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Abstract In this paper we extend the results contained in Antonietti et al. (J Sci
Comput 68(1):143-170, 2016) and consider the problem of approximating the
elastodynamics equation by means of hp-version discontinuous Galerkin methods.
For the resulting semi-discretized schemes we derive stability bounds as well as hp
error estimates in the energy and L2-norms. Our theoretical estimates are verified
through three dimensional numerical experiments.

1 Introduction

The present paper deals with the numerical modeling through the (linear) elas-
todynamics equation of seismic wave propagation phenomena in complex, three-
dimensional media. Currently, the numerical methods mostly employed to tackle
seismic wave propagation include finite differences, pseudo-spectral, spectral ele-
ment, and high–order/spectral element discontinuous (DG) Galerkin techniques. In
particular Spectral Element methods, firstly introduced for fluid dynamics problems
in the seminal paper [28], have become one of the most effective and powerful
approaches for solving three-dimensional seismic wave propagation problems in
strongly heterogeneous media thanks to their geometrical flexibility and high order
accuracy, which made them well suited to correctly approximate the wave field.
We refer to [14, 20, 22, 25, 35] for the first development of Spectral Element
methods for the elastodynamics equation, and, for example, to [21, 23, 36, 39]
for its application in computational seismology. In recent years, displacement-
based high–order/spectral element discontinuous Galerkin methods have also been
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developed for linear and nonlinear (visco) elastic wave propagation problems,
mainly because the discretization parameters, i.e. the mesh-size and/or the poly-
nomial approximation degree, can be naturally tailored to the region of interests;
see e.g. [3–6, 12, 24, 26, 31–33]. Additionally, high–order/spectral element DG
methods feature very low dispersion and dissipation errors. A dispersion/dissipation
analysis based on the approach of [1] for DG approximations of elastic wave
propagation problems has been carried out in [3, 11] and [4], respectively, on
two-dimensional quadrilateral/triangular meshes: the extension to three-dimensions
has been addressed recently in [15]. Another interesting feature is their being
embarrassingly parallel and therefore naturally oriented towards high performance
parallel computing.DGmethods are thus very well suited to deal with i) the intrinsic
multi-scale nature of seismic wave propagation problems, involving a relative broad
range of wavelengths; ii) the complexity of the geometrical constraints. The aim of
this paper is to extend to the hp-version the theoretical analysis developed in [5]
as well as to prove approximation bounds in the L2 norm. For the sake of brevity,
here we focus only on displacement DG formulation, but the present analysis can
be extended also to displacement-stress formulations. We show that, also in the
hp-version setting, stability and approximation properties hold without the need to
introduce an extra term that penalizes the time derivative of the displacement besides
the displacement itself, as considered in previous works [31–33]. Our semidiscrete
analysis represents an intermediate but essential step towards the analysis of stability
of the fully discrete scheme resulting after time integration.

The remaining part of manuscript is organized as follows. In Sect. 2 we introduce
the model problem and its hp-version discontinuous Galerkin approximation.
The stability analysis is presented in Sect. 3, whereas in Sect. 4 we present the
hp�version a priori error estimates in both the energy and L2 norms. Three-
dimensional numerical experiments verifying the theory are presented in Sect. 5.

2 Problem Statement and its hp-Version Discontinuous
Galerkin Approximation

Let ˝ � Rd, d D 2; 3, be an open, bounded convex region with Lipschitz boundary
@˝ . Throughout the paper, ŒHm.˝/�d and ŒHm.˝/�d�d

sym denote the standard Sobolev
spaces of vector–valued and symmetric tensor-valued functions defined over ˝ ,
respectively, and .�; �/˝ denote the standard inner product in any of the spaces
ŒL2.˝/�d or ŒL2.˝/�d�d

sym . For given T > 0 and f D f.x; t/ 2 L2..0;T�I ŒL2.˝/�d/,
we consider the problem of approximating the variational formulation of the linear
elastodynamics equation with homogeneous Dirichlet boundary conditions: for all
t 2 .0;T� find u D u.t/ 2 V � ŒH1

0.˝/�d such that:

.�utt; v/˝ C .D".u/; ".v//˝ D .f; v/˝ 8 v 2 V; (1)
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subjected to the (regular enough) initial conditions u0 and u1. Here, u W ˝ �
Œ0;T� �! R

d is the displacement vector field and ".u/ W ˝ �! R
d�d
sym is the

symmetric gradient. Moreover, � is the mass density, which is supposed to be a
strictly positive and uniformly bounded function, andD D D.x/ W Rd�d

sym �! R
d�d
sym is

the inverse of the compliance tensor defined asD� D 2�� C�tr.�/I 8 � 2 R
d�d
sym .

I 2 R
d�d and tr.�/ are the identity and trace operators, respectively, and �; � 2

L1.˝/, �; � > 0, being the Lamé parameters.
Henceforth, C denotes a generic positive constant independent of the discretiza-

tion parameters, but that can depend on the physical quantities �, D as well as on
the final observation time T. Moreover, x � y and x � y will signify x � Cy and
x � Cy, respectively, with C as before.

2.1 Mesh, Trace Operators, and Discrete Spaces

We consider a sequence fThgh of shape-regular (not-necessarily matching) parti-
tions of ˝ into disjoint open elements K such that ˝ D [K2ThK, where each
K 2 Th is the affine image of a fixed master element bK, i.e., K D FK.bK/, bK being
either the open unit d-simplex or the open unit hypercube in R

d, d D 2; 3. An
interior face (for d D 2, “face” means “edge”) of Th is defined as the (non–empty)

interior of @K
C \ @K

�
, where K˙ are two adjacent elements of Th. Similarly, a

boundary face of Th is defined as the (non-empty) interior of @K \ ˝ , where K is a
boundary element of Th. We collect the interior and boundary faces in the sets FI

h
and FB

h , respectively, and define Fh D FI
h [ FB

h . We also assume the following
mesh-regularity: i) for any K 2 Th and for all F 2 Fh, F � @K, hK � hF; ii) for any
pair of elements K˙ 2 Th sharing a .d � 1/–dimensional face hK� � hKC

� hK� :
cf. [16, 29] for example.

Next, we introduce suitable trace operators, cf. [8]. Let F be an interior face
shared by two elements K˙ of Th, and let n˙ denote the normal unit vectors
on F pointing outward K˙, respectively. For (regular enough) vector-valued and
symmetric tensor-valued functions v and �, respectively, we define the weighted
average and jump operators as

fvgı D ıvC C .1 � ı/v�; f�gı D ı�C C .1 � ı/��; ı 2 Œ0; 1�;

ŒŒv�� D vC ˇ nC C v� ˇ n�; ŒŒ��� D �C nC C �� n�;
(2)

where v˙ and �˙ denote the traces of v and � on F taken within the interior of K˙,
respectively, and where v ˇ n D .vnT C nvT/=2. Notice that ŒŒv�� is a symmetric
tensor-valued function. On a boundary face F 2 FB

h , we set analogously

fvgı D v; f�gı D �; ŒŒv�� D v ˇ n; ŒŒ��� D �n: (3)
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When ı D 1=2, we drop the subindex and simply write f�g.
Finally, to any element K 2 Th we assign a polynomial approximation degree

pK � 1, and define the hp-discontinuous finite element space

Vhp Dfu 2 ŒL2.˝/�d W u ı FK 2 ŒMpK .bK/�d 8 K 2 Thg;

whereMpK .bK/ is either the space PpK .bK/ of polynomials of degree at most pK onbK,
if bK is the reference d-simplex, or the space QpK .bK/ of tensor–product polynomials
on bK of degree pK in each coordinate direction, if bK is the unit reference hypercube
in R

d. In the following we also assume that the following local bounded variation
holds: pK� � pKC

� pK� for any pair of elements K˙ 2 Th sharing a .d � 1/–
dimensional face, cf. [29] for example.

Given a face F 2 Fh of an element K 2 Th, i.e., F � @K the following inverse
inequality holds:

kvk2
L2.F/

� p2
K

hK
kvk2

L2.K/
8v 2 M

pK .K/;

cf. [34]. Finally, we recall the following interpolation estimates, cf. [9].

Lemma 1 For any real number sK � 0 and for any function v 2 ŒHsK .K/�d, K 2
Th, there exists ˘hv 2 Vhp such that

X

K2Th

kv � ˘hpvkHr.K/ �
X

K2Th

hmin.sK ;pKC1/�r
K

psK�r
K

kvkHsK .K/ 8r; 0 � r � s;

X

K2Th

kD� .v � ˘hpv/kL2.@K/ �
X

K2Th

h
min.sK ;pKC1/�j�j�1=2

K

p
sK�j�j�1=2

K

kvkHsK .K/ 8�; 0 � j�j � k;

(4)

where � 2 N
d
0 is a multi-index of length j�j. Here, the second inequality holds

provided sK > 1=2 and k is the largest non-negative integer strictly less than s�1=2.

2.2 Semi-Discrete and Fully-Discrete Formulations

We are now ready to state the semi-discrete weak formulation: For any time t 2
.0;T�, find uh D uh.t/ 2 Vhp such that

.�uhtt; v/Th C A.uh; v/ D .f; v/Th 8 v 2 Vhp; (5)

subjected to the initial conditions uh0 and uh1, being uh0;u
h
1 2 Vhp suitable approx-

imations in Vhp of the initial data u0;u1, respectively. The bilinear form A.�; �/ W
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Vhp � Vhp �! R in (16) is given by

A.w; v/ D .".w/;D".v//Th � hfD".w/gı; ŒŒv��iFh

� hŒŒw��; fD".v/gıiFh C h�ŒŒw��; ŒŒv��iFh ; (6)

where we have used the shorthand notation .w; v/Th D P

K2Th
.w; v/K and

.w; v/Fh D P

F2Fh
.w; v/F. The above method corresponds to the family of Interior

Penalty (IP) methods: for ı D 1=2, we get the Symmetric Interior Penalty (SIP)
method [7, 41], whereas for ı ¤ 1=2 we obtain the weighted SIP method of
Stenberg, [38]. In (6) the stabilization function � 2 L1.Fh/ is defined facewise as

� D �.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

˛fDgmax.p2
KC

; p2
K�

/

min.hKC
; hK�/

if x 2 @KC \ @K�;

˛fDgp
2
K

hK
if x 2 @K \ @˝;

(7)

By defining ŒHs.Th/�
d as the space of elementwise ŒHs.K/�d functions, s � 0, and

endowing the Vhp and Vhp C ŒH2.Th/�
d spaces with the (mesh-dependent) norms

kvk2
DG D kD1=2".v/k2

L2.Th/
C k�1=2ŒŒv��k2

L2 .Fh/
8v 2 Vhp;

kjvjk2
DG D kvk2

DG C k��1=2f".v/gk2
L2.Fh/

8v 2 Vhp C ŒH2.Th/�
d;

(8)

respectively, with kwkL2.Th/ D p

.v; v/Th and kwkL2.Fh/ D p

.v; v/Fh , with
standard arguments it is easy to prove the following result.

Lemma 2 The bilinear form A.�; �/ W Vhp � Vhp �! R defined as in (6) satisfies

jA.w; v/j � kvkDGkwkDG; A.v; v/ � kvk2
DG 8w; v 2 Vhp; (9)

where the second estimates holds provided that the penalty parameter ˛ is chosen
large enough, cf. (7). Moreover,

jA.w; v/j � kjvjkDGkjwjkDG; 8w; v 2 Vhp C ŒH2.Th/�
d:

We remark that a sharp estimate on the minimum value ˛ so that the second estimate
in (9) holds can be obtained based on employing the results of [2].

The semi-discrete algebraic formulation of problem (16) reads as

M RU.t/ C AU.t/ D F.t/; (10)

supplemented with initial conditions U.0/ D U0 and PU.0/ D V0. The vector U D
U.t/ contains, for any time t, the expansion coefficients of uh.t/ 2 Vhp in a chosen
basis. Analogously,M andA are the matrix representations of the mass and stiffness
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bilinear forms, respectively. By fixing a time-step �t > 0 and denoting by Ui 	
U.ti/ the approximation of U at time ti D i�t, we discretize (10) by the leap-frog
method

MUnC1 D .2M � �t2A/Un � MUn�1 C �t2Fn; n D 1; : : : :

withMU1 D .M � �t2

2
A/U0 C �tMV0 C �t2

2
F0.

3 Stability of the Semi-Discrete Formulation

We now prove stability in the following natural energy norm induced by the DG
methods described in the previous section:

kvk2
E D k�1=2vtk2

0;Th
C kvk2

DG 8v D v.t/ 2 C2.Œ0;T�IVhp/ 8 2 Œ0;T�:

(11)

First, we recall the following classical result, cf. [30, pag. 28].

Lemma 3 Let � 2 L2.0;T/ a positive function and 	 2 C0.0;T/ a non-negative
function such that

	2.t/ � C C
Z t

0

�.
/	.
/ d
 8t 2 .0;T/

with C a non-negative constant. Then,

	.t/ � p
C C 1

2

Z t

0

�.
/ d
 8t 2 .0;T/

For the forthcoming analysis we will assume that the (possible) discontinuities of
the piecewise constant stiffness tensor D are aligned with the mesh partition Th.

Proposition 1 Let uh 2 C2..0;T�IVhp/ be the approximate solution obtained with
the SIP(ı) method (16), for a sufficiently large penalty parameter ˛, cf. (7). Then,

kuh.t/k2
E � kuh.0/kE C

Z t

0

kf.
/kL2.˝/ d
 0 < t � T:

Proof We take v D uht 2 Vhp in (16) to obtain

1

2

d

dt

�

kuhk2
E � 2hfD".uh/gı; ŒŒuh��iFh

�

D .f;uht /Th : (12)
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Integrating in time between 0 and t leads to

kuhk2
E � 2hfD".uh/gı; ŒŒuh��iFh D kuh0k2

E � 2hfD".uh.0//gı; ŒŒuh.0/��iFh

C 2

Z t

0

.f;uh
 /Th d
: (13)

We first observe that, for any F 2 Fh, and any w; v 2 Vhp, the Cauchy-Schwarz
inequality gives

X

F2Fh

ˇ

ˇhfD".w/gı; ŒŒv��iF
ˇ

ˇ � k��1=2fD".w/gk0;Fhk�1=2ŒŒv��k0;Fh

� 1p
˛

kD1=2".w/k0;Thk�1=2ŒŒv��k0;Fh

� 1p
˛

kwkDGkvkDG � 1p
˛

kwkEkvkE;

where in the second step we have employed the definition (7) of the penalty function
� , the local bounded variation property of the discretization parameters, together
with the trace-inverse inequality (2.1). From the Young inequality, we obtain

kuhk2
E � 2hfD".uh/gı; ŒŒuh��iFh � kuhk2

E ;

provided that the penalty parameter ˛ is chosen sufficiently large. This leads to

kuhk2
E � kuh.0/k2

E C
Z t

0

.f;uh
 /Th d
:

Next, we observe that, from the Cauchy-Schwarz inequality we have

Z t

0

.f;uh
 /Th d
 �
Z t

0

kfkTh;0k�1=2uh
 kTh;0 �
Z t

0

kfkTh;0kuhkE d
;

which leads to

kuh.t/k2
E � kuh.0/k2

E C
Z t

0

kfkTh;0kuhkE d
:

The theorem follows by Lemma 3.
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4 Error Analysis of the Semi-Discrete Formulation

Before stating the main result of this section, we recall some preliminary results that
will be needed for the forthcoming analysis.

Lemma 4 For any v 2 ŒHsK .K/�d, sK � 0, K 2 Th, there exists ˘hpv 2 Vhp s.t.

kjv � ˘hpvjk2
DG �

X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

kvk2
HsK .K/: (14)

Moreover, if v; vt 2 ŒHsK .K/�d, for any K 2 Th, then

kv � ˘hpvk2
E �

X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

�

kvtk2
HsK .K/ C kvk2

HsK .K/

�

: (15)

Proof We only show (15), as (14) is a particular case. Recalling the definition of the
energy norm k � kE and employing the estimates of Lemma 1 we obtain

k�1=2.vt � ˘hpvt/k2
0;Th

�
X

K2Th

h2min.sK ;pKC1/
K

p2sK
K

kvtk2
HsK .K/;

kD1=2".v � ˘hpv/k2
L2.Th/

�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�2
K

kvk2
HsK .K/;

k�1=2ŒŒv � ˘hpv��k2
L2.Fh/

�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

kvk2
HsK .K/;

that is

kv � ˘hpvk2
E �

X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

 

h2
K

p3
K

kvtk2
HsK .K/ C 1

pK
kvk2

HsK .K/ C kvk2
HsK .K/

!

�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

.kvtk2
Hs.K/ C kvk2

HsK .K//;

where the last step follows by observing that h2
K

p3
K

< 1 and 1
pK

< 1 for any K 2 Th.

4.1 Error Estimates in the Energy Norm

In this section we present a priori error estimates in the natural energy norm.
Assuming that the exact solution u is regular enough, i.e., ujK 2 ŒHsK .K/�d for
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any K 2 Th, with sK � 2, with standard arguments it is also possible to show that
formulation (16) is strongly consistent, i.e.,

.�utt; v/Th C A.u; v/ D .f; v/Th 8 v 2 Vhp: (16)

From the above identity, we can obtain the following relation for the error e D u�uh

.�ett; v/Th C A.e; v/ D 0 8 v 2 Vhp; (17)

which serves as the basis for the forthcoming error estimates.

Theorem 1 (A-Priori Error Estimate in the Energy Norm) Let u be the exact
solution of problem (1) and let uh be its approximation based on employing the
semidiscrete DG formulation given in (16), with a penalty parameter ˛ chosen large
enough, cf. (7). If, for any time t 2 Œ0;T�, the exact solution u.t/ and its two first
temporal derivatives belong ŒHsK .K/�d, K 2 Th, sK � 2, then

sup
t2.0;T�

ke.t/k2
E � sup

t2.0;T�

8

<

:

X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

�

kut.t/k2
HsK .K/ C ku.t/k2

HsK .K/

�

9

=

;

C
Z T

0

X

K2Th

(

h2min.sK ;pKC1/�2
K

p2sK�3
K

�

kutt.
/k2
HsK .K/ C kut.
/k2

HsK .K/

�

)

d
 :

Before reporting the proof of Theorem 1 we recall the integration by parts formula

Z t

0

.w; v
 /�d
 D .w.t/; v.t//� � .w.0/; v.0//� �
Z t

0

.w
 ; v/�d
; (18)

that holds for w; v regular enough and for any scalar product .�; �/�
Proof Let ˘hpu 2 Vhp be the interpolant defined as in Lemma 4. By decomposing
the error as e D e� � eh, with e� D u � ˘hpu and eh D uh � ˘hpu, (17) becomes:

.�ehtt; v/Th C A.eh; v/ D .�e�
tt ; v/Th C A.e� ; v/ 8 v 2 Vhp:

By taking v D eh in the above identity, we have

1

2

d

dt

�

kehk2
E � 2hŒŒeh��; fD".eh/gıiFh

�

D .�e�
tt ; e

h
t /Th C A.e� ; eht / : (19)

Reasoning as in the proof of Theorem 1, we have

kehk2
E � 2hŒŒeh��; fD".eh/gıiFh � kehk2

E;
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provided that the penalty parameter ˛ is chosen large enough; cf. (7). Integrat-
ing (19) in time between 0 and t and using that eh.0/ D uh.0/ � u�.0/ D 0, we
get

kehk2
E �

Z t

0

.�e�
tt ; e

h
t /Th d
 C

Z t

0

A.e� ; eht / d


�
Z t

0

ke�
t kEkehkE d
 C A.e� ; eh/ �

Z t

0

A.e�
t ; eh/ d


�
Z t

0

ke�
t kEkehkE d
 C kje� jkDGkehkDG C

Z t

0

kje�
t jkDGkehkDG d
;

(20)

where the second step follows based on employing the Cauchy-Schwarz inequality
together with integration by parts formula (18) with w D e� , v D eh and .�; �/� D
A.�; �/, whereas the third one follows from Lemma (8). From the Young inequality

kje� jkDGkehkDG � 1

�
kje� jk2

DG C �kehk2
DG � 1

�
kje� jk2

DG C �kehk2
E;

we can suitably choose � and rewrite (25) as

kehk2
E � Ckje� jk2

DG C
Z t

0

.kje�
t jkDG C ke�

t kE/kehkDG d
: (21)

Applying Gronwall’s Lemma 3 we get

keh.t/kE � sup
t2Œ0;T�

kje�.t/jk2
DG C

Z t

0

ke�
t .
/kE d
 8t 2 .0;T�:

Finally, from the Cauchy-Schwarz inequality and the above bound, and taking the
supremum over t 2 .0;T�

sup
t2.0;T�

ke.t/k2
E � sup

t2.0;T�

n

ke�.t/k2
E C kje�.t/jk2

DG

o

C
Z T

0

ke�
t .
/k2

E d
 :

The proof is completed by applying Lemma 4.

Remark 1 If the mesh size is quasi uniform, i.e. h D maxK2TK hK 	 hK for any
K 2 Th, the polynomial approximation degree is uniform, i.e. pK D p for any
K 2 Th, and the exact solution satisfies ujK ;utjK ;uttjK 2 ŒHs.K/�d for any K 2 Th
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and for any t 2 Œ0;T�, with s � p C 1, the error estimate of Theorem 1 becomes

sup
t2.0;T�

ke.t/k2
E � h2p

p2s�3
sup

t2.0;T�

n

kut.t/k2
Hs.˝/ C ku.t/k2

Hs.˝/

o

C h2p

p2s�3

Z T

0

n

kutt.
/k2
Hs.˝/ C kut.
/k2

Hs.˝/

o

d
 :

The above bounds are optimal in h and suboptimal in p by a factor p1=2; see, e.g.,
[19, 29] for analogous bounds for stationary (scalar) second order elliptic problems.
Optimal error estimates with respect to the polynomial approximation degree can be
shown either using the projector of [17] provided the solution belongs to a suitable
augmented space, or whenever a continuous interpolant can be built; cf. [37].

4.2 Error Estimates in the L2 Norm

In this section we present a priori error estimates in the L2 norm. We follow the
approach of [13] for second order hyperbolic equations, and introduce, for a regular
enough vector-valued function w, the elliptic-projection operator ˘w defined as

A.˘w; v/ D A.w; v/ 8v 2 Vhp: (22)

We immediately have

ku � ˘ukDG � ku � ˘hpukDG C k˘hpu � ˘ukDG � kj˘hpu � ujkDG; (23)

where ˘hp is the interpolant of Lemma 4, and where the second step follows from
Lemma 2 and the definition (22)

k˘hpu � ˘uk2
DG � A.˘hpu � ˘u; ˘hpu � ˘u/ D A.˘hpu � u; ˘hpu � ˘u/

� kj˘hpu � ujkDGk˘hpu � ˘ukDG:

We also recall the following Poincaré–Friedrichs inequality valid for piecewise
vector–valuedH1 functions

kvk2
L2.Th/

�
X

K2Th

krvk2
L2.K/

C
X

F2Fh

1

hF
kŒŒv��k2

L2 .F/
8v 2 ŒH1.Th/�

d;

cf. [10]. Using that
P

K2Th
krvkL2.K/ � k".v/kL2.Th/, and from the definition of the

DG norm and of the stabilization function (12), it immediately follows

kvk2
L2.Th/

� kvkDG 8v 2 ŒH1.Th/�
d: (24)
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Theorem 2 (A-Priori Error Estimate in the L2 Norm) Under the Assumptions
of Theorem 1, it holds

sup
t2.0;T�

ke.t/k2
L2.˝/

� sup
t2.0;T�

(

h2min.s;pC1/

p2s�2

�

kut.t/k2
Hs.˝/ C ku.t/k2

Hs.˝/

�

)

C
Z T

0

(

h2min.s;pC1/

p2s�2

�

kutt.
/k2
Hs.˝/ C kut.
/k2

Hs.˝/

�

)

d
 :

with h D maxK2Th hK, p D minK2Th pK and s D minK2Th sK .

Proof As in the proof of Theorem 1 we decompose the error as e D e� � eh, where
now e� D uh � ˘u and eh D u � ˘u, ˘u being the elliptic projector defined
in (22). With the above decomposition, the error equation (17) becomes:

.�ehtt; v/Th C A.eh; v/ D .�e�
tt ; v/Th 8 v 2 Vhp:

By taking v D eh in the above identity and reasoning as in the proof of Theorem 1,
we have

kehk2
E � 2hŒŒeh��; fD".eh/gıiFh � kehk2

E;

provided that the penalty parameter ˛ is chosen large enough; cf. (7). Therefore,
integrating in time between 0 and t and using that eh.0/ D uh.0/ � u�.0/ D 0, we
get

kehk2
E �

Z t

0

.�e�
tt ; e

h
t /Th d
 �

Z t

0

ke�
tt kL2.˝/kehkE d
 (25)

where the second step follows based on employing the Cauchy-Schwarz inequality.
Applying Gronwall’s Lemma 3 we get

keh.t/kE �
Z t

0

ke�
tt .
/kL2.˝/ d
 8t 2 .0;T�:

Next, from the Cauchy-Schwarz inequality, the above bound and the Poincaré–
Friedrichs inequality (24), we immediately get

ku � uhkL2.Th/ � ke�kL2.Th/ C kehkL2.Th/ � ke�kL2.Th/ C kehkDG

� ke�kL2.Th/ C kehkE � ke�kL2.Th/ C
Z t

0

ke�
tt .
/kL2.˝/ d
:
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The estimate of the terms on the right hand sides is based on employing a duality
argument; cf [13]. Let � be the solution of the problem

r � �.�/ D e� in˝; � D 0 on @˝:

As ˝ is convex, the above problem is well-posed and its unique solution � 2
ŒH2.˝/�d and satisfies k�kH2.˝/ � ke�kL2.˝/. Moreover, it holds

ke� k2
L2.˝/

D .e� ; e�/L2.˝/ D A.�; e�/ D A.� � �� ; e�/ � kj� � �� jkDGkje� jkDG

where �� 2 Vhp is the interpolant of Lemma 4, and where the last steps follows
from Lemma 2. Employing the interpolation estimates of Lemma 4 we have

ke�k2
L2.˝/

� h

p1=2
k�kH2.˝/kje� jkDG � h

p1=2
ke� kL2.˝/kje� jkDG;

where h D maxK2Th hK and p D minK2Th pK . The proof is completed by employing
the error bounds of Theorem 1.

5 Numerical Results

The results of this section have been obtained with SPEED (http://speed.mox.
polimi.it/), an open source Fortran code developed at Politecnico di Milano by
the Laboratory for Modeling and Scientific Computing MOX of the Department of
Mathematics and the Department of Civil and Environmental Engineering. SPEED
is specifically designed for the simulation of seismic waves propagation problems,
including both the ground motion induced by large scale earthquakes and soil-
structure interaction in urban areas; see, e.g., [27]. Throughout the section we have
set �t D 10�5 so that the temporal component of the error is negligible compared
to the spatial one.

In the first example we consider an elastic wave propagation problem in ˝ D
.0; 1/3, with � D � D � D 1. The source term f and the initial data are chosen so
that the exact solution of problem (1) is given by

uex.x; y; z; t/ D sin.3�t/

2

6

4

� sin2.�x/ sin.2�y/ sin.2�z/
sin2.�y/ sin.2�x/ sin.2�z/
sin2.�z/ sin.2�x/ sin.2�y/

3

7

5 :

We first we consider both a tetrahedral and a hexahedral grid with mesh size h D 0:5

and let p varies from 2 to 8. In Fig. 1a we report the error computed in the energy
norm k�kE at t D T D 0:05 and as a function of the polynomial degree. As expected,
an exponential convergence is observed. For the sake of comparison Fig. 1a also

http://speed.mox.polimi.it/
http://speed.mox.polimi.it/
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3

2

4

Fig. 1 Example 1. (a) Computed errors versus p: computed errors measured in the energy norm
k � kE at t D T D 0:05 versus the polynomial degree p for a tetrahedral mesh (DG-Tet) and
a hexahedral grid (DG-Hex). The results are also compared with the corresponding one based
on employing conforming Spectral Element method on the same tetahedral grid (SE-Tet). (b)
Computed errors versus h: computed errors measured in the energy norm k �kE at t D T versus the
mesh size for p D 2; 3; 4. The dashed lines denote the expected slopes of the error curves

300 m

100 m100 m

Ω1

Ω2

t (s)
0 5 10 15 20

u
x
 (

m
)

-3

-2

-1

0

1

2
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Fig. 2 Example 2. Left: Computational domain ˝ D ˝1 [ ˝2. The elastic wave propagates from
the bottom of ˝1 to the top surface of ˝2. Right: Computed time history of the x component of
the displacement ux recorded at R D .50; 50; 0/ m. The results are compared with a reference
semi-analytical solution uTH obtained with the Thomson-Haskell propagation matrix method

reports the corresponding computed errors obtained with a conforming Spectral
Element method on the same tetrahedral grid. Next, we investigate the behavior
of the error as a function of the grid size h for different polynomial degrees. We
consider a sequence of uniformly refined tetrahedral grids starting from an initial
decomposition of size h0 D 0:5. In Fig. 1b we report the computed errors measured
in energy norm k � kE at the final observation time t D T versus the grid size for
p D 2; 3; 4. As expected, the results confirm a convergence rate of order p.

In the second test we consider a plane wave propagating along the vertical
direction in a layered elastic half-space ˝ D .0; 100/ � .0; 100/ � .�300; 0/m,
see Fig. 2 (left). In Table 1 we report the depth and the material properties of the
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Table 1 Example 2. Material properties

Layer Depth [m] � [Kg=m3] cP [m=s] cS [m=s] Dumping � [1=s]

˝1 200 2200 4000 2000 �� 10�3

˝2 100 1800 600 300 �� 10�2

Fig. 3 Example 2. Snapshots of the x-component of the displacement ux.The deformed domain
(colored) is compared with the non distorted one (black line)

half-space ˝1 and the layer ˝2. The source plane wave is polarized in the x
direction and its time dependency is given by a unit amplitude Ricker wave with
peak frequency at 1 Hz. A dumping term proportional to 2��ut C 2�2u, with � as
in Table 1, is also added to the equation to take into account viscoelastic effects.
The subdomains ˝1 and ˝2 are discretized with a hexahedral and a tetrahedral
mesh, respectively, and the computational grids are built in order to have at least
five grid points per wavelength, with p D 4 in both ˝1 and ˝2. Finally, we impose
absorbing boundary conditions on the bottom surface, a free surface condition on the
top surface, and homogeneous Dirichlet conditions for the y and z component of the
displacement on the remaining boundaries. In Fig. 2 (right) we report the computed
solution which is also compared with a reference semi-analytical solution uTH based
on the Thomson-Haskell propagation matrix method, cf. [18, 40]. More precisely,
Fig. 2 (right) shows the time history of the x component of the displacement ux
recorded at the point R D .50; 50; 0/ m. Finally, in Fig. 3 we report four snapshots
of the deformed computational domain when invested by the plane wave. Two
relevant physical effects can be observed: i) the wave field is amplified at the top
of the domain due to the free surface condition; ii) reflections of the wave field take
place inside the layer ˝2 characterized by a softer material with respect to the half
space ˝1.
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