatial vector flux can be written

compactly in terms of the reference space variables as

r � �!f D 1

J
3X

iD1

@

@� i

�
J�!a i � �!f

�
D 1

J
3X

iD1

@Qfi
@� i
D 1

J r� � Qf: (47)

The vector Qf is the volume weighted contravariant flux whose components are Qfi D
J�!a i � �!f .

The conservation law is then represented on the reference domain by another
conservation law

J ut Cr� �
� QAu

�
D 0; (48)

where we have defined the (volume weighted) contravariant coefficient matrices

Ai D J�!a i � �!A (49)
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and

QA D
3X

iD1

Ai O� i: (50)

We can also construct the nonconservative form of the system on the reference
domain using the chain rule,

J ut C
�
r� � QA

�
uC QA � r�u D 0: (51)

We construct weak forms of the conservative and nonconservative equations
by taking the inner product of the equations with a test function � 2 L

2.E/ and
applying extended Gauss Law to the space derivative terms,

.J ut; �/E C
Z

E

Qf � OnT�dS �
�Qf;r��

�
E
D 0 (52)

and

.J ut; �/C
Z

E

Qf � OnT�dS �
�
u;r� � Qf .�/

�
E
C
��
r� � QA

�
u; �

�

E

D 0: (53)

When we average the two equations (52) and (53) we get the split weak form

.J ut; �/ �1

2

( �Qf.u/;r��
�
E
C
�
u;r� � Qf .�/

�
E
�
��
r� � QA

�
u; �

�

E

)

C
Z

@E

�Qf � On
�T

�dS D 0: (54)

4.1 The DGSEM

The original DG spectral element method introduced by Black [4] starts from the
conservative weak form (52). We use the calculus now to show that it is stable
if the coefficient matrices QA are constant. If, in addition, characteristic boundary
conditions are used at physical boundaries, the approximation is optimally stable in
the sense that the global energy discretely matches (21).
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To construct the approximation, one approximates the solutions, fluxes, coeffi-
cient matrices and Jacobian with polynomial interpolants on element er ! E by

u � Ur 2 P
N

Qf � QFr .U/ D I
N

�
I
N
� QA

�
U
�
D

NX
i;j;kD0

QAijkUijk`i
�
�
�

`j
�
�
�

`k
�
�
�

QA � I
N
� QA
�

J r � Jr D I
N
�J r

�
:

(55)

From this point, we leave off the superscripts r and subscripts � on r� unless
necessary.

To continue the construction, one replaces the continuous inner products by
the discrete inner products, here being Gauss-Lobatto quadratures. The normal
boundary flux is replaced by a consistent numerical flux, Qf QF� �UL;URI On� where
UL;R are the left and right states at the element boundary, measured with respect
to the outward normal, On. The numerical flux ensures continuity of the normal
flux at element faces. Finally, � is restricted to elements of PN . The result of the
approximations is the formal statement of the method

ŒDGSEM� .JUt; �/N C
Z

@E;N

QF�;T�dS �
� QF .U/ ;r�

�
N
D 0: (56)

Details for going from the formal statement to the form to implement can be found
in [14].

Alternate, yet algebraically equivalent forms of the DGSEM can be derived by
applying the DXGL. For instance, if we apply the DXGL to the last inner product
in (56) we get the algebraically equivalent form

.JUt; �/N C
Z

@E;N

n QF� � QF � On
oT

�dSC
�
r � QF .U/ ; �

�
N
D 0: (57)

If the contravariant coefficient matrices are constant, implying that the original
problem is constant coefficient and the elements are rectangular in shape, then the
DGSEM approximation is strongly stable. To show stability, we set � D U in (57)
and define the volume weighted norm

kUk2J;N � .JU;U/N : (58)

Then

1

2

d

dt
kUk2J;N C

Z

@E;N

n QF� � QF � On
oT
UdSC

�
r � QF .U/ ;U

�
N
D 0: (59)
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With constant coefficients, the volume term in (59) can be converted to a surface
quadrature. The coefficient matrices being constant and symmetric implies that

�
r � QF .U/ ;U

�
N
D
�
r � IN

� QAU
�

;U
�

N

D
� QA � rU;U

�
N„ ƒ‚ …

�

D
�
rU; QAU

�
N

D
�
rU; QF .U/

�
N

:

(60)

The key step is the second marked with the “*”, where the product rule applies
because QAU 2 P

N when QA is constant. We then substitute the equivalence (60) into
the DXGL to see that

�
r � QF .U/ ;U

�
N
D 1

2

Z

@E;N

� QF � On
�T

UdS: (61)

Therefore, the local energy changes according to

1

2

d

dt
kUk2

J;N C
Z

@E;N

	
QF� � 1

2
QF � On


 T

UdS D 0; (62)

and stability depends solely on what happens on the element faces.
The change in the total energy is found by summing over all the elements.

Although the numerical flux is continuous at element interfaces, the solution and
flux are discontinuous. If we define the jump in a quantity with the usual notation
�V� D VR � VL, then

d

dt

0
@

NelX
rD1

kUrk2J;N

1
A � �2

8̂
<
:̂
X

Boundary
Faces

Z

@E;N

�
F� � 1

2
F � On

�T

UdS

�
X
Interior
Faces

Z

@E;N

�
F�;T �U� � 1

2

��
F � On�TU

��
dS

9
>=
>;

:

(63)

Stability is determined, therefore, only by the influence of the jumps at the ele-
ment boundaries and the physical boundary approximations through the numerical
flux. For linear problems, it is natural to choose an upwinded or central flux,
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where 	 D 0 is the central flux and 	 D 1 is the fully upwind flux. With this
flux [16],

QF�;T �U� � 1

2

�� QF � On
�T

U
�

D �	

2
�U�T

ˇ̌
ˇ QA � On

ˇ̌
ˇ �U� � 0; (65)

so that the interior face terms in (63) are dissipative. To match the PDE energy
bound, (21), the fully upwind flux must be used at the physical boundaries. With
exterior values g set along incoming characteristics [18] and when 	 D 1,

�
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(66)

If we define the total energy by

kUk2J;N D
KX

rD1

kUrk2J;N ; (67)

and integrate (63) in time, the total energy satisfies (c.f. (20))
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(68)

Finally, if the interpolant of the Jacobian is bounded from below, J > 0, then for
some positive constants c and C [16],

c kUk2L2.˝/ � kUk2
J;N � C kUk2L2.˝/ ; (69)

which says that, like the continuous solution, the energy approximate solution is
bounded by the data in the continuous norm over the entire domain.

4.2 Stabilization by Split Form

If the contravariant coefficient matrices are not constant, then the key step in (60)
does not hold because interpolation and differentiation do not commute. We
show now that stability hangs on whether or not the dissipation introduced by
the numerical flux at the element interfaces and by the characteristic boundary
conditions is sufficient to counterbalance the aliasing errors associated with the
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volume term that remains. That balance shows why the approximation [DGSEM]
can be, but does not have to be, stable for variable coefficient problems or curved
elements.

The use of the polynomial calculus allows us to quickly and compactly construct
four algebraically equivalent representations of a split form approximation [16]
that is strongly stable, constant state preserving and globally conservative for non-
constant coefficient problems where the coefficient variation is due to inherent
variability in the PDE and/or due to variability introduced by the coefficient
mappings from curved elements to the reference element. It also allows us to
simplify the analysis done, for example, in [17].

The result of applying the approximations (55) and LGL quadrature to (54) is the
first split form of the DGSEM used in [16]. In accordance to common terminology,
this is the “weak” form
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(70)

We get alternative, yet algebraically equivalent forms by applying the DXGL (37)
to selected terms in (70). When we apply the DXGL to the first two inner products
in the braces and use the fact that the coefficient matrices are symmetric we get the
“strong” form
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If we rearrange the terms in ŒS� to “strong+correction” form
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we see that the split form approximation is the strong form of the original
DGSEM (57) plus a correction term in the amount by which the product rule (43)
does not hold. When the product rule does hold, such as when the contravariant
coefficient matrices are constant, the correction term vanishes and we are back to
the original scheme of Black, [DGSEM].

We get a fourth algebraically equivalent “directly stable” form by applying the
DXGL to only the first inner product in the braces of the weak form ŒW�,
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(73)

Any of the four equivalent forms ŒW� , ŒS� , ŒSC� , ŒDS� can be used as
is convenient for computation or theory. For instance, to show conservation, choose
the form ŒW� and selectively set each component of � to one. Then the first inner
product in the braces vanishes and the second and third cancel leaving

Z

E;N
JUtd� D �

Z

@E;N

QF�dS: (74)

Summing over all elements, the interior face contributions cancel leaving the global
conservation statement

d
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QF�;rdS: (75)

To find conditions under which the approximation is constant state preserving,
use the form ŒS� with U D c D const in all elements. The first and third inner

products in the braces vanish provided that r �
�
I
N
� QA
��
D 0, and the second is

explicitly zero. Consistency of the numerical flux implies that QF� �c; cI On� D QF � On.
Therefore, .JUt; �/N D 0 for all � 2 P

N , which implies that at each node nml in
each element r, dUr

nml=dt D 0.
Finally, the split form approximation is optimally stable in the sense that

with the numerical flux (64), the norm of the approximate solution satisfies an
energy statement like (20). We show stability using ŒDS� and � D U. With the
substitution, the volume terms represented by the first two inner products in the
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braces immediately cancel. The third inner product in the braces can be bounded
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and under assumptions on the smoothness of
�!A [22] and positivity of the Jacobian

[16] the coefficient O� will converge spectrally to � . (If the divergence of the
interpolant vanishes, then O� D 0.) With the bound on the divergence of the
coefficient matrices,
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The change in the total energy is again found by summing over all the elements. If
we introduce the integrating factor O� D max
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(78)

The interface and boundary terms on the right hand side of (78) are identical to what
appeared in the original DGSEM, (63). Therefore, the total energy satisfies
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As with the continuous solution, (21), if r � IN
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Applying the norm equivalence (69), we see that the split form approximation is
strongly stable for variable coefficient problems and/or curved elements.

Finally, we can use the stability analysis of the split form approximation to write
the conditions needed for the original DGSEM to be stable when the coefficients are

variable and/or the elements are curved. For simplicity, let us suppose thatr��!A D 0

and external boundary states g D 0 so that the global energy should not increase and

instability is not masked by natural growth. Let us also assume that r � IN
� QA
�
D 0

so that O� also vanishes. Then by (79), the energy of the split form approximation
does not grow. With ŒDS� , ŒSC� and ŒDGSEM� , ŒSC� � ŒC�, where ŒC� is the
correction term
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the elemental energy for the DGSEM satisfies
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The term in the braces of the volume term on the right of (82) is non-zero unless
the product rule holds. Therefore, for the DGSEM to be stable when the coefficients
are variable, the surface terms (including the dissipation arising from the physical
boundaries seen in (66)) must be sufficiently large to counteract any destabilizing
influence of (growth from) the volume term, which might require trying more
dissipative numerical fluxes than the characteristic upwind flux. Practice has shown
that at least at low order one can often find numerical fluxes for which the influence
of the surface terms is sufficiently dissipative. But (82) shows that the approximation
can be unstable if the aliasing growth contribution is larger than the dissipation
contribution from the element faces.

5 Summary

In this paper, we described a discrete integral spectral calculus for polynomial
spectral methods using Legendre-Gauss-Lobatto quadrature. This calculus allowed
us to write and analyze discontinuousGalerkin spectral element approximations in a
compact notation consistent with the continuous version. In particular, it is possible
to easily derive four algebraically equivalent forms of a split form approximation
for linear hyperbolic systems. These four equivalent forms can then be used to
show global conservation, constant state preservation (when applicable) and, most
importantly, strong stability of the split form approximation for variable coefficient
problems on curved elements.
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